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Preface

The 1st International Conference on Pairing-Based Cryptography (Pairing 2007)
was held in Tokyo, Japan, during July 2–4, 2007. Pairing-based cryptography
has been causing a paradigm shift in cryptography–an ever increasing number
of novel protocols using pairing have been appearing in the literature: identity-
based encryption, short signature, and efficient broadcast encryption, to mention
but a few. The aim of Pairing 2007 was to bring together leading researchers and
practitioners from academia and industry, all concerned with problems related
to pairing-based cryptography. This conference was sponsored by the University
of Tsukuba, and it was offered in cooperation with Tokyo Section, The Insti-
tute of Electrical and Electronics Engineers (IEEE) and The Japan Society for
Industrial and Applied Mathematics (JSIAM).

Pairing 2007 received 86 submissions from all over the world. Each paper
was double-blindly evaluated by at least three reviewers regarding the technical
relevance to pairing-based cryptography, and 18 papers were selected for pre-
sentation at Pairing 2007. We would like to thank all members of the Program
Committee for their support and enormous investment of time throughout the
whole delicate review process. We are also extremely grateful for all the help
and support of a large number of external reviewers who reviewed submissions
in their area of expertise.

The program also included five invited talks by Dan Boneh from Stanford
University, USA; Steven Galbraith from Royal Holloway University of London,
UK; Alfred Menezes from University of Waterloo, Canada; Takakazu Satoh from
Tokyo Institute of Technology, Japan; and Michael Scott from Dublin City Uni-
versity, Ireland. At least one page of the extended abstract for each invited talk
is included in the proceedings.

We would like to thank all the members of the Organizing Committee for their
work in the publication and organization of Pairing 2007. The review server and
its backup system unexpectedly went out of service, and the review process had
to be restarted from scratch. We gratefully thank Atsuo Inomata and Akira
Kanaoka for their enormous support in installing and operating the iChair sys-
tem during the review process. Again, we gratefully appreciate the patient effort
of all reviewers, especially in light of the server accident.

Finally, we would like to thank all the authors who submitted papers to
Pairing 2007.

April 2007 Tsuyoshi Takagi
Tatsuaki Okamoto

Eiji Okamoto
Takeshi Okamoto
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Bilinear Groups of Composite Order

Dan Boneh�

Computer Science Dept.
Stanford University

dabo@cs.stanford.edu

Abstract. Bilinear groups of composite order are groups with an ef-
ficient bilinear map where the group order is a product of two large
primes. Such groups are constructed from pairing friendly curves over
a finite field. Composite order bilinear groups were recently used in a
number of interesting cryptographic constructions. This talk will survey
three applications:

1. Private Information Retrieval,
2. Anonymous Identity Based Encryption, and
3. Non-Interactive Zero Knowledge.

� Supported by NSF and the Packard Foundation.
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Public Key Encryption with Conjunctive

Keyword Search and Its Extension to a
Multi-user System

Yong Ho Hwang1 and Pil Joong Lee2

1 Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
yhhwang@cs.jhu.edu

2 Department of Electronic and Electrical Engineering, POSTECH, Pohang, Korea
pjl@postech.ac.kr

Abstract. We study the problem of a public key encryption with con-
junctive keyword search (PECK). The keyword searchable encryption
enables a user to outsource his data to the storage of an untrusted server
and to have the ability to selectively search his data without leaking in-
formation. The PECK scheme provides the document search containing
each of several keywords over a public key setting. First, we construct an
efficient PECK scheme whose security is proven over a decisional linear
Diffie-Hellman assumption in the random oracle model. In comparison
with previous schemes, our scheme has the shortest ciphertext size and
private key size, and requires a comparable computation overhead. Sec-
ond, we discuss problems related to the security proof of previous schemes
and show they cannot guarantee complete security. Finally, we introduce
a new concept called a multi-user PECK scheme, which can achieve an
efficient computation and communication overhead and effectively man-
age the storage in a server for a number of users.

1 Introduction

A remote storage system allows a user to store his data in the storage of a (un-
trusted) remote server and access them over mobile or wireless networks. To
preserve the confidentiality of the user, stored data in the storage of a remote
server must be encrypted. However, it is hard to selectively retrieve the encrypted
data, which a user is searching for, from the untrusted server without revealing
any information about the data. A naive solution for this would be to have a user
download all encrypted data from the server and then search for them whenever
he wants to retrieve his data. In this situation, a user would indiscriminately
receive and decrypt all encrypted data, regardless of what data he is looking for.
This solution is not practical because too much bandwidth are required and user
devices have limited resources. To cope with this problem various techniques for
searching encrypted data have been proposed [30,21,31,19,11,4,26]. When storing
the data in a server, the documents associate segments derived from keywords
with encrypted data. Then, to search the encrypted data, a user generates a trap-
door for a certain keyword w and the server can search the encrypted documents

T. Takagi et al. (Eds.): Pairing 2007, LNCS 4575, pp. 2–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



PECK Search and Its Extension to a Multi-user System 3

containing w from it. However, the server learns nothing else about the docu-
ments. While many previous schemes provide a single keyword search, practical
systems desire a multiple keyword search. Consider, for example, a secure audit
log system [31]. The contents of an audit log should be protected from unautho-
rized parties since it may contain sensitive information. To assess past system
activity, auditors will want to search audit logs. At the time of the inspection,
an audit escrow agent gives the auditors the authority to search for specific data
in the audit logs. While searchable encryption is a good solution for this exam-
ple, a single keyword search cannot satisfy multiple search requirements. If the
auditor wants to get the audit records for an “investment” by “Alice” in “Aug”,
the audit log system would perform the search procedure on a large amount of
data repeatedly. The naive solutions to searching for multiple keywords are set
intersection and meta-keywords [21,30]. However, these approaches have obvious
flaws. Set intersection allows the server to learn information on the documents
containing each individual keyword, and meta-keywords require an exponential
storage and search time for the number of keywords. To overcome this short-
coming, the systems that provide conjunctive keyword search on encrypted data
have been investigated [22,26,4,17]. In this paper, we study conjunctive keyword
searchable encryption that minimizes communication and storage overhead for
both the server and the client.

Related Work. Song, Wagner, and Perrig introduced the concept of search-
able encryption and presented practical solutions [30]. Later, Goh defined the
notion of security for searchable encryption and constructed an efficient scheme
using Bloom filters [21]. Moreover, several works were introduced to improve
the efficiency of the system and provide stronger security [18,31,19,1]. However,
their works only support a single keyword search in symmetric key setting.

The concept of conjunctive keyword searchable encryption was first addressed
by Golle, Staddon, and Waters [22]. They defined a security model for conjunc-
tive keyword search over encrypted data and provided two secure constructions.
In their schemes, an encrypted file is associated with searchable encryption for
a number of keywords. Certain keywords are assigned to separate keyword fields
and encrypted with the user’s secret key. If a user queries a trapdoor with sev-
eral keywords, then the server can search a file containing those keywords with
a trapdoor and keyword encryption segments of searchable encryption just by
one test operation. While their constructions are very efficient in comparison to
single keyword searchable encryptions for searching multiple keywords, the first
one requires the trapdoor size to be linear in the number of keywords and the
second one needs a number of pairing computations to search for multiple key-
words. Recently, Ballard, Kamara, and Monrose proposed two constructions that
minimize the trapdoor size and the computation overhead [4]. One is based on
the Shamir Secret Sharing [29] and the other is based on an asymmetric bilinear
map [3]. While their first construction has a very efficient search algorithm, it
requires a linear trapdoor size in the number of documents. The second one has a
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constant trapdoor size and achieves efficient computation and storage overhead.
However, their schemes can only search symmetrically encrypted data.

Most of the previous searchable encryptions were constructed in a symmet-
ric key setting. In this setting, a user encrypts and stores his private data in
the storage of remote server. A user can then retrieve his private data with a
particular keyword from the remote storage. However, these systems cannot be
used for practical applications such as in an email routing system. Suppose that
a user Alice wants to download her encrypted emails from an email gateway
into several devices such as laptop, pager, desktop, etc. She may want to receive
only urgent or important mail to her mobile devices, but then later download
all emails to desktop. To retrieve particular emails from the routing server with-
out leaking any information about her emails, the email contents and keywords
are encrypted under her public key since emails are collected from a number of
senders. For this application, Boneh et al. first addressed public key encryptions
with keyword search based on several assumptions [11]. In addition, Waters et
al. showed that encrypted and searchable audit log system can be efficiently
constructed from the public key searchable encryption [31]. However, these con-
structions cannot efficiently search emails when a user wants to retrieve emails
with several keywords, such as an “urgent” email about “finance” from “Bob”,
since their constructs only support a single keyword search.

Park, Kim, and Lee introduced two efficient constructions that can search
keywords conjunctively in a public key setting [26]. We call their schemes PKL
I and PKL II. They have an efficient computation overhead and a constant
trapdoor size. However, the PKL I scheme requires a number of bilinear pairing
computations for encrypting keywords and the PKL II scheme has the private
keys in proportion to the number of keyword fields. Recently, Boneh and Waters
introduced public-key systems with conjunctive, subset, and range queries on
encrypted data [16]. Their systems can also support searchable keyword-based
message encryption. While their systems have interesting properties, the trap-
door size is linear with the number of conjunctively searching keywords and
the ciphertext size is longer than that of other constructions because it uses
bilinear groups of composite order [13]. For equality testing, the server in their
systems should perform bilinear pairing operations in proportion to the number
of searchable keywords. In addition, the security of their schemes is proven in a
slightly weaker model in which the adversary commits to the search keywords
at the beginning of the game. In this paper, we focus on public key encryption
with conjunctive keyword search (PECK).

Our Contribution. Our aim is to construct an efficient and secure PECK
scheme, which minimizes the communication and storage overhead for both the
server and the user for various practical storage systems. Our results are sum-
marized as follows.

1. We first construct a simple and efficient PECK scheme with short ciphertext
size and only one private key. We prove that our scheme is secure under the
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decisional linear Diffie-Hellman (DLDH) assumption in the random oracle
model. In a remote storage system, the server should store all encrypted data
for a number of users. Hence, reducing the ciphertext size is a very impor-
tant problem. Our scheme has the shortest ciphertext size in comparison to
previous PECK schemes. The ciphertext size of our scheme is half that of
the PKL II scheme which has a shorter ciphertext than that of the PKL I
scheme. In addition, the PKL schemes have other limitations. In the PKL I
scheme, a user performs bilinear pairing operations linear to the number of
keyword fields to encrypt keywords. A number of the pairing computations
impose a burden to a user with limited resources. While our scheme is based
on the bilinear map, a bilinear pairing operation is not required for a user.
In our scheme, a user stores only one private key in his secure device. How-
ever, in the PKL II scheme, a user should store private keys linear with the
number of keyword fields. Therefore, our scheme minimizes the communica-
tion and storage overhead for both the server and users and has an efficient
computation overhead.

2. We analyze the security of the PKL schemes. In [26], Park, Kim, and Lee
modified the security model of Golle, Staddon, and Waters and showed their
schemes are secure in a modified model. However, their security proofs do
not satisfy their security model. Their security model restricts only trapdoor
queries that can distinguish a challenge cipehrtext. However, all trapdoors
including a word of the target documents cannot be asked in their secu-
rity proofs, even if a trapdoor cannot distinguish the challenge ciphertext.
Therefore, their schemes cannot guarantee complete security in practical ap-
plications. We discuss the problems of their security proofs and show that
the PKL I scheme is broken by this limitation.

3. We introduce a new concept, called a multi-user PECK scheme, which pro-
vides an efficient remote storage system for a number of users. We define
the security model for a multi-user PECK scheme and provide an efficient
construction using our PECK scheme. Our multi-user system is also secure
under the DLDH assumption in the random oracle model. We provide spe-
cific applications such as encrypted file sharing system and email routing
system for a multi-user PECK scheme. Our multi-user PECK scheme opti-
mizes the storage of the server for a number of users and achieves an efficient
computation and communication overhead.

Organization of The Paper. The remainder of this paper is organized as
follows. In Section 2, we define models for the PECK scheme and review the
bilinear map and hardness assumptions for our constructions. In Section 3, we
construct a simple and efficient PECK scheme and prove the security of our
scheme in the random oracle model. In Section 4, we analyze the security of
the previous schemes and compare our scheme with them. Then we introduce
a multi-user PECK scheme and provide the specific applications in Section 5.
Finally, we give concluding remarks in Section 6.
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2 Preliminaries

Before presenting our results we briefly formalize models and definitions of se-
curity for the PECK scheme. In addition, we review the definition of bilinear
groups and describe the decisional linear Diffi-Hellman (DLDH) assumption for
our schemes.

2.1 Generic Model for PECK

We consider that a user’s encrypted data is outsourced in the storage of the
untrusted server, such as email gateway, secure audit logs, and remote database
server. In a public key model for keyword search, the server stores encrypted
data collected from third parties and the user enables the server to retrieve
emails containing keywords, which the user wants to search, without leaking
information. To support a conjunctive keyword search, we recall the assumptions
used in the previous works [22,26]; (1) The same keyword never appears in two
different keyword fields. (2) Every keyword field is defined for every document.

The assumptions can be easily satisfied in practical applications. One simple
way to enforce the assumptions is to embed field names within keywords, for
example, as “Field Name.w” where ‘.’ denotes concatenation and w is an ac-
tual keyword. Consider the routing email system. Then we can define the field
names as To, From, Subject, Time etc. In this case, the keyword is used as
“From.Alice”, and “To.Null” can be used for a field that does not have a valid
keyword. Then, even if the same keywords are used for different keyword fields,
a collision of keywords does not happen. To simplify the notations, we will use w
instead of “Field Name.w.” We construct the system under these assumptions.

The public key encryption with conjunctive keyword search consists of 4 poly-
nomial time algorithms, (KeyGen, PECK, Trapdoor, Test) such that;

- KeyGen: takes as input a security parameter and returns params (system
parameters) and the public/private key pair (pk, sk).

- PECK: is executed by the sender to encrypt a keyword set W = {w1, . . . , w�}.
It produces a searchable keyword encryption S of W with the public key pk.

- Trapdoor: takes as input the secret key sk and the keyword query Q =
{I1, . . . , Im, wI1 , . . . , wIm} for m ≤ � where Ii is an index to denote a location
of wIi , and returns a trapdoor TQ for the conjunctive search of a given
keyword query.

- Test: is executed by the server to search the documents with the keywords
of a trapdoor TQ. It takes as input the public key pk, the searchable keyword
encryption S, and the trapdoor TQ. Then output ‘1’ if S includes Q and ‘0’
otherwise.

Actually, in the PECK scheme, to send a message m with keyword set W ,
a ciphertext has a form of 〈Enc(pk, m), PECK(pk, W )〉 where Enc(·) is a secure
public key encryption. We concentrate on searchable encryption part.
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2.2 Adversarial Models for PECK

We consider a semantic security against chosen keyword attacks as mentioned
in the previous works [22,4,26]. Golle, Staddon, and Waters first defined the
security games of symmetric encryptions for conjunctive keyword search [22].
Then in [26] Park, Kim, and Lee modified the security games for public key
setting. The security of the PECK scheme can be defined by two security games,
indistinguishability of ciphertext from ciphertext (IND-CC-CKA) and indistin-
guishability of ciphertext from random (IND-CR-CKA) against chosen keyword
attacks. We briefly define them. The IND-CC-CKA game is as follows

– Setup: The challenger takes a security parameter 1k and runs the Keygen
algorithm. The public key pk and the system parameters params are given
to A. The challenger C keeps the secret key sk to itself.

– Phase 1: A adaptively queries a number of keyword sets, Q1, . . . , Qd, to
trapdoor oracle as follows.

- Trapdoor Queries 〈Qi〉. The challenger runs Trapdoor(sk, Qi) and gener-
ates the trapdoor TQi . And then responds to A.

– Challenge: A selects two target keyword sets W0 and W1, and sends them
to the challenger C. The challenger picks a random bit β ∈ {0, 1}. The only
restriction is that W0 and W1 should not be distinguished from trapdoors
issued in previous phase. And it sets Sβ = PECK(pk, Wβ). Then send it to
A.

– Phase 2: A additionally queries keyword sets, Qd+1, . . . , Qγ , to trapdoor
oracle.

- Trapdoor Queries 〈Qi �=W0 or W1〉. The challenger runs Trapdoor(sk, Qi)
and generates the trapdoor TQi . If TQi cannot distinguish for W0 and
W1, then it responds TQi to A.

– Guess: Finally, A outputs a guess β′ ∈ {0, 1}. It wins the game if β = β′.

We define the advantage of the adversary A against the PECK scheme as the
function of the security parameter 1k: AdvIND-CC-CKA

PECK,A (1k) =| Pr[β = β′] − 1
2 |.

We introduce another security game IND-CR-CKA which is a variant of the
IND-CC-CKA game. This security game is the same as the IND-CC-CKA game
except for the Challenge phase. While in the IND-CC-CKA game the adversary
A selects two target keyword sets, W0 and W1, and gives them to the challenger
C, in the IND-CR-CKA game A selects a target keyword set W0 and gives it to
C. Then C selects a random keyword set R and sets W1 = R. The IND-CR-CKA
game is as follows.

– Setup: The challenger takes a security parameter 1k and runs the Keygen
algorithm. The public key pk and the system parameters params are given
to A. The challenger C keeps the secret key sk to itself.

– Phase 1: A adaptively queries a number of keyword sets, Q1, . . . , Qd, to
trapdoor oracle as follows.

- Trapdoor Queries 〈Qi〉. The challenger runs Trapdoor(sk, Qi) and gener-
ates the trapdoor TQi . And then responds to A.
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– Challenge: A selects a target keyword set W ∗ and sends it to the challenger
C. The challenger selects a random keyword set R and picks a random bit
β ∈ {0, 1}. The only restriction is that W ∗ should not be distinguished for
R from trapdoors issued in previous phase. And it sets Sβ = PECK(pk, Wβ)
where W0 = W ∗ and W1 = R. Then send 〈Sβ , W0, W1〉 to A.

– Phase 2: A additionally queries keyword sets, Qd+1, . . . , Qγ , to trapdoor
oracle.

- Trapdoor Queries 〈Qi �= W0 or W1〉. The challenger runs Trapdoor(sk, Qi)
and generates the trapdoor TQi . If TQi cannot distinguish for W0 and
W1, then it responds TQi to A.

– Guess: Finally, A outputs a guess β′ ∈ {0, 1}. It wins the game if β = β′.

We define the advantage of the adversary A against the PECK scheme as the
function of the security parameter 1k: AdvIND-CR-CKA

PECK,A (1k) =| Pr[β = β′] − 1
2 |.

The two security games, IND-CC-CKA and IND-CR-CKA, are all asymptoti-
cally equivalent [22,4].

Definition 1. We say that a PECK scheme PECK is (t, qt, ε)-secure if for any
t-time IND-CC-CKA (respectively IND-CR-CKA) adversary A who makes at
most qt trapdoor queries, we have that Advatk

PECK,A(1k) < ε where atk is IND-
CC-CKA (resp. IND-CR-CKA).

2.3 Bilinear Maps

Let G1 and G2 be the two multiplicative cyclic groups of order p for some large
prime p. Our schemes make use of the bilinear map ê : G1 × G1 → G2 between
these two groups. The bilinear map should be satisfied the following properties:

1. Bilinear: We say that a map ê: G1 × G1 → G2 is bilinear if ê(ga, hb) =
ê(g, h)ab for all g, h ∈ G1 and a, b ∈ Z∗

p.
2. Non-degenerate: The map does not send all pairs in G1×G1 to the identity

in G2. Observe that since G1, G2 are groups of prime order this implies that
if g is a generator of G1 then ê(g, g) is a generator of G2.

3. Computable: There is an efficient algorithm to compute ê(g, h) for any
g, h ∈ G1.

A bilinear map satisfying the three properties above is said to be an admissible
bilinear map. We can make this map using the Weil pairing or the Tate pairing
[5,6,12,27].

2.4 Complexity Assumption

The security of our schemes is based on a complexity assumption called Decision
Linear Diffie-Hellman (DLDH) assumption. This assumption was introduced by
Boneh et al.[10] and was recently used to construct a short group signature
[10] and an efficient tag-based encryption scheme [23]. Let g1, g2, g3 be random
elements in G1 and a, b, c elements in Z

∗
p. We define the DLDH problem in the G1
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as; Given 6 tuples 〈g1, g2, g3, g
a
1 , gb

2, g
c
3〉 ∈ G1 as input, output 1 if c = a+b and 0

otherwise. One can easily show that an algorithm for solving the DLDH problem
in G1 gives an algorithm for solving DDH in G1. The converse is believed to be
false. That is, it is believed that the DLDH problem is a hard problem even in
the bilinear groups where DDH is easy [10,23].1 We define the advantage of an
algorithm A to deciding the DLDH problem in G1 as

AdvDLDH
A =

∣∣∣∣∣∣
Pr[g1, g2, g3 ←R G1; a, b ←R Z∗

p : A(g1, g2, g3, g
a
1 , gb

2, g
a+b
3 ) = 1]

−Pr[g1, g2, g3, z ←R G1; a, b ←R Z∗
p; z = gc

3 :
A(g1, g2, g3, g

a
1 , gb

2, z) = 1]

∣∣∣∣∣∣ .

Definition 2. We say that the (t, ε)-DLDH assumption holds in G1 if no t-time
adversary has an advantage at least ε in solving the DLDH problem in G1.

3 Proposed PECK Scheme

We introduce a new and simple public key encryption with conjunctive keyword
search. However, our scheme has efficient communication and storage overhead
in both the server and users and reasonable computation overhead. In addition,
we provide a concrete security proof of our scheme, while other previous works
have had a weakness in their security proofs. Our scheme is as follows.

- KeyGen(1k): Given the a security parameter 1k, it returns params = (G1, G2,
ê, H1(·), H2(·), g) where H1:{0, 1}log w → G1 and H2:{0, 1}logw → G1 are
two different collision-resistance hash functions and g is a generator of G1.
And it picks a random value x in Z∗

p and computes y = gx. The public/private
key pair (pk, sk) is given by

(pk, sk) = (y, x)

- PECK(pk, W ): The sender selects a keyword set W = {w1, . . . , w�} and
two random values s, r in Z∗

p, and computes A = gr, B = ys, Ci = hr
i f

s
i

for 1 ≤ i ≤ � where hi = H1(wi) and fi = H2(wi). Then outputs S =
〈A, B, C1, . . . , C�〉.

- Trapdoor(sk, Q): It selects a random value t ∈ Z∗
p and computes TQ,1 = gt,

TQ,2 = (hI1 · · ·hIm)t, and TQ,3 = (fI1 · · · fIm)t/x where Q = {I1, . . . , Im,
wI1 , . . . , wIm}. Then output TQ = (TQ,1, TQ,2, TQ,3, I1, . . . , Im).

- Test(pk, S, TQ): Check ê(TQ,1,
∏m

i=1 CIi) = ê(A, TQ,2) · ê(B, TQ,3).

Our scheme does not require a pairing operation for a searchable encryption
and a trapdoor. To test the equality of a keyword set, 3 pairing operations are
needed. In addition, a ciphertext consists of (�+2) group elements in G1 and the
number of the private keys stored in each user’s secure device is only one. These
complexities are an interesting improvement to the other existing systems. We
will discuss this in Section 4.
1 In [10], it was shown that the DLDH problem is hard in generic bilinear groups.
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3.1 Security

We now prove that our scheme is IND-CR-CKA secure over the DLDH assump-
tion in the random oracle model.

Theorem 3. Let our scheme be PECK. Assume that (t, ε)-DLDH assumption
holds in G1. Then PECK is (t′, qt, qh, e�qtε)-secure against IND-CR-CKA in the
random oracle model for arbitrary �, qt, qh, and t′ < t − Θ(τ�qtqh) where τ is
the maximum time for an exponentiation in G1

Proof. Assume that A is an adversary with advantage ε′ in breaking PECK
against IND-CR-CKA and H1(·), H2(·) are modelled as random oracles. Then
we can construct an adversary B who attacks the DLDH problem using A as
described below.

– Setup: The DLDH challenger gives the DLDH parameters 〈g1, g2, g3, v1,
v2, v3〉 to the adversary B where v1 = ga

1 , v2 = gb
2, and v3 = ga+b

3 or z. B
sets g = g1 and y = g2. At that time, the private key is regarded as α where
g2 = gα

1 . In addition, it selects a random value η in Z∗
p and keeps it securely.

This value is used in random oracles and Challenge phase. It gives A the
system parameters params = (G1, G2, ê, H1(·), H2(·), g) and the public key
pk = y.

- H1, H2-queries: A issues at most qh keyword queries to the random
oracles. It simultaneously responds these queries. B maintains lists of
tuples 〈wi, ci, hi, di〉 called the H list

1 and 〈wi, ci, fi, ei〉 called the H list
2 .

If the keyword wi is already queried, B returns hi = H1(wi) in H list
1 and

fi = H2(wi) in H list
2 . Otherwise, it generates a random coin ci ∈ {0, 1}

so that Pr[ci = 1] = 1/(�qt). If ci = 0, then it selects two random values
di and ei in Z∗

p, and sets gdi
1 for hi and gei

2 for fi. Otherwise, it selects
a random value di in Z∗

p and computes ei = di/η. And then it sets gdi
3

for hi and gei
3 for fi. It adds 〈wi, ci, hi, di〉 and 〈wi, ci, fi, ei〉 to H list

1 and
H list

2 respectively, and returns hi, fi to A.

– Phase 1: A queries a number of keyword sets to trapdoor oracle.
- Trapdoor Queries: A queries a keyword set Qi = {Ii,1, . . . , Ii,m, wi,1, . . . ,

wi,m} to obtain a trapdoor TQi . Let Ii be {Ii,1, . . . , Ii,m}. B obtains two
lists such that 〈wi,j , ci,j , hi,j , di,j〉 and 〈wi,j , ci,j , fi,j , ei,j〉 for 1 ≤ j ≤ m
by running the above algorithm for responding to H1, H2-queries. If there
is any ci,j = 1 for 1 ≤ j ≤ �, then B aborts. Otherwise, it selects a random
value ti in Z∗

p and outputs TQi = (TQi,1, TQi,2, TQi,3) where TQi,1 = gti
1 ,

TQi,2 = g
ti(

∑ m
j=1 di,j)

1 , and TQi,3 = g
ti(

∑m
j=1 ei,j)

1 .
– Challenge: A selects a target document W ∗ and sends it to B. It selects

a random document R and sets W0 = W ∗ and W1 = R where W0 =
{w0,1, . . . , w0,�} and W1 = {w1,1, . . . , w1,�}. The only restriction is that
W0 and W1 should not be distinguished from trapdoors issued in previous
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phase.2 And then it selects a random bit β ∈ {0, 1}. B queries all key-
words of Wβ to H1, H2-oracles and obtains lists 〈wβ,i, cβ,i, hβ,i, dβ,i〉 and
〈wβ,i, cβ,i, fβ,i, eβ,i〉 for all i from oracles. If there is no cβ,i = 1 for all i, it
aborts. Otherwise, it computes a challenge ciphertext Sβ = 〈A, B, Cβ,1, . . . ,

Cβ,�〉 where A = v1, B = vη
2 , and Cβ,i = v

dβ,i

1 v
eβ,iη
2 (in case that cβ,i = 0) or

v
dβ,i

3 (in case that cβ,i = 1). A is given 〈Sβ , W0, W1〉.
– Phase 2: A continues to issue trapdoor queries which are not equal to

W0 and W1. The only restriction is that it cannot issue trapdoor query
distinguishing W0 for W1. B responds as in Phase 1.

– Guess: Finally, A outputs a guess β′ ∈ {0, 1}. If β = β′, then B outputs 1
meaning v3 = ga+b

3 . Otherwise, it outputs 0 meaning v3 = z.

The adversary B should not abort in Trapdoor Queries and Challenge phase
for the success. The probability that it does not abort in Trapdoor Queries is (1−
1/�qt)�qt for qt queries. And the probability that it does not abort in Challenge
phase is (1− (1− 1

�qt
)�). Therefore, the probability that it did not abort during

the simulation is greater than 1/(4 · �qt) because (1 − 1/�qt)�qt ≥ 1/4 for any
�qt ≥ 2 and (1 − (1 − 1

�qt
)�) ≥ (1 − (1 − 1

�qt
)) = 1

�qt
. If v3 = ga+b

3 , then the
challenge ciphertext is a valid encryption of the keyword set Wβ .

A = v1 = ga
1 = ga,

B = vη
2 = gbη

2 = ybη

(If cβ,i = 0,) Cβ,i = v
dβ,i

1 v
eβ,iη
2 = g

dβ,ia
1 g

eβ,ibη
2 = ha

β,if
bη
β,i

(Otherwise,) Cβ,i = v
dβ,i

3 = g
(a+b)dβ,i

3 = (gdβ,i

3 )a(gdβ,i/η
3 )bη

= (hβ,i)a(geβ,i

3 )bη = ha
β,if

bη
β,i

In this case, A’s view is identical to its view in a real attack game and it must
satisfy |Pr[β = β′]−1/2| ≥ ε′. If v3 = z and B does not abort, then Pr[β = β′] =
1/2. Therefore, we have that

|Pr[B(g1, g2, g3, g
a
1 , gb

2, g
a+b
3 ) = 0] − Pr[B(g1, g2, g3, g

a
1 , gb

2, z) = 0]|
≥ 1

4�qt
|(1/2 ± ε′) − 1/2| = ε′

4�qt

We complete the proof of the theorem. �

4 Discussions

In this section, we discuss the security problems of the previous systems and
compare our system to them. We will analyze and compare the PKL schemes
because they have the most efficient system complexity to support conjunctive
keyword search in a public key setting.
2 In the simulation, the only restriction is that the target keyword sets W0 and W1

should not be distinguished from trapdoor queries. Namely, the adversary cannot
issue a trapdoor query for a keyword set Qi ⊂ W0 or W1. However, the adversary
should be allowed to query a keyword set Qi where Qi∩W0(or1) �= ∅ and Qi � W0(or1),
while in the security proof of the PKL II scheme all trapdoor queries including a word
in W0 and W1 are restricted. Our simulation allows that with some probability.
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4.1 Flaws in Security Proofs of Previous Schemes

The PKL schemes proved their security under the indistinguishability of limited
ciphertext from random (ILCR) game. The scenario of their security proof is
not correct, although the security game ILCR appears to be reasonable. In the
ILCR game, the adversary A selects the target keyword w∗ and its position κ,
and then returns (w∗, κ) to the challenger C. And then, A is given the challenge
ciphertext Sβ with W0 = {w0,1, . . . , w0,�} and W1 = {w1,1, . . . , w1,�} where
w∗ = w0,κ. After receiving the target ciphertext, A issues the trapdoor queries.
Here, the only restriction is that it cannot ask any trapdoor query that can
distinguish W0 for W1. For this, the proof of [26] blocks all trapdoor queries
including w∗. Although a trapdoor query for a document Wi = {wi,1, . . . , wi,�}
with wi,κ = w∗ cannot distinguish W0 for W1 if Wi � W0, this query cannot
be issued. It is that it violates a rule of the security game. The challenger has
to respond to a legitimate trapdoor query with some probability. However, the
challenger aborts whenever it receives such a trapdoor query in the security proof
of the PKL schemes.

We show that the PKL I scheme is broken in a real attack environment because
of this flaw. After the adversary asks trapdoor queries two times, it can check if
a document has the keyword he selects. Consider the system with two keyword
fields. The adversary first obtains two trapdoors by issuing queries for {w1, w2}
and {w2}. Then it can search the documents with {w1} by use of two trapdoors.
Assume that the adversary selects {w1, w3} as a target document and is given
〈Sβ , W0 = {w1, w3}, W1 = {w4, w5}〉 as a target ciphertext in a security game.
The adversary can distinguish Sβ for W0 or W1. The adversary’s behavior is
appropriate because the trapdoors for {w1, w2} and {w2} cannot distinguish
between W0 and W1. We provide a detailed description for a real attack in
Appendix A.

The security proof of the PKL II scheme has more restrictions. After receiving
the challenge ciphertext 〈Sβ , W0, W1〉, the adversaryA cannot issue any trapdoor
query including any keyword of W0. It cannot query even the trapdoor for a
document including w0,i for any i as well as a target keyword w∗. In an example
with three keyword fields, when W0 is {w0,1, w0,2, w0,3} and w∗ = w0,2, the
adversary is not able to ask the trapdoor for a keyword set like {w0,1, w

′
2, w

′
3},

though w′
2 �= w0,2, w′

3 �= w0,3, and the trapdoor for this keyword set cannot
distinguish target documents. This proof is not appropriate. Hence, the security
of the PKL II scheme is difficult to be guaranteed in a practical environment
since it does not have a reasonable security proof.3

4.2 Efficiency

In this section, we compare the efficiency of our scheme with previous works.
As shown in the previous section, our scheme has a very short ciphertext size
3 That the security proof is not complete does not mean that the PKL II scheme is

broken. However, there might be a security hole from this flaw as shown in the PKL
I scheme.
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Table 1. Comparison of the PECK schemes

PKL I [26] PKL II [26] Our system

Ciphertext size 2L1 + � · L2 (2� + 3)L1 (� + 2)L1

Private key size 2|Z∗
p| (� + 2)|Z∗

p| |Z∗
p|

Trapdoor size L1 + |Z∗
p| 2L1 + |Z∗

p| 3L1

Encryption (� + 2) · e + � · (p + H) (3� + 2) · e (2� + 2) · e + 2� · H
Trapdoor e + � · H 2e 3e + 2� · H

Test e + p e + 2p 3p

Security insecure incomplete complete
L1 (or L2): a bit length of an element of G1 (or G2).
p: a pairing operation.
e: an exponentiation in G1 or G2.
H: an admissible encoding hash function.

and one private key. In addition, it has very efficient overhead for the storage of
both the server and users. In particular, the ciphertext size of our scheme has an
interesting result since the server should store a lot of ciphertexts for a number
of users. We can use the fact that G1 is of size approximately 2170, elements
in G1 are 171-bit strings, and the discrete log in G1 is as hard as the discrete
log in Zq where q is 1020 bits [10,15,28]. At that time, G2 is a subgroup of the
multiplicative group of the finite field F ∗

pη where p is the size of a group G1 and
η is the embedding degree of map, and the elliptic curve with η = 6 is generally
used for the balance of two maps G1 and G2 [10,15]. In this case, the ciphertext
size of the PKL I scheme is about six times as large as that of our scheme. In
addition, the PKL I scheme requires a pairing computation linear to the number
of keyword fields in the encryption phase. To reduce the ciphertext size and
the computation overhead, the PKL II scheme uses different private keys and
random values for every keyword fields. Hence, the PKL II scheme requires (�+2)
private keys for each user and (2� + 3) group elements of G1 for a ciphertext.
In comparison, our scheme uses only one private key and the ciphertext size is
half that of the PKL II scheme. Table 1 shows the system complexities of the
PKL scheme and our scheme. Here, we omit miscellaneously small computation
operations such as a multiplication in G1 or G2, and an addition in Z∗

p. If a is a
string, then |a| denotes its length, while if A is a finite set then |A| denotes its
size.

The PKL I scheme has an efficient test algorithm and the PKL II scheme has
an efficient computation overhead with respect to users, while they consume a
large amount of storage in the server. However, the most significant problem
about the PKL schemes is they cannot guarantee the concrete security in real ap-
plications as shown in Section 4.1. Our scheme provides a complete security proof
as well as a short ciphertext size and a private key. In addition, our computation
overhead is comparable to the PKL schemes.



14 Y.H. Hwang and P.J. Lee

5 Multi-user PECK System

In this section, we extend our PECK scheme to a multi-user PECK scheme. In a
PECK model, a user outsources his data to the storage of a server which stores
data for a number of users. Suppose user Alice wants to send an encrypted
email to a number of recipients in the example of an email routing system.
To route the email to devices of recipients in the email gateway, Alice would
encrypt the same document and the same keywords with the public keys of
the recipients repeatedly. A multi-user PECK scheme can eliminate repeated
operations and reduce the communication overhead for a number of users. In
the public key model and the identity-based model, the systems for a multi-
receiver have been investigated to reduce the communication and computation
cost [7,8,9,10]. However, there is no PECK scheme for the multi-user even though
the multi-user PECK scheme is more important with respect to storage and
communication overhead since all of the ciphertexts must be stored in the storage
of the server. In this paper, we propose the first multi-user PECK scheme.

We first define a model for the multi-user public key encryption with con-
junctive keyword search (mPECK) and a security game for it. The mPECK is
modelled by combining the multi-receiver public key encryption and the PECK
scheme. Let n be the number of users. The mPECK consists of 4 polynomial
time algorithms, (KeyGen, mPECK, Trapdoor, Test) such that;

- KeyGen: takes as input a security parameter and returns params (system
parameters) and the public/private key pairs (pk1, sk1), . . . , (pkn, skn).

- mPECK: is executed by the sender to encrypt an keyword set W ={w1, . . . , w�}.
It produces a searchable keyword encryption S of W with the public keys
(pk1, . . . , pkn).

- Trapdoor: takes as input the secret key skj and the keyword query Q =
{I1, . . . , Im, wI1 , . . . , wIm} for m ≤ � where Ii is an index to denote a location
of wI1 , and returns a trapdoor Tj,Q for the conjunctive search of a given
keyword query.

- Test: is executed by the server to search the documents with the keywords of
a trapdoor Tj,Q. It takes as input the public key pkj , the searchable keyword
encryption S, and the trapdoor Tj,Q. It outputs ‘1’ if S includes Q and ‘0’
otherwise.

Adversarial Model. We define the security game for mPECK system. We
consider a semantic security against chosen keyword attacks. In our security
game, the adversary is given the public keys for n users in the Setup phase, the
keyword set is encrypted with n public keys. In addition, the adversary issues
the trapdoor query with a user index. The security of the mPECK scheme can
be also defined by indistinguishability of ciphertext from random against chosen
keyword attacks (IND-mCR-CKA) as follows.

– Setup: The challenger takes a security parameter k and runs the Keygen
algorithm. The public keys (pk1, . . . , pkn) and the system parameters params
are given to A. The challenger C keeps the secret keys (sk1, . . . , skn) to itself.
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– Phase 1: A adaptively queries a number of keyword sets, Q1, . . . , Qd, to
trapdoor oracle as follows where qi is 〈j, Qi〉.

- Trapdoor Queries 〈j, Qi〉. The challenger runs Trapdoor(skj, Qi) and gen-
erates the trapdoor Tj,Qi . And then responds to A.

– Challenge: A selects a target keyword set W ∗ and sends it to the challenger
C. The challenger selects a random keyword set R and picks a
random bit β ∈ {0, 1}. The only restriction is that W ∗ should not be
distinguished for R from trapdoors issued in previous phase. And it sets
Sβ = PECK(pk1, . . . , pkn, Wβ) where W0 = W ∗ and W1 = R. Then send
〈Sβ , W0, W1〉 to A.

– Phase 2: A additionally queries keyword sets, Qd+1, . . . , Qγ , to trapdoor
oracle.

- Trapdoor Queries 〈j, Qi �= W0 or W1〉. The challenger runs Trapdoor
(skj , Qi) and generates the trapdoor Tj,Qi . If Tj,Qi cannot distinguish
for W0 and W1, then it responds Tj,Qi to A.

– Guess: Finally, A outputs a guess β′ ∈ {0, 1}. He wins the game if β = β′.

We define the advantage of the adversaryA against the mPECK scheme as the
function of the security parameter 1k: AdvIND-mCR-CKA

MPECK,A (1k) =| Pr[β = β′]− 1
2 |.

Definition 4. We say that a mPECK scheme MPECK is (t, qt, ε)-secure if for
any t-time IND-mCR-CKA adversary A who makes at most qt trapdoor queries,
we have that AdvIND−mCR−CKA

MPECK,A (1k) < ε.

5.1 Construction

We construct a first mPECK scheme. Our scheme uses a technique called ran-
domness re-use [9,24] to improve the computation and communication overhead.
Our scheme is as follows.

- KeyGen(1k): Given the a security parameter 1k, it returns params = (G1, G2,
ê, H1(·), H2(·), g) where H1:{0, 1}log w → G1 and H2:{0, 1}logw → G1 are
two different collision-resistance hash functions and g is a generator of G1.
It chooses n random values x1, . . . , xn in Z∗

p and computes yi = gxi . The
public/private key pairs (pk1, sk1), . . . , (pkn, skn) are given by

(pki, ski) = (yi, xi).

- mPECK(pk1, . . . , pkn, W ): The sender selects a keyword set W = {w1, . . . , w�}
and two random values s, r in Z∗

p, and computes A = gr, Bj = ys
j for

1 ≤ j ≤ n, Ci = hr
i f

s
i for 1 ≤ i ≤ � where hi = H1(wi) and fi = H2(wi).

Then outputs S = 〈A, B1, . . . , Bn, C1, . . . , C�〉.
- Trapdoor(skj, Q): It selects a random value t ∈ Z∗

p and computes Tj,Q1 = gt,
Tj,Q2 = (hI1 · · ·hIm)t, and Tj,Q3 = (fI1 · · · fIm)t/xj where Q = {I1, . . . , Im,
wI1 , . . . , wIm}. Then output Tj,Q = (Tj,Q1, Tj,Q2, Tj,Q3, I1, . . . , Im).

- Test(pkj, S, TQ): Check ê(Tj,Q1,
∏m

i=1 CIi ) = ê(A, Tj,Q2) · ê(Bj , Tj,Q3).
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In this scheme, a mechanism generating a trapdoor for searching keywords
and Test algorithm are the same as those of our PECK scheme with respect
to a recipient and the server. To send an encrypted message with conjunctive
keyword search to n users, the sender has only to add Bi from the recipient’s
public keys. Generally, an encrypted data with the conjunctive keyword search
is stored by a form of 〈Enc(pki, m), PECK(pki, W )〉 in the storage of the server
where Enc is a secure public encryption scheme. Therefore, when a user wants to
send the same message to n users by a general PECK scheme, he should generate
n (public key) encryptions as 〈Enc(pki, m), PECK(pki, W )〉 for 1 ≤ i ≤ n and the
server should separately store ciphertexts for each user. However, in case of our
mPECK scheme, the sender can encrypt a message for n users by additionally
computing Bj parts of encryption and a multi-user public key encryption can
be used for encryption of an actual message m. In this case, the server can
store the ciphertext as 〈mEnc(pk1, . . . , pkn, m), mPECK(pk1, . . . , pkn, W )〉 where
mEnc is a secure multi-receiver public key encryption scheme. If we apply our
mPECK scheme to multi-receiver encryption scheme of ElGamal [20] type, we
can construct an efficient multi-user system as

- mEnc(y1, . . . , yn, m)+mPECK(y1, . . . , yn, W ): Let h : G2 → M be one-way
hash function. The sender selects two random values s, r in Z∗

p, and computes
E = h(ê(g, g)rs) ⊕ m, A = gr, Bj = ys

j for 1 ≤ j ≤ n, Ci = hr
i f

s
i for

1 ≤ i ≤ � where hi = H1(wi) and fi = H2(wi). Then outputs (E, S) where
S = 〈A, B1, . . . , Bn, C1, . . . , C�〉.

- mDec(xj, E, Bj): It computes Xj = h(ê(A, Bj)1/xj ) and outputs E ⊕ Xj . If
a user is a legitimate receiver, he outputs m since Xj = h(ê(A, Bj)1/xj ) =
h(ê(gr, ys

j )
1/xj ) = h(ê(g, y

1/xj

j )rs) = h(ê(g, g)rs).

In this example, the server searches the encryption with the keywords, that a
user uj wants to search, by trapdoor of uj and then returns (A, Bj , E) to uj .
The user uj can decrypt this ciphertext with his private key. The server can
store |Cn|+(n+ �+1) ·L1 data instead of n(|Cn|+(�+2) ·L1) for n users where
Cn = mEnc(pk1, . . . , pkn, m). This is very efficient complexity with respect to the
storage of the server and the communication between a user and the server.

5.2 Security

We now prove that our scheme is IND-mCR-CKA secure over the DLDH as-
sumption in the random oracle model.

Theorem 5. Let our scheme be MPECK. Assume that (t, ε)-DLDH assump-
tion holds in G1. Then PECK is (t′, qt, qh, e�qtε)-secure against IND-mCR-CKA
in the random oracle model for arbitrary �, qt, qh, and t′ < t−Θ(τ�qtqh) where
τ is the maximum time for an exponentiation in G1

Proof. Assume that A is an adversary with advantage ε′ in breaking MPECK
against IND-mCR-CKA and H1(·), H2(·) are modelled as random oracles.
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Then we can construct an adversary B who attacks the DLDH problem using A
as described below.

– Setup: The DLDH challenger gives the DLDH parameters 〈g1, g2, g3, v1,
v2, v3〉 to the adversary B where v1 = ga

1 , v2 = gb
2, and v3 = ga+b

3 or z.
The adversary B randomly selects n values π1, . . . , πn in Z∗

p, and sets g = g1

and y1 = gπ1
2 , . . . , yn = gπn

2 . At that time, the private key for a user ui is
regarded as απi where g2 = gα

1 . In addition, it selects a random value η in Z∗
p

and keeps it securely. This value is used in random oracles and Challenge
phase. It gives A the system parameters params = (G1, G2, ê, H1(·), H2(·), g)
and the public key pk1 = y1, . . . , pkn = yn.

- H1, H2-queries: These oracles are the same as those of Theorem 1.

– Phase 1: A queries a number of keyword sets to trapdoor oracle.
- Trapdoor Queries A queries a user’s index j and a keyword set Qi =
{Ii,1, . . . , Ii,m, wi,1, . . . , wi,m} to obtain a trapdoor Tj,Qi . We denote
{Ii,1, . . . , Ii,m} by Ii. B obtains two lists such that 〈wi,j , ci,j , hi,j , di,j〉
and 〈wi,j , ci,j , fi,j , ei,j〉 for 1 ≤ j ≤ m by running the above algo-
rithm for responding to H1, H2-queries. If there is any ci,j = 1 for
1 ≤ j ≤ �, then B aborts. Otherwise, it selects a random value ti
in Z

∗
p and outputs Tj,Qi = (Tj,Qi,1 , Tj,Qi,2 , Tj,Qi,3) where Tj,Qi,1 = gti

1 ,

Tj,Qi,2 = g
ti(

∑ m
j=1 di,j)

1 , and Tj,Qi,3 = g
ti(

∑ m
j=1 ei,j)/πj

1 .
– Challenge: A selects a target document W ∗ and sends it to B. It selects

a random document R and sets W0 = W ∗ and W1 = R where W0 =
{w0,1, . . . , w0,�} and W1 = {w1,1, . . . , w1,�}. The only restriction is that W0

and W1 should not be distinguished from trapdoors issued in previous phase.
And then it selects a random bit β ∈ {0, 1}. B queries all keywords of Wβ to
H1, H2-oracles and obtains lists 〈wβ,i, cβ,i, hβ,i, dβ,i〉 and 〈wβ,i, cβ,i, fβ,i, eβ,i〉
for all i from oracles. If there is no cβ,i = 1 for all i, it aborts. Otherwise, it
computes a challenge ciphertext Sβ = 〈A, B1, . . . , Bn, Cβ,1, . . . , Cβ,�〉 where
A = v1, Bj = v

πjη
2 , and Cβ,i = v

dβ,i

1 v
eβ,iη
2 (in case that cβ,i = 0) or v

dβ,i

3 (in
case that cβ,i = 1). A is given 〈Sβ , W0, W1〉.

– Phase 2: A continues to issue trapdoor queries which are not equal to
W0 and W1. The only restriction is that it cannot issue trapdoor query
distinguishing W0 for W1. B responds as in Phase 1.

– Guess: Finally, A outputs a guess β′ ∈ {0, 1}. If β = β′, then B outputs 1
meaning v3 = ga+b

3 . Otherwise, it outputs 0 meaning v3 = z.

The adversary B should not abort in Trapdoor Queries and Challenge phase
for the success. The probability that it does not abort in Trapdoor Queries is
(1− 1/�qt)�qt for qt queries. And the probability that it does not abort in Chal-
lenge phase is (1−(1− 1

�qt
)�). Therefore, the probability that it did not abort dur-

ing the simulation is greater than 1/(4 · �qt) because (1− 1/�qt)�qt ≥ 1/4 for any



18 Y.H. Hwang and P.J. Lee

�qt ≥ 2 and (1 − (1 − 1
�qt

)�) ≥ (1 − (1 − 1
�qt

)) = 1
�qt

. If v3 = ga+b
3 , then the

challenge ciphertext is a valid encryption of the keyword set Wβ .

A∗ = v1 = ga
1 = ga

B∗
j = v

πjη
2 = g

πjbη
2 = ybη

j

(If cβ,i = 0,) Cβ,i = v
dβ,i

1 v
eβ,iη
2 = g

dβ,ia
1 g

eβ,ibη
2 = ha

β,if
bη
β,i

(Otherwise,) Cβ,i = v
dβ,i

3 = g
(a+b)dβ,i

3 = (gdβ,i

3 )a(gdβ,i/η
3 )bη

= (hβ,i)a(geβ,i

3 )bη = ha
β,if

bη
β,i

In this case, A’s view is identical to its view in a real attack game and it
must satisfy |Pr[β = β′] − 1/2| ≥ ε′. If v3 = z and B does not abort, then
Pr[β = β′] = 1/2. Therefore, we have that

|Pr[B(g1, g2, g3, g
a
1 , gb

2, g
a+b
3 ) = 0] − Pr[B(g1, g2, g3, g

a
1 , gb

2, z) = 0]|
≥ 1

4�qt
|(1/2 ± ε′) − 1/2| = ε′

4�qt

We complete the proof of the theorem. �

5.3 Applications

In this section, we describe how the mPECK system can be used for specific
applications. The first useful application is an encrypted file sharing system in
a remote server for a number of users and the second application is an email
routing system for a multi-recipient.
Encrypted File Sharing System. An encrypted file system allows users to
store encrypted files on an untrusted remote server. If an encryptor wants a file
to be shared to n users, it would be encrypted with the public keys of all n users.
In this case, a large storage in the server and computation overhead for users
might be required. To remedy this limitation, public key broadcast encryption
[14] and multi-user systems [8,9] can be good solutions. However, users cannot
download select files they want to retrieve if searches on encrypted data are not
provided. A user would receive all of his data from the server and decrypt them.
This procedure is very cumbersome. Therefore, an efficient conjunctive keyword
search on the encrypted data in a multi-user system is a very useful technique
for an encrypted file sharing system.

Users may want to share data only with particular users in many cases. Our
mPECK scheme can be efficiently used for this application. When storing data, a
user first selects the users with whom he wants to share his data and encrypts the
data using the mPECK scheme with their public keys. To search the encrypted
files that he wants to retrieve, a user makes a trapdoor which includes some
keywords and then queries it to the server. The server can return the encrypted
files that the user wants to retrieve. This system has an advantage in managing
the storage of a server in comparison to an ordinary PECK scheme. Our mPECK
system requires only ω|Cn|+ω(n+ �+1) ·L1 storage of a server for ω documents
of n users, while the PKL I and PKL II schemes respectively need ωn(|Cn| +
2L1 + � · L2) and ωn(|Cn| + (2� + 3) · L1) storage.
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Email Routing in Email Gateway. Boneh et al. introduced that a public key
encryption with keyword search can be efficiently applied to a routing service
in an email gateway [14] and Park et al. stated that the conjunctive keyword
searchable encryption is better suited for an email routing system [26]. An email
routing system is a good example for using a multi-recipient since we often need
to email a large number of recipients. To send an email to a number of users, the
sender should encrypt the same email many times and append different search-
able encryptions for routing the email to each user in email gateway. It requires
not only a large computation overhead, but also a large communication over-
head. If our example introduced in Section 5.1 is applied to this application, we
could achieve very efficient system complexity. The email gateway implements a
searching algorithm with (A, Bi, C1, . . . , C�) for a user ui and route an encrypted
email (A, Bi, E) for ui. In this system, we can share an encryption part E of an
email body m and searchable keyword encryption parts A, C1, . . . , C�. There-
fore, the length of the encrypted email with searchable keywords in our system
is |Cn|+ |S|+(n−1) ·L1 for n users, while that in a PECK scheme is n(|C1|+ |S|),
where S is a ciphertext of searchable keyword encryption in a single-user system.

6 Concluding Remarks

We have presented the efficient and secure PECK scheme with a short ciphertext
size and one private key. In addition, we have shown that our scheme has a con-
crete security proof under the IND-CR-CKA game, while other previous works
have a weakness in security proof. Our PECK scheme was extended to a PECK
system for supporting a multi-user. In [19], Curtmola et al. introduced a search-
able symmetric encryption for a multi-user, which makes use of a single-user
searchable encryption and a broadcast encryption. Their concept is slightly dif-
ferent from ours since their scheme was constructed in a symmetric key setting.
The owner of the documents in their scheme gives users permission to search
the documents and manage a group of authorized users. Whenever the group of
users changes, the owner would have to update the documents and broadcast
a new key for the group. Their scheme cannot support a conjunctive keyword
search. We have provided specific applications for our mPECK system.
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A Real Attack on PKL I

We first review the PKL I scheme. Let H1:{0, 1}logw → G1 be a collision-
resistance hash function. Then the PKL I scheme is as follows;

- KeyGen(1k): Given the a security parameter 1k, it selects a random generator
g in G1 and two random values x1 and x2 in Z∗

p. Then the public/private
key pair (pk, sk) are given by

pk = (y1, y2), sk = (x1, x2)

where y1 = gx1 and y2 = gx2 .
- PECK(pk, W ): The sender selects a keyword set W = {w1, . . . , w�} and a

random value r in Z
∗
p, and computes A = gr, B = yr

2, Ci = ê(hr
i , y1) for

1 ≤ i ≤ � where hi = H1(wi). Then it outputs S = 〈A, B, C1, . . . , C�〉.
- Trapdoor(sk, Q): It selects a random value t ∈ Z∗

p and computes TQ,1 = t and
TQ,2 = (

∏m
1 hIi)x1/(x2+t). Then output TQ = (TQ,1, TQ,2, TQ,3, I1, . . . , Im).

- Test(pk, S, TQ): Check
∏m

i=1 CIi = ê(B + ATQ,1 , TQ,2).

We recall the example of Section 4.1. Assume that the adversary A received
target ciphertext 〈S∗, W0 = {w1, w3}, W1 = {w4, w5}〉. A issues trapdoor queries
for {w1, w2} and {w2}, and then obtains the trapdoors Tw1,w2 = (t, (H1(w1)
H1(w2))x1/(x2+t)) and Tw2 = (t′, H1(w2)x1/(x2+t′)). As mentioned in Section 4.1,
the trapdoor queries are appropriate because they cannot distinguish between
W0 and W1. Let S∗ be 〈A∗, B∗, C∗

1 , C∗
2 〉. Then we can check if S∗ is a searchable

keyword encryption of W0 or not by the equality check of the following equation.

ê((H1(w1)H1(w2))x1/(x2+t), B∗+A∗t)/ê(H1(w2)x1/(x2+t′), B∗+A∗t′
) = C∗

1 (1)

We assume that S∗ is a searchable keyword encryption of W0. Then we can
represent it as A∗ = gr, B∗ = yr

2, C∗
1 = ê(H1(w1)r , y1), C∗

2 = ê(H(w3)r, y1). We
show that the equality check is correct;

ê((H1(w1)H1(w2))x1/(x2+t), B∗ + A∗t)/ê(H1(w2)x1/(x2+t′), B∗ + A∗t′
)

= ê((H1(w1)H1(w2))x1/(x2+t), gr(x2+t))/ê(H1(w2)x1/(x2+t′), gr(x2+t′))

= ê((H1(w1)H1(w2))x1 , gr)/ê(H1(w2)x1 , gr)

= ê(H1(w1)x1 , gr)

= ê(H1(w1)r, y1)

Therefore, S∗ is a searchable keyword encryption of W0 if (1) is correct and that
of W1 otherwise.
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Abstract. At FC’05, Dodis and Yum introduced a new cryptographic
tool called time capsule signature (TCS) which allows signers to gener-
ate “future signatures” that only become valid from a specific future
time t (chosen at signature generation) when a trusted entity (called
Time Server) discloses some trapdoor information for period t. In ad-
dition, time capsule signatures endow signers with the ability to make
their signatures valid before the pre-determined time t. Full signatures
that were completed by their original issuer should be indistinguishable
from those that automatically became valid after the release of the time-
specific trapdoor. Time capsule signatures were showed to be generically
constructible from another primitive called identity-based trapdoor hard-
to-invert relation (ID-THIR). The only known instantiations of the latter
either rely on the idealized random oracle model or are too inefficient
for real-world applications. In this paper, we devise the first efficient ID-
THIR (and thus TCS) construction which is secure in the standard model
(i.e. without the random oracle heuristic).

Keywords: time capsule signatures, standard model, bilinear maps.

1 Introduction

In 2005, Dodis and Yum introduced the concept of time capsule signatures [17].
Such a primitive allows signers to generate signatures that only become valid
from a future moment t when a trusted party (called Time Server) discloses a
trapdoor information associated with period t. This is accomplished in such a
way that:

– Anyone can directly ascertain that a “future signature” will indeed become
effective at time t.

– In a “pre-hatching operation”, the legal signer can decide to make her future
signature valid at any time before the pre-determined moment t.

– A signature that was not opened by the signer automatically becomes valid
(which is called “hatching” as opposed to “pre-hatching”) at time t when
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the Time Server publishes the relevant trapdoor information Zt allowing
signature holders to complete future signatures generated for that period.

– The Time Server does not have to interact with any user at any time or
know anything about the PKI employed by signers.

Regardless of whether a signature was previously opened by the signer or if it
was automatically completed after the release of the trapdoor Zt at time t, no
one can tell how it became valid: “pre-hatched” signatures should be indistin-
guishable from “hatched” signatures.

Similarly to time release primitives described in [5,15,31], time capsule signa-
tures (TCS) follow the server-based approach which allows preparing messages
for a definite future and departs from “time-lock puzzle” methods addressing
related problems [33,2,10,30,20,21]. They imply a minimal assumption on the
Time Server that only has to publish some piece of information at the beginning
of each time period and never has to contact users.

In [17], Dodis and Yum gave proper security definitions for TCS schemes and
showed how to generically construct them using newly defined primitives called
identity-based trapdoor hard-to-invert relations (ID-THIRs). They also described
a generic construction of ID-THIR which yields very efficient implementations in
the random oracle model [4] but is much less efficient in the standard model.
These results proved the existence of time capsule signatures in the random or-
acle model assuming the availability of one-way functions and their existence in
the standard model if trapdoor one-way permutations exist.

Our contribution. The generic construction of ID-THIR given in [17] relies on
non-interactive witness-indistinguishable [18] proofs of knowledge. Before the
recent advances of Groth, Ostrovsky and Sahai [26,27] in NIZK and witness in-
distinguishable proofs, the best known methods [34] for constructing such proofs
in the standard model were very inefficient. Those dramatic improvements were
adapted [28] so as to provide constant-size - though impractical - group signa-
tures in the standard model. They could be applied to the present context as
well, but resulting implementations would remain too inefficient for practical
use. To date, the only practical examples of TCS schemes resort to the random
oracle methodology [4] which is known [13] to only provide heuristic arguments.

The achievement of this paper is to describe a very simple and efficient
identity-based trapdoor hard-to-invert relation which is not generic but is se-
cure in the standard model. It utilizes the Waters signature [36] which is known
to be secure in the standard model assuming the hardness of the Diffie-Hellman
problem in groups equipped with bilinear maps. More precisely, our ID-THIR
turns out to be somehow related to identity-based [35] extensions [12,32] of
Waters signatures. This is not very surprising since the generic ID-THIR of [17]
was already making use of proofs of knowledge of signatures (which are nothing
but identity-based signatures). The technical difficulty was here to avoid witness
indistinguishable proofs. To do so, our implementation takes advantage of tricks
which date back to [7] and that were used to prove the security of the signature
in [36]. Thanks to the generic transformation of [17], our ID-THIR gives rise to
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the first practical time capsule signature scheme which is secure in the standard
model (under a well-studied computational assumption).

Organization. In the forthcoming sections, we first recall functional definitions
and security models for identity-based trapdoor hard-to-invert relations and time
capsule signatures. Section 3 then describes our practical construction of ID-
THIR. Its possible optimizations are discussed in section 4 and the resulting
concrete TCS scheme is analyzed in section 5.

2 Preliminaries

2.1 Identity-Based Trapdoor Hard-to-Invert Relations

A binary relation R is a subset of {0, 1}∗ × {0, 1}∗ and the language LR is the
set of elements α for which there exist β such that (α, β) ∈ R. The relation R
must be completely specified by a short description DR. Besides, for all pairs
(α, β) ∈ R, the length |β| of β has to be bounded by a polynomial in |α|. Lastly,
it should be easy to decide whether a given α lies in LR.

Definition 1. An identity-based trapdoor hard-to-invert relation (ID-THIR) is
a family of binary relations R = {Rid|id ∈ IR}, where IR is a finite set of
indices, that are all trapdoor hard-to-invert relations. Namely, for each id ∈ IR,
sampling a lock/proof pair (c, d) ∈ Rid is easy but finding a proof for a given
lock is hard without knowing the specific trapdoor tdid. A master trapdoor mtdR
allows extracting a trapdoor tdid for each relation Rid ∈ R. An ID-THIR is
entirely specified by a 5-uple of algorithms (Gen, Sample, Check, Extract, Invert)
such that:

Gen: given a security parameter k, this algorithm generates R = {Rid|id ∈ IR}
and returns its description DR and its master trapdoor mtdR.

Sample: takes as input (DR, id) and returns a randomly sampled lock/proof pair
(c, d) ∈ Rid.

Check: verifies the validity of a lock/proof pair (c, d). It returns 1 (accept) if
(c, d) ∈ Rid and 0 (reject) otherwise.

Extract: is used to extract the trapdoor of each relation. Given id ∈ IR and the
master trapdoor mtdR, it returns the trapdoor tdid for the relation Rid.

Invert: allows finding a proof d for a given lock c ∈ LRid
using the trapdoor tdid.

If c ∈ LRid
, Inverttdid

(c) outputs a proof d such that (c, d) ∈ Rid.

Let (c, d) ← SampleDR(id) and d̃ ← Inverttdid
(c). The correctness property im-

poses that CheckDR,id(c, d) = CheckDR,id(c, d̃) = 1. The ambiguity is the com-
putational indistinguishability of (c, d) and (c, d̃) even knowing mtdR. Besides,
an ID-THIR is said one-way if the following probability is negligible for any PPT
algorithm A = (A1,A2):

Pr[CheckDR,id� (c, d̂) = 1 ∧ id� �∈ Query(A, OExtract) | (DR, mtdR) ← Gen(k);

(id�, st) ← AOExtract
1 (DR); (c, d) ← SampleDR(id�); d̂ ← AOExtract

2 (DR, c, st)]
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where OExtract is an oracle simulating the trapdoor extraction algorithm Extract,
Query(A, OExtract) is the set of queries made by A to the latter oracle and st
stands for the state information passed by A1 to A2. The soundness property
states that the following property is negligible for any algorithm B:

Pr[CheckDR,id� (c, d̃) = 0 ∧ Rid� ∈ R ∧ c ∈ LRid� | (DR, mtdR) ← Gen(k);

(c, id�) ← B(DR); tdid� ← ExtractmtdR(id�); d̃ ← Inverttdid� (c)]

An ID-THIR is said secure if it meets the above four requirements.

Intuitively, the one-wayness property captures that it should be computation-
ally infeasible to open a given lock without the trapdoor of the corresponding
relation even after having seen trapdoors for polynomially-many other relations.
The soundness is the impossibility of coming up with a lock (for some relation)
that cannot be opened into a valid lock/proof pair using the relevant trapdoor.

Dodis and Yum showed in [17] that an ID-THIR exists in the random oracle
model if a one-way function exists. Their construction relies on the Fiat-Shamir
heuristic [19] and non-interactive witness indistinguishable [18] proofs of knowl-
edge. Instead of a Fiat-Shamir like proof, their method can be implemented with
non-interactive witness indistinguishable proofs of knowledge (with a common
reference string) that do not involve random oracles. However, the best known
technique [34] for constructing such proofs uses trapdoor one-way permutations
and is very inefficient. Therefore the existence of identity-based trapdoor hard-to-
invert relations in the standard model, which requires the existence of trapdoor
one-way permutations [17], is currently mainly of theoretical interest.

2.2 Time Capsule Signatures

Definition 2. A time capsule signature (TCS) consists of a 8-uple of PPT al-
gorithms (SetupTS, SetupUser, TSig, TVer, TRelease, Hatch, PreHatch, Ver).

SetupTS: is an algorithm run by the Time Server. Given a security parameter
k, it returns a public/private key pair (TPK, TSK).

SetupUser: is run by each signer. Given a security parameter k, it returns a
public/private key pair for the signer (PK, SK).

TSig: is the time capsule signature generation algorithm. It takes as input
(m, SK, TPK, t), where t is the time from which the signature becomes valid.
It produces a future signature σ′

t.
TVer: is the time capsule signature verification algorithm. It takes as input a

5-uple (m, σ′
t, PK, TPK, t) and returns either 1 (accept) or 0 (reject).

TRelease: is the time release algorithm run by the Time Server. At the beginning
of period t, it uses TSK to compute and publish Zt = TRelease(t, TSK). Note
that the Time Server never interacts with any user at any time.

Hatch: is run by any party to open a valid time capsule signature that became
mature. Given (m, σ′

t, PK, TPK, t) and the time-specific trapdoor Zt as inputs,
it returns a hatched signature σt.
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PreHatch: is run by the signer to open a valid time capsule signature which is
not mature yet. It takes as input (m, σ′

t, PK, TPK, t) and the signer’s private
key SK as inputs and outputs a pre-hatched signature σt.

Ver: is used to verify hatched or pre-hatched signatures. Given (m, σt, PK,
TPK, t), it returns 1 (accept) or 0 (reject).

The correctness imposes that TVer(m, TSig(m, SK, TPK, t), PK, TPK, t) = 1 and
Ver(m, σt, PK, TPK, t) = 1 if σt = Hatch(m, TSig(m, SK, TPK, t), PK, TPK, Zt)
or σt = PreHatch(m, TSig(m, SK, TPK, t), SK, TPK). Ambiguity requires the dis-
tribution of “hatched signatures” σt = Hatch(m, TSig(m, SK, TPK, t), PK, TPK,
Zt) to be computationally indistinguishable from that of “pre-hatched signatures”
σt = PreHatch(m, TSig(m, SK, TPK, t), SK, TPK) even knowing TSK.

As explained in [17], the security of time capsule signatures is defined in three
aspects: security against the signer, the verifier and the Time Server. In the
following notation OTSig is an oracle simulating the time capsule signature gen-
eration algorithm TSig, OTR denotes an oracle simulating the time release algo-
rithm TRelease and OPreH stands for the pre-hatching oracle emulating PreHatch.
Given (m, t) as input, OTSig returns a time capsule signature σ′

t generated on be-
half of the signer. Oracle OPreH takes (m, t, σ′

t) as input and outputs the signer’s
pre-hatched signature σt.

Security against the signer. This definition means that the signer should be
unable to produce a time capsule signature which looks good to the verifier but
cannot be hatched into a full signature by the Time Server. More formally, any
PPT adversary A should have negligible advantage in this experiment.

SetupTS(k) → (TPK, TSK)
(m, t, σ′

t, PK) ← AOTR(TPK)
Zt ← TRelease(t, TSK)
σt ← Hatch(m, σ′

t, PK, TPK, Zt)
Adv(A) = Pr[TVer(m, σ′

t, PK, TPK, t) = 1 ∧ Ver(m, σt, PK, TPK, t) = 0]

Security against the verifier. Informally, the verifier must be unable to open a
future signature without the help of the signer or the Time Server. We require
any PPT adversary B to have negligible advantage in the next experiment.

SetupTS(k) → (TPK, TSK)
SetupUser(k) → (PK, SK)

(m, t, σt) ← BOTR,OTSig,OPreH(TPK, PK)
Adv(A) = Pr[Ver(m, σt, PK, TPK, t) = 1 ∧ t �∈ Query(B, OTR)

∧ (m, t, .) �∈ Query(B, OPreH)]

where Query(B, OTR) is the set of queries made to the time release oracle
OTR and Query(B, OPreH) denotes the set of valid queries to OPreH (i.e. queries
(m, t, σ′

t) for which TVer(m, σ′
t, PK, TPK, t) = 1).
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Security against the Time Server. Obviously, the Time Server should not be able
to produce a valid hatched or pre-hatched signature full signature on a message
m without obtaining a time capsule signature on m from the signer. Any PPT
adversary C must have negligible advantage in the following experiment.

SetupTS∗
(k) → (TPK, TSK∗)

SetupUser(k) → (PK, SK)
(m, t, σt) ← COTSig,OPreH(PK, TPK, TPK∗)

Adv(C) = Pr[Ver(m, σt, PK, TPK, t) = 1 ∧ (m, .) �∈ Query(C, OTSig)]

where SetupTS∗
denotes a run of SetupTS by a dishonest Time Server, TSK∗ is

C’s state after this malicious key generation and Query(C, OTSig) stands for the
set of queries to the time capsule signature oracle OTSig.

2.3 Bilinear Maps

Groups (G, GT ) of prime order p are called bilinear map groups if there is a
mapping e : G × G → GT with the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G and a, b ∈ Z;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) �= 1GT whenever g, h �= 1G.

The protocol that we have in mind relies on the intractability of the following
well-studied problem in bilinear map groups.

Definition 3. The Computational Diffie-Hellman Problem (CDH) in a
group G = 〈g〉 is to compute gab given (ga, gb). An algorithm (τ, ε)-breaks the
CDH assumption if it solves a CDH instance with probability ε in time τ .

2.4 The Waters Signature

We recall the description of the signature scheme of [36] which is existentially
unforgeable in the standard model under the CDH assumption in bilinear map
groups. In the description hereafter, messages are assumed to be encoded as
bitstrings of length n. In practice however, a collision-resistant hash function
H : {0, 1}∗ → {0, 1}n can be applied to sign longer messages.

Keygen(k, n): choose bilinear map groups (G, GT ) of order p > 2k. Randomly
pick α R← Z∗

p, as well as g, g2
R← G and a vector u = (u′, u1, . . . , un) ∈ Gn+1

of random group elements. The public key is PK = (n, G, GT , g, g1, g2, u, W )
with g1 = gα and W = e(g1, g2). The private key is SK = α.

Sign(m, α): parse m as m1 . . . mn with mi ∈ {0, 1} for all i ∈ {1, . . . , n}. A
signature of m is produced by picking r R← Z∗

p and setting σ = (σ1, σ2) with
σ1 = gα

2 · (u′ ·
∏n

i=1 umi

i )r and σ2 = gr.
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Verify(m, σ, PK): a purported signature σ = (σ1, σ2) on m = m1 . . . mn is ac-
cepted if

e(σ1, g) = W · e
(
u′ ·

n∏
i=1

umi

i , σ2

)
.

3 An Efficient ID-THIR in the Standard Model

In this section, we present an identity-based trapdoor hard-to-invert relation
based on the Waters signature. More precisely, it uses a 2-level hierarchical
extension [22,29] of the latter independently described in [12,32] and which is
intentionally made existentially (but not universally) forgeable here.

In a nutshell, sampling a random lock/proof pair for some relation Rid is done
by generating a signature (d1, d2, d3) on some artificial random “message” c in
the name of the identity id. The sampling algorithm uses the technique of the
simulator in the security proof of [36] to handle signing queries without knowing
the private key. Generating a proof for any given lock c is easily achieved using
the private key for the identity id.

Gen(k, n): this algorithm chooses bilinear map groups (G, GT ) of order p > 2k

and a generator g ∈ G. It computes g1 = gα for a random α R← Z∗
p. Next,

it chooses g2
R← G, computes W = e(g1, g2) and picks a random vector u =

(u′, u1, . . . , un) R← Gn+1 which allows defining a function F : {0, 1}n → G as

F (id) = u′ ·
n∏

j=1

u
ij

j

where id = i1 . . . in and ij ∈ {0, 1} for all j. For an identity id ∈ IR = {0, 1}n,
the relation Rid is defined as the set of pairs

(
c, (d1, d2, d3)

)
∈ G × G

3 such
that

e(d1, g) = W · e(F (id), d2) · e(c, d3) (1)

The master trapdoor is mtdR = gα
2 and the family of relations R is entirely

described by
DR = {n, G, GT , g, g1, g2, u, W,Rid, IR}.

Sample(DR, id): to generate a random lock/proof pair
(
c, (d1, d2, d3)

)
∈ G×G3,

this algorithm conducts the following steps.

1. Choose j1, j2
R← Z∗

p and compute c = gj1
2 gj2 .

2. Pick r, s R← Z∗
p and compute d1 = cs · g−j2/j1

1 · F (id)r.

3. Set d2 = gr and d3 = gs · g−1/j1
1 .

If we define s̃ = s − α
j1

, we observe that

d1 = gα
2 · F (id)r · cs̃, d2 = gr, d3 = gs̃. (2)
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CheckDR,id(c, d): parse d as (d1, d2, d3). Return 1 if

e(d1, g) = W · e(F (id), d2) · e(c, d3)

and 0 otherwise.

ExtractmtdR(id): given mdtR = gα
2 , a trapdoor for id ∈ {0, 1}n is extracted by

randomly choosing r R← Z∗
p and returning tdid = (t1, t2) = (gα

2 · F (id)r, gr).

Inverttdid
(c): parse tdid as (t1, t2). Choose random r′, s R← Z∗

p and return

(d1, d2, d3) = (t1 · F (id)r′ · cs, t2 · gr′
, gs) = (gα

2 · F (id)r′′ · cs, gr′′
, gs).

with r′′ = r + r′.

We now analyze the four security properties of the above scheme.

Correctness. It is clear that lock/proof pairs (c, d̃) where d̃ = Inverttdid
(c) satisfy

equation (1) since e(t1, g) = W · e(F (id), t2) for all trapdoors tdid = (t1, t2) pro-
duced by Extract. From (2), it follows that equation (1) is also satisfied by all pairs
(c, d) produced by Sample(DR, id). Now, we check that elements

(
c, (d1, d2, d3)

)
generated by Sample are actually distributed according to (2). Indeed, since
c = gj1

2 gj2 , we have

d1 = cs · g−j2/j1
1 · F (id)r = cs̃ ·

(
gj1
2 gj2

)α/j1 · g−j2/j1
1 · F (id)r = gα

2 · cs̃ · F (id)r

d3 = gs · g−1/j1
1 = gs̃.

The sampling algorithm uses the strategy (borrowed from the Boneh-Boyen
framework [7]) of the simulator answering signing queries in the proof of the
Waters scheme [36].

Ambiguity. Sampled pairs
(
c, (d1, d2, d3)

)
clearly have exactly the same distri-

bution as pairs
(
c, (d̃1, d̃2, d̃3)

)
when (d̃1, d̃2, d̃3) = Inverttdid

(c).

Soundness. It directly derives from the fact that any given c ∈ G can be “signed”
using the trapdoor for the relation Rid (which is a private key for the identity
id in [12,32]).

One-wayness. The next theorem shows that our ID-THIR is one-way if Waters
signatures are existentially unforgeable under chosen-message attacks [24].

Theorem 1. An attacker breaking the one-wayness property of our ID-THIR
in the sense of definition 1 implies a chosen-message attacker with the same
advantage and running in comparable time for Waters signatures.

Proof. Let A = (A1,A2) be an adversary with advantage ε against the one-
wayness property. We construct a forger F using A to forge a signature using a
challenger CH answering signing queries.

Algorithm F first obtains a public key PK = (n, G, GT , g, g1, g2, u, W ) from
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its challenger CH and sends A an input DR consisting of PK, IR = {0, 1}n and
a description of Rid for id ∈ IR.

Whenever A1 asks OExtract for the trapdoor of a relation Rid for some identity
id ∈ IR, F asks its challenger CH for a signature of the message id and relays the
answer to A1. After polynomially-many queries to OExtract, A1 comes up with
an identity id� that was never queried to OExtract. At this stage, F generates
a uniformly distributed lock c = gω for a random ω R← Z∗

p. In particular c
has the same distribution as locks generated by Sample. On input of c and the
state information transmitted by A1, A2 issues new queries to OExtract which all
trigger a signing query from F to CH. Eventually, A2 is expected to output a
proof (d1, d2, d3) such that

e(d1, g) = W · e(F (id�), d2) · e(gω, d3)

which can be re-written as

e(d1 · d−ω
3 , g) = W · e(F (id�), d2).

Hence, the pair (σ1 = d1 · d−ω
3 , σ2 = d2) passes the verification test of Waters

signatures. It is thus a valid forgery since id� was not queried for signature by
F as it may not have been queried to OExtract by A1 or A2 at any time. 	


Together with security results of [36], theorem 1 implies the following corollary.

Corollary 1. Assuming that an adversary A breaks the one-wayness of our
ID-THIR with advantage ε when running in time τ and making qtd trapdoor
queries, there is an algorithm B that (τ ′, ε′)-breaks the CDH assumption where

ε′ ≥ ε

4qtd(n + 1)
τ ′ ≤ t + O(qtdτexp),

τexp denoting the time complexity of an exponentiation in G.

4 Shorter Public Keys for Small Identity Spaces

The ID-THIR construction of section 3 assumes a space of identities IR = {0, 1}n

where n can be as large as 160. In some applications, this space is quite likely
to be much smaller. With time capsule signatures for instance, it is reasonable
to settle for initializing the scheme in expectation of 230 time periods.

In this case, the function F : {0, 1}n → G can be replaced with Boneh and
Boyen’s selective-ID secure “hash” F (id) = g

H(id)
2 h [7] where h ∈R G and H :

{0, 1} → Z∗
p is a collision-resistant hash function. This modification results in

much shorter public parameters as a single group element h ∈ G supersedes
the vector u. The resulting ID-THIR remains one-way under the Diffie-Hellman
assumption but the proof of one-wayness requires the Diffie-Hellman solver to
guess which identity id� will be attacked by A beforehand.
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Theorem 2. If an adversary A breaks the one-wayness of the modified ID-THIR
with probability ε in time τ , the CDH problem can be (τ ′, ε′)-solved where τ ′ ≈ τ
and ε′ = ε/|IR|.

Proof. We outline an algorithm B solving a CDH instance (ga, gb) using A as
a subroutine. To do so, B first picks ρ R← Z

∗
p and chooses id� R← IR as a guess

for the identity to be attacked by A. Public parameters are defined as g1 = ga,
g2 = gb and h = g−I�

2 gρ, where I� = H(id�) ∈ Z∗
p, so that F (id) = g

H(id)−I�

2 gρ.
Trapdoor queries for identities id �= id� ∈ IR can be answered by choosing

s R← Z∗
p and returning

(t1, t2) = (F (id)s · g−ρ/(I−I�)
1 , gs · g−1/(I−I�)

1 )

with I = H(id) ∈ Z∗
p. The pair (t1, t2) has the correct distribution since

(t1, t2) = (ga
2 · F (id)s̃, gs̃)

with s̃ = s − a/(I − I�).
When A issues her challenge query, B fails if the target identity is not id�.

Otherwise, it picks a random ω R← Z∗
p and responds with the challenge c = gω.

A successful attacker A is then expected to output a triple (d1, d2, d3) satisfying

e(d1, g) = W · e(gρ, d2) · e(gω, d3)

which implies e(d1 ·d−ρ
2 ·d−ω

3 , g) = e(g1, g2) and yields the solution d1 ·d−ρ
2 ·d−ω

3

that B was after. 	


Since qtd < 230 is a reasonable upper bound frequently encountered in the liter-
ature, the modified scheme should be preferred whenever |IR| < 230.

5 Efficient TCS Schemes in the Standard Model

The generic construction [17] of secure TCS from any ID-THIR is very simple and
does not involve random oracles. It requires an ordinary digital signature scheme
Σ = (Keygen, Sign, Verify) and an ID-THIR (Gen, Sample, Check, Extract, Invert).
The signer generates a key pair (PK, SK) ← Σ.Keygen(k) while the Time Server
runs Gen(k) to produce (DR, mtdR) and sets (TPK, TSK) = (DR, mtdR).

To produce a time capsule signature on a message m for time t, the signer
samples a random lock/proof pair (c, d) for the relation Rt corresponding to
the “identity” t ∈ IR. The future signature consists of c and the output σ of
Σ.SignSK(m||c||t) which can be verified by running Σ.VerifyPK(m||c||t, σ). The
signer also remembers d which is used for pre-hatching. The time release algo-
rithm simply uses the master trapdoor TSK = mtdR to generate a trapdoor
Zt = tdRt = ExtractmtdR(t) for the “identity” t. Given a future signature 〈c, σ〉,
the hatching algorithm uses Zt = tdRt to compute a proof d̃ for the lock c. Upon
verification of a hatched or pre-hatched signature 〈(c, d), σ〉, the verifier accepts
if Σ.VerifyPK(m||c||t, σ) and CheckDR,t(c, d) both return 1 and rejects otherwise.
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5.1 A Concrete Scheme

The scheme described below is an example of concrete TCS in the standard
model. It combines our ID-THIR scheme with Waters signatures. That is why all
parties use common public parameters including the description of bilinear map
groups (G, GT ) of order p > 2k. In practice however, signers are free to choose
their own parameters independently of the Time Server: they can use any secure
digital signature in the standard model such as Cramer-Shoup [16].

SetupTS(k, n): the Time Server chooses a generator g ∈ G. It computes gv = gαv

for a random αv
R← Z∗

p. Next, it chooses g′v
R← G, computes Wv = e(gv, g

′
v)

and selects a random vector v = (v′, v1, . . . , vn) R← Gn+1 defining a function
Fv : {0, 1}n → G : t → Fv(t) = v′·

∏n
j=1 v

tj

j where t = t1 . . . tn and tj ∈ {0, 1}
for all j. The Time Server’s private key is TSK = g′v

αv and the public key is

TPK = {n, G, GT , g, gv, g
′
v, v, Wv}.

SetupUser(k, n): the user picks αu
R← Z∗

p, g′u
R← G and a random (n + 1)-vector

u = (u′, u1, . . . , un) ∈ Gn+1 which defines the function Fu : {0, 1}n → G as
Fu(m) = u′ ·

∏n
j=1 u

mj

j where m = m1 . . . mn and mj ∈ {0, 1} for all j. A
collision-resistant hash function H : {0, 1}∗ → {0, 1}n is also chosen. The
private key is SK = g′u

αu . The public key is PK = (n, g, gu, g′u, u, Wu, H)
with gu = gαu and Wu = e(gu, g′u).

TSig(m, t): the signer first generates a pair
(
c, (d1, d2, d3)

)
∈ G × G3 following

these steps.

1. Choose j1, j2
R← Z

∗
p and compute c = g′j1v gj2 .

2. Pick r, s R← Z∗
p and compute d1 = cs · g−j2/j1

v · Fv(t)r.

3. Set d2 = gr and d3 = gs · g−1/j1
v .

Then, he computes m = H(m||c||t) ∈ {0, 1}n and

σ = (σ1, σ2) =
(
g′αu

u · Fu(m)ru , gru
)

for a randomly chosen ru
R← Z∗

p. He outputs σ′
t = 〈(σ1, σ2), c〉 and stores the

triple (d1, d2, d3) for later use.

TVer(m, σ′
t, PK, TPK, t): parse σ′

t as 〈(σ1, σ2), c〉 and PK as (n, g, gu, g′u, u,
Wu, H). Check that c ∈ G and return 0 otherwise. Return 1 if

e(σ1, g) = Wu · e(Fu(m), σ2)

with m = H(m||c||t) ∈ {0, 1}n.

TRelease(t, TSK): given TSK = g′v
αv , the Time Server picks rv

R← Z∗
p and

returns Zt = (g′v
αv · Fv(t)rv , grv).
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Hatch(σ′
t, Zt): parse σ′

t as 〈(σ1, σ2), c〉 and Zt as (z1, z2) = (g′v
αv · Fv(t)rv , grv).

Pick r′v, s and compute

(d̃1, d̃2, d̃3) = (z1 · Fv(t)r′
v · cs, z2 · gr′

v , gs) = (g′v
αv · Fv(t)r′′

v · cs, gr′′
v , gs)

where r′′v = rv + r′v. The hatched signature is

σt = 〈(σ1, σ2), c, (d̃1, d̃2, d̃3)〉

PreHatch(σ′
t, d): parse σ′

t as 〈(σ1, σ2), c〉 and d as (d1, d2, d3), return the opened
signature σt = 〈(σ1, σ2), c, (d1, d2, d3)〉.

Ver(m, σt, PK, TPK, t): parse σt as 〈(σ1, σ2), c, (d1, d2, d3)〉, the signer’s public
key PK as (n, g, gu, g′u, u, Wu, H) and TPK as (n, g, gv, g

′
v, v, Wv). Return 1 if

e(d1, g) = Wv · e(Fv(t), d2) · e(c, d3) (3)
e(σ1, g) = Wu · e(Fu(m), σ2) (4)

where m = H(m||c||t) ∈ {0, 1}n.

We note that the latter verification algorithm can be optimized as follows. In-
stead of sequentially verifying relations (3) and (4), the verifier can randomly
choose β1, β2

R← Z∗
p and accept the signature if

1

W β1
v · W β2

u

· e(g, dβ1
1 · σβ2

1 )

e(Fv(t), dβ1
2 ) · e(c, dβ1

3 ) · e(Fu(m), σβ2
2 )

= 1GT .

Indeed, if we raise both members of (3) and (4) to the powers β1 and β2 re-
spectively, we observe that the above verification test fails with overwhelming
probability if either (3) or (4) does not hold. A product of four pairings (which is
much faster to compute than a sequence of 4 independent pairings as discussed
in [25]) suffices to check both conditions.

As explained in [17], the unconditional security against the signer follows from
the correctness and soundness properties of the ID-THIR scheme. Theorem 2 in
[17] shows that a successful cheating verifier obtaining a full signature without
the help of the Time Server or the signer implies a successful inverter for the
underlying ID-THIR scheme. The proof of this fact entails a degradation factor
of qTSig which is the number of queries to OTSig.

Corollary 2. If a cheating verifier B has advantage ε within running time τ
when making qTR queries to OTR and qTSig queries to OTSig, there is an algorithm
that (τ ′, ε′)-breaks the CDH assumption where

ε′ ≥ ε

4qTRqTSig(n + 1)
τ ′ ≤ t + O

(
(qTR + qTSig

)
τexp),

where τexp is the time complexity of an exponentiation in G.
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It was also proved in [17] that a successful dishonest Time Server implies a
chosen-message attacker breaking the underlying signature scheme with the same
advantage. Together with results from [36], this yields the following corollary
which completes the proof that a secure and efficient time capsule signature
exists in the standard model under the Diffie-Hellman assumption.

Corollary 3. If a cheating Time Server C has advantage ε within running time
τ when making qTSig queries to OTSig, there is an algorithm that (τ ′, ε′)-breaks
the CDH assumption where

ε′ ≥ ε

4qTSig(n + 1)
τ ′ ≤ t + O(qTSigτexp),

where τexp is the same quantity as in corollary 2.

5.2 Efficiency Improvements for Smaller Number of Periods

In section 5.1, the Time Server performs the setup for a large number of time pe-
riods. As discussed in section 4, N < 230 is a smaller but quite realistic1 number
of time periods. In this case, the Server’s public key can be shortened by replacing
the Waters “hash” Fv(t) = v′

∏n
j=1 v

tj

j with Fv(t) = g
H(t)
2 h, for a random ele-

ment h ∈R G and a collision-resistant hash function H : {0, 1}�log2 N� → Z∗
p. The

degradation factor of corollary 2 becomes O(N · qTSig) instead of O(qTR · qTSig).
We note that signers are free to implement the scheme with their favourite

signing algorithm and they may prefer using short public keys. In this case, they
can use the same common public parameters (G, GT ) with other pairing-based
signatures in the standard model. For instance, combining the selective-message
secure signature of [7] at the Time Server with Strong Diffie-Hellman-based
signatures [6,23] at the signer provides an efficient TCS scheme under the Strong
Diffie-Hellman assumption. In this case, we have a tight reduction under a
stronger assumption in corollary 3.

5.3 Reducing the Public Storage for the Time Server

A shortcoming of time capsule signatures considered in sections 5.1 and 5.2 is
that Time Servers have to publish and store a number of group elements which
is linear in the number of past time periods at any time. After n periods have
passed, the server has to publish a bulletin board with O(n) trapdoors.

To overcome this limitation also present in some time release primitives
[31,5,15], Boneh et al. [8] proposed to use forward-secure primitives [1,3,14] back-
wards. Roughly said, forward-secure schemes protect the confidentiality or the
authenticity of past communications by preventing past (but obviously not fu-
ture) private keys to be computable from current ones. Hence, to encrypt a
message for period t in the future, one can simply encipher it for period N − t

1 For instance, a scheme could be used over more than 2000 years with 230 periods of
one minute.
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using a forward-secure public key encryption scheme [14,8] prepared for N stages
using the tree-like structure of [14]. Thanks to the latter, a private key for period
N − t allows anyone to derive keys for stages N − t + 1, . . . , N . In terms of time
release primitives, the current private key allows recovering keys for past periods
so that the public storage of the server never exceeds O(log2 N) group elements.

It is not hard to see that aforementioned tricks apply to our context for a rea-
sonably small number of time periods. At the server, we simply have to replace
the selective-message secure signature of Boneh-Boyen [7] by the hierarchical
selective-message secure signature suggested by the hierarchical IBE of [8]. It
amounts to use the keying technique of a recently proposed forward-secure sig-
nature [11] in reverse. To generate a future signature for period t, the signer
actually prepares it for period N − t. At period t, the Time Server only stores
the trapdoor for period t (which is the “forward-secure private key” of period
N − t) that allows deriving trapdoors for stages 1, . . . , t − 1.

In this case, the security against cheating verifiers relies on a variant of the
Diffie-Hellman problem which is to compute ga�+1

given (g, ga, . . . , ga�

) where
� = log2 N .

6 Conclusion

In this paper, we put forth the first practical construction of time capsule signa-
ture that provably fits the security definitions of [17] without using the random
oracle heuristic. It stems from an efficient example of a recently introduced prim-
itive which is of independent interest and in turn builds on Waters signatures
and the Diffie-Hellman assumption.

We note that time capsule signatures with tight reductions remain elusive
(even in the random oracle model). Solving this problem would require a new
approach for constructing them since the generic construction of ID-THIRs en-
tails a loss of O(TSig) in the security bound against verifiers.
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Abstract. This paper puts forward new efficient constructions for
public-key broadcast encryption that simultaneously enjoy the following
properties: receivers are stateless; encryption is collusion-secure for arbi-
trarily large collusions of users and security is tight in the standard model;
new users can join dynamically i.e. without modification of user decryp-
tion keys nor ciphertext size and little or no alteration of the encryption
key. We also show how to permanently revoke any subgroup of users. Most
importantly, our constructions achieve the optimal bound of O(1)-size ei-
ther for ciphertexts or decryption keys, where the hidden constant relates
to a couple of elements of a pairing-friendly group. Our broadcast-KEM
trapdoor technique, which has independent interest, also provides a dy-
namic broadcast encryption system improving all previous efficiency mea-
sures (for both execution time and sizes) in the private-key setting.

1 Introduction

Broadcast Encryption. The concept of stateless broadcast encryption was intro-
duced by Fiat and Naor in [5]. In this paradigm, a broadcaster encrypts messages
and transmits these to a group of users U who are listening to a broadcast chan-
nel and use their private keys to decrypt transmissions. The broadcaster may
exclude any subset of users R ⊆ U from being able to decrypt the contents
of the broadcast thanks to a one-time exclusion or revocation mechanism. The
subset of revoked users R is chosen at encryption time and may change from
one encryption to the next. A broadcast encryption scheme is said to be (t, n)-
collusion secure if for any r-subset R ⊆ U with r ≤ t and |U| = n, users in R
can by no means infer information about the broadcast message. It is said to
be fully collusion secure when it is (n, n)-collusion secure. There are mainly two
categories of broadcast encryption systems:

r � n : meaning that we broadcast to all but a small set of revoked users. A
number of systems [14,9,8] have been suggested that achieve at best O(r)-
size ciphertexts and O(log n) private key size. This paper specifically focuses

T. Takagi et al. (Eds.): Pairing 2007, LNCS 4575, pp. 39–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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on this case and puts forward constructions which improve these bounds in
the public-key setting and even reach their information-theoretic values in
the private-key setting.

n − r � n : we broadcast only to a few users in the group. The best known
systems are the scheme of Boneh, Gentry and Waters [3] which achieves
O(

√
n)-size ciphertexts and private keys, and the trivial scheme where users

hold independent keys pairs and the message is sequentially encrypted under
the n − r public keys of non-revoked users. This trivial scheme achieves
O(n − r)-size ciphertexts and O(1) private keys and is more efficient than
[3] when n − r < O(

√
n).

Although previous works often use as an efficiency measure the size of public
and private keys, we choose to rigorously separate encryption from decryption
key material by taking into account all elements required to perform encryption
or decryption. We will denote by λc the size of the broadcast ciphertext, λdk

the (maximal) size of a user decryption key (which may then contain private
and public parts) and λek the size of the encryption key (which may be public
or private). τek and τdk denote the execution time of encryption and decryption
respectively.

Related work in the r � n case. Naor et al. [14] suggested two fully collusion se-
cure broadcast systems: NNL1 (based on the Complete-Subtree method) which
achieves λc = O(r log n/r) and λdk = O(log n) and NNL2 (Subtree-Difference
method) where λc = O(r) and λdk = O(log2 n). Originally the (private) encryp-
tion key has size linear in n, but by using a PRF to generate user decryption keys,
the size of the encryption key can be reduced to O(1) in both NNL1 and NNL2.
Note however that these two systems do not support public-key encryption.
Dodis and Fazio [4] later refined NNL2 into a public key broadcast encryption
scheme with O(1)-size encryption key. We also mention the work of Dodis and
Fazio [4] which by using parallelized schemes lead to a broadcast system that
has essentially the same characteristics as those of NNL2.

Related work in the n − r � n case. The so-called trivial broadcast system
consists in multiple encryptions of the message under individual and unrelated
public keys. It is easily seen that this gives a public-key broadcast encryption
scheme with λc = O(n − r), λdk = O(1) and λek = O(n). Recently, Boneh,
Gentry and Waters [3] proposed a very efficient public-key broadcast encryption
system (called BGW1 hereafter) where both ciphertexts and private keys are of
constant size while the public key has size O(n). However, in order to decrypt
ciphertexts, users need to store this public key in addition to their O(1)-size
private keys. Thus each user has to store an actual decryption key of size λdk =
O(n). The same authors suggested a second system (BGW2) that achieves a
trade-off between the key and ciphertext sizes and gives λc = λdk = λek =
O(

√
n). Overall, BGW2 provides the best broadcast system known so far for

general r’s i.e. when r ∈ [O(
√

n), n − O(
√

n)].
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All the above systems make use of the hybrid (KEM-DEM) encryption pa-
radigm where the broadcast ciphertext only encrypts a symmetric key used to
encrypt the broadcast contents. We mention that a number of other systems rely
on an asymmetric encryption of the whole broadcast data. The encryption rate
may asymptotically tend to one in these schemes, thereby reaching transmission
sizes similar to hybrid encryption. However, asymmetrically encrypting the whole
contents is often unrealistic in practice for performance reasons.

Dynamic broadcast encryption. A basic property very much desired in broad-
cast encryption (and other group-based protocols) is that the group should be
dynamic in the sense that the group manager can invite new members to join or
permanently revoke undesired members in a very efficient way. Although long-
term revocation necessarily implies a modification of the keys, there is no such
theoretical requirement when a new member joins the group. In this respect, we
say that a broadcast system is dynamic when

i) the system setup as well as the ciphertext size are fully independent from the
expected number of users or an upper bound thereof,

ii) a new user can join anytime without implying a modification of preexisting
user decryption keys,

iii) the encryption key is unchanged in the private-key setting or incrementally
updated in the public-key setting, meaning that this operation must be of
complexity at most O(1).

Hence, by definition, dynamic systems support arbitrarily many users. In [3]
as well as in NNL1 and NNL2, either a large upper bound on the number of
possible users is chosen at initialization time or the decryption keys have to be
recomputed when a user joins the group, resulting in that those systems are not
dynamic. Similarly, the trivial broadcast system is not dynamic since the cipher-
text must include one additional element per new user, irremediably altering its
size. As discussed in [14, p. 56], the property of being dynamic is incompati-
ble with forward-secrecy because new group members can actually decrypt all
previously encrypted messages. This feature may however be desirable; a newly
manufactured DVD player is expected to play any properly encrypted DVD is-
sued in the past. Achieving forward-secrecy requires the long-term revocation
and a re-keying of user decryption keys.

Our contributions. Introducing a new multi-receiver encryption trapdoor based
on bilinear maps, we suggest broadcast encryption systems which improve the
points discussed above. First, in all our schemes, either the broadcast cipher-
text or the decryption key dki containing all the information required by the
receiver to decrypt is of constant size. Second, the group manager can dynam-
ically include new members while preserving previously computed information:
in particular, user decryption keys need not be recomputed, the morphology and
size of ciphertexts are unchanged and the group encryption key ek requires min-
imal or no modification. Thirdly, our constructions provably resist full collusions
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relative to a bilinear map related computational problem denoted (t, n)-GDDHE.
Our security reductions are tight and do not rely on random oracles. We also
show that (t, n)-GDDHE has generic security. Finally, we introduce the most
efficient private-key broadcast encryption scheme known so far which features
constant-size encryption and decryption keys and information-theoretically min-
imal ciphertext size.

For the sake of completeness, Figure 1 compares our schemes with the previ-
ous proposals in terms of ciphertext and key sizes. We consider the private-key
broadcast encryption schemes NNL1 and NNL2 proposed by Naor et al. [14]
(where the group encryption key ek remains private) as well as the public-key
broadcast encryption schemes BGW1 and BGW2 proposed by Boneh et al. [3]. We
denote by BGW’1 a slightly modified version of BGW1 where the public param-
eters needed by the decryption procedure are included in the ciphertext rather
than in the decryption key. BGW1 and BGW’1 are described in more detail in
Appendix A.

Schemes Key/Ciphertext Sizes Time Complexity Dynamic?

Public-key λek λdk λc τek τdk

Trivial O(n) O(1) O(n − r) O(n − r) O(1) no

BGW1 O(n) O(n) O(1) O(n − r) O(n − r) no

BGW’1 O(n) O(1) O(n − r) O(n − r) O(n − r) no

BGW2 O(
√

n) O(
√

n) O(
√

n) O(
√

n) O(
√

n) no

Construction 1 O(n) O(1) O(r) O(r2) O(r) yes

Construction 2 O(n) O(n) O(1) O(r2) O(r2) no

Private-key λek λdk λc τek τdk

NNL1 O(1) O(log n) O(r log n
r
) O(r log n

r
) O(log log n) no

NNL2 O(1) O(log2 n) O(r) O(r) O(log n) no

Construction 3 O(1) O(1) O(r) O(r) O(r) yes

Fig. 1. Comparing the efficiency of fully collusion secure broadcast encryption schemes

Remark 1. It is a common practice in broadcast systems (and other group-
oriented protocols as well) to ignore the part of the broadcast ciphertext that
identifies the target subset of users (our R, or the subset S of effective receivers
in [3]). What is called ciphertext size usually refers to the size of the header
alone, not the size of the full header. As discussed in [14], transmitting the r-
subset R ⊆ {1, . . . , n} requires an extra O(r log n/r) bits. We note however that
transmitting R is actually not necessary in Constructions 1 and 3.

Roadmap. Section 2 provides a number of definitional facts about bilinear maps
and the General Diffie-Hellman Exponent assumption. We define dynamic broad-
cast encryption schemes and related security notions in Section 3. We describe



Fully Collusion Secure Dynamic Broadcast Encryption 43

our main construction in Section 4 and prove its security in Section 5. We suggest
a number of related variants and discuss these in Section 6. We finally conclude
on a number of open issues.

2 Preliminaries

2.1 Bilinear Maps

We briefly review the necessary facts about bilinear maps. Let G1, G2 and GT

be three cyclic groups of prime order p. The group laws in G1 and G2 are noted
additively using elliptic curve conventions, whereas the inner law of GT is noted
multiplicatively. A bilinear map e (·, ·) is a map G1 × G2 → GT such that for
any G ∈ G1, H ∈ G2 and a, b ∈ Zp,

e ([a] G, [b]H) = e (G, H)ab

and e (G, H) �= 1 unless G = 1 or H = 1. A bilinear map group system S is a
tuple

S = (p, G1, G2, GT , e (·, ·))
composed of the objects as described above. S may also include group generators
in its description. We impose all group operations as well as the bilinear map
e (·, ·) to be efficiently computable i.e. in time poly(|p|). We know three categories
of bilinear map group systems that are of interest in cryptography:

– the symmetric case G1 = G2 and by extension the one where an efficient
and efficiently invertible isomorphism ψ : G2 → G1 is known [10,11,2],

– the asymmetric case where an efficient isomorphism ψ : G2 → G1 is known
but no efficient algorithm is known to invert ψ or more generally to isomor-
phically map G1 onto G2 [12,13],

– the dissociate case where no efficient isomorphism G2 → G1 or G1 → G2 is
known.

As seen later, we make use of an arbitrary bilinear map group system in
our constructions. In particular, we do not need G1 and G2 to be distinct nor
equal. Neither do we require the existence1 of an efficient isomorphism going
either way between G1 and G2. Practical implementations may therefore rely on
any category of bilinear maps and select an S that optimizes the size of group
elements or the performance of group operations.

2.2 The General Diffie-Hellman Exponent Assumption

We make use of a nice generalization of the Diffie-Hellman Exponent assump-
tion due to Boneh, Boyen and Goh [1]. The framework suggested in [1] applies
to symmetric and asymmetric bilinear map group systems but can easily be
1 A one-way isomorphism is often necessary to prove the security of pairing-based

systems.
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extended to the dissociate case, adopting the notations of [1]. We give here a
rough overview in the symmetric case. Let then S = (p, G1, G2, GT , e (·, ·)) be
a bilinear map group system such that G1 = G2 = G. Let G0 ∈ G be a gen-
erator of G, and set g = e (G0, G0) ∈ GT . Let s, m be positive integers and
P, Q ∈ Fp[X1, . . . , Xm]s be two s-tuples of m-variate polynomials over Fp. We
write P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs) and impose that p1 = q1 = 1.
For any function h : Fp → Ω and vector (x1, . . . , xm) ∈ Fm

p , h(P (x1, . . . , xm))
stands for (h(p1(x1, . . . , xm)), . . . , h(ps(x1, . . . , xm))) ∈ Ωs. We use a similar no-
tation for the s-tuple Q. Let F ∈ Fp[X1, . . . , Xm]. It is said that F depends on
(P, Q), which we denote by F ∈ 〈P, Q〉, when there exists a linear decomposition

F =
∑

1≤i,j≤s

ai,jpipj +
∑

1≤i≤s

biqi ,

with coefficients ai,j , bi ∈ Zp. Let P, Q be as above and F ∈ Fp[X1, . . . , Xm].
The (P, Q, F )-General Diffie-Hellman Exponent problems are defined as follows.

Definition 1 ((P, Q, F )-GDHE). Given the vector

H(x1, . . . , xm) =
(
[P (x1, . . . , xm)] G0, g

Q(x1,...,xm)
)
∈ G

s × G
s
T ,

compute gF (x1,...,xm).

Definition 2 ((P, Q, F )-GDDHE). Given H(x1, . . . , xm) ∈ G
s × G

s
T as above

and T ∈ GT , decide whether T = gF (x1,...,xm).

We refer to [1] for a proof that (P, Q, F )-GDHE and (P, Q, F )-GDDHE have
generic security when F �∈ 〈P, Q〉. We prove that our constructions are fully
collusion secure based on the assumption that (P, Q, F )-GDDHE is intractable
for some well-defined P, Q, F with F �∈ 〈P, Q〉 and for polynomial parameters
s, m = poly(λ) where λ is a security parameter.

3 Dynamic Public-Key Broadcast Encryption

We give a formal definition of a dynamic broadcast encryption scheme and dis-
cuss security notions that are associated to the concept. We basically refine the
definition of [3] by including a join procedure.

3.1 Definition

A dynamic broadcast encryption scheme involves two authorities: a group man-
ager and a broadcaster. The group manager grants new members access to the
group2 by providing to each new member a public label labi and a decryption
2 Note that given our definition of dynamic broadcast encryption, the group manager

cannot revoke users permanently since keys cannot be changed. See Section 6 for
more detail.
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key dki. The generation of (labi, dki) is performed using a secret manager key
mk. The broadcaster encrypts messages and transmits these to the whole group
of users through the broadcast channel. In a public-key broadcast encryption
scheme, the broadcaster does not hold any private information and encryption is
performed with the help of a public group encryption key ek containing, possibly
among other things, all user labels. When the broadcaster encrypts a message,
some group members can be revoked temporarily from decrypting the broadcast
content thanks to a one-time revocation mechanism. Following the KEM-DEM
methodology, broadcast encryption is viewed as the combination of a specific
key encapsulation mechanism (a Broadcast-KEM) with a symmetric encryption
(DEM) that shall remain implicit throughout the paper. More formally, a dy-
namic public-key broadcast encryption scheme DBE with security parameter λ
is a tuple of probabilistic algorithms DBE = (Setup, Join, Encrypt, Decrypt) de-
scribed as follows:

Setup(λ). Takes as input the security parameter λ and outputs a manager key
mk and an initial group encryption key ek. The group manager is given mk,
and ek is made public.

Join(mk, i). Takes as input the manager key mk and a user counter i. Join gen-
erates a user label labi and a user decryption key dki. The user label labi is
added to the group encryption key ek := ek∪{labi} and the user decryption
key dki is sent to the i-th user securely.

We denote by n the total number of users (evolving over time) and by
U = {1, . . . , n} the set of all users.

Encrypt(ek,R). Takes as input the group encryption key ek and a set of revoked
users R ⊆ U and outputs a random pair (hdr, K).
When a message M ∈ {0, 1}∗ is to be broadcast to users in U \ R, the
broadcaster generates (hdr, K) ← Encrypt(ek,R), computes the encryption
CM of M under the symmetric key K and broadcasts (hdr,R, CM ). We will
refer to hdr as the header or broadcast ciphertext, (hdr,R) as the full header,
K as the message encryption key and CM as the broadcast body.

Decrypt(dki,R, hdr). Takes as input a header hdr, a subset R ⊆ U and a user de-
cryption key dki. If i ∈ U \R, the algorithm outputs the message encryption
key K which is then used to decrypt the broadcast body CM and recover
M .

3.2 Security Notions for Dynamic Public-Key Broadcast Encryption

Semantic Security against Static Adversaries. The standard security notion for
broadcast encryption schemes is semantic security against static colluders. Since
we consider dynamic public-key broadcast encryption, we extend the security def-
inition to one that is a bit more general than in [3]. More specifically, we allow the
adversary to see the group encryption key before choosing the corrupted users:

1. The challenger first runs Setup(λ) to generate a manager key mk and an
initial group encryption key ek. The adversary A is given ek.
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2. A runs exactly n times the Join procedure, but before each invocation A
specifies whether the corresponding new group member is honest or cor-
rupted. Following the i-th call to Join, a user label labi is created and added
to ek and therefore given to the adversary. If user i is corrupted, A receives
in addition the decryption key dki. The user counter i is then incremented
and so forth. Eventually, A ends up with the decryption keys of all corrupted
users C ⊆ U , that is {dki}i∈C . Let t = |C|.

3. The challenger runs algorithm Encrypt with R = C i.e. by revoking all cor-
rupted users to randomly generate (hdr, K) ← Encrypt(ek, C). The challenger
randomly selects b ← {0, 1}, sets Kb = K and sets K1−b to a random value
in the appropriate range. The tuple (hdr, K0, K1) is returned to A.

4. A eventually outputs a guess b′ ∈ {0, 1}.

The adversary wins the above game when b′ = b. Viewing t, n as attack param-
eters, we denote by Advind

DBE(t, n,A) the advantage of A in winning the game:

Advind
DBE(t, n,A) = |2 × Pr[b′ = b] − 1| = |Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|

where the probability is taken over the random coins of A, the challenger and
all probabilistic algorithms run by the challenger.

Definition 3 ((t, n)-Collusion Resistance). Let

Advind
DBE(t, n) = max

A
Advind

DBE(t, n,A)

where the maximum is taken over all probabilistic algorithms A running in time
poly(λ). A dynamic public-key broadcast encryption scheme DBE is said to be
semantically secure against (t, n)-colluders if Advind

DBE(t, n) = negl(λ).

Definition 4 (Full Collusion Resistance). Note that for any integers t1, t2
such that 0 ≤ t1 ≤ t2 ≤ n one has Advind

DBE(t1, n) ≤ Advind
DBE(t2, n). DBE is said

to be semantically secure against full collusions if Advind
DBE(n, n) = negl(λ) for

n = poly(λ).

Chosen-ciphertext security. Given a chosen-plaintext secure Broadcast-KEM,
one can realize CCA secure public-key broadcast encryption using generic se-
curity enhancers such as Fujisaki-Okamoto [7,6] or REACT [15]. Applying the
Fujisaki-Okamoto transform guarantees CCA security in the random oracle
model assuming the one-wayness of the Broadcast-KEM. REACT gives the same
guarantee (and a performance gain at decryption time) assuming one-wayness
under plaintext-checking attacks. We therefore do not consider CCA security in
our constructions, given that it can be realized at negligible cost3.

3 In the RO model. However combining the Broadcast-KEM with ID-based encryption
as in [3] may allow to avoid random oracles when such a combination is possible.
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Beyond static adversaries. We comment that the above definition captures ad-
versaries that are less static than in previous schemes because the adversary
may choose C somewhat adaptively while seeing how the group encryption key
ek evolves while new users join the system. Up to our knowledge, no public-
key broadcast encryption scheme is known to resist fully adaptive adversaries
(i.e. where the adversary determines C after seing all the public information) in
the standard model4. As commented in [3], any static adversary that has success
probability ε in the (t, n)-collusion security game leads to an adaptive adversary
with success probability ε ·2−n. However, in practice this reduction is only mean-
ingful for small values of n and building systems resisting fully adaptive colluders
is still an open problem in the field.

4 Public-Key DBE with Constant-Size Decryption Keys

4.1 A New Multi-receiver Encryption Trapdoor

We describe a public-key encryption scheme with multiple receivers featuring
O(1)-size ciphertexts, decryption keys and encryption key. This system, which
we call Construction 0, does not support user revocation and therefore is not
a broadcast encryption system. We describe Construction 0 to show the basic
trapdoor mechanism which we generalize later to achieve broadcast encryption.

Let S = (p, G1, G2, GT , e (·, ·)) be a bilinear map group system with two
randomly selected generators G ∈ G1 and H ∈ G2. Assume one publishes
ek = (H, W, V ) where W = [γ]G for some γ ← Zp and V = e (G, H) and
keeps mk = (G, γ) secret. Now given mk = (G, γ) and a user counter i, we gener-
ate a unique decryption key by randomly selecting a fresh xi ← Zp and defining
dki = (xi, Ai, Bi) where

Ai =
[

xi

γ + xi

]
G , Bi =

[
1

γ + xi

]
H .

To generate a random encryption key K given ek = (H, W, V ), the broadcaster
randomly picks k ← Z�

p, computes

C1 = [k] W , C2 = [k] H , K = V k

and broadcasts hdr = (C1, C2). To recover K from hdr with dki, the i-th user
computes

e (C1, Bi) · e (Ai, C2) = e (G, H)
k·γ

γ+xi · e (G, H)
k·xi
γ+xi = V k = K .

It turns out that this encryption scheme achieves chosen-plaintext security under
the co-DDH assumption. Namely, given H, [a] H ∈ G2 and v, t ∈ GT , it must be
hard to decide whether t = va. Construction 0 may have applications on its own
in contexts where user revocation is not required.
4 This is known to be achievable in the random oracle and generic group models.
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4.2 Achieving User Revocation: A Full Construction

We now proceed to describe our main dynamic public-key broadcast encryption
scheme which we refer to as Construction 1 throughout the paper. Our scheme
allows decoders to store constant-size decryption keys i.e. λdk = O(1) and fea-
tures O(r) ciphertext size where r is the number of revoked users. This is of
particular interest when r is small (i.e. r <

√
n).

Setup(λ). Given the security parameter λ, a bilinear map group system S =
(p, G1, G2, GT , e (·, ·)) is constructed such that |p| = λ. Also, two generators
G ∈ G1 and H ∈ G2 are randomly selected as well as a secret value γ ←
Z�

p. The manager key is defined as mk = (S, G, H, γ). The initial group
encryption key is ek = (S, H, W, V ) where W = [γ]G and V = e (G, H).

Join(mk, i). Given mk = (S, G, H, γ) and the user counter i, Join randomly se-
lects a fresh xi ← Z�

p (thus xi �= xj for j < i) and sets dki = (S, xi, Ai, Bi)
and labi = (xi, Vi, Bi) where

Ai =
[

xi

γ + xi

]
G , Bi =

[
1

γ + xi

]
H and Vi = V

1
γ+xi .

dki is securely given to user i and labi is appended to the group encryption
key ek.

Encrypt(ek,R). Assume for notational simplicity that R = {1, . . . , r}. Given
ek = (S, H, W, V, (x1, V1, B1), . . . , (xn, Vn, Bn)), the broadcaster computes

P1 =
[

1
γ + x1

]
H,

P2 =
[

1
(γ + x1)(γ + x2)

]
H,

...

Pr =
[

1
(γ + x1) . . . (γ + xr)

]
H .

We describe below a quadratic time algorithm Aggregate which Encrypt may
use to compute

Pr = Aggregate
(

G2,

(
x1,

[
1

γ + x1

]
H

)
, . . . ,

(
xr,

[
1

γ + xr

]
H

))
.

By running the Aggregate algorithm on (x1, B1), . . . , (xr , Br) and storing the
intermediate variables Pj = Pj−1,j , Encrypt also computes Pj for j < r. The
Aggregate algorithm given on Fig. 2 precisely goes through the successive
evaluations of P1, . . . , Pr and these can be stored at no extra cost. The
broadcaster then picks k ← Z�

p at random and sets

C1 = [k] W , C2 =
[

k

(γ + x1) . . . (γ + xr)

]
H = [k] Pr .
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The same Aggregate algorithm can also be applied to compute

K ′ = V
1

(γ+x1)...(γ+xr) = Aggregate
(
GT ,

(
x1, V

1
γ+x1

)
, . . . ,

(
xr, V

1
γ+xr

))
,

wherefrom K = K ′k is obtained. These two computations are performed in
time O(r2), see below. Encrypt then defines

hdr = (C1, C2, (x1, P1), . . . , (xr, Pr))

and outputs (hdr, K). The ciphertext thus contains r elements of Zp, r + 1
elements of G2 and one element of G1.

Decrypt(dki,R, hdr). In order to retrieve the message encryption key K en-
capsulated in the header hdr, the i-th user uses {(xj , Pj)}r

j=1 ⊆ hdr and
dki = (S, xi, Ai, Bi) to compute

K = e (C1, Bi,R) · e (Ai, C2)

where

Bi,R =

[
1∏r

j=1(γ + xj)

]
Bi =

[
1

(γ + xi)
∏r

j=1(γ + xj)

]
H .

Here Bi,R is computed is computed in time O(r) (instead of O(r2)) given
(xi, Bi) ⊆ dki and {(xj , Pj)}r

j=1 ⊆ hdr by using the Aggregate′ algorithm
given later on in the paper. This requires xi �= xj i.e. i �∈ R, otherwise
Aggregate′ faces a division by zero and returns an error.

Finally note that when R = ∅, Construction 1 boils down to Construction 0
except for the encryption key ek = (S, H, W, V ) ∪ {(xi, Vi, Bi)}n

i=1 which, in
Construction 0, does not include user labels.

4.3 Aggregation of 1-Degree Terms: Aggregate

The key encapsulation mechanism of Section 4.2 requires the computation of

Pr =
[

1
(γ + x1) . . . (γ + xr)

]
H ∈ G2 and K ′ = e (G, H)

1
(γ+x1)...(γ+xr) ∈ GT

given {labj = (xj , Bj , Vj)}r
j=1 where the xj ’s are pairwise distinct. We proceed

to describe how Aggregate(G2, · · · ) allows to compute Pr from the xj ’s and the
Bj ’s. The same algorithm applies over GT as well to compute K ′ from the xj ’s
and the Vj ’s.

