
Connecting the Rationale for Changes
to the Ev olution of a Process

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1

Abstract In dynamic and constantly changing business environments, the need
to rapidly modify and extend the software process arises as an important issue.
Reasons include redistribution of tasks, technology changes, or required
adherence to new standards. Changing processes ad-hoc without considering
the underlying rationale of the process design can lead to various risks.
Therefore, software organizations need suitable techniques and tools for storing
and visualizing the rationale behind process model design decisions in order to
optimally introduce future changes into their processes. We have developed a
technique that support us in systematically identifying the differences between
versions of a process model, and in connecting the rationale that motivated such
differences. This results in a comprehensive process evolution repository that
can be used, for instance, to support process compliance management, to learn
from process evolution, or to identify and understand process variations in
different development environments. In this article, we explain the underlying
concepts of the technique, describe a supporting tool, and discuss our initial
validation in the context of the German V-Modell XT process standard. We
close the paper with related work and directions for future research.

1 Introduction

The field of software process modeling has become established within the software
engineering community. An explicit process model is a key requirement for high pro-
ductivity and software quality. The process description content might be collected in
several ways, for example by observing real projects, describing intended activities,
studying the literature and industry reports, or interviewing people involved in a
project [10]. Usually, considerable effort is invested into the definition of such pro-
cesses for an organization. Once the process is defined and institutionalized, modify-
ing it further becomes unavoidable due to various reasons, such as the introduction of
a new software development technology in a development team (e.g., new testing
support tools and techniques), a new/updated process engineering technology (e.g., a
new process modeling technique), new/updated standards/guidelines for software de-
velopment or process engineering, new/updated regulatory constraints, or new/updat-
ed standards/guidelines for software development or process engineering. Such
changes must be reflected accordingly in the corresponding process models. Achiev-

.

67663, Kaiserslautern and Germany

Alexis Ocampo and Martín Soto

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 16 –1 , 2007.
© Springer-Verlag Berlin Heidelberg 2007

0 74

{ocampo, soto}@iese.fraunhofer.de

ing a compromise that satisfies such a challenge usually depends on the information
available for rapidly judging if a change is consistent and can be easily adopted by
practitioners.

Having information about the reasons for process changes (i.e., the rationale) at
hand can be of great help to process engineers for facing the previously mentioned
challenges. Currently, the common situation is that there is a lack of support for sys-
tematically evolving process models. Combined with other facts such as budget and
time pressure, process engineers often take shortcuts and therefore introduce unsuit-
able or inconsistent changes or go through a long, painful update process. In many
cases, precipitous and arbitrary decisions are taken, and process models are changed
without storing or keeping track of the rationale behind such changes.

According to our experience, systematically describing the relationships between
an existing process and its previous version(s) is very helpful for efficient software
process model evolution [2]. Such relationships should denote differences between
versions due to distinguishable modifications. One can identify the purpose of such
modifications if one can understand the rationale behind them. Rationale is defined as
the justification of decisions [8]. Rationale models represent the reasoning that led to
the system or, in our case, to the process in their current form. Historically, much re-
search about rationale has focused on software/product design. By making rationale
information explicit, decision elements such as issues, alternatives, criteria, and argu-
ments can improve the quality of software development decisions. Additionally, once
new functionality is added to a system, the rationale models enable developers to
track those decisions that should be revisited and those alternatives that have already
been evaluated.

We are currently working on transferring rationale concepts into the process mod-
eling domain. We do this based on the assumption that the rationale for process
changes can be used for understanding the history of such changes, for comprehen-
sive learning, and for supporting the systematic evolution of software processes. We
are looking at the possibilities that can be used for documenting changes and
connecting them to their corresponding rationale.

This article presents a technique for comparing process models, recognizing a set
of standard changes, and connecting them to their respective rationale as follows: In
Section 2, we present the conceptual model for capturing rationale; In Section 3, we
present the technique for identifying changes. In Section 4, we illustrate the connec-
tion of changes to rationale; In Section 5, we briefly discuss our implementation of
this technique, as well as our experience in applying it to the German V-Modell XT
[33] process standard. In Section 6, we present a short description of related ap-
proaches for comparing models and for capturing rationale; and finally, in section 7,
we provide a summary and future research questions to be resolved.

