

Lecture Notes in Computer Science 4589
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jürgen Münch Pekka Abrahamsson (Eds.)

Product-Focused
Software Process
Improvement

8th International Conference, PROFES 2007
Riga, Latvia, July 2-4, 2007
Proceedings

13

Volume Editors

Jürgen Münch
Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
E-mail: juergen.muench@iese.fraunhofer.de

Pekka Abrahamsson
VTT Electronics
Kaitovayla 1, 90570 Oulu, Finland
E-mail: pekka.abrahamsson@vtt.fi

Library of Congress Control Number: 2007929634

CR Subject Classification (1998): D.2, K.6, K.4.2, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-73459-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73459-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12086863 06/3180 5 4 3 2 1 0

Preface

The Eight International Conference on Product-Focused Software Process Improve-
ment (PROFES 2007) brought together researchers and industrial practitioners to
report new research results and exchange experiences and findings in the area of
process and product improvement. The focus of the conference is on understanding,
learning, evaluating, and improving the relationships between process improvement
activities (such as the deployment of innovative defect detection processes) and their
effects in products (such as improved product reliability and safety). Consequently,
major topics of the conference include the evaluation of existing software process
improvement (SPI) approaches in different contexts, the presentation of new or modi-
fied SPI approaches, and the relation between SPI and new development techniques
or emerging application domains.

This year’s conference theme focused on global software development. More and
more products are being developed in distributed, global development environments
with many customer–supplier relations in the value chain. Outsourcing, off-shoring,
near-shoring, and even in-sourcing aggravate this trend further. Supporting such dis-
tributed development requires well-understood and accurately implemented develop-
ment process interfaces, process synchronization, and an efficient process evolution
mechanisms. Overcoming cultural barriers and implementing efficient communica-
tion channels are some of the key challenges. It is clear that process improvement
approaches also need to consider these new development contexts.

A second key focus of PROFES 2007 was on agile software development. Market
dynamics require organizations to adapt to changes of the development environment
and to enforce innovations better and faster. This often results in process changes that
impose risk challenges for SPI approaches. Advanced SPI is required to support the
assessment of the impact of process changes such as the introduction of agile meth-
ods. Due to the fact that software development processes are human-based and de-
pend heavily on the development context, process changes and their resulting effects
should be considered carefully. We consider the development context to include at
least the domain-specific characteristics, the workforce capabilities, and the level of
work distribution.

The technical program was selected by a committee of leading experts in software
process modeling and SPI research. This year, 56 papers from 21 nations were sub-
mitted, with each paper receiving at least three reviews. The Program Committee met
in Riga for one full day in February 2007. The Program Committee finally selected 30
technical full papers. The topics indicate that SPI remains a vibrant research discipline
of high interest for industry. Emerging technologies and application domains, a para-
digm shift to global software and system engineering in many domains, and the need
for better decision support for SPI are reflected in these papers. The technical pro-
gram consisted of the tracks global software development, software process im-
provement, software process modeling and evolution, industrial experiences, agile
software development, software measurement, simulation and decision support, and
processes and methods. We were proud to have four distinguished keynote speakers,

VI Preface

Carol Dekkers, Dieter Rombach, Jari Still, Guntis Urtāns, as well as interesting tutori-
als and a collocated workshop.

We are thankful for the opportunity to serve as Program Co-chairs for this confer-
ence. The Program Committee members and reviewers provided excellent support in
reviewing the papers. We are also grateful to the authors, presenters, and session
chairs for their time and effort that made PROFES 2007 a success. The General Chair,
Pasi Kuvaja, and the Steering Committee provided excellent guidance. We wish to
thank the University of Latvia, the Fraunhofer Institute for Experimental Software
Engineering (IESE), VTT, the University of Oulu and all the other sponsors and sup-
porters for their contributions and making the event possible. We would especially
like to thank the Organizing Chairs Darja Ŝmite and Juris Borzovs and the Local
Organizing Committee for their highly engaged organization of the conference in
Riga. Last but not least, many thanks to Timo Klein at Fraunhofer IESE for copyedit-
ing this volume.

April 2007 Jürgen Münch
 Pekka Abrahamsson

Conference Organization

General Chair

Pasi Kuvaja, University of Oulu (Finland)

Program Co-chairs

Jürgen Münch, Fraunhofer IESE (Germany)
Pekka Abrahamsson, VTT Technical Research Centre (Finland)

Organizing Co-chairs

Juris Borzovs, University of Latvia (Latvia)
Darja Šmite, University of Latvia (Latvia)

Local Organizing Committee

Dainis Dosbergs, PR-Latvia (Latvia)
Krišs Rauhvargers, University of Latvia (Latvia)

Program Committee

Pekka Abrahamsson, VTT Electronics, Finland
Bente Anta, Simula Research Laboratory, Norway
Andreas Birk, Software Process Management, Germany
Mark van den Brand, HvA & CWI, The Netherlands
Gerardo Canfora, University of Sannio at Benevento, Italy
Reidar Conradi, NTNU, Norway
Torgeir Dingsøyr, Sintef, Norway
Tore Dybå, SINTEF, Norway
Jens Heidrich, Fraunhofer IESE, Germany
Martin Höst, Lund University, Sweden
Frank Houdek, DaimlerChrysler, Germany
Tua Huomo, VTT Electronics, Finland
Hajimu Iida, Nara Institute of Science and Technology, Japan
Katsuro Inoue, Osaka University, Japan
Yasushi Ishigai, IPA and Mitsubishi Research Institute, Japan
Janne Järvinen, Solid Information Technology, Finland
Erik Johansson, Q-Labs, Sweden
Philip Johnson, University of Hawaii, USA

VIII Organization

Natalia Juristo, Universidad Politecnica de Madrid, Spain
Tuomo Kähkönen, Nokia, Finland
Haruhiko Kaiya, Shinshu University, Japan
Kari Känsälä, Nokia Research Center, Finland
Masafumi Katahira, JAXA, Japan
Pasi Kuvaja, University of Oulu, Finland
Makoto Matsushita, Osaka University, Japan
Kenichi Matsumoto, NAIST, Japan
Maurizio Morisio, University of Turin, Italy
Mark Müller, Bosch, Germany
Jürgen Münch, Fraunhofer IESE, Germany
Paolo Nesi, University of Florence, Italy
Risto Nevalainen, STTF, Finland
Mahmood Niazi, Keele University, UK
Hideto Ogasawara, Toshiba, Japan
Dietmar Pfahl, University of Calgary, Canada
Teade Punter, LAQUSO, The Netherlands
Karl Reed, La Tobe University, Australia
Günther Ruhe, University of Calgary, Canada
Ioana Rus, Honeywell Aerospace, USA
Outi Salo, VTT Electronics, Finland
Kurt Schneider, University of Hannover, Germany
Carolyn Seaman, UMBC, Baltimore, USA
Michael Stupperich, DaimlerChrysler, Germany
Markku Tukiainen, University of Joensuu, Finland
Rini van Solingen, LogicaCMG, The Netherlands
Matias Vierimaa, VTT Electronics, Finland
Hironori Washizaki, National Institute of Informatics, Japan
Claes Wohlin, Blekinge Institute of Technology, Sweden
Bernard Wong, University of Technology Sydney, Australia

External Reviewers

Nicola Boffoli, Software Engineering Research Laboratory, Italy
Kyohei Fushida, Software Design Laboratory, Japan
Ahmed Al-Emran, University of Calgary, Canada
Maria Alaranta, Turku School of Economics, Finland
Martin Solari, ORT University, Uruguay

Table of Contents

Keynote Addresses

Software Development and Globalization (Abstract) 1
H. Dieter Rombach

Software Development Globalization from the Baltic Perspective
(Abstract) . 2

Guntis Urtāns

Experiences in Applying Agile Software Development in F-Secure
(Abstract) . 3

Jari Still

People Side of IT Globalization (Abstract) . 4
Carol Dekkers

Global Software Development

An Industrial Survey of Software Outsourcing in China 5
Jianqiang Ma, Jingyue Li, Weibing Chen, Reidar Conradi,
Junzhong Ji, and Chunnian Liu

Understanding Lacking Trust in Global Software Teams: A Multi-Case
Study . 20

Nils Brede Moe and Darja Šmite

Utilization of a Set of Software Engineering Roles for a Multinational
Organization . 35

Claude Y. Laporte, Mikel Doucet, Pierre Bourque, and
Youssef Belkébir

Software Process Improvement

Software Verification Process Improvement Proposal Using Six Sigma . . . 51
Tihana Galinac and Željka Car

Software Development Improvement with SFIM . 65
René Krikhaar and Martin Mermans

SPI-KM - Lessons Learned from Applying a Software Process
Improvement Strategy Supported by Knowledge Management 81

Gleison Santos, Mariano Montoni, Sávio Figueiredo, and
Ana Regina Rocha

X Table of Contents

Organisational Readiness and Software Process Improvement 96
Mahmood Niazi, David Wilson, and Didar Zowghi

Software Process Improvement Through Teamwork Management 108
Esperança Amengual and Antònia Mas

De-motivators of Software Process Improvement: An Analysis of
Vietnamese Practitioners’ Views . 118

Mahmood Niazi and Muhammad Ali Babar

Software Process Modeling and Evolution

Defining Software Processes Through Process Workshops: A Multicase
Study . 132

Finn Olav Bjørnson, Tor St̊alhane, Nils Brede Moe, and
Torgeir Dingsøyr

Improving an Industrial Reference Process by Information Flow
Analysis: A Case Study . 147

Kai Stapel, Kurt Schneider, Daniel Lübke, and Thomas Flohr

Connecting the Rationale for Changes to the Evolution of a Process 160
Alexis Ocampo and Martin Soto

Industrial Experiences

Use of Non-IT Testers in Software Development . 175
Vineta Arnicane

Requirements Management Practices as Patterns for Distributed
Product Management . 188

Antti Välimäki and Jukka Kääriäinen

SPI Consulting in a Level 1 Company: An Experience Report 201
Tomas Schweigert and Michael Philipp

Agile Software Development

On the Effects of Pair Programming on Thoroughness and Fault-Finding
Effectiveness of Unit Tests . 207

Lech Madeyski

An Agile Toolkit to Support Agent-Oriented and Service-Oriented
Computing Mechanisms . 222

Asif Qumer and Brian Henderson-Sellers

Achieving Success in Supply Chain Management Software by Agility . . . 237
Deepti Mishra and Alok Mishra

Table of Contents XI

Software Measurement

Software Measurement Programs in SMEs – Defining Software
Indicators: A Methodological Framework . 247

Maŕıa Dı́az-Ley, Félix Garćıa, and Mario Piattini

Smart Technologies in Software Life Cycle . 262
Zane Bičevska and Jānis Bičevskis

Convertibility Between IFPUG and COSMIC Functional Size
Measurements . 273

Juan Jose Cuadrado-Gallego, Daniel Rodŕıguez,
Fernando Machado, and Alain Abran

A Framework for Measuring and Evaluating Program Source Code
Quality . 284

Hironori Washizaki, Rieko Namiki, Tomoyuki Fukuoka,
Yoko Harada, and Hiroyuki Watanabe

Software Fault Prediction with Object-Oriented Metrics Based
Artificial Immune Recognition System . 300

Cagatay Catal and Banu Diri

Simulation and Decision Support

Operational Planning, Re-planning and Risk Analysis for Software
Releases . 315

Ahmed Al-Emran and Dietmar Pfahl

Project Cost Overrun Simulation in Software Product Line
Development . 330

Makoto Nonaka, Liming Zhu, Muhammad Ali Babar, and
Mark Staples

E-Service Architecture Selection Based on Multi-criteria
Optimization . 345

Edzus Zeiris and Maris Ziema

Processes and Methods

A Component-Based Process for Developing Automotive ECU
Software . 358

Jin Sun Her, Si Won Choi, Du Wan Cheun, Jeong Seop Bae, and
Soo Dong Kim

A Systematic Approach to Service-Oriented Analysis and Design 374
Soo Ho Chang and Soo Dong Kim

XII Table of Contents

Improving the Problem Management Process from Knowledge
Management Perspective . 389

Marko Jäntti, Aki Miettinen, Niko Pylkkänen, and
Tommi Kainulainen

Workshop

Experience on Applying Quantitative and Qualitative Empiricism to
Software Engineering (Workshop Description) . 402

Marcus Ciolkowski and Andreas Jedlitschka

Tutorials

Using Metrics to Improve Software Testing (Tutorial Description) 405
Alfred Sorkowitz

Increase ICT Project Success with Concrete Scope Management
(Tutorial Description) . 407

Carol Dekkers and Pekka Forselius

Agile Software Development: Theoretical and Practical Outlook
(Tutorial Description) . 410

Pekka Abrahamsson and Jari Still

Author Index . 413

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, p. 1. 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Development and Globalization

H. Dieter Rombach

Chairman, ICT Group, Fraunhofer Gesellschaft e.V.,
Executive Director, Fraunhofer IESE, Kaiserslautern,

Software Engineering Chair, CS Dept., University of Kaiserslautern

Developing software across borders has become an emerging area of software
engineering. It is one of the important competitive advantages in today’s industry.
However, the increased globalization of software development creates many
challenges brought by distribution of software life cycle activities among teams
separated by various boundaries, such as contextual, organizational, cultural,
temporal, geographical, and political.

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, p. 2. 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Development Globalization from the Baltic
Perspective

Guntis Urtāns

President of SWH Technology

Future predictions say that together with its neighbors Estonia and Lithuania, Latvia
will be a major outsourcing center for Northern / continental Europe. The Baltic
region is known for its well-educated and multinational workforce, one of the most
efficient tax systems in Europe, a liberal economy, great affinity with Nordics, and
identical legislation. So, where have we been 15 years ago and where are we now?

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, p. 3. 2007.
© Springer-Verlag Berlin Heidelberg 2007

Experiences in Applying Agile Software Development
in F-Secure

Jari Still

F-Secure Oy's Oulu Office site manager

To develop security software is clearly one of the most challenging software
development areas. The challenges are both technical and business based. From the
business point of view, the security market is mature and highly competitive, although
market needs can change even daily and there is no room for mistakes. Technically,
the challenge is the ability to find and catch the threats as soon as they arise.

F-Secure has been one of the leading companies in applying agile software
development methods, even though F-Secure works with most challenging
requirements like security critiality, short time-to-market, frequently changing
requirements, and high quality. At the moment, F-Secure has a software product life
cycle process, which is built on agile methods. The difference to the earlier process,
which was based on "mature" models, is significant. This keynote speech will address
those differences and describe the experiences F-Secure has made with agile methods.

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, p. 4. 2007.
© Springer-Verlag Berlin Heidelberg 2007

People Side of IT Globalization

Carol Dekkers

PMP, CMC, P.Eng.
President, Quality Plus Technologies, Inc.

IT today consists of myriad combinations of outsourcing, insourcing, offshoring,
global development teams, and project teams scattered across multiple time zones.
Technology abounds, integration and on-time delivery become mission critical, and
process improvement demands increase. But... what's the impact of all this
advancement on the people involved? As the technical demands for faster, better, and
cheaper software increase, so, too, do the needs for effective communication and
cultural intelligence. This presentation examines the people side of IT globalization
and provides insights and recommendations for succeeding with project teams in a
truly global world.

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 5–19, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Industrial Survey of Software Outsourcing in China

Jianqiang Ma1, Jingyue Li2, Weibing Chen1, Reidar Conradi2, Junzhong Ji1,
and Chunnian Liu1

1 Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology,
College of Computer Science and Technology,

Beijing University of Technology, Beijing 100022, China
{jianqiang.ma,weibingchen}@gmail.com

2 Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU)

NO-7491 Trondheim, Norway
{jingyue,conradi}@idi.ntnu.no

Abstract. Most studies of software outsourcing focus on how to manage the
outsourcing from the perspective of the outsourcer, i.e., a company issuing a
subcontract. There are few studies of outsourcing presented from the viewpoint
of the supplier, i.e., a company receiving a subcontract. Since more and more
Chinese software companies are getting software outsourcing subcontracts from
all over the world, it is important to investigate how software outsourcing
projects are actually performed in China, and to identify possible
enhancements. Our study has collected data by a questionnaire-based survey
from 53 finished projects in 41 Chinese software suppliers. The results show
that: 1) Differences in natural languages may not be the barrier of Chinese
software suppliers. 2) Email is most used to discuss development related issues,
while face-to-face meetings are mainly used to discuss management and
requirements issues. 3) The main reasons for overtime work at the Chinese
suppliers are design or requirements changes initiated by the outsourcers and
the suppliers’ initial underestimation of the effort.

Keywords: Software Outsourcing, Empirical Study.

1 Introduction

Software outsourcing is gaining more and more attentions. It can help software
companies to save costs and to focus on their core businesses [1, 5]. Along with the
China’s policy of opening to the outside world, China is becoming one of the biggest
software supplying countries, together with India, Ireland, Russia, and so on.
Although the volume of Chinese software exports in 2005 is $3590 million, which has
grown from $720 million in 2001, it is still only 1/6 of India’s and is 0.5% of the total
volume of Chinese exports [2, 15].

Comparing to in-house software development, there are several factors that may
impact the effectiveness of software outsourcing, such as infrequent and ineffective

6 J. Ma et al.

communications between decentralized teams [6], time zone differences [4], and
cultural differences [7, 8, 13]. Many studies have been performed on these issues, but
mainly from the outsourcers’ perspective. Since China is emerging as a major player
in software outsourcing, it is important to study and make guidelines on such issues,
in order to help Chinese software suppliers to improve their businesses.

Our questionnaire-based survey has investigated seven software engineering issues
in Chinese software suppliers. Due to page limitation, we present only three of them
in this paper, namely differences in natural languages, effective communication, and
overtime work. We have used membership lists from a national Chinese Software
Organization (called CSO1 in this paper) to achieve a representative subset of
software companies. We have gathered information from 53 finished projects in 41
Chinese suppliers. The results show that differences in natural languages may not be
the critical factor to affect the success of Chinese software suppliers. Email is the
most common mean of communication in development related issues between the
outsourcers and suppliers, while face-to-face meetings are mainly used to discuss
management and requirements issues. Design or requirements changes initiated by the
outsourcers and the suppliers’ initial underestimation of the effort are the main
reasons for suppliers’ overtime work.

The remainder of this paper is structured as follows: Section 2 presents the related
work and research questions. Section 3 describes the research design. Section 4
presents results and discussions. Section 5 contains a general discussion. Conclusion
and ideas for future work are presented in Section 6.

2 Related Work and Research Questions

There are two main participators in software outsourcing: the outsourcer and the
supplier. Software outsourcers are the organizations that give software development
subcontracts to other organizations, called the suppliers. Most previous studies
focus on managing the software outsourcing from the outsourcers’ point of view,
such as how to manage the cultural differences [7, 8, 13], how to evaluate and select
capable suppliers [10], and how to manage contractual related issues [3]. However,
only few studies [11, 12] focus on facilitating the efficiency of software outsourcing
from the suppliers’ perspective, such as how to communicate and cooperate with
outsourcers.

Since China has one of the largest software supplier industries in the world, it is
opportune to investigate how Chinese software suppliers can improve their practices
to communicate and cooperate with software outsourcers all over the world. The
possible lack of English skill can pose constraints for Chinese software suppliers in
communicating with outsourcers from Western countries [7]. As it is much harder to
follow the plans in projects across organizational and geographic boundaries than
projects within the same place and organization [16], the geographical differences
between China and Western countries may also introduce additional project
overruns [11, 14].

1 The name of this organization was omitted for confidential reasons.

 An Industrial Survey of Software Outsourcing in China 7

2.1 Differences in Natural Languages

In software outsourcing projects, the natural language being used in the documents is
an important factor, because language differences may cause misunderstandings. For
instance, word “more than” in Japanese means equal and more (>=), but in Chinese it
means more (>). The misunderstandings in requirements specifications or other
development documents may cause project overruns.

A previous study [4] proposed that “the language factor is one of the reasons for
the success of software outsourcing in countries with strong English language
capabilities, such as Philippines and Singapore”. The study [9] concluded that the
major Chinese market for software outsourcing is Japan, because of a similar culture.
On the other hand, India’s major market is in US and UK because of a shared English
language. So, the biggest barrier to Chinese software suppliers towards Western
companies seems to be the English language. However, Japan and China also speak
different natural languages, but the outsourcing projects between them seem to work
well. So our first research question is:

RQ1: Are differences in natural languages the barrier to Chinese software
suppliers?

2.2 Effective Communication

Compared with in-house software development, the communication shared in
software outsourcing is affected by distribution of both space and time. The study [4]
concluded that synchronous communication, such as telephone meetings or video
conferences, can resolve misunderstandings and small problems before they become
bigger problems. On the other hand, asynchronous communication like email often
delays or complicates problem resolution. However, the results of another study [11]
show that email is used much more than synchronous channels in a Latvian
subcontractor company. To improve suppliers’ current practices, it is important to
know which communication channel is mostly used between foreign outsourcers and
Chinese suppliers. So our second research question is:

RQ2: What is the most common mean of communication between foreign
outsourcers and Chinese suppliers?

2.3 Overtime Work

According to a survey [18], around 60% to 80% software development encountered
effort and/or schedule overruns. The average overrun is about 30% to 40%. Schedule
and budget risks are the highlighted risk factors in software outsourcing [12].
Comparing with in-house development, more issues, such as time zone differences
and organizational differences, may also cause project overruns [11]. To keep the
project schedule, overtime work is often used as a remedy. Most Chinese software
suppliers get contracts from Japan, which has only one hour time difference with
China. It seems that time zone difference is not the major reason of overtime work of

8 J. Ma et al.

Chinese suppliers. We wonder there are other reasons that cause the project overrun.
So, our third research question is:

RQ3: What are the main reasons for overtime work at Chinese software
suppliers?

3 Research Design

To answer the research questions, we have used a questionnaire-based survey to
collect data. First, a preliminary questionnaire with both open-ended and close-ended
questions was designed by reading literatures. Second, a pre-study was performed to
verify the quality of questions in the preliminary questionnaire, and to get answers on
the open-ended questions. Based on the results of the pre-study, most open-ended
questions in the preliminary questionnaire were redesigned into close-ended
questions. In addition, the problematic questions in the preliminary questionnaire
were revised. Then, the revised questionnaire was used to collect data in a main study.

3.1 The Preliminary Questionnaire

The preliminary questionnaire was designed to study seven issues of software
outsourcing from the suppliers’ perspective and had 10 sections. Sections 1 and 10
contain questions to collect background information of projects, companies and
respondents. Questions in sections 2, 5 and 7 are related to the research questions in
this paper. The remaining sections investigate four issues, which are related to
technology management (e.g., how is source code integrated and updated) and
business relationship management (e.g., how did the outsourcer and supplier get to
know each other), are not reported in this paper.

3.2 The Pre-study to Verify and Refine the Preliminary Questionnaire

The pre-study included two steps, where individual interviews were followed by a
workshop.

Step 1 – Individual interviews. We interviewed 5 project managers from 5 different
software suppliers. All the interviewees had solid experiences in software
outsourcing. Each interview was conducted by two authors of this paper. One was
responsible for conducting the interview and the other recorded answers and asked for
clarification if needed. The interviews were also taped for later use.

Step 2 – A workshop discussion. After the individual interviews, we revised most
open-ended questions in the preliminary questionnaire into close-ended questions and
made a second version of the preliminary questionnaire. We then organized a group
discussion (a workshop) with more than 30 industrial experts to verify and comment
the second version of the questionnaire. Based on inputs from the workshop, we
revised the questionnaire into a final version. The final questionnaire includes 66
questions and takes about forty minutes to be filled in.

 An Industrial Survey of Software Outsourcing in China 9

3.3 The Main Study to Collect Data

In the main study, the data was collected by cooperating with the CSO. As mentioned,
we got 53 questionnaires from 41 companies. The sample selection and data
collection process were as follows:

1. Establish the target population. We randomly selected 2,000 companies from a
database of the CSO, which included about 6,000 Chinese software companies.

2. Send invitation letters by email to obtain possible participants. We sent
invitation letters by email to the 2,000 selected companies. The invitation letter
introduces the survey and specifies that the survey participant will be rewarded
with either the final report of this survey or an annual membership of the CSO
worth 500 Chinese Yuan. We got responses from 300 software outsourcing
companies. These companies were later used as the original contact list.

3. Send questionnaires by email to possible participants. The unit of our study is
defined as a finished software outsourcing project. We sent questionnaires (as
word files) by email to the 300 companies and asked them to select one or more
projects to answer the questionnaire. Since we cannot get the complete list of
relevant projects in each company, the projects selection within the companies
were decided by the respondents themselves, i.e., convenience sample.

4. Collect filled-in questionnaires with follow up. From the 300 companies, we
first got 40 questionnaires back. To ensure the quality of the data, we excluded 10
questionnaires answered by respondents with less than three years working
experiences. For the remaining 30 questionnaires, we contacted the respondents
again by telephone to clarify possible misunderstandings and to fill-in the missing
data. At the same time, we contacted the rest of 260 companies through telephone
to persuade them to fill in the questionnaire. By doing this, we got 23 more
questionnaires back.

4 Results and Discussions of Research Questions

In this section, we first present an overview of the collected questionnaires. After that,
we show the results of each research questions followed by detailed discussions.

4.1 Overview of Collected Questionnaires

Participating companies. According to the number of employees, the participating
companies include 7 small, 22 medium, 8 large, and 4 super large software
companies, as shown in Fig. 1. Comparing with the profile of the number of
employees in Chinese software industry [2], it shows that most of the participating
companies in our survey are medium and large companies.

Human respondents. Most respondents are IT managers, project managers, or
software architects. More than 70% of the respondents have at least 5 years
experiences of software development. All of them have at least a Bachelor’s degree in
computer science or telecommunication.

10 J. Ma et al.

The distribution of Chinese software companies and
investigated companies

67%

26%

6.5%
0.5%

17%

53%

20%

10%

0%
10%

20%
30%
40%
50%
60%

70%
80%

Small(<=50) Medium(51-300) Large(301-1000) Super
large(>1000)

software companies in China outsourcing companies we investigate

Fig. 1. The distribution of companies

Participating projects. All of the 53 projects are finished software outsourcing
projects. The mean duration of these projects (before the first delivery) is 161 days,
and mean project effort is 1758 person-days. There are 21 projects outsourced from
the US or European companies. One of these 21 projects used French in the
document, and the other ones used English. There are 32 projects outsourced from
Japanese companies. One of the 32 projects used Chinese in the documents, 8 of them
used both English and Japanese, and the other 23 projects used Japanese.

4.2 Results and Discussions

4.2.1 Investigating RQ1: Are Differences in Natural Languages the Barrier to
Chinese Software Suppliers?

Results on RQ1. For this research question, we investigate how well the suppliers’
employees understand the non-native natural languages used in the documents (e.g.,
business agreements, requirements specifications, and design specifications) provided
by the outsourcers. The scales used to measure people’s language skills are: master
(near native), fluent, competent (can speak, read, and write, but not fluently),
read&write only, unfamiliar, and do not know. The results of RQ1 are presented in
Fig. 2 and Fig. 3.

− Fig. 2(a) shows that respondents working on projects outsourced from American
and European companies (with only English in documents) have good
knowledge of English. However, their Japanese language skills are poor.

− Fig. 2(b) shows that respondents working on projects outsourced from Japanese
companies with only Japanese in the documents are good at Japanese. Some of
them have solid knowledge about English, while the others have poor English
skills.

− Fig. 2(c) shows that respondents working on projects outsourced from Japanese
companies with both English and Japanese in documents have much better skills
in English than in Japanese.

− Fig. 3 shows that employees of the suppliers on average have better language
skills in English than in Japanese.

 An Industrial Survey of Software Outsourcing in China 11

20 projects outsourced from Western companies using
English in the documents

7

12

1 0 0 00 0 1 1 1

17

0

5

10

15

20

Master Fluent Competent Read &
Write

Unfamiliar Do not know
& No choice

English Skill Japanese Skill

(a)

23 projects outsourced from Japanese companies using
Japanese in the documents

0

10

2 2
0

9

3

8
9

3

0 0
0
2
4
6
8

10
12

Master Fluent Competent Read &
Write

Unfamiliar Do not know
& No choice

English Skill Japanese Skill

(b)

8 projects outsourced from Japanese companies using both
English and Japanese in the documents

1

4

2

1

0 00

2

0

3

2

1

0

1

2

3

4

5

Master Fluent Competent Read &
Write

Unfamiliar Do not know
& No choice

English Skill Japanese Skill

(c)

Fig. 2. The respondents’ knowledge of the different natural languages used in documents

12 J. Ma et al.

41 companies' average knowledge of the natural languages

6

21

6
3

0

5
3

8 7 8

3

12

0

5

10

15

20

25

Master Fluent Competent Read &
Write

Unfamiliar Do not know
& No choice

English Skill Japanese Skill

Fig. 3. The 41 companies’ average knowledge of the natural languages

Discussion on RQ1. Kshetri [9] concluded that “The US and the UK are India’s
major markets, thanks to its English competence. On the other hand, China’s cultural
similarity to Japan and South Korea has facilitated its software export.” However,
our results in Fig. 2(c) and 3 show that the employees of Chinese software suppliers
on average have better knowledge in English than in Japanese. Moreover, results of
Fig. 2(b) show that some respondents working with documents written in Japanese
also have good English language skills. The possible reason is that most employees in
the investigated Chinese software suppliers have a Bachelor’s or higher degree. In
order to get such degrees, they must pass an English certification called CET-4

Outsourcer Steering Group Developers

The steering group members get the documents from the outsourcer and try
to figure out confusions or possible mistakes with the outsourcer.
The developers get documents from the outsourcer via steering group
members
If the developers get confused with the documents from the outsourcer,
they will discuss with the steering group members first.
In case developers’ language confusions cannot be clarified by the steering
group members, the steering group members will clarify the matters with
the outsourcer on behalf of the developers.

Send documents
D

Send documents

Discuss confusionsDiscuss confusions

Supplier

Fig. 4. The steering group process

 An Industrial Survey of Software Outsourcing in China 13

(College English Test band 4) or CET-6 to qualify their competence of English. Since
Chinese software suppliers have successfully developed large software systems for
Japanese outsourcers, their equivalent or better English skills indicate a big potential
to develop software for outsourcers from English speaking countries. In addition, our
talks with interviewees in the pre-study reveal that some companies are using a
steering group with languages competent people as a buffer between developers and
outsourcers (as shown in Fig. 4). In this case, the Chinese software suppliers managed
to resolve the confusions caused by the possible poor language skills of the
developers.

Thus, our conclusion on RQ1 is: Differences in natural languages may not be the
barrier for Chinese software suppliers to develop software for English speaking
outsourcers. Having a steering group with good English language skills may help to
reduce the language impact.

4.2.2 Investigating RQ2: What is the Most Common Mean of Communication
Between Foreign Outsourcers and Chinese Suppliers?

Results on RQ2. To study this research question, we listed several possible channels
of communication, such as email, video conferences, and face-to-face meetings,
which could be used to discuss issues between outsourcers and suppliers. For each
communication type, we asked whether it has been mainly used to specify, clarify, or
negotiate issues, such as requirements, business, and schedule. If the communication
type has been used for more than one issue, the respondents can mark several
alternatives.

We calculated the number of projects using a certain communication type to a
specific issue vs. the total number of projects (i.e., 53). For example, 28 projects
mainly used email to discuss requirements related issues. Thus, the result is 28/53 or
53%. The summary of all results stand in Table 1. Since the maximum number value
in Table 1 is 60%, we divided them into four categories to simplify the presentation.
We excluded numbers less than 30%. Numbers more than 30% and 40% are replaced
with one plus. Numbers between 40% and 50% are replaced with two plusses.
Numbers more than 50% are replaced with three plusses.

The data in Table 1 show that email correspondence was used on almost all issues,
such as discussing requirements, harmonizing the schedule, handling changes,
development, and testing. The popularly used synchronous communication types are
telephone meetings and face-to-face meetings, where the face-to-face meetings are
most used to discuss the requirements and business related topics. On the other hand,
net meetings and video conferences are less used than others.