Description. Given x1, . . . , xr and Bj =
[

1
γ+xj

]
H for 1 ≤ j ≤ r, let us define

for any (j, �) such that 1 ≤ j < � ≤ r,

Pj,� =

[
1∏j

κ=1(γ + xκ)

]
B� =

[
1

(γ + x�)
· 1∏j

κ=1(γ + xκ)

]
H .
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The Aggregate algorithm consists in computing sequentially Pj,� for j = 1, . . . , r−
1 and � = j + 1, . . . , r using the induction

Pj,� =
[

1
x� − xj

]
(Pj−1,j − Pj−1,�) (1)

and posing P0,� = B� for � = 1, . . . , r. The algorithm finally outputs Pr = Pr−1,r.
Aggregate is displayed in more detail on Fig. 2. It is easily shown that Equ. 1 is
sound. Note however that computing Pj,� by Equ. 1 assumes xj �= x�. If xj = x�

for some j < � then Pj−1,j = Pj−1,� and Pj,�, which then contains a (γ + xj)2

factor, cannot be computed (this is computationally infeasible without γ). In
this case, we force Aggregate to abort and return an error symbol.

Complexity. One sees that the computation of a term of the form[
1∏

j∈R(γ + xj)

]
H

for any subset R ⊆ {1, . . . , n} from the 1-degree terms [1/(γ + xj)]H where
j ∈ R is quadratic in the cardinality of R. More precisely, generalizing to G ∈
{G2, GT }:

Time [Aggregate(G, r terms)] � r(r − 1)
2

· (τp + τG) ,

where τp is the execution time of a subtraction and an inversion modulo p = |G|
and τG the total time of a division and an exponentiation in G.

4.4 Aggregation of Terms of Increasing Degree: Aggregate′

Description. The Aggregate algorithm can be accelerated if one is given Pj =
Pj−1,j for j = 1, . . . , r instead of Bj . It is easily seen that Equ. 1 provides a way
to compute P1, . . . , Pr from B1, . . . , Br (and vice versa) in quadratic time. So
knowing either vector is quadratic-time equivalent. However, given P1, . . . , Pr

and (xi, Bi =
[

1
γ+xi

]
H), Equ. 1 is reformulated as

[
1

(γ + xi)
∏j

κ=1(γ + xκ)

]
H =

[
1

xi − xj

] (
Pj −

[
1

(γ + xi)
∏j−1

κ=1(γ + xκ)

]
H

)

for any j = 1, . . . , r. Note that the left-hand term gives Bi,R when j = r. This
leads us to the iterative computation of Bi,R as depicted on Fig. 2.

Complexity. It is easily seen that Time
[
Aggregate′(G, r terms)

]
� r · (τp + τG).

5 Security Analysis

5.1 Security Reduction to (t, n)-GDHE

We prove the semantic security of our system by reformulating the security
game in terms of sequences of polynomials and relying on the GDHE/GDDHE
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Aggregate Aggregate′

Input: two r-arrays x = [x1, . . . , xr] Input: xi, Bi, x = [x1, . . . , xr]
and P = [B1, . . . , Br] and P = [P1, . . . , Pr]

Output: Pr as defined above or ⊥ Output: Bi,R as defined above or ⊥

1. for j = 1 to r − 1
(a) for � = j + 1 to r

i. if x[j] = x[�] output ⊥
ii. P [�] =

[
1

x[�]−x[j]

]
(P [j] − P [�])

2. output P [r]

1. set temp = Bi

2. for j = 1 to r
(a) if xi = x[j] output ⊥
(b) set temp =

[
1

xi−x[j]

]
(P [j] − temp)

3. output temp

Fig. 2. The Aggregate and Aggregate′ algorithms

framework of [1]. We start by defining the following intermediate computational
problem.

Definition 5 ((t, n)-GDHE). Let S = (p, G1, G2, GT , e (·, ·)) be a bilinear map
group system and let f and g be the two random univariate polynomials

f(X) =
t∏

i=1

(X + xi) =
t∑

i=0

μiX
i , g(X) =

n∏
i=t+1

(X + xi) =
n−t∑
i=0

νiX
i ,

where all the xi’s are random and pairwise distinct elements of Z�
p. Let G0 be

a generator of G1 and H0 a generator of G2. Solving the (t, n)-GDHE problem
consists, given

G0 , [γ] G0 , . . . ,
[
γt−1

]
G0 , [γ · f(γ)] G0 , [k · γ · f(γ)]G0 ,

H0 , [γ]H0 , . . . , [γn] H0 , [k · g(γ)] H0 ,

e (G0, H0)
f2(γ)·g(γ)

,

in computing e (G0, H0)
k·f(γ)·g(γ).

As usual, we denote by Succgdhe(t, n,A) the success probability of a random-
ized algorithm A solving (t, n)-GDHE. Similarly to the above, one defines the
decisional version of (t, n)-GDHE, which we call (t, n)-GDDHE. In the (t, n)-
GDDHE game, an additional input T ∈ GT is provided and solving (t, n)-
GDDHE consists in deciding whether T = e (G0, H0)

k·f(γ)·g(γ). We then denote
by Advgddhe(t, n,A) the advantage of an algorithm A in distinguishing the two
distributions and set Advgddhe(t, n) = maxA Advgddhe(t, n,A) over poly(|p|)-time
A’s. The following statement is a corollary of Theorem 2 that can be found in
Section 5.2.
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Corollary 1 (Generic security of (t, n)-GDDHE). For any probabilistic al-
gorithm A that totalizes at most q queries to the oracles performing group oper-
ations in (G1, G2, GT ) and evaluations of the bilinear map e (·, ·),

Advgddhe(t, n,A) ≤ (q + 2(n + t + 4) + 2)2 · (t + n)
2p

.

Let DBE denote our construction (Construction 1) as per Section 4. We state:

Theorem 1. For any n, t such that 0 ≤ t ≤ n, one has Advind
DBE(t, n) ≤ 2 ·

Advgddhe(t, n).

Proof. The rest of this section is dedicated to proving Theorem 1. To establish
the semantic security of DBE against static adversaries, we assume to be given
an adversary A breaking DBE under a (t, n)-collusion and we build a reduction
algorithm B that distinguishes the two distributions of the GDDHE decision
problem.

Generation of system parameters and initial ek. The reduction algorithm B is
given as input a group system S = (p, G1, G2, GT , e (·, ·)) and a (t, n)-GDDHE
instance in S. Let then f(X) =

∏i=t
i=1(X + xi) and g(X) =

∏i=n−t
i=1 (X + x′

i) be
two random polynomials of respective degree t and n− t with non-zero pairwise
distinct roots. B is also given a generator G0 (resp. H0) of G1 (resp. G2) and

G0, [γ]G0, . . . ,
[
γt−1

]
G0 [γ · f(γ)] G0 [k · γ · f(γ)] G0

H0, [γ]H0, . . . , [γn] H0 [k · g(γ)] H0

e (G0, H0)
f2(γ)·g(γ)

,

as well as T ∈ GT which is either equal to e (G0, H0)
k·f(γ)·g(γ) or to some random

element of GT . B formally sets G = [f(γ)] G0 (i.e. without computing it) and
computes

H = [f(γ) · g(γ)] H0 (from H0, [γ]H0, . . . , [γn] H0)
W = [γ] G = [γ · f(γ)] G0 (given as input)
V = e (G0, H0)

f2(γ)·g(γ) = e (G, H) (given as input)

B then defines the group encryption key as ek = (H, W, V ). Note that B can
by no means compute the value of G. B then runs A on the system parameters
(S, H) and ek.

Generation of corrupted keys. The adversary A chooses a t-subset C ⊆ {1, . . . , n}
that indicates which users are corrupted: the users whose index lies in C are
corrupted, whereas the users with index in C̄ = {1, . . . , n} \ C are honest. To
generate the keys of the corrupted users, we define fi(X) = f(X)/(X + xi) for
i ∈ [1, t], which are polynomials of degree t − 1, and then set

Ai = [xi · fi(γ)]G0 =
[

xi

γ + xi

]
G , Bi = [fi(γ) · g(γ)] H0 =

[
1

γ + xi

]
H
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and

Vi = e (G0, H0)
fi(γ)·f(γ)·g(γ) = e ([f(γ)] G0, [fγ) · g(γ)] H0)

1
γ+xi = e (G, H)

1
γ+xi .

To generate the labels of honest users, we define gi(X) = g(X)/(X + x′
i) for

i ∈ [1, n − t] and

B′
i = [f(γ) · gi(γ)] H0 =

[
1

γ + x′
i

]
H , V ′

i = e (G0, H0)
f2(γ)·gi(γ) .

Note that the total number of users is n. Since the polynomials fig and fgi are
of degree n − 1, Bi and B′

i can be computed easily. Vi can also be computed
given

[
γj

]
G0 for j ∈ [0, t − 1] and

[
γj

]
H0 for j ∈ [0, n] since these allow to

compute e (G0, H0)
γk

for k ∈ [0, n + t − 1] and since polynomials fifg and f2gi

are of degree n + t − 1. The user labels and keys ((xi, Ai, Bi), (xi, Vi, Bi)) for
i ∈ [1, t] as well as the user labels (x′

i, B
′
i, V

′
i ) for i ∈ [1, n − t] are then given to

the adversary A.

Challenge broadcast ciphertext. B now builds a header hdr = (C1, C2, {xi, Bi}t
i=1)

decryptable by the honest users i.e. where the users C ⊆ U are revoked. Given the
GDDHE instance, B computes

C1 = [k · γ · f(γ)] G0 = [k] W ,

C2 = [k · g(γ)] H0 =
[

k

f(γ)

]
H =

[
k

(γ + x1) . . . (γ + xt)

]
H .

Doing so, B implicitly defines the message encryption key K as

K = e (G, H)
k

(γ+x1)...(γ+xt) = e (G0, H0)
k·f2(γ)·g(γ)

f(γ) = e (G0, H0)
k·f(γ)·g(γ)

.

B now selects a random bit b ← {0, 1}, sets Kb = T and sets K1−b to a random
element of GT . B sends the tuple (hdr, K0, K1) to A.

Final outcome. A outputs a bit b′ ∈ {0, 1}. B then outputs real if b′ = b or
random otherwise. One has

Advgddhe(t, n,B) = Pr[b′ = b|real] − Pr[b′ = b|random]

=
1
2
× (Pr[b′ = 1|b = 1 ∧ real] − Pr[b′ = 1|b = 0 ∧ real])

−1
2
× (Pr[b′ = 1|b = 1 ∧ random] + Pr[b′ = 1|b = 0 ∧ random]) .

Now in the random case, the distribution of b is independent from the adversary’s
view wherefrom

Pr[b′ = 1|b = 1 ∧ random] = Pr[b′ = 1|b = 0 ∧ random] .
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In the real case however, the distributions of all variables defined by B per-
fectly comply with the semantic security game since all simulations are perfect.
Therefore

Advind
DBE(A) = Pr[b′ = 1|b = 1 ∧ real] − Pr[b′ = 1|b = 0 ∧ real] .

Summing up, we get that Advgddhe(t, n,B) = Advind
DBE(t, n,A)/2. It is obvious

that B runs in time similar to the one of A. ��

5.2 Proving the Intractability of (t, n)-GDHE

In this section, we prove the intractability of distinguishing the two distributions
involved in the (t, n)-GDDHE problem cf. Corollary 1. We first review known re-
sults on the General Diffie-Hellman Exponent problem from [1]. Sticking to the
most general security result, we assume a bilinear map system of the most favor-
able type for the adversary i.e. G1 = G2 = G or there is an efficient isomorphism
going both ways between G1 and G2.

Theorem 2 ([1]). Let P, Q ∈ Fp[X1, . . . , Xm] be two s-tuples of m-variate poly-
nomials over Fp and let F ∈ Fp[X1, . . . , Xm]. Let dP (resp. dQ, dF ) denote the
maximal degree of elements of P (resp. of Q, F ) and pose d = max(2dP , dQ, dF ).
If F �∈ 〈P, Q〉 then for any generic-model adversary A totalizing at most q queries
to the oracles (group operations in G, GT and evaluations of e) which is given
H(x1, . . . , xm) as input and tries to distinguish gF (x1,...,xm) from a random value
in GT , one has

Adv(A) ≤ (q + 2s + 2)2 · d
2p

.

Proof (of Corollary 1). In order to conclude with Corollary 1, we need to prove
that the (t, n)-GDHE problem lies in the scope of Theorem 2. As already said,
we consider the weakest case G1 = G2 = G and thus pose H0 = [α] G0. In the
(t, n)-GDHE problem, if one replaces γ by x, k by y and α by z, we see that our
problem is reformulated as (P, Q, F )-GDHE where

P =
(

1, x, x2, . . . , xt−1, x · f(x), y · x · f(x)
z, z · x, . . . , z · xn, y · z · g(x)

)

Q = (1, z · f(x)2g(x))
F = y · z · f(x)g(x),

and thus m = 3 and s = t + n + 4. We have to show that F is independent
of (P, Q) i.e. that no coefficients {ai,j}s

i,j=1 and {b1, b2} exist such that F =∑s
i,j=1 ai,jpipj +

∑2
k=1 bkqk where the polynomials pi and qk are the one listed

in P and Q above. By making all possible products of two polynomials from P
which are multiples of y · z, we want to prove that no linear combination among
the polynomials from the list R below leads to F :

R =

⎛
⎝z · y · xn+1 · f(x), . . . , z · y · x2 · f(x), z · y · x · f(x),

z · y · xt−1 · g(x), . . . , z · y · x · g(x), z · y · g(x),
z · y · x · f(x)g(x)

⎞
⎠ .
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Note that the last polynomial can be written as z · y · x · f(x)g(x) =
∑i=n−t

i=0 νi ·
z · y · xi+1 · f(x), and thus as a linear combination of the polynomials from the
first line. Moreover, z ·y ·xn+1 ·f(x) is the unique polynomial of degree t+n+1
in x and such a monomial does not appear in F . Similarly, z · y · xn · f(x), . . . ,
z · y · xn−t+1 · f(x) cannot appear in the combination. We therefore simplify the
task to refuting a linear combination of elements of the list R′ below which leads
to f(x)g(x):

R′ =
(

xn−t · f(x), . . . , x2 · f(x), x · f(x),
xt−1 · g(x), . . . , x · g(x), g(x)

)
.

Any such linear combination can be written as

f(x)g(x) = A(x) · f(x) + B(x) · g(x)

where A and B are polynomials such that A(0) = 0, deg A = n− t and deg B =
t − 1. Since f and g are coprime by assumption, we must have f | B. Since
deg f = t and deg B = t − 1 this implies B = 0. Hence A = g resulting in that
g(0) =

∏n−t
i=1 x′

i = 0 which contradicts x′
i �= 0 for i ∈ [1, n− t]. ��

6 Related Constructions

From a design perspective, our main construction is fairly simple and can there-
fore be refined in many ways. We now present a few broadcast encryption systems
derived from Construction 1. Although we do not provide proof details here, it
can be shown that all constructions inherit full collusion resistance under the
GDDHE assumption from Construction 1.

6.1 Public-Key Broadcast Encryption with Constant-Size
Ciphertexts (Construction 2)

We suggest a simple variant of the previous construction that reaches optimally
short ciphertexts i.e. λc = O(1). The basic observation is that the fraction of the
ciphertext containing {(xj , Pj)}r

j=1 can be computed from R and {(xj , Bj)}r
j=1

which is a subset of the public encryption key. Therefore Pj for j ∈ R can be
removed completely from hdr if the complete set {(x1, B1), . . . , (xn, Bn)} is made
available at decryption time. Construction 2 therefore redefines

hdr = (C1, C2) where C1 = [k] W , C2 = [k] H ,

and
dki = (S, (xi, Ai, Bi), (x1, B1), . . . , (xn, Bn)) .

As a result, the new system enjoys constant-size ciphertexts at the expanse of
linear-size user decryption keys. Decryption can be performed as

K = e (C1, Bi,R) · e (Ai, C2)



56 C. Delerablée, P. Paillier, and D. Pointcheval

where Bi,R is computed in time O(r2) using the Aggregate algorithm with the
list {(xj , Bj)}j∈R ⊆ dki and (xi, Bi) ⊆ dki as inputs. Note here that the presence
of R in the full broadcast ciphertext is mandatory to allow proper decryption5.

We also note that the dynamic aspect is lost when doing these changes since
all users have to update their decryption key whenever a new member joins the
group. It is worthwhile noting that the characteristics of this construction are
exactly those of BGW1. Our scheme is slightly less efficient since decryption keys
are bigger than those of in BGW1 by the inclusion of n extra integers modulo p.

6.2 Private-Key DBE with Constant-Size Decryption and
Encryption Keys (Construction 3)

In this scheme, the broadcaster and the group manager are the same entity. All
algorithms are unchanged except for the join procedure which now exclusively
employs the encryption key ek, mk being obsolete. The random selection of
xi, i = 1, . . . , n is now replaced by a pseudo-random generation. More precisely,
we modify Construction 1 as follows:

1. Setup(λ) generates S, randomly selects a hash function H : {0, 1}∗ �→ Z
�
p and

outputs ek = (S, G, H, γ, W, V,H),
2. Join(ek, i) sets xi = H(i), computes Ai and Bi as in Construction 1 and

outputs the user decryption key dki = (S, xi, Ai, Bi),
3. Encrypt(ek,R) picks a random k ← Z�

p and computes on the spot

1
γ + x1

,
1

(γ + x1)(γ + x2)
, . . . ,

1
(γ + x1) . . . (γ + xr)

,

k

(γ + x1) . . . (γ + xr)
, kγ

over Z�
p, thereby allowing to compute P1, . . . , Pr, C2, C1, K directly by expo-

nentiating H , V or W in their respective groups,
4. decryption is identical to the one of Construction 1.

The main difference with Construction 1 is that the broadcaster needs no
linear-size group encryption key nor user labels: these are recovered whenever
necessary using G, H, γ and the user counter i. Therefore λek = O(1) and both
encryption and decryption stages process in time O(r). Note that all efficiency
measures do not depend on the number of users n.

6.3 Realizing Long-Term Revocation

To revoke user i, the group manager broadcasts (xi, Bi, Vi) and resets H := Bi

and V := Vi. A non revoked user j �= i can update his label as

Bj :=
[

1
γ + xi

]
Bj =

[
1

xj − xi

]
(Bi − Bj) Vj := V

1
γ+xi

j =
(

Vi

Vj

) 1
xj−xi

.

5 Including R in the full header was unnecessary in Construction 1, see Remark 1.
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Therefore the broadcaster does not have to repeat (xi, Bi, Vi) in future encryp-
tions. In virtue of the full collusion resistance of Construction 1, long-term re-
vocations can be shown to be forward-secure.

7 Conclusion

We introduced new alternatives to design public and private key fully collusion
secure broadcast encryption. Our designs support the inclusion of new users at
minimal cost and achieve the best known security level relative to a generically
secure computational problem via tight reductions in the standard model. We
leave as an open problem to realize dynamic public-key broadcast encryption
with an encryption key substantially shorter that O(n). Resisting fully adap-
tive adversaries would also be a significant improvement. Finally, we expect our
trapdoor mechanism to find other cryptographic applications in the future.
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A BGW1 and BGW’1

We briefly describe the system BGW1 put forward by Boneh et al. [3]. As BGW1

is not dynamic, the Setup algorithm takes as input the number n of users in
addition to the security parameter λ, and is in charge of computing the user
decryption keys since there is no Join algorithm.

Setup(λ, n). Given the security parameter λ, a symmetric bilinear map group
system

S = (p, G, GT , e (·, ·))

is constructed such that |p| = λ. The algorithm first picks a generator G ∈ G

and a random α ∈ Zp. It computes Gi =
[
αi

]
G ∈ G for i = 1, . . . , n, n +

2, . . . , 2n. Next, it picks a random γ ← Zp and sets W = [γ]G ∈ G. The
encryption key is

ek = (S, G, G1, . . . , Gn, Gn+2, . . . , G2n, W ) ∈ G
2n+1 .

The decryption key of user i ∈ {1, . . . , n} is set as dki = [γ] Gi ∈ G. The algo-
rithm outputs the encryption key ek and the n decryption keys dk1, . . . , dkn.

Encrypt(ek, S). Given the encryption key ek and a subset S ⊆ {1, . . . , n} of
users, the broadcaster randomly picks k ← Z�

p, sets K = e (Gn+1, G)k =
e (Gn, G1)

k ∈ GT and computes

hdr =

⎛
⎝[k]G, [k]

⎛
⎝W +

∑
j∈S

Gn+1−j

⎞
⎠

⎞
⎠ ∈ G

2

and outputs (hdr, K).
Decrypt(dki, ek, S, hdr). In order to retrieve the message encryption key K en-

capsulated in the header hdr = (C1, C2), the i-th user computes

K = e (Gi, C2) / e (dki + Pi, C1) where Pi =
∑

j∈S,j �=i

Gn+1−j+i .
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We define BGW’1 as a modification of BGW1 where the decryption algorithm
does not take ek as input parameter anymore but directly includes {Pi}i∈S in
the header hdr instead. This change excepted, the encryption and decryption
algorithms are unchanged. The motivation for considering BGW’1 is that the
decryption key material at the user side does not include the encryption key ek,
resulting in that λdk = O(1) instead of λdk = O(n) in BGW1. This comes at the
cost of a ciphertext size in O(n − r) instead of O(1) in BGW1.



Certificateless Public Key Encryption in the

Selective-ID Security Model

(Without Random Oracles)�

Jong Hwan Park, Kyu Young Choi, Jung Yeon Hwang,
and Dong Hoon Lee

Center for Information Security Technologies(CIST),
Korea University, Seoul, Korea

{decartian,young,videmot,donghlee}@korea.ac.kr

Abstract. The concept of Certificateless Public Key Encryption (CL-
PKE) eliminates the use of certificates in certified Public Key Encryption
(PKE) scheme and the key-escrow problem in Identity Based Encryption
(IBE) scheme. Al-Riyami and Paterson first proposed a CL-PKE scheme
and proved its security in their security model (AP-model) using ideal-
ized random oracles. Several generic constructions were also proposed
to construct a CL-PKE scheme by composing the standard PKE and
IBE schemes. Recently, it was proved that some generic constructions
are not secure against chosen ciphertext attacks in light of the security
goals in the AP-model. In this paper, we show that all the known generic
constructions are not secure against chosen ciphertext attacks, in the AP-
model or a weaker security model than the AP-model. We also propose a
CL-PKE scheme which is provably secure against chosen ciphertext at-
tacks without random oracles. Our construction is proven secure in the
selective-ID security model, reflecting the feature of CL-PKE scheme.

Keywords: Certificateless Public Key Encryption, Chosen Ciphertext
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1 Introduction

Al-Riyami and Paterson introduced the concept of Certificateless Public Key
Encryption (CL-PKE) and proposed a CL-PKE scheme which is secure in their se-
curity model (i.e., AP-model) [2]. The basic idea of CL-PKE is to construct a pub-
lic/private key pair by combining a master key of Key Generation Center (KGC)
with a secret value generated by a user. The combination of these two values elim-
inates the need of certificates and management overheads that traditional certi-
fied Public Key Encryption (PKE) scheme has and the key-escrow problem of a
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user’s private key that may be inherent in Identity BasedEncryption (IBE) scheme
[10,8,25,20]. To achieve these purposes, another concept of Certificate-Based En-
cryption (CBE) was independently suggested by Gentry [19].

The AP-model considered two types of adversaries [2]: Type I and Type II.
The Type I adversary represents a normal third party attacker and is allowed
to change public keys of users at will (because of the lack of authenticating
information for public keys). This adversary however does not have access to the
master key. The Type II adversary which models a malicious KGC is equipped
with the master key, but is not able to replace public keys.

In the AP-model, the Type I adversary is able to obtain the correct plaintext
of the ciphertext encrypted with a replaced public key by making a decryption
query. However, the CL-PKE scheme [14] and the generic constructions [26,27]
were proved to be secure in a relaxed security model where such an ability of
the Type I adversary is disabled. In the relaxed model, the Type I adversary is
forbidden to make decryption queries on an identity for which the public key
is replaced (or can make such queries, but decryption oracle uses the original
private key. See the details in [16]). We refer to this type of adversary as Type
I− adversary.

All the CL-PKE schemes [2,3,14,4,24] except the generic constructions
[1,26,27] and the scheme [23] in the literature were proved secure in the ran-
dom oracle model. The idealized random oracle methodology may enable the
design and security proof of cryptographic schemes more easy and efficient. But
a secure scheme in the random oracle model may not be secure in the real world
if an idealized random function is instantiated with a real function [11,21,5]. Re-
cently, Liu et al. [23] presented a CL-PKE scheme that is secure in the standard
model, based on the Waters’ IBE scheme [25]. Their scheme has long public
parameters and does not have a tight security reduction. Also, they adopted the
relaxed security model in which the Type I− adversary is justified. Therefore, it
still remains a natural open problem whether it is feasible to construct a secure
CL-PKE scheme without random oracles in the AP-model.

Our Contributions. It has been widely believed that one can obtain a CL-
PKE scheme secure against chosen ciphertext attacks without random oracles
by composing the standard PKE and IBE schemes. In this paper, we show that
this belief is not correct. In fact, our security analysis shows that all the known
generic constructions do not guarantee the chosen ciphertext security against
the Type I and II adversaries. This security analysis implies that it is important
how the master key of KGC and the secret value of the user are embedded into
the public and private keys.

Next, we present two new CL-PKE schemes that are secure without random
oracles. The security of the proposed schemes is proved in a weaker security
model. That is, the proposed schemes are selective-ID secure. In this model, the
Type I and II adversaries must commit ahead of time to the identity they intend
to attack. However, the Type I adversary can still replace a public key for any
identity including the selected one. Also, it can issue decryption queries for the
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replaced public key on the selected identity, and decryption oracle responds to
such queries with a correct plaintext. The latter is one of the important (but
strong) features in the AP-model.

Our first scheme is provably selective-ID chosen plaintext secure, based on the
Gentry’s IBE scheme [20]. It is extended to achieve chosen ciphertext security by
using the idea of signature-based method [13] (so called “CHK transformation”).
As stated in [6], we obtain chosen ciphertext security by having the sender hon-
estly generate a ciphertext using the chosen plaintext secure CL-PKE scheme. For
this, our second scheme needs to append a one-time signature to the ciphertext.
Our approach provides a way to achieve chosen ciphertext security from chosen
plaintext security in a generic manner of the CHK transformation without random
oracles. The proposed schemes have short public parameters and a tight security
reduction. The security against the Type I and II adversaries is based on q-Bilinear
Diffie-Hellman Inversion (q-BDHI) and 1-BDHI assumptions respectively.

Related Work. Since the first construction of CL-PKE in [2], many research
has been done to create an efficient CL-PKE scheme [3,14,24] using bilinear pair-
ings. Baek et al. [4] proposed a CL-PKE scheme without using a pairing. All of
their schemes except [23] were proven secure against chosen ciphertext attacks
in the random oracle model. Yum and Lee [26] provided a generic construction
of CL-PKE from general cryptographic primitives such as PKE and IBE, and
subsequently considered the relations between IBE, CBE, and CL-PKE [27]. In
[7], the authors extended the concept of key encapsulation mechanism to IBE
and CL-PKE, and built generic constructions of identity-based key encapsula-
tion mechanism and certificateless public key encapsulation mechanism provably
secure in the random oracle model. Recently, Libert and Quisquater [24] identi-
fied that some previous CL-PKE schemes and generic constructions are insecure
against chosen ciphertext attacks in light of the security goals in the AP-model,
and explained how to fix these problems by giving a so-called generic random
oracle-using conversion. According to their method, any chosen plaintext secure
CL-PKE scheme is converted into a chosen ciphertext secure CL-PKE scheme
to be provably secure in the random oracle model. More recently, Liu et al. [23]
proposed a CL-PKE scheme that is secure without random oracles, but as stated
above they proved its security against the Type I− adversary.

2 Preliminaries

2.1 Certificateless Public Key Encryption

The formal definition of CL-PKE was first presented in [2]. We follow their
definition. A CL-PKE scheme consists of seven algorithms as follows:

Setup(k): takes a security parameter k and returns a public parameters params
and a secret master key master-key.

Extract-Partial-Private-Key(master-key, ID): takes the master key
master-key and a given identity ID as inputs. It returns a partial private
key dID.
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Set-Secret-Value(ID, params): uses the public parameters params and a
user identity ID to generate a secret value xID.

Set-Private-Key(dID, params, xID): takes a partial private key dID, the pub-
lic parameters params, and a secret value xID as inputs. It returns a (full)
private key SKID.

Set-Public-Key(ID, xID, params): uses its own identity ID, a secret value
xID, and the public parameters params to generate a public key PKID cor-
responding to its own identity.

Encrypt(M , params, PKID): takes a message M , the public parameters
params, and a public key PKID for ID as inputs. It checks the validity of the
public key. If invalid, it returns ⊥. Otherwise, it returns a ciphertext CT.

Decrypt(CT, SKID, params): takes a ciphertext CT, a private key SKID, and
the public parameters params as inputs. It returns a message M .

When one wishes to encrypt a message using the intended recipient’s public
key without certificate, he verifies that the public key is valid by checking certain
conditions such as the check of equality [2] or element [3].

2.2 Selective-ID Security Model for CL-PKE

To prove the chosen ciphertext security of our proposed schemes without ran-
dom oracles, we propose a weaker security model, called selective-ID CL-PKE.
This is a modified version of the AP-model [2]. This notion is analogous to the
that of selective-ID secure IBE, defined in [12,13,8]. In the selective-ID model
for CL-PKE, the Type I and II adversaries first select an identity that they in-
tend to attack respectively before the setup phase. The adversaries cannot make
extraction or private key queries for the selected identity. However, our security
model still captures the property of CL-PKE additionally. More concretely, the
Type I adversary is allowed to make replacement queries of the public key for
the selected identity even before the challenge phase, and the Type I adversary
can issue decryption queries on the selected identity even though the public key
for the selected identity has been replaced. In this case, the adversary is given
the correct plaintext as in the AP-model.

We describe two selective-ID security games against the Type I and Type II
adversaries. The first game between the challenger and the Type I adversary
(denoted by AI) runs as follows:

Init: AI outputs an identity ID∗ where it wishes to be challenged.
Setup: The challenger runs Setup algorithm. It gives AI the resulting system

parameters params. It keeps the master-key to itself.
Phase 1: AI issues queries q1, ..., qm adaptively where query qi is one of:

– Extraction query on IDi �= ID∗. The challenger responds by running
Extract-Partial-Private-Key algorithm to generate the partial private
key dIDi

for IDi.
– Private key query on IDi �= ID∗ where the public key for IDi has not been

replaced. The challenger responds by running Set-Private-Key algorithm
to generate the private key SKIDi .
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– Public key query on IDi, including ID∗. The challenger responds by
running Set-Public-Key algorithm to generate the public key PKIDi

.
– Replacement query on the public key for IDi, including ID∗. AI can

replace the public key of IDi with a new value PK ′
IDi

of its choice.
– Decryption query CTi on ID∗ (where the public key for ID∗ may be

replaced). The challenger responds by running Decrypt algorithm to de-
crypt the ciphertext CTi using the private key SKID∗ . Even though the
public key for ID∗ may be replaced, the challenger is forced to respond
with a correct answer as in the AP-model.

Challenge: Once AI decides that Phase 1 is over, it outputs two equal length
plaintexts M0, M1 ∈ M on which it wishes to be challenged. The challenger
picks a random bit b ∈ {0, 1} and computes the challenge ciphertext CT =
Encrypt(Mb, params, PKID∗), where the PKID∗ may be replaced. It sends
CT as the challenge to AI .

Phase 2: AI issues more queries qm+1, ..., qn adaptively where qi is one of:
– Extraction query on IDi �= ID∗. The challenger responds as in Phase 1.
– Private key query on IDi �= ID∗, where the public key for IDi has not

been replaced. The challenger responds as in Phase 1.
– Public key query on IDi, including ID∗. The challenger responds as in

Phase 1.
– Replacement query on the public key for IDi, including ID∗. The chal-

lenger responds as in Phase 1.
– Decryption query CTi �= CT on ID∗. The challenger responds as in Phase

1.
Guess: Finally, AI outputs a guess b′ ∈ {0, 1}. AI wins if b′ = b.

The advantage of AI in breaking the CL-PKE scheme is defined as

Adv(AI) =
∣∣∣Pr[b = b′] − 1

2

∣∣∣.
Definition 1. A CL-PKE scheme is (t, qEX , qSK , qPK , qR, qD, ε)-selective-ID,
adaptive chosen ciphertext (IND-sID-CCA) secure against the Type I adversary if
for any t-time adversary AI that makes at most qEX chosen extraction queries,
at most qSK chosen private key queries, at most qPK chosen public key queries,
at most qR chosen replacement queries, and at most qD chosen decryption queries
we have that Adv(AI) < ε.

Next, we describe the second game with the Type II adversary (denoted by AII).
The second game is similar to the first one except two cases: in Setup, AII is
given master-key as well as params so that it does not need to make extraction
queries. It also cannot replace any public keys in Phase 1 and 2. The rest of the
security game is same as the one with AI .

Init: AII outputs an identity ID∗ where it wishes to be challenged.
Setup: The challenger runs Setup algorithm. It gives AII the resulting system

parameters params and the master-key.



Certificateless Public Key Encryption in the Selective-ID Security Model 65

Phase 1: AII issues queries q1, ..., qm adaptively where query qi is one of:
– Private key query on IDi �= ID∗. The challenger responds by running

Set-Private-Key algorithm to generate the private key SKIDi
.

– Public key query on IDi, including ID∗. The challenger responds by
running Set-Public-Key algorithm to generate the public key PKIDi .

– Decryption query CTi on ID∗. The challenger responds by running De-
crypt algorithm to decrypt the ciphertext CTi using the private key
SKID∗ .

Challenge: Once AII decides that Phase 1 is over, it outputs two equal length
plaintexts M0, M1 ∈ M on which it wishes to be challenged. The challenger
picks a random bit b ∈ {0, 1} and computes the challenge ciphertext CT =
Encrypt(Mb, params, PKID∗). It sends CT as the challenge to AII .

Phase 2: AII issues more queries qm+1, ..., qn adaptively where qi is one of:
– Private key query on IDi �= ID∗. The challenger responds as in Phase 1.
– Public key query on IDi, including ID∗. The challenger responds as in

Phase 1.
– Decryption query CTi �= CT on ID∗. The challenger responds as in Phase

1.
Guess: Finally, AII outputs a guess b′ ∈ {0, 1}. AII wins if b′ = b.

The advantage of AII in breaking the CL-PKE scheme is defined as

Adv(AII) =
∣∣∣Pr[b = b′] − 1

2

∣∣∣.
Definition 2. A CL-PKE scheme is (t, qSK , qPK , qD, ε)-selective-ID, adaptive
chosen ciphertext (IND-sID-CCA) secure against the Type II adversary if for any
t-time adversary AII that makes at most qSK chosen private key queries, at
most qPK chosen public key queries, and at most qD chosen decryption queries
we have that Adv(AII) < ε.

The above two games can be extended to define selective-ID, chosen plaintext
(IND-sID-CPA) secure CL-PKE scheme against the Type I and Type II adver-
saries as the same procedure, except that the adversaries are not permitted to
make any decryption queries.

2.3 Bilinear Pairing and Complexity Assumption

Following the notations in [10,8], we first review the admissible bilinear pairing,
denoted by e. Let G and G1 are two (multiplicative) cyclic groups of prime order
p. Suppose g be a generator of G. Then, e is a bilinear pairing e : G × G → G1:

1) Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab and
2) Non-degenerate: e(g, g) �= 1. Note that e(, ) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

The q-Bilinear Diffie-Hellman Inversion (BDHI) problem in G is defined as
follows: given a tuple (g, gα, . . . , gαq

) ∈ G
q+1 for a random α ∈ Z

∗
p as input,
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compute e(g, g)1/α ∈ G1. Informally, we can also say that the decision q-BDHI
problem in G refers to the problem where given a tuple (g, gα, . . . , gαq

, T ) ∈
Gq+1 × G1 for a random α ∈ Z∗

p, a polynomial-time attacker A is to decide
whether T = e(g, g)1/α or T = e(g, g)γ for random γ ∈ Z

∗
p. This assumption

was already used to prove the security of Boneh et al.’ IBE scheme [8] in the
selective-ID model. We say that the decision (t, q, ε)-BDHI assumption holds in
G if no t-time algorithm has advantage at least ε in solving the decision q-BDHI
problem in G.

3 Insecurity of Known Generic CL-PKE Constructions
Against Chosen Ciphertext Attacks

Up till now, there have been four generic constructions [1,26,27] for CL-PKE
scheme. We call these generic constructions Generic-CL-PKE-1,2,3, and 4. Ac-
cording to their approaches, a CL-PKE scheme can be obtained by composing
the standard PKE scheme with an IBE scheme in a sequential or parallel man-
ner. The authors [1,26,27] demonstrated that CL-PKE schemes derived from
their generic constructions are chosen ciphertext secure against the Type I (or
the Type I−1) and Type II adversaries in their security models. Since their con-
structions are generic, it seems that we can obtain a chosen ciphertext secure
CL-PKE scheme secure without random oracles if we use the Cramer-Shoup
PKE [15] and Waters-Kiltz IBE [22] or Gentry IBE schemes, which are proven
secure against chosen ciphertext attacks without random oracles. But we observe
that their generic constructions do not guarantee the chosen ciphertext security
even if PKE and IBE schemes are secure against chosen ciphertext attacks.

Let
∏

IBE=(IDGen,IDExt,IDEnc,IDDec) be an identity-based encryption scheme
and

∏
PKE=(PKGen,PKEnc,PKDec) be a public key encryption scheme (see the

concrete definitions of IBE and PKE in Appendix A). We briefly describe the
Generic-CL-PKE-1,2,3, and 4 in Table 1.

In their security models [1,26,27], all the Type II adversaries who model an
eavesdropping KGC are given the master key in Setup phase. Since the Type
II adversary with the master key can compute the partial private keys for it-
self, it does not have to make partial private key queries. It means that all the
partial private keys in the Generic-CL-PKEs must be given to the Type II ad-
versary in their security models. As the similar arguments to those in [17,24],
we can show that the Generic-CL-PKE-1, 2, and 4 are not chosen ciphertext se-
cure against, in particular, the Type II adversary. In the Generic-CL-PKE-1, for
example, the Type II adversary can obtain a decryption C′ = IDDec

dIDch
(CT) of

challenge ciphertext CT using the partial private key dIDch
and a re-encryption

CT′ = IDEnc
params,IDch

(C′) �= CT of the same plaintext Mb. The ciphertext CT′ can
be submitted to the decryption oracle properly. We easily see that this strategy
is similarly applied to the Generic-CL-PKE-2 and 4. This analysis means that

1 In [26], the Type I− adversary is not allowed to ever extract the partial private key
of the challenge identity IDch.
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CL-PKE schemes from the Generic-CL-PKE-1, 2, and 4 are not chosen cipher-
text secure, regardless of the Type I or Type I− adversary. The Generic-CL-PKE-3
resists the above attack, but a suitable attack by the Type I or Type I− adver-
sary was already suggested by Libert et al. [24]. Consequently, all the known
generic constructions for CL-PKE scheme do not guarantee the chosen cipher-
text security against both the Type I (or the Type I−) and Type II adversaries,
simultaneously.

Table 1. Generic-CL-PKE -1, 2, 3, and 4

Generic-CL-PKE-1 [26] Generic-CL-PKE-2 [27]

Setup: Setup:
(params, master-key) ← IDGen (params, master-key) ← IDGen

Extract(master-key, ID): Extract(master-key, ID):

dID ← IDExt(master-key, ID) dID ← IDExt(master-key, ID)
KeyGen(ID, params, dID): KeyGen(ID, params, dID):

(pk, sk) ← PKGen (params′,master-key′) ← IDGen

PKID ← (ID, pk) d′
ID ← IDExt(master-key′, ID)

SKID ← (dID, sk) PKID ← (ID, params′)
SKID ← (dID, d′

ID)
Encrypt(M,params, PKID): Encrypt(M, params, PKID):

CT ← IDEnc
params,ID(PKEnc

pk (M)) CT ← IDEnc
params,ID(IDEnc

params′,ID(M))
Decrypt(CT, SKID): Decrypt(CT, SKID):

M ← PKDec
sk (IDDec

dID
(CT)) M ← IDDec

d′
ID

(IDDec
dID

(CT))

Generic-CL-PKE-3 [1] Generic-CL-PKE-4 [1]

Setup: Setup:

(params, master-key) ← IDGen (params, master-key) ← IDGen

Extract(master-key, ID): Extract(master-key, ID):

dID ← IDExt(master-key, ID) dID ← IDExt(master-key, ID)
KeyGen(ID, params, dID): KeyGen(ID, params, dID):

(pk, sk) ← PKGen (pk, sk) ← PKGen

PKID ← (ID, pk) PKID ← (ID, pk)
SKID ← (dID, sk) SKID ← (dID, sk)

Encrypt(M,params, PKID): Encrypt(M, params, PKID):

CT ← PKEnc
pk (IDEnc

params,ID(M)) set MB = MA ⊕ M for random MA

CT ← (IDEnc
params,ID(MA), PKEnc

pk (MB))
Decrypt(CT, SKID): Decrypt(CT, SKID):

M ← IDDec
dID

(PKDec
sk (CT)) let CT = (C0, C1)

M ← IDDec
dID

(C0) ⊕ PKDec
sk (C1)

However, as long as the Type I (or the Type I−) and Type II adversaries are
not allowed to make any decryption queries, we notice that the above Generic-
CL-PKEs are secure against chosen plaintext attacks. This was already proved
in [24] except the Generic-CL-PKE-2.2 In [24], the authors presented a generic
2 In the case of the Generic-CL-PKE-2 [27], the chosen plaintext security may be ob-

tained although the authors did not state it explicitly.
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way, called random oracle-using conversion, to construct a chosen ciphertext
secure CL-PKE scheme from any chosen plaintext secure CL-PKE scheme. The
resulting CL-PKE scheme is proven secure against chosen ciphertext attacks in
the random oracle model.

4 Chosen Plaintext Secure CL-PKE

In this section we present a CL-PKE scheme that is IND-sID-CPA secure with-
out random oracles under the q-BDHI and 1-BDHI assumptions. Though our
construction is similar to the Gentry’s IBE scheme [20], encryption algorithm
requires two more pairing computations than Gentry’s scheme in order to check
the validity of a public key.

4.1 Construction

Let G be a bilinear group of prime order p.

Setup(k): To generate CL-PKE parameters, the KGC selects a random gener-
ator g ∈ G and random elements h, u ∈ G. It randomly selects α ∈ Z∗

p and
defines g1 = gα ∈ G. The public parameters params (with the description of
e, G, G1, and p) and the secret master-key are given by

params = (g, g1, h, u), master-key = α.

Extract-Partial-Private-Key(master-key, ID): To generate a partial pri-
vate key for a user ID ∈ Zp, the KGC selects a random rID ∈ Zp, and
outputs the partial private key dID

dID = (rID, hID), where hID = (hg−rID)1/(α−ID).

If ID = α, the KGC aborts. As in [20], the KGC always uses the same
random value rID for user ID.

Set-Secret-Value(ID, params): This algorithm picks a random xID ∈ Z∗
p,

and outputs xID as a secret value.
Set-Private-Key(dID, params, xID): This algorithm outputs the (full) pri-

vate key SKID = (xID, rID, hID) for user ID.
Set-Public-Key(ID, xID, params): This algorithm outputs the public key

PKID = (X, Y ) for user ID, where

X = (g1g
−ID)xID , Y = uxID.

Encrypt(M , params, PKID): To encrypt a message M ∈ G1 under a public
key PKID:
1. First check that the equality e(X, u) = e(g1g

−ID, Y ) holds. If not, output
⊥ and abort encryption.

2. Otherwise, pick randomly s ∈ Z∗
p and compute the ciphertext

CT = (Xs, e(g, g)s, e(g, h)−s · M).
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Notice that two pairing values e(g, g) and e(g, h) can be precomputed so
that the encryption algorithm needs two pairing computations to check the
validity of PKID.

Decrypt(CT, SKID, params): To decrypt a ciphertext CT = (C1, C2, C3) us-
ing the private key SKID = (xID, rID, hID), output

M = e(C1/xID
1 , hID) · CrID

2 · C3.

We can easily check that the decryption algorithm is correct as follows:

e(C
1

xID
1 , hID) · CrID

2 = e(gs·xID·(α−ID)· 1
xID , (hg−rID)

1
α−ID ) · e(g, g)s·rID = e(g, h)s.

Note that the above scheme needs only one pairing computation in the decryp-
tion algorithm. Moreover, if the recipient’s public key is not replaced, no pairing
computation is required in a subsequent encryption algorithm.

4.2 Security

We prove security of the above scheme under the decision BDHI assumption
described in Section 2.3. Full proofs are found in Appendix B.

Theorem 1. Let q = qEX + qSK + 1. Suppose that the decision (t, q, ε′)-BDHI
assumption holds in G. Then the previous CL-PKE scheme is (t, qEX , qSK , qPK ,
qR, 0, ε)-selective-ID, adaptive chosen plaintext secure against the Type I adver-
sary, where ε′ ≥ ε.

Theorem 2. Suppose that the decision (t, 1, ε′)-BDHI assumption holds in G.
Then the previous CL-PKE scheme is (t, qSK , qPK , 0, ε)-selective-ID, adaptive
chosen plaintext secure against the Type II adversary, where ε′ ≥ ε.

5 Chosen Ciphertext Secure CL-PKE

We present a IND-sID-CCA secure CL-PKE scheme without random oracles by
applying the idea of the CHK transformation [13] to the IND-sID-CPA secure CL-
PKE scheme described in Section 4.1. In this construction, we need a one-time
signature scheme Sig = (SigKeyGen,Sign,Verify) which is strongly existentially
unforgeable. Briefly speaking, a signature scheme is (t, qS , ε)-strongly existen-
tially unforgeable if no t-time forger who makes at most qS signature queries is
able to generate a new signature on even a previously signed message with prob-
ability at least ε (see the complete definition in [9]). Instead of signature-based
method, we note that Message Authentication Code (MAC)-based method [6]
can be applied. We will also need a collision resistant hash function that maps
verification keys to Zp. For simplicity’s sake, we assume that the verification
keys are elements of Zp.
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5.1 Construction

Let G be a bilinear group of prime order p.

Setup(k): The KGC picks a random generator g ∈ G and random elements
h, u, g2, g3, g4 ∈ G. It randomly selects α ∈ Z∗

p and defines g1 = gα. The
public parameters params (with the description of e, G, G1, and p) and the
secret master-key are given by

params = (g, g1, g2, g3, g4, h, u), master-key = α.

Extract-Partial-Private-Key(master-key, ID): To generate a partial pri-
vate key for a user ID ∈ Zp, the KGC selects random rID ∈ Zp and outputs
the partial private key dID

dID = (rID, hID), where hID = (hg−rID)1/(α−ID).

If ID = α, the KGC aborts. As before, the KGC always uses the same
random value rID for user ID.

Set-Secret-Value(ID, params): This algorithm picks a random xID ∈ Z∗
p,

and outputs xID as a secret value.
Set-Private-Key(dID, params, xID): This algorithm outputs the (full) pri-

vate key SKID = (xID, rID, hID) for user ID.
Set-Public-Key(ID, xID, params): This algorithm outputs the public key

PKID = (X, Y ) for user ID, where

X = (g1g
−ID)xID , Y = uxID.

Encrypt(M , params, PKID): To encrypt a message M ∈ G1 under a public
key PKID:
1. First check that the equality e(X, u) = e(g1g

−ID, Y ) holds. If not, output
⊥ and abort encryption.

2. Otherwise, run the SigKeyGen to obtain a signing key SigK and a veri-
fication key VerK.

3. Pick s ∈ Z∗
p at random and compute C = (C1, C2, C3, C4, C5), where

C1 = Xs, C2 = e(g, g)s, C3 = e(g, h)−s · M,

C4 = (g2g
−VerK
3 )s, C5 = gs

4.

4. Output the ciphertext CT = (C, SignSigK(C), VerK).

As before, e(g, g) and e(g, h) can be also precomputed so that encryption
algorithm requires two pairing computations in checking the validity of the
public key.

Decrypt(CT, SKID, params): To decrypt a ciphertext CT = (C, σ, VerK)
with SKID = (xID, rID, hID),
1. Run V erify to check the validity of the signature σ on C, using the

verification key VerK. If invalid, output ⊥.
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2. Otherwise, let C = (C1, C2, C3, C4, C5). Check two equalities e(C1, g4)
= e(C5, (g1g

−ID)xID) and e(C4, g4) = e(C5, g2g
−VerK
3 ) hold.

3. If either check fails, output ⊥. Otherwise, output

M = e(C1/xID
1 , hID) · CrID

2 · C3.

The correctness of decryption algorithm can be shown as in the IND-sID-CPA
secure scheme,

e(C
1

xID
1 , hID) · CrID

2 = e(gs·xID·(α−ID)· 1
xID , (hg−rID)

1
α−ID ) · e(g, g)s·rID = e(g, h)s

as required. The two bilinear checks during decryption are needed to ensure
that C is a valid form in the security proofs. Using the same technique as in [18],
we can save two pairing computations. In that case, the decryption algorithm
selects two random values r1, r2 ∈ Zp and checks that equality e(Cr1

1 ·Cr2
4 , g4) =

e(C5, (g1g
−ID)xID·r1 · (g2g

−VerK
3 )r2) holds.

5.2 Security

Theorem 3. Let q = qEX + qSK + 1. Suppose that the decision (t, q, ε1)-BDHI
assumption holds in G and the signature scheme is (t, 1, ε2)-strongly existentially
unforgeable. Then the previous CL-PKE scheme is (t, qEX , qSK , qPK , qR, qD, ε)-
selective-ID, adaptive chosen ciphertext secure against the Type I adversary,
where ε1 ≥ ε − ε2.

Proof. Suppose there exists an adversary AI which has advantage ε in breaking
the IND-sID-CCA security of the CL-PKE scheme in Section 5. We want to build
an algorithm B that uses AI to solve the decision q-BDHI problem in G. On
input (g, gα, . . . , gαq

, T ) ∈ Gq+1 × G1 for some unknown α ∈ Z∗
p, B outputs 1 if

T = e(g, g)1/α and 0 otherwise. B works by interacting with AI in a selective-ID
game as follows:

Init: AI first outputs an identity ID∗ ∈ Zp that it intends to attack.
Setup: To generate system parameters params, B does the following:

1. Select random r1, r2, r3, r4, r5 ∈ Z∗
p.

2. Run the SigKeyGen algorithm to obtain a signing key SigK∗ and a ver-
ification key VerK∗ (we assumed that VerK∗ ∈ Zp).

3. Generate a random polynomial f(x) ∈ Zp[x] of degree q. Expand the
terms of f(r1x+ID∗) to get f(r1x+ID∗) =

∑q
i=0 cix

i, where the constant
term c0 is non-zero. If c0 = 0, try again with a new random polynomial
f(x).

4. Let α′ = r1 · α + ID∗ for some (unknown) α ∈ Z∗
p. Then, B computes

h = gf(α′) with the values g, gα, . . . , gαq

.
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5. Set g1 = (gα)r1gID∗
= gr1·α+ID∗

= gα′
, g2 = (gα)r2gr3·VerK∗

, g3 = gr3 ,
g4 = (gα)r4 , and u = gr5 .

6. Publish params = (g, g1, g2, g3, g4, h, u). Note that master-key = α′.
Since α, {ri}, and f(x) are chosen uniformly at random, the values {gi}, h,
and u are uniformly random and this params has a distribution identical to
that in the actual construction.

Phase 1: AI issues extraction, private key, public key, replacement, and de-
cryption queries.
1. For a extraction query, B can respond to a query on ID �= ID∗ as follows.

If ID = α′, B can easily solve decision q-BDHI problem (from obtaining
the value α). Otherwise, let fID(x) be the (q − 1)-degree polynomial
(f(x) − f(ID))/(x − ID). B computes rID = f(ID) and hID = gfID(α′)

with the values g, gα, . . . , gαq−1
. B replies with a partial private key dID =

(rID, hID). The validity of this partial private key is checked as gfID(α′) =
g(f(α′)−f(ID))/(α′−ID) = (hg−f(ID))1/(α′−ID).

2. When AI makes a private key query for ID �= ID∗, B picks a random
xID ∈ Z∗

p and returns (xID, rID, hID) as the private key SKID. If neces-
sary, B firstly computes a partial private key dID for ID.

3. For a public key query of ID (including ID∗), B replies with X =
(g1g

−ID)xID and Y = uxID as PKID = (X, Y ), with xID ∈ Z∗
p corre-

sponding to the private key SKID. This public key satisfies the equal-
ity e(X, u) = e(g1g

−ID, Y ). Since xID is uniformly distributed among
all elements in Zp, these public keys appear to AI to be correctly
distributed.

4. AI can require B to replace the public key for ID (including ID∗) with
its own choice. The validity of the replaced public key PKID = (X ′, Y ′)
could be checked as e(X ′, u) = e(g1g

−ID, Y ′).
5. Finally, it remains to show that B can correctly respond to a decryption

query for ID∗, where the public key PKID∗ may be replaced by AI . In
our security model, B must correctly respond to decryption queries even
though the PKID∗ has been replaced. Let CT = (C, σ, VerK) be a decryp-
tion query where C = (C1, C2, C3, C4, C5). Without loss of generality,
we assume that the PKID∗ = (X, Y ) is valid. That is, it satisfies that
e(X, u) = e(g1g

−ID∗
, Y ). Thus, for some xID∗ ∈ Z∗

p such that Y = uxID∗ ,
B has that X = (g1g

−ID∗
)xID∗ .

B first runs V erify to check the validity of the signature σ on C,
using the verification key VerK. If the signature is invalid, B responds
with ⊥. Otherwise, B checks that two equalities e(C1, g4) = e(C5, X)
and e(C4, g4) = e(C5, g2g

−VerK
3 ) hold (The first equality is the same as

that of the decryption algorithm, because X = (g1g
−ID∗

)xID∗ for some
xID∗ ∈ Z∗

p. If the PKID∗ has been replaced, the value xID∗ is not known
to B). If either check fails, output ⊥.

Otherwise, if VerK∗ = VerK, B outputs a random bit b ∈ {0, 1}
and aborts the simulation (actually, the forgery of one-time signature
occurs).
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Otherwise, since two equalities e(C1, g4) = e(C5, X) and e(C4, g4) =
e(C5, g2g

−VerK
3 ) hold, it implies that C1 = Xs and C4 = (g2g

−VerK
3 )s

for some (unknown) s ∈ Zp such that C5 = gs
4. More precisely, B

has

C1 = (g1g
−ID∗

)xID∗ ·s =
(
gr1·α+ID∗

g−ID∗)xID∗ ·s = gr1·α·xID∗ ·s,

C4 = (g2g
−VerK
3 )s =

(
gr2·α+r3·VerK∗

g−r3·VerK)s = gr2·α·sgr3·(VerK∗−VerK)s,

C5 = gs
4 = gr4·α·s.

B computes C′
5 = C

r2/r4
5 and then C′

4 = C4/C′
5 = gr3·(VerK∗−VerK)s. Next,

B checks that the following equality

C2
?= e(C′

4, g)1/r3·(VerK∗−VerK)

holds. If this equality does not hold, B knows that the C2 is not of the
right form. Then, B selects a random message M ∈ G1 and responds to
the decryption query with M .
If the equality holds, B knows that C2 = e(g, g)s for some (unknown)
s ∈ Z∗

p. B computes C′′
5 = C

1/r4
5 = gα·s and

Z = e(
q∏

i=1

gci·αi−1
, C′′

5 ) · Cc0
2

where {ci} are derived from f(r1x + ID∗) =
∑q

i=0 cix
i. Since C2 =

e(g, g)s, B has that

Z = e(
q∏

i=1

gci·αi−1
, gα·s) · e(g, g)s·c0 = e(g, gf(α′))s = e(g, h)s.

Then, B replies to the decryption query with Z · C3.
Challenge: As before, AI outputs two messages M0, M1 ∈ G1 for ID∗. For the

public key PKID∗ = (X, Y ) (which may be replaced by AI), B has that
e(X, u) = e(g1g

−ID∗
, Y ). Then, B has

X = (g1g
−ID∗

)xID∗ = (gr1·α+ID∗
g−ID∗

)xID∗ = gr1·α·xID∗ ,

Y = uxID∗ = gr5·xID∗

for some xID∗ ∈ Z∗
p. Before the challenge ciphertext is constructed, B com-

putes

T ′ = e(g,

q−1∏
i=0

gci+1·αi

) · T c0

(recall that the constant term c0 is non-zero). Observe that if T = e(g, g)1/α,
then we have

T ′ = e(g, g)f(α′)/α = e(g, h)1/α.
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Next, B picks a random bit b ∈ {0, 1} and a random l ∈ Z∗
p. After computing

C = (Y l·r1/r5 , T l, T ′−l ·Mb, gr2·l, gr4·l), B constructs the challenge cipher-
text CT = (C, SignSigK∗(C), VerK∗). Define s = l/α ∈ Z∗

p. If T = e(g, g)1/α,
then B has

Y l·r1/r5 = (gr5·xID∗ )l·r1/r5 = g(r1·α·xID∗ )(l/α) = Xs,

T l = e(g, g)l/α = e(g, g)s,

T ′−l = e(g, h)−l/α = e(g, h)−s,

gr2·l = g(r2·α+r3·VerK∗−r3·VerK∗)(l/α) = (g2g
−VerK∗

3 )s,

gr4·l = g(r4·α)(l/α) = gs
4.

Therefore, CT is a valid ciphertext of Mb under the public key PKID∗ =
(X, Y ), with the uniformly distributed random value s = l/α. On the other
hand, if T is random in G1, then T l and (T ′)−l are just random elements
of G1, independent of the bit b in the adversary’s view. B returns to AI the
challenge ciphertext CT.

Phase 2: AI issues more extraction, private key, public key, replacement, and
decryption queries. B responds as in Phase 1.

Guess: AI outputs a guess b′ ∈ {0, 1}. If b = b′ then B outputs 1, indicating
T = e(g, g)1/α. Otherwise, it outputs 0, indicating T �= e(g, g)1/α.

In the actual construction, the values {rID} are chosen independently from iden-
tities. Let I be a set consisting of α, ID∗, and the identities queried by AI in
extraction and private key queries; note that |I| ≤ q + 1. Since f(x) is a uni-
formly random polynomial of degree q, the values {f(α) : a ∈ I} are uniformly
random and independent. Thus, the values {rID} issued by B are appropriately
distributed in the AI ’s view. We notice that this analysis follows the proof in
[20].

If T is random in G1, then Pr[B(g, gα, . . . , gαq

, T ) = 0] = 1/2. Let Forge
denote the event that AI submits a valid ciphertext CT = (C, σ, VerK∗) as a
decryption query. In the case of Forge, B cannot reply to the query and hence
aborts the simulation. If Forge did not occur and T = e(g, g)1/α, B replied with
a valid plaintext to AI . Then, B has

∣∣∣Pr[B(g, gα, . . . , gαq

, T ) = 0] − 1
2

∣∣∣ ≥
∣∣∣Pr[b = b′ ∧ Forge] − 1

2

∣∣∣ − Pr[Forge].

Since B provided AI with perfect simulation when event Forge did not occur, B
has |Pr[b = b′ ∧ Forge] − 1/2| ≥ ε. Also, note that Pr[Forge] is negligible. This
means that Pr[Forge] < ε2 since otherwise, B can construct a forger, which is a
contradiction to one-time signature. Therefore,
∣∣∣Pr

[
B(g, gα, . . . , gαq

, e(g, g)1/α) = 0
]
− Pr

[
B(g, gα, . . . , gαq

, T ) = 0
]∣∣∣ ≥ ε − ε2.

This completes the proof of Theorem 3. �
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Theorem 4. Suppose that the decision (t, 1, ε1)-BDHI assumption holds in G

and the signature scheme is (t, 1, ε2)-strongly existentially unforgeable. Then the
previous CL-PKE scheme is (t, qSK , qPK , qD, ε)-selective-ID, adaptive chosen ci-
phertext secure against the Type II adversary, where ε1 ≥ ε − ε2.

Security proof is provided in Appendix C.

6 Conclusion

We observed that all the known generic constructions of CL-PKE scheme do not
guarantee the chosen ciphertext security against the Type I and II adversaries.
Next, we presented a CL-PKE scheme that is selective-ID chosen plaintext secure
without random oracles. This scheme was extended to obtain chosen ciphertext
security using the idea of the CHK transformation. To prove the security of our
proposed CL-PKE schemes, we defined a selective-ID security model which is a
relaxed version of the AP-model.

Acknowledgement. The authors are very grateful to anonymous reviewers for
helpful comments on earlier versions.
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A Definitions of PKE and IBE

Public Key Encryption: A PKE scheme consists of the following three algo-
rithms.

PKGen(k): takes a security parameter k and returns a public key PK and a
private key SK.

PKEnc(PK, M): takes a public key PK and a message M as inputs. It returns
a ciphertext CT.

PKDec(CT, SK): takes a ciphertext CT and the private key SK as inputs. It
returns a message M or the symbol ⊥.

Identity-Based Encryption: An IBE scheme consists of the following four
algorithms.

IDGen(k): takes a security parameter k and returns a public parameters params
and a master key master-key.

IDExt(master-key, ID): takes a master key master-key and an identity ID. It
returns a corresponding decryption key dID.

IDEnc(ID,params, M): takes an identity ID, a public parameters params, and
a message M as inputs. It returns a ciphertext CT.

IDDec(CT, dID): takes a ciphertext CT and the private key dID as inputs. It
returns a message M or the symbol ⊥.

B Proofs of Chosen Plaintext Security

B.1 Proof of Theorem 1

Proof. Suppose there exists an adversary AI which has advantage ε in attacking
the IND-sID-CPA security of the CL-PKE scheme in Section 4. We want to build
an algorithm B that uses AI to solve the decision q-BDHI problem in G. On
input (g, gα, . . . , gαq

, T ) ∈ Gq+1 × G1 for some unknown α ∈ Z∗
p, B outputs 1 if

T = e(g, g)1/α and 0 otherwise. B works by interacting with AI in a selective-ID
game as follows:

Init: AI first outputs an identity ID∗ ∈ Zp that it intends to attack.
Setup: To generate system parameters params, B does the following:

1. Pick random r1, r2 ∈ Z
∗
p.

2. Generate a random polynomial f(x) ∈ Zp[x] of degree q. Expand the
terms of f(r1x+ID∗) to get f(r1x+ID∗) =

∑q
i=0 cix

i, where the constant
term c0 is non-zero. If c0 = 0, try again with a new random polynomial
f(x).

3. Let α′ = r1 · α + ID∗ for some (unknown) α ∈ Z∗
p. B can compute

h = gf(α′) with the values g, gα, . . . , gαq

.
4. Compute g1 = (gα)r1gID∗

= gr1·α+ID∗
= gα′

and u = gr2 .
5. Publish params = (g, g1, h, u). Note that master-key = α′.
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Since α, r1, r2, and f(x) are chosen uniformly at random, the values g1, h, u,
and α′ are uniformly random so that this public key has a distribution iden-
tical to that in the actual construction.

Phase 1: AI issues extraction, private key, public key, and replacement queries.
1. For a extraction query, B can respond to a query on ID �= ID∗ as fol-

lows. If ID = α′, B can easily solve decision q-BDHI problem (from
obtaining α). Otherwise, let fID(x) be the (q − 1)-degree polynomial
(f(x) − f(ID))/(x − ID). B computes rID = f(ID), and hID = gfID(α′)

with the values g, gα, . . . , gαq−1
. B replies with a partial private key

dID = (rID, hID). As in the IND-sID-CCA security proofs, we see that
the partial private key dID for ID is valid.

2. When AI makes a private key query for ID �= ID∗, B picks a random
xID ∈ Z∗

p and returns (xID, rID, hID) as the private key SKID. If neces-
sary, B can firstly compute a partial private key dID for ID.

3. For a public key query of ID (including ID∗), B replies with X =
(g1g

−ID)xID and Y = uxID as PKID = (X, Y ), with xID ∈ Z∗
p corre-

sponding to the private key SKID. This public key satisfies the equality
e(X, u) = e(g1g

−ID, Y ). Since xID is uniformly distributed among all el-
ements in Zp, these public keys appear to AI to be correctly distributed.

4. Finally, AI can require B to replace the public key for ID (including ID∗)
with its own choice. The validity of the replaced public key PKID =
(X ′, Y ′) could be checked as e(X ′, u) = e(g1g

−ID, Y ′).
Challenge: AI outputs two messages M0, M1 ∈ G1 for ID∗. For the public key

PKID∗ = (X, Y ) (which may be replaced by AI), without loss of generality,
we assume that the PKID∗ is valid, that is, e(X, u) = e(g1g

−ID∗
, Y ). If

Y = uxID∗ for some xID∗ ∈ Z∗
p (If the PKID∗ has been replaced, xID∗ is not

known to B), B has

X = (g1g
−ID∗

)xID∗ = (gr1·α+ID∗
g−ID∗

)xID∗ = gr1·α·xID∗ ,

Y = uxID∗ = gr2·xID∗ .

Before the challenge ciphertext is constructed, B computes T ′ ∈ G1 as

T ′ = e(g,

q−1∏
i=0

gci+1·αi

) · T c0

where {ci} are derived from f(r1x + ID∗) =
∑q

i=0 cix
i (Recall that the

constant term c0 is non-zero). Observe that if T = e(g, g)1/α, then B has

T ′ = e(g, g)f(α′)/α = e(g, h)1/α.

Now, B picks a random bit b ∈ {0, 1} and a random l ∈ Z∗
p. It responds

with the ciphertext CT = (Y r1·l/r2 , T l, T ′−l · Mb). Define s = l/α ∈ Z
∗
p. If

T = e(g, g)1/α then B has

Y r1·l/r2 = (gr2·xID∗ )(r1·l·α/r2·α) = g(r1·α·xID∗)(l/α) = Xs,

T l = e(g, g)l/α = e(g, g)s,

T ′−l = e(g, h)−l/α = e(g, h)−s.
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Hence, CT is a valid ciphertext of Mb under the public key PKID∗ = (X, Y ),
with the uniformly distributed random value s = l/α. On the other hand,
if T is random in G1, then T l and (T ′)−l are just random elements of G1,
independent of the bit b in the adversary’s view.

Phase 2: AI issues more extraction, private key, public key, and replacement
queries. B responds as in Phase 1.

Guess : AI outputs a guess b′ ∈ {0, 1}. If b = b′ then B outputs 1, indicating
T = e(g, g)1/α. Otherwise, it outputs 0, indicating T �= e(g, g)1/α.

As in the IND-sID-CCA security proof, the values {rID} issued by B are ap-
propriately distributed in the AI ’s view. Next, we consider two cases. When
T = e(g, g)1/α, B replies with a valid ciphertext using T l = e(g, g)s and T ′−l =
e(g, h)s. So it must satisfy |Pr[b = b′] − 1/2| ≥ ε. On the other hand, when T is
random in G1, T l and T ′−l are also random in G1 in which case Pr[b = b′] = 1/2.
Then, B has

∣∣∣Pr
[
B(g, gα, . . . , gαq

, e(g, g)1/α) = 0
]
− Pr

[
B(g, gα, . . . , gαq

, T ) = 0
]∣∣∣ ≥ ε.

This concludes the proof of Theorem 1. �

B.2 Proof of Theorem 2

Proof. Suppose there exists an adversary AII which has advantage ε in attacking
the IND-sID-CPA security of the CL-PKE scheme in Section 4. We want to build
an algorithm B that uses AII to solve the decision 1-BDHI problem in G. On
input (g, gα, T ) ∈ G

2 × G1 for some unknown α ∈ Z
∗
p, B outputs 1 if T =

e(g, g)1/α and 0 otherwise. B works by interacting with AII in a selective-ID
game as follows:

Init: AII first outputs an identity ID∗ ∈ Zp that it intends to attack.
Setup: To generate system parameters params = (g, g1, h, u) and master-key,

B does the following:
1. Pick a random β ∈ Z∗

p that plays a role of the master key.
2. Select random r0, r1, r2 ∈ Z∗

p, and set g1 = gβ , h = (gα)r0gr1 , and u =
gr2 .

3. B gives AII the params = (g, g1, h, u) and master-key = β.
Since {ri}, and β are uniformly distributed among all elements in Zp, the
values g1, h, u, and β are uniformly random and identical to the actual
construction.

Phase 1: AII issues private key, public key, and decryption queries.
1. When AII makes a private key query for ID �= ID∗, B picks random xID

and rID(�= r0 · α + r1) ∈ Zp. If rID = r0 · α + r1, B obtains α to solve
the decision 1-BDHI immediately. B replies with SKID = (xID, rID, hID),
where hID = (hg−rID)1/(β−ID).
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2. For the public key query of ID �= ID∗, B computes X = g(β−ID)xID

and Y = uxID , and replies with PKID = (X, Y ), using the value xID

corresponding to the private key of ID. If ID = ID∗, B selects a random
t ∈ Z∗

p and computes X∗ = (gα)t(β−ID∗), Y ∗ = (gα)t·r2 . If we let xID∗ =
t ·α, we have that X∗ = (g1g

−ID∗
)xID∗ and Y ∗ = uxID∗ . B returns to the

query on ID∗ as PKID∗ = (X∗, Y ∗).

It follows that B can generate all public keys for ID including ID∗, and
private keys for ID except ID∗. In this procedure, xID and xID∗ are uniformly
distributed among all elements in Zp and rID is uniform in Zp \ {r0 ·α+ r1}.
These values are currently independent of AII ’s view.

Challenge: AII outputs two messages M0, M1 ∈ G1. B selects a random bit
b ∈ {0, 1} and a random l ∈ Z

∗
p. B responds with the ciphertext CT =

(gt·l·(β−ID∗), T l, e(g, g)−r0·l · T−r1·l · Mb). Define s = l/α ∈ Z∗
p. If T =

e(g, g)1/α then B has

gt·l·(β−ID∗) = gt·α·(β−ID∗)·(l/α) = (X∗)s,

T l = e(g, g)l/α = e(g, g)s,

e(g, g)−r0·l · T−r1·l = e(g, g)−r0·α·(l/α) · e(g, g)−r1·l/α = e(g, h)−s.

Therefore, CT is a valid encryption of Mb under the public key PKID∗ =
(X∗, Y ∗). On the other hand, if T is random in G1, then T l and e(g, g)−r0·l ·
T−r1·l are just random elements of G1, independent of the bit b in the AII ’s
view.

Phase 2: AII issues more private/public key queries. B responds as in Phase 1.
Guess : AII outputs a guess b′ ∈ {0, 1}. If b = b′ then B outputs 1, indicating

T = e(g, g)1/α. Otherwise, it outputs 0, indicating T �= e(g, g)1/α.

When T = e(g, g)1/α, B replies with a valid ciphertext using T . So it must satisfy
|Pr[b = b′] − 1/2| ≥ ε. On the other hand, when T is uniform and independent
in G1, Pr[b = b′] = 1/2. Therefore,

∣∣∣Pr
[
B(g, gα, e(g, g)1/α) = 0

]
− Pr

[
B(g, gα, T ) = 0

]∣∣∣ ≥ ε.

This concludes the proof of Theorem 2. �

C Proofs of Chosen Ciphertext Security

C.1 Proof of Theorem 4

Proof. Suppose there exists an adversary AII which has advantage ε in break-
ing the IND-sID-CCA security of the CL-PKE scheme in Section 5. We want
to build an algorithm B that uses AII to solve the decision 1-BDHI problem
in G. On input (g, gα, T ) ∈ G2 × G1 for some unknown α ∈ Z∗

p, B outputs 1
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if T = e(g, g)1/α and 0 otherwise. B works by interacting with AII in a selective-
ID game as follows:

Init: AII first outputs an identity ID∗ ∈ Zp that it intends to attack.
Setup: To generate system parameters params = (g, g1, g2, g3, g4, h, u) and

master-key, B does the following:
1. Pick a random β ∈ Z∗

p that plays a role of the master key.
2. Run the SigKeyGen algorithm to obtain a signing key SigK∗ and a ver-

ification key VerK∗ (we assumed that VerK∗ ∈ Zp).
3. Select random {ri} ∈ Z∗

p for i = 0, 1, . . . , 5. and set h = (gα)r0gr1 ,
g1 = gβ, g2 = (gα)r2g−r3·VerK∗

, g3 = gr3 , g4 = (gα)r4 , and u = gr5 .
4. B gives params = (g, g1, g2, g3, g4, h, u) and master-key = β to AII .

Since {ri} and β are uniformly distributed among all elements in Zp, the
values {gi}, h, u, and β are uniformly random and identical to the actual
construction.

Phase 1: AII issues private key, public key, and decryption queries.
1. When AII makes a private key query for ID �= ID∗, B picks random

xID ∈ Z∗
p and rID(�= r0 ·α + r1) ∈ Zp. If rID = r0 ·α + r1, then B obtains

α to solve the decision 1-BDHI immediately. Otherwise, B replies with
SKID = (xID, rID, hID), where hID = (hg−rID)1/(β−ID).

2. For the public key query of ID �= ID∗, B computes X = g(β−ID)xID

and Y = uxID , and replies with PKID = (X, Y ), using the value xID

corresponding to the private key of ID. If ID = ID∗, B selects a random
t ∈ Z∗

p and computes X∗ = (gα)t(β−ID∗), Y ∗ = (gα)t·r5 . If we let xID∗ =
t · α for some unknown α ∈ Z

∗
p, we have that X∗ = (g1g

−ID∗
)xID∗ and

Y ∗ = uxID∗ . B returns to the query on ID∗ as PKID∗ = (X∗, Y ∗).
3. AII issues decryption queries. Let CT = (C, σ, V erK) be a decryption

query and C = (C1, C2, C3, C4, C5). B first runs V erify to check the
validity of the signature σ on C, using the verification key VerK. If the
signature is invalid, B responds with ⊥. Next, B checks that two equali-
ties e(C1, g4) = e(C5, X

∗) and e(C4, g4) = e(C5, g2g
−VerK
3 ) hold. If either

check fails, output ⊥.
Otherwise, if VerK = VerK∗, B outputs a random bit b ∈ {0, 1} and

aborts the simulation (actually, the forgery of one-time signature occurs).
Otherwise, since the two equalities e(C1, g4) = e(C5, X

∗) and e(C4, g4) =
e(C5, g2g

−VerK
3 ) hold, it implies that C1 = (X∗)s, C4 = (g2g

−VerK
3 )s, and

C5 = gs
4 for some (unknown) s ∈ Z∗

p. More precisely, B has

C1 = (g1g
−ID∗

)xID∗ ·s =
(
gβg−ID∗)xID∗ ·s = g(β−ID∗)t·α·s,

C4 = (g2g
−VerK
3 )s =

(
gr2α+r3·VerK∗

g−r3·VerK)s = gr2α·sgr3·(VerK∗−VerK)s,

C5 = gs
4 = gr4·α·s.

As before, B computes C′
5 = C

r2/r4
5 and C′

4 = C4/C′
5 = gr3·(VerK∗−VerK)s.

Next, B checks that the following equality

C2
?= e(C′

4, g)1/r3·(VerK∗−VerK)
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holds. If this equality does not hold, B knows that the C2 is not of the
right form. Then, B selects a random message M ∈ G1 and responds to
the decryption query with M .

If the equality holds, B knows that C2 = e(g, g)s for some (unknown)
s ∈ Z∗

p. Then, B computes C′′
5 = C

1/r4
5 = gα·s and Z = e(g, C′′

5 )r0 · Cr1
2 .

We can check that Z becomes e(g, h)s as follows:

Z = e(g, gα·s)r0 · e(g, g)s·r1 = e(g, gr0·α+r1)s = e(g, h)s.

Then, B replies to the decryption query with Z · C3.
Challenge: AII outputs two messages M0, M1 ∈ G1 for ID∗. B picks a random

bit b ∈ {0, 1} and a random l ∈ Z∗
p. B computes

C = (g(β−ID∗)t·l, T l, e(g, g)−r0·l · T−r1·l · Mb, gr2·l, gr4·l), and responds
with the ciphertext CT = (C, SignSigK∗(C), VerK∗). Define s = l/α ∈ Z∗

p. If
T = e(g, g)1/α, then B has

g(β−ID∗)t·l = g(β−ID∗)t·α·(l/α) = (X∗)s,

T l = e(g, g)l/α = e(g, g)s,

e(g, g)−r0·l · T−r1·l = e(g, g)−r0·α·(l/α) · e(g, g)−r1·l/α = e(g, h)−s,

gr2·l = g(r2·α+r3·VerK∗−r3·VerK∗)(l/α) = (g2g
−VerK∗

3 )s,

gr4·l = g(r4·α)(l/α) = gs
4.

As before, CT is a valid ciphertext of Mb under the public key PKID∗ =
(X∗, Y ∗), with the uniformly distributed random value s = l/α. On the
other hand, if T is random in G1, then T l and e(g, g)−r0·l · T−r1·l are just
random elements of G1, independent of the bit b in the adversary’s view.

Phase 2: AII issues private key, public key, and decryption queries. B responds
as in Phase 1.

Guess : AII outputs a guess b′ ∈ {0, 1}. If b = b′, then B outputs 1, indicating
T = e(g, g)1/α. Otherwise, it outputs 0, indicating T �= e(g, g)1/α.

If T is uniform and independent in G1, then Pr[B(g, gα, T ) = 0] = 1/2. Let Forge
denote the event that AII submits a valid ciphertext CT = (C, σ, VerK∗) as a
decryption query. In case of Forge, B cannot reply to the query and aborts the
simulation. If Forge did not occur and T = e(g, g)1/α, B replied with a valid
plaintext to AII . Then, B has

∣∣∣Pr[B(g, gα, T ) = 0] − 1
2

∣∣∣ ≥
∣∣∣Pr[b = b′ ∧ Forge] − 1

2

∣∣∣ − Pr[Forge].

Since B provided AII with perfect simulation when event Forge did not occur,
B has |Pr[b = b′ ∧ Forge] − 1/2| ≥ ε. Also, as before, Pr[Forge] < ε2. Therefore,∣∣∣Pr

[
B(g, gα, e(g, g)1/α) = 0

]
− Pr

[
B(g, gα, T ) = 0

]∣∣∣ ≥ ε − ε2.

This completes the proof of Theorem 4. �
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Abstract. In 2003, Al-Riyami and Paterson introduced a new public
key encryption paradigm called Certificateless Public Key Encryption
(CL-PKE), which like Identity-Based Encryption (IBE) is certificate-
free, and meanwhile which unlike IBE but similar to certificate-based
encryption is key-escrow-free. In this paper, based on a heuristic obser-
vation on some existing IBE schemes and PKE schemes, we propose a
general approach to build a CL-PKE solution, which makes use of a
simple combination of an IBE scheme, a Diffie-Hellman type key estab-
lishment algorithm and a secure hash-function. Following this approach
we construct two efficient concrete CL-PKE schemes and formally anal-
yse their security in the random oracle model.

1 Introduction

To address the threat of the impersonation attack on the public key cryptography
(PKC), a common strategy is to introduce into the system an authority trusted
by all users. With the interventions of the authority, the impersonation attack
launched by a malicious user can be thwarted by different methods.

One method is that the authority explicitly provide a guarantee that one
user’s ownership of a claimed public key is authentic. The certificate-based public
key cryptography takes this approach. Each user obtains from the authority a
certificate which securely binds the user identity with the user’s public key by a
signature generated by the authority. By this approach, an infrastructure to issue
certificates has to be constructed and also one has to verify certificates to obtain
others’ authentic public keys. Such infrastructure can be very complicated and
faces many challenges in practice, such as the efficiency and scalability of the
infrastructure.

The second method is that users use their identity directly as their public
keys and so the public key authenticity problem is trivial and certificates are no
longer necessary. However, each user’s private key has to be generated by the
authority. This is the approach taken by the identity-based cryptography (IBC).
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However, in this type of system, the authority knows every user’s private key,
i.e., the system has the inherent key-escrow function, and no method can prevent
a curious authority from decrypting users’ ciphertexts or impersonating a user.

Though the IBC paradigm offers great advantage of simplicity over the
certificate-based PKC, the key escrow property is not desirable in some set-
tings. The natural question arises that whether a public key system as IBC
certificate-free and at the same time as PKC key-escrow-free is constructible. In
2003, Al-Riyami and Paterson brought forth the notion of “Certificateless Public
Key Cryptography” (CL-PKC) [3] to respond to this challenge. In the CL-PKC,
a user has a public key generated by himself and his private key is determined
by two pieces of secret information: one secret associated with the user’s iden-
tity is passed by the authority and the other associated with the public key is
generated by the user himself. Moreover, one secret is not computable from the
other, so the authority cannot compute the private key corresponding to a user’s
public key. Hence the CL-PKC is key-escrow-free.

The approach against the impersonation attack in the CL-PKC is not to pro-
vide authenticity of a public key by a certificate. Instead, a CL-PKC guarantees
that even if a malicious user successfully replaces a victim’s public key with its
own choice and so could know the secret associated with the public key but
not the other secret obtained by the victim user from the authority, it still can-
not generate a valid signature or decrypt the message encrypted under the false
public key and the victim’s identifier. This will certainly reduce the interest of
launching the impersonation attack.

Since the certificateless public key encryption (CL-PKE) notion was intro-
duced, there have been a number of generic constructions. In [1,29], three gen-
eral constructions of CL-PKE are constructed. They are the sequential or parallel
composition of a secure identity-based encryption (IBE) with a secure public key
encryption (PKE) to encrypt a message. Unfortunately, none of those generic
constructions is secure [22,25] regarding the model defined in [3]. Libert and
Quisquater [25] showed simple variants can rescue them. Yum and Lee proposed
yet another generic construction but by double-encryption with two secure IBE
schemes [30], which is also found insecure [22]. In [7], Bentahar et al. extended
the key encapsulation mechanism (KEM) to the CL-PKE setting and proposed
a generic construction from an IBE and a PKE. There have been a couple of
general constructions in the standard model as well [15,24]. All of these general
constructions are not very efficient both on computation and communication.
They all need double-encryption with either two IBE schemes or one IBE with
a PKE, and the ciphertext of these schemes are longer than the used IBE or
PKE’s. In this work, based on a heuristic observation on some constructions of
IBE and PKE, we propose a general approach of constructing efficient CL-PKE,
specifically, we can make use of a hash function to tightly integrate an IBE with
a PKE of similar ciphertext structure to form a CL-PKE. Following this ap-
proach, we construct two efficient CL-PKE schemes and formally analyse their
security in an enhanced security model.
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The paper is constructed as follows. In Section 2 we recap the basic facts of
pairing and various CL-PKE security formulations. In Section 3, we present a
heuristic approach of constructing CL-PKE from IBE and PKE schemes. Then
we construct two efficient concrete CL-PKE schemes and provide a formal secu-
rity proof of them in Section 4. After that, we discuss relevant efficiency of the
CL-PKE proposals. Finally, we draw a conclusion.

2 Preliminaries

2.1 Pairing

Here we briefly recall some basic facts of pairings.

Definition 1. A pairing is a bilinear map ê : G1 × G2 → Gt between three
groups G1, G2 and Gt of exponent p, which has the following properties:

1. Bilinear: For all (P1, P2) ∈ G1 × G2 and for all (a, b) ∈ Zp × Zp, we have
ê(aP1, bP2) = ê(P1, P2)ab.

2. Non-degenerate: There exist non-trivial points P1 ∈ G1 and P2 ∈ G2 both of
order q such that ê(P1, P2) �= 1.

3. Computable: For all (P1, P2) ∈ G1 × G2, ê(P1, P2) is efficiently computable.

We shall use following assumptions to analyse the proposed schemes. Each
problem is assumed to be defined for a given set of pairing parameters including
the groups G1, G2 and Gt, the generators P1 ∈ G1 and P2 ∈ G2, the pairing ê,
and possibly the morphism ψ : G2 → G1.

Assumption 1 (Diffie–Hellman (DHi,j,k)). For a, b ∈R Zp and some values
of i, j, k ∈ {1, 2}, given (aPi, bPj), computing abPk is hard.

Assumption 2 (Bilinear Diffie–Hellman (BDHi,j,k)). For a, b, c ∈R Zp,
given (aPi, bPj , cPk), for some values of i, j, k ∈ {1, 2}, computing ê(P1, P2)abc

is hard.

Assumption 3 (General BDH). For a, b, c ∈R Zp, given (aP1, cP1, aP2, bP2),
computing ê(P1, P2)abc is hard.

We note that if an efficient isomorphism ψ exists, then the BDH2,2,2 assumption
implies the General BDH assumption.

2.2 CL-PKE Security Model

Here we first specify the CL-PKE algorithms and then revisit various CL-PKE
security models and define a strong security notion for this type of encryption.

For a CL-PKE scheme we define the public key, message, ciphertext and
randomness spaces by PCL(·), MCL(·), CCL(·) and RCL(·). These spaces are
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parametrised by the master public key Mpk, and hence by the security parameter
k. A CL-PKE scheme consists of following algorithms:

– CL.Gen(1k). The algorithm given the system security parameter k gener-
ates the master secret key Msk and the master public key Mpk.

– CL.PartialKey(Msk, Mpk, IDA). The algorithm takes Msk, Mpk and an ar-
bitrary identity string IDA ∈ {0, 1}∗ of entity A as input and returns a partial
private key DA corresponding to IDA.

– CL.SecretVal(Mpk, IDA). The algorithm takes Mpk and the identity string
IDA as input and returns the secret value XA associated with the entity A.

– CL.PrivateKey(Mpk, DA, XA). The algorithm takes Mpk, DA and XA as
input and outputs the private key SA of entity A.

– CL.PublicKey(Mpk, XA, IDA). The algorithm takes Mpk and XA as input
and outputs the public key PA of the entity A.

– CL.Encrypt(Mpk, IDA, PA, m; r). The algorithm takes Mpk, IDA, PA, a
message m ∈ MCL(Mpk) and the randomness r ∈ RCL(Mpk) as input and
returns the ciphertext C ∈ CCL(Mpk) of message m. We also use the inter-
face CL.Encrypt (Mpk, IDA, PA, m) by assuming that r is sampled in the
algorithm when the context is clear.

– CL.Decrypt(Mpk, IDA, PA, SA, C). The algorithm takes Mpk, IDA, SA and
a ciphertext C as input, and outputs the value of the corresponding plaintext
m or a failure symbol ⊥.

Similar to IBE and PKE, to cope with probabilistic ciphers, we will require
that not too many choices for r encrypt a given message to a given ciphertext.
To formalize this concept we let γ(Mpk) be the least upper bound such that
| {r ∈ RCL(Mpk) : ECL(Mpk, ID, PID, m; r) = C} |≤ γ(Mpk) for every ID,
PID ∈ PCL(Mpk), m ∈ MCL(Mpk) and C ∈ CCL(Mpk). We say a CL-PKE is
γ-uniform if γ(Mpk)/ | RCL(Mpk) |< γ. In this work, we require that γ is
negligible of security parameter k.

Following Al-Riyami-Paterson’s CL-PKE security formulation, we can define
various security notions for this type of encryption. These security notions are
defined by two games as in Table 1 and 2. Game 1 is conducted between a
challenger and a Type-I adversary AI of two PPT algorithms (AI1 ,AI2). A
Type-I adversary does not know the master secret key and can replace an entity’s
public key with its choice. Game 2 is conducted between a challenger and a Type-
II adversary AII of two PPT algorithms (AII1 ,AII2). A Type-II adversary as
a malicious KGC knows the master secret key (so every entity’s partial private
key) and intends to decrypt a user’s ciphertext.

In the games, s is some state information and OCL are the oracles that the
adversary can access during the game. Depending on the security model, these
oracles may include the follows:

– a public key broadcast oracle Public-Key-Broadcast which takes as input an
identifier and returns the associated public key. If necessary, the oracle will
execute the CL.PublicKey algorithm first.
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Table 1. IND CL-PKE Games

Game 1: Type-I Adversarial Game 2: Type-II Adversarial

1. (Mpk , Msk)← CL.Gen(1k).

2. (s, ID∗, m0, m1)←A
OCL
I−1 (Mpk).

3. b←{0, 1}, r←RCL(Mpk).
4. C∗←CL.Encrypt(Mpk , ID

∗, PID∗ , mb; r).

5. b′←A
OCL
I−2 (s, Mpk , C

∗, ID∗, PID∗ , m0, m1).

1. (Mpk , Msk)← CL.Gen(1k).

2. (s, ID∗, m0, m1)←A
OCL
II−1(Mpk , Msk).

3. b←{0, 1}, r←RCL(Mpk).
4. C∗←CL.Encrypt(Mpk , ID

∗, PID∗ , mb; r).

5. b′←A
OCL
II−2(s, Mpk , Msk , C

∗, ID∗, PID∗ , m0, m1).

Table 2. OW CL-PKE Games

Game 1: Type-I Adversarial Game 2: Type-II Adversarial

1. (Mpk , Msk)← CL.Gen(1k).

2. (s, ID∗)←A
OCL
I−1 (Mpk).

3. m←MCL(Mpk), r←RCL(Mpk).
4. C∗←CL.Encrypt(Mpk , ID

∗, PID∗ , m; r).

5. m′←A
OCL
I−2 (s, Mpk , C

∗, ID∗, PID∗).

1. (Mpk , Msk)← CL.Gen(1k).

2. (s, ID∗)←A
OCL
II−1(Mpk , Msk).

3. m←MCL(Mpk), r←RCL(Mpk).
4. C∗←CL.Encrypt(Mpk , ID

∗, PID∗ , m; r).

5. m′←A
OCL
II−2(s, Mpk , Msk , C

∗, ID∗, PID∗).

– a partial key exposure oracle Partial-Private-Key-Extract which returns the
partial private key associated with an identity. If necessary, the oracle will
execute the CL.PartialKey algorithm first. This oracle is only useful to
Type-I adversaries, as a Type-II adversary can compute every partial private
key using the master secret key.

– a secret value exposure oracle Secret-Value-Extract which reveals the secret
value of entity whose public key was not replaced. If necessary, the algorithm
will execute algorithm CL.SecretVal first.

– a public key replace oracle Public-Key-Replace which takes as input an iden-
tifier and a public key from the public key space and replaces the current
public key associated with the identifier with the provided key.

– a strong decryption oracle DecryptS which takes as input a ciphertext and
an identifier, and outputs the decryption of the ciphertext using the the
current private key associated with the identifier. Note that in the games, the
adversary may have replaced the public key associated with an identity, and
this decryption oracle is required to output the correct decryption (which
can be failure symbol as well) using the private key corresponding to the
current public key, even if it may not know that the corresponding secret
value. As this oracle does not reflect general practice, a normal decryption
oracle is defined as follow:

– a decryption oracle DecryptP which takes as input a ciphertext and an iden-
tifier, and outputs the decryption of the ciphertext using the the original
(before any Public-Key-Replace query) private key associated with the iden-
tifier. Though this query reflects the common practice that given a ciphertext
a party uses its own private key to decrypt it, some attacks of conceptional
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interest are not simulated (see the attack on the second Al-Riyami-Paterson
CL-PKE [4], which we call AP-CL-PKE2, in Appendix A.2). A conceptional
decryption oracle is used in some formulation as follows:

– a decryption oracle DecryptC which takes as input a ciphertext, an identifier,
a public key and the secret value corresponding to the given public key, and
outputs the decryption of the ciphertext using the private key determined
by the partial key corresponding to the identifier and the given secret value
in the query. If the secret value is not given in the query, then the oracle
works as DecryptP .

For each type of adversary, we define two attack models in which the adversary
is allowed to access different oracles.

For Type-I adversaries, we define the following two attack models.

– CCA2 model. In this model, the adversary is allowed to access the Public-
Key-Broadcast, Partial-Private-Key-Extract, Secret-Value-Extract, Public-
Key-Replace and DecryptS oracles. However, there are a few restrictions on
the adversary.
• If Public-Key-Replace has been issued on an identity, then Secret-Value-

Extract on the identity is disallowed.
• Partial-Private-Key-Extract on ID∗ is disallowed.
• DecryptS on (ID∗, C∗) is not allowed in AI−2 when ID∗’s current public

key PID∗ is the same as when the challenge query is issued.
– CPA model. In this model, the adversary has the access to the similar oracles

as in the CCA2 model, but the DecryptS oracle is disallowed.

As the strong decryption oracle DecryptS may not reflect the practice, we
can define two weaker CCA2 models Type-IP and Type-IC in which the adver-
sary is allowed to access the DecryptP and DecryptC oracle instead of DecryptS

respectively.
For Type-II adversaries we define the following two attack models.

– CCA2 model. In this model, the adversary is allowed to access the Public-
Key-Broadcast, Secret-Value-Extract, Public-Key-Replace and DecryptS ora-
cles. Again, there are a few restrictions on the adversary.
• If Public-Key-Replace has been issued on an identity, then Secret-Value-

Extract on the identity is disallowed.
• Public-Key-Replace on ID∗ is disallowed.
• Secret-Value-Extract on ID∗ is disallowed.
• DecryptS on (ID∗, C∗) is not allowed in AII−2.

– CPA model. In this model, the adversary has the access to the similar oracles
as in the CCA2 model, but the DecryptS oracle is disallowed.

Similarly, we can define a weaker CCA2 model Type-IIP in which the ad-
versary is allowed to access the DecryptP oracle instead. There is no interest of
defining Type-IIC security as it requires the adversary to know both the partial
key (because of the knowledge of the master secret key) and the secret value
which implies the adversary can decrypt the ciphertext on its own.



General and Efficient Certificateless Public Key Encryption Constructions 89

If we let MOD denote the mode of attack, either CPA or CCA2, the adver-
sary’s advantage in the indistinguishability-based game is defined to be

AdvCL−IND−MODCL (A) =| 2 Pr[b′ = b] − 1 |,

while, the advantage in the one-way game is given by

AdvCL−OW−MODCL (A) = Pr[m′ = m].

A CL-PKE algorithm is considered to be secure, in the sense of a given goal
and attack model (CL-IND-CCA2 for example) if, for any PPT Type-I (and
Type-II) adversary, the advantage in the relevant game is a negligible function
of the security parameter k.

There are two main differences between the model defined above and the
Al-Riyami-Paterson’s CL-PKE security model [3,4]. First, in the Al-Riyami-
Paterson’s model a private key exposure oracle which returns the private key of
an entity is used, while, here we provide the secret value exposure oracle instead.
As in CL-PKE each entity has two pieces of secret information, it is natural to
provide the adversary with an exposure oracle for each secret. Because the entity
private key is determined by two secrets, the Secret-Value-Extract oracle with
the Partial-Key-Extract oracle certainly can simulate the private key exposure
oracle. On the other hand, given a private key and the corresponding partial
key, the adversary may not be able to recover the related secret value if the
CL.PrivateKey algorithm is a one way function such as the algorithm used
in [3]. Hence, the Secret-Value-Extract oracle provides extra capability to the
adversary against certain schemes. The second difference is that in Game 2
above the adversary can access the Public-Key-Replace oracle and the strong
decryption oracle DecryptS (this formulation has been adopted in a number of
other works [25,14,2]), while, in the Al-Riyami-Paterson’s model the Public-Key-
Replace oracle is disallowed and the decryption oracle DecryptP is used instead.
A trivial Type-II attack applicable in the enhanced model on AP-CL-PKE2 (see
Appendix A.2.) shows that the new formulation defines a stronger model in
theory.

On the relation of different security formulations, the Type-I (resp. Type-II)
security is certainly stronger than the Type-IP and Type-IC (resp. Type-IIP )
security. Because of the behavior of DecryptC , the Type-IC security is at least
as strong as the Type-IP one. The Type-IC attack on AP-CL-PKE2 shows that
the Type-IC security is indeed stronger than Type-IP .

Recently, Au et al. [2] made an interesting observation that a passive-but-
malicious KGC may generate the master public/private key pair in a special
way to help it decrypt some user’s ciphertext. And they presented such an at-
tack against the first Al-Riyami-Paterson CL-PKE [3] (we call it AP-CL-PKE1).
The attack shows that it is meaningful to let a Type-II+ adversary generate the
master keys in Game 2. However, it remains an open problem whether a secure
CL-PKE against both Type-I and Type-II+ adversaries is constructible in the
standard model. Even in the random oracle model, this strong security notion
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might be difficult to achieve. We note that when the Type-II+ adversary gen-
erates the master public key, a question arises that who controls any random
oracle included in the master public key. In [2], a generic CL-PKE scheme is
claimed to be secure in this strong model. However, no proof is given and it is
unclear who (the challenger or the adversary) controls the random oracles.

On the other hand, Au et al.’s attack can be defeated by requiring the KGC
to demonstrate the randomness of the choice of parameters. In particular, the
attack against AP-CL-PKE1 requires the adversary to choose from the used
group a specific generator P , which supposes to be random. For its innocence
the KGC can show a witness of the randomness of the generator such as a
public string S with P = H(S) for a cryptographic hash function H . One can
refer to IEEE P1363 and ANSI X9.62 standards for examples of methods used
to generate verifiably random parameters.

In this work, we adopt the enhanced Al-Riyami-Paterson formulation (the
Type-I+Type-II security model) and conduct the security analysis of the pro-
posed schemes in the random oracle model.

3 Heuristic Approach of CL-PKE

Now we explain our heuristic approach of constructing CL-PKE. This approach
is based on a simple observation of some existing IBE and PKE schemes.

Most of the discrete-logarithm based PKE schemes, e.g. the ElGamal encryp-
tion [16], essentially take the same general approach, which can be presented in
a simple equation as follows:

PKE ciphtext=〈DH token(s), Hiding(message; DH value)〉,

where a DH token is defined as an input to a DH key establishment protocol,
and a DH value is defined as a result of the protocol; a well-known example
is that two entities exchange their DH tokens gx and gy respectively and then
compute a DH value gxy. In the above general PKE approach, the encrypter
generates one or more DH tokens and uses the DH token(s) and the decrypter’s
public key to compute the DH value. Then the DH value is used as the secret
to hide messages in a message hiding algorithm. The decrypter uses its private
key and the DH token(s) in the ciphertext to compute the DH value and so to
recover the conveyed message.

Most of the existing IBE schemes, e.g. [6,11,5], make use of pairings and base
their security on the BDH assumption or its variants which are the descendants
of the DH assumption. These IBE encryption schemes essentially adopt the same
approach, like those PKE schemes based on the DH assumption, which can be
presented as:

IBE ciphtext=〈pairing-DH token(s), Hiding(message; pairing-DH value)〉,

where a pairing-DH token and pairing-DH value is a variety of the DH token and
DH value. Again, the encrypter first computes one or more pairing-DH tokens,
then computes a pairing-DH value, which can be computed through pairings by
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the decrypter with its priavate key, the pairing-DH token(s) and possibly the
system parameters as well. The pairing-DH value is used as the secret to hide
the message by the encrypter in a message hiding algorithm and to recover the
conveyed message by the decrypter.

We can see that pairing-based IBE and DH-based PKE schemes have a com-
mon structure and some generic constructions such as the hybrid encryption
(KEM-DEM) [13,7], the Fujisaki-Okamoto (FO) conversions [17,18,26,31] and
REACT [27,26] can be used in to construct both PKE and IBE. In [5], Boyen
classified the existing IBE schemes from pairing into three categories: full-domain
hash IBE, exponent-inverse IBE and commutative blinding IBE. In each cate-
gory, some efficient schemes exactly make use of constructions that are applicable
in both IBE and PKE. For example, both BF-IBE [6,21] which is a full-domain
hash IBE and SK-IBE [11] which is an exponent-inverse IBE adopt the FO-
conversions. BB1-IBE, which is a commutative blinding IBE, takes an approach
that can also be used to construct the ElGamal-like secure PKE. BF-KEM [5],
SK-KEM [12] and BB1-KEM [5] all follow the hybrid encryption construction.

Based on the above observation, it seems natural to use a hash function to
integrate a secure IBE scheme with a secure PKE scheme to achieve a secure
CL-PKE scheme, which can be presented as follows:

CL-PKE ciphtext= 〈PKE.DH-tokens(s), IBE.pairing-DH token(s),
Hiding′(message; H(DH value, pairing-DH value))〉

where H is a hash function, a PKE.DH-token is a DH token used in a PKE
scheme and an IBE.pairing-DH token is a pairing-DH token used in an IBE
scheme. The interesting bit is that the PKE.DH-token(s) and IBE.pairing-DH
token(s) could be generated in a simple way, where they can share the same
randomness. The message hiding algorithm might need to be slightly modified
as the input secret value is no longer a DH or pairing-DH value but a hash-
function output. However, if these values are only used in the hash functions in
the Hiding algorithm then H is unnecessary.

The idea of using hash functions to integrate an IBE and a PKE scheme to
construct a CL-PKE scheme was first demonstrated in the early version of this
work [10]. An intuitive view on the security of this construction is that to recover
message, one has to obtain the hash on both the DH value and the pairing-DH
value, which in turn requires one to know both values. While, a Type-I adversary
cannot compute the pairing-DH value if the underlying IBE scheme is secure and
a Type-II adversary cannot compute the DH value if the underlying PKE schem
is secure. Similarly, one can construct CL-KEM with the same approach.

Note that this approach is only based on the heuristic observation. A CL-PKE
scheme constructed with this approach might not be secure in the model defined
in Section 2.2. On the other hand, following this approach of using hash function
on the (pairing) DH values to tightly integrate an IBE and a PKE scheme, we
indeed are able to construct highly efficient and secure CL-PKE. In the following
part, we shall present two concrete CL-PKE schemes constructed in this way.
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4 Two Concrete CL-PKE Schemes

Two CL-PKE schemes, which we call SLOS-CL-PKE [28] and LQ-CL-PKE [25]
based on SK-IBE [11] were presented. These schemes rely on a stronger �-
BDHI [11] assumption than BDH. In this section, following the general approach
in Section 3, we present other two CL-PKE constructions from a full-domain
hash IBE and a commutative blinding IBE respectively whose security is based
on the BDH assumption.

4.1 CL-PKE1

From the well-known BF-IBE [6], Al-Riyami and Paterson constructed two CL-
PKE schemes: AP-CL-PKE1 [3] and AP-CL-PKE2 [4]. AP-CL-PKE1 is based on
a stronger assumption than BDH and the CL.Encrypt algorithm of the scheme
requires three pairing operations which are very costly. AP-CL-PKE2 improves
upon the previous scheme with better performance. However, as noted before
both schemes are insecure against certain attacks.

Here, we present a CL-PKE which using a hash function integrates BF-IBE
with the ElGamal-like PKE enhanced with the Fujisaki-Okamoto conversion [17].
We note that Fujisaki and Okamoto proposed two generic conversions [17,18],
both can transform an OW-CPA secure PKE to an IND-CCA2 secure PKE.
In [25], Libert and Quisquater showed that with slight modification, the second
Fujisaki-Okamoto conversion (FO-2) [18] can convert a CL-IND-CPA secure CL-
PKE to a CL-IND-CCA2 secure scheme. Here we demonstrate a similar result
on the first Fujisaki-Okamoto conversion (FO-1) [17]. A simpler version of the
scheme which strictly follows the general approach in Section 3 was first shown
in an early draft [10] of this work. For the ease of the security analyse, here we
adopt the enhanced FO-1 conversion, which just introduces minor extra compu-
tation overhead and may be of independent interest.

Generic Construction. Let Π be a CL-PKE scheme with the encryption al-
gorithm E and the decryption algorithm D. Define a CL-PKE scheme Π with
the encryption algorithm E as

〈C1, C2〉 ← E(Mpk, IDA, PA, m; σ)

where

〈C1, C2〉 = 〈E(Mpk, IDA, PA, σ; G1(m, σ, IDA, PA)), m ⊕ G2(σ)〉

and the decryption algorithm D(Mpk, IDA, PA, SA, 〈C1, C2〉) as

– σ ← D(Mpk, IDA, PA, SA, C1)
– m = C2 ⊕ G2(σ)
– If C1 = E(Mpk, IDA, PA, σ; G1(m, σ, IDA, PA)), output m; otherwise

output ⊥.

and other algorithms essentially the same as Π .
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Π shares the same parameters with Π except Mpk, the master public system
parameters of Π which includes Π ’s master public system parameters Mpk and
two extra hash functions G1 and G2 defined as follows

G1 : MΠ(Mpk) × MΠ(Mpk) × {0, 1}∗ × P Π(Mpk) → R Π(Mpk)
G2 : MΠ(Mpk) → MΠ(Mpk)

Theorem 1. Suppose Π is a γ-uniform CL-PKE scheme against CL-OW-CPA
attacks, then Π is a CL-IND-CCA2 scheme. More specifically, suppose that a
Type-I (resp. Type-II) CL-IND-CCA2 adversary A has advantage ε(k) against
Π with running time t(k), making qD decryption queries and qG1 < 2|M Π(Mpk)|

and qG2 random oracle queries on G1 and G2 respectively. Then there exists a
Type-I (resp. Type-II) CL-OW-CPA adversary B with advantage

AdvB(k) ≥ ε(k)
qG1 + qG2

(1 − γ)qG1qD

over Π in running time

tB(k) ≤ t(k) + O(qG1tE),

where tE is the cost of E.

Proof: We show how to make use of Type-I (resp. Type-II) CL-IND-CCA2 ad-
versary A against Π to construct a Type-I (resp. Type-II) CL-OW-CPA adver-
sary B again Π . The challenger T starts a Type-I (resp. Type-II) CL-OW-CPA
game by passing B the master public key Mpk and providing with the oracle
access including the possible random oracles, Public-Key-Broadcast, Public-Key-
Replace, Secret-Value-Extract and for Type-I B with Partial-Private-Key-Extract
as well. In the Type-II game, T also gives Msk to B.

B forwards Mpk with G1 and G2 as the master public key Mpk of Π to A
where G1 and G2 are two random oracles controlled by B. In the Type-II game,
B also passes Msk to A. B provides A with the oracle access as follows, and for
simplicity of presentation we assume that A will abide by the rules defined in
the models in Section 2.2.

– B forwards to its CL-OW-CPA challenger T the queries on oracles includ-
ing Public-Key-Broadcast, Secret-Value-Extract, Public-Key-Replace, and for
Type-I T Partial-Private-Key-Extract as well, and relays the answers from
the challenger to A.

– B forwards to its challenger T the queries on the possible random oracles
provided by the challenger and relays the answers to A.

– G1(mi, σi, IDi, Pi): To respond to these queries B maintains a list Glist
1 . Each

entry in the list is a tuple of the form (mi, σi, IDi, Pi, ri, C
i
1, C

i
2) indexed by

(mi, σi, IDi, Pi). To respond to a query, B does the following operations:
• If on Glist

1 a tuple indexed by (mi, σi, IDi, Pi) exits, then B responds with
the corresponding ri.

• Otherwise,
∗ B randomly chooses a string ri ∈ R Π(Mpk).
∗ B computes Ci

1 = E(Mpk, IDi, Pi, σi; ri) and Ci
2 = G2(σi) ⊕ mi.
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∗ B inserts a new tuple (mi, σi, IDi, Pi, ri, C
i
1, C

i
2) into the list and re-

sponds to A with ri.
– G2(σi): To respond to these queries B maintains a list Glist

2 . Each entry in
the list is a tuple of the form (σi, hi) indexed by σi. To respond to a query,
B does the following operations:
• If on the list there is a tuple indexed by σi, then B responds with the

corresponding hi.
• Otherwise, B randomly chooses a string hi ∈ MΠ(Mpk) and inserts a

new tuple (σi, hi) into the list. It responds to A with hi.
– DecryptS(IDi, Ci): B takes the following steps to respond to the query:

• B queries its challenger the current public key Pi associated with IDi by
issuing Public-Key-Broadcast(IDi).

• B parses Ci as 〈Ci
1, Ci

2〉 and searches Glist
1 to find tuples (∗, ∗, IDi, Pi, ∗,

Ci
1, Ci

2).
• If no such tuple is found, then B outputs ⊥.
• If more than one tuple is found, then B outputs ⊥.
• B outputs mi in the only found tuple.

– Challenge: Once A decides that Phase 1 is over, it outputs identity ID∗

and two messages m0, m1 on which it wishes to be challenged.
• B queries T with the Public-Key-Broadcast(ID∗) to get the current public

key P ∗ associated with ID∗.
• B forwards ID∗ as the challenge ID to T and gets the challenge ciphertext

as C∗
1 .

• B randomly samples C∗
2 ∈ MΠ(Mpk) and replies A with C∗ = 〈C∗

1 , C∗
2 〉

as the challenge ciphertext in the CL-IND-CCA2 game.
– Guess: Once A outputs its guess b′. B randomly chooses a σ from Glist

1 or
Glist

2 and outputs σ as the answer of the CL-OW-CPA game.

Now we analyse B’s probability of outputting the correct response σ to T . We
define two events.

– Event 1, denoted by H1, is that in the game A queries G1(∗,D(Mpk, ID∗,
P ∗, S∗, C∗

1 ), ID∗, P ∗) or G2(D(Mpk, ID∗, P ∗, S∗, C∗
1 )) where S∗ is the private

key associated with ID∗ when the challenge is issued.
– Event 2, denoted by H2, is that in the game A differentiates B from a real

world before Event 1 happens.

Now we look at the possibility that C∗ = 〈C∗
1 , C∗

2 〉 is a valid ciphertext of mb

for b ∈ {0, 1}. For C∗ to be a valid challenge ciphertext, it is required that

D(Mpk, ID
∗, P ∗, S∗, C∗

1 ) = σ′

G2(σ′) ⊕ C∗
2 = mb

and
E(Mpk, ID

∗, P ∗, σ′; G1(mb, σ
′, ID∗, P ∗)) = C∗

1 .

As C∗
2 is randomly sampled from MΠ(Mpk), C∗

2 is valid for m0 or m1 with
equal probability 1

|M Π(Mpk)| . And as σ′ is randomly sampled by T and G1 is a
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random oracle, C∗
1 is valid for m0 or m1 with equal probability as well. Hence,

given C∗, A either finds that C∗ is not a valid ciphertext for either m0 or m1,
or (C∗ is a valid ciphertext for either m0 or m1 with equal probability) to win
the game, outputs b if C∗ is a valid ciphertext for mb.

Here we conceptually force the adversary A to immediately output a random
b′ ∈ {0, 1} if it finds that C∗ is an invalid challenge ciphertext. This change does
not affect A’s chance of winning the game. As G1 and G2 are random oracles,

Pr[A win | H1] = 1/2.

Then we have that

Pr[A wins] = Pr[A wins|H1] Pr[H1] + Pr[A wins|H1] Pr[H1]

≤ Pr[H1] +
1
2
(1 − Pr[H1]) =

1
2

+
1
2

Pr[H1].

Pr[A wins] ≥ Pr[A wins|H1] Pr[H1]

=
1
2
(1 − Pr[H1]) =

1
2
− 1

2
Pr[H1].

So we have Pr[H1] ≥ ε(k). Now we estimate the probability of Event 2. In
the game, A will notice the difference between the simulation and the real world
only if B rejects a valid DecryptS query or A finds that C∗ is an invalid challenge
ciphertext. As argued above, the latter event happens only if Event 1 occurs. So
we only investigate the rejection of valid decryption query which occurs when

– Case 1. A queries DecryptS(IDi, 〈Ci
1, Ci

2〉) such that Ci
1 = E(Mpk, IDi, Pi,

σi; G1(mi, σi, IDi, Pi)) and Ci
2 = G2(σi) ⊕ mi without querying G1(mi, σi,

IDi, Pi) where Pi is the public key currently associated with IDi, or
– Case 2. A queries DecryptS(IDi, 〈Ci

1, C
i
2〉) such that there are at least two tu-

ples (ma, σa, IDi, Pi, ra, Ci
1, Ci

2) and (mb, σb, IDi, Pi, rb, C
i
1, C

i
2) in Glist

1 . First
this case cannot happen if σa = σb; otherwise ma = G2(σa)⊕Ci

2 = G2(σb)⊕
Ci

2 = mb, and (ma, σa, IDi, Pi) uniquely defines a tuple in Glist
1 . Hence Case

2 happens only if σa �= σb which implies Ci
1 = E(Mpk, IDi, Pi, σa; ra) =

E(Mpk, IDi, Pi, σb; rb).

Case 1 happens with probability at most γ because E is γ-uniform and G1 is
truly random so G1(mi, σi, IDi, Pi) is valid for (Mpk, IDi, Pi, σi, C

i
1) with proba-

bility at most γ.
Now we consider the probability of Case 2. Because E is γ-uniform and G1 is

truly randomso one query G1(mb, σb, IDi, Pi) is valid for (Mpk, IDi, Pi, σb, C
i
1)with

probability at most γ where Ci
1 is determined by Ci

1 = E(Mpk, IDi, Pi, σa; ra).
Note that for a fixed Ci

2 there are 2|M Π (Mpk)| pairs of (mb, σb). For qG1 queries
(qG1 < 2|M Π (Mpk)|), Case 2 happens with probability at most 1 − (1 − γ)qG1 .

And if Case 1 happens, Case 2 won’t happen. It comes that

Pr[H2] ≥ (1 − max{γ, 1 − (1 − γ)qG1 })qD = ((1 − γ)qG1 )qD
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Overall, we have that

AdvB(k) ≥ 1
qG1+qG2

Pr[H2] Pr[H1]
≥ 1

qG1+qG2
(1 − γ)qG1qD · ε(k)

The Scheme. CL-PKE1 consists of following algorithms:
CL.Gen(1k). Given a security parameter k, the algorithm works as follows.

1. Generate three cyclic groups G1, G2 and Gt of prime order p, an isomorphism
ψ from G2 to G1, and a bilinear pairing map ê : G1×G2 → Gt. Pick a random
generator P2 ∈ G2 and set P1 = ψ(P2).

2. Pick a random s ∈ Zp and compute Ppub = sP1.
3. Pick four cryptographic hash functions:

H1 : {0, 1}∗ → G2,
H2 : Gt × G1 → {0, 1}n,
H3 : {0, 1}n × {0, 1}n × {0, 1}∗ × G1 → Zp,
H4 : {0, 1}n → {0, 1}n,

for some integer n > 0.
4. Output the master public key Mpk = (G1, G2, Gt, p, ê, ψ, n, P1, P2, Ppub,

H1, H2, H3, H4) and the master secret key Msk = s.

The message space is M = {0, 1}n, the ciphertext space is C = G1×{0, 1}n×
{0, 1}n and the randomness space is R = {0, 1}n.
CL.PartialKey(Msk, Mpk, IDA). Given a string IDA ∈ {0, 1}∗ of entity A, Mpk

and Msk, the algorithm computes QA = H1(IDA) ∈ G2, DA = sQA and returns
DA.
CL.SecretVal(Mpk, IDA). Given a string IDA and Mpk, the algorithm outputs
a random XA ∈ Zp.
CL.PrivateKey(Mpk, DA, XA). Given Mpk, DA and XA, the algorithm outputs
SA = (DA, XA).
CL.PublicKey(Mpk, XA, IDA). Given Mpk and XA, the algorithm outputs
PA = XAP1.
CL.Encrypt(Mpk, IDA, PA, m). Given a plaintext m ∈ {0, 1}n, the identity IDA

of entity A, the system parameters Mpk and the public key PA of the entity, the
following steps are performed.

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ, m, IDA, PA).
2. Compute QA = H1(IDA), ξ = ê(Ppub, QA)r and f = rPA.
3. Set the ciphertext to C = 〈rP1, σ ⊕ H2(ξ, f), m ⊕ H4(σ)〉.

CL.Decrypt(Mpk, IDA, PA, SA, C). Given a ciphertext C = 〈U, V, W 〉 ∈ C, the
private key SA = (DA, XA), the identifier IDA and Mpk, the algorithm takes the
following steps:

1. Compute ξ′ = ê(U, DA), f ′ = XAU and σ′ = V ⊕ H2(ξ′, f ′).
2. Compute m′ = W ⊕ H4(σ′) and r′ = H3(σ′, m′, IDA, PA).
3. If U �= r′P1, output ⊥, else return m′ as the plaintext.
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To prove the security of CL-PKE1, we shall first prove that the following
Basic-CL-PKE1 is CL-OW-CPA secure, then apply Theorem 1 to obtain the
security result.