2 Process Rationale

The following is a conceptual model that can be considered a second version of our
attempt to understand the information needs for capturing the rationale behind process
changes (see Fig 1). The results of our first attempt have been documented in [21]. In

Connecting the Rationale for Changes to the Evolution of a Process 161

order to complement our previous work, we decided to take the IBIS [14], QOC [18],
and DRL [15] approaches as the basis. These approaches are called argumentation-
based because they focus on the activity of reasoning about a design problem and its
solution [8]. Based on our previous experience in collecting rationale [21], we as-
sessed these approaches and defined a small subset of entities (see shadowed classes
in Fig 1) that suited our goal, namely capturing rationale in a more structured way,
while being careful of keeping the involved costs under control especially because
this issue has been highly criticized by rationale experts. We connected these basic
entities to three additional entities relevant for us, namely, event, changes, and pro-
cess entities (the non-shadowed classes in Fig. 1).

Fig 1. Rationale Model (UML static structure diagram)

An event is considered to be the trigger of issues. Events can be external or inter-
nal. Examples are:

– External: new/updated process engineering technology (e.g., a new process model-
ing technique); new/updated regulatory constraints

– Internal: responses to failures to pass internal or external appraisals, assessments or
reviews (e.g., changes needed to address a failure in passing an FDA audit);
new/updated best practices emerging from "lessons learned" in just-completed
projects (e.g., a new "best practice" approach to handling design reviews).

Issues can be problems or improvement proposals that are related to a (part of a)
process and that need to be addressed. Issues are stated usually as questions in prod-
uct-oriented approaches. In this work, the question has the purpose of forcing process
engineers to reason about the situation they are facing. Additionally, an issue also
contains a long description, a status (open, closed) and a discussion. The discussion is
intended for capturing the emails, memos, letters, etc. where the issue was treated by
process engineers. Additionally, an issue can be categorized by a type. This type can
be selected from a classification of issues that needs to be developed or customized
for an organization. It is possible to start with a preexisting classification (see for ex-
ample [21]) as a basis, which can be refined based on experience gained from process
evolution projects.

type
question
description
status
discussion

Issue

name
description
type

Event triggers

description
subject
assessment

Alternative

has

subject
description
justification

Resolution

description
Change

chooses

generates

triggers

resolves

processEntityId

Process Entity

affectsdescends

►

►

►

►

►

◄

◄

◄

162 A. Ocampo and M. Soto

.

subject (short description) or long descriptions. Alternatives are evaluated and as-
sessed by process engineers regarding their impact and viability.

A resolution chooses an alternative that gets implemented by changing the process
model. At the same time, one resolution could lead to opening up more issues. Note
that a resolution has a subject (short description), a long description, and a justifica-
tion. The justification is intended for capturing a summary of the analysis of the dif-
ferent alternatives, the final decision, and the proposed changes. Changes are the re-
sult of the decision captured in the resolution. They are performed on process entities.
Some examples of changes performed to process entities are: activity x has been in-
serted; artifact y has been deleted; activity x has been moved to be a sub-activity of
activity z.

Identifying which changes affect which process element is not an easy task. So far,
we have developed a mechanism that allows us to document the rationale information
proposed in Fig. 1 directly in the process model being altered [22]. The actual ratio-
nale information can be documented in special tables at the end of the process model
description. The process engineer can then introduce the rationale information, per-
form the changes to the respective process entities, and then establish a reference to
the corresponding rationale element. Then with the support of a special tool, the pro-
cess evolution repository is updated. Although the approach proves to be suitable, we
saw the need to provide more flexibility during the identification of process entities
being changed and the documentation of the rationale behind such changes. In the fol-
lowing section, we present the technique we developed for that purpose.

3 Pattern-Matching-Based Change Identification

Our change identification technique is based on the Delta-P approach for process evo-
lution analysis [28, 29]. This technique makes it possible to handle a wide variety of
types of changes in a completely uniform way, to flexibly define the types of changes
that are considered interesting or useful (this can be based on the structure and seman-
tics of the process' metamodel), and to restrict the results to only certain types of
changes, or even to certain interesting portions of a model.