Discussion on RQ2. The previous study [4] proposed that synchronous communi-
cation means are more suitable to be used in the outsourcing contexts than
asynchronous communication means. However, few empirical studies have
investigated how the synchronous and asynchronous communication types are used in
practice. Our results show that both the synchronous, such as telephone meetings and
face-to-face meetings, and the asynchronous communication type, such as email, have
been used all over. However, different communication types have been used to solve
different issues. The advantage of email is that it is much cheaper than synchronous
communication channels, and is not affected by the distribution of both space and

14 J. Ma et al.

time. Chinese software suppliers have used email to discuss almost everything with
outsourcers. On the other hand, face-to-face meetings are mainly used in requirements
and business related topics. A case study in one Latvian software supplier [11] shows
that email is used much more than other communication channels, while net meetings
and video conferences are almost never used. Our results from Chinese software
suppliers show the same trend. However, different time zones and holidays between
the suppliers and outsourcers may affect their available communication types. If we
divide these projects into two groups based on having or not having time zone
problems (i.e., Japanese vs. Western), the two groups show similar results as in
Table 1. Thus, the different time zones and holidays between the suppliers and
outsourcers may not affect the results of our study.

Our conclusion on RQ2 is: Email is mainly used for development issues, while
face-to-face meetings are popularly used for management and requirements issues.
Net meetings and video conferences are the least used communication types.

Table 1. Means of communications and issues to be discussed (N = 53, Multiple Choice)

Asynch
ronous

Synchronous

Email Net
meeting

Phone
meetin

g

Video
conf.

Face-to-
face

meeting
Requirements +++ + ++ + +++
Development ++ + ++ + +
Testing ++
Maintenance
Staff arrangement +
Harmonizing schedule +++ + ++ ++ ++
Handling changes +++ ++ + ++
Business related issues +++

4.2.3 Investigating RQ3: What are the Main Reasons for Overtime Work at
Chinese Software Suppliers?

Results on RQ3. To investigate this research question, we asked whether there was
overtime work in Chinese software suppliers. Results show that 51 out of the total 53
projects had overtime work, usually unpaid. We also asked the respondents their
average working hours per week, the percentage of employees in their companies
involved in overtime work, and their outputs during overtime work vs. their total
outputs. The results show that, the average work hours per week are about 48,
meaning the average overtime is 8 hours per week (20% more). Since 70% of the full-
time employees are involved in overtime work, the expected relevant outputs from the
overtime hours should be 14% (20% * 70%) of that from normal hours. However, the
real “output” production from overtime work is 35%/65% (35% outputs are from the
overwork hours and 65% outputs are from the normal working hours), or 54%, which

 An Industrial Survey of Software Outsourcing in China 15

reveals that overtime work is 3 times more efficient than work during normal working
time.

To know the reasons for overtime work, we listed several possible alternatives
from the literature [12] and from the feedbacks of the pre-study. The respondents
were asked to select one or more of the alternatives. More than 70% of the
respondents point out that design or requirements changes are the major reason for
working overtime (see Table 2). In addition, nearly 60% of the respondents think
overtime work is caused by initial underestimation of project effort and duration.

Table 2. Reasons for overtime work (N=51, Multiple Choice)

Number of projects Percentage
Different time zones 7 14%
Different holidays 10 20%
Design or requirements changes 37 73%
Required by the outsourcers 15 29%
Insufficient local competence 16 31%
Over-optimism of schedule or effort 30 59%
Resolve some specific problems 1 2%

Discussion on RQ3. We found that the major reason for overtime work in Chinese
software suppliers is design or requirements changes, rather than time zones
differences. Furthermore, initial underestimation of effort and duration is also an
important reason for overtime work. Some of the projects were underestimated
because of lack of experience, but many were also victim of tactical bidding [12].
That is, to get a contract, a supplier indicated an unrealistic time schedule or effort to
the outsourcer. This then leads to later overtime work for keeping the deadline or
budget. If the overtime work (20% more) in our investigated projects is paid, which is
usually 1.5 time of normal payment, the real budgets of our investigated software
outsourcing projects should be increased by 30%. This means that software
outsourcing projects suffer from similar under-budgeting, which is about 30% to 40%
percentage [18], as other software projects.

In our pre-study, some of the interviewees attributed the frequent and unpaid
overtime work in their companies to companies’ encouragement on overworking. As
a result, the employees may not have tried to work as effectively as they could during
normal hours and may have postponed certain work into the overtime hours. This may
explain our finding that the overtime work is more productive than normal time work.
Also the less interruption from other employees could be another reason for more
productive overtime work. Since our results show about 70% full-time employees
worked overtime, it is hard to conclude that the interruptions in the overtime are less
than in the normal time.

Our conclusion on RQ3 is: The main reasons for overtime work at Chinese
software suppliers are design or requirements changes and initial over-optimism of
the budget. The cultural encouragement of overtime work may also reduce the
efficiency in the normal work hours.

16 J. Ma et al.

5 Final Discussion

5.1 General Discussion

Based on our results of RQ1 to RQ3, we suggest the following strategies for Chinese
software suppliers to improve their efficiency.

Manage the possible language differences with a steering group
The language factor is one of the reasons for the success of software outsourcing. The
successes of software industries in India, Philippines and Singapore are accepted
examples [4, 9]. Before our study, few studies have systematically examined the
language skills of employees of Chinese software suppliers. The outsourcers from
English speaking countries may still be skeptical to the English language skills of
their Chinese suppliers. However, our results show that the differences in natural
languages are not the barrier to Chinese software suppliers. For the Chinese suppliers,
one possible method to manage the language effects is to build a steering group that is
comprised by language competent project managers and senior developers. The
members of the steering groups can work as a bridge between the external outsourcers
and internal developers. Since most communication between the internal developers
and the external outsourcers need to go through such a steering group, we later need
to study how to improve the performance of such a group.

Do not overuse synchronous communication methods
A previous study [4] shows that synchronous communication channels usually have
more advantages than asynchronous communication channels. However, our results
and another previous study [11] show that email is still used frequently by the
outsourcers and suppliers. On the other hand, synchronous channels, such as net
meetings and video conferences are rarely used. To improve the efficiency of
communications and to reduce unnecessary communication costs, we recommend that
suppliers should avoid excessive synchronous communications. Face-to-face
meetings and telephone meetings should be mainly used to discuss the business
related issues and requirements. For issues related to design, development, and
testing, email may work as an efficient communication type.

Manage the requirements changes and avoid unnecessary encouragement on
overtime work
In software development, the requirements evolution can be substantial, e.g., 1% per
month or 50% over 3 years [17]. Our results show that the main reason for overtime
work in Chinese software suppliers are design or requirements changes initiated by
the outsourcer. Another reason is the initial underestimation of effort, which is often
caused by tactical bidding. In addition, we observed that there is an unnecessary and
perhaps cultural encouragement for overtime work, which may cause employees to
postpone their work from normal work hours to overtime hours. We recommend the
Chinese software suppliers to appoint a change management group to systematically
discuss and negotiate changes with outsourcers. Moreover, the Chinese suppliers need
to improve their work efficiency in normal hours and try to avoid tactical bidding. An
overall remedy to most of these issues is incremental development to reduce the risks

 An Industrial Survey of Software Outsourcing in China 17

for overruns, but this may be hard to combine with the existing outsourcer-supplier
contracting process.

5.2 Threats to Validity

Construct validity. In this study, most variables and alternatives are taken directly, or
with little modification from existing literature. We did a pre-study to ensure the
quality of the questionnaire, and nearly 10% of the questions and alternatives in the
final questionnaire were revised based on the pre-study. With respect to RQ2, one
possible threat to construct validity is that we asked only the respondents whether
they used some types of communication on each topic or not (i.e., binary scale)
without asking for the frequency of usage (e.g., how often do they use a certain
communication channel). To investigate the RQ3, we have tried to use quantitative
metrics, such as lines-of-code, to measure project outputs in the overtime hours.
However, results of the pre-study show that most companies did not record such data.
Our currently used subjective measurements may bring threats to conclusions of this
research question.

Internal validity. We promised respondents in this study a final report or the annual
membership of the CSO which worth of 500 Chinese Yuan. Most respondents took
part in this survey as volunteers and selected the report as reward. We therefore
generally believe that the respondents answered the questionnaire truthfully.
However, a possible threat is that the respondents might have failing memory on past
projects, because our unit of study is a finished project.

External validity. There were more than 11,550 software companies registered in
China in 2005 [2]. However, the initial database we used contained only about a half
of them. Although we have put a lot of effort on collecting data, we only get from 41
companies out of randomly selected 2000 companies. For the remaining 1959
companies, we could not know their reasons for not participating. The respondents
answered the questionnaires based on finished projects, which were selected based on
convenience. All the above issues may bring external threats to the conclusion of this
study.

6 Conclusion and Future Work

This paper has presented results of a state-of-the-practice survey on Chinese software
outsourcing in industrial projects. The main conclusions of our survey are:

• Differences in natural languages are not the critical factor for the success of
Chinese software suppliers. Chinese suppliers have sufficient English skills
and routines (e.g., steering groups) to resolve languages differences.

• Email is the most used communication channel for resolving development
issues, while face-to-face meetings are popularly used for management and
requirements issues. Net meetings and video conferences are not much used.

• The main reasons for overtime work at Chinese software suppliers are design
or requirements changes and initial over-optimism of the effort or duration.

18 J. Ma et al.

The current solution, i.e., unpaid overtime work, however, may reduce the
efficiency in the normal work hours.

• Finally, since China has no comprehensive, national database of IT companies,
it is difficult to select a random sample of participants in such surveys.

The results of this study discover several important issues that we are going to
investigate in the future.

• We illustrate the most common communication channels without knowing
their efficiency for discussing a specific topic. Further studies on the efficiency
of different communication means are needed.

• We discover that using a steering group may be a proper strategy to mitigate
the effect of languages or cultural differences. However, how to improve the
performance of such steering group needs to be further studied.

• Although we find that overtime work is more efficient than work in normal
hours, a further case study to verify our conclusion with a more reliable
quantitative metrics is needed.

• Our results show that it is important to control requirements changes to avoid
overruns of the outsourcing projects. How to use alternative processes, such as
incremental or agile ones, in projects across geographic and company
boundaries needs future investigation.

Acknowledgements

This study was a joint research effort between BJUT and NTNU, partially funded by
the Norwegian SEVO project with grant 159916/V30. We would like to thank the
CSO for data sampling and questionnaire collection. We also thank all participants in
the survey.

References

1. Ahmed, R.E.: Software Maintenance Outsourcing: Issues and Strategies. Computers and
Electrical Engineering 32(6), 449–453 (2006)

2. Ministry of Information of the People’s Republic of China & Chinese Software Industry
Association: Annual Report of China Software Industry (2006), http://www.soft6.com/
news/detail.asp?id=15759

3. Aubert, B.A., Rivard, S., Patry, M.: A Transaction Cost Model of IT Outsourcing.
Information and Management 41(7), 921–932 (2004)

4. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software
Development. IEEE Software 18(2), 22–29 (2001)

5. Donahoe, D.N., Pecht, M.: Are U.S. Jobs Moving to China? IEEE Transactions on
Components and Packaging Technologies 26(3), 682–686 (2003)

6. Ferguson, E., Kussmaul, C., McCracken, D.D., Robbert, M.A.: Offshore Outsourcing:
Current Conditions and Diagnosis. In: Proceedings of the Thirty-Fifth SIGCSE Technical
Symposium on Computer Science Education, Norfolk, Virginia, USA, March, vol. 36(1)
pp. 330–331 (2004)

 An Industrial Survey of Software Outsourcing in China 19

7. Kankanhalli, A., Tan, B.C.Y., Wei, K., Holmes, M.C.: Cross-cultural Differences and
Information Systems Developer Values. Decision Support Systems 38(2), 183–195 (2004)

8. Krishna, S., Sahay, S., Walsham, G.: Managing Cross-cultural Issues in Global Software
Outsourcing. Communications of the ACM 47(4), 62–66 (2004)

9. Kshetri, N.: Structural Shifts in the Chinese Software Industry. IEEE Software 22(4),
86–93 (2005)

10. Lacity, M.: Lessons in Global Information Technology Sourcing. Computer 35(8), 26–33
(2002)

11. Smite, D.: Global Software Development Projects in One of the Biggest Companies in
Latvia: Is Geographical Distribution a Problem? Software Process Improvement and
Practice 11(1), 61–76 (2006)

12. Taylor, H.: Critical Risks in Outsourced IT Projects: The Intractable and the Unforeseen.
Communications of the ACM 49(11), 74–79 (2006)

13. Walsham, G.: Cross-cultural Software Production and Use: A Structurational Analysis.
MIS Quarterly 26(4), 359–380 (2002)

14. Herbsleb, J.D., Grinter, R.E.: Splitting the Organization and Integrating the Code:
Conway’s Law Revisited. In: Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, CA, USA, pp. 85–96 (May 1999)

15. Wong, J.: China’s Economy in 2005: At a New Turning Point and Need to Fix Its
Development Problems. China & World Economy 14(2), 1 (2006)

16. Herbsleb, J.D., Paulish, D.J., Bass, M.: Global Software Development at Siemens:
Experience from Nine Projects. In: Proceeding of the 27th International Conference on
Software Engineering, St. Louis, Missouri, USA, pp. 524–533 (May 2005)

17. Madhavji, N.H., Fernandez-Ramil, J., Perry, D.: Software Evolution and Feedback:
Theory and Practice. John Wiley & Sons, West Sussex (2006)

18. Moløkken, K., Jørgensen, M.: A Review of Surveys on Software Effort Estimation. In:
Proceedings of the 2003 International Symposium on Empirical Software Engineering,
Rome, Italy, pp. 223–231 (September/October 2003)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 20–34, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Understanding Lacking Trust in Global Software Teams:
A Multi-case Study

Nils Brede Moe1 and Darja Šmite2

1 SINTEF Information and Communication Technology
NO-7465 Trondheim, Norway
Nils.B.Moe@sintef.no

2 University of Latvia
LV-1050, Raiņa bulv.19, Rīga, Latvia

Darja.Smite@lu.lv

Abstract. Many organizations have turned toward globally distributed software
development in their quest for higher-quality software delivered cheaply and
quickly. But this kind of development has often been reported as problematic
and complex to manage. One of the fundamental factors in determining the
success and failure of globally distributed software teams is trust. The aim of
our work has therefore been to describe the key factors causing lack of trust,
and the main effects of lacking trust in such teams. From studying 4 projects, all
located in two different countries, with trust problems we found the key factors
to be poor socialization and socio-cultural fit, lack of face-to-face meetings,
missing conflict handling and cognitive based trust, increased monitoring and
too little communication. The effect of lacking trust was a decrease in
productivity, quality, information exchange, feedback and morale among the
employees; the monitoring increased and the employees doubted negative
feedback from manager.

Keywords: Trust, global software development, global software teams, virtual
teams, multi-case study.

1 Introduction

1.1 Global Software Development – Different, Complex, Urgent

Several organizations have turned toward globally distributed software development
(GSD) in their quest for higher-quality software delivered cheaply and quickly.
Today, more software projects are run in geographically distributed environments,
and global software development is becoming a norm in the software industry [4].

GSD is said to have significant challenges with respect to communication,
coordination and control issues, because of the temporal, geographical and socio-
cultural distance between members of the joint development team [27] . For this GSD
is recognized as considerably more complex to manage than even the most complex
in-house projects [3, 17].

 Understanding Lacking Trust in Global Software Teams: A Multi-case Study 21

What distinguishes globally distributed projects from in-house projects are the
environmental properties, also called global factors [23], that even capable project
managers often overlook. However, the reason for failure of global projects is not the
lack of capability, but a lack of awareness of issues, problems, and barriers associated
with global work [6]. Likewise Sahay and Nicholson describe that the unpredictable
nature of the risks in a global environment heightens the potential for unintended
consequences [21]. The characteristics of GSD can be defined as follows [23]:

• Multisourcing – multiple distributed member involvement in a joint project,
characterized by a number of collaboration partners.

• Geographic distribution – partners are located far away from each other.
• Temporal diversity – characterized by the level of working hours overlay.
• Socio-cultural diversity – level of social, ethnic, and cultural fit.
• Linguistic diversity – characterized by the level of language skills.
• Contextual diversity – level of organizational fit (diversity in process maturity and

work practices).
• Political and legislative diversity - effect of cross border collaboration due to

political threats or threats associated with incompatibility of laws.

Threats caused by the diversity that exists among the distributed teams involved in
a project are seen as unavoidable conditions. These threats can lead to unexpected
costs, considerable time delays and undermined morale of the collaborating teams.

The body of knowledge on global software development has been crafted over
time, but there is still significant understanding to be achieved, methods and
techniques to be developed, and practices to be evolved before it becomes a mature
discipline [4, 21].

1.2 GSD Teams and Trust

A GSD team is a team whose members collaborate on a common software project
while working across geographic, temporal, cultural, and relational boundaries to
accomplish an interdependent task. A GSD team can also be characterised as a Virtual
Team [18]. Organizations are driven to virtual forms in order to be more flexible,
agile, responsive, and inexpensive [3]. One of the fundamental factors that are
believed to be important in determining the success and failure of virtual teams is
trust [12, 16, 18]. We define trust as “the shared perception by the majority of team
members that individuals in the team will perform particular actions important to its
members and that the individuals will recognize and protect the rights and interests of
all the team members engaged in their joint endeavour” [25]. Virtual teams that
exhibit a high degree of trust experience significant social communication as well as
predictable communication patterns, substantial feedback, positive leadership,
enthusiasm, and the ability to cope with technical uncertainty [14]. Trust functions as
the glue that holds and links virtual teams together [16].

Jarvenpaa et al [15] argue that trust in a virtual team has a direct positive effect on
cooperation and performance, and an increase in trust in a team with a weak structure
is likely to have a direct, positive impact on team members’ attitudes and perceived
outcomes.

22 N.B. Moe and D. Šmite

Since trust is a fundamental factor for virtual teams it is reasonable to believe that
trust is also important for GSD teams. Vanzin et al and Davidson and Tay [5, 24] argue
that trust is a recurring problem in GSD teams, because of geographical, temporal,
organizational, cultural and political differences among the team members. Carmel in
his book „Global Software Teams” argues that distance is an impediment to building
relationships of trust [3]. However, due to the cost benefit of outsourcing versus in-
house and other cost saving strategies, most of the team members never meet.

To understand the importance of trust in GSD and to increase the level of trust in
such a team it is essential to understand what leads to lacking trust, and the effect of
lacking trust in a GSD team. From our overview of the research literature we believe
that the existing literature does not describe this, which is also confirmed by Edwards
and Sridhar [11]. Therefore our research questions have been: What are the key
factors causing lacking trust in a GSD team located in two countries? What are the
main effects of lacking trust in a GSD team located in two countries?

In the next sections we first use previous research on virtual teams and GSD to
understand the different threats against establishing trust in a GSD team. We then use
theory from virtual teams and teamwork to describe the possible effect of lacking trust
in a GSD team, before we apply these reasons and effects to a multi-case study to
understand the effect of mistrust on GSD team performance.

2 Key Factors Causing Lack of Trust

Trust in virtual teams needs to be developed quickly because teams may only interact
for a short period of time or may be working on a task that is of great importance and
urgency [14, 16]. Earlier work on trust in the virtual environment has found that
short-lived teams are in fact able to develop high trust but they do so by following a
swift trust model rather than the traditional model of trust development [13, 14].

Virtual teams need to focus on the maintenance as well as the development of trust,
but there are many threats against achieving a high trust level in a virtual team:

• Cognitive-based trust. Virtual teams need to focus on the cognitive dimension of
trust (e.g. competence, reliability, professionalism) [16]. Therefore it is important
to provide task-relevant background information to virtual team members so that
members can quickly develop cognition-based trust. If the remote team does not
deliver what is expected this will decrease the cognitive-based trust.

• Poor socialization. Socialization strategies may help managers develop trust also
in virtual teams [14, 16]. Team members should travel to remote sites to engage in
a team-building activity to engender lasting trust [20].

• Missing face-to-face meetings. Such meetings are considered irreplaceable for both
developing and repairing trust in virtual teams [2, 3, 19]. Carmel [3] argues that
“trust needs touch”. If there is no face-to-face communication in a virtual team, this
tends to hinder effective communication. E.g. when team members communicate
about mutual responsibility and obligations, different perceptions of their
commitments may develop, creating a potential for trust decline [19].

• No conflict handling. Conflicts in a global development are inevitable [17], and it
is often difficult to maintain trust when conflicts among team members emerge. So
missing conflict handling is a threat against building and maintaining trust in a
virtual team [14, 16].

 Understanding Lacking Trust in Global Software Teams: A Multi-case Study 23

• Too little communication. Virtual teams in a low trust situation need frequent
communication to increase the trust level. The frequent communication is
important for providing constant confirmation that team members are still there
and still working [15].

• Unpredictability in communication. The frequency and predictability of
communication, and the extent to which feedback is provided on a regular basis,
improve communication effectiveness leading to higher trust and improving team
performance [13, 14]. Inexperienced virtual team members may experience anxiety
or trust decline due to negative interpretations of silence or delays associated with
time dispersion [19].

• Increased monitoring (behavioural control and too much communication). The use of
behavioural controls, such as having members file weekly reports and assigning
specific tasks, has been found to be associated with a decline in trust among virtual
team members [19]. Also too much communication might cause members of a team
to be suspicious that others are monitoring them and this decreases the trust [15].

• Poor socio-cultural fit. Duarte and Snyder distinguish three types of culture –
national, organizational and functional – and claim that they constitute one of a
virtual team’s most significant boundaries [10]. Furthermore, they describe that
being hidden like an iceberg, culture affect people’s assumptions, behaviours, and
expectations about leadership practices, work habits, and team norms [10] pp.54.

3 The Effect of Lacking Trust

Based on a literature review, Salas et al. [22] argue that it is possible to condense the
teamwork knowledge into five core components, which they call the “Big Five” of
teamwork, and three coordinating mechanisms. The 5 components affecting the team
effectiveness are:

• Team leadership;
• Mutual performance monitoring;
• Backup behaviour;
• Adaptability;
• Team orientation.

The 3 coordination mechanisms are: shared mental models, closed-looped
communication, and mutual trust. They are called coordination mechanisms because
they are necessary facilitators of the 5 components.

In this model trust is needed to make the team members work interdependently,
they must be willing to accept a certain amount of risk to rely on each other to meet
deadlines, contribute to the team task, and cooperate without subversive intentions.

Dirks and Fern's [9] review of the literature on the role of trust in organizational
settings demonstrates that trust has either direct or moderating effects on a variety of
desired performance and behavioural outcome variables. In their view, trust facilitates
the effects of other determinants on performance or behavioural outcomes because
trust provides conditions, under which certain outcomes are more likely to occur.

Bandow [1] argues that a lack of trust within the group may interfere with how
effectively individuals contribute to teams, may reduce overall team performance,
increase cycle time, create higher costs and potentially impact product quality.

24 N.B. Moe and D. Šmite

The effect of lacking trust can be described as [1, 9, 22]:

• Decreased information exchange and feedback – A low level of trust is associated
with suspiciousness of information, and therefore decreased information exchange
and feedback [1, 9, 22].

• Competition and not cooperation - If one does not trust a partner, it might be
difficult to work toward the joint goal and it is likely that the employees will pay
more attention to competitive motives and not to cooperation [9], and even
withdraw from participation because they feel insecure [1].

• Self-protection - If one does not trust the manger, the individual finds it worrisome to
behave as expected; and the management’s request is likely to exert a much weaker
effect on the individual’s behaviour, as the individual diverts resources to self-
protection [9]. This will hinder the team leader from effectively managing the team.

• Doubt negative feedback from manager - When there is a negative feedback from a
manager with low trust, it is likely that the employee will doubt the accuracy of the
feedback [9, 22].

• Relationship conflict - Under low trust, task conflict within a group is interpreted
negatively and subsequently results in relationship conflict [9, 22].

• Individual goals over group goals - Under low trust the individuals in a group will
direct their efforts toward individual goals, instead of the group’s goals [9].

• Team not self-correcting - Low trust will decrease the mutual performance
monitoring, which means the ability to develop common understandings of the team
environment and possibility to accurately monitor team member performance. This is
essential to identifying mistakes and lapses in other team members’ actions, and
providing feedback regarding team member actions to facilitate self-correction [22].

• Not shifting workload among members - Decrease in the mutual performance
monitoring will again affect the backup-behaviour. This is the ability to anticipate
other team members’ needs through accurate knowledge about their
responsibilities. This includes the ability to shift workloads among members to
achieve balance during high periods of workload or pressure [22].

• Productivity and quality decrease - Since the lack of trust reduces team
performance [1, 9, 22] this reduces the productivity and quality.

4 Research Context and Method

The context for this research is the Latvian software development company
LatSoftware (the company name is changed for confidentiality reasons), situated in
Riga. The company was established in the late 80s and changed its owners and/or
structure several times. It has been oriented towards the international market, focusing
on providing software development outsourcing services for the public sector,
telecommunications, insurance and banking, as well as tourism and logistics.
LatSoftware has successfully accomplished more than 200 projects both in Latvia,
Western Europe and Scandinavia. At the present time the company represents a joint
venture with over 380 employees.

The work reported in this paper is a multi case study [26] to understand reasons
and effect of lacking trust in global software development within LatSoftware. This is
a multi case holistic study, in which we study one phenomenon in several projects in

 Understanding Lacking Trust in Global Software Teams: A Multi-case Study 25

one company. Since we are studying the reasons and the effects of lacking trust we
picked four global software development projects that all reported trust problems.

4.1 Data Sources

We have used multiple data sources (see Table 1) in the analysis as described in the
following. In the analysis, we rely mainly on qualitative interviews, as these provide a
rich picture of the reason and effect of lacking trust. We have also used results from
postmortem meetings [7] held during and at the end of the project. A postmortem
meeting focuses on describing what went well and what did not work in the project,
and then a root-cause analysis is performed on the main issues. Using postmortem
meetings it was possible to find the root-causes of problems related to trust.

Project problems were also recorded using previously developed problem
checklists that have been developed from an extensive literature review and from
former project experience. Postmortem analysis data was recorded with the help of a
camera during the meetings and later transcribed by the researchers in the postmortem
analysis document, which was afterwards sent to the participants for approval.

In this study we have focused on exploring the investigated company’s problems,
whose employees are acting as suppliers in the studied projects. Due to the limited
availability of information about project customers, we do not present data about their
team size in Table 1.

Table 1. Data sources

Pro
name

Duration Project type Supply chains
Location* and Team size

Effort Data collection

A 1995 –
present

SW product
development
and
maintenance

DE DE (3) LV (5) 46080
hours

Interviewed current
project manager,
previous project
manager and one
developer

Problem checklists

B 2002 –
2006

SW product
development

UK UK (13) LV (16) 40480
hours

Interviewed project
manager and 3 team
leaders.

Postmortem
analysis

Problem checklists

C 2006 SW pilot
product
development

SE LV (3) 320
hours

Interview with
project manager

Problem checklists

D 2005 SW product
development

NO (2) LV (6) LV (5) 1460
hours

Interview with
project manager

Postmortem
analysis

Problem checklists

* DE - Germany, LV - Latvia, UK - the United Kingdom, SE - Sweden, NO - Norway

26 N.B. Moe and D. Šmite

4.2 Data Analysis

Data analysis was performed in several steps. First, we read all interviews and
postmortem analysis data, and coded interesting expressions of opinions related to
trust in the text. Then we assigned the expressions to the categories of “the reasons of
lacking trust” and “the effect of lacking trust” found in the literature on Global
Software Development, Teams and Virtual Teams. For example, “unwillingness to
collaborate caused by threat of being fired due to switching to outsourcing mode” was
coded as “the reasons of lacking trust” and linked with “competition and not
cooperation”. To avoid bias and misunderstanding, the conclusions from our coding
was sent back to the interviewees for approval.

5 Results

In this chapter we describe the four global projects run in the investigated software
house. We present each project, followed by a description of why it was lacking trust,
and the effects of this.

5.1 Project A

Overview. Project A is a long-term ongoing software enhancement project with close
collaboration between 5 Latvian developers and 3 representatives from a German
company that build a software product for their customer. The German team performs
project management and systems analysis, while outsourcing coding activities. Recent
changes in project management from the Riga side didn’t get much appreciation from
the customer side due to increasing costs. The customer has moved part of the work to
a lower price partner from another country, and signalled that future project problems
can lead to cancellation of the project

Reasons for lacking trust. The project extensively uses modern collaboration tools
such as video conferencing and instant messaging. However, the Riga team argues
that this doesn’t compensate for the lack of face-to-face meetings. The Riga team also
sense that their German partners are afraid that the Riga team is not dedicated to the
project, and therefore try to control them by constantly monitoring their performance.
It took 10 years for the German partners to visit their Latvian team members. This
first meeting uncovered that the German team did not know much about their partner
and they were surprised to see the modern offices with high level security and
technical equipment. Their perception of the remote team members changed and
further collaboration with frequent meetings for some time improved overall project
performance and especially team morale and psychological comfort.

However, diversity in process maturity has put the partners into a collision.
Corporative culture doesn’t allow the Riga team to act in a too agile way without any
project management. And with respect to recent disputes between the partners
considering these changes, the Riga team acts by competitive motives, and feels not
trusted and insecure again.

 Understanding Lacking Trust in Global Software Teams: A Multi-case Study 27

Effect of lacking trust. The Riga team has continuously suffered from lack of trust
and commitment, which dramatically decreased the ability to self-correct, which
again initiated extensive monitoring from the contracting partner. This again affected
the trust level negatively. Not satisfied with collaboration the contracting partner
frequently required to change project leads. Searching for more beneficial
collaboration partners puts the Riga team in competition. As a result the project
atmosphere negatively influences team morale, productivity and causes conflicts in
relationship.

5.2 Project B

Overview. Project B is a software product development and enhancement project run
by a UK software house that outsourced software development to a Latvian partner
from Riga. Programming activities in this project were performed in both countries.
The outsourcing was a strategic choice from the management in the UK software
house. This was however, according to the project manager from Riga, not
appreciated by the UK team representatives directly involved in collaboration.

Reasons for lacking trust. The Riga project manager reported several problems
related to lacking trust. The UK and Riga teams did not share a joint view on their
collaboration due to diversity in their work practices. Such problems as poor cultural
fit, dominant use of asynchronous tools, unwillingness or slowness of the UK team to
act on partner’s suggestions, led to poor, unpredictable communication. Due to a lack
of joint problem handling, poor socialization and lack of face-to-face meetings
process performance didn’t take place.

Effect of lacking trust. The Riga project manager reported that sometimes his team
seemed to lack motivation to give the customer value for money – manifesting itself
in lower than reasonably expected productivity levels. Poor socialization and lack of
face-to-face meetings resulted in a lack of team spirit, trust and commitment between
the partners. Lacking trust and poor communication has also decreased information
exchange and feedback. Lacking understanding of the context of decision making, the
negative feedback from the continuously indifferent partner was doubted.

5.3 Project C

Overview. Project C was a pilot project in order to evaluate the investigated Riga
software house as an external provider of coding for a software house in Sweden,
which has recently switched to outsourcing mode. Their cooperation started by
developing a small piece of software and was afterwards suspended.

Reasons for lacking trust. Both partners faced an increasing complexity of distri-
buted multi-team management regarding the necessity of overcoming diversity and
lack of joint procedures and tools. After joint risk management meetings with the
customer, the project manager from Riga reported that the customer faced the

28 N.B. Moe and D. Šmite

necessity to change and appeared not to be ready for that. Trust and belief in joint
performance was affected by poor cultural fit, too little communication, lack of
socialization and face-to-face meetings.

Effect of lacking trust. According to Riga project manager’s opinion, the customer’s
employees felt insecure about their jobs, due to the corporative decision to switch to
an outsourcing mode. Remote team members were put in competition instead of
collaboration causing a productivity decrease. Consequently, the customer team’s
individual goals dominated over shared project goals. All task conflicts within the
joint team were interpreted negatively. Lack of conflict handling finally led to
collaboration suspension.

5.4 Project D

Overview. Project D is a complex project involving a customer from Norway, a
direct supplier from Riga and a remote programmers team from a small Latvian
town situated in the poorest region around 250km from the city. However, our
attention in this case study was focused particularly on collaboration between two
separate teams within one country and one organization not separated by country
borders. Both supplier teams work for the same company and perform development
by joint effort.

Reasons for lacking trust. Despite the fact that all the team members work for the
same company, in comparison with the Riga team, the remote team works in a poorer
environment and has significant problems with technology and communication lines.
The remote team reported on lack of trust and belief in their performance by the Riga
project manager, which he confirmed. Lacking trust in project D was caused by
concerns of the project manager about successful remote team performance, the
inability of direct control and communication problems due to distribution and poor
technological infrastructure, lack of socialization and face-to-face meetings. Despite
the fact that both teams are situated in the same country, they experienced socio-
cultural diversity which also affected trust.