Basic-CL-PKE1 shares most of the algorithms with CL-PKE1 except the fol-
lowing two (the hash functions H3 and H4 in CL.Gen of CL-PKE1 are unnec-
essary in Basci-CL-PKE1).
CL.Encrypt(Mpk, IDA, PA, m; r). Given a plaintext m ∈ {0, 1}n, the identity
IDA of entity A, the system parameters Mpk and the public key PA of the entity,
the following steps are performed.

1. Compute QA = H1(IDA), ξ = ê(Ppub, QA)r and f = rPA.
2. Set the ciphertext to C = 〈rP1, m ⊕ H2(ξ, f)〉.

CL.Decrypt(Mpk, IDA, PA, SA, C). Given a ciphertext C = 〈U, V 〉, the private
key SA = (DA, XA), the identifier IDA and Mpk, the algorithm takes the following
steps:

1. Compute ξ′ = ê(U, DA) and f ′ = XAU .
2. Return m′ = V ⊕ H2(ξ′, f ′) as the plaintext.

Lemma 1. Basic-CL-PKE1 is secure in the sense of CL-OW-CPA against
Type-I adversaries provided that H1 and H2 are modeled as random oracles and
the BDH2,2,2 assumption is sound. Specifically, assume there exists a Type-I
adversary A breaks Basic-CL-PKE1 with CL-OW-CPA attacks with advantage
ε(k), and in the attack A runs in time t(k) and makes qH1 and qH2 queries on
H1 and H2 respectively. Then there exists an algorithm B to solve the BDH2,2,2

problem with advantage and time as follows:

Adv
BDH2,2,2
B ≥ (1 − qH2

2n )ε(k)/qH1 ,
tB(k) ≤ t(k) + O(qH2 · τ),

where τ is the time of a pairing.

The proof is given in Appendix A.1.

Lemma 2. Basic-CL-PKE1 is secure in the sense of CL-OW-CPA against
Type-II adversaries provided that H2 is modeled as random oracle and the DH1,2,1

assumption is sound. Specifically, assume there exists a Type-II adversary
A breaks Basic-CL-PKE1 with CL-OW-CPA attacks with advantage ε(k), and in
the attack A runs in time t(k) and gets qP entity public keys. Then there exists
an algorithm B to solve the DH1,2,1 problem with advantage and time as follows:

Adv
DH1,2,1
B ≥ ε(k)/qP ,
tB(k) ≤ t(k) + O(qH2 · τ),

where τ is the time of a pairing.

The proof strategy is similar to Lemma 1. Due to lack of space, the details are
omitted.

Following from Theorem 1 and Lemma 1 and 2, we have the following security
result of CL-PKE1. Note that Basic-CL-PKE1 is 1

2n -uniform.
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Theorem 2. CL-PKE1 is secure against Type-I adversary with CL-IND-CCA2
attacks provided Hi (1 ≤ i ≤ 4) are modeled as random oracles and the BDH2,2,2

assumption is sound. CL-PKE1 is secure against Type-II adversary with CL-
IND-CCA2 attacks provided Hi (2 ≤ i ≤ 4) are modeled as random oracles and
the DH1,2,1 assumption is sound.

Specifically, assume a Type-I adversary AI breaks CL-PKE1 with CL-IND-
CCA2 attack with advantage ε(k) in time t(k) and in the attack AI makes qD

decryption queries and qi queries on Hi for 1 ≤ i ≤ 4 and q3 < 2n, then there
exists an algorithm BI to solve the BDH2,2,2 problem with following advantage
and time

Adv
BDH2,2,2
BI

(k) ≥ (1−q2/2n)ε(k)
q1(q3+q4) (1 − 1

2n )q3qD ,

tBI (k) ≤ t(k) + O(q3tE + q2τ),

where tE is the cost of Basic-CL-PKE1 and τ is the time of a pairing.
Assume a Type-II adversary AII breaks CL-PKE1 with CL-IND-CCA2 attack

with advantage ε(k) in time t(k) and in the attack AII makes qP public key
queries and qi queries on Hi for 2 ≤ i ≤ 4, then there exists an algorithm BII

to solve the DH1,2,1 problem with following advantage and time

Adv
DH1,2,1
BII

(k) ≥ ε(k)
qP (q3+q4) (1 − 1

2n )q3qD ,

tBII (k) ≤ t(k) + O(q3tE + q2τ).

Following the general approach in Section 3, we can construct a CL-KEM: CL-
KEM1 (see Appendix B in [10] for details).

4.2 CL-PKE2

In this subsection, we construct a CL-PKE (referred to as CL-PKE2) directly fol-
lowing the heuristic approach in Section 3. The scheme is based on BB1-IBE [5],
a commutative blinding IBE. CL-PKE2 consists of following algorithms:

CL.Gen(1k): Given a security parameter k, the algorithm works as follows:

1. Generate three cyclic groups G1, G2 and Gt of prime order p and a bilinear
pairing map ê : G1×G2 → Gt. Pick random generator P2 ∈ G2 and P1 ∈ G1.

2. Randomly sample a, b and c ∈ Zp. Set Q1 = aP1, Q2 = bP1, Q3 = cP1 ∈ G1,
and Q̂1 = aP2, Q̂2 = bP2, Q̂3 = cP2 ∈ G2. Compute v0 = ê(Q1, Q̂2) =
ê(P1, P2)ab.

3. Pick three cryptographic hash functions:

H1 : {0, 1}∗ → Zp,
H2 : Gt × G1 → {0, 1}n,
H3 : Gt × G1 × {0, 1}n × G1 × G1 → Zp,

for some integer n > 0.
4. Output the master public key Mpk = (G1, G2, Gt, p, ê, n, P1, Q1, Q3, v0,

H1, H2, H3) and the master secret key Msk = (P2, a, b, c).
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The message space is M = {0, 1}n, the ciphertext space is C = {0, 1}n×G1×
G1 × Zp and the randomness space is R = Zp.
CL.PartialKey(Msk, Mpk, IDA). Given a string IDA ∈ {0, 1}∗ of entity A, Mpk

and Msk, the algorithm randomly picks t ∈ Zp and outputs

DA = (D1, D2) = ((ab + (aH1(IDA) + c)t)P2, tP2).

We note that P2 in Msk can be disclosed, in particular, on Type-1 pairings
P1 = P2. Given Mpk with P2, one can verify if DA is a signature on IDA.
CL.SecretVal(Mpk, IDA). Given a string IDA and Mpk, the algorithm returns
a random XA ∈ Zp.
CL.PrivateKey(Mpk, DA, XA). Given Mpk, DA and XA, the algorithm outputs
SA = (DA, XA).
CL.PublicKey(Mpk, XA, IDA). Given Mpk and XA, the algorithm outputs
PA = XAP1.
CL.Encrypt(Mpk, IDA, PA, m). Given a plaintext m ∈ M, the identity IDA of
entity A, the system parameters Mpk and the public key PA of the entity, the
following steps are performed.

1. Pick a random r ∈ Zp and compute C1 = rP1 and C2 = rQ3 + rH1(IDA)Q1.
2. Compute ξ = vr

0 , f = rPA and C0 = m ⊕ H2(ξ, f).
3. Compute σ = r + H3(ξ, f, C0, C1, C2) mod p.
4. Set the ciphertext to C = 〈C0, C1, C2, σ〉.

CL.Decrypt(Mpk, IDA, PA, SA, C). Given a ciphertext C = 〈C0, C1, C2, σ〉 ∈ C,
the private key SA = (DA = (D1, D2), XA), the identifier IDA and Mpk, the
algorithm takes the following steps:

1. Compute ξ′ = ê(C1,D1)
ê(C2,D2) and f ′ = XAC1.

2. Compute r′ = σ − H3(ξ′, f ′, C0, C1, C2) mod p, output ⊥ if (ξ′, C1) �=
(vr′

0 , r′P1).
3. Compute m′ = C0 ⊕ H2(ξ′, f ′) and return m′ as the plaintext.

CL-PKE2’s security is summarised by the following theorem.

Theorem 3. CL-PKE2 is secure against Type-I adversary with CL-IND-CCA2
attacks provided Hi (1 ≤ i ≤ 3) are modeled as random oracles and the general
BDH assumption is sound. CL-PKE2 is secure against Type-II adversary with
CL-IND-CCA2 attacks provided Hi (i = 2, 3) are modeled as random oracles
and the DH1,1,1 assumption is sound.

Specifically, assume a Type-I adversary AI breaks CL-PKE2 with CL-IND-
CCA2 attack with advantage ε(k) in time t(k) and in the attack AI makes qD

decryption queries and qi queries on Hi for 1 ≤ i ≤ 3, then there exists an
algorithm BI to solve the general BDH problem with following advantage and
time

AdvGenenral BDH
BI

(k) ≥ (1−q1/p)q1 ε(k)
q1(q2+q3)

(1 − 1
p )qD

tBI (k) ≤ t(k) + O(q1t2 + qD(t1 + t3)),

where ti for i = 1, 2, 3 is the cost of operation in G1, G2, Gt respectively.
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Assume a Type-II adversary AII breaks CL-PKE2 with CL-IND-CCA2 attack
with advantage ε(k) in time t(k), and in the attack AII makes qP public key
queries and qi queries on Hi for i = 2, 3, then there exists an algorithm BII to
solve the DH1,1,1 problem with following advantage and time

Adv
DH1,1,1
BII

(k) ≥ ε(k)
qP (q2+q3) (1 − 1

p )qD ,

tBII (k) ≤ t(k) + O(qDt1).

The proof is given in Appendix A.3.
Similarly, by following the general approach in Section 3, we can construct

another CL-KEM by simply outputting (C1, C2) as the encapsulation of secret
key H(ξ, f).

5 Efficiency Discussion and Comparison

We now assess the comparative efficiency of several concrete CL-PKE schemes.
There have been some related security schemes in the literature. For example,
in [8], the authors proposed a CL-PKE-like scheme without using pairing, which
is more efficient than those schemes based on pairings. However, the scheme
requires a user to execute CL.PartialKey first before generating the public key.
This makes it more like a self-certified public key scheme [19] instead of CL-PKE.
Moreover, the scheme unlike other CL-PKE proposals based on IBE schemes
cannot work compatibly with exiting IBE, i.e., the scheme cannot degenerate
smoothly to an IBE. Gentry proposed the security notion “Certificate-Based
Encryption” (CBE) which is closely related with CL-PKE, and constructed a
concrete CBE scheme [20]. Here we only consider schemes with proofs in a se-
curity formulation compatible with the one defined in Section 2.2.

Table 3. CL-PKE Efficiency Comparison

Schemes Based IBE IBE Type Computation Ciphertext Size

AP-CL-PKE1 [3](1) BF-IBE Full Domain Hash =BF-IBE+2P (2) =BF-IBE

AP-CL-PKE2 [4](3) BF-IBE Full Domain Hash =BF-IBE+1M =BF-IBE
CL-PKE1 BF-IBE Full Domain Hash =BF-IBE+1M =BF-IBE
CL-PKE2 BB1-IBE Commutative Blinding =BB1-IBE+1M =BB1-IBE

LQ-CL-PKE [25] SK-IBE2 Exponent Inversion =SK-IBE2+1E =SK-IBE2

SLOS-CL-PKE [28] SK-IBE Exponent Inversion =SK-IBE+1M (4) =SK-IBE

1. The scheme is enhanced by a verifiable random parameter generation.
2. The scheme requires two more pairings in the encryption algorithm than BF-IBE.

The decryption operation is of the same cost as BF-IBE.
3. The scheme is enhanced as suggested in Section 2.2.
4. The scheme requires the Weil pairing.

As efficiency is the primary concern, we ignore any schemes designed in the
standard model because their performance is far worse than those with ran-
dom oracles. Table 3 summarises the used IBE scheme, the IBE type, compu-
tation and ciphertext size of several CL-PKE proposals. The computation cost
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only counts the extra operations including Pairing, Multiplication in G1 and
Exponentiation in Gt and the used IBE. Please refer to [5,9] for the detailed
efficiency discussion of relevant IBE schemes.

Among the schemes using the full domain hash IBE schemes, CL-PKE1 and
AP-CL-PKE2 have same performance and are faster than AP-CL-PKE1 in en-
cryption. Among the schemes using the exponent inversion IBE, SLOS-CL-PKE
makes use of the Weil pairing. As the Weil pairing is slower than the Tate pair-
ing [23], SLOS-CL-PKE is slower than LQ-CL-PKE. Like BB1-IBE, CL-PKE2
enjoys security reductions based on weak complexity assumptions and is efficient
in encryption and relatively slow in decryption.

6 Conclusion

In this work, we revisited various of CL-PKE formulations and defined a strong
security model for this type of encryption. Based on a simple observation on
some existing IBE and PKE schemes, we proposed a heuristic approach of con-
structing efficient CL-PKE and following the approach, we constructed two effi-
cient concrete CL-PKE schemes which are strongly secure in the random oracle
model. Beside, we also demonstrated that a slightly modified Fujisaki-Okamoto
conversion can transform a weak CL-PKE to a CL-IND-CCA2 secure scheme.
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A Appendices

A.1 Proof of Lemma 1

Proof: Given a BDH2,2,2 challenge (aP2, bP2, cP2) with pairing parameters. Al-
gorithm B simulates algorithm CL.Gen of Basic-CL-PKE1 to create the master
public key Mpk = (G1, G2, Gt, p, ê, ψ, n, P1, P2, ψ(aP2), H1, H2) and sets the
master secret key Msk = a which B does not know. H1, H2 are random oracles
controlled by B . Algorithm B passes Mpk to A and randomly selects 1 ≤ I ≤ qH1

and responds to queries as follows (for simplicity, we assume that the adversary
abides by the rules of the CL-OW-CPA game).

– H1(IDi): B maintains a list H list
1 of tuples 〈IDj , Qj, hj〉 as explained below.

The list is initially empty. When A makes a query at a point IDi, B responds
as follows:
• If IDi already appears on H list

1 in a tuple 〈IDi, Qi, hi〉, then B responds
with Qi.

• Otherwise, if the query is on the I-th distinct ID, then B stores 〈IDI ,
bP2, ⊥〉 into the tuple list and responds with H1(IDI) = bP2.

• Otherwise, B selects a random integer hi ∈ Zp, computes Qi = hiP2, and
stores 〈IDi, Qi, hi〉 into the tuple list. B responds with H1(IDi) = Qi.

– Public-Key-Broadcast(IDi): B maintains a list P list with tuples of 〈IDi,
Ui, Xi〉 and responds to the queries as follows:
• If a tuple exits for IDi, then B returns the corresponding Ui.
• Otherwise, B randomly samples Xi ∈ Zp and inserts a tuple 〈IDi, XiP1,

Xi〉 into the list and returns XiP1.
– Public-Key-Replace(IDi, P ): B replaces the tuple on P list for IDi with a

new tuple 〈IDi, P,⊥〉.
– Partial-Private-Key-Extract(IDi): B first searches H list

1 for the tuple
with IDi. If no such tuple is found, then H1(IDi) is queried. If in the found
tuple hi = ⊥, then B aborts the game. Otherwise, B returns hiaP2.

– Secret-Value-Extract(IDi): B searches P list for IDi, if no tuple is found,
then Public-Key-Broadcast(IDi) is queried first. B returns Xi found on P list

with IDi.
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– H2(Ki, Fi): To respond to the query, B maintains a list H list
2 with tuples of

the form 〈Ki, Fi, ζi〉. On the query, B does the following operations:
• If a tuple (Ki, Fi, ζi) is on the list, then B responds with ζi.
• Otherwise,B randomly chooses ζi ∈ {0, 1}n and adds the tuple 〈Ki, Fi, ζi〉

to the list. It responds to A with ζi.
– Challenge: Once A decides that Phase 1 of the game is over, it outputs

ID∗ on which it wishes to be challenged. B queries H1(ID∗) and if h∗ on
H list

1 for ID∗ is not ⊥, then B aborts the game (for simplicity). Otherwise
B randomly samples C∗

2 ∈ {0, 1}n and returns C∗ = (ψ(cP2), C∗
2 ) as the

challenge ciphertext. Note that the plaintext m∗ of the C∗ is

m∗ = C∗
2 ⊕ H2(ê(ψ(cP2), abP2), cP ∗)

where P ∗ is the currently public key on P list for ID∗.
– Guess: Once A decides Phase 2 of the game is over, it outputs m′. B does

the following to respond to the BDH challenge.
• B computes ζ∗ = m′ ⊕ C∗

2 .
• B goes through H list

2 to find tuples with 〈Ki, Fi, ζ
∗〉 with ê(Fi, P2) =

ê(P ∗, cP2).
• If no such tuple or more than one tuple is found, B fails the game.
• B returns Ki from the found tuple to the BDH challange.

We define following events: Event 1, denoted by H1, is that B aborts the game
prematurely. Event 2, denoted by H2, is that H2(ê(P1, P2)abc, cP ∗) is queried at
some point during the simulation above. Event 3, denoted by H3, is that more
than one tuple 〈Ki, Fi, ζ

∗〉 with ê(Fi, P2) = ê(P ∗, cP2) is found in H list
2 .

Through a standard argument, we have

Pr[H1] ≥ 1/qH1

Pr[H2] ≥ ε(k)
Pr[H3] ≤ qH2/2n

Overall we have

Adv
BDH2,2,2
B (k) ≥ Pr[H1 ∧H2 ∧H3] ≈ (1 − qH2/2n)ε(k)/qH1 .

A.2 AP-CL-PKE2 and Its Attacks

AP-CL-PKE2 shares most the algorithms with CL-PKE1 except CL.Encrypt
and CL.Decrypt. And AP-CL-PKE2 uses the hash functions H1, H

′
2, H

′′
2 , H ′

3, H4

where H1, H4 are just as of CL-PKE1 and H ′
2, H

′′
2 , H ′

3 are defined as follows:

H ′
2 : Gt× → {0, 1}n,

H ′′
2 : G1× → {0, 1}n,

H ′
3 : {0, 1}n × {0, 1}n → Zp,

AP-CL-PKE2’s encryption and decryption algorithm are as follows:

CL.Encrypt(Mpk, IDA, PA, m). Given a plaintext m ∈ {0, 1}n, the identity IDA

of entity A, the system parameters Mpk and the public key PA of the entity, the
following steps are performed.
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1. Pick a random σ ∈ {0, 1}n and compute r = H ′
3(σ, m).

2. Compute QA = H1(IDA), ξ = ê(Ppub, QA)r and f = rPA.
3. Set the ciphertext to C = 〈rP1, σ ⊕ H ′

2(ξ) ⊕ H ′′
2 (f), m ⊕ H4(σ)〉.

CL.Decrypt(Mpk, IDA, PA, SA, C). Given a ciphertext C = 〈U, V, W 〉 ∈ C, the
private key SA = (DA, XA), the identifier IDA and Mpk, the algorithm takes the
following steps:

1. Compute ξ′ = ê(U, DA), f ′ = XAU and σ′ = V ⊕ H ′
2(ξ

′) ⊕ H ′′
2 (f ′).

2. Compute m′ = W ⊕ H4(σ′) and r′ = H ′
3(σ

′, m′).
3. If U �= r′P1, output ⊥, else return m′ as the plaintext.

Though AP-CL-PKE2 shares very similarity with CL-PKE1, the scheme suf-
fers from two attacks: a Type-IC attack and a Type-II attack.

An adversary A launches the Type-IC attack as follows:

1. A randomly chooses ID∗ and two messages m0, m1, and passes them to the
challenger T to get the ciphertext C∗ = 〈U∗, V ∗, W ∗〉 of mb for b ∈ {0, 1}.

2. A issues Secret-Value-Extract(ID∗) to get the secret value X∗.
3. A randomly chooses X ′ ∈ Zp and issues Public-Key-Replace(ID∗, X ′P1).
4. A generates a ciphertext C′ = 〈U∗, V ∗⊕H ′′

2 (X∗U∗)⊕H ′′
2 (X ′U∗), W ∗〉. Note

that C′ is a valid ciphertext of mb for ID∗ with the public key X ′P1.
5. A issues DecryptC(ID∗, C′, X ′) to get the plaintext mb to win Game 1.

Note that in Al-Riyami-Paterson’s CL-PKE formulation [4], the oracle Secret-
Value-Extract does not exist. But the attack still works by A first choosing X∗ ∈
Zp and replacing ID∗’s public key with X∗P1 before issuing the challenge [32].
It is easy to see merely adding the message recipient’s identifier in H ′

3 does not
defend the attack.

An adversary A can launch a trivial Type-II attack as follows:

1. A issues Public-Key-Broadcast(ID∗) to get the public key value P ∗.
2. A randomly chooses two messages m0, m1, and passes ID∗ and the messages

to the challenger T to get the ciphertext C∗ = 〈U∗, V ∗, W ∗〉 of mb for
b ∈ {0, 1}.

3. A randomly chooses ID′ and issues Public-Key-Replace(ID′, P ∗).
4. A generates a ciphertext C′ = 〈U∗, V ∗ ⊕ H ′

2(ξ
′) ⊕ H ′

2(ξ
′′), W ∗〉 with ξ′ =

ê(U∗, DID∗) and ξ′′ = ê(U∗, DID′) where DID∗ , DID′ are the partial key of
ID∗, ID′ respectively. A can compute both values with the master secret key
Msk. Note that C′ is a valid ciphertext of mb for ID′ with the public key P ∗.

5. A issues DecryptS(ID′, C′, X ′) to get the plaintext mb to win Game 2.

It is sample to find out that merely adding the message recipient’s public key in
H ′

3 does not prevent the attack.
By applying Theorem 1 it is straightforward to prove that including the mes-

sage recipient’s identifier and public key in H ′
3 as CL-PKE1 does, the modified

scheme is secure.
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A.3 Proof of Theorem 3

Proof: We first deal with the Type-I adversary AI . Given a BDH problem
(P1, aP1, rP1, P2, aP2, bP2), we can construct an algorithm BI to compute
ê(P1, P2)abr by making use of AI as a subroutine. BI randomly chooses 1 ≤
I ≤ q1 and starts to simulate the CL-IND-CCA2 Game 1 as follows:

– CL.Gen: BI simulates CL.Gen as follows:
• Set Q1 = aP1, Q̂1 = aP2, Q̂2 = bP2.
• Randomly sample u, h ∈ Zp and set c = h − ua mod p and compute

Q3 = hP1 − uaP1 = cP1 and Q̂3 = hP2 − uaP2 = cP2.
• Compute v0 = ê(aP1, bP2) = ê(P1, P2)ab.
• Output the master public key Mpk = (G1, G2, Gt, p, ê, n, P1, Q1, Q3,

v0, H1, H2, H3) where Hi are random oracles controlled by BI and set
the master secret key Msk = (P2, a, b, c).

– H1(IDi): BI maintains a list H list
1 of tuples 〈IDj , uj〉 as explained below.

The list is initially empty. When AI makes a query on IDi, BI responds as
follows:
• If IDi is on H list

1 in a tuple 〈IDi, ui〉, then BI responds with ui.
• Otherwise, if the query is on the I-th distinct ID, then BI stores 〈IDI , u〉

into the tuple list and responds with u.
• Otherwise, BI selects a random integer ui ∈ Zp and stores 〈IDi, ui〉 into

the tuple list. BI responds with ui.
– Public-Key-Broadcast(IDi): BI maintains a list P list with tuples of the

form 〈IDi, Ui, Xi〉 and responds to the queries as follows:
• If a tuple exits for IDi, then BI returns the corresponding Ui.
• Otherwise, BI randomly samples Xi ∈ Zp and inserts a tuple 〈IDi, XiP1,

Xi〉 into P list and returns XiP1.
– Public-Key-Replace(IDi, P ): BI replace the tuple on P list for IDi with a

new tuple 〈IDi, P,⊥〉.
– Partial-Private-Key-Extract(IDi): BI responds to the query as follows

• BI first searches H list
1 for the tuple with IDi. If no such tuple is found,

then H1(IDi) is queried. Assume ui is on the found tuple in H list
1 for IDi.

• If ui = u, BI aborts the game.
• BI randomly samples ti ∈ Zp and sets t̃i = ti − b/(ui − u) and computes

D1 = −h
ui−uQ̂2 + ti((ui − u)Q̂1 + hP2)

= −h
ui−ubP2 + b

ui−u ((ui − u)Q̂1 + hP2) + t̃i((ui − u)Q̂1 + hP2)
= abP2 + t̃i(uiaP2 + cP2) = (ab + (aH1(IDi) + c)t̃i)P2

D2 = tiP2 − 1
ui−ubP2 = t̃iP2

BI outputs (D1, D2) as the answer.
– Secret-Value-Extract(IDi): BI searches P list for IDi, and if no tuple is

found, then Public-Key-Broadcast(IDi) is queried first. BI returns Xi found
on P list with IDi.
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– H2(Ki, Fi): To respond to the query BI maintains a list H list
2 with tuples of

the form 〈Ki, Fi, ζi〉. On the query, BI does the following operations:
• If a tuple (Ki, Fi, ζi) is on the list, then BI responds with ζi.
• Otherwise, BI randomly chooses ζi ∈ {0, 1}n and adds the tuple 〈Ki, Fi,

ζi〉 to the list. It responds to AI with ζi.
– H3(Ki, Fi, C

i
0, C

i
1, C

i
2): To respond to the query BI maintains a list H list

3

with tuples of the form 〈Ki, Fi, C
i
0, C

i
1, C

i
2, ξi〉. On the query, BI does the

following operations:
• If a tuple (Ki, Fi, C

i
0, C

i
1, C

i
2, ξi) is on the list, then BI responds with ξi.

• Otherwise, BI randomly chooses ξi ∈ Zp and adds the tuple 〈Ki, Fi, Ci
0,

Ci
1, Ci

2, ξi〉 to the list. It responds to AI with ξi.
– DecryptS(IDi, Ci): BI takes the following steps to respond to the query

• BI queries the current public key Pi associated with IDi by Public-Key-
Broadcast(IDi).

• BI parses Ci as 〈Ci
0, Ci

1, Ci
2, σi〉 and searches H list

3 to finds tuples
(Ki, Fi, C

i
0, C

i
1, Ci

2, ξi) and puts them into set S0.
• If S0 is empty, then BI outputs ⊥.
• For each tuple in S0,

∗ Compute ri = σi − ξi mod p.
∗ If Ci

1 = riP1, C
i
2 = riQ3+riH1(IDi)Q1, Ki = vri

0 and Fi = riPi, then
return C0 ⊕ H2(Ki, Fi).

• If no tuple is found to pass the above check, then BI outputs ⊥.
– Challenge: Once AI decides that Phase 1 is over it outputs identity ID∗

and two messages m0, m1 on which it wishes to be challenged.
• If H1(ID∗) �= u, then BI aborts the game.
• BI randomly samples σ∗ ∈ Zp and C∗

0 ∈ {0, 1}n. BI sets C∗
1 = rP1 and

C∗
2 = rcP1 + ruaP1 = hrP1.

• BI returns C∗ = 〈C∗
0 , C∗

1 , C∗
2 , σ∗〉 as the challenge ciphertext.

– Guess: Once AI outputs its guess b′. BI randomly chooses a Ki from H list
2

or H list
3 and outputs Ki as the answer of the BDH problem.

Now we analyse BI ’s probability of outputting the correct answer to the BDH
problem. We define three events. Event 1, denoted by H1, is that BI aborts the
game prematurely which could happen when ID∗ �= IDI or H1(IDi) = u with
IDi �= IDI . Event 2, denoted by H2, is that H2(ê(P1, P2)abr, ∗) or H3(ê(P1, P2)abr ,
∗, ∗, ∗, ∗) is queried at some point during the simulation above. Event 3, denoted
by H3, is that in the game AI differentiates BI from a real world before Event
2 happens.

Through a standard argument, we have

Pr[H1] ≥ (1 − q1/p)q1/q1

Pr[H2] ≥ ε(k)
Pr[H3] ≥ (1 − 1/p)qD

Overall we have

AdvBDHBI
(k) ≥ 1

q2 + q3
Pr[H1 ∧H2 ∧H3] =

(1 − q1/p)q1ε(k)
q1(q2 + q3)

(1 − 1/p)qD .

The Type-II security can be proved with similar strategy used in the Type-I
security proof. Due to lack of space, the details are omitted.
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Abstract. We survey recent research on pairings on hyperelliptic curves
and present a comparison of the performance characteristics of pairings
on elliptic curves and hyperelliptic curves. Our analysis indicates that
hyperelliptic curves are not more efficient than elliptic curves for general
pairing applications.

1 Introduction

The original work on pairing-based cryptography [46,47,27,6] used pairings on
elliptic curves. It was then natural to suggest using higher genus curves for
pairing applications [18]. The motivation given in [18] for considering higher
genus curves was to have a wider choice of possible embedding degrees k. This
motivation was supported by [42,45] who showed that, for supersingular abelian
varieties, one can always get larger security parameter in dimension 4 than using
elliptic curves.

Koblitz [30] was the first to propose using divisor class groups of hyperelliptic
curves for cryptosystems based on the discrete logarithm problem. Since that
time there has been much research on comparing the speed of elliptic curves and
hyperelliptic curves for cryptography. The current state of the art (see [7,34] for a
survey) suggests that in some situations genus 2 curves can be faster than elliptic
curves. This gives further motivation for considering pairings on hyperelliptic
curves.

Duursma and Lee [11] were the first to give fast algorithms for computing
pairings on curves of genus ≥ 2. Their loop shortening idea was generalised in
[5,26,23]. Some other papers on hyperelliptic pairings are [10,12,35,40].

It is therefore natural to explore whether pairings on hyperelliptic curves can
be competitive/faster than pairings on elliptic curves, or whether there are any
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other advantages. This paper surveys the current state of knowledge on pairings
on curves. We discuss possible advantages and disadvantages of using curves of
genus g > 1 and we present a number of open problems for future research.

The plan of the paper is as follows. We recall some background on hyperelliptic
curves, divisor class groups, and representation of divisor classes. We discuss the
supposed advantages of hyperelliptic vs. elliptic curves in standard cryptography
(throughout the paper we use the phrase ‘non-pairing cryptography’ to denote
the other applications of elliptic and hyperelliptic curves). We then recall the
Tate-Lichtenbaum and ate pairings and present some implementation details for
pairings on hyperelliptic curves, including a discussion of the critical computa-
tional task of evaluating a function at a divisor. We discuss the use of degenerate
divisors for pairings, give some results on distortion maps for supersingular genus
2 curves and recall the Rubin-Silverberg point compression method. Finally, we
give a thorough comparison of the performance characteristics of elliptic and
hyperelliptic curves.

Our conclusion is that, for most applications, elliptic curves provide more
efficient solutions than hyperelliptic curves. Nevertheless, there are many inter-
esting open questions relating to pairings on hyperelliptic curves. In order to
encourage research on this important topic we provide a list of problems for
further study.

2 Background on Curves

A good reference is [1]. An affine elliptic curve E over a finite field Fq is given
by an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a3, a2, a4, a6 ∈ Fq are such that E is non-singular. An elliptic curve
E over Fq is the associated projective curve of an affine elliptic curve E. It is
a non-singular projective curve of genus one and has, in addition to the points
of E, one extra point (called the point at infinity and denoted ∞), which is Fq-
rational. The set of points E(Fq) forms a group, where ∞ is the identity element
and the group operation is given by the chord-and-tangent rule.

We define an affine hyperelliptic curve over Fq to be a non-singular affine
curve of the form

C : y2 + H(x)y = F (x)

where H(x), F (x) ∈ Fq[x]. We denote by g the genus of C, in which case we may
assume that deg(H(x)) ≤ g + 1 and deg(F (x)) ≤ 2g + 2. There is a single point
at infinity on the associated projective curve C0, but it is now singular and there
may be one Fq-rational or two, not necessarily Fq-rational points above this on
the normalisation C (i.e., desingularisation) of C0. We call C a hyperelliptic curve
over Fq of genus g. For any extension field K of Fq we denote by C(K) the set
of points on C with coordinates in K.
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2.1 The Divisor Class Group

The points of C no longer form a group, if g ≥ 2. Instead, one works with the
divisor class group of the curve.

The divisor group is defined as

Div(C) =

⎧⎨
⎩

∑
P∈C(Fq)

nP (P ) : nP ∈ Z and all but finitely many nP = 0

⎫⎬
⎭ ,

where the sum is a formal sum over symbols (P ), and addition is carried out
coefficientwise. For D ∈ Div(C), define deg(D) =

∑
P∈C(Fq) nP ∈ Z and vP (D) =

nP , so we can write D =
∑

P∈C(Fq) vP (D)P . Let Div0(C) = {D ∈ Div(C) :
deg(D) = 0} which is a subgroup of Div(C). The support of a divisor D, denoted
supp(D), is the set {P ∈ C(Fq) : vP (D) �= 0}. A divisor D is called effective if
vP (D) ≥ 0 for all P .

For any algebraic extension field K of Fq a K-rational function on C is a
function f : C(Fq) → Fq ∪ {∞} that can be represented by a fraction g/h of
homogeneous polynomials of the same degree defined over K. This means that
for all P ∈ C(Fq) we have either f(P ) = g(P )/h(P ) (evaluation of g, h at the
coordinates of P ) or g(P ) = h(P ) = 0, and the latter happens for at most finitely
many P . It can be shown that for P ∈ C(Fq) with g(P ) = h(P ) = 0 one can
choose an alternative representation g̃/h̃ of f such that g̃(P ) �= 0 or h̃(P ) �= 0,
hence f(P ) = g̃(P )/h̃(P ).

The K-rational functions form a field K(C), which is called the function field
of C over K. The function evaluation f(P ) for f ∈ K(C) can be either zero, a
non-zero value from Fq, or ∞. It is possible to associate a multiplicity vP (f) ∈ Z

of zero (or pole), which satisfies the expected properties known from Laurent
series. Equivalently, the function vP is the valuation of the algebraic function
field K(C) at the place P .

If f ∈ Fq(C) then one can define the divisor

div(f) =
∑

P∈C(Fq)

vP (f)(P ).

It is a standard result that deg(div(f)) = 0, since C is projective. The degree of
f is defined as deg(f) =

∑
vP (f)>0 vP (f) = −

∑
vP (f)<0 vP (f).

The group of principal divisors is

Prin(C) = {div(f) : f ∈ Fq(C)}

which is a subgroup of Div0(C). The divisor class group is defined to be the
quotient group

Pic0(C) = Div0(C)/Prin(C).

Some authors write D1 ∼ D2 or D1 ≡ D2 to represent equivalence of divi-
sors in the quotient, in other words that there exists a function f such that
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D1 = D2 + div(f). The equivalence class containing a divisor D is called a
divisor class and is denoted D.

To obtain a finite group, we must consider divisor classes over Fq, not Fq. A
divisor D is said to be K-rational if Dσ = D for all σ ∈ Gal(Fq/K). We define

Div0
K(C) = {D ∈ Div0(C) : Dσ = D ∀σ ∈ Gal(Fq/K)}.

We define PrinK(C) = {div(f) : f ∈ K(C)} and then

Pic0
K(C) = Div0

K(C)/PrinK(C)

and one can prove that this is isomorphic to the subgroup of Pic0(C) which is
invariant under Gal(Fq/K). For r ∈ N we define

Pic0
K(C)[r] = {D ∈ Pic0

K(C) : rD = 0}.

The Riemann hypothesis for function fields (proved by Weil) implies that
#Pic0

Fq
(C) ≈ qg for q large and g small. This is the primary motivation for

considering hyperelliptic curves for cryptography: for a k-bit group size one can
work over a finite field of about k/g bits.

The Jacobian of a curve C is the abelian variety Jac(C) that contains C and
has the property that, for every extension field K of Fq, the groups Jac(C)(K)
and Pic0

K(C) are isomorphic.

2.2 Mumford Representation

In this section we assume C is a hyperelliptic curve of genus g over K with
a single K-rational point ∞ at infinity. To be able to explicitly compute with
elements of Pic0

K(C) we have to choose a compact representation of the elements.
To this end we introduce the following notion.

Definition 1. A divisor D ∈ Div0
K(C) on a hyperelliptic curve C of genus g is

called semi-reduced if it can be written as D = E − d(∞) with E effective and
for P = (x, y) with 2y + H(x) = 0 one has vP (E) ∈ {0, 1}, and for P = (x, y)
and P ′ = (x,−y − H(x)) with P �= P ′ (equivalently 2y + H(x) �= 0) one has
vP (E)vP ′ (E) = 0. If moreover deg(E) ≤ g then D is called reduced.

Every divisor class in Pic0
K(C) contains exactly one reduced divisor. A reduced

divisor D = E − d(∞) is represented in Mumford representation as a pair
[u(x), v(x)] of polynomials in K[x] such that: u(x) is monic, u(x) divides F (x)−
H(x)v(x) − v(x)2, deg(v(x)) < deg(u(x)) ≤ g. Subject to these conditions,
the relation between E =

∑d
i=1(xi, yi) and [u(x), v(x)] is as follows: u(x) =∏d

i=1(x− xi) and v(xi) = yi. This yields a 1–1 correspondence between reduced
divisors and their Mumford representation.

2.3 Cantor’s Algorithm

We continue to assume that C is a hyperelliptic curve over K with a single
K-rational point at infinity. An algorithm for adding general divisor classes in
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Algorithm 1. Cantor Addition
Input: Divisors D1 = [u1, v1] and D2 = [u2, v2]
Output: A reduced divisor D representing the sum D1 + D2 in Pic0

K(C).
1: d1 ← gcd(u1, u2) = e1u1 + e2u2

2: d ← gcd(d1, v1 + v2 + H) = c1d1 + c2(v1 + v2 + H)
3: s1 ← c1e1, s2 ← c1e2, s3 ← c2

4: u ← (u1u2)/d2, v ← (s1u1v2 + s2u2v1 + s3(v1v2 + F ))/d mod u
5: while deg(u) > g do
6: u′ ← Monic((F − vH − v2)/u), v′ ← (−H − v) mod u′

7: u ← u′, v ← v′

8: end while
9: return D = [u′, v′].

this case was developed by Cantor [9] for the case that H(x) = 0 and the
characteristic of K is not 2. The general case was worked out by Koblitz in [30].

Cantor’s algorithm is given in Algorithm 1, but as presented here, the addi-
tion algorithm is not very efficient, since it requires an extended Euclidean gcd
computation in Steps 1 and 2. However if one fixes the genus g, one can work
out specific algorithms dedicated to the various possible values of deg(u1) and
deg(u2) [25,32,33]. This way one can formulate algorithms that are much more
efficient, and that avoid high-level operations like Euclidean algorithms.

The relation with divisor equivalence is as follows: in Step 4 we obtain a
semi-reduced divisor D represented by [u(x), v(x)] that satisfies

D = D1 + D2 − div(d(x)) . (1)

The divisor D is then further reduced in the loop in Step 5 to a divisor D′

represented by [u′(x), v′(x)] which satisfies

D′ = D − div((y − v(x))/u′(x)) . (2)

3 Elliptic Versus Hyperelliptic Curves

The primary motivation for considering curves of genus g > 1 for cryptography
is the fact that the group size grows as qg. In other words, with genus 2 one can
get a given group size by working over a field Fq where q has half the bit length
needed if working with elliptic curves.

There has been much discussion about whether or not genus 2 curves can
be faster for non-pairing cryptography than elliptic curves. To get comparable
timings it is crucial to replace Cantor’s algorithm with some optimised formu-
lae [25,32,33]. Nevertheless, it seems that fully general implementations of genus
2 curves are slower than general implementations of elliptic curves.

However, there are several special tricks available for genus 2 curves, which
have no counterpart for elliptic curves. We will briefly mention two such tricks
here.
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The first is to use curves (in characteristic 2) of the special form

y2 + xy = x5 + F3x
3 + F2x

2 + F0.

For these curves, the optimised group law formulae require one inversion, 6
squarings and 5 multiplications [33,34], which is very competitive compared with
elliptic curves. For pairings using supersingular curves in characteristic 2 one has
curves which are even more special, and thus faster, than this. One can avoid
inversions if some form of projective coordinates is used.

A second trick is to utilise special divisors. Recall that a general reduced
divisor D on a genus 2 curve has support consisting of two affine points (i.e.,
D = (P1) + (P2) − 2(∞)). Following [28,29] one can exploit the benefits of
using degenerate divisors of the form D = (P ) − (∞). (Note that the definition
of degenerate divisors in [28,29] is that they have less than g points in their
support, whereas our definition is more restrictive when g > 2 in that we insist
on having exactly one affine point in the support.) The addition operations are
faster when adding a general divisor to a degenerate divisor, than when adding
two general divisors.

To summarise, hyperelliptic curves can be competitive with elliptic curves
(sometimes, even faster) due to the smaller field size, as long as one exploits
optimised addition formulae for special curves and one uses special divisors.

4 A World of Pairings

4.1 Weil and Tate-Lichtenbaum Pairings

Let C be a non-singular projective curve of genus g over Fq. Let r be coprime
to q. It is typical for cryptographic applications to take r to be a (large) prime
divisor of #Pic0

Fq
(C). It is often the case that r ≈ qg, but in some situations it is

necessary to take r smaller. The embedding degree is defined to be the smallest
positive integer k such that r | (qk − 1). Note that the embedding degree is a
function of q and r. The subgroup of r-th roots of unity of F

×
qk is denoted by

μr = {z ∈ F
×
qk : zr = 1}.

The Weil pairing [52,39] is defined to be a non-degenerate bilinear map

Pic0
Fq

(C)[r] × Pic0
Fq

(C)[r] −→ μr

which is denoted er(D1, D2).
The Tate-Lichtenbaum pairing [49,36,16] is defined to be a non-degenerate

bilinear map

Pic0
F

qk
(C)[r] × Pic0

F
qk

(C)/rPic0
F

qk
(C) −→ F

×
qk/(F×

qk)r

which is denoted 〈D1, D2〉r.
The domain and range of the Weil pairing are better suited for cryptographic

applications, since the pairing arguments and values are given by points and finite
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field elements instead of equivalence classes. For many cryptographic applications
it is necessary to work with unique representatives (e.g., Alice and Bob may
perform different calculations but must obtain the same element). To achieve this
for the Tate-Lichtenbaum pairing, two simplifications are usually made. First, if
we assume that Pic0

F
qk

(C) contains no elements of order r2 then we may identify

Pic0
F

qk
(C)[r] with Pic0

F
qk

(C)/rPic0
F

qk
(C), via the map D2 �→ D2 + rPic0

F
qk

(C).

Second, we can map into the subgroup μr by raising to the power (qk−1)/r. This
is called the final exponentiation. Hence, we consider the reduced (or modified)
Tate-Lichtenbaum pairing

t(D1, D2) = 〈D1, D2〉(q
k−1)/r

r .

The mathematical definition of the Tate-Lichtenbaum pairing is as follows.
The argument on the left hand side of the Tate-Lichtenbaum pairing is repre-
sented by an Fqk -rational divisor D1 of degree zero. Since D1 is a divisor class
of order r, there is a function fr,D1 with divisor

div(fr,D1) = rD1.

The argument of the right hand side of the Tate-Lichtenbaum pairing can be
represented by an Fqk -rational divisor D2 of degree zero such that the supports
of D1 and D2 are disjoint. Then the Tate-Lichtenbaum pairing is defined to be

〈D1, D2 + rPic0
F

qk
(C)〉r = fr,D1(D2) =

∏
P

fr,D1(P )vP (D2).

The Weil pairing usually offers inferior efficiency and flexibility in compar-
ison with the reduced Tate-Lichtenbaum pairing (see for example [24] or [1,
Section 16.1.5]). In the remainder of the paper we will therefore consider the
reduced Tate pairing only. More information about the Weil pairing and its
efficient computation can be found in [38].

Finally, we note that fr,D with div(fr,D) = rD is only defined up to scalar
multiples from F

×
q . It is possible to find fr,D which is defined over the field of

definition of D and we assume this in the following. We will need to impose some
additional normalisation conditions on fr,D later.

4.2 Ate Pairings

For cryptographic purposes one applies one further simplification to the reduced
Tate-Lichtenbaum pairing by restricting the pairing to certain cyclic subgroups
G1 and G2 of Pic0

F
qk

(C)[r] that are Frobenius eigenspaces. Write π for the q-power

Frobenius map on C and the Frobenius endomorphism on Pic0
F

qk
(C). Then we

define
G1 = Pic0

Fq
(C)[r],

for which the eigenvalue of π is 1. We also define

G2 = Pic0
F

qk
(C)[r] ∩ ker(π − q).
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The Weil and Tate-Lichtenbaum pairings are the two known, essentially dif-
ferent pairings available for curves. The elliptic and hyperelliptic ate pairings
can be regarded as special, low degree variants of the Tate-Lichtenbaum pairing.
Note that while the Weil and Tate-Lichtenbaum pairings are named after their
inventors and are already quite classical, the ate pairing is much more recent
and carries an artificial name.

Ate Pairings on Elliptic Curves. Let E be an ordinary elliptic curve over
Fq. Let t be the trace of the q-power Frobenius endomorphism π of E , such that
#E(Fq) = q − t + 1. We assume that r ≥ 5 is a sufficiently large prime factor of
#E(Fq) and that k is minimal such that r‖(qk − 1).

If P ∈ E(Fq) has order r, then (P ) − (∞) is a divisor of degree zero represent-
ing a divisor class of order r. We define fr,P = fr,(P )−(∞). Recall our assumption
that the field of definition of fr,P be that of P . In addition to this, we need to nor-
malise fr,P as follows. Let z ∈ Fq(E) be a local uniformizer at ∞, that is z satisfies
v∞(z) = 1. Then we define lc∞(fr,P ) = (zrfr,P )(∞) and fnorm

r,P = fr,P /lc∞(fr,P ).
The function fnorm

r,P is defined over the field of definition K of P and is uniquely
determined by r and P up to non-zero rth-power multiples from K.

The following theorem is from [26], using a slightly more general formulation
given in [37].

Theorem 1. Let S be an integer with S ≡ q mod r. Define N = gcd(Sk−1, qk−
1) and L = (Sk − 1)/N . Let cS =

∑k−1
i=0 Sk−1−iqi mod N . Then

aS : G2 × G1 → μr, (Q, P ) �→ fnorm
S,Q (P )cS(qk−1)/N

defines a bilinear pairing, called the elliptic ate pairing. If k | #Aut(E) then

atwist
S : G1 × G2 → μr, (P, Q) �→ fS,P (Q)cS(qk−1)/N

also defines a bilinear pairing, called the twisted ate pairing. Both pairings aS

and atwist
S are non-degenerate if and only if r � L.

The relation with the reduced Tate-Lichtenbaum pairing is

aS(Q, P ) = t(Q, P )L and atwist
S (P, Q) = t(P, Q)L.

We remark that the condition k | #Aut(E) holds true if and only if E admits a
twist of degree k. We say that E admits a twist of degree d if there is an elliptic
curve E ′ defined over Fq and an isomorphism ψ : E ′ → E defined over Fqd , and d
is minimal with this property. If k | #Aut(E) does not hold one may still apply
the theorem for a divisor e of k using a base extension of degree k/e.

One can take S = q in Theorem 1, but the usual choice is S = t − 1, which
has half the bit length of #E(Fq) and thus yields half the loop length of the
standard reduced Tate-Lichtenbaum pairing, if r ≈ q. In certain cases it may
be possible to choose S strictly smaller than t − 1, which yields an even more
efficient computation [37].

The Duursma-Lee pairing [11] and the ηT -pairing from [5] can be regarded as
a special form of the twisted ate pairing on supersingular elliptic curves.



116 S.D. Galbraith, F. Hess, and F. Vercauteren

Ate Pairings on Hyperelliptic Curves. For hyperelliptic curves the situation
is somewhat different. Indeed, if C is a hyperelliptic curve then r | #Pic0

Fq
(C) =

qg + a1(qg−1 + 1) + a2(qg−2 + 1)+ · · ·+ ag. If r ≈ #Pic0
Fq

(C) then the bit length
of q is already g times shorter than the bit length of r, so we may try to mimic
Theorem 1 with S = q (this idea, in a special case, first appears in [11]).

In order to formulate the main results from [23], we fix some notation. Let C
be a hyperelliptic curve with a single point ∞ at infinity. For any divisor class D
we denote by ρ(D) the unique reduced divisor in D and by ε(D) the effective part
of ρ(D) so that we have ρ(D) = ε(D)− d(∞). We apply the same normalisation
to the function fr,D as above, namely fnorm

r,D = fr,D/(lc∞(fr,D)) for lc∞(fr,P ) =
(zrfr,P )(∞) and z ∈ Fq(C) a local uniformizer at ∞ over Fq. A curve is called
superspecial if its Jacobian is isomorphic to Eg with E a supersingular elliptic
curve. The Jacobian of superspecial curves is hence also supersingular, and in
particular has p-rank zero.

Theorem 2. ([23]) With the above notation and assumptions,

a : G2 × G1 → μr : (D2, D1) �→ fnorm
q,ρ(D2)

(ε(D1))

defines a non-degenerate, bilinear pairing called the hyperelliptic ate pairing. If
C is superspecial and d = gcd(k, qk − 1) then

â : G1 × G2 → μr : (D1, D2) �→ fnorm
q,ρ(D1)

(ε(D2))d

defines a non-degenerate, bilinear pairing.
If in any of the two pairings we have supp(ε(Di)) ∩ supp(ρ(Dj)) �= ∅, then

ε(Di) needs to be replaced by any D ∈ Di with supp(D) ∩ supp(ρ(Dj)) = ∅.
The relation with the reduced Tate-Lichtenbaum pairing is

t(D2, D1) = a(D2, D1)kqk−1
and t(D1, D1) = â(D1, D2)(k/d)qk−1

.

One feature of the hyperelliptic ate pairing is that the final exponentiation is
very simple.

5 Pairing Friendly Curves

A curve C over Fq of genus g is called pairing friendly if there is a large prime
r | #Pic0

Fq
(C) with relatively small embedding degree k (say, 2 ≤ k ≤ 30g)

and such that μr does not lie in a proper subfield of Fqk . Supersingular curves
are pairing friendly. In this section we list some curves which are particularly
suitable for efficient pairing implementation.

5.1 Elliptic Curves

The most useful cases are ordinary curves for which the value S in the elliptic
ate pairing is small, and supersingular curves. An example in the supersingular



Hyperelliptic Pairings 117

case is the curve E : y2 + y = x3 + x + b over F2m where b = 0, 1 and m is odd.
The group order is 2m + 1 ± 2(m+1)/2 and the embedding degree is k = 4. See
[18,5] for more details.

Elliptic curves suitable for the elliptic ate pairing can be constructed using
the method of Brezing and Weng [8]. A family which is especially adapted to
the ate pairing is given by the following parameterisation (which for n = 1 was
given already in [3]): let r(x) = Φ12n(x) for any positive integer n coprime to
3, t(x) = x + 1 and s(x) = (2x2n − 1). Following the method of [8] we define
p(x) = (t(x)2 − s(x)2(t(x) − 2)2/D)/4 with D = −3. If x is such that p(x) and
r(x) are prime, then one can easily construct an elliptic curve y2 = x3 + b with
embedding degree 12n. For n = 1 then deg(r(x)) = 4 and deg(p(x)) = 6, but for
larger values of n one can get deg(r(x)) ≈ deg(p(x)). Note that the trace is as
small as possible compared to r and that the elliptic curve admits sextic twists;
both these features are desirable for fast implementations of the ate pairings.

5.2 Hyperelliptic Curves

An example of a supersingular genus 2 curve is Cd : y2 + y = x5 + x3 + d with
d = 0 or 1 over F2m , where m is coprime to 6. This curve has embedding degree
12 (see [18,5] for more details).

An example of a family of superspecial hyperelliptic curves was studied by
Duursma and Lee [11]. They considered the curves C : y2 = xp −x+ d over Fpm

where d = ±1. The genus of C is (p − 1)/2. When p ≡ 3 mod 4 the embedding
degree is k = 2p. If p ≡ 1 mod 4 then the embedding degree is k = p. It is
worth noting that the fast pairing algorithms of [11,5] required the condition
p ≡ 3 mod 4, but the ate method works for all cases.

In characteristic p ≥ 5, the best one can do with supersingular genus 2 curves
is k = 6. In [20] it is shown how to obtain suitable curves for any p ≡ 2 mod 3
by taking twists of the supersingular curve y2 = x6 + 1.

It is natural to try to use non-supersingular curves of genus g ≥ 2 for pairing-
based cryptography. However, it seems to be hard to generate suitable curves
in this case. The paper [19] gives some first steps towards solving this problem,
by presenting some quadratic polynomial families of abelian surfaces with given
embedding degree. However, [19] proves that for some embedding degrees (e.g.,
k = 8 and k = 12) there are no such quadratic families. These results suggest that
there is less structure in the genus 2 case (or, at least, that the structure is more
complicated in the genus 2 case) than in the elliptic case. For the polynomial
families found in [19] the authors were unable to generate any curves using the
CM method. Indeed, the CM method for curves of genus ≥ 2 is much less well
developed than the CM method in the elliptic case.

The first examples of non-supersingular pairing-friendly genus 2 curves are
due to Freeman [14]. The parameters for these curves are not very attractive for
fast pairing implementation (precisely, the size of r is too small compared with
the size of q). More research is needed on methods to generate such curves with
parameters suitable for cryptography.
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Note that many of the computational assumptions in pairing based cryptog-
raphy can be solved in subexponential time, hence it may not be necessary to
restrict to very small genus g, as is usually done for non-pairing cryptography.
Nevertheless, in our comparison with elliptic curves we will assume that g ≤ 5.

6 Miller’s Algorithm

This section reviews the generalisation of Miller’s algorithm for computing Tate-
Lichtenbaum or ate pairings efficiently on hyperelliptic curves y2+H(x)y = F (x)
over Fq with a single point at infinity. We make the following assumptions:

– We are pairing two reduced divisors D1 and D2 with Frobenius eigenvalues
1 and q (for the Tate-Lichtenbaum pairing, D1 has eigenvalue 1 and D2 has
eigenvalue q, for the ate pairing it is the other way around).

– The pairing is computed as fS,D1(ε(D2))d for some integers S and d.

6.1 Hyperelliptic Miller

Miller’s algorithm computes functions fn,D with divisor div(fn,D) = nD − Dn,
where Dn = ρ(nD), i.e. the unique reduced divisor equivalent to nD. It basically
consists of a double and add algorithm exploiting the fact that one can define

fk+l,D = fk,D · fl,D · hDk,Dl
,

with div(hDk,Dl
) = Dk + Dl − ρ(Dk + Dl). These functions hDk,Dl

are obtained
easily from Cantor’s algorithm by equations (1) and (2).

However, we are not really interested in the functions fn,D1 themselves, but
only in the evaluation fn,D1(E) for some effective divisor E, so we need a method
to evaluate hDk,Dl

at E. Since this evaluation step is the crucial part of Miller’s
algorithm, we describe two different methods in detail (namely using a norm
computation and using resultants). The papers [23,35] use resultants for pairing
computation.

Since any function can be written as a fraction of two polynomials, we can
limit ourselves to evaluating a polynomial h(x, y) ∈ Fq[x, y] at E for some Fq-
rational divisor D = E − d(∞), with Mumford representation [uE(x), vE(x)].

The first method is a simple optimisation of the definition of function evalu-
ation at a divisor. Let E =

∑d
i=1(xi, yi), then we can compute the support of

E by factoring uE(x) as
∏d

i=1(x − xi) and setting yi = vE(xi). In general each
(xi, yi) will be defined over some extension field Fqei , where ei ≤ g. Of course,
we could then compute h(E) as

∏d
i=1 h(xi, yi), but in general this is not the

best method, since we are not exploiting the fact that the result has to be in Fq.
Instead, one could partition the support into distinct Galois orbits{

(xi, yi), (x
q
i , y

q
i ), . . . , (x

qei−1

i , yqei−1

i )
}

and compute the product of the evaluations at these points simply by comput-
ing NFqei /Fq

(h(xi, yi)). The above method is in general suboptimal due to the
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Algorithm 2. Miller Step
Input: D1 = [u1, v1], D2 = [u2, v2], E = [uE , vE ].
Output: Reduced divisor ρ(D1 + D2) and evaluation hnorm

D1,D2(E), represented by

[h̃1(x), h̃2(x), h3].
1: d1 ← gcd(u1, u2) = e1u1 + e2u2

2: d ← gcd(d1, v1 + v2 + H) = c1d1 + c2(v1 + v2 + H)
3: h̃1 ← d mod uE , h̃2 ← 1, h3 ← 1
4: s1 ← c1e1, s2 ← c1e2, s3 ← c2

5: u ← (u1u2)/d2, v ← (s1u1v2 + s2u2v1 + s3(v1v2 + F ))/d mod u
6: while deg(u) > g do
7: u′ ← Monic((F − vH − v2)/u), v′ ← (−H − v) mod u′

8: h̃1 ← h̃1 · (vE − v) mod uE

9: h̃2 ← h̃2 · u′ mod uE

10: if deg(v) > g then
11: h3 ← −lc(v) · h3 � lc = leading coefficient
12: end if
13: u ← u′, v ← v′

14: end while
15: return [u, v], [h̃1, h̃2, h3]

Algorithm 3. Miller’s algorithm (base 2)

Input: S =
∑B

i=0 Si2
i, d, D1 = [u1, v1], D2 = [u2, v2].

Output: Pairing value fS,D1(ε(D2))
d

1: D ← [u1, v1]
2: f ← 1, f1 ← 1, f2 ← 1, f3 ← 1
3: for i ← B − 1 downto 0 do
4: f1 ← f2

1 mod u2, f2 ← f2
2 mod u2, f3 ← f2

3

5: D, [h1, h2, h3] ← Miller Step(D, D, D2)
6: f1 ← f1 · h1 mod u2, f2 ← f2 · h2 mod u2, f3 ← f3 · h3

7: if Si = 1 then
8: D, [h1, h2, h3] ← Miller Step(D, D1, D2)
9: f1 ← f1 · h1 mod u2, f2 ← f2 · h2 mod u2, f3 ← f3 · h3

10: end if
11: end for
12: f ← Res(u2, f1)/(f

deg(u2)
3 · Res(u2, f2))

13: return fd

overhead of factoring the polynomial uE(x). Therefore, we advise to restrict its
use to the case of degenerate divisors.

The second method is in general faster than the first, since it does not involve
any polynomial factorisations (nor any explicit arithmetic in extension fields
the way we have described it). It is based on the following basic observation:
the univariate polynomial h̃(x) = h(x, vE(x)) satisfies h̃(xi) = h(xi, yi), so we
have reduced the problem to computing

∏d
i=1 h̃(xi) where the xi are the zeros of
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the monic polynomial uE(x). But this corresponds to the very definition of the
resultant of the two polynomials uE(x) and h̃(x), so we conclude

h(E) = Res(uE(x), h(x, vE(x))) .

Note that the above resultant also equals Res(uE(x), h̃(x) mod uE(x)), so it
suffices to work with polynomials of degree smaller than g. In more mathematical
terms, we still compute h(E) by using a norm, namely h(E) = NA/Fq

(h(x, y))
with A the finite Fq-algebra Fq[x, y]/(uE(x), y − vE(x)).

Algorithm 2 below executes one step in Miller’s algorithm and is a simple
adaptation of Cantor’s algorithm. It computes the evaluation of hnorm

D1,D2
(E) rep-

resented as follows: assume that hD1,D2 = h1(x, y)/h2(x, y), then the algorithm
returns h̃1(x) = h1(x, vE(x)) mod uE(x) and h̃2(x) = h2(x, vE(x)) mod uE(x)
and the constant h3 = lc∞(hD1,D2), so we conclude that

hnorm
D1,D2

(E) = Res(uE(x), h̃1(x))/(hdeg(uE)
3 · Res(uE(x), h̃2(x))) .

We assume in Algorithm 2 that all the intermediate functions are defined on
ε(E) (this is a reasonable assumption for the cryptographic applications).

These partial evaluations are then combined in Algorithm 3 below using a
double and add strategy. Note that the resultant computation is postponed to
the very end of the algorithm. The alternate strategy of computing the resultant
each time instead of computing modulo uE(x) is faster only in the genus 2 case.

6.2 Improvements to Miller’s Algorithm

There are a number of standard implementation techniques to speed up pairing
computation (see [2,4,11,17,22]). We always assume that the embedding degree
satisfies k > 1. The improvements include the following.

– Using suitable representations for Fqk , such as pairing friendly fields [31],
i.e. Fq is a prime field with q ≡ 1 mod 12 and k of the form 2i3j. Using
a combination of Karatsuba and Toom-Cook, multiplication in such fields
takes 3i5j multiplications in the base field Fq.

– Changing the base in Miller’s algorithm. For example, base 3 is used in [2,17]
and base 8 is used in [5] in genus 2.

– Working with divisors of the form ε(D2) and computing leading coefficients
instead of evaluating functions on the reduced divisor D2 itself. Since the
support of D2 has ∞ in common with the support of D1, the alternative is
to “shift” D2 and this leads to extra function evaluations.

– Denominator elimination [11,5]. If a final exponentiation is performed then
one can omit all terms lying in a proper subfield K such that Fq ⊆ K ⊂ Fqk .
In many cases (e.g. if one has even embedding degree, and D1 and D2 lie
in the 1-eigenspace and q-eigenspace of Frobenius respectively) then the
denominator f2 and leading coefficient f3 in Algorithm 3 are of this form,
hence the name denominator elimination.
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– The loop length and number of additions in Miller’s algorithm depend on
the bit-length of S and its Hamming weight. Therefore, it is convenient to
choose S as small as possible and to have low Hamming weight.

– Pairing value compression, using trace or torus methods [22,43].
– Speeding up the final exponentiation, by exploiting the special form of the

integer d and/or using trace or torus methods [4,22,24]. For instance, it is
not difficult to prove that r | Φk(q), so a final exponentiation of the form
(qk − 1)/r can be written as

qk − 1
r

=
Φk(q)

r
·

∏
s|k,s<k

Φs(q)

where exponentiation by the last factor can be computed extremely fast
using q-th power Frobenius operations.

The techniques mentioned above give impressive results for pairing implemen-
tation and they generalise trivially to hyperelliptic curves of genus g ≥ 2.

7 Degenerate Divisors Versus General Divisors

In non-pairing cryptography it was noted by Katagi et al. [28,29] that using
degenerate divisors can give performance advantages. In [5,15] it is explained
how degenerate divisors can be used to speed up pairing-based cryptosystems.
For example, in the Boneh-Franklin identity-based encryption scheme [6], one
can choose Dpub to be degenerate (i.e., choose Dpub = (P )− (∞) first and then
set D = [s−1]Dpub). One can also choose H(ID) to be degenerate, so that we
hash to points rather than general divisors. Encryption in the Boneh-Franklin
scheme then involves a pairing of two degenerate divisors, so is fast. Decryption
still requires pairings of general divisors.

Several practical issues arise. First, can one choose a divisor Dpub of prime
order of the form (P ) − (∞)? If one is choosing elements of G1 and the divisor
class group has prime order then this is automatic. The general case is discussed
by Frey and Lange [15]. They also note that, when k is even, one might choose
the second pairing argument from

{(x, y) ∈ Fqk : x ∈ Fqk/2 , y ∈ Fqk\Fqk/2},

which is not a group but which is a much bigger set than the usual choice of G2.
Second, is there a loss of security from using degenerate divisors? It is easy

to show that the DLP for degenerate divisors is not easier than the general
DLP [29]. However, some protocols require more for security than just hardness
of the DLP. For example, in the Boneh-Franklin scheme it must be hard to
find collisions H(ID1) = H(ID2). The presentation in [5] is disingenuous in
this regard: since the number of degenerate divisors is roughly q, one can find
collisions in time O(q1/2), yet [5] gives running times for examples where the
security level is supposed to be O(q).
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To summarise, the three advantages of using degenerate divisors in pairing
based cryptography are: faster computation of divisor multiplication and pair-
ings, simpler hashing into the group, and reduced bandwidth for transmitting
group elements. Only the first of these is really an advantage when compared
with elliptic curves. Hashing for elliptic curves is always to a single point, so is
easy (and we can often exploit twists to make it faster [26]). Regarding small
representatives of group elements, for elliptic curves over Fp one could use points
(x, y) ∈ E(Fp) where 1 < x < p1/g (with a single bit to determine y) and so the
bandwidth requirement is the same as the hyperelliptic case.

8 Torsion and Distortion

The results of this section are taken from [20,41]. Let C be a supersingular curve
of genus g over Fq and let r > 2 be prime and coprime to q. It is a standard
fact that Pic0

Fq
(C)[r] is isomorphic to (Z/rZ)2g . We let e be any non-degenerate,

bilinear, Galois-invariant pairing which maps to μr.
For pairings on elliptic curves with k > 1 one typically has E(Fq)[r] = 〈P, Q〉

(here the notation 〈P, Q〉 means the subgroup generated by P and Q) where P
is defined over Fq and Q is defined over Fqk . It follows that e(P, P ) = 1 and
hence, by non-degeneracy, e(P, Q) �= 1. In other words, it is relatively simple
to classify pairs of points whose pairing is non-trivial. In particular, if P is Fq-
rational and ψ is any endomorphism of E such that ψ(P ) �∈ 〈P 〉 then it follows
that e(P, ψ(P )) �= 1.

In the higher genus case things are more complicated. Since a pairing e(D, ·)
defines a linear map from (Z/rZ)2g to Z/rZ it follows that the kernel of e(D, ·)
is (2g − 1)-dimensional. Hence, the condition ψ(D) �∈ 〈D〉 is not sufficient to
imply that e(D, ψ(D)) �= 1.

Definition 2. ([20,50,51]) A distortion map for a non-degenerate pairing e and
non-zero divisor classes D1 , D2 of prime order r on C is an endomorphism ψ
of Jac(C) such that e(D1, ψ(D2)) �= 1.

It was proved in [51] that distortion maps always exist for supersingular elliptic
curves over Fq. The result was generalised in [20]. We denote by End(A) the ring
of endomorphisms on the abelian variety A defined over Fq.

Theorem 3. ([20]) Let A be a supersingular abelian variety of dimension g
over Fq. Let r | #A(Fq) be prime. Let D1, D2 be non-trivial elements of A(Fq)
of order r. Then there is an element ψ ∈ End(A) such that e(D1, ψ(D2)) �= 1.

Furthermore, it is shown in [20] that, to have distortion maps for every non-
trivial pair of divisors, it is necessary that the Z-rank of the endomorphism ring
is equal to (2g)2. In other words, if Jac(C) has endomorphism ring which has
Z-rank strictly less than (2g)2 then there will exist non-zero divisor classes D1

and D2 in Jac(C)[r] such that e(D1, ψ(D2)) = 1 for all ψ ∈ End(Jac(C)). In
other words, if C is not supersingular then there cannot be distortion maps for
every pair (D1, D2).
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In practice, as in Section 4.2, one tends to choose divisors D1 and D2 which
lie in eigenspaces of the q-power Frobenius π. The following results may be of
practical relevance in this setting.

Lemma 1. Let A be a supersingular abelian variety over Fq with characteristic
polynomial of Frobenius equal to T 4 + aT 2 + q2 and suppose r | #A(Fq) =
(q2 + a + 1). Then then Frobenius eigenvalues on A[r] are 1,−1, q,−q.

Proof. We have a ≡ −(q2 + 1) mod r. Hence,

(T − 1)(T − q)(T + 1)(T + q) = (T 2 − (q + 1)T + q)(T 2 + (q + 1)T + q)
= T 4 − (q2 + 1)T 2 + q2

≡ T 4 + aT 2 + q2 mod r.

Since the splitting of the characteristic polynomial of Frobenius is of this form,
then the eigenvalues of Frobenius on A[r] are (1,−1, q,−q). �
Lemma 2. With notation as above, let (D1, D2, D3, D4) be an ordered
π-eigenbasis for A[r] with eigenvalues (1,−1, q,−q) respectively. Suppose r � (q2−
1). Then if 1 ≤ i, j ≤ 4, we have e(Di, Dj) = 1 unless (i, j) = (1, 3), (3, 1), (2, 4)
or (4, 2).

Proof. We use Galois invariance of e. For example, for D1 one has

π(e(D1, D1)) = e(π(D1), π(D1)) = e(D1, D1).

This implies e(D1, D1) ∈ Fq ∩ μr (recall that μr is the group of r-th roots of
unity and r � (q − 1)) and hence e(D1, D1) = 1.

Similarly,

e(D1, D2)q = π(e(D1, D2)) = e(π(D1), π(D2)) = e(D1,−D2) = e(D1, D2)−1.

Since, r � (q + 1) this implies e(D1, D2) = 1.
Similarly,

e(D1, D4)q = π(e(D1, D4)) = e(π(D1), π(D4)) = e(D1,−qD4) = e(D1, D4)−q.

Since r � 2q it follows that e(D1, D4) = 1. By non-degeneracy of e, one must
have e(D1, D3) �= 1.

The other cases are similar. �
It would be interesting to develop cryptographic protocols which utilise this
torsion structure and the properties of pairings stated in the above Lemma.

We see that π can be used as a distortion map. For example, suppose D =
D1 + D2 and D′ = D3 + mD4, with respect to the basis above, where m ∈ Z is
such that e(D, D′) = e(D1, D3)e(D2, D4)m = 1. Then we have

e(D, π(D′)) = e(D1, qD3)e(D2,−qmD4) = e(D1, D3)qe(D2, D4)−qm

and this is not equal to 1 if m �≡ 0 mod r. Note that, for efficient implementation,
there are often reasons to prefer the trace map Tr(D) =

∑3
i=0 πi(D) to π, though

in the above example we have Tr(D′) = 0 so in this particular case the trace
map is not useful.
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9 Rubin-Silverberg Point Compression

Rubin and Silverberg [42] (also see [44,45,48]) have proposed an alternative way
to view pairings on abelian varieties. They observe that many supersingular
abelian varieties can be identified with subvarieties of Weil restrictions of super-
singular elliptic curves. An alternative way to view their method is as a form of
point compression for elliptic curves.

For example, the supersingular genus 2 curve C over F2 considered in [5] (also
see Section 5.2) has k = 12. Working over F2m , where m is coprime to 12, the
number of points on the Jacobian of C is N = 22m±2(3m+1)/2+2m±2(m+1)/2+1.
As mentioned above, one can use this curve for pairing-based cryptography and
the finite field security comes from F212m . Alternatively, one can consider the
supersingular elliptic curve Eb : y2 + y = x3 +x+ b with b = 0, 1 over F23m . This
curve has k = 4, so we also map into F212m . Furthermore, the order of Eb(F23m)
(for the right choice of b) is divisible by N . Indeed, Jac(C) can be identified with
the trace zero part of the Weil restriction of scalars Eb with respect to F23m/F2m .

In the above example, from a security point of view, there is no difference
between computing pairings on Eb(F23m) and Jac(C)(F2m). However, one can
represent a general divisor on the genus 2 curve over F2m with about 2m bits,
whereas it requires about 3m bits to represent a point in Eb(F23m). The con-
tribution of Rubin and Silverberg is to give a method to represent elements of
order N in Eb(F23m) using only 2m bits. In other words, the “per bit” security
of the genus 2 curve is attained using elliptic curves. For precise details in this
case see [5,48].

The above is an example of the Rubin-Silverberg method with, in their no-
tation, r = 3. The compression method is trivial (and fast). The decompression
method involves solving some non-linear equations over the finite field, and it is
practical only for small values of r (e.g., r = 3 or 5). Note that the method can
be used for any elliptic curve, not just supersingular ones.

In [5] a performance comparison is given for the above example. When pairing
degenerate divisors on the genus 2 curve (such elements do not correspond to
special points on the elliptic curve side) the timings in [5] show that using genus
2 curves in this setting is faster than the Rubin-Silverberg approach. However, if
required to compute the pairing of general divisors on the genus 2 curve, then the
timings indicate that the Rubin-Silverberg approach using the eta/ate pairing
on supersingular elliptic curves is faster.

It therefore seems that, for parameters of current practical interest, it is more
efficient to use elliptic curves with the Rubin-Silverberg compression method,
than to work with divisor class groups of curves of genus g ≥ 2. However, it
should be noted that there are three possible exceptions to this statement: when
degenerate divisors can be exploited the pairing may be faster for curves of genus
g ≥ 2; the decompression method is only practical for small values of r (whereas
comparable performance with some high genus curves could require larger r);
Abelian varieties have a richer torsion structure which may be useful for some
applications.
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10 Comparison of Pairings on Elliptic and Hyperelliptic
Curves

In this section we compare the characteristics of pairings on elliptic and hyper-
elliptic curves of genus g. We write

e : G1 × G2 → GT ⊆ F
×
qk

for any of the pairings considered above. Here we assume that G1 is the subgroup
defined over the small field (so it has the more compact representation) and G2

is the subgroup potentially defined over a larger field (hence, if using the ate
pairing then e(P, Q) = aS(Q, P )).

The main criteria for our comparison are:

– Computation time (for operations in G1, G2, GT as well as for computing e).
– Size of representation (for G1, G2 and GT ).
– Flexibility and efficiency of parameter generation.
– Any other special properties.

10.1 Computation Time

In most situations we may assume that G1 is a group of prime order r, consist-
ing of elements defined over Fq, with r ≈ qg. In this case, according to [33,34],
hyperelliptic curves can be as much as twice as fast as elliptic curves. If the
hyperelliptic curve is more general (e.g., has 2 points at infinity) then the com-
putation times in G1 may be a little slower for the hyperelliptic curve than the
elliptic case.

If G1 is a rather small subgroup of the whole curve group then define ρ =
g log(q)/ log(r). If the elliptic and hyperelliptic cases have similar values for ρ
then the performance should be comparable. But operations on a hyperelliptic
curve with ρ ≥ 2 (for example, Freeman’s genus 2 curves [14]) will be slower
than an elliptic curve with ρ ≈ 1.

We now consider operations in G2. In the supersingular case, G2 = G1 and the
above remarks apply. More generally, we aim to take G2 to be a subgroup of the
divisor class group of a twist of the curve. The field of definition of G2 depends
on the field Fqk (i.e., it is a function of the embedding degree). The crucial
observation is that the field Fqk is required to be the same size regardless of the
genus. Hence, the group G2 will be defined over a finite field of size independent
of the genus. We therefore expect that operations in G2 will be slower in the
hyperelliptic case than in the elliptic case, unless one can exploit twists of high
degree (e.g., degree > 6g).

The field Fqk is the same size whether using elliptic or hyperelliptic curves.
So the computation time in GT is the same in both cases.

We now consider the cost of computing pairings. First we present an over-
simplified analysis: the dominant part of a standard Tate-Lichtenbaum pairing
computation (on either an elliptic or hyperelliptic curve) is log2(r) iterations
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of computing h(D) for some function h and some divisor D (and accumulating
the product of these values). As mentioned above, the field of definition of D
depends on the embedding degree and so is similar in both cases. Furthermore,
the functions h are more complicated for hyperelliptic curves than for elliptic
curves. Hence, in general we expect pairing computation on hyperelliptic curves
to be slower than elliptic curves.

The above analysis is extremely oversimplified and, indeed, is contradicted by
the fact that the fastest known pairing computation is the ηT pairing on a su-
persingular genus 2 curve in characteristic 2 with embedding degree 12 (see the
timings in Section 10 of [5]). The speed in that case is due to the implementation
tricks available (including exploiting features of the processor architecture which
are favourable to the genus 2 case). Also, the quoted timing is when using de-
generate divisors; if general divisors are used then one gets faster timings using
elliptic curves.

With hyperelliptic ate pairings over Fq one has a loop of length approximately
log2(q) in genus g rather than g log2(q). This can be matched using the elliptic ate
pairing if one can construct an elliptic curve over Fp (for log2(p) ≥ g log2(q)) with
trace of Frobenius t ≈ q. The Brezing-Weng method [8] can be used to construct
such curves. The example in Section 5.1 with n = 1 gives log2(t) ≈ log2(r)/4,
which matches the loop shortening obtained by using genus 4 curves. Hence,
despite the attractive properties of the hyperelliptic ate pairing, it seems that in
practice one can always match the speed of pairing computation by using elliptic
curves.

10.2 Size of Representation

In general, we expect the size of the representation of G1 to be the same for both
elliptic and hyperelliptic curves (at least, as long as the ρ values are comparable
in both cases). As noted earlier, degenerate divisors in G1 require less storage
than general elements, but there are potential security issues to take into account
here. Also, as mentioned, the same effect can be achieved using elliptic curves
by selecting points with short representations.

One issue here is comparing differing embedding degrees. For example, with
supersingular curves in characteristic 2 we have k = 4 for elliptic curves and
k = 12 for genus 2. One therefore would expect more compact representations
in genus 2. However, the Rubin-Silverberg point compression method for elliptic
curves can be applied. Hence, in practice, it seems that the size of elements of
G1 is always no worse for elliptic curves than hyperelliptic curves.

We now consider the size of elements of G2. In the supersingular case, G1 = G2

and so the above remarks apply. If not, as mentioned above, the field of definition
of G2 depends on the embedding degree and so we expect the representation of
G2 to be larger in the hyperelliptic case than the elliptic case.

The representation of GT is usually the same in both cases. Trace or torus
methods can be used to compress these values [22,43,44].
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10.3 Flexibility and Efficiency of Parameter Generation

The main concerns in this section are as follows. Are there pairing-friendly curves
with useful parameters for secure and efficient implementation? Are there many
possible examples or just a few? Is it easy to construct equations for such curves?
Does the user have very fine control over the parameters?

If supersingular curves are used then there is roughly the same amount of
flexibility in parameter generation for both elliptic and hyperelliptic curves.

There have been a number of results on constructing ordinary pairing-friendly
elliptic curves using the CM method (see [13] for a survey). The outcome of this
research is that there are many polynomial families of suitable curves. Further,
one can generate curves with relatively small values of t, which are attractive
due to the elliptic ate pairing [26]. So there is plenty of flexibility when choosing
elliptic curves for pairing-based cryptography. In genus g ≥ 2 the situation is
much less satisfactory as was discussed in Section 5.2.

10.4 Special Properties

For pairings on elliptic curves there are great efficiency savings for computations
in G2 (including hashing to G2) by using twists [26]. If non-supersingular hyper-
elliptic curves are to be competitive with ordinary elliptic curves then it is likely
that similar techniques would have to be developed.

As noted in Section 8, in genus ≥ 2 there are larger torsion structures available
and there is interesting pairing behaviour (see Lemma 2). It is natural to ask
whether there might be novel cryptosystems which exploit this structure. Such
applications would give renewed motivation for using hyperelliptic curves in
pairing-based cryptography.

11 Conclusions and Open Problems

For non-pairing cryptography there are potential advantages of using hyperel-
liptic curves of genus g ≥ 2. It is thus natural to consider hyperelliptic curves
for pairing-based cryptography. We have surveyed work in this area. Our anal-
ysis indicates that, in practice, hyperelliptic curves are not more efficient than
elliptic curves for general pairing applications. The only potentially significant
advantage of hyperelliptic curves in pairing-based cryptosystems seems to be
the speed of operations in G1. Hence, hyperelliptic curves may be preferable for
protocols with few pairing computations but many operations in G1.

We conclude with a list of open problems.

– Can further loop shortening (as in [26,37]) be performed for the hyperelliptic
ate pairing?

– A major problem is to give methods to construct non-supersingular pairing
friendly curves of genus g ≥ 2 and k in the range, say, 6g ≤ k ≤ 30g. Ideally,
these curves would have a single point at infinity and would have useful
twists (as in [26]).
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– Give fast methods to compute pairings on hyperelliptic curves with two
points at infinity [21] or on non-hyperelliptic curves.

– Consider whether efficient and secure pairing-based cryptosystems can be
developed for curves of genus g ≥ 3, in spite of the index calculus attacks on
curves in this case.

– Exploit the richer torsion structure available for abelian varieties. In partic-
ular, find cryptographic applications of pairings on groups which require 3
or more generators.
A related problem is to give efficient methods to choose divisors in the par-
ticular subgroups.

– Improve the efficiency of the Rubin-Silverberg elliptic curve point decom-
pression method. Generalise the Rubin-Silverberg method to divisor class
groups of curves of genus g ≥ 2.

– In Section 9 we recalled the identification of certain abelian varieties with
subvarieties of the Weil restriction of supersingular curves. In the case where
the abelian variety is a Jacobian, is there a way to compute explicit ho-
momorphisms between the elliptic curve representation and the Jacobian
representation?
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50. Verheul, E.: Evidence that XTR is more secure than supersingular elliptic curve

cryptosystems. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
195–210. Springer, Heidelberg (2001)

51. Verheul, E.: Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. Journal of Cryptology 17(4), 277–296 (2004)

52. Weil, A.: Sur les fonctions algebriques à corps de constantes finis. C. R. Acad. Sci.
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Abstract. We compute in a direct (not algorithmic) way the zeta func-
tion of all supersingular curves of genus 2 over a finite field k, with many
geometric automorphisms. We display these computations in an appen-
dix where we select a family of representatives of all these curves up
to k-isomorphism and we exhibit equations and the zeta function of all
their k/k-twists. As an application we obtain a direct computation of
the cryptographic exponent of the Jacobians of these curves.

Introduction

One-round tripartite Diffie-Hellman, identity based encryption, and short digital
signatures are some problems for which good solutions have recently been found,
making critical use of pairings on supersingular abelian varieties over a finite field
k. The cryptographic exponent cA of a supersingular abelian variety A is a half-
integer that measures the security against an attack on the DL problem based
on the Weil or the Tate pairings. Also, it is relevant to determine when pairings
can be efficiently computed. Rubin and Silverberg showed in [RS04] that this
invariant is determined by the zeta function of A.

In this paper we give a direct, non-algorithmic procedure to compute the zeta
function of a supersingular curve of genus 2, providing thus a direct computation
of the cryptographic exponent of its Jacobian. This is achieved in Sect. 1. For even
characteristic the results are based on [MN06] and are summarized in Table 2; for
odd characteristic we use results of Xing and Zhu on the structure of the group of
k-rational points of a supersingular abelian surface and we almost determine the
zeta function in terms of the Galois structure of the set of Weierstrass points of the
curve (Tables 3, 4). In the rest of the paper we obtain a complete answer in the case
of curves with many automorphisms. In Sect. 2 we study the extra information
provided by these automorphisms and we show how to obtain the relevant data
to compute the zeta funtion of a twisted curve in terms of data of the original curve
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and the 1-cocycle defining the twist. In Sect. 3 we select a family of representatives
of these curves up to k-isomorphism and we apply the techniques of the previous
section to deal with each curve and all its k/k-twists. The results are displayed in
an Appendix in the form of tables.

In what cryptographic applications of pairings concerns, curves with many
automorphisms are interesting too because they are natural candidates to pro-
vide distortion maps on the Jacobian. In this regard the computation of the zeta
function is a necessary step to study the structure of the endomorphism ring of
the Jacobian (cf. [GPRS06]).

1 Zeta Function and Cryptographic Exponent

Let p be a prime number and let k = Fq be a finite field of characteristic p.
We denote by kn the extension of degree n of k in a fixed algebraic closure k,
Gk := Gal(k/k) is the absolute Galois group of k, and σ ∈ Gk the Frobenius
automorphism.

Let C be a projective, smooth, geometrically irreducible, supersingular curve
of genus 2 defined over k. The Jacobian J of C is a supersingular abelian surface
over k (the p-torsion subgroup of J(k) is trivial). Let us recall how supersingu-
larity is reflected in a model of the curve C:

Theorem 1. If p is odd, any curve of genus 2 defined over k admits an affine
Weierstrass model y2 = f(x), with f(x) a separable polynomial in k[x] of degree
5 or 6. The curve is supersingular if and only if M (p)M = 0, where M , M (p)

are the matrices:

M =
(
cp−1 cp−2

c2p−1 c2p−2

)
, M (p) =

(
cpp−1 cpp−2

cp2p−1 c
p
2p−2

)
, f(x)(p−1)/2 =

∑
j≥0

cjx
j .

If p = 2 a curve of genus 2 defined over k is supersingular if and only if it
admits an affine Artin-Schreier model y2 + y = f(x), with f(x) an arbitrary
polynomial in k[x] of degree 5.

For the first statement see [Yui78] or [IKO86], for the second see [VV92].
For any simple supersingular abelian variety A defined over k, Rubin and

Silverberg computed in [RS04] the cryptographic exponent cA, defined as the
half-integer such that qcA is the size of the smallest field F such that every cyclic
subgroup of A(k) can be embedded in F ∗. This invariant refines the concept of
embedding degree, formerly introduced as a measure of the security of the abelian
variety against the attacks to the DLP by using the Weil pairing [MOV93] or
the Tate pairing [FR94] (see for instance [Gal01]).

Let us recall the result of Rubin-Silverberg, adapted to the dimension two case.
After classical results of Tate and Honda, the isogeny class of A is determined
by the Weil polynomial of A, fA(x) = x4 + rx3 + sx2 + qrx + q2 ∈ Z[x], which
is the characteristic polynomial of the Frobenius endomorphism of the surface.
For A supersingular the roots of fA(x) in Q are of the form

√
q ζ, where

√
q is

the positive square root of q and ζ is a primitive m-th root of unity.
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Theorem 2. Suppose A is a simple supersingular abelian surface over Fq and
let � > 5 be any prime number dividing |A(Fq)|. Then, the smallest half-integer
cA such that qcA − 1 is an integer divisible by � is given by

cA =
{
m/2, if q is a square,
m/(2,m), if q is not a square .

In particular, the cryptographic exponent cA is an invariant of the isogeny class
of A. The complete list of simple supersingular isogeny classes of abelian surfaces
can be found in [MN02, Thm. 2.9]. It is straightforward to find out the m-th
root of unity in each case. We display the computation of cA in Table 1.

Table 1. Cryptographic exponent cA of the simple supersingular abelian surface A
with Weil polynomial fA(x) = x4 + rx3 + sx2 + qrx+ q2

(r, s) conditions on p and q cA

(0, −2q) q nonsquare 1
(0, 2q) q square, p ≡ 1 (mod 4) 2
(2

√
q, 3q) q square, p ≡ 1 (mod 3) 3/2

(−2√q, 3q) q square, p ≡ 1 (mod 3) 3
(0, 0) (q nonsquare, p �= 2) or (q square, p �≡ 1 (mod 8)) 4
(0, q) q nonsquare 3
(0, −q) (q nonsquare, p �= 3) or (q square, p �≡ 1 (mod 12)) 6
(
√

q, q) q square, p �≡ 1 (mod 5) 5/2
(−√

q, q) q square, p �≡ 1 (mod 5) 5
(±

√
5q, 3q) q nonsquare, p = 5 5

(±
√
2q, q) q nonsquare, p = 2 12

Therefore, the computation of the cryptographic exponent of the Jacobian J
of a supersingular curve C amounts to the computation of the Weil polynomial
of J , which is related in a well-known way to the zeta function of C. We shall
call fJ(x) the Weil polynomial of C too.

The computation of fJ(x) has deserved a lot of attention because for the
cryptographic applications one needs to know the cardinality |J(Fq)| = fJ(1)
of the group of rational points of the Jacobian. However, in the supersingular
case the current “counting points” algorithms are not necessary because there
are more direct ways to compute the polynomial fJ(x).

The aim of this section is to present these explicit methods, which take a
different form for p odd or even. For p = 2 the computation of fJ(x) is an
immediate consequence of the methods of [MN06], based on ideas of van der
Geer-van der Vlugt; for p > 2 we derive our results from the group structure of
J(Fq), determined in [Xin96], [Zhu00], and from the exact knowledge of what
isogeny classes of abelian surfaces do contain Jacobians [HNR06]. In both cases
we shall show that fJ(x) is almost determined by the structure as a Galois set
of a finite subset of k, easy to compute from the defining equation of C.
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1.1 Computation of the Zeta Function When p = 2

We denote simply by tr the absolute trace trk/F2 . Recall that ker(tr) = {x +
x2 | x ∈ k} is an F2-linear subspace of k of codimension 1.

Every projective smooth geometrically irreducible supersingular curve C of
genus 2 defined over k admits an affine Artin-Schreier model of the type:

C : y2 + y = ax5 + bx3 + cx+ d, a ∈ k∗, b, c, d ∈ k,

which has only one point at infinity [VV92]. The change of variables y = y+u, u ∈
k, allows us to suppose that d = 0 or d = d0, with d0 ∈ k\ker(tr) fixed. Twisting
C by the hyperelliptic twist consists in adding d0 to the defining equation. If we
denote by J ′ the Jacobian of the twisted curve we have fJ′(x) = fJ(−x). Thus,
for the computation of fJ(x) we can assume that d = 0.

The structure as a Gk-set of the set of roots in k of the polynomial P (x) =
a2x5 + b2x+ a ∈ k[x] almost determines the zeta function of C [MN06, Sect.3].

Table 2.Weil polynomial x4+rx3+sx2+qrx+q2 of the curve y2+y = ax5+bx3+cx,
for q nonsquare (left) and q square (right)

P (x) N, M (r, s)

(1)(4) N = 0 (±
√
2q, 2q)

N = 1 (0, 0)

(2)(3) M = 0 (±
√
2q, q)

M = 1 (0, q)

N = 0 (±2
√
2q, 4q)

(1)3(2) N = 1 (0, 2q)
N = 2 (0, 0)
N = 3 (0, −2q)

P (x) N, M (r, s)

(5) (±√
q, q)

N = 0 (0, −q)
(1)2(3) N = 1 (0, q)

N = 2 (±2√q, 3q)

M = 0 (±2√q, 2q)
(1)(2)2 M = 1 (0, 0)

M = 2 (0, 2q)

N = 1 (0, −2q)
(1)5 N = 3 (0, 2q)

N = 5 (±4√q, 6q)

In Table 2 we write P (x) = (n1)r1(n2)r2 · · · (nm)rm to indicate that ri of the
irreducible factors of P (x) have degree ni. Also, we consider the linear operator
T (x) := tr((c+ b2a−1)x) and we define

N := number of roots z ∈ k of P (x) s.t. T (z) = 0,
M := number of irred. quadratic factors x2 + vx+ w of P (x) s.t. T (v) = 0 .

The ambiguity of the sign of r can be solved by computing nD in the Jacobian,
where n is one of the presumed values of |J(Fq)| and D is a random rational
divisor of degree 0.

1.2 Computation of the Zeta Function When p Is Odd

Let A be a supersingular abelian surface over k and let rk2(A) := dimF2(A[2](k)).
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The structure of A(k) as an abelian group was studied in [Xin96], [Zhu00],
where it is proven that it is almost determined by the isogeny class of A. In fact,
if Fi(x) are the different irreducible factors of fA(x) in Z[x]:

fA(x) =
s∏

i=1

Fi(x)ei , 1 ≤ s ≤ 2 =⇒ A(k) � ⊕s
i=1 (Z/Fi(1)Z)ei ,

except for the following cases:
(a) p ≡ 3 (mod 4), q is not a square and fA(x) = (x2 + q)2,
(b) p ≡ 1 (mod 4), q is not a square and fA(x) = (x2 − q)2.
(c) q is a square and fA(x) = (x2 − q)2.
The possible structure of A(k) in cases (a) and (b) is:

A(k) � (Z/F (1)Z)m ⊕ (Z/(F (1)/2)Z ⊕ Z/2Z)n
,

where F (x) denotes respectively x2+q, x2−q, andm, n are non-negative integers
such that m+ n = 2 [Zhu00, Thm. 1.1]. In case (c) we have either:

A(k) � (Z/((q − 1)/2)Z)2 ⊕ (Z/2Z)2 , or
A(k) � (Z/((q − 1)/2m)Z) ⊕ (Z/((q − 1)/2n)Z) ⊕ (Z/2m+nZ) ,

where 0 ≤ m, n ≤ v2(q−1) [Xin96, Thm. 3]. In this last case we have rk2(A) > 1;
in fact, v2(1 −√

q) + v2(1 +
√
q) = v2(1 − q) = (1/2)v2(F (1)) and we can apply

[Xin96, Lem. 4] to conclude that A(k) has a subgroup isomorphic to (Z/2Z)2.
Consider now a supersingular curve C of genus 2 defined over k, given by a

Weierstrass equation y2 = f(x), for some separable polynomial f(x) ∈ k[x] of
degree 5 or 6. Let J be its Jacobian variety, W = {P0, P1, P2, P3, P4, P5} ⊆ C(k)
the set of Weierstrass points of C, and W (k) ⊆ W the subset of k-rational
Weierstrass points. Our aim is to show that the structure of W as a Gk-set
contains enough information on the 2-adic value of |C(k)| and |J(k)| to almost
determine the polynomial fJ(x) = x4 + rx3 + sx2 + qrx + q2.

From the fundamental identities

|C(k)| = q + 1 + r, |J(k)| = fJ(1) = (q2 + 1) + (q + 1)r + s,

and the free action of the hyperelliptic involution on C(k) \W (k) we get

r ≡ |W (k)| (mod 2), s ≡ |J(k)| (mod 2) . (1)

On the other hand, J [2] is represented by the classes of the 15 divisors:

Pi − P0, 1 ≤ i ≤ 5, and Pi + Pj − 2P0, 1 ≤ i < j ≤ 5,

together with the trivial class.

Lemma 3. Let D = Pi − Pj , with i 
= j, or D = Pi + Pj − 2P0, with 0, i, j
pairwise different. Then, the class of the divisor D is k-rational if and only if
Pi, Pj are both k-rational or quadratic conjugate.
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Hence, the Galois structure of W determines rk2(J) and this limits the possible
values of the zeta function of C. Our final results are given in Tables 3, 4, where
we write W = (n1)r1(n2)r2 · · · (nm)rm to indicate that there are ri Gk-orbits
of length ni of Weierstrass points. If f(x) has degree 6 this Galois structure
mimics the decomposition f(x) = (n1)r1(n2)r2 · · · (nm)rm (same notation as in
Sect. 1.1) of f(x) into a product of irreducible polynomials k[x]. If f(x) has
degree 5 then W = (1)f(x), because in these models the point at infinity is a
k-rational Weierstrass point.

Table 3.Weil polynomial x4+rx3+sx2+qrx+q2 of the curve C when q is nonsquare.
The sign ε is the Legendre symbol (−1/p).

W p rk2(J) (r, s)

(1)6 or (1)4(2) 4, 3 (0, −2εq)
(1)2(2)2 or (2)3 2 (0, ±2q)

(1)3(3) 2 not possible

(1)(2)(3) p > 3 1 not possible

p = 3 (±
√
3q, 2q)

(1)2(4) or (2)(4) 1 (0, 0)

(1)(5) p �= 5 0 not possible

p = 5 (±
√
5q, 3q)

p ≡ 1 (mod 3) (0, q)
(3)2 p ≡ −1 (mod 3) 0 (0, εq)

p = 3 not possible

(6) p ≡ −1 (mod 3) 0 (0, ±q)
p �≡ −1 (mod 3) (0, q)

The proof of the content of Tables 3 and 4 is elementary, but long. Instead of
giving all details we only sketch the main ideas:

(I) Waterhouse determined all possible isogeny classes of supersingular el-
liptic curves [Wat69]. Thus, it is possible to write down all isogeny classes of
supersingular abelian surfaces by adding to the simple classes given in Table 1
the split isogeny classes. By [HNR06] we know exactly what isogeny classes of
abelian surfaces do not contain Jacobians and they can be dropped from the list.
By the results of Xing and Zhu we can distribute the remaining isogeny classes
according to the possible values of rk2.

(II) Each structure of W as a Gk-set determines the value of rk2 and, after
(I), it has a reduced number of possibilities for the isogeny classes. By using
(1) and looking for some incoherence in the behaviour under scalar extension to
k2 or k3 of both, the Galois structure of W and the possible associated isogeny
classes, we can still discard some of these possibilities.

In practice, among the few possibilities left in Tables 3 and 4 we can single out
the isogeny class of the Jacobian of any given supersingular curve by computing
iterates of random divisors of degree zero. However, if C has many automor-
phisms they provide enough extra information to completely determine the zeta
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Table 4. Weil polynomial x4+ rx3+ sx2+ qrx+ q2 of the curve C when q is a square

W p rk2(J) (r, s)

(1)6 4 (0, −2q) or (±4√q, 6q)

(1)4(2) 3 (0, −2q)
(1)2(2)2 or (2)3 2 (0, ±2q)

(1)3(3) p > 3 2 not possible

p = 3 (±√
q, 0)

(1)(2)(3) 1 not possible

(1)2(4) or (2)(4) p ≡ 1 (mod 8) 1 not possible

p �≡ 1 (mod 8) (0, 0)

(1)(5) p ≡ 1 (mod 5) 0 not possible

p �≡ 1 (mod 5) (±√
q, q)

(3)2 (0, q) or (±2√q, 3q)

(6) p ≡ 5 (mod 12) 0 (0, ±q)
p �≡ 5 (mod 12) (0, q)

function. This will be carried out in the rest of the paper. In the Appendix we
display equations of the supersingular curves with many automorphisms and
their Weil polynomial.

2 Zeta Function of Twists

In this section we review some basic facts about twists and we show how to
compute different properties of a twisted curve in terms of the defining 1-cocycle.
From now on the ground field k will have odd characteristic.

Let C be a supersingular curve of genus 2 defined over k and let W ⊆ C(k)
be the set of Weierstrass points of C. We denote by Aut(C) the k-automorphism
group of C and by Autk(C) the full automorphism group of C.

Let φ : C −→ P
1 be a fixed k-morphism of degree 2 and consider the group of

reduced geometric automorphisms of C:

Aut′
k
(C) := {u′ ∈ Autk(P1) | u′(φ(W )) = φ(W )} .

We denote by Aut′(C) the subgroup of reduced automorphisms defined over k.
Any automorphism u of C fits into a commutative diagram:

C
u ��

φ

��

C

φ

��
P1 u′

��
P1

for certain uniquely determined reduced automorphism u′. The map u �→ u′ is
a group homomorphism (depending on φ) and we have a central exact sequence
of groups compatible with Galois action:

1 −→ {1, ι} −→ Autk(C)
φ−→ Aut′

k
(C) −→ 1,
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where ι is the hyperelliptic involution. This leads to a long exact sequence of
Galois cohomology sets:

1 → {1, ι} → Aut(C)
φ→ Aut′(C) δ→ H1(Gk, {1, ι}) → H1(Gk,Autk(C)) →

→ H1(Gk,Aut′
k
(C)) → H2(Gk, {1, ι}) � Br2(k) = 0 . (2)

The k/k-twists of C are parameterized by the pointed set H1(Gk,Autk(C))
and, since k is a finite field, a 1-cocycle is determined just by the choice of an
automorphism v ∈ Autk(C). The twisted curve Cv associated to v is defined over
k and is determined, up to k-isomorphism, by the existence of a k-isomorphism
f : C −→ Cv, such that f−1fσ = v.

For instance, the choice v = ι corresponds to the hyperelliptic twist C′; if C is
given by a Weierstrass equation y2 = f(x) then C′ admits the model y2 = tf(x),
for t ∈ k∗\(k∗)2. We say that C is self-dual if it is k-isomorphic to its hyperelliptc
twist. If fJ(x) is the Weil polynomial of C, the Weil polynomial of C′ is fJ′(x) =
fJ(−x); in particular, for a self-dual curve one has fJ(x) = x4 + sx2 + q2 for
some integer s.

It is easy to deduce from (2) the following criterion for self-duality:

Lemma 4. The curve C is self-dual if and only if |Aut′(C)| = |Aut(C)|.

One can easily compute the data Aut(Cv), Aut′(Cv) of the twisted curve Cv, in
terms of Autk(C), Aut′

k
(C) and the 1-cocycle v.

Let f : C −→ Cv be a geometric isomorphism such that f−1fσ = v. We have
Autk(Cv) = f Autk(C)f−1, and the k-automorphism group is

Aut(Cv) = {fuf−1 | u ∈ Autk(C), u v = v uσ} . (3)

Once we fix any k-morphism of degree two, φv : Cv −→ P1, it determines a
unique geometric automorphism f ′ of P1 such that φvf = f ′φ. The reduced
group of k-automorphisms of Cv is

Aut′(Cv) = {f ′u′(f ′)−1 | u′ ∈ Aut′
k
(C), u′ v′ = v′(u′)σ} . (4)

In order to compute the zeta function of Cv we consider the geometric iso-
morphism f : J −→ Jv induced by f . We still have f−1fσ = v∗, where v∗ is
the automorphism of J induced by v. Clearly, πvf = fσπ, where π, πv are the
respective q-power Frobenius endomorphisms of J, Jv. Hence,

f−1πvf = f−1fσ(fσ)−1πvf = v∗π .

In particular, πv has the same characteristic polynomial than v∗π. From this
fact one can deduce two crucial results (cf. [HNR06, Props.13.1,13.4]).

Proposition 5. Suppose q is a square. Let C be a supersingular genus 2 curve
over k with Weil polynomial (x+

√
q)4 and let v be a geometric automorphism of
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C, v 
= 1, ι. Then, the Weil polynomial x4+rx3+sx2+rx+q2 of Cv is determined
as follows in terms of v (in the column v6 = 1 we suppose v2 
= 1, v3 
= 1, ι):

v v2 = 1 v2 = ι v3 = 1 v3 = ι v4 = ι v5 = 1 v5 = ι v6 = 1 v6 = ι
(r, s) (0,−2q) (0, 2q) (−2

√
q, 3q) (2

√
q, 3q) (0, 0) (−√

q, q) (
√
q, q) (0, q) (0,−q)

Proposition 6. Suppose q is nonsquare. Let C be a supersingular genus 2 curve
over k with Weil polynomial (x2 + εq)2, ε ∈ {1,−1}, and let v be a geometric
automorphism of C. Then, the Weil polynomial x4 + rx3 + sx2 + rx+ q2 of Cv

is determined as follows in terms of the order n of the automorphism vvσ:

n 1 2 3 4 6
(r, s) (0, 2εq) (0,−2εq) (0,−εq) (0, 0) (0, εq)

In applying these results the transitivity property of twists can be helpful.

Lemma 7. Let u, v be automorphisms of C and let f : C → Cv be a geometric
isomorphism with f−1fσ = v. Then the curve Cu is the twist of Cv associated
to the automorphism fuv−1f−1 of Cv.

For a curve with a large k-automorphism group the following remark, together
with Tables 3 and 4, determines in some cases the zeta function:

Lemma 8. Let F ⊆ C(k) be the subset of k-rational points of C that are fixed
by some non-trivial k-automorphism of C. Then,

|C(k)| ≡ |F| (mod |Aut(C)|) .

Proof. The group Aut(C) acts freely on C(k) \ F .

Note that F contains the set W (k) of k-rational Weierstrass points, all of them
fixed by the hyperelliptic involution ι of C.

In order to apply this result to the twisted curve Cv we need to compute the
Gk-set structure of Wv and |Fv| solely in terms of v.

Lemma 9. (1) For any P ∈ W the length of the Gk-orbit of f(P ) ∈ Wv is the
minimum positive integer n such that v vσ · · · vσn−1

(P σn

) = P . In particular,
|Wv(k)| = |{P ∈ W | v(P σ) = P}|.

(2) The map f−1 stablishes a bijection between Fv and the set
{P ∈ C(k) | v(P σ) = P = u(P ) for some 1 
= u ∈ Autk(C), s.t. u v = v uσ}.

3 Supersingular Curves with Many Automorphisms

For several cryptographic applications of the Tate pairing the use of distortion
maps is essential. A distortion map is an endomorphism ψ of the Jacobian J
of C that provides an input for which the value of the pairing is non-trivial:
e�(D1, ψ(D2)) 
= 1 for some fixed �-torsion divisors D1, D2. The existence of
such a map is guaranteed, but in practice it is hard to find it in an efficient way.
Usually, one can start with a nice curve C with many automorphisms, consider
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a concrete automorphism u 
= 1, u 
= ι, and look for a distortion map ψ in the
subring Z[π, u∗] ⊆ End(J), where π is the Frobenius endomorphism of J and
u∗ is the automorphism of the Jacobian induced by u. If Z[π, u∗] = End(J) it is
highly probable that a distortion map is found. If Z[π, u∗] 
= End(J) it can be
a hard problem to prove that some nice candidate is a distortion map, but at
least one is able most of the time to find a “denominator” m such that mψ lies
in the subring Z[π, u∗]; in this case, if � � m one can use mψ as a distortion map
on divisors of order �. Several examples are discussed in [GPRS06].

The aim of this section is to exhibit all supersingular curves of genus 2 with
many automorphisms, describe their automorphisms, and compute the charac-
teristic polynomial of π, which is always a necessary ingredient in order to analyze
the structure of the ring Z[π, u∗]. Recall that a curve C is said to have many
automorphisms if it has some geometric automorphism other than the identity
and the hyperelliptic involution; in other words, if |Autk(C)| > 2.

Igusa found equations for all geometric curves of genus 2 with many auto-
morphisms, and he grouped these curves in six families according to the possible
structure of the automorphism group [Igu60], [IKO86]. Cardona and Quer found
a faithful and complete system of representatives of all these curves up to k-
isomorphism and they gave conditions to ensure the exact structure of the auto-
morphism group of each concrete model [Car03], [CQ06]. The following theorem
sums up these results.

Theorem 10. Any curve of genus 2 with many automorphisms is geometrically
isomorphic to one and only one of the curves in these six families:

Equation of C Aut′
k
(C) Autk(C)

y2 = x6 + ax4 + bx2 + 1 a, b satisfy (5) C2 C2 × C2

y2 = x5 + x3 + ax a 
= 0, 1/4, 9/100 C2 × C2 D8

y2 = x6 + x3 + a p 
= 3, a 
= 0, 1/4, −1/50 S3 D12

y2 = ax6 + x4 + x2 + 1 p = 3, a 
= 0 S3 D12

y2 = x6 − 1 p 
= 3, 5 D12 2D12

y2 = x5 − x p 
= 5 S4 S̃4

p = 5 PGL2(F5) S̃5

y2 = x5 − 1 p 
= 5 C5 C10

(4c3−d2)(c2−4d+18c−27)(c2−4d−110c+1125) 
= 0, c := ab, d := a3+b3. (5)

Ibukiyama-Katsura-Oort determined, using Theorem 1, when the last three
curves are supersingular [IKO86, Props. 1.11, 1.12, 1.13]:

y2 = x6 − 1 is supersingular iff p ≡ −1 (mod 3)
y2 = x5 − x is supersingular iff p ≡ 5, 7 (mod 8)
y2 = x5 − 1 is supersingular iff p ≡ 2, 3, 4 (mod 5)

It is immediate to check that y2 = ax6 + x4 + x2 + 1 is never supersingular if
p = 3. One can apply Theorem 1 to the other curves in the first three families
to distinguish the supersingular ones.
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Theorem 11. Suppose q is a square and let C be a supersingular curve belonging
to one of the first five families of Theorem 10. Then there a twist of C with Weil
polynomial (x+

√
q)4, and this twist is unique.

Proof. Let E be a supersingular elliptic curve defined over Fp. By [IKO86, Prop.
1.3] the Jacobian J of C is geometrically isomorphic to the product of two su-
persingular elliptic curves, which is in turn isomorphic to E×E by a well-known
theorem of Deligne. The principally polarized surface (J,Θ) is thus geometri-
cally isomorphic to (E×E, λ) for some principal polarization λ. Since E has all
endomorphisms defined over Fp2 , (E ×E, λ) is defined over Fp2 and by a classi-
cal result of Weil it is Fp2-isomorphic to the canonically polarized Jacobian of a
curve C0 defined over Fp2 . By Torelli, C0 is a twist of C. The Weil polynomial
of C0 is (x ± √

q)4 because the Frobenius polynomial of E is x2 + p. The fact
that C0 and C′

0 are the unique twists of C0 with Weil polynomial (x ±√
q)4 is

consequence of Proposition 5. �
Corollary 12. Under the same assumptions:

1. The Weil polynomial of C is (x±√
q)4 if and only if W = (1)6.

2. If C belongs to one of the first three families of Theorem 10, then it admits
no twist with Weil polynomial x4 ± qx2 + q2 or x4 + q2.

3. If any of the curves y2 = x5 + x3 + ax, y2 = x6 + x3 + a is supersingular
then a ∈ Fp2 .

Proof. (1) By Table 4, the set W0 of Weierstrass points of C0 has Gk-structure
W0 = (1)6 and Lemma 9 shows that for all automorphisms v 
= 1, ι one has
Wv 
= (1)6; thus, only the twists C0 and C′

0 have W = (1)6.
(2) The geometric automorphisms v of C0 satisfy neither v6 = 1, v2 
= 1, v3 
=

1, ι, nor v6 = ι, nor v4 = ι; thus, by Proposition 5 the Weil polynomial of a twist
of C0 is neither x4 ± qx2 + q2 nor x4 + q2.

(3) The Igusa invariants of C0 take values in Fp2 and a can be expressed in
terms of these invariants [CQ05]. �
In a series of papers Cardona and Quer studied the possible structures of the
pointed sets H1(Gk,Autk(C)) and found representatives v ∈ Autk(C) (identified
to 1-cocycles ofH1(Gk,Autk(C))) of the twists of all curves with many automor-
phisms [Car03], [CQ05], [Car06], [CQ06]. In the next subsections we compute
the zeta function and the number of k-automorphisms of these curves when they
are supersingular. A general strategy that works in most of the cases is to apply
the techniques of Sect. 2 to find a twist of C with Weil polynomial (x ± √

q)4

(for q square) or (x2 ± q)2 (for q nonsquare) and apply then Propositions 5, 6
to obtain the zeta function of all other twists of C. The results are displayed in
the Appendix in the form of Tables, where we exhibit moreover an equation of
each curve.

3.1 Twists of the Curve C : y2 = x5 − 1, for p �≡ 0, 1 (mod 5)

We have φ(W ) = {∞} ∪ μ5 and Aut′
k
(C) � μ5. The zeta function of C can be

computed from Tables 3,4 and Lemma 8 applied to C ⊗ k2. If q 
≡ 1 (mod 5) the
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only twists are C, C′. If q ≡ 1 (mod 5) there are ten twists and their zeta function
can be deduced from Proposition 5. Table 5 summarizes all computations.

3.2 Twists of the Curve C : y2 = x5 − x, for p ≡ 5, 7 (mod 8)

Now φ(W ) = {∞, 0, ±1, ±i}. If p = 5 we have Aut′
k
(C) = Aut(P1). If p 
= 5 the

group Aut′
k
(C) is isomorphic to S4 and it is generated by the transformations

T (x) = ix, S(x) = x−i
x+i , with relations S3 = 1 = T 4, ST 3 = TS2. For q nonsquare

the zeta function of C is determined by Table 3; since the curve is defined over
Fp we obtain the zeta function of C over k by scalar extension.

In all cases we can apply Propositions 5 and 6 to determine the zeta function
of the twists of C. Tables 6, 7, 8 summarize all computations.

3.3 Twists of the Curve C : y2 = x6 − 1, for p ≡ −1 (mod 3), p �= 5

We have φ(W ) = μ6 and Aut′
k
(C) = {±x, ±ηx,±η2x,± 1

x ,±
η
x ,±

η2

x }, where
η ∈ Fp2 is a primitive third root of unity.

The zeta function of C can be computed from Tables 3,4 and Lemma 8 applied
to C and C⊗k2. The zeta function of all twists can be determined by Propositions
5, 6. Tables 9, 10 summarize all computations.

3.4 Twists of the Supersingular Curve C : y2 = x6 + x3 + a, for
p > 3

Recall that a is a special value making the curve C supersingular and a 
=
0, 1/4, −1/50. We have now

φ(W ) = {θ, ηθ, η2θ,
A

θ
, η
A

θ
, η2A

θ
}, Aut′

k
(C) = {x, ηx, η2x,

A

x
, η
A

x
, η2A

x
},

where A, z, θ ∈ k satisfy A3 = a, z2 + z + a = 0, θ3 = z.
The Galois action on W and on Aut′

k
(C) depends on z and a/z being cubes

or not in their minimum field of definition k∗ or (k2)∗. This is determined by
the fact that a is a cube or not.

Lemma 13. If a is a cube in k∗ then z, a/z are both cubes in k∗ or in (k2)∗,
according to 1 − 4a ∈ (k∗)2 being a square or not.

If a is not a cube in k∗ then z, a/z are both noncubes in k∗ or in (k2)∗,
according to 1 − 4a ∈ (k∗)2 being a square or not.

Proof. Let us check that all situations excluded by the statement lead to W =
(1)3(3) or Wv = (1)3(3) for some twist, in contradiction with Tables 3, 4.

Suppose q ≡ −1 (mod 3). If 1−4a is a square then a, z, a/z are all cubes in k∗.
If 1− 4a is not a square then a is a cube and if z, zσ are not cubes in k2 we have
θσ = ω(A/θ), with ω3 = 1, ω 
= 1, and the twist by v = (ω−1(A/x),

√
ay/x3)

has Wv = (1)3(3) by Lemma 9.
Suppose q ≡ 1 (mod 3). If 1−4a is not a square we have z(q2−1)/3 = a(q−1)/3,

so that a is a cube in k∗ if and only if z, zσ are cubes in k∗2 . Suppose now that
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1 − 4a is a square. If exactly one of the two elements z, a/z is a cube we have
W = (1)3(3); thus z, a/z are both cubes or noncubes in k∗. In particular, if a
is not a cube then z, a/z are necessarily both noncubes. Finally, if a is a cube
and z, a/z are noncubes in k∗, Lemma 9 shows that Wv = (1)3(3) for the twist
corresponding to v = (ηx, y). �

For the computation of the zeta functions of the twists it is useful to detect that
some of the combinations a square/nonsquare and 1− 4a square/nonsquare are
not possible.

Lemma 14. Suppose q ≡ 1 (mod 3).

1. If q ≡ −1 (mod 4) then 1 − 4a is not a square.
2. If q is nonsquare then a is not a square.
3. If q is a square then a and 1 − 4a are both squares.

Proof. Let Cv be the twist of C corresponding to v(x, y) = (ηx, y).
(1) Supose 1−4a is a square. If a is a cube we have W = (1)6 and if a is not a

cube we have Wv = (1)6; by Table 3 we get (r, s) = (0,−2
(−1
p

)
q) in both cases.

On the other hand, Lemmas 8 and 9 applied to C ⊗k k2 show in both cases that
s ≡ 1 (mod 3); thus, p ≡ 1 (mod 4).

(2) Suppose a is a square. If a is a cube (respectively a is not a cube) we have
W = (1)6 or W = (2)3 (respectively Wv = (1)6 or Wv = (2)3), according to
1 − 4a being a square or not. In all cases we have (r, s) = (0,±2q) by Table 3,
and a straightforward application of Lemma 8 and (2) of Lemma 9 leads to
r ≡ −1 (mod 3), which is a contradiction.

(3) In all cases in which a or 1−4a are nonsquares we get (r, s) = (0, q) either
for the curve C or for the curve Cv. This contradicts Corollary 12. �

After these results one can apply the general strategy. The results are displayed
in Tables 11, 12, 13.

3.5 Twists of the Supersingular Curve C : y2 = x5 + x3 + ax

Recall that a is a special value making C supersingular and a 
= 0, 1/4, 9/100.
Given z ∈ k satisfying z2 + z + a = 0 we have φ(W ) = {0, ∞, ±

√
z, ±

√
a/z},

Autk(C) =
{
(ω2 x, ω y) | ω4 = 1

}
∪
{(

w2

x
,
w3y

x3

)
| w4 = a

}
.

Lemma 15. If q ≡ 1 (mod 4) then a and 1 − 4a are both squares or both non-
squares in k∗. If q is a square then necessarily a and 1 − 4a are both squares.

Proof. If a 
∈ (k∗)2, 1 − 4a ∈ (k∗)2, then W = (1)4(2) and (r, s) = (0,−2q)
by Tables 3,4; this contradicts Lemma 8 because |Aut(C)| = |F| = 4 and r ≡
2 (mod 4).

Suppose now a ∈ (k∗)2, 1 − 4a 
∈ (k∗)2. If a ∈ (k∗)4 then W = (1)2(2)2 and
(r, s) = (0,±2q); this contradicts Lemma 8 because |Aut(C)| = 8, |F| = 6 if
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q ≡ 1 (mod 8) and |F| = 2 or 10 if q ≡ 5 (mod 8), so that r ≡ 4 (mod 8)
in both cases. If a 
∈ (k∗)4 we get a similar contradiction for the curve Cv for
v(x, y) = (−x, iy).