3.1 A Normalized Representation for Process Models and Their Comparisons

Our first step consists of representing models (and later their differences) in such a
way that a wide range of change types can be described using the same basic formal-
ism. The representation we have chosen is based on that used by RDF [19] and simi-
lar description or metadata notations. For our purposes, this notation has a number of
advantages over other generic notations:

– Being a generic notation for graph-like structures, it is a natural representation for a
wide variety of process model types.

– It has a solid, standardized formal foundation.
– As shown below, the uniformity of the notation, which does not differentiate be-

tween relations and attributes, makes it possible to describe a wide range of

Alternatives are proposals for resolving the issue. Alternatives can be captured with

Connecting the Rationale for Changes to the Evolution of a Process 163

changes with a straightforward pattern-matching notation.

– Also as shown below, the fact that many model versions can be easily put together
into a single model makes it possible to use the same pattern-matching notation for
single model versions and for comparisons.
Fig. 2 shows an example of this representation. The graph contains only two types

of nodes, which we will call entity nodes (ovals in the figure) and value nodes (boxes
in the figure). Entity nodes have arbitrary identifiers as labels. Value nodes are la-
beled by the value they represent, which can belong to a basic type (string, integer,
boolean, etc.)

Fig. 2. A process model in normalized form

Arrows represent typed directed relations (type is given by their labels). Relations
may connect two entity nodes, or may go from an entity node to a value node. It is not
allowed for a relation to leave a value node. It is also not allowed for a node to exist
in isolation. All nodes must be either the start or the end point of at least one relation.
It follows that the graph is characterized completely by the set of the relations (edges)
present in it, since the set of nodes is exactly the set of all nodes that are the start or
the end of an edge.

The correspondence between attributed graphs and this normalized form is
straightforward:
– Entities and types correspond to entity nodes. For each entity instance and entity

type in the original graph, there is an entity node in the normalized graph. There is
also a type relation between each node representing an entity and the node repre-
senting its type.

– Attributes correspond to entity-value relations. For each entity attribute in the orig-

e1 e2

e3e5

Test Case Design

Test Case

Quality Technician Quality Manager

Describes the actual conditions
in which a test operation
should...

Activity

Role

Product
produces

involvesRole

involvesRole

isResponsibleFor

name name

name name

type

typetype

type
description

e4

Tester

The Test Case Design activity is concerned
with the definition of test cases for...

involvesRole

description

type

name

16 A. Ocampo and M. Soto 4

inal graph, there is a relation labeled with the attribute name that connects the enti-
ty with the attribute value (that is, attributes in the original metamodel are convert-
ed into relation types). The value is a separate (value) node.

– Entity relations correspond to entity-entity relations. For each relation connecting
two entities in the original graph, a relation connecting their corresponding entity
nodes is present in the normalized graph.1

Fig. 3 shows an evolution of the model presented in Fig. 2, using the normalized
notation, with changes also highlighted. Formally, this graph respects exactly the
same restrictions as the normalized model representation. The only addition is that
edges are decorated (using interrupted and bolder lines) to state the fact that they
were deleted, added, or simply not touched. This leads us to the concept of a compar-
ison graph or comparison model. The comparison model of two normalized models A
and B contains all edges present in either A or B, or in both, and only those edges.
Edges are marked (decorated) to indicate that the edge is only in A, only in B, or in
both A and B.

Fig. 3. A process model comparison in normalized form

The main aspect to emphasize here is the fact that all changes are actually reduced
to additions and deletions of relations between nodes. This results in part from the
fact that attributes are represented as relations, but also from the fact that nodes can-
not exist in isolation. It is possible (and safe) to identify entity additions and deletions
by looking for additions and deletions of type relations in the model.

1 Relations with attributes can be modeled by introducing entity nodes that represent them, but
the details are beyond the scope of this paper.

e1 e2

e3e5

Test Case Design

This activity is concerned
with the definition of test
cases for...

Test Case

Quality Technician Quality Manager

Describes the actual conditions
in which a test operation
should...

Activity

Role

Product
produces

involvesRole

involvesRole

isResponsibleFor

name name

name name

type

typetype

type
description

description

e4

Tester

The Test Case Design activity is concerned
with the definition of test cases for...

involvesRole

description

type

name

Connecting the Rationale for Changes to the Evolution of a Process 165

additions and deletions is useful because it permits describing many types of changes
uniformly. On the other hand, an adequate formalism to describe changes must have
clear, unambiguous semantics, and must be, at the same time, accessible to users. The
following sections discuss with the help of examples, the mechanism that we have
chosen for this task: a graphical pattern-matching language.