Effect of lacking trust. Lack of trust in this project decreased information exchange
between the team members and increased suspicion and the desire to control by the
Riga project manager. His behaviour led to self-protection and apprehension of the
manager’s feedback. This also resulted in low motivation for self-correction within
the separated teams.

5.5 Key Factors Causing Lack of Trust and the Effects of Lacking Trust in the
Projects

We have examined issues uncovered in related studies regarding trust in virtual
environments within the investigated projects. A report of the occurrence of the
identified key factors causing lack of trust is in Table 2 below.

 Understanding Lacking Trust in Global Software Teams: A Multi-case Study 29

Table 2. Key factors causing lack of trust in the project

Projects
Reason for lacking trust

A B C D
Cognitive-based trust
Poor socialization
Missing face-to-face meetings
No conflict handling
Too little communication
Unpredictability in communication
Increased monitoring
Poor socio-cultural fit

Describing the main effects of lacking trust, all project managers reported that it to
some level always influences customer satisfaction and supplier team morale.

A global environment puts new demands on trust achievement between the
remote team members. An organization switching to outsourcing mode puts its own
employees under threat of being fired. This leads to a competition instead of
collaboration with the remote suppliers. Inability to achieve a shared understanding
and compensation of diversity in work practices leads to remote team goal
separation.

Table 3.The main effects of lacking trust

Projects
The main effects of lacking trust

A B C D
Decreased information exchange and feedback
Competition and not cooperation
Self-protection
Doubt negative feedback from manager
Relationship conflict
Individual goals over group goals
Team not self-correcting
Not shifting workload among members
Productivity and quality decrease

6 Discussion

In this paper we have used the literature to describe the key factors causing lacking
trust, and the main effects of lacking trust while collaborating over geographic,

30 N.B. Moe and D. Šmite

cultural and organizational boundaries. Then we have applied these key factors and
effects to a multi-case study to understand the effect of mistrust on GSD team
performance in a team situated in two countries. We have investigated projects that all
have reported lacking trust; the data was only collected from the Latvian developers
and mangers.

6.1 Key Factors Causing Lacking Trust

From our study we found that poor socialization, lack of face-to-face meetings and
poor socio-cultural fit were reported by all the projects. Lack of face-to-face meetings
and poor socialization are probably related since it is difficult to socialize if you
seldom or never meet. We think that poor socio-cultural fit may also be strengthened
due to lack of face-to-face interaction and poor socialization. Other key factors for
lacking trust were also reported frequently by the projects.

We also found additional factors leading to lack of trust. For instance, lack of
language skills leads to poor socialization and communication problems, because
employees with poor language skills tend to be afraid to speak over the phone.
Inconsistency in work practices may lead to a lack of cognitive-based trust,
misunderstandings and again cause increased monitoring. Involvement of unen-
thusiastic employees who lack previous experience in outsourcing projects can lead to
a belief that the work cannot be done from a far off location. This negatively affects
mutual socialization, communication and trust.

Finally we try to explain how the factors that characterize the GSD team are related
to the key factors of lacking trust that we have found in this study:

• Multisourcing – increasing the number of collaboration partners involved in the
project results in more complex communication, coordination and control. This
again increases the number of sources of threat and complexity of trust
achievement.

• Geographic distribution – leads to increased virtualness, communication problems,
troubled socialization, and knowledge and awareness share.

• Contextual diversity – level of organizational fit, characterized by diversity in
process maturity and inconsistency in work practices acts as a counterforce for
shared environment development. Team members who do not share background
and work habits seem to have less commitment to a joint team.

6.2 Effects of Lacking Trust

Like Dirks and Fern, and Bandow [1, 9] we have found that lacking trust indeed may
cause significant problems with performance and behaviour of the team members.
The most frequently reported effect of lacking trust was productivity and quality
decrease. This indeed proves the importance of trust for overall project performance.
The next most frequently reported effect of lacking trust was decreased information
exchange and feedback (3 projects). Another frequently reported effect (3 projects)
was team members doubting negative feedback from their manager. Issues such as

 Understanding Lacking Trust in Global Software Teams: A Multi-case Study 31

team members not shifting their workload and not self-correcting were barely
mentioned or not at all by the interviewed project members. This can be explained by
the problem with information exchange and feedback, self-protection, competition
and lack of cooperation. Because of these problems the team probably never had the
chance to consider shifting their workload and self-correcting.

This and other comments point that although remote team members ought to form
a joint team they consider distribution as team separator. After all, these projects
demonstrate that there might be committed teams in each location and lack of team
spirit between them.

The existence of committed and joint internal teams at every location that
experience lack of trust may also explain why Project B and D, which have faced all
of the mentioned key factors of lacking trust, have not reported as many effects of
lacking trust as the other teams.

From our observations we would also like to add the following effects to the list of
lacking trust outcomes:

• Increased monitoring (reported in Projects A, B and D) – in addition to a trust
decline due to a pressing monitoring [15, 19], lacking trust in supplier performance
and lack of direct control due to geographic and temporal distribution makes
managers struggle with a desire to control instead of cooperating with the remote
teams, resulting in increased monitoring and causing extra time for reporting. This
also forms a locked loop.

• Undermined morale of the employees (reported in every project) – lacking trust
creates a negative atmosphere that results in psychological discomfort of the
members.

• Threat of project cancellation (reported in Project A and C) – we have also found
that lacking trust may put the overall collaboration under threat.

6.3 Recommendations

The reason for failure of global projects is not the lack of capability, but lack of
awareness of issues, problems, and barriers associated with global work [6]. From the
multi-case study and the literature, the factors causing lack of trust can be linked with
the global environmental characteristics – various diversities (organizational, socio-
cultural, geographic, temporal, etc.) between the partners. We therefore emphasize the
role of diversity and inconsistency awareness and the importance of flexibility and
adaptability. Therefore, never start a distributed collaboration unprepared and without
awareness of diversity. To face the key factors causing lack of trust we recommend:

• Go through the list of “key factors” and “main effects” of lacking trust, discuss
this early with the team, and identify actions to meet these “threats“. E.g:

• Invest in one or several face-to face meetings [1-3, 17, 19],
• Invest in socialization activities for the whole team together [14, 16, 20],
• Invest in groupware packages to provide remote team members with

effective means of communication and compensate lack of personal
contact during the project [[17]].

32 N.B. Moe and D. Šmite

• Communicate expectations early and establish initial rules, in the form of
a contract or trust structure, to spell out performance parameters for the
team as a whole and for individual team members [1].

• Develop a 360º view by establishing a team intranet; facilitate publishing
and updating individual, team, status and task information; encourage
personal touches including personal pages [3].

• Create a common understanding of the work process, and how to cooperate in this
process. This can be achieved by creating some common process elements. A
common process workshop can be used to create this [8].

• Consider a software development method that provides both flexibility and
adaptability, and that requires frequent communication. One solution to this is the
use of agile methods [27].

7 Conclusion and Future Work

Trust is a recurring problem in GSD teams, because of geographical, temporal,
organizational, cultural and political differences among the team members. Face-to-
face meetings, active communication and socialization that are commonly used for
building trust in software teams are a hard recipe for global software teams. Due to
cost saving strategies, most of the GSD team members never meet.

In this paper we have conducted an empirical study that aimed to understand the
reasons and effect of lacking trust on GSD team performance in four software projects
in one company. All projects reported that lack of trust resulted in a decrease in
quality and productivity. These and other findings leads to a conclusion that a
company should consider the pros and cons of collaborating over borders and never
start a distributed collaboration unprepared. Awareness of the importance of trust, the
reasons for lacking trust and its effect, will help to avoid many problems of joint
collaboration. However achievement of a high level of trust in GSD teams is not a
simple question.

Accordingly further work should focus on investigating which methods for
building and maintaining trust in GSD can be applied.

Acknowledgments

We appreciate the input received from project managers and other members of the
investigated projects in LatSoftware, and thanks to Odd Nordland for proof reading
and Torgeir Dingsøyr for valuable feedback.

This research is partly supported by the Research Council of Norway under Grant
156701/220, European Social Fund under grant “Doctoral student research and post
doctoral research support for university of Latvia” and the Latvian Council of Science
within project Nr. 02.2002 “Latvian Informatics Production Unit Support Program in
the Area of Engineering, Computer Networks and Signal Processing”.

 Understanding Lacking Trust in Global Software Teams: A Multi-case Study 33

References

1. Bandow, D.: Time to create sound teamwork. The Journal for quality and
participation 24(2), 41 (2001)

2. Bhat, J.M., Gupta, M., Murthy, S.N.: Overcoming requirements engineering challenges:
Lessons from offshore outsourcing. IEEE Software 23(5), 38-+ (2006)

3. Carmel, E.: Global software teams: collaborating across borders and time zones. Prentice-
Hall, Englewood Cliffs (1999)

4. Damian, D., Moitra, D.: Global software development: How far have we come? Ieee
Software 23(5), 17–19 (2006)

5. Davidson, E.J., Tay, A.S.M.: Studying teamwork in global IT support (2003)
6. DeLone, W., et al.: Bridging global boundaries for IS project success. In: 38th Hawaii

International Conference on System Scienc 2005. Big Island, HI, United States: Institute
of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331,
United States (2005)

7. Dingsøyr, T.: Postmortem reviews: purpose and approaches in software engineering.
Information and Software Technology 47(5), 293–303 (2005)

8. Dingsøyr, T., et al.: A workshop-oriented approach for defining electronic process guides -
A case study. In: Acuña, S.T., Juristo, N. (eds.) in Software Process Modelling, pp.
187–205. Kluwer Academic Publishers, Boston (2004)

9. Dirks, K.T., Ferrin, D.L.: The role of trust in organizational settings. Organization
Science 12(4), 450–467 (2001)

10. Duarte, D.L., Snyder, L.T.: Mastering Virtual Teams: Strategies, Tools, and Techniques
that Succeed, 2nd edn. A.W. Company, Jossey-Bass (2001)

11. Edwards, H.K., Sridhar, V.: Analysis of the effectiveness of global virtual teams in
software engineering projects (2003)

12. Grabowski, M., Roberts, K.H.: Risk mitigation in virtual organizations. Organization
Science 10(6), 704–721 (1999)

13. Jarvenpaa, S.L., Knoll, K., Leidner, D.E.: Is anybody out there? Antecedents of trust in
global virtual teams. Journal of Management Information Systems 14(4), 29–64 (1998)

14. Jarvenpaa, S.L., Leidner, D.E.: Communication and trust in global virtual teams.
Organization Science 10(6), 791–815 (1999)

15. Jarvenpaa, S.L., Shaw, T.R., Staples, D.S.: Toward contextualized theories of trust: The
role of trust in global virtual teams. Information Systems Research 15(3), 250–267 (2004)

16. Kanawattanachai, P., Yoo, Y.: Dynamic nature of trust in virtual teams. Journal of
Strategic Information Systems 11(3-4), 187–213 (2002)

17. Karolak, D.W.J.: Global software development. IEEE Computer Society Press, Los
Alamitos (1998)

18. Martins, L.L., Gilson, L.L., Maynard, M.T.: Virtual teams: What do we know and where
do we go from here? Journal of Management 30(6), 805–835 (2004)

19. Piccoli, G., Ives, B.: Trust and the unintended effects of behavior control in virtual teams.
Mis. Quarterly 27(3), 365–395 (2003)

20. Rocco, E.: Trust breaks down in electronic contexts but can be repaired by some initial
face-to-face contact, Los Angeles, CA, USA. ACM, New York, NY, USA (1998)

21. Sahay, S., Nicholson, B., Krishna, S.: Global IT outsourcing: software development across
borders. Cambridge University Press, Cambridge (2003)

22. Salas, E., Sims, D.E., Burke, C.S.: Is there a big five in teamwork? Small Group
Research 36(5), 555–599 (2005)

34 N.B. Moe and D. Šmite

23. Smite, D., Borzovs, J.: A framework for overcoming supplier related threats in global
projects. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) EuroSPI 2006. LNCS,
vol. 4257, pp. 50–61. Springer, Heidelberg (2006)

24. Vanzin, M. et al.: Global software processes definition in a distributed environment.
Greenbelt, MD, United States: Institute of Electrical and Electronics Engineers Computer
Society, Piscataway, NJ 08855-1331, United States (2005)

25. Webber, S.S.: Leadership and Trust Facilitating Cross-functional Team Success. The
Journal of management development 21(3), 201 (2002)

26. Yin, R.K.: Case Study Research: design and methods, 3rd edn. vol. 5. Sage Publications,
Thousand Oaks, CA (2003)

27. Ågerfalk, P.J.: Special Issue: Flexible and distributed software processes: old petunias in
new bowls? table of contents. Communications of the ACM 49(10), 26 (2006)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 35–50, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Utilization of a Set of Software Engineering Roles for a
Multinational Organization

Claude Y. Laporte1, Mikel Doucet2, Pierre Bourque1, and Youssef Belkébir3

1 Department of Software and IT Engineering
École de technologie supérieure

1100, rue Notre-Dame Ouest, Montréal, Québec, Canada, H3C 1K3.
{Claude.Y.Laporte,Pierre.Bourque}@etsmtl.ca

2 Center of Competence Software Engineering
Bombardier Transportation

1101, rue Parent, St-Bruno, Québec, Canada, J3V 6E6
Mikel.Doucet@ca.transport.bombardier.com

3 ARINSO Africa
219, BD. Med Zerktouni

Angle BD. Brahim Roudani
CP 20100 El Maarif – Casablanca, Morocco
Youssef.Belkebir@arinso.com

Abstract. In this paper, we present the application of a set of software
engineering roles. Role definitions were developed using internationally
recognized software engineering reference documents for a major railway
development organization: Bombardier Transportation. The description of the
Software Architect role is explained. This paper will also illustrate how the role
set could be used for project-specific needs during a typical project planning
and launch session.

Keywords: Software Engineering, Roles definition, Process, standards.

1 Introduction

As stated by Humphrey [1]: “Without clearly identified responsibilities, it could take
some time for a team to understand everything that it must do, to decide who should
do each task…That is not so much because the engineers don’t want to take
responsibility but rather because they don’t know what all the actions are or they are
not sure whether anyone else is already doing them. They may also be reluctant to
take on tasks that the team or team leader might plan to give to someone else.” This
why we have conducted a project to improve the software engineering role definitions
within the software engineering process definition of a large multinational
organization. The project was also conducted because of the many conflicting and
sometimes absent role definitions across the many Bombardier Transportation1 sites

1 www.bombardier.com

36 C.Y. Laporte et al.

and projects. Moreover, many of the roles that had already been defined were defined
only very briefly.

This paper presents the utilization of a set of roles in a project that includes
software development. A detailed analysis and improvement initiative in regard to the
role definitions within the Bombardier Engineering System Software Engineering
(BES SWE) process definition has already been conducted [2, 3]. The BES SWE is
the common software engineering process definition of Bombardier’s Transportation
division, in which each role definition specifies the purpose of the role, identifies the
core responsibilities assumed by the role, and the hard and soft skills needed to
perform the role.

Created in 1974 to provide subway wagons for the Montreal Transit Authority,
Bombardier Transportation grew rapidly through many acquisitions to become the
leading manufacturer of rail material for moving people. The company had 16,000
employees before Bombardier Transportation acquired, in 2001, ADtranZ. It is also
interesting to note that ADtranZ was also the result of an upcoming merger between
employees from sections of ABB and Daimler Chrysler. The acquisition of
ADtranZ came with 20,000 employees with an engineering presence in 25
countries. The company also had to face many challenges of modern multinational
organizations:

• Multidisciplinary system development,
• Multiple integrator-supplier relationships,
• Multi-country development,
• Multicultural teams,
• Downsizing/merger/turnover,
• Offshoring.

As an example of a complex software-intensive system, the company is working
on the development of the European Rail Traffic Management System / European
Train Control System (ERTMS / ETCS). This system will allow trains to cross
borders without the need to change locomotive or driver. It also makes it possible for
every train to be supervised individually, and for every train to be run according to its
particular characteristics2.

In order to facilitate the identification and deployment of technologies, the
company established a number of corporate Centres of Competence in various
engineering specialties. The Centre of Competence (CoC) in Software Engineering,
located just outside Montreal (Canada), is where this project was coordinated. Some
of the tasks of the Software CoC are:

• To reduce technical risks and quality deficiency costs;
• To support and monitor strategic initiatives;
• To assess, develop and deploy (e.g. training) software engineering technologies

such as processes (BES SWE), methodologies and tools.

2 Adapted from: ERTMS/ETCS – for a competitive railway, Bombardier Transportation, Rail

Control Solution, Feb 2002.

 Utilization of a Set of Software Engineering Roles for a Multinational Organization 37

In order to provide technologies to all divisions, and at a rapid pace, it has been
decided to use a common vocabulary, common processes and common roles. The
strategy that was developed is as follows:

• Adopt internationally recognized reference documents
• Models
• Standards
• Body of Knowledge

• Develop common processes, work instructions and role definitions
• Independent of the organizational structure and organizational changes.

The notion of the role is a core concept in the BES SWE, as it is in all software
engineering process definitions, as shown in Figure 1 (excerpted from OMG00).

Role

Activity
0..*

1

0..*

1

Performs

Artifact
0..*1 0..*1 IsResponsibleFor

0..*

0..*

0..*

input
0..*

Consumes

0..*

0..*

0..*

output
0..*

Produces

Fig. 1. Interaction of roles, activities and artifacts in a software engineering process definition

Table 1. BES SWE role definitions at the beginning of the project

Management Category
Senior Manager

Project Manager
Software Project Manager

Software Quality Assurance
Manager

Product Manager
Software Engineering Manager

Software Engineering Category

Software Team Leader
Software Requirements Coordinator

Software Architect
Software Implementer

Software Integrator
Software Test Designer

Software Tester

Software Engineering –
Supporting Category

Software Change Control Board
Software Infrastructure

Administrator
Software Metrics Coordinator

Software Process Engineer
Software Project Coordinator
Software Quality Assurance

Engineer

Other categories
Customer

Proposal Coordinator
Safety representative

Software Trainer
Software Training Coordinator

38 C.Y. Laporte et al.

Roles perform activities that produce and consume artifacts. Roles are also responsible
for artifacts. Of course, the same role may be performed in a given project by many
people, and, conversely, one person may perform many roles. At the outset of the project,
the BES SWE included 24 roles, as listed in Table 1, divided into four categories.

In order to facilitate the roll-out of the role definitions to all Bombardier Tran-
sportation software engineering sites, it was decided that the coverage analysis and
subsequent improvements to the role definitions would be founded on internationally
recognized reference documents. Notably, this was viewed as a way of adding
credibility to the improved role definitions without giving the impression that one
software engineering site was imposing its role definitions on the other sites. The
selected reference documents were IEEE/EIA Standard 12207.0-1996, Standard for
Information Technology–Software Life Cycle Processes [4], the IBM Rational Unified
Process (RUP) [5]3 and the Guide to the Software Engineering Body of Knowledge
(SWEBOK Guide) [6]. Each reference document is briefly described below.

1.1 IBM- Rational Unified Process

The IBM-Rational Unified Process (RUP) is a commercial object-oriented process
framework for software development4. It includes a set of roles, activities, workflows
and artifacts which describe the who, the how, the when and the what of a software
development process. It can be tailored to company specifics and to various sectors
of the industry.

1.2 IEEE/EIA Standard 12207

The IEEE/EIA 12207.0-1996 Standard for Information Technology–Software Life
Cycle Processes is considered a key standard in terms of the definition of life cycle
processes. It has notably been designated as the pivotal standard around which the
Software Engineering Standards Committee (SESC) is harmonizing its entire collec-
tion of standards. This standard groups software processes into activities and tasks,
and these are organized into three categories: Primary Processes, which are divided
into Acquisition, Supply, Development, Operation and Maintenance; Supporting
Processes, which are divided into Documentation, Configuration Management,
Quality Assurance, Verification, Validation, Joint Review, Audit and Problem Re-
solution; Organizational Life Cycle Processes, which are divided into Management,
Infrastructure, Improvement and Training.

1.3 The SWEBOK Guide

The objectives of the SWEBOK Guide are to characterize the content of the software
engineering discipline, to promote a consistent view of software engineering
worldwide, to clarify the place, and set the boundary, of software engineering with
respect to other disciplines, and to provide a foundation for curriculum development
and individual licensing material. The SWEBOK Guide is a project of the IEEE

3 Version 2001A.04.00 of IBM RUP was used in this project.
4 See http://www-136.ibm.com/developerworks/rational/products/rup/

 Utilization of a Set of Software Engineering Roles for a Multinational Organization 39

Computer Society and has the support of numerous organizations5. The 2004 Version
is also published as ISO Technical Report 19759 [7].

In the next section, an example of how one specific role definition was analyzed
and improved based on the SWEBOK Guide is presented. The paper will also
describe how the set of roles was used during project planning and launch activities in
order to meet the specific needs of a particular project. A conclusion and ideas for
further work are presented in the final section.

2 Comparing the Role Definitions and the Reference Documents:
An Example

In the course of this project, every role definition was individually analyzed against
each of the three reference documents. An example of such an analysis for the

Table 2. Analysis of the Software Architect Role using the SWEBOK Guide as the reference
document

Role Name : Software
Architect

Presence of the Role : Accept

GAP :
Minor

RT :
Accept

P :
Modify

CR :
Accept

HS :
Modify

SS :
Modify

BES SWE SWEBOK Note

The Software Architect
establishes the overall
software architectural
framework. Thus, in
contrast with the other
Roles (ex. Software
Implementer), the
Software Architect’s view
is one of breadth, as
opposed to depth.

Chapter 3 : Software
Design
Software Structure and
Architecture
In its strictest sense, “a
software architecture is
a description of the
subsystems and
components of a
software system and the
relationships between
them”6.
An architecture thus
attempts to define the
internal structure –“the
way in which something
is constructed or
organized”7 – of the
resulting software.

The role of the
Software Architect as
and defined in the BES
SWE assumes the
activities stipulated in
subsection III, Software
Structure and
Architecture, of the Guide
SWEBOK

The SWEBOK is very
useful for improving the
hard skills needed for this
role.

5 Available free of charge on www.swebok.org and can also be purchased in book format from

the IEEE Computer Society Press.
6 Quotation from Chapter 6 of F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M.

Stal. Pattern-oriented Software Architecture – A System of Patterns, J. Wiley and Sons.

40 C.Y. Laporte et al.

Software Architect role using the SWEBOK Guide as the reference document is
found in Table 2. Such a table was completed for each role definition against each of
the three reference documents. The detailed improvements on the role definitions are
based on these tables. Table 2 is composed of the following cells:

• Role name: Name of the role in the BES SWE;
• OR: Overall recommendation on the presence of the role resulting from the

analysis with the reference document (Accept, Remove);
• GAP: Overall evaluation of the difference between the definition of the role in the

BES SWE and the definition of the role explicitly stated or implied in the reference
document. Possible values are: Major, Minor, No Gap.

• RT: Recommendation regarding the role title (Accept, Modify);
• P: in Recommendation regarding the role purpose section (Accept, Modify);
• CR: Recommendation regarding the core responsibilities section (Accept,

Modify);
• HS: Recommendation regarding the hard skills section of the role definition

(Accept, Modify);
• SS: Recommendation regarding the soft skills section of the role definition

(Accept, Modify).
• BES SWE: Excerpted text from the definition of the role in the BES SWE prior

to improvement.
• SWEBOK: Excerpted text from the SWEBOK Guide relevant to this role

definition and potentially useful for improving the definition of the role in the BES
SWE.

• Note: Indications on how to improve the definition of the role based on this
comparison.

The improved definition of the Software Architect role after the comparison with the
three reference documents is found in Table 3 (proposed improvements are in italics).

Table 3. Definition of the Software Architect Role (proposed improvements are in italics)

Purpose:
The Software Architect establishes the overall software architecture. Thus, in
contrast with the other Roles (e.g. Software Implementer), the Software
Architect’s view is one of breadth, as opposed to one of depth.

The Software Architect is responsible for articulating the architectural vision,
conceptualizing and experimenting with alternative architectural approaches,
creating models and components, interface specification documents, and
validating the architecture against requirements and assumptions.

Activities in this area include the creation of technology roadmaps, making
assertions about technology directions and determining their consequences for the
technical strategy, and hence architectural approach. This role involves not just
these technical activities, but others that are more political and strategic.

7 Quotation from the Oxford Dictionary.

 Utilization of a Set of Software Engineering Roles for a Multinational Organization 41

Table 3. (continued)

Core Responsibilities:
o Derive the requirements for the system and software architecture.
o Identify the key design issues that must be resolved to support successful

development of the software.
o Generate one or more alternatives and constraints for the architecture and

select a solution.
o Allocate the software and derived requirements to the chosen architecture

components and interfaces.
o Maintain requirement traceability for the software architecture’s

requirements.
o Describe the software architecture by capturing the design results and

rationale.
o Identify appropriate derived requirements that address the effectiveness and

cost of life-cycle phases following development, such as production and
operation.

Hard Skills:
o Ability to identify technical project risks based on the software architecture

model.
o Ability to perform software modeling and architecture conception/definition.
o Ability to perform conceptual product design, and specify a software

architecture and implement a software system embodying it.
o Ability to apply modeling techniques such as use case, and other techniques,

using the UML notations.
o Ability to apply Architectural Styles, Reference models and Reference

Architectures.
o Ability to specify structural descriptions with techniques and notations such

as: Architecture Description Language, Class Responsibility Card, Entity
Relation Diagram, Interface Description Language, Jackson structure
Diagrams and Structure Charts.

o Ability to specify behavioral descriptions with techniques and notations such
as: Program Design Language PDL, Data Flow Diagram DFD and
Flowcharts.

o Ability to use computer-aided software engineering (CASE) tools in an
architecture-driven design process.

o Knowledge in concepts of structural patterns such as layers and client/server,
mechanisms such as brokers and bridges, and middleware such as CORBA ,
DCOM, RMI.

o Knowledge in operating system architectures, compiler and interpreter
design, and Real-time and Embedded Systems.

o Ability to perform software engineering activities across the full development
cycle, including analysis, design, implementation, testing and documenting.

o Understand the business context of Bombardier Transportation and its
competitors, their products, strategies and product generation processes.

42 C.Y. Laporte et al.

Table 3. (continued)

Soft Skills:
o Flexibility: The ability to adapt and deal with situations and manage

expectations during periods of change.
o Sound Business Judgment: Know the business purpose of a project and make

decisions within that context.
o Exhibit several communication styles: Be able to recognize a person’s

communication style and adapt to it.
o Active listening skills.
o Setting and managing expectations.
o Conflict resolution.
o Have the ability to make critical decisions under pressure.

Table 4 and table 5 illustrate examples of how the consolidation and final decision
of a few roles were formalized. For the software architect role, there were only minor
gaps in both 12207 and SWEBOK. It was decided by Bombardier Transportation to
keep the role and add the information gathered when performing the gap analysis.

Table 4. Examples of consolidation of analyses regarding the presence of the role8

RUP IEEE 12207 SWEBOK Role name
GAP OR9 GAP OR GAP OR

Project Manager N A m A m A

Safety
Representative10

N/A N/A M A N/A N/A

Software
Architect N A m A m A

Software
Engineering
Manager

M R M R N A

Software
Implementer N A m A M A

Table 5. Examples of consolidation of decisions regarding the presence of the role

Role name
Global

recommendation
of the study

Decision regarding the
presence of the role by

Bombardier
Transportation

Rationale for
the decision

(when
relevant)

Project Manager A A

Safety
Representative

A A
Important role
in the context
of Bombardier

8 Legend: M = Major ; m = minor ; A = Accept ; R = remove ; N = none ; N/A = Non

Applicable.
9 Overall recommendation.
10 Safety functions are not covered in the IBM-RUP and are outside the scope of the SWEBOK

Guide.

 Utilization of a Set of Software Engineering Roles for a Multinational Organization 43

Table 5. (continued)

Software
Architect A A

Software
Engineering
Manager

A A
This role is
implied in the
CMM [8].

Software
Implementer Ap A

3 Utilization of the Set of Roles During Project Planning and
Launch Activities

Members of a new project usually have many concerns. In particular, they will have
concerns regarding the organization of the team such as: Who will be my team
members? Who will be the team leader? What will be my role and responsibilities?
What will be the team members' roles and responsibilities? Will my team members
have the skill and knowledge to do the project? Will we have all the skills to do the
project?

To address these concerns, an organization may hold a project launch. A project
launch is a workshop, usually led by a facilitator, in which identified project team
members either define the project plan, including activities, deliverables and schedule,
or walkthrough an already defined project plan. The project launch workshop could
last between one and three days, but, for a typical Bombardier Transportation project,
a one-day session is normally enough.

In order to illustrate the utilization of a defined set of roles, an example of a typical
project planning and project launch session will be described. The purposes of a
project launch session at Bombardier Transportation and are to:

• Define the project plan using an integrated team approach;
• Ensure a common understanding of objectives, process, deliverables, and role and

responsibilities (R&R) of all project team members;
• Provide for an information exchange and offer just-in-time training to the project

team members.

Before we present the example, an overview of the software engineering process
will be provided to give the reader a better understanding of the environment at
Bombardier Transportation.

3.1 Overview of the BES SWE

The BES SWE was inspired by and partially derived from the Rational Unified Process
(RUP)11. Illustrated in Figure 2, it provides a disciplined approach to assigning tasks and
responsibilities within a software development organization. Its goal is to ensure the
production of high-quality software that meets the needs of its end-users within a
predictable timeframe and budget. The BES SWE has two dimensions:

11 Version 2001A.04.00 of RUP was used.

44 C.Y. Laporte et al.

• The vertical axis represents processes, which are group of activities based on the
IEEE 12207 standard. This dimension represents the static aspect of the process,
that is, how it is described in terms of process items: processes/sub-processes,
activities and artifacts.

• The horizontal axis represents time and shows the Life Cycle aspects of the process
as it unfolds. This dimension represents the dynamic aspect of the process as it is
unfolds, and it is expressed in terms of Phases, Iterations, Milestones and Formal
Baselines.

To follow up on the set of roles described above, the Software Architect will be
primarily responsible for the sub process titled Software Architecture Design. As
illustrated in Figure 2, the Software Architect will have to participate in formal
reviews such as the Preliminary Design Review (PDR) and the Critical Design
Review (CDR). This role will also either lead or participate in reviews such as
Walkthrough and Inspection [9, 10].

Phases

Iterations

Proposal Planning Elaboration Construction Maintenance

Bid
#1

Bid
#2 Planning PDR CDR Rel

#1
Rel
#2

Rel
#3

Rel
#4

Maint
Rel #1

Maint
Rel #2

1.1 Supply

Process Utilization

2.1 Configuration
Management

2.2 Quality Assurance*
2.3 Verification & Validation

2.4 Joint Review
2.5 Problem Resolution

3.1 Management

3.2 Infrastructure

3.3 Improvement

3.4 Training

1
Pr

im
ar

y
L

ife
 C

yc
le

2

Su
pp

or
tin

g
3

O
rg

an
iz

at
io

na
l

Processes

System Requirements Analysis
System Architectural Design

Software Requirements Analysis
Software Architectural Design

Software Detailed Design
Software Coding and Testing

Software Integration
Software Validation Testing

System Integration
System Qualification Testing

Software Installation

Formal Baselines

Project Milestones
Bid

Decision NTP PDR CDR

Commissioning
FAI

Qualif

Customer
Final

Acceptance

* Under QA Responsibilities (AQ-203)

tcudorPqeR Dev Dev DevBid
Package

1.
2

D
ev

el
op

m
en

t

Bid
Release

Tailoring Proces
As-needed
Required

BES SWE - Life Cycle

Fig. 2. BES SWE Life Cycle process12

12 Legend: NTP: Notice to Proceed PDR: Preliminary Design Review

CDR: Critical Design Review Qualif: System Qualification
FAI: First Article Inspection Req:Requirement
Dev: Development Maint: Maintenance

 Utilization of a Set of Software Engineering Roles for a Multinational Organization 45

3.2 Typical Agenda of a Project Launch Session

At Bombardier Transportation, a project launch session is typically performed at the
beginning of a new project or at the beginning of an iteration. It can also be
performed, for an iterative development project, to prepare the next iteration. In this
case, it is called a project relaunch session. This intervention is also well suited in the

Table 6. Typical activities and timetable of a project planning and launch session (1 day)

TIME AGENDA ITEMS

08h30 Welcome, agenda review and participants’ expectations
• Logistics: time-keeper and recorder roles

09h00 BES Software Engineering Processes Overview

10h30 Software Project Management (SPM) process:
1. Identify/review all project inputs documents/information
2. Project scope, constraints and assumptions
3. Project iterations and associated objectives (imposed Milestones)
4. Project team structure and Role allocation
5. Project architecture (high level – SCI List)
6. Project tailoring and deliverables list (per iteration) [WBS]
7. Project staffing needs
8. Intergroup relationships and associated Roles and Responsibilities (context diagram

+ R&R table)
9. Project risk identification and analysis

12h00 Lunch
13h00 Software Project Management (SPM) process (continue):

1. Project tailoring and deliverables list (per iteration)
2. Project risk identification and analysis

14h30 Break
14h45 Software Development (SD) process:

1. Requirement definition: level, attributes
2. Requirement traceability relationships

15h00 Software Configuration Management (SCM) process:
1. Configuration Management (SCM) process:
2. Project Software Configuration Identification (SCI)
3. Project Baseline Plan (per iteration)
4. Development of baseline approach (including tagging)
5. SCM Audits, release management

15h45 Software Quality Assurance (SWQA) and Verification & Validation (SVV)
processes:

• Identify SQA activities and associated R&R

16h00 Software Infrastructure and Training:
1. Project Development environment
2. Project Validation/testing environment
3. Project System Qualification environment
4. Project training needs

16h30 Session wrap-up
17h00 End

46 C.Y. Laporte et al.

case where a project's performance and/or process needs to be improved, when a
project needs recovery, for example.