If a, 1 − 4a are nonsquares, then W = (1)2(4) and the Weil polynomial of C
is x4 + q2 by Tables 3,4. If q is a square this contradicts Corollary 12. �

Lemma 16. If q is a square then a ∈ (k∗)4 if and only if z ∈ (k∗)2.

Proof. Suppose a ∈ (k∗)4, z 
∈ (k∗)2 and let us look for a contradiction. Consider
the k-automorphisms u(x, y) = (−x, iy), v(x, y) = (w2

x ,
w3

x3 y) of C, where w4 = a.
By Lemma 9, Wu = (1)6 and Cu has Weil polynomial (x ± √

q)4 by Corollary
12; since u2 = ι, the Weil polynomial of C is (x2 + q)2 by Proposition 5 and
Lemma 7. The quotient E := C/v is an elliptic curve defined over k and the
Frobenius endomorphism π of E must satisfy π2 = −q. Since q is a square, E
has four automorphisms and its j invariant is necessarily jE = 1728. Now, E has
a Weierstrass equation: Y 2 = (X+2w)(X2 +1−2w2), where X = (x2 +w2)x−1,
Y = y(x + w)x−2 are invariant under the action of v. The condition jE = 1728
is equivalent to a = 0 (which was excluded from the beginning) or a = (9/14)2;
in this latter case z is a square in Fp2 and we get a contradiction.

Suppose now a 
∈ (k∗)4, z ∈ (k∗)2. We have W = (1)6 and C has Weil
polynomial (x ± √

q)4 by Corollary 12. By Proposition 5, the Weil polyno-
mial of Cu is (x2 + q)2. For any choice of w = 4

√
a, the morphism f(x, y) =

(x+w
x−w ,

8
√

w3√
1+2w2

y
(x−w)3 ) sets a k2-isomorphism between C and the model:

Cu : y2 = (x2 − 1)(x4 + bx2 + 1), b = (12
√
a− 2)/(2

√
a+ 1),

of Cu. The quotient of this curve by the automorphism (−x, y) is the elliptic
curve E : Y 2 = (X−1)(X2 + bX+1). Arguing as above, E has j-invariant 1728,
and this leads to a = 0 (excluded from the beginning) or a = (9/14)2, which is
a contradiction since a would be a fourth power in Fp2 . �

After these results one is able to determine the zeta function of all twists of C
when q is a square; the results are displayed in Table 14. In the cases where
the Weil polynomial is (x − ε

√
q)4, ε = ±1, the methods of section 2 are not

sufficient to determine ε; our computation of this sign follows from a study of
the 4-torsion of an elliptic quotient of the corresponding curve.

In order to deal with the case q nonsquare we need to discard more cases.

Lemma 17. Suppose q nonsquare. If q ≡ −1 (mod 4) then a and 1− 4a cannot
be both nonsquares.

If q ≡ 1 (mod 4) and a ∈ (k∗)2 then a ∈ (k∗)4 if and only if z 
∈ (k∗)2.

Proof. If a, 1− 4a are both nonsquares the polynomial x4 +x2 + a is irreducible
and the Weil polynomial of C is x4 + q2 by Table 3; hence, the Weil polynomial
of C ⊗k k2 is (x2 + q2)2. If q ≡ −1 (mod 4) we have a ∈ k∗ ⊆ (k∗2)4 and this
contradicts Table 14.
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Suppose q ≡ 1 (mod 4) and a ∈ (k∗)2; by Lemma 15, 1 − 4a is also a square
and z ∈ k∗. If a ∈ (k∗)4 and z ∈ (k∗)2 we get W = (1)6, and (r, s) = (0,−2q) by
Table 3; we get a contradiction because the Jacobian J of C is simple ([MN02,
Thm. 2.9]) and C has elliptic quotients over k because the automorphisms
(w2/x, (w3y)/x3) are defined over k. If a 
∈ (k∗)4 and z 
∈ (k∗)2 we get an
analogous contradiction for the curve Cu twisted by u(x, y) = (−x, iy). �

The results for the case q nonsquare follow now by the usual arguments and they
are displayed in Tables 15, 16.

3.6 Twists of the Supersingular Curve C : y2 = x6 + ax4 + bx2 + 1

Recall that a, b ∈ k are special values satisfying (5) and making C supersingular;
in particular p > 3. The curve C has four twists because Autk(C) = Aut(C) =
{(±x,±y)} is commutative and has trivial Galois action. The Jacobian of C
is k-isogenous to the product E1 × E2 of the elliptic curves with Weierstrass
equations y2 = x3 + ax2 + bx + 1, y2 = x3 + bx2 + ax + 1, obtained as the
quotient of C by the respective automorphisms v = (−x, y), ιv = (−x,−y). For
q nonsquare, these elliptic curves have necessarily Weil polynomial x2 + q and
the Weil polynomial of C is (x2 + q)2.

Lemma 18. If q is a square C has Weil polynomial (x±√
q)4.

Proof. By Theorem 11 and Proposition 5 C has Weil polynomial (x ± √
q)4

or (x2 − q)2. In both cases the elliptic curves E1, E2 have Weil polynomial
(x ±√

q)2 and we claim that they are isogenous. Since E(k) � (Z/(1 ±√
q)Z)2

as an abelian group, our elliptic curves have four rational 2-torsion points and
the polynomial x3 +ax2 + bx+1 has three roots e1, e2, e3 ∈ k. Since e1e2e3 = 1,
either one or three of these roots are squares. If only one root is a square we have
W = (1)2(2)2, Wv = (1)4(2) and C, Cv have both Weil polynomial (x2 ± q)2, in
contradiction with Theorem 11. Hence, the three roots are squares, W = (1)6,
and C has Weil polynomial (x ±√

q)4 by Corollary 12. �

The zeta function of the twists of C is obtained from Propositions 5 and 6.
The results are displayed in Table 17. For q square the sign of (x±√

q)4 can be
determined by analyzing the 4-torsion of the elliptic curve y2 = x3+ax2+bx+1.

Finally, there are special curves over k whose geometric model y2 = x6+ax4+
bx2 + 1 is not defined over k (cf. [Car03, Sect.1]). It is straightforward to apply
the techniques of this paper to determine their zeta function too.

4 Conclusion

We show that the zeta function of a supersingular curve of genus two is almost
determined by the Galois structure of a finite set easy to describe in terms of a
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defining equation. For curves with many automorphisms this result is refined to
obtain a direct (non-algoritmic) computation of the zeta function in all cases.
As an application one gets a direct computation of the cryptographic exponent
of the Jacobian of these curves. Also, the computation of the zeta function is
necessary to determine the structure of the endomorphism ring of the Jacobian
and to compute distortion maps for the Weil and Tate pairings.

Acknowledgement. It is a pleasure to thank Christophe Ritzenthaler for his
help in finding some of the equations of the twisted curves.
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Appendix

In this appendix we display in several tables the computation of the zeta function
of the supersingular curves of genus 2 with many automorphisms. For each curve
Cv, we exhibit the number of k-automorphisms and the pair of integers (r, s)
determining the Weil polynomial fJv(x) = x4 +rx3 +sx2 +qrx+q2 of Cv. In the
column labelled “s.d” we indicate if C is self-dual. For the non-self-dual curves
we exhibit only one curve from the pair Cv, C′

v.
We denote by η, i ∈ k a primitive third, fourth root of unity. For n a positive

integer and x ∈ k∗ we define

νn(x) = 1 if x ∈ (k∗)n, νn(x) = −1 otherwise .

In all tables the parameters s, t take values in k∗.

Table 5. Twists of the curve y2 = x5 − 1 for p ≡ 2, 3, 4 (mod 5). The sign ε = ±1
is determined by

√
q ≡ ε (mod 5). The last row provides eight inequivalent twists

corresponding to the four nontrivial values of t ∈ k∗/(k∗)5.

Cv v (r, s) s.d. |Aut(Cv)|

y2 = x5 − 1 (x, y)
q ≡ ±2 (mod 5)
q ≡ −1 (mod 5)
q ≡ 1 (mod 5)

(0, 0)
(0, 2q)

(−4ε√q, 6q)
no

2
2
10

y2 = tx5 − 1, t �∈ (k∗)5 (t
1−q
5 x, y) q ≡ 1 (mod 5) (ε

√
q, q) no 10

Table 6. Twists of the curve y2 = x5 − x when q ≡ −1 (mod 8)

Cv v (r, s) s.d. |Aut(Cv)|
y2 = x5 − x (x, y) (0, 2q) yes 8

y2 = x5 + x (ix, 1+i√
2

y) (0, 2q) yes 4

y2 = (x2 + 1)(x2 − 2tx − 1)(x2 + 2
t
x − 1)

t2 + 1 �∈ (k∗)2
(− 1

x
, y

x3 ) (0, −2q) yes 24

y2 = (x2 + 1)(x4 − 4tx3 − 6x2 + 4tx+ 1),
t2 + 1 �∈ (k∗)2

�
i
x
, i−1√

2x3 y
�

(0, 0) yes 4

y2 = x6 − (t+ 3)x5 + 5( 2+t−s
2 )x4 + 5(s − 1)x3

+5( 2−t−s
2 )x2 + (t − 3)x+ 1 irred., s2 + t2 = −2

�
x−i
x+i

, 2(1−i)y
(x+i)3

�
(0, q) no 6
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Table 7. Twists of the curve y2 = x5 − x when q ≡ 5 (mod 8)

Cv v p (r, s) s.d. |Aut(Cv)|

y2 = x5 − x (x, y)
p > 5
p = 5

(0, −2q) yes 24
120

y2 = x5 − 4x (−x, iy) (0, 2q) yes 8

y2 = x5 − 2x (ix, 1+i√
2

y) (0, 0) yes 4

y2 = (x2 + 2)(x4 − 12x2 + 4)
�

i
x
, i−1√

2x3 y
� p > 5

p = 5
(0, 2q) yes

4
12

y2 = f(t, x)f( 18+(5i−3)t
(5i+3)−2t

, x)

f(t, x) = x3 − tx2 + (t − 3)x + 1 irred.

�
x−i
x+i

, 2(1−i)y
(x+i)3

� p > 5
p = 5

(0, q)
no
yes

6

y2 = x5 − x − t, trk/F5 (t) = 1 (x+ 1, y) p = 5 (
√
5q, 3q) no 10

y2 = x6 + tx5 + (1− t)x+ 2, irred. ( 3
x−1 ,

√
2y

(x+1)3 ) p = 5 (0, −q) yes 6

Table 8. Twists of the curve y2 = x5 − x when p ≡ 5, 7 (mod 8) and q is a square.
Here ε = (−1/√

q) and ε′ = (−3/√
q).

Cv v p (r, s) s.d. |Aut(Cv)|

y2 = x5 − x (x, y)
p > 5
p = 5

(−4ε√q, 6q) no
48
240

y2 = x5 − t2x, t �∈ (k∗)2 (−x, iy) (0, 2q) yes 8

y2 = x5 − tx, t �∈ (k∗)2 (ix, 1+i√
2

y) (0, 0) no 8

y2 = (x2 − t)(x4 + 6tx2 + t2),
t �∈ (k∗)2

�
i
x
, i−1√

2x3 y
� p > 5

p = 5
(0, −2q) yes

4
12

y2 = (x3 − t)(x3 − (15
√
3− 26)t),

t �∈ (k∗)3

�
x−i
x+i

, 2(1−i)y
(x+i)3

� p > 5
p = 5

(2ε′√q, 3q) no
6
12

y2 = x5 − x − t, trk/F5(t) = 1 (x+ 1, y) p = 5 (
√

q, q) no 10

y2 = x6 + tx5 + (1− t)x+ 2, irred. ( 3
x−1 ,

√
2y

(x+1)3 ) p = 5 (0, q) no 12

Table 9. Twists of the curve y2 = x6−1 when q ≡ −1 (mod 3), p �= 5. Here ε = (−1/p).

Cv v (r, s) s.d. |Aut(Cv)|
y2 = x6 − 1 (x, y) (0, 2q) iff ε = −1 6 + 2ε

y2 = x6 − t, t �∈ (k∗)2 (−x, −y) (0, 2q) iff ε = 1 6− 2ε
y2 = x(x2 − 1)(x2 − 9) ( 1

x
, iy

x3 ) (0, −2εq) yes 12

y2 = (x4 − 2stx3 + (7s+ 1)x2 + 2tsx+ 1)·
·(x2 − 4

t
x − 1), t2 + 4 ∈ k∗ \ (k∗)2, s−1 = t2 + 3

(− 1
x
, iy

x3 ) (0, 2εq) yes 12

y2 = x6 + 6tx5 + 15sx4 + 20tsx3 + 15s2x2+
+6ts2x+ s3, s = t2 − 4 �∈ (k∗)2,
gcd(x(q+1)/3 − 1, x2 − tx + 1) = 1

( η
x
, iy

x3 ) (0, εq) yes 6

y2 = x6 + 6x5 + 15sx4 + 20sx3 + 15s2x2+
+6s2x+ s3, s = t2/(t2 + 4) �∈ (k∗)2,

gcd(x(q+1)/3 + 1, x2 − tx − 1) = 1

(− η
x
, iy

x3 ) (0, −εq) yes 6
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Table 10. Twists of the curve y2 = x6 − 1 when p ≡ −1 (mod 3), p �= 5 and q is a
square. Here ε = (−3/√

q).

Cv v (r, s) s.d. |Aut(Cv)|
y2 = x6 − 1 (x, y) (−4ε√q, 6q) no 24

y2 = x6 − t3, t �∈ (k∗)2 (−x, y) (0, −2q) yes 12

y2 = x6 − t2, t �∈ (k∗)3 (ηx, y) (2ε
√

q, 3q) no 12

y2 = x6 − t, t �∈ ((k∗)2 ∪ (k∗)3) (−ηx, −y) (0, q) no 12

y2 = x(x2 + 3t)(x2 + t
3 ), t �∈ (k∗)2 ( 1

x
, iy

x3 ) (0, 2q) yes 4

y2 = x6 + 15tx4 + 15t2x2 + t3, t �∈ (k∗)2 (− 1
x
, iy

x3 ) (0, −2q) yes 4

Table 11. Twists of the supersingular curve y2 = x6+x3+a, a �= 0, 1/4, −1/50, when
q ≡ −1 (mod 3). Here ε = ν2(a) and A is the cubic root of a in k.

Cv v (r, s) s.d. |Aut(Cv)|
y2 = x6 + x3 + a (x, y) (0, 2q) iff ε = −1 3 + ε

y2 = θ−3(x − θ)6 − g(x)3 + aθ3(x − θσ)6

g(x) min. polyn. of θ ∈ k2 \ k, Nk2/k(θ) = A−1 (A
x

,
√

a
x3 y) (0, 2εq) iff ε = −1 9 + 3ε

y2 = θ(x − η)6 − g(x)3 + aθ−1(x − η2)6

g(x) = x2 + x + 1, θ ∈ k2 \ (k∗
2)3, Nk2/k(θ) = a

(η A
x

,
√

a
x3 y) (0, −εq) no 6

Table 12. Twists of the supersingular curve y2 = x6+x3+a, a �= 0, 1/4, −1/50, when
q ≡ 1 (mod 3) and q is nonsquare. Here A is a cubic root of a in k and n = 3, if
a ∈ (k∗)3, whereas A = a, n = 1, if a �∈ (k∗)3.

Cv v ν3(a) (r, s) s.d. |Aut(Cv)|

y2 = x6 + x3 + a (x, y)
1

−1
(0, −2q)
(0, q)

yes
no

6

y2 = x6 + tx3 + t2a, t �∈ (k∗)3

y2 = x6 + ax3 + a3 (ηx, y)
1

−1
(0, q)
(0, −2q)

no
yes

6

y2 = θ−n(x − θ)6 − g(x)3 + aθn(x − θσ)6

g(x) min. polyn. of θ ∈ k2 \ k, Nk2/k(θ) = A−1 (
3√a
x

,
√

a
x3 y) (0, 2q) yes 2

Table 13. Twists of the supersingular curve y2 = x6 + x3 + a, a �= 0, 1/4, −1/50,
when q is a square. Here ε = (−3/√

q). Also, A is a cubic root of a in k and n = 3, if
a ∈ (k∗)3, whereas A = a, n = 1, if a �∈ (k∗)3.

Cv v ν3(a) (r, s) s.d. |Aut(Cv)|

y2 = x6 + x3 + a (x, y)
1

−1
(−4ε√q, 6q)
(2ε

√
q, 3q)

no
12
6

y2 = x6 + tx3 + t2a, t �∈ (k∗)3

y2 = x6 + ax3 + a3 (ηx, y)
1

−1
(2ε

√
q, 3q)

(−4ε√q, 6q)
no

6
12

y2 = θ−n(x − θ)6 − g(x)3 + aθn(x − θσ)6

g(x) min. polyn. of θ ∈ k2 \ k, Nk2/k(θ) = A−1 (
3√a
x

,
√

a
x3 y) (0, −2q) no 4
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Table 14. Twists of the supersingular curve y2 = x5+x3+ax, a �= 0, 1/4, 9/100, when
q is a square. The last row provides two inequivalent twists according to the two values
of

√
a. Here ε = −(−1/√

q)ν4(z) and ε′ = −(−1/√
q)ν4(tz), where z2 + z + a = 0.

Cv v ν4(a) (r, s) s.d. |Aut(Cv)|

y2 = x5 + x3 + ax (x, y)
1

−1
(4ε

√
q, 6q)

(0, 2q)
no
yes

8
4

y2 = x5 + tx3 + at2x, t �∈ (k∗)2 (−x, t
q−1
4 y)

1
−1

(0, 2q)
(4ε′√q, 6q)

yes
no

4
8

y2 = g(x)
�
θ2(x − θσ)4 + g(x)2+

+aθ−2(x − θ)4
�
, Nk2/k(θ) =

√
a

g(x) min. polyn. of θ ∈ k2 \ k

(
√

a
x

,
4√

a3

x3 y) (0, −2q) yes 4

Table 15. Twists of the supersingular curve y2 = x5+x3+ax, a �= 0, 1/4, 9/100, when
q is nonsquare and a �∈ (k∗)2

Cv v (−1/p) (r, s) s.d. |Aut(Cv)|

y2 = x5 + x3 + ax (x, y)
1

−1
(0, 0)
(0, 2q)

no
yes

4
2

y2 = (x2 − a)
�
θ(x −

√
a)4 + (x2 − a)2+

+aθ−1(x+
√

a)4
�
, θ ∈ k2, Nk2/k(θ) = a

(
√

a
x

,
4√

a3

x3 y)
1

−1
(0, 2q)
(0, 0)

yes
no

2
4

Table 16. Twists of the supersingular curve y2 = x5+x3+ax, a �= 0, 1/4, 9/100, when
q is nonsquare and a ∈ (k∗)2. Here ε = (−1/p). If p ≡ −1 (mod 4) we assume that

√
a

belongs to (k∗)2.

Cv v ν4(a) (r, s) s.d. |Aut(Cv)|

y2 = x5 + x3 + ax (x, y)
1

−1
(0, 2q)
(0, −2q)

iff ε = −1
yes

6 + 2ε
4

y2 = x5 + tx3 + at2x, t �∈ (k∗)2 (−x, t
q−1
4 y)

1
−1

(0, −2εq)
(0, 2q)

yes
no

4
8

y2 = g(x)
�
θ2(x − θσ)4 + g(x)2+

+aθ−2(x − θ)4
�
, Nk2/k(θ) =

√
a

g(x) min. polyn. of θ ∈ k2 \ k

(
√

a
x

,
4√

a3

x3 y) (0, 2q) iff ε = 1 6− 2ε

y2 = g(x)
�
θ2(x − θσ)4 + g(x)2+

+aθ−2(x − θ)4
�
, Nk2/k(θ) = −√

a

g(x) min. polyn. of θ ∈ k2 \ k

(−
√

a
x

, i
4√

a3

x3 y) (0, 2εq) yes 4

Table 17. Twists of the supersingular curve y2 = x6 + ax4 + bx2 + 1 satisfying (5)

Cv v (r, s) s.d. |Aut(Cv)|

y2 = x6 + ax4 + bx2 + 1 (x, y)
q nonsq.
q square

(0, 2q)
(±4√q, 6q)

no 4

y2 = x6 + atx4 + bt2x2 + t3

t �∈ (k∗)2
(−x,−y)

q nonsq.
q square

(0, 2q)
(0, −2q) no 4
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Abstract. We provide the first explicit construction of genus 2 curves
over finite fields whose Jacobians are ordinary, have large prime-order
subgroups, and have small embedding degree. Our algorithm is mod-
eled on the Cocks-Pinch method for constructing pairing-friendly elliptic
curves [5], and works for arbitrary embedding degrees k and prime sub-
group orders r. The resulting abelian surfaces are defined over prime
fields Fq with q ≈ r4. We also provide an algorithm for constructing
genus 2 curves over prime fields Fq with ordinary Jacobians J having the
property that J [r] ⊂ J(Fq) or J [r] ⊂ J(Fqk) for any even k.

1 Introduction

In the last few years, many cryptographic protocols have been proposed that
make use of bilinear pairings [25]. While the protocols are described in the lan-
guage of abstract groups, in practice the pairings used are the Weil and Tate
pairings on abelian varieties over finite fields. These pairings take as input two
points on an abelian variety A defined over a finite field Fq and give as output
an element of an extension field Fqk . The degree k of the extension field is known
as the “embedding degree” of the abelian variety.

For pairing-based cryptosystems to be both efficient and secure, the embed-
ding degree k should be chosen so that the discrete logarithm problem is equally
difficult on the abelian variety (where only exponential-time discrete logarithm
algorithms are known) and in the multiplicative group of the extension field
(where there exist subexponential-time discrete logarithm algorithms). Since the
optimal embedding degree will vary according to the desired level of security, in
order to build systems with a variety of security levels we wish to have a supply
of abelian varieties with various embedding degrees.

While elliptic curves remain the most common choice of a family of abelian
varieties for cryptographic protocols, Bernstein [2] and Lange [18] have recently
shown that for certain applications Jacobians of genus 2 curves are now com-
petitive with elliptic curves in terms of performance and security. In addition,
Frey and Lange [9] have shown that in many situations the Tate pairing can be
computed more efficiently on Jacobians of hyperelliptic curves of genus g > 1
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than on elliptic curves. It is thus only natural that we should seek to construct
“pairing-friendly” genus 2 curves, i.e. curves whose Jacobians have small embed-
ding degree.

At present there exist very few constructions of pairing-friendly genus 2 curves.
Rubin and Silverberg [26] showed that any supersingular Jacobian of a genus 2
curve has embedding degree at most 12. Galbraith, McKee, and Valença [11]
demonstrated the existence of isogeny classes of ordinary abelian surfaces over
prime fields with small embedding degree, and Hitt [14] demonstrated the ex-
istence of p-rank 1 abelian surfaces in characteristic 2 with small embedding
degree. However, to date there exist no equations of genus 2 curves over fields
of cryptographic size whose Jacobians are not supersingular and have small em-
bedding degree.

In this paper we provide the first explicit construction of genus 2 curves whose
Jacobians are ordinary, have large prime-order subgroups, and have prescribed
embedding degree. Our construction is modeled on the Cocks-Pinch method for
constructing pairing-friendly elliptic curves [5], and makes use of the Complex
Multiplication (CM) method of curve construction. The outline of our algorithm
is as follows:

1. Find primes q and r and a polynomial h(x) such that if h(x) is the charac-
teristic polynomial of Frobenius of an abelian surface A over Fq, then A has
a subgroup of order r with embedding degree k.

2. Use the Igusa class polynomials for the quartic CM field K = Q[x]/(h(x))
to construct a genus 2 curve C over Fq such that the Jacobian of C has
characteristic polynomial of Frobenius h(x).

The difficult part of the construction is ensuring that the polynomial h(x)
defines a CM field K for which the Igusa class polynomials can be computed
efficiently using current methods. The solution to this problem is our most im-
portant theoretical contribution.

Our paper is structured as follows. Section 2 addresses Step 1 of the algorithm.
In this section we give a precise definition of embedding degree, and we give a
set of explicit conditions necessary for the prime q and the polynomial h(x) to
have the desired properties. We give separate sets of conditions that address two
different notions of embedding degree: the standard notion as described above,
and a new notion we call the “full embedding degree,” which indicates the field
over which the full set of r-torsion points of A is defined.

Section 3 addresses Step 2 of the algorithm. We find explicit formulas that
relate the CM fieldK to the characteristic polynomial of Frobenius h(x). We then
use the theory of ordinary abelian varieties over finite fields to give conditions
on h(x) such that the desired genus 2 curve C exists over Fq. Construction of C
from roots of the Igusa class polynomials modulo q is then a standard procedure.

In Section 4 we give a complete algorithm for constructing genus 2 curves
whose Jacobians are ordinary and have prescribed embedding degree. In
Section 5 we give an analogous algorithm for constructing genus 2 curves whose
Jacobians are ordinary and have prescribed full embedding degree; i.e. all
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r-torsion points of the Jacobian are defined over a specified field extension. Ex-
amples of curves of cryptographic size constructed using these algorithms appear
in the Appendices.

Finally, in Section 6 we consider possible extensions of our constructions.
We show that our algorithms extend readily to produce abelian varieties that
have small embedding degree with respect to subgroups of composite order; such
varieties are required by a number of recent protocols. We also consider methods
of generalizing the algorithm to improve the ratio between the sizes of the primes
q and r. Our method produces varieties with log q/ log r ≈ 4; our hope is that
the techniques presented here will lead to constructions that reduce this ratio to
its theoretical minimum of 1/2.

2 Pairing-Friendly Abelian Varieties

In this section we gather together facts about abelian varieties relevant to our
construction. Good overviews of the subject can be found in the articles of
Waterhouse and Milne [30], which focuses on varieties over finite fields, and
Milne [22], which treats varieties over arbitrary fields.

An abelian variety A is a complete algebraic variety with a group structure
whose operations are given by algebraic morphisms. An elliptic curve is a one-
dimensional abelian variety, and an abelian surface is a two-dimensional abelian
variety. If A is an abelian variety defined over a field K, we denote by A(K)
the set of K-rational points of A. If r is an integer, then A[r] denotes the set of
all r-torsion points of A, defined over an algebraic closure of K. We denote by
A(K)[r] the set of r-torsion points of A defined over K. If A has dimension g
and r is prime to the characteristic of K, then A[r] ∼= (Z/rZ)2g .

Every abelian variety A defined over a finite field Fq has an endomorphism
called the Frobenius endomorphism, which operates by raising the coordinates
of a point to the qth power. The Frobenius endomorphism satisfies an integer
polynomial h(x) known as the characteristic polynomial of Frobenius. By a the-
orem of Weil [22, Theorem 19.1], all of the complex roots of h(x) have absolute
value

√
q; such a polynomial is called a q-Weil polynomial. If A has dimension

g, then this polynomial is of the form

h(x) = x2g + a1x
2g−1 + . . .+ ag−1x

g+1 + agx
g

+ ag−1qx
g−1 + . . .+ a1q

g−1x+ qg,
(2.1)

By Honda-Tate theory [28], q-Weil polynomials are in one-to-one correspondence
with isogeny classes of abelian varieties over Fq.

If A is an abelian variety with characteristic polynomial of Frobenius h(x),
then #A(Fq) = h(1). We say that A is ordinary if the middle coefficient ag of
h(x) is relatively prime to q, and A is supersingular if all of the complex roots
of h(x) are roots of unity times

√
q. (For other equivalent definitions of ordinary

and supersingular, see [16, Definition 3.1] or [10, Theorem 1].) If g ≥ 2 then there
are g-dimensional abelian varieties that are neither ordinary nor supersingular.
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The most common abelian varieties used in cryptography are Jacobians of
hyperelliptic curves of genus g ≥ 1. A hyperelliptic curve of genus g (over a field
of characteristic 
= 2) is the normal projective closure of a nonsingular affine
curve of the form y2 = f(x), with deg f = 2g + 1 or 2g + 2. The Jacobian of
a projective genus g curve C, denoted Jac(C), is a g-dimensional principally
polarized abelian variety whose points are degree zero divisors on C modulo
principal divisors.

2.1 Pairings and Embedding Degrees

The two most common pairings on abelian varieties used in cryptography are
the Weil and Tate pairings. Let A be an abelian variety defined over a field K,
and let r be a positive integer. Let μr be the rth roots of unity in an algebraic
closure of K. The Weil pairing is a nondegenerate bilinear map

eweil,r : A[r] ×A[r] → μr,

while the Tate pairing is a nondegenerate bilinear map

etate,r : A(K)[r] ×A(K)/rA(K) → K×/(K×)r.

If μr ⊂ K, then the target group K×/(K×)r is isomorphic to μr; otherwise it
is isomorphic to μs for some s | r. Thus to obtain Weil or Tate pairing values of
order r, we must work over a field containing the rth roots of unity. We define
the embedding degree to be the extension degree of the smallest such field.

Definition 2.1. Let A be an abelian variety defined over a field K, and let r
be a positive integer relatively prime to char(K). We say that A has embedding
degree k with respect to r if

1. A has a K-rational point of order r, and
2. k is the smallest integer such that μr is contained in a degree-k extension of

K.

If C is a projective nonsingular curve, then we say that C has embedding degree
k with respect to r if and only if the Jacobian of C does.

Remark 2.2. If A is an abelian variety over a finite field Fq with an Fq-rational
point of order r, then the following conditions are equivalent:

1. A has embedding degree k with respect to r.
2. k is the smallest integer such that r divides qk − 1.
3. k is the multiplicative order of q modulo r.

Furthermore, if r is square-free these conditions are equivalent to

4. Φk(q) ≡ 0 (mod r), where Φk is the kth cyclotomic polynomial. (Cf. [8,
Proposition 2.4]).
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The embedding degree gets its name because we can use a pairing to “em-
bed” a cyclic subgroup of A of order r into the multiplicative group of the
degree-k extension of K. The MOV attack on the discrete logarithm problem
on supersingular elliptic curves [20] makes use of such an “embedding.” If A is
a g-dimensional abelian variety defined over Fq with q = pd and � is the multi-
plicative order of p modulo r, then the quantity �/dg is a good measure of the
security of cryptosystems based on A [15]. If Fq is a prime field (i.e. d = 1) then
this quantity is equal to k/g.

In general we expect a “random” abelian variety over Fq with a point of order
r to have embedding degree k ≈ r; this statement has been made more precise in
the case of elliptic curves by Balasubramanian and Koblitz [1] and Luca, Mireles,
and Shparlinski [19]. In cryptographic applications r will be at least 2160, so
computing pairings on random abelian varieties over Fq appears hopeless. Thus
we wish to construct abelian varieties over finite fields that have points of large
order r and small embedding degree with respect to r; such varieties are called
“pairing-friendly.”

Our first task is to give some conditions on the characteristic polynomial of
Frobenius that are sufficient for A to have embedding degree k.

Proposition 2.3. Let A be an abelian variety over Fq, and let h(x) be the char-
acteristic polynomial of Frobenius of A. Let r � q be a prime number and k a
positive integer, and suppose the following hold:

h(1) ≡ 0 (mod r),
Φk(q) ≡ 0 (mod r),

where Φk is the kth cyclotomic polynomial. Then A has embedding degree k with
respect to r.

Furthermore, if k > 1 then A(Fqk ) contains two linearly independent r-torsion
points.

Proof. The condition r | h(1) guarantees that A has an Fq-rational point of
order r, and by Remark 2.2 the condition r | Φk(q) implies that A has embedding
degree k with respect to r.

The proof of the “furthermore” clause follows an argument of Balasubra-
manian and Koblitz [1, Theorem 1]. Let h̃(x) be the reduction of h(x) modulo
r. The roots of h̃(x) are the eigenvalues of the Frobenius endomorphism F on
A[r]. From equation (2.1) we see that h(x) = (x2/q)gh(q/x), so roots of h̃(x)
come in pairs (α, q/α). The hypothesis h(1) ≡ 0 (mod r) thus implies that h̃(q)
is also zero. The hypotheses h̃′(1) 
= 0 and k > 1 imply that 1 and q are dis-
tinct roots with multiplicity 1, so A[r] has a one-dimensional eigenspace with
eigenvalue 1, and a one-dimensional eigenspace with eigenvalue q. Since qk = 1
(mod r), F k acts trivially on the two-dimensional span of these eigenspaces, so
dimA[r](Fqk ) ≥ 2. ��

If dimA = 1 (i.e. A is an elliptic curve) and the “furthermore” clause of Propo-
sition 2.3 holds, then since A[r] is two-dimensional we must have A[r] ⊂ A(Fqk).
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However, if dimA > 1, then in general A[r] will not be contained in A(Fqk).
Thus we define a second type of embedding degree, which indicates the exten-
sion degree of the smallest field over which all r-torsion points of A are defined.

Definition 2.4. Let A be an abelian variety defined over a field K, and let r be
a positive integer relatively prime to char(K). We say that A has full embedding
degree k with respect to r if

1. A has a K-rational point of order r, and
2. k is the smallest integer such that all r-torsion points of A are defined over

a degree-k extension of K.

If C is a projective nonsingular curve, then we say that C has full embedding
degree k with respect to r if and only if the Jacobian of C does.

Remark 2.5. The non-degeneracy of the Weil pairing [22, §16] implies that the
full embedding degree is a multiple of the embedding degree.

We next give a criterion that determines when all of the r-torsion points are
defined over a given extension field.

Proposition 2.6. Let A be a g-dimensional abelian variety over Fq, let R be
the endomorphism ring of A, and suppose R is a Dedekind domain. Let F be
the Frobenius endomorphism of A, and for k ≥ 1 let hk(x) be the characteristic
polynomial of F k. Let r � q be a rational prime unramified in R, and suppose
that for some k, hk(x) ≡ (x− 1)2g (mod r). Then A[r] ⊂ A(Fqk).

Proof. Let π ∈ R be the Frobenius endomorphism of A. By a result of
Eisenträger and Lauter [6, Fact 10], A[r] ⊂ A(Fqk) if and only if πk − 1 ∈ rR.
Since R is a Dedekind domain and r is unramified in R, it suffices to show that
πk − 1 ∈ p for every prime p of R dividing r. Since πk is a root of hk(x), the
hypothesis hk(x) ≡ (x− 1)2g (mod r) implies that (πk − 1)2g ∈ p for every p | r,
and since R/p is a field we conclude that πk − 1 ∈ p for every p | r. ��

Using Proposition 2.6, we can now give a statement analogous to Proposition
2.3 that gives us sufficient conditions for A to have full embedding degree k.

Proposition 2.7. Let A be an abelian variety over Fq, and let h(x) be the
characteristic polynomial of Frobenius of A. Let r � q be a prime number, let
h̃(x) ∈ Fr[x] be h(x) modulo r, and suppose h̃(1) = 0. Let {αi} be the roots of
h̃(x) in Fr, and suppose that k is the least common multiple of the multiplicative
orders of all the αi. Suppose that either (1) gcd(h̃(x), h̃′(x)) = 1 or (2) End(A)
is a Dedekind domain and r is unramified in End(A). Then A has full embedding
degree k with respect to r.

Proof. The condition h̃(1) = 0 guarantees that A has an Fq-rational point of
order r. The αi are the eigenvalues of the Frobenius endomorphism F on A[r].
Since αk

i = 1, all of the 2g eigenvalues of F k are 1, and by assumption k is the
smallest integer with this property.
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If gcd(h̃(x), h̃′(x)) = 1, then all the eigenvalues of F are distinct, so F is
diagonalizable. Thus F k is the identity on A[r], and we conclude that A[r] ⊂
A(Fqk). If End(A) is a Dedekind domain and r is unramified in End(A), then
since the characteristic polynomial of F k modulo r is (x − 1)2g, we may apply
Proposition 2.6 to deduce that A[r] ⊂ A(Fqk). Thus in both cases we see that A
has full embedding degree k with respect to r. ��

The security of pairing-based cryptographic protocols depends on both the size
r of the subgroup involved in the pairing and the size qk of the finite field into
which the pairing maps. Ideally r is very close to the total number of points
on the abelian variety. However, many of the constructions of pairing-friendly
varieties give values of r whose size is some fraction of the total number of
points on the variety. We define a parameter ρ that measures this ratio. Since
the Weil conjectures [22, Theorem 19.1] imply that #A(Fq) = qg + O(qg−1/2),
it is reasonable to use qg as an approximation to #A(Fq) in our definition.

Definition 2.8. Let A/Fq be a g-dimensional abelian variety, and suppose r
divides #A(Fq). The ρ-value of A (with respect to r) is defined to be

ρ(A) =
g log q
log r

.

Varieties with a prime number of points, such as MNT elliptic curves [23], will
have ρ-value very close to 1; this is the “ideal” case. The expression kρ/g mea-
sures the ratio of the size of the field into which the pairing maps to the size of
the prime-order subgroup on the variety. Recommended values of this expression
to achieve “balanced” security levels comparable to standard sizes of keys for
symmetric encryption have been given by several authors; for a summary, see [8,
Table 1.1].

3 Constructing Ordinary Abelian Surfaces Via the Genus
2 CM Method

In this section we consider the problem of generating a genus 2 curve C such
that Jac(C) is ordinary and has characteristic polynomial of Frobenius equal to
a specified q-Weil polynomial h(x).

Let A be an absolutely simple ordinary g-dimensional abelian variety over a
finite field Fq. We denote by End(A) the ring of endomorphisms of A defined
over Fq. This ring is a rank-2g Z-module that is isomorphic as a Z-algebra to
an order in the ring of integers in a number field K. We say that such a variety
A has complex multiplication by K or CM by K. The field K has degree 2g and
is an imaginary quadratic extension of a totally real number field of degree g; a
field with these properties is called a CM field. A CM field K is primitive if it
contains no proper CM subfields.

The fundamental fact we will use in our construction of pairing-friendly abelian
surfaces is the following, which relates the CM field to the characteristic polyno-
mial of Frobenius.
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Fact 3.1 ([30, Theorem 8]). Let K be a CM field. An ordinary abelian va-
riety A/Fq has CM by K if and only if K ∼= Q[x]/(h(x)), where h(x) is the
characteristic polynomial of Frobenius of A.

In the case of abelian surfaces, we can give a more explicit relation between the
CM field and the characteristic polynomial of Frobenius.

Lemma 3.2. Let h(x) ∈ Z[x] be a polynomial with integer coefficients of the
form

h(x) = x4 − sx3 + tx2 − sqx+ q2. (3.1)

Then the four complex roots of h(x) are

s

4
+

1
2

√
s2

4
− t+ 2q ± 1

2

√(
s2

2
− t− 2q

)
+ s

√
s2

4
− t+ 2q,

s

4
− 1

2

√
s2

4
− t+ 2q ± 1

2

√(
s2

2
− t− 2q

)
− s

√
s2

4
− t+ 2q.

Proof. An easy calculation shows that if α is a root of h(x), then α+ q/α is a
root of x2 − sx+ t− 2q. The result then follows from two successive applications
of the quadratic formula. ��

Proposition 3.3. Let h(x) be a polynomial of the form (3.1). Let δ = s2/4 −
t+ 2q. Suppose the following hold:

δ > 0 (3.2)
s2

2
− t− 2q ± s

√
δ < 0 (3.3)

gcd(t, q) = 1 (3.4)

Then there is an abelian surface A such that the characteristic polynomial of
Frobenius of A is equal to h(x). Furthermore, A has CM by Q(η), where

η =

√(
s2

2
− t− 2q

)
+ s

√
s2

4
− t+ 2q. (3.5)

Proof. By Lemma 3.2, h(x) has a root in K = Q(η), so K ∼= Q[x]/(h(x)). Con-
ditions (3.2) and (3.3) ensure that K is a purely imaginary quadratic extension
of the real quadratic field Q(

√
δ). Under this hypothesis, one can compute that

all four of the roots of h(x) given by Lemma 3.2 have complex absolute value√
q. Thus h(x) is a q-Weil polynomial, so by Honda-Tate theory [28] there is

an isogeny class A of abelian varieties over Fq with characteristic polynomial of
Frobenius h(x). Condition (3.4) implies that any A ∈ A is ordinary, so by Fact
3.1, any A ∈ A has CM by K. ��

If the CM field K = Q(η) is primitive then we can go one step further and say
that there is an abelian surface A ∈ A such that A is the Jacobian of a genus 2
curve over Fq and End(A) is the ring of integers of K.
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Proposition 3.4. Let h(x) be a polynomial of the form (3.1) satisfying the con-
ditions of Proposition 3.3. Let η be defined by equation (3.5), and suppose that
the number field K = Q(η) is a primitive quartic CM field. Then there is a genus
2 curve C/Fq such that Jac(C) has characteristic polynomial of Frobenius h(x)
and End(Jac(C)) ∼= OK , the ring of integers of K.

Proof. Let A ∈ A be an abelian surface in the isogeny class of abelian varieties
given by Proposition 3.3. Since K is primitive and A is ordinary, it follows
from the Honda-Tate theorem [28] that A is absolutely simple. By a theorem of
Weil (cf. [24]), an absolutely simple principally polarized abelian surface is the
Jacobian of a genus 2 curve. It thus suffices to show that we can find an A ∈ A
that is principally polarized and has endomorphism ring isomorphic to OK .

Let K0 be the real quadratic subfield of K. By the work of Howe [16, Propo-
sitions 5.7 and 10.1], it suffices to show that there is a finite prime p of K0 that
ramifies in K. A variation of Howe’s proof of [16, Lemma 12.1] shows that if
there is no finite prime p of K0 that ramifies in K, then K contains an imagi-
nary quadratic subfield, contradicting the assumption that K is primitive. ��

Our algorithms in Sections 4 and 5 for generating pairing-friendly abelian
surfaces will produce primes q and q-Weil polynomials h(x) satisfying the hy-
potheses of Proposition 3.4. To construct the genus 2 curves specified by the
proposition, we turn to genus 2 invariant theory.

If F is a field with char(F) 
= 2, then F-isomorphism classes of genus 2 curves
defined over F are in one-to-one correspondence with triples (j1, j2, j3) ∈ F3.
The triple (j1, j2, j3) corresponding to a curve C is called the curve’s absolute
invariants. Let K be a primitive quartic CM field, and let CK be the set of
isomorphism classes of genus 2 curves over C such that End(Jac(C)) ∼= OK , the
ring of integers in K. The Igusa class polynomials of K are defined to be

Hi(x) =
∏

C∈CK

(x− ji(C))

for i = 1, 2, 3; these polynomials have rational coefficients. There are currently
several methods for computing the Igusa class polynomials: a complex-analytic
algorithm involving modular functions [27], [29], [31]; a Chinese Remainder The-
orem algorithm that computes the Hi(x) modulo many small primes [6], [7]; and
a p-adic lifting algorithm [12]. All three methods are currently limited to CM
fields K with small discriminant and class number.

By the Serre-Tate theory of canonical liftings [17], any ordinary abelian variety
A over a finite field is the reduction modulo a suitable prime p of an abelian
variety Ã over C with End(Ã) ∼= End(A). Furthermore, if A is the Jacobian of a
genus 2 curve C, then Ã is the Jacobian of a genus 2 curve C̃, and the absolute
invariants of C are the reduction modulo p of the absolute invariants of C̃. The
requirement that A be ordinary is essential; see [13, Section 4] for further details.
Combining these facts gives the following statement.

Fact 3.5. Let K be a primitive quartic CM field, and let Hi(x) be the Igusa
class polynomials of K. Let q = pd be a prime power, and let C/Fq be a genus 2
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curve. Suppose that End(Jac(C)) ∼= OK (so in particular, Jac(C) is ordinary).
Then p does not divide the denominator of any coefficient of any Hi(x), and for
each i the absolute invariant ji of C is a root of Hi(x) modulo p.

Thus given a q-Weil polynomial h(x) satisfying the hypotheses of Proposition
3.4 with q prime, we can construct the absolute invariants of C by computing
the Igusa class polynomials for K and finding roots of the polynomials modulo
q. Constructing the curve C from its absolute invariants is then a standard pro-
cedure. Algorithm 4.3 below gives step by step instructions for this construction.

4 Constructing Genus 2 Curves with Prescribed
Embedding Degree

We have seen in Sections 2 and 3 that to construct an abelian surface with
prescribed embedding degree k, it suffices to find a q-Weil polynomial h(x) sat-
isfying the conditions of Propositions 2.3 and 3.4. Given such an h(x), Fact 3.5
says that we can use the Igusa class polynomials of K = Q[x]/(h(x)) to find
a genus 2 curve C such that Jac(C) has the desired properties. Since current
methods of computing the Igusa class polynomials are limited to a small range
of quartic CM fields K, we will specify K as an input to our algorithm, and
assume that K is chosen such that the Igusa class polynomials for K are known
or can be easily computed.

Recall that a CM field is a purely imaginary quadratic extension of a totally
real field. Thus all primitive CM fields K of degree 4 can be written in the form
K = Q(

√
−a+ b

√
d) for some integers a, b, d > 0 with a2 − b2d > 0. If a2 − b2d

is not a square then K is primitive.
If we fix an element ξ =

√
−a+ b

√
d generating our CM field K and re-

quire that the element η given by Proposition 3.3 is equal to ξ, then we have
three equations in the three variables q, s, t. By Proposition 2.3, requiring that
an abelian surface with characteristic polynomial h(x) has embedding degree
k imposes two additional constraints on q, s, t, and it will almost certainly be
impossible to find q, s, t satisfying all five equations. Thus we wish to add at
least two degrees of freedom to our description of the CM field so that instead of
requiring ξ = η, we only require Q(ξ) ∼= Q(η). The following proposition achieves
this goal.

Proposition 4.1. Suppose K = Q(
√

−a+ b
√
d) is a primitive quartic CM

field. Let u, v, w be integers, and let

α = w2(au2 + adv2 + 2bduv), (4.1)
β = bu2 + bdv2 + 2auv, (4.2)
δ = dw4. (4.3)

Then K is isomorphic to Q(
√
−α+ β

√
δ).
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Proof. Let L = Q(
√
−α+ β

√
δ). Since K is primitive it contains a unique

quadratic subfield K0 isomorphic to Q(
√
d). Since δ = dw4, K0 is a quadratic

subfield of L, so it suffices to show that K and L are isomorphic as quadratic
extensions of K0. One can check that the choices of α, β, δ above satisfy

−α+ β
√
δ = (−a+ b

√
d)(u− v

√
d)2w2,

so (−a+ b
√
d)/(−α+ β

√
δ) is a square in K0, and K and L are isomorphic. ��

We now turn to the task of constructing the characteristic polynomial of Frobe-
nius of a pairing-friendly abelian surface A. We will fix throughout a prime
r and an embedding degree k, and look for a polynomial h(x) satisfying the
conditions of Proposition 2.3. As remarked above, we will also fix a CM field
K = Q(

√
−a+ b

√
d) and require that K ∼= Q[x]/(h(x)).

Recall that h(x) has the form

h(x) = x4 − sx3 + tx2 − sqx+ q2. (4.4)

If we are given η =
√
−a+ b

√
d, Propositions 3.3 and 4.1 give a set of conditions

sufficient for A to have CM by Q(η), namely, that for some u, v, w, the following
hold:

s2

2
− t− 2q = −w2(au2 + adv2 + 2bduv) (4.5)

s = bu2 + bdv2 + 2auv (4.6)
s2

4
− t+ 2q = dw4. (4.7)

By Proposition 2.3, the condition that A has embedding degree k with respect
to r is equivalent to

q2 + 1 − s(q + 1) + t ≡ 0 (mod r) (4.8)
Φk(q) ≡ 0 (mod r), (4.9)

where Φk is the kth cyclotomic polynomial.
Conditions (4.5) through (4.9) together comprise five equations in six variables

over Fr, so we can expect to find solutions (q′, s′, t′, u′, v′, w′) in F
6
r for some

positive fraction of all primes r. Since we have an extra degree of freedom, we
can loop on one variable and search for solutions to the five equations in the
remaining five variables. When a solution is found, we can then lift u′, v′, w′ to
integers u, v, w and use equations (4.5) through (4.7) to compute q, s, t congruent
to q′, s′, t′ modulo r. Explicitly, we have s given by equation (4.6) and

t =
1
2
w2(au2 + adv2 + 2bduv) − 1

2
dw4 +

3
8
(bu2 + bdv2 + 2auv)2 (4.10)

q =
1
4
w2(au2 + adv2 + 2bduv) +

1
4
dw4 +

1
16

(bu2 + bdv2 + 2auv)2. (4.11)
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We can choose different lifts u, v, w until the value of q computed is prime. (In
theory we could allow q to be a prime power, but since almost all prime powers
in a given interval are prime, in practice we find that q will always be prime.)
We summarize the procedure in the following algorithm.

Algorithm 4.2. The following algorithm takes as input five positive integers
a, b, d, k, r and a (finite) interval I ⊂ Z, such that K = Q(

√
−a+ b

√
d) is a

primitive quartic CM field, and r is a prime congruent to 1 (mod k). The algo-
rithm outputs either the symbol ⊥ or a prime q and a polynomial h(x) of the
form (4.4). If the output is not ⊥, then there is a genus 2 curve C/Fq such that

– Jac(C) has characteristic polynomial of Frobenius h(x),
– Jac(C) has endomorphism ring isomorphic to OK , and
– Jac(C) has embedding degree k with respect to r.

1. Set v′ ← 0.
2. Using v′ as the value of the variable v, find a simultaneous solution (q′, s′, t′,

u′, w′) ∈ F
5
r to equations (4.5) through (4.9) modulo r. If none exists, go to

Step 5.
3. Let u0, v0, w0 be the unique integers in [0, r) congruent to u′, v′, w′ respec-

tively.
4. For each triple (i1, i2, i3) ∈ I3, do the following:

(a) Set u← u0 + i1r, v ← v0 + i2r, w ← w0 + i3r.
(b) Compute q, s, and t by equations (4.11), (4.6), and (4.10), respectively.
(c) If t and q are integers, q is prime, and q � t, go to Step 6.

5. Set v′ ← v′ + 1. If v′ ≡ 0 (mod r) then output ⊥; otherwise go to Step 2.
6. Output q and the polynomial h(x) = x4 − sx3 + tx2 − sqx+ q2.

By Fact 3.5, if q and h(x) are outputs of Algorithm 4.2, we can construct the
desired curve C by the following procedure:

Algorithm 4.3. The following algorithm takes as input a prime q and a q-Weil
polynomial h(x). Let K = Q[x]/(h(x)). With high probability, the algorithm
outputs a genus 2 curve C/Fq such that

– Jac(C) has characteristic polynomial of Frobenius h(x), and
– Jac(C) has endomorphism ring isomorphic to OK .

1. Compute the Igusa class polynomials Hi(x) for K, via e.g. [31], [6], or [12].
2. Let Si for i = 1, 2, 3 be the sets of roots in Fq of the Hi(x) (mod q).
3. Let n1 = h(1) and n2 = h(−1). For each (j1, j2, j3) ∈ S1 × S2 × S3, do the

following:
(a) Use Mestre’s algorithm [21] to compute a curve C/Fq with absolute Igusa

invariants (j1, j2, j3).
(b) Choose a random point P ∈ Jac(C)(Fq).
(c) If [n1]P = O, return C.
(d) If [n2]P = O, return the quadratic twist of C.
(e) If K ∼= Q(ζ5), repeat Steps 3b through 3d for each quintic twist of C.
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We note that if the correct triple of invariants is tested in Step 3 then the
algorithm will output the correct curve C. The algorithm will only output an
incorrect curve C if the random point P has order dividing both # Jac(C) and
one of n1 or n2. If q is reasonably large then this event occurs with negligible
probability; to further reduce the probability of error one could choose more
random points P .

We have run Algorithm 4.2 for various prime values r of cryptographic size
and various embedding degrees k, and used Algorithm 4.3 to generate pairing-
friendly genus 2 curves C. Some examples appear in Appendix A.

4.1 Analysis of Algorithm 4.2

The success of Algorithm 4.2 depends on two factors: finding a valid solution
(q′, s′, t′, u′, w′) in Step 2, and finding lifts q and t in Step 4 such that q and t are
integers and q is prime. In our analysis we treat these two factors independently.

A theoretical analysis of the probability of finding a valid solution in Step 2
is beyond our means at this time; instead, we provide some experimental data.
We fixed an embedding degree k and a bit size μ and chose random primes
r ∈ [2μ−1, 2μ] as well as random integers a, b, d ∈ [1, r] such that a2 − b2d > 0;
then Q(

√
−a+ b

√
d) is a quartic CM field. For each k between 2 and 30 we ran

1,000 such trials, increasing the value of v′ until a solution was found. We found
that for each k, between 35 and 40 percent of the trials produced a solution;
these data appear to be independent of the bit size μ. In cases where a solution
was found, the average number of v′ tried was less than 2, with the number
approaching 1 as ϕ(k) grew. We thus aborted the trial if no solution was found
for any v′ ≤ 20, and we recommend that others implementing the algorithm do
the same.

Whether t and q are integers can be determined by an analysis modulo 4 of the
parameters involved in equations (4.10) and (4.11). In all cases, for a fixed a, b, d,
we see that q is an integer for at least 1/8 of the possible choices of u, v, w, and t
is an integer whenever q is. This analysis also leads to the following observation.

Remark 4.4. For the following choices of a, b, d, the value of q will never be
an odd integer: a ≡ b ≡ 0 (mod 4); and (a, b, d) ≡ (0, 2, 0), (1, 2, 1), or (2, 2, 0)
(mod 4). Thus for Algorithm 4.2 to produce prime values of q these choices must
be avoided. In practice this restriction does not pose a problem, since if b = 2�b′

then Q(
√
−a+ b

√
d) is isomorphic to Q(

√
−a+ b′

√
4�d).

If we treat u′ and w′ as random integers in [0, r), we see from equation (4.11)
that we can expect q to be roughly the same size as r4. Thus by the Prime
Number Theorem, we should expect to try roughly 4 log r integer values of q
before we find one that is prime.

Since q ≈ r4, by Definition 2.8 the ρ-values of the varieties generated will
be roughly 8; the examples in Appendix A bear this heuristic observation out
in practice. As a consequence, to achieve comparable levels of security on the



Constructing Pairing-Friendly Genus 2 Curves with Ordinary Jacobians 165

abelian surface A and in the finite field Fqk , the chosen embedding degree k
should be one eighth of the embedding degree of an “ideal” abelian surface of
prime order r ≈ q2.

5 Constructing Genus 2 Curves with Prescribed Full
Embedding Degree

Algorithm 4.2 constructs abelian surfaces A/Fq that have prescribed embedding
degree k with respect to a subgroup of a given size r. By Proposition 2.3, this
guarantees that two roots of the characteristic polynomial of Frobenius have
order dividing k, so if k > 1 then two dimensions of A[r] are contained in A(Fqk).
However, the algorithm makes no claim about the remaining two roots of the
characteristic polynomial, so we have no control over the full embedding degree
of A, i.e. the field over which all of the points of A[r] are defined. Such control
would be necessary, for instance, in a protocol that required pairings involving
three or four linearly independent r-torsion points. We thus seek a method of
producing abelian surfaces with prescribed full embedding degree.

As in the previous section, we fix a prime r and an embedding degree k.
To construct an abelian variety with prescribed full embedding degree k with
respect to r, by Proposition 2.7 it suffices to produce a characteristic polynomial
of Frobenius with four distinct roots, all of which have order dividing k in F×

r .
There are many possibilities for such a polynomial; for our construction we will
choose the polynomial to have the form

h(x) ≡ x4 − (q2 + 1)x2 + q2 (mod r) (5.1)

This polynomial has roots 1,−1, q,−q, so choosing q to be a primitive kth root
of unity modulo r will give us the desired condition on the orders of the roots.
To ensure that all four roots are distinct we require k ≥ 3. Since −1 has order
2, the full embedding degree k must be even.

Now suppose as in the previous section that the characteristic polynomial of
Frobenius (over the integers) is given by

h(x) = x4 − sx3 + tx2 − sqx+ q2. (5.2)

Equation (5.1) and the requirement that q be a primitive kth root of unity
modulo r tell us that

Φk(q) ≡ 0 (mod r) (5.3)
s ≡ 0 (mod r) (5.4)
t ≡ −q2 − 1 (mod r), (5.5)

where Φk is the kth cyclotomic polynomial.
As before, due to the limitations of the genus 2 CM method we will fix a

quartic CM field K = Q(
√
−a+ b

√
d), and look for a polynomial h(x) such

that K ∼= Q[x]/(h(x)). By Propositions 3.3 and 4.1 it suffices to find u, v, and



166 D. Freeman

w satisfying equations (4.5) through (4.7). These three equations together with
equations (5.3) through (5.5) give six relations in six variables, so we can expect
to find a valid solution (q′, s′, t′, u′, v′, w′) modulo r for some positive fraction of
all r. As in Algorithm 4.2, if a solution exists we can then lift u′, v′, w′ to integers
u, v, w and use equations (4.11), (4.6), and (4.10) to compute q, s, t congruent to
q′, s′, t′ modulo r. We choose different lifts u, v, w until the value of q computed
is prime. We summarize the procedure in the following algorithm.

Algorithm 5.1. The following algorithm takes as input five positive integers
a, b, d, k, r and a (finite) interval I ⊂ Z, such that K = Q(

√
−a+ b

√
d) is a

primitive quartic CM field, k ≥ 4 is even, and r is a prime congruent to 1
(mod k). The algorithm outputs either the symbol ⊥ or a prime q and a polyno-
mial h(x) of the form (5.2). If the output is not ⊥, then there is a genus 2 curve
C/Fq such that

– Jac(C) has characteristic polynomial of Frobenius h(x),
– Jac(C) has endomorphism ring isomorphic to OK , and
– Jac(C) has full embedding degree k with respect to r.

1. Find a simultaneous solution (q′, s′, t′, u′, v′, w′) ∈ F6
r to equations (4.5)

through (4.7) and (5.3) through (5.5). If none exists, output ⊥.
2. Let u0, v0, w0 be the unique integers in [0, r) congruent to u′, v′, w′

respectively.
3. For each triple (i1, i2, i3) ∈ I3, do the following:

(a) Set u← u0 + i1r, v ← v0 + i2r, w ← w0 + i3r.
(b) Compute q, s, and t by equations (4.11), (4.6), and (4.10), respectively.
(c) If t and q are integers, q is prime, and q � t, go to Step 4.
(d) If every triple (i1, i2, i3) has been tested, output ⊥.

4. Output q and the polynomial h(x) = x4 − sx3 + tx2 − sqx+ q2.

If q and h(x) are outputs of Algorithm 5.1, we can use Algorithm 4.3 to
construct the desired curve C. As noted in Remark 4.4, certain choices of (a, b, d)
input into Algorithm 5.1 must be avoided. Since the algorithm requires solving
six equations in six variables, there is no extra degree of freedom that we can
use for a loop as in Algorithm 4.2. Thus if no solution to the system exists for a
given r, we must try again with a different r.

We have run Algorithm 5.1 for various prime values r of cryptographic size
and various embedding degrees k, and used Algorithm 4.3 to generate pairing-
friendly genus 2 curves C. Some examples with r of cryptographic size appear
in Appendix B. As before, the ρ-values of the varieties generated are roughly 8.

To determine the success probability of Algorithm 5.1 we ran Step 1 for ran-
dom primes r of various sizes and integers a, b, d defining quartic CM fields. We
found that for even values of k between 2 and 30, in 1,000 trials the system of
equations (4.5)-(4.7) and (5.3)-(5.5) had a solution for between 8 and 14 percent
of all inputs, independent of the size of r. The remainder of the analysis proceeds
as in Section 4.1.
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Remark 5.2. Since the endomorphism rings of the abelian varieties constructed
by Algorithm 4.3 are Dedekind domains, by Proposition 2.6 if r is unramified
in OK then the variety constructed has full embedding degree k even if the
characteristic polynomial of Frobenius has multiple roots. Thus while Algorithm
5.1 is stated for k ≥ 4, it also works for k = 2.

5.1 Constructing Genus 2 Curves C with Jac(C)[r] ⊂ Jac(C)(Fq)

It may happen that for some protocols we require all of the r-torsion points of
our pairing-friendly abelian surface A to be defined over a prime field, i.e. A
to have full embedding degree 1. Since Algorithm 5.1 requires k to be even, we
must find a different means of constructing such abelian surfaces.

Since the abelian surfaces we construct via Algorithm 4.3 have endomorphism
rings equal to rings of integers in number fields, we may apply Proposition 2.6
to determine when such a surface has embedding degree 1. Given a prime r, we
seek characteristic polynomial h(x) such that h(x) ≡ (x − 1)4 (mod r). In the
notation of (5.2), this means that we have q ≡ 1, s ≡ 4, and t ≡ 6 (mod r).
Substituting these values into expressions (4.5), (4.6), and (4.7), we see that the
left hand sides of equations (4.5) and (4.7) both become zero. Thus if we set
w ≡ 0 (mod r), we need only find a solution (u, v) to

bu2 + bdv2 + 2auv = 4 (mod r). (5.6)

This single equation in two variables gives an extra degree of freedom as in
Algorithm 4.2, allowing us to loop on the value of v until a solution is found.
The complete algorithm is as follows.

Algorithm 5.3. The following algorithm takes as input four positive integers
a, b, d, r and a (finite) interval I ⊂ Z, such that K = Q(

√
−a+ b

√
d) is a primi-

tive quartic CM field, and r is prime. The algorithm outputs either the symbol
⊥ or a prime q and a polynomial h(x) of the form (5.2). If the output is not ⊥,
then there is a genus 2 curve C/Fq such that

– Jac(C) has characteristic polynomial of Frobenius h(x),
– Jac(C) has endomorphism ring isomorphic to OK , and
– Jac(C)[r] ⊂ Jac(C)(Fq).

1. Set v′ ← 0.
2. Using v′ as the value of the variable v, find a solution u′ to equation (5.6)

modulo r. If none exists, go to Step 5.
3. Let u0, v0 be the unique integers in [0, r) congruent to u′, v′ respectively.
4. For each triple (i1, i2, i3) ∈ I × I × (I ∩ Z>0), do the following:

(a) Set u← u0 + i1r, v ← v0 + i2r, w ← i3r.
(b) Compute q, s, and t by equations (4.11), (4.6), and (4.10), respectively.
(c) If t and q are integers, q is prime, and q � t, go to Step 6.

5. Set v′ ← v′ + 1. If v′ ≡ 0 (mod r) then output ⊥; otherwise go to Step 2.
6. Output q and the polynomial h(x) = x4 − sx3 + tx2 − sqx+ q2.
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We can then use Algorithm 4.3 to construct the genus 2 curve C whose Ja-
cobian has the desired properties. An example with a prime r of cryptographic
size appears in Appendix B. Since equation (5.6) is quadratic in u, we expect to
find a solution u′ for half of all values v′; the remainder of the analysis proceeds
as in Section 4.1.

We note that Proposition 2.6 requires that the prime r be unramified in
the specified CM field K. Since r is large (currently at least 2160) and current
methods only allow us to work with CM fields with very small discriminant, this
condition will always be satisfied in practice.

6 Extending the Algorithms

6.1 Composite-Order Subgroups

Recently, a number of protocols have been proposed that require a pairing-
friendly abelian variety with a subgroup r whose order is a large composite
number that is presumed to be infeasible to factor, such as an RSA modulus
(see e.g. [3]). We observe that our algorithms extend readily to produce such
varieties. If we choose the desired subgroup size r = r1r2 and find appropriate
(q′i, s

′
i, t

′
i, u

′
i, v

′
i, w

′
i) modulo ri for i = 1, 2, we can use the Chinese Remainder

Theorem to compute the values of the parameters modulo r, which we then lift
to the integers in the usual manner. An example where r is a product of 512-bit
primes appears in Appendix A.

6.2 Improving the ρ-Values

Algorithms 4.2 and 5.1 produce pairing-friendly abelian varieties with ρ-values
around 8. This ρ-value means that computations on the abelian variety A must
be done over a field whose size (in bits) is four times the size of the prime-order
subgroup. Since the fields of definition of abelian surfaces can have as little as
half as many bits as group sizes, our large ρ-value implies that arithmetic in the
order-r subgroup of A will be significantly less efficient than if r were the full
order of A(Fq).

An important open problem is thus to produce genus 2 curves C/Fq whose Ja-
cobians are ordinary and pairing-friendly with respect to subgroups of order r ≈ q
(i.e. ρ ≈ 2) or even r ≈ q2 (i.e. ρ ≈ 1). Just as there are a multitude of techniques
for producing elliptic curves with ρ < 2 [8], there may be many different ways to
generate abelian surfaces with ρ < 2. The results presented in this paper suggest
two possible approaches; these ideas are the basis of ongoing research.

The Brezing-Weng Extension. Our construction of pairing-friendly genus 2
curves is modeled on the Cocks-Pinch method for constructing pairing-friendly
elliptic curves [5], which produces curves with ρ ≈ 2. Brezing and Weng [4]
generalized the Cocks-Pinch method to produce elliptic curves with ρ < 2 by
working over a number field L instead of modulo the prime r. Our method invites
a similar generalization.
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A Brezing-Weng-like construction for abelian surfaces would look something
like the following: choose an embedding degree k and a primitive quartic CM
field K. Let L = Q[x]/(r(x)) be an extension of K that contains the kth roots
of unity. Consider equations (4.5) through (4.10) as having coefficients in L, and
find a simultaneous solution (q′, s′, t′, u′, v′, w′) in L6. Represent these solutions
as polynomials modulo r(x) and lift to Q[x] to compute polynomials q(x), s(x),
and t(x). Then for any x0 for which q(x0), r(x0), s(x0), and t(x0) take on integer
values and q = q(x0) is prime, we can use Algorithm 4.3 to produce a genus 2
curve C over Fq whose Jacobian has embedding degree k with respect to r(x0).

While the setup is straightforward, it is far from obvious how to choose a
number field L so that the relevant equations have solutions in L. It is also
unclear what ρ-values the construction would produce.

The MNT Extension. The first construction of pairing-friendly ordinary ellip-
tic curves was given by Miyaji, Nakabayashi, and Takano [23], who constructed
curves of prime order with embedding degree k = 3, 4, or 6. While the MNT
method is fundamentally different from our approach in this paper, our hope is
that the results established here – in particular the relationship between the CM
field and the characteristic polynomial of Frobenius described by Proposition
3.3 – will lead to a generalization of the MNT equations that produces abelian
surfaces of prime order with small embedding degree.
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A Appendix: Examples of Abelian Surfaces with
Prescribed Embedding Degree

We implemented Algorithm 4.2 in MAGMA and ran the program on a Red Hat
Linux system with a 2.38 GHz AMD Opteron processor and 4 GB of RAM. To
speed up the computations we used probabilistic primality testing throughout.

Example 1. We used the CM field K = Q(
√

−2 +
√

2) to construct a curve
whose Jacobian has embedding degree 2 with respect to r = 2160 + 7. The Igusa
class polynomials for K can be found in [29]. Algorithm 4.2 ran in less than 1
second and output the following:

q = 79500661164017010939694087600577439611686341541975854298300086686199863358077173 \
97718598806048104286246902609064396966763836446430241565650794386330511522658711 \
936072460021623269435928862304096161 (651 bits)

s = 24106522149194751442854131036844857413955837089165628335751306445338695476073298 \
4103585110310902524

t = 27359796173391521974641264798803491215724479159390071276139217084203713717703656 \
55339687429984334911542250536630747540833278734962025912889995467452433290635909 \
8037458417219626973988439102556464966.

The equation of curve C is y2 = x5 + a3x
3 + a2x

2 + a1x+ a0, with

a3 = 78155646382800928028736024513469672336333400326268001956337324666339940328303648 \
05233918296724734157425944009119807179618084606363721356664947849828920635199536 \
383165038349582750830436766970252305

a2 = 75820715448152194561703664468239228311494951070587808813226860892062618893343879 \
48338188122777399118742240541369920781021614606618491386755769001513635702002583 \
900328984724486510381446751384612338
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a1 = 38180895173516496160634313784225571603708056687712617826249486612556118040311047 \
28412516481837472216648106219404759483953015501490776665659662815927077156530942 \
394435679890448998428239238224064322

a0 = 45177931133803554760365209853147386766975669710479527089607077734830321391815260 \
19191380637561071045120827733864057302909106384439009009025246738012848274281139 \
752085484204533726326846152147956130.

The ρ-value of Jac(C) is 8.135.

Example 2. We used the CM field K = Q(
√

−13 + 3
√

13) to construct a curve
whose Jacobian has embedding degree 5 with respect to r = 2256 + 1935. The
Igusa class polynomials for K can be found in [29]. Algorithm 4.2 ran in 3.0
seconds and output the following:

q = 1870544173002728888290817581036226252518001352754342974688346349219460924691130 \
9207215908660015076218177451067712463551555331881415876254893008551016733257321 \
5441270589752077522006658432262016468208281984961662245609641191899564998854647 \
18489846985003356378154220307855272110401992016598515195942158384281100933489

(1041 bits)

s = 1621997578070174222283507927143130531335055779897362083316681930623437802701275 \
4033505343992314546700074277065693573263800362365548531051311005577905669351236

t = 1029144219455907098716348470347734140164611477633472831266067182570500499261494 \
2994390753336294484397229397870412283990089509476225397510189387301951274595794 \
6108341282275068499215680887160629471694308122324369720622834515943875356905273 \
828826073700791264227305233330675683512084945877473304419543733527614996293734.

The equation of curve C is y2 = x5 + a3x
3 + a2x

2 + a1x+ a0, with

a3 = 17711932034826598918283689493771517557773876172909860411136075106337245263908578 \
38130632676662412318317995526768766016156509218023316817809243032636104864542135 \
90450974675151214252356394141967359391373046477845725484335245940593602161185522 \
99407180726519279323555530065745247279169841864254113262083113263075718295

a2 = 15986676510291987692234115367676532911850944091016679833071471047947234683585606 \
97115034669874820450535884159056843728249225669815188505386944583659138080162909 \
05967274844595441965601950514813102729723644095411071587133554049011997599748427 \
04612514672592478589233445454956670634552105995792263972845133993646857289

a1 = 47201942823478063845886098041135725187242793436198889585030352165809645065572147 \
21227820016294216571118639320025552488751294747094636654493682076253265791893965 \
45479038178461819213500842438576057436074730626945979688825026746690602467861501 \
2281818681359026040996384658923207970706564464069283901844339068262687354

a0 = 78304034375067256115734447740946659290071046170720112481596930213348431536496457 \
55121110421815824365159812788162205652367009731948183507741581532695550495070587 \
92454247668794075954692123006270938295625578774958097004925464585575953412442322 \
1228908077280258993071432261971942688590160442022991810187885898334621434.

The ρ-value of Jac(C) is 8.130.

Example 3. We used the CM field Q(ζ5) ∼= Q(
√
−5 + 2

√
5) to construct a

curve whose Jacobian has embedding degree 2 with respect to a subgroup whose
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order is the product of two randomly chosen 512-bit primes. The subgroup order
is r = r1r2, where

r1 = 11803978689777937943630606482916630610771262360451038998055839540326529770667084 \
062695438348436957971986847682411715391172021957457983799164479816029042551

r2 = 10562148112423020416524404694757877364214379304398742300462810766190994206554837 \
207802978683338292737134181615327106550577658909300056175064143407612201171.

The curve parameters output by the algorithm are

q = 14925756484395620588340828961670838257513478706661565697246822452504566552140574 \
74275668706184183327230608483783712366474758540746217028667487640911962140986093 \
59903780875602224701232721517755213629155759198095454310558027874214652820897780 \
48338806058606648821868718121245230762548334976366496124554483981483373801822503 \
18758725806366008622941072711764141598846701323136361663060926784565678664538250 \
23874718116067100977473985910754671583037224467808596416749758475149713319062473 \
74399104764260620817405752205039794946019315946178866373730387037002559508679891 \
44357730733095744103473318344983004268767007670270242719737679118393627683220416 \
75605009419743690693290835970867023580838717704131085502485876888443683400866368 \
64345479945496156749317515523050853191696677524833613405135129810489621329660238 \
89244539780245136081209255964092163233976483113439769549485060896253859358734331 \
19930151392114629641610364671194105833243981596030284473849469606225223077099760 \
86594719202865212059495511515977529686387197586381218449843669576881871079352042 \
69465431597468998346396023010952098826061556118020285877117725097032386440616504 \
28502599989386107821563538568782105247868640515028039633458886446739031585428678 \
9262735572775970427343989598147871137491 (4117 bits)

s = 13098746878962436440014430683891336683317189571490505914813272120811614309324444 \
30336687135429372830005979537504811319304227876636545294152800886721481194819411 \
44624135353251248073884108628005901787542961419689724694687487336334619968682790 \
21039607839123504580552652029391105109750920051131450697823896534575237857994830 \
56298693250718475162251581557619826414147500984015051436813281177097994456801761 \
97174442756081720787494726061818695435505654282090080600590631735564462133464861 \
73162818427680611330419117138057068982990767177882746152075661144341866400320151 \
8414345765447763605149300871290591470423293221894274883969124

t = 71447874351911649047790586558090993998563268603490200023957371422801555162937685 \
07296002619459169499895279824782323405031581247980954417856736951579004108911519 \
16374906648343899116560434911044130020633554209704979393260809079217893525464617 \
69753994907767539781234086574311861423270536332570478739783905207633694971163471 \
18757870509855481732347199370915802950047712095686371104617944293443643288015530 \
27224958320020384166457988720401500351921296371325003126205910097643198873831469 \
60590843706677255378935459791641291371995936491889113990075656995752244186562940 \
83579220633083045610904609285584737842460614919195912958244350908511855860279595 \
59906607559811920380005495574714984339183396467817845275035961548974096847357726 \
11868105264986273481213182876058495587347307328384288851688092320553325295267915 \
64879936143358739376312781370239584842226523781099374576657903290041140042367842 \
55308748946136333795447086218737649380677221974694759126119679699115733732510625 \
10091180685177745383254401797406388419467419999715513451267992879837317443158498 \
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02338316890066802244994870509143762467271661125319620435419746851455151619806700 \
93306648871023302649907691217825348504456208073558963082634045539270253362741192 \
2754835397256625852900699321573718056406.

The equation of the curve C is y2 = x5 + 1. The ρ-value of Jac(C) is 8.044.

B Appendix: Examples of Abelian Surfaces with
Prescribed Full Embedding Degree

We implemented Algorithms 5.1 and 5.3 in MAGMA and ran the programs on
a Red Hat Linux system with a 2.38 GHz AMD Opteron processor and 4 GB of
RAM. Again, we used probabilistic primality testing throughout.

Example 4. We used the CM field K = Q(
√

−30 + 2
√

5) to construct a curve
whose Jacobian has full embedding degree 4 with respect to r = 2224−3047. The
field K is non-Galois and has class number 4. The Igusa class polynomials for
K can be found in the preprint version of [31]. Algorithm 5.1 ran in 9.0 seconds
and output the following:

q = 25875665546464625747483263904141863215223855685631927398442175454186047689727181 \
93547787762403459561595464510459271889368692252698428991156316604026525830665311 \
73752631723673975981658103493179680308122182358656015780699038697521031094256755 \
40495783228843733030724545875768981 (912 bits)

s = −4981907316436854688682625846712085276007496620523632869010583337623019839812196 \
71064640328975509363599597611032566043231600440271513245536

t = 11315891237651345494483496588271771338331199214236780785739679696556702185995706 \
34372064002496085550624521210317464488708701543703195565346155063791365178640664 \
14606889659037650402335705765920362951147827106493530098874861489026762557535530 \
487734206112547487022564593381460566.

The equation of curve C is y2 = x5 + a3x
3 + a2x

2 + a1x+ a0, with

a3 = 38557522515431718239138775060871205148933533072861261987872384836301846569735691 \
98659203885183971732172895101214552565189586386075463460413300321595163673236547 \
01858086829402659012929942804221720007434564827463546641733443182389934765013564 \
8127992376600282420268291028803021

a2 = 24361005015196617163667303200244929565396754003199827807036659742558068205679538 \
42160098098260878264842948120639524037265934211880780488463539945820106947877300 \
19189022859405786742281608167622704227996495252854882617846133996598330042941638 \
79810835474597261493353081510971860

a1 = 66320501401668844356948887655622054099995573466241416241541350131153121137993090 \
85635251499283342087242563793741047433071997209515897943786177629734199317620050 \
78838031904755852619295711922546671672538134189634737065276752833417635898769501 \
6379103998602779880888128315848257

a0 = 14382706785238411696604261079830832924182682159103069238604604235474798613117520 \
63172956299590491867116182929144152136870787179261898874121788589210503017604127 \
07396812946751792677163628751267190836563349333071193338619515991035776086979757 \
14869063111066962733459404280651443.
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The ρ-value of Jac(C) is 8.139.

Example 5. We used the CM field Q(ζ5) ∼= Q(
√
−5 + 2

√
5) to construct a

curve whose Jacobian has full embedding degree 18 with respect to r = 2512 −
21765. It is well known that if q is a prime congruent to 1 modulo 5, then curves
of the form y2 = x5 + a over Fq have ordinary Jacobians with endomorphism
ring equal to the ring of integers in Q(ζ5). Algorithm 5.1 ran in 118 seconds and
output the following:

q = 14555061271614284829374548810808668921344787153336861961038950978287550386155088 \
27761408657449714149293817644592128041703058419247667367620955457503763764714368 \
14187932866719028481645089094069906583996373002241963091289099300688688994901771 \
83873675731615158570245932236872128937154479692085273245058632104897428914803561 \
29605998354055071775377646204638906630542040592646748390702920765239663750378074 \
83299238315928230714527086687127082551072561286442424934953309068386901100135192 \
92807522477039053315542103935756755589377186962105535601164019023329205199251303 \
4274720082459631288150189004532221055396710595277269413733261 (2061 bits)

s = 43752127389092211668913731818257083380184185029518072697970279699709038554595574 \
67775441465528134480249170813639910902216349834259532905575148957826052783432254 \
79119405645969200966206278121318902156015403475862583609211968197706368610425979 \
74826227341593725640985162876416189413727067617925373652301554222041356

t = 76506345185413572894000615027118972245682316768376511436322271820887135834751430 \
01408196970280322848312865810412722709808538881978637395656622842478438983838876 \
26929204429568746779543344427174688447427513177017872136990404463200335646893378 \
01074535914928884192396518493957853498563753295379600060198999275134256487324441 \
89371513845650103152259540955370064472019241067489625256118717229482895166343889 \
42663816081413289131028669600536087288481804865750637595013957630684845995843479 \
83683439139891802705356974591743005414154458649393619533536954826980321148967937 \
7476514313547875886064652765464806096914954872592737951833086

The equation of the curve C is y2 = x5 + 32. The ρ-value of Jac(C) is 8.047.

Example 6. We set r = 2192−237 and used the CM fieldK = Q(
√
−13 + 2

√
13)

to construct a curve C/Fq with Jac(C)[r] ⊂ Jac(C)(Fq). The Igusa class polyno-
mials for K can be found in [29]. We used the probabilistic algorithm of Freeman
and Lauter [7, Algorithm 4.3] to confirm that Jac(C)[r] ⊂ Jac(C)(Fq). Algorithm
5.3 ran in less than 1 second and output the following:

q = 4191798849211914124902244618848756899193592246215080849441631615855359893269773 \
8327284238146533178952595514119544134042899670799813486533037930225140261134972 \
184858371833006384825748861428606963706945278841950659614763084156191121281

(773 bits)

s = 1576080247855779168491161604005744552203189570818617866598415719128066469116454 \
99383869668163280777796966990248899856

t = 9315108553804253610893876930775015331541316102700179665408699794065331181793524 \
7868280240496093817714835413389999327199464125573905471260121583563303002387532 \
19243748436256787827661246671324707727932944167299366404935886919307341774.
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The equation of the curve C is y2 = x5 + a3x
3 + a2x

2 + a1x+ a0, with

a3 = 2893228252181903828032666650330702061115254821639907832121551293554610054104650 \
0236496280654550443299789272074458998335853692890231959310580500998455620318382 \
524712708563859789862558817962363472057215969070691833496326884518889808430

a2 = 1851912640325009496595380234778526540849972471873664901982498829607297657969434 \
1603442338687581207910703233904867704056894561942174712161256934613350929958734 \
165225312376664624843422015989452440518084961410430082273146516119934790021

a1 = 5100452282713554586805534914576670657320807147263165840341458425888696715162155 \
2727115481946716669005556979235160502720430286972046240533022800475394994574789 \
94684865345941988652933629587647405581943934960966405623978471953839825408

a0 = 3327721860978577910161403683069170837051501723015842731049087930338105490856300 \
2107593345028426924926394761717189759759804510292286607540583929014098308903511 \
307594286699453507023231980891792192797295805978422882372264155028501878062.

The ρ-value of Jac(C) is 8.050.
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Abstract. Here we review the state-of-the-art in cryptographic pair-
ing implementation. Starting with a basic Miller algorithm for the Tate
pairing we show how to successively apply a series of optimizations and
tricks to improve performance. We will concentrate on the case of non-
supersingular prime characteristic elliptic curves, although many of the
optimizations equally apply to the cases of supersingular elliptic and hy-
perelliptic curves. We also discuss optimal implementation of extension
field arithmetic.
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1 Introduction

The Tate pairing, denoted e(P, Q), where P and Q are linearly independent
points on an elliptic curve E(Fqk ) evaluates as an element of an extension field
Fqk . If P is of prime order r, then the pairing evaluates as an element of order
r. This feature can be used to transfer the discrete logarithm problem from
the elliptic curve setting, to the easier finite field setting, an ability exploited
by Menezes, Okamoto and Vanstone [32], and by Frey, Müller and Rück [16],
to solve the elliptic curve discrete logarithm problem in certain instances. The
embedding degree k is defined as the smallest value of k such that r|qk − 1.
For a random non-supersingular curve this is unlikely to be the case for a small
value of k. However for supersingular curves and specially constructed pairing
friendly non-supersingular curves, k will be small. Here we focus on the case of
non-supersingular elliptic curves of prime characteristic, so from here on q = p.
Some actual implementations of pairings are now available [31], [42].

The most useful property of the pairing is its bilinearity

e(aP, bQ) = e(P, Q)ab

But how to calculate the pairing? In the beginning there was Miller’s algo-
rithm. Here we start with a generic implementation in the context of calculating
the Tate pairing (which appears to be superior to the Weil pairing for all cases
of interest). As is well known in this case a “final exponentiation” is required to
obtain a unique result. See algorithm 1.
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Algorithm 1. Computation of e(P, Q) using basic Miller’s algorithm
Input: P ∈ E(Fpk), Q ∈ E(Fpk), where P has order r
Output: e(P, Q)
1: T ← P , f ← 1
2: for i ← �lg(r)� − 1 downto 0 do
3: f ← f2.lT,T (Q)/v2T (Q)
4: T ← 2T
5: if ri = 1 then
6: f ← f.lT,P (Q)/vT+P (Q)
7: T ← T + P
8: end if
9: end for

10: f ← f (pk−1)/r

11: return f

Observe that the point P is being implicitly multiplied by its group order r
using a classic double-and-add line-and-tangent algorithm, until it finally ends
up at the point-at-infinity. The values of the line and vertical functions lA,B(Q)
and vA+B(Q) respectively, are distances calculated between the fixed point Q
and the lines that arise when adding B to A on the elliptic curve in the standard
way. If the point A has coordinates (xj , yj), the point A + B has coordinates
(xj+1, yj+1), the point Q has the coordinates (xQ, yQ), and the line through A
and B has a slope of λj , then explicitly

lA,B(Q) ← (yQ − yj) − λj(xQ − xj)

vA+B(Q) ← (xQ − xj+1)

Here we assume the use of affine coordinates, although in most cases projective
coordinates are to be preferred, with minor modifications to these formulae.

The eagle-eyed may have spotted that the pairing seems to require another
parameter, the order r of P . In fact knowledge of r is not strictly required, as
the pairing can be calculated without it. Simply omit the final exponentiation,
and replace the number of iterations of the Miller loop with lg(pk −1) instead of
lg(r). In fact the work load can be shifted between the Miller loop and the final
exponentiation by replacing the number of iterations in line 2 with lg(mr), and
the final exponentiation by (pk−1)/(mr), for any m for which (pk−1)/(mr) is a
whole number. However it is usual that r is known, in which case concentrating
as much as the work as possible into the final exponentiation will be faster.

In fact the algorithm as described may fail catastrophically for random choices
of P and Q, as it is quite possible that the tangent or addition line may pass
directly through Q, or the vertical function may evaluate as zero. In the sequel
this possibility will be side-stepped by choosing P and Q from particular disjoint
groups.

Our first couple of optimizations are simple and rather obvious [2], [18]. First
we will (to the extent that we can) choose r to have a low Hamming weight (or
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indeed mr if that has a lower hamming weight for small m). This will clearly
result in a faster algorithm. In some cases (e.g. for the MNT curves [34]) the
choice of a low Hamming weight order may not be practical, in which case the
optimal strategy might be to represent r in a NAF format, and use a standard
windowed NAF double-add-and-subtract algorithm as used for standard elliptic
curves. Alternatively the method of Eisentrager et al. [14] might be useful. This
will lead to a more complex algorithm that would muddy the waters for us in
what we are trying to do here. Therefore we will proceed on the assumption that
a low hamming weight r is possible, and even if it is not the further optimizations
that we will describe are still applicable.

Secondly we will choose P to be a point on the curve taken over the base field
E(Fp) (Solinas’s Miller light), with obvious performance advantages. A useful
side effect is that the algorithm failure described above cannot now happen (for
k > 1) if Q is a general point over the full extension field.

We will however resist the adoption of an optimization once suggested by
Koblitz and Menezes that the modulus p should also be chosen as being of low
Hamming weight as this can introduce plausible security concerns [36].

2 A Restriction

Before proceeding we will introduce a useful restriction. From here we assume
that k is even, and that k = 2d. As we will see this brings many advantages.

The final exponentiation can now be written as f (pd−1)(pd+1)/r. (And we know
that r must divide the pd + 1 part, as otherwise the definition of k above would
be violated). As we will see this simple observation facilitates many of our opti-
mizations.

3 Extension Field Arithmetic

Before proceeding to optimize the pairing algorithm itself, we pause to consider
the implementation of extension field arithmetic. This has arisen before in the
context of cryptography, notably in the XTR scheme [28], and for elliptic curves
implemented over Optimal Extension Fields [1]. However in the former case
only quadratic extensions are considered, and in the latter the context is rather
specialised by the preference for a small word-sized modulus p of simple form.
A much wider range of possible extension fields need to be considered in the
context of pairings.

First we need a suitable irreducible polynomial, which has a degree the same
as our chosen extension field, but which has no factors over the base field.

As an example consider the case where k = 2. In this case if p = 3 mod 4,
then we might choose as our irreducible polynomial x2 + 1, because −1 is a
quadratic non-residue modulo p, and so the polynomial does not factor over the
base field. Now elements in Fp2 can be represented as polynomials like a+xb with
a, b ∈ Fp. Such elements can be multiplied as normal, and then reduced modulo
x2 + 1. This means that the occurrence of x2 in the product may be replaced
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by −1. Note that x can be considered as the imaginary root of the irreducible
polynomial, in which case elements of the extension field can be represented as
a+ ib, where i is the imaginary square root of −1, and the analogy with complex
numbers is exact (and quite comforting!).

The addition and subtraction algorithms are quite obvious and cheap. Di-
vision (which turns out not to be time-critical) can be implemented only ever
requiring one base field inversion [30]. It is however worth taking a little care over
multiplication and squaring. We will assume that a base field squaring (called
a modsqr) costs about 0.9 of a base field multiplication (a modmul), a figure
typical of practical finite field implementations.

3.1 Multiplication and Squaring

The naive way to do multiplication is

(a + ib)(c + id) = ac − bd + i(bc + ad)

at a cost of 4 base field modmuls. But of course Karatsuba will be our friend in
this setting, and so

(a + ib)(c + id) = ac − bd + i[(a + b)(c + d) − ac − bd)]

which only requires three modmuls. However a modmul can be divided into sep-
arate multiplication and reduction steps. For a prime characteristic field, using
Montgomery’s method [35] (and recalling that we have eschewed the possibility
of a special form for the modulus p on the grounds that it may weaken our
security), reduction will cost about the same as a multiplication. In this case
the method of “lazy reduction” [30] can be applied, whereby we calculate the
full values of the real and imaginary parts of our product before reducing them
separately modulo p. In this way only two reductions are required in the above
formula, and the overall cost falls to about that of 2.5 base field modmuls.

In the case of squaring we could also apply Karatsuba for a cost of two modsqrs
and one modmul. However a better idea would be to use this identity well known
to implementors of complex arithmetic

(a + ib)(a + ib) = (a + b)(a − b) + i.2ab

which requires just two modmuls. Note that for an alternative irreducible poly-
nomial the same basic costs apply, perhaps with more modular additions and
subtractions.

Turning next to the case of the cubic extension, multiplication can be carried
out using Karatsuba and 6 modmuls. Using the method of Toom-Cook this can
be reduced to 5 modmuls, with some tricky multiplications and divisions by small
constants (and divisions are particularly difficult). The idea of lazy reduction can
again be used here to advantage. For squaring the best algorithm was only very
recently discovered by Chung and Hasan [9]. Assume an irreducible polynomial
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of the simple form x3 + n, and consider the calculation of (a + bx + cx2)2. First
precalculate A = a2, B = 2bc, C = c2, D = (a − b + c)2 and E = (a + b + c)2,
then

(a+bx+cx2)2 = (A−Bn)+((E−D)/2−B−nC)x+(E−A−C−(E−D)/2)x2

which requires only 4 modsqrs and 1 modmul (and a division by 2 and a lot of
adds/subtracts).

What about those annoying divisions by constants that occur for Toom-Cook
and for the Chung-Hasan formula above? Recall that the final exponentiation
in the Tate pairing involves exponentiation by a power of pd − 1. This always
contains as a factor p−1. Recall next Fermat’s little theorem (yp−1 mod p = 1).
This implies that we are free to include a constant factor into any extension field
multiplication or squaring, on the basis that the contribution of this constant
will be “wiped-out” in the final exponentiation. Therefore divisions by small
constants can always be replaced by multiplications by small constants (in our
context), which in turn can be replaced by additions.

3.2 Inversion

For completeness we include formulae for inversion in the quadratic and cubic
extension fields. These are quite easy to derive [30].

For the quadratic case, and assuming an irreducible polynomial of x2 + n

1/(a + bx) = (a − xb)/(a2 + nb2)

For the cubic case, and assuming an irreducible polynomial x3 + n. First
precalculate A = a2 + nbc, B = −nc2 − ab, and C = b2 − ac. Then F =
−nbC + aA − ncB, and

1/(a + bx + cx2) = (A + Bx + Cx2)/F

3.3 Square Roots

In many early protocols there was a requirement to hash values to curves points,
e.g. Boneh and Franklin IBE [7]. This practise now seems to be deprecated
in favour of hashing to point multipliers, which is much easier to do. However
hashing to a curve point is perhaps not quite as complex as is thought. The
issue of a “large cofactor” can be dealt with by exploiting the feature of the Tate
pairing that it does not require the parameter Q to be of order r for bilinearity
to hold (it is sufficient that Q be a representative of a coset – in effect any point
on the curve) [38].

If hashing to a curve point there may be a requirement to hash to a point
on the curve over an extension field. This usually requires the ability to extract
square roots over the extension, although for some curves cube rooting may
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be more useful [5], [7]. In the quadratic extension case (again borrowing from
standard methods for complex arithmetic [17]) we have the nice identity

√
a + xb = ±(

√
(a ±

√
a2 + nb2)/2 + xb/(2

√
(a ±

√
a2 + nb2)/2))

which is a lot simpler than the method suggested by Wang et al. [46]. Only two
square roots are required over the base field. Whether or not a+xb is a quadratic
residue is determined solely by whether or not a2 + nb2 is a quadratic residue
(the proof left as an exercise to the reader), so the quadratic residuosity test is
in this case particularly efficient.

For the cubic extension case no simple closed formula for the square root
seems to be possible. Over the field Fp3 for p = 3 mod 4 we can offer the formula

√
u = ±(up2

(up)3u)(p−3)/4u(up)2

assuming of course that u is a quadratic residue. A similar formula requiring
primarily the work of one simple exponentiation can also be derived for the
p = 5 mod 8 case.

v = ((2u)p2
((2u)p)52u)(p−5)/8((2u)p)3

√
u = ±(uv(2uv2 − 1))

For the remaining p = 1 mod 8 case a variant of the standard Tonelli-Shanks
algorithm can be used [33]. The Frobenius (see below) is very helpful in deriving
these formulae.

For a discussion of cube roots in quadratic extensions, see Appendix B of [5].

3.4 The Frobenius Action

Of particular importance in extension field arithmetic is the “Frobenius action”.
Raising an extension field element to the power of the modulus is always very
cheap. Going back for a moment to our simple example above, we have the
relationship

(a + ib)p = (ap + ip.bp) = (a − ib) mod p

This is quite easy to prove, the “other” terms is the expansion of (a+ ib)p are
all zero modulo p, and recall that i(p−1)/2 = −1 as i is a quadratic non-residue.

3.5 A Tower of Extensions

For higher extension fields, a “tower of extensions” can be used, and these
methods for multiplication, squaring, inversion and square rooting can be used
recursively. For example consider the sextic extension with the irreducible poly-
nomial x6+n. Using the Chung-Hasan idea and building a cubic extension on top
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of a quadratic extension, a squaring in this field will only require 11 base field
modmuls.

For most cases of interest we can further restrict k = 2i3j for i ≥ 1 and j ≥ 0
[27]. In these cases we only need to consider quadratic or cubic extensions of the
field below.

However more work is needed to determine which is the best method to use for
higher extension degrees. Which is better Karatsuba or Toom-Cook? How best
to organise the towering? It seems that for MNT k = 6 curves that a quadratic
layered on top of a cubic works best. For k = 12 BN curves (see below) a
quadratic over a cubic over a quadratic works well in practise. Of course it is
possible to switch from one representation to another, but in the interests of
keeping the code elegant and minimizing code-size it would be nice to avoid it if
possible. Extensive testing of the various alternatives has been carried out and
reported in [11].

4 Another Restriction

Koblitz and Menezes [27] have proposed the use of “pairing-friendly” fields,
where p = 1 mod 12 and the irreducible polynomial is of the form xk + β, where
β ∈ Fp. In our view the p = 1 mod 12 condition is quite restrictive, and the
value of β for a particular p can be quite large, leading to more additions at the
bottom of the tower, and hence less efficient implementations.

Instead we recommend a type of construction like that proposed by Barreto
and Naehrig [5] for use with the BN family of pairing friendly curves (see below).
We will continue to insist that the irreducible polynomials at each level in the
tower are binomial, and furthermore that the imaginary roots of these polynomi-
als should contain the same roots as those used at the lower level. For example
for k = 12 we could have an irreducible polynomial of the form X6 +(α+

√
−β)

as a sextic extension built on top of a quadratic extension which has as an ir-
reducible polynomial x2 + β. This particular construction is ideal for the BN
curves, allows the use of p = 3 mod 4 curves, and often permits the use of very
small |α|, |β| ≤ 2.

5 Types of Curves

Pairing-friendly curves have two parameters of relevance to us here. The first ρ
is the rounded-to-nearest-simple-fraction ratio of the size in bits of the modulus
p to the size in bits of the group order r. Recall that the number of points on
the elliptic curve over the base field is given by #E = p + 1 − t, where t is the
trace of the Frobenius and |t| ≤ 2

√
p, and r|#E. The second parameter ω is the

rounded-to-nearest-simple-fraction ratio of the size in bits of the order r to the
size in bits of the trace t. In general we would prefer a small ρ, with ρ = 1 being
regarded as ideal, and a large ω.
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For example consider the BN family of curves [5], a family with an embedding
degree of k = 12, and with a very simple generation function

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1

#E(x) = 36x4 + 36x3 + 18x2 + 6x + 1

t(x) = 6x2 + 1

To find a pairing-friendly curve, simply choose an x of the appropriate size
and check that p(x) generates a prime. If r(x) = #E(x) is also prime, then in
this case ρ = 1 and ω = 2. The actual parameters of the curve can then be found
using the method of Complex Multiplication [10]. Many other families of curves
have also been discovered – see [15].

As a general truism it can be said that the closer ρ is to 1, the more difficult it
becomes to force a low Hamming weight for r. On the other hand using a Cocks-
Pinch pairing-friendly curve [6] for which ρ = 2, there is complete freedom in the
choice of r. A value of ρ = 1 may however be mandatory in certain applications,
for example short-signature schemes [8]. However it is our opinion that curves
with ρ = 2 are still very usable (and there are a lot more of them), and their
supposed inefficiency is often overstated (at higher levels of security in particular
it is the extension field arithmetic which predominates in the calculation of the
pairing, and it is the bit length of this extension field that matters, not the size
of the base field from which it is constructed).

See below for the relevance of ω.

6 Optimizing the Miller Loop

The algorithm as it currently stands looks like this – see algorithm 2.

Algorithm 2. Computation of e(P, Q) with some optimizations
Input: P ∈ E(Fp), Q ∈ E(Fpk), where P has order r
Output: e(P, Q)
1: T ← P , f ← 1
2: for i ← �lg(r)� − 1 downto 0 do
3: f ← f2.lT,T (Q)/v2T (Q)
4: T ← 2T
5: if ri = 1 then
6: f ← f.lT,P (Q)/vT+P (Q)
7: T ← T + P
8: end if
9: end for

10: f ← fpd−1

11: f ← f (pd+1)/r

12: return f
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The fact that k is always even allows us to assume that the extension field
Fpk is built as a quadratic extension on top of an implementation of Fpd . An
element in Fpk can then be represented as w = a+ ib where a, b ∈ Fpd . Then the
conjugate of w is w̄ = a − ib. Now it is well known (Frobenius) that

(a + ib)pd

= (a − ib)

The next optimization we suggest [23], [26] is to further exploit the fact that
the output of the Miller loop is to be raised to the power of pd − 1. From the
above it follows immediately that

(1/(a + ib))pd−1 = (a − ib)pd−1

In other words after raising to the power of pd − 1 inversion and conjuga-
tion cannot be distinguished. So now “push” the effect of the final exponenti-
ation back into the main Miller loop, and replace inversions by much cheaper
conjugations.

Algorithm 3. Computation of e(P, Q) with further optimization
Input: P ∈ E(Fp), Q ∈ (Fpk), where P has order r
Output: e(P, Q)
1: T ← P , f ← 1
2: for i ← �lg(r)� − 1 downto 0 do
3: f ← f2.lT,T (Q).v̄2T (Q)
4: T ← 2T
5: if ri = 1 then
6: f ← f.lT,P (Q).v̄T+P (Q)
7: T ← T + P
8: end if
9: end for

10: f ← fpd−1

11: f ← f (pd+1)/r

12: return f

Now at a stroke we have gotten rid of the potentially very expensive extension
field divisions in the main Miller loop (algorithm 3).

7 What About Q?

We have already chosen P to suit our needs, but what about Q? We would like to
choose Q from a group disjoint from P , and ideally with some other advantages.

As things stand the point Q is a general point (xQ, yQ) on the elliptic curve
over the field Fpk , where xQ = a + ib and yQ = c + id, and a, b, c, d ∈ Fpd . Let
us now restrict Q to be of a form where b = c = 0. This has an immediately
useful effect as v̄2T (Q) and v̄T+P (Q) are now elements in the field Fpd , which
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means that they will be wiped out by the final exponentiation. This is the fa-
mous denominator-elimination optimization [2]. And as an extra bonus it is not
difficult to establish that if Q(a, id) is a point on E(Fpk), then it can be mapped
to a point in an isomorphic group on the quadratic twist of this curve E′(Fpd).
So now Q, prior to its use in the pairing, can be manipulated as a point over
the smaller extension field Fpd [4] (requiring a small modification to the line
function). See algorithm 4.

Algorithm 4. Computation of e(P, Q) with denominator elimination
Input: P ∈ E(Fp), Q ∈ E′(Fpd), where P has order r
Output: e(P, Q)
1: T ← P , f ← 1
2: for i ← �lg(r)� − 1 downto 0 do
3: f ← f2.lT,T (Q)
4: T ← 2T
5: if ri = 1 then
6: f ← f.lT,P (T, Q)
7: T ← T + P
8: end if
9: end for

10: f ← fpd−1

11: f ← f (pd+1)/r

12: return f

In some situations and for certain types of pairings it may appear at first
glance that such a favourable choice of Q may not be possible. However using a
trick from [37] and [4], in fact it is always possible.

8 Some Further Optimizations

The group order r will always be odd, therefore the last iteration of the Miller
loop will always invoke the ri = 1 condition. However this last point addition,
which takes T to the point at infinity, always results in a line value which will be
again wiped out by the final exponentiation, and so this last step can be omitted
[13].

Looking again at the final exponentiation we observe that in many cases the
exponent pd +1 can be further factored. For example p3 +1 = (p+1)(p2−p+1).
From the definition of k, the group order must divide p2 − p + 1, which is the
sixth cyclotomic polynomial Φ6(p). So in general the final exponentiation can be
broken down into three parts, the easy exponentiation to the power of pd − 1,
the equally easy exponentiation to the power of (pd +1)/Φk(p) (easy because the
Frobenius can be used), and the “hard” exponentiation to the power of Φk(p)/r.
These modifications lead us to algorithm 5.
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Algorithm 5. Computation of e(P, Q) with yet more optimization
Input: P ∈ E(Fp), Q ∈ E′(Fpd), where P has order r
Output: e(P, Q)
1: T ← P , f ← 1
2: s ← r − 1
3: for i ← �lg(s)� − 1 downto 0 do
4: f ← f2.lT,T (Q)
5: T ← 2T
6: if si = 1 then
7: f ← f.lT,P (Q)
8: T ← T + P
9: end if

10: end for
11: f ← fpd−1

12: f ← f (pd+1)/Φk(p)

13: f ← fΦk(p)/r

14: return f

8.1 Calculating the Hard Part of the Final Exponentiation

When exponentiating in Fpk there is never any need to use an exponent greater
than p. Recall that exponentiation to the power of p is cheap, using the Frobenius.
Therefore an exponent e can be represented to the base p as e0 + e1.p + e2.p

2....
Now fe can be written as

fe = fe0+e1.p+e2.p2... = fe0 .(fp)e1 .(fp2
)e2 ...

which can be quickly calculated using the Frobenius and the fast method of
simultaneous exponentiation [22], [20], [33]. Standard windowing methods can
be used, and the fact that inverses can be treated as conjugates can be further
exploited to allow a NAF representation of the exponent.

For smaller values of k ≤ 8, it may be faster to use Lucas or XTR style
exponentiation [28], which uses the larger exponent, but only requires arithmetic
over the smaller fields Fpk/2 or Fpk/3 respectively [43], [20]. As a nice side effect
this has the result of “compressing” the value of the pairing to the smaller field
size. Even if the multi-exponentiation method is used, it may still be useful to
finally compress the pairing output.

9 Application-Dependent Optimizations

It may be that in a particular application the first parameter P is a fixed con-
stant, like perhaps a fixed private key. In this case it clearly makes sense to
precompute the values of T which are just fixed multiples of P . In this situation
it is always preferable to use affine coordinates for all the points (although in
the general case where P ∈ E(Fp) projective coordinates are to be preferred).
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Some protocols require the pairing value, an element of order r, to be subse-
quently further exponentiated to a value v < r. If using the multi-exponentiation
method for the hard part of the final exponentiation, then we observe that
the further exponentiation to the power of v can be “folded into” the multi-
exponentiation at virtually no extra cost. In many protocols these pairing ex-
ponentiations are included in the estimate of the protocols cost. Using this idea
they can be obtained “for free”. This trick works best for larger k.

If an entirely inversion-free pairing is desirable, then use projective coordinates
throughout, and at little extra cost the full final exponentiation to the power of
(pk − 1)/r can be carried out using one large multi-exponentiation.

10 Curve-Dependent Optimizations

10.1 The Ate Pairing

Some useful optimizations are possible, but they will depend on the particular
type of pairing-friendly curve that is used. For example there are families of
curves developed by Barreto et al. [3] and Duan et al. [12], for which the ω
parameter is always greater than one. The same is true for the MNT curves
where ω = 2. In these cases a truncated loop variant of the Tate pairing is
possible called the Ate pairing [24]. Here instead of putting the first parameter
P on the curve over Fp, and Q as a point on the twist over Fpd , we do it the
other way around. Then, as it turns out, by simply substituting the line s = t−1
for the line s = r − 1 in algorithm 5, we still get a viable bilinear pairing (which
has a simple relationship with the Tate pairing) with a Miller loop truncated by
a factor of ω. For example for the BN curves mentioned above, the loop will be
half the length of that required for the Tate pairing. Of course the fact that P is
now taken over an extension field introduces an extra cost to the manipulation
of T . This will not matter at all if P is fixed, as the precomputation optimization
applies. In fact as we will see there are other ways to offset this extra cost.

10.2 Low Discriminant Complex Multiplication Curves

The parameters of all non-supersingular pairing-friendly elliptic curves must be
found using the method of Complex Multiplication (CM method) [10]. Many
families of pairing-friendly curves are found to have a CM discriminant of -1
or -3 [3], [12], [5]. In these cases the curves exhibit quartic and sextic twists
respectively, as well as quadratic twists. Now it may be possible to select Q in
the Tate pairing (and P in the Ate pairing) from a higher order twist, and hence
over a lower order extension field. For example for the BN curves for which
k = 12 it is possible to place P on Fp and Q on the sextic twist over Fp2 , or
vice versa for the Ate pairing. In fact for a k = 6 pairing friendly curve with
a CM discriminant of -3, it is perfectly possible to have both P and Q as points on
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Algorithm 6. Computation of e(P, Q) with Ate pairing
Input: P ∈ E′(Fpd), Q ∈ E(Fp), P has order r
Output: e(P, Q)
1: T ← P , f ← 1
2: s ← t − 1
3: for i ← �lg(s)� − 1 downto 0 do
4: f ← f2.lT,T (Q)
5: T ← 2T
6: if si = 1 then
7: f ← f.lT,P (Q)
8: T ← T + P
9: end if

10: end for
11: f ← fpd−1

12: f ← f (pd+1)/Φk(p)

13: f ← fΦk(p)/r

14: return f

curves over Fp. However we are only able to find such a pairing friendly curve
with ρ = 2. For example consider this family of curves [15].

p(x) = 27x4 + 9x3 + 3x2 + 3x + 1
r(x) = 9x2 + 3x + 1
t(x) = 3x + 2

Observe that ω = 2, so the Ate pairing will be efficient in this case. And don’t
be put off by ρ = 2 – this is a useful curve!

In all these cases the line functions lA,B(Q) will be of a sparse form which
will further speed up calculations. An alternative idea which exploits low dis-
criminant curves, which is particularly effective for the case k = 2, is described
in [40].

10.3 Truncated Final Exponentiation

In some cases the method of generation of the curves allows us to dramatically
shorten the hard part of the final exponentiation. Consider for example a k = 6
MNT curve. In this case the exponent will be (p2 − p + 1)/r. Assume that
r = p + 1 − t, in other words the number of points on the base field curve
is a prime. Then this exponent will be (p2 − p + 1)/(p + 1 − t) = p ± δ, where
δ ≈ t. Therefore the hard part of the final exponentiation will be fp±δ = fp.f±δ,
which can be calculated using a Frobenius and a half-length exponentiation (and
avoiding multi-exponentiation). This same idea applies to a varying extent to
other families of curves – for example for the BN curves the hard part of the
final exponentiation requires only a three-quarters length exponent.
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10.4 Avoiding Multi-exponentiation

Using multi-exponentiation for the final exponentiation is fast, but requires a
lot of memory for precomputed values. As it happens, in many cases it can be
avoided. Considering again the final exponentiation for the BN curves, it is not
hard to work out that the “hard part” of the final exponentiation in algorithms
5 and 6 can be calculated using multi-exponentiation as

f ← fp3
.(fp2

)6x2+1.(fp)36x3−18x2+12x+1.f36x3−30x2+18x−2

But with a little work this can also be equivalently calculated as

a ← f6x−5

b ← ap

c ← ab

f ← fp3
.[c.(fp)2.fp2

]6x2+1.c.(fp.f)9.a.f4

requiring only simple exponentiation and some multiplications and squarings.
For x negative, the first step can be calculated instead as a = 1/f5−6∗x. Note
that the overall length of exponent in bits is not any greater than for the multi-
exponentiation. Note also that if x has a low Hamming weight, windowing meth-
ods of exponentiation will not be much better than a simple square-and-multiply
algorithm, again saving on memory for precomputed values. This could be useful
in a constrained environment. In some experiments this method was found to be
about 20% faster than using multi-exponentiation.

In this case it was beneficial to work out the exponents as explicit polynomials
based on the polynomial description of the pairing-friendly family of curves.
However we will not always be so lucky. For example attempting to do the same
for the k = 16 family of curves discovered by Kachisa [25] results in very complex
exponents that cannot be exploited in this way. However if this optimization
does not apply, the optimization of section 9 can still be used instead in many
applications.

10.5 Super Pairing-Friendly Curves

Using the method of Barreto, Lynn and Scott [3], we can find this pairing-friendly
curve:-

D = −1
p(x) = (1 + 2x + x2 + x6 − 2x7 + x8)/4
t(x) = x + 1

#E(x) = ((x − 1)2)(x2 + 1)(x4 − x2 + 1)/4
= ((x − 1)2.Φ4(x).Φ12(x))/4

An actual curve from this family can be easily found using the CM method.
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We define a curve whose number of points is divisible by more than one
cyclotomic polynomial, as a “super pairing-friendly” curve. In fact it is perfectly
possible (but often overlooked) that one elliptic curve might support multiple
embedding degrees.

By choosing points of an order which divides Φ4(x) we can do pairing-based
cryptography with an embedding degree of 4, albeit with a rather high ρ value
of 4. Using points of an order which divides Φ12(x) we can do pairing-based
cryptography on the same curve with an embedding degree of 12 and ρ = 2.

One might for example choose x of about 128 bits (taking care that both Φ4(x)
and Φ12(x) evaluate as primes or near-primes), to achieve a security equivalent
to 128-bit AES, with a prime modulus of 1024 bits, using the embedding degree
of 4. The discrete logarithm difficulty would be equivalent to about 4.1024 =
4096 bits, which is about right. Later one could switch to an embedding degree
of 12 on the same curve, to obtain security roughly equivalent to 256-bit AES,
and with a discrete logarithm difficulty of 12.1024 = 12288 bits, which again is
about right [29].

11 The Wider Context

A pairing is not calculated in isolation, it is calculated as part of a wider context,
to implement some useful cryptographic protocol.

11.1 Which Embedding Degree?

One question that arises immediately is which embedding degree should be used
for a particular level of security. The answer is, regrettably, that it depends. Our
view on it is summarised in Table 1.

Table 1. Key size security in bits

Symmetric key size Group size Extension field size Embedding degree

80 160 960 – 1280 2–8
128 256 3000 – 5000 12–18
256 512 12000 – 18000 24–36

For example at the 80-bit level of security, one could use a k = 2 Cocks-Pinch
curve with a 512-bit prime p, for an extension field size of 1024-bits, and using
a group size r of 160 bits. Alternatively one could use a k = 6 MNT curve again
with a 160-bit prime p and group size of 160 bits, and an extension field size
of 960 bits. On the face of it these choices represent similar levels of security.
The protocol may require, as well as the pairing, point multiplications, and in
this case the smaller size of p (the field over which the pairing-friendly elliptic
curve will be defined) will be a big advantage. On the other hand these point
multiplications may be of fixed points, in which case, using precomputation, the
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cost of point multiplication may in fact be insignificant, as in the case of Boneh
and Franklin IBE [7]. Note that a point multiplication of a pairing parameter can
always be changed to an exponentiation of the pairing itself, using the property
of bilinearity, so point multiplications may not be needed at all. For a k = 2
curve, precomputation based on a fixed point P will be a big advantage, much
less so on a k = 6 curve. For a k = 2 curve the parameter Q will be on the
twist also over Fp, whereas for a k = 6 MNT curve the twist is over Fp3 , which
is more complicated to implement. If one was implementing a short-signature
scheme [8], then a k = 2 curve cannot even be considered. Clearly a very careful
analysis of the protocol is required before a choice can be made.

The issue of how best to scale security in pairings has been much debated,
see [27], [20], [41]. One point perhaps not considered is that the code for higher
extension fields becomes a lot “fussier”, in that rather than spending most of
its time for example in the inner loops of a modular multiplication, it spends
more time hopping around in and out of functions, and accumulating costs from
function overheads which can be quite significant. We have already observed how
in a constrained cache environment such code can be punished by an increased
rate of instruction cache misses [44].

11.2 Products of Pairings

In the case of a protocol which requires the products of pairings, three ideas can
be used to speed up the calculation [38]. For example consider the calculation
of e(P, Q) · e(R, S). These can be combined into a single algorithm.

– Since the implicit multiplications of P and R occur in lock-step with one
another, it makes sense to use affine coordinates in conjunction with Mont-
gomery’s trick. This means that just one modular inversion will be required
instead of two. Montgomery’s trick is based on the simple observation that
1/x = y/xy and 1/y = x/xy.

– Both pairings can share the same Miller variable f . This means only a single
squaring of f in the combined pairing algorithm will be required.

– Both pairings can share the final exponentiation (as pointed out by Solinas
[45]).

These ideas are further evaluated in [21].

12 Timings

Here we present some timings, which, at the 80-bit level of security compare four
quite different pairing implementations with one another, and with a standard
1024-bit RSA decryption on the same platform, a standard 32-bit PC. The code
is written in a combination of C++, C and assembly language.

First, we implement the Tate pairing using a k = 2 Cocks-Pinch curve, a group
size of 160 bits and a prime modulus of 512 bits, with an extension field size
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of 2.512 = 1024 bits. Second, we implement the Tate pairing on a k = 2 curve
which supports an efficient endomorphism [39], indicated by EE in the table
below. Next, an Ate pairing implementation using a k = 4 pairing-friendly curve
[15] with ω = 2, a group size of 160-bits and a prime modulus of 256 bits, with
an extension field size of 4.256 = 1024 bits. The extension field is implemented
as a 2-over-2 tower of extensions. Both the k = 2 and k = 4 pairings use a Lucas
sequence for the hard part of the final exponentiation. Finally we implement a
k = 6 Tate pairing, using an MNT curve, a group size and prime modulus size
both of 160 bits, with an extension field size of 6.160 = 960 bits. In this case the
extension field is implemented as a 2-over-3 tower of extensions. For the final
exponentiation the trick of section 10.3 is used. The slightly smaller extension
field size in this case is motivated by the desire to make the modulus p a multiple
of the computer word size of 32-bits.

The point multiplication timings are for the multiplication of a variable point
on the elliptic curve over the base field by a random 160-bit value using projective
coordinates. Note that the Ate pairing without precomputation would probably
be more competitive if the E(Fp2) arithmetic that is required was implemented
using projective rather than affine coordinates, as field inversions as required
when using affine coordinates are resistant to aggressive optimization.

Table 2. Timings in milliseconds on 3GHz Pentium IV (using SSE2 instructions)

k = 2 Tate k = 2 Tate (EE) k = 4 Ate k = 6 Tate

Pairing w/o precomputation 6.7 5.1 9.1 6.2

Pairing with precomp. 3.0 3.0 3.1 4.5

Point Multiplication 2.9 1.9 1.1 0.6

1024-bit RSA decryption 1.92

Note that these timings could be improved a little by converting the C++ pro-
grams to C.

Of interest is the fact that an MNT k = 6 implementation is competitive
with the k = 2 Cocks-Pinch curve, when precomputation does not apply. This is
largely thanks to the implementation of an efficient towering extension. However
when precomputation does apply, the k = 2 curves are still just about the
fastest. The idea of using a curve with an efficient endomorphism seems to be
competitive at this level of security. Using a smaller base field with a larger k
does of course dramatically improve the base field point multiplication timings.
The extent to which this is relevant depends on the protocol being implemented.
When an efficient endomorphism is available, this can be exploited to speed up
point multiplication times significantly using the method of Gallant, Lambert
and Vanstone [19].
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13 Conclusions

One of the big questions to be asked about pairing-based cryptography is this:
Does it take so long to calculate the pairing that the viability of pairing-based
cryptography must be called into question? The answer is No.
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Abstract. In this paper we describe an efficient implementation of the
Tate and Ate pairings using Barreto-Naehrig pairing-friendly curves, on
both a standard PC and on a 32-bit smartcard. First we introduce a sub-
family of such curves with a particularly simple representation. Next
we consider the issues that arise in the efficient implemention of field
arithmetic in Fp12 , which is crucial to good performance. Various opti-
misations are suggested, including a novel approach to the ‘final expo-
nentiation’, which is faster and requires less memory than the methods
previously recommended.