3.2 Example 1: Additions and Deletions

Our first example is related to one of the simplest possible model changes: adding or
deleting process entities. Fig. 4 shows four patterns that identify changes of this type
with different levels of generality. The pattern in Fig. 4a) matches all additions of pro-
cess activities, and for each match, sets the ?id variable with the identifier of the new
activity. In a similar way, the pattern in Fig. 4b) matches all deletions of process prod-
ucts. These patterns can be generalized to identify arbitrary additions and deletions:
the pattern in Fig. 4c) identifies all entity additions, and instances an additional vari-
able with the type of the added entity. Finally, Fig. 4d) shows a pattern that not only
finds new activities, but sets a variable with the corresponding name, a useful feature
if the results of matching the pattern are used, for example, to produce a report.

3.3 Example 2: Changes in Attribute Values

Just as important as identifying entity additions and deletions is finding entities whose
attributes were changed. Fig. 5 shows three patterns that describe changes in attribute
values. Fig. 5a) is basically an excerpt from the comparison graph in Fig. 3, which
captures the fact that an attribute description was changed. This pattern, however,
matches only the particular change shown in the example. The pattern in Fig. 5b) is a
generalized version of the first one. By using variables for the entity identifier, as well
as for the old and new property values, this pattern matches all cases where the de-
scription attribute of an arbitrary entity was changed. Note that each match sets the
value of the ?id variable to the identifier of the affected entity, and the values of ?old-
Value and ?newValue to the corresponding old and new values of the description
property. The pattern in Fig. 5c) goes one step further and uses a variable for the at-
tribute labels as well, which means it matches all attribute value changes. Note that

Fig. 4. Patterns for identifying entity additions and deletions

a) b) c)

?id

?name

name

d)

Activity

type

?id

Activity

type

?id

Product

type

?id

?type

type

16 A. Ocampo and M. Soto 6

The fact that the normalized representation reduces all changes to sets of relation

attribute value changes affecting process activities.

Fig. 5. Four patterns for identifying attribute value changes

Changes identified in this way can be fed into additional algorithms that perform
attribute-specific comparisons, such as, for example identifying added or deleted indi-
vidual words or characters in text-based attributes. This way, potentially expensive
specific comparison algorithms are only applied to relevant items.

4 Connecting Rationale to Process Changes

RDF has been designed with the intention of supporting the interchangeability of sep-
arate packages of metadata defined by different resource description communities We
have defined a separate RDF model containing the rationale concepts described in
Fig. 1. This allow us to reference the comparison model. Fig. 6 elaborates on the pre-
vious example and illustrates how we connect the comparison model to the rationale
model. The figure can be interpreted as having two separated RDF models, one for
the comparison of processes and the other one for the rationale for changes. Let us as-
sume that a review board met, discussed, and documented issue (i1) concerning the
expensive performance of the activity Test Case Design (e1) by more than one role,
i.e, Quality Manager (e3), Tester (e4), and Quality Technician (e5). The review board
analyzed two different alternatives (a1) and (a2), resolving to reduce costs (r1) by re-
moving the Quality Technician (e5) from the list of roles responsible for the Test
Case Design (e1). Afterwards, appropriate changes were performed to the process.

e1

This activity is
concerned
with the definition of
test cases for...

description

The Test Case Design
activity is concerned with the
definition of test cases for...

description

?id

?newValue

description

?oldValue

description

?id

?newValue

?attribute

?oldValue

?attribute

a) b)

c)

?id

?newValue

?attribute

?oldValue

?attribute

d)

Activity

type

these patterns match once for each changed property in each object. Finally, the pat-
tern in Fig. 5d) constitutes a specialization of its peer in Fig. 5c): it is restricted to all

Connecting the Rationale for Changes to the Evolution of a Process 16 7

Fig. 6. Connecting the rationale model to the comparison model

Using the pattern for identifying entity additions and deletions (see Fig. 4), we can de-
tect that entity e5 has been deleted. This can be counted as a change and labeled as c1.
We can then connect change c1 to the process entity e5 through the property affect-
sProcessEntity. Also, by using the pattern for identifying attribute value changes, we
can detect that the description has been modified. This change can be counted and la-
beled as c2. As in the previous case, we use the property affectsProcessEntity to con-
nect c2 to e1. Both changes were generated by a single decision, which in this case
corresponds to r1. We can then connect r1 to c1 and c2 through the generatesChange
property. The resolution r1 is also connected to the other elements of the rationale

e1 e2

e3e5

Test Case Design

This activity is concerned
with the definition of test
cases for...