Depending on the size, complexity and type of project (e.g. new or modified/reuse,
safety critical, etc.), a typical project launch session ‘meeting’ will last for 1 or 2 days
at the same location. During a project launch session, it is important to have the team
members’ time 100% dedicated to this activity. In order to reduce office disturbance
(e.g. phone calls), the project launch session may be held outside the project team
office or building. Table 6 illustrates a typical timetable for a one-day project launch
session. As shown in the table, under the topic Software Project Management (SPM)
process, roles and responsibilities (R&R) are first discussed in item 4 and then in
item 8. R&R are also discussed under the topic Software Quality Assurance (SWQA)
and Verification & Validation (SVV) processes.

In many locations in Bombardier Transportation, R&R is informally allocated, and,
most of the time, there is no name associated with the set of activities performed by
an individual. In a few locations, some roles are partially defined. But, the name of
the role and its responsibilities varies from one location to another. It was essential to
be able to deploy a common software engineering processes to embed an R& R set in
the process. When a project launch was conducted, it was then only necessary to
mention that the R&R had been developed using internationally recognized
frameworks. Team members were then ready to proceed without arguments about the
names and responsibilities of the roles in the defined R&R set. Additionally, common
definitions of roles were essential when people from different sites had to work on the
same project. It was very easy for the project manager to prepare his staffing plan, as
we will show below.

3.3 Project Tailoring

During the project planning and launch session, one item for discussion is ‘Tailor the
Project’. The output from this tailoring activity will establish the project deliverables
and the activities needed to develop the deliverables. Also, using the list of defined
roles and responsibilities, roles for this project will be identified during the tailoring
activity. As an example, if there are Safety regulations (e.g. CENELEC Standard
EN5012813) imposed on a Project, ‘Software Verifier’, ‘Software Validator’ and
‘Software Safety Assessor’ roles will be identified. If, for the same project, software
has to be acquired from a supplier, then a ‘Software Acquisition Coordinator’ role
will also be needed.

3.4 Project Organization

Once the Project Manager has identified which roles are needed for his project, this
person will then select, out of the pool of resources available, the people for whom the
hard and soft skills have been identified. The project manager will again use the set

13 CENELEC EN50128 - Railway applications -Communications, signalling and processing

systems - Software for railway control and protection systems.

 Utilization of a Set of Software Engineering Roles for a Multinational Organization 47

of role definitions to select the individuals who have the required characteristics.
Without a defined set of role definitions, it would be harder for project managers to
perform this activity.

The project manager, having identified the individuals, can now fill in the Project
Organization Table, as illustrated in Table 7. If a few roles of a local development
center have already been defined, then, at this stage, the local role names will be used
for the local project plan.

Table 7. Subset of a Project Organization Table

Name of
team

member
Local
Title R

el
at

io
ns

hi
p*

SW
 P

ro
je

ct
 M

an
ag

er

SW
 T

as
k

L
ea

de
r

SW
 R

eq
. C

oo
rd

in
at

or

SW
 A

rc
hi

te
ct

SW
 I

m
pl

em
en

te
r

SW
 I

nt
eg

ra
to

r

SW
 T

es
te

r

SC
C

B

SW
 I

nf
ra

st
ru

ct
ur

e
A

dm
in

SW
 P

ro
ce

ss
 E

ng
in

ee
r

Greg … C ?

Per Software
Engineer

I X X X X X X

Michael Software
Engineer

I X

Annie Software
Tester

I

Guy Manager,
QA and
Test

E

Pierre Tech E

Notes about this table:

• * Relationship C: Customer representative. E: External resource. I: Internal
resource

This table contains only the list of Roles identified for a specific project after
tailoring. The Project Manager has to verify that at least one person has been
identified per Project Role. (i.e. each column needs to have at least one ‘X’). The
Project Organization Table (Table 7) is also used for the completion of the Project
Staffing plan. As illustrated in Table 8, the numbers in the cells represent the required
head count per Role for a given period within a Project Iteration.

48 C.Y. Laporte et al.

Table 8. Example of a subset of a Project Staffing Plan

Iteration #1

Requirement
Iteration #2

Release 1
Iteration #3

Release 2

Roles M
on

th
s

1
-3

M
on

th
s

4
-6

M
on

th
s

7
-1

0

M
on

th
s

11
 -

16

M
on

th
s

17
 -

20

M
on

th
s

21
 -

23

Software Project Manager 0.3 0.3 0.3 0.3 0.3 0.3
Software Task Leader 1 1 1 1 1 1
Software Architect 1 .8 .8 .5 .8 .5
Software Implementer –
Database

 1 1 1 1

Software Implementer –GUI 1 2 2 1

3.5 Training Plan

If individuals identified in the Project Staffing Plan do not have the required skills and
knowledge, a training matrix is generated (see Table 9) using, again, the information
obtained from the set of role definitions. The training matrix will be used to develop
the training plan for the project. Once the topic of the course has been identified, the
following information is entered in the table:

• In the “type” column, an indication as to whether the training session is a formal
course, self-training, lectures, from an external organization, etc.

• In the “iteration” column, an indication as to when the training will take place.
• In the “duration” column, an indication as to the length, in hours or days, of the

training session.

Table 9. Example of a subset of a Training Plan Matrix

Training Topics It
er

at
io

n

D
ur

at
io

n
[d

ay
]

M
an

ag
em

en
t

SW
 P

ro
je

ct
 M

an
ag

er

SW
 T

as
k

L
ea

de
r

SW
 R

eq
. C

oo
rd

in
at

or

SW
 A

rc
hi

te
ct

SW
 I

m
pl

em
en

te
r

SW
 I

nt
eg

ra
to

r

SW
 T

es
te

r

SW
 P

ro
ce

ss
 E

ng
in

ee
r

SW
 Q

A
 E

ng
in

ee
r

UML Modeling R2 2d X X X X
Peer Review R1 1d X X X X X X X X
Estimation R1 2d X X X

 Utilization of a Set of Software Engineering Roles for a Multinational Organization 49

Once the project is completed, a lessons-learned session is held to identify the
project’s strengths and weaknesses. One of the issues analyzed is human resources
(i.e. role allocation, skill sets, training). The output of the lessons learned exercise is
used to update the set of role and responsibility definitions and also to modify the
software engineering processes.

4 Conclusion

A project was conducted to improve the software engineering role definitions within
the software engineering process definition of a large multinational organization.
Detailed improvements were proposed to all role definitions, and an illustration of
these improvements was presented for the Software Architect role.

It was also demonstrated how, at Bombardier Transportation, software projects
tailor the set of roles to meet specific project needs. The utilization of the list of roles
was illustrated for a project planning and launch session. It was demonstrated how
roles and responsibilities were selected and allocated. Also, it was shown how the list
was used to prepare a staffing plan and a training plan. The set of roles has been used
in six project launch sessions. This has helped Bombardier Transport show to their
customers that a well defined set of software roles is implemented in their projects.
Customers are also very satisfied because the role set were developed using
documents such as ISO and IEEE Standards.

The use of standards has also reduced significantly discussions during the
deployment of processes; since employees and managers know the value and the
credibility of standards.

To deploy a common software engineering process in many sites around the world,
it is essential to embed a common set of roles and responsibilities in the process.
When a project launch is conducted, it is much easier to deploy the set of roles by
demonstrating that these roles have been developed using three internationally
recognized frameworks. Individuals are then ready to proceed without arguing about
the names of the roles or responsibilities assigned to, and the skills required by, each
role. Additionally, the common set of roles is essential when people from different
sites have to work on the same project. It is easier for the project manager to prepare
his project plan and his training plan.

As more remote Bombardier Transportation sites are putting their effort together to
develop and integrate software components, it is critical to have a common set of
roles and responsibilities. Bombardier Transportation is among a minority of
organizations that have documented these roles, as stated in a recent book [11]. The
author indicated that fewer than 65% of the organizations that he assessed had
documents describing roles and responsibilities.

As a result of the utilization of the role set, we have responded to the typical team
members' concerns, such as: Who will be my team members? Who will be the team
leader? What will be my role and responsibilities? What will be the team members'
roles and responsibilities? Will my team members have the skill and knowledge to
carry out the project? Will we have all the skills to carry out the project?

50 C.Y. Laporte et al.

References

1. Humphrey, W.: Introduction to the Team Software Process, p. 24. Addison Wesley,
London (2000)

2. Belkebir, Y.: Analyse et amélioration des définitions de rôles du processus d’ingénierie
logicielle du centre de compétence en génie logiciel de Bombardier Transport, Department
of Software and IT Engineering, École de technologie supérieure, Montréal (2003)

3. Laporte, C.Y., Bourque, P., Belkebir, Y., Doucet, M.: Amélioration de la définition des
rôles du processus de génie logiciel de la société Bombardier Transport. Revue Génie
Logiciel 72, 43–52 (2005)

4. IEEE/EIA 12207.0-1996 IEEE/EIA Standard Industry Implementation of International
Standard ISO/IEC 12207: 1995 (ISO/IEC 12207) Standard for Information Technology
Software Life Cycle Processes, Institute of Electrical and Electronics Engineers (1998)

5. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley, London
(2003)

6. Abran, A., Moore, J.W., Bourque, P., Dupuis, R. (eds.): Guide to the Software
Engineering Body of Knowledge. IEEE Computer Society Press, Los Alamitos (2004)

7. International Organization for Standardization. Software Engineering Body of Knowledge,
Technical Report ISO/IEC TR 19759 (2005)

8. Paulk, M., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model for software
version 1.1. Software Engineering Institute, CMU-SEI-93-TR-24 (1993)

9. Gilb, T., Graham, D.: Software inspection. Addison-Wesley, Wokingham, U.K (1993)
10. IEEE 1028-2002 Software Reviews, Institute of Electrical and Electronics Engineers

(2002)
11. Poulin, L.: Reducing Risk with Software Process Improvement, Auerbach Publications

(2005)

Software Verification Process Improvement

Proposal Using Six Sigma

Tihana Galinac1 and Željka Car2

1 Ericsson Nikola Tesla, Research and Development Center, Krapinska 45, HR-10000
Zagreb, Croatia

tihana.galinac@ericsson.com
2 University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3,

HR-10000 Zagreb, Croatia
zeljka.car@fer.hr

Abstract. In the rapidly growing modern telecommunications indus-
try, software quality and reliability requirements are in contrast to the
shorter time to market and higher complexity requirements dictated by
strong competition on the telecommunications market. In such a rapidly
changing environment, software development organization must improve
almost on a daily basis in order to achieve the operational excellence
which leads to business success. In this paper, an approach to the con-
tinuous improvement of the software verification process based on the
application of Six Sigma is given. More precisely, with the help of the
Six Sigma methodology, change management, and statistical tools and
techniques, the proposed approach solves the problem of fault slippage
through verification phases, which is particularly important in overlap-
ping project conditions. Success of the proposed process improvement,
proved using Six Sigma methodologies for a case study from a real in-
dustrial project, encourages wide and general application to any software
verification process.

1 Introduction

Significant research effort in software development during the last two decades
has been devoted to Software Process Improvement (SPI) [15]. It is mostly trig-
gered from industry [2]. The main problems faced by industry include rapid
the software development and shorter time to market requirements caused by
strong competition and new technologies. Consequently, final products are often
of lower quality and development and verification expenses are greater. This ef-
fect is especially emphasized in telecommunications software development, due
to its specific nature, as will be explained in Sect. 2.

Since software quality is measured with the number of faults, where fewer
faults imply significant savings in rework time and cost, SPI is mostly concerned
with the verification part of the software development process [14], [13], [1], [4],
[8]. This includes not only better fault detection, but also better fault prevention.

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 51–64, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

52 T. Galinac and Ž. Car

One of the main goals of software verification improvement is reducing fault
slippage through verification phases. It is also the main problem addressed in
this paper.

There are several SPI approaches. The International Standards Organization
(ISO) has established several standards for management of software quality [11],
[12]. Their quality assurance procedure is based on reviews and audits measuring
the ability of developers to fulfill the work assignments initially specified. The
Capability Maturity Model (CMM) introduces continual improvement on the
process management [6], [7]. The idea behind CMM is that independent assess-
ments can be used to grade organizations based on how well they create software
according to their definition and execution of their processes.

Nowadays, the importance of statistical methods and mechanisms is grow-
ing rapidly [5]. They are becoming very promising candidates for improving
process control by reaching higher production efficiency and maturity levels,
as well as early indicators of the need for changes in processes. However, due
to the complexity of organization, Quality Management goes far beyond only
statistics. Having that in mind, the Six Sigma approach [3] is a set of change
management skills, and quality and statistical knowledge, based on the Define,
Measure, Analyze, Improve, Control (DMAIC) methodology. One of the most
important aspects of the Six Sigma approach is its statistical base and statistical
process control which forms its integral part.

Originally one of the most successful approaches used in hardware production
processes [15], Six Sigma is becoming more and more interesting to the software
industry. However, as explained in [2], it is still unclear how to fully apply the
concept of Six Sigma to software development. In this paper, we present an
improvement proposal and show its successful deployment and further control,
obtained as an outcome of the Six Sigma project. The precise research framework
is given in Sect. 2.

The paper is organized as follows. In Sect. 2, we give an overview of the
software verification process by analyzing the problem and establishing a re-
search framework. Section 3 explains the problem in more detail and provides a
cost analysis that was used before improvement project initiation to encourage
investment. Furthermore, it deals with project execution, which includes defin-
ing, measuring and analyzing the problem, through logically elaborated steps
leading to the final solution. Finally, Sect. 4 presents an improvement proposal,
describes achieved benefits, provides a strategy for future process control and
gives guidelines for implementing improvements for the general case.

2 Research Framework

The case study of this paper was performed for an industrial project within a
development unit at Ericsson which aims to achieve business excellence through
continuous improvement programs. It deals with developing large scale soft-
ware for telephone exchanges forming network solutions for next generation net-
works. The development unit is a multinational organization consisting of four

Software Verification Process Improvement Proposal Using Six Sigma 53

dislocated design centers. A typical software development project, such as the
one studied in this paper, usually lasts 1 – 1.5 years and involves, on average,
300 engineers.

Since telecommunications software mostly provides real–time services for end
users one of the most important quality requirements when developing software
for telecommunications equipment, is reliability. On the other hand, due to the
rapidly evolving service functions offered to end users and the increasing num-
ber of end users, the requirements on functionality are becoming more complex
requiring more processing capacity. Due to the complexity of these kinds of prod-
ucts, their lifecycle is treated as separate versions of the same software product
line.

Moreover, in order to satisfy the contradictory requirements of high reliability
and frequent function delivery, the process of software product development is
an in–house developed model belonging to the incremental development model
class with waterfall increments [17]. As presented in Fig. 1, waterfall increments
consist of the following stages: network design, system design, function design,
software unit design and test, function test, system test and network test. The
process decomposition closely follows the hierarchy of the developed network.
A network solution consists of a number of physically separated network nodes
which communicate with each other via standardized network protocols. Net-
work nodes represent telephone exchanges consisting of hardware and software
parts, where the software part is a large–scale software package consisting of
a number of functions. Functions are implemented within logically separated
software structures and consist of several Software Units (SWU).

Fig. 1. Network hierarchy, design and verification phases

In the rest of the paper, we will refer to Early Verification (EV) and Late
Verification (LV) as shown in Fig. 1. Early verification activities are all verifi-
cation activities performed within a single design team. Thus, it consists of a

54 T. Galinac and Ž. Car

software unit test and part of a function test. All other verification activities
are considered late verification, since multiple design teams are involved and a
higher level of formalism is required. The reason for differentiating the two lies
in the big jump in fault removal expenses between early and late verification.

The incremental model which divides of the project into a certain number of
increments, allows different project phases, and even different projects on the
same product line, to overlap. This means that, although one or more devel-
opment increments/projects on the software product line may not be finished,
new ones from the same software base need to commence in order to keep their
position on the market and supply customers as expected.

The problem studied in this paper is the continuous increase in faults that
slip through from EV phases into LV phases. One of the reasons for this lies
in the fast development process applied, which uses a product line approach
where software is increasingly complicated from revision to revision and inherits
an increasing number of faults. However, besides the unavoidable increase in the
number of faults detected in a single product, in overlapping conditions, tremen-
dous work effort is needed to map these faults to its predecessor and successor
products. In the following sections, we present a Six Sigma–based approach to
the continuous adaptation and change of the verification process, thus reducing
the consequences of project overlapping and higher product complexity in order
to reach the customer expectations with minimal cost.

3 Implementation of the Six Sigma Project

In the rest of the paper, we follow the Six Sigma methodology described in
[3], to obtain verification process improvements solving the fault slip through
problem for our case study. The Six Sigma methodology used is DMAIC (define,
measure, analyze, improve and control phase) and our description is structured
accordingly.

3.1 Problem Definition

The Six Sigma improvement project is issued like every regular project with
assignment specification. It starts with a lot of meetings and conferences aimed
at gathering information needed to define the problem, identify customer needs,
and set problem goals and success criteria. Using this information, a Six Sigma
project charter document is prepared, approved and signed by the sponsor. This
document contains the problem/opportunity statement, the goal of the project,
the business case, the defined project steering group, the baseline and target
projects and the project plan. The duration of the Six Sigma project in our
case study was six months. The project team was composed of representative
members from four design centers participating in the development process of the
target project. Each member was responsible for locally driving and coordinating
Six Sigma activities in his own organization, with the help of a team borrowed
from the development target project if needed.

Software Verification Process Improvement Proposal Using Six Sigma 55

As explained in the research framework, the Six Sigma improvement project
in this case study was established with the goal of reducing fault slip through, i.e.
the number of faults detected during late verification. However, the Six Sigma
methodology requires goal definition to include a precise statement indicating
the expected benefit of the improvements. To verify goal fulfillment and improve-
ment success, we defined two success indicators. The first was an early control
indicator, referred to as early fault density EFD, which was used as control
indicator within the early verification process and was defined as

EFD =
total number of faults in EV

total modified volume
.

The second control indictor, referred to as fault slip through FST , was used for
goal verification at the end of the late verification process and was defined as

FST =
total number of faults in LV

total number of faults in the project
.

Based on our project goal, expressed as the percentage of faults which are de-
tected late, i.e. should have been found earlier, we established the precise values
of the success indicators that ensure goal fulfilment. When comparing the indi-
cators for the baseline and target projects, we used a hypothesis t–test of equal
means (Sect. 1.3.5.3 of [9]) with a null hypothesis

H0 : Success indicators for sample of baseline and target project are equal.

Equality of means would imply failure of improvement. In other words, success
of our improvement proposal is proved if the results imply rejection of the null
hypothesis.

The Six Sigma project skeleton was adapted to the project management model
while control of project progress was monitored through Project Steering Group
(PSG) meetings. The sponsor of the project is also the chair of the PSG meetings
and is responsible for the results achieved by the target project. The stakehold-
ers of the project are mainly responsible for line and project management, as
identified in the stakeholder map document, and basically form the PSG.

The define phase of our Six Sigma project started with several brainstorm
sessions with experts participating in the design and test parts of the process.
First, the Supplier, Input, Process, Output and Customer (SIPOC) diagram was
used to document the process at a high level and visually show the process with
respect to suppliers, inputs to the process, or services received by customers.

The next step was to identify in more detail the process map ’as is’. The
flow of events in the process was identified, as well as inputs and outputs in
every step. Critical process steps for final product quality were identified from
the complicated and detailed process map. Summarized conclusions were put
together in a Critical to Quality (CTQ) diagram, as depicted in Fig. 2. To deter-
mine which product and/or process requires the most attention, an evaluation
of CTQ branches, based on their effect, feasibility and priority was performed.
Using these evaluation criteria, the focus of the Six Sigma project was narrowed
down to the planning and control processes within early verification.

56 T. Galinac and Ž. Car

Fig. 2. Critical to quality tree

3.2 Data Collection and Analysis

The measure phase involved designing data collection plans, collecting data and
then using data to describe the process. Based on the detailed process map ’as
is’ the following basic and derived variables were selected for statistical process
measurement:

• modified volume Vmod,
• number of faults reported in early verification FEV,
• number of faults reported in late verification FLV,
• effort spent on early verification EEV,
• fault density in early verification FDEV = FEV

Vmod
,

• fault density in late verification FDLV = FLV
Vmod

,
• effort density in early verification EDEV = EEV

Vmod
.

All these variables were measured per software unit. The measurements were
performed on the baseline project and collected from different design centers
operating in four different countries. The measured sample of 200 SWU was
large enough to draw conclusions with statistical significance. The measurements
performed were the basis for quality analysis and solution generation. Once the
data was collected, classified and summarized the analyze phase began which
included graphical representations of all the measured variables per software
unit. All statistical techniques used in this paper are well known. Thus, instead
of recalling them here, we give precise and practical references from [9] or [10].

For all measured samples, an Anderson–Darling normality test (Sect. 7.2.1.3
of [9]) was performed to see whether the sample of data come from a popula-
tion with a normal distribution. The results showed that none of the measured
data samples were normally distributed. Since most statistical techniques require
normally distributed data, we performed transformations on the measured data
to obtain normal distributions. Using the Box–Cox transformation, for optimal
transformation parameter λ (Sect. 6.5.2 of [9]), we found that all of the measured

Software Verification Process Improvement Proposal Using Six Sigma 57

samples could be transformed to follow normal distributions using λ = 0 with
maximum correlation on the Box–Cox plot. In other words, in order to trans-
form our data into normality, we simply needed to take the natural logarithm.
After performing the Box–Cox transformation, i.e. taking the natural logarithm
of the data, the Anderson–Darling normality test was rerun and showed that the
transformed data indeed followed a normal distribution with a confidence level
of 95%, while the residuals were normally distributed. Now, having all the data
following normal distributions, we could continue to apply classical statistical
techniques. All the graphs bellow show relations between the transformed data.

In order to verify the reliability of the data collected, we performed several
hypothesis tests. We performed a Bartlett Test (Sects. 1.3.5.7 of [9]) and an
Analysis of Variance (ANOVA, Sect. 7.4.3 of [9]) between the various samples
collected from geographically distributed design centers developing parts of the
same software. This was done in order to verify our assumption that data came
from the same population. The Bartlett Test is a test for equality of variances
across groups, while ANOVA is an additional test for the equality of means. The
conclusion is that we can assume, with 95% confidence, that all the transformed
samples have the same variance and mean. Therefore, they come from the same
population and thus, the data is indeed reliable.

Next, we used correlation to determine the strength of linear relationships
between pairs of process variables. We calculated the Pearson product moment
correlation coefficient (Sect. 7.1 of [10]) for every possible pair of variables. In
Table 1, only correlation coefficients for those pairs having significant correlation
are displayed. From the correlation table, we drew three important conclusions
for further analysis. Variables that highly correlate with the number of faults
FLV detected in late verification were the number of faults FEV found in early
verification and the modified volume Vmod. Nevertheless, correlation with the
effort EEV spent on early verification could not be neglected. Another important
finding was that the number of faults detected in early verification was highly
correlated to the effort spent on fault finding activities and the modified volume.
This conclusion could be used to help plan early verification activities. Effort
spent on early verification was correlated to the modified volume of code because,
in the classical process, modified volume and expert judgment of complexity are
the only main inputs for planning the verification effort.

Next, we used linear regression analysis (Sect. 7.2 of [10] or Sect. 4.1.4.1 of
[9]) to find a linear model for the response variables, related to the number
of faults detected in late verification, and the predictor variables, related to
early verification. As shown in Fig. 3, the main result was that the highest

Table 1. Correlation table

FEV EEV Vmod

EEV 0.501
Vmod 0.522 0.394
FLV 0.642 0.410 0.624

58 T. Galinac and Ž. Car

contribution (41.2%) to explanation of variation in response variable FDLV was
achieved by predictor FDEV. The p–value in the ANOVA table (Sect. 7.4.3 of [9])
corresponding to that case indicates that the relation is statistically significant
with 95% confidence. The R2 value shows that the obtained linear model explains
41.2% of the variance of FDLV.

Fig. 3. Linear regression of fault density in EV and in LV

In perfect software production there would be no faults whatsoever and all the
points in Fig. 3 would tend towards the left bottom corner. Since ideal software
production is impossible to achieve, the most we can expect from our verification
process is to move the points in that direction as much as possible, or at least
make the slope of the fitted line as small as possible. That would mean that
the FST indicator, i.e. the ratio between late and early detected faults, would
change in our favor.

The next step of our case study analysis was to dig more deeply into the early
verification process and find the reasons for the huge variation of effort density
and fault density among different software units. We constructed a three dimen-
sional scatter plot shown in Fig. 4. It reveals relationships and/or associations
between three variables. The axes represent FDEV, EDEV and FDLV. These
three parameters were measured per software unit, where each point in Fig. 4
bellow represents one software unit.

In the scatter plot, we identified several groups of software units. For SWUs
in group 1 in Fig. 4 huge effort was spent per modified volume but not many
faults were found, in either early verification or in late verification. Group 2
show that no effort or minor effort, was spent per modified volume. As a result,

Software Verification Process Improvement Proposal Using Six Sigma 59

Fig. 4. Scatter plot of fault and effort density in EV and fault density in LV

not many faults were found in early verification, but many faults were found
in late verification. For Group 3, a huge fault density was observed in the late
verification phase, but with minor fault density in early verification. Scatter
plots are very useful diagnostic tool for determining the associations of data.
However, the plot rarely suggests and never proves an underlying cause and effect
mechanism. It is only the researcher who can conclude that causality exists. In
our case study, a team of engineers participating in the analyzing process drew
the following conclusions based on the results of the analysis:

• inefficient planning of early verification activities,
• lack of control procedures in early verification,
• faults slipped through from the previous/overlapping project,
• lack of target verification concentrating on critical functions,
• lack of coordination of all verification activities (including early verification,

such as code inspections and basic tests).

4 Software Verification Process Improvement Proposal

In this section, we propose improvements in the early verification process, give
the results obtained for the case study target project, and provide guidelines for
implementing improvements in similar processes.

60 T. Galinac and Ž. Car

4.1 Improvement Proposal

Based on the conclusions drawn from the analysis phase listed at the end of
the previous section, we propose improvements for the improve phase of the Six
Sigma project. The improvements are circled in Fig. 5.

Fig. 5. Early verification process improvement proposal

First, we suggest a so–called feature kick–off meeting at the beginning of the
verification process. Its purpose is to align the scope of all verification activities,
since various parts of the verification process are performed by different verifi-
cation teams. The need for this meeting was identified after several brainstorm
sessions performed within verification teams in different verification phases. The
main motivation was the fact that different verification phases focused on the
same high priority checks, but often, skipped secondary checks due to lack of
time, even though secondary checks often find several faults which can be very
dangerous if not verified. The kick–off meeting investigates the requirement cov-
erage matrix per planned test case, in the target project and analyzes the require-
ment coverage achieved in the baseline project. Furthermore, the best practices
identified in previous projects are noted. The outcome of kick–off meeting is
documented with a verification strategy that covers all the verification stages
and sets the requirement coverage.

Continuously adding new and enhanced features to existing software tends to
increase software unit complexity. Furthermore, software units already known
to be unstable, due to the number of faults detected in previous and overlap-
ping projects, can require more attention than others. Therefore, planning the
required level of effort and competence needs has to be based on history records,
measurements and knowledge regarding SWU behavior.

After analyzing the efficiency of different verification activities, we realized
that early verification is more efficient in overlapping project conditions than
non-overlapping ones. The fault removal cost increases with verification progress
and the number of overlapping projects due to mapping activities. Consequently,
early verification efficiency increases. The importance of early software (code)
inspections was already emphasized in [13]. The classical approach to early ver-
ification focuses on just one specified SWU at a time, checking coding rules and

Software Verification Process Improvement Proposal Using Six Sigma 61

logic. Our suggestion is to introduce multiblock code inspection which means
checking one feature at a time implemented within several SWUs and then re-
viewing their harmonic behavior over the corresponding interfaces. In order to
ensure successful multiblock code inspection, a special check list was prepared
which includes a list of the most critical issues identified in the past which are
easily solved using this technique. Of course, a history database still exists con-
taining all the problems reported in the past. However, the main benefit of the
proposed check list is to select and group the most critical ones regarding the
cost spent on their correction as function of the complexity of their repair.

Furthermore, a reaction mechanism in early verification is introduced. It is
an algorithm based on early verification input variables FEV, EEV and Vmod.
The output of the algorithm is the amount of additional effort, possibly zero,
which should be put into early verification activities. Finally, all the measured
data, during both classical and improved activities, is collected and stored in
well–defined databases which serve as the perfect input for quality criteria and
statistical process control.

4.2 Improvement Benefits in the Target Project

The same variables were measured in the target project as in the baseline project.
Furthermore, the EFD and FST indicators, defined during problem definition,
were calculated for both the baseline and target projects and are shown in
Table 2. When comparing the indicators, it is necessary that the total mod-
ified volume of the whole target project be large enough to secure statistical
significance of the conclusions. We used power and sample size techniques (Sect.
7.2.2.2 of [9]) to find the smallest percentage of increase of the EFD indica-
tor and decrease of the FST indicator, detectable with 95% confidence for the
size of the target project in our case study. These percentages are also given in
Table 2. It is important to mention that our data was transformed to follow
a normal distribution in order to apply power and sample size statistical tech-
nique. Consequently, the mean of the transformed data, when transformed back
into its original scale, is not equal to the mean of the original data.

Table 2. Comparison of EFD and FST indicators for baseline and target projects

Indicator Min. detectable change Change Saving/unit of mod. vol.

EFD 41% 214% 25.97 Eur
FST 3.3% 59% 10.24 Eur

Besides the increase of EFD and decrease of FST , in Table 2, also shows the
savings per unit of modified volume in the target project. These savings figures
were obtained after subtracting all the expenses of our Six Sigma improvement
project and all the additional costs of applying the proposed improvements. Ob-
serve that the savings predicted during early verification based on the EFD

62 T. Galinac and Ž. Car

indicator, are greater than the actual savings of the target project. The rea-
son for this lies in the improvements applied to early verification, making the
EFD indicator extremely high. Nevertheless, we feel that 10.24 Euro savings per
unit of modified volume in the target project of our case study is a significant
improvement.

4.3 Guidelines for Implementing Improvements in General

The improvement proposal given in this paper, which proved successful for the
case study, can be applied to any verification process in software development.
More importantly, the Six Sigma approach to continuous control and improve-
ment of processes in general, as explained in [3] can also be applied. Methods
and tools of Six Sigma used during our case study are given in Fig. 6.

Fig. 6. Six Sigma methodology

The Six Sigma methodology is a powerful strategy for improving produc-
tion processes in general. Historically, it was primarily applied to hardware pro-
duction processes where process measures are naturally and uniquely defined.
Here we present a case study applying Six Sigma to a large–scale software de-
velopment process, where it was necessary to carefully choose variables mea-
suring the process. The strength of Six Sigma lies in its strict sequence of
steps, its variety of different statistical techniques, its change management and
other tools (from brainstorming to regression analysis) and its data driven
conclusions.

Software Verification Process Improvement Proposal Using Six Sigma 63

5 Conclusion

This paper proposes a Six Sigma based approach to improve the development
process of large–scale software in rapidly changing environmental conditions with
unavoidable project overlapping. Classical planning and management approaches
based on traditional empirical data are insufficient. However, we found the Six
Sigma approach, having internal continuous control, to be very appropriate for
such dynamic conditions.