1 Introduction

Pairing-based cryptography requires pairing-friendly curves. These are parame-
terised by their embedding degree k. The embedding degree dictates to an extent
the security level efficiently achievable on the curve.

While it is well known that super-singular curves are viable and useful candi-
dates, they are limited in terms of the possible values of the embedding degree.
Furthermore the highest embedding degree possible for super-singular elliptic
curves (k = 6) requires us to use curves of characteristic 3, which is rather
awkward from an implementation point of view (we refer the reader to a recent
paper on arithmetic in GF(3m) by Ahmadi, Hankerson and Menezes [1]). At-
tention has therefore switched to consideration of non-supersingular curves of
prime characteristic, for which there is no such limitation. Nonetheless finding
suitable curves, or ideally whole families of suitable curves, has proven to be
non-trivial [2].

In this context the security of pairing-based cryptography depends on finding
curves whose order n is divisible by a large prime r such that generic attacks on
small group orders (Pohlig-Hellman attacks) can be resisted. It is also important
that k lg(p), where p is the modulus, is large enough to resist index-calculus
attacks.
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Given this scenario, Barreto-Naehrig (BN) curves with their embedding degree
of 12 are particularly significant, as before their discovery only MNT
curves [3] of embedding degree 3, 4 and 6 were known to support rare curves
of prime order (r = n). The prime order requirement is significant in terms of
efficiency of implementation, and is crucial for certain applications [4]. Further-
more since BN curves define a whole family of curves, there are plenty to choose
from. One drawback of using BN curves is Schirokauer’s method [5], which can
be applied to BN primes because of their special format. In this case, it might
be necessary to rescale parameters accordingly.

2 Bilinear Pairings

A bilinear pairing is a map e : G1 ×G2 → G3 where G1,G2 are additive groups,
G3 is a multiplicative group, and the map is linear in each component:

e(P +Q,R) = e(P,R) · e(Q,R)
e(P,Q+R) = e(P,Q) · e(P,R) .

Let Fp be the prime field with characteristic p and let E(Fp) be an elliptic
curve defined over Fp. Let n be the order of E(Fp), let r be a large prime dividing
n, and let k be the least positive integer such that r | pk − 1 and r2 � pk − 1. We
call such an integer the embedding degree of r with regard to Fp, and we have
that the r-torsion group of the curve is contained in E(Fpk) and the r-th roots
of unity are contained in Fpk .

Let [a]P denote the multiplication of a point P ∈ E by a scalar a ∈ Z, and
let ∞ ∈ E denote the point at infinity. A Miller [6] function fr,P (·) is a rational
function on E with r zeroes at P , one pole at [r]P and r − 1 poles at ∞:

(fr,P ) = r(P ) − ([r]P ) − (r − 1)∞ .

The Tate pairing [7] is a well-defined, non-degenerate bilinear pairing with
G1 = E[r], G2 = E(Fpk)/rE(Fpk), and G3 = F∗

pk/(F∗
pk)r. Let P ∈ E[r] and

Q ∈ E(Fpk)/rE(Fpk). Then the Tate pairing of P,Q is computed as

e(P,Q) = fr,P (Q)(p
k−1)/r .

The Ate pairing [8] is a well-defined, non-degenerate bilinear pairing with
G1 = E[r] ∩ Ker(πq − [1]), G2 = E[r] ∩ Ker(πq − [q]), and G3 = F∗

pk/(F∗
pk)r,

where πq is the Frobenius endomorphism. Let P ∈ E[r] ∩ Ker(πq − [1]), Q ∈
E[r] ∩Ker(πq − [q]), and t be the trace of Frobenius of the curve. Then the Ate
pairing of Q,P is computed as

e(Q,P ) = ft−1,Q(P )(p
k−1)/r .

The most efficient pairing computation algorithms are derived from Miller’s
algorithm [6], which computes a Miller function fr,P evaluated at a point Q.
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Algorithm 1 describes the BKLS algorithm [7] commonly used to compute the
Tate pairing, including the denominator elimination optimisation that may be
applied for even embedding degree. The algorithm needs Fpk arithmetic (squar-
ing and multiplication), elliptic curve arithmetic (point addition and doubling),
computation of the line function lA,B(C) that intercepts points A,B and its
evaluation at a point C, and a final exponentiation in Fpk .

Algorithm 1. BKLS algorithm to compute the Tate pairing e(P,Q)
Input: P, Q ∈ E and n, r ∈ Z

Output: fr,P (Q)
(pk−1)/n

1: T ← P
2: f ← 1
3: for i ← 	lg(r)
 − 2 downto 0 do
4: f ← f2 · lT,T (Q)
5: T ← [2]T
6: if ri = 1 then
7: f ← f · lT,P (Q)
8: T ← T + P
9: end if
10: end for
11: f ← f (pk−1)/n

3 Barreto-Naehrig Curves

Barreto and Naehrig [9] devised a method to generate pairing-friendly elliptic
curves over a prime field, with prime order and embedding degree k = 12. The
equation of the curve is E : y2 = x3 + b, with b 
= 0. The trace (of Frobenius) of
the curve, the curve order and the characteristic of Fp are parameterised as:

t(x) = 6x2 + 1
n(x) = 36x4 − 36x3 + 18x2 − 6x+ 1
p(x) = 36x4 − 36x3 + 24x2 − 6x+ 1 .

Such a curve is called a Barreto-Naehrig or BN curve. Throughout this text, we
drop the parameter x and write t, n, p instead of t(x), n(x), p(x) respectively.
Because a BN curve has prime order, every point in the curve has order n, so
the r value defined in Section 2 (a large prime dividing the curve order) is the
same as n.

Since t, n, p are parameterised, the space needed to store or transmit infor-
mation about a BN curve is small: The length of x is roughly one sixth of the
concatenation of both p and t. This parameterisation also allows for a faster final
exponentiation method described in Section 7.
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Because BN curves have embedding degree k = 12, pairings are computed
over points in E(Fp12). A common optimisation [7] is to take one of the points
in E(Fp) ⊂ E(Fp12) and the other in E(Fp12). However, it is possible to do
better than this: By using an appropriate map, we can compress certain points
in E(Fp12) to points in a sextic twist E′(Fp2). Let ξ ∈ Fp2 be such that W 6 − ξ
is irreducible over Fp2 [W ] whenever p ≡ 1 (mod 6). Then there exists a curve
E′/Fp2 : y′2 = x′3+b/ξ that is a sextic twist of E/Fp and whose order is divisible
by n. In fact, the order of the sextic twist E′/Fp2 is n(2p− n).

Let z ∈ Fp12 be a root of W 6 − ξ. We can build an injective group homo-
morphism ψ : E′(Fp2) → E(Fp12) as (x′, y′) �→ (x′z2, y′z3). This allows us to
map points in the sextic twist E′(Fp2) to points in E(Fp12 ), and if ξ is used to
construct the extension field Fp12 then multiplication by powers of z does not
incur any multiplication overhead.

We chose x such that p is a 256-bit prime subject to the following con-
gruences: p ≡ 7 (mod 8) (so that we can use −2 as a quadratic non-residue,
optimising arithmetic operations on Fp2), p ≡ 4 (mod 9) (as suggested in [9]
to compute cube roots efficiently), and p ≡ 1 (mod 6) (so that we can find
ξ ∈ Fp2 such that W 6 − ξ is irreducible over Fp2 [W ]). The elliptic curve equa-
tion is given by E/Fp : y2 = x3 + 3, and G = (1, 2) is a generator of E(Fp).
For a 256-bit modulus, the x which defines the curve is just a 64-bit
number.

Observe from Algorithm 1 that the Ate pairing benefits from r having low
Hamming weight. In the context of BN curves, this is facilitated by prefer-
ring an x value of low Hamming weight. For example, we find that r has
a Hamming weight of 90 and t has a Hamming weight of 28 if we choose
x = -6000000000001F2D (hex).

4 Finite Field Arithmetic

We construct the finite extension field Fp12 as a tower of finite extensions:
Quadratic on top of a cubic on top of a quadratic. The quadratic/cubic non-
residues and reduction polynomials are detailed in Table 1. The multiplica-
tion and squaring algorithms chosen to implement field arithmetic are listed in
Table 2. We made the choice of multiplication and squaring algorithms based on
the exhaustive testing described in [10].

Table 1. Extension fields

Extension Non-Residue Construction Representation

Fp2 β = −2 Fp[X]/(X
2 − β) a = a0 + a1X

Fp6 ξ = −1−
√

β Fp2 [Y ]/(Y 3 − ξ) a = a0 + a1Y + a2Y
2

Fp12 ξ′ = 3
√

ξ Fp6 [Z]/(Z2 − ξ′) a = a0 + a1Z
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Table 2. Multiplication and squaring algorithms for finite extension fields

Extension Multiplication Squaring

Fp Comba Comba
Fp2 Karatsuba Complex
Fp6 Karatsuba Chung-Hasan SQR2
Fp12 Karatsuba Complex

Throughout this text we also use an alternative equivalent representation of
elements in Fp12 based on z, a root of (W 6 − ξ) ∈ Fp2 [W ]:

a ∈ Fp12 = (a0,0 + a0,1Y + a0,2Y
2) + (a1,0 + a1,1Y + a1,2Y

2)Z
= a0,0 + a1,0z + a0,1z

2 + a1,1z
3 + a0,2z

4 + a1,2z
5 ,

where ai,j ∈ Fp2 .

5 The Tate Pairing

The Tate pairing e(P,Q) takes a point P = (xP , yP ) ∈ E(Fp) and a point
Q = (xQ, yQ) ∈ E(Fp12). Recall from Section 3 that BN curves have sextic
twists defined over Fp2 , so we can use a point Q′ = (x′Q, y

′
Q) ∈ E′(Fp2) instead

of the full point Q ∈ E(Fp12), and that there exists a group homomorphism
ψ : E′(Fp2) → E(Fp12) defined as ψ((x′, y′)) �→ (x′z2, y′z3). The coordinates of
a point Q in the codomain of ψ have a compact representation, needing at most
1/6 of the number of Fp elements needed to represent a full Fp12 element.

In Algorithm 1, the point P is repeatedly doubled or added during the Miller
loop, and therefore we need elliptic curve arithmetic on E(Fp).

We use λA,B in order to evaluate lA,B(Q). Because A,B ∈ E(Fp), every
coordinate is an element of Fp and thus λA,B ∈ Fp. Let C = A + B. Using
projective coordinates,

lA,B(Q) = (yQ · z3
A − yA)zC − (xQ · z3

A − xA · zA)λA,B

= y′Q · z3 · z3
A · zC − yA · zC − x′Q · z2 · z3

A · λA,B − xA · zA · λA,B

= (xA · zA · λA,B − yA · zC) − (x′Q · z3
A · λA,B)z2 + (y′Q · z3

A · zC)z3 .

Since xA, yA, λA,B ∈ Fp and x′Q, y
′
Q ∈ Fp2 , we can avoid Fp12 arithmetic entirely

when computing lA,B(Q).

6 The Ate Pairing

The Ate pairing e(Q,P ) takes a point Q = (xQ, yQ) ∈ E(Fp12) and a point
P = (xP , yP ) ∈ E(Fp). As in Section 5, we can use a point Q′ = (x′Q, y

′
Q) ∈

E′(Fp2) instead of the full point Q ∈ E(Fp12).
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The Miller loop needs two elliptic curve arithmetic operations: Point doubling
and point addition. As these operations are computed over Q′, we need elliptic
curve arithmetic over E′(Fp2). Instead of using r to control the Miller loop, the
Ate pairing uses s = t− 1, which in the case of BN curves provides for roughly
half the number of iterations needed to compute the Tate pairing. Algorithm 2
describes the BKLS algorithm adapted to compute the Ate pairing.

Algorithm 2. BKLS-like algorithm to compute the Ate pairing e(Q,P )
Input: P, Q ∈ E and n, s = t − 1 ∈ Z

Output: ft−1,P (Q)
(pk−1)/n

1: T ← P
2: f ← 1
3: for i ← 	lg(s)
 − 2 downto 0 do
4: f ← f2 · lT,T (Q)
5: T ← [2]T
6: if si = 1 then
7: f ← f · lT,P (Q)
8: T ← T + P
9: end if
10: end for
11: f ← f (pk−1)/n

The formula for the slope of the line function lA,B that intercepts two points
A = (xA, yA) and B = (xB, yB) is

λA,B =
yB − yA

xB − xA
.

If A,B ∈ E(Fp12), the slope is an element of Fp12 . We can easily derive this
from the slope of the line function lA′,B′ that intercepts A′, B′ ∈ E′(Fp2), where
A′, B′ are the images of A,B under ψ:

λA,B =
(y′B − y′A)z3

(x′B − x′A)z2
= (λA′,B′)z ,

so computing λA,B ∈ Fp12 amounts to computing λA′,B′ ∈ Fp2 . We use this slope
to evaluate lA,B(P ) as follows:

lA,B(P ) = (xP − xA)λA,B − (yP − yA)
= (xP − x′A · z2)(λA′,B′)z − (yP − y′A · z3)
= (−yP ) + (xP · λA′,B′)z + (y′A − x′A · λA′,B′)z3 .

We prefer affine coordinates because the savings due to the use of projective
coordinates are diluted when compared to the overall Fp12 operations.

As xP , yP ∈ Fp and x′A, y
′
A, λA′,B′ ∈ Fp2 , we can avoid Fp12 arithmetic entirely

when computing lA,B(P ). The resulting value has a sparse representation in Fp12 ,
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needing only five Fp elements instead of twelve. However, the Miller variable is
a full Fp12 element. For a given point P , the value −yP is constant, so it needs
to be computed only once during the pairing computation.

7 Final Exponentiation

Both the Ate and Tate pairing algorithms compute a final exponentiation after
the Miller loop. A common optimisation of this computation is to factor (pk −
1)/n into three parts: An easy exponentiation to the power of (pk/2 − 1), an
equally easy exponentiation to the power of (pk/2 + 1)/Φk(p) (easy because of
the Frobenius), and a ‘hard’ exponentiation to the power of Φk(p)/n, where
Φk is the k-th cyclotomic polynomial [11]. In the context of BN curves, these
exponents translate to (p6 − 1), (p2 + 1), and (p4 − p2 + 1)/n.

Recall that p and n have a special form: Both are polynomials on x. Therefore
this hard part of the final exponentiation can be computed explicitly as a large
polynomial in x. This can in turn be expressed to the base p as

p3 + (6x2 + 1)p2 + (36x3 − 18x2 + 12x+ 1)p+ (36x3 − 30x2 + 18x− 1) .

Now the standard continuation is to use the method of multi-exponentiation
combined with the Frobenius [12], so that the final exponentiation is the calcu-
lation of

(fp3
) · (fp2

)6x2+1 · (fp)36x3−18x2+12x+1 · f36x3−30x2+18x−1 .

However, multi-exponentiation is expensive in terms of memory as it requires
extensive precomputation. So instead we exploit the specific and fixed form of
the final exponent to obtain Algorithm 3 which can easily be verified to produce
the equivalent result, but only requires simple exponentiation.

Algorithm 3. ‘Hard’ exponentiation
Input: f, x, p

Output: f (p4−p2+1)/n

1: a ← f6x−5

2: b ← ap using Frobenius
3: b ← ab
4: Compute fp, fp2

, and fp3
using Frobenius

5: f ← fp3 ·
[
b · (fp)2 · fp2

]6x2+1
· b · (fp · f)9 · a · f4

Note that exponentiations to powers of p are efficiently computed using Frobe-
nius; other exponentiations may be computed using the square-and-multiply
method. Because x is chosen so as to have low Hamming weight, there is no
benefit in using window methods to compute the exponentiations to the powers
of 6x− 5 and 6x2 + 1, which saves on memory. Experiments show this method
to be 20% faster than using multi-exponentiation.
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8 The Philips HiPerSmartTM Smartcard

As in [13], we used the Philips HiPerSmartTM smartcard, which is an instantia-
tion of the MIPS32 R©-based SmartMIPS R© architecture with various instruction
set enhancements to facilitate the implementation of popular cryptographic al-
gorithms. Fortunately these enhancements are also relevant to our efforts here.

Specifically the architecture supports a ACX|HI|LO triple of registers that
can be used to accumulate the partial products that arise when employing the
popular Comba/Montgomery technique for multi-precision multiplication [14].
This is supported by a modified MADDU instruction which carries out an unsigned
integer multiplication and addition to the triple register.

One architectural feature of particular significance is the 2 KB instruction
cache. This is appropriate for an algorithm which spends most of its time in a
small inner loop, as say for a modular exponentiation as required by the RSA
algorithm. However it is problematical for the more complex algorithms consid-
ered here. Therefore we found that it was hard to avoid frequent cache misses,
which are particularly expensive at the higher clock speeds. In particular it was
self-defeating to try and use the popular optimisation of loop-unrolling, as the
reduction in instruction count was more than offset by an increase in clock cycle
count.

By using stack allocation for the multiprecision variables it was possible to
keep the RAM requirement within the 16 KB allocation. However this could
have been a problem if we were to use methods which are more memory-hungry
(like multi-exponentiation).

9 Results

The performance of the Ate and Tate pairings was measured on two platforms:
The Philips HiPerSmartTM platform described in Section 8, and an Intel Pen-
tium IV 3.4 GHz running GNU/Linux 2.6.18.

Our programs used the MIRACL library1, which implements multi-precision
number arithmetic, and supports a number of powerful optional optimizations. In
particular it supports completely unrolled assembly language support for fixed-
size big number multiplication and modular reduction. Internally, prime field
elements are in Montgomery representation [15], which allows for fast reduction
without divisions. The memory for big numbers can be allocated from the heap,
or more efficiently from the stack, which is the case for our experiments. When
required to multiply big numbers by a small integer, multiplications by numbers
less than or equal to 6 are instead carried out by up to 3 modular additions.

Table 3 lists the number of instructions required to compute the pairings on
the smartcard, as well as the number of cache misses. The actual count of clock
cycles and the time needed to compute the pairings is listed in Tables 4 and 5.
The timings for the 3.4 GHz Pentium IV are listed in Table 6.

1 http://www.shamus.ie

http://www.shamus.ie
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Table 3. Instructions required (% icache misses) — Philips HiPerSmartTM

Ate pairing Tate pairing

Miller loop 47,987,089 (17.4%) 65,163,248 (19.3%)
Final exponentiation 58,948,105 (19.4%) 58,925,260 (19.3%)
Total 106,935,194 (18.5%) 124,088,508 (19.3%)

Table 4. Clock cycles required/CPI/time in seconds @ 9 MHz

Ate pairing Tate pairing

Miller loop 67,538,579/1.41/7.50 93,524,664/1.44/10.39
Final exponentiation 84,373,180/1.43/9.37 84,387,321/1.43/9.38
Total 151,911,759/1.42/16.88 177,911,985/1.43/19.77

Table 5. Clock cycles required/CPI/time in seconds @ 20.57 MHz

Ate pairing Tate pairing

Miller loop 77,125,478/1.61/3.75 107,704,196/1.65/5.24
Final exponentiation 97,161,864/1.65/4.72 97,144,880/1.65/4.72
Total 174,287,342/1.63/8.47 204,849,076/1.65/9.96

Table 6. Timings in miliseconds on 3.4 GHz Intel Pentium VI

Ate pairing Tate pairing

Miller loop 17.4 24.3
Final exponentiation 21.9 21.8
Total 39.3 46.1

Our hardware emulator is only cycle-accurate up to 20.57 MHz, but the max-
imum supported speed for the smartcard is 36 MHz. At this clock frequency
the Ate pairing over BN curves should take approximately 5 seconds, which is
clearly not adequate for use at the moment. Nevertheless it is anticipated that,
with improvements in technology, BN curves might be practical even on such
resource constrained devices in the near future.

10 Conclusions

We have described the first implementation of both the Ate and Tate pairings
over Barreto-Naehrig curves.

Because of the restrictions imposed on the selection of primes for BN curves,
we have not used primes congruent to 1 (mod 12), and therefore our finite fields
are not strictly pairing-friendly in the sense of Koblitz and Menezes [16]. We
have used the technique of towering extensions to construct the extension field
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Fp12 , and our choice of non-residues for the reduction polynomials that define
the extensions still allows for efficient finite field arithmetic.

In order to avoid full Fp12 arithmetic throughout pairing computation, we have
provided explicit Fp2-formulae for the evaluation of the line function lA,B(C)
required by the Miller algorithm, thus alleviating part of the burden imposed by
using the k = 12 embedding degree. The value of lA,B(C) computed by the Ate
(resp. Tate) pairing uses five (resp. six) Fp components instead of twelve.

Our method for the final exponentiation is both faster and less memory-
intensive than previous methods in the literature which are based on multi-
exponentiation. We also observe that the analysis of Hess, Smart and
Vercauteren [8] for the settings of BN curves (k = 12, lg(p) = lg(r) = 256)
is more optimistic with regard to the Ate pairing than our experimental results.
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Abstract. A series of recent algorithmic advances has delivered highly
effective methods for pairing evaluation and parameter generation. How-
ever, the resulting multitude of options means many different variations
of base field must ideally be supported on the target platform. Typical
hardware accelerators in the form of co-processors possess neither the
flexibility nor the scalability to support fields of different characteristic
and order. On the other hand, extending the instruction set of a general-
purpose processor by custom instructions for field arithmetic allows to
combine the performance of hardware with the flexibility of software. To
this end, we investigate the integration of a tri-field multiply-accumulate
(MAC) unit into a SPARC V8 processor core to support arithmetic in
Fp, F2n and F3n . Besides integer multiplication, the MAC unit can also
execute dedicated multiply and MAC instructions for binary and ternary
polynomials. Our results show that the tri-field MAC unit adds only a
small size overhead while significantly accelerating arithmetic in F2n and
F3n , which sheds new light on the relative performance of Fp, F2n and
F3n in the context of pairing-based cryptography.

1 Introduction

Although pairings, or bilinear maps, on elliptic curves were initially only useful
as a destructive tool for cryptanalysis, a slew of constructive applications [12] has
motivated research into efficient pairing evaluation. Clearly the dominant form
of optimisation for pairing evaluation lies at the algorithmic level; for a good
overview of the evolution of optimisations, see the description of Scott [37]. In
short, improvement of seminal but unpublished work by Miller [31] resulted in
the first practical algorithms for evaluation of the Tate pairing [7,16]. These
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results were further optimised by Duursma and Lee [13] who developed an in-
expensive, closed form for specific parameterisations, later improved by Kwon
[30]. Their techniques were generalised and extended to produce the Eta [6] and
Ate [26] pairings, currently considered the fastest means of evaluating crypto-
graphic pairings.

Much like the situation with vanilla elliptic curve cryptography (ECC), there
is a broad range of choices to consider when actually implementing these algo-
rithms; this range is amplified by the larger number of parameterisation options
[37]. There are three major regions within the hardware/software design space
for pairing evaluation, each offering a different cost versus performance trade-
off. At one end of the design space, the composition of arithmetic in Fqk has
motivated numerous designs for hardware accelerators [42,10,27,28,8], which fol-
low high-performance ECC accelerator design by utilising dedicated, parallel
execution units. Coupled with the potential for pipelining, this approach trades
area in favour of low latency. One can make the opposite trade-off by following
ECC co-processor design and utilising a single execution unit in a more iterative
manner [35,17]. With the co-processor coupled to a general-purpose processor
core, this approach moves toward a more flexible solution in that it can, for
example, be used to accelerate curve and field operations that are both vital
within pairing-based protocols. Both these approaches have lent to some extent
on efficient hardware implementation [34,9,19] of arithmetic in Fq. Finally, and
at the other end of the design spectrum, one can consider implementation en-
tirely in software. Utilising niche techniques for representation and arithmetic
in F3m [25,3] and better known techniques drawn from experience with ECC for
F2n and Fp, one can efficiently evaluate pairings on general-purpose desktop [37]
and embedded [38] processors.

Somewhere between purely software and co-processor-assisted implementa-
tion lies the technique of instruction set extension (ISE) [22]. The premise here
is that after careful workload characterisation, it is possible to identify a small
set of operations that dominate performance in a software implementation. By
supporting these specific operations using additional or modified hardware and
exposing their behaviour to the programmer via the instruction set architecture
(ISA), performance can be significantly improved. This is possible with only mi-
nor penalties in terms of datapath disruption and logic overhead. In the context
of ECC, the use of ISEs has focused on acceleration of arithmetic in Fq; see for
example [29,21]. Since the efficacy of Fq underpins the performance of pairing
evaluation, one can clearly reuse this work to gain an advantage. Moreover, as
pairings can be parameterised by several different types of base field, one can
leverage the advantages of unified multiplier circuits [36,20,2].

To summarise, the implementation of a means for pairing evaluation depends
on arithmetic in Fq; if the performance of said arithmetic can be improved, one
can expect incremental but non-trivial improvements in the cost of pairing eval-
uation. Our goal in this paper is the construction of an ISE for the SPARC V8
compliant LEON-2 processor that enables acceleration of pairings parameterised
over F2n , F3n and Fp for large p. To this end, we developed an efficient tri-field
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arithmetic unit based on redundant signed digit (RSD) encoding [4]. Algorithms
and hardware architectures for long integer modular multiplication using RSD
encoding were first proposed by Takagi et al. [39,40]. Other work in this area
includes that of Öztürk et al. [33], who designed a tri-field Montgomery multi-
plier; we are careful to compare and contrast our results with their work. The
major advantage of hardware acceleration through instruction set extensions is
the ability to use optimised algorithms for fast squaring (resp. fast cubing) in
F2n (resp. F3n). This is significant since squaring (resp. cubing) is fundamental
to the overall performance of pairing evaluation.

The rest of this paper is organised as follows. In Section 2 we present an
overview of cryptographic pairings. Our aim is to construct a flexible cost model
to use in comparisons of performance; this is presented in Appendix A. Section 3
details algorithms for arithmetic in the three fields F2n , F3n and Fp and Section 4
introduces our tri-field multiplier design. Section 5 describes the LEON-2 proces-
sor and the modifications required to accommodate the tri-field multiplier before
a set of experimental results are analysed in Section 6. Finally, we present some
conclusions in Section 7 that demonstrate a clear improvement in arithmetic and
pairing performance for all three fields.

2 Cryptographic Pairings

Let E be an elliptic curve over a finite field Fq, and let O denote the identity
element of the associated group of rational points E(Fq). For a positive integer
l|#E(Fq) co-prime to q, let k be the minimal positive integer such that l|(qk−1);
k is often called the embedding degree or security multiplier. Let E(Fq)[l] denote
the subgroup of E(Fq) of all points whose order is divisible by l, and similarly
for the degree k extension of Fq. Thus, the Tate pairing of order l is a map from
elements of two source groups to a target group

el : E(Fq)[l] × E(Fqk)[l] → F
∗
qk/(F∗

qk)l

which satisfies the following properties

– For each P 
= O there exists Q ∈ E(Fqk )[l] such that el(P,Q) 
= 1 ∈
F∗

qk/(F∗
qk)l.

– For any integer n, el([n]P,Q) = el(P, [n]Q) = el(P,Q)n for all P ∈ E(Fq)[l]
and Q ∈ E(Fqk)[l].

– Let L = hl. Then el(P,Q)(q
k−1)/l = eL(P,Q)(q

k−1)/L.
– It is efficiently computable.

Since el is defined as taking P ∈ E(Fq)[l] and Q ∈ E(Fqk)[l] as input, it is com-
mon to define a distortion map Ψ to lift elements of E(Fq)[l] into elements
of E(Fqk)[l]; careful selection of the map permits specific optimisation within the
algorithm to evaluate the pairing. Selection of parameters involves many subtle
trade-offs between security and performance in source and target groups; it is
far from clear which is the single best parameterisation. Ignoring issues of curve
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generating and concentrating on performance of the pairing (instead of curve
operations), one might opt to compare different selections for q by balancing the
target group size. For example

q = 2m → k = 4,m = 233 → log2(q
k) ∼ 932

q = 3m → k = 6,m = 97 → log2(qk) ∼ 922
q = p → k = 6, log2(p) ∼ 160 → log2(qk) ∼ 960.

In reality, these parameters probably provide slightly less than the level of se-
curity typically required. However, they allow us to make somewhat reasoned
comparisons later on; we derive a rough cost estimate for pairing evaluation in
Appendix A.

3 Field Arithmetic

In this section we briefly review the basic algorithms for arithmetic operations
in Fp, F2m , and F3m . The elements of a prime field Fp can be represented by
the integers from 0 to p− 1. On the other hand, the elements of extension fields
of characteristic two and three are commonly represented by binary and ternary
polynomials, respectively. Addition and multiplication in Fp is performed modulo
the prime p, while arithmetic in F2m and F3m is carried out modulo an irreducible
polynomial of degree exactly m with coefficients from the respective base field
(F2 or F3).

Due to the large field orders used in pairing-based cryptography, the field
elements can not be directly processed on a processor with a 32 or 64-bit data-
path. Software implementations usually solve the mismatch between the operand
length and the size of the processor datapath by storing the field elements in
arrays of single-precision words (e.g. arrays of 32-bit unsigned integers) and using
efficient arithmetic algorithms that manipulate these arrays with help of the
instructions provided by the processor, e.g. (32 × 32)-bit multiply instructions
[11]. In the following, we will denote the wordsize of the processor by w and the
number of w-bit words required to store an n-bit field element by t, i.e. we have
t = �n/w�. For example, an n-bit integer A can be stored in an array of t words,
each consisting of w bits: A = (At−1, . . . , A1, A0). The words At−1 and A0 are
the most and least significant word of A, respectively. Equation (1) specifies the
relation between the integer A and the w-bit words Ai.

A =
t−1∑
i=0

Ai · 2i·w = At−1 · 2(t−1)·w + · · · +A1 · 2w +A0 (1)

The elements of F2m are polynomials of degree up to m− 1 with coefficients
from F2 = {0, 1}. A binary polynomial of degree m− 1 can be represented by a
bitstring of length m in which each bit corresponds to a coefficient. This bitstring
can be stored in an array of w-bit words, similar to a long integer. The same holds
for elements of F3m , but it must be considered that two bits are necessary for
each coefficient of a ternary polynomial. Therefore, the number of w-bit words
required for storing a ternary polynomial of degree m− 1 is t = �2m/w�.
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3.1 Addition and Subtraction

Both addition and subtraction of two elements of a prime field is straightforward
to implement. The long integers representing the field elements are added/sub-
tracted, followed by a reduction modulo the prime p if the result is not within
the interval [0, p − 1]. This reduction is simply done by subtracting or adding
p. Many processor architectures, including SPARC, feature an add-with-carry
and subtract-with-borrow instruction to facilitate long integer arithmetic.

Addition of elements of F2m is simply a logical XOR operation and does not
require a reduction. Addition and subtraction in ternary extension fields is more
complex than addition in the two other field types [25]. An addition of ternary
polynomials requires to add the coefficients modulo 3, which is relatively costly
since this operation is not supported by general-purpose processors.

3.2 Multiplication and Squaring/Cubing

Multiplication in Fp is done by multiplying the two integers representing the
field elements and then reducing the product modulo the prime p. Long integer
multiplication can be performed through operand scanning or product scanning
[24]. In the following we will discuss one method in more detail, namely product
scanning, which is based on Comba’s multiplication technique [11].

Algorithm 1. Comba multiplication [11].

Input: Two t-word integers A = (At−1, . . . , A1, A0) and B = (Bt−1, . . . , B1, B0).
Output: The 2t-word product C = A · B = (C2t−1, . . . , C1, C0).
1: S ← 0
2: for i from 0 to t − 1 do
3: for j from 0 to i do
4: S ← S + Aj · Bi−j

5: end for
6: Ci ← S mod 2w

7: S ← S/2w

8: end for
9: for i from t to 2t − 2 do
10: for j from i − t+ 1 to t − 1 do
11: S ← S + Aj · Bi−j

12: end for
13: Ci ← S mod 2w

14: S ← S/2w

15: end for
16: C2t−1 ← S mod 2w

Comba’s method [11] for multiple-precision multiplication is shown in
Algorithm 1. It has a nested loop structure and accumulates the inner-product
terms Aj · Bi−j on a column-by-column basis. The operation carried out in the
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inner loop of this algorithm is a multiply-and-accumulate operation. That is, two
w-bit words Ai, Bj are multiplied and the 2w-bit product is then added to a run-
ning sum S. As this sum can become 2w + �log2(t)� bits long, three word-size
registers are needed to hold it during the computation [24]. Algorithm 1 performs
a total of t2 single-precision multiplications when A and B consist of t words.

Long integer squaring is a special case of long integer multiplication and allows
for optimisation to reduce the execution time. Algorithm 1 can be rewritten
such that only (t2 + t)/2 single-precision multiplications to need to be carried
out when A = B, which corresponds to a reduction of almost 50% compared to
the t2 single-precision multiplications when multiplying two distinct integers. In
practice, however, squaring is only slightly faster than multiplication.

Multiplication in F2m requires to multiply two binary polynomials, followed
by a reduction modulo an irreducible polynomial. A well-known algorithm for
polynomial multiplication over F2 is the so-called shift-and-xor method [24]. The
multiplicand is scanned coefficient-wise and the multiplier added to a running
sum, depending on the value of the coefficient. More advanced methods, like the
right-to-left comb method [24], use look-up tables to reduce the number of shifts
and xor operations. However, if the target processor provides an instruction for
word-level multiplication of binary polynomials, then two elements of F2m can
be multiplied in a similar way as shown in Algorithm 1. Squaring of a binary
polynomial is a linear operation and hence much faster than multiplication.

Multiplication in F3m can be performed in a similar way as in F2m , namely
through polynomial multiplication and reduction modulo an irreducible polyno-
mial. All algorithms for the multiplication of binary polynomials, ranging from
the shift-and-xor method to the left-to-right comb method, can be adapted to
work for the multiplication of ternary polynomials as well. Moreover, Comba’s
multiplication technique could also be used for multiplying ternary polynomials
if the processor provides a suitable word-level multiply instruction. Unfortu-
nately, this is not the case for today’s general-purpose processors, but a custom
instruction for word-level multiplication of ternary polynomials can be easily
integrated into any standard RISC architecture, as will be demonstrated in the
following sections. Cubing a ternary polynomial is a linear operation, similar to
squaring of a binary polynomial, and thus much faster than multiplication.

3.3 Modular Reduction

A widely-used algorithm for modular reduction of integers is due to Montgomery
[32]. Montgomery’s algorithm is a generic modular reduction method that works
for any odd prime. However, certain primes, like pseudo-Mersenne primes or
generalised-Mersenne primes, facilitate faster reduction methods. A reduction
modulo such special primes can be performed efficiently with additions and shift
operations [24].

Polynomial modular reduction is also very fast if the irreducible polynomial
has few non-zero coefficients. Of particular importance are irreducible trinomials
and pentanomials since they allow to accomplish a reduction with simple shift
operations and polynomial additions (see [24] for further details).
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4 Tri-field Multiplier

Recent research [36,20,2] has provided a number of so-called unified multipliers
that reuse elements of the datapath for different field types. They rely on multi-
field adder cells (e.g. dual-field adders) as basic building block. Most previous
work focussed on the unification of integers and binary polynomials. The first
unified multiplier for integers, binary and ternary polynomials was presented
by Öztürk et al. [33]. Multiplier designs making use of unified components are
efficient in terms of silicon area as the adder cells are reused for different types
of operands. We exploit the advantages of this approach and introduce a unified
multiply-accumulate (MAC) unit able to support our custom instruction set.

4.1 Redundant Signed Digit (RSD) Representation

The design of fast parallel multipliers relies on efficient arithmetic that restricts
the carry propagation in addition to a few positions. Previous work examined
the use of (3:2) counters or (4:2) compressors and carry-save representation. A
different approach is to use a signed representation. Instead of splitting the sum
of two numbers into carry and sum vectors, each number is split into a positive
and a negative part. This representation is called borrow-save [5] and follows the
relation

X =
n−1∑
i=0

xi · 2i =
n−1∑
i=0

(x+
i − x−i ) · 2i (2)

where X denotes an n-digit number with digit set {−1, 0, 1}. Such digit systems
were first studied by Avizienis [4] and are called redundant signed digit (RSD)
systems. This digit set gives an advantage over the two’s complement form as it
naturally handles signed numbers, which simplifies the design of a multiplier for
signed and unsigned integers. Furthermore, the RSD system allows a straight-
forward representation of the coefficients of ternary polynomials.

RSD addition of radix-2 numbers is performed in two steps whereby in each
step a carry can occur. Hence, the maximum carry propagation distance is re-
stricted to two digits, which facilitates efficient hardware implementation. Our
design of the RSD adder performs the addition of integers in the conventional
way following the rules of RSD arithmetic. The addition of binary polynomials
uses a different recoding to prevent carry propagation. Ternary polynomials, on
the other hand, are recoding after each step to ensure that the coefficients of the
result remain in F3.

4.2 Architecture of the Multiply-Accumulate Unit

Figure 1 shows the main components of our unified MAC unit. It consists of a
unified multiplier followed by a unified adder acting as accumulator. The MAC
unit is pipelined, and hence we need to store the result of the multiplier for
one cycle. Our design is scalable to any operand length and allows for different
trade-offs between silicon area and critical path delay. We explored two specific
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Fig. 1. Main components of the unified multiply-accumulate unit

implementations of the MAC unit; the first contains a (32 × 16)-bit multiplier
and the second a smaller (32×8)-bit multiplier. These multipliers perform a full
(32 × 32)-bit multiplication in two and four clock cycles, respectively.

Parallel multipliers can be implemented in from of an array structure or a
tree structure. Array multipliers feature high regularity and short interconnect
wires, while tree multipliers have a smaller critical path delay. When using RSD
representation, this trade-off can be crucial since a single RSD adder cell is more
complex than a conventional full adder. Due to negatively weighted inputs to
adders, common techniques developed for the summation of partial products are
difficult to apply in this setting. We implemented both the array and the tree
architecture to assess the resulting area and delay complexities.

As shown in Figure 1, the result of the multiplication is converted from RSD
to binary representation before it is buffered in the pipeline register, and then
converted back into RSD form. These conversions increase the critical path, but
reduce the silicon area since the binary representation requires only half of the
storage that would be needed for RSD representation. A typical standard-cell
implementation of the MAC unit has a delay between 12 and 22 ns, depending
on the architecture and size of the multiplier (see Section 6 for details). These
delays correspond to a maximum clock frequency between 45 and 83 MHz, which
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is reasonable for embedded devices like smart cards. Higher clock frequencies are
possible through the integration of additional pipeline registers.

5 Extended LEON-2 Processor

SPARC V8 [43] is a general-purpose RISC architecture with a 32-bit datapath
and a “windowed” register file containing an implementation-dependent number
of general-purpose registers (GPRs), of which 32 are visible to the programmer
at a time. Besides the GPRs, the SPARC V8 architecture also includes several
special-purpose registers like the multiply-divide register (%y) and a total of 31
ancillary state registers (%asr1 to %asr31).

The SPARC instruction set contains Delayed Control Transfer Instructions
(DCTI). In particular, branches and calls have an architectural delay slot of one
instruction, which means that the instruction immediately following a DCTI
is executed (unless the DCTI annuls it) before the control transfer to the target
address is completed. Arithmetic and logical instructions have a conventional
three-operand format with two source registers and a single destination register
[43]. Multiply instructions like smul and umul write the 32 least significant bits
of the product to a destination register and the 32 most significant bits to the
multiply-divide register (%y). The rdy instruction allows to transfer the content
of register %y to a GPR.

5.1 Main Characteristics of the LEON-2 Core

The LEON-2 processor [15] is a configurable and synthesizable VHDL implemen-
tation of the SPARC V8 instruction set. Originally developed by the European
Space Agency, the LEON-2 softcore is now maintained by Gaisler Research and
has found widespread use in system-on-chip (SOC) designs in recent years. The
LEON-2 VHDL model is highly configurable; various options like the number
of register windows, the size and organisation of caches, and performance/area
trade-offs for the integer multiplier can be defined through a single configuration
file. In addition, the LEON-2 core is extensible since the full VHDL source code
is available under the GNU LGPL license.

The LEON-2 pipeline can be configured to have either one or two load delay
cycles. We used a LEON-2 core with one load delay cycle as this configuration
allows to achieve better performance in FPGAs. The LEON-2 processor also
contains a hardware multiplier that can be configured to perform a (32×32)-bit
integer multiplication in either 35, 4, 2, or 1 clock cycles.

5.2 Custom Instructions

The extensions for pairing-based cryptography we propose in this paper include
a total of five custom instructions to accelerate arithmetic operations in prime
fields, binary fields, and ternary fields. Table 1 gives an overview of the instruc-
tions and summarises the operations they perform. The first two instructions
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Table 1. Custom instructions for pairing-based cryptography

Format Description Operation

umac rs1, rs2 Unsigned Mul. and Acc. accu ← accu + rs1 × rs2
umac2 rs1, rs2 Unsigned Mul. and Acc. Twice accu ← accu + 2(rs1 × rs2 )
shacr rd Shift Accu Registers Right rd ← accu[31 : 0] ; accu ← accu � 32
gf2mac rs1, rs2 Binary Poly. Mul. and Acc. accu ← accu ⊕ rs1 ⊗ rs2
gf3mac rs1, rs2 Ternary Poly. Mul. and Acc. accu ← accu + rs1 × rs2

(umac and umac2) allow to speed up the inner loop operations of long integer
multiplication and squaring according to Comba’s algorithm. The instructions
gf2mac and gf3mac can be used to implement the multiplication of binary and
ternary polynomials, respectively.

The umac instruction performs a MAC operation on unsigned 32-bit integers.
More precisely, umac multiplies the content of two GPRs, treating both operands
as unsigned integers, and adds the 64-bit product to a cumulative sum stored in
the three registers %asr20, %y, and %asr18, subsequently called accu registers.
The cumulative sum is, in general, exceeding 64 bits in precision when several
64-bit products are summed up. Therefore, three 32-bit registers are needed
to accommodate the cumulative sum, whereby the 32 least significant bits are
stored in %asr18, the bits 32 through 63 in register %y, and the most significant
bits in %asr20, respectively. After adding the 64-bit product to the cumulative
sum, the result is written back to the accu registers (see Figure 2). The custom
instruction shacr allows to shift the cumulative sum held in the accu registers
32 bits to the right, whereby the least significant 32-bit word of the cumulative
sum (i.e. the content of %asr18) is written to a destination register rd.

Register File IU

rs1 rs2

MAC

%asr18
hi part lo partrd

%asr20 %y

Fig. 2. Datapath consisting of integer unit (IU) and MAC unit with accu registers

We implemented a “pairing-friendly” MAC unit for the LEON-2 core con-
sisting of a (32 × 16)-bit tree multiplier and a 72-bit accumulator. The 72-bit
accumulator guarantees that up to 256 double-precision (i.e. 64-bit) products can
be summed up without overflow or loss of precision, which is sufficient for cryp-
tographic applications. Besides the custom instructions shown in Table 1, the
MAC unit is also capable to execute the “native” SPARC multiply instructions
like umul and smul [23]. Therefore, the proposed extensions for pairing-based
cryptography can be easily integrated into the LEON-2 core by simply replacing
the integer multiplier with a MAC unit that provides the extra functionality. In
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addition to modifications of the LEON-2 core, we also adapted the tool-chain, in
particular the GNU assembler gas, to support the custom instructions.

A LEON-2 core equipped with a (32×16+72)-bit MAC unit executes the “na-
tive” SPARC V8 multiply instructions smul/umul in two clock cycles, whereby
higher part of the product is written to the %y register, while the lower part is
directed to a GPR in the register file. The custom instruction umac also has a
latency of two cycles, but places its result in the accu registers (and not in a
GPR), and therefore an independent instruction can be executed in the integer
unit during the second cycle of a umac instruction [23]. This parallel execution
is possible since the buses connecting the register file and the functional units
are not occupied during the second cycle of a umac instruction, similar to the
execution of the madd instruction in MIPS32 processors.

6 Experimental Results

We prototyped the extended LEON-2 processor on a Xess XSV800 board which
houses a Xilinx Virtex FPGA providing about 800k gates. The LEON-2 source
code contains scripts and configuration files for several FPGA boards, including
the XSV800. We used Xilinx XST 8.3 to perform the synthesis. As mentioned
in Section 4, we implemented several versions of the MAC unit with different
multiplier dimensions (32 × 16 bit, 32 × 8 bit) and structures (array, tree). In
order to assess area and delay of the different implementations, we synthesised
the MAC unit not only as part of the LEON-2, but also as stand-alone circuit
using a 0.35 μm standard cell library. The results of these synthesis runs are
summarised in Table 2. The gate equivalents were calculated taking a 2-NAND
gate from the same library as reference. This gate has an area of 55 μm2.

Table 2. Synthesis results of different implementations of the MAC unit

MAC Type Silicon Area Delay Max. Frequency Latency

(32× 16)-array 16, 400 GE 22 ns 45 MHz 2 cycles

(32× 16)-tree 16, 200 GE 16 ns 62 MHz 2 cycles

(32× 8)-array 11, 900 GE 14 ns 71 MHz 4 cycles

(32× 8)-tree 12, 700 GE 12 ns 83 MHz 4 cycles

Besides area and delay, we also evaluated the performance gain due to the
integration of the MAC unit and the custom instructions. Table 3 and 4 sum-
marise the execution times of arithmetic operations in Fp, F2m , and F3m when
using native SPARC instructions and the extended instruction set, respectively.
Our reference implementation (Table 3) is based on a ANSI C library for arith-
metic in Fp, F2m and F3m that was developed at the University of Bristol. It uses
Montgomery multiplication in Fp and features a number of Assembler macros
for performance-critical operations. The multiplication of binary polynomials is
performed via a recursive Karatsuba technique, while the polynomial squaring
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Table 3. Arithmetic performance (in clock cycles) of the SPARC V8 instruction set

Field Arithmetic in F2n

Field Addition Multiplication Squaring

F2163 162 4,978 1,468

F2233 197 7,010 1,463

F2283 215 14,531 1,861

F2353 275 14,154 2,359

F2457 323 21,496 2,840

F2557 413 42,863 3,264

Field Arithmetic in F3m

Field Addition Multiplication Cubing

F379 96 8,992 1,360

F397 116 13,460 1,448

F3163 156 26,779 1,996

F3193 176 35,690 2,251

F3239 196 39,855 2,448

F3353 276 79,195 3,650

Field Arithmetic in Fp

Field Addition Multiplication Squaring

Fp, log2(p) = 160 69 1,183 1,183

Fp, log2(p) = 192 80 1,334 1,334

Fp, log2(p) = 224 92 1,618 1,618

Fp, log2(p) = 256 104 1,907 1,907

Fp, log2(p) = 384 152 3,866 3,866

Fp, log2(p) = 512 200 6,254 6,089

is done via table look-up. Ternary polynomials use a bit-sliced representation
where high and low parts of the coefficients are stored in separate vectors. Mul-
tiplication of ternary polynomials is also based on the Karatsuba approach and
cubing on the table look-up method. The addition of ternary polynomials is
realised in a straightforward way. We compiled the library using a GCC cross
compiler for the SPARC V8 architecture with optimisations enabled. All timings
shown in Table 3 were measured under warm cache conditions with help of the
built-in cycle counter (register %cycnt) of the modified LEON-2 core.

Table 4 shows the cycle counts of the arithmetic operations when using our
custom instructions described in Section 5. In short, the custom instructions
accelerate multiplication in F2m and F3m by a factor of (at least) 10 and 20, re-
spectively, while multiplication in Fp achieves a two-fold performance gain.

7 Conclusions

Considering the results from the previous section in the context of approximate
costs for pairing evaluation given in Appendix A, the value of ISE and our
tri-field MAC unit is clear. Specifically, for similar sized base fields outlined in
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Table 4. Arithmetic performance (in clock cycles) of the extended instruction set

Field Arithmetic in F2n

Field Addition Multiplication Squaring

F2163 65 415 166

F2233 81 634 207

F2283 89 778 244

F2353 113 1,238 311

F2457 137 1,806 378

F2557 161 2,545 508

Field Arithmetic in F3m

Field Addition Multiplication Cubing

F379 65 422 475

F397 85 637 593

F3163 125 1,257 927

F3193 125 1,295 984

F3239 165 2,069 1,261

F3353 245 4,247 1,896

Field Arithmetic in Fp

Field Addition Multiplication Squaring

Fp, log2(p) = 160 68 498 498

Fp, log2(p) = 192 80 574 574

Fp, log2(p) = 224 92 759 759

Fp, log2(p) = 256 104 913 913

Fp, log2(p) = 384 152 1,883 1,883

Fp, log2(p) = 512 200 3,094 3,094

Section 2 (and ignoring issues of curve generation) we find that the number
of clock cycles required to evaluate a pairing in F2n is reduced from 6, 762, 354
to 646, 554, in F3n from 12, 061, 117 to 981, 984, and in Fp from 10, 788, 960 to
4, 541, 760. Clearly these are only estimates, but they equate to between a two
and twelve-fold saving depending on the field choice, a significant improvement
for such little overhead. Further, utilising the tri-field MAC greatly reduces the
cost ratio between F3n and other choices. Previously this parameterisation was at
least twice as slow as the selection of F2n , for example, with this gap widening for
larger n. However, with custom instructions and the integration of our tri-field
MAC unit, the two choices are roughly comparable in performance.

The advantages of this result are two-fold. Firstly, with only minor modifica-
tion to the processor datapath and ISA one can significantly improve the perfor-
mance of pairing evaluation. Unlike some dedicated hardware accelerators, this
improvement costs only a moderate size overhead and is useful in accelerating
operations within the pairing, at the protocol level and within vanilla ECC. Sec-
ondly, the acceleration of pairings over F3n , which were previously prohibitively
slow, allows a more free choice of parameterisation: if this is a good choice for
the application, it need not be restrictive in terms of performance.
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22. Großschädl, J., Savaş, E.: Instruction Set Extensions for Fast Arithmetic in Finite
Fields GF (p) and GF (2m). In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004.
LNCS, vol. 3156, pp. 133–147. Springer, Heidelberg (2004)
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A The Cost of Pairing Evaluation

We are generally interested in algorithms for pairing evaluation from the per-
spective of operation count rather than rigorous mathematical definition; this
stems from our focus on implementation of arithmetic in Fq. As such, we lean
on other work to provide the most current, most efficient cost model. Let Af ,
Sf , Cf , Mf and If denote the cost of computing addition, squaring, cubing,
multiplication and inversion in some finite field f . We quote a given cost model
in terms of dominant operations; this typically means neglecting the cost of Af

for example, and concentrating on Mf and If . Thanks to efficient methods for
computing square roots [14] and cube roots [1] in F2m and F3m , respectively, we
estimate their cost to be equivalent to squaring/cubing in the same fields; this
makes sense given the usual opportunity to pre-compute square roots (resp. cube
roots) via repeated squaring (resp. cubing).

We do not allow for pre-computation based on fixed values of either input
to the pairing. Further, we are not concerned with compatibility, specifically we
assume that if one utilises the Eta or Ate pairings their output need not be
further powered to provide the same result as a comparable invocation of the
Tate pairing.

Eta Pairing in Characteristic 2. Following Barreto et al. [6], consider the
Eta pairing with source groups instantiated using the supersingular curve

E : y2 + y = x3 + x+ b

over F2m where b ∈ {0, 1} and the embedding degree k = 4. One can construct a
tower of fields to form the required extension via F22m = F2m [α]/(α2−α+1) and
F24m = F22m [β]/(β2 −β−α). The distortion map Ψ(x, y) = (α2 +x, β+αx+ y).
The cost of evaluating the Eta pairing can be approximated by

(7(m+ 1)/2)MF2m + (4(m+ 1)/2)SF2m

ftp://ftp.computing.dcu.ie/pub/resources/crypto/pairings.pdf
ftp://ftp.computing.dcu.ie/pub/resources/crypto/pairings.pdf
http://www.sparc.org/standards/V8.pdf
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while the final powering costs roughly

36MF2m + IF24m .

Estimating IF24m ∼ 12MF3m , we get an overall cost of roughly

(3.5m+ 51.5)MF2m + (2m+ 2)SF2m .

For m = 233 this yields
867MF2m + 468SF2m .

Eta Pairing in Characteristic 3. Following Shirase et al. [41], consider the
Eta pairing with source groups instantiated using the supersingular curve

E : y2 = x3 − x+ b

over F3m where b ∈ {−1,+1} and the embedding degree k = 6. One can construct
a tower of fields to form the required extension via F33m = F3m [ρ]/(ρ3 − ρ −
b) and F36m = F33m [σ]/(σ2 + 1). The distortion map Ψ(x, y) = (ρ − x, σy).
Shirase et al. [41][Table 2] show that evaluation of the Eta pairing with this
parameterisation can cost as little as

(7.5m+ 68.5)MF3m + (8m+ 8)CF3m + IF33m

where they estimate IF33m ∼ 15.73MF3m to get an overall cost of roughly

(7.5m+ 84.23)MF3m + (8m+ 8)CF3m .

For m = 97 this yields
811.73MF3m + 784CF3m .

Ate Pairing in Characteristic p. Using curve-specific optimisations, the
Ate [26] pairing redefines the bilinear map as

êl : E(Fp) × E(Fpk/2) → F
∗
pk

where E is the quadratic twist of an elliptic curve E defined over Fpk/2 . As such,
efficient arithmetic in Fpk/2 and Fpk is required, both underpinned by arithmetic
in Fp. Granger et al. [18] describe a range of options for arithmetic in different
instantiations of these fields; selection of log2(p) ∼ 256 and k = 6 implies Case
A of [18][Section 5] which estimates the cost of pairing evaluation to be

9120MFp.
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Abstract. We investigate the possibilities for injecting faults on pair-
ings and assess their consequences. We assess the effect of faults that
seek to corrupt the data being operated on and show that pairings with
either no or a straightforward final exponentiation are less secure than
pairings with a more complex final exponentiation when considering such
fault attacks. As evidence, we describe two types of fault attacks on the
Weil and η pairing that recover the secret point, which cannot be ap-
plied to the Tate pairing. This can be accredited to its more complex
final exponentiation.

1 Introduction

In most applications based on pairing based cryptography, the secret key is one
of the elliptic curve points input to the pairing. For example, in Boneh and
Franklin’s identity based encryption (IBE) [5] the critical operation involving
the secret key in a pairing is the decryption operation. Therefore, it is necessary
for the security of pairings to be investigated in both settings, contemporary
security and side channel security, given that one of the input parameters to the
pairing may be the secret key. Here, we investigate the security of pairings in
the context of fault attacks.

Fault attacks are invasive attacks that actively seek to alter the normal exe-
cution of an algorithm. Fault attacks can be categorised as having three main
effects on an algorithm. The first effect seeks to knock out a step in the com-
putation, i.e. a no-op replaces another working instruction. This allows selective
execution of instructions in an algorithm. The second effect seeks to cause a loop
to either end prematurely or run over. The third effect seeks to cause the data
being operated on to be corrupted in some way.

The first (and only to date) description of a fault attack on pairings was by
Page and Vercauteren [18] when they demonstrated an attack on the Duursma-
Lee [7] and Kwon-BGOS algorithm [2,14] for the Tate and η pairing. The fault
type they focused on was one which caused the Miller loop to run over. By
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inducing extra iterations they are able to isolate a single contribution to the
Miller loop, which could be “picked apart” to find the secret.

In this paper, another fault type is focused on. We describe the effect of faults
which seek to corrupt data in a range of pairing algorithms. We provide evidence
that the final exponentiation is a vital operation in deterring such fault attacks
by demonstrating that pairings having no or a simple final exponentiations are
susceptible to data corruption fault attacks, whereas pairings with more complex
final exponentiations are resistant to such attacks. The fault attack of Page and
Vercauteren [18] did successfully attack a pairing with a complex final exponen-
tiation. However, they describe a special case where in order to reverse the final
exponentiation, they must exploit the fact that the additional contribution to
the Miller loop which is induced by the fault, has a special redundant form, in
that it is not a general element in the sextic extension field. Therefore, their
method to reverse the final exponentiation is not applicable in many situations.

For demonstrative purposes we describe a successful sign change fault attack
on the Weil pairing of [20] (with a simple final exponentiation) which reduces
to solving a cubic equation, and a successful fault attack on the Galbraith et
al. variant of the η pairing [8] (with no final exponentiation) which in one case
reduces to solving a system of linear equations and in another to a simple con-
gruence. We also provide evidence that these attacks cannot be applied to the
Tate pairing because the final exponentiation makes it impossible.

The paper is structured as follows. Section 2 presents necessary background on
pairings. Section 3 describes the theory behind our fault attack. We give concrete
examples of this fault attack in section 4 when we present a fault attack on the
η pairing and Weil pairing. We argue that pairings with a more complex final
exponentiation are more secure than the former pairings by showing how the
fault attacks described cannot be applied to the Tate pairing. Finally we discuss
countermeasures and conclude in sections 5 and 6. Numerical examples of some
of the attacks described are given in Appendices A and B.

2 Background

Let E be an elliptic curve over a finite field Fqk , and let r be an integer not
divisible by the characteristic of Fqk . A pairing is function which maps a pair of
elliptic curve points, P,Q ∈ E(Fqk), to an element in the underlying multiplica-
tive finite field F∗

qk . Two founding pairings exist, namely the Weil [5] and the
Tate [3] pairing. Specifically, the Weil pairing is defined as

ω : E(Fqk)[r] × E(Fqk )[r] → μr

and the Tate pairing is defined as

〈·, ·〉r : E(Fqk)[r] × E(Fqk)/rE(Fqk ) → (F∗
qk)/(F∗

qk)r.

where the embedding degree k is the smallest value of k such that r|qk − 1 and
μr = {x ∈ F

∗
qk |xr = 1} is the group of r-th roots of unity in Fqk . The output
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of the Tate pairing is not unique and is a member of the coset (F∗
qk)/(F∗

qk)r,
which is defined up to r-th powers. To produce a unique value, the reduced Tate
pairing is defined as

e(P,Q) = 〈·, ·〉(qk−1)/r
r (1)

where this additional operation of raising the output of 〈·, ·〉r to the power of
(qk − 1)/r is known as the final exponentiation.

Miller’s algorithm is the most widely used technique to compute a bilinear
pairing [16]. Miller’s algorithm consists of a double and add algorithm for elliptic
curve point multiplication with additional functionality. The input point P to
Miller’s algorithm is chosen such that it has order r. During the point scalar
multiplication of the point [r]P , which upon completion should result in the
point at infinity O, a distance relationship between the lines produced from the
point addition and a static point Q is calculated. If lA,B and vA+B are the lines
which arise in the addition rule for adding A to B to produce C = A+ B, and
the point A has coordinates (xi, yi), the point C has coordinates (xi+1, yi+1),
the point Q has coordinates (xQ, yQ), and the line through A and B has a slope
of λi, then explicitly

lA,B(Q) = (yQ − yi) − λi(xQ − xi)
vA+B(Q) = (xQ − xi+1).

In each round of the Miller loop, lA,B is divided by vA+B to produce an element
in the extension field m ∈ Fqk , referred to as the Miller variable. This value is
multiplicatively accumulated and eventually outputted from Miller’s algorithm.
Miller’s algorithm is given in algorithm 1. The Weil pairing requires two applica-
tions of Miller’s algorithm to produce a bilinear map, whereas the Tate pairing
requires only one application followed by the final exponentiation.

Algorithm 1. Miller’s Algorithm
Input: P = (xP , yP ), Q = (xQ, yQ) ∈ E(Fqk) where P is a point of order r.
Output: m ∈ Fqk

1: T ← P , m ← 1
2: for i ← 	lg(r)
 − 1 to 0 do
3: m ← m2 · lT,T (Q)/v2T (Q)
4: T ← 2T
5: if ri = 1 then
6: m ← m · lT,P (Q)/vT+P (Q)
7: T ← T + P
8: end if
9: end for
10: return m

Since the definition of Miller’s algorithm and the founding pairings, great ef-
forts have been made and are currently ongoing, to produce efficiently
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computable pairings. Some of the main optimisations which have lead to faster
pairings include the following. (i) The special choice of the input parameters, in
particular choosing the elliptic curve points from specific subgroups to exploit
faster finite field arithmetic and avail of the optimisation known as denominator
elimination [3]. (ii) The special choice of the order r such that the number of
additions performed in the point scalar multiplication are minimised. (iii) The
special choice of r such that it is actually a multiple of the group order, thus
reducing the complexity of the final exponentiation. As a result of such efforts, a
number of efficient variants of the Tate pairing have been developed, for example
the η [2], ηT [2], and Ate [9] pairing.

We will describe our fault attacks in the context of the Weil, η and Tate
pairing because of the varying complexity of their final exponentiation.

3 The General Idea

Various mechanisms have been researched and found to cause transient faults [1],
from the most straightforward attacks which purposely cause variations in the
supply voltage or clock signal, to more invasive techniques which target specific
areas of the chip with white light and laser beams. Each attack seeks to disrupt
the normal execution of an algorithm in a way advantageous to the adversary.

The type of fault that we aim to induce is one which causes the data being
operated on to be corrupted in some way. Fault attacks will target memory
locations or registers used for computation. Therefore, the way in which data
values in the pairing are stored and operated on, will influence the focus of a
fault attack.

We assume that the adversary will be able to locate the target point in time
in which to inject the fault using Simple Power Analysis (SPA) [13], that is since
each round in the Miller loop should be identifiable in the power consumption
trace the adversary can identify the target round.

3.1 Overview of the Proposed Attacks

Bilinear pairings consist of two main parts, the Miller loop and the final expo-
nentiation. Therefore, either part of the algorithm can be targeted. To attack
the Miller loop, there are a number of locations that a data corruption fault can
target. It can affect the Miller variable, the point P (or an intermediate point
calculated during the computation of [r]P ), the point Q (or an intermediate
point calculated during computation of [r]Q, specifically in the case of the Weil
and η pairing), or the order of the Miller loop. An attack that alters the order
of the Miller loop was examined by [18]. All other possibilities for attack will be
discussed in this paper. To attack the final exponentiation, two data values can
be targeted for a data corruption fault, either the Miller variable resulting from
the Miller loop or the exponent can be affected. However, the consequences of
tampering with either component in the final exponentiation will be difficult to
exploit, as will be discussed below.
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Let ρ(P,Q) denote any of the candidate bilinear pairing algorithms, i.e.
ρ(P,Q) = η(P,Q), ω(P,Q) or e(P,Q) where η(P,Q) denotes the η pairing,
ω(P,Q) denotes the Weil pairing and e(P,Q) denotes the Tate pairing. Let
ρ(P,Q)′ denote a pairing execution in which a fault has been injected. The type
of fault that produces ρ(P,Q)′ is discussed in the respective attack descriptions.

If we adopt the approach of Page and Vercauteren and consider the Miller
loop alone, the pairing ρ(P,Q) can be represented as the product

m =
r∏

i=1

g2r−i

i (2)

where gi accounts for all line function contributions. If a fault is injected into
one of the line functions, then the following relationship can be exploited,

ρ(P,Q)
ρ(P,Q)′

=
m

m′ =
(
gi

g′i

)2r−i

(3)

where gi is the correct line contribution to the i-th iteration, g′i is the corrupted
line contribution to the i-th iteration, i is the round in the Miller loop where the
fault was injected and r denotes the number of rounds in the Miller loop. For
example, if a correct pairing1 is calculate as

(((((g1)2 · g2)2 · g3)2 . . .)2 · gr) (4)

and a faulty pairing is calculated as

(((((g1)2 · g2)2 · g′3)2 . . .)2 · gr) (5)

where the fault corrupts the line contribution in the third round of the algorithm,
then dividing a correct pairing by a faulty pairing, where input parameters are
identical for both pairings, will nullify any parts of the pairing computation
common to both executions, and leave the parts of the pairing computations
where the two executions diverge, i.e.

ρ(P,Q)
ρ(P,Q)′

=
(
g3
g′3

)2r−3

(6)

the parts of the computation affected by the fault. From equation (6), it can
be seen that depending on the round in which the fault is injected, this may
be a single contribution to the Miller loop and so a single factor. An obvious
objective of the attack will be to inject a fault so that it is as localised as pos-
sible, minimising the difference between the valid and faulty pairing. This is
achieved by targeting local values and later rounds in the Miller loop, as will

1 When the pairing involves double and additions, this may also be represented as
(((g1)

2 · g2 · a2)
2 . . .)2 · gr) where in some rounds, depending on the binary represen-

tation of the loop order, both an addition and double is performed.
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be demonstrated below. Generally, once the fault targets the optimal location a
single factor from the Miller loop can be accessed. Accessing this single factor
can greatly facilitate extraction of the secret, as was the case for [18]. However,
in certain bilinear pairing algorithms extracting the secret is not this straightfor-
ward, since the output of the Miller loop undergoes another step in the pairing
computation, the final exponentiation.

If the bilinear pairing requires a final exponentiation, then relationship in (6)
becomes

ρ(P,Q)
ρ(P,Q)′

=
(
gi

g′i

)2(r−i)f

(7)

where f is the final exponent. To reclaim the straightforward relationship in (6),
reversal of the final exponentiation is necessary. However, depending on f this
may not be possible.

The complexity of the final exponentiation depends on the bilinear pairing.
In the situation where a simple final exponentiation exists, as is the case for the
variant of the Weil pairing considered here [20], access to the output of the Miller
loop is possible. This is due to the Frobenius action. For example, let a+ ib be
an element in the field Fp2 , with a, b ∈ Fp, the Frobenius action is calculated as

(a+ ib)p−1 =
(a− ib)
(a+ ib)

= c+ id,

thus providing a straightforward relationship between c+ id and a+ ib. This will
be demonstrated further in section 4.2.

In the situation where a more complex final exponentiation exists, as in the
case for the Tate pairing and most other bilinear pairings, the output of the
Miller loop is difficult to access and equivalent to solving a n-th root problem
[10]. What makes the final exponentiation difficult to reverse is that it is a one-
to-many relationship [8]. In general, the final exponentiation involves raising
the output of the Miller loop to the power of (qk − 1)/r. This can be thought
of as (qd − 1)((qd + 1)/r) or (qd − 1)((qd + 1)/Φk(q))(Φk(q)/r) where Φk(q)
is the cyclotomic polynomial and k = 2d. Raising to the power of (qd − 1)
and (qd + 1/Φk(q)) is easy using the Frobenius action. Raising to the power
of (Φk(q)/r) is not as straightforward, requiring usage of an algorithm for fast
exponentiation [17,11,12].

Page and Vercauteren describe an attack of the Duursma-Lee algorithm for
the Tate pairing, which has a final exponent of q3 − 1. In their attack they are
able to reverse this final exponentiation and access the single factor from the
Miller loop. This is on account of the fact that the single factor that they are
accessing has a special form and so is identifiable from all other roots. In the next
section, it will be shown that the successful attacks on the η and Weil pairing,
do not work on the Tate pairing. This is because the factor that the Tate pairing
produces from the Miller loop is not of special form and so cannot be pinpointed
from all other roots.
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As mentioned above, the final exponentiation can itself also be the target
of a fault attack. However, considering even the most powerful scenario, where
the fault nullifies the final exponentiation, this mean that the output of the
bilinear pairing algorithm will be the output of the Miller loop, a system of
multivariate equations similar to those described in [8], which is difficult to
solve. Therefore, corrupting the final exponentiation, will not aid the adversary
in finding the secret. If the adversary can inject multiple faults such that the
final exponentiation is nullified in one execution, and in another execution the
final exponentiation is nullified and a fault is injected into the Miller loop to
isolate a single factor, then an attack could be launched. This however, is an
unrealistic attack scenario.

4 Specific Examples of Attack

In this section, concrete instances on a data corruption fault attack on the η and
Weil pairing are presented. It is then shown how such attacks are not applicable
to the Tate pairing.

4.1 Corrupting the η Pairing

The η pairing η(P,Q), specialises in pairings over supersingular curves of small
characteristic. The main distinction between the η pairing and its siblings is that
it chooses the order of the Miller loop r as a multiple of the group order such
that it divides qk − 1 nicely to give a small factor, resulting in a simple final
exponentiation. For example, consider the η pairing on a supersingular curve of
characteristic two, if qk − 1 = 24m − 1 and r = 22m + 1, which is a multiple of
the order 2m ± 2(m+1)/2 + 1, then the final exponentiation basically involves a
conjugation and division, i.e. (22m − 1).

Recently Galbraith et al. [8] described a variant of the η pairing which required
no final exponentiation, i.e. the result of the pairing is a unique element and a bi-
linear map without exponentiation. This is enabled by the additional evaluation of
vertical line functions (which the original η pairing [2] does not have). This version
of the η pairing considered here will be referred to as the ηG pairing to distinguish
it from the original η pairing. Algorithms 2 and 3 describe the ηG pairing.

When [8] presented the ηG pairing with no final exponentiation, they addressed
possible security implications. Mathematical attacks such as a multivariate attack
and a straight line program (SLP) were considered. However, they conclude that
the pairing’s security (in the non fault attack sense) is still strong, and breaking
such a pairing requires solving the pairing inversion problem, which both [23] and
[19] show is difficult. In this section, it is shown how pairings with no final expo-
nentiation can succumb to a data corruption fault attack.

The implementation assessed is over the quartic extension field, i.e. k = 4.
Field elements in F24m will be represented as four elements ai ∈ F2m and so stored
in four different memory locations. We define notation [a0][a1][a2][a3] to represent
the storage of each of these elements. Each component of this representation is
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Algorithm 2. Adds elliptic curve points and calculated the most recent contri-
bution to the Miller variable g
Input: A = (xA, yA), C = (xC , yC), Q = (xQ, yQ)
Output: g ∈ F24m and updates A
1: (A′, λ1) ← A+ C
2: l ← [yQ + y1 + λ1(xQ + x1 + 1)][λ1 + xQ + 1][λ1 + xQ][0]
3: v ← [xQ + xA + 1][1][1][0]
4: A ← A′

5: return g ← l
v

Algorithm 3. Computation of ηG(P,Q) on E(Fp) : y2 + y = x3 + x+ b, where
P is a point of prime order r on E(F2m) and Q is a point on the E(F2m)
Input: P = (xP , yP ), Q = (xQ, yQ)
Output: m ∈ F24m

1: m ← 1
2: A ← P
3: r ← m
4: for r to 0 do
5: m ← m2 ∗ g(A,A,Q)
6: end for
7: return m

referred to as a cell. The cells of l and v will be denoted by [l0], [l1], [l2], [l3] and
[v0], [v1], [v2], [v3] respectively.

There are a number of possible locations in which the fault can be injected,
and a number of different effects that this fault can have. A fault can be injected
into any of the cells of l or v, or any of the coordinates xA, yA, xC , xQ or yQ

and the fault injected can corrupt a bit or byte or multiple bits or bytes of the
target. If a fault is injected into any of the cells of l or v, then the effect will
be local, only corrupting the cell in question. If the fault is injected into one of
the coordinates, then the resulting erroneous coordinate will have consequences
for all locations and all subsequent operations in which that coordinate is used.
The effects of the faults in these locations, will be each addressed in turn.

Let ηG(P,Q)′ denote a corrupted pairing, where the fault is injected into the
cell l0 in the last round (round r)of the Miller loop. Division of the faulty pairing
by the valid pairing will isolate the round in which the fault was injected to yield

ηG(P,Q)′

ηG(P,Q)
=
g′r
gr

=
(l′/v)
(l/v)

=
l′

l
=

[l0]′[l1][l2][l3]
[l0][l1][l2][l3]

.

This division will produce an element in F24m , and can be thought of as four
different cell values N0, N1, N2 and N3, where Ni ∈ F2m . Therefore,

[l0]′[l1][l2][l3]
[l0][l1][l2][l3]

= [N0][N1][N2][N3]. (8)

Given ηG(P,Q) and ηG(P,Q)′, the adversary can compute N0, N1, N2 and N3.



The Importance of the Final Exponentiation 233

Using knowledge of how multiplication in F24m is performed, the following
three equations can be derived.

l′0 = N0l0 +N1l1 +N2l2 + (N1 +N3)l1 (9)
l1 = N0l0 + 2N1l1 + 2N2l2 + (N0 +N1)(l0 + l1) + (N1 +N3)l1 +

(N2 +N3)l2 (10)
l2 = N0l0 +N1l1 + 2N2l2 + (N2 +N3)l2 + (N0 +N2)(l0 + l2) (11)

The adversary will obviously choose the optimal equation to solve. Equation (9),
contains l′0, whereas equations (10) and (11) do not. Hence either equations (10)
or (11) contain less unknown information. In the scenario where P is private,
(11) can be simplified to

A0xA +B0yA + C0λ+D0 = 0 (12)

where

A0 = N2λ

B0 = N2

C0 = N0 +N1 +N2 +N3 +N2xQ + 1
D0 = (N0 +N1 +N3 + 1)xQ +N2yQ +N1

In the scenario where Q is private, (11) can be simplified to

A0xQ +B0yQ + C0 = 0 (13)

where

A0 = N0 +N1 +N2λ+N3 + 1
B0 = N2

C0 = N0λ+N1 +N1λ+N2(xAλ+ yA + λ) +N3λ+ λ

Note that (10) could just as validly have been used. When P is secret, notice that
equation (12) is in fact a non-linear equation. However, when Q is secret a linear
equation is obtained. To solve for Q, equation (13) has two unknown variables
and so two equations are required to solve the system. First however, the required
equations must be produced. The main requirement is that the equations are
produced with the same unknown variables. This can be performed by repeatedly
executing the pairing with the objective of injecting various faults into l0. For
example, l′′0/l0 will produce N4, N5, N6, and N7, and so an entirely different set
of equations in the same variable. Similarly, the pairing could be executed with
other parameters, ηG(Pi, Q) for various elliptic curve points Pi, where the secret
Q remains static. Given two equations, modular Gaussian elimination [15] or
simply substitution can be used. Alternatively, since x and y can be expressed
in terms of each other using the elliptic curve equation, one fault alone will
be sufficient to extract Q. A specific example of this will be given in the next
section.
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If a fault is injected into any of the other cells of l, then a similar process can
be applied to derive similar equations. Hence, fault injection into any of the cells
of l, is equivalent to solving a system of linear equations mod p.

In the scenario where the fault is injected into v, the ηG pairing succumbs to
a more straightforward attack. Let ηG(P,Q)′ denote a corrupted pairing, where
the fault is injected into the cell v0 in the last round of the Miller loop. Division
of the valid pairing by the faulty pairing will isolate the round in which the fault
was injected to yield

ηG(P,Q)
ηG(P,Q)′

=
gr

g′r
=

(l/v)
(l/v′)

=
v′

v
=

[v0]′[v1][v2][v3]
[v0][v1][v2][v3]

.

This division will again produce elements N0, N1, N2, N3. Equations similar to
(9), (10) and (11) can be generated, in which v0, v′0, v1 and v2 replace l0, l′0, l1
and l2. Since v1 = 1 and v2 = 1, only one unknown piece of data remains,

v0 =
N0 + 4N1 + 3N2 + 2N3 + 1

2N0 +N1
(14)

or
v0 =

N0 +N1 + 4N2 +N3 + 1
2N0 +N2

, (15)

allowing the coordinate xQ to be retrieved when Q is secret and xC to be
extracted when P is secret. A numerical example of this attack is given in
appendix A.

If the target for the fault attack is instead a coordinate used in the calculation
of the line function, various consequences can be witnessed. The main difference
between corruption of a coordinate and corruption of a cell as was described
above, is that a coordinate may be influential in a number of cells. The coordinate
xC is only resident in the cell v0 and so if corrupted will have similar consequences
to the corruption of v0 as was described above. Similarly, if the coordinates xA,
yA or yQ are corrupted, then this is equivalent to the corruption of the cell l0.

If however, the fault attack corrupts either the coordinate xQ or the slope λ,
then the fault will affect numerous cells. If the fault affects λ, the cells l0, l1
and l2 will also be affected, and result in introducing an extra unknown variable
into the system of linear equations. This results in an increase in the number
of unknowns to four variables for P secret and three for Q secret. In addition,
this extra variable is very specific in that the solution of the system of equations
requires the ability to recreate identical faults. For example, the same λ′ must
be created in at least three pairings in order to be able to extract Q. This is a
difficult task to initiate and detect. If the fault affects xQ, then the cells l0, l1, l2
and v0 will be corrupted. Therefore, the division of the valid and faulty pairing
will not cancel one of the line functions, l or v, leaving a relationship of the form

ηG(P,Q)
ηG(P,Q)′

=
(l/v)
(l′/v′)

=

[l0][l1][l2][l3]
[v0][v1][v2][v3]
[l0]′[l1]′[l2]′[l3]
[v0]′[v1][v2][v3]

= [N0][N1][N2][N3].

When expanded, a difficult modular non-linear equation is obtained.
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Another consequence of corrupting coordinates, is that the effect of the fault
will not be local, as is the case for cell corruption. This is particularly problematic
if the fault is injected in a round prior to the final round. For example, if the
coordinates xA or yA are corrupted in a round preceding the final round, then
the subsequent point addition in which xA and yA will be involved, will be
affected. A common practice to optimise computation time is to pre-compute
the intermediate points required in the computation of [r]P and store them on
the device, so only a look up operation is required as opposed to elliptic curve
point scalar multiplication [22]. In such implementations, the fault can target
the memory cell in which xA or yA are stored, and so the effect will remain
local. In scenarios where these types of attacks are a threat, this would be a
valid argument against pre-calculation.

4.2 Corrupting the Weil Pairing

The Weil pairing ω(P,Q) over a prime characteristic elliptic curve with embed-
ding degree k = 2, was originally defined with no final exponentiation. However
by eliminating the vertical function evaluations (an optimisation known as de-
nominator elimination), a Weil pairing with a simple final exponent can be more
efficient [20]. To distinguish the version of the Weil pairing considered here from
the original Weil pairing, it will be denoted by ωD.

The particular implementation assessed [20] considers ordinary elliptic curves
over the prime field Fp with k = 2 and a final exponent of p−1. Algorithm 4 and
4.2 describe the variant of the Weil algorithm considered here. The output of
the pairing is an element in Fp2 . The cells of u and v will be denoted by [u0][u1]
and [v0][v1] respectively.

Again, a number of different locations can be targeted and various types of
faults can be injected to cause different effects. The types of faults which aid in
the extraction of the secret are far fewer than in the ηG pairing. This is because
direct access to the output of the Miller loop is not available.

Let ωD(Pi, Qi)′ denote the Weil pairing in which a fault is injected into the
last round in the Miller loop. The fault corrupts data in an unspecified way,
i.e. either [u0], [u1], [v0] or [v1] are corrupted. The case where [u0] is corrupted,
will be described for demonstrative purposes, however the same end result is
witnessed for this type of fault regardless of the cell targeted. Division of the
valid pairing by the fault pairing will yield

ωD(P,Q)
ωD(P,Q)′

=
gp−1

r

g′p−1
r

=
(u · v)p−1

(u′ · v)p−1
=

([u0][u1])p−1

([u0]′[u1])p−1
.

This type of disruption of the execution has the following consequences, where
raising an element in Fp2 to the power of p−1 involves a conjugation and division.

ωD(P,Q)
ωD(P,Q)′

=

([λi(xA + xQ) − yA][−yQ])
([λi(xA + xQ) − yA][yQ])

([λi(xA + xQ) − yA]′[−yQ])
([λi(xA + xQ) − yA]′[yQ])
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Algorithm 4. Adds elliptic curve points and calculated the most recent contri-
bution to the Miller variable g
Input: A = (xA, yA), B = (xB, yB), C = (xC , yC), D = (xD, yD), P = (xP , yP ), Q =

(xQ, yQ)
Output: g ∈ Fp2 and updates A and C
1: (A′, λ1) ← A+B
2: (C′, λ2) ← C +D
3: u ← λ1(xA + xQ)− yA + yQi
4: v ← yP + (yC − λ2(xC + xP ))i
5: A ← A′, C ← C′

6: return u ∗ v

Algorithm 5. Computation of ωD(P,Q) on E(Fp) : y2 = x3 + ax + b, where P
is a point of prime order r on E(Fp) and Q is a point on the twisted curve E′(Fp)
Input: P = (xP , yP ), Q = (xQ, yQ)
Output: m ∈ Fp2

1: m ← 1
2: A ← P
3: C ← Q
4: n ← r − 1
5: for i ← 	lg(r)
 − 2 to 0 do
6: m ← m2 ∗ g(A,A,C, C, P, Q)
7: if ni = 1 then
8: m ← m ∗ g(A,P, C, Q, P, Q)
9: end if
10: end for
11: return m ← m̄

m

This is equivalent to

ωD(P,Q)
ωD(P,Q)′

=
(

([λi(xA + xQ) − yA][−yQ])
([λi(xA + xQ) − yA][yQ])

· ([λi(xA + xQ) − yA]′[yQ])
([λi(xA + xQ) − yA]′[−yQ])

)
.

If this equation is expanded, a difficult multivariate non-linear equation is de-
rived. The cancelations that were possible on the ηG pairing, which allow access
to a simple factor, are no longer possible. This is due to the final exponentiation.

Since a general data corruption fault of the Weil pairing will not suffice to
extract the secret, other fault types are examined. Another more powerful and
targeted attack that will facilitate extraction of the secret elliptic curve point,
targets the sign of either [u1] or [v0] and so the coordinate yQ or yP . This type
of fault attack is referred to as a sign change fault attack since a single sign bit
is flipped [4].

Again it is assumed that one valid pairing ωD(P,Q) and one faulty pairing
ωD(P,Q)′, can be calculated. Let the fault attack cause a change in sign in the
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yQ component of the elliptic curve point Q during the last round of the Miller
loop, i.e. u is altered as follows

u′ = [λi(xA + xQ) − yA][−yQ].

Since the implementation of the Weil pairing being assessed requires a final
exponentiation, division of the valid pairing by a faulty pairing will yield the
following:

ωD(P,Q)
ωD(P,Q)′

=
gp−1

r

g′p−1
r

=
(u · v)p−1

(u′ · v)p−1
=

(u)p−1

(u′)p−1
=

([λi(xA + xQ) − yA][yQ])p−1

([λi(xA + xQ) − yA][−yQ])p−1

Raising an element in Fp2 to the power of p − 1 is simply a conjugation and
division,

ωD(P,Q)
ωD(P,Q)′

=

([λi(xA + xQ) − yA][−yQ])
([λi(xA + xQ) − yA][yQ])
([λi(xA + xQ) − yA][yQ])

([λi(xA + xQ) − yA][−yQ])

which is equivalent to

ωD(P,Q)
ωD(P,Q)′

=
(

[λi(xA + xQ) − yA][−yQ]
[λi(xA + xQ) − yA][yQ]

)2

.

Therefore, √
ωD(P,Q)
ωD(P,Q)′

= ±
(

[λi(xA + xQ) − yA][−yQ]
[λi(xA + xQ) − yA][yQ]

)
(16)

If we let (NR,NC) ∈ Fp2 equal the resulting value from this operation, two linear
equations can be derived,

(λi −NRλi)xQ +NCyQ + (xAλi − yA −NRxAλi +NRyA) = 0 (17)

(NCxAλi)xQ + (NR + 1)yQ + (NCxAλ+ i−NCyA) = 0 (18)

Since there exists two possible square roots, there are two possibilities for each
equation. Depending on whether P or Q is the secret will affect how the secret is
extracted. The most straightforward extraction in this scenario is where Q is the
secret. Using the elliptic curve equation E, ±

√
x3

Q + axQ − b can be substituted
for yQ in either of the above equations. This will yield a cubic equation in one
variable, which is solvable by Cardano’s method [6]. For example (17) reduces
to

x3
Q +A0x

2
Q +B0xQ + C0 = 0 (19)
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where

A0 = − (λi −NRλi)2

N2
C

B0 =
(a− 2(λi −NRλi)(xAλi − yA −NRxλi +NRyA))

N2
C

C0 = −b− (xAλi − yA −NRxAλi +NRyA)2

N2
C

and (18) reduces to
x3

Q +A0x
2
Q +B0xQ + C0 = 0 (20)

where

A0 = − (NCxAλi)2

(NR + 1)2

B0 =
(a+ 2(NCxAλi)(NCxAλi −NCyA))

(NR + 1)2

C0 = −b+
(NCxAλi)2

(NR + 1)2

Given xQ, yQ can then be found by simply calculating ±
√
x3

Q + axQ − b. A
numerical example of this attack is given in appendix B. This type of attack is
also possible if the sign of yP is similarly targeted in the line v, in which case
the scenario where P is secret will present the most straightforward avenue for
extraction of the secret.

As previously explained, the optimal time in which to inject the fault is the
final round of the Miller loop. If the fault is injected in earlier rounds in the
Miller loop, then the effort to extract the secret is increased. Any round pre-
ceding the final round sees the Miller variable m being squared. Therefore, to
access equations similar to (17) or (18), multiple square roots calculations will
be required. For example, let the fault corrupt the sign of yQ in the second last
round of the Miller loop. The relationship between the output of the pairings
and the data of interest is now

ωD(P,Q)
ωD(P,Q)′

=
((m2r−1 · g)2)p−1

((m2r−1 · g′)2)p−1
=
(

(u)2

(u′)2

)p−1

and so √√√√
√
ωD(P,Q)
ωD(P,Q)′

= ±
(

[λi(xA + xQ) − yA][−yQ]
[λi(xA + xQ) − yA][yQ]

)
.

This requires the computation of two square roots and so potentially four
cubic equations (depending on whether the square root exists or not). Hence,
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the earlier in the loop the fault is injected the greater number of cubic equations
there will be to solve and test. It is expected that this problem can be combatted
by using SPA to identify the target loop.

4.3 The Resistance of Tate Pairing to a Data Corruption Fault

The Tate pairing e(P,Q), has the most complex final exponent of (qk − 1)/r.
This not only ensures that the output of the pairing is unique, but it also serves
as a defensive mechanism against fault attacks as we will now demonstrate.

We assessed the BKLS algorithm for the Tate pairing [21] over the large prime
field p = q with embedding degree k = 2. Again, the heart of the Miller loop
involves the calculation of the Miller variable m, which consists of the calculation
of g. In each round, g is calculated by the evaluation of line function u, which is
calculated as

u = [yA − λ(xQ + xA)][−yQ].

As before, in each round g is multiplicatively incorporated into the Miller vari-
able. Elements in the extension field and consequently the output of the pairing
is an element in Fp2 .

The sign change fault attack of the Weil pairing, will be used to examine
the strength of the Tate pairing. This is for two main reasons. Firstly, the Tate
pairing is most similar to the Weil pairing. Secondly the sign change fault attack
is the most powerful attack and so if Tate withstands this attack, it is inferred
that it will withstand less powerful attacks such as the general data corruption
fault.

Once again it is assumed that a fault has been injected into the final round
of the Miller loop. The contribution of the line function for that round can thus
be isolated as

e(P,Q)
e(P,Q)′

=
g

p2−1
r

r

g
′p2−1

r
r

=
(u)

p2−1
r

(u′)
p2−1

r

=
(

[yA − λ(xQ + xA)][−yQ]
[yA − λ(xQ + xA)][yQ]

) p2−1
r

Breaking the exponent into its factors as was demonstrated in equation (16),
this can be simplified to

√
e(P,Q)
e(P,Q)′

= ±
(

[yA − λ(xQ + xA)][yQ]
[yA − λ(xQ + xA)][−yQ]

) p+1
r

. (21)

However, the reversal of the exponent (p+ 1)/r is infeasible. To access

[yA − λ(xQ + xA)][yQ]
[yA − λ(xQ + xA)][−yQ]

, (22)
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and subsequently derive the secret elliptic curve point (whether it be P or Q), a
specific n-th root, where n = (p+ 1)/r, must be calculated. Since n divides the
group order once, there exists a simple formulae to compute a n-th root, i.e.

(√
e(P,Q)
e(P,Q)′

)n−1 (mod s)

(23)

where s = (p+1)/n. However, The particular root of interest does not exhibit any
special form, unlike the case of [18], and is a full quadratic element. Therefore,
no extra information is available to aid in determining which is the root we are
interested in. In addition, since there exists n n-th roots, where n is large, the
cost of computing and testing all n-th roots, renders such an attack infeasible.

5 Countermeasures

Apart from choosing a pairing algorithm which has a complex final exponenti-
ation, a number of fault obfuscation and detection mechanisms can be used to
prevent the described attacks. In this section, various techniques will be pre-
sented.

5.1 Fault Obfuscation Mechanisms

The aim is to implement methods which given the data corruption faults de-
scribed above, disables the adversary from extracting the secret. Page and Ver-
cauteren [18] describe a number of techniques that blind the input point known
to the adversary. For example, by computing

ρ(sP,Q)s−1
,

where P is public and Q is the secret, the values required for use in equations
(9), (10) and (11) and (17) or (18), i.e xP , yP , xA and yA, will no longer be
computable by an adversary.

5.2 Fault Detection Mechanisms

Numerous software and hardware mechanisms already exist to detect a fault
attack that are not algorithm specific [1]. For example, the simple act of executing
the algorithm twice to check if the results are the same can be applied to any
algorithm. The property of bilinearity inherent in pairings allows a method of
fault detection, which is specific to pairings. By checking whether

ρ(P,Q)sr = ρ(sP, rQ), (24)

any faults injected will be caught. This can be applied to all pairings and should
pick up any type of fault. The only drawback of this fault detection mecha-
nism is that it is quite costly, requiring two pairing computations and additional
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point scalar multiplication of two points and exponentiation of an element in the
extension field Fqk .

Other more cost effective methods of fault detection could involve random
checking of whether the intermediate points used in the computation are still
points on the curve, i.e check if xi, yi ∈ y2 = x3 + ax+ b or y2 + y = x3 + x+ b.
A check could be carried out in every round but this will require 2r evaluations
which could be expensive. There is also a possibility that this check will not be
reliable. For example, the sign change fault attack of the Weil pairing returns a
point that is still on the curve and so will pass this check.

5.3 Hiding the n-th Root

In the event of the exact n-th root being identified, to combat a sign change fault
attack, it is possible that the elliptic curve parameters might be set up such that
n2 divides the group order once (i.e. p and r are specially chosen to meet this
requirement). Now the problem of finding just one n-th root, i.e solving (23), is
equivalent to solving a Discrete Log problem [10].

6 Conclusion

We have investigated the effect of data corruption fault attacks on three cat-
egories of pairing implementations. We have shown that the success of these
attacks depends on the difficulty of reversing the final exponentiation.

It is the nature of the final exponentiation to produce a unique value. However,
in doing so it also destroys information, making it difficult to recover the value
which was exponentiated.
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A Numerical Example of a Data Corruption Fault of the
η Pairing: Corrupting the Cell v0

Note, in each of the examples described in this appendix it is assumed that the
secret is the elliptic curve point Q.

A.1 Data Values

Field parameters
Reduction polynomial: x271 + x58 + 1
Elliptic curve: y2 + y = x3 + x

Input Points
P: (69E714DA0E9BF21C4E9D400F4ED644F8C80E983D60026CD2AEC39AB010CEE129B34D,

50882E348FD0133A0120F005BF65CB8C21A8837DAD9E5BD58FA9CF1BBFC24AEDD0E4)

Q: (7B92FE9FBAB4ED6F8C8902D159020B9BA8C7C01A9DF27FC05FA9036C9727AB203CE9,

7C71F818ABD7D6F408AB5935D6A114476B837BE1ADA14C49DD13C071D1E044C15F44)

Data used in round of Miller loop targeted by the fault
xA: 38F3F251F96093C28B2B82D9EB12D93BD4E5D0C123D851E1AC5A3BF6BD998DD40BA

yA: 3EF89128D586F7F0082C10BD03D081549F29AC42A51C67B5D628271359CD30594C85

xC: 69E714DA0E9BF21C4E9D400F4ED644F8C80E983D60026CD2AEC39AB010CEE129B34C

yC: 396F3AEE814BE1264FBDB00AF1B38F74E9A61B40CD9C3707216A55ABAF0CABC463A8

λ: 18543BF3AAF8010C87D9C01123FC0BC6D29B6C25C6A783AEAC8247420DF6C25F9FA6

Output from two (valid, faulty) pairing executions
Output from Valid Execution η(P,Q):
[25113BDCDD9200B876451861074C193BB570A864612A13079C93D3D8F1D94166A70C,

5339132DF97AEEFE6401F2C56B28DB23D467501C4EA6FB1DBDE47E63181B4FAB1043,

54689B2C103FD9AD37E24464D37C43D4C869F7562D064195D3DEED7258C9DE8547D2,

20BE058D44CFFA54C008EDED71D776D2AF63EB1A7CAA41B0C6B101E4DE444DA4E01F]

Output from Faulty Execution η(P,Q)′:
[4F38B1694502C41ADE928596BCA3CB37A65BEDAE81B3F3195986732B16EFF50F39BC,

1B72EBFAB9953ACFA9D15025F7C8A6CDFC0122F5B650B4F3555AC7747EB25B4DE344,

726CD21B5F6A060EBDB9DB744D603B1EB57C6E6A0EE95760DF4CBB863ACD238C1882,

62FCBFD09FC2700B456C2EFC1E8F24389C528C43511A7E9CE4831CE0B155DC73DF9F]

A.2 Steps to the Attack

Step 1: Divide the valid pairing by the faulty pairing.
[53DD742B0B855A7233697CEB0A0E8C2C1433834EA6608F4F67FB26BEFB4EAB27BC98,

47C7B8A0729BA78C76FA41B95198B8BB24404B0CB14D17EFBA54C18189167FAFB099,

47C7B8A0729BA78C76FA41B95198B8BB24404B0CB14D17EFBA54C18189167FAFB099,0]
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Step 2: Solve the congruence,

v0 =
N0 + 4N1 + 3N2 + 2N3 + 1

2N0 +N1

Since we are dealing with binary fields, any even multiples of elements in F2m

will dissolve to zero. Therefore,

v0 =
N0 +N2 + 1

N1

which evaluates as
v0 = 1275EA45B42F1F73C21442DE17D44F6360C95827FDF01312F16A99DC87E94A098FA4

By simply adding/subtracting the known value xC +1, the secret coordinate xQ

is found,
v0 + xC + 1 = xQ =

7B92FE9FBAB4ED6F8C8902D159020B9BA8C7C01A9DF27FC05FA9036C9727AB203CE9

B Numerical Example of a Sign Change Fault of Weil

B.1 Data Values

Field parameters
p: C8DF90FD89D7A9827ED3A42409D36AED13BA334D9E716169FC674B6CB2F98E407A50
E9E0FBDC15512D1F74A679C08D3AC42F292C8A95DF30758293235E04739B
a: C8DF90FD89D7A9827ED3A42409D36AED13BA334D9E716169FC674B6CB2F98E407A50
E9E0FBDC15512D1F74A679C08D3AC42F292C8A95DF30758293235E047398
b: 491224746BC3C29BAB0157FE84580BB3E53912605012B88BCCEFE240FB679E4605EA
BBBBA9A642BEA71A3840107915913F998E71662C2501A2E35122C569BF68

r: 8000000000000000000000000000000000020001

Elliptic curve: y2 = x3 + ax+ b

Input Points
P:
(C27938C41E38949CA9177135C99374D27659D9489955F65F312EEF10375C78CAE23
48E0E8E7B32D5021E181CABC42EFE30D44038950F23E7F49980D2654C09B8,59F5C3
910EB567CDB4B16BB2A0B2A8DFEA3ED92A64A45247890576568B779A846ECBC9FEA1
50CD492223836EE4796B23751D547B4DC06CD48E230DCAE43632DA)

Q:

(B1F0D753A62BC0458E230371B2E663321CEDC5DC0BBBFA88B16BB4A549310D7297A

E3F90F87876C63D898891085FDB29C61005E94C85DB372879FA953420F48B,A747D6

4825676DB1176A4A2CF79EAD209525FBFFE008749CEB0458C8433501979524635D34

36CE5D232FF1CF122F01B659E36CA0EFB1AED3318EE4B32FD8423C)

Data used in round of Miller loop targeted by the fault
xA: 3A385AA26F93FC9279B2A69C326E3845C91302AD818122EA21480D53034A7A8

1A60C46778707619423A3D0299A18F29C35692AC0A4CE1923235FD5A0DB1E0584
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yA: 71BD2AB938A12B43B67C6A39C9D0134558B6E7CBA14A0328C0C238D3172F6EC

5C36E53E79EA5EF348C67DE4452AF353F9DCE41DE2CC362414DEA4E6621100602

λi: A4D9B86BCB52F6896909EF178128D2EF55AFA2DCDD9035C90ABD58C0A88AC3A

0E16A910DA759664F9BBE7BCF396842A134ECA15D5390EFFE2B9BD52D29AAF28C)

Output from two (valid, faulty) pairing executions
Output from Valid Execution ω(P,Q):
[66192B7F5D59DF1CB6238052468D262D3EEE879E056FD7A7B52B4181C58AFAD1486

AC1DAEA498CC73943159C0F161CD3426DBE36FDA84D0DD520BF237CBD326E,9804ED

2E2F5FEF2CD13165A2FAA44040BE921F98C1E7036EE9CCB57F324313B60C4D8B9036

46F32607F13B4F31C6AB519E0EA18926B8B39E3A3DD93861E9D781]

Output from Faulty Execution ω(P,Q)′:
[7414AEDA4113AF4A59A41591901EEA09C81A620153CAE069730F5616A14A484BD9D

4D5FE4515A9E19E11F8D6F8CDFC1AD5FA2A7C59B1D3C7F68D887C18A9DC2,79AF68D

3AB50ED5D9628A79EDC59EC9FF820AD7D3FB38C6713576F74AED35C28454C677119A

4D170E4700AEA9F4F8293EAF531E770FE25BDF19E08E8780C630D]

B.2 Steps to the Attack

Step 1: Divide the valid pairing by the faulty pairing.
[52002F3A6C90C9AE9BB0D7B6FB0C5B56C4DFD86DE24C6A6F95BC40E8656077631CD

6BD666596A20D82063685940CC77BBA9CCCFAD034283AA8F04F57CA379062,7412C5

50674512E2E168850B67D36E60EA9C2B053FF19985868FCF4E8DFCAC40A7B97329A7

AE2A11EECCE357DAF09D8C260AFCE63346022955CEBD2147135E9]

Step 2: Calculate the square root.
[1D7B3A07709ACC56F84A24ABB88EBE62FD4580542E612739DF8BC408F2A96075D1C

2689F2C8CB86F0AB7F794EBADB0A28AF982B437206E38AE4C66D49924F682,A1FECD

9DFEAE289E71CA3017312EA1EC55B4E0E816978002ADB6AE8483888D51C83A2BED12

8C1341F044EF0D228A592D68F829AF820C40F7F104227CE9BB3AF5]

This exploits the relationship,
√
ω(P,Q)
ω(P,Q)′

= ±
(

[λi(xA + xQ) − yA][−yQ]
[λi(xA + xQ) − yA][yQ]

)

where two roots (±√ ) will be produced. Here we just show the correct root,
which will be denoted by NR and NC .

Step 3: From this relationship we can generate two equations which relate to
the grouping of real and complex values. We will just show the real here:

(λi −NRλi)xQ +NCyQ + λixA − yA − λixA +NRyA = 0

We can calculate the coefficients of this equation since they are composed of
known/computable values.
(λi −NRλi) =
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64DCD4C10F7816EF8D7C389BA1709DA605EE81C5F67339764546C2C4B09756DAFC51
19AA299957AE05AE8FEB5A64DFBE801E0073DB161053319B6B6CD5256A1
NC =
A1FECD9DFEAE289E71CA3017312EA1EC55B4E0E816978002ADB6AE8483888D51C83A
2BED128C1341F044EF0D228A592D68F829AF820C40F7F104227CE9BB3AF5

λixA − yA − NRλixA +NRyA =

895341DAD464B48011914A33021B77238FDEF077FBF59E124C007043AA5AB53C223D

7E0383761712E4ED4A87AF08242A31A94AC7D7EFB4E7F2F1AC3504924DC9

To solve this we will need another equation with the same unknowns. However
since there exists a relationship between xQ and yQ, one equation will suffice.

Step 4: Substitute
√
x3

Q + axQ − b for yQ. This gives a cubic equation x3
Q +

A0x
2
Q +B0xQ + C0 = 0 where

A0 = − (λi −NRλi)2

N2
C

B0 =
(a− 2(λi −NRλi)(xAλi − yA −NRxAλi +NRyA))

N2
C

C0 = −b− (xAλi − yA −NRxAλI +NRyA)2

N2
C

A0 =
6802A674045A31776FFB8CFBB67AD446CE7AA807B8FC47B3DFA77C4FA8BC5879C0E0

5F5C00806413631186314B64E930BC5D05EF35D81B095AAB80B16D25C6E2

B0 =
9960E747477925F838D6E65391C97CC2986BED3699CC28748FB80414AB1B709E47E5

267C0DE54B5084B4EAE935C88F09741189C3AF1B9AE7DE82B31D88E72D88

C0 =
AF3B578B224A5C538C6E21DAA2A0319C890377BCB93057B0D2BEF9965F94ADB1276D

26C9151C4A7FEE8BC76CBDEF24D0CF80F32EB1F04BCF1AD4B3D14959BE48

Step 5: Solve with Cardano’s Method. Given A0, B0, C0 and the modulus p
(which are all computable values by an adversary), solve for xQ. The roots that
our Cardano method produces are
root 1 =
B1F0D753A62BC0458E230371B2E663321CEDC5DC0BBBFA88B16BB4A549310D7297AE

3F90F87876C63D898891085FDB29C61005E94C85DB372879FA953420F48B

root 2 =
75C70FD2C28F0367D32F173281F4A611FF2DB79FAE53C328A1AC4B6379AD21170818

3462E800A5B7AB5AA5BD6A3D2597356877BA46BFD955EB8462D0CE4B565B

root 3 =
2049460A69A5DE02C59A0A82850F84F3CDE4117C9D6BD6EC60F1A80FA58957D93FB0

07216BEAA110E4934CD357F3083D088CEC64C0DEECA7C5B482F4C76D56E

where as you can see the first root corresponds to our secret coordinate xQ.
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Abstract. A proxy re-encryption system allows the proxy to transform
ciphertexts encrypted under Alice’s public key into the different cipher-
texts that can be decrypted by Bob’s secret key. In this paper, we pro-
pose new proxy re-encryption systems; one for the transformation from
ciphertexts encrypted under a traditional PKI-based public key into the
ciphertexts that can be decrypted by an secret key for Identity-Based
Encryption, and the other one for the transformation from ciphertexts
encrypted in IBE manner into the different ciphertexts that can be de-
crypted by the other secret key for the IBE.
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1 Introduction

1.1 Background

A proxy re-encryption system allows the proxy to transform ciphertexts com-
puted under Alice’s public key into the different ciphertexts that can be de-
crypted by using Bob’s secret key. This system works as follows; Alice or a
trusted third party generates a re-encryption key and sets it in a proxy. On
receiving Alice’s ciphertexts, the proxy transforms the ciphertext by running
the re-encryption algorithm with the re-encryption key, and sends the trans-
formed ciphertext to Bob. Bob decrypts it by his secret key. As it can be
seen that Alice delegates her decryption rights to Bob via proxy, we call Al-
ice a delegator and Bob a delegatee. The proxy re-encryption system should
at least satisfy the following requirements; 1) a proxy alone cannot obtain the
underlying plaintext, 2) and Bob cannot obtain the underlying plaintext with-
out the proxy cooperating. The proxy re-encryption system can be a primitive
for various attractive applications, and thus it has been active research area
[BBS98, J99, DI03, ZMSR04, AFGH05, GA06].

One of the most promising application is the access control system over the
network storage [MO97, AFGH05]. In this system, Alice performs a content
holder who stores some contents encrypted under her public key in the network
storage. The proxy performs an access controller who transforms the stored ci-
phertexts into the different ciphertexts that can be decrypted by Bob’s secret

T. Takagi et al. (Eds.): Pairing 2007, LNCS 4575, pp. 247–267, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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key when Alice allows Bob to access her contents. Since the proxy can transform
the stored ciphertexts without Alice’s secret key, it can reduce the amount of
trust in the access control server. Beside the access control system, the proxy
re-encryption system can be applied to the secure e-mail forwarding system
[AFGH05], the outsourced filtering of encrypted spam [AFGH05], the law en-
forcement [DI03] and so on.

1.2 Our Motivation and Contribution

Recently, Identity-Based Encryption (for short, IBE) has been one of the most
active research area [BF01, BB04a, BB04b, GS04, W05, G06]. In the IBE system,
a sender Catherine encrypts a message to an IBE receiver Alice by using Alice’s
identity as a public key. Providing that Alice sets her e-mail address to the public
key and it includes the revocation date, Catherine can easily make sure not only
that the public key belongs to Alice, but also when the public key is revoked.
Therefore, the IBE system dramatically improves the key management workload
while it is heavy burden in the traditional PKI-based public key encryption
(for short, PKE) system. The IBE system necessarily requires a third party
called Public Key Generator (PKG) which generates all secret keys for IBE
users by using its master-secret key, and thus the IBE system works where
the PKG operation can be allowed. As each user has own policy, rule, role or
purpose in the ciphertext communication, one might adopts the IBE system
because of its simple key management and the other one might employ the PKE
system if she does not accepts the PKG operation for some reason. Then a
lot of messages encrypted in the different manner circulate among the world,
and this circumstance yields the demand for the proxy re-encryption systems
transforming PKE ciphertexts into the different IBE ciphertexts (type 1), IBE
ciphertexts into the different IBE ciphertexts (type 2), IBE ciphertexts into the
different PKE ciphertexts (type 3), and PKE ciphertexts into the different PKE
ciphertexts (type 4). However, there is no system for type 1 transformation and
only a few systems for type 2 transformation are proposed so far [DI03, GA06].
Therefore, we propose two systems for type 1 and type 2 transformation.

Our first proposal, hybrid proxy re-encryption system, is the first system
achieving type 1 transformation. Our second proposal for type 2 transforma-
tion, identity-based proxy re-encryption system, holds the following advantages
compare to the previous proposals.

– Our system achieves optimal secret key size, that is, it needs no additional
secret key besides the secret key of the underlying IBE system for delegatees
to decrypt re-encrypted ciphertexts while it is required in [DI03].

– Our system achieves optimal ciphertext size, that is, the size of re-encrypted
ciphertexts is the exactly same as that of the corresponding original cipher-
texts while it is required to extend original ciphertext size for re-encryption
in [GA06].1

1 Actually, the re-encryption system achieving optimal ciphertext size is also proposed
in [GA06]; however, there are some undesirable restriction on that system.
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– Our system does not need additional algorithm or process for decrypting
re-encrypted ciphertexts while it is required in [GA06].

– Our system is semantically secure in the standard model while previous
systems [DI03, GA06] are semantically secure in the random oracle model
(our security notion is slightly weaker than that defined in [GA06]).

1.3 Organization

The rest of this paper consists of four sections. Sec. 2 gives some definitions and
preliminaries to understand our study. In Sec. 3, we present the hybrid proxy
re-encryption system. We propose the identity-based proxy re-encryption system
in Sec. 4 and finally conclude this study in Sec. 5.

2 Preliminaries

In the following, we sometimes use notation described in this section without
notice. We denote the concatenation of a and b by a||b. We also denote random
choice from a set S by R← S.

2.1 Bilinear Groups

Let G and G1 be multiplicative cyclic groups of prime order p, and g be a
generator of G. We say that G1 has an admissible bilinear map ê : G ×G → G1

if the following conditions hold.

1. ê(ga, gb) = ê(g, g)ab for all a, b.
2. ê(g, g) 
= 1.
3. There is an efficient algorithm to compute ê(ga, gb) for all a, b and g.

2.2 Assumption

Definition 1. For randomly chosen integers a, b, c R← Z∗
p, a random generator

g
R← G, and an element R R← G1, we define the advantage of an algorithm A in

solving the decision Bilinear Diffie-Hellman (dBDH) problem as follows:

Advdbdh
G (A) =

∣∣∣Pr[A(g, ga, gb, gc, ê(g, g)abc) = 0] − Pr[A(g, ga, gb, gc, R) = 0]
∣∣∣

where the probability is over the random choice of generator g ∈ G, the randomly
chosen integers a, b, c, the random choice of R ∈ G1, and the random bits used by
A. We say that the (k, t, ε)-dBDH assumption holds in G if no t-time algorithm
has advantage at least ε in solving the dBDH problem in G under a security
parameter k.
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2.3 Digital Signature Scheme

A digital signature scheme is made up of three algorithms, KeyGenΣ , Sign,
and Verify, for generating keys, signing, and verifying signatures, respectively.

KeyGenΣ(k). Given a security parameter k, generate a signing key skΣ and
the corresponding verification key vkΣ .

Sign(skΣ ,M). Given the signing key skΣ and a message M , generate a signa-
ture σ.

Verify(vkΣ ,M, σ). Given the verification key vkΣ , the message M and its
signature σ, output 1 if σ is valid, otherwise output 0.

Though the standard notion of security for a digital signature scheme is called
existential unforgeability under a chosen message attack [GMR88], we introduce
the slightly different notion, strong existential unforgeability under a passive
attack that is defined using the following game between a challenger and an
adversary A:

SetUp. The challenger runs algorithm KeyGenΣ to obtain a signing key skΣ

and the corresponding verification key vkΣ . The adversary A is given vkΣ .
Message-signature pair. Suppose that q is an integer. The challenger selects

messages M1, . . . ,Mq from the message domain and makes the signatures
σ1, . . . , σq for each message Mi (1 ≤ i ≤ q) where σi = Sign(skΣ ,Mi). The
challenger gives the message-signature pair sets Sms = {(Mi, σi)}1≤i≤q to
the adversary A.

Output. Eventually, A outputs a pair (M ′, σ′) and wins the game if (M ′, σ′) 
∈
Sms and Verify(vkΣ ,M

′, σ′) = 1.

Definition 2. We define A’s advantage in the games as follows.

Adveu(A) = Pr[(M ′, σ′) 
∈ Sms ∧ Verify(vkΣ ,M
′, σ′) = 1]. (1)

We say that the digital signature scheme is (k, t, q, ε)-strong existentially un-
forgeable under a passive attack if for any t time adversary A that observes
at most q message-signature pairs under a security parameter k, we have that
Adveu(A) < ε.

2.4 PKI-Based Public Key Encryption System

A traditional PKI-based Public Key Encryption (PKE) system consists of the
following algorithms.

KeyGenPKE(k, aux). Given a security parameters k and auxiliary input aux,
generate a secret key sk and the corresponding public key pk.

EncPKE(pk, aux,M). Given the public key pk with aux, compute the encryption
of a message M , CPK.

DecPKE(sk, aux,CPK). Given the secret key sk with aux, decrypt the ciphertext
CPK.
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2.5 Identity Based Encryption System

An Identity Based Encryption (IBE) system consists of the following algorithms.

SetUpIBE(k). Given a security parameter k, generate a pair (parms,mk), where
parms denotes the public parameters and mk is the master-secret key.

KeyGenIBE(mk, parms, ID). Given the master-secret key mk and an identity
ID with parms, generate a secret key skID for ID.

EncIBE(ID, parms,M). Given a message M and the identity ID with parms,
compute the encryption of M , CID, for ID.

DecIBE(skID, parms,CID). Given the secret key skID, decrypt the ciphertext CID.

In setup, a trusted third party, PKG, runs SetUpIBE and generates its master-
secret key and public parameters. When an IBE user requests a secret key cor-
responding to her identity (i.e. public key), PKG generates the secret key by
running KeyGenIBE, and give it to the user via secure and authenticated chan-
nel. A sender encrypts a message by running EncIBE with the receiver’s identity
and public parameters. The receiver decrypts a ciphertext by running DecIBE

with her secret key.

Security. IBE security [BF01] is defined by the following game between an
adversary A and a challenger C.

Setup. The challenger C runs the SetUpIBE algorithm and gives A the resulting
system parameters, parms, keeping the master-secret key mk to itself.

Phase 1. A adaptively queries C as follows: A requests the secret key for ID
from C. C generates the secret key skID by running algorithm KeyGenIBE
and returns them to A. After some number of queries, A selects two equal
length plaintexts M0,M1 ∈ M and a target identity ID∗, and sends them to
C.

Challenge. Given (M0,M1, ID∗), C picks a random bit d ∈ {0, 1} and sets the
challenge ciphertext to CID∗

d
= EncIBE(ID∗, parms,Md), which is sent to A.

Phase 2. A continues to issue queries as in Phase 1 with the restriction that
A cannot issue secret key queries for ID∗.

Guess. Finally, A outputs a guess d′ ∈ {0, 1}.

The adversary A wins if d′ = d. We say that the identity based encryption
system is IND-ID-CPA secure if |Pr[d′ = d] − 1/2| is negligible.

Definition 3. We define A’s advantage in an IND-ID-CPA games as follows

Advid
IBE(A) = 2(Pr[d′ = d] − 1/2) (2)

We say that the an IBE system is (k, t, q, ε)-identity, adaptive chosen plaintext
secure if for any t time IND-ID-CPA adversary A that makes at most q chosen
secret key queries under a security parameter k we have that Advid

IBE(A) < ε. As
shorthand, we say that an IBE system is (k, t, q, ε) IND-ID-CPA secure.
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Canetti et al. [CHK03, CHK04] defined a weaker notion of security in which the
adversary commits ahead of time to the public key it will attack. We refer to
this notion as selective identity, chosen plaintext secure IBE (IND-sID-CPA).
The game is exactly the same as IND-ID-CPA except that the adversary A
discloses to the challenger the target identity ID∗ before the Setup phase. The
restrictions on secret key queries from Phase 2 also hold in Phase 1.

3 Hybrid Proxy Re-encryption System

In this section, we introduce our new proxy re-encryption system, hybrid proxy
re-encryption system. It consists of a PKE system, an IBE system, and addi-
tional algorithms that allow ciphertexts encrypted under a PKE public key to
be transformed into the different ciphertexts that can be decrypted by an IBE
secret key.

3.1 Definition

There are four parties involved in a hybrid proxy re-encryption system, delegator,
proxy, delegatee and its PKG. On receiving a ciphertext encrypted in the PKE
manner by delegator’s public key, the proxy re-encrypts it into ciphertexts that
the delegatee who holds an IBE secret key can decrypt, using a re-encryption
key generated by the delegator for a particular delegatee.

A hybrid proxy re-encryption consists of: 1) the four algorithms making up
an IBE system SetUpIBE, KeyGenIBE, EncIBE, and DecIBE, 2) the three al-
gorithms making up a PKE system KeyGenPKE,EncPKE, and DecPKE, 3) and
four algorithms for re-encryption, which are —

EGen(skID, parms). Given an IBE secret key skID for the IBE user ID with IBE
public parameters parms, generate eID for re-encryption key generation.

KeyGenPRO(sk, eID, parms). Given a PKE secret key sk and eID with parms,
generate a re-encryption key rkID that re-encrypts PKE ciphertexts into the
IBE ciphertexts for ID.

ReEnc(rkID, parms,CPK, ID). Given the re-encryption key rkID, a ciphertext
CPK encrypted under the traditional public key, and ID with parms, re-
encrypt ciphertext CPK into CID that can be decrypted by the IBE user
ID.

Check(parms,CPK, pk). Given CPK and pk with parms, output 0 if CPK is a
malformed ciphertext. Otherwise, output 1.

Let the PKG employ the digital signature scheme (KeyGenΣ ,Sign,Verify)
described in Sec. 2.3; however we do not describe it in the above for conciseness.
When a PKE user delegates her decryption rights to an IBE user, the hybrid
proxy re-encryption system works as follows.

– SetUp:
1. The PKG generates its signing key skΣ and the corresponding veri-

fication key vkΣ by running KeyGenΣ . The PKG also generates its



Proxy Re-encryption Systems for Identity-Based Encryption 253

master-secret key mk and public parameters parms by running
SetUpIBE. The PKG makes (parms, vkΣ) public, keeping (mk, skΣ) to
itself.