Test Case

Quality Technician Quality Manager

Describes the actual
conditions in which a test
operation should...

Activity

Role

Product
produces

involvesRole

involvesRole

isResponsibleFor

name name

name name

type

typetype

type
description

description

e4

Tester

The Test Case Design activity is
concerned with the definition of test
cases for...

involvesRole

description

type

name

Resolution

r1

type

c1

generatesChange

affectsProcessEntity

description

c2

generatesChange

affectsProcessEntity

The review board agreed
on releasing the Quality
Technician from his
responsibility concerning
Test Case Design

Change
type

type

Issue
I1

Test Case Design is too
expensive for the
organization

a1

a2

Alternative

description

type

type

type

has

has

resolves

chooses

Rationale

16 A. Ocampo and M. Soto 8

model, namely alternatives and issues. This way we can go through comparison mod-
els identifying changes and connecting them to their corresponding rationale model.

5 Implementation and Validation

An implementation of the pattern-matching based change identification technique pre-
sented in the previous sections is available as part of the Evolyzer tool [29]. We have
tested our approach and tools by applying them to the various official releases of the
V-Modell XT [33], a large prescriptive process model intended originally for use in
German public institutions, but finding ever increasing acceptance from the German
private sector. As of this writing, the Evolyzer tool still lacks a graphical editor for
change patterns. However, patterns can be expressed as textual queries using a syntax
that basically follows that of the emerging SPARQL [25] query language for RDF.
Expressed as queries, patterns can be executed to find all their occurrences in a mod-
el. The V-Modell XT constitutes an excellent testbed for our approach and implemen-
tation. Converted to the normalized representation defined in Section 3.1, the latest
public version at the time of this writing (1.2) produces a graph with over 13,000
edges. This makes it a non-trivial case, where tool support is actually necessary to
perform an effective analysis of the differences between versions. Our first trial with
the V-Modell XT consisted of analyzing the evolution of the V-Modell XT itself,
where we compared 559 model versions that were produced in 20 months of actual
model development. First, we normalized each release by using a parser we imple-
mented in the interpreted, object-oriented Python programming language [17] which
is able to navigate through the XML-specific version of the V-Modell XT, identifying
the entities and properties, and moving this information to a process evolution reposi-
tory. The rationale model was obtained from processing the information stored in the
bug tracking system used for the continuous improvement of the V-Modell XT. This
system supports the change management process designed for the model. Users can
report problems and provide improvement suggestions in the form of change requests.
Such change requests are processed by the team responsible for the model. The result-
ing analysis and decisions are also documented in the tracking system. Once the ap-
proved changes are finished (using specialized model editing tools) a new version of
the V-Modell XT is stored in a configuration management system. In order to keep
track of the decisions implemented, the V-Modell XT team member provides a short
description of the change with a reference to the respective change request. We pro-
cessed the information contained in the bug tracking system as well as in the configu-
ration management system to create a rationale RDF model. With this rationale model
as a basis, we proceeded to calculate changes between versions, connect them to the
rationale model (as explained in the previous section), and store them in our process
evolution repository.

By using our patterns, we found 19104 changes between version 1 and version
559. 30% corresponded to entity additions, 27% to entity deletions, and 63% to at-
tribute modifications.

Fig. 7 shows the results of querying the rationale for process evolution repository
 using SPARQL queries via the Evolyzer tool. The query shows for each change the

Connecting the Rationale for Changes to the Evolution of a Process 169

Fig 7. Querying the Rationale for the V-Modell XT via the Evolyzer tool

6 Related Work

Several other research efforts are concerned in one way or another with comparing
model variants syntactically and providing an adequate representation for the result-
ing differences.

[1] and [16] deal with the comparison of UML models representing diverse aspects
of software systems. These works are oriented towards supporting software develop-
ment in the context of the Model Driven Architecture. Although their basic compari-
son algorithms are applicable to our work, they are not concerned with providing
analysis or visualization for specific users.