This paper deals with the verification process of incremental software devel-
opment models with waterfall increments. More precisely, the main goal was to
reduce fault slippage from early to late verification. This is an important issue
since late verification fault removal expenses in overlapping project conditions
are much higher than those in early verification.

In the paper, new improvements for the early verification part of the verifica-
tion process are proposed. They proved to be very successful in a case study of a
real industrial project executed in a big organization developing large–scale soft-
ware. Since most big companies use a variant of the waterfall software develop-
ment model, guidelines for implementing similar Six Sigma–based improvements
for the general case are given. The improvement strategy, and the new improve-
ments themselves, are widely applicable in the software industry. Therefore, they
are a large step towards business success and operational excellence.

References

1. Arul, K.: Six Sigma for Software Application of Hypothesis Tests to Software Data.
Software Quality Journal 12, 29–42 (2004)

2. Biehl, R.E.: Six Sigma for Software. IEEE Software 21, 68–70 (2004)
3. Breyfogle, F.W.: Implementing Six Sigma. John Wiley & Sons, Hoboken (2003)
4. Cangussu, J.W., DeCarlo, R.A., Mathur, A.P.: Monitoring the Software Test Pro-

cess Using Statistical Process Control: A Logarithmic Approach. ACM SIGSOFT
Software Engineering Notes 28, 158–167 (2003)

5. Card, D.N.: Statistical Techniques for Software Engineering Practice. In: Proceed-
ings of 26th International Conference on Software Engineering, pp. 722–723 (2004)

6. CMMI Product Team: Capability Maturity Model Integration (CMMI), v1.1 Con-
tinuous Representation. CMU/SEI-2002-TR-003, Software Engineering Institute,
Pittsburgh (December 2001)

7. CMMI Product Team: Capability Maturity Model Integration (CMMI), v1.1,
Staged Representation. CMU/SEI-2002-TR-004, Software Engineering Institute,
Pittsburgh (December 2001)

8. Damm, L.–O., Lundberg, L.: Using Fault Slippage Measurment for Monitoring
Software Process Quality during Development. In: ACM Proceedings of the 2006
International Workshop on Software Quality, pp. 15–20 (2006)

9. Engineering Statistics Handbook, http://www.itl.nist.gov/div898/handbook/
10. Hoel, P.G.: Introduction to Mathematical Statistics, 3rd edn. John Wiley & Sons,

New York (1962)
11. International Organization for Standardization: Quality Management Systems

– Guidelines for Performance Improvements, ISO 9004:2000, ISO publication
(December 2000)

http://www.itl.nist.gov/div898/handbook/

64 T. Galinac and Ž. Car

12. International Organization for Standardization: Quality Management Systems –
Requirements. ISO 9001:2000, ISO publication (December 2000)

13. Kollanus, S., Koskinen, J.: Software Inspections in Practice: Six Case Studies. In:
Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 377–382.
Springer, Heidelberg (2006)

14. Leszak, M.: Software Defect Analysis of a Multi–release Telecommunications Sys-
tem. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547, pp.
98–114. Springer, Heidelberg (2005)

15. Serrano, M.A.: State of the Art and Future of Research in Software Process Im-
provement. In: Proceedings of the 28th Annual International Computer Software
and Applications Conference (COMPSAC’04), vol. 01, p. 239 (2004)

16. Shao, J.: Mathematical Statistics. Springer Texts in Statistics. Springer, New York
(1998)

17. Vliet, H.v.: Software Engineering, Principles and Practice, 2nd edn. John Wiley &
Sons, Chichester (2000)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 65–80, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Development Improvement with SFIM

René Krikhaar1,2 and Martin Mermans3

1 Vrije Universiteit Amsterdam, The Netherlands
2 ICT NoviQ, The Netherlands

3 Philips Medical Systems, The Netherlands
Rene.Krikhaar@ict.nl, Martin.Mermans@philips.com

Abstract. Most industries are challenging to increase productivity of software
development. Often many process improvement activities are started with
enthusiasm, unfortunately most of these are less successful than forecasted or
improvements do not sustain for long. This paper presents the Seven Forces
Improvement Method, SFIM, which claims to overcome unexpected
disappointment in improvement results. SFIM is built upon different aspects
that influence the success of software process improvements, such as culture,
skills and organization. The method has been applied to improvement activities
in a large software department for a number of years. The success of SFIM is
compared with the compliance with the SFIM method. The paper shows that
application of SFIM increases the success rate of software improvement
activities in industry.

Keywords: Software Process Improvement, 7S model, Force Field Analysis,
CMMI.

1 Introduction

Healthy organizations are continuously looking for ways to better serve the customer
and improve their business in a never-ending cycle. Good is never good enough and
what is good today may become unacceptable tomorrow because of the ever changing
environment in which each organization operates. New technologies, merges with
other companies, changing customer demands, employees with fresh ideas, there are
numerous triggers for changing.

During more than a decade, most organizations use the Capability Maturity Model
(CMM) [Hum89] to control and measure software improvements. CMM provides a
framework consisting of Key Process Areas (KPA’s) with a kind of recipe in which
order the KPA’s have to be developed. For some reason this model does not work
properly in each organization. CMM mainly focuses on process, while other aspects
play a role as well, e.g. the factors that play a role during realization. When changing
an organization to establish an improvement, many more factors are influencing the
success. In general, it takes a lot of effort and energy of many people to achieve a
change.

A feeling of discomfort is rising in the software world. Only with great effort and
difficulty organizations move towards higher maturity levels. Most of them never

66 R. Krikhaar and M. Mermans

reach higher levels or when achieving a high level they have a large probability to fall
back to a lower level. After 15 years of CMM only 18% of the organizations that
report there CMM statuses to the SEI are at CMM level 4 or 5 [PMF05]. On the other
hand, organizations at CMM level 5 still suffer problems that one might not expect at
that maturity level such as projects that are still running late or providing unexpected
results. The main objective of this paper is to provide means to realize sustainable
software process improvements in an organization without restricting this to the
domain of software process only. Here, we will answer the following questions:

− Why do software process improvements often not sustain in an organization?
− Why are these improvements slowly (or not at all) progressing in an organization?
− What are the influencing factors in software process improvements?

In section 2, we discuss various change management models to improve an
organization. Two of the most influencing models, CMMI [CKS06] and 7S [PW82,
PA81, WP80], are compared with each other in section 3. In section 4, we introduce
the SFIM method, which encompasses good elements of multiple change
management models. In section 5, we discuss SFIM in the context of an industrial
case at Philips. In section 6, we discuss related work. Conclusions are drawn in
section 7 including some suggestions for future work.

2 Change Management Models

In this section, we will discuss organizational models, which support a change in an
organization. A lot of models have been published and still new models are developed
in research and they are applied in industry [VBM06, SPI05, HHSE03]. Some models
contain multiple viewpoints to address the organizational change. We will discuss a
few of them: MOON [WW02] addresses cultural and human aspects, EFQM
[HHH96] addresses quality in a full product lifecycle, CMMI [CKS06] identifies
various process areas, the BAPO model [HKN+05] addresses four viewpoints, TOP is
an integral development model [RHH06] and the 7S model [PW82] addresses seven
points of view. The scope of operation of the above models ranges from culture to
humans, from architecture to process and from skills to quality. We will shortly
discuss these models.

Associates for corporate change developed the MOON-scan [WW02]. (MOON is
a Dutch acronym, which means “Model Organizational Development Level”).
MOON classifies the development of an organization into four increasing levels:
‘reactive’, ‘active’, ‘proactive’ and ‘top-performance’. The model provides actions
based upon human and cultural elements to move to a higher level. This model
typically addresses the softer aspects of organizational improvement. MOON is
applied in some (Dutch) industry, however not widely known. Interesting is that
culture is one of the most important views in this model.

At the end of the eighties, the European Foundation for Quality Management
developed the EFQM model as a joint activity of 14 European organizations
[HHH96]. The EFQM model explicitly covers the ‘soft’ aspects of improvements
such as leadership, strategy, policy and people management and sees them as
important enablers for quality management in the whole product lifecycle. EFQM is

 Software Development Improvement with SFIM 67

applied in many European organizations. The model identifies a number of elements
that have impact on quality. Metrics play an important role in EFQM and less
attention is paid on causal analysis.

Software Engineering Institute developed the CMMI model [CKS06]. The
Capability Maturity Model Integration covers the various capabilities of a
development organization in 22 (CMMI version1.2) process areas. CMMI has a
staged and a continuous model. The staged model distributes the process areas over 5
maturity levels thereby indicating the order in which process area to improve first.
The continuous model puts all process areas on the same level and lets the
organization decide which one to address first. One of the success factors of the
staged model is the ability to compare maturity levels of organizations in an objective
way. Level 5 organizations have the (software) development process completely
under control and are able to improve in any direction they like. The industrial
success of CMM in the software community resulted in the CMMI model for system
development. CMMI is used all over the world in many different types of industry.

From engineering disciplines, we also know some models that put their activities in
a broader scope. BAPO is a model developed at Philips Research to address
Architecture (A) that fits in the context of Business (B), Organization (O) and Process
(P) [HKN+05]. BAPO is based on several years of experience in developing
architectures for large intensive software systems. Applying architecture without
having in mind the business, organization and development processes will not make
sense.

The TOP model identifies Technology, Organization and Process as dimensions in
which system engineering is active [RH06]. The key idea behind the TOP model is
that there should be a balance between Technology, Organization and Process for any
development activity, for example architecting or configuration management. In case
of introducing a new technology it should fit in the organization and process, which
may require adaptation in any of the three dimensions.

The 7S organizational model of Peters and Waterman distinguishes the hard and
soft aspects of an organization and divide them over 7 views with an “S” name
[PW82]. The hard S’s in the 7S model are:

− Strategy: the main objectives of an organization and the road to achieve them;
− Structure: the organization structure including the roles, hierarchy and

coordination;
− System: the formal and informal rules

And the soft S’s in the 7S model

− Style: the way one behaves and the way of cooperating;
− Staff: human resource matters like payment structure, education, motivation and

behavior;
− Skills: most important and distinguishing skills;
− Shared Values: the shared values or the culture of an organization.

From the above model, the 7S model puts attention to the widest range of issues.
With respect to the 7S model, the EFQM model also addresses many aspects, but does
not explicitly include the organization (structure in 7S). EFQM is focusing on steering
on some performance indicators instead of a thorough cause analysis. MOON only

68 R. Krikhaar and M. Mermans

addresses culture (relates to Shared Values in 7S). CMMI mainly focuses on
processes (relates to System in 7S) but also touches other aspects within the process
areas, which are further, discussed in the next section. Software process improvement
activities often mainly focus on process (as the term already indicates). We argue, as
we have experienced during more than a decade of working on software
improvements, that a single point of view will not result in success and/or will not
sustain. In Fig. 1, we summarize the discussed models from a process perspective
(gray areas related to more process focused elements).

Fig. 1. Change Management Models (CMMI not included)

3 CMMI and 7S Model

In this section we compare CMMI with the 7S model. We show the communalities
and differences that exist between the models.

CMMI distinguishes specific practices and generic practices. Specific practices are
different for each of the process areas of CMMI. Generic practices however are the
same for each process area and they determine the level of institutionalization that is
achieved over each process. Common features organize the generic practices:
Commitment to Perform, Ability to Perform, Directing Implementation, and Verifying
Implementation. In Fig. 2, we show relations (dashed lines) between CMMI (ovals)
and 7S (boxes).

The main focus of CMMI is on the System aspect and the prerequisites to make this
work such as skilled staffing and organization. Aspects of the 7S model: Strategy,
Style and Shared Values have to be in place but are not explicitly addressed in CMMI.
Improvement actions guided by CMMI often fail despite apparent presence of all the
prerequisites. Then the question arises: ‘why’ doesn’t it work.

 Software Development Improvement with SFIM 69

Fig. 2. Example of relations between CMMI and 7S model

The essence of the 7S model is that it specifically addresses the many different
aspects of the organization and it emphasizes harmonization. Every aspect has to be
aligned in the direction the organization wants to go. That might for instance be:
move towards higher CMMI levels, improve quality of the product etc.

What we also notice is that CMMI provides Guidance at mainly the lower maturity
levels. Even a Level 5 ‘continually improving process performance’ organization
needs guidance. In the next section we introduce our method that assists at any level.

4 SFIM: Seven Forces Improvement Method

In this section the Seven Forces Improvement Method (SFIM) is introduced. The key
principle of the SFIM method is to improve an organization’s performance in a
sustainable way. This can be achieved by iteratively applying all SFIM steps for each
Area of Attention. SFIM is heavily based upon existing successful methods and
techniques in the field of to organizational change methods: the 7S model and Process
Improvement models like CMMI.

SFIM starts with the identification of an improvement area. In organizations, it is
often outside discussion which areas should be improved. In general, an improvement
with a lot of management attention is a good starting point. For an improvement,
which we call Area of Attention (AoA), the SFIM method proposes the following
steps (see Fig. 3), inspired by the Deming Cycle (Plan-Do-Check-Act) [WD86].

1. Define the precise AoA objective. Be sure that the objective is SMART (Specific
Measurable Ambitious, Realistic, Time driven), meaning Specific, Measurable,
Ambitious, Realistic and Time-Driven.

70 R. Krikhaar and M. Mermans

2. Refine the AoA objective in terms of 7S. This means that the AoA objective is
defined per S in the 7S model. This should be complete in the sense that it
completely covers the AoA objective.

3. Analyze the 7S objectives with the Force Field Analysis technique [Lew51]. Force
Field Analysis is a technique to identify the driving forces and restraining forces
for a solution for a certain problem. The forces are identified for example in a
brainstorm session. These techniques provide insight in all forces and opens
possibilities to especially resolve the negative forces in an organization. This
results in a T-table with the driving and restraining forces below the left
respectively right part of the T.

4. Improve the organization; first focus on restraining forces. Starting with the hardest
issues will pay back in the end. We experience that in many improvements
restraining forces are ignored which results in non-sustainable results.

Fig. 3. Seven Forces Improvement Method

5 SFIM Case Study

We have applied the SFIM method in a development organization within Philips
producing software intensive systems. In this section, we provide some charac-
teristics, to be able to put the improvement activities as discussed in sections 6 in a
better perspective.

The development organization operates worldwide at three sites. During the past
ten years, the business has grown from about 100 systems to more than 500 per year.
Time to market plays an important role so does Quality. The organization reached
CMM level 2 in 1995, level 3 in 2002 (only software departments). Currently, we
estimate that the organization is more or less at CMMI level 2 for all development
departments.

About three hundred developers develop a highly innovative medical device.
Developers have backgrounds in various disciplines from engineering to medicine.
Innovative technologies are used to build from mechanical parts, hardware and
software a proper working system. The organization is structured in a matrix, project
management and line management. Line management is responsible for providing
skilled resources and for the long-term quality of the system. Project management is
taking care of running various projects in parallel. Each produces new functionality
on time.

 Software Development Improvement with SFIM 71

In this section, we describe the application of the SFIM method to the following
Area’s of Attention in the described organization: Project Planning, Monitoring and
Control and Software Quality. Other Areas of Attention, with and without SFIM
method, are briefly discussed in Section 5.3.

5.1 Project Planning, Monitoring and Control

Project Planning Monitoring and Control is an important process area of CMMI
(level 2). It addresses issues such as estimations, risk management and progress
tracking in order to control a project.

SFIM-Define: The organization wants to achieve mature Project Planning and
Project Monitoring and Control processes at CMMI level 2 within 2 years. Of course,
the main objective was to grow in process capability. Reaching CMMI levels is not a
goal in itself.

SFIM-Refine: To achieve this the organization needs a strong and explicit project
structure, with recognizable project management functions and roles and well-defined
authorities and responsibilities. The strategy to use CMMI as guiding model has to be
fully accepted and its consequences understood. Time was spent to convince leading
people in the organization. This resulted in fewer discussions in the organization
about the need for CMMI level 2. All people in a project management (operational)
role or alike must be trained in estimating planning, tracking and managing projects.
(Skills). The operational organizational axes should be sufficiently staffed with types
of people that do belief in, and also intend to use a sound project planning and
management approach. Management style should enforce starting projects or
activities only with full commitment of those involved. The quality Systems of the
organization should be adapted to support the project planning and project
management activities. Procedures and manuals should provide the operational people
with the right (level of) information to do their job well. The culture (Shared Values)
of the organization must belief in the benefits of a sound project management
approach and the added value of making plans.

SFIM-Analyze: The organization historically has a functional structure with many
leading people on the functional axis of the organization and many hierarchical layers.
There are several ‘single’ experts and they have to work on several projects in parallel
therefore. The project structure also has a very hierarchical project structure with
three or more layers: Project, segment and team layer. Project managers are organized
in a Project Management Office. Segment and team leaders are located in the various
departments of the development organization. Thus both the operational and
functional axes are strong resulting in a struggle for power and people blaming each
other for failures.

Within the organization the CMMI score is mentioned on the (one page) strategy
as one of the results to achieve. The organization however tends to do many other
improvement activities in parallel thereby not really following the essence of CMMI
(Staged) which is to take one step at a time and begin at the beginning. Two forces:
the one that tends to follow step by step approach of CMMI and the one that says do it

72 R. Krikhaar and M. Mermans

all at the same time. The risk of the latter approach is that the effort that is put on
changes on non-institutionalized processes is lost because the change did not sustain
or did not bring the expected benefits.

Skills: Because of the technical background of most people that fulfill a project
management role the calculations that are needed for creating schedules and the usage
of the applicable tooling is no issue. Sometimes the ‘soft’ skills need extra training
that is also provided. Standard courses on project management are provided to project
managers and segment leaders. Team leaders require skills in technical and project
management areas. People however who really have both skills tend to move onwards
to either a fully technical function or either an operational or line function and stop
being a team leader.

Lately the operational organization is staffed with more project managers, segment
leaders and team leaders. Typical of an organization that is moving from CMMI level
1 to 2 is the change in staff types that is needed. A CMMI level 1 organization
depends on its heroes. Types that do well in crises situations, led by gut feeling and
people that do not care too much about careful planning and data collection because
there is no time for that. Towards CMMI level 2 more of the latter is needed but even
at higher maturity levels sometimes projects still run out of control and need to be
rescued by the hero types. Opponents of the more structural working method that is
required might say: you see we need leadership not administration to run a project. If
this force becomes too strong this might result in putting the wrong type in the lead of
every project and not only on those that really require this (the ones that ran out of
control) and thus pulling the organization back to the CMMI L1 behavior.

We recognize two styles: ‘process’ style versus the ‘work hard; play hard’ style of
management: forget about the planning just do what you can and work as hard as you
can which of course does not help getting a proper planning and tracking process to
work. Both styles are still present in the organization’. A way of objectively
determining which style is winning would be to count how many projects start with
real commitment about the targeted end dates of the project. A process style of
leadership will only start projects with full commitment of those involved. The
organization still tends towards the ‘work hard, play hard‘ style and thus does not
benefit from reaching higher CMMI levels.

Systems: The organization had lots of Project Planning and Control procedures in
place and reduced them to one small procedure fulfilling the needs of the CMMI and
of the organization. The basic procedures and information are in place.

Shared Values: Within the organization it is really widely felt that plans should be
based on thorough estimations and that they should be realistic before any
commitment is given. On the opposite there are still some people who think that just
working as hard as you can, will get the job done faster no matter what the outcome
of the planning process is. Again these are two forces working in opposite directions.

The results of SFIM-analyze are visualized in Fig. 4. Dark gray means mainly
restraining forces in this view; light gray means forces are neutral (or no issues) from
this view and white boxes mean that there are mainly driving forces.

 Software Development Improvement with SFIM 73

Fig. 4. SFIM-Analyze Project Planning, Monitoring and Control

SFIM-Improve: The organization has already made some changes to bring balance
to the forces as mentioned above but still struggling with a few others. We considered
the structure related issue the strongest force and there are changes happening already.
Structure; the hierarchical line organization has been weakened already by merging
two departments. Removing a hierarchical layer is considered but not done yet.
Strategy; the organizations improvement is still focusing at many improvements at the
same time. The awareness about the guidance that a model like CMMI can give is
growing. Skills; training is now seen in the organization as an important driver for
improving the output of people. Staff; ‘Pushers’ are lesser valued; what remains is the
value for leadership in combination with good project administration keeping a
discipline. Style; Management no longer pushes projects to the limit and accept that
the impossible really cannot be done. Realism is the new key word. Projects do not
start until it is clear that it can be done. System does not require any change. Shared
values; Because of the change in management style people now dear to speak up in
case they think a project or an assignment is not realistic.

5.2 Software Quality

This section Area of Attention that concerns improving the software quality in a
sustainable way. In the mid 1990’s the software departments of the studied
organization were using coding standards consisting of several rules for the C
language and a proprietary C dialect. Compliance with the coding rules was checked
with some tools (QAC [PR06] and dedicated house-made scripts) and by manually
reviewing the software. This way of working was successful for many years.
However, after a change of product’s operating system (from VMS to Windows) and
a move to another programming language (from C to C++), during a few years less
attention was paid to standards, so coding standards had to be introduced again. A lot
of new people joined the organization that did not have the tradition of writing coding
standard compliant code.

SFIM-Define. The main objective of this AoA is to introduce new coding standards
in the software organization that have to be followed by the programmers. To be
SMART in this sense, all the newly developed or modified software has to comply
with the coding standards before software is checked in into to code archive. The
rules only apply to newly developed code to have a realistic objective. Legacy code
that does not comply with the rules is not taken into account. Only software that
complies with the above objective may be considered in the daily build.

74 R. Krikhaar and M. Mermans

SFIM-Refine. The main Strategy behind the Software Quality objective is that it
should be measurable. The software developers have to learn the coding rules (and
rationale behind them) meaning that developers should have the right Skills for
writing “error-free” software. For this it is of major importance to have coding rules
that do not alter discussions (Style). In order to achieve this for a large group of
developers, it also requires a Shared value of delivering a product with high quality
software.

The organization, Structure, is built upon three dimensions: Line Management,
Project Management and Technical Management. Technical Management address the
technical aspects like what are the good rules to achieve high quality software. Line
Management is responsible for quality in the long term, taking care of personnel with
the appropriate skills and so on. Project Management is concerned to deliver a
product on time having the specified functions with good quality. All supported by
the right processes.

The above described organization structure requires to have the right people with
the right responsibilities (Staff). The balance in the three concerns, Line, Project and
Technique, has to be controlled by the right processes in the corresponding System.
For example, legacy code should be treated in a different way than completely new
developed components. In other words, coding rules should be applied with sense,
sometimes rules have to be ignored and/or modified to serve the general objectives.
Processes should be in place to change coding rules.

SFIM- Analyze: The organization is organized along three Structures: technical, line
and project management. The leading technical people are willing to invest in
software quality by means of coding standards; which is clearly supported by the line
managers who are “enforcing” the employees to follow the coding rules. Project
management is not always convinced about strict application of coding rules; however
they share the overall goals of the organization.

In the overall business Strategy, the product’s quality is very important. High
Quality Product is seen as one of the key selling points. Making software quality
measurable by a coding standard and provide tools to automatically check these rules
is supporting this business goal. Another positive impact, from strategic point of view,
is that any good practice is upgraded to a consolidated (written) procedure. The
organization is convinced that tools and processes walk hand-in-hand. Both tools and
processes are embedded in the Integrated Development Environment (also illustrated
in [BKP05]).

The organization is highly skilled in developing high tech products. A lot of
software programmers have however less experience in programming languages. This
becomes clear when certain coding rules are under discussion because not all
programmers understand the rationale behind rules. Especially (at time of
introduction) new software technology as C++, COM, C#, and .NET ask for more
education. Highly experienced staff is hired to implement and support the coding rules
and accompanying code-checking tools. The staff is supported by all kinds of
monitoring tools to measure the current status of software quality, tuned for different
“levels” of insight in coding standards. One software architect is championing the
quality topic, supported by different engineers who support engineers at different
levels (what is the rationale of this rule? Does this code comply with the rules? Can

 Software Development Improvement with SFIM 75

this code be checked-in into the code base?). All software engineers have an attitude
to deliver high quality results. In the area of software engineering the style of the
organization can be characterized as laissez-faire. Any initiative that makes
apparently sense is accepted, any bad practice will not be removed by any measures
of line management, but there may be forces from other engineers to remove it.

A System is operational for many years in the organization by means of a Quality
Manual, describing the procedures in development. New processes, based on best
practices, have been defined and engineers are really involved and aware of these
procedures. In case software is submitted to the code base it may only pass when it
did not introduce new violations in the code. For this purpose a quality database has
been implemented containing the whole history of coding violation in all code files.
Status is reported to quality assurance officers, line managers, software architects and
software engineers at the corresponding level of interest. An important shared value
in the organization is that they build the best system of the world. This value is
supported by the experience of an earlier usage of coding rules in engineering. In fact,
most people in the organization are convinced that quality can be made explicit and
measured. On the other hand, the organization has to deal with the culture of
discussing all decisions at any place at any time.

Fig. 5. SFIM-Analyze: Software Quality

SFIM-Improve: The above described S-in-7S describe the current status of the
software quality AoA. In the past we have improved on a number of points which are
briefly discussed below.

Structure: In various meetings and reports the value of coding standard compliant
code is made clear to project management. Also the short term, meaning during the
project’s lifetime, value of coding rules is made clear by bad practices from the past
and the ultimate impact on that project. This all resulted in some movement of project
management to adhere to all coding rules in order to enlarge the final quality of the
product. The restraining force at Structure level is diminishing.

Skills: Negative points of skills are partially solved by providing developer specialist
courses (Microsoft Certified Sw engineering). Checking coding rules to signal the
wrong programming attitude solves another part. Explaining the impact at the
person’s desk by expert helps to move into the right direction. We see that this costs a
lot of time, but results are achieved. In the past all developers followed a coding
standards course, which showed major acceptance. In the future we plan to organize
such a course again.

76 R. Krikhaar and M. Mermans

Style: Management is involved in quality by providing quality performance indicators
at a high level. A confidence factor is used to report results to managers [KJ03]. This
resulted in improved attention (of managers) to software quality.
Shared Values: A very hard point is to stop discussions that do not contribute to the
final result. Different organization wide workshops have been held to change this in
the organization. We experienced that this requires a long breath.

In general, the introduction of coding standards was a success. We explicitly
addressed the restraining forces at the different S’s of the model: Style, Structure and
Shared Values. Due to putting much attention to the Style aspect, management could
be involved. This also motivated people to accept a change in Sharing Values. By
embedding the processes in the integrated development environment, the organization
was able to embed Software Quality in a structure. More details are described
in [KJ03].

5.3 Other Areas of Attention

Many other improvement activities took place during the last decade in this
organization. Many improvement activities were successful which resulted in a CMM
level 3 in 2002. Nevertheless, the organization has many difficulties to keep this
maturity level and is working on getting CMMI level 2 for all development
departments (enlarging the scope). To illustrate SFIM, we discuss some major
improvement activities taking place during the last 6 years. Note that this set is not
representative.

System Testing (SFIM): the main objective of this AoA was to increase the
performance of system testing, resulting in higher quality systems. The Mean-Time-
Between-Crashes metric was defined to indicate the quality level of delivered
systems. All 7 elements in SFIM were addressed to increase the level of success.
Much attention was put on having a clear strategy for system testing, which was seen
as the most restraining force in this AoA. Other elements like Structure (a separate
group in the organization exists to address system testing), Staff (extra roles were
defined, e.g. a project’s test coordinator), Skills (people did follow test management
courses, a dedicated test method was introduced) and Systems (processes for
integration tests, alpha tests and beta tests are in place and well deployed) were in
right shape and pointing to the right direction. During the period of improvement less
attention was paid to Strategy change (although identified by SFIM). The main reason
was that it is hard to change this and more attention was paid to the other six
elements. The improvement activity was not successful in the sense that it did not
result in a sustainable way of testing systems. A lesson learned was that one should
stick to the most restraining forces to solve; otherwise the activity is doomed to fail.

Process Database (no SFIM): the main objective of this AoA was to introduce a
process database containing all kind of figures of projects in order to achieve better
results in future projects. For this AoA, the SFIM method was not applied. Much
attention was paid on the technology (tool) and processes to fill the process database.
At the end, the process database was filled for a number of projects and hardly anyone
was using the content of this process data for new projects (“my project is completely

 Software Development Improvement with SFIM 77

different from the previous ones”). After a few years, filling the process database was
not performed anymore, of course due to lack of a need for it. We have analyzed the
failure of this AoA. We may conclude that the Systems were addressed well, but there
was no Shared Value on this topic. Each project manager had his own new ideas
when a project started. Furthermore, Staffing failed, after a person left the
organization, there was no drive for replacement. The structure of the organization
hampered because the people who had to cooperate were distributed over different
organizational units.

General Structural System View (no SFIM): the main objective of this AoA was to
define a single structural view that is used by the different disciplines in development
(software, mechanics and hardware). After a number of attempts, this improvement
slowly progressed. The main reason for slow progress was the absence of a Shared
Value, but also the right Structure, people were not aware of responsibilities in
defining and using this structure.

Peer reviews (no SFIM): the main objective of this AoA was to structurally
introduce peer reviews of source code and documents. A very enthusiastic person was
introducing peer reviews, but there was no (technical) champion in the organization to
get the job done (Staff). A lot of bureaucracy was introduced which resulted in
resistance from engineers. For example, after each review, minutes had to be written
that did not introduce new facts. So the process (Systems) was not well thought off.

Use Case Introduction (no SFIM): the main objective of this AoA was to introduce
a method to close the gap between the user (represented by the marketing department)
and development. For this the Use Case approach from the object-oriented
community was chosen and adapted. The Use Case Introduction failed after a few
years of partial application. The main reason was that the marketing department was
not skilled to understand the Use Cases (which stem from software community).
Furthermore, the processes were not well defined and staffing was only properly
addressed by development (and not at marketing).

5.4 SFIM Conclusions

We have applied SFIM on three improvement activities, two of them more successful
than the third one. Non-SFIM improvement activities took place with different
success rate. In this chapter we discussed some improvement activities that could not
sustain in the organization. Unfortunately, we are not able to present exact figures of
success and failures of improvement activities.

We conclude from this chapter:

− SFIM should be applied without excluding any of the seven elements. The System
Testing AoA showed that relaxing the Strategy element resulted in a failure.

− In retrospect, we have analyzed a number of improvement activities in which we
could easily identify, in terms of SFIM, which elements were underestimated
during the organizational change. This provides us evidence for the SFIM method.

78 R. Krikhaar and M. Mermans

6 Related Work

In [WR94] the authors describe a software improvement program as performed at
Schlumberger in the nineties. They demonstrate various elements that have impact on
this program. The People-Process-Technology triangle is followed to describe the
various points of concern when improving. The P-P-T triangle maps more or less on
the earlier described TOP model. The paper states "Software process improvement
must involve the other parts of business with which software interacts, namely
marketing, hardware development, sales, manufacturing, etc.". It shows the impor-
tance to broaden the scope of software improvements. The authors indicate that
cultural change may be required however hard to achieve. Shared Values in the SFIM
method addresses the culture aspect. Looking at the discussed topics in this paper, we
see that in this industrial improvement program 5 or 6 aspects of the 7S model are
addressed although not explicitly referred to by the authors.

Siemens poses that a focus on quality lead to reductions in cycle-time, effort, and
costs and thus to business benefit [AP03]. Various activities took place to increase the
industrial strength of the company. Process, Quality and Test, Organization and
People, Architecture and Agility are discussed in this paper. All these improvement
activities lead to more focus on innovation (more time available for) and the long-
term success of the company. The paper describes some AoA’s that were addressed.
In each of them a number of the 7S elements were discussed but not explicitly
identified.

Dyba [Dyba05] investigated the effect of factors that influence SPI success. The
impact of the factors is determined by means questionnaires send to about 120
managers. The paper concludes that organizational culture is important rather than
entirely SW engineering tools and techniques. [Dyba05] did not address issues such
as organizational structure nor does it provide means to determine on forehand which
aspect to focus on primarily.

In [BMPZ02] 13 lessons learned are discussed during the 3 phases of their
existence: emphasis is put on data collection, a learning organization and change. The
lessons are grouped in: 1) Need for collecting project data, 2) Need for management
buy-in on the process, 3) Need for a focused research agenda and 4) Need for
continued staff support (on data collection). They provide some prerequisites for
process improvement as also SFIM proposes. The four lessons address Style, System
and Staff in the 7S model.