2. The PKE user generates its secret key sk and the corresponding public
key pk by running KeyGenPKE with the input parms, and makes pk
public, keeping sk to itself.

– Re-encryption key generation and deployment:
1. When one requests the delegation from the PKE user (i.e. delegator) to

the IBE user ID (i.e. delegatee),
• If no IBE secret key has issued to the delegatee, the PKG generates
skID by running KeyGenIBE, and computes eID by running EGen.
The PKG makes a digital signature σe for ID||eID by running Sign.
Then PKG issues (skID, ID||eID, σe) to the delegatee. The delegatee
sends (ID||eID, σe) to the delegator.

• Otherwise, the delegatee sends previously issued ID||eID and the cor-
responding signature σe to the delegator.

2. On receiving (ID||eID, σe), the delegator verifies it by running Verify
with vkΣ .
• If it is valid then the delegator generates a re-encryption key rkID by

running KeyGenPRO with the input eID. The delegator sets rkID in
the proxy.

• Otherwise the delegator rejects.
– Re-encryption: Suppose that one sends a ciphertext CPK to the delegatee

ID via the proxy. On receiving the PKE ciphertext CPK, the proxy runs the
algorithm Check with the input (parms,CPK, pk).
• If Check outputs 0 then the proxy rejects the re-encryption request.
• Otherwise, the proxy re-encrypts CPK into CID by running ReEnc, and

sends CID to the delegatee ID.
– Decryption: The delegatee decrypts CID by running DecIBE with the IBE

secret key skID.

3.2 Security Notion

In the following, each value appeared in i-th query by the adversary and in
the corresponding answer is denoted with letter i. We sometimes denote the
delegatee’s identity in i-th query by IDi.

Chosen Plaintext Security: We model chosen plaintext security for a hybrid
proxy re-encryption system as a game between an adversary A and a challenger
C. In this game, the adversary is allowed to adaptively choose the IBE secret
key queries and re-encryption key queries. Intuitively, these queries imply the
situation that: (1)the adversary compromises arbitrary IBE users and obtains
their secret keys, (2)the adversary compromises arbitrary proxy and obtains the
re-encryption keys, (3)and the adversary requests the re-encryption key genera-
tion of the delegator. Since the adversary obviously wins the game if it obtains
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both delegatee’s secret key and the corresponding re-encryption key involving the
same identity, she is not allowed to ask such query. More precisely, IND-ID-CPA
security is defined as follows:

Setup. The challenger C generates (skΣ , vkΣ) by running KeyGenΣ . C gener-
ates (parms,mk) by running SetUpIBE. C also generates (pk, sk) by running
KeyGenPKE. C gives (parms, pk, vkΣ) to A, keeping (mk, sk, skΣ) to itself.

Phase 1. Given (parms, pk, vkΣ), A adaptively queries the challenger C. When
A queries C, it responds as follows:
– Secret key queries. When A queries C at a point IDi, C generates

a secret key skIDi for IDi by running KeyGenIBE. C computes eIDi by
running EGen with the input skIDi

. C generates a signature σei for
IDi||eIDi

by running Sign, and returns (skIDi
, IDi||eIDi

, σei) to A.
– Type-1 re-encryption key queries. When A queries C at a point

IDi, C generates an IBE secret key skIDi by running KeyGenIBE, and
computes eIDi

by running EGen with the input skIDi
. C generates a

signature σei for IDi||eIDi
by running Sign. C runs KeyGenPRO with

the inputs eIDi , and returns the resulting re-encryption key rkIDi with
(IDi||eIDi

, σei) to A.
– Type-2 re-encryption key queries. Suppose that A queries C about

(IDi||eIDi
, σei). If (IDi||eIDi

, σei ) has already generated in the answering for
secret key query, C rejects the query. Otherwise C verifies (IDi||eIDi , σei)
by running Verify with vkΣ and works as follows;
• If it is valid then C runs KeyGenPRO with the inputs eIDi

, and
returns the resulting re-encryption key rkIDi

.
• Otherwise C rejects the query.

Challenge. After some queries, A selects two equal length plaintexts M0,M1 ∈
M and sends them to C. C picks d R← {0, 1} and computes

CPKd
= EncPKE(pk, parms,Md).

C returns CPKd
to A.

Phase 2. A continues to issue queries as in Phase 1, and C responds as before.
Guess. Finally, A outputs a guess d′ ∈ {0, 1}.

The adversary A wins if d′ = d. The hybrid proxy re-encryption system is secure
in the sense of IND-ID-CPA if |Pr[d′ = d] − 1/2| is negligible.

Definition 4. Let A be an adversary against the hybrid proxy re-encryption
system. Define the IND-ID-CPA advantage of A as follows.

Advid
hyd(A) = 2(Pr[d′ = d] − 1/2). (3)

We say that a hybrid proxy re-encryption system is (k, t, q, ε) adaptive chosen
plaintext secure if for any t time IND-ID-CPA adversary A that makes at most
q chosen queries under a security parameter k we have that Advid

hyd(A) < ε. As
shorthand, we say that a hybrid proxy re-encryption system is (k, t, q, ε) IND-
ID-CPA secure.
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Note that this game encompasses the notion of semantic security for the PKE
system, as well as that for the IBE system, and also the notion that a set of re-
encryption keys cannot be “combined”to form new re-encryption keys for other
identities. For example, if the PKE system is not semantically secure, then the
adversary can win the game by simply distinguishing the challenge ciphertext.

3.3 Construction

We describe our hybrid proxy re-encryption system involving the ElGamal-type
PKE system and the BB-IBE system [BB04a]. Let the PKG employ a digital sig-
nature scheme (KeyGenΣ,Sign,Verify). We describe the following algorithms
making up the system:

– The underlying IBE system (BB-IBE system):
SetUpIBE(k). Given a security parameter k, select a random generator
g ∈ G and random elements g2, h ∈ G. Pick a random α ∈ Z∗

p. Set
g1 = gα, mk = gα

2 , and parms = (g, g1, g2, h). Let mk be the master-
secret key and let parms be the public parameters.

KeyGenIBE(mk, parms, ID). Given mk = gα
2 and ID with parms, pick a

random u ∈ Z∗
p. Set

skID = (d0, d1) =
(
gα
2 (gID

1 h)u, gu
)
.

EncIBE(ID, parms,M). To encrypt a message M ∈ G1 under the public key
ID ∈ Z∗

p, pick a random r ∈ Z∗
p and compute

CID =
(
gr, (gID

1 h)r,Mê(g1, g2)r
)
∈ G

2 × G1.

DecIBE(skID, parms,CID). Given ciphertext CID = (C1, C2, C3) and the se-
cret key skID = (d0, d1) with prams, compute

M =
C3ê(d1, C2)
ê(d0, C1)

.

– The underlying PKE system (ElGamal-type PKE system):
KeyGenPKE(k, parms). Given a security parameter k and parms, pick a

random β, θ, δ ∈ Z∗
p. Set g3 = gθ, g4 = gβ

1 and g5 = hδ. The public key
is pk = (g3, g4, g5). The secret key is sk = (θ, β, δ).

EncPKE(pk, parms,M). Given pk = (g3, g4, g5) and a message M with
parms, pick a random r ∈ Z∗

p and compute

CPK =
(
gr
3, g

r
4 , g

r
5,Mê(g1, g2)r

)
∈ G

3 × G1.

DecPKE(sk, parms,CPK). Given CPK = (C1, C2, C3, C4) and the secret key
sk = (θ, β, δ) with parms, compute M = C4/ê(C

1/β
2 , g2).

– The delegation system:
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EGen(skID, parms). Given skID = (d0, d1) = (gα
2 (gID

1 h)u, gu) for ID with
parms, set eID = d1 = gu.

KeyGenPRO(sk, eID, parms). Given sk = (θ, β, δ) and eID = gu for ID with
parms, set rkID = (θ, gu/β , δ).

ReEnc(rkID, parms,CPK, ID). Given a PKE ciphertext CPK = (C1, C2,
C3, C4), the re-encryption key rkID = (θ, gu/β , δ) and ID with parms,
re-encrypt the ciphertext CPK into CID as follows.

CID = (C′
1, C

′
2, C

′
3) =

(
C

1/θ
1 , C

1/δ
3 , C4ê(gu/β , C ID

2 )
)
∈ G

2 × G1.

Check(parms,CPK, pk). Given CPK = (C1, C2, C3, C4) and pk = (g3, g4, g5)
with parms, set v1 = ê(C1, g4), v2 = ê(C2, g3), v3 = ê(C2, g5) and v4 =
ê(C3, g4). If v1 = v2 and v3 = v4 then output 1, otherwise output 0.

In the proposed system, the PKG can decrypt all re-encrypted ciphertexts,
thus one might wonder that this contradicts our motivation described in Sec. 1.2,
that is, a PKE user who does not allow the PKG operation seems to fully trust
the PKG; however, there is no contradiction. The PKG, or delegated IBE users,
can not decrypt any original ciphertext without the proxy cooperating. Thus the
delegator still control what ciphertexts she allows to decrypt if the proxy only
re-encrypts the ciphertexts sent from entities allowed by the delegator. Though
it is out of scope how the proxy works under such policy, we consider it is feasible
by using actual techniques.2

3.4 Security Analysis

We first describe why the proxy re-encrypting does not make the underlying
public key cryptosystems weak.

In our system, the re-encryption key rkID = (θ, gu/β , δ) involves the delegator’s
decryption key β and the second component of delegatee’s IBE secret key d1 =
gu. Thus it might reveal some information about β and gu; however this does
not make the underlying public key cryptosystems weak. This is because

– it is computationally hard to recover β completely from the public key and
the re-encryption key if the discrete logarithm problem is hard, and

– the underlying IBE can be proved semantically secure even if the second
component of the secret key d1 is exposed. (See Lemma 1 in Appendix A).

Therefore our proxy re-encryption system is secure as long as the re-encryption
key is generated and deployed appropriately, and the digital signature system is
used to ensure appropriate re-encryption key generation.

The above observation yields the security notion in section 3.2. Then, it is
sufficient to show our system being secure if the following theorem holds.

Theorem 1. Suppose that the (k, t, ε)-dBDH assumption holds and the PKG’s
digital signature scheme is (k, t′, q, ε′)-strong existentially unforgeable. Then the

2 It does not matter whether cryptographic or non-cryptographic way.
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hybrid proxy re-encryption system is (k, t′′, q, ε′′) IND-ID-CPA secure for any q,
k, ε′′ ≤ ε+ ε′, and t′′ + t′ < t−Θ(τeq+ τsq+ τvq) where τe is the maximum time
for an exponentiation in G, τs is the maximum time for running Sgin, and τv
is the maximum time for running Verify.

Proof. LetA be an adversary against the hybrid proxy re-encryption system in the
IND-ID-CPA sense. We construct an adversary B which solves the dBDH prob-
lem in G by utilizing A. Providing that B is given an input (g, Γ1, Γ2, Γ3, X) =
(g, ga, gb, gc, X), whereX = ê(g, g)abc orX = R

R← G1. We describe how B works
in the following.

Initialization. B generates a blank list QAL to write down query-answer pairs
for every query.

Setup. B selects a (k, t′, q, ε′)-strong existentially unforgeable digital signa-
ture scheme (KeyGenΣ ,Sign,Verify) and generates (skΣ , vkΣ) by run-
ning KeyGenΣ . To generate the system parameters, B picks x, y, z, w R← Z∗

p

and sets g1 = Γ1, g2 = Γ2, h = gz g3 = gx, g4 = gy and g5 = hw. It gives
A the system parameters parms = (g, g1, g2, h), pk = (g3, g4, g5) and vkΣ .
Note that the corresponding PKG’s master-secret key, which is unknown to
B, is ga

2 = gab ∈ G.
Phase 1. Given pk, parms and vkΣ , A asks some queries to the challenger.

When A queries the challenger, B works as follows.
– Secret key queries. Suppose that A queries the challenger at a point

IDi.
• If IDi 
= 0 then B selects ri

R← Z∗
p, sets

skIDi
= (d0, d1) =

(
g

−z
IDi
2 (gIDi

1 gz)ri , g
−1
IDi
2 gri

)
and eIDi = d1. B computes Sign(skΣ , IDi||eIDi) = σei , and returns
(skIDi

, IDi||eIDi
, σei ) to A. B adds the query and the answer to the

list QAL.
• Otherwise B rejects the query.

– Type-1 re-encryption key queries. When A queries the challenger
at a point IDi, B selects r′i

R← Z∗
p, sets rkIDi

= (x, gr′
i

1 , w) and eIDi
= gyr′

i .
B generates a signature σei for IDi||eIDi by running Sign. B returns rkIDi

with (IDi||eIDi
, σei) to A. B adds the query and the answer to the list

QAL.
– Type-2 re-encryption key queries. Suppose that A queries the chal-

lenger about (IDi||eIDi
, σei ). B checks the list QAL.

• If the IBE secret key skIDi corresponding to (IDi||eIDi , σei) is in the
list then B rejects the query.

• If rkIDi
corresponding to (IDi||eIDi

, σei) is in the list then B returns
rkIDi

to A.
• Otherwise, B computes v = Verify(vkΣ , IDi||eIDi

, σei).
∗ If v = 1 then B halts.
∗ Otherwise, B rejects the query.
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Challenge. After some queries, A selects two equal length plaintexts M0,M1 ∈
M. Given (M0,M1), B selects d R← {0, 1} and sets

CPKd
= (Γ x

3 , Γ
y
3 , Γ

zw
3 ,MdX).

B returns CPKd
to A. Notice that if X = ê(g, g)abc = ê(g1, g2)c then CPKd

is a
valid encryption of Md. On the other hand, if X is uniform and independent
in G1 then CPKd

is independent of d in the adversary’s view.
Phase 2. A continues to issue queries as in Phase 1, and B responds as before.
Solve. Finally, A outputs a guess d′ ∈ {0, 1}. B concludes its own game by

outputting a guess as follows. If d′ = d then B outputs 1 meaning X =
ê(g, g)abc. Otherwise, it outputs 0 meaning X = R.

We claim that B generates a valid secret key and the corresponding auxiliary
information for IDi. To see this, let ũi = ri − b

IDi
. Then we have that

(dIDi , eIDi) =
(
g

−z
IDi
2 (gIDi

1 gz)ri , g
−1
IDi
2 gri

)
=

(
ga
2 (gIDi

1 gz)ri

(gIDi
1 gz)

b
IDi

, g
ri− b

IDi

)

=
(
ga
2 (gIDi

1 gz)ri− b
IDi , g

ri− b
IDi

)

=
(
ga
2 (gIDi

1 h)ũi , gũi

)

We also claim that B can perfectly simulate the re-encryption key for IDi since
it looks random and independent of any other values if the adversary does not
obtain the corresponding secret key.

B fails to simulate the challenger if B halts in the Type-2 re-encryption key
query. Otherwise B perfectly simulates the challenger. The maximum probability
of that B halts is obviously upper-bounded by Adveu(A). Therefore, we conclude
the theorem.

4 Identity Based Proxy Re-encryption System

An identity-based proxy re-encryption system consists of an IBE system and
additional algorithms that allow ciphertexts encrypted under one’s IBE public
key to be transformed into the different ciphertexts that can be decrypted by
the other’s IBE secret key. In this section, we describe our identity-based proxy
re-encryption system.

4.1 Definition

There are five entities involved in an identity-based proxy re-encryption system,
delegator, proxy, delegatee, PKG and Re-encryption Key Generator, RKG.3 In
this system, each of delegator and delegatee is an IBE user. The RKG gener-
ates re-encryption keys and sets them into the proxy via secure channel while
3 The PKG and the RKG might be operated by one entity.
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the delegator does in the hybrid proxy re-encryption system. An identity-based
proxy re-encryption system consists of: 1) the four algorithms making up an IBE
system SetUpIBE, KeyGenIBE, EncIBE, and DecIBE, 2) and five algorithms for
re-encryption, which are –

EGen(skID, parms). Given an IBE secret key skID for ID with parms, generate
eID for re-encryption key generation.

KeyGenRKG(mk, parms). Given an IBE master-secret key mk with parms,
generate a secret key skR for re-encryption.

KeyGenPRO(skR, eID′ , parms, ID, ID′). Given skR, eID′ , the delegator’s identity
ID and the delegatee’s identity ID′ with parms, generate a re-encryption key
rkID→ID′ .

ReEnc(rkID→ID′ , parms,CID, ID, ID′). Given the delegator’s identity ID, the del-
egatee’s identity ID′, the re-encryption key rkID→ID′ , and an IBE ciphertext
CID with parms, re-encrypt CID into the different IBE ciphertext CID′ .

Check(parms,CID, ID). Given the delegator’s identity ID and an IBE cipher-
text CID with parms, output 0 if CID is a malformed ciphertext for ID.
Otherwise, output 1.

We assume that the PKG adopts the digital signature scheme described in
Sec. 2.3. When one delegates her decryption rights to the other, the identity-
based proxy re-encryption system works as follows.

– SetUp: The PKG generates
1. its signing key skΣ and the corresponding verification key vkΣ by run-

ning KeyGenΣ ,
2. its master-secret key mk and public parameters parms by running

SetUpIBE,
3. and a secret key skR for the RKG by running KeyGenRKG.

The PKG makes (vkΣ , parms) public and sets skR in the RKG, keeping
(mk, skΣ) to itself.

– Re-encryption key generation and deployment: When one requests the dele-
gation from ID (i.e. delegator) to ID′ (i.e. delegatee), the RKG makes sure
that ID approves the delegation to ID′. If ID denies it, the RKG rejects the
request. Otherwise the RKG works as follows.
• If no IBE secret key has issued to the delegatee ID′, the PKG generates
skID′ by running KeyGenIBE, and computes eID′ by running EGen. The
PKG makes a digital signature σ′

e for ID′||eID′ by running Sign. Then
PKG issues (skID′ , ID′||eID′ , σ′

e) to the delegatee.
• On receiving (ID′||eID′ , σ′

e) from the delegatee, the RKG verifies it by
running Verify with vkΣ .
∗ If it is valid then the RKG generates a re-encryption key rkID→ID′ by

running KeyGenPRO with the input eID′ . The RKG sets rkID→ID′ in
the proxy.

∗ Otherwise the RKG rejects the request.
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– Re-encryption: Suppose that one sends a ciphertext CID to the delegatee ID′.
On receiving the ciphertext CID, the proxy rejects the re-encryption request
if rkID→ID′ does not exists. Otherwise, the proxy runs the algorithm Check
with the input (parms,CID, ID).
• If Check outputs 0 then the proxy rejects the re-encryption request.
• Otherwise, the proxy re-encrypts CID into CID′ by running ReEnc, and

sends CID′ to the delegatee ID′.
– Decryption: The delegatee decrypts CID′ by running DecIBE with the secret

key skID′ .

4.2 Security Notion

In the following, each value appeared in i-th query by the adversary and in the
corresponding answer is denoted with letter i. We sometimes denote a delegator’s
identity by IDi and a delegatee’s one by ID′

i that the adversary asks in i-th query.
IDi → ID′

i represents the delegation from IDi to ID′
i.

Chosen Plaintext Security: We model chosen plaintext security for an
identity-based proxy re-encryption system as a game between an adversary A
and a challenger C. In this game, the adversary is allowed to adaptively choose
the secret key queries, re-encryption key queries and re-encryption queries. In-
tuitively, these queries imply the situation that: (1)the adversary compromises
arbitrary IBE users and obtains their secret keys, (2)the adversary compromises
arbitrary proxy and obtains the re-encryption keys, (3)the adversary requests
the re-encryption key generation of the RKG, (4)and the adversary obtains re-
encrypted ciphertexts by using proxy as an oracle. Since the adversary obviously
wins the game if it obtains the secret key for the target identity, she is not al-
lowed to ask such queries. Besides this, the adversary also wins the game if she
obtains both of the delegatee’s secret key and the corresponding re-encryption
key involving the same identity because the re-encryption key is independent of
the delegator’s secret key. Therefore she is also not allowed to ask such queries.
More precisely, IND-ID-CPA security is defined as follows:

Setup. The challenger C selects a digital signature scheme (KeyGenΣ,Sign,
Verify). C generates
1. (skΣ , vkΣ) by running KeyGenΣ ,
2. (parms,mk) by running SetUpIBE, and
3. skR by running KeyGenRKG.
C gives (parms, vkΣ) to A, keeping (mk, skΣ , skR) to itself.

Phase 1. Given (parms, vkΣ), A adaptively queries C. When A queries C, it
responds as follows:
– Secret key queries. When A queries C at a point IDi, C generates

a secret key skIDi
for IDi by running KeyGenIBE. C computes eIDi

by
running EGen with the input skIDi

. C generates a signature σei for
IDi||eIDi by running Sign, and C returns (skIDi , IDi||eIDi , σei) to A.
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– Type-1 re-encryption key queries. When A queries C about IDi →
ID′

i, C generates an IBE secret key skID′
i

by running KeyGenIBE, and
computes eID′

i
by running EGen with the input skID′

i
. C generates a

signature σe′
i

for ID′
i||eID′

i
by running Sign. C runs KeyGenPRO with

the inputs eID′
i
, and returns the resulting re-encryption key rkIDi→ID′

i

with (ID′
i||eID′

i
, σe′

i
) to A.

– Type-2 re-encryption key queries. Suppose that A queries C about
(IDi → ID′

i, ID
′
i||eID′

i
, σe′

i
). If (ID′

i||eID′
i
, σe′

i
) has already generated in the

answering for secret key query, then C rejects the query. Otherwise C
verifies (ID′

i||eID′
i
, σe′

i
) by running Verify with vkΣ and works as follows;

• If it is valid then C runs KeyGenPRO with the input eID′
i
, and returns

the resulting re-encryption key rkIDi→ID′
i
.

• Otherwise C rejects the query.
– Re-encryption queries. Suppose that A queries C about (skID′

i
, CIDi

,

IDi → ID′
i). If skID′

i
has never issued to A then C rejects the query.

Otherwise, C runs Check with the input (parms,CIDi
, IDi).

• If Check outputs 0 then C rejects the query.
• Otherwise, C generates eID′

i
by running EGen with skID′

i
as an in-

put. C generates rkIDi→ID′
i

by running KeyGenPRO with the input
eID′

i
. C re-encrypts CIDi into CID′

i
by running ReEnc with the input

rkIDi→ID′
i
. C returns CID′

i
to A.

Challenge. After some queries, A selects two equal length plaintexts M0,M1 ∈
M and a target identity ID∗ which no secret key for ID∗ has issued, and sends
them to C. Given (M0,M1, ID∗), C selects d R← {0, 1} and computes

CID∗
d

= EncIBE(ID∗, parms,Md).

C returns CID∗
d

to A.
Phase 2. A continues to issue queries as in Phase 1, and C responds as before

except the following case.
– If A makes the secret key query at the point ID∗, then C rejects.
– If A makes the re-encryption query such that IDi = ID∗, then C rejects.

Guess. Finally, A outputs a guess d′ ∈ {0, 1}.

The adversary A wins if d′ = d. An identity-based proxy re-encryption system
is secure in the sense of IND-ID-CPA if |Pr[d′ = d] − 1/2| is negligible.

Definition 5. Let A be an adversary against the identity-based proxy
re-encryption system. Define the IND-ID-CPA advantage of A as follows.

Advid
ibp(A) = 2(Pr[d′ = d] − 1/2). (4)

We say that an identity-based proxy re-encryption system is (k, t, q, ε) adaptive
chosen plaintext secure if for any t time IND-ID-CPA adversary A that makes
at most q chosen queries under a security parameter k we have that Advid

ibp(A) <
ε. As shorthand, we say that an identity-based proxy re-encryption system is
(k, t, q, ε) IND-ID-CPA secure.
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We define the selective adversary who is identical to the above adversary except
that it discloses to the challenger the target identity ID∗ before the setup. This
yields that the adversary might make queries for ID∗ in Phase 1. We denote
the selective IND-ID-CPA by IND-sID-CPA and the advantage of the selective
adversary by Advsid

ibp . The definition is as same as that of Definition. 5.

4.3 Construction

Let the PKG employ a digital signature scheme (KeyGenΣ ,Sign,Verify). Our
identity-based proxy re-encryption system involves BB-IBE system described in
Sec. 3.3 and the following algorithms.

– The delegation system:
EGen(skID, parms). Given skID = (d0, d1) = (gα

2 (gID
1 h)u, gu) with parms,

set eID = d1.
KeyGenRKG(mk, parms). Given mk = α with parms, set skR = α.
KeyGenPRO(skR, eID′ , parms, ID, ID′). Given skR = α, eID′ = gu′

with
parms, set rkID→ID′ = (ID → ID′, gu′α).

ReEnc(rkID→ID′ , parms,CID, ID, ID′). Given the delegator’s identity ID, the
delegatee’s identity ID′, rkID→ID′ = (ID → ID′, gu′α), CID = (C1, C2, C3)
with parms, re-encrypt the ciphertext CID into CID′ as follows.

CID′ = (C′
1, C

′
2, C

′
3) =

(
C1, C2, C3ê(C ID′−ID

1 , gu′α)
)
∈ G

2 × G1.

Check(parms,CID, ID). Given the delegator’s identity ID and CID = (C1,
C2, C3) with parms, compute v0 = ê(C1, g

ID
1 h) and v1 = ê(C2, g). If

v0 = v1 then output 1. Otherwise output 0.

In this system, we let the PKG set mk = α while mk = gα
2 described in

Sec. 3.3.

Remark: We consider the case that a malicious player modifies a target cipher-
text CID∗ = (gr∗

, (gID∗

1 h)r∗
,M∗ê(g1, g2)r∗

) into the different ciphertext for ID
(for short CID) such that she can derive some information about M∗ from the
underlying message of CID by utilizing the proxy as an oracle. The algorithm
Check prevents such modification where ID 
= ID∗ because passing through the
check implies that CID is the form of CID = (gr, (gID

1 h)r,Mê(g1, g2)r), and it
is obviously hard to make such modification since the underlying BB-IBE is
semantically secure.

4.4 Security Analysis

In this section, we show that the proposed system is semantically secure.

Theorem 2. Suppose that the (k, t, ε)-dBDH assumption holds and the PKG’s
digital signature scheme is (k, t′, q, ε′)-strong existentially unforgeable. Then the
identity-based proxy re-encryption system is (k, t′′, q, ε′′) IND-sID-CPA secure
for any q, k, ε′′ ≤ ε + ε′, and t′′ + t′ < t − Θ(τeq + τsq + τvq) where τe is the
maximum time for an exponentiation in G, τs is the maximum time for running
Sgin, and τv is the maximum time for running Verify.
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Proof. Let A be an adversary against the identity-based proxy re-encryption
system in the IND-sID-CPA sense. We construct an adversary B which solves
the dBDH problem in G by utilizing A. Providing that B is given an input
(g, Γ1, Γ2, Γ3, X) = (g, ga, gb, gc, X), where X = ê(g, g)abc or X = R

R← G1. We
describe how B works in the following.

Initialization. The selective identity game begins with A first outputting a
target identity ID∗. B generates two blank lists SKL and RKL.

Setup. B selects a (k, t′, q, ε′)-strong existentially unforgeable digital signa-
ture scheme (KeyGenΣ ,Sign,Verify) and generates (skΣ , vkΣ) by running
KeyGenΣ . To generate the system parameters, algorithm B picks z R← Z∗

p

and sets g1 = Γ1, g2 = Γ2, h = g−ID∗

1 gz, and parms = (g, g1, g2, h). B gives
(parms, vkΣ) to A. Note that the corresponding PKG’s master-secret key,
which is unknown to B, is ga

2 = gab ∈ G.
Phase 1. Given parms and vkΣ , A asks some queries to the challenger. When

A queries the challenger, B works as follows.
– Secret key queries. Suppose that A queries the challenger at a point

IDi. If IDi = ID∗ then B rejects the query. Otherwise, B selects ri
R← Z

∗
p,

and sets

skIDi
= (d0, d1) =

(
g

−z
IDi−ID∗

2 (gIDi−ID∗

1 gz)ri , g
−1

IDi−ID∗

2 gri
)

and eIDi
= d1. B computes Sign(skΣ , IDi||eIDi

) = σei , and returns
(skIDi

, IDi||eIDi
, σei ) to A. B adds the query and the answer to the list

SKL.
– Type-1 re-encryption key queries. When A queries the challenger

about IDi → ID′
i, B selects r′i

R← Z∗
p, sets rkIDi→ID′

i
= (IDi → ID′

i, g
r′

i
1 ) and

eID′
i
= gr′

i . B generates a signature σe′
i
for ID′

i||eID′
i
by running Sign. B re-

turns rkIDi→ID′
i
with (ID′

i||eID′
i
, σe′

i
) to A. B adds (rkIDi→ID′

i
, ID′

i||eID′
i
, σe′

i
)

to the list RKL.
– Type-2 re-encryption key queries. Suppose that A queries the chal-

lenger about (IDi → ID′
i, ID

′
i||eID′

i
, σe′

i
). If the IBE secret key skID′

i
cor-

responding to (ID′
i||eID′

i
, σe′

i
) is in the list SKL then B rejects the query.

Otherwise,
• If rkIDi→ID′

i
corresponding to (ID′

i||eID′
i
, σe′

i
) is in the list RKL then

B returns rkIDi→ID′
i

to A.
• Otherwise, B computes v = Verify(vkΣ , ID′

i||eID′
i
, σe′

i
).

∗ If v = 1 then B halts.
∗ Otherwise, B rejects the query.

– Re-encryption queries. Suppose that A queries C about (skID′
i
, CIDi

,

IDi → ID′
i) where CIDi

= (C1, C2, C3). If skID′
i

is not in the list SKL
or IDi = ID∗ then B rejects the query. Otherwise B computes v0 =
ê(C1, g

IDi
1 h) and v1 = ê(C2, g).
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• If v0 
= v1 then B rejects the query.
• Otherwise, B generates a secret key skIDi

= (d0, d1) as the way of that
at Secret key queries. B decrypts CIDi to obtain the plaintext Mi

by using skIDi
. B sets CID′

i
= (C1, C2,Miê(C1, d

′
0)/ê(C2, d

′
1)) where

d′0 and d′1 are components of skID′
i
. B returns CID′

i
to A.

Challenge. After some queries, A selects two equal length plaintexts M0,M1 ∈
M. Given (M0,M1), B selects d R← {0, 1} and sets

CID∗
d

= (Γ3, Γ
z
3 ,MdX).

B returns CID∗
d

to A. Notice that if X = ê(g, g)abc = ê(g1, g2)c then CID∗
d

is a
valid encryption of Md. On the other hand, if X is uniform and independent
in G1 then CID∗

d
is independent of d in the adversary’s view.

Phase 2. A continues to issue queries as in Phase 1, and B responds as before.
Solve. Finally, A outputs a guess d′ ∈ {0, 1}. B concludes its own game by

outputting a guess as follows. If d′ = d then B outputs 1 meaning X =
ê(g, g)abc. Otherwise, it outputs 0 meaning X = R.

We claim that B generates the valid secret key skIDi
for IDi. To see this, let

ũi = ri − b
IDi−ID∗ . Then we have that

skIDi = (d0, d1) =
(
g

−z
IDi−ID∗

2 (gIDi−ID∗

1 gz)ri , g
−1

IDi−ID∗

2 gri

)

=

(
ga
2(gIDi−ID∗

1 gz)ri

(gIDi−ID∗

1 gz)
b

IDi−ID∗
, g

ri− b
IDi−ID∗

)

=
(
ga
2 (gIDi−ID∗

1 gz)ri− b
IDi−ID∗ , g

ri− b
IDi−ID∗

)

=
(
ga
2 (gIDi

1 h)ũi , gũi

)

We also claim that B can perfectly simulate the re-encryption key for IDi since
it looks random and independent of any other values if the adversary does not
obtain the corresponding IBE secret key for IDi.

B fails to simulate the challenger if B halts in the Type-2 re-encryption key
query. Otherwise B perfectly simulates the challenger. The maximum probability
of that B halts is obviously upper-bounded by Adveu(A). Therefore, we conclude
the theorem.

4.5 Toward the Chosen Ciphertext Security

Green and Ateniese [GA06] proposed the semantically secure identity-based
proxy re-encryption system and constructed the CCA-secure system based on
the former system, applying CHK conversion [CHK04] to it. It might be able to
construct the CCA-secure system based on our proposed system by using the
same technique. It is the further study.
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5 Conclusion

In this study, we proposed two proxy re-encryption systems; one for the de-
cryption right delegation from a PKE user to IBE users, and the other one
for the delegation among IBE users. The former is the first “hybrid ”proxy
re-encryption system, and the latter has some advantage over the previously
proposed identity-based systems. We introduced the security notion and proved
that both our systems are semantically secure based on the dBDH assumption, in
the standard model. We presented neither a hybrid system nor an identity-based
system secure in the CCA sense. This is the further study.
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A Lemma 1

Boneh and Boyen [BB04a] proved BB-IBE system being semantically secure if
both components of secret key remains secret; however we can prove that the
disclosure of second component of BB-IBE secret key does not make BB-IBE
system weak.

Lemma 1. Suppose that the BB-IBE system is (k, t, q, ε) selective-identity,
adaptive chosen plaintext (IND-sID-CPA) secure, then, for any q, k, and t′ <
t−Θ(τq), BB-IBE system is (k, t′, q, ε) IND-sID-CPA secure against the adver-
sary specified in Sec. 2.5 but it obtains the second component of IBE secret key
for any identity it selects where τ is the maximum time for an exponentiation in
G.

Proof. Let A be an IND-sID-CPA adversary specified in Sec. 2.5 but it obtains
the second component of IBE secret key for any identity it selects. We construct
an original IND-sID-CPA adversary B by utilizing A. We describe how B works
in the following.

Initialization. When A selects the target identity ID∗, B forwards it to its
challenger. B selects a random u ∈ Z∗

p and gives gu to A whenever A requests
the second component of the secret key for ID∗.

Setup. On receiving public parameters parms from the challenger, B forwards
it to A.

http://eprint.iacr.org/2006/473
http://eprint.iacr.org/2006/473
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Phase 1. When A requests the secret key for ID, B forwards the request to the
challenger. B obtains the corresponding secret key and forwards it to A.
When A requests the second component of secret key for ID, B requests the
secret key for ID from the challenger. B obtains the corresponding secret key,
then forwards its second component to A.

Challenge. When A selects (M0,M1), B forwards it to the challenger. B ob-
tains the challenge ciphertext and forwards it to A.

Phase 2. A continues to issue queries as in Phase 1 with the restriction that
A cannot issue secret key queries for ID∗. B responds the queries as in Phase
1.

Guess. If A outputs a guess b̃ ∈ {0, 1}, B outputs b̃.

It is obvious that B wins the game whenever A wins. We conclude the proof.
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Abstract. This paper presents a formal model for fair blind signature
schemes and a provably secure scheme based on bilinear maps. A blind
signature scheme is a protocol for obtaining a signature on a message
which is unknown from the signer. Furthermore, the signer cannot link
his transcript of a protocol to the resulting message-signature pair. Fair
blind signatures were introduced by Stadler et al. at Eurocrypt’95 in [37].
A fair blind signature scheme is a blind signature scheme allowing two
types of blindness revocation: link a signature to the session which con-
ducted this signature (Session Tracing) or, conversely, identify a signa-
ture knowing a signing session (Signature Tracing). Various fair blind
signature schemes have been proposed in the past years, but none of
them presents a secure fair blind signature scheme that allows polyno-
mially many signatures to be securely issued, even if Abe et al.’s claimed
it in [3]. In this paper, we first show a flaw in the blindness of most (fair)
blind signature schemes where the signer is able to link signatures if he
chooses his keys in an appropriate way. Then, we show a flaw in the proof
of unforgeability of Abe et al.’ scheme and propose a stronger security
model than theirs. It possesses all the needed properties for fair blind
signature schemes: blindness, traceability and non frameability for both
revocations (the one-more unforgeability is implied by these properties).
Finally, we describe a new fair blind signature scheme based on bilinear
maps. This scheme thwarts the flaw against previous blind signatures
and is proved secure in the random oracle model with respect to our
model.

Keywords: Blind signatures, Anonymity Revocation, Security Model,
electronic voting.

1 Introduction

The concept of blind signature was introduced by Chaum in 1982 [14]. The goal of
a blind signature protocol is to enable a user to obtain a signature from a signer so
that the signer does not learn any information about the message he signed. It also
assures that the user cannot obtain more than l valid signatures after l interactions
with the signer, even if the signatures are issued in an adaptive and concurrent
manner (making parallel attacks impossible). The security of blind schemes have
been formalized in [24] and [34]. In [24], the authors proved the existence of se-
cure blind signatures assuming the one-way trapdoor family. Unfortunately, their
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construction is only theoretical. Practical and secure blind signature schemes have
been proposed by Pointcheval and Stern ([34], [35]). In particular, they show that
blind signature schemes coming from witness-indistinguishable protocols (such
as the Okamoto version [30] of the Schnorr and Guillou-Quisquater identification
schemes) are secure in the random oracle model, as long as the number l of issued
signatures is polylogarithmically bounded (i.e., l ≤ (log k)c, where k is a security
parameter and c a constant).

In [33], Pointcheval presents a generic transformation that renders schemes
restricted to issue logarithmically many signatures (such as [35]) into stronger
ones that can securely issue polynomially many signatures, at the cost of two
extra data moves. As the underlying schemes require three data moves, the
resulting schemes need five moves of data between the signer and the user.
Moreover, these modified schemes are proved secure against restricted forms
of parallel attacks.

Those signatures are used in electronic voting systems (e.g. the Votopia sys-
tem [21]) and e-cash [14]. But in a blind scheme, there is no way of going back
once the signature has been issued. For some applications (such as e-cash), we
need to be able to trace the signatures or the users to avoid frauds (money-
laundering, black mailing, . . .). This is where fair blind signatures came up.

Fair blind signature schemes (FBSS for short) were introduced by Stadler
et al. at Eurocrypt’95 in [37]. These schemes involve four types of protagonists:
a user U , a signer S, a Revocation Authority RA and a Judge J. If needed, the
Revocation Authority is able to revoke the blindness in two ways:

– given a transcript of a signature issuing session conducted with an authen-
ticated user, the authority can identify the resulting signature (Signature
Tracing), or

– given a signature, the authority can identify the issuing session that yielded
the signature, which eventually identifies the user who conducted the session
(Session or Identity Tracing1).

The Revocation Authority also produces a proof of his claims to the Judge. The
Judge can be summoned to testify the validity of the revocations.

Various FBSS have been proposed so far with direct applications to fair
e-cash ([12], [22]) and to electronic voting [13]. Stadler et al. presented in [37]
three schemes using the Cut and Choose method or Oblivious Transfer, but
this led to inefficient schemes and the second scheme was proved insecure there-
after [38]. Brickell et al. proposed the same year an anonymous electronic
payment scheme using fair blind signatures [9], but their construction was not
efficient either. Other schemes ([20], [16]) have been proposed but they do not
provide formal proofs.

More recently, new blind signature schemes have been proposed. In [10],
Camenisch et al. present the first efficient blind signature scheme secure in the
standard model, but proven unforgeable only for the case of sequential attacks. In

1 Depending on the applications, one might find more convenient to recover the user’s
identity immediately from the signature.
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[29], Okamoto presents a new efficient signature scheme based on bilinear maps.
He then turns it into a partially blind signature scheme and proves its security
under the 2SDH assumption (introduced in his article). The proofs are made
without random oracles. Kiayias et al. also present in [26] a new blind scheme
which is also proven secure without random oracle, in the common reference
string model. The security of their scheme is based on the LRSW assumption
(introduced in [28]). They also turn the scheme into a partially blind signa-
ture scheme. Two generic constructions for blind signatures have been proposed
recently ( [18], [23]) and the two articles present generic schemes and formal
models for blind signatures. Our aim is to work on a variant of blind signatures,
the so-called FBSS, and none of these schemes fits the definition of FBSS.

The most interesting scheme concerning FBSS was proposed by Abe and
Ohkubo [3] and is based on the blind signature scheme of Abe [1]. This scheme
is efficient and its security relies on the discrete logarithm problem. Abe and
Ohkubo present in this article, the first security model for FBSS and attempt
to prove in the random oracle model that their scheme allows a polynomial
number of signatures to be securely issued. However this model does not possess
all the requirements of FBBS (such as non Frameability) and some definitions
are incomplete2. To overcome these defects, we define a new security model.

Our Contribution: In this article, we design an attack against (fair) blind
signature schemes based on Schnorr’s authentication scheme [36]. We also show
that Abe and Ohkubo failed to prove the claimed polynomial security of their
scheme. We then present a new security model for FBSS which is an improvement
of Abe and Ohkubo’s model [3]. It defines all the needed properties for FBSS and
details the attacks conducted by the attacker. We looked at traceable signatures
(introduced in [25]) and group signatures security model (as proposed in [7])
to formalize our definitions. But these two models are not meant for fair blind
signatures and this is why we need to redefine some of the properties and add the
missing ones. In the perspective of presenting a secure FBSS we then describe
a new scheme using bilinear maps and prove its security with respect to our
model. This scheme is not generic but is quite efficient and its security is based
on a formal model, and holds even when multiple executions of the protocol are
performed concurrently (i.e. in an arbitrarily-interleaved manner). We rely on
the join protocol of Boneh et al. group signature scheme [8] to build our system.
This implies that our security is based on the q-SDH assumption [8].

Organization of the Paper: In Section 2, we describe the flaw of most of
the previous (fair) blind signature schemes. In Section 3, we explain why the
security analysis (proof of unforgeability) of [3] is wrong. In Section 4, we recall
some mathematical tools and cryptographic protocols useful to our construction.
In Section 5, we present the security model for fair blind signature schemes. In
Section 6, we present our new fair blind signature scheme. Finally, we briefly
describe in Section 7 the security analysis of our scheme. We detail the proofs
of security in the appendix.
2 For example, they do not give the access to adversary to several oracles.
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2 A Flaw in Blind Signature Schemes

In this part, we see how it is possible for a signer to link signatures by choosing
his keys in a particular way. We will use the Schnorr’s blind signature scheme for
our attack, but this works for any Schnorr like (fair) blind signature scheme (see
[31] for the constructions). This kind of attack has been studied for ElGamal
based schemes ([27]) but not blind schemes.

In a normal execution of the protocol, the signer’s keys are (x, h) where x ∈ Z
∗
q

and h = gx mod p (p is a prime number assumed to be chosen at random so
that p − 1 as a large prime factor q). In this attack, we assume the signer is
dishonest and he chooses his keys in a special way. He first chooses x ∈ Z∗

q . Then
he computes its modified public key as h := βgx mod p where g is of order q
mod p and β is of small order mod p.

Aim of the Signer. During this attack the signer is able to link the signatures
he produced to the corresponding requesting users. We describe it with two users.

S

a0 = βgω0 mod p

ω0 ∈R [0, q − 1]

r0 = ω0 − c0x mod q

λ0, μ0 ∈R [0, q − 1]

c0 = c′
0 − μ0 mod q

a′
0 = a0gλ0hμ0 mod p

Verification

Signature: σ0 = (c′
0, r′

0)

gr0hc0 ?= a0 mod p

c′
0 = H(m0||a′

0)

r′
0 = r0 + λ0 mod q

gr′
0hc′

0 ?= a′
0 mod p

U0

c0

a0

r0

Fig. 1. Schnorr Protocol with dishonest signer - User U0

U1

λ1, μ1 ∈R [0, q − 1]

c1 = c′
1 − μ1 mod q

a′
1 = a1gλ1hμ1 mod p

Verification

Signature: σ1 = (c′
1, r′

1)

gr1hc1 ?= a1 mod p

c′
1 = H(m1||a′

1)
r1

r′
1 = r1 + λ1 mod q

gr′
1hc′

1 ?= a′
1 mod p

c1

a1
a1 = gω1 mod p

ω1 ∈R [0, q − 1]

r1 = ω1 − c1x mod q

S

Fig. 2. Schnorr Protocol with dishonest signer - User U1
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In a first part, the signer S interacts with the user U0 and with non negligible
probability the verification algorithm succeed. Then, the signer interacts with
the user U1 and this time too, the probability of the verification algorithm to
succeed is not negligible. Then the signer seeing the two blind signatures is able
to link the signatures to the users.

Description of the Attack. In a first part, the signer conducts his attack with
the user U0. The protocol is played as described in figure 1.

To succeed, the signer need the verification equation of the user and the
verification protocol to be correct. For simplicity, we omit the subscripts.

grhc = (gω−cx)hc mod p = gωβc mod p = βgω if c ≡ 1 mod ord(β) = a

gr′
hc′

= gr+λhc+μ mod p = gλhμgωβc mod p = a′ if c ≡ 1 mod ord(β)

His probability of success is of 1/(ord(β)).
For the user U1, the protocol is described in figure 2. This time, the signer

is playing the real protocol, but still with his modified keys. As previously, his
probability of success is: 1/(ord(β)).

When seeing the two signatures σ0, σ1, the signer is able to distinguish them
by computing a′qi mod p. If it is equal to 1, he knows that the signature belongs
to U1 otherwise it is to U0. This attack succeeds with probability (1/ord(β))2.

To avoid this attack the user need to check whether if hq ≡ 1 mod p when he
receives h.

3 Abe and Ohkubo Scheme

In this section, we show a flaw in the security proof of one-more unforgeability
of [3]3. In fact, the proof of one-more unforgeability in [3] relies on the one
described in [1]. So, we will only explain why the latter is wrong.

The situation is as follows. Suppose that we have an adversary that is success-
ful in one-more forgery. During its attack, it will receive a sequence of challenges,
say D = (d1, . . . , dn). Assume that if we launch a rewinding simulation with ran-
domly chosen D and D′, we get a “collision” which allows us to solve the discrete
logarithm problem. But, suppose that what we can do in our simulation is to
alter only one element of D to generate D′ due to some technical reason.

Let D′
i be a sequence that differs only in the i-th position in D. That is,

D′
i = (d1, . . . , d

′
i, . . . , dn) where d′i is randomly chosen. In [1] Abe claimed that

such D′
i and D still result in a collusion, but it was not correct. It might exist

an adversary that is successful in one-more forgery for sufficiently many D such
that, for any i and any Di, D and D′

i will not yield a collision, i.e., the adversary
fails in one-more forgery with D′

i. Such a bad case does not happen when the
success probability of the adversary, say ε, is 1. But it might be the case if ε is for
example < 1/2. Anyway, a proof that only denies the existence of such a highly
efficient adversary is not significant enough to state security. The mistake comes
3 Due to the lack of space, we do not describe the scheme.
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from the evaluation of success probability of his reduction (case 2 of lemma
2 in [1]). In this case 2 of lemma 2, Abe evaluates the probability P for the
adversary to output two valid signatures (with distinct δ values4) when it has
received D and D′

i. He claimed that this probability is not negligible (and if P
was not negligible, we could effectively solve the discrete logarithm problem) (see
case 2 of lemma 2 in [1] for more details). However, he only proves the following
fact: randomly chosen d1, d2, . . . , di−1, di+1, . . . , dn satisfies:
P := Prd′

i
[D andD′

i lead to two valid signatures with distinct δ values] ≥ ψmax

with probability ≥ 1−ψmax (see [1] for the signification of ψmax). Since in case
2 of lemma 2, ψmax is assumed to be negligible, the above relation is of no help
to conclude that P is not negligible.

The fact that the main theorem (theorem 3 and especially lemma 2) is in-
correct has been confirmed by Abe himself in [2]. He also informed us that he
did not find a fix for this problem. However, since his scheme is witness indis-
tinguishable, a proof from the full version of [4] applies to this variant, though
it only states poly-logarithmic security.

4 Preliminaries

4.1 Notation and Mathematical Tools

– Proofs of knowledge: we note Pok(α : f(α, . . .)) the proof of knowledge of a
value α that satisfies the predicate f . We also use signatures of knowledge
which are derived from proofs of knowledge, using the Fiat-Shamir heuristic
( [17]).

– Bilinear maps: the bilinear maps used in cryptography are the Weil and Tate
pairings on some elliptic curves. Let G1and G2 be two groups of order some
large prime q, denoted multiplicatively and GT a cyclic multiplicative group
with the same order.
An admissible bilinear map is a map e : G1 × G2 → GT that is:

- bilinear: e(ga, hb) = e(g, h)ab for all (g, h) ∈ (G1,G2) and all a, b ∈ Z,
- non-degenerate: for g and h two generators of G1 and G2, we have
e(g, h) 
= 1,

- computable: there exists an efficient algorithm to compute e(g, h) for any
(g, h) ∈ (G1,G2).

4.2 Double ElGamal Encryption

The ElGamal encryption is an IND-CPA scheme but it is known that by double
encrypting the same message under an IND-CPA scheme and using a simulation-
sound proof of equality of plaintext we obtain an IND-CCA2 scheme. In our
scheme, we need an IND-CCA2 scheme, and we will use the double ElGamal
encryption. This double encryption was proved IND-CCA2 in [19].

4 See [1] for the signification of δ.
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Let p be a strong prime, such that q|p− 1 is also a large prime, and g be an
element of Z∗

p of order q. We denote by G, the subgroup of Z∗
p of elements of order

q. For the double ElGamal encryption, the private and public keys are (x, y)
∈ Z2

q , (h1 = gx, h2 = gy). The double ElGamal encryption is two encryptions of
the message Encrypt2EG

pk (m) = (gr,m.hr
1, g

s,m.hs
2) = (T1, T2, T3, T4) along with

a simulation-sound proof of equality of plaintexts. The decryption is given by
Decrypt2EG

sk (T1, T2, T3, T4) = T2.(T x
1 )−1 = T4.(T

y
3 )−1, and the verification that

the proof is correct.

4.3 Paillier Encryption and Extractable Commitment

In our scheme, we employ the public-key encryption scheme introduced by Pail-
lier [32]. Let p and q be random primes for which p, q > 2, p 
= q, |p| = |q| and
gcd(pq, (p−1)(q−1)) = 1; let n = pq, π = lcm(p−1, q−1),K = π−1mod n, and
g = (1+n); then the public key is pk = (n, g) and the secret key is sk = (p, q).To
encrypt m ∈ Zn, the user chooses r ∈R Z∗

n and M = EncryptPaipk (m, r) is
given by M = gmrnmod n2. The decryption algorithm, DecryptPaisk , is given
by DecryptPaisk (M) = (MπKmodn2)−1

n mod n = m.

Commitment Schemes. A commitment scheme consists of three algorithms:

– A public key generation algorithm Gen, pk ← Gen
– A commitment algorithm Com which is used to produce a commitment on

a message m and the decommitment information r, (c, r)← Compk(m)
– A decommitment algorithm Decom which is used to verify the decommit-

ment information r and the message m with respect to the commitment c,
{0, 1} ← Decom(c,m, r).

A commitment scheme satisfies two properties: hiding, the receiver can not ob-
tain any information about m given Compk(m, r), and binding, the committer
cannot change his mind about m later.

In an extractable commitment, there is a trapdoor information xk associated
to each public key pk that allows the trapdoor owner to compute m from any
Compk(m, r). Paillier encryption scheme can be used as such an extractable
commitment.

4.4 Computational Assumptions

We use the following computational assumptions to prove the security of our
scheme.

Definition 1 (The Decisional Composite Residuosity assumption)
There is no p.p.t. distinguisher for n-th residues modulo n2. In other words,
there is no p.p.t. adversary that can distinguish Zn

n2 from Z∗
n2 , where Zn

n2 =
{z ∈ Z∗

n2 |∃y ∈ Z∗
n2 : z = ynmod n2}.



Fair Blind Signatures Revisited 275

Definition 2 (q-Strong Diffie-Hellman assumption)
Let G1 and G2 be two groups of order some large prime, and ψ be an isomorphism
ψ : G2 → G1. Let γ be a random element of Zp, g2 be a random generator of G2

and g1 = ψ(g2) ∈ G2.
We say that an algorithm A has advantage ε in solving q-SDH in (G1,G2) if

Pr
[
A(g1, g2, g

γ
2 , . . . , g

(γq)
2 ) = (g

1
γ+x

1 , x)
]
≥ ε

The (q, t, ε)-SDH assumption holds in (G1,G2) if no t-time algorithm has ad-
vantage at least ε in solving the q-SDH problem in (G1,G2).

Definition 3 (The eXternal Diffie-Hellman assumption)
Given three groups G1,G2,GT as well as a bilinear map e : G1 × G2 → GT

while the DDH problem is easy in G2, the XDH assumption states that the DDH
problem is hard in G1.

5 A Model for Dynamic Fair Blind Signature Schemes

In this section, we redefine the properties of Abe et al.’s model and add new
properties to ensure the security of FBSS. We construct a formal model and
describe the experiment for each property. We use the formalism and notations
introduced in [7] to achieve our goal.

5.1 Algorithms and Their Usage

– GS is a signer key generation algorithm that takes on input the security
parameter k and that outputs a private and a public signer key, respectively
denoted by skS and pkS : (skS, pkS) ← GS(1

k).
– GRA is a revocation key generation algorithm that takes on inputs the pub-

lic key pkS of a signer and the security parameter, and that outputs a
private and a public revocation key, respectively denoted by rsk and rpk:
(rpk, rsk) ← GRA(1k, pkS).

– GU is a user key generation algorithm that takes on inputs the public key pkS

of a signer and the identity Iid of a user U and that outputs a private and a
public user key respectively denoted by uskIid

and upkIid
5: (upkid, uskid) ←

GU (1k, pk).
– Sig is an interactive protocol between the signer S that takes on input his

private key, and a user U that takes on input his message m, his private
key and his identity Iid. If S accepts the protocol, his output is a transcript
viewi of the protocol. If U accepts the protocol, his output is a couple (m,σ),
where σ is a signature on m. Otherwise, the protocol fails.

– Vf is a verification algorithm that takes on inputs a message m, a signature
σ and the signer’s public key pkS . It outputs 1 if σ is a valid signature of m
with respect to pkS , and 0 otherwise.

5 The user public key and his identity can be set to be the same.
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– Rsig is a revocation algorithm that takes on inputs the transcript viewi of
the signer during the target session and the revocation key rsk, and outputs
the signature identifier Isig that identifies the signature yielded from the
target session, plus a proof π1 that the identifier was correctly computed:
(Isig , π1) ← Rsig(viewi, rsk).

– Rid is a revocation algorithm that takes on inputs a target message/signature
pair Σm and the revocation key rsk, and outputs the identifier Iid of the
session from which the target signature-message pair has been obtained, plus
a proof π2 that Iid was correctly computed: (Iid, π2) ← Rid(Σm, rsk).

– Msig (resp. Mid) is a matching algorithm that examines whether Isig (resp.
Iid) matches a message/signature pair Σm (resp. an identity Iid of a user)
or not and if the proof is valid. It outputs 1 if they match and the proof is
correct, and 0 if otherwise.

The scheme is specified as a tuple: FBSS = (GS ,GRA, GU , Sig, Vf , Rsig ,Rid,
Msig,Mid).

5.2 The Oracles

The correctness and security definitions are formulated via experiments in which
the attack capabilities of the adversary are modeled by providing him access to
some of the oracles. We use the following notation:

– HU is the set of honest identities and CU is the set of corrupted identities,
– Set is the set of message/signature pairs obtained with honest users. We call

these signatures honest signatures.
– Trans is the set of transcripts6.

We now formalize the different oracles:

– AddU(.) is a add user oracle. By calling this oracle with argument an identity
Iid, the adversary adds a new identity. The oracle adds Iid to the set HU
and computes his public key upkIid

. His private key, uskIid
, is kept secret

and the adversary is returned upkIid
.

– CrptU(., .) is a corrupt user oracle. The adversary calls this oracle with ar-
gument the identity Iid of a user and sets his public key to upkIid

and his
private key to uskIid

. The identity is added to the set CU.
– USK(.) is a user secret key oracle enabling the adversary to obtain the private

key uskIid
of an identity Iid. This identity is then put in the set CU.

– User(., ., .) is an honest user signing oracle. This oracle is used to simulate
an execution of the protocol between a corrupted signer and an honest user.
The adversary gives to the oracle an identity Iid of an honest user and his
public key upkIid

. If the user accepts the protocol, the adversary is given a
transcript of the protocol which is added to Trans, and the tuple (m,σ, Iid)
is added to Set.

6 Note that, even if the protocol fails, the associated transcript lies in Trans.
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– Sign(., .) is a signing oracle. We use this oracle to simulate an execution of
the protocol between a (corrupted or not) user and an honest signer. This
oracle enables the adversary to specify an identity Iid and a message m, and
then it executes the signing protocol using this identity. If both the signer
and the user accept the protocol, then the adversary is given the signature
σ corresponding to the identity Iid and a transcript of the execution which
is added to Trans.

– Chooseb(., ., ., .) is a challenge oracle. The adversary provides two identities
Iid0 and Iid1 and a message m. The adversary obtains the signature of m
of Iidb

as long as they define honest users. The oracle records the message
and the users to ensure that the adversary does not later call a traceability
oracle on them.

– Tsig(.) (resp. Tid(., .)) is a signature ( resp. identity) traceability oracle. The
adversary can call this oracle with arguments a transcript of a session (resp.
a message/signature pair of a user) to obtain the output of the Rsig (resp.
Rid) algorithm.

5.3 Notions of Security

In this part we define the experiments defining the properties of security of our
scheme.

Correctness
The correctness implies that a valid signature σ on a message m with respect
to pkS will always be accepted. The revocation algorithms, given either the
signature/message pair or the transcript of the target session must correctly
identify the user who performs the signature, or the signature/message pair.
We formalize correctness via an experiment involving an adversary. To any fair
blind signature scheme FBSS, any adversary A and any k ∈ N, we associate the
experiment Expcorr

FBSS,A(k); and the advantage is

Advcorr
FBSS,A(k) = Pr[Expcorr

FBSS,A(k) = 1].

We say that the FBSS is correct if we have Advcorr
FBSS,A(k) = 0 for any adversary

A and any k ∈ N.

Experiment Expcorr
F BSS,A(k):

(pkS , skS) ← GS(1
k); (rpk, rsk) ← GRA

HU ← ∅; CU ← ∅; Trans ← ∅
(m, Id)← A(pkS , rpk, AddU)
if Id /∈ HU then return 0 if usk = ε then return 0
σ ← Sig(Id,m, usk)
if Vf(pkS , m, σ) = 0 then return 1
if ∀viewi ∈ Trans, (Ii

sig, πi
1) ← RSig(viewi, rsk) and MSig(I

i
sig, (m, σ), πi

1) = 0
then return 1
(Iid, π2) ← Rid(m,σ)
if Iid �= Id or Mid(Iid, i, π2) = 0 then return 1
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Blindness
The blindness implies that no one is able to extract valuable information from
a message/signature pair or to link two message/signature pairs. To fair blind
signature scheme FBSS, any adversary A, a bit b ∈ {0, 1} and any k ∈ N, we
associate the experiment Expblind−b

FBSS,A(k); and the advantage is

Advblind
FBSS,A(k) = Pr[Expblind−1

FBSS,A(k) = 1] − Pr[Expblind−0
FBSS,A(k) = 1].

We say that the FBSS is blind if the function Advblind
FBSS,A is negligible for any

polynomial-time adversary A.
In this experiment, A has access to the private key of the signer, skS and is

able to create honest and corrupted users (via the oracles AddU,CrptU,USK).
Using the User algorithm A can interact with honest users. At some point7,
the adversary chooses two users and a message and, using the Chooseb oracle,
receives a signature. The adversary returns a bit b.
Experiment Expblind−b

F BSS,A(k)

(pkS , skS , rpk) ← GS(1
k)

(rpk, rsk) ← GRA(1
k)

b′ ← A(pkS , skS : AddU, CrptU, USK, Chooseb, User, TSig, TSid)
return b′

Traceability
Identity Tracing. The adversary wants to produce a new valid signature which
cannot be linked to an identity. We formalize the identity tracing via an experi-
ment involving an adversary. To fair blind signature scheme FBSS, any adversary
A and any k ∈ N, we associate the experiment ExpIdTrac

FBSS,A(k); and the advan-
tage is

AdvIdTrac
FBSS,A(k) = Pr[ExpIdTrac

FBSS,A(k) = 1].

We say that the FBSS is identity traceable if AdvIdTrac
FBSS,A is negligible for any

polynomial-time adversary A.
The adversary can create both honest and corrupted users and obtained pri-

vate keys of users of his choice (via the oracles AddU,CrptU,USK). He can also
ask for signatures to an honest signer on messages of his choice, playing with
honest or corrupted users (via the oracle Sign). At the end of the experiment he
outputs a new message/signature pair and we say he wins if the identity revo-
cation algorithm gives a non valid answer (which means that the Iid returned
by Rid does not have the proper construction) or if the Judge is not able to
find a match in the database of users identities (meaning that Mid returns 0
for the message/signature pair). We assume in this attack, that RA is not fully
corrupted (it could indeed simply refuse to trace an identity), however, A has
access to rsk, the private key of RA.

7 The adversary is allowed to query several times the oracle Chooseb, but as explained
in [7], we can restrict our experiment to adversaries that make exactly one query to
this oracle.
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Experiment ExpIdTrac
F BSS,A(k):

(pkS , skS) ← GS(1
k); (rpk, rsk) ← GRA(1

k)
(m, σ) ← A(pkS , rpk, rsk : AddU, CrptU, USK, Sign)
if Vf(pkS , m, σ) = 0 then return 0
Rid(m, σ, rsk) = (Iid, π2)
if Iid =⊥ or Mid(Iid, m, σ, π2) = 0 then return 1 else return 0

Signature Tracing. The adversary wants to produce a valid message/signature
pair such that the signer cannot give a transcript which traces this signature,
or outputs two signatures linked to the same transcript. We formalize the iden-
tity tracing via an experiment involving an adversary. To fair blind signature
scheme FBSS, any adversary A and any k ∈ N, we associate the experiment
ExpSigTrac

FBSS,A(k); and the advantage is

AdvSigTrac
FBSS,A(k) = Pr[ExpSigTrac

FBSS,A(k) = 1].

We say that the FBSS is signature traceable if AdvSigTrac
FBSS,A is negligible for any

polynomial-time adversary A.
The adversary can create new honest users, he can also create a group of cor-

rupted users and interacts with an honest signer. All the transcripts are put in the
Trans set. At the end of the experiment, two cases might happen. Firstly, A out-
puts one message/signature pair and we say he wins if for all Isig returned by RA,
for all view registered in Trans, the Judge always answers 0. Secondly, A outputs
two message/signature pairs and RA finds a view such that the Judge accepts it
for both signatures. As for the identity traceability, RA is not fully corrupted.

Experiment ExpSigTrac
F BSS,A(k):

(pkS , skS) ← GS(1
k); (rpk, rsk) ← GRA

Trans ← ∅
(m, σ) ← A(pkS , rpk, rsk : AddU, CrptU, USK, Sign)
if Vf(pkS , m, σ) = 0 then return 0
if ∀viewi ∈ Trans, Rsig(viewi, rsk) = (Isigi , π1) and Msig(Isigi , m, σ, π1) = 0
then return 1 else return 0

or
(m1, σ1), (m2, σ2) ← A(pkS , rsk : AddU,CrptU,USK, Sign)
if Vf(pkS ,m1, σ1) = 0 or if Vf(pkS ,m2, σ2) = 0
then return 0
if ∃viewi ∈ Trans such that Rid(viewi, rsk) = (Isig , π1)
and Msig(Isig ,m1, σ1, π1) = Msig(Isig ,m2, σ2, π1) = 1
then return 1 else return 0

Non Frameability
Non identity Frameability. In this attack, the Revocation Authority and the
signer are both fully corrupted. The aim of the adversary is to provide a proof
that an (honest) user obtained a valid signature whereas this very user never
asked for this signature. We formalize the non identity frameability via an
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experiment involving an adversary. To fair blind signature scheme FBSS, any
adversary A and any k ∈ N, we associate the experiment ExpNonIdFram

FBSS,A (k); and
the advantage is

AdvNonIdFram
FBSS,A (k) = Pr[ExpNonIdFram

FBSS,A (k) = 1].

We say that the FBSS is non identity frameable if AdvNonIdFram
FBSS,A is negligible

for any polynomial-time adversary A.
This time, A has access to both the private keys of the signer S and RA. He

is still able to create honest and corrupted users and can interact with them
playing a corrupted signer. Every time a signature is honestly issued (meaning
the user is honest and accepts the protocol), the message/signature pair and the
Iid of the user are put in Set. At the end, A returns a message/signature pair
and he wins if this signature is valid, the Rid algorithm gives a valid answer, the
message/signature/identity tuple is not in Set, Iid is the identity of an honest
user and the Judge accepts the proof of RA. In this experiment, A is more
powerful than for the traceability: he is able to fully corrupt both the signer and
RA.

Experiment ExpNonIdFram
F BSS,A (k):

(pkS , skS) ← GS(1
k) (rpk, rsk) ← GRA(1

k)
Set ← ∅; HU ← ∅; CU ← ∅
(m, σ) ← A(pkS , skS , rsk, rpk : AddU, CrptU, USK, User)
if Vf(pkS , m, σ) = 0 then return 0
Rid(m, σ, rsk) = (Iid, π2)
if (m, σ, Iid) /∈ Set, Iid ∈ HU and Mid(Iid, m, σ, π2) = 1
then return 1 else return 0

Non Signature Frameability. In this attack, the Revocation Authority and the
signer are both fully corrupted. The aim of the adversary is to produce a signa-
ture which is linked to an honest transcript, :i.e., the adversary provides a false
signature attributed to a transcript. We formalize the non signature frameability
via an experiment involving an adversary. To fair blind signature scheme FBSS,
any adversary A and any k ∈ N, we associate the experiment ExpNonSigFram

FBSS,A (k);
and the advantage is

AdvNonSigFram
FBSS,A (k) = Pr[ExpNonSigFram

FBSS,A (k) = 1].

We say that the FBSS is non signature frameable if AdvNonSigFram
FBSS,A is negligible

for any polynomial-time adversary A.
A has access to the AddU,CrptU,USK oracles to create users, and to the

User oracle to interact with honest users. Any time A calls the User oracle, the
transcript is put in Trans. In order to win, the adversary has to produce a non
listed signature (meaning his output is not in Set) that RA and the Judge can
link to an existing (honest) transcript.



Fair Blind Signatures Revisited 281

Experiment ExpNonSigFram
F BSS,A (k):

(pkS , skS) ← GS(1
k) (rpk, rsk) ← GRA(1

k)
Trans ← ∅; Set ← ∅
(m, σ) ← A(pkS , skS , rpk, rsk : AddU, CrptU, USK, User)
if Vf(pkS , m, σ) = 0 then return 0
if Rid(m, σ) = Id and (m,σ, Id) ∈ Set then return 0
if ∃view ∈ Trans such that Rsig(view, rsk) = (Isig, π1)
and Msig(Isig, m, σ, π1) = 1 then return 1 else return 0

One-More Unforgeability
The adversary is able to interact l times with the (honest) signer. At the end
of the experiment, we say that the adversary breaks the (l, l + 1)-one more
unforgeability if it produces l + 1 valid signatures. We formalize the one-more
unforgeability via an experiment involving an adversary.

Experiment ExpUnforg
F BSS,A(k):

(pkS , skS) ← GS(1
k) (rpk, rsk) ← GRA(1

k)
((m1, σ1), . . . (mk+1, σk+1)) ← A(pkS , rpk, rsk : AddU, CrptU, USK, Sign)
if ∀j ∈ [1, k + 1], Vf(pk, mj , σj) = 1
and (mi, σi) �= (mj , σj) for 1 ≤ i < j < k + 1
and at most k interactions with Sign where started
return 1 else return 0

When we take a closer look at this definition, we see that this property is
completely contained in the traceability and non frameability properties. This
was the same for group signature schemes as described in [7].

6 A New Fair Blind Signature Scheme

In this part, we present a new FBSS based on bilinear maps. Our blind scheme
allows two revocations, and, in the session revocation, RA is able to find the
identity of a user. Our scheme is based on the join protocol of [8] and its signature
is a non-interactive proof of knowledge. In the first step, the user U and the signer
S interacts, in order for U to get a ”pseudo-blind” signature on his message. To
do so, U commits to his message and to his participation to a shared secret.
He then proves to S the knowledge of these values. In the same time, using the
Paillier encryption scheme, he encrypts his secrets, and these encryptions are
used as extractable commitments, thus yielding concurrent zero-knowledge [15].
Then, using the technique of [8], S signs the commitment. He sends back this
signature and U constructs his signature as a signature of knowledge of the
signed commitment.

To allow the revocation, we add two computations to this process: the first
one is jointly computed by U and S during the first step and is used to trace the
signature. The second one is computed by the user and added in the signature in
order to allow RA to revoke the identity. We use the double ElGamal encryption
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to achieve these two revocations. This scheme is IND-CCA2 if we assume the
XDH assumption and if the encryption contains a proof of equality of the two
encrypted values. If one does not want to use the XDH assumption, one could use
instead the double Linear encryption [8] which is IND-CCA2 as well, assuming
the Decision Linear assumption. For a length reason, our scheme uses the double
ElGamal encryption.

6.1 Setup and Key Generation

Common parameters: – e : G1 × G2 → GT is a bilinear map,
– g1 (resp. g2) is a generator of G1 (resp. G2) and p is the order of G1

(resp. G2).
– h1, h2, h3, h4 ∈ G1,
– ψ : G2 → G1 is an isomorphism,
– lp is the length of p.

Paillier Parameters: let p and q be random primes satisfying p, q > 2, p 
=
q, |p| = |q| and gcd(pq, (p − 1)(q − 1)) = 1; let n = pq, and g = (1 + n);
the public key is pk = (n, g) and the secret key is sk = (p, q). We assume
|n| ≥ lp.

Signer Parameters: Using the algorithm GS , the signer S obtains the two keys
skS := γ ∈ Zp and pkS = gγ

2 = Γ .
Revocation Authority Parameters: using the algorithm GRA, the Revoca-

tion Authority RA obtains its parameters: rsk = (ξ1, ξ2) ∈ Z∗
p and rpk =

(u, v) ∈ G1 such that u = g1
ξ1 and v = g1

ξ2 hold.
User parameters: the user U computes his identity IdU = hxu

2 where xu ∈ Zp.
His identity is his public key, and the secret associated to this identity is his
secret key, (upk = IdU , usk = xu).

The public parameters are the elements of the set params = {G1, G2, GT , e,
p, lp, ψ, g1, g2, h1, h2, h3, h4, g, n, pks, rpk}.

6.2 Description of the Protocol

Initialization and Registration. Both the user and the signer receive the
public parameters. The signer gets his private key skS . The user U generates
his identity and checks the validity of the signer’s public key. Then, U registers
himself to the signer S by sending a Paillier encryption of his secret xu and
proving its knowledge. S keeps this encryption in a database of identities. U
does not need to compute a new identity for each signature but has to identify
himself at first.

First Step

– U chooses a random value r, his participation to a shared secret s′, and com-
putes a commitment C of his message m and those two values. He computes
Paillier encryptions of m, r, s′.

– He computes a double ElGamal encryption Δ′
1 of the value hs′

1 .
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– U sends to S all these values and proves the knowledge of their representation
in one round, using the Fiat-Shamir heuristic.

– The signer checks the proof and signs the commitment C using the technique
of the join protocol of [8]. To do so, he picks his participation s′′ to the shared
secret and a value x. He also computes a double ElGamal encryption Δ1 of
the value hs′+s′′

1 using the encryption of U . S stores this encryption in a
list which will be used for revocation. S cannot produce a proof that the
two encrypted values are equal (he does not know the value hs′+s′′

1 ) but this
encryption and the proof given by U are sufficient for the Judge to check the
authenticity of the encryption.

– S sends the signature on C, s′′ and x, and U verifies the validity of the
signature.

This first step is described in more detail in Figure 3.
In the proof pok1, the user proves that:

– he knows r, s′ and m,
– m, r, s′ are the same in the Paillier encryptions and in C,
– s′ encrypted in Δ′

1 is the same as in C.

Second Step. After receiving all the information he needs, the user has to
convince the receiver, in a non-interactive way, that he knows (A, x, s, xu, r),
where (A, x, s, xu, r) are as described in Figure 3, and that they are coherent
with the verification equation.

The user adds two values, in his signature: hs
1 for the identity tracing and Δ2

such that
Δ2 = Encrypt2EG

rpk(IdU ) = (ga
1 , g

xu
1 ua, gb

1, g
xu
1 vb)

for the signature tracing. He also adds in the signature, a proof that Δ2 is an
encryption of IdU .

Then a valid signature on a message m consists in:

– the value hs
1,

– the ElGamal encryption Δ2 of IdU ,
– a signature of knowledge P which proves that U knows (A, x, xu, s, r) such

that:
(P1): e(A, g2)x.e(A, Γ ).e(h1, g2)−s.e(h2, g2)−xu .e(h3, g2)−m.e(h4, g2)−r =

e(g1, g2)
(P2): xu is equal to logh2

IdU , where IdU is encrypted in Δ2

(P3): s is equal to logh1
hs

1

A signature is of the form (hs
1, Δ2, P ). Because of the signature of knowledge

P , we need to consider for a practical point of view, that two signatures are
different if they do not have the same value hs

1. For our proofs, we will consider
that a signature differs from the other ones if one of the underlying secrets
(A, x, xu, s, r,m) is different.
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Pok1 = (k1, k2, k3, k4, k5, k6, t′1, t′2, t′3 :
U ′ = gk1 ∧ V ′ = hk3

1 uk1∧
W ′ = gk3 ∧ X′ = hk3

1 vk2∧
C = hk3

1 hk6
3 hk5

4 ∧ M1 = gk6 t′n1 ∧
M2 = gk3 t′n2 ∧ M3 = gk5 t′n3 )

U S

m ∈ {0, 1}lp , r, s′, α, β ∈ Zp

t1, t2, t3 ∈ Z∗
n

C = hs′
1 hm

3 hr
4

M1 = gmtn1mod n2

M2 = gs′ tn2mod n2, M3 = grtn3mod n2

Δ′
1 = EG(hs′

1 ) = (U ′, V ′, W ′, X′)
= (gα, hs′

1 uα, gβ , hs′
1 vβ)

s = s′ + s′′mod p
verifies that :
e(A, g2)x.e(A, Γ ).e(h1, g2)−s.e(h2, g2)−xu .e(h3, g2)−m.e(h4, g2)−r ?= e(g1, g2)

C, Δ′
1, M1, M2, M3

verifies the proof
x, s′′ ∈ Zp

A = (g1CIduhs′′
1 )1/(γ+x)

Δ1 = EG(hs′+s′′
1 )

= (U ′, hs′′
1 V ′, W ′, hs′′

1 X′)

= (U, V, W, X)

A, s′′, x

Fig. 3. Protocol

Signature Verification. The receiver is given a couple (m,σ), where σ is a
signature on the message m. He verifies the signature of knowledge which proves
that m was correctly signed. He also possesses Δ2 if a revocation is needed,
and knows by the signature of knowledge that an identity is correctly encrypted
in it.

Identity Tracing. Given a signature, the Revocation Authority decrypts Δ2

and finds IdU :

Decrypt2EGrsk(ga
1 , g

xu
1 ua, gb

1, g
xu
1 vb) = gxu

1 gxa
1 (ga

1 )−x = gxu
1 gxb

1 (gb
1)

−x = IdU .

In order to prove to the Judge that it gave the real decryption, RA proves that
logga

1
(R1) = logg1

u or that loggb
1
(R2) = logg1

v where R1 = (gxu
1 ua)/ua and

R2 = (gxu
1 vb)/IdU .
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Signature Tracing. Given a transcript of a session, the Revocation Authority
decrypts Δ1 and finds hs

1 which is part of the signature:

hs
1 = Decrypt2EGrsk(gα

1 , h
s
1u

a, g1β, h
s
1v

β).

The proof that the decryption is correct is similar to the previous one.

7 Security Analysis

In this section we define the security properties our scheme provides.

Theorem 1 (Blindness). The proposed fair blind signature scheme satisfies
the blindness requirement, in the random oracle model, under the DCR
assumption.

Theorem 2 (Traceability). The proposed fair blind signature scheme provides
signature traceability and identity traceability, in the random oracle model, under
the q-SDH assumption.

Theorem 3 (Frameability). The proposed fair blind signature scheme is non
signature frameable and non identity frameable, in the random oracle model,
under the DL assumption.

The proofs are detailed in the appendix. We prove the non identity frameability
under the one-more discrete logarithm assumption [6] to get a better reduction,
but the proof can also be done under the discrete logarithm assumption.

Acknowledgments. we would like to thanks Mayasuki Abe for his helpful com-
ments on his papers.

References

1. M. Abe. A three-move blind signature scheme for polynomially many signatures. In
Eurocrypt ’01, volume 2045 of Lecture Notes in Computer Science, pages 136–151,
2001.

2. M. Abe. Personnal communication, 2002.
3. M. Abe and M. Ohkubo. Provably secure fair blind signatures with tight revoca-
tion. In Asiacrypt ’01, volume 2248 of Lecture Notes in Computer Science, pages
583–601, 2001.

4. M. Abe and T.Okamoto. Provably secure partially blind signatures. In CRYPTO
2000, volume 1880 of Lecture Notes in Computer Science, pages 271–286, 2000.

5. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 614–629, 2003.

6. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-
RSA-inversion problems and the security of Chaum’s blind signature scheme. J.
Cryptology, 16(3):185–215, 2003.



286 E. Hufschmitt and J. Traoré
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A Proofs of Security

A.1 Tools

Forking Lemma. We use the Forking Lemma [35] in our proof, to prove that
an adversary A is not able to produce a new valid signature unless he knows all
the underlying secrets (A, x, xu, s, r,m).

Using the notation of [35], if an adversary is able to produce a signature
(σ1, h, σ2), where σ1 = (hs

1, Δ2, T, T1, T2, T3, T4), h = H(hs
1, Δ2, T, T1, T2, T3, T4)

and σ2 = (sx, sxu , sr, sz, sa, sb), then it can produce two valid signatures
(m,σ1, h, σ2) and (m,σ′

1, h
′, σ′

2) such that h 
= h′.

http://eprint.iacr.org/
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To prove the security of our scheme, we use the unforgeability property of the
block messages signature based on the join protocol of [8]. We first recall the
signature scheme of [8] (noted BBS ) and turn it into a block messages signature
(noted BBS ext

L ) as presented in [11]. We then prove the unforgeability of BBS ext
L

using a reduction to the BBS scheme.

BBSext
L for BBS Signature Scheme. In the original group signature scheme

of Boneh et al. [8], the parameters are: g2 a generator of G2, g1 = ψ(g2) ∈ G1,
γ ∈ Zp,the secret key of the signer, and gγ

2 , the public key of the signer. The
user’s group membership is of the form (A, x) where A = g

1/(γ+x)
1 and x is his

secret. To obtain a signature, the user proves the knowledge of his certificate.
Boneh et al. proved under the q-SDH and the decision Linear assumption that
their scheme is secure using the Bellare et al. security model [5].

For a block messages signature, the secret key is γ and the public key is
(g1, g

γ
2 , h1, . . . , hL) with (h1, . . . , hL) generators of G1. Let (m1, . . . ,mL) be a

block of messages, then the signature is (A, x) such that Aγ+x = g1h
m1
1 . . . hmL

L .
Our scheme is an extension of this signature. The public key is (g1, g2, h1, h2, h3)
and the so called certificate is (A, x) such that Aγ+x = g1h

s
1h

xu
2 hm

3 h
r
4, that is a

signature of (s, xu,m, r). We then turn it into a blind signature using a signature
of knowledge which is a modification of the one used in BBS.

Reduction of BBSext
L to BBS Signature Scheme. Let A be an adversary

who breaks the unforgeability of BBS ext
L with non negligible probability. Using

A, we construct an algorithm B against the unforgeability of BBS. A asks for
signatures on blocks of messages M1 = (m1

1, . . . ,m
1
L),M2 = (m2

1, . . . ,m
2
L), . . . ,

Mqs = (mqs

1 , . . . ,m
qs

L ) and receives the corresponding signatures (Ai, xi) for
i ∈ {1, . . . , qs}. Eventually, A outputs his forgery (A, x,M = (m′

1, . . . ,m
′
L)). We

differentiate two types of forgers:

– Type-1 Forger: a forger that outputs a forgery where (A, x) 
= (Ai, xi) for
i ∈ {1, . . . , qs}.

– Type-2 Forger: a forger that outputs a forgery where (A, x) = (Ai, xi) for
some i ∈ {1, . . . , qs} and (m′

1, . . . ,m
′
L) 
= (mi

1, . . . ,m
i
L) .

We show that any Forger can be used to forge BBS signatures. However, the
reduction works differently for each Forger type. Therefore, initially B chooses
a random bit cmode ∈ {1, 2} that indicates its guess for the type of forgery that
A will emulate.
If cmode = 1:

– let (g1, g2, Γ = gγ
2 , h) the public key of the BBS scheme sent by B’s chal-

lenger. B constructs the public keys for A in the following way. He puts
h1 = h and for i ∈ [2, L], hi = hri with ri ∈ Z∗

q ;
– when A sends a request to B on (m1, . . . ,mL), B asks the BBS oracle on
M = m1 + r2m2 + . . . +mLrL and gets the signature (A, x). It sends back
(A, x) to A which is a valid signature for A;

– eventually, A outputs his forgery (A′, x′) on a message (m′
1, . . . ,m

′
L);
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– using those values, B directly outputs its BBS forgery on M ′ = m′
1 +r2m

′
2 +

. . .+ rLm
′
Ls

– and so B breaks the unforgeability of BBS with the same advantage as A.

If cmode = 2:

– B chooses γ ∈ Zp and fixes Γ = gγ
2 . It chooses I ∈ {1, L} and puts hI = h,

and for i 
= I, hi = gri
1 ;

– when A sends a request on a message (m1, . . . ,mL), B plays the signer using
γ as private key;

– eventually, A outputs his forgery (A, x) on a message (m′
1, . . . ,m

′
L). By as-

sumption, (A, x) his equal to one of the A’s requests, let say (Ai, xi), but it
is a forgery on a new message, so (mi

1, . . . ,m
i
L) 
= (m′

1, . . . ,m
′
L). There are

at least two differences8 in the two block messages.
– with probability 1/L, mi

I 
= m′
I .

– using this inequality and the verification equation, B is able to find the dis-

crete logarithm of hI , logg1
hI = g

(ΣL
j �=Irj(m

′
j−mi

j))/(mi
I−m′

I )

1 with probability
ε/L where ε is the probability of A to break the unforgeability of the BBS ext

L .
If B can break the discrete logarithm, then he can break the BBS signature
scheme.

We can guess which of the two forgeries a particular Forger is with proba-
bility 1/2. So assuming the more pessimistic scenario (case 2), B can break the
unforgeability of BBS with probability ε/2L.

A.2 Proof of Theorem 2 - Traceability

Identity Traceability. Sketch of proof
The aim of the adversary is to produce a signature such that:

– Case 1: the Revocation Authority gives a correct decryption but the Judge
cannot find a match in his database. In this case, we can show that the
adversary breaks the unforgeability of the BBS ext

L signature. Suppose we
have an adversary A who breaks the identity tracing of our FBSS scheme
with non negligible probability. We can construct an algorithm B using A
as an oracle, which breaks the unforgeability of BBS ext

L . B receives on input
from its challenger (g1, g2, Γ = gγ

2 , h1, . . . , hL) the public key of the BBS ext
L

scheme, and has oracle access to a BBS ext
L signature oracle. It also chooses

the keys for the Paillier encryption scheme. B sends its public key to A and
the public key of Paillier scheme. The keys of the Revocation Authority can
be chosen by A or B.

B simulates the oracle requests of A. For the Sign requests, B plays as
follows: B receives a Paillier encryption of xu,m, r, s

′ and is able to extract
them (B chose the private key for the Paillier encryption scheme and so it
can decrypt the extractable commitments). It asks to the BBS ext

L oracle a

8 It is easy to show that it is impossible for only one block to be different.
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signature on (m, r, s, xu) where s = s′ +s′′ and s′′ is chosen by B. The oracle
sends back a couple (A, x) and B transmits them to A with the value s′′. So
B is a perfect simulation of the Sign oracle for A.

Eventually, A outputs a non-identity traceable signature (m̃, hs̃
1, Δ̃2, P̃ )

with non-negligible probability ε. This signature opens on an unknown iden-
tity and so contains a value x̃u which was not used previously. Using the
Forking Lemma and the soundness property of the proof, B is able to ex-
tract with non-negligible probability the underlying secrets (Ã, s̃, x̃, x̃u, r̃)
and (Ã, x̃) is a signature on (s̃, x̃u, r̃, m̃). This is a forgery for the block mes-
sages signature scheme because the value x̃u has (by definition) never been
a part of a previous block messages.

– Case 2: the Identity Revocation gives a decryption of Δ2 (a double ElGamal
ciphertext) but the two underlying plaintexts are different and so the Judge
cannot conclude. The only way to do so is for the adversary to produce a
false proof, in the double ElGamal encryption, that the two plaintexts are
equal (although it is not the case). However he can produce such a false
proof with only negligible probability assuming the soundness of the double
ElGamal encryption’s proof [19].

Signature Traceability. Sketch of Proof
The aim of the adversary is to produce a non traceable signature or two sig-
natures with the same identifier. Using an adversary A against the signature
traceability of our scheme, we can construct an adversary B against the BBS ext

L

signature scheme. A can output one or two signatures from his attack. B starts
by guessing the output of A.

– B guesses that A will output one signature and simulates all the oracle
queries of A. As for the identity traceability, B is able to use A to produce a
new signature (A, x) on values (x, xu, s, r,m). By assumption, A is successful
in his attack and only outputs one signature. By definition, the hs

1 value of
this signature is different of all the hsi

1 values of the signatures issued from
the Sign queries. Then, the message (x, xu, r, s,m) that B presents as its
forgery has never been asked to the BBS ext

L oracle.
– B guesses that A will output two signatures with the same value hs

1.
• First case: all the underlying secrets are the same, so A did not break

the signature traceability
• Second case: one of the secret is different. As previously, B uses A to

break the unforgeability of the BBS ext
L scheme. It chooses the Paillier

and ElGamal keys for A and sends his public key to A. When it receives
the Sign queries of A, it extracts all the values and randomly chooses a
value s”. It then computes the value hs′+s′′

1 . If it is equal to a previously
computed value it aborts the procedure. At the end of the game, A
outputs two couples message/signature, unless B aborted. If B never
aborted during the Sign queries, it knows that one of the signature was
not a response to these queries. It makes a guess on this signature, and
as previously, using the Forking Lemma and the soundness of the proof,
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it is able to forge a new BBS ext
L signature. If we let qΣ be the number

of Sign queries that A made, then the probability of B to abort is less
than q2Σ/q which is negligible.

So, in both cases, B can break the unforgeability of the BBS ext
L scheme.

A.3 Proof of Theorem 3 - Non Frameability

Identity Frameability. Sketch of Proof
We assume that the challenger C receives a random instance (hx1

2 , hx2
2 , ..., hxl

2 )
of the one-more DL problem. C will run the adversary A has a subroutine and
act as A’s challenger in the non-frameability attack. Because C is against the
one-more DL assumption, he has access to a DL oracle. A chooses the key γ for
the signer, and C chooses the keys p, q for the Paillier encryption and the keys
(ξ1, ξ2) for the revocation authority. He is able to construct public parameters
for A and he answers to the requests in the following way:

– AddU requests: C answers using his input of the one-more DL problem. C
puts IdUi = hxi

2
– CrptU requests: C doest not need to do anything.
– USK requests: C uses is DL oracle to give the correspondingxi to the adversary.
– User requests: in the random oracle model, C is able to simulate perfectly

the proofs.

Now, we assume that the adversary A manages to produce a valid signa-
ture (hs

1, EG(hx′
u

2 ), Pok(m, r, s, x, x′u, A)) such that he breaks the frameability of
our scheme and he made k requests to the USK oracle. This means, this signa-
ture has not been obtained on a User query and the identity opening gives an
IdU ′ which is in the list of honest users and so in the one-more DL problem
input. We know by the definition of the experiment that no DL oracle query
has been made on this identity. It follows from the Forking Lemma that if A
is sufficiently efficient to produce such a signature, then there exists an algo-
rithm A′ which can produce two signatures ((hs

1, EG(hx′
u

2 ), Pok(m, r, s, x, x′u, A)
and (hs

1, EG(hx′
u

2 ), P̃ ok(m, r, s, x, x′u, A) with non negligible probability. Using
the techniques of replay and soundness, one is able to extract all the values
(A′, s′, r′, x′u). C outputs the k values xi that comes from the requests to the DL
oracle plus the value x′u and so breaks the one-more DL assumption.

Signature Frameability. Sketch of Proof
Let C be a challenger against the Discrete Logarithm, using our adversary A
against the signature non-frameability. C is given a challenge (I, h1) and must
find logh1

I. A chooses the key γ for the signer, and C chooses the keys p, q for
the Paillier encryption and the keys (ξ1, ξ2) for the Revocation Authority. He is
able to construct public parameters for A and he answers to the requests in the
following way:

– AddU requests: C chooses a value xui and computes IdUi = h
xui
2

– CrptU requests: C does not need to do anything.
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– USK requests: C answers the value xui he chose during the AddU request.
– User requests: C is playing the role of a user whom he knows the secret xu.

He chooses random values α, β,m, r ∈ Zp and computes C = Iαhβ
1h

m
3 h

r
4.

The others values are computed following the protocol (C does not need to
simulate them). In the random oracle model, C is able to perfectly simulates
the proof of knowledge Pok1 and A is not able to distinguish between a
real proof of C and a simulated one. C sends these values to A and receives
(A, s′′, x). He checks the validity of the signature and puts in a I-list the
values (Iαhs′+β

1 = Isig , r, s
′′).

Finally, A outputs with non negligible probability his signature (m,σ) which
breaks the non signature frameability of our scheme. By definition, this signature
was not issued during a User request and so using the Forking Lemma, one
can extract the underlying secrets (A, x, xu, s, r,m). C knows that this value s
matches to an Isig = hs

1 which is in the I-list and so s̃ = s−s′−β
α = logh1

I, unless
α = 0 which happens with probability 1/p which is negligible.
So C breaks the Discrete Logarithm assumption with non negligible probability.

A.4 Proof of Theorem 1 - Blindness

Using sequences of game, we can prove that:

|Pr[S0] −
1
2
| ≤ 2(ε−1)(lp+k) + 6Advind−cca2

2EG (D) + 2AdvDCR(D)

where S0 is the game corresponding to the real attack and D is an adversary
against the IND-CCA2 property of the double ElGamal encryption scheme and
against the semantic security of the Paillier encryption scheme.
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Abstract. Let C be a curve of genus g, defined over a finite field Fq,
where q = pm for a prime p. Let N be a large integer coprime to p,
dividing the order of the Jacobian variety associated to C. Pairings can
transport the discrete logarithm problem (DLP) from the curve to a fi-
nite field where there are more efficient methods for solving the discrete
logarithm. The embedding degree is defined to be the smallest positive
integer k such that N divides qk − 1. We show that the minimal embed-
ding field is not necessarily Fqk , as is traditionally understood, but rather
is FpordN p = F

qordN p/m , which can be a field of significantly smaller size.
This fact reveals that attacks on the DLP can be dramatically faster
than otherwise expected, so a parameter separate from the embedding
degree k needs to be used to indicate security.

Keywords: pairing-based cryptosystems, embedding degree, discrete
logarithm, elliptic curve cryptography, security.

1 Introduction

The use of elliptic curves over finite fields in public-key cryptography provides
greater security and more efficient performance than first generation public key
techniques, such as RSA and Diffie-Hellman. Hyperelliptic curves of small genus
(that is, the associated Jacobian abelian varieties with low dimension) are also
believed to offer the benefits of having comparable levels of security with smaller
key sizes than other finite abelian groups. Pairings on groups have been used con-
structively to design cryptographic protocols and to solve problems that have
been open for many years, such as identity-based encryption, one-round three-
party key agreement, and short signatures. On the other hand, pairings have
been used destructively to attack cryptographic security. For example, the Frey-
Rück attack (or MOV attack) uses the Tate pairing (or Weil pairing) to map
the discrete logarithm problem (DLP) on the Jacobian of a curve to the discrete
logarithm in the finite field F∗

qk , where there are more efficient methods for solv-
ing the DLP. So for pairing-based cryptosystems, it is important to find curves
where the embedding degree k is small enough that the pairing is efficiently
computable, but large enough that the DLP in F∗

qk is hard.
This leads to the understanding of a pairing-friendly curve over Fq as one

that satisfies the following two conditions: (1) #JC(Fq) should be divisible by a

T. Takagi et al. (Eds.): Pairing 2007, LNCS 4575, pp. 294–301, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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sufficiently large prime N so that the DLP in the order-N subgroup of JC(Fq)
is resistant to Pollard’s rho attack (and other known attacks), and (2) The em-
bedding degree k should be sufficiently large so that the DLP in F∗

qk withstands
index-calculus attacks, but small enough that the arithmetic in Fqk can be effi-
ciently implemented. It is important to note that while k must be small enough
to enable pairings in the group, if it is too small, then the embedding field Fqk

is small enough to warrant the curve insecure for DL systems.
We show that pairing can embed into the field FpordN p , not merely into Fqk ,

which can dramatically speed up attacks on the DLP. The possible difference
in the size of the fields has the implication in theory that there could be curves
used in DL systems that are presently regarded as secure against pairing-based
attacks, but are in fact insecure. That is, there could be “pairing-friendly” curves
that may not be as secure as previously believed.

Published literature does not properly recognize and discuss this difference
between the minimal embedding field and the field indicated by the embedding
degree k. In fact, the following quote in [1] is an example of the misleading
portrayal that appears in the literature.

Let q be a prime power, and let E/Fq be an elliptic curve with m
points in E(Fq). Let P in E(Fq) be a point of prime order p where p2 � m.
We say that the subgroup < P > has a security multiplier α, for some
integer α > 0, if the order of q in F∗

p is α.
The MOV method can, at best, reduce the discrete log problem in

< P > to a discrete log problem in a subgroup of F∗
qα . Therefore, to

ensure that discrete log is hard in < P > we want curves where α is
sufficiently large to make discrete log in F

∗
qα intractable.

Our paper shows that one needs not a positive integer k with qk − 1 divisible
by the size of the large prime-order subgroup; rather, it suffices to have a positive
rational number k with qk − 1 divisible by the prime. In particular, if q = pm,
then this rational number will be ordN p

m .
Rubin and Silverberg in [8] recognize that there may be a difference between

the size of the field Fqk and the actual embedding field for supersingular abelian
varieties. They show that for supersingular abelian varieties, the difference in
the size of the exponent can be at most a factor of two. Our observation is not
limited to the supersingular case and explains that the difference in the fields is
related to the order of the characteristic modulo the prime N , not merely on the
dimension of the variety. We see that for curves of any genus, the difference in
the size of the exponent can be unbounded, though it only impacts non-prime
fields of small characteristic.

In section 2, we give a preliminary framework and examine the bounds on
k for pairing-based attacks to be sub-exponential in q. In section 3, we discuss
the underlying mathematics that causes the embedding degree of a curve to not
necessarily correspond to the minimal embedding field, and hence why it may
fail to capture the security of a pairing-based cryptosystem. We show that for a
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curve of any genus defined over Fq, the pairing in a group of order N embeds in a
field that is not necessarily an extension of Fq, but merely of Fp (where q = pm).
In particular, the embedding field is FpordN p . We measure the difference in size
of the field exponents, finding that it grows with m. We advocate the use of
two separate parameters: an embedding degree to indicate the field one must
work over to compute the pairing, and a security parameter, such as k′ = ordN p

mg ,
to indicate the minimal field containing the embedding. We then examine the
bounds for attacks to be sub-exponential in the group size of the curve in light
of this understanding of the minimal embedding field. Finally, in section 4, we
give examples of curves that demonstrate when the embedding degree k does
not correspond to the minimal embedding field and hence is a poor assessment
of security. Although these curves have not been chosen for practical implemen-
tation, we hope that, for mathematical completeness, subsequent literature will
acknowledge the possible difference between the field suggested by embedding
degree and the actual minimal embedding field.

2 Preliminaries

Let Fq be a finite field with q = pm for some prime p and positive integer m,
and let C be a curve over Fq. The Jacobian of the curve is an abelian variety,
JC , of dimension g defined over Fq. Let N be an integer dividing the order of
JC(Fq). A subgroup of JC(Fq) with order N is said to have embedding degree k
if N divides qk − 1, but does not divide qi − 1 for all 0 < i < k.

The Tate pairing is a (bilinear, non-degenerate) function

JC(Fqk)[N ] × JC(Fqk)/NJC(Fqk) −→ F
∗
qk/F

∗N
qk .

One can then map F∗
qk/F

∗N
qk isomorphically into the set of Nth roots of unity,

μN , by raising the image to the power q
N not q−1

N .
Pairing-based attacks can transport the discrete logarithm problem in JC(Fq)

to the discrete logarithm in the finite field F∗
qk , where there are sub-exponential

methods for solving the DLP. So for pairing-based cryptosystems, one would
like to find curves where the embedding degree k is small enough for compu-
tations to be feasible, but large enough for the DLP in the embedding field
to be difficult. We know that k ≤ 6 for supersingular elliptic curves, as first
shown in [6], and [3] gives an upper bound of 12 on k for supersingular genus
2 curves. However, for most non-supersingular curves, k is enormous since
k = ordNq.

The best generic algorithm known for solving the DLP is Pollard’s rho method,
which has a fully-exponential expected running time. For particular groups,
pairing-based attacks with index-calculus methods yield sub-exponential-time
algorithms. The latest results, in [5], give an algorithm for computing discrete
logarithms in finite fields Fqk with heuristic complexity Lqk(1/3) = exp((1 +
o(1))(log qk)1/3(log log qk)2/3). So in order for an attack to be sub-exponential
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in q, one needs k ∈ o(( log q
log log q )2). Galbraith in [3] noted that the size of the

group JC(Fq) is approximately qg, so to determine the applicability of the sub-
exponential algorithms for solving the DLP in finite fields, one should actually
consider k/g.

3 An Examination of the Embedding Degree

Given a subgroup of order N of a curve over Fq, the standard definition of the
embedding degree k is that k is the smallest integer such that N | qk − 1. Since
the MOV attack first used pairings to transport the discrete log problem on the
curve to the discrete log problem in F∗

qk , where one can perform index calculus,
the security of a cryptosystem has been assumed to be related to the size of this
parameter k.

However, we point out that to properly determine the security level of a
pairing-based cryptosystem, it is important to know the minimal field containing
the Nth roots of unity and to incorporate this exponent as a security parameter.
If q = pm, then the pairings embed into μN which lies in F∗

pordN p , not merely in
F∗

qk . That is, the embedding is into the multiplicative group of an extension of
Fp, which is not necessarily an extension of Fq. This difference in the size of the
groups can be quite large, by as much as a factor of m.

Let us examine the present definition of embedding degree with respect to a
general prime N over Fq. We let ordNp be the smallest positive integer x such
that px ≡ 1 mod N .

Lemma 1. Let q = pm for some prime p and positive integer m, N be a prime
not equal to p, and k be the smallest integer such that qk ≡ 1 mod N . Then

k =
ordNp

gcd(ordNp,m)
.

Proof. Clearly k | ordN p
gcd(ordN p,m) , since

1 ≡ pordN p ≡ (pordN p)m/ gcd(ordN p,m) ≡ (pm)ordN p/ gcd(ordN p,m) mod N.

Now let D = gcd(ordNp,m). So we have k | ordN p
D .

We also know that ordNp | mk, and this implies ordN p
D | m

D k. But
gcd(ordN p

D , m
D ) = 1, therefore it must be that ordN p

D | k. Thus we have k = ordN p
D

and the proof is complete. ��

Since μN lies in F∗
pordN p , it is apparent that the embedding field is not Fqk = Fpkm ,

but FpordN p = FpkD , where D = gcd(ordNp,m). So it is conceivable for the size
of the actual and presumed embedding fields to differ by a factor of m.

The following field diagram helps to illustrate the difference in these fields of
discussion.
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Fqk presumed embedding field
k

�������������

≥1Fq

m FqordN p/m = FpkD minimal embedding field, D = gcd(ordNp,m)

ordN p
������������

Fp

We note that it is possible for this gap to be as large as one dictates, simply
by increasing the exponent m prime to ordNp.

We see that the term “embedding degree” is a bit of a misnomer, as the
minimal embedding field is not necessarily the one indicated by the embedding
degree. We suggest a separate parameter be used to indicate security against
solving the DLP in the finite field. In security analysis, one wants to compare
the difficulty of solving the DLP in the minimal embedding field with solving the
DLP in the curve group, as both should be computationally intractable. The size
of the Jacobian of a genus g curve over Fq is approximately qg, so [3] suggests
k/g should be considered for security, as this represents the logarithmic ratio
between the size of the finite field Fqk and the size of the curve group. In light
of our observation, we now suggest k′ = ordN p

mg is a more accurate indicator, as it
takes into account the minimal embedding field. Whenever q is prime, then there
is no difference between presumed and actual minimal embedding field sizes, so
in that case we have k = mgk′.

Roughly speaking, for cryptographic security one needs the size of the min-
imal embedding field to be of approximately 1024 bits to avoid index calculus
computations, and the prime N should be approximately 160 bits so that the
DLP in the curve group is suitably hard. Pairing-based systems become much
slower as qk increases, so one normally chooses qk just barely large enough to
have hard discrete logarithms in the field Fqk . Suppose an elliptic curve is defined
over q = p2, such that qk is larger than 21024, as is the conventional custom. If
q5/2−1 is divisible by N , then the Tate pairing in Fq5 actually produces a result
in Fq5/2 . Computing the DLP in this field is dramatically faster than in Fq5 . It
is likely that the original curve was not chosen to have q5/2 larger than 21024, so
we now realize the curve was insecure. Thus the standard practice of checking
traditional embedding degrees needs to be modified in light of this observation
of the minimal embedding field.

To examine the potential difference between the size of the minimal field that
contains the embedding and the one under the conventional notion of embedding
degree, let q = pm with m 
= 1, and let us consider [Fqk : FpordN p ]. That is, set
Δ = m

gcd(ordN p,m) , so the size of Δ reveals the relative change in field size. We
see that Δ = 1 if and only if gcd(ordNp,m) = m, which corresponds to k being
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an accurate indicator of the minimal embedding field. However, it is not unusual
to have gcd(ordNp,m) = 1, hence Δ = m, showing k to be the least accurate
indicator of the minimal embedding field.

Since the minimal embedding field is FpordN p = FpkD , where D =
gcd(ordNp,m), we see that an attack will now be sub-exponential in q if k ∈
o( m(log q)2

D(log log pordN p)2
); that is, if k ∈ o(Δ (log q)2

(log log pordN p)2
). So clearly more curves will

be susceptible to pairing attacks than previously anticipated.

4 Examples

Let us look at some examples of genus 1 and genus 2 curves that clearly empha-
size this difference between the size of the minimal embedding field and the field
suggested by the conventional notion of embedding degree. Since cryptographic
applications usually focus on prime fields and binary fields, and this difference
in the minimal embedding field is only visible in the extension field case, we will
give examples in characteristic 2. Although these curves may not be chosen for
practical implementation, we hope subsequent literature will acknowledge the
possibility of having a smaller embedding field in certain situations.

Example 1. LetN = 2p−1, and q = 2p+s, for 1 ≤ s ≤ p+1, s 
= p. We know from
[9] that for each s, there exists at least one non-supersingular elliptic curve over
Fq with |E(Fq)| = 2sN . We emphasize that this allows for the extension degree
to be prime, so Weil descent attacks do not apply. These curves have embedding
degree k = p, which suggests that the embedding field is Fqk = F2p(p+s) . But in
fact, gcd(ordN2, p+ s) = 1 not gcd(ordN2, p+ 1) = 1, so the embedding field is
F2p , and these sizes differ by a factor of Δ = p+ s. We see that in this case the
“presumed” embedding field grows quadratically in p, but the actual minimal
embedding field grows only linearly in p.

We note that Appendix A of [7], which develops standard specifications for
public-key cryptography, states a condition that one needs only to test whether
the embedding degree is larger than some small integer B, and the largest B
stated is 28. So the curves in Example 1 could have been considered as secure for
DL systems, but in light of this paper’s observations, we see that the resulting
field size is smaller than q, with embedding degree 1, so the DLP is easy to break.

Example 2. We can consider the Mersenne prime N = 2p−1 for genus 2 curves as
well, as in [4]. We note that these examples have an absolutely simple Jacobian,
so these curves are not merely the product of an elliptic curve from Example
1 and another elliptic curve. For each � 2p

3 � ≤ m ≤ p − 1, there exists a genus
2 curve over F2m with #JC(F2m) = 22m−pN . Each curve is given by the Weil
polynomial with coefficients (a1, a2) = (−1, 2m − 22m−p). These curves have
embedding degree k = p, which suggests that the embedding field is Fqk = F2pm ,
but in fact the embedding field is F2p , since gcd(ordN2,m) = 1. One might
previously have considered these curves as secure for DL systems, but we now
see the DLP is easy to break.
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This observation of the misleading notion of embedding degree has motivated
us to check the accuracy of k as a security parameter in curve examples in the
published literature. The following is an actually proposed system in [2] which
is insecure due to the observations we have mentioned above.

Example 3 (from published literature). The authors of [2] propose a family of
genus 2 curves over Fq where q(l) = l2 for any prime (power) l. The associated
Jacobian variety has size n(l) = l4±l3+l2±l+1. A prime N dividing n(l) clearly
divides q5−1, but cannot divide qk−1 for k < 5 except in the absurdly small case
of N = 5. So every curve of this form has embedding degree k = 5, as shown in
[2]. However, if n(l) = l4+l3+l2+l+1, then N divides l5−1 = q5/2−1, so in fact
the minimal embedding field cannot be larger than Fq5/2 . This makes a dramatic
difference in how large l has to be chosen for the curves to remain secure against
pairing-based attacks. However no such security warning is present in [2].

As we have mentioned, whenever working over Fq, for q a prime, there is no
discrepancy between the mathematical and cryptographic notions of embedding
degree, but when q is a prime power there may be a significant difference. The
techniques given in [2] are presented in general for prime powers q, although
most of the curves examples they list are over a prime field, and hence escape
the discrepancy. One should be cautious when using these techniques to generate
curves, as certain parameters may yield a prime power q, and hence the curves
could be insecure in light of our observation.

We now give two numerical examples taken from [4]. Though these curves are
not used in practice, they serve to illustrate our observation.

Example 4. Consider the genus 2 curve over F2267 given by the Weil polynomial
with coefficients (a1, a2) = (−1, 2267 + 2178). Then #JC(F2267) = 2178 · 17 · N ,
where N = 24(89)+1

17 is prime, and the embedding degree is k = 8. So we have a
351-bit DLP on the curve, and a 2136-bit DLP in F∗

qk , which is considered hard.
However, in the minimal embedding field, we have only a 712-bit DLP, which is
considered easy.

Example 5. Consider the genus 2 curve over F2136 given by the Weil polynomial
with coefficients (a1, a2) = (−1, 2136 + 2124). Then #JC(F2136) = 2124 · 17 ·
N , where N = 24(37)+1

17 is prime, and the embedding degree is k = 37. So we
have a 5032-bit DLP in F∗

qk , which is considered hard. However, in the minimal
embedding field, we have only a 296-bit DLP, which is considered easy.

5 Conclusion

We have shown that the minimal embedding field is not Fqk , but FqordN p/m =
FpkD , where D = gcd(ordNp,m). It is of critical importance to check when
working over fields of small characteristic, though the observation of this paper
does not affect the case of prime fields. We advocate the use of two separate
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parameters: the traditional embedding degree1 k to indicate the field one must
work over to compute the pairing, and a security parameter, k′ = ordN p

mg , to
indicate the difficulty of solving the DLP in the minimal finite field containing
the embedding.
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Abstract. In EUROCRYPT 2006, Cheon proposed breakthrough al-
gorithms for pairing-related problems such as the q-weak/strong Diffie-
Hellman problem. Using that the exponents of an element in an abelian
group G of prime order p form the ring Z/pZ structure even if G is a
generic group, Cheon’s algorithms reduce their complexity by Pohlig-
Hellman like method over (Z/pZ)∗ or its extension. The algorithms are
more efficient than solving the relative discrete logarithm problems in
certain cases. This paper shows that Cheon’s algorithms are faster than
the result obtained by the complexity analysis in Cheon’s paper, i.e. the
algorithms can be done within O(

√
p/d +

√
d) group operations, where

d is a positive divisor of p − 1 with d ≤ q or a positive divisor of p + 1
with 2d ≤ q, instead of O(log p(

√
p/d+

√
d)) group operations shown by

Cheon. This paper also shows an improvement of one of the algorithms
for q-weak Diffie-Hellman problem. The improvement can be done within
O(ε
√

p/d) group operations, where ε = min(2/(1− logp d), log p). More-
over, this paper discusses how to choose the group order so that the
algorithms are inefficient and also shows a condition for the group order
and the probability that an order satisfies the condition.

1 Introduction

The Weil and Tate pairings have been used to solve the discrete logarithm prob-
lems on (hyper-)elliptic curves [MOV91, FR94]. However, around the end of the
past century, positive usages of the Weil/Tate pairing for cryptography have
been proposed by Ohgishi, Sakai, and Kasahara [OSK99] and Joux [Jou00] inde-
pendently. They used the pairing to construct cryptographic protocols with nice
properties. Then, Boneh and Franklin [BF01] proposed an IND-ID-CCA secure
identity-based cryptography under the Weil Diffie-Hellman assumption in the
random oracle model. Its provable security is fundamentally obtained from the
properties of the pairing. Afterwards, many provable secure protocols have been
proposed using the pairings. Moreover, many kind of protocols have been carried
out by using the pairings. See [Pat05] for the literature.

In 2002, Mitsunari, Sakai, and Kasahara [MSK02] proposed a traitor tracing
protocol. It is based on the q-weak Diffie-Hellman problem that takes a long

T. Takagi et al. (Eds.): Pairing 2007, LNCS 4575, pp. 302–316, 2007.
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series of group elements as its input. Then many protocols without random
oracles have been proposed based on q-weak Diffie-Hellman-like problems, e.g.
[BB04b] ,[BB04a], [BBG05], [Gen06], [Oka06]. We call such kind of problems
the “pairing-related problems” in this paper. The number of the inputs for a
pairing-related problem is proportionate to the parameter q.

It is known that any pairing-related problems can be reduced to a discrete
logarithm problem. Moreover, no algorithm which is more efficient than solving
the relative discrete logarithm problems had been known for the pairing-related
problems.

In 2006, Cheon [Che06] proposed breakthrough algorithms for pairing-related
problems. He used that the exponents of an element in an abelian group G
of prime order p form the ring Z/pZ structure even if G is a generic group
[Sho97], and the algorithms were constructed by using a subgroup of (Z/pZ)∗

or its generalization. The algorithms are more efficient than solving the relative
discrete logarithm problems in certain cases.

This paper shows that Cheon’s algorithms are faster than the result ob-
tained by the complexity analysis in [Che06], i.e. those can be done within
O
(√

p/d+
√
d
)

group operations, where d is a positive divisor of p − 1
with d ≤ q or a positive divisor of p + 1 with 2d ≤ q, instead of
O
(
log p

(√
p/d+

√
d
))

group operations shown in [Che06]. This paper also
shows an improvement of one of the algorithms for the q-weak Diffie-Hellman
problem. The problem can be solved within O

(
ε
√
p/d
)

group operations, where

ε = min
(
2/(1 − logp d), log p

)
, by the improvement. These results lead a simple

discussion about the way to choose the group order so that the algorithms are
inefficient. Accordingly, we discuss a condition for the group order and shows
the probability that an order satisfies the condition.

The organization of this paper is as follows: Section 2 defines the discrete
logarithm problem and the pairing-related problems dealt with in this paper,
and summarizes the known facts about those problems. Section 3 briefly reviews
Cheon’s algorithms and their complexity shown in [Che06]. Then, Section 4
shows a better complexity analysis for the algorithms and Section 5 an improve-
ment for the q-weak Diffie-Hellman problem. Furthermore, Section 6 discusses
the group order so that the algorithms are inefficient and shows the probability
that an order satisfies the condition. Finally, Section 7 concludes this paper.

In this paper, we estimate for the time complexity by group operations and
for the space complexity by group elements respectively according to [Che06].

2 DLP and Pairing-Related Problems

In this section, we recall the discrete logarithm problem and the pairing-related
problems which are dealt with in this paper.

Let G be an abelian group whose order is a large prime number p, g ∈ G, and
α ∈ (Z/pZ)∗.
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In this paper, we assume that G is a generic group [Sho97] or a (generic)
bilinear group [BB04a] according to the problem.

Definition 1 (Discrete Logarithm Problem). The discrete logarithm prob-
lem (hereafter DLP) asks α for a pair (g, [α]g).

DLP can be solved within O
(√

p
)

group operations by using Shanks’s baby-step
giant-step algorithm [Sha71] (hereafter BSGS) or Pollard’s algorithm [Pol78].
Those algorithms are usually called “square-root algorithms.” For the details of
the algorithms, see [Tes01] for example.

This paper deals with the pairing-related problems shown below.

Definition 2 (q-Weak Diffie-Hellman Problem [MSK02]). The q-weak
Diffie-Hellman problem (hereafter q-WDHP) asks [1/α]g for a (q + 1)-tuple

(g, [α]g, [α2]g, . . . , [αq]g).

q-WDHP is also called the “q-Diffie-Hellman inversion problem” [BB04a].

Definition 3 (q-Strong Diffie-Hellman Problem [BB04b]). The q-strong
Diffie-Hellman problem (hereafter q-SDHP) asks ([1/(α+a)]h, a), where a is any
element in (Z/pZ)∗, for a (q + 2)-tuple

(h ∈ Gh, g, [α]g, [α2]g, . . . , [αq]g),

where Gh is an abelian group of order p.

If h = g (and Gh = G), the problem is called the “q-simplified strong Diffie-
Hellman problem (hereafter q-SSDHP)” [BBG05, Appendix A.4].

The blind and partially blind signatures proposed by [Oka06] are based on a
2 variable variant of q-SDHP.

Definition 4 (q-Bilinear Diffie-Hellman Inversion Problem [BB04a]).
The q-bilinear Diffie-Hellman inversion problem (hereafter q-BDHIP) asks
e(g, g)1/α ∈ Gm for a (q + 1)-tuple

(g, [α]g, [α2]g, . . . , [αq]g),

where Gm is a (multiplicative) abelian group of order p and

e : G×G→ Gm

a non-degenerate bilinear map.

Definition 5 ((q + 1)-Bilinear Diffie-Hellman Exponent Problem
[BBG05]). The (q + 1)-bilinear Diffie-Hellman exponent problem (hereafter
(q + 1)-BDHEP) asks e(h, g)αq+1 ∈ Gm for a (2q + 3)-tuple

(h ∈ Gh, g, [α]g, . . . , [αq]g, [αq+2]g, . . . , [α2(q+1)]g), (1)

where Gh is an abelian group of order p, Gm a (multiplicative) abelian group of
order p, and

e : Gh ×G → Gm

a non-degenerate bilinear map.
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The “(q + 1)-augmented bilinear Diffie-Hellman exponent problem,” which
takes

(h ∈ Gh, [αq+2]h, g, [α]g, . . . , [αq]g, [αq+2]g, . . . , [α2(q+1)]g)

as its input instead of the tuple (1), is introduced by [Gen06].
Some reductions are known between the above problems:

– Both of q-WDHP and q-SDHP can be reduced to DLP in polynomial time.
– q-SSDHP can be reduced to both of q-WDHP and q-SDHP in polynomial

time.
– Each of q-BDHIP and (q + 1)-BDHEP can be reduced to q-WDHP in poly-

nomial time.

See [BBG05, Wei05] for the details.
Until recently, no other efficient algorithm had been known for the pairing-

related problems than to solve DLP obtained by the above reductions.

3 Cheon’s Algorithms

In EUROCRYPT 2006, Cheon [Che06] proposed breakthrough algorithms for the
pairing-related problems. Using that the exponents of an element in an abelian
group G of prime order p form the ring Z/pZ structure even if G is a generic
group, Cheon’s algorithms reduce their complexity by Pohlig-Hellman [PH78]
like method over (Z/pZ)∗ or its extension. The algorithms are more efficient
than solving the relative discrete logarithm problems in certain cases.