[20] presents an extensive survey of approaches for software merging, many of
which involve comparison of program versions. The surveyed works mainly concen-
trate on automatically merging program variants without introducing inconsistencies,
but not, as in our case, on identifying differences for user analysis.

[3] provides an ontology and a set of basic formal definitions related to the com-
parison of RDF graphs. [32] and [11] describe two systems currently under develop-
ment that allow for efficiently storing a potentially large number of versions of an
RDF model by using a compact representation of the raw changes between them.
These works concentrate on space-efficient storage and transmission of change sets,
but do not go into depth regarding how to use them to support higher-level tasks (like
process improvement).

An extensive base of theoretical work is available from generic graph comparison
research (see [13]), an area that is concerned with finding isomorphisms (or corre-
spondences that approach isomorphisms according to some metric) between arbitrary

1 A. Ocampo and M. Soto 70

.

cess entity that affected, the version where this occurred and the description of
 such a change.
 pro

graphs whose nodes and edges cannot be directly matched by name. This problem is
analogous in many ways to the problem that interests us, but applies to a separate
range of practical situations. In our case, we analyze the differences (and, of course,
the similarities) between graphs whose nodes can be reliably matched in a computa-
tionally inexpensive way.

Concerning rationale, Dutoit et al. [8] introduce the term software engineering ra-
tionale, claiming that this term is more useful for discussing rationale management in
software engineering. They emphasize that the software development life cycle con-
tains several activities where important decisions are taken, and where rationale plays
an important role. In software engineering, most approaches have contributed to the
rationale domain by providing new ideas and mechanisms to reduce the risk associat-
ed with rationale capture. Such approaches were conceived having in mind the goal of
providing short-term incentives for those stakeholders who create and use the ratio-
nale. For example, SCRAM [30], an approach for requirements elicitation, integrates
rationale into fictitious scenarios that are presented to users or customers so that they
understand the reason for them and provide extra information. It is expected that they
can see the use and benefit of rationale. Something similar happens in the inquiry cy-
cle [24], which is an iterative process whose goal is to allow stakeholders and devel-
opers to work together towards a comprehensive set of requirements.

Most of the approaches developed for software engineering rationale offer tool
support provided as either adaptations or extensions of specific requirements and de-
velopment tools, e.g., SEURAT [6], Sysiphus [9], DRIMER [23], or the Win-Win
Negotiation Tool [34], REMAP [26], and C-ReCS [12].

Little work has been done in other areas apart from design and requirements. One
of them is the process modeling area. Here, the need and value have been identified,
and a couple of research initiatives have been followed with the goal of generating ra-
tionale information from project-specific process models. One approach developed by
Dellen et al. [7] is Como-Kit. Como-Kit allows automatically deducing causal depen-
dencies from specified process models. Such dependencies could be used for assess-
ing process model changes. Additionally, Como-Kit provides a mechanism for adding
justifications to a change. The Como-Kit system consists of a modeling component
and a process engine. Como-Kit was later integrated with the MVP approach [5]. The
result of this integration effort was the Minimally Invasive Long-Term Organizational
Support platform (MILOS) [31]. Sauer presented a procedure for extracting informa-
tion from the MILOS project log and for justifying project development decisions
[27]. According to Sauer, rationale information could be semi-automatically generat-
ed. However, the approach does not capture information about alternatives that were
taken into account for a decision.

7 Conclusions and Outlook

Due to factors like model size and metamodel differences, the general problem of
identifying and characterizing changes in process models is not trivial. By expressing
models in a normalized representation, we are able to characterize interesting changes
using a graphical pattern matching language. Graphical patterns provide a well-de-

Connecting the Rationale for Changes to the Evolution of a Process 1 71

fined, unambiguous and, arguably, intuitive way to characterize common process
model changes, as our examples show.

Our implementation of pattern queries in the Evolyzer system demonstrates that
our pattern-based change identification technique can be used in practical situations
involving very large process models like the V-Modell XT. It is important to stress,
however, that the technique requires the process entities in compared models to have
stable identifiers that are used consistently across versions. This is normally the case
when comparing versions of the same model, but not when comparing models that
were created independently from each other.