7 Conclusions

In this paper we have introduced the Seven Forces Improvement Method that is based
on the 7S model, Force Field Analysis techniques and best practices in software
development improvement projects in industry. We have applied SFIM in a large
software department for three major improvement activities. Furthermore, we have
analyzed some less successful improvement activities from the past having SFIM in
mind to learn from it.

 Software Development Improvement with SFIM 79

The major contribution of this paper is that we show that a wide range of factors
play a role in improving software development in a complex organization.
Furthermore, we proposed a technique to balance these various factors and how to
prevent you, as improver, from spoiling time on the wrong actions. We experienced
that a restraining force (e.g. the culture or structure of an organization is not in line
with the desired change) is more influencing than pushing activities in other areas
(e.g. only defining process guidelines in a quality system). This means that “easiest
things first” is not working, but more “hardest things first”.

From this we conclude, that software development improvements will not sustain
in an organization when forces, related to one or more of the 7S-es, are pushing in the
wrong direction (a restraining force). Meaning that, restraining forces have to be
tackled first to be successful. Smoldering restraining forces in the organization may
result in a fall back of an initially successful process improvement. In SFIM we
identified that Strategy, Structure, System, Style, Staff, Skills and Shared Values are
influencing the performance of software process improvements.

Future work: To increase the confidence in SFIM, the method should be applied in
other industries as well (we are challenging readers of this paper and we are willing to
discuss issues). Thorough analysis of more improvement stories (success or failure)
from a SFIM perspective may help to improve the method itself. Elaboration of the
SFIM method could also be achieved by more detailing the four SFIM steps.

Acknowledgement. We want to thank Hans van Vliet for his input on an earlier
version of this paper. This work was supported by ITEA SERIOUS (if04032).

References

[Hum89] Humphrey, W.S.: Managing the Software Process. Addison-Wesley Publishing,
London (1989)

[PMF05] Carnegie Mellon Software Engineering Institute, Process Maturity Profile, Software
CMM, 2005 Mid-Year Update (2005)

[CKS06] Chrissis, M.B., Konrad, M., Shrum, S.: CMMI 2 edn.(R): Guidelines for Process
Integration and Product Improvement, The SEI Series in Software Engineering (2006)

[PW82] Peters, T., Waterman, R.: In Search of Excellence. Harper & Row, New York, London
(1982)

[PA81] Pascale, R., Athos, A.: The Art of Japanese Management. Penguin Books, London
(1981)

[WP80] Waterman Jr., R., Peters, T., Phillips, J.R.: Structure Is Not Organisation in Business
Horizons (1980)

[VBM06] http://www.valuebasedmanagement.net/ visited (December 31, 2006)
[SPI05] SPIder working group integral SPI strategies, Modellen: wanneer wat (Dutch) (2005)
[HHSE03] ten Have, S.W., Stevens, F., van der Elst, M.: Key Management Models. Prentice

Hall, Englewood Cliffs (2003)
[WW02] Wanrooij, W.: Corporate Change: de weg naar topprestaties (Dutch), Scriptum (2002)

80 R. Krikhaar and M. Mermans

[HHH96] Hardjono, T.W., ten Have, S.W.: The European Way to Excellence: How 35
European Manufacturing, Public and Srvice Organizations Make Use of Waulit
Management, DGIII Industry European Commission (1996)

[HKN+05] Hofmeister, C., Kruchten, P., Nord, R., Obbink, H., Ran, A., America, P.:
Generalizing a Model of Software Architecture Design from Five Industrial Approaches,
Succeedings of WICSA (2005)

[RH06] Reek, E., Hulshout, A.: TOP: Technology Organization and Process (company report)
(2006)

[WD86] Walton, M., Deming, W.E.: The Deming Management Method, New York, Dodd
(1986)

[Lew51] Lewin, K.: Field Theory in Social Science. Harper Row, New York (1951)
[PR06] http://www.programmingresearch.com visited (December 30, 2006)
[BKP05] Bril, R.J., Krikhaar, R.L., Postma, A.: Architectural Support in Industry: a Reflection

using C-POSH, Journal of Software Maintenance: Research and Practice, 17(1) (2005)
[KJ03] en Krikhaar, R., Jansen, P. In zeven stappen naar een code standaard (Dutch).

Informatie (2003)
[WR94] Wohlwend, H., Rosenbaum, S.: Schlumberger’s Software Improvement Program,

IEEE Transactions on Software Engineering, 20(11) (1994)
[AP03 Achatz, R., Paulisch, F.: Industrial Strength Software and Quality: Software and

Engineering at Siemens. In: Proc. International Conference on Quality Software (2003)
[Dyba05] Dyba, T.: An emprical Investigation of the Key Factors for Success in Software

Process Improvement, IEEE Transactions on Software Engineering, 31(5) (2005)
[BMPZ02] Basili, V.R., McGarry, F.E., Pajerski, R., Zelkowitz, M.V.: Lessons learned from 25

years of process improvement: The rise and fall of the NASA Software Engineering
Laboratory, ICSE (2002)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 81–95, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SPI-KM - Lessons Learned from Applying a Software
Process Improvement Strategy Supported by Knowledge

Management

Gleison Santos, Mariano Montoni, Sávio Figueiredo, and Ana Regina Rocha

COPPE/UFRJ - Federal University of Rio de Janeiro
POBOX 68511 – ZIP 21945-970 – Rio de Janeiro, Brazil

{gleison,mmontoni,savio,darocha}@cos.ufrj.br

Abstract. Software development organizations recognize the importance of im-
proving software processes to enhance their competitive advantages. COPPE/
UFRJ software process research group has been providing SPI consultancy ser-
vices to the Brazilian software industry for more than two decades. In order to
support the SPI activities of the group, a SPI deployment strategy named SPI-
KM that is supported by Knowledge Management and has been developed
based on international and national reference models and standards. This paper
presents the SPI-KM strategy and the results of an empirical study executed
aiming to characterize the SPI initiatives that employed it. The study findings
are presented as lessons learned and their applications are discussed in different
organizations. We consider the adoption of the SPI-KM strategy and the lessons
learned as important knowledge to be appreciated during SPI initiatives aiming
to facilitate SPI deployment and to assure their success.

1 Introduction

Its necessary to drive the improvement initiatives based on organizational business
goals, i.e., a SPI deployment plan must be elaborated, executed and monitored aiming
to achieve these goals, to minimize impact on resources and to maximize return on
investments [1]. The significant time to fully implement an SPI initiative is often
considered too expensive for many organizations as they need to commit significant
resources over an extensive period of time. Moreover, SPI initiatives exhibit low
levels of adoption and limited success (the failure rate of SPI initiatives is estimated
as 70%) [11]. Therefore, there is a need of developing effective strategies to increase
processes’ maturity and capacity in software organizations.

COPPE/UFRJ software process research group comprises 2 PhD and 12 PhD and
master students of the Federal University of Rio de Janeiro. This group also has been
providing Software Process Improvement (SPI) consultancy services to the Brazilian
software industry for more than two decades. In order to support the SPI activities of
the group, a SPI deployment strategy named SPI-KM was developed based on
international and national reference models and standards. The SPI-KM strategy is
supported by Knowledge Management and has been applied in more than 30
organizations. The results of SPI-KM application are promising since all of the

82 G. Santos et al.

organizations that applied the strategy have been successfully assessed by official
appraisals and demonstrate positive impacts and benefits of their SPI initiatives.

This paper presents the main characteristics of the SPI-KM strategy and the results
of an empirical study aiming to characterize the SPI initiatives that adopted the strat-
egy. Through this study we were able to identify common problems that could jeop-
ardize SPI deployment supported by the SPI-KM strategy. The study findings are
presented as five lessons learned. To adduce how the problems pointed out have been
identified and overcome we discuss their occurrences during SPI initiatives in five
different Brazilian organizations.

The next section discusses the deployment of SPI initiatives and the maturity mod-
els CMMI and MPS.BR. Section 3 presents how Knowledge Management can sup-
port SPI. Section 4 describes the main characteristics of the SPI-KM strategy. The
findings of the empirical study executed are described in section 5. Finally, section 6
presents final considerations and points out future directions.

2 Software Process Improvement

Over the last years a consensus has emerged that an iterative process of assessment
and improvement of the software process is essential to increase understanding and
manageability of software development process, to ensure quality of the product, to
reduce costs and maximize productivity [6]. In order to reduce the time to assess and
introduce process changes, an adequate SPI infrastructure must be defined and im-
plemented. According to Krasner [19] a successful systematic SPI program requires:
(i) well defined objectives, (ii) a method for catalyzing and institutionalizing the SPI
program in an organizational setting, (iii) one or more goal/maturity model for guid-
ance, (iv) best practice examples and benchmarks to draw from, (v) an organizational
commitment to action in the form of an improvement roadmap that is defined, re-
sourced and followed, (vi) expertise in process diagnosis, culture change tactics,
process problem solving, etc, and (vii) a set of champions/change agents that can
sponsor, commit to and effectively implement a planned SPI program.

International standards like ISO 12207 [15], ISO 15504 [7] and software process
quality models like CMMI (Capability Maturity Model Integration) [8] were devel-
oped aiming to define the requirements of an ideal organization, i.e., a reference
model to be used in order to assess the maturity of the organization and their capabil-
ity to develop software.

Based on these standards and models, Brazilian industry and research institutions
have worked together during the last two years defining a Reference Model for Soft-
ware Process Improvement in Brazil (MR-MPS.BR) in order to enhance the maturity
of the processes of Brazilian software organizations and to improve the quality of its
products [9, 10]. Among the main goals of the MR-MPS.BR, the Brazilian Reference
Model was meant to be affordable for small and medium-sized companies. Therefore,
instead of having five maturity levels like CMMI, the model comprises seven matur-
ity levels in order to make possible for the company employees, managers and part-
ners to see the results soon. Moreover, the company can enhance the maturity of its
processes gradually and with less effort to go from a lower maturity level to the next
one. For each of these maturity levels, processes are assigned based on the ISO/IEC

 SPI-KM - Lessons Learned from Applying a SPI - KM 83

12207 standard and on the process areas of CMMI staged representation. Table 1
presents the mapping between the MR-MPS.BR and CMMI maturity levels.

Table 1. Mapping between CMMI and MR-MPS.BR Maturity Levels

CMMI
Maturity Level

MR-MPS.BR
Maturity Level

MR-MPS.BR Processes

2 – Managed G - Partially Managed Project Management, Requirement Management
 F – Managed Measurement, Acquisition, Configuration

Management, Quality Assurance
3 – Defined E - Partially Defined Training, Process Establishment, Process

Assessment and Improvement, Tailoring Process
for Project Management

 D - Largely Defined Requirements Development, Technical Solution,
Software Integration, Verification, Validation

 C - Defined Decision Analysis and Resolution, Risk
Management

4 – Quantita-
tively Managed

B - Quantitatively
Managed

Organizational Process Performance,
Quantitative Project Management

5 - Optimizing A - Optimization Organizational Innovation and Deployment,
Causal Analysis and Resolution

Recent research focuses on identifying factors that have a positive impact on the
deployment of SPI programs. For instance, Niazi et al. [12] identify that organizations
should pay particular attention to: awareness of SPI benefits, defined SPI deployment
methodology, experienced staff, higher management support, staff involvement, train-
ing, and others. Dybå [13] also executed an empirical investigation to identify success
factors of SPI deployment, for instance, business orientation and employee participa-
tion. In the context of Brazilian organizations, other factors have also been identified
[14] to have positive impact in the deployment of SPI initiatives, for instance, organ-
izational culture change, use of supporting tools, motivation, follow-up of deployed
process, and process alignment to organizational business strategies. Among other
facts, these studies have been considered and pondered while we defined the SPI-KM
strategy to be presented in the next sections.

3 Supporting SPI Through Knowledge Management

SPI deployment is a knowledge-intensive task since it requires different types of
knowledge regarding software processes (e.g. software processes models, best prac-
tices and lessons learned). Software processes models, for instance, explicitly repre-
sent knowledge about software development activities, but also the software products,
necessary resources and tools, and best practices related to software processes execu-
tion [23]. Therefore, efficient management of such knowledge supports organizational
learning and SPI deployment initiatives [24]. Another aspect to be considered is the
experimental, evolutionary and non-repetitive characteristics of the software engineer-
ing area [20], which means that there are approaches that work best in certain situa-
tions and it is necessary to tailor them in order to deal with new situations. Moreover,
unforeseen events may occur despite careful software project planning. This implies

84 G. Santos et al.

making constant choices among the many feasible options throughout the deployment
of SPI [21]. As a result, many software companies have recognized the importance of
administrating knowledge effectively, productively and creatively at both the individ-
ual and organizational levels [22]. The fact that most software development organiza-
tions are process-centered provides many benefits (e.g. process-centered knowledge
management systems can be designed to explicitly associate software process activi-
ties with knowledge necessary to execute it) [24]. Moreover, tacit and explicit mem-
ber’s knowledge regarding software processes are valuable individual assets that must
be captured and converted into the organizational level. This important knowledge
can be used to learn about the software process and to provide the means for imple-
menting organizational changes aimed to enhance business performance [25].

4 SPI-KM: A Software Process Improvement Approach
Supported by Knowledge Management

In order to support SPI deployment initiatives, we developed a strategy that has evi-
denced its feasibility and benefits over past well-succeeded SPI appraisals [16, 2].
The strategy consists of a set of defined phases that focus on specific issues related to
SPI initiatives’ deployment; it has the support of Knowledge Management and takes
advantage of the use of a Process-centered Software Engineering Environment
(PSEE). The strategy is depicted in the Figure 1.

Fig. 1. SPI-KM phases

4.1 SPI-KM Phases

Diagnosis: The strategy begins when the software organization aiming to enhance its
processes gets in touch with COPPE/UFRJ research group. At first, the organization
business needs and goals, the organizational culture, the SPI goals, the software
process reference model to be used and the level desired are identified with the

Diagnosis SPI Planning

International
Standards and

Maturity Models

Process
Definition

Training

Establishment of
Supporting

Infrastructure

Projects’
Execution

Mentoring

Knowledge
Acquisition

Acquisition of
Process Improvement

Recommendations

Assessment of
Process Improvement
Recommendations

Preparing the
Organization for

the Appraisal

Processes
Assessment

Organization
Culture and Needs

and SPI Goals

SPI Plan

Standard
Processes

Lessons Learned

Improvement
Requests

Improvement
Plans

Improvement
Plans

Taba Workstation
CASE Tools

Lessons
Learned

Lessons
Learned

Gap Analysis
Report Process

Asset
Library

Process
Asset
Library

 SPI-KM - Lessons Learned from Applying a SPI - KM 85

high-level management. The organizational unit that is going to take part of the SPI
initiative is also identified.

SPI Planning: During this phase, a plan for the SPI initiative is developed. This plan
comprises, among other things: (i) the consultant team that is going to be allocated
during the initiative, (ii) the organizational members to be trained, (iii) the schedule
for the trainings, (iv) the processes definition prioritization regarding organizational
goals and strategic needs, (v) creation of groups of work with designated
responsibilities, (vi) definition of supporting tools, infrastructure and operation
responsibilities, and (vi) the expected appraisal date. The SPI plan is reviewed at
predefined milestones (e. g., after a review of processes improvement recommend-
dations or after processes assessment).

Process Definition: It involves a series of meetings aiming to assess the organization
processes in order to identify their current state of practice. At this moment, a process
is defined trying to regard the activities that software developers in the organization
already deploy and trying to be adherent to the practices of the capability maturity
model level selected on the prior phase. If the company already uses a software
process, a gap analysis is performed to identify practices needed to accomplish de SPI
goal (e.g., required practices of maturity models). If the company does not have
defined software process yet, a new one is defined based on the consultancy
experience and lessons learned. Regardless the maturity model and the level selected,
a standard software process is always defined and institutionalized in the
organizational level. We are confident that the adoption of an institutionalized process
to guide projects execution since the initial phases of SPI initiatives is essential to
catalyze improvement changes and to make the SPI cycles faster. The Software
Engineering Knowledge Base available in Taba Workstation through the use of
Acknowledge CASE tool [17] provides valuable lessons learned and best practices to
improve the efficiency and correctness of the processes to be defined.

Training: In this phase training in Software Engineering methods and techniques are
provided to organization members. The training program is tailored to the
characteristics and needs of the organization and its SPI initiative; for example,
comprises the process areas of CMMI Level 3 or MPS.BR Level G processes (Project
Management and Requirements Management). Oftentimes, it includes training in the
software process defined, practices required by the capability maturity model and
tools to be used. Some training activities are also carried out along with mentoring
sessions during projects execution.

Mentoring: It takes place during projects execution and involves direct knowledge
transference to the organizational members. COPPE/UFRJ software engineering
consultants are present while the software developers carry out any particular process
activity for the first time, explaining how to execute that activity and the benefits
expected. This close contact between the organization members and the consultants
accelerates the learning process, increases the awareness of SPI benefits and
minimizes resistances to changes. The knowledge items of the Software Engineering
Knowledge Base help the consultant to support the activities of the organizational
member during the mentoring. Nevertheless, all the knowledge is always available to
any user of Taba Workstation.

86 G. Santos et al.

Knowledge Acquisition: It involves the acquisition of knowledge, from consultants
and organizational members, regarding software process activities and the SPI
initiative in order to allow the organizational knowledge preservation and dissemi-
nation. After collecting the knowledge, it is filtered, packaged, stored in an Organiza-
tional Knowledge Repository and made available to guide process executions and SPI
plans reviews. The support to knowledge management in Taba Workstation is
provided by Acknowledge CASE tool [17] which is integrated to all others CASE
tools in the environment.

Acquisition and Assessment of Process Improvement Recommendations: The
acquisition of processes improvement recommendations occurs in parallel with the
project execution. Process improvement ideas appear while developers get a better
grasp about the process. These improvement suggestions are collected and assessed
by the organizational process group and, if approved, it is incorporated into the
standard software processes and can influence future reviews of the SPI plans. People
affected by the changes are trained again and, new projects can use the new process.

Preparing the Organization for the Appraisal: The high management defines the
expected appraisal date and commits on all necessary resources in order to achieve the
SPI goals. To increase the success of the appraisal, two activities are executed during
the Appraisal Preparation Phase: the fulfillment of the evidence worksheet that is
going to be assessed by the appraisal team, and training the project members for the
appraisal interviews that will be carried out during the appraisal. Basically, the
worksheet contains the practices that an organization has to execute aiming to be
adherent to the selected level of the software process reference model, and under
these good practices the organization has to link artifacts that provide evidence of
these practices deployment in the organization. During this phase the consultants also
explain to the project members the different questions that are going to be made
during the interviews and how they are going to be conducted.

Processes Assessment: The improvements deployed assessment is important to make
evident the impact and benefits of the SPI initiative. Therefore, one of the
characteristic of the strategy is that an official appraisal constitutes the final milestone
of the SPI initiative.

4.2 Taba Workstation: Supporting the SPI-KM Strategy

The use of Taba Workstation, a Process-centered Software Engineering Environment
(PSEE) that supports software processes definition, deployment and enactment, is a
key factor of this strategy whose goal is to increase the processes’ capability of or-
ganizations through the suitable use of Software Engineering techniques in their soft-
ware processes aiming to enhance the software products quality and, thus, increase
organizational competitiveness. This environment has been developed by the
COPPE/UFRJ software process engineering research group in the context of an aca-
demic project and it is granted to software development organizations with no costs.

Taba Workstation provides support to a wide range of activities related to standard
processes definition, enacting and evolution, software projects planning and monitor-
ing (covering most Project Planning and Project Monitoring and Control process areas

 SPI-KM - Lessons Learned from Applying a SPI - KM 87

of CMMI and equivalent MPS.BR process), measurement and analysis, design ration-
ale related to technical solutions [18], requirements management and verification and
validation planning etc. It also integrates knowledge management activities within
software processes aiming to preserve organizational knowledge, and to foster the
institutionalization of a learning software organization [17].

5 Results of an Empirical Study of SPI Experiences that Adopted
the SPI-KM Strategy

The empirical study presented in this section aimed to identify common problems that
had to be coped with during the application of the SPI-KM strategy. The study was
conducted through a survey with SPI practitioners that participated in SPI projects
that adopted the SPI-KM strategy. Unstructured interviews were also used to better
understand the findings and also to characterise these findings in the organizations
where the SPI-KM approach were applied. To foster discussion, 5 cases that exem-
plify the findings are presented. We consider the adoption of the SPI-KM strategy and
the lessons learned as important knowledge to be appreciated during SPI initiatives
aiming to facilitate SPI deployment and to guarantee their success.

5.1 Methodology

At first we identified the COPPE/UFRJ members with experience in deploying software
process that were going to participate in the survey. 15 members were identified to take
part of the survey. The practical experiences of this group include SPI deployment in
more than 20 organizations, 3 of which have gone successfully through official CMMI
appraisals, 2 have gone successfully through official MR-MPS.BR appraisals and 2
have gone successfully through both official appraisals. All organizations have used the
same strategy as described in the previous section to plan and execute their SPI initia-
tives. Minor adaptations have been made while tailoring the strategy to the specific
needs and cultural aspects of the organizations. More than 7,000 staff-hours of consul-
tancy effort were spent during those SPI deployments. A questionnaire was distributed
among the participants; all questionnaires were returned with findings related to
difficulties identified during the deployment of software process. In order to obtain
objectivity in the survey, the questionnaire did not contain pre-identified items and the
participants answered the questionnaires with no contact to each other. After the return
of the questionnaires, the difficulties and success factors were categorized according to
the similarities of the findings. These findings and categories are described in [26].

Later, interviews were conducted with 4 of the most experienced consultants aim-
ing to identify the findings that had the most significant impact in the organizations
which have gone through official CMMI or MR-MPS.BR appraisals; 5 findings were
identified. At least 2 of these 4 consultants have played key roles in the deployment of
SPI-KM approach in the organizations. New unstructured interviews were conducted
to most of the consultants that implemented the SPI-KM approach in organizations
and also with key members of the organizations involved in the SPI deployment. The
interviewees were asked to talk about the SPI initiative and the organizational culture
on SPI. Last but not least, they were asked to identify how the occurrence of the 5
most significant findings was perceived and how their absence was overcome.

88 G. Santos et al.

Finally, the results of all interviews and questionnaires were analysed and we se-
lected the 5 most significant findings based on their impact to the SPI-KM approach
deployment. These findings were written as lessons learned to foster their dissemina-
tion. We also selected 5 organizations to exemplify how the lessons learned were
realized and how the problems were overcome. It does not mean, however, that these
lessons were not useful neither had not the problems been identified in other organiza-
tions. We have selected these organizations based on the impact of the lessons on the
SPI-KM approach deployment according to the interviews.

Organization A is the Brazilian unit of a large-sized international corporation that
develops and maintains web based, client-server based, data warehouse, business
intelligence and helpdesk systems. The initial SPI goal of the organization was to
achieve CMMI Level 2 and to be certified on ISO 9001:2000, and then, gradually
improve the processes aiming to reach higher levels of MPS.BR and CMMI models.

Organization B is a medium-sized Brazilian company concerned with software de-
velopment, maintenance, deployment and integration. Its SPI main goals are to im-
prove products quality and increase their productivity. Four cycles were defined:
achievement of the ISO 9001:2000 certification, achievement of MPS.BR Level F,
achievement of CMMI Level 3, and achievement of CMMI Level 5.

Organization C is a medium-sized Brazilian organization that develops
e-commerce systems. The organizational structure is defined based on similar types of
projects and common resources are shared by all teams, for instance, infrastructure,
support services, marketing and sales. Since 2004, this organization has invested in
SPI initiatives for increasing competitiveness and reaching higher maturity levels.

Organization D is a governmental agency responsible for executing electoral ser-
vices activities for the Brazilian Federal Government. Most of these activities are
supported by electoral systems developed by three organizational units. The SPI main
goal was to standardize the software process in its three electoral systems develop-
ment units.

Organization E is a large-sized Brazilian organization that provides services to
companies and institutions in different economic sectors (electrical, water and gas com-
panies and public sector). The main goals of the SPI initiative were to enhance organiza-
tion members’ competences, to increase their satisfaction and productivity, to increase
organizational competitive advantages and to acquire international customers.

5.2 Study Findings: The Lessons Learned

The following lessons learned were identified after the analysis of data from the sur-
vey and the interviews.

Lesson 1: SPI initiatives should effectively improve software processes - The SPI
must be established on a process improvement program which defines the strategies,
policies, goals, responsibilities and activities concerned with the achievement of
specific improvement goals. This program can span more than one complete cycle of
SPI. On each of these cycles actions should be taken to change processes so that they
are more effective and efficient to meet organization’s business goals.

Lesson 2: You will not succeed without a leader - SPI deployment implies the adoption
of new practices in the organization. Therefore, many barriers are encountered during

 SPI-KM - Lessons Learned from Applying a SPI - KM 89

SPI endeavor, for instance, organizational politics, lack of support and resources, lack of
knowledge and schedule pressure [4]. It is, therefore, very important to conduct SPI
initiatives appropriately aiming to overcome the inherent difficulties.

Lesson 3: Commitment is crucial - SPI literature [1] recognizes that without
commitment from all organizational levels to SPI the improvement goals will be
difficult to achieve. So, people involved with the SPI initiative must perceive the
benefits deriving from its deployment, and not only its costs.

Lesson 4: No brain, no gain - Once this difficulty is found in an organization, most of
the methods and techniques used to support software development and management
must be taught increasing the cost, difficulty and time to achieve the SPI goals.
Therefore, a capacity program for enhancing members’ knowledge eases the
employment of new practices in both project and organizational levels. This particular
type of training catalyzes knowledge transference and is considered to be one of the
pillars for creating a learning software organization.

Lesson 5: SPI is facilitated by software process infrastructure - Most organizations
with low maturity software processes do not have suitable infrastructure for SPI
deployment. Zaharan [5] defines two types of infrastructure to support process-related
activities and to sustain SPI actions: (i) organization and management infrastructure,
and (ii) technical infrastructure.

5.3 Discussion on the Lessons Learned

This section exemplifies how the lessons learned were realized in 5 organizations that
adopted the SPI-KM strategy and how the problems were overcome. Table 2 summa-
rizes the SPI-KM adoption by each organization. It also present the lessons learned
identified as relevant to the SPI initiatives goals.

Table 2. SPI-KM strategy adoption, lessons learned relevance and SPI cycles

Organi-
zation

Relevant
Lessons

Cycle SPI Initiative Goal SPI-KM
Use

Result

A 1, 4, 5 1 ISO 9001:2000 and
CMMI Maturity Level 2

Yes Achieved

 2 MPS.BR Maturity Level E Yes Achieved
 3 CMMI Maturity Level 3 Yes Not yet

B 1, 5 1 ISO 9001:2000 No Achieved
 2 MPS.BR Maturity Level F Yes Achieved
 3 CMMI Maturity Level 3 Yes Achieved
 4 CMMI Maturity Level 5 Yes Not yet

C 1, 2, 3, 4, 5 1 MPS.BR Maturity Level G Yes Not achieved
 2 MPS.BR Maturity Level D Yes Achieved
 3 CMMI Maturity Level 3 Yes Not yet

D 4, 5 1 CMMI Maturity Level 2 Yes Achieved
E 2, 3, 5 1 CMMI Maturity Level 2 Yes Achieved
 2 CMMI Maturity Level 3 Yes Not yet

90 G. Santos et al.

Lesson 1: SPI initiatives should effectively improve software processes - One
important factor we have observed is the SPI results monitoring to guarantee that the
initiatives are effectively improving software processes. SPI initiatives can be
monitored by defining performance indicators in order to ensure that process
performance is on track. Moreover, process monitoring and feedback mechanisms
must be established to support the use of feedback data to evaluate the payoff for
doing improvements [5, 3]. If SPI costs are viewed as an investment, then the payoff
is expressed in a temporally-shifted, return-on-investment (ROI) model [3].
Management indicators within ROI models of SPI include, for instance, measures of:
product quality, process quality, project predictability and customer satisfaction.
Nonetheless, some of the biggest payoffs of SPI are expressible in human terms, not
monetary units. They might involve: better job satisfaction, pride in work, an
increased ability to attract, retain grow experts that will innovate, company reputation
for excellence, etc [3].

Organization B used to gather quantitative data related to the execution of its soft-
ware projects even before the beginning of its SPI initiative. Analyzing this data we
could realize the relation between the adoption of specific software quality activities
and the time expended on rework along the projects [2]. Due to the non existence of
quality activities before the first SPI cycle, 44% of projects total schedule was spent
in activities related to rework. The adoption of quality assurance activities in the first
SPI cycle (9.2% of projects total time) reflected in 26.7% of time expended in rework
activities. In the third cycle, 10.8% of the time was expended in quality assurance
related activities and the rework ratio dropped to merely 7.3%. As a direct effect of
these achievements we can point out high management support to all SPI activities
and commitment to new SPI cycles, impressive collaborators’ satisfaction and signifi-
cant decrease of people turnover.

On the context of Brazilian industry, the focus of the MR-MPS.BR model is to en-
able a more gradual and suitable software process deployment in small and medium
size companies. We observed that SPI initiatives based on MPS.BR can be defined to
address more immediate organization’s business and improvement goals. In fact, the
Organizations A, B and C used this strategy of alternating MPS.BR and CMMI
evaluations while planning their SPI goals and so far, all of them accomplished good
results. Moreover, rating companies’ maturity considering more levels, not only de-
creases the cost and effort of achieving a certain maturity level, but also allows the
visibility of the results of the SPI initiative within the company and across the com-
pany’s boundaries in a shorter time when compared against other models, such as
CMMI.

Lessons 2 and 3: You will not succeed without a leader and Commitment is crucial -
These lessons are somehow related. One factor that was perceived to have influenced the
success of our SPI experiences regards to organization commitment (from lower level to
the higher one): it is very difficult to obtain organization members commitment to SPI in
some organizations. Another difficulty was to maintain the organization commitment
during all SPI cycles. In order to cope with this problem, SPI quantitative data related to
time, cost, quality and customer satisfaction were continuously communicated to high
level managers. So, managers could perceive the benefits deriving from the SPI
deployment, and not only its costs.

 SPI-KM - Lessons Learned from Applying a SPI - KM 91

According to our experience in several organizations, a leading group responsible
for promoting awareness of SPI and to support knowledge sharing among different
practitioners is crucial to the success of SPI initiatives. This group is sometimes a full
time resource with responsibility to manage the deployment and coordination of SPI
activities [5]. The group is also responsible for obtaining and sustaining high level
commitment with different management levels and project members during all SPI
deployments. In some organizations they are considered as real heroes, i.e., the SPI
leaders behaviors are highly prized, serving as role models for others in the
organization.

On the first SPI cycle, Organization C was not ready to endeavor in a SPI initia-
tive. The investment in training and mentoring was insufficient. Their customers were
not informed about the necessary involvement during project development required
by the SPI initiative. Moreover, higher management didn’t assign clear responsibili-
ties and didn’t consider the improvement program as high priority. Therefore, most of
improvement actions were ineffective due to lack of organization members’ commit-
ment. However, this first experience provided important lessons to planning the sec-
ond SPI cycle. On the second SPI cycle, the mistakes of the first cycle didn’t occur. A
new strategy was defined cooperatively with sponsors considering resource availabil-
ity and business goals. The SPI plan was elaborated in joint with consulting team
which pointed essential activities and established milestones to evaluate the progress
of the project. Organization members were also mobilized to participate proactively
and contribute with process improvement opportunities. All stakeholders were aware
of the importance and benefits of their involvement and of the SPI initiative. The
continuous training program was launched to improve knowledge level about how to
increase process quality and create awareness about continuous improvement. As a
result of this approach the organization successfully achieved its goal (to be evaluated
MPS.BR maturity Level D).

At the beginning of Organization E first SPI cycle, there was a great resistance to
perform the process activities, because the organization members were used to exe-
cute a process without many complex and important tasks, for instance, product and
process quality assurance activities. To deal with this resistance, all the activities were
executed with the support of an experienced consultant. This approach was effective
to train organization members in the process, tools and Software Engineering best
practices. This constant contact with organization members made them acknowledge
the benefits of the SPI benefits. Moreover, the mentoring during project execution
minimized the risk of giving low priority to other activities having priority over the
project activities. High level management support was also very important in this
aspect.

Lesson 4: No brain, no gain - The most relevant deficiency we have detected in
many organizations was the lack of knowledge in Software Engineering and Project
Management. Mentoring activities performed by specialists is part of our SPI strategy
as consultants and are carried out constantly during the whole SPI cycle, sometimes
on a daily basis. Mentoring activities, besides teaching engineering methods and
techniques, how to use CASE tools and how to execute the software process, also

92 G. Santos et al.

help consultants to enforce the benefits of the SPI program and the necessity of being
committed to the improvement goals.