Cheon’s basic algorithm finds the discrete logarithm α for given (g, [α]g, [αd]g),
where d is a positive divisor of p − 1. Therefore, if there exists d | p − 1 with
d ≤ q, the algorithm can be applied to the pairing-related problems.

Algorithm 1 shows an outline of the algorithm. For the correctness of the
algorithm, see [Che06].

Algorithm 1. Cheon’s Algorithm
Input: G: an abelian group of prime order p, g, g1, gd ∈ G, and d ∈ N such that

d | p − 1
Output: α ∈ (Z/pZ)∗ such that g1 = [α]g and gd = [α

d]g
1: Find a generator ζ0 ∈ (Z/pZ)∗

2: ζ ← ζd
0

3: d1 ←
⌈√

(p − 1)/d
⌉

4: Find 0 ≤ u1, v1 < d1 such that [ζ
−u1 ]gd = [ζ

d1v1 ]g by BSGS
5: k0 ← d1v1 + u1 /*Note that αd = ζk0*/

6: d2 ←
⌈√

d
⌉

7: Find 0 ≤ u2, v2 < d2 such that [ζ
−u2(p−1)/d
0 ]g1 = [ζ

k0+d2v2(p−1)/d
0 ]g by BSGS

8: return ζ
k0+(d2v2+u2)(p−1)/d
0
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Cheon [Che06] showed Theorem 1 below for the complexity of Algorithm 1.

Theorem 1 (Cheon). Let g be an element of prime order p in an abelian
group. Suppose that d is a positive divisor of p−1. If g, [α]g and [αd]g are given,
α can be computed within O

(
log p

(√
p/d+

√
d
))

group operations using space

for O
(
max

(√
p/d,

√
d
))

group elements.

Furthermore, [Che06] showed a p + 1 variant of Algorithm 1, i.e. an algorithm
using a positive divisor d of p+1 instead of p−1, by applying the similar manner
in Algorithm 1 on (Fp2)∗/(Z/pZ)∗ instead of (Z/pZ)∗. [Che06] showed Theorem
2 below for the p+ 1 variant.

Theorem 2 (Cheon). Let g be an element of prime order p in an abelian group.
Suppose that d is a positive divisor of p + 1 and [αi]g for i = 1, 2, . . . , 2d are
given. Then α can be computed within O

(
log p

(√
p/d+ d

))
group operations

using space for O
(
max

(√
p/d,

√
d
))

group elements.

4 Better Complexity Analysis

This section shows that the upper bound of group operations required in Algo-
rithm 1 is lower than the bound in Theorem 1, i.e. Algorithm 1 is faster than
the result shown in Theorem 1.

The complexity of Algorithm 1 is dominated by BSGS in Steps 4 and 7. In
Step 4, one needs to compute

[ζ−u1 ]gd for u1 = 0, 1, . . . , d1 − 1,

where d1 =
⌈√

(p− 1)/d
⌉
, from given ζ−1 ∈ (Z/pZ)∗ and gd, and also to com-

pute
[ζd1v1 ]g for v1 = 0, 1, . . . , d1 − 1

from given ζd1 ∈ (Z/pZ)∗ and g. Similarly, in Step 7, one needs to compute

[ζ−u2(p−1)/d
0 ]g1 for u2 = 0, 1, . . . , d2 − 1,

where d2 =
⌈√

d
⌉
, from given ζ−(p−1)/d

0 ∈ (Z/pZ)∗ and g1, and also to compute

[ζk0+d2v2(p−1)/d
0 ]g for v2 = 0, 1, . . . , d2 − 1

from given ζ
d2(p−1)/d
0 ∈ (Z/pZ)∗ and [ζk0

0 ]g.
Now, we let

(gt, β, n) ∈ {(gd, ζ
−1, d1), (g, ζd1 , d1), (g1, ζ

−(p−1)/d
0 , d2), ([ζk0

0 ]g, ζd2(p−1)/d
0 , d2)},
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then computing the repeated integer multiplications of an element in G appeared
in Steps 4 and 7 can be generalized to a problem given as follows:

Problem 1. Find
(gt, [β]gt, [β2]gt, . . . , [βn−1]gt)

for given
gt ∈ G, β ∈ (Z/pZ)∗, and n ∈ Z.

Problem 1 corresponds to finding

(gt, [2]gt, [3]gt, . . . , [n− 1]gt)

for given gt ∈ G and n ∈ Z in ordinary BSGS. The problem in ordinary BSGS
can be solved by using the recurrent sequence

[i]gt = [i− 1]gt + gt, i = 1, . . . , n− 1.

In this computation, [i]gt can be obtained by a group operation from [i − 1]gt.
Thus, the problem can be solved within O(n) group operations.

In the analysis in [Che06], using the similar manner in ordinary BSGS, one
computes [βi]gt from [βi−1]gt by the recurrence

[βi]gt = [β][βi−1]gt.

It needs O(log p) group operations to compute [βi]gt from [βi−1]gt by the binary
method. Therefore, one needs O(n log p) group operations to solve Problem 1 by
the manner in the analysis.

In the following, we discuss to use an on-line precomputation table in the
above computation. While on-line precomputation tables are usually used for
practical implementation of integer multiplication, this section uses a table in
order to reduce the asymptotic complexity.

A scenario of the computation with a table is to use a table spanned just
{gt, [2]gt, [3]gt, . . . , [n − 1]gt}. However, a table in this scenario seems difficult
to construct because the elements in {gt, [2]gt, [3]gt, . . . , [n− 1]gt} are discretely
distributed in Z/pZ in general. Another scenario is to use a table spanned all
elements in Z/pZ. However, the efficiency of this scenario is not so clear because
the number of elements asked by the problem is smaller than p in general. Below
shows that the latter scenario is actually efficient.

Let c be a positive integer that is independent of p and b =
⌈
p1/c
⌉
. Then, any

δ ∈ Z/pZ can be represented by a b-adic expansion as

δ ≡ δ0 + δ1b+ δ2b
2 + · · · + δc−1b

c−1 mod p, (2)

where 0 ≤ δi < b for i = 0, . . . , c − 1. We consider the computation with a
precomputation table by using this representation.

One can construct the on-line precomputation table

T = {Ti|i = 0, . . . , c− 1}
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as

Ti = (T(i,0), T(i,1), . . . , T(i,b−1))

= (1, [bi]gt, [2bi]gt, . . . , [(b− 1)bi]gt).

In fact, T can be obtained by the following manner.
First, one puts T(0,1) = gt, then computes T(i,1) for i = 1, . . . , c − 1 by the

recurrence
T(i,1) = [b]T(i−1,1).

Each recurrence can be computed within O(log p) group operations by the binary
method. Thus, it needs (c − 1)O(log p) group operations to obtain T(i,1) for
i = 0, . . . , c− 1.

Second, one computes Ti for each i = 0, . . . , c − 1. It can be done by the
recurrence

T(i,j) = T(i,j−1) + T(i,1).

Each recurrence can be computed a group operation, so that Ti can be obtained
by b− 2 group operations for each i.

Consequently, the table T can be obtained within

O ((c− 1) log p+ c(b− 2)) = O (c (log p+ b))

= O
(
c
(
log p+ p1/c

))

= O
(
cp1/c

)

group operations. In addition, T needs the space for

O(cb) = O
(
cp1/c

)
(3)

group elements.
For δ given by Eq. (2), [δ]gt can be computed as follows:

[δ]gt = [δ0 + δ1b+ δ2b
2 + · · · + δc−1b

c−1]gt

= [δ0]gt + [δ1b]gt + [δ2b2]gt + · · · + [δc−1b
c−1]gt

= T(0,δ0) + T(1,δ1) + T(2,δ2) + · · · + T(c−1,δc−1).

Therefore, it can be obtained by c − 1 group operations by using the table T .
Computing [δ]gt for all

δ ∈ {βi | i = 0, . . . , n− 1},

one can obtain
(gt, [β]gt, [β2]gt, . . . , [βn−1]gt).

It can be done within (n− 1)(c− 1) = O(cn) group operations.
Summarizing, we see that Problem 1 can be solved within O

(
c
(
p1/c + n

))
group operations using the table with O

(
cp1/c

)
group elements.
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Step 4 in Algorithm 1 needs to solve Problem 1 two times for n = d1, so that
it needs

O
(
c
(
p1/c + d1

))
= O

(
c
(
p1/c +

√
p/d
))

(4)

group operations. Similarly, Step 7 in the algorithm needs to solve the problem
two times for n = d2, so that it needs

O
(
c
(
p1/c + d2

))
= O

(
c
(
p1/c +

√
d
))

group operations. Therefore, Algorithm 1 needs

O
(
c
(
p1/c +

√
p/d+

√
d
))

group operations. Now, if c ≥ 4 then

p1/c ≤
√
p/d+

√
d.

Therefore, fixing c as a constant which is greater than or equal to 4, we see that
Algorithm 1 can be done within

O
(√

p/d+
√
d
)

group operations. Similarly, Algorithm 1 needs the space for

O
(
max

(
p1/c +

√
p/d, p1/c +

√
d
))

= O
(
max

(√
p/d,

√
d
))

group elements if c is fixed as a constant which is greater than or equal to 4.
From Theorem 1 and the above discussion, we have Theorem 1’ below.

Theorem 1’. Let g be an element of prime order p in an abelian group. Suppose
that d is a positive divisor of p − 1. If g, [α]g and [αd]g are given, α can be
computed within O

(√
p/d+

√
d
)

group operations using space for

O
(
max

(√
p/d,

√
d
))

group elements.

Theorem 1’ shows that Algorithm 1 is O (log p) times faster than the result
shown by [Che06].

By the similar discussion for the p+ 1 variant, Theorem 2’ shown below can
be obtained from Theorem 2.

Theorem 2’. Let g be an element of prime order p in an abelian group. Suppose
that d is a positive divisor of p + 1 and [αi]g for i = 1, 2, . . . , 2d are given.
Then α can be computed within O

(√
p/d+ d

)
group operations using space for

O
(
max

(√
p/d,

√
d
))

group elements.

Note that the number of group operations shown in Theorem 2’ can be obtained
if c ≥ 3. However, the space needs for O

(
max

(√
p/d, d

))
group elements in

the case of c = 3. Therefore, c ≥ 4 is also necessary for the p+ 1 variant as well
as Algorithm 1.
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Remark 1. Cheon [Che06] pointed out that a reduced memory variant of
Algorithm 1 can be obtained by the similar manner for Pollard’s lambda al-
gorithm with distinguished points [Pol78, QD90, Tes98]. The on-line precom-
putation table introduced in this section can be also applied to this variant.
However, O

(
cp1/c

)
amount of memory is needed for the table from Eq. (3).

Therefore, careful discussion on setting of a small positive integer c should be
needed according to the situation when one applies the table to the variant.

5 Improvement for q-WDHP

This section proposes an improvement of Algorithm 1 for q-WDHP. It is more
efficient than Algorithm 1 if O (d) > O

(√
p
)
. The complexity of Algorithm 1

achieves its lowest as O
(
p1/4
)

group operations when d = O
(√

p
)
. Besides, it

increases monotonically as d increases for O(d) > O
(√

p
)
. Unlike Algorithm 1,

the complexity of the improvement decreases monotonically as d increases. The
improvement can be obviously applied to the problems which is reducible to
q-WDHP.

This section deals with Problem 2 shown below.

Problem 2. Find [αk]g for given: k ∈ Z, a positive divisor d of p − 1, g ∈ G,
[αd]g, and [αr]g with r ∈ Z such that 0 ≤ r < d and

k ≡ r mod d, (5)

where α ∈ (Z/pZ)∗ is not given.

Setting k = p − 2, we see that q-WDHP can be reduced to Problem 2, and
moreover, q-SSDHP can be directly reduced to the problem by setting k = q+1.

On the complexity to solve Problem 2, we have:

Theorem 3. Let g be an element of prime order p in an abelian group and
k a positive integer. Suppose that g, [αd]g, and [αr]g are given, where d is a
positive divisor of p − 1, r is a integer such that r ≡ k mod d and 0 ≤ r < d.
Then [αk]g can be computed within O

(
ε
√
p/d
)

group operations, where ε =

min
(
2/(1 − logp d), log p

)
, using space for O

(
ε
√
p/d
)

group elements in the case

of ε = 2/(1 − logp d) or O
(√

p/d
)

group elements in the case of ε = log p.

Proof. First, ζ and k0 in Algorithm 1 can be obtained by executing Steps 1-
5 in the algorithm. They need O

(
log p

√
p/d
)

group operations and space for

O
(√

p/d
)

group elements due to the proof of Theorem 1 in [Che06] if the on-line
precomputation table introduced in Section 4 is not used. On the other hand,
from Eqs. (3), (4) and that

p1/c =
√
p/d if c =

2
1 − logp d

,
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we see that they can be done within O
(

2
1−logp d

√
p/d
)

group operations with

space for O
(

2
1−logp d

√
p/d
)

group elements by using the table. From these ζ

and k0, αd can be obtained as
αd = ζk0 .

Next,

s =
k − r

d

can be obtained as an integer since Eq. (5). Then [αk]g can be computed as
follows:

[αk]g = [αsd+r]g = [(αd)sαr]g = [(αd)s][αr ]g

from αd, s, and given [αr]g. In fact, one can compute an integer τ ∈ [0, p − 1]
such that τ ≡ (αd)s mod p. Therefore, [αk]g can be computed by using τ as
follows:

[αk]g = [τ ][αr ]g.

It can be done within O (log p) group operations by the binary method, so that
its cost is negligible. ��

Theorem 3 implies Corollary 1 below immediately.

Corollary 1. If there exists a positive divisor d ≤ q of p − 1, q-WDHP can be
solved within O

(
ε
√
p/d
)

group operations, where ε = min
(
2/(1 − logp d), log p

)
,

using space for O
(
ε
√
p/d
)

group elements in the case of ε = 2/(1 − logp d) or

O
(√

p/d
)

group elements in the case of ε = log p.

Algorithm 2 shows the improvement given by Corollary 1.

Algorithm 2. Improved Algorithm for q-WDHP
Input: G: an abelian group of prime order p, g, gr, gd ∈ G, d ∈ N such that d | p − 1
Output: [1/α]g for (unknown) α ∈ (Z/pZ)∗ that satisfies gd = [α

d]g and gr = [α
r]g,

where r ∈ Z such that 0 ≤ r < d and r ≡ p − 2 mod d
1: if 2/(1− logp d) < log p then
2: Find αd from g, gd, and d by executing Steps 1-5 in Algorithm 1 with the on-line

precomputation table introduced in Section 4 at c = 2/(1− logp d)
3: else
4: Find αd from g, gd, and d by executing Steps 1-5 in Algorithm 1 without the

table
5: end if
6: Find s, r ∈ Z such that p − 2 = sd+ r, 0 ≤ r < d
7: Find τ ∈ Z such that 0 ≤ τ < p, τ ≡ (αd)s mod p
8: return [τ ]gr
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Unlike Algorithm 1, the complexity of the improvement decreases monoton-
ically as d increases. Therefore, the improvement is asymptotically faster than
Algorithm 1 if d >

√
p. Moreover, even if the upper bound of d is fixed for mod-

erately large value, ε in Theorem 3 can be regarded as a constant. For example,
if the upper bound of d is fixed as p7/8, the value 2/(1 − logp d) is bounded by
16. Therefore, in such case, ε can be regarded as a constant for cryptographi-
cally interesting sized p, i.e. the complexity of the algorithm for both time and
space shown in Theorem 3 can be regarded as O

(√
p/d
)

for many cases in our
interesting situations.

Remark 2. In present protocols based on the pairing-related problem, the prob-
lem size is O (q log p). Therefore, q should be a polynomial of log p. Then, d should
also be a polynomial of log p because d ≤ q. Consequently, the effect of the im-
provement shown in this section is not so large on the protocols, whereas the
improvement is slightly faster than Algorithm 1 even for such small d. However,
we need to pay attention to the improvement in order to make a new problem
for coming protocols. Because, as well as Algorithm 1, the improvement needs
only constant numbers of group elements as its inputs.

6 Discussion

This section discusses how one chooses the group order so that both of Algorithm
1 and the p+1 variant are inefficient for the pairing-related problems. Moreover,
this section shows a condition for the group order and the probability to satisfy
the condition.

In this section, we assume that d is small enough, i.e. a polynomial of log p.
From Theorem 1 (Theorem 2), it seems that Algorithm 1 (resp. the p + 1

variant) is more efficient than the ordinary square-root algorithms if

d = Ω
(
log2 p

)
, (6)

which can be obtained from

O
(
log p

√
p/d
)
≤ O (

√
p) .

In order to avoid the ability of Algorithm 1 and the p + 1 variant, [Che06]
recommended to increase the key size or to choose p so that both of p+ 1 and
p− 1 have no small divisor greater than log2 p according to (6).

However, from Theorem 1’ (Theorem 2’) newly obtained in Section 4, we see
that Algorithm 1 (resp. the p + 1 variant) is more efficient than the ordinary
square-root algorithms if

d = Ω (1) ,

i.e. there is asymptotically no lower bound of d for the efficiency of the
algorithms.

On the other hand, Algorithm 1 needs [αd]g as its input, and the p+1 variant
needs [αi]g for i = 1, . . . , 2d. Therefore, Algorithm 1 (the p+ 1 variant) has the
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same complexity as ordinary square-root algorithms if p− 1 (resp. p+ 1) has no
divisor 1 < d ≤ q (resp. 1 < d ≤ q/2).

Unfortunately, p ± 1 always has small divisors if p is a cryptographically
interesting size, i.e. 2 | p± 1,

4 | p− 1 if p ≡ 1 mod 4,
4 | p+ 1 if p ≡ 3 mod 4,

and moreover,

3 | p− 1 if p ≡ 1 mod 3,
3 | p+ 1 if p ≡ 2 mod 3.

However, the effect of these divisors on the algorithms seems to be small. Ac-
cordingly, the simplest strategy to avoid the ability of the algorithms is to choose
p according to q so that d > q for any prime d | p− and d > q/2 for any prime
d | p+, where p± is given by the following table.

p mod 12 1 5 7 11

p−
p− 1
12

p− 1
4

p− 1
6

p− 1
2

p+
p+ 1

2
p+ 1

6
p+ 1

4
p+ 1
12

For example, if p ≡ 1 mod 12 then p− = (p− 1)/12.
Now, suppose that p− is a random positive integer. Then the probability P−

that p− has no prime divisor less than or equal to q is given as follows:

P− =
∏
l≤q

(
1 − 1

l

)
,

where l is in prime numbers. Therefore, we see directly from Mertens’s theorem
[HW79, Theorem 429] that

P− ≈ e−γ

loge q
= Θ

(
1

log q

)
,

where γ denotes Euler’s constant.
By the similar discussion, the probability P+ that p+ has no prime divisor

less than or equal to q/2 can be obtained as

P+ = Θ

(
1

log q

)
.

Assuming p− and p+ are independent of each other, we see that there exists
the suitable p, i.e. a prime number p such that d > q for any prime d | p− and
d > q/2 for any prime d | p+, with the probability Θ

(
1/ log2 q

)
. Consequently,
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a randomly chosen prime order p generally does not satisfy the condition in
cryptographically settings, even though the order can be obtained by cut-and-
try in many time.

On the other hand, the studies on constructing a “pairing-friendly curve”
are still ongoing, e.g. [MNT01], [BLS04b], [BLS04a], [GMV07], [BW05], [BN06],
[SB06], [Fre06], [CKT06], [FST06]. See also [Gal05] and [DL05]. Therefore, con-
struction of a pairing-friendly curve whose order satisfies the condition given in
this section is an interesting further research subject.

Remark 3. The condition shown in this section is not sufficient in certain cases,
i.e. there are the cases that Algorithm 1 (the p+1 variant) efficiently works even
if any prime divisor of p− (resp. p+) is greater than q (resp. q/2). Because the
efficiency of the algorithms is higher in the cases shown below, we should take
care of the cases.

(q+1)-BDHEP takes [αi]g for i = 0, . . . , q, q+2, 2q+2 as its input. Therefore,
in order to avoid the ability of Algorithm 1 on (q + 1)-BDHEP, we should be
choose p so that p− has no prime divisor d ≤ 2q + 2 except d = q + 1.
q-BDHIP takes [αi]g for i = 0, . . . , q as its input, and moreover, it takes

e : G×G → Gm,

so that, for k = 0, . . . , 2q, e(g, g)αk

can be obtained by

e(g, g)αk

= e([αi]g, [αj ]g), 0 ≤ i, j ≤ q, k = i+ j.

Executing the algorithms on Gm with the selected elements in {e(g, g)αk | k =
0, . . . , 2q} as their input, one can obtain e(g, g)1/α. Therefore, in order to avoid
the ability of Algorithm 1 (the p+ 1 variant) on q-BDHIP, we should be choose
p so that p− (resp. p+) has no prime divisor d ≤ 2q (resp. d ≤ q).

7 Conclusion

This paper showed that Cheon’s algorithms [Che06] are faster than the complex-
ity shown by the analysis in [Che06]. The paper also showed an improvement
of the basic algorithm. It is faster than the Cheon’s algorithms for the q-weak
Diffie-Hellman problem if p− 1 has a large positive divisor d for the group order
p. Based on the above results, this paper discussed how one chooses the group
order so that the algorithms are inefficient, and moreover, showed a condition
for the group order and the probability of the order satisfied the condition.
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On Pairing Inversion Problems
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Abstract. In many aspects, cryptanalyses of pairing based cryptogra-
phy consider protocol level security and take difficulties of primitives for
granted. In this survey, we consider pairing inversion. At the time this
manuscript was written(April 2007), to the best of the author’s knowl-
edge, there are neither known feasible algorithms for pairing inversions
nor published proofs that the problem is unfeasible.

Keywords: elliptic curves, pairing based cryptography, complexity.

1 Introduction

Pairing based cryptography added one more very important “raison d’être”
to elliptic curve cryptography. Before Joux’s one round tripartite key sharing
protocol[16], what can be done with elliptic curve cryptography can be done
with cryptosystems based on the discrete logarithm problem over multiplicative
groups of finite fields (with acceptable increase of computational cost). Compared
to finite fields, understanding elliptic curve cryptography needs much more pre-
requisites. They are enough for some cryptographers to adhere to finite field
based cryptosystems. However, in order to realize pairings used in pairing based
cryptography, understanding elliptic curves or other algebraic geometrical ob-
jects is indispensable.1

In designing cryptographic protocols, pairings are usually regarded as a black
box for which the bilinear Diffie-Hellman problem is difficult. However, elliptic
curves used in pairing based cryptography are so called pairing friendly curves
which are very rare (Balasubramanian and Koblitz[1], Luca and Shparlinski[23]).
Although it is widely believed that the generic elliptic curve discrete logarithm
problem(ECDLP) is unfeasible, hardness of that for pairing friendly curve is not
well studied. Not only this problem, but also many other problems on pairing
based cryptography still remain open (cf. Lange[20]). In this article, we focus
our attention on pairing inversion problems.

The paper is organized as follows. In Section 2, we recall some basic definitions
on pairings. Section 3 reviews the work of Verheul. Section 4 is a survey of
� The author would like to thank Steven Galbraith, Florian Hess and Loren Olson for
discussion and/or comments.

1 One can use the technique of Cocks[6] but this method needs so many arithmetic
operations which is a problem in application.
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attempts to pairing inversion problems. In Section 5, we compare difficulties of
problems related to pairing inversions.

Notation. For the abelian group G and a non-zero integer n, we denote the
subgroup of n-torsion elements of G by G[n]. The point at infinity of an elliptic
curve given by the Weierstrass model is denoted by O.

2 Basic Definitions

Let G1 and G2 be abelian groups whose group operations are written additively.
Let H be the abelian groups whose group operations are written multiplicatively.
A map e : G1 × G2 → H is called a bilinear map if it satisfies the following
two conditions:

(1) e(a+ b, c) = e(a, c)e(b, c) for all a, b ∈ G1 and c ∈ G2.
(2) e(a, b+ c) = e(a, b)e(a, c) for all a ∈ G1 and b, c ∈ G2.

Moreover, if the next condition holds, e is said to be non-degenerate.

(3) For any non-zero a ∈ G1, there exists b ∈ G2 satisfying e(a, b) 
= 1 and for
any non-zero b ∈ G2 there exists a ∈ G1 satisfying e(a, b) 
= 1.

In case that G1 = G2 and that e(a, b) = e(b, a) (resp. e(a, b) = e(b, a)−1) for
all a, b ∈ G, the pairing e is said to be symmetric (resp. alternate). One
important property of an alternate pairing is that e(a, a) = 1 provided that
order of a is odd.2

We formulate the following two problems:

Computational bilinear Diffie-Hellman Problem (CBDHP): Let a ∈ G1

and b ∈ G2 and assume e(a, b) 
= 1. Given ma and na ∈ G1, compute
e(mna, b).

Decision bilinear Diffie-Hellman Problem (DBDHP): Let a ∈ G1 and
b ∈ G2 and assume e(a, b) 
= 1. Given ma, na ∈ G1 and h ∈ H , determine
whether e(mna, b) = h or not.

They are bilinear analogues of the following classical problems:

Computational Diffie-Hellman Problem (CDHP): Let a ∈ G1 and as-
sume a 
= 0. Given ma and na ∈ G1, compute mna.

Decision Diffie-Hellman Problem (DDHP): Let a ∈ G1 and assume a 
=
0. Given ma, na, b ∈ G1, determine whether mna = b.

In the case that G1 = G2 and that G1 is a cyclic group of prime order, existence
of a non-degenerate pairing implies that DDHP for G1 is easy. Note that e(a, a)
is a generator of H (otherwise, e is degenerate). Hence we can solve DDHP by
testing e(ma, na) = e(b, a).
2 The assumption on the order cannot be dropped. Consider the bilinear pairing e :

Z/2Z × Z/2Z → {±1} defined by e(a, b) = 1 for ab = 0 and e(1, 1) = −1.
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So far, we did not exploit the underlying structure of G1, G2 and H . In reality,
we use (variants of) the Tate pairing or the Weil pairing on suitable (Jacobians
of hyper-)elliptic curves defined over finite fields. Let p be a prime and let q be
a power of p. For simplicity, we only consider elliptic curves and their points
whose order is an odd prime. Let E be an elliptic curve over Fq and let l (
= p)
be an odd (and large) prime dividing #E(Fq). Denote the group of the l-th
roots of unity by μl. The embedding degree for l is defined to be the minimal
positive integer r such that qr ≡ 1(mod l), or equivalently the field extension
degree [Fq(μl) : Fq ]. A similar but definitely different notion is the security
parameter for l which is the minimal positive integer s such that ps ≡ 1(mod l),
or equivalently the field extension degree [Fp(μl) : Fp ]. In order that a pairing
based protocol efficiently works, it is necessary that the following two conditions
must simultaneously hold:

(1) The embedding degree must not be so large. Otherwise computing values of
pairings is unfeasible.

(2) The security parameter must be large. Otherwise we can solve DLP on μl

by applying index calculus algorithm to Fp(μl).

By the minimality of s, it is obvious that s ≤ [Fq : Fp]r. But r being large does
not necessarily imply large s.3 An elliptic curve satisfying these two condition is
called as a pairing friendly curve. They are rather rare (Balasubramanian and
Koblitz[1], Luca and Shparlinski[23]). The probability that a randomly generated
curve being pairing friendly is negligible. In practice, there are two methods to
find out pairing friendly curves.

(1) Supersingular curves. In this case, the possible r is either 1, 2, 3, 4 or 6
(Menezes, Okamoto and Vanstone[26], [27]).

(2) Generate pairing friendly curve using complex multiplication theory: This
topic alone amounts to an another survey article. See e.g. Freeman, Scott
and Teske[10]. Here we refer only few of known results. Miyaji, Nakabayashi
and Takano[29] for r = 3, 4, 6. Freeman[9] for r = 10. Barreto and Naehrig[4]
for r = 12. In their unpublished paper,4 Cocks and Pinch give an algorithm
for arbitrary r but the characteristics of the ground fields of the resulting
curves by the Cocks and Pinch algorithm are of order r2 rather than r. See
also Brezing and Weng[5].

In many applications, G1 and G2 are identical cyclic subgroups of E(Fq)[l].
However, the Weil pairing is always trivial on G1 × G1 due to its alternating
property (note that l is odd). Less obvious is that the Tate pairing is always
trivial in case that r > 1. (See e.g. Galbraith[11, Lemma IX.13].) A distortion
map for the group 〈P 〉 where P ∈ E[l] is an effectively computable group

3 To the best knowledge of the author, the importance of distinguishing r and s is
completely overlooked until the initial preprint version of Hitt[15] was posted to the
IACR e-print server 2006/245.

4 A description of their algorithm can be found in Galbraith[11].
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homomorphism δ : 〈P 〉 → E[l] satisfying δ(P ) 
∈ 〈P 〉. It is used to construct a
non-trivial self pairing. For any non-degenerate pairing e onE[l], either e(P, P ) 
=
1 or e(P, δ(P )) 
= 1 since P and δ(P ) form a base of E[l].5

3 The Work of Verheul

In this section, assume that G1, G2, H are cyclic groups of an equal order of
known factorization (e.g. prime order). To state Verheul’s results[34], we intro-
duce one more problem related to CDHP.

Weak Diffie-Hellman Problem (WDHP): Let g ∈ H be a generator. Find
a generator ω ∈ H such that ωmn is feasibly computed from gm and gn for
all gm, gn ∈ H .

Clearly, CDHP implies WDHP. We consider the situation where there exist
efficient algorithms to compute the following three maps.

(1) e : G1 ×G2 → H , a non-degenerate bilinear pairing
(2) δ : G1 → G2 , an isomorphism s.t. e(x, δ(x)) 
= 1.
(3) v : H → G1, an isomorphism

Verheul observed that WDHP for any generator g of H is feasible in the
above setting. Indeed, put ω := e(v(g), δ(v(g))). Then, bilinearlity of e yields
e(v(gm), δ(v(gn))) = ωmn. Moreover, he proved that WDHP for H implies
CDHP for H or even stronger variants of CDHP. (His proof of this part uses
WDHP as an oracle. Pairings and distortions do not appear explicitly.) He actu-
ally constructed the maps δ for the Weil pairing on certain supersingular elliptic
curves. He concluded that v is unlikely to be feasibly computational for that
curve because CDHP for H in his example is believed to be difficult.

Following Koblitz and Menezes[19], we call v : H → G1 the Verheul map. In
general, the problem of constructing a map from H to G1×G2 which has “nice”
properties is called the pairing inversion problem. Here, we introduce two
more well known pairing inversion problems:

Fixed Pairing Inversion (FPI): Let a ∈ G1 be fixed. For given z ∈ H , find
b ∈ G2 s.t. e(a, b) = z.

Generalized Pairing Inversion (GPI): For given z ∈ H , find a ∈ G1 and
b ∈ G2 s.t. e(a, b) = z.

They definitely appear in Joux[17], but their origins are unknown.

5 In some of the literature, a distortion map is defined as a non-Fq rational endomor-
phism. Since the endomorphism ring of an ordinary elliptic curve is commutative,
a non-Fq rational endomorphism exists only for supersingular curves. However, one
can construct a distortion map in the sense of our definition for ordinary curves and
it plays the required role.
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We emphasize that all cryptographic protocols based on CDHP6 on H are
broken if we can find one 5-tuple (G1, G2, δ, e, v) for which v, δ, and e are effec-
tively computable. That is, the effect of pairing inversion problems is not limited
to pairing based cryptography. For some values of l, Maurer and Wolf[24], [25]
proved that CDHP and DLP for μl are equivalent in some sense. Although char-
acterization of l for which CDHP and DLP is equivalent is yet still an open
problem, for those l, pairing inversion problems affects a wider class of crypto-
graphic systems.

4 Hardness of Pairing Inversions

Surprisingly, hardness of pairing inversion is not well studied despite of its im-
portance. Historically, the problem is considered in conjunction with reduction of
ECDLP to DLP in multiplicative groups of finite fields(FFDLP). Let E/Fq be an
elliptic curve. Let l (
= p) be a prime dividing #E(Fq) and let r be its embedding
degree. Menezes, Okamoto, Vanstone[26], [27] (with the Miller algorithm[28])
and Semaev[32] independently discovered that ECDLP is reduced to FFDLP in
F×

qr by a probabilistic polynomial time algorithm. Roughly speaking, ECDLP in
E(Fq)[l] is not more difficult than FFDLP in F×

qr . However, “generic” ECDLP
is conjectured to be a more difficult problem than FFDLP. In order prove this,
it suffices to construct an isomorphism, which is now called the Verheul map.
Verheul’s pioneering results showed that this plan probably does not work, at
least in general. But this does not imply that a pairing inversion is hard for a
particular elliptic curve. There might exist a family of elliptic curves for which
a pairing inversion is easy.

Satoh[30] considered polynomial interpolations of theX-coordinate of the Ver-
heul map. Assume that E is given by the affine Weierstrass model. We denote
the X-coordinate function and the Y -coordinate function by X and Y , respec-
tively. Choose (and fix) a generator B ∈ E[l] and a generator ζ ∈ μl. There
exists VX , VY ∈ Fqr [z] satisfying

deg VX ≤ l − 2, VX(ζn) = X(nB) for 0 < n < l − 1,

deg VY ≤ l − 2, VY (ζn) = Y (nB) for 0 < n < l − 1.

If VX and VY can be evaluated quickly, we obtain one of the feasible Verheul
maps. Assuming l to be odd, Satoh[30, Theorem 3] obtained

degVX ≥

⎧⎨
⎩

(l − 1)/5 (p 
= 2),

(l − 1)/2 (p = 2).
(4.1)

6 An important example is the ElGamal cryptosystem. The fact that CDHP is enough
to break the ElGamal cryptosystem was already pointed out in the original paper
by ElGamal[8].
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The proof uses division polynomials and technique developed by Lange and
Winterhof[21], [22]. The inequality (4.1) is too weak to insist hardness of the
Verheul map. A polynomial interpolation is just one of many possible methods
to compute the Verheul maps. Moreover some large degree polynomials (such
as monomials) can be evaluated quickly. Kiltz and Winterhof[18] obtained es-
timates of weights for polynomial interpolations for CDHP over multiplicative
groups of finite fields. However, the method does not seem to be applicable for el-
liptic curves, at least in a straightforward way. In the case q = p ≥ 5 and

√
12p <

l < 2p/
√

3, Satoh[31] proved the following assertion: None of the coefficients of
VX vanishes (in particular degVX = l − 2) for about 58and a cyclic subgroup
of order l. The proof utilizes that over the complex number filed, the coefficients
of VX are certain modular forms of weight two, of which we can consider “reduc-
tion mod p”. The theory of modular forms and modular functions gives a number
of zeros of modular forms. By taking mod p, we can estimate how frequently at
least one coefficient of VX vanishes. Unfortunately, it seems very difficult to say
something about a particular curve with this “moduli” approach.

Recently, Galbraith, ÓhÉigearaigh and Sheedy[13] proposed another method.
The idea is that η-pairing on supersingular curves can be expressed in a simple
form so that we have a non-trivial way to compute the Verheul map.

Assume that E is a supersingular elliptic curve. As before, l is an odd prime
dividing #E(Fq) and r is its embedding degree. For simplicity, we restrict our-
selves to the case that E is defined over Fp. Assume that r is even and that
gcd(r,m) = 1 where m := [Fq : Fp]. We also assume that there is a non-Fq

rational endomorphism ψ satisfying

πr/2(ψ(P )) = −ψ(P )

for P ∈ E(Fq) where π is the q-th power Frobenius. Put M := qr/2 − 1. For
n ∈ Z and P ∈ E(Fq), there exists fn,P ∈ Fq(E) such that div(fn,P ) = n[P ] −
[nP ]− (n− 1)[O] and that the leading coefficient of fn,P with respect to a local
parameter defined over Fq at O is 1. We define the η-pairing7 by

η(P,Q) = fq,P (ψ(Q)) (4.2)

for P , Q ∈ E(Fq).8 In general, the η pairing itself may not be a bilinear pairing.
However ηMqr/2 coincides with the reduced Tate pairing by Barreto, Galbraith,
Ó’hÉigeartaigh and Scott[3, Theorem 1]. Usually, η(P,Q) is evaluated by the
Miller algorithm with several optimizations followed by raising to the (Mqr/2)-
th power. A key observation in Galbraith, ÓhÉigeartaigh and Sheedy[13] is

7 For generalities on the η-pairing, see Barreto, Galbraith, Ó’hÉigeartaigh and
Scott[3].

8 Note that fn,P and η(P, Q) depend on the choice of a local parameter defined over
Fq. However, since r is even, cM = 1 for all c ∈ F×

q . Hence η(P, Q)M is independent
of the choice of a local parameter defined over Fq. See [2, Lemma 1 and Theorem
1]. If E is given by the affine Weierstrass model in the XY -plane, one can always
use −Y/X as a local parameter defined over Fq (or even any prime field) at O.
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that computing (4.2) without optimizations (in particular, so-called denomina-
tor elimination), the order of resulting value is divisible by qr/2 + 1. Therefore,
η(P,Q)M = η(P,Q)−2. This technique is also applicable to the Duursma-Lee[7]
curves Y 2 = Xp − X ± 1. For simplicity, we consider the case p = 2 in what
follows. In this case, η(P,Q) itself is a non-degenerate bilinear pairing. It can be
evaluated as

η(P,Q) =
m−1∏
i=0

(
gpiP (ψ(Q))
vpi+1P (ψ(Q))

)pm−1−i

where gA and vA are suitably normalized rational functions with div(gA) =
p[A] + [−pA] − (p + 1)[O] and div(vA) = [A] + [−A] − 2[O], respectively. Take
(and fix) an F2 basis {θ0, . . . , θm−1} of Fq and P ∈ E(Fq)[l]. For a given z ∈
μl satisfying z 
= 1, we want to find a unique point Q ∈ E(Fq)[l] satisfying
η(P,Q) = z. We introduce 2m variables x0, . . . , xm−1 and y0, . . . , ym−1 over
F2 and put Q =

(∑m−1
i=0 xiθi,

∑m−1
i=0 yiθi

)
. Note that the squaring map is an

F2-linear map. Thus, there exist constants ai,j , bi,j, ci,j , ui,j , vi,j , wi,j ∈ Fqr

(depending on P ) such that

η(P,Q) =
m−1∏
j=0

m−1∑
i=0

(ui,jxi + vi,jyi + wi,j)

m−1∑
i=0

(ai,jxi + bi,jyi + ci,j)
.

Therefore, in order to find Q satisfying η(P,Q) = z, it is suffice to solve a
multivariate polynomial equation

z

m−1∏
j=0

m−1∑
i=0

(ai,jxi + bi,jyi + ci,j) −
m−1∏
j=0

m−1∑
i=0

(ui,jxi + vi,jyi + wi,j) = 0.

Solving such a equation is laborious and infeasible for practical values of m.9

Ordinary curves are another story. The following results are obtained by Gal-
braith, Hess and Vercauteren[12]. Let E be an ordinary elliptic curve defined
over Fq. Denote the trace of the q-th Frobenius by t. In what follows, assume
t > 1. Recall that the elliptic ate pairing (see Hess, Smart and Vercauteren[14])
is defined as ft−1,P (Q)d with some positive integer d. We decompose a pairing
inversion problem into two steps:

Final Exponentiation Inversion: Finding correct d-th root of a given value.
Miller Inversion: Given z ∈ μl, find Q satisfying

ft−1,P (Q) = z. (4.3)

9 Nevertheless, [13] gives implementation results for small m, which is suggestive.
The possible use of Duursma-Lee type higher genus curves to reduce computational
complexity for solving pairing inversion is observed there too.
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The smaller t is, the smaller the degree (as a rational function) of ft−1,P is,
which means a fewer number of arithmetic operations to solve (4.3). In [12], it
is shown that there exist families of pairing friendly elliptic curves with small t
so that the Miller inversion is feasible. As to final exponentiation inversion, [12]
proved that a random d-th root of a pairing value can be passed to the Miller
inversion phase for some elliptic curves. An open problem is whether the two
families of elliptic curves have non-empty intersection.

5 Relations Among Pairing Inversion Problems

It is obvious that FPI implies GPI. However, GPI is believed to be weaker
than FPI. What else can we say about relations between two pairing inversion
problems? In this section, we consider relations of the Weil pairing inversion on
supersingular elliptic curves. Although E[l] is not cyclic, FPI and GPI straight-
forwardly generalize to pairings on non-cyclic groups. In what follows, E denotes
a supersingular elliptic curve defined over Fq. Let l be an odd prime dividing
#E(Fq) with embedding degree r > 1. Let e be the l-th Weil pairing over
E[l]×E[l]. We denote the q-th power Frobenius endomorphism by π. For a field
extension Fqm/Fq, we define the trace map TrE(Fqm )/E(Fq) by

TrE(Fqm )/E(Fq) :=
m−1∑
i=0

πi.

By definition, TrE(Fqm )/E(Fq) ∈ End(E) and it sends E(Fqm) to E(Fq). Put
Gl := E(Fq)∩E[l] and G′

l := KerTrE(Fqr )/E(Fq) ∩E[l].10 The assumption r > 1
implies that Gl and G′

l are isomorphic to Z/lZ. Put T := r−1 TrE(Fqr )/E(Fq)

(r−1 is mod l inverse), T ′ := 1 − T . Note that T and T ′ are projections to Gl

and G′
l, respectively. We begin with a technical lemma.

Lemma 1. Let δ be a non-Fq-rational map and define δ̃ ∈ End(E) by πδ =
δ̃π.11 Assume

l � r and l � degsep(δ − δ̃). (5.1)

Take a generator B′ of G′
l. Put B := TδB′. Then, B 
= O.

Proof. Set t := Trπ, the trace of the q-th power Frobenius endomorphism.12

Put CrX +Dr := rem(Xr−1 +Xr−2 + · · · + 1, X2 − tX + q) where rem stands
for the remainder of polynomial division in Z[X ]. Now, assume B = O. Since
πr−1 + · · · + π + 1 = Crπ +Dr in End(E), we have

CrπB
′ +DrB

′ = O, (5.2)

CrπδB
′ +DrδB

′ = O. (5.3)
10 The group G′

l is known as the trace zero subgroup of E[l].
11 The existence of δ̃ follows from, for example, Silverman[33, Cor. II.2.12].
12 Do not confuse a trace of an endomorphism with a trace endomorphism.
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Recall that δ̃ ∈ End(E) satisfies πδ = δ̃π. Therefore δ̃CrπB
′ + DrδB

′ = O by
(5.3) and −Drδ̃B +DrδB

′ = Dr(δ − δ̃)B′ = O by (5.2). Therefore either l|Dr

or l| degsep(δ − δ̃).
However, l does not divide Dr. By l|#E(Fq) = 1 + q − t, we see that X2 −

tX + q = (X − 1)(X − q) in Fl[X ]. There exists U(X) ∈ Fl[X ] such that

Xr−1 + · · · +X + 1 = (X − 1)(X − q)U(X) + CrX +Dr. (5.4)

By the assumption r > 1, we have l|qr − 1 but l � q − 1. Thus qr−1 + qr−2 +
· · · + q + 1 = qr−1

q−1 ≡ 0 mod l. Now, assume l|Dr. Evaluating (3) at X = q, we
see that qCr = 0 in Fl. But E is supersingular, which means l � q. Thus Cr = 0.
Then, evaluating (5.4) at X = 1, we have r = 0 in Fl, which contradicts the
assumption l � r. ��

Remark 1. For the elliptic curves listed in Galbraith[11, Table IX.1] (so called
“popular supersingular elliptic curves”), it is easy to verify that deg(δ − δ̃) is
either 1, 2 or 3.

We introduce the following problem:

Character-valued Pairing Inversion (CPI): Let G and H be cyclic groups
of order l. Denote the H-valued character group of G by Ĝ. Find a group
isomorphism ϕ : H → Ĝ, the H-valued character of G such that for given
h ∈ H and g ∈ G, the computation of ϕ(h)(g) is feasible.

At first glance, this problem looks awkward. Literally speaking, it is not inversion
of e. But it maps H to something closely related to the domain of e. The CPI is
equivalent to find a non-degenerate feasibly computable pairing E : μl × G →
μl.13 Obviously, CPI is weaker than finding a feasible Verheul map whereas CPI
seems not weaker than existence of feasible pairing.

Theorem 1. Assume that l satisfies (5.1). Let B and B′ be as in Lemma 1.
Put ζ := e(B,B′). If CPI and GPI are easy, WDHP on μl for generator ζ is
easy.

Proof. We use the same notation as in Lemma 1. Assume we have an feasibly
computable non-degenerate pairing E : μl×Gl → μl. Define Ẽ : μl×Gl×G′

l →
μl by Ẽ(z, U, V ) := E(E(z, U), T δV ) Put ω := Ẽ(ζ, B,B′). There exists u ∈ Z
satisfying E(z,B) = zu. We may not know the value of u but it holds that
ω = E(E(ζ, B), B) = ζu2

. Then for any a, c ∈ Z we have

Ẽ(z, aB, cB′) =E(E(z, aB), T δ(cB′))

=E(zau, cB) = zacu2
.

For a given ζ ∈ μl, we can find P , Q ∈ E[l] satisfying e(P,Q) = ζn by using
GPI.
13 In some sense, ϕ can be regarded a “bidirectional” map. The author hopes that CPI
acts as a path to the Verheul map from a pairing.
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Since B and B′ form a base of E[l], there are a, b, c, d ∈ Fl satisfying P =
aB + bB′, Q = cB + dB′. Observe that

ζn = e(P,Q) = e(B,B′)ad−bc = ζad−bc,

Ẽ(ζm, TP, T ′Q)Ẽ(ζm, TQ, T ′P )−1 = ζm(ad−bc)u2
= ωmn.

Hence, WDHP for the generator ζ is easy. ��

Since E[l] is non-cyclic, FPI does not immediately give the Verheul map in our
situation. A key point of the proof of the next Theorem is that P is given in
terms of B and B′.

Theorem 2. Assume that l satisfies (5.1). Let a, b ∈ Fl. Assume that either a
or b is non-zero and put P := aB + bB′. If FPI for P is easy, then there exists
a feasible Verheul map. In particular, WHDP for μl is easy.

Proof. We keep the notation above. We can find Qz ∈ E[l] satisfying e(P,Qz) =
z. In case of a = 0, a map defined by z → TQz is the Verheul map because
e(P,R) = e(P, TR) for any R ∈ E[l]. Similarly, z → T ′Qz is the Verheul map in
case of b = 0. Assume ab 
= 0. Put ν := (δ − δ̃)2 ∈ End(E). Then ν is in fact a
multiplication by a non-zero integer, say n. By an argument similar to the proof
of Lemma 1, we see Dr 
≡ r(mod l). Observe

Tδ =δ̃T + r−1(δ − δ̃)Dr,

T ′δ =δ̃(1 − T ) + (δ − δ̃)(1 − r−1Dr).

Therefore
T ′δT δ = (δ − δ̃)(1 − r−1Dr)(δ̃T + r−1(δ − δ̃)Dr).

Since B′ is a generator of G′
l, we see that TB′ = O. Thus

T ′δT δB′ = (δ − δ̃)2r−2(r −Dr)DrB
′.

Define ψ ∈ End(E) by ψ := n−2r2(r − Dr)−1D−1
r T ′δT δ. With this definition,

ψ(B) = B′.
Now there exists c, d ∈ Fl satisfying Qz = cB + dB′. By the alternating

property of the Weil pairing,

z =e(TP, T ′Q)e(T ′P, TQ) = e(aB, dB′)e(bB′, cB)

=e(bB, ab−1T ′Q)e(bB, ψ(TQ))−1.

Thus, z → ab−1T ′Q − ψ(TQ) is a group homomorphism, which is the desired
one. ��
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The Tate Pairing Via Elliptic Nets

Katherine E. Stange

Brown University, Providence, RI 02912, USA

Abstract. We derive a new algorithm for computing the Tate pairing
on an elliptic curve over a finite field. The algorithm uses a generali-
sation of elliptic divisibility sequences known as elliptic nets, which are
maps from ZZn to a ring that satisfy a certain recurrence relation. We
explain how an elliptic net is associated to an elliptic curve and reflects
its group structure. Then we give a formula for the Tate pairing in terms
of values of the net. Using the recurrence relation we can calculate these
values in linear time. Computing the Tate pairing is the bottleneck to
efficient pairing-based cryptography. The new algorithm has time com-
plexity comparable to Miller’s algorithm, and should yield to further
optimisation.

Keywords: Tate pairing, elliptic curve, elliptic divisibility sequence,
elliptic net, Miller’s algorithm, pairing-based cryptography.

1 Introduction

The use of pairings in elliptic curve cryptography was originally suggested as
a means of reducing the discrete logarithm problem on an elliptic curve to the
discrete logarithm problem on a finite field [1, 2], but considerable excitement
and research has since been generated by public-key cryptographic applications
such as Sakai, Ohgishi and Kasahara’s key agreement and signature schemes
[3], Joux’s tri-partite Diffie-Hellman key exchange [4], and Boneh and Franklin’s
identity-based encryption scheme [5]. Good overviews of the research include
[6, 7], while a very up-to-date research bibliography can be found at [8].

The bottleneck to pairing-based cryptographic implementations is the costly
computation of the pairing, which is most frequently the Tate or Weil pairing,
the former usually being more efficient. Currently, the only polynomial time
algorithm is due to Victor Miller [9] (for an overview of implementions, see
[10, 11]).

In this paper, we propose a new method of computing of the Tate pairing,
arising from the theory of elliptic nets.

Elliptic nets are a generalisation of elliptic divisibility sequences, which were
first studied by Morgan Ward in 1948 [12]. These are integer sequences h0, h1,
h2, . . ., hn, . . . satisfying the following two properties:

1. For all positive integers m > n,

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m . (1)

T. Takagi et al. (Eds.): Pairing 2007, LNCS 4575, pp. 329–348, 2007.
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2. hn divides hm whenever n divides m.

Ward demonstrates that an elliptic divisibility sequence arises from any choice
of elliptic curve and rational point on that curve.

Theorem 1 (M. Ward, 1948, [12]). Suppose E is an elliptic curve defined
over Q, σ : C → C is its Weierstrass sigma function, and u ∈ C corresponds to
a rational point on E. Then there exists an integer k such that the sequence

hn := kn2−1 σ(nu)
σ(u)n2

forms an elliptic divisibility sequence.

For an overview of research on elliptic divisibility sequences, see [13].
Given an integral domain R and a finitely generated free abelian group A, an

elliptic net is a map W : A → R satisfying the following recurrence relation for
p, q, r, s ∈ A:

W (p+ q + s)W (p− q)W (r + s)W (r)
+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0 .

When A = R = ZZ and W (1) = 1, the positive terms of an elliptic net satisfy
Ward’s equation (1) above. Under the further conditions that W (2)|W (4) and
W (0) = 0, these terms form an elliptic divisibility sequence.

Theorem 2 in Sect. 2 relates elliptic nets over R = C to elliptic curves, gener-
alising Theorem 1. However, for cryptographic applications it is desired to work
over finite fields: Theorem 3 allows results over C to be carried over to the finite
field case. Theorem 4 is the statement of the curve-net relationship over finite
fields.

According to these results, we can associate to any choice of curve E defined
over a finite field K and n points Pi ∈ E(K) an elliptic net

WE,P1,...,Pn : ZZn → K .

This net can then be used to compute the Tate pairing: the main result can be
stated as follows.

Theorem (Introductory Version of Theorem 6). Fix a positive m ∈ ZZ.
Let E be an elliptic curve defined over a finite field K containing the m-th roots
of unity. Let P , Q ∈ E(K), with [m]P = O. Choose S ∈ E(K) such that
S /∈ {O,−Q}. Then there exists an elliptic net W : ZZn → K and p,q, s ∈ ZZn

such that the quantity

Tm(P,Q) =
W (s +mp + q)W (s)
W (s +mp)W (s + q)

is exactly the Tate pairing Tm = τm : E(K)[m] × E(K)/mE(K) → K∗/(K∗)m.
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From Theorem 6, to calculate the Tate pairing efficiently only requires an effi-
cient method of calculating the terms of an elliptic net. Rachel Shipsey’s thesis
provides a double-and-add method of calculating the n-th term of an elliptic
divisibility sequence in logn time [14]. We generalise her algorithm to elliptic
nets in Sect. 4.

This application is an example of doing arithmetic on elliptic curves via the
arithmetic of elliptic nets. Rachel Shipsey’s work made use of this approach to
solve the elliptic curve discrete logarithm problem in certain cases. Her paradigm
may have many other fruitful applications.

The Elliptic Net Algorithm and Miller’s algorithm are both log(n) algorithms;
the difference is in the constants. In this nascent form, the Elliptic Net Algo-
rithm is only somewhat slower than an optimised Miller’s, especially at higher
embedding degrees. This note should be considered a call to further research.

Guide to the Reader. I give substantial mathematical background in Sect.
2, which is currently unavailable elsewhere, and will be necessary for any im-
provements and new applications. The entirely theory-averse can skip the pre-
liminaries. For most, a suggested path is Sect. 2.2 with reference to Definition
1, followed by Sect. 2.4 and 2.5. The proof of Theorem 3 is omitted for lack of
space: for this and more details, see [15].

In Sect. 3, we prove Theorem 6 and a corollary relating elliptic nets and the
Tate pairing. In Sect. 4, we describe the algorithms necessary to compute elliptic
nets, and therefore the Tate pairing, efficiently. In Sect. 5, we make some brief
remarks on optimisation of the algorithms and the efficiency as compared with
Miller’s algorithm. Finally, we make some concluding remarks in Sect. 6.

2 Mathematical Preliminaries

2.1 Elliptic Functions Ψv

Elliptic Curves Over C. We begin with some complex function theory which
will be necessary for the definition of elliptic nets over C. This material is covered
in, for example, [16, 17]. For a complex lattice Λ, define the Weierstrass sigma
function σ : C → C by

σ(z;Λ) = z
∏
ω∈Λ
ω �=0

(
1 − z

ω

)
ez/ω+(1/2)(z/ω)2 ,

and the Weierstrass zeta function ζ : C → C by

ζ(z;Λ) =
1
z2

+
∑
ω∈Λ
ω �=0

(
1

(z − ω)2
− 1
ω2

)
.



332 K.E. Stange

Recall that the quantity
ζ(z + ω;Λ) − ζ(z;Λ)

is independent of z, and we call this η(ω). The map η : Λ → C is called the
quasi-period homomorphism. Define λ : Λ→ {±1} by

λ(ω) =
{

1 if ω ∈ 2Λ ,
−1 if ω /∈ 2Λ .

Recall that the Weierstrass sigma function σ : C → C satisfies the following
transformation formula for all z ∈ C and ω ∈ Λ:

σ(z + ω;Λ) = λ(ω)eη(ω)(z+ 1
2 ω)σ(z;Λ) . (2)

Functions Ψv. We now define the functions which will be used to obtain
an elliptic net from an elliptic curve, and collect a few basic results for later
reference.

Definition 1. Fix a lattice Λ ∈ C corresponding to an elliptic curve E. For
v = (v1, . . . , vn) ∈ ZZn, define a function Ψv on Cn in variables z = (z1, . . . , zn)
as follows:

Ψv(z;Λ) =
σ(v1z1 + . . .+ vnzn;Λ)

n∏
i=1

σ(zi;Λ)2v2
i −
∑n

j=1 vivj
∏

1≤i<j≤n

σ(zi + zj ;Λ)vivj

.

In particular, we have for each n ∈ ZZ, a function Ψn on C in the variable z:

Ψn(z;Λ) =
σ(nz;Λ)
σ(z;Λ)n2 ,

and for each pair (m,n) ∈ ZZ×ZZ, a function Ψm,n on C×C in variables z and
w:

Ψm,n(z, w;Λ) =
σ(mz + nw;Λ)

σ(z;Λ)m2−mnσ(z + w;Λ)mnσ(w;Λ)n2−mn
.

From the general theory of elliptic functions, the divisor of Ψv as a function of
z1 is ⎛

⎝ n∑
j=2

[−vj ]zj

⎞
⎠−

n∑
j=2

v1vj(−zj) −

⎛
⎝v2

1 −
n∑

j=2

v1vj

⎞
⎠ (0) . (3)

Proposition 1. The functions Ψv are elliptic functions in each variable.

Proof. Let ω ∈ Λ. We show the function is elliptic in the first variable. Let
v = (v1, . . . , vn) ∈ ZZn and z = (z1, . . . , zn),w = (ω, 0, . . . , 0) ∈ Cn. Using (2),
we calculate

F =
Ψv(z + w;Λ)
Ψv(z;Λ)

=
λ(v1ω)
λ(ω)v2

1
.
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If ω, v1ω /∈ 2Λ, then v1 is odd, and F = 1. If ω /∈ 2Λ but v1ω ∈ 2Λ, then v1 must
be even, and so F = 1 again. Finally, if ω ∈ 2Λ, then v1ω ∈ 2Λ, and F = 1.
Thus Ψv is invariant under adding a period to the variable z1. Similarly Ψv is
elliptic in each variable on Cn. ��

In view of this proposition, we will use the same notation Ψv for the associated
map En → C, and write, for example, Ψm,n(P1, P2;E).

Proposition 2. Fix a lattice Λ ⊂ C corresponding to an elliptic curve. Let
v ∈ ZZn and z ∈ Cn. Let T be an n× n matrix with entries in ZZ and transpose
T tr. Then

Ψv(T tr(z);Λ) =
ΨT (v)(z;Λ)

n∏
i=1

ΨT (ei)(z;Λ)2v2
i −
∑n

j=1 vivj
∏

1≤i<j≤n

ΨT (ei+ej)(z;Λ)vivj

. (4)

Proof. A straightforward calculation using (2). ��

2.2 Elliptic Nets from Elliptic Curves

Definition 2. Let A be a finitely generated free abelian group, and R be an
integral domain. An elliptic net is any map W : A → R such that the following
recurrence holds for all p, q, r, s ∈ A:

W (p+ q + s)W (p− q)W (r + s)W (r)
+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0 . (5)

The set of such nets is denoted EN(A,R). If B is a subgroup of A, then W
restricted to B is also an elliptic net and is called an elliptic subnet of A.

Proposition 3. Let W : A → R be an elliptic net. Then W (−z) = −W (z) for
any z ∈ A. In particular W (0) = 0.

Proof. IfW (−z) = W (z) = 0, we are done. If not, then without loss of generality,
assume W (z) 
= 0. Then setting p = q = z, r = s = 0 in (5), we obtain 0 +
W (z)4 +W (z)3W (−z) = 0, whence W (−z) = −W (z). ��

Work of Christine Swart [18] and van der Poorten [19] on translated elliptic
divisibility sequences provided the clues that the theory of elliptic nets existed.
It has recently come to my attention that the possibility of such a definition was
briefly discussed in correspondence by Noam Elkies, James Propp and Michael
Somos in 2001 [20].

We will now see that the Ψv form an elliptic net as a function of v ∈ ZZn when
the curve E and points P1, . . . , Pn are fixed. Let the standard basis of ZZn be
denoted e1, . . . , en. As a means of fixing n points Pi, we specify a homomorphism
φ : ZZn → E.
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Definition 3. Fix an elliptic curve E. Suppose φ : ZZn → E is a homomorphism
such that the images of ±ei under φ are all distinct and nonzero. Define Wφ :
ZZn → C by

Wφ(v) = Ψv(φ(e1), φ(e2), . . . , φ(en);E) .

Theorem 2. Wφ is an elliptic net.

We will prove Theorem 2 in the next section.
Suppose we choose n points Pi of an elliptic curve E, such that the ±Pi

are all distinct and nonzero. Define φ : ZZn → E by φ(ei) = Pi. We call Wφ ∈
EN(ZZn,C) the elliptic net associated to E,P1, . . . , Pn. In fact, Wφ ∈ EN(ZZn, L)
where L is the field of definition of the Pi. Part of the first quadrant of such an
example net is shown in Fig. 1 at left. In this example, E : y2 +y = x3 +x2−2x,
P = (0, 0), Q = (1, 0), and L = Q. For example, W (3, 2) = −13.

P →
Q

↑
0 1 1 -3 11 38 249

1 1 2 -5 7 89 -149

1 3 -1 -13 -36 181 -1535

-5 8 -19 -41 -151 989 -1466

-31 53 -33 -350 493 6627 48191

94 479 919 -2591 13751 68428 424345

4335 5959 12016 -55287 23921 1587077 -7159461

P →
Q

↑

over IF5over Q

0 1 1 2 1 3 4

1 1 2 0 2 4 1

1 3 4 2 4 1 0

0 3 1 4 4 4 4

4 3 2 0 3 2 1

4 4 4 4 1 3 0

0 4 4 3 1 2 4

Fig. 1. Portion of the elliptic net of E : y2 + y = x3 + x2 − 2x, P = (0, 0), Q = (1, 0)

Let E be an elliptic curve defined over Q, and P ∈ E(Q). Then if the positive
terms of the elliptic net associated to E,P are integers, they form an elliptic
divisibility sequence as described by Ward. In particular, the recurrence relation
(5) implies Ward’s relation (1). For example, in Fig. 1, the bottom row is the
elliptic divisibility sequence associated to P : 0, 1, 1, -3, 11, 38, 249, . . . .

A word of caution: it is not appropriate to think of elliptic nets as maps on
the points of the curve. This can lead to two misconceptions. First, although
it is tempting in this example to think of −13 as the “number associated to
3P +2Q”, this depends on the choice of “basis” P,Q of the net. That is to say, if
we consider instead the net W ′ associated to E,P +Q,P , then W ′(2, 1) is not
equal to W (3, 2). The relationship between the nets relative to different bases on
a single curve is the content of Proposition 2. Further, even having restricted our
attention to exactly one net we may be surprised. Suppose W is an elliptic net
associated to E,P where P is an m-torsion point. We cannot expect W (m+ k)
to equal W (k) in general. We will address these crucial issues in Sect. 2.5.
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2.3 Proof of Theorem 2

Proof. We will make use of the well-known elliptic function identity

℘(a) − ℘(b) = −σ(a+ b)σ(a− b)
σ(a)2σ(b)2

. (6)

First, we show that

ζ(x + a) − ζ(a) − ζ(x+ b) + ζ(b) =
σ(x+ a+ b)σ(x)σ(a − b)
σ(x + a)σ(x + b)σ(a)σ(b)

. (7)

Denote by f and g the left and right side of (7) respectively. Suppose that
a, b /∈ Λ. The functions f and g are elliptic in x. Both f and g have single poles
at −a and −b only. The zeroes of g are at −a− b and 0. These are also zeroes
of f , since ζ is an odd function. Hence we have f = cg for some c not depending
on x. Now define instead

F = (ζ(x + a) − ζ(a) − ζ(x + b) + ζ(b)) σ(x+ a)σ(x + b) ,

G = σ(x + a+ b)σ(x) .

We have F = c′G for some constant c′ independent of x. Taking derivatives and
evaluating at x = 0, we have

(℘(a) − ℘(b))σ(a)σ(b) = c′σ(a+ b)σ′(0) .

We have σ′(0) = 1. By (6),

c′ = − σ(a− b)
σ(a)σ(b)

.

which proves (7).
Fix z ∈ Cn. We will show that the values Ψv(z;Λ) for v ∈ ZZn form an elliptic

net. For notational simplicity, we drop the arguments (z;Λ) and also write σ(v),
℘(v) and ζ(v) for σ(v · z), ℘(v · z) and ζ(v · z). We observe that v = 0 if and
only if Ψv ≡ 0.

If any of p, q, r, p + s, q + s, or r + s are zero, then the recurrence relation
(5) holds trivially. So we may assume none of Ψp, Ψq, Ψr, Ψp+s, Ψq+s, or Ψr+s is
identically zero.

For any quadratic form f defined on ZZn, we have the following relation for
all p,q, s ∈ ZZn:

f(p + q + s) + f(p− q) + f(s) − f(p + s) − f(p) − f(q + s) − f(q) = 0 . (8)

Suppose that s 
= 0 and so Ψs 
≡ 0. By (8) and (7),

Ψp+q+sΨp−qΨs

Ψp+sΨpΨq+sΨq
=
σ(p + q + s)σ(p − q)σ(s)
σ(p + s)σ(p)σ(q + s)σ(q)

= ζ(p+s)−ζ(p)−ζ(q+s)+ζ(q) .
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Therefore, we have

Ψp+q+sΨp−qΨs

Ψp+sΨpΨq+sΨq
+
Ψq+r+sΨq−rΨs

Ψq+sΨqΨr+sΨr
+
Ψr+p+sΨr−pΨs

Ψr+sΨrΨp+sΨp
= 0 ,

or, more simply,

Ψp+q+sΨp−qΨr+sΨr + Ψq+r+sΨq−rΨp+sΨp + Ψr+p+sΨr−pΨq+sΨq = 0 ,

which is what was required to prove.
The case s = 0 is done similarly, using

Ψp+qΨp−q

Ψ2
pΨ

2
q

=
σ(p + q)σ(p − q)

σ(p)2σ(q)2
= ℘(q)−℘(p) . ��

2.4 Moving to Finite Fields

Some Notation. Now is a good moment to collect the relevant notation for
the next section and the remainder of the paper.

L number field contained in C
EL elliptic curve defined over L
R ring of integers of L
p prime of R of good reduction for EL

kp residue field of p
Ekp EL reduced modulo p
δ : EL(L) → Ekp(kp) reduction map modulo p

δ : IP1(L) → IP1(kp) reduction map modulo p

Reduction Modulo p. We wish to extend the relationship between nets and
curves to finite fields, but we can no longer use Weierstrass’ sigma function to
define appropriate functions. The following theorem allows us to push results on
number fields L over to residue fields kp. It says that we can find the appropriate
functions Ωv for Ekp by simply considering the net Ψv modulo p. These Ωv will
also form an elliptic net.

Theorem 3. Consider points P1, . . . , Pn ∈ EL(L) such that the reductions mod-
ulo p of the ±Pi are all distinct and nonzero. Then for each v ∈ ZZn there exists
a function Ωv such that the following diagram commutes:

En
L(L)

Ψv ��

δ

��

IP1(L)

δ

��
En

kp
(kp) Ωv �� IP1(kp)

Furthermore div(Ωv) = δ∗ div(Ψv).
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Proof (Sketch). Consider En as a scheme over SpecR. The proof requires ex-
tending the function on the generic fibre to the special fibres. The difficulty lies
in showing that the resulting function does not have any vertical fibres in the
support of its divisor. This reduces to a statement about the form of the Ψv as
polynomials in the structure sheaf. It relies on a number of nested and compli-
cated inductive proofs. See [15]. ��

In light of this, we extend Definition 3 and Theorem 2.

Definition 4. Let φ : ZZn → Ekp be a homomorphism such that the images of
±ei under φ are all distinct and nonzero. Let Ωv be defined according to Theorem
3. Define Wφ : ZZn → kp by

Wφ(v) = Ωv(φ(e1), φ(e2), . . . , φ(en)) .

Theorem 4. Suppose K is either a number field or a finite field, and E is an
elliptic curve defined over K. Let φ : ZZn → E(K) be a homomorphism. Then
Wφ is an elliptic net.

Proof. If K is a number field, this is Theorem 2. If K is a finite field, then
this statement follows from Theorem 3: an elliptic net postcomposed with a
homomorphism is still an elliptic net. ��

Figure 1 illustrates the relationship between an example elliptic net associated
to E,P,Q over Q and the elliptic net associated to their reductions modulo 5.

2.5 Equivalence of Nets

In this section, we restrict ourselves to finite fields.

Definition 5. Let W1,W2 ∈ EN(A,K). Suppose α, β ∈ K∗, and f : A → ZZ is
a quadratic form. If

W1(v) = αβf(v)W2(v)

for all v, then we say W1 is equivalent to W2 and write W1 ∼W2.

Clearly this definition gives an equivalence relation, and it is easily verified that
an equivalence applied to an elliptic net gives another elliptic net. We write

EN0(A,K) = EN(A,K)/ ∼ .

If W1 is a subnet of W2, then we may, by abuse of language, say that the
equivalence class [W1] is a subnet of the equivalence class [W2], since then any
W ′

1 ∈ [W1] will be equivalent to some subnet of any W ′
2 ∈ [W2].

Recall the discussion at the end of Sect. 2.2. There, we encountered
two reasons that we cannot consider an elliptic net W to be a map on the
group E(K) itself. The first is that a basis must be chosen, and the second is
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that the net may take different values at two vectors v1,v2 ∈ ZZn even when
φ(v1) = φ(v2) ∈ E(K).1

All is not lost, however. We can define elliptic nets on a free abelian cover
of E(K), and we shall see that, at least up to equivalence, we can do this in a
canonical way.

Proposition 2 gives a “basis transformation formula” for elliptic nets. This
formula holds in the finite field case by Theorem 3. We will see that it provides
an equivalence of nets. This allows us to define a net on a free abelian cover of
E(K) whose equivalence class is unique.

For a finite field K, and elliptic curve EK defined over K, there always exists
a number field L ⊂ C, prime p, and elliptic curve EL defined over L such that
K = kp and EK = δ(EL). Let q : C → EL be the complex uniformisation. Then
we define

ÊK = q−1 ◦ δ−1(EK(K))

This is a free abelian group of finite rank with a quotient map

π : ÊK → EK(K) .

Let Γ̂ ∼= ZZn be a subgroup of ÊK . Let Γ = π(Γ̂ ). For any surjective homo-
morphism φ : ZZn → Γ there exists a lift φ̂ : ZZn → Γ̂ which is an isomorphism.

We define
Vφ = Wφ ◦ φ̂−1 .

Theorem 5. Vφ ∈ EN(Γ̂ ,K) and the equivalence class of Vφ is independent of
the choice of the surjective map φ : ZZn → Γ .

Proof. The linearity of φ−1 shows that Vφ is an elliptic net.
Suppose T : ZZn → ZZn is a homomorphism. Then a restatement of Propo-

sition 2 translated to finite fields via Theorem 3 is that Wφ◦T ∼ Wφ ◦ T (note
that every finite field has a primitive element).

Now choose another surjective φ′ : ZZn → Γ . Then there exists an isomor-
phism T : ZZn → ZZn such that φ̂ ◦ T = φ̂′ and φ ◦ T = φ′. Then

Vφ′ = Wφ′ ◦ φ̂′−1 = Wφ◦T ◦ T−1 ◦ φ̂−1 ∼Wφ ◦ φ̂−1 = Vφ .

The equivalence holds since T−1 ◦ φ̂−1 is linear. So we have defined a unique
class [Vφ] ∈ EN0(Γ̂ ,K). ��

Definition 6. Let WÊK
denote the class [Vφ] ∈ EN0(ÊK ,K) defined in

Theorem 5.

This equivalence class is in some sense the “abstract” elliptic net. Just as one
writes an abstract linear transformation as a matrix with respect to a basis in
order to do calculations, we must choose a basis in order to do calculations with
1 An examination of the statement of Theorem 6 reveals that the difference in these
values is in some sense what the Tate pairing measures.
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nets. This choice of basis is for us the choice of homomorphism φ : ZZn → E(K).
Theorem 6 gives a formula for the Tate pairing independent of the equivalence
class chosen in WÊK

. Later, we will exploit this freedom to choose an appropriate
φ for efficient calculations.

We note one useful proposition.

Proposition 4. Let W ∈ WÊK
. Then W (p) = 0 implies π(p) = O.

Proof. If W (p) = 0 then by definition Ωv(P) = 0 for some v and P such that
v ·P = π(p). But the zeroes P of Ψv are exactly those P such that v ·P = 0. ��

2.6 The Tate Pairing

Choose m ∈ ZZ+. Let E be an elliptic curve defined over a field K containing
the m-th roots of unity. Suppose P ∈ E(K)[m] and Q ∈ E(K)/mE(K). Since P
is an m-torsion point, m(P ) −m(O) is a principal divisor, say div(fP ). Choose
another divisor DQ defined over K such that DQ ∼ (Q)− (O) and with support
disjoint from div(fP ). Then, we may define the Tate pairing

τm : E(K)[m] × E(K)/mE(K) → K∗/(K∗)m

by
τm(P,Q) = fP (DQ) .

This pairing is well-defined, bilinear and Galois invariant. For cryptographic
applications, the Tate pairing is usually considered over finite fields, where it is
non-degenerate. For details, see [21, 22].

3 Tate Pairing Using Elliptic Nets

Theorem 6. Fix a positive m ∈ ZZ. Let E be an elliptic curve defined over
a finite field K containing the m-th roots of unity. Let P , Q ∈ E(K), with
[m]P = O. Choose S ∈ E(K) such that S /∈ {O,−Q}. Choose p, q, s ∈ ÊK such
that π(p) = P , π(q) = Q and π(s) = S. Let W ∈ WÊK

. Then the quantity

Tm(P,Q) =
W (s+mp+ q)W (s)
W (s+mp)W (s+ q)

(9)

is a well-defined function Tm : E(K)[m]×E(K)/mE(K) → K∗/(K∗)m. Further,
Tm(P,Q) = τm(P,Q), the Tate pairing.

Proof. By Proposition 4 and the assumptions on the choice of S, any W in
the equivalence class of W is non-vanishing at the four arguments in (9). To ver-
ify that Tm is independent of choice of representative of W, suppose that W1 and
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W2 are in the equivalence class of W. Then W2(v) = αβf(v)W1(v) for some
α, β ∈ K∗ and quadratic form f . Then

W1(s+mp− q)W1(s)W2(s+mp)W2(s− q)
W1(s+mp)W1(s− q)W2(s+mp− q)W2(s)

= βf(s+mp)+f(s−q)−f(s+mp−q)−f(s)

= βf(mp+q)−f(mp)−f(q) = βm[f(p+q)−f(p)−f(q)] ∈ (K∗)m .

Let Γ ⊂ EK(K) be the subgroup generated by S, P , and Q. Let

fP =
Ω1,0,0(−S, P,Q)
Ω1,m,0(−S, P,Q)

.

Therefore, we may compute the divisor of fP as a function of S (by equation
(3)):

(fP ) = −([m]P ) + (1 −m)(O) +m(P ) = m(P ) −m(O) .

Let DQ be the divisor (−S) − (−S −Q).
Then, using Proposition 2 and Theorem 3, in K∗/(K∗)m,

fP (DQ) =
Ω1,0,0(S, P,Q)Ω1,m,0(S +Q,P,Q)
Ω1,m,0(S, P,Q)Ω1,0,0(S +Q,P,Q)

=
Ω1,0,0(S, P,Q)Ω1,m,1(S, P,Q)
Ω1,m,0(S, P,Q)Ω1,0,1(S, P,Q)

.

By a choice of φ : ZZ3 → Γ such that φ(1, 0, 0) = S, φ(0, 1, 0) = P , and
φ(0, 0, 1) = Q, we have Wφ(v) = Ωv(S, P,Q) ∈ EN(ZZ3,K). Therefore

τm(P,Q) = fP (DQ) =
Vφ(s+mp+ q)Vφ(s)
Vφ(s+mp)Vφ(s+ q)

= Tm(P,Q) .

��

Corollary 1. Let E be an elliptic curve defined over a finite field K, m a pos-
itive integer, P ∈ E(K)[m] and Q ∈ E(K). If WP is the elliptic net associated
to E,P , then we have

τm(P, P ) =
WP (m+ 2)WP (1)
WP (m+ 1)WP (2)

. (10)

Further, if WP,Q is the elliptic net associated to E,P,Q, then we have

τm(P,Q) =
WP,Q(m+ 1, 1)WP,Q(1, 0)
WP,Q(m+ 1, 0)WP,Q(1, 1)

. (11)

Proof. For the first formula, taking q = p and s = 2p, we obtain

Tm(P, P ) =
W ((m+ 2)p)W (p)
W ((m+ 1)p)W (2p)

.
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For the second, take s = p, obtaining

Tm(P,Q) =
W ((m+ 1)p+ q)W (p)
W ((m+ 1)p)W (p+ q)

. ��

4 Tate Pairing Computation

4.1 Computing the Values of an Elliptic Net

Rachel Shipsey gives a double-and-add algorithm for computing terms of an
elliptic divisibility sequence [14]. In the case of interest to us now, given the
initial values of an elliptic divisibility sequence, the algorithm computes the n-th
term of a sequence in log(n) time. Shipsey applied her more general algorithm
(which allows beginning elsewhere in the sequence) to give a solution to the
elliptic curve discrete logarithm problem in certain cases.

The algorithm described here is an adaptation and generalisation of Shipsey’s
algorithm to calculate terms W (m, 0) and W (m, 1) of an elliptic net. We define a
block centred on k (shown in Fig. 2) to consist of a first vector of eight consecutive
terms of the sequence W (i, 0) centred on terms W (k, 0) and W (k + 1, 0) and a
second vector of three consecutive terms W (i, 1) centred on the term W (k, 1).
We define two functions:

1. Double(V ): Given a block V centred on k, returns the block centred on 2k.
2. DoubleAdd(V ): Given a block V centred on k, returns the block centred

on 2k + 1.

(k-3,0) (k-2,0) (k-1,0) (k,0) (k+1,0) (k+2,0) (k+3,0) (k+4,0)

(k-1,1) (k,1) (k+1,1)

Fig. 2. A block centred on k

We assume the elliptic net satisfies W (1, 0) = W (0, 1) = 1. The first vectors of
Double(V ) and DoubleAdd(V ) are calculated according to the following special
cases of (5) (or (1)):

W (2i− 1, 0) = W (i+ 1, 0)W (i− 1, 0)3 −W (i− 2, 0)W (i, 0)3 , (12)

W (2i, 0) = (W (i, 0)W (i+ 2, 0)W (i− 1, 0)2

−W (i, 0)W (i− 2, 0)W (i+ 1, 0)2)/W (2, 0) . (13)
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The formulæ needed for the computations of the second vectors are instances
of (5):2

W (2k − 1, 1) = (W (k + 1, 1)W (k − 1, 1)W (k − 1, 0)2

−W (k, 0)W (k − 2, 0)W (k, 1)2)/W (1, 1) , (14)

W (2k, 1) = W (k − 1, 1)W (k + 1, 1)W (k, 0)2

−W (k − 1, 0)W (k + 1, 0)W (k, 1)2 , (15)

W (2k + 1, 1) = (W (k − 1, 1)W (k + 1, 1)W (k + 1, 0)2

−W (k, 0)W (k + 2, 0)W (k, 1)2)/W (−1, 1) , (16)

W (2k + 2, 1) = (W (k + 1, 0)W (k + 3, 0)W (k, 1)2

−W (k − 1, 1)W (k + 1, 1)W (k + 2, 0)2)/W (2,−1) . (17)

Equations (12) and (13), applied for i = k − 1, . . . , k + 3, allow calculation of
the first vectors of Double(V ) and DoubleAdd(V ) in terms of W (2, 0) and the
terms of V . Equations (14)–(17) allow calculation of the second vectors in terms
of W (1, 1), W (−1, 1), W (2,−1) and the terms of V .

The algorithm to calculate W (m, 1) and W (m, 0) for any positive integer m
is shown in Algorithm 1. The formula for the last term of the first vector of V
in line 1 is from (1). Note that elliptic nets satisfy W (−n,−m) = −W (n,m) by
Proposition 3. In Sect. 5.1 we will consider possible optimisations.

Algorithm 1. Elliptic Net Algorithm
Input: Initial terms a = W (2, 0), b = W (3, 0), c = W (4, 0), d = W (2, 1), e =

W (−1, 1), f = W (2,−1), g = W (1, 1) of an elliptic net satisfying W (1, 0) =
W (0, 1) = 1 and integer m = (dkdk−1 . . . d1)2 with dk = 1

Output: Elliptic net elements W (m,0) and W (m,1)
1: V ← [[−a, −1, 0, 1, a, b, c, a3c − b3]; [1, g, d]]
2: for i = k − 1 down to 1 do
3: if di = 0 then
4: V ← Double(V )
5: else
6: V ← DoubleAdd(V )
7: end if
8: end for
9: return V [0, 3] and V [1, 1] // terms W (m, 0) and W (m, 1) respectively

4.2 Computation of the Tate Pairing

We can now compute the Tate pairing via Corollary 1. Consider an elliptic curve
E over a finite field IFq of characteristic not 2 or 3, in Weierstrass form

y2 = x3 +Ax+B

2 The values p, q, r, s substituted into (5) to obtain equations (14) - (17) are
[p, q, r, s] = [(k, 0), (k − 1, 0), (1, 0), (0, 1)], [(k + 1, 0), (k, 0), (1, 0), (−1, 1)], [(k +
1, 0), (k, 0), (−1, 0), (0, 1)], and [(k + 2, 0), (k, 1), (1, 0), (0, 0)] respectively.
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and points P = (x1, y1) and Q = (x2, y2) on E(IFq) with Q 
= ±P . We must cal-
culate the values a, b, c, d, e, f, g required as input for the Elliptic Net Algorithm.
These are terms of the elliptic net associated to E,P,Q. The necessary formulæ
are given by the functions Ψm,n. In the case that m = 0, these are called division
polynomials (see [16, p.105] and [17, p.477]). We have

W (1, 0) = 1 , (18)
W (2, 0) = 2y1 , (19)

W (3, 0) = 3x4
1 + 6Ax2

1 + 12Bx1 −A2 , (20)

W (4, 0) = 4y1(x6
1 + 5Ax4

1 + 20Bx3
1 − 5A2x2

1 − 4ABx1 − 8B2 −A3) . (21)

For the formulæ in case of characteristic 2 or 3, or the more general Weierstrass
form, see [23, p.80]. Also using classical formulæ (see for example [24]), we have

W (0, 1) = W (1, 1) = 1 , (22)

W (2, 1) = 2x1 + x2 −
(
y2 − y1
x2 − x1

)2

, (23)

W (−1, 1) = x1 − x2 , (24)

W (2,−1) = (y1 + y2)2 − (2x1 + x2)(x1 − x2)2 . (25)

Suppose that P has order m. Then we use the Elliptic Net Algorithm, with input
m + 1 and a, b, c, d, e, f, g given by (19)–(25).3 The output is used to evaluate
formula (11) of Corollary 1, giving the Tate pairing.

5 Analysis

5.1 Some Implementation Considerations

For an integer m and finite field IFq, we define the embedding degree k to be
the least integer such that m|(qk − 1), thus ensuring the m-th roots of unity are
contained in IF∗

qk . In cryptographic applications of the Tate pairing, it is usual to
use a curve defined over IFq of embedding degree k > 1, and points P ∈ E(IFq),
Q ∈ E(IFqk): throughout what follows we make this assumption.

First, note that no inversions are actually needed in equations (12)–(17), since
the inverses of W (2, 0), W (2, 1), W (−1, 1) and W (2,−1) may be precomputed
before the double-and-add loop is begun. Therefore these inversions are replaced
by multiplications.

Now we consider optimisations in the functions Double and DoubleAdd. The
largest savings can be gained by first computing a number of products which
appear frequently in the formulæ:

W (i, 0)2 and W (i− 1, 0)W (i+ 1, 0) for i = k − 2, . . . , k + 3 ,

W (k, 1)2 and W (k − 1, 1)W (k + 1, 1) .

3 In this case, g = 1. However, in Sect. 5.1 we will replace this elliptic net with an
equivalent one for which W (1, 1) �= 1. For this reason, it is convenient to state
Algorithm 1 in sufficient generality and include a variable g.
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With these 14 computations, each term of the 11 to be calculated requires
only two multiplications and an addition (plus multiplications by W (2, 0)−1,
W (2,−1)−1, W (1, 1)−1 and W (−1, 1)−1). The resulting Double and DoubleAdd
algorithms are shown in Algorithm 2.

Algorithm 2. Double and DoubleAdd
Input: Block V centred at k of an elliptic net satisfying W (1, 0) = W (0, 1) = 1,

values A = W (2, 0)−1, E = W (−1, 1)−1, F = W (2,−1)−1, G = W (1, 1)−1 and
boolean add

Output: Block centred at 2k if add == 0 and centred at 2k + 1 if add == 1
1: S ← [0, 0, 0, 0, 0, 0]
2: P ← [0, 0, 0, 0, 0, 0]
3: S0 ← V [1, 1]2

4: P0 ← V [1, 0]V [1, 2]
5: for i = 0 to 5 do
6: S[i] ← V [0, i+ 1]2

7: P [i] ← V [0, i]V [0, i+ 2]
8: end for
9: if add == 0 then
10: for i = 1 to 4 do
11: V [0, 2i − 2] ← S[i]P [i + 1]− S[i+ 1]P [i]
12: V [0, 2i − 1] ← (S[i]P [i + 2]− S[i+ 2]P [i])A
13: end for
14: V [1, 0] ← (S0P [3]− S[3]P0)G
15: V [1, 1] ← S[3]P0 − S0P [3]
16: V [1, 2] ← (S[4]P0 − S0P [4])E
17: else
18: for i = 1 to 4 do
19: V [0, 2i − 2] ← (S[i]P [i + 2]− S[i+ 2]P [i])A
20: V [0, 2i − 1] ← S[i+ 1]P [i+ 2]− S[i+ 2]P [i+ 1]
21: end for
22: V [1, 0] ← S[3]P0 − S0P [3]
23: V [1, 1] ← (S[4]P0 − S0P [4])E
24: V [1, 2] ← (S0P [5]− S[5]P0)F
25: end if
26: return V

Finally, we may try to avoid some of these extra multiplications by W (2, 0)−1,
W (1, 1)−1, W (2, 1)−1 and W (2,−1)−1 entirely. Recall that by Theorem 6, ap-
plying an equivalence to the net will not alter the Tate pairing result. Let
η = W (−1, 1). Apply the equivalence given by α = 1, β = η and f(n,m) = mn.
Clearly, this preserves the conditions4 that W (1, 0) = W (0, 1) = 1 (and leaves
terms W (n, 0) unchanged, so they are still in IFq), but changes W (−1, 1) to 1,
which saves one multiplication in IFqk per iteration. If W (2, 0) has a cube root

4 These were needed to derive formulæ (12)–(17).
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ν in IFq, then the equivalence α = ν−1, β = ν and f(n,m) = m2 + n2 + mn
will change W (2, 0) to 1, while preserving W (1, 0) = W (0, 1) = W (−1, 1) = 1,
saving four IFq multiplications per iteration. Note that these equivalences may
result in W (1, 1) 
= 1.

Finally, we consider the applicability of some of the usual optimisations of
Miller’s algorithm. In Miller’s algorithm, a final exponentiation is applied, in
order to compute a unique value for the Tate pairing; the same exponentiation
must be applied here. In the case of Miller’s, this exponentiation eliminates mul-
tiplicative factors living in the base field IFq. In our case, the IFq computations
do not give rise to strictly multiplicative factors (the algorithm requires much
addition and subtraction), and so we cannot use this final exponentiation as a
justification for the saving of IFq computations. Windowing methods (as in [25]
and [26]) may lead to improvement. A triple-and-add adaptation (as in [11] and
[27]) does not seem promising, by the nature of the recurrence relation. However,
efficiency improvements are likely to be found by studying the characteristic 2
and 3 cases.

5.2 Complexity

Since the algorithm involves a fixed number of precomputations, and a double-
and-add loop with a fixed number of computations per step, the algorithm is
linear time in the size of m, as is Miller’s algorithm. Miller’s algorithm also con-
sists of a double-and-add loop, and we call the two internal steps Double and
DoubleAdd, as for the Elliptic Net Algorithm. In Miller’s algorithm the cost
of DoubleAdd is almost twice that of Double. By contrast, in the Elliptic Net
Algorithm these steps take the same time, so the complexity is independent of
Hamming weight. This makes the choice of appropriate curves for cryptograph-
ical implementations somewhat easier [6], and may help discourage side channel
attacks.

Denote squaring and multiplication in IFq by S and M . Denote squaring and
multiplication in IFqk by Sk and Mk. Assume that multiplying an element of
IFq by one of IFqk takes k multiplications in IFq. Recall that E is defined over
IFq, P ∈ E(IFq), and Q ∈ E(IFqk). Then any term W (n, 0), being a term in the
elliptic divisibility sequence associated to E,P , has a value in IFq. Under the
optimisations discussed in Sect. 5.1, each Double or DoubleAdd step requires
6S + (6k+ 26)M + Sk + 2Mk. Furthermore, under the condition that 2yP ∈ IFq

is a cube, then precomputing its cube root will save four multiplications in IFq

per step.
The Elliptic Net Algorithm requires no inversions. Miller’s algorithm in affine

coordinates requires one or two IFq inversion per step. In situations where inver-
sions are costly (depending on implementation, they may cost anywhere from
approximately 4 to 80 multiplications [28]), one may implement Miller’s algo-
rithm in homogeneous coordinates.

For the purpose of comparison, we consider an optimised implementation of
Miller’s algorithm in Jacobian coordinates analysed by Neal Koblitz and Alfred
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Menezes [29]. In their implementation, they assume x(Q) ∈ E(IFqk/2) (this is
possible by using a twist of the curve, see for example [30]). Applying this ad-
ditional assumption to the elliptic net algorithm, W (1, 1) will be an element of
IFqk/2 , reducing one of the multiplications in Double to one half the time. The
comparison is summarised in Tables 1 and 2. In the latter, a squaring is assumed
to be comparable to a multiplication (although it is more usually assumed to be
0.8 times as fast), and a multiplication in IFqk is assumed to take k1.5 multipli-
cations in IFq (see [29]). The number of steps constitutes a range because the
Double and DoubleAdd steps may differ in cost.

Table 1. Comparison of Operations for Double and DoubleAdd steps

Algorithm Double DoubleAdd

Optimised Miller’s [29] 4S + (k + 7)M + Sk +Mk 7S + (2k + 19)M + Sk + 2Mk

Elliptic Net Algorithm 6S + (6k + 26)M + Sk +
3
2Mk 6S + (6k + 26)M + Sk + 2Mk

Table 2. IFq Multiplications per Step

Embedding degree 2 4 6 8 10 12

Optimised Miller’s 18-38 31-58 46-82 64-109 84-140 106-174

Elliptic Net 51-52 76-80 104-112 136-147 171-186 207-228

5.3 A Remark on Implementations

The elliptic net algorithm has been implemented by the author for PARI/GP
(see [31]) and is available at [32]. It has also been implemented in C++ by
Michael Scott and Augusto Jun Devegili for a pairing-friendly curve of degree 2.
The implementation by Ben Lynn in the Pairing Based Cryptography Library
[33] is applicable to curves of various sizes and embedding degrees and includes
a program to compare the Elliptic Net algorithm with Miller’s. Preliminary data
agree with the complexity analysis above.

6 Conclusions

The Elliptic Net Algorithm has no significant restrictions on the points, curves
or finite fields to which it applies, and requires no inversions. The efficiency
of the algorithm is comparable to Miller’s algorithm. One expects that the
Elliptic Net Algorithm will yield to further optimisation, possibly providing an
efficient alternative to Miller’s algorithm in many cases. The theory of elliptic
nets here introduced may also yield other applications in the field of elliptic curve
cryptography.
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Abstract. Recent developments on the Tate or Eta pairing computa-
tion over hyperelliptic curves by Duursma-Lee and Barreto et al. have
focused on degenerate divisors. We present two efficient methods that
work for general divisors to compute the Eta paring over divisor class
groups of the hyperelliptic curves H/F7n : y2 = x7 − x ± 1 of genus 3.
The first method generalizes the method of Barreto et al. so that it holds
for general divisors, and we call it the pointwise method. For the second
method, we take a novel approach using resultant. We focus on the case
that two divisors of the pairing have supporting points in H(F73n), not
in H(F7n). Our analysis shows that the resultant method is faster than
the pointwise method, and our implementation result supports the the-
oretical analysis. In addition to the fact that the two methods work for
general divisors, they also provide very explicit algorithms.

Keywords: Eta pairing, Tate pairing, hyperelliptic curves, divisors,
resultant, pairing-based cryptosystem.

Introduction

Recent developments of pairing-based protocols call for efficient computation
of pairings ([5], [6], [15], [24], [27], [28]). Barreto et al. [2] and Galbraith et
al. [13] provided the fast computation of Tate pairing over supersingular elliptic
curves y2 = x3 − x ± 1 in characteristic three. In 2003, Duursma and Lee [11]
provided a closed formula for the efficient computation of the Tate pairing on
y2 = xp − x± 1, p = 3 (mod 4) in characteristic p. After then, Barreto et al. [3]
proposed the efficient computations of Tate pairing on supersingular abelian
varieties using the Eta pairing approach. More recently, Hess et al. [16] proposed
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the Ate pairing on elliptic curves, instead of the Tate pairing, for a bilinear map
in pairing-based protocols.

Over hyperelliptic curves, divisor operations are more complicated than point
operations over elliptic curves. Thus, the Tate pairing or Eta pairing computation
over a hyperelliptic curve is not considered as efficient as that over an elliptic
curve. However, the Eta pairing was faster over hyperelliptic curves with genus
2 than elliptic curves according to the implementation result in [2]. Moreover, in
some special cases, it was shown that hyperelliptic curve cryptosystem (HCC)
can be made more efficient than elliptic curve cryptosystems (ECC) by giving
the explicit formula for divisor operations ([22], [25]). For the higher genus,
preserving the same security level, we can decrease the size of the defining field.
In fact, some examples given in [22] show that for the efficiency of cryptosystems,
the size of the defining field is more important than the complexity of group
operation formula. Therefore, it is worthwhile to work over some special types
of hyperelliptic curves for efficient Tate or Eta pairing computations.

Recent developments ([3], [11]) on the Tate pairing computation on hyperel-
liptic curves over a finite field Fq have focused on the case of degenerate divisors.
However, in the pairing-based cryptography, the efficient Tate pairing implemen-
tation over general divisors is significantly more important. For instance, in the
Boneh-Franklin identity-based encryption scheme, the private keys are general
divisors, and therefore the decryption process requires computing a pairing of
general divisors. For the case of genus 2, the result in [7] presents both divisor-
wise and pointwise approach, and it turns out that the divisor-wise approach is
more efficient than the pointwise approach. For the case of genus ≥ 3, no Tate
pairing computation method has been developed for general divisors.

In this paper, we present two algorithms for computing the Eta pairing on
general divisors over hyperelliptic curves y2 = x7 − x ± 1. As well as the two
methods work for general divisors, they also provide very explicit algorithms.
The first algorithm is a generalization of the algorithm for the Eta pairing com-
putation on degenerate divisors by Barreto et al. [3], called the pointwise method.
For the second algorithm, we take a novel approach using resultant. It is a hard
task to find an explicit algorithm for the Eta pairing computation only by us-
ing symmetric functions from the product of the Eta paring value on each pair
of supporting points. However, an advantage of using the resultant is that we
can make the computation steps much simpler and more explicit so that we can
obtain an explicit algorithm.

For the complexity analysis, we focus on the case that both divisors of the
Eta pairing consist of supporting points in H(F73n), not in H(F7n). Our analysis
shows that in this case the resultant method is faster than the pointwise method.
In more detail, the resultant method is 48.5% faster than the pointwise computa-
tion in the best case and 15.3% faster in the worst case, and our implementation
result supports the theoretical analysis. This is the first implementation over
hyperelliptic curves with genus 3.

We organize this paper as follows. In Section 1, we give a brief summary of
the Tate pairing and the Eta pairing, Section 2 discusses the pointwise method,
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and Section 3 presents the resultant method. In Section 4, we compare the com-
plexities of two methods, and Section 5 provides experimental results based on
our implementation using NTL [26] software package. We used SINGULAR [14]
software package for symbolic computations.

1 Tate Pairing and Eta Pairing

Let Fq be a finite field with q elements, and H/Fq be a hyperelliptic curve over
Fq. We denote by JH the group of degree zero divisor classes of H . Note that
each divisor class can be uniquely represented by the reduced divisor using the
Mumford representation [23]. Reduced divisors of the curve H can be found as
discussed in [19] and [23], and most of reduced divisors in JH with genus 3 are
written as D = [UD, VD] = [x3 + uD,2x

2 + uD,1x+ uD,0, vD,2x
2 + vD,1x+ vD,0].

Tate Pairing on Hd

We recall the definition of the Tate pairing [12]. Let � be a positive divisor of
the order of JH(Fq) with gcd(�, q) = 1, and k be the smallest integer such that
� | (qk−1); such k is called the embedding degree. Let JH [�] = {D ∈ JH | �D = O}.
The Tate pairing is a map

〈 · 〉� : JH [�] × JH(Fqk)/�JH(Fqk) → F
∗
qk/(F∗

qk)�

〈D,E〉� = fD(E′),

where div(fD) = �D and E′ ∼ E with support(E′) ∩ support(div(fD)) = ∅.

We define the Tate paring value by t(D,E) = 〈D,E〉
qk−1

�

� so that the pairing
value is defined uniquely. Here � can be replaced by any integer N such that

� | N | qk − 1 [13]. Thus t(D,E) = 〈D,E〉
qk−1

N

N .

We consider a hyperelliptic curve Hd over Fq defined by y2 = xp − x + d,
d = ±1, for p ≡ 3 (mod 4), where q = pn with gcd(2p, n) = 1, and we let F/Fq

and K/Fq be the extensions of degree [F : Fq] = p and degree [K : Fq] = 2p,
respectively. Over the extension field K, the curve is the quotient of a hermitian
curve, hence it is Hasse-Weil maximal. And the class group over K is annihilated
by ppn + 1; this can be also seen from the following Lemma 1. It shows that for
P ∈ Hd(K), (ppn + 1)((P ) − (O)) is principal ([9], [10]). We write x(i) for xpi

.

Lemma 1 ([9], [10]). Let P = (α, β) ∈ Hd. The function

hp,P = βpy − (αp − x+ d)
p+1
2

has divisor (hp,P ) = p(P ) + (P ′) − (p+ 1)O, where P ′ = (α(2) + 2d, β(2)).

Let vp,P be a vertical line passing through P ′ and O and fp,P = hp,P /vp,P . Then
from Lemma 1, it follows that

(fp,P ) = p(P ) − (−P ′) − (p− 1)O (1)

with −P ′ = (α(2) + 2d,−β(2)).
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From Lemma 1, we observe that p((P ) − (O)) ≡ ([p]P ) − (O), thus the mul-
tiplication by p over Hd has an extremely special form such as [p] = φπ2, where
φ = (x+ 2d,−y) and π is a Frobenius map of pth power.

Let m = (n+ 1)/2, then from [9], [10] we have

|JH±(Fq)| = (1 + pn)3 ± (
p

n
)pm(1 + pn + p2n). (2)

Therefore, the embedding degree k of the curve Hd is equal to 2p.

Eta Pairing on Hd

Now we discuss the Eta pairing introduced in [3] which is very useful for efficient
computation of the Tate pairing. We consider a hyperelliptic curve Hd over some
finite field Fpn , and let ψ be an endomorphism on the curve Hd given by

ψ : Hd(K) → Hd(K), ψ(x, y) = (ρ− x, σy), (3)

where ρ ∈ F is a root of ρp−ρ+2d = 0, and σ, σ̄ ∈ K are the roots of σ2 +1 = 0.
For efficient Tate pairing computation, we consider the twisted Tate pairing

t̂ : JHd
[�] × JHd

(Fp2pn)/�JHd
(Fp2pn) −→ F

∗
p2pn

t̂(D, E) = fD(ψ(E))ppn−1,

where (fD) = (ppn + 1)D from [11, Theorem 4].
For two divisors D and E in JHd

, the Eta pairing [3] is defined by

ηT (D,E) = fT,D(ψ(E)),

where D′ + (fT,D) = TD for a reduced divisor D′ with T an integer satisfy-
ing certain conditions [3, Theorem 1]. This is a generalization of Duursma-Lee’s
method [11] and gives a further improvement with shorter loop length by choos-
ing a proper T . Over the hyperelliptic curve Hd, the Eta pairing is optimal when
T is q, so we work on the case T = q and in this case we denote ηT by η.

For divisors D, E in JHd
, the Eta pairing can be computed by

η(D,E) =
n−1∏
i=0

fp,Di(ψ(E))pn−1−i

, (4)

where Di+1 + (fp,Di) = pDi with a divisor D0 = D and some rational function
fp,Di .

We have the relation of the Tate pairing and the Eta pairing over the curve
Hd [3, Section 8] as follows:

t̂(D,E) = η(D,E)(p
pn−1)pn(p−1)+1

. (5)

It is therefore enough to compute η(D,E) to obtain t̂(D, E) for any divisors
D,E ∈ JHd

(Fq). When all the points in support(D) and support(E) are Fq-
rational points, using Eq. (5) makes the Eta pairing computation very efficient
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as mentioned in [3]. In Section 2, we will extend the concept of the Eta pairing on
general divisors, that is, the supports of D and E are not necessarily Fq-rational
points.

Throughout this paper, we focus on the hyperelliptic curve Hd : y2 = xp −
x + d, d = ±1, p ≡ 3 (mod 4) of genus g = 3, therefore we work on the case
p = 7; this case is cryptographically useful [11].

2 Pointwise Computation of the Eta Pairing

This section presents a generalization of the pointwise method developed in [3]
and [11] for computing the Eta pairing over the general divisors D and E. This
method can be used for any general divisors, but we focus on the case that both
divisors D and E consist of the supporting points in H(F73n), not in H(F7n).
We also analyze the complexity of the pointwise computation of the Eta pairing.

For divisors D,E in JHd
, the Eta pairing can be computed by

η(D,E)7
7n−1

=

(
n−1∏
i=0

f7,Di(ψ(E))7
n−1−i

)77n−1

, (6)

where D and E have the form D = (P1)+(P2)+(P3)−3(O), E = (Q1)+(Q2)+
(Q3) − 3(O) for points Pk and Qj contained in Hd(F73n) with k, j = 1, 2, 3.

For i ≥ 1, let Di = (Pi,1) + (Pi,2) + (Pi,3) − 3(O), then f7,Di(ψ(E)) can be
computed by

f7,Di(ψ(E)) =
3∏

k,j=1

f7,Pi,k
(ψ(Qj)), (7)

where (f7,Pi,k
) = 7(Pi,k) − (−P ′

i,k) − 6(O), P0,k = Pk, Pi,k = (αk
(2i) + 2id,

(−1)iβk
(2i)) ∼ 7i[P0,k] and [−P ′

i,k] = [7Pi,k] for i ≥ 1.

We notice that
∏3

k,j=1 v7,Pi,k
(ψ(Qj)) belongs to F77n , therefore

∏3
k,j=1

v7,Pi,k
(ψ(Qj))7

7n−1
= 1. It thus follows that

3∏
k,j=1

f7,Pi,k
(ψ(Qj))7

7n−1
=

3∏
k,j=1

h7,Pi,k
(ψ(Qj))7

7n−1
.

Consequently, we have

η(D,E)7
7n−1

=

(
n−1∏
i=0

h7,Di(ψ(E))7
n−1−i

)77n−1

. (8)

Algorithm 1 shows the pointwise computation of the Eta pairing.
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Algorithm 1. Pointwise computation of the Eta pairing
INPUT: D,E ∈ JHd

(F7n)
OUTPUT: η(D, E)7

7n−1

1. g ← 1
2. Compute Pk = (αk, βk), k = 1, 2, 3 and Qj = (xj , yj), j = 1, 2, 3

which are supporting points for D and E, respectively.
3. For i = 0 to n− 1 do
4. For k, j = 1 to 3 do
5. compute hk,j = β7

k · yj · σ − (α7
k + xj + d− ρ)4

6. set αk ← α72

k + 2d, βk ← β72

k

7. set g ← g7 ·
∏3

k,j=1 hk,j

8. Return g77n−1
= η(D,E)7

7n−1
.

Let Mi denote the time cost for a multiplication in F7in and Si denote the
time cost for a squaring in F7in for i = 2, 3. For simplicity, we assume that a
squaring cost is similar to a multiplication cost, and we omit the computation
cost for 7th powering since it is negligible compared with the other operations.

We find the total complexity of Algorithm 1 as follows. In Step 5, for each
of k, j, it requires two multiplications M3 and two squarings S3 in F73n ; since
(A− ρ)4 := (α7

k + xj + d− ρ)4 would require two S3 and one M3 for calculation
of A2, A3 = A · A2, (A2)2. Thus the total for Step 5 is 9(2M3 + 2S3). On the
other hand, Step 7 needs eight multiplications in F73(14n) and one multiplication
in F714n . For computing η(D, E), the total complexity is therefore

TP := 2T3rt+n(9 ·4M3+8M42+1M14) = 2T3rt+n (36M3+8M42+1M14), (9)

where T3rt is the total time required for finding the supporting points ofD and E.

3 Computation of the Eta Pairing by Using the Resultant

In this section, we use the resultant for the Eta pairing computation of the
general divisors D and E. For given divisor inputs D,E with the Mumford
representation, we want to be able to express all the intermediate formulas for
the final Eta pairing value in terms of only the coefficients of the Mumford
representations of D and E. An approach only by using the symmetric functions
would end up with overly complicated formula. By using the resultant for the
evaluation of a rational function at a divisor, we can make the computation steps
much simpler and more explicit so that we can obtain an explicit algorithm. We
analyze our algorithm for the case that D and E have supporting points in
H(F73n), not in H(F7n), and it turns out that this approach is faster than the
pointwise method.

To obtain the value of η(D,E), we find the explicit formulas for Di = [7i]D
and f7,Di for i ≥ 1, and we also obtain the evaluation formula of rational function
f7,Di at a divisor in a very explicit way.
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Let D be a reduced divisor of Hd such that

D = (P1) + (P2) + (P3) − 3O = [UD, VD],

where Pj = (αj , βj) for j = 1, 2, 3, UD = x3 + uD,2x
2 + uD,1x + uD,0, and

VD = vD,2x
2 + vD,1x + vD,0 ∈ F7n [x]. Let D0 = D, Di+1 + (f7,Di) = 7Di, and

Di = [UDi , VDi ] for each positive integer i.
The following lemma provides us with explicit formulas for UDi and VDi in

terms of the coefficients of UD and VD for i ≥ 1. The proof can be obtained from
the knowledge of Section 5 in Appendix of [19].

Lemma 2. Let [7] be the multiplication map by 7 on the divisor class group of
Hd/F7n. Then we have, for i ≥ 1, [7i]D = Di = [UDi , VDi ] with

UDi = x3 + (u
(2i)
D,2 + id)x2 + (u

(2i)
D,1 + 3idu

(2i)
D,2 − 2i2)x+ u

(2i)
D,0 − 2idu

(2i)
D,1 − 3i2u(2i)

D,2 − i3d,

VDi = (−1)
iv

(2i)
D,2x2 + (−1)i(3idv

(2i)
D,2 + v

(2i)
D,1)x+ (−1)

i(−3i2v(2i)
D,2 − 2idv

(2i)
D,1 + v

(2i)
D,0).

For any divisor E = [UE , VE ] in JHd
(Fq), the endomorphism ψ in Eq. (3) on

divisors are easily deduced as follows: ψ(E) = [Uψ(E), Vψ(E)], where

Uψ(E) = x3 − (3ρ+ uE,2)x
2 + (3ρ2 + 2uE,2ρ+ uE,1)x − (ρ3 + uE,2ρ

2 + uE,1ρ+ uE,0),

Vψ(E) = σ(vE,2x
2 − (2ρvE,2 + vE,1)x+ vE,2ρ

2 + vE,1ρ+ vE,0).

(10)
As seen in Eq. (8), it is sufficient to find h7,Di . In the following proposition,

we thus find the function h7,D such that D1 + (h7,D/v7,D) = 7D in an explicit
way.

Proposition 1. Let D be a reduced divisor with D = [UD, VD] and τ be a map

τ : Hd → H̃d, (x, y) → (X,Y ) = (x− ξ, y), where ξ = 2uD,2.

Then

(i) D̃ = τ(D) = [X3 + ũ1X + ũ0, ṽ2X
2 + ṽ1X + ṽ0], where

ũ1 = 3ξ2 + 2ξuD,2 + uD,1, ũ0 = ξ3 + uD,2ξ
2 + uD,1ξ + uD,0, (11)

ṽ2 = vD,2, ṽ1 = 2ξvD,2 + vD,1, ṽ0 = vD,2ξ
2 + vD,1ξ + vD,0.

(ii)
h7,D(x, y) = (h̃7,D̃ ◦ τ)(x, y),

where

h̃7,D̃(X,Y ) = δ1Y
3 + s(Z)Y 2 + t(Z)Y − (Z3 + ũ7

1Z + ũ7
0)

4,

where Z = X − ξ7 + ξ + d, and δ1, s(Z) and t(Z) are described in Table 5
of Appendix.
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Proof. Let H̃d be the image of Hd under the isomorphism τ . Since D =
[UD, VD] := g.c.d.(UD, y − VD) where UD(x), y − VD(x) ∈ F7n(Hd) (refer
to [19]), we have τ(D) = D̃ = [UD̃, VD̃] = g.c.d.(UD̃, Y − VD̃) where UD̃ =
UD ◦ τ−1, (Y −VD̃) = (y−VD) ◦ τ−1 ∈ F7n(H̃d). Thus, we obtain Eq. (11) from
the calculation of UD ◦ τ−1 and (y − VD) ◦ τ−1.

For P = (α, β) ∈ Hd,

h7,P (x, y) = h7,P (τ−1)(X,Y ) = β7Y − (α7 −X − ξ + d)4

= β7Y − ((α− ξ)7 + ξ7 − ξ + d−X)4

= β̃7Y − (α̃7 + ξ7 − ξ + d−X)4

= h̃7,τ(P )(X,Y )

= h̃7,τ(P )(τ(x, y)).

Thus, for D = (P1) + (P2) + (P3) − 3(O),

h7,D(x, y) = h7,P1(x, y)h7,P2(x, y)h7,P3(x, y)

=
3∏

j=1

h̃7,τ(Pj)(τ(x, y))

= (
3∏

j=1

h̃7,τ(Pj))(τ(x, y))

= h̃7,D̃(τ(x, y)),

where

h̃7,D̃(X,Y ) =
3∏

j=1

(
β̃7

j Y − (α̃7
j + ξ7 − ξ + d−X)4

)
. (12)

If we apply the Elimination method in [8] to Eq. (12) with elimination order
{α̃1, α̃2, α̃3} > {ũ1, ũ0}, then we can obtain Eq. (12) as a function of ũ1 and
ũ0. The coefficients for h̃7,D̃(X,Y ) are described in Table 5, where the second
column shows the corresponding coefficients in terms of ṽi and ũi with i = 0, 1, 2.

�
Remark: For computing h7,D, we can use resultant instead of elimination. If
we apply elimination or resultant directly to UD(x), then the formulae for h7,D

is a huge polynomial in terms of the coefficients of UD and VD. The translation
τ plays an important role to reduce the size of the formulae.

Now we use resultant to evaluate a rational function at a divisor, which is nec-
essary to achieve our goal. For the definition of resultant and its properties, we
refer to [29, Ch. VI].

Theorem 1 ([29]). Let F be a field. For A,B ∈ F [x] with deg A = m, deg
B = n, we have

res(A,B) = an
m∏

i=1

B(αi),
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where α1, α2, · · · , αm ∈ F̄ (= algebraic closure of F ) are all the roots of A and
a is the leading coefficient of A.

With the same notations as in Theorem 1, furthermore, we have

res(A,B) = (−1)mnres(B,A). (13)

In addition, efficient reduction method for computing the resultant is also in-
troduced in [29, Ch. VI]. When m ≥ n, by Euclidean division algorithm, there
exists Q(x), R(x) ∈ F (x) such that A(x) = Q(x)B(x) + R(x) with deg R < n.
Then

res(A,B) = (−1)mnres(B,R). (14)

Now we are ready to use the resultant for the Eta pairing computation.

Theorem 2. Let D,E be divisors of the curveHd defined by D = [UD, VD], E =
[UE , VE ]. Let τλ be a map τλ : (x, y) → (x− λ, y).

(i) Let ξi = 2uDi,2, θi = ξ7 − ξ + d and ρ′ = ρ− d.

Then we have Êi = τξi+θi ◦ ψ(E) = [UÊ(X̂), VÊ(X̂)] such that

uÊ,2 = −3ρ′ − (ξi + θi + uE,2),

uÊ,1 =−3ρ′2 − (2(ξi + θi) + 2uE,2)ρ′ + (2(ξi + θi)2 − 3(ξi + θi)uE,2− uE,1),

uÊ,0 = −ρ′3 − (uE,2)ρ′2 + (2(ξi + θi)2 − 3(ξi + θi)uE,2 − uE,1)ρ′

− ((ξi + θi)3 + 3(ξi + θi)2uE,2 + 2(ξi + θi)uE,1 − uE,0),
vÊ,2 = σvE,2,

vÊ,1 = −σ(2vE,2ρ
′ + v̂1), v̂1 = 2vE,2(ξi + θi) + vE,1,

vÊ,0 = σ(vE,2ρ
′2 + v̂1ρ

′ + v̂0), v̂0 = vE,2(ξi + θi)2 + vE,1(ξi + θi) + vE,0.

(15)

(ii) Let D̃i = τξi(Di). Then h̃7,D̃i
= (−1)iδ7

2i

1 Y 3 + si(Z)Y 2 + ti(Z)Y +wi(Z),
where Zi = X − θi,

si(Z) =
6∑

j=2

δ7
2i

j Z6−j
i , ti(Z) = (−1)i

15∑
j=7

(−1)iδ7
2i

j Z15−j
i , wi(Z) = −(Z3+ũ72i+1

1 Zi+ũ72i+1

0 )4,

and δj’s are given in Table 5.
(iii) The Eta pairing of D and E is given by

η(D,E)7
7n−1

=

(
n−1∏
i=0

res(UÊi
, HD̃i,Ê

mod UÊi
)7

n−i−1

)77n−1

, (16)

where HD̃,Ê is given in Table 6 of Appendix.
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Proof. (i) Eq. (15) is obtained from the calculations of UE ◦ τ−1
ξi+θi

◦ ψ−1 and
(y − VE) ◦ τ−1

ξi+θi
◦ ψ−1.

(ii) We can compute h̃7,D̃i
by using Table 5 taking Di as an input. Let

δi,j , j = 1, ..., 15, be the coefficients of h̃7,D̃i
for each Di described in Table 5.

Then from Lemma 2, we can compute the following values:

ξi = ξ7
2i

0 ,

ũi,j = ũ72i

0,j , j = 0, 1,

ṽi,j = (−1)iṽ0,j , for j = 0, 1, 2.

These relations give the following simple expressions for δi,1, ..., δi,15:

δi,j =

{
δ7

2i

0,j if j = 2, 3, 4, 5, 6
(−1)iδ7

2i

0,j otherwise.
(17)

(iii) We recall

η(D,E)7
7n−1

=

(
n−1∏
i=0

h7,Di(ψ(E))7
n−i−1

)77n−1

.

Using Theorem 1 and Proposition 1, we have the evaluation h7,Di(ψ(E)) as
following:

h7,Di(ψ(E)) =
3∏

j=1

h7,Di(ψ(Qj))

= res(h7,Di(ψ(x, VE(x))), UE(x)).

(18)

Since
h7,Di(ψ(E)) = h7,Di ◦ τ−1

ξi
◦ τ−1

θi
◦ τξi+θi(ψ(E)),

Eq. (18) equals to
res(HD̃,Ê , UÊ),

where HD̃,Ê = h7,Di ◦ τ−1
ξi

and Ê = τξ+θi ◦ ψ(E).
Now by using the reduction method in Eq. (14), we can compute res(HD̃,Ê(X̂),

UÊ(X̂)) by
res(UÊ , HD̃,Ê) = res(UÊ , Ri),

where Ri = HD̃,Ê mod UÊ . �

Now we describe an algorithm for computing the Eta pairing on divisors, and
we also compute its complexity. From Theorem 2, the Eta pairing given in Eq. (5)
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Algorithm 2. Eta pairing computation by using resultant
INPUT: D = [UD, VD], E = [UE , VE] ∈ JHd(F7n), endomorphism ψ

OUTPUT: η(D, E)7
7n−1

1. Set ξ ← 2uD,2 and θ ← ξ7 − ξ + d.
2. Compute u1 = 3ξ

2 + 2ξuD,2 + uD,1 and u0 = ξ3 + uD,2ξ
2 + uD,1ξ + uD,0.