Using RDF allowed us to connect two different data sets and create an even more
comprehensive one that makes it easier process engineers or stakeholders to analyze
and understand the evolution of a process. The information that we processed from
the V-Modell XT bug tracking system and stored in the process evolution repository
as a rationale model allowed us to answer questions that we would otherwise have to
guess, such as: Which process elements were affected by a change? Which issue had
the largest impact on a process? , Which type of issues demand the highest number of
changes? A remaining important research question deals with the visualization of the
large amount of information stored in a process evolution repository like the one of
the V-Modell XT. We are currently investigating mechanisms that facilitate visualiza-
tion, e.g., we are trying to identify a set of “most wanted queries” based on the special
interests of organizations interested in managing process evolution. Such queries can
be deduced from the goals of the organization and reduce the scope of the information
to be analyzed.

Acknowledgements. We would like to thank Sonnhild Namingha from Fraunhofer
IESE for proofreading this paper, and the members of the V-Modell XT team for pro-
viding us with the information needed to perform this work. This work was supported
in part by the German Federal Ministry of Education and Research (V-Bench Project,
No. 01| SE 11 A).

1 A. Ocampo and M. Soto 72

References

1. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003 - The Unified Modeling Language. Modeling Languages and
Applications. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

2. Armbrust, O., Ocampo, A., Soto, M.: Tracing Process Model Evolution: A Semi-Formal
Process Modeling Approach. In: Oldevik, Jon. (ed.) u.a.: ECMDA Traceability Workshop
(ECMDA-TW) 2005- Proceedings. Trondheim, pp. 57-66 (2005)

3. Berners-Lee, T., Connolly D.: Delta: An Ontology for the Distribution of Differences
Between RDF Graphs. MIT Computer Science and Artificial Intelligence Laboratory
(CSAIL) (last checked 2006-03-30) Online publication http://www.w3.org/DesignIssues/
Diff

4. Bohem, B., Egyed, A., Kwan, J., Port, D., Shah, A., Madachy, R.: Using the WinWin
Spiral Model: A Case Study. IEEE Computer 31(7), 33–44 (1998)

5. Bröckers, A., Lott, C.M., Rombach, H.D., Verlage, M.: MVP-L Language Report Version
2. Technical Report 265/95, Department of Computer Science, University of
Kaiserslautern, Germany (1995)

Connecting the Rationale for Changes to the Evolution of a Process 173

6. Burge, J., Brown, D.C.: An Integrated Approach for Software Design Checking Using
Rationale. In: Gero, J. (ed.) Design Computing and Cognition ’04, pp. 557–576. Kluwer
Academic Publishers, Netherlands (2004)

7. Dellen, B., Kohler, K., Maurer, F.: Integrating Software Process Models and Design
Rationales. In. Proceedings of 11th Knowledge-Based Software Engineering Conference
(KBSE ’96), Syracuse, NY, pp. 84-93 (1996)

8. Dutoit, A., McCall, R., Mistrík, I., Paech, B. (eds.): Rationale Management in Software
Engineering. Springer, Berlin (2006)

9. Dutoit, A., Paech, B.: Rationale-Based Use Case Specification. Requirements Engineering
Journal. 7(1), 3–19 (2002)

10. Heidrich, J., Münch, J., Riddle, W.E., Rombach, H.D.: People-oriented Capture, Display,
and Use of Process Information. In: Acuña, Silvia T (ed.) u.a.: New Trends in Software
Process Modeling. Singapore: World Scientific, Series on Software Engineering and
Knowledge Engineering, vol. 18, pp. 121–179 (2006)

11. Kiryakov, A., Ognyanov, D.: Tracking Changes in RDF(S) Repositories. In: Proceedings
of the Workshop on Knowledge Transformation for the Semantic Web, KTSW 2002.
Lyon, France (2002)

12. Klein, M.: An Exception Handling Approach to Enhancing Consistency, Completeness,
and Correctness in Collaborative Requirements Capture. Concurrent Engineering Research
and Applications 5(1), 37–46 (1997)

13. Kobler, J., Schöning, U., Toran, J.: The Graph Isomorphism Problem: Its Structural
Complexity. Birkhäuser (1993)

14. Kunz, W., Rittel, H.: Issues as Elements of Information Systems. Working Paper No. 131,
Institut für Grundlagen der Plannung, Universität Stuttgart, Germany (1970)