During the second SPI cycle in Organization C, the project managers worked
together with consultants that acted like mentors aiming: (i) to avoid knowledge gap
about process tools and activities, (ii) to obtain continuous project management com-
mitment, and (iii) to stimulate contributions to process improvement. The mentoring
also offered support to execution of organizational process-related activities like con-
figuration management, product and process quality assurance. Some issues that of-
fered risks to the SPI initiative, including resistance to changes, were identified and
carefully treated by mentors. The project managers used to have a schedule-oriented
reactive behavior for solving most of the problems. During mentoring, the constant
presence of mentors was very important to enforce organizational policies and to
support project managers during process execution. Other direct related result from
mentoring besides huge knowledge transfer was the involvement of project manage-
ment regarding improving the process. When they recognized that something could be
improved, an improvement recommendation request was formalized and submitted to
the process group.

In Organization A, in parallel to the processes definition activity, training in Soft-
ware Engineering methods and techniques were provided to its members as lectures
on topics such as Software Engineering, Software Process, Knowledge Management,
Software Products Quality, Project Management, Configuration Management, Meas-
urement and Analysis, Requirements Engineering, Peer-review, Tests, Knowledge
Management and Function Point Analysis. All project managers, system annalists,
developers and SEPG (Software Expert Process Group) members were trained. After
the definition of the process more training session as lectures on the processes were
conducted. There was no strong resistance to use the new standard process, since
people in the organization was used to execute a defined process. The consultancy
efforts were concentrated on mentoring activities to coach the organization’s mem-
bers in the Taba Workstation and Software Engineering best practices. The mentoring
allowed concentrating efforts to guarantee the fast execution of the projects and to
guarantee that the activities were adherent to the maturity model practices.

In Organization D, training in CMMI level 2 process areas, in software engineering
concepts and in the process were important steps to minimize resistance and to obtain
general satisfaction during the SPI initiative in this company. Mentoring activities
were also performed along the execution of projects to support the accomplishment of
process activities and to support the use of Taba Workstation tools. This mentoring
was essential to motivate organization members, instead of stopping in the first diffi-
culty during process execution. In order to guarantee SPI institutionalization, to
minimize variation on the activities execution and to promote best practices dissemi-
nation, we provided support to the acquisition of process directives during the execu-
tion of mentoring activities throughout the projects. Once the directives were
acquired, a Knowledge Manager assessed each one of the directives and indexed it in
an Organizational Knowledge Repository. Dissemination of the assessed directives to
all the employees was achieved through regular trainings.

 SPI-KM - Lessons Learned from Applying a SPI - KM 93

Lesson 5: SPI is facilitated by software process infrastructure - In order to provide
an adequate software process infrastructure to software organizations, our SPI
strategy is supported by Taba Workstation that supports individual and group
activities and project management activities [14, 2]. All the 5 organizations presented
used extensively the Taba Workstation CASE tools. In several CMMI and MPS.BR
official appraisals, the Taba Workstation PSEE was reported as a significant strength
for the SPI deployments.

At the beginning of Organization B second SPI cycle the organization decided not
to use any CASE tool to support the process deployment, including Taba Work-
station. This was supposed to decrease the impact during the initial stages of its proc-
ess deployment. But difficulties to manage the project pointed out that a CASE tool
was necessary to support the process utilization and, moreover, to support planning,
control and execution of the project. Due to this fact, Taba Workstation utilization
was reconsidered and from this moment on it began to be used. In the beginning the
environment was used only to control software process workflow. Eventually all Taba
Workstation CASE tools started to be used to support each step of the process enact-
ment. Nowadays besides using the Taba Workstation, the Organization B developed
internal CASE tools to deal with specific characteristics and needs of its development
unit: a process management system, document management system and a workflow
system. The tight integration of these tools was reported as a significant strength for
its SPI program during the CMMI Level 3 appraisal.

6 Conclusions and Future Work

This paper described lessons learned from the application of the SPI-KM strategy by
COPPE/UFRJ software process research and SPI consultancy group. Nonetheless,
many problems may affect SPI institutionalization, e.g., high people turnover and
loosening of organization politics. Therefore, efficient mechanisms must be imple-
mented to assure that problems that can impact software processes institutionalization
will be addressed in a suitable manner. In order to efficiently maintain SPI deploy-
ments, it is important to manage software processes knowledge. By doing so, SPI
practices can be easily disseminated and evolved. Moreover, knowledge necessary to
sustain SPI programs is preserved, reducing the risks of losing important knowledge
due to people turnover. Our group has also observed that organizations face difficul-
ties to sustain SPI deployment results as time goes by. For instance, after succeeding
in a specific SPI initiative, difficulties emerged in some organizations due to stagna-
tion of its processes and infrastructure. Therefore, software organizations must con-
tinuously promote SPI changes aiming to enhance their competitive advantages and
guarantee survival.

The set of lessons learned presented in this paper will provide the means to refine
the SPI-KM strategy in order to ease the training of new members of the SPI practi-
tioners and to enhance the results of SPI programs executed by Brazilian software
industry. Also a new empirical study is being planned and will be executed in 2007
aiming to characterize success factors that have influence on SPI initiatives.

94 G. Santos et al.

References

1. Abrahamsson, P.: Commitment Development in Software Process Improvement: Critical
Misconceptions. In: Proceedings of the 23rd Int. Conf. on Sof. Eng, pp. 71–80 (2001)

2. Ferreira, A.I.F., Santos, G., Cerqueira, R., Montoni, M., Barreto, A., Rocha, A.R.,
Figueiredo, S., Barreto, A., Silva Filho, R.C., Lupo, P., Cerdeiral, C.: Taba Workstation:
Supporting Software Process Improvement Initiatives based on Software Standards and
Maturity Models. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) EuroSPI 2006.
LNCS, vol. 4257, pp. 207–218. Springer, Heidelberg (2006)

3. Krasner, H.: Accumulating the Body of Evidence for The Payoff of Software Process Im-
provement. In: Software Process Improvement, pp. 519–539. IEEE, NJ, New York (2001)

4. Niazi, M., Wilson, D., Zowghi, D.: A framework for assisting the design of effective soft-
ware process improvement implementation strategies. J. of Systems and Software 78(2),
204–222 (2005)

5. Zaharan, S.: Software Process Improvement – Practical Guidelines for Business Sucess.
Addison-Wesley, London (1998)

6. Allen, P., Ramachandran, M., Abushama, H.: PRISMS: an Approach to Software Process
Improvement for Small to Medium Enterprises. In: Proc. Of the Third International Con-
ference On Quality Software, pp. 211–214 (2003)

7. ISO/IEC 15504 – 1 Information Technology – Process Assessment, - Part 1: Concepts and
Vocabulary (2003)

8. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and
Product Improvement. Addison-Wesley, London (2003)

9. MPS.BR - Melhoria de Processo do Software Brasileiro, Guia Geral (v. 1.1) (in portu-
guese) (2006), Available at http://www.softex.br/mpsbr

10. Rocha, A.R., Montoni, M., Santos, S., Mafra, S., Figueiredo, S., Albuquerque, A., Mian,
P.: Reference Model for Software Process Improvement: A Brazilian Experience. In:
Richardson, I., Abrahamsson, P., Messnarz, R. (eds.) EuroSPI 2005. LNCS, vol. 3792, pp.
130–141. Springer, Heidelberg (2005)

11. Niazi, M.: Software Process Improvement: A Road to Success. In: Münch, J., Vierimaa,
M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 395–401. Springer, Heidelberg (2006)

12. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process Im-
provement Implementation: An Empirical Study. In: Software Process Improvement and
Practice 11(2), 193–211 (2006)

13. Dybå, T.: An Empirical Investigation of the Key Factors for Success in Software Process
Improvement. IEEE Trans. Software Eng. 31(5), 410–424 (2005)

14. Montoni, M., Santos, G., Rocha, A.R., Figueiredo, S., Cabral, R., Barcellos, R., Barreto,
A., Soares, A., Cerdeiral, C., Lupo, P.: Taba Workstation: Supporting Software Process
Deployment based on CMMI and MR-MPS.BR. In: Lecture Notes of Computer Science
(LNCS), presented at the 7th Int. Conference on Product Focused Software Process Im-
provement, Amsterdam, The Netherlands, pp. 249–262 (June 2006)

15. ISO/IEC 12207:2000 - Information technology – software process life cycle (2000)
16. Santos, G., Montoni, M., Rocha, A.R., Figueiredo, S., Mafra, S., Albuquerque, A., Paret,

B.D., Amaral, M.: Using a Software Development Environment with Knowledge Man-
agement to Support Deploying Software Processes in Small and Medium Size Companies.
In: 3rd Conf. Prof. Know. Manag. Exp. and Visions, Kaiserslautern, Germany, vol. 10. pp.
72–76 (April 10-13, 2005)

 SPI-KM - Lessons Learned from Applying a SPI - KM 95

17. Montoni, M., Santos, G., Villela, K., Miranda, R., Rocha, A.R., Travassos, G.H.,
Figueiredo, S., Mafra, S.: Knowledge Management in an Enterprise-Oriented Software
Development Environment. In: Karagiannis, D., Reimer, U. (eds.) PAKM 2004. LNCS
(LNAI), vol. 3336, pp. 117–128. Springer, Heidelberg (2004)

18. Figueiredo, S., Santos, M., Montoni, R., Rocha, A.R., Barreto, A., Barreto, A., Ferreira,
A.: Taba Workstation: Supporting Technical Solution Through Knowledge Management
of Design Rationale. In: Reimer, U., Karagiannis, D. (eds.) PAKM 2006. LNCS (LNAI),
vol. 4333, pp. 61–71. Springer, Heidelberg (2006)

19. Krasner, H.: Accumulating the Body of Evidence for The Payoff of Software Process Im-
provement, Software Process Improvement, IEEE, pp. 519–539 (2001)

20. Lindvall, M., Frey, M., Costa, P., et al.: Lessons Learned about Structuring and Describing
Experience for Three Experience Bases. In: Althoff, K.-D., Feldmann, R.L., Müller, W.
(eds.) LSO 2001. LNCS, vol. 2176, pp. 106–119. Springer, Heidelberg (2001)

21. Oh, E., Hoek, A.: Adapting Game Technology to Support Individual and Organizational
Learning. In: Proceedings of SEKE’2001, Buenos Aires, pp. 347–362 (June 2001)

22. Kucza, T., Nattinen, M., Parviainen, P.: Improving Knowledge Management in Software
Reuse Process. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2001. LNCS, vol. 2188,
pp. 141–152. Springer, Heidelberg (2001)

23. Holz, H., Konnecker, A., Maurer, F.: Task Specific Knowledge Management in a Process
Centered SEE. In: Althoff, K.-D., Feldmann, R.L., Müller, W. (eds.) LSO 2001. LNCS,
vol. 2176, pp. 163–177. Springer, Heidelberg (2001)

24. Maurer, F., Holz, H.: Process-Centered Knowledge Organization for Software Engineer-
ing. In: Papers of the AAAI-99 Workshop on Exploring Synergies of Knowledge Man-
agement and Case-Based-Reasoning, Orlando, Florida, AAAI Press, Stanford (1999)

25. Decker, B., Althoff, K.-D., Nick, M., Tautz, C.: Integrating Business Process Descriptions
and Lessons Learned with an Experience Factory. In: Professionelles Wissensmanagement
– Erfahrungen und Visionen (Beitrage der 1. Konferenz fur Professioneles Wissensman-
agement), Schnurr, H.-P., Staab, S., Studer, R., Stumme, G., Sure, Y. (eds.) Baden-Baden,
Germany, Shaker Verlag, Aachen (March 2001)

26. Rocha, A.R., Montoni, M., Santos, G., Oliveira, K., Natali, A.C., Mian, P., Conte, T., Ma-
fra, S., Barreto, A., Albuquerque, A., Figueiredo, S., Soares, A., Bianchi, F., Cabral, R.,
Dias Neto, A.: Success Factors and Difficulties in Software Process Deployment Experi-
ences based on CMMI and MR-MPS. In: Proceedings of 8th Workshop on Learning Soft-
ware Organizations LSO’2006, Rio de Janeiro, Set pp. 77–87 (September 2006)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 96–107, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Organisational Readiness and Software Process
Improvement

Mahmood Niazi1, David Wilson2, and Didar Zowghi2

1 School of Computing and Mathematics, Keele University, ST5 5BG, UK
mkniazi@cs.keele.ac.uk

2 Faculty of Information Technology, University of Technology Sydney,
NSW 2007, Australia

{davidw,didar}@it.uts.edu.au

Abstract. The Capability Maturity Model Integration (CMMI) is a structured
representation of software development processes that can support an organi-
sation’s software process improvement (SPI) strategies. However, CMMI and
SPI initiatives generally exhibit low levels of adoption and limited success. One
of the major reasons for these shortcomings is that many organisations
undertake SPI initiatives without knowing whether or not they are ready to
undertake them. Our previous research has enabled us to develop a software
process improvement readiness model/framework to address this problem.

This paper reports on the implementation of the SPI readiness model in three
large-scale case studies. We have found that organisations with higher CMMI
levels are more ready for SPI initiatives than organisations with low CMMI
levels. We suggest that organisations at higher CMMI levels have developed
capabilities that enable them to further leverage SPI than organisations at lower
CMMI levels.

Keywords: Software Process Improvement, Case Study, Organisational
Readiness.

1 Introduction

Software Process Improvement (SPI) has been a long-standing approach promoted by
software engineering researchers, intended to help organisations develop higher-
quality software more efficiently. Process capability maturity models such as CMM,
CMMI [1] and ISO/IEC 15504 (SPICE) are SPI frameworks for defining and
measuring processes and practices that can be used by software developing organi-
sations. However, only a small number of software organisations have successfully
adopted SPI. SPI initiatives exhibit low levels of adoption and limited success [2].
Deployment is often not only multi-project, but multi-site and multi-customer and the
whole SPI initiative typically requires a long-term approach. It takes significant time
to fully implement an SPI initiative [3]. A recent report of the Software Engineering
Institute shows the number of months needed in order to move from one maturity
level of CMM to the next one [3]:

 Organisational Readiness and Software Process Improvement 97

• Maturity level 1 to 2 is 22 months
• Maturity level 2 to 3 is 19 months
• Maturity level 3 to 4 is 25 months
• Maturity level 4 to 5 is 13 months

Such time frames mean that the SPI approach is often considered an expensive
challenge for many organizations [2] as they need to commit significant resources
over an extensive period of time. Even organisations who are willing to commit the
resources and time do not always achieve their desired results. The failure rate of SPI
initiatives is very high, estimated as 70% [4; 5]. The significant investment and
limited success are reasons for many organisations being reluctant to embark on a
long path of systematic process improvement.

In order to improve the SPI implementation process, in our previous research, we
have developed a SPI implementation readiness model [6]. The objective of the SPI
readiness model is to assist organisations in assessing and improving their SPI
implementation readiness. In this paper we report on our evaluation of the readiness
model in three large scale case studies. The objective of this evaluation is to further
improve the readiness model and to observe the correlation between organisation
readiness and SPI maturity.

In this paper we have addressed the following research question:

RQ: Are organisations in higher CMM(I) levels more ready for SPI implement-tation
than organisations in lower CMM(I) levels?

This paper is organised as follows. Section 2 describes the background. Section 3
describes the research design. In Section 4 findings are presented and analysed.
Discussion is provided in Section 5. In Section 6 case study validity is discussed.
Section 7 provides the conclusion.

2 Background

Despite the importance of the SPI implementation process, little empirical research
has been carried out on developing ways in which to effectively implement SPI
programmes [2; 7]. Much attention has been paid to developing standards and models
for SPI. Also, organisations typically adopt ad hoc methods instead of standard,
systematic and rigorous methods in order to implement SPI initiatives [8]. This risk
can lead organisations to a chaotic situation with no standard for SPI implementation
practices. In the appraisal of SPI models, e.g. CMMI, the software process maturity of
the organisations is assessed. Little attention, however, has been paid to assess the SPI
implementation maturity/ readiness of the organisations. The assessment of SPI
implementation maturity/ readiness can help organisations in successfully implement-
ting SPI initiatives. This is because the readiness of the organisations for successfully
implementing SPI initiatives could be judged through this SPI implementation
maturity. We have focused on these issues and developed a SPI readiness model (as
shown in Figure 1) in order to assess the SPI implementation maturity/ readiness of
the organisations [6]. The CMMI perspective [1] and the findings from our previous
empirical study [9; 10] were used in the design of the SPI readiness model. The SPI

98 M. Niazi, D. Wilson, and D. Zowghi

readiness model has four SPI implementation maturity/ readiness levels abstracted
from CMMI. These maturity levels contain different critical success factors (CSFs)
[11] and critical barriers (CBs) [10] identified through the literature and interviews.
Under each factor, different practices have been designed that guide how to assess
and implement each factor.

2. Managed

3. Defined

1. Initial

4. Quantitatively
Managed

5. Optimizing

1. Initial
Chaotic SPI
implementation
process

2. Aware
Awareness of
SPI process

3. Defined
Systematic structure and
definition of SPI
implementation process

4. Optimizing
Structures for
continuous
improvement

CMMI

SPI Implementation
readiness model

Fig. 1. SPI implementation readiness model [6]

3 Study Design

The case study method was used because this method is said to be powerful for
evaluation and can provide sufficient information in the real software industry
environment [12]. The case study also provides valuable insights for problem solving,
evaluation and strategy [13]. Since the SPI readiness model is more applicable to a
real software industry environment, the case study research method is believed to be a
more appropriate method for this situation.

Real life case studies were necessary because they:

 Showed that the SPI readiness model is suitable or will fit in the real world
environment.

 Highlighted areas where the SPI readiness model needs improvement.
 Showed the practicality and usability of the SPI readiness model use.

 Organisational Readiness and Software Process Improvement 99

To provide more confidence in this study, three separate case studies were
conducted at three different organisations. Organisations were selected for case
studies because they provided especially rich descriptions of their SPI efforts and
because they agreed to release the case studies results.

Initially, we talked to each participant face-to-face, explained what the case study
was about and handed out a hard copy of the SPI readiness model. The participants
also contacted us through emails to solicit more information about the use of the SPI
readiness model. One participant from each organisation, who was the key member of
SPI team, was involved in each case study. The key participant communicated with us
through email and face-to-face discussion for one month in order to get a thorough
understanding of the SPI readiness model. Different components of the SPI readiness
model were explained and participants were encouraged to use this model
independently.

In each case study, a participant used the SPI readiness model and assessed the SPI
implementtation readiness of his/her organisation independently without any sug-
gestion or help from the researchers. At the end of each case study, an interview was
conducted with the participant in order to provide feedback about the SPI readiness
model. A questionnaire (available from the authors) was used as a means to structure
this feedback session. This questionnaire is divided into four parts: demo-graphic,
ease of learning, user satisfaction and structure of the SPI readiness model. Each
feedback session was an informal discussion and the questionnaire was filled out by
each participant. Each questionnaire was analysed qualitatively.

4 Findings

The three organisations in our case study are called “Organisation A”, “Organisation
B” and “Organisation C”. The assessment process for SPI implementation readiness is
described in [6].

4.1 SPI Implementation Readiness of Organisation A

Organisation A is an international organisation that provides consultancy and
information technology services to both the private and public sector, employing
10,000 professionals in Asia Pacific, Canada, Europe and United Sates. The main
purpose of the organisation is to enhance the efficiency and effectiveness of the
Information Systems prevailing in the public and private sectors by applying relevant
state-of-the-art technologies related to computer software, hardware and data
communication.

The following are some of the major areas in which Organisation A can provide
services to its clients:

 E-Business
 Enterprise Consulting
 Technology Consulting

100 M. Niazi, D. Wilson, and D. Zowghi

 Solution Delivery
 Application Portfolio Management/ Outsourcing

 Project Management

An SPI initiative was initiated seven years ago in Organisation A. The reasons for
initiating the SPI programme were:

 To reduce software development cost
 To improve management visibility in software development
 To increase productivity
 To improve the quality of the software developed
 To meet customer requirements

The SPI programme was initiated by the research division of Organisation A. The
research division has developed a standard methodology for software development.
During the development of this methodology special attention was given to the
requirements of the ISO 9001 standard and the CMM model. Organisation A is ISO
9001 certified and is currently assessed at CMM level 3.

The assessment results of Organisation A are summarised in Table 1. The key
points of this assessment are as follows:

 It is clear that Organisation A stands at Level-1 ‘Initial’ of the SPI readiness
model because two factors of Level-2 ‘Aware’ are not fully implemented in
Organisation A. In order to achieve any maturity level it is important that all
the CSFs and CBs that belong to that maturity level should have been fully
implemented. Table 1 shows that in order to achieve Level-2 ‘Aware’ the
Organisation A needs to improve two factors, i.e. senior management
commitment and staff involvement. Similarly, in order to achieve Level-3
‘Defined’ the Organisation A needs to improve 3 factors, i.e. Creating
process action teams, Staff time and resources and Time pressure.

 It shows that Organisation A has well defined training and SPI awareness
programmes.

 SPI activities have been assigned to experienced staff members.
 It is clear that a defined SPI implementation methodology is in use and
Organisation A managed to avoid organizational politics. The defined SPI
implementation methodology could be the reason that this organisation was
assessed in CMM Level-3.

 Organisation A has established some processes in order to review the
implementation processes

Organisation A is a relatively high maturity organisation with CMM Level-3. It is
surprising to see that Organisation A has not successfully implemented these factors
such as ‘senior management commitment’, ‘staff involvement’, ‘creating process
action teams’, ‘staff time and resources’ and ‘time pressure’. As these factors are
weak in organisation A therefore this organisation stands in Level-1 ‘Initial’ of SPI
readiness model.

 Organisational Readiness and Software Process Improvement 101

Table 1. SPI implementation readiness of organisation A

Readiness Level Critical success factors and barriers Status

Senior management commitment weak

Training and mentoring strong

Staff involvement weak

Awareness of SPI strong

Level-2 Aware

Lack of support strong

Creating process action teams weak

Experienced staff strong

Staff time and resources weak

Defined SPI implementation methodology strong

Time pressure weak

Level-3 Defined

Organizational politics strong

Level-4 Optimising Reviews strong

4.2 SPI Implementation Readiness of Organisation B

Organisation B is an international organisation that provides consultancy and
information technology services to both the private and public sector, employing
more than 2000 professionals in Australia and worldwide. The core business of the
organisation is to provide services in software development, system integration,
business innovation and business process improvement.

The following are some of the major areas in which Organisation B can provide
services to its clients:

 Business and IT services
 Business consulting services
 Infrastructure services
 Financing
 E-Business
 Project Management

The organisation delivers complex software systems to a number of clients. The
SPI programme was initiated five years ago in Organisation B. The main reasons for
initiating the SPI programmes were to:

 Reduce development cost and time to market
 Increase productivity and quality of the product

Organisation B adopted a CMM model for its SPI programme. According to self
assessment results, the organization’s process maturity was found to be in CMM

102 M. Niazi, D. Wilson, and D. Zowghi

Level 1. The process teams undertook different SPI actions in order to achieve
level 2, i.e. working on requirements management, software project planning and
software quality assurance etc. Using CMM-based assessment in 2001, the process
maturity was found to be in CMM level 2 with traces of Level 3. Now organisation B
is working to achieve level 3.

The SPI implementation readiness assessment results of Organisation B are
summarised in Table 2:

 It is clear that Organisation B stands at Level-1 ‘Initial’ because four factors
of Level-2 ‘Aware’ are not fully implemented in the Organisation B. Table 2
shows that in order to achieve Level-2 ‘Aware’ the Organisation B needs to
improve four factors, i.e. training and mentoring, staff involvement,
awareness of SPI and lack of support.

 In order to achieve Level-3 ‘Defined’ and Level-4 ‘Optimising’ the
Organisation B needs to improve five factors, i.e. creating process action
teams, experienced staff, staff time and resources, time pressure and reviews.

 It also shows that the Organisation B has adequate senior management
support for SPI programmes.

 Table 2 shows that a defined SPI implementation methodology is in use and
Organisation B managed to avoid organisational politics.

Table 2. SPI implementation readiness of organisation B

Readiness Level Critical success factors and barriers Status

Senior management commitment strong

Training and mentoring weak

Staff involvement weak

Awareness of SPI weak

Level-2 Aware

Lack of support weak

Creating process action teams weak

Experienced staff weak

Staff time and resources weak

Defined SPI implementation methodology strong

Time pressure Weak

Level-3 Defined

Organizational politics Strong

Level-4 Optimising Reviews Weak

4.3 SPI Implementation Readiness of Organisation C

Organisation C provides telecommunication services and employs more than 2000
professionals in Australia and worldwide. The core business of the organisation is to

 Organisational Readiness and Software Process Improvement 103

provide cutting-edge communications, information and entertainment services. The
organisation provides a broad range of communications services including mobile,
national and long distance services, local telephony, international telephony, business
network services, Internet and satellite services and subscription television.

The SPI programme was initiated in Organisation C three years ago. The reasons
for initiating the SPI programmes were:

 To reduce software development cost
 To reduce time-to-market
 To increase productivity
 To improve the quality of the software developed
 To automate the production of relevant development documentation

In 2002 this Organisation C was assessed at CMM level 2. The SPI implementation
readiness assessment results of Organisation B are summarised in Table 3:

Table 3. SPI implementation readiness of organisation C

Readiness Level Critical success factors and barriers Status

Senior management commitment Weak

Training and mentoring Weak

Staff involvement Strong

Awareness of SPI Weak

Level-2 Aware

Lack of support Weak

Creating process action teams Strong

Experienced staff Weak

Staff time and resources Weak

Defined SPI implementation methodology Strong

Time pressure Weak

Level-3 Defined

Organizational politics Weak

Level-4 Optimising Reviews Weak

 It is clear that Organisation C stands in Level-1 ‘Initial’ because four factors
of Level-2 ‘aware’ are not fully implemented in the Organisation C.

 In order to achieve Level-3 ‘Defined’ and Level-4 ‘Optimising’ the
Organisation C needs to improve five factors, i.e. experienced staff, staff
time and resources, time pressure, organizational politics and reviews.

 It also shows that the Organisation C has experienced staff for SPI
programmes.

 A defined SPI implementation methodology is in use and Organisation C has
created teams for SPI activities.

104 M. Niazi, D. Wilson, and D. Zowghi

5 Discussion

The CMMI framework is structured into five maturity levels ranging from level 1
to 5. Each maturity level expresses a different state of software development maturity
in an organisation. Level-1 corresponds to the lowest state of software development
maturity while level-5 corresponds to the highest state of software development
maturity. We argue that higher levels of CMMI (level 3 and above) indicate that the
organisation has well defined processes for the implementation of SPI initiatives. This
is because the organisation has successfully implemented CMMI. While lower levels
of CMMI (level 2 and below) indicate that the organisation does not have well
defined processes for the implementation of SPI initiatives. This is because the
organisation is struggling to successfully implement CMMI. Keeping in view these
points, the organisations in higher CMMI levels should have less implementation
issues than organisations in lower CMMI levels.

In order to address above points our research question was:

RQ: Are organisations in higher CMM(I) levels more ready for SPI implement-tation
than organisations in lower CMM(I) levels?

In order to address this research question, it is important to compare the results of
the three case studies. As discussed earlier Organisation A is at CMM Level-3 and
Organisations B and C are at CMM Level-2 respectively. The results of the three case
studies are summarised into Table 4.

As discussed in Section 4 all organisation were assessed at Level-1 Aware of SPI
implementation readiness model. However, by looking at weak implementation
factors we have noticed the following differences:

 Organisation A has only two weak factors in level-2, while Organisations B
and C have four weak factors in Level-2.

 For Level-3, Organisation A has three weak factors while Organisations B
and C have four weak factors.

 Table 4 shows that Organisation A has successfully implemented more
implementation factors than Organisations B and C. This also shows that
Organisation A has less weak implementation factors (i.e. five) than
Organisations B and C (i.e. nine).

 It shows that 78% (i.e. seven factors) of the weak factors are common
between CMM Level-2 organisations B and C.

These findings have confirmed our research question that organisations with higher
CMMI levels are more ready than organisations with low CMMI levels.

Comparison of weak factors of the three organisations provides evidence that there
are some clear similarities and differences between the findings of the three data sets.
The factors ‘time pressure’ and ‘staff time and resources’ are common among three
organisations. This shows that organisations both at lower and higher levels of CMMI
need to improve these two common factors. In the literature different studies have
discussed ‘time pressure’ and ‘staff time and resources’ as barriers for SPI
implementation. For example, Baddoo and Hall [14] present empirical findings
analysing what de-motivates UK practitioners in SPI. The authors have separated
senior managers, project managers and developers into separate focus groups. The

 Organisational Readiness and Software Process Improvement 105

Table 4. Summary of results of organisations A, B and C

Assessment issue Organisation A

(CMM Level-3)

Organisation B

(CMM Level-2)

Organisation C

(CMM Level-2)

Weak
implementation
factors in SPI
readiness model
Level-2 ‘Aware’

Senior management
commitment

Staff involvement

Awareness of
SPI

Lack of support

Staff
involvement

Training and
mentoring

Awareness of SPI

Lack of support

Senior
management
commitment

Training and
mentoring

Weak
implementation
factors in SPI
readiness model
Level-3 ‘Defined’

Creating process
action teams

Staff time and
resources

Time pressure

Creating
process action
teams

Experienced
staff

Staff time and
resources

Time pressure

Experienced staff

Staff time and
resources

Time pressure

Organizational
politics

Weak
implementation
factors in SPI
readiness model
Level-4
‘Optimising’

Nil Reviews Reviews

Total Weak
implementation
factors

5 9 9

authors state that all the groups of practitioners have cited time pressure as a de-
motivator for SPI, i.e. 62% of developers cited, 44% of project managers cited and
58% of senior managers cited. In the study of Goldenson and Herbsleb [7] “almost
three-quarters (72%) report that process improvement has often suffered due to time
and resource limitations”. Paulish and Carleton [15] also describe case studies for SPI
measurement and illustrate time restriction as one of the SPI implementation problem.

Table 4 also shows factors that are common between organisations of lower CMMI
level (i.e. CMM level 2). For example, the organisations at lower CMM level are
having problems of ‘awareness of SPI’, ‘experienced staff’, ‘lack of support’,
‘training and mentoring’ and ‘reviews’. These factors need to be addressed in order to
successfully implement SPI initiatives.

106 M. Niazi, D. Wilson, and D. Zowghi

6 Case Study Validity

Two types of threats to case study validity are relevant to this study: construct validity
and external validity [16]. Construct validity is concerned with whether or not the
measurement scales represent the attributes being measured. The attributes are taken
from a substantial body of previous research [17; 18] and further studies conducted by
one of the authors [6]. The responses from the post case study questionnaire show that
all the attributes considered were relevant to their workspace. Also, all participants
agreed with the assessment results.

External validity is concerned with the generalisation of the results to other
environments than the one in which the initial study was conducted [19]. Since three
case studies were conducted, it is hard to justify the external validity at this stage.
However, since SPI readiness model’s evaluation is currently limited to only the three
organisations reported in this study, generalisation to whole software industry should
be considered with extreme caution.

7 Conclusion

In this research a case study method was chosen because the SPI implementation
readiness model is more applicable to the real software industry environment. Three
separate case studies were conducted at three different companies. The results of the
case studies show that the SPI implementation readiness model is not only significant
in the theoretical work but also significant in the real world environment as each of
the three companies was able to successfully use the SPI implementation readiness
model to assess their SPI implementation readiness. The participants have noticed the
SPI implementation issues that the SPI implementation readiness model has identified
for their companies and they were agreed with those issues.

We have found that organisations with higher CMMI levels were more ready for
SPI initiatives than organisations with low CMMI levels. We suggest that readiness
for SPI is directly associated with organisations’ software development maturity. We
have also found some clear similarities and differences between the findings of three
case studies. For successful SPI initiatives, the organisations both at lower and higher
levels of CMMI need to facilitate their staff members from time pressure and need to
allocate required resources for SPI activities. We found that the organisations at lower
CMM level are having problems of ‘awareness of SPI’, ‘experienced staff’, ‘lack of
support’, ‘training and mentoring’ and ‘reviews’. These factors need to be addressed
in order to successfully implement SPI initiatives.