3. Compute δj for j = 1, ..., 15 using Table 5.
4. g ← 1,
5. for i = 0 to n − 1 do
6. compute Ê = τξ+θ(ψ(E))
7. compute HD̃,Ê and R = HD̃,Ê (mod UÊ) (Table 6).
8. compute h7,Di(ψ(E)) = res(UÊ, R).
9. g ← g7 · h7,Di(ψ(E))

10. set u0 ← u72

0 , u1 ← u72

1

11. set ξ ← ξ72
, θ ← θ72

, δj ← δ72

j if j = 2, 3, 4, 5, 6, and δj ← (−1)iδ72

j otherwise.

12. Return g77n−1
= η(D, E)7

7n−1
.

can be computed by using Algorithm 2. Since vÊ,j = σ · (some element in F77n),
j = 0, 1, 2, we note that HD̃,Ê in the step 7 of Algorithm 2 can be written as

HD̃,Ê = −x12 +
10∑

i=0

(diσ + ei)xi, di, ei ∈ F77n for 0 ≤ i ≤ 10.

To find HD̃,Ê (mod UÊ) in the step 7, we use the following recursive relations:

ξi = u72i+1

D,2 xi ≡ aix
2 + bix+ ci (mod UE), 3 ≤ i ≤ 12,

a3 = −uÊ,2, b3 = −uÊ,1, c3 = −uÊ,0,

ai = ai−1a3 + bi−1, bi = ai−1b3 + ci−1, ci = ai−1c3.

Then R can be computed by

R = HD̃,Ê (mod UÊ)

= (σ(d2 +
10∑

i=3

aidi) + (a12 + e2 +
10∑

i=3

aiei))x2

+ (σ(d1 +
10∑

i=3

bidi) + (b12 + e1 +
10∑

i=3

biei))x

+ (σ(d0 +
10∑

i=3

cidi) + (c12 + e0 +
10∑

i=3

ciei)).

(19)

Now we discuss the complexity of Algorithm 2 by counting the number of
operations which are necessary for computing η(D,E). We denote the time for
multiplications in F714n ,F77n and F7n by M14,M7 and M , respectively. We also
M1,7 denote the time cost for a multiplication between F7n and F77n . Noting
that, in Step 6, uÊ,j , j = 0, 1, 2 and vÊ,0, vÊ,1 belong to F77n , and from Eq. (10)
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we have vÊ,2 = σ · (some element in F7n). The computation cost of HD̃,Ê in
Step 7 is counted in Table 6. We need 7M + 18M7 for computing xi (mod UE)
since we do not need the computation x11, and we need 48M7 to compute R in
Eq. (19). Furthermore, we need 3M in the step 2, and 37M in the step 3 from
Table 5. For each loop, we need 5M in the step 6, 17M + 31M1,7 + 4M7 in the
step 7 from Table 6, 1M14 in the step 9. The total complexity of this algorithm
is therefore

40M + n(29M + 31M1,7 + 70M7 + Tres + 1M14), (20)

where Tres is the computation cost for the resultant res(UÊ , R) of UÊ and R in
F714n . We calculate the resultant by computing the determinant of two polynomi-
als with degree 2 and 3 in Mumford representation. Then we have Tres = 48M7.

4 Complexity Comparison

In this section we compare the complexities of our two methods given in
Section 2 and 3.

When an extension degree is of the form k = 2i3j , the computation cost for
a multiplication in Fqk is theoretically 3i5j times of the cost for a multiplication
Fq ([18], [20]). From this observation, we assume that

1 mult. in F73n(M3) ≈ 5M, 1 mult. in F73(7n)(M21) ≈ 5M7, (21)
1 mult. in F714n(M14) ≈ 3M7,

and we also let M1,7 ≈ 7M .
With the above assumptions, the pointwise computation cost in Eq. (9) is

TP := 2T3rt + n(36 · 5M + 123M7), where T3rt is the time for finding all the
roots of a cubic polynomial over F73n . By Berlekamp-Rabin algorithm [4], we
have T3rt = O(32 log 3 log 73n) ·M3 ≈ 27n · 4 ·M3 = 108nM3.

Counting the cost for T3rt, we finally have

TP ≈ n(1260M + 123M7). (22)

On the other hand, the total time for the resultant method in Eq. (20) is
TR := 40M+n(246M+70M7+Tres+1M14), where Tres is the time for computing
the resultant of two polynomials over F714n . As mentioned in Section 3, we
have Tres = 48M7. Thus, the computation cost of our resultant approach is
approximately

TR = 40M + n(246M + 121M7). (23)

To analyze TP and TR, we need to estimate the ratio of M7 and M . According
to [18, Section 4.3], there are cases for which a multiplication in Fqm can be
done with m multiplications in Fq. Therefore, we estimate 7M ≤M7 ≤ 49M .

To compare the complexities of two methods, we summarize TP , TR and the
ratio TP /TR in Table 1 for a few security levels [20]. The last row of Table 1 shows
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Table 1. Complexity comparison

security (bits) 80 128 192
bitlength of 714n 1140 3072 8192

n 29 79 211
pointwise (TP ) 36540m + 3567M7 99540m + 9717M7 265860m + 25953M7
resultant (TR) 7174m + 3509M7 19474m + 9559M7 51946m + 25531M7

TP
TR

1.17982 ≤ TP
TR

≤ 1.93808 1.17998 ≤ TP
TR

≤ 1.93963 1.18004 ≤ TP
TR

≤ 1.94019

the range of the ratio TP

TR
. We can conclude that the Eta pairing computation

using resultant is 48.5% faster than the pointwise computation in the best case
and 15.3% faster in the worst case. For fixed n, as M7/M decreases, the ratio
TP /TR increases. This implies that better performance of a multiplication in F77n

makes resultant method more efficient than pointwise method on general divisors
which split in F73n , neither in F72n nor in F7n . Furthermore, we observe that when
M7/M is fixed, as n is increasing, TP

TR
is also increasing. Thus, for higher security

level, the resultant method gives better efficiency than the pointwise method.

5 Experimental Results

We proposed two methods by the resultant and pointwise approach for comput-
ing the Eta pairing over the genus 3 hyperelliptic curve Hd : y2 = x7−x+d, d =
±1 over F7n . Our analysis in Section 4 showed that the resultant approach is up
to 48.5% faster than the pointwise approach. In this section, we provide exper-
iment results based on our implementation of the methods using NTL software
package. Ours is the first implementation for the Eta pairing computation for
genus 3 hyperelliptic curves.

We measure M,M3 and M7, the three important parameters used in the
analysis in Section 4, in NTL. Then we measure the running times of the imple-
mentations of the methods and compare the results with our analysis.

For each security level s, we first need to find a prime n such that 2s ≈ 73n,
and also find a large prime � dividing |JHd

(F7n)| such that � ≈ 2s. The formula
for |JHd

(F7n)| is given in Eq. (2). By searching for good candidates for � and n
from n = 29 through n = 79, we find the four values of n, namely, 29, 43, 47 and
73 with corresponding primes as given in Appendix.

Table 2 shows the amount of time to perform the field multiplications in F7n ,
F73n and F77n using NTL. In detail, we used class ZZ pE for finite field oper-
ations in F7n , and we used class ZZ pEX for modular polynomial arithmetic
to implement operations in F73n and F77n . The table was computed by taking
average time of 5000 multiplications of random elements in each field. Accord-
ing to Table 2, the speed of field operations in NTL is not quite optimal for
cryptographic applications. However, our goal is to compare efficiency of two
algorithms depending on field operations, and therefore using NTL is sufficient
for our purpose since both algorithms are implemented on the same library.

In Section 4, we assumed the ratio M3/M is 5 for the field operations M3 in
F73n and M in F7n . However, in NTL the actual ratio M3/M is approximately 7
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Table 2. Multiplication timings (in milliseconds)

n 29 43 47 73

F7n (M) 0.2562 0.5686 0.6626 1.6062

F73n(M3) 2.4 4.3218 4.8906 11.1562

F77n (M7) 7.8438 16.672 17.5156 27.8688

M3/M 9.36768 7.60077 7.38092 6.94571

M7/M 30.6159 29.3211 26.4347 17.3508

or 9 as shown in Table 2, andM7/M in Table 2 is in the range 7 ≤M7/M ≤ 49 as
we expected. In our implementation M42 is optimized to 56M3. Therefore, each
complexity for the Eta pairing computation is given by TR = 40M + n(246M +
121M7) and

TP = 2 T3rt+n (36M3+8M42+1M) = 2T3rt+n(36M3+56·8M3+3M7) ≈ n(700M3+3M7).

According to the actual ratio of the field operations in NTL, Table 1 is adjusted
to obtain Table 3. As shown in Table 3, for n ≥ 43, as n increases, TP/TR also
increases as we expected in Section 4. On the other hand, when n increases from
29 to 43, TP /TR decreases, which is opposite to what we expected, and we guess
that the reason is the following: For instance, we observe that when n changes
from 29 to 43, the decrement of M3/M (resp. M7/M) is 1.767 (resp. 1.295). On
the other hand, when n changes from 43 to 47, the decrement of M3/M (resp.
M7/M) is 0.220 (resp. 2.886). So, the decrement of M3/M is much larger than
M7/M when n changes from 29 to 43, while M3/M is much smaller than M7/M
when n changes from 29 to 43.

From Table 3, the resultant method is 40.57% (resp. 29.38%, 34.32%, and
52.26%) faster than the pointwise method for n = 29 (resp. 43, 47, and 73).
These examples support our theoretical complexity analysis in Section 4, that is,
for higher security level the resultant method is more efficient than the pointwise
method for the Eta pairing computation.

Table 3. Complexity comparison: examples in NTL

bitlength of 714n 1140 1690 1847 2869
n 29 43 47 73

pointwise (TP ) 20300M3 + 87M7 30100M3 + 129M7 32900M3 + 141M7 51100M3 + 219M7
resultant (TR) 7174M + 3509M7 10618M + 5203M7 11602M + 5687M7 17998M + 8833M7

TP
TR

1.68254 1.42525 1.52257 2.09465

Table 4 shows the implementation results of the Eta pairing for selected ex-
amples. The resultant method is 48.8% (resp. 39.1%, 38.7%, and 43.4%) faster
than the pointwise method for n = 29 (resp. 43, 47, and 73). We performed fifty
calculations with random samples for each method and took the average time.
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Table 4. Experimental results (in seconds)

bit-length of � 237 338 373 608
bit-length of 714n 1140 1690 1847 2869
n 29 43 47 73

pointwise method(TP ) 38.3564 99.2936 120.672 399.962

resultant method(TR) 19.6315 60.4622 73.9278 226.412
TP
TR

1.95382 1.64224 1.63229 1.76652

The experiments ran on a machine with 2.2Ghz Opteron, and we used Microsoft
Visual C++ 6.0.

Our implementation shows that the performance ratio TP

TR
for n = 29 is larger

than the ratio for n = 73, while the theoretical complexity analysis in Table 1
shows the other way around. This difference occurs because of the relative time
cost T3rt

TP
for computing all the supporting points of an input divisor. In more

detail, in the theoretical complexity analysis, for T3rt

TP
we have a flat ratio ap-

proximately 0.152. On the other hand, in our implementation, T3rt

TP
is 0.447242

(resp. 0.436616, 0.41533, and 0.170231) for n = 29 (resp. 43, 47, and 73). Thus
the ratio T3rt

TP
is various depending on the values of n, and in fact, the ratio is

largest when n = 29 and smallest when n = 73.

6 Conclusions and Future Work

In this paper, we present two algorithms for computing the Eta pairing on general
divisors over hyperelliptic curves y2 = x7 − x ± 1. We compare complexities of
two algorithms on the case that both divisors of the Eta pairing consist of all
the supporting points in H(F73n), but not in H(F7n). Our analysis shows that,
in this case, the resultant approach is up to 48.5 % faster than the pointwise
approach.

In this work for complexity analysis, we focus on the case that the general
divisors D and E have all the supporting points in Hd(F73n), but not in H(F7n).
However, there are other possibilities, that is, a general divisor D consists of
two points in Hd(Fq2) and the other in Hd(Fq), or all three points in Hd(Fq),
depending on how UD(x) in Fq[x] splits. As we also have the same possibilities
for E, we have nine possible cases for D and E. In the near future, we will analyze
the theoretical complexity in each of nine cases for both methods. Furthermore,
we will implement the resultant method using more efficient library for field
operations. Since we expect that the time for a multiplication in F7n can be
improved almost 100 times faster than NTL library, the implementation using
such an efficient library would provide a cryptographically meaningful timing
result.
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Appendix

In Section 5, by searching for good candidates for � and n from n = 29 through
n = 79, we find the following:

When n = 29, for H(−1) curve,
� = 295427580543981044508742175251656510425218717654351011099430750210650097.

When n = 43, for H(−1) curve,
�=537186185691863880188217039863742753517055763668500175524814523901957588878744075332

862878883563864467.
When n = 47, for H(−1) curve,

�=137497724610044251112031797733313211281120174698633752700226951030340651490044989128

31678964830780873139729982133.
When n = 73, for H(+1) curve,

�=105533980645146561990468186060654951766146626712223193723674163198013158899403621841

975533231846990078128557860204797895519409349765129072347530962042588033357651667698004

2149532583647.
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Table 5. h̃7,D̃ formula for D̃

Input D̃ = [X3 + ũ1X + ũ0, ṽ2X2 + ṽ1X + ṽ0] Cost

Output h̃7,D̃(X, Y ) = δ1Y 3 + s(Z)Y 2 + t(Z)Y − (Z3 + ũ7
1Z + ũ7

0)
4

s(Z) = δ2Z4 + δ3Z3 + δ4Z2 + δ5Z + δ6

t(Z) = δ7Z8 + δ8Z7 + δ9Z6 + δ10Z5 + δ11Z4 + δ12Z3 + δ13Z2 + δ14Z + δ15

δ1 (ṽ2ũ0(ṽ2(ṽ2ũ0) + 3ṽ1(ṽ0 + 2ṽ2ũ1)) + ṽ2
1(ṽ0ũ1 − ṽ1ũ0) + ṽ0(ṽ2ũ1 − ṽ0)

2)7 8M + 2S

δ2 (4(2ṽ2ũ1 + ṽ0)(−ṽ2ũ1 + ṽ0) − ṽ1(3ṽ2ũ0 + ṽ1ũ1))
7 3M

δ3 (−2ṽ2ũ0(2ṽ2ũ1 + ṽ0) + ṽ1(2ṽ2ũ0 + ṽ0ũ1))
7 2M

δ4 (3ṽ2
2 ũ2

0 + ṽ1ũ0(−2ṽ2ũ1 + 3ṽ0) + ṽ0ũ1(2ṽ2ũ1 − 2ṽ0))
7 2M + 1S

δ5 (ṽ2ṽ0(2ṽ1ṽ0 − 3ũ1ũ0) − ṽ1ũ1(ṽ0ũ1 − ṽ1ũ0) + 2ṽ2
0 ũ0)

7 3M

δ6 (2ũ0(ṽ2ũ0)(ṽ2ũ1 − 2ṽ0) − (ṽ0ũ1 + ṽ1ũ0)(4ṽ1ũ0 + 2ũ1(ṽ0 − ṽ2ũ1)))
7 4M

δ7 (−2ṽ2ũ1 + 3ṽ0)
7 0M

δ8 (2ṽ2ũ0 − ṽ1ũ1)
7 0M

δ9 (2ũ1(ṽ0 − ṽ2ũ1) + 2(2ṽ0ũ1 − ṽ1ũ0))
7 0M

δ10 (ũ1(2ṽ2ũ0 + ṽ1ũ1) + ṽ0ũ0)
7 1M

δ11 (ũ2
1(−2ṽ2ũ1 + ṽ0) + ũ0(ṽ2ũ0 + 2ṽ1ũ1))

7 2M + 1S

δ12 (ũ0(3ũ1(2ṽ2ũ1 + ṽ0) − ṽ1ũ0))
7 1M

δ13 (ũ2
0(−ṽ2ũ1 + 2ṽ0) + 3ũ2

1(ṽ1ũ0 − ṽ0ũ1))
7 2M + 1S

δ14 (2ũ2
0(ṽ2ũ0 + 2ṽ1ũ1) + 3(ũ0ṽ0)ũ

2
1)

7 2M

δ15 (ũ1(ũ
2
0(−ṽ2ũ1 + 2ṽ0) + 3ũ2

1(ṽ1ũ0 − ṽ0ũ1)) + ũ2
0(2ũ1(ṽ2ũ1 − ṽ0) + 4(ṽ0ũ1 + ṽ1ũ0))

7 2M

Total cost Notation: M denotes a multiplication in F7n , and S a squaring in F7n . 32M + 5S

Table 6. HD̃,Ê formula complexity counting

i ith coefficient of HD̃ Cost

12 −1 0

10 δ7vÊ,2 + 3ũ7
1 1M

9 δ7vÊ,1 + δ8vÊ,2 + 3ũ7
0 2M1,7

8 δ2v2
Ê,2

+ δ7vÊ,0 + δ8vÊ,1 + δ9vÊ,2 + ũ14
1 1M + 1S + 2M1,7

7 2δ2vÊ,1vÊ,2 + δ3v2
Ê,2

+ δ8vÊ,0 + δ9vÊ,1 + δ10vÊ,2 + 2ũ7
0ũ7

1 2M + 3M1,7

6 δ1v3
Ê,2

+ 2δ2vÊ,0vÊ,2 + δ2v2
Ê,1

+ 2δ3vÊ,1vÊ,2 + δ4v2
Ê,2

+ δ9vÊ,0 3M + 4M1,7 + 1S

+δ10vÊ,1 + δ11vÊ,2 + ũ14
0 + 3ũ21

1

5 3δ1vÊ,1v2
Ê,2

+ 2δ2vÊ,0vÊ,1 + 2δ3vÊ,0vÊ,2 + δ3v2
Ê,1

+ 2δ4vÊ,1vÊ,2 7M1,7 + 1M

+δ5v2
Ê,2

+ δ10vÊ,0 + δ11vÊ,1 + δ12vÊ,2 + 2ũ7
0ũ14

1

4 3δ1vÊ,0v2
Ê,2

+ 3δ1v2
Ê,1

vÊ,2 + δ2v2
Ê,0

+ 2δ3vÊ,0vÊ,1 + 2δ4vÊ,0vÊ,2 + δ4v2
Ê,1

5M1,7 + 2M

+2δ5vÊ,1vÊ,2 + δ6v2
Ê,2

+ δ11vÊ,0 + δ12vÊ,1 + δ13vÊ,2 + 2ũ14
0 ũ7

1 − ũ28
1

3 −δ1vÊ,0vÊ,1vÊ,2 + δ1v3
Ê,1

+ δ3v2
Ê,0

+ 2δ4vÊ,0vÊ,1 + 2δ5vÊ,0vÊ,2 + δ5v2
Ê,1

1M7 + 5M1,7 + 1M

+2δ6vÊ,1vÊ,2 + δ12vÊ,0 + δ13vÊ,1 + δ14vÊ,2 + 3ũ21
0 + 3ũ7

0ũ21
1

2 (3δ1v2
Ê,0

vÊ,2 + 3δ1vÊ,0v2
Ê,1

+ δ4v2
Ê,0

+ 2δ5vÊ,0vÊ,1 + 2δ6vÊ,0vÊ,2 + δ6v2
Ê,1

1M7 + 2M1,7 + 1M + 1S

+δ13vÊ,0 + δ14vÊ,1 + δ15vÊ,2 + ũ14
0 ũ14

1

1 3δ1v2
Ê,0

vÊ,1 + δ5v2
Ê,0

+ 2δ6vÊ,0vÊ,1 + δ14vÊ,0 + δ15vÊ,1 + 3ũ21
0 ũ7

1 1M + 1M7 + 1M1,7

0 δ1v3
Ê,0

+ δ6v2
Ê,0

+ δ15vÊ,0 − ũ28
0 1M7 + 1S

Total cost 4S + 13M + 31M1,7 + 4M7
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Abstract. Undeniable signatures, introduced by Chaum and van
Antwerpen, is a useful cryptography primitive to limit the publicly veri-
fiable property of ordinary digital signatures. In an undeniable signature
scheme, the validity or invalidity of the signature can only be verified
via the confirmation/disavowal protocol with the help of the signer. An
extended concept, convertible undeniable signatures, was introduced by
Boyar, Chaum, Damg̊ard and Pedersen. In the new concept, the signer
can publish some selective proofs to convert one or more undeniable sig-
natures into publicly verifiable ones, or issue a universal proof to make
all his undeniable signatures publicly verifiable. In this paper, we first
present a security model for convertible undeniable signature schemes,
and then propose a new construction from bilinear pairings. Compared
with the other schemes in the literature, the new construction has three
advantages: Our scheme is both selectively and universally convertible;
the signature length of our scheme is as short as BLS signature; mean-
while, all the security properties are formally proven under some conven-
tional assumptions in the random oracle model.

Keywords: Undeniable Signatures, Convertible, Short Signature, Bilin-
ear Pairings, Provable Security.

1 Introduction

Digital signatures, introduced in the pioneering paper of Diffie and Hellman [7],
allow a signer with a secret key to sign messages such that anyone with access
to the corresponding public key can verify the authenticity of the message. A
signature verifier can convince any third party about this fact by presenting the
digital signature on a message. The ease of copying and transmitting digital sig-
natures in some implementations is of great convenience, but seems undesirable
in some personally or commercially sensitive applications.

Undeniable signature is a concept introduced by Chaum and van Antwer-
pen in Cypto’89 [4]. In such kind of signatures, the validity or invalidity of an
� Supported by ARC Discovery Grant DP0557493 and DP0663306.
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undeniable signature can only be verified via the Confirmation/Disavowal pro-
tocol with the help of the signer. They are useful in the situations where the
validity of a signature must not be publicly verifiable. For example, a software
vendor might want to embed signatures into his products and allow only paying
customers to check the authenticity of these products. If the vendor actually
signed the message, he must be able to convince the customer of this fact using
a confirmation protocol and, if he did not, he must also be able to convince the
customer that he is not the signer via a disavowal protocol. These proofs have
to be non-transferable: once a verifier is convinced that the vendor did or did
not sign a message, he should be unable to transmit this conviction to another
third party.

The first undeniable signature was proposed by Chaum and van Antwerpen
[4] and it was further improved by Chaum in [5]. However, the unforgeabil-
ity of the FDH (full domain hash) variant of Chaum’s scheme remained as
an open problem until Okamoto and Pointcheval [37] introduced a new class
of computational problems: gap problems and proved the unforgeability of the
FDH variant of Chaum’s scheme is equivalent to the Gap Diffie-Hellman prob-
lem. Unfortunately, Ogata, Kurosawa and Heng [36] pointed out that the above
claim in [37] is incorrect. Instead, they proved that the unforgeability is equiv-
alent to the Computational Diffie-Hellman problem. As shown in the same
paper, there are basically three kinds of Confirmation/Disavowal protocols: zero-
knowledge interactive proof, 3-move honest verifier zero knowledge (HVZK) and
non-interactive zero knowledge proof using the designated verifier techniques.
In Eurocrypt 2005, Kurosawa and Heng [22] proposed the 3-move witness in-
distinguishable (WI) protocol for Chaum’s undeniable signature and proved
that the FDH variant of Chaum’s scheme with this protocol is secure against
active and concurrent attack. Using the Σ-compiler proposed by Furukawa,
Kurosawa and Imai [19], one can obtain a very efficient Chaum’s undeniable
signature with 2-move confirmation protocol and disavowal protocol which are
concurrent deniable zero-knowledge as well. Since the introduction of unde-
niable signatures, there have been several proposed schemes in the literature
[1,3,8,10,12,13,14,15,17,21,25,26,27,29,30,32,40,41,42,43].

The concept of convertible undeniable signatures was introduced in [1] by Bo-
yar, Chaum, Damg̊ard and Pedersen, where the convertibility refers to the ability
of the signer to convert one or more his undeniable signatures into publicly veri-
fiable. “Convert” in the undeniable signatures has two types: Selectively Con-
vert and Universally Convert. A signer can use the Selectively Convert
algorithm to generate a proof for an undeniable signature. Then, one can check
the validity of this signature using the proof and signer’s public key. However,
the validity of other undeniable signatures remains unknown and can only be
verified via the confirmation/disavowal protocol with the help of the signer. The
signer can also use the Universally Convert algorithm to generate a univer-
sal proof which can convert all his undeniable signatures into publicly verifiable
ones. Thus, one can check the validity of any undeniable signature without the
help of the signer. Convertible undeniable signatures have been found useful in
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the applications such as the problem of keeping the digital records of confidential
political decisions [8]. Unfortunately, the scheme proposed in [1] has been bro-
ken by Michels, Petersen and Horster [30] who proposed a repaired version with
heuristic security1. In Eurocrypt’96, Damg̊ard and Pedersen [8] proposed two
convertible undeniable signature schemes, in which forging signatures is provably
equivalent to forging El Gamal signature. An efficient convertible undeniable sig-
nature based on Schnorr signature was proposed by Michels and Stadler in [31].
The new scheme can be used as a basis of an efficient extension to threshold sig-
nature. Other constructions in RSA systems were also introduced. The first RSA
based (convertible) undeniable signature was proposed by Gennaro, Rabin and
Krawczyk in CRYPTO’97 [14], which was later improved by Miyazaki [29]. Very
recently, Kurosawa and Takagi [23] proposed a new approach for constructing
selectively convertible undeniable signature schemes, and presented two schemes
based on RSA related assumptions. Furthermore, Kurosawa and Takagi’s second
scheme is the first selectively convertible scheme whose security can be proven
without random oracles. Based on the computation of characters, Monnerat and
Vaudenay proposed a novel construction of the undeniable signature which of-
fers the advantage of having an arbitrarily short signature (depending on the
required security level) [32]. Monnerat and Vaudenay also generalized and opti-
mized their scheme in [33] and [34], respectively, and claimed that their scheme
proposed in [33] can achieve the selective convertibility, without providing a for-
mal security proof to support this claim. Laguillaumie and Vergnaud proposed a
new convertible undeniable signature scheme from pairing [27]. The signature of
their scheme only consists of an element of the group in elliptic curve and some
additional random salt such that the total signature length can be as short as
272 bits. In addition, the first construction of Identity based selectively convert-
ible undeniable signature was proposed by Libert and Quisquater. The details of
the known convertible undeniable signatures are provided in the following table.

Scheme Selectively Universally Security
Convert Convert

Boyaret al.’s [1] � � broken[30]
Damg̊ard-Pedersen’s [8] � � DL related assumptions

Michels-Petersen-Horster’s [30] � � Proofs in generic group model [39]
Michels-Stadler’s [31] � � sketchy proof provided

Gennaro-Rabin-Krawczyk’s [15] � � RSA related assumptions
Miyazaki’s [29] � � sketchy proof provided

Libert-Quisquater’s [25] � pairing related
assumptions

Monnerat-Vaudenay’s [33] � GHI related
assumptions [33]

Laguillaumie-Vergnaud’s [27] � � pairing related
assumptions

Kurosawa-Takagi’s[23] � RSA related assumptions

Motivations. When we add the “Convertible” property to undeniable signa-
tures, it enables the signer to issue selective or universal proofs which can con-
vert his undeniable signatures into self-authenticating. Thus, the signer does
1 Very recently, Aimani and Vergnaud [39] provided the proof of Michels-Petersen-
Horster’s scheme [30] in the generic group model.
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not require to convince the validity of his signatures to each verifier. However,
these selective or universal proofs also provide some additional information to
the adversaries and might help the latter to break the schemes. For example,
Boyar-Chaum-Damg̊ard-Pedersen’s scheme [1] is insecure after the signer issues
the universal proof. A key only adversary can forge the signature scheme univer-
sally after obtaining the universal proof. Therefore, how to define the security of
convertible undeniable signatures is crucial. There are some security models of
convertible undeniable signatures [8,23,27,31], but some properties still remain
unclear. For example, the relationship between Anonymity and Invisibility has
been proven closely related in undeniable signatures [13], however, there is no
discussion about their relationship in the convertible undeniable signatures. An-
other example is the property of Non-Impersonation. In the original definition
given by Kurosawa and Heng [22], this is equivalent to prevent impersonation
by employing confirmation and disavowal protocols. In a convertible undeni-
able signature, this notion should be extended such that one should be unable
to impersonate the signer to execute confirmation and disavowal protocols, or
generate one of the selective proofs or the universal proof. Therefore, it is worth-
while to construct a security model to clearly define the security properties of
the convertible undeniable signature and their relationships.

As shown at the above table, not all convertible undeniable signature schemes
have the universal convertibility and some of them [25,33,23] are only selectively
convertible. The schemes in [29,30,31] are universally convertible, but their proofs
are not satisfying. There are only three schemes [8,15,27] which have formal
proofs and meanwhile, can provide both selective and universal convertibility.
Among these schemes, Laguillaumie-Vergnaud’s scheme [27] is based on the pair-
ings and has the shortest signature length. The unforgeability of the scheme in
[27] is based on the hardness of a well known problem: Computational Diffie
Hellman problem. However, the invisibility of their scheme is based on a non-
standard decisional assumption: (�, 1)-xyz-DCAA assumption defined in [27].
How to obtain a short convertible undeniable signature with provable security
under conventional assumptions is another motivation of this paper.

Our Contributions. In this paper, we first define a security model of convert-
ible undeniable signatures. In the new model, all the properties of convertible
undeniable signatures are defined formally. The relationship between the Invis-
ibility and Anonymity in the convertible undeniable signature is also proved in
this paper. We believe the new model is of independent interest.

We also present a new construction of convertible undeniable signature. Our
new scheme is based on bilinear pairings and enjoys short signature length. Mean-
while, the new scheme is provably secure in the random oracle model. Formal
proofs are provided to show that the new scheme satisfies all the security prop-
erties. Compared with the other schemes in the literature, the new construction
has three advantages: Our scheme is both selectively and universally convertible;
the signature length of our scheme is as short as BLS signature [2]; meanwhile,
its security is under some conventional assumptions.
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Organization of the Paper. In the next section, we will review some pre-
liminaries required throughout the paper. The definition and security models
of convertible undeniable signature are proposed in Section 3. We describe our
convertible undeniable signature scheme together with its security analysis in
Section 4. Finally, Section 5 concludes this paper.

2 Bilinear Pairings and Complexity Assumptions

Let G1 and GT be two groups of prime order p and let g be a generator of G1.
The map e : G1 × G1 → GT is said to be an admissible bilinear pairing if the
following three conditions hold true:

– e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a, b ∈ ZZp.
– e is non-degenerate, i.e. e(g, g) 
= 1GT .
– e is efficiently computable.

We say that (G1,GT ) are bilinear groups if there exists the bilinear pairing
e : G1 × G1 → GT as above, and e, and the group action in G1 and GT can be
computed efficiently. For more details on the construction of such pairings, we
refer the reader to [2].

The following three problems are assumed to be hard for any polynomial time
algorithm.
Discrete Logarithm Problem: Given (g, ga) ∈ G1, find a.
Computational Diffie-Hellman Problem: Given a triple G1 elements (g, ga,
gb), find the element C = gab.
3-Decisional Diffie-Hellman (3-DDH) Problem in G1

2: Given (g, ga, gb, gc,

h) ∈ G
5
1, decide whether h ?= gabc.

3 Definitions and Security Models of Convertible
Undeniable Signature

In this section, we first define the outline of a convertible undeniable signa-
ture scheme. Then, we define the security properties of convertible undeniable
signatures.

3.1 Outline of Convertible Undeniable Signature

The convertible undeniable signature scheme consists of the following algorithms:

Common Parameter Generation: a probabilistic algorithm that on input a
security parameter k, outputs a string cp which denotes the common scheme

2 The 3-DDH problem is also called xyz-DDH problem by other researchers in [24,27].
The traditional DDH problem is not hard in the bilinear pairing setting. Considering
the 3-DDH problem and assuming its difficulty (together with the ease of the DDH
problem), we are able to design cryptographic protocols achieving a trade-off between
authenticity and privacy.
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parameters including the message space M and the signature space S. cp is
shared among all the users in the system.

Key Generation: a probabilistic algorithm that on input a common parameter
cp, outputs a secret/public key-pair (sk, pk) for a user in the system.

Undeniable Sign: a probabilistic (or deterministic) algorithm that on input
the common parameter cp, signer S’s secret/public key-pair (sks, pks) and
the message m, outputs S’s convertible undeniable signature σ.

Undeniable Verify: a deterministic algorithm that on input the common
parameter cp, S’s secret key secret/public key-pair (sks, pks) and message-
signature pair (m,σ), outputs 1 if it is a valid message-signature pair. Oth-
erwise, outputs 0.

Confirmation Protocol: an interactive (or non-interactive) algorithm that on
input the common parameter cp, S’s secret key sks, (possibly) Verifier V ’s
public key pkv and message-signature pair (m,σ), outputs a non-transferable
transcript Trans which can convince V about the validity of σ.

Disavowal Protocol: an interactive (non-interactive) algorithm that on input
the common parameter cp, S’s secret key sks, (possibly) V ’s public key
pkv and message-signature pair (m,σ), outputs a non-transferable transcript
Trans that shows the invalidity of σ to V .

Selectively Convert: a probabilistic (or deterministic) algorithm that on in-
put the common parameter cp, S’s secret key sks and the message-signature
pair (m,σ), outputs a selective proof Π(m,σ)

pks
of the given message-signature

pair.
Selectively Verify: a deterministic algorithm that on input the common pa-

rameter cp, S’s public key pks, message-signature pair (m,σ) and the selec-
tive proof Π(m,σ)

pks
, outputs the verification decision d ∈ {Acc,Rej}.

Universally Convert: a deterministic algorithm that on input the common
parameter cp and S’s secret key sks, outputs the universal proof Πpks .

Universally Verify: a deterministic algorithm that on input the common
parameter cp, S’s public key pks, any message-signature pair (m,σ) and the
universal proof Πpks , outputs the verification decision d ∈ {Acc,Rej}.

We allow the adversary to access the following oracles and submit their queries
adaptively:

– Key Generation Oracle: On a key generation query for the ith user, this oracle
runs the Key Generation algorithm to generate a secret/public key pair
(ski, pki) of this user and returns the public key pki to the adversary.

– Undeniable Sign Oracle: On an undeniable sign query (m, pks), this oracle
runs the Undeniable Sign algorithm to generate the undeniable signature
σ and returns it to the adversary.

– Verify Oracle: On a verify query (m,σ, pks) (and possibly pkv), this oracle
first runs the Undeniable Verify algorithm to decide whether (m,σ) is
a valid message-signature pair under the public key pks and outputs the
decision result d ∈ {0, 1}. According to the decision result d, the oracle
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responds based on whether a passive attack or an active/concurrent attack
is mounted.

1. Active/Concurrent attack: The Verify Oracle executes the confirmation
or disavowal protocol with adversary (acting as a cheating verifier) de-
pending on the verification result d ∈ {0, 1}.

2. Passive attack: The Verify Oracle returns a transcript of confirmation
protocol if d = 1. Otherwise, the oracle returns a transcript of disavowal
protocol.

– Selectively Convert Oracle: On a selectively convert query (m,σ, pks), this
oracle runs the Selectively Convert algorithm to generate the selective
proof Π(m,σ)

pks
and returns it to the adversary.

– Universally Convert Oracle: On a universally convert query pks, this oracle
runs Universally Convert algorithm to generate the universal proof Πpks

and returns it to the adversary.
– Corruption Oracle: On a corruption query pk, this oracle returns the corre-

sponding secret key to the adversary.

We assume that when the adversary issues some queries related to the public key
pk, pk is returned from the Key Generation Oracle. The security of the convert-
ible undeniable signature will be defined using the game between these oracles
and the adversary. We will focus on the case when the Confirmation/Disavowal
protocol is non-interactive for the rest of the paper3. The security when confir-
mation/disavowal protocol is interactive can be defined analogously.

3.2 Completeness

Essentially, the completeness means that valid (invalid) signatures can always
be proved valid (invalid). It can be described as following two cases:

1. If the Undeniable Verify algorithm outputs 1 for a message-signature pair
(m,σ) and the secret/public key pair (sks, pks), then (i) (m,σ) can be con-
firmed by the Confirmation protocol. (ii) On input (m,σ) together with
a valid selective proof Π(m,σ)

pks
, Selectively Verify algorithm outputs Acc.

(iii) On input (m,σ) together with a valid universal proofΠpks , Universally
Verify algorithm outputs Acc.

2. If the Undeniable Verify algorithm outputs 0 for a message-signature pair
(m,σ) and the secret/public key pair (sks, pks), then (i)(m,σ) can be de-
nied by the Disavowal protocol. (ii) On input (m,σ) together with a valid
selective proof Π(m,σ)

pks
, Selectively Verify algorithm outputs Rej. (iii) On

input (m,σ) together with a valid universal proofΠpks , Universally Verify
algorithm outputs Rej.

3 If the Confirmation/Disavowal protocol is non-interactive, there is no need to con-
sider the active/concurrent attack [36].
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3.3 Non-transferability

The Non-Transferability requires that the transcripts of the confirmation and
disavowal protocol with the designated verifier V can only convince V the validity
or invalidity of a message-signature pair (m,σ). No one else could be convinced
by this Trans even if V shares all his secret information (including his secret
key) with this party. We review the definition of the Non-Transferability given
by Monnerat and Vaudenay in [35]:

The Confirmation/Disavowal protocol protocol is non-transferable if there ex-
ists a probabilistic polynomial time algorithm A with input the verifier V ’s
secret key skv such that for any other computationally unbounded algorithm,
any pair (m,σ), the transcript of the Confirmation/Disavowal generated by A
is indistinguishable from that generated by the signer S.

3.4 Unforgeability

The standard notion of the security for digital signatures was defined by Gold-
wasser, Micali and Rivest [11], the existential unforgeability of the convertible
undeniable signature scheme is defined similarly: adversary has access to the Key
Generation Oracle, Undeniable Sign Oracle, Verify Oracle. In addition, we allow the
adversary to submit queries to Selectively Convert Oracle and Universally Convert
Oracle adaptively. This is to ensure that the knowledge of the selective or uni-
versal proof does not help the adversary to forge a new valid message signature
pair. Furthermore, we also allow adversaries to access the Corruption Oracle to
simulate the fact that the adversary might corrupt some users in the system. The
unforgeability of the convertible undeniable signature is defined by the game be-
tween the oracles in Section 3.1 and an adaptively chosen message and chosen
public key forger F . We say F wins if F outputs a valid message-signature pair
(m∗, σ∗) under the public keys pk∗s with the restrictions that:

1. (m∗, pk∗s) has never been submitted to the Undeniable Sign Oracle.
2. pk∗s has never been submitted to the Corruption Oracle.

The success probability of an adaptively chosen message and chosen public key
forger F wins the above game is defined as Succ FCMA, CPKA

EUF, CUS .

Definition 1. We say a convertible undeniable signature scheme is unforgeable
against a (t, qKG, qUS , qV , qSC , qUC , qC) forger FCMA, CPKA

EUF, CUS , if FCMA, CPKA
EUF, CUS

runs in time at most t, makes at most qKG queries to Key Generation Oracle,
qUS queries to Undeniable Sign Oracle, qV queries to Verify Oracle, qSC queries
to the Selectively Convert Oracle, qUC queries to the Universally Convert Oracle,
qC queries to the Corruption Oracle and Succ FCMA, CPKA

EUF, CUS is negligible.

3.5 Invisibility

The property invisibility was first introduced into the undeniable signature by
Chaum, van Heijst and Pfitzmann [6]. We will extend the this notion into the
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setting of convertible undeniable signatures. That is, given a message-signature
pair (m,σ) and the public key pks of the signer S, it should be difficult to decide
whether it is a valid message-signature pair without the help of the signer, the
selective proof Π(m,σ)

pks
or universal proof Πpks . It is defined using the game

between the oracles in Section 3.1 and an adaptively chosen message attacker
and chosen public key distinguisher DCMA, CPKA

INV, CUS . The whole game is divided
into two phases.

– Phase 1: In this phase, the distinguisher D can adaptively access all the
Oracles.

– Challenge: When the distinguisher D decides the first phase is over, he sub-
mits (m∗, pk∗s) to Undeniable Sign Oracle as the challenge with the constraints
that
1. pk∗s has not been submitted to the Corruption Oracle or Universally Con-

vert Oracle during Phase 1.
2. (m∗, pk∗s) has not been submitted to the Undeniable Sign Oracle during

Phase 1.
As a response, the Undeniable Sign Oracle chooses a random bit γ ∈ {0, 1}.
If γ = 1, this oracle will run Undeniable Sign algorithm to generate the
undeniable signature σ and sets σ∗ = σ. Otherwise, this oracle chooses a
random element σ∗ in the signature space S. Then, it returns the challenging
signature σ∗ to D.

– Phase 2: On receiving the challenging signature, the distinguisher D can still
access all the oracles adaptively except that:
1. pk∗s cannot been submitted to the Corruption Oracle or Universally Convert

Oracle.
2. (m∗, pk∗s) cannot been submitted to the Undeniable Sign Oracle.
3. (m∗, σ∗, pk∗s) cannot be submitted to the Selectively Convert Oracle or

Verify Oracle.
– Guessing: Finally, the distinguisher D outputs a guess γ′. The adversary wins

the game if γ = γ′.

Remark: If the selective proof of a message-signature pair (m∗, σ) only depends
on m∗, then (m∗, pk∗s) cannot be submitted to the Selectively Convert Oracle
during Phase 1 and 2.

The advantage of the distinguisher DCMA, CPKA
INV, CUS has in the above game is

defined as Adv DCMA, CPKA
INV, CUS = |Pr[γ = γ′] − 1/2|.

Definition 2. We say a convertible undeniable signature scheme is invisible
against a (t, qKG, qUS , qV , qSC , qUC , qC) distinguisher DCMA, CPKA

INV, CUS , if the dis-
tinguisher runs in time at most t, makes at most qKG queries to Key Generation
Oracle, qUS queries to Undeniable Sign Oracle, qV queries to Verify Oracle, qSC

queries to the Selectively Convert Oracle, qUC queries to the Universally Convert
Oracle, qC queries to the Corruption Oracle and Adv DCMA, CPKA

INV, CUS is negligible.
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3.6 Anonymity

Essentially, the anonymity property requires that given a valid message-signature
pair (m,σ) and two possible signers’ public keys pk0, pk1, it is computational
impossible to decide who generated this signature. This property was introduced
to the undeniable signature by Galbraith and Mao [13]. The authors suggested
that anonymity is the most relevant security property for undeniable signature.
In convertible undeniable signatures, this property is defined using the game
between the oracles in Section 3.1 and an adaptively chosen message attacker and
chosen public key distinguisher DCMA, CPKA

ANONY, CUS . Similarly to the models defined
in Section 3.5, the whole game is divided into two phases.

– Phase 1: In this phase, the distinguisher D can adaptively access to all the
Oracles.

– Challenge: When the distinguisher D decides the first phase is over, he sub-
mits (m∗, pk∗0 , pk

∗
1) to Undeniable Sign Oracle as the challenge with the con-

straints that
1. Neither pk∗0 nor pk∗1 has been submitted to the Corruption Oracle or

Universally Convert Oracle during Phase 1.
2. Neither (m∗, pk∗0) nor (m∗, pk∗1) has been submitted to the Undeniable

Sign Oracle during Phase 1.
As a response, the Undeniable Sign Oracle chooses a random bit γ ∈ {0, 1}.
If γ = 0, this oracle will run Undeniable Sign algorithm to generate the
undeniable signature σ under the secret key sk∗0 . Otherwise, it will run Un-
deniable Sign algorithm to generate the undeniable signature σ under the
secret key sk∗1 . Then, it returns the challenging signature to D.

– Phase 2: On receiving the challenging signature, the distinguisher D can still
access all the oracles adaptively except that:
1. Neither pk∗0 nor pk∗1 can be submitted to the Corruption Oracle or Uni-

versally Convert Oracle.
2. Neither (m∗, pk∗0) nor (m∗, pk∗1) can be submitted to the Undeniable Sign

Oracle.
3. Neither (m∗, σ∗, pk∗0) nor (m∗, σ∗, pk∗1) can be submitted to the Selec-

tively Convert Oracle or Verify Oracle.
– Guessing: Finally, the distinguisher D outputs a guess γ′. The adversary wins

the game if γ = γ′.

Remark: If the selective proof of a message-signature pair (m∗, σ) only depends
on m∗, then neither (m∗, pk∗0) nor (m∗, pk∗1) can be submitted to the Selectively
Convert Oracle during Phase 1 and 2.

The advantage of the distinguisher DCMA, CPKA
ANONY, CUS has in the above game is

defined as Adv DCMA, CPKA
ANONY, CUS = |Pr[γ′ = γ] − 1/2|.

Definition 3. We say a convertible undeniable signature scheme is anonymous
against a (t, qKG, qUS , qV , qSC , qUC , qC) distinguisher DCMA, CPKA

ANONY, CUS, if the dis-
tinguisher runs in time at most t, makes at most qKG queries to Key Generation
Oracle, qUS queries to Undeniable Sign Oracle, qV queries to Verify Oracle, qSC

queries to the Selectively Convert Oracle, qUC queries to the Universally Convert
Oracle, qC queries to the Corruption Oracle and Adv DCMA, CPKA

ANONY, CUS is negligible.
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Equivalence Between the Anonymity and Invisibility in the Convert-
ible Undeniable Signature
In [13], Galbraith and Mao showed that the property anonymity and invisibil-
ity are closely related in undeniable signature. Therefore, a natural question
is whether these two properties have the same close relationship in convertible
undeniable signature. Note that we cannot directly obtain this result accord-
ing to the proof given by Galbraith and Mao [13], due to the reason that the
distinguishers defined in the convertible undeniable signature are stronger than
those defined in [13]. As we shall demonstrate later, these two properties are
equivalent.

Theorem 1. The properties anonymity and invisibility in the convertible unde-
niable signature are equivalent.

Proof. Our proof draws inspiration from the techniques in [13]. The proof of this
theorem consists of the following two lemmas:

Lemma 1. If a convertible undeniable signature scheme is invisible in the sense
of Definition 2, then it is also anonymous in the sense of Definition 3.

Proof. Suppose there exists an adversary DA who has non negligible advantage
Adv DCMA, CPKA

ANONY, CUS = ε in the game of anonymity defined in Section 3.6, then
we will show there is an adversary DI who can use DA to have the advantage
ε/2 in the game of invisibility defined in Section 3.5 and thus this scheme is not
invisible.

In the proof, DI will forward DA’s queries to his own oracles and therefore
DI will not abort during the simulation. When DA outputs (m∗, pk∗0 , pk

∗
1) as the

challenge, DI will choose a random number γ” ∈ {0, 1} and output (m∗, pk∗γ”)
as his own challenge. As defined in the model of Invisibility, DI will receive a
signature σ∗ such that it is a valid signature under the public key pk∗γ” if γ = 1
and is not a valid signature if γ = 0. Then DI returns σ∗ to DA. Now DA can
continue to submit his queries and DI can answer those queries as before. At
last, DA outputs his guess γ′. If γ′ = γ”, DI will output 1, otherwise γ′ 
= γ”,
DI will output 0. Therefore the probability that DI can output a valid guess
is Pr[γ′ = γ”|γ = 1] Pr[γ = 1] + Pr[γ′ 
= γ”|γ = 0] Pr[γ = 0]. Note that if
γ = 1, that is σ∗ is a valid signature under the public key pk∗γ”, then DA can
output γ′ = γ” with probability 1/2 + ε. If γ = 0, then Pr[γ′ 
= γ”|γ = 0] =
1/2 due to the random choice of γ”. Therefore, the advantage that DI has is:
Adv DCMA, CPKA

INV, CUS = (1
2 + ε)1

2 + 1
2 · 1

2 − 1
2 = 1

2ε = 1
2Adv DCMA, CPKA

ANONY, CUS . ��

Lemma 2. If a convertible undeniable signature scheme is anonymous in the
sense of Definition 3, then it is also invisible in the sense of Definition 2.

Proof. Suppose there exists a distinguisher DI who has non negligible advantage
Adv DCMA, CPKA

INV, CUS = ε in the game of invisibility defined in Section 3.5, then we
will show there is a distinguisher DA who can use DI to has almost the same
advantage in the game of anonymity defined in Section 3.6 and thus this scheme
is not anonymous.
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In our proof, DA will answer all queries from DI . To do this, DA will forward
DI ’s queries to his own oracles and return the responses to DI . Additionally,
DA will submit one more Key Generation query to his Key Generation Oracle and
obtain the response p̃k∗s (Note that this public key will not be given to DI).
When DI outputs (m∗, pk∗s) as the challenge, DA will submit (m∗, p̃k∗s , pk

∗
s)

as his own challenge. As defined in the model of Anonymous, DA will receive
a challenging signature σ∗ such that it is a valid signature under the public
key p̃k∗s if γ = 0. Otherwise, it is a valid signature under the public key pk∗s .
Then DA returns it to DI . Now DI can continue to submit his queries and DA

can answer those queries as before. At last, DI outputs his guess γ′ and DA

also forwards γ′ as his answer. Note that if σ∗ is a valid signature under the
public key p̃k∗s , that is γ = 0, then with negligible probability ε′, it is also valid
under the public key pk∗s . So DI will output γ′ = 0 with probability 1/2 + ε.
Similarly, if σ∗ is a valid signature under the public key pk∗s , that is γ = 1, then
with probability 1/2 + ε, γ′ will be 1. Therefore, the advantage that DA has is
Adv DCMA, CPKA

ANOY, CUS ≥ (1
2 + ε)(1− ε′)− 1

2 = ε− ε′(1
2 + ε) ≥ Adv DCMA, CPKA

INV, CUS − ε′

where ε′ is negligible. ��

3.7 Soundness

Soundness requires that even the signer himself cannot convince a verifier V
that a valid (invalid) signature is invalid (valid) without corrupting V ′s secret
key. This property has been regarded as one of the necessary properties of the
Confirmation/Disavowal protocol [23,31,35]. It is defined by the game against
an adversary S̃ where S̃ can adaptively access all the oracles in Section 3.1. After
all the queries, we say S̃ wins the game if S̃ can output (m∗, σ∗, T rans∗, pks, pkv)
with the restrictions that

1. pkv has not been submitted to the Corruption Oracle.
2. σ∗ is not a valid undeniable signature of message m∗ under the public key

pks and Trans∗ is a transcripts output by Confirmation protocol. Or, σ∗

is a valid undeniable signature of message m∗ under the public key pks and
Trans∗ is a transcript output by Disavowal protocol.

The success probability of an adaptively chosen message and chosen public key
adversary S̃ wins the above game is defined as Succ S̃CMA, CPKA

Sound, CUS .

Definition 4. We say a convertible undeniable signature scheme satisfies
the property of soundness against a (t, qKG, qUS , qV , qSC , qUC , qC) adversary
S̃CMA, CPKA

Sound, CUS , if S̃CMA, CPKA
Sound, CUS runs in time at most t, makes at most qKG

queries to Key Generation Oracle, qUS queries to Undeniable Sign Oracle, qV
queries to Verify Oracle, qSC queries to the Selectively Convert Oracle, qUC to
the Universally Convert Oracle, qC queries to the Corruption Oracle and
Succ S̃CMA, CPKA

Sound, CUS is negligible.
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3.8 Non-impersonation

The notion Non-Impersonation was first introduced into the undeniable signa-
ture by Kurosawa1 and Heng [22]. Basically, the notion Non-Impersonation in
the convertible undeniable signature requires that:

1. Only with the knowledge of the public key of the signer S, it should be
difficult for an impersonator I to generate the selective proof for a message-
signature pair.

2. Only with the knowledge of the public key of the signer S, it should be
difficult for an impersonator I to generate the universal proof.

3. Only with the knowledge of the public keys of the signer S and the verifier
V , it should be difficult for an impersonator I to generate a transcript of
the Confirmation protocol or Disavowal protocol.

It is defined using the game between the oracles in Section 3.1 and an adaptively
chosen message attacker and chosen public key impersonator ICMA, CPKA

CUS .

1. CASE1: Impersonation of Selectively Convert Algorithm
In this case, the impersonator I can adaptively access all the Oracles. After
all the queries, I outputs a valid selective proofΠ(m∗,σ∗)

pk∗
s

with the restrictions
that (m∗, σ∗, pk∗s) has not been submitted to the Selectively Convert Oracle
and pk∗s has not been submitted to the Corruption Oracle. Similarly in the
definition of Invisibility, if the selective proof of a message-signature pair
(m∗, σ) only depends on m∗, then (m∗, pk∗s) cannot be submitted to the
Selectively Convert Oracle.

The success probability of an adaptively chosen message and chosen public
key impersonator I wins the above game is defined as Succ ICMA, CPKA

CASE1, CUS .
2. CASE2: Impersonation of Universally Convert algorithm

In this case, the impersonator I can adaptively access all the Oracles. After
all the queries, I outputs a universal proof Πpk∗

s
with the restriction that

pk∗s has not been submitted to the Universally Convert Oracle or Corruption
Oracle.

The success probability of an adaptively chosen message and chosen public
key adversary I wins the above game is defined as Succ ICMA, CPKA

CASE2, CUS .
3. CASE3: Impersonation of Confirmation/Disavowal protocol

In this case, the impersonator I can adaptively access all the Oracles. After
all the queries, I can output (m∗, σ∗, T rans∗, pks, pkv) such that Trans∗

can confirm or deny the undeniable signature σ∗. The only restrictions are
that neither pk∗s nor pk∗v has been submitted to the Corruption Oracle and
(m∗, σ∗, pks, pkv) cannot be submitted to the Verify Oracle.

The success probability of an adaptively chosen message and chosen public
key impersonator I wins the above game is defined as Succ ICMA, CPKA

CASE3, CUS .

Definition 5. We say that a convertible undeniable signature scheme is non-
impersonated against a (t, qKG, qUS , qV , qSC , qUC , qC) adversary ICMA, CPKA

CUS ,
if ICMA, CPKA

CUS runs in time at most t, makes at most qKG queries to Key Gen-
eration Oracle, qUS queries to Undeniable Sign Oracle, qV queries to Verify Oracle,
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qSC queries to the Selectively Convert Oracle, qUC to the Universally Convert Or-
acle, qC queries to the Corruption Oracle and Succ ICMA, CPKA

CASEi, CUS (i = 1, 2, 3) is
negligible.

4 Proposed Scheme

In this section, we will describe our convertible undeniable signature scheme
with security and efficiency analysis.

4.1 Concrete Scheme

Our new scheme consists of the following algorithms:

Common Parameter Generation: Let (G1,GT ) be bilinear groups where
|G1| = |GT | = p, for some prime number p ≥ 2k, k be the system security
number and g be the generator of G1. e denotes the bilinear pairing G1 ×
G1 → GT . Let h0, h1 : {0, 1}∗ → G∗

1, h2 : {0, 1}∗ → ZZp be three secure
cryptographic hash functions.

Key Generation: The signer S picks two secret values xs, ys ∈R ZZ∗
p and

sets the secret key sks = (xs, ys). Then S computes the public key pks =
(Xs, Ys) = (gxs , gys). Similarly, verifier V ’s secret/public key-pair is
(skv, pkv) = (xv, yv, Xv, Yv) where xv, yv are randomly chosen in ZZ∗

p.
Undeniable Sign: For a message m to be signed, S uses his secret key (xs, ys)

to compute the convertible undeniable signature σ = h0(m)xsys · h1(m)ys .
Undeniable Verify: For a message-signature pair (m,σ), S checks whether
σ

?= h0(m)xsys · h1(m)ys . If the equality holds, S will accept it as a valid
undeniable signature and output 1. Otherwise, outputs 0.

Confirmation Protocol: Given the verifier V ’s public key pkv = (Xv, Yv)
and a valid message-signature pair (m,σ) to be confirmed, the signer S will
use the designated verifier techniques [16] to prove its validity.

– Signer S chooses cv, dv ∈R ZZp, r ∈R ZZ∗
p and computes:

1. A = gr, B = e(h0(m), Xs)r, C = gdvY cv
v ,

2. h = h2(m‖σ‖pkv‖A‖B‖C), cs = h− cv (mod p), and ds = r − csys

(mod p).
S then sends (cs, cv, ds, dv) to the verifier V .

– On receiving (cs, cv, ds, dv) and the message-signature pair (m,σ), the
verifier V
1. computes W = e(σ, g)/e(h1(m), Ys),
2. computes A′ = gdsY cs

s , B′ = e(h0(m), Xs)dsW cs , C′ = gdvY cv
v ,

3. checks whether cs + cv
?= h2(m‖σ‖pkv‖A′‖B′‖C′).

If the equality holds, V will accept σ as a valid undeniable signature of
message m.

Disavowal Protocol: Given the verifier V ’s public key pkv = (Xv, Yv) and a
message-signature pair (m,σ) to be denied, the signer S will use the desig-
nated verifier techniques [16] to deny its validity.
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– Signer S chooses cv, dv, α, β ∈R ZZp, r ∈ ZZ∗
p and computes:

1. W = e(σ, g)/e(h1(m), Ys),
2. A = [e(h0(m), Xs)ys/W ]r 
= 1, B = e(h0(m), Xs)α/W β, C =

gα/Y β
s , D = gdvY cv

v ,
3. h = h2(m‖σ‖pkv‖A‖B‖C‖D) and cs = h− cv (mod p),
4. ds = α+ csysr (mod p) and d̂s = β + csr (mod p).
S then sends (A, cs, cv, ds, d̂s, dv) to verifier V .

– On receiving (A, cs, cv, ds, d̂s, dv) and the message-signature pair (m,σ),
the Verifier V
1. computes W = e(σ, g)/e(h1(m), Ys), B′ = e(h0(m), Xs)ds/(W d̂s ·

Acs), C′ = gds/Y d̂s
s and D′ = gdvY cv

v ,
2. checks whether A 
= 1 and cs + cv

?= h2(m‖σ‖pkv‖A‖B′‖C′‖D′)
If A 
= 1 and cs + cv = h2(m‖σ‖pkv‖A‖B′‖C′‖D′), V will believe that
σ is not a valid undeniable signature.

Selectively Convert: When S wants to make his undeniable message-signature
pair (m,σ) publicly verifiable, he computes the selective proof as Π(m,σ)

pks
=

h0(m)ys .
Selectively Verify: For a message-signature pair (m,σ) and its selective proof
Π

(m,σ)
pks

,

1. anyone can verify whether e(Π(m,σ)
pks

, g) ?= e(h0(m), Ys). If this equality

holds, go to next step. Otherwise, Π(m,σ)
pks

is invalid.

2. computeW =e(σ, g)/e(h1(m), Ys)andcheckwhetherW ?= e(Π(m,σ)
pks

, Xs).
If this equality holds as well, one can accept σ as a valid undeniable signa-
ture. Otherwise, it is invalid.

Universally Convert: When S wants to make all his undeniable signatures
publicly verifiable, he computes Πpks = gxsys and publishes Πpks .

Universally Verify: For any message-signature pair (m,σ) and the universal
proof Πpks ,
1. anyone can verify whether e(g,Πpks)

?= e(Xs, Ys). If this equality holds,
go to next step. Otherwise, Πpks is invalid.

2. compute W = e(σ, g)/e(h1(m), Ys) and check W
?= e(h0(m), Πpks). If

this equality holds as well, one can accept σ as a valid undeniable signa-
ture. Otherwise, it is invalid.

4.2 Security Analysis of the Proposed Scheme

In this section, we will give a formal security analysis of our proposed scheme.

Theorem 2. The proposed scheme satisfies the property Completeness and
Non-Transferability.

Proof. The completeness of our proposed is clearly satisfied. The Confirmation
and Disavowal protocols in our scheme are non-transferable because the desig-
nated verifiers techniques [16] serve as the building blocks. Due to page limita-
tion, the detail of the proof will be presented in the full version of this paper.
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Theorem 3. If there exists a (t, qKG, qUS , qV , qSC , qUC , qC) forger
FCMA, CPKA

EUF, CUS who can submit additional qH queries to random oracles and win
the game of Unforgeability defined in Section 3.4 with non-negligible success
probability Succ FCMA, CPKA

EUF, CUS , then there exists an algorithm A who can use F
to solve a random instance of Computational Diffie-Hellman problem with prob-
ability SuccCDH

A,G1
≥ 1

qKG(qUS+1) (1 − 1
qUS+1 )qUS (1 − 1

qKG
)qC Succ FCMA,CPKA

EUF,CUS in
polynomial time.

Proof. Suppose there exists an adaptively chosen message and chosen public
key forger F who can forge a valid signature of our proposed scheme, then there
exists an algorithm A who can solve the Computational Diffie-Hellman (CDH)
problem in G1 by running F as subroutine.

Let (g, ga, gb) be a random instance of the CDH problem, A will simulate all
the oracles and answer F ’s queries as follows. At the beginning of Phase 1, A
will choose a random number π ∈ {1, 2, · · · , qKG}.

– Random Oracles: In order to respond F ’s queries to random oracles, A will
maintain three lists: h0-list, h1-list and h2-list.
1. h0 queries: At any time, F can issue an h0 query for the message mi. In

response, A will maintain an h0-list which stores his responses to such
queries. For a new query, A chooses a number μi ∈ {0, 1} such that
Pr[μi = 1] = δ (the value of δ will be determined later). If μi = 1, A will
choose a random number νi ∈ ZZ∗

p and set h0(mi) = (ga)νi . Otherwise,
μi = 0 and A sets h0(mi) = gνi . Then A adds (mi, h0(mi), μi, νi) into
h0-list and returns h0(mi) as the answer.

2. h1 queries: At any time, F can issue an h1 query for the message mi.
In response, A will maintain an h1-list which stores his responses to
such queries. For a new query, A chooses a random number ηi ∈ ZZ∗

p and
sets h1(mi) = gηi . Then A adds (mi, h1(mi), ηi) into h1-list and returns
h1(mi) as the answer.

3. h2 queries: At any time, F can issue an h2 query for the input ξi. In
response, A will maintain an h2-list which stores his responses to such
queries. For a new query, A chooses a random number hi ∈ ZZp and sets
h2(ξi) = hi. Then A adds (ξi, h2(ξi)) into h2-list and returns h2(ξi) as
the answer.

– Key Generation Oracle: At any time, F can require the ith user’s public key
pki = (Xi, Yi). In response, A will maintain a pk-list which stores his re-
sponses to such queries. For a new query, A chooses two random numbers
xi, yi ∈ ZZ∗

p. If i = π, A will set Xπ = gb · gxπ , Yπ = gyπ . Otherwise, A sets
Xi = gxi, Yi = gyi . Then A adds (pki, xi, yi) into pk-list and returns pki as
the answer.

– Undeniable Sign Oracle: At any time, F can submit an undeniable sign query
(mi, pkj). We assume that mi has been submitted to the h0 oracle and h1

oracle. Therefore, two tuples (mi, h0(mi), μi, νi) and (mi, h1(mi), ηi) have
been in h0-list and h1-list respectively. Otherwise, A runs above algorithms
for responding to random oracles and generates these two tuples. Similarly,
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pkj is returned from Key Generation Oracle and the tuple (pkj , xj , yj) exists
in pk-list.
1. If j 
= π, then Xj = gxj , Yj = gyj which means A knows the signer’s

secret key skj = (xj , yj). Therefore, A runs the Undeniable Sign algo-
rithm defined in Section 4.1 and computes the undeniable signature as
σi = h0(mi)xjyj · h1(mi)yj .

2. Else, if j = π and μi = 0, then Xπ = gb · gxπ , Yπ = gyπ , h0(mi) = gνi

which means A does not know the signer’s secret key skπ = (b+xπ, yπ).
In this case, the valid undeniable signature of this message should be
σi = h0(mi)(b+xπ)yπ · h1(mi)yπ = (gνi)(b+xπ)yπ · h1(mi)yπ = (gb)νiyπ ·
h0(mi)xπyπ ·h1(mi)yπ . Therefore, A can compute the valid signature σi.

3. Otherwise, A fails to simulate the Undeniable Sign Oracle and aborts.
– Verify Oracle: At any time, F can submit an undeniable verify query (mi, σi,
pks, pkv). Since pks is returned from Key Generation Oracle, the tuple (pks, xs,
ys) is in pk-list. Note that A knows the secret key ys such that Ys = gys .
Therefore, A can check whether e(σi, g)/e(h1(mi), Ys)

?= e(h0(mi), Xs)ys .
If this equality holds, A runs the Confirmation protocol as defined in
Section 4.1 with the knowledge ys. Otherwise, he runs Disavowal proto-
col with the knowledge ys.

– Selectively Convert Oracle: At any time, F can submit the selectively con-
vert query (mi, pkj)4. Similarly, A knows the value yj such that Yj = gyj .
Therefore, A can compute the selective proof Π(mi,pkj) = h0(mi)yj .

– Universally Convert Oracle: At any time, F can submit the universally convert
query pki. Similarly, A knows the value yi such that Yi = gyi . Therefore, A
can compute the selective proof Πpki = (Xi)yi .

– Corruption Oracle: At any time, F can submit the corruption query pki. If
i 
= π, then Xj = gxj , Yj = gyj . Therefore A returns (xi, yi) to F as the
answer. Otherwise, A fails to simulate the Corruption Oracle and aborts.

After all the queries, F will output a valid forgery (m∗, σ∗, pk∗s) such that
(m∗, pk∗s) has never been submitted to the Undeniable Sign Oracle and pk∗s has
never been submitted to the Corruption Oracle. By assumption, (m∗, h0(m∗), μ∗,
ν∗) has been in h0-list, (m∗, h1(m∗), η∗) has been in h1-list and (pk∗s , x

∗, y∗) has
been in pk-list .

1. μ∗ = 1 and pk∗s = pkπ, then h0(m∗) = (ga)ν∗
and pk∗s = pkπ = (Xπ, Yπ) =

(gb · gxπ , gyπ). A can solve the CDH problem as follows. Since (m∗, σ∗) is a
valid message-signature pair, σ∗ = h0(m∗)(b+xπ)yπh1(m∗)yπ which means
σ∗ = (ga)(b+xπ)yπν∗

h1(m∗)yπ . Therefore A can obtain σ∗ = (gab)yπν∗ ·
(ga)xπyπν∗ ·h1(m∗)yπ and gab = ( σ∗

(ga)xπyπν∗ ·h1(m∗)yπ
)(yπν∗)−1

.
2. Otherwise, A fails to solve the CDH problem.

4 Note that the forger does not need to provide the corresponding undeniable signature
when he issues the selectively convert query. The reason is that the user pkj ’s selective
proof of the message mi in our scheme is deterministic.
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If A does not abort during the simulation, he can solve this random instance
of CDH problem with probability δ

qKG
· Succ FCMA,CPKA

EUF,CUS . In addition, all the
simulations can be carried out in polynomial time.

Now we consider the probability that A dose not abort during the simulation.
As we can see, A will not abort during the simulation if and only if:

1. A does not fail during the simulation of Undeniable Sign Oracle, which hap-
pens with probability (1 − δ

qKG
)qUS .

2. A does not fail during the simulation of Corruption Oracle, which happens
with probability (1 − 1

qKG
)qC .

The probability that A does not abort during the simulation is (1− δ
qKG

)qUS (1−
1

qKG
)qC ≥ (1 − δ)qUS (1 − 1

qKG
)qC . Therefore, A can successfully solve the CDH

problem with probabilitySuccCDH
A,G1

≥ δ
qKG

(1−δ)qUS(1− 1
qKG

)qC SuccFCMA,CPKA
EUF,CUS .

When δ = 1/(qUS + 1), this probability is maximized at SuccCDH
A,G1

≥ 1
qKG(qUS+1)

(1 − 1
qUS+1 )qUS (1 − 1

qKG
)qC Succ FCMA,CPKA

EUF,CUS . ��

Theorem 4. If there exists a (t, qKG, qUS , qV , qSC , qUC , qC) distinguisher
DCMA, CPKA

INV, CUS who can make additional qH queries to random oracles and have
non-negligible advantage Adv DCMA, CPKA

INV, CUS in the game of Invisibility defined
in Section 3.5, then there exists an algorithm A who can use D to solve a random
instance of 3-Decisional Diffie-Hellman problem with advantage Adv A3−DDH

G1
≥

4
qKG(2qUS+qSC)2 (1 − 2

2qUS+qSC+2 )2qUS+qSC+2(1 − 1
qKG

)qUC+qC Adv DCMA,CPKA
INV,CUS

in polynomial time.

Proof. Suppose that there exists an adaptively chosen message and chosen public
key distinguisher D who can win the game defined in Section 3.5, then we will
show there exists an algorithm A who can solve the 3-Decisional Diffie-Hellman
(3-DDH) problem in G1 by running D as subroutine.

Let (g, ga, gb, gc, h) be a random instance of the 3-DDHproblem,Awill simulate
all the oracles and answer D’s queries as follows. At the beginning of Phase 1, A
will choose a random number π ∈ {1, 2, · · · , qKG}.

– Random Oracles: In order to respond D’s queries to random oracle, A will
maintain three lists: h0-list, h1-list and h2-list.
1. h0 queries: At any time, D can issue an h0 query for the message mi. In

response, A will maintain an h0-list which stores his responses to such
queries. For a new query, A chooses a number μi ∈ {0, 1} such that
Pr[μi = 1] = δ (the value of δ will be determined later). If μi = 1, A will
choose a random number νi ∈ ZZ∗

p and set h0(mi) = (ga)νi . Otherwise,
μi = 0 and A will check h1-list.
(a) If mi has not been submitted to h1 oracle, A will choose a random

number νi ∈ ZZ∗
p and set h0(mi) = gνi .

(b) Else, there is a tuple (mi, h1(mi), ζi, κi, ηi) in h1-list. If ζi = 0, A
sets νi = ηi and h0(mi) = gνi . Otherwise ζi = 1, A will choose a
random number νi ∈ ZZ∗

p and set h0(mi) = gνi .
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Then A adds (mi, h0(mi), μi, νi) into h0-list and returns h0(mi) as the
answer.

2. h1 queries: At any time, D can issue an h1 query for the message mi.
In response, A will maintain an h1-list which stores his responses to
such queries. For a new query, A chooses a number ζi ∈ {0, 1} such that
Pr[ζi = 1] = δ. If ζi = 1, A will choose two random numbers κi, ηi ∈ ZZ∗

p

and sets h1(mi) = (gκi)ηi . Otherwise, ζi = 0 and A will check h0-list.
(a) If mi has not been submitted to h0 oracle, A will choose two random

numbers κi, ηi ∈ ZZ∗
p and sets h1(mi) = (gκi/gb)ηi , where gb is the

input of 3-DDH problem.
(b) Otherwise, there is a tuple (mi, h0(mi), μi, νi) in the h0-list. If μi =

0, A will choose a random number κi ∈ ZZ∗
p and set ηi = νi. Then it

computes h1(mi) = (gκi/gb)ηi . Otherwise, A will choose two random
numbers κi, ηi ∈ ZZ∗

p and sets h1(mi) = (gκi/gb)ηi .
Then A adds (mi, h1(mi), ζi, κi, ηi) into the h1-list and returns h1(mi)
as the answer.

3. h2 queries: The same as the simulation in the proof of Theorem 3.
– Key Generation Oracle: At any time, D can require the ith user’s public key
pki = (Xi, Yi). In response, A will maintain a pk-list which stores his re-
sponses to such queries.
1. If i = π, A sets pki = pkπ = (Xπ, Yπ) = (gb, gc) where gb, gc are the input

of 3-DDH problem. Then A adds (pki, ?, ?) into pk-list. The symbol “?”
means A does not know the corresponding secret keys.

2. For other queries, A will choose two random numbers xi, yi ∈ ZZ∗
p and

set pki = (Xi, Yi) = (gxi, gyi). Then A adds (pki, xi, yi) into pk-list.
In both cases, A will return pki to D as the answer.

– Undeniable Sign Oracle: At any time, D can require an undeniable sign query
(mi, pkj). Similarly, we assume that mi has been submitted to h0 oracle
and h1 oracle. Therefore, (mi, h0(mi), μi, νi) and (mi, h1(mi), ζi, κi, ηi) have
been in h0-list and h1-list, respectively.
1. If pkj 
= pkπ, then Xj = gxj , Yj = gyj which means A knows the signer’s

secret key skj = (xj , yj). Therefore, A runs the Undeniable Sign al-
gorithm to compute the signature.

2. Otherwise pkj = pkπ, then Xj = gb, Yj = gc.
(a) If μi = 0 and ζi = 0, then h0(mi) = gνi , h1(mi) = (gκi/gb)ηi . In this

case, the valid undeniable signature of mi should be

σi = h0(mi)bc · h1(mi)c = (gνi)bc · (gκi/gb)cηi

= gbcνi · (gc)κiηi · (g)−bcηi

Note that gbcνi · g−bcηi = 1, because A sets νi = ηi when μi = 0 and
ζi = 0. Therefore, A can compute the valid undeniable signature as
σi = (gc)κiηi .

(b) Otherwise, A fails to simulate the Undeniable Sign Oracle and aborts.
– Verify Oracle: At any time, D can submit an undeniable verify query (mi, σi,
pks, pkv).
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1. If pks 
= pkπ, which means Xs = gxs , Ys = gys which means A knows the
signer’s secret key sks = (xs, ys). Therefore, A can run the Undeniable
Verify algorithm and Confirmation/Disavowal protocols.

2. Otherwise pks = pkπ which means Xs = gb, Ys = gc and A does not
know the signer’s secret key. Then A responds to the query as following:
(a) If (mi, σi) is returned from Undeniable Sign Oracle, A will return 1

and simulate the Confirmation protocol as follows.
A randomly chooses four numbers cs, cv, ds, dv ∈ ZZp computes

A = gdsY cs
s , B = e(h0(mi), Xs)ds [e(σi, g)/e(h1(mi), Ys)]cs , C =

gdvY cv
v . Then A sets ξi = mi‖σi‖pkv‖A‖B‖C and checks whether

(ξi, ·) has been in h2-list. If ξi has been submitted to h2 oracle pre-
viously, A will choose other four random numbers and recompute
A,B,C until ξi has never been submitted to h2 oracle. Then A adds
(ξi, cs + cv) into h2-list and returns (cs, cv, ds, dv) to D.

(b) Otherwise, (mi, σi) is not returned from Undeniable Sign Oracle. Ac-
cording to Theorem 3, the probability that it is a valid undeniable
signature is negligible. A will return 0 and simulate the Disavowal
protocol as follows.

A randomly chooses an element A ∈ G
∗
2 and five numbers cs, cv,

ds, d̂s, dv ∈ ZZp. Then A computes W = e(σ, g)/e(h1(mi), Ys), B =
e(h0(mi), Xs)ds/(W d̂s · Acs), C = gds/Y d̂s

s , D = gdvY cv
v and set

ξi = mi‖σi‖pkv‖A‖B‖C‖D. Now, A checks whether (ξi, ·) has been
in h2-list. If ξi has been submitted to h2 oracle previously, A will
choose some other random numbers until ξi has never been submit-
ted to h2 oracle. Then A adds (ξi, cs + cv) into h2-list and returns
(A, cs, cv, ds, d̂s, dv) to D.

– Selectively Convert Oracle: At any time, D can submit a selectively convert
query (mi, pkj).
1. If pkj 
= pkπ, which means Xj = gxj , Yj = gyj and A knows the signer’s

secret key skj = (xj , yj). A computes the selective proof Π(mi,pkj) =
h0(mi)yj .

2. If pkj = pkπ and μi = 0. which means Xj = gb, Yj = gc, and h0(mi) =
gνi . A computes the selective proof Π(mi,pkj) = (gc)νi = (gνi)c =
h0(mi)c.

3. Otherwise, A fails to simulate the Selectively Convert Oracle and aborts.
– Universally Convert Oracle: At any time, D can submit the universally convert

query pki. Similarly, If pki 
= pkπ, Xi = gxi , Yi = gyi. A can compute
Πpki = gxiyi . Otherwise, A fails to simulate the Universally Convert Oracle
and aborts.

– Corruption Oracle: At any time, D can submit the corruption query pki.
Similarly, if pki 
= pkπ, then Xi = gxi, Yi = gyi . Therefore A returns (xi, yi)
to F as the answer. Otherwise, A fails to simulate the Corruption Oracle and
aborts.

At the end of Phase 1, D submits the challenging message m∗ and the public key
pk∗s . Similarly, we assume that (m∗, h0(m∗), μ∗, ν∗) and (m∗, h1(m∗), ζ∗, κ∗, η∗)
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have been in h0-list and h1-list, respectively. If it is not true, A can generate
the above tuples as the same way he answers D’s h0 and h1 queries.

1. If pk∗s = pkπ, μ∗ = 1 and ζ∗ = 1, which means h0(m∗) = (ga)ν∗
, h1(m∗) =

(gκ∗
)η∗

and pk∗s = (Xπ, Yπ) = (gb, gc), A returns σ∗ = hν∗ · (gc)κ∗η∗
as the

challenging signature where h is the input of 3-DDH problem.
2. Otherwise, A fails to solve the 3-DDH problem and aborts.

After receiving the challenging signature σ∗, D can still submit queries to the
above oracles with restrictions defined in Section 3.5. After all the queries have
been made, D submits his guess γ′ to A. A forwards γ′ as his answer to the 3-
DDH problem. Note that if γ′ = 1, then σ∗ is a valid signature of the message m∗

with probability 1/2+Adv DCMA,CPKA
INV,CUS , which means σ∗ = h0(m∗)bch1(m∗)c =

(gabc)ν∗
(gc)κ∗η∗

. Since A computes σ∗ as hν∗ · (gc)κ∗η∗
, therefore h = gabc.

Otherwise, σ∗ is not a valid undeniable signature and h 
= gabc. Therefore, if
A does not abort during the simulation, it can solve this instance of 3-DDH
problem with the advantage Adv A3−DDH

G1
≥ δ2

qKG
Adv DCMA,CPKA

INV,US .
It’s remaining to consider the probability that A does not abort during the

simulation. As we can see, A does not abort during the simulation if and only if

1. A does not abort during the simulation of Undeniable Sign Oracle, which
happens with probability ((1 − 1

qKG
) + 1

qKG
(1 − δ)2)qUS ≥ (1 − δ)2qUS .

2. A does not abort during the simulation of Selectively Convert Oracle, which
happens with probability ((1 − 1

qKG
) + 1

qKG
(1 − δ))qSC ≥ (1 − δ)qSC .

3. A does not abort during the simulation of Universally Convert Oracle, which
happens with probability (1 − 1

qKG
)qUC .

4. A does not abort during the simulation of Corruption Oracle, which happens
with probability (1 − 1

qKG
)qC .

We can obtain that A does not abort during the simulation with the probability
greater than (1 − δ)2qUS+qSC (1 − 1

qKG
)qUC+qC . Therefore, the advantage that A

has to solve the 3-DDH problem is Adv A3−DDH
G1

≥ δ2

qKG
(1 − δ)2qUS+qSC (1 −

1
qKG

)qUC+qC Adv DCMA,CPKA
INV,US . When δ = 2/(2qUS + qSC + 2), this probability is

maximized at Adv A3−DDH
G1

= 4
qKG(2qUS+qSC)2 (1 − 2

2qUS+qSC+2 )2qUS+qSC+2(1 −
1

qKG
)qUC+qC Adv DCMA,CPKA

INV,US . ��

Theorem 5. If there exists a (t, qKG, qUS , qV , qSC , qUC , qC) adversary
S̃CMA, CPKA

Sound, CUS who can make additional qH queries to random oracles and win the
game of Soundness defined in Section 3.7 with non-negligible success probabil-
ity Succ S̃CMA, CPKA

Sound, CUS , then there exists an algorithm A who can use S̃ to solve
a random instance of Discrete Logarithm problem with probability SuccDL

A,G1
≥

1
qKG

(1 − 1
qKG

)qC Succ S̃CMA,CPKA
Sound, CUS in polynomial time.

Theorem 6. If there exists a (t, qKG, qUS , qV , qSC , qUC , qC) impersonator
ICMA, CPKA

CUS who can make additional qH queries to random oracles and have
non-negligible success probability Succ ICMA, CPKA

CASEi, CUS for some i ∈ {1, 2, 3} in the
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game of Impersonation defined in Section 3.8, then there exists an algorithm
A who can use I to solve a random instance of Computational Diffie-Hellman
problem with non-negligible probability in polynomial time.

Due to page limitation, the proofs of Theorem 5 and 6 will be presented in the
full version of this paper.

4.3 Comparison with Other Schemes

In this section, we make a comparison between our scheme and the schemes pro-
posed in [8,15,27]. For other existing schemes, some of them [25,33,23] are only
selectively convertible, and others [29,30,31] are lacking of formal proofs. Among
the schemes in [8,15,27], Laguillaumie and Vergnaud’s scheme [27] has the short-
est signature length (272 bits) but the highest computation cost. It requires 1
exponentiation in the signature generation and 2 pairings in the verification. In
our scheme, the sign algorithm needs 2 exponentiations in G1, 2 hashes map-
ping to G1 and each verification requires 3 parings, which is slightly more time
consuming than the scheme in [27]. However, the following table shows that our
new scheme performs better in other aspects. Firstly, our scheme enjoys shorter
signature length under the same system parameters in [27]. The signature of
our scheme is only an element in the group G1. Secondly, the invisibility of our
scheme is based on the hardness of 3-DDH problem, which is much better than
(�, 1)-xyz-DCAA problem. As the authors said in [27], their scheme was also
designed according to the 3-DDH problem, and instead, they created a deci-
sional problem (�, 1)-xyz-DCAA to prove the invisibility and anonymity of their
scheme.

Scheme Signature Selective and Unforgeability Invisibility
Universal Proof

Scheme in [27] |G1| + |nr | |G1| CDH (�, 1)-xyz-DCAA
Our Proposed Scheme |G1| |G1| CDH 3-DDH

Notations. |G1|: bit length of an element in the group G1. |nr|: bit length of the
random salt used in [27] which is set to be 112 in their scheme.

5 Conclusion

In this paper, we formalized the security model of the convertible undeniable
signature scheme. The new model clearly defines the security properties that a
convertible undeniable signature scheme should satisfy. Based on the new model,
we proposed a new construction from pairings. Compared with the other schemes
in the literature, our construction has the shortest signature length while provid-
ing both selective and universal convertibility. Meanwhile, all security properties
of the new construction are formally proven under some conventional complexity
assumptions.

Acknowledgements. The authors would like to thank Dr. Qianhong Wu and
the anonymous referees for their valuable comments.
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Abstract. The beauty of identity-based encryption (IBE) lies in the
convenience of public key handling, in the sense that any identification
such as an email address, a name, or an IP number can serve as a public
key of a party. However, such convenience is not inherited by a system
where a party possesses many identities (e.g., many email addresses) and
has to use them as his public keys. When this system is handled with a
standard IBE, the user must manage all the private keys that are associ-
ated with all the public keys (identities). However, keeping these private
keys is inconvenient to the user. In this paper, we solve this problem by
proposing a novel identity-based encryption where we set a private key
that maps multiple public keys (identities); namely, we can use a private
key to decrypt multiple ciphertexts; each was encrypted with a different
public key (identity).

Keywords: ID-based Encryption, Pairing.

1 Introduction

In 1984, Shamir [24] introduced the notion of identity-based (or ID-based) cryp-
tography and presented a concrete signature scheme. The merit of an identity
based system is that the public key can be an arbitrary string. Shamir’s orig-
inal motivation was to simplify certificate management in e-mail systems. In a
traditional public key encryption such as ElGamal encryption, a public key is a
random string so that we need a public key certificate to show the connection
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of a user and a public key. Such public key certification system is referred to as
Public Key Infrastructure (PKI). If a public key can be set discretionarily, the
public key can be set using user’s identification information such as telephone
number or email address. Those natural information for users eliminate the need
of PKI.

Although Shamir [24] successfully constructed an ID-based signature, he could
not work out how to construct ID-based encryption (IBE). This problem had
remained open until Boneh and Franklin [7] introduced the notion of bilinear
pairings and successfully constructed a concrete ID-based encryption scheme
with CCA2 security in a random oracle model [2]. Based on it, some IBE schemes
with a further research on its security have been published [10,4,26,16]. Although
IBE has many applications, the shortcoming of IBE is the key escrow problem;
namely, private keys must be computed by a trusted authority called Private
Key Generator (PKG). There have been some attempts to solve the key escrow
problem [11,20,15,25,19]. In this paper, we do not address the issue of key escrow.
Instead, we will focus on a very interesting problem that is motivated by the
following scenario.

Bob is a consultant for n companies and has n email addresses; each is used for
a different company. For example, each company could assign an email address
to Bob, who uses it to receive all emails associated with this particular company.
Assume that a traditional IBE is applied in order to secure the system. Naturally,
Bob would like to select the email address from a company as his public key in
order to secure his email system for that company. It would not make sense if a
company used another company’s email alias as Bob’s public key. He therefore
turns out having n public keys and n corresponding private keys. When Bob saw
so many keys to manage, he got headache. What Bob wishes is that he could
just use a single private key to decrypt all ciphertexts sent to him regardless
which public key was used for encryption.

In this paper, we present a novel IBE-SK (Identity-Based Encryption with
single private key) scheme aiming to make Bob’s wish come true. In our scheme,
we allow a private key to map to multiple public keys which can be selected
randomly as identities of Bob .

1.1 Related Works

Hierarchical Identity-Based Encryption (HIBE) was first proposed in [18] and
[17] in 2002 and has further developed in [6,13]. It is a generalization of IBE
that mirrors an organizational hierarchy, which allows the task of generating pri-
vate keys to be delegated to lower levels. A 2-level HIBE system could achieve
Bob’s wish by this way: If Bob has two email addresses “bob@hotmail.com”
and “bob@gmail.com”, then he could ask the PKG for a private key corre-
sponding to the ID=“Bob”. Anyone who sends email to “bob@hotmail.com”
or “bob@gmail.com” can encrypt the email using the corresponding public key
“Bob‖bob@hotmail.com” or “Bob‖bob@gmail.com” with a 2-level HIBE system.
For both cases, Bob can decrypt emails with the only private key of ID “Bob”.
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The 2-level HIBE system seems having cured Bob’s headache, but actually
the treatment is not complete. The problem arises when Bob got an email ad-
dress without his identity, e.g. an email address of “consultant@gmail.com”. The
case is normal but out of control because there is no an obvious identity. In this
case, suppose Bob has the two email addresses “bob@hotmail.com” and “con-
sultant@gmail.com”, then a 2-level HIBE system will fail and Bob cannot use
the single private key of ID “Bob” to decrypt emails for both cases. In fact, a
2-level HIBE system can be considered as encryption with the public key “Bob”.
It does not help!

Road Map: In Section 2, we will provide the definitions of our scheme and
its security requirement. In Section 3, we present our novel IBE-SK scheme. In
Section 4, we will analyze the security of our scheme. We conclude our paper in
Section 5.

2 Definitions

In this section, we define our scheme and the security requirement for our
scheme.

Definition 1. Our IBE-SK scheme can be described as the four PPT algo-
rithms: Setup, KeyGen, Encrypt and Decrypt.

– Setup: takes as input a security parameter 1k, and outputs a master secret key
s, the corresponding master public key Kpub, and some auxiliary parameter
AUX.

– KeyGen: takes as input the multiple ID’s {ID1, ID2, · · · , IDj} (j ≤ q) of a
party and the master secret key s, and outputs a single private key d for the
party.

– Encrypt: takes as input a message M , the master public key Kpub, an IDi ∈
{ID1, ID2, · · · , IDj}, and AUX, and outputs ciphertext C.

– Decrypt: takes as input 〈IDi, C〉, AUX, the private key d and other ID’s
{ID1, · · · , IDi−1, IDi+1, · · · IDj}, and outputs the message M .

2.1 Security Model

We say that our scheme E with a security parameter 1k is indistinguishably
secure against an adaptive chosen ciphertext attack (IND-ID-CCA2) if no poly-
nomially bounded adversary A has a non-negligible advantage against the chal-
lenger in the following IND-ID-CCA2 game:

Setup: The challenger takes a security parameter 1k and runs the algorithm
Setup. It gives the adversary the resulting master public key and keeps the
master secret key to itself.
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Phase 1: The adversary issues queries q1, q2, · · · , qm, when the queries are for
key generation, the adversary can issue q queries one time at most:

– Key generation queries 〈IDi+1, IDi+2, · · · , IDi+j〉 (j ≤ q). The challenger
responds by running algorithm KeyGen to generate the private key di,j cor-
responding to the multiple public keys 〈IDi+1, IDi+2, · · · , IDi+j〉(j ≤ q). It
sends di,j to the adversary.

– Decryption query 〈IDi, Ci〉. The challenger responds by running algorithm
KeyGen to generate the private key di corresponding to IDi. It then runs
algorithm Decrypt to decrypt the ciphertext Ci using the private key di. It
sends the resulting plaintext to the adversary.

These queries may be asked adaptively according to the replies of queries.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
equal length plaintexts m0,m1 and an identity IDch on which it wishes to be
challenged. The only constraint is that IDch did not appear in any key generation
query in Phase 1. The challenger picks a random bit c ∈ {0, 1} and sets C =
Encrypt(Kpub, IDch,mc). It sends C as the challenge to the adversary.

Phase 2: Same to the Phase 1. The constraint is that IDch should not appear
in any key generation query and 〈IDch, C〉 should not appear in any decryption
query.

Guess: Finally, the adversary outputs a guess c′ ∈ {0, 1} and wins the game if
c = c′.

We refer to such an adversary A as an IND-ID-CCA2 adversary. We define
the advantage of adversary A in attacking the IBE-SK scheme E as the function
of the security parameter k:

AdvE,A(k) = |Pr[c′ = c] − 1
2
|

We say that the IBE-SK scheme is secure against adversary A in IND-ID-
CCA2 model if the function AdvE,A(k) is negligible for sufficiently large k. Our
IBE-SK scheme will be proved secure in the random oracle model [2].

2.2 Bilinear Pairing

Let G1 be (additive) cyclic group of prime order p. Let P,Q be a generator of
G1. A map ê : G1 × G1 → G2 (here G2 is a multiplicative group such that
|G1| = |G2| = p) is called a bilinear pairing if this map satisfies the following
properties:

– Bilinear: for all P,Q ∈ G1 and a, b ∈ Zp, we have ê(aP, bQ) = ê(P,Q)ab.
– Non-degeneracy: ê(P, P ) 
= 1. In other words, if P be a generator of G1, then
ê(P, P ) generates G2.

– Computability: There is an efficient algorithm to compute ê(P,Q) for all
P,Q ∈ G1.
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2.3 Complexity Assumption

q-SDH Problem. Let G1 be a group of prime order p and let P be a generator
of G1. The q-SDH problem in G1 is that :Given 〈P, sP, s2P, · · · , sqP 〉 for some
s ∈ Z∗

p (q % p), compute 〈c, 1
c+sP 〉 for any c ∈ Z∗

p\{−s}.
The q-SDH problem originates from a weaker assumption introduced by Mit-

sunari et al.[21] to construct traitor tracing schemes. Here, we extend it to a
q-BSDH problem in bilinear pairing.

q-BSDH Problem. Let G1,G2 be two groups of prime order p. Let ê : G1 ×
G1 → G2 be an admissible bilinear map and let P be a generator of G1. The
q-BSDH problem in 〈G1,G2, ê〉 is that: Given 〈P, sP, s2P, · · · , sqP, bP 〉 for some
s, b ∈ Z∗

p (q % p), compute 〈c, ê( 1
c+sP, bP )〉 for any c ∈ Z∗

p\{−s}.
q-BSDH Assumption. Let G be a generator of bilinear map 〈G1,G2, ê〉 with a
secure parameter 1k (see [7]) . We define that an algorithm A has an advantage
AdvG,A(k) in solve the q-BSDH problem, where

AdvG,A(k) = Pr[A(p,G1,G2, ê, P, sP, s
2P, · · · , sqP, bP ) =

ê(
1

c+ s
P, bP ) ∧ ∀c ∈ Z

∗
p\{−s} ← A].

We say that G satisfies the q-BSDH assumption if for any randomized poly-
nomial time (in k) algorithm A we have that AdvG,A(k) is a negligible function.
When G satisfies the q-BSDH assumption we say that q-BSDH is hard in groups
generated by G.

Explanation to q-SDH Problem. When q is the maximum number of private
key owners that an adversary may corrupt in an active attack, the above q-
SDH problem and other related assumptions have recently come under (limited)
number theoretic attack in a recent paper by Cheon [9]. But in our scheme, the
number of q is the maximum value that a single private key can map, which can
be very small. We believe that each user with 10 identities will be enough, i.e.
q = 10. So, the number theoretic attack will fail and there is still no efficient
algorithm to solve the assumption.

3 The Novel ID-Based Encryption

Without losing generality of the scheme, we assume that Bob has two IDs
(ID1, ID2) and a single private key of dID1,ID2 which maps ID1 and ID2. The
following scheme shows how to use dID1,ID2 to decrypt a ciphertext under the
public key ID1.

– Setup: Given a security parameter 1k, the algorithm G outputs a master
public key Kpub and a master secret key s as follow:
Step 1: Run G on input 1k to generate a prime p, two groups G1,G2 of

order p, and an admissible bilinear map ê : G1 × G1 → G2. Choose a
random generator P 0

pub = P ∈ G
∗
1.
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Step 2: Pick a random s ∈ Z∗
p and set P k

pub = skP, k = 1, 2, · · · , q; The
plaintext space is M = {0, 1}n and the ciphertext space is C = G

q
1 ×

{0, 1}2n.
Step 3: Choose four cryptography hash functions: H1(x,Q) : {0, 1}∗ → G1;
H2 : G2 → {0, 1}n; H3 : {0, 1}∗ → Z∗

p; H4 : {0, 1}n → {0, 1}n .
The system parameters are

Kpub = 〈p,G1,G2, ê, n, P
0
pub, P

1
pub, · · · , P

q
pub, H1, H2, H3, H4〉

Here, the hash function H1(x,Q) is set by H1(x,Q) = H0(x)Q, where H0 is
a hash function of H0 : {0, 1}∗ → Z∗

p and Q is a generator of G1. So we have
H1(x,Q) : {0, 1}∗ → G1. The hash function of H0 will be reused in the next
phase.

– KeyGen: For the given {ID1, ID2} ∈ {0, 1}∗, the algorithm sets the private
key dID1,ID2 as

dID1,ID2 =
1

H0(ID1) + s
· 1
H0(ID2) + s

P, H0(ID1), H0(ID2) 
= −s modp

.
– Encrypt: To encrypt m ∈ {0, 1}n under ID1, do the following:

• Compute Qk
ID1

= H1(ID1, P
k
pub) = H0(ID1)P k

pub, k = 0, 1, · · · , q − 1;
• Choose a random σ ∈ {0, 1}n and set r = H3(σ,m);
• Compute rQk

ID1
+ rP k+1

pub , k = 0, 1, · · · , q − 1;
Set the ciphertext to be

〈U1, U2, · · · , Uq, V,W 〉 = 〈rQ0
ID1

+rP 1
pub, rQ

1
ID1

+rP 2
pub, · · · , rQ

q−1
ID1

+rP q
pub,

H2(ê(P, P )r) ⊕ σ,H4(σ) ⊕m〉.
– Decrypt: Let C = 〈U1, U2, · · · , Uq, V,W 〉 be a ciphertext under ID1. To

decrypt C using the private key dID1,ID2 and ID2,
• Compute U = H1(ID2, U1) + U2;
• Compute V ⊕H2(ê(U, dID1,ID2)) = σ′;
• Compute m′ = H4(σ′) ⊕W ;
• Set r′ = H3(σ′,m′) and check if U1 = r′(Q0

ID1
+ P 1

pub). If true, accept
m′ = m as the decryption; otherwise, abort.

It is easy to see that our scheme is correct:

U = H1(ID2, U1) + U2 = H0(ID2)(rQ0
ID1

+ rP 1
pub) + rQ1

ID1
+ rP 2

pub

= r(H0(ID1) + s)(H0(ID2) + s)P.

ê(U, dID1,ID2) = ê(r(H0(ID1)+s)(H0(ID2)+s)P,
1

H0(ID1) + s
· 1
H0(ID2) + s

P )

= ê(P, P )r .
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We can easily extend it into the full scheme for multiple ID’s (> 2). A general
private key dID1,···,IDq for {ID1, ID2, . . . , IDq} is computed as follow:

dID1,···,IDq =
1

H0(ID1) + s
· 1
H0(ID2) + s

· · · 1
H0(IDq) + s

P,H0(IDi) 
= −s modp

Observe that Ui = rQi
ID1

+ rP i+1
pub = rs(rQi−1

ID1
+ rP i

pub) = sUi−1. The cipher-
text is the same:

〈U1, U2, · · · , Uq, V,W 〉 = 〈U1, sU1, s
2U1, · · · , sq−1U1, V,W 〉.

Then, for a general r(H0(ID1) + s) · · · (H0(IDq) + s)P = (H0(ID2) + s) · · ·
(H0(IDq)+s)U1, we can compute it from {ID2, ID3, · · · , IDq} and U1, sU1, s

2U1,
· · · , sq−1U1 in the hash function H(x,Q). So, Bob’s single private key can map
q multiple public keys at most. That is, we can use the single private key to
decrypt q ciphertexts using different public keys.

4 Security

Since we will make use of hybrid encryption [14] in the security proof, we will
first describe it.

4.1 Hybrid Encryption

The notion of Hybrid-Encryption was introduced by Fujisaki and Okamoto [14].
Let E be a probabilistic public key encryption scheme. We denote by Epk(m, r)
the encryption of m using the random bits r under the public key pk. Fujisaki
and Okamoto define the hybrid encryption scheme Ehy as:

Ehy
pk (m) = 〈Epk(σ||H3(σ,m)), H4(σ) ⊕m〉.

Here, σ is generated at random and H3, H4 are suitable cryptographic hash
functions. Fujisaki and Okamoto show that if E is IND-CPA secure, then Ehy is
IND-CCA2 secure. With our IBE-SK, Hybrid-Encryption can be readily realized
in the following encryptions.

MPub: The public key is Kpub = 〈p,G1,G2, ê, n, P
0
pub, P

1
pub, · · · , P

q
pub, H2, Q

0
ID,

Q1
ID, · · · , Q

q−1
ID 〉 and the private key is dID = 1

c+sP , where Qk
ID = cP k

pub for
some c ∈ Z∗

p\{−s}. The phases of Encrypt and Decrypt are as follows:

– Encrypt: To encrypt m ∈ {0, 1}n under the public key Kpub, implement the
following: (1) choose a random r ∈ Z∗

p and compute rQk
ID + rP k+1

pub , k =
0, 1, · · · , q − 1, and (2) set the ciphertext to be

〈U1, U2, · · · , Uq, V 〉 = 〈rQ0
ID + rP 1

pub, rQ
1
ID + rP 2

pub, · · · , rQ
q−1
ID + rP q

pub,

H2(ê(P, P )r) ⊕m〉.
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– Decrypt: Let C = 〈U1, U2, · · · , Uq, V 〉 be a ciphertext using the public key
of Kpub. With the private key dID = 1

c+sP , the ciphertext is decrypted by
m = V ⊕H2(ê(U1, dID)).

MPubhy: The public key is Kpub = 〈p,G1,G2, ê, n, P
0
pub, P

1
pub, · · · , P

q
pub, H2, H3,

H4, Q
0
ID, Q

1
ID, · · · , Q

q−1
ID 〉 and the private key is dID = 1

c+sP , whereQk
ID = cP k

pub

for some c ∈ Z∗
p\{−s}. The phases of Encrypt and Decrypt are as follows:

– Encrypt: To encrypt m ∈ {0, 1}n under the public key Kpub do the following:
• Choose a random σ ∈ {0, 1}n and set r = H3(σ,m);
• Compute rQk

ID + rP k+1
pub , k = 0, 1, · · · , q − 1;

Set the ciphertext to be

〈U1, U2, · · · , Uq, V,W 〉 = 〈rQ0
ID+rP 1

pub, rQ
1
ID+rP 2

pub, · · · , rQ
q−1
ID +rP q

pub,

H2(ê(P, P )r) ⊕ σ,H4(σ) ⊕m〉.
– Decrypt: Let C = 〈U1, U2, · · · , Uq, V,W 〉 be a ciphertext using the public key

of Kpub. To decrypt C using the private key dID:
• Compute V ⊕H2(ê(U1, dID)) = σ′;
• Compute m′ = H4(σ′) ⊕W ;
• Set r′ = H3(σ′,m′) and check if U1 = r′(Q0

ID+P 1
pub), if not,abort, accept

m′ = m as the decryption.

According to the definition of Hybrid-Encryption in [14], we know that MPubhy

is a hybrid encryption based on the general public encryption of MPub.

4.2 Security

The following theorem shows that our scheme is secure against IND-ID-CCA2
assuming q-BSDH is hard in groups generated by G.

Theorem 1. Let the hash functions H1, H2, H3, H4 be random oracles. Then
IBE-SK scheme is secure against IND-ID-CCA2 assuming q-BSDH is hard in
groups generated by G. Suppose there is an IND-ID-CCA2 adversary A that has
advantage ε(k) against the IBE-SK scheme and A runs in time at most t(k).
Suppose A makes at most qE key generation queries, at most qD decryption
queries, and at most qH2 , qH3 , qH4 queries to the hash functions H2, H3, H4 re-
spectively. Then there is a q-BSDH algorithm B for G with running time t1(k)
where:

AdvG,B(k) ≥ 2FOadv(
ε(k)

e(1 + qE + qD)
, qH4 , qH3 , qD)/qH2

t1(k) ≤ FOtime(t(k), qH4 , qH3).

The proof of Theorem 1 is based on the following result of Fujisaki and
Okamoto.
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Theorem 2 (Theorem 14 in [14]). Suppose A is an IND-CCA2 adversary
that achieves advantage ε(k) when attacking MPubhy. Suppose A has running
time t(k), makes at most qD decryption queries, and makes at most qH3 , qH4

queries to the hash functions H3, H4 respectively. Then there is an IND-CPA
adversary B against MPub with running time t1(k) and advantage ε1(k) where:

ε1(k) ≥ FOadv(ε(k), qH4 , qH3 , qHD ) =
1

2(qH4 + qH3)
[(ε(k) + 1)(1 − 2/p)qD − 1]

t1(k) ≤ FOtime(t(k), qH4 , qH3) = t(k) +O((qH4 + qH3)n).

Here p is the size of the groups G1,G2 and n is the length of σ.

We now prove Theorem 1 in two steps. We first show that an IND-ID-CCA2
attack on IBE-SK can be converted to an IND-CCA2 attack on MPubhy. With
the result of an IND-CCA2 attack on MPubhy can be converted to an IND-CPA
attack on MPub [14], We then show that MPub is secure against IND-CPA if
the q-BSDH assumption holds.

Lemma 1. Let A be an IND-ID-CCA2 adversary that has advantage ε(k) against
IBE-SK. Suppose A makes at most qE > 0 private key generation queries and
at most qD decryption queries. Then there is an IND-CCA2 adversary B that has
advantage at least ε(k)

e(1+qE+qD) against MPubhy. Its running time isO(time(AFir)).

Proof. We construct an IND-CCA2 adversary B that uses A to gain advantage
ε(k)

e(1+qE+qD) against MPubhy. The game between the challenger and the adversary
B starts with the challenger first generating the public key
Kpub = 〈p,G1,G2, ê, n, P

0
pub, P

1
pub, · · · , P

q
pub, H2, H3, H4, Q

0
ID, Q

1
ID, · · · , Q

q−1
ID 〉,

where Qi
ID = cP i

pub for some c ∈ Z
∗
p\{−s}. The challenger gives Kpub to

algorithm B.
Algorithm B mounts an IND-CCA2 attack on the key Kpub with the help of

algorithm A. Algorithm B interacts with A as follows:

Setup: Algorithm B gives A the IBE-SK system master public key p,G1,G2, ê, n,
P 0

pub, P
1
pub, · · · , P

q
pub, H2, H3, H4 that are taken from Kpub, and H1 which is a

random oracle controlled by B as described below.

H1-queries: At any time algorithm A can query the random oracle H1. To
respond to these queries algorithm B maintains a list of tuples 〈IDj , Q

0
j , Q

1
j , · · · ,

Qq−1
j , bj , coinj〉 as explained below. We refer to this list as the H list

1 . The list
is initially empty. When A queries the oracle H1 at a point IDi algorithm B
responds as follows:

1. If the query IDi already appears on theH list
1 in a tuple 〈IDi, Q

0
i , Q

1
i , · · · , Q

q−1
i ,

bi, coini〉, then algorithm B responds with H1(IDi, P
k
pub) = Qk

j ∈ G∗
1, k =

0, 1, · · · , q − 1.
2. Otherwise, B generates a random coin ∈ {0, 1} so that Pr[coin = 0] = δ for

some δ that will be determined later.
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3. Algorithm B picks a random bi ∈ Z∗
p and computes Qk

i as follows:
If coin = 0 compute

Qk
i = biP

k
pub − P k+1

pub ∈ G
∗
p, k = 0, 1, · · · , q − 1.

If coin = 1 compute

Qk
i = bi(Qk

ID + P k+1
pub ) − P k+1

pub ∈ G
∗
1, k = 0, 1, · · · , q − 1.

4. Algorithm B adds the tuple

〈IDi, Q
0
i , Q

1
i , · · · , Q

q−1
i , bi, coini〉

to the H list
1 and responds to A with Q0

i , Q
1
i , · · · , Q

q−1
i . Note that in either

way Qk
i is uniform in G∗

1 and is independent of A’s current view as required.

Phase 1
Key genaration queries. Let {IDi+1, IDi+2, · · · , IDi+j} (j ≤ q) be a private
key generation queries issued by algorithm A. Algorithm B responds to the
queries as follows:

1. For each IDk (k = i+ 1, · · · , i+ j), run the above algorithm for responding
to H1-queries to obtain Q0

k, Q
1
k, · · · , Q

q−1
k . Let

〈IDk, Q
0
k, Q

1
k, · · · , Q

q−1
k , bk, coink〉

be the corresponding tuple on the H list
1 . If coink = 1 then B reports failure

and terminates. The attack on MPubhy failed.
2. We know coink = 0, hence

Q0
k = bkP

0
pub − P 1

pub = (bk − s)P (k = i+ 1, · · · , i+ j)

for all IDk. Define

di,j =
1

bi+1 · · · bi+j
P.

Observe that

di,j =
1

bi+1 − s+ s

1
bi+2 − s+ s

· · · 1
bi+j − s+ s

P

We know that di,j is the private key associated to the multiple public key
{IDi+1, IDi+2, · · · , IDi+j}. Give di,j to algorithm A.

Decryption queries. Let 〈IDi, Ci〉 be a decryption query issued by algorithm
A. Let Ci = 〈Ui1, Ui2, · · · , Uiq, Vi, Wi〉. Algorithm B responds to this query as
follows:

1. Run the above algorithm for responding to H1-queries to obtain Q0
i , Q

1
i , · · · ,

Qq−1
i such that H1(IDi, P

k
pub) = Qk

i ∈ G∗
1. Let

〈IDi, Q
0
i , Q

1
i , · · · , Q

q−1
i , bi, coini〉

be the corresponding tuple on the H list
1 .
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2. Suppose coini = 0. In this case run the algorithm for responding to private
key queries to obtain the private key for the public key IDi. Then use the
private key to respond to the decryption query.

3. Suppose coini = 1. Then

Qk
i = bi(Qk

ID + P k+1
pub ) − P k+1

pub =
(
bi(c+ s) − s

)
P k

pub.

Recall that Ui ∈ G1 and

Ci = 〈Ui1, Ui2, · · · , Uiq, Vi,Wi〉 = 〈Ui, sUi, · · · , sq−1Ui, Vi,Wi〉.

Set
C′

i = 〈 1
bi
Ui,

1
bi
sUi, · · · ,

1
bi
sq−1Ui, Vi,Wi〉.

Let di = 1
bi(c+s)P = 1

bi(c+s)−s+sP be the (unknown) IBE-SK private key
corresponding to IDi. Then the IBE-SK decryption of Ci using di is the
same as the MPubhy decryption of C′

i using dID. To see this, observe that:

bi · di = bi ·
1

bi(c+ s)
P =

1
c+ s

P = dID,

ê(Ui, di) = ê(Ui,
1
bi
dID) = ê(

1
bi
Ui, dID).

Relay the decryption query 〈C′
i〉 to the challenger and relay the challenger’s

response back to A.

Challenge: Once algorithm A decides that Phase 1 is over, it outputs a pub-
lic key IDch and two messages m0,m1 on which it wishes to be challenged.
Algorithm B responds as follows:

1. Algorithm B gives the challenger m0,m1 as the messages that it wishes to
be challenged on. The challenger responds with a MPubhy ciphertext such
that C is the encryption of mc for a random c ∈ {0, 1}.

2. Next, B runs the algorithm for responding toH1-queries to obtain aQ0
ch, Q

1
ch,

· · · , Qq−1
ch such that H1(IDch, P

k
pub) = Qk

ch ∈ G∗
1. Let 〈IDch, Q

0
ch, Q

1
ch, · · · ,

Qq−1
ch , b, coin〉 be the corresponding tuple on the H list

1 . If coin = 0 then B
reports failure and terminates. The attack on MPub failed.

3. We know coin = 1 and therefore Qk
ch = b(Qk

ID + P k+1
pub ) − P k+1

pub . Recall that
when C = 〈U, sU, · · · , sq−1U, V,W 〉. Set C′ = 〈bU, bsU, · · · , bsq−1U, V,W 〉.
Algorithm B responds to A with the challenge C′. C′ is a ciphertext of mc

in IBE-SK under the public key IDch as required.

C′ = 〈bU, bsU, · · · , bsq−1U, V,W 〉

= 〈br(Q0
ID +P 1

pub), bsr(Q
0
ID +P 1

pub), , · · · , bsq−1r(Q0
ID +P 1

pub), V,W 〉 (1)

= 〈r(Q0
ch + P 1

pub), sr(Q
0
ch + P 1

pub), · · · , sq−1r(Q0
ch + P 1

pub), V,W 〉 (2)

The conversion from (1) to (2) is based on:

bskr(Q0
ID + P 1

pub) = skr(b(Q0
ID + P 1

pub) − P 1
pub + P 1

pub) = skr(Q0
ch + P 1

pub).
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Phase 2
Key generation queries. Same as phase 1.
Decryption queries. Same as phase 1. However, if the resulting decryption
query relayed to the challenger is equal to the challenge ciphertextC = 〈U, sU, · · · ,
sq−1U, V,W 〉 then B reports failure and terminates. The attack on MPubhy failed.

Guess: Eventually algorithm A outputs a guess c′ for c. Algorithm B outputs
c′ as its guess for c.

Claim 1. If algorithm B does not abort during the simulation then algorithm
A’s view is identical to its view in the real attack. Furthermore, if B does not
abort then |Pr[c = c′] − 1

2 | ≥ ε. The probability is over the random bits used by
A,B and the challenger.

Proof of Claim. [7] �

It remains to bound the probability that algorithm B aborts during the simula-
tion. The algorithm could abort for three reasons: (1) a bad private key query
from A during phases 1 or 2, (2) A chooses a bad IDch to be challenged on, or (3)
a bad decryption query from A during phase 2. We define three corresponding
events:
ε1 is the event that A issues a private key query during phase 1 or 2 that

causes algorithm B to abort; ε2 is the event that A chooses a public key IDch to
be challenged on that causes algorithm B to abort; ε3 is the event that during
phase 2 of the simulation Algorithm A issues a decryption query 〈IDi, Ci〉 so
that the decryption query that B would relay to the MPub challenger is equal
to C. Recall that C = 〈U, sU, · · · , sq−1U, V,W 〉 is the challenge ciphertext from
the MPubhy challenger.

Claim 2. Pr[¬ε1 ∧ ¬ε2 ∧ ¬ε3] ≥ δqE+qD (1 − δ).

Proof of Claim. [7] �

To conclude the proof of Lemma 1 it remains to optimize the choice of δ. Since
Pr[¬ε1 ∧ ¬ε2 ∧ ¬ε3] ≥ δqE+qD (1 − δ) the success probability is maximized at
δopt = 1−1/(1+qE +qD). Using δopt, the probability that B does not abort is at
least 1

e(1+qE+qD) . This shows that B’s advantage is at least ε(k)/e(1 + qE + qD)
as required.

Lemma 2. Let H2 be a random oracle from G2 to {0, 1}n. Let A be an IND-
CPA adversary that has advantage ε(k) against MPub. Suppose A makes a total
of qH2 > 0 queries to H2. Then there is an algorithm B that solves the q-BSDH
problem for G with advantage at least 2ε(k)/qH2 and a running time O(time(A)).

Proof. Algorithm B is given as input the q-BSDH parameters 〈p,G1.G2, ê〉 pro-
duced by G and a random instance 〈P, sP, s2P, · · · , sqP, bP 〉 = 〈P, P 1

1 , P
2
1 , · · · , P

q
1 ,

P2〉 of the q-BSDH problem for these parameters, i.e. P is random in G1 and
s, b are random in Z

∗
p where p is the order of G1,G2. For any c ∈ Z

∗
p\{−s}, let
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ê( 1
c+sP, bP ) be the solution to this q-BSDH problem. Algorithm B finds D by in-

teracting with A as follows:

Setup: Algorithm B creates the MPub public key Kpub = 〈p,G1,G2, ê, n, P
0
pub,

P 1
pub, · · · , P

q
pub, H2, Q

0
ID, Q

1
ID, · · · , Q

q−1
ID 〉 by setting P k

pub = ckP and Qk
ID =

ckP1 = sP k
pub. Here H2 is a random oracle controlled by B as described below.

Algorithm B gives A the MPub public key Kpub. Observe that the (unknown)
private key associated to Kpub is dID = 1

s+cP = 1
c+sP .

H2-queries: At any time algorithm A may issue queries to the random oracle
H2. To respond to these queries B maintains a list of tuples called the H list

2 .
Each entry in the list is a tuple of the form 〈Xj , Hj〉. Initially the list is empty.
To respond to query Xi algorithm B does the following:

1. If the query Xi already appears on the H list
2 in a tuple 〈Xj , Hj〉 then re-

sponds with H2(Xi) = Hi.
2. Otherwise, B just picks a random string Hi ∈ {0, 1}n and adds the tuple

〈Xj , Hj〉 to the H list
2 . It responds to A with H2(Xi) = Hi.

Challenge: Algorithm A outputs two messages m0,m1 on which it wishes to
be challenged. Algorithm B picks a random strings R and defines C to be the
ciphertext C = 〈P2, cP2, · · · , cq−1P2, R〉. Algorithm A gives C as the challenge
to A. Observe that, by definition, the decryption of C is R ⊕H2(ê(P2, dID)) =
R⊕H2(D).

Guess: Algorithm A outputs its guess c′ ∈ {0, 1}. At this point B picks a
random tuple 〈Xj , Hj〉 from the H list

2 and outputs Xj as the solution to the
given instance of q-BSDH.

Algorithm B is simulating a real attack environment for algorithm A (it sim-
ulates the challenger and the oracle for H2). We show that algorithm B outputs
the correct answer D with probability at least 2ε/qH2 as required. Let H be
the event that algorithm A issues a query for H2(D) at some point during the
simulation above (this implies that at the end of the simulation D appears in
some tuple on the H list

2 ). We show that Pr[H] ≥ 2ε.

Claim 3. Pr[H] in the simulation above is equal to Pr[H] in the real attack.

Proof of Claim. [7] �

Claim 4. In the real attack we have Pr[H] ≥ 2ε.

Proof of Claim. [7] �

To complete the proof of Lemma 2 observe that by Claims 3 and 4 we know
that Pr[H] ≥ 2ε in the simulation above. Hence, at the end of the simulation, D
appears in some tuple on the H list

2 with probability at least 2ε. It follows that
B produces the correct answer with probability at least 2ε/qH2 as required.

Proof of Theorem 1. By Lemma 1 an IND-ID-CCA2 adversary on IBE-SK
implies an IND-CCA2 adversary on MPubhy. By Theorem 2 an IND-CCA2
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adversary on MPubhy implies an IND-CPA adversary on MPub. By Lemma 2
an IND-CPA adversary on MPub implies an algorithm for q-BSDH. Composing
all these reductions gives the required bounds.

5 Conclusion

In this paper, we gave a novel IBE scheme for multiple public-key. In our IBE-SK
scheme, we can set a single private key that maps multiple public keys (ID’s),
such that the private key can decrypt all ciphertexts generated from different
public keys (ID’s).

Acknowledgement. The authors would like to thank the anonymous reviewers
of Pairing 2007 for their helpful comments on this work.
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