15. Lee, J.: A Qualitative Decision Management System. In: Winston, P.H., Shellard, S. (eds.)
Artificial Intelligence at MIT: Expanding Frontiers, vol. 1, pp. 104–133. MIT Press,
Cambridge, MA (1990)

16. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation
Testing and Version Control in Model Driven Software Development. In: OOPSLA
Workshop on Best Practices for Model-Driven Software Development, Vancouver (2004)

17. Lutz, M.: Programming Python, 2nd edn. O’Reilly & Associates, Sebastopol, California
(2001)

18. MacLean, A., Young, R.M., Belloti, V., Moran, T.: Questions, Options, and Criteria:
Elements of Design Space Analysis. Human-Computer Interaction 6, 201–250 (1991)

19. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation (2004) (last checked
2006-03-22) available from http://www.w3.org/TR/rdf-primer/

20. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering 28(5) (2002)

21. Ocampo, A., Münch, J.: Process Evolution Supported by Rationale: An Empirical
Investigation of Process Changes. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.)
Software Process Change. LNCS, vol. 3966, pp. 334–334. Springer, Heidelberg (2006)

22. Ocampo, A., Münch, J.: The REMIS Approach for Rationale-driven Process Model
Evolution. Submitted to ICSP 2007 (submitted, 2007)

23. Pena-Mora, F., Vadhavkar, S.: Augmenting Design Patterns with Design Rationale.
Artificial Intelligence for Engineering Desgin, Analysis, and Manufacturing 11, 93–108
(1996)

24. Potts, C., Bruns, G.: Recording the Reasons for Design Decisions. In: Proceedings of the
10th International Conference on Software Engineering (ICSE’10). Los Alamitos, CA, pp.
418–427 (1988)

25. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C
Working Draft (2006) (last checked 2006-10-22) available from http://www.w3.org/
TR/rdf-sparql-query/

1 A. Ocampo and M. Soto 74

26. Ramesh, B., Dhar, V.: Supporting Systems Development by Capturing Deliberations
During Requirements Engineering. IEEE Transactions on Software Engineering 18(6),
498–510 (1992)

27. Sauer, T.: Project History and Decision Dependencies. Diploma Thesis. University of
Kaiserslautern (2002)

29. Soto, M., Münch, J.: The DeltaProcess Approach for Analyzing Process Differences and
Evolution. Internal report No. 164.06/E, Fraunhofer Institute for Experimental Software
Engineering (IESE) Kaiserslautern, Germany (2006)

30. Sutcliffe, A., Ryan, M.: Experience with SCRAM, a Scenario Requirements Analysis
Method. In: Proceedings of the 3rd International Conference on Requirements
Engineering, 1988, Colorado Springs, CO, pp. 164–173 (1998)

31. Verlage, M., Dellen, B., Maurer, F., Münch, J.: A Synthesis of Two Process Support
Approaches. In: Proceed-ings of the 8th International Conference on Software Engineering
and Knowledge Engineering (SEKE’96), June 10-12, 1996, Lake Tahoe, Nevada, USA,
pp. 59–68 (1996)

32. Völkel, M., Enguix, C.F., Ryszard-Kruk, S., Zhdanova, A.V., Stevens, R., Sure, Y.: Sem-
Version - Versioning RDF and Ontologies. Technical Report, University of Karlsruhe
(2005)

33. V-Modell XT (last checked 2006-03-31) Available from http://www.v-modell.iabg.de/
34. WinWin. The Win Win Spiral Model. Center for Software Engineering University of

Southern California http://sunset.usc.edu/research/WINWIN/winwinspiral.html

28. Soto, M., Münch, J.: Process Model Difference Analysis for Supporting Process Evolution.
In: Richardson, I., Runeson, P., Messnarz, R. (eds.) LNCS,

vol. 4257,

 Springer, Heidelberg (2006)
EuroSPI 2006.

	Connecting the Rationale for Changes to the Ev olution of a Process
	Introduction
	Process Rationale
	Pattern-Matching-Based Change Identification
	A Normalized Representation for Process Models and Their Comparisons
	Example 1: Additions and Deletions
	Example 2: Changes in Attribute Values

	Connecting Rationale to Process Changes
	Implementation and Validation
	Related Work
	Conclusions and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