References

1. SEI: Capability Maturity Model® Integration (CMMISM), Version 1.1. SEI, CMU/SEI-
2002-TR-029, Software Engineering Institute, USA (2002)

2. Leung, H.: Slow change of information system development practice. Software quality
journal 8(3), 197–210 (1999)

3. SEI: Process Maturity Profile. Software Engineering Institute Carnegie Mellon University
(2004)

 Organisational Readiness and Software Process Improvement 107

4. SEI: Process maturity profile of the software community. Software Engineering Institute
(2002)

5. Ngwenyama, O., Nielsen, P.: A Competing values in software process improvement: An
assumption analysis of CMM from an organizational culture perspective. IEEE
Transactions on Software Engineering 50, 100–112 (2003)

6. Niazi, M., Wilson, D., Zowghi, D.: A Maturity Model for the Implementation of Software
Process Improvement: An empirical study. Journal of Systems and Software 74(2),
155–172 (2005)

7. Goldenson, D.R., Herbsleb, J.D.: After the appraisal: A systematic survey of Process
Improvement, Its benefits, And Factors That Influence Success. SEI, CMU/SEI-95-TR-
009, Software Engineering Institute, USA (1995)

8. Zahran, S.: Software process improvement - practical guidelines for business success.
Addison-Wesley, London (1998)

9. Niazi, M., Wilson, D., Zowghi, D.: Critical success factors and critical barriers for
software process improvement: An analysis of literature. In: the proceedings of.
Australasian Conference on Information Systems (ACIS03), Perth, Australia (2003)

10. Niazi, M., Wilson, D., Zowghi, D.: Critical Barriers for SPI Implementation: An empirical
study. In: IASTED International Conference on Software Engineering (SE, 2004) Austria
pp. 389–395 (2004)

11. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process
Improvement: An Empirical Study. Software Process Improvement and Practice
Journal 11(2), 193–211 (2006)

12. Yin, R.K.: Applications of Case Study Research. Sage Publications, Thousand Oaks
(1993)

13. Cooper, D., Schindler, P.: Business research methods, 7th edn. McGraw-Hill, New York
(2001)

14. Baddoo, N., Hall, T.: De-Motivators of software process improvement: An analysis of
practitioner’s views. Journal of Systems and Software 66(1), 23–33 (2003)

15. Paulish, D., Carleton, A.: Case studies of software process improvement measurement.
IEEE Computer 27(9), 50–59 (1994)

16. Briand, L., Wust, J., Lounis, H.: Replicated Case Studies for Investigating Quality Factors
in Object Oriented Designs. Empirical Software Engineering 6(1), 11–58 (2001)

17. Daskalantonakis, M.K.: Achieving higher SEI levels. IEEE Software 11(4), 17–24 (1994)
18. Beecham, S., Hall, T., Rainer, A.: Building a requirements process improvement model.

Department of Computer Science, University of Hertfordshire, Technical report No: 378
(2003)

19. Regnell, B., Runeson, P., Thelin, T.: Are the Perspectives Really Different-Further
Experimentation on Scenario-Based Reading of Requirements. Empirical Software
Engineering 5(4), 331–356 (2000)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 108–117, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Process Improvement Through Teamwork
Management

Esperança Amengual and Antònia Mas

Department of Computer Science. University of the Balearic Islands
Ctra. De Valldemossa, Km. 7.5. 07122 - Palma de Mallorca, Spain

{eamengual,antonia.mas}@uib.es

Abstract. In modern organizations teamwork is considered a key factor for suc-
ceeding in business. A growing emphasis on team culture culminates with a
great number of articles analyzing different aspects to improve teamwork prac-
tises. Since software development projects are normally team efforts, teamwork
improvement in software organizations should also be considered essential. In
these companies, software process improvement programs based on interna-
tional maturity standards are current issues in software engineering investiga-
tion. In this article, we firstly establish the teamwork key factors for succeeding
in software development projects. Secondly, these key factors are analysed
taking the ISO/IEC 15504 as a reference improvement framework.

1 Introduction

Nowadays, teamwork has become popular as a solution to a great number of compa-
nies main goal: producing to the lowest cost. Considering employees as the most im-
portant resource of an organization, teamwork is revealed as the most efficient way to
achieve this objective. Modern organizations have expectations over their employees
that go beyond work realisation to contribute to business success. As numerous arti-
cles demonstrate, there is a growing interest on team culture which refers to the ability
of working successfully in a work team [1]. However, although the majority of com-
panies consider teamwork ability as an important skill to measure to select their em-
ployees, a lot of work is still necessary to create a real teamwork culture.

Mother Nature provides us teamwork models, like ants and bees communities,
where the final goal is achieved joining individual efforts. These natural organizations
are good examples to follow that show that interdependence between team members
is a key characteristic of successful teams [2]. However, this natural predisposition
towards teamwork seems not to be as evident in the case of human beings. Teamwork
is a work style that not all people are prepared to accept. Sometimes, individualistic
work spirit can be an important obstacle to remove. One of the biggest problems in all
companies is bringing together a group of people to accomplish a business goal, since
all of them have different needs, interests, knowledge, experiences, expectations and
motivations.

Although, we should not consider teamwork as the panacea, investigation on work
groups formation and performance has been the centre of attention of different

 Software Process Improvement Through Teamwork Management 109

specialists during the last two decades. This fact can be justified considering the im-
portant role that teams can play by performing effective tasks in an organization. Ac-
cordingly to Dr. Charles J. Margerison who states that "it is on the competency and
effectiveness of teams that we depend", a lot has been said and written about individ-
ual competencies at work in contrast to the issue of team competency that has re-
ceived little attention. Individual competencies are important, but they need to be seen
in the context of what a team requires to perform well [3].

2 Teams in Software Projects

In software companies, the big demand on new systems together with the increment
in their complexity make software development process to be considered a team
activity. Thus, in these organizations in particular, interest on teamwork should not be
an exception.

Some works demonstrate that this subject has not gone unnoticed. In [4], it is stated
that coordination and communication in a software team are key aspects to be consid-
ered. In the same way, social interaction is also considered an important point for suc-
ceeding in software projects. In [5], its author, being in line with other articles also
considered in this work, highlights that "it appears the human aspects of software de-
velopment are more important that the technological aspects for better performance".
To analyse this statement, the before mentioned article presents an investigation to
explore the effects of personality on team productivity. In particular, the study seeks
to determine the effect of the project leader's personality and the effect of team mem-
bers' personalities on team performance.

Considering the human aspects as a key factor to control in a software develop-
ment team as well, it is possible to find other publications. In [6] it is demonstrated
that team roles described by R. Meredith Belbin [7] are useful to improve the effec-
tiveness of software development teams. In this article, three software development
teams working in different environment are analysed using the Belbin's questionnaire
as instrument to gather data from individuals to analyze the teams. In [8] their authors
present an experiment to demonstrate the utility of forming teams based on Belbin's
team roles. The overall research focuses on the utility of Belbin's roles for team per-
formance improvement. This experiment explores Belbins's Plant, who adds innova-
tion and new ideas to teams. The specific conclusion is that Belbin's questionnaire is
useful to identify characteristics of team members that can be used to make teams per-
form better.

In [9] its author points out that the majority of problems in software projects "are
due to people problems, not technical ones". Although producing quality software is a
technical activity, software is produced by people. Different maturity models and
process models have been proposed, but problems still continue.

The different investigations mentioned in this section state of one or another way
that it is necessary to consider specific teamwork aspects to be successful in a
software development project.

110 E. Amengual and A. Mas

3 Teamwork in Maturity Models

The Software Engineering Institute (SEISM), after developing the Capability Maturity
Model as a descriptive model of the characteristics of an organization at a particular
level of software process maturity [10], has developed the Team Software ProcessSM
(TSPSM), a prescriptive model for software development teams. As it is defined in the
SEI technical report which relates the TSP to the CMM [11], "TSP is a high-maturity
process for project teams. It contains an adaptable set of processes, procedures, guide-
lines, and tools for project teams to use in the production of high-quality software on
time and on budget". In [12] some results from projects that have adopted the TSP are
provided. The results show that TSP teams are delivering essentially defect-free soft-
ware on schedule, while improving productivity

In [13] the relationship between the Capability Maturity Model and the Team Soft-
ware Process as complementary technologies is examined and the degree to which the
CMM is addressed by the TSP is analysed. Other published articles [14, 15] show the
usefulness of the TSP to reach a specific maturity level of the CMM.

With regard to our experience of software process improvement in eight small and
medium enterprises of our environment [16, 17], we agree that teamwork improve-
ment could be a key factor to better software development processes. Following our
investigation into the applicability of the ISO/IEC 15504 on software small and me-
dium enterprises [18], in this article the way in which teamwork aspects are consid-
ered by this standard is analysed. In order to do that, firstly the key teamwork factors
for succeeding in a software project are established. Secondly, from an exhaustive
analysis of the standard, the degree to which these factors are considered explicitly or
implicitly by the standard is determined.

4 Teamwork Key Factors

Although the majority of software projects are performed by professional teams,
technological aspects usually receive more attention than team dynamics in a process
improvement initiative. From our research work in teamwork and, more concretely, in
software teamwork, and from our own experience, in this section we establish the
characteristics we consider every software development team should possess.

4.1 Team Management

As it is exposed in [19], when people work in groups, there are two quite separate is-
sues to consider. The first is the task involved in getting the job done. Frequently this
is the only issue which the group considers. The second is the process of the group
work itself: the mechanisms by which the group acts as a unit and not as a loose
rabble.

In accordance with this author, we think that teams must be considered an impor-
tant resource that needs to be managed like it is done with all resources in a project.
Then, for the good performance of the team, we consider important:

• Planning. Definition of objectives and tasks
• Monitoring. Control that goals are met accordingly with the defined schedule.

 Software Process Improvement Through Teamwork Management 111

These two aspects, basic in all management, must be considered in particular for
each one of the members of the team, as well as for the team as an entity.

4.2 Coordination

Accordingly with [4] coordination and efficiency translate to successful teamwork.
These two aspects of teamwork can be specifically noted in the definition of team-
work as "the work of a team with reference to coordination of effort and to collective
efficiency". Presumably, efficiency is an expected outcome of coordination effort. So
it is relevant to consider how to achieve coordination.

Successful coordination requires that each team member understands:

• Who is responsible for what parts of the project.
• The relations between the tasks assigned to different team members.
• How the work is progressing with respects to the set schedule.

4.3 Effective Communication

Communication is probably the most essential component of teamwork [4]. Accord-
ingly with [2], where ineffective communication is identified as one of the six factors
that do not support teamwork, we think that it is necessary to explicitly define a com-
munication mechanism. This can be performed in different manners:

• Project meetings (weekly, biweekly or other appropriately scheduled project
meeting).

• Team members can provide written progress reports summarizing project status as
it relates to timelines, expectations and other related criteria.

• Informal communication to keep team members connected.

4.4 Team Composition

Several studies about the improvement of work team effectiveness are based on team
composition as a key factor that can affect project performance. One of the most im-
portant contributions to the analysis of team performance in organizations is the iden-
tification of the different roles in a team. A relevant work in this area is Belbin's Role
theory where eight team roles are identified. In [20] a team model designed to im-
prove performance in a software development team is described. This model de-
scribes an approach to structure people and their activities to enable project success. It
is based on six key quality goals that drive the team and the associated roles.

Then, to build a good team it is desirable:

• Identify the roles to perform the different tasks.
• Determine the most suitable people for each role.
• Assign responsibilities.

4.5 Motivation

In software small and medium enterprises work teams are usually small groups in
which human factor is crucial for succeeding. In [21] motivation is considered

112 E. Amengual and A. Mas

essential for the effectiveness of the team. Although it is not easy, it is necessary to
maintain enthusiasm and commitment from the team.

Motivation in a work team can be achieved by considering the following people
motivators for each member of the team:

• Responsibility
• Interest in the assigned tasks
• Achievement of the targets
• Advancement
• Recognition of the work done

5 ISO/IEC 15504. Teamwork Aspects

ISO/IEC 15504 is an international standard that is appropriate across all application
domains and sizes of organization and provides a structured approach for the assess-
ment of processes with the objective of understanding the state of these processes for
process improvement.

Part 5 of the standard, An exemplar process assessment model based upon ISO/IEC
12207 Amd 1 & 2 [22], published on March, 2006, provides an example of a Process
Assessment Model for use in performing a conformant assessment in accordance with
the requirements of ISO/IEC 15504-2, Performing an assessment [23].

Process capability measure, defined in Part 2 of the standard, is based on nine
process attributes. These attributes are used to determine if a process has reached a
particular capability level. Each attribute measures a particular aspect of the capability
of the process. To measure the degree of achievement of these attributes the standard
considers different base practises for each one of them.

After an accurate revision of all the generic practises in each one of the six levels
defined by the standard, we want to analyse if each teamwork key factor is considered
among these generic practises. Next, results of this analysis are introduced.

5.1 Team Management

Planning aspects, more concretely, human resources identification and responsibilities
definition are considered in the generic practises proposed by the standard to measure
level 2 which refers to a process implemented in a managed fashion.

Level 3, Established process, ensures that the managed process is implemented us-
ing a defined process. Allocation of human resources to support the performance of
the defined process is explicitly considered in this level.

In level 5, Optimizing process, commitment aspects, both at organizational level
and process owner level, are considered.

Moreover, the standard highlights the human factors that impact the effectiveness
and full deployment of the process agreed changes. In particular, it considers com-
mitment, organizational culture and risks as important management factors.

Table 1 shows a summary of team management aspects considered by the standard
in the different capability levels.

 Software Process Improvement Through Teamwork Management 113

Table 1. Team management factor

ISO/IEC 15504 Generic Practices Team Management
Level 2 assessment
Define responsibilities and authorities
for performing the process

Define responsibilities

Identify and make available resources
to perform de process according to plan

Identify human and infrastructure re-
sources

Level 3 assessment
Provide resources and information to
support the performance of the defined
process

Make available, allocate and use re-
quired human resources

Level 5 assessment
Define an implementation strategy
based on long-term improvement vi-
sion and objectives

Organizational management and proc-
ess owner(s) demonstrate commitment
to improvement

Manage the implementation of agreed
changes to selected areas of the defined
and standard process according to the
implementation strategy

Identify and manage: commitment, or-
ganizational culture and risks

5.2 Coordination

Although coordination aspects can not be directly observed from the practises pro-
posed by the standard, it is possible to deduce that some aspects are specifically con-
sidered in some levels, as it is shown in Table 2.

Table 2. Coordination factor

ISO/IEC 15504 Generic Practices Team coordination
Level 2 assessment
Manage the interfaces between in-
volved parties

Manage interfaces between the in-
volved parties

Level 4 assessment
Establish quantitative objectives for the
performance of the defined process,
according to the alignment of the proc-
ess with the business goals

Verify process performance objectives
with process owner(s)

Collect product and process measure-
ment results through performing the
define process

Report measurement results to those
responsible for monitoring that objec-
tives are met

Level 5 assessment
Manage the implementation of agreed
changes to selected areas of the defined
and standard process according to the
implementation strategy

Identify and manage: conflict / cohe-
sion goal consensus participation

114 E. Amengual and A. Mas

5.3 Effective Communication

Accordingly with the ISO/IEC 15504 it is necessary to establish formal communica-
tion mechanisms to ensure that all participants in a process can obtain the necessary
information to perform it. Table 3 demonstrates that communication is an essential
aspect fully considered in the different capability levels.

Table 3. Effective communication factor

ISO/IEC 15504 Generic Practices Team Communication
Level 2 assessment
Define responsibilities and authorities
for performing the process

Communicate responsibilities

Identify and make available resources
to perform de process according to plan

Make information to perform the proc-
ess available

Manage the interfaces between in-
volved parties

Assure communication between the in-
volved parties

Level 3 assessment
Provide resources and information to
support the performance of the defined
process

Make available, allocate and use re-
quired information to perform the
process

Level 4 assessment
Analyse process and product measure-
ment results to identify variations in
process performance

Provide results to those responsible for
tacking action

Level 5 assessment
Manage the implementation of agreed
changes to selected areas of the defined
and standard process according to the
implementation strategy

Communicate process changes to all
affected parties

Evaluate the effectiveness of process
change on the basis of actual perform-
ance against process performance and
capability objectives and business
goals

Make available a mechanism for
documenting and reporting analysis re-
sults

5.4 Team Composition

Different team composition aspects, like role identification, participant determination
and responsibility assignation, are present through all capability levels in the standard
(Table 4).

 Software Process Improvement Through Teamwork Management 115

Table 4. Team composition factor

ISO/IEC 15504 Generic Practices Team Composition
Level 2 assessment
Define responsibilities and authorities
for performing the process

Assign responsibilities

Manage the interfaces between in-
volved parties

Assign responsibilities. Determine in-
dividuals and groups involved in the
process

Level 3 assessment
Identify the roles and competencies for
performing the standard process

Identify process performance roles.
Identify competencies for performing
the process

Assign and communicate roles, respon-
sibilities and authorities for performing
the defined process

Assign and communicate roles and au-
thorities for performing the defined
process

Ensure necessary competencies for per-
forming the defined process

Identify appropriate competencies for
assigned personnel

Identify process information needs in
relation with business goals

Identify process stakeholders

Define responsibilities and establish in-
frastructure to collect product and
process measures

Define responsibilities for data collec-
tion

Level 4 assessment
Identify process information needs in
relation with business goals

Identify process stakeholders

Define responsibilities and establish in-
frastructure to collect product and
process measures

Define responsibilities for data collec-
tion

Level 5 assessment
Manage the implementation of agreed
changes to selected areas of the defined
and standard process according to the
implementation strategy

Identify and manage: skills, leadership,
knowledge, ability

5.5 Motivation

This key factor is an aspect that the standard only considers at capability level 5,
where job satisfaction, motivation and morale of the employees are measured as indi-
cators of a process at the highest level in the dimension capability (Table 5).

Table 5. Motivation factor

ISO/IEC 15504 Generic Practices Team Motivation
Level 5 assessment
Manage the implementation of agreed
changes to selected areas of the defined
and standard process according to the
implementation strategy

Identify and manage: job satisfaction,
motivation and morale

116 E. Amengual and A. Mas

6 Conclusions and Further Work

In this work, we have presented the first results of a research effort aimed to consider
teamwork aspects as essential for succeeding in software process improvement
programs.

Firstly, we have established the key teamwork factors we consider essential for a
software development team. Then, considering these teamwork key factors in the
ISO/IEC 15504 framework, we have observed and deduced that Team Composition
and Effective Communication factors are considered by the Standard in all maturity
levels. On the other hand, Team Management and Coordination, we consider as im-
portant factors as the before mentioned ones to be successful in a software project im-
provement initiative, are not being considered with the same detail.

Moreover, although we consider the Motivation factor an essential characteristic in
a work team to reach any software process capability level, ISO/IEC 15504 only con-
siders it explicitly in generic practices to obtain capability level 5.

However, to validate these preliminary results it is still necessary to demonstrate
that improving teamwork can result in a real software process improvement. To do so,
our future work would be oriented to the real application of a software process im-
provement program accordingly with the International Standard in small and medium
enterprises, and focused on teamwork particular aspects.

Acknowledgements. The authors wish to thank the Comisión Interministerial de
Ciencia y Tecnología, Spain, (under grant IN2GESOFT TIN2004-06689-C03-00) for
supporting this research effort.

References

[1] Tarricone, P., Luca, J.: Employees, teamwork and social interdependence - a formula for
successful business? Team Performance Management: An International Journal 8(3/4),
54–59 (2002)

[2] Scarnati, J.T.: On becoming a team player. Team Performance Management: An Interna-
tional Journal 7(1/2), 5–10 (2001)

[3] Margerison, C.: Team Competencies. Team Performance Management: An International
Journal 7(7/8), 122–177 (2001)

[4] Miller, E.: Teamwork on the Job - An Essential Ingredient to Success. IEEE-USA To-
day’s Engineer Online (available 07/12/2006) (2001), http://www.todaysengineer.org/
Careerfocus/sept01te/sept01features/teamwork.html

[5] Gorla, N., Wah Lam, Y.: Who Should Work with Whom? Building Effective Software
Project Teams. Communications of the ACM 47(6), 79–82 (2004)

[6] Mazhil, R.: Analysis of team effectiveness in software development teams working on
hardware and software environment using Belbin Self-perception Inventory. Journal of
Management Development 24(8), 738–753 (2005)

[7] Belbin, R.: Management Teams: Why they succeed of fail. Elsevier Butterworth-
Heinemann, Oxford (2004)

[8] Stevens, K., Henry, S.: Analysing Software Teams Using Belbin’s Innovative Plant Role
(available 18/12/2006), http://www.radford.edu/∼kstevens2/ISTall.pdf

 Software Process Improvement Through Teamwork Management 117

[9] Evans, I.: Achieving Software Quality through Teamwork. Artech House, Inc. Norwood
(2004)

[10] Paulk, M., et al.: The Capability Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, London (1995)

[11] CMU/SEI-2002-TR-008. Relating the Team Software ProcessSM (TSPSM) to the Capabil-
ity Maturity Model® for Software (SW-CMM®). Software Engineering Institute (2002)

[12] CMU/SEI-2003-TR-014. The Team Software ProcessSM (TSPSM) in Practice: A Summary
of Recent Results. Software Engineering Intitute (2003)

[13] Noopur, D.: Using the TSP to Implement the CMM. CrossTalk. The Journal of Defense
Software Engineering, (September 2002 Issue) (available 10/07/2006), http://www.
stsc.hill.af.mil/crosstalk/2002/09/davis.html

[14] Hefley, B., Schwalb, J., Pracchia, L.: AV-8B’s Experience Using the TSP to Accelerate
SW-CMM Adoption. CrossTalk. The Journal of Defense Software Engineering, (Sep-
tember 2002 Issue) (available 27/12/2006), http://www.stsc.hill.af.mil/crosstalk/2002/09/
hefley.html

[15] Pracchia, L.: The AV-8B Team Learns Synergy of EVM and TSP Accelerates Software
Process Improvement. CrossTalk. The Journal of Defense Software Engineering, (Janu-
ary 2004 Issue) (available 27/12/2006), http://www.stsc.hill.af.mil/crosstalk/2004/
01/0401pracchia.htm

[16] Amengual, E., Mas, A.: A New Method of ISO/IEC TR 15504 and ISO 9001:2000 Si-
multaneous Application on Software SMEs. In: Proceedings of the Joint ESA - 3rd Inter-
national SPICE Conference on Process Assessment and Improvement, pp. 87–92 (March
2003)

[17] Mas, A., Amengual, E.: A Method for the Implementation of a Quality Management Sys-
tem in Software SMEs. In: Software Quality Management XII. New Approaches to Soft-
ware Quality, The British Computer Society, Great Britain (2004)

[18] Mas, A., Amengual, E.: ISO/IEC 15504 Adaptation for Software Process Assessment in
SMEs. In: Proceedings of the International Conference on Software Engineering Re-
search and Practice, pp. 693–697 (June 2003)

[19] Blair, G.M.: Groups that Work. Engineering Management Journal 1(5), 219–223 (1991)
[20] MSF Team Model v. 3.1. Microsoft Corporation (2002)
[21] Blair, G.M.: The Human Factor. Engineering Management Journal 2(5), 219–223 (1992)
[22] ISO/IEC 15504-5:2006 Information technology – Process Assessment – Part 5: An ex-

emplar Process Assessment Model. International Organization for Standardization (2006)
[23] ISO/IEC 15504-2:2003. Information technology – Process assessment – Part 2: Perform-

ing an assessment. International Organization for Standardization (2003)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 118–131, 2007.
© Springer-Verlag Berlin Heidelberg 2007

De-motivators of Software Process Improvement:
An Analysis of Vietnamese Practitioners’ Views

Mahmood Niazi1 and Muhammad Ali Babar2

1 School of Computing and Mathematics, Keele University, ST5 5BG, UK
mkniazi@cs.keele.ac.uk

2 Lero, University of Limerick, Ireland
muhammad.alibabar@ul.ie

Abstract. We have conducted face-to-face questionnaire based survey sessions
with twenty-three Vietnamese software practitioners in order to determine
software process improvement (SPI) de-motivators. The main objective of this
study is to provide SPI practitioners with some insight into designing
appropriate SPI implementation strategies and to maximize practitioners
support for SPI.

We asked practitioners to choose and rank various SPI de-motivator against
the five types of assessments (high, medium, low, zero or do not know). From
this, we propose the notion of ‘perceived value’ associated with each SPI
de-motivator. We have identified ‘high’ and ‘medium’ perceived values de-
motivators that can undermine SPI initiatives. We have identified what de-
motivates developers and managers to be actively involved in SPI initiatives.
We have also identified SPI de-motivators of small-medium and large sized
organisations.

1 Introduction

Software quality problems are widely acknowledged to affect the development cost
and time [1; 2]. In order to reduce these problem, much attention has been paid to
develop standards and models for SPI [3; 4]. However, the population of
organisations that have adopted process capability maturity models is only a part of
the entire population of software-developing organisations [5]. SPI initiatives exhibit
low levels of adoption and limited success [6]. The recent report of Software
Engineering Institute shows that on average organisations need 79 months to achieve
CMMI Level-5 [7].

In order to successfully implement SPI standards and models, as researchers, we
need to be constantly aware of what really de-motivates practitioners in real life. This
will enable us to position our research within an appropriate context [8]. It is
important to discover which de-motivators will undermine SPI implementation, as
research shows that the SPI approach is often considered an expensive approach for
many organisations [6], as they need to commit significant resources over an
extensive period of time. Even the organisations, which are willing to commit the
resources and time do not always achieve their desired results [9; 10]. The failure rate

 De-motivators of Software Process Improvement 119

of SPI initiatives is very high, estimated as 70% [11; 12]. The knowledge of SPI de-
motivation may help us to develop new or improved SPI approaches, whose adoption
will better match organisations’ objectives, and also may help to communicate a
compelling case to organisations making decisions about adopting SPI.

We have conducted a study with twenty-three software development practitioners;
an understanding of the perceived value of each SPI de-motivator across different
practitioners may help with more effective SPI implementation strategies. We believe
that where respondents from different organisations identify a de-motivator as having
a high perceived value then that de-motivator should be seriously considered for its
importance in SPI initiatives. If different software development practitioners cite the
same de-motivator, it is obviously important to the practitioners involved.

Previously, other researchers [13; 14] have also conducted studies to identify de-
motivators of software development practitioners. Our research is aimed at not only
extending the findings of those studies by conducting a similar study in a different
culture; but also intending to expand this type of research by understanding the
relative value of each identified de-motivator perceived by practitioners. We believe
that software practitioners may associate different values to different SPI de-
motivators. Moreover, it is also possible that SPI de-motivators may vary from one
geographical region to another. As part of a large project about the SPI motivation,
Keele University and National ICT Australia has been carrying out a research project
to investigate the SPI motivators and de-motivators in the Asia-pacific region. The
results of this project are expected not only to help software practitioners understand
the usage of SPI de-motivators in the Asia-pacific region, but also help them compare
SPI de-motivators identified in other regions [13; 14].

The contribution of this paper is to report the findings of one part of our research
project aimed at identifying the factors that are perceived by Vietnamese software
practitioners as SPI de-motivators. The findings of this research combined with the
findings of the previous similar studies can shed some light on the de-motivators that
should be considered critical when designing SPI implementation strategies.

There are three research questions that have motivated the work reported in this
paper:

 RQ1. What SPI de-motivators have high and medium perceived values?
 RQ2. What de-motivates practitioners in order to implement SPI initiatives?
 RQ3. How are these de-motivators related to the size of organisations?

This paper is organised as follows. In Section 2 background is described. Section 3
describes the concept of perceived value. Section 4 describes the research design. In
Section 5 findings are presented and analysed. Section 6 provides the summary and
conclusion.

2 Background

McDermid and Bennet [15] have argued that the human factors to SPI have been
ignored and this has impacted on effectiveness of SPI programmes. Hall and Wilson
[16; 17] have also suggested that the experiences, opinions and perceptions of
software practitioners impact indirectly on the quality of software produced. This also

120 M. Niazi and M. Ali Babar

implies that such attributes influence the attitudes of software practitioners towards
SPI implementation approaches. These views, experiences and perceptions collec-
tively will provide practitioners with sufficient knowledge about the nature of issues
that play a positive or negative role in the implementation of SPI programmes and
will assist them in effectively planning SPI implementation strategies.

A number of empirical studies have investigated factors that positively or
negatively impact SPI, e.g. [14; 18-22]. To highlight few of these: in the survey of
138 individuals in 56 software organisations, Goldenson and Herbsleb [18], identified
the factors necessary for implementing a successful SPI programme. Stelzer and
Werner [19] determined ten factors that affect organisational change in SPI. Rainer
and Hall [21] have conducted a questionnaire survey of UK companies and identified
the key success factors that can impact on SPI implementation. Baddo and Hall
reported SPI de-motivators in UK [14].

The work we report in this paper complements work previously done in above
studies. However, our research also identifies the perceived value of each identified
SPI de-motivator. In addition, creating solutions that are based on previous work may
help to progress software improvement [23]. Moreover, our study has been conducted
in a country that is increasing becoming an attractive destination for software
development outsourcing from Western and Asian countries alike [24]. That is why
we believe that there is a need of shedding some light on the factors that de-motivate
Vietnamese practitioners to support SPI initiatives.

3 Perceived Value

In this particular study, we define ‘perceived value’ to mean the extent to which a SPI
de-motivator is used, because it is perceived by practitioners to bring benefit either to
the project or to the organisation. This may be considered to be a subjective view as
it is provided by the respondents of this study. However, our respondents are
considered to be SPI experts within their organisations. As such, we can assume that
their opinion is grounded in significant experience of real world SPI initiatives.

In order to describe the notion of perceived value within SPI de-motivators, it is
important to decide the “criticality” of a perceived value. For this purpose, we have
used the following criterion:

• If the majority of respondents (≥ 50%) thought that a de-motivator had high
value then we treat that de-motivator as critical.

A similar approach has been used in the literature [21; 25]. Rainer and Hall [21]
identified important factors in software process improvement with the criterion that if
the 50% or more participants perceive that a factor has a major role in software
process improvement efforts then that factor should be treated as having a major
impact on software process improvement.

The perceived values of SPI de-motivators can act as a guide for SPI practitioners
when implementing SPI initiatives because it will be easier to avoid a limited
numbers of de-motivators that can undermine SPI implementation.

 De-motivators of Software Process Improvement 121

4 Study Design

We used face-to-face questionnaire based survey sessions as our main approach to
collect data from twenty-three software development practitioners of eight
Vietnamese software development organisations, which had initiated SPI programs.
Although we do not claim this is a statistically representative sample, Appendix A
does show that the participants of this study were working for organisations of
varying sizes. It is further worth mentioning that the data was collected from
practitioners who were involved in tackling real SPI implementation issues on a daily
basis in their respective organisations. Therefore we have high confidence in the
accuracy of their responses about their personal de-motivators of SPI.

It is further important to acknowledge that the practitioners sampled within
organisations are representative of practitioners in organisations as a whole. A truly
representative sample is impossible to attain and the researcher should try to remove
as much of the sample bias as possible [26]. In order to make the sample fairly
representative of SPI practitioners in particular organisation, different groups of
practitioners from each organisation were selected to participate in this research. The
sample of practitioners involved in this research includes developers, quality analysts,
SQA team leaders, SQA managers, project managers, and senior management. Thus
the sample is not random but a convenience sample, because we sought a response
from a person with a specific role within a software development organisation. The
practitioners who participated in this study fall into two main categories:

• “Developers” consisting of programmer/ analyst/ SQA coordinator.
• “Managers” consisting of team leader/ project manager, and senior

managers.

We used a closed ended questionnaire as an instrument to collect self-reported
data. Our questionnaire was based on the SPI de-motivators reported by Baddoo et al.
[14] and Khalil et al. [13]. The questionnaire was also designed to elicit the
importance that each respondent places on each identified de-motivator (perceived
value). In order to describe the importance of de-motivators, the respondents were
supposed to mention each identified de-motivator’s relative value (i.e., High value,
Medium value, Low value, Zero value, or Not sure).

In order to analyse the perceived value of each identified SPI de-motivator, the
occurrence of a perceived value (high, medium, low, zero) in each questionnaire was
counted. By comparing the occurrences of one SPI de-motivator’s perceived values
obtained against the occurrences of other SPI de-motivators’ perceived values, the
relative importance of each de-motivator has been identified. We have also used this
approach to identifying highly and lowly valued requirements engineering practices
reported in [27].

The responses to the questionnaire were gathered during September 2005. We
managed to administer the survey instrument to more than two software practitioners
from some organisations. Although all the participants were well-versed in English
and the questionnaire was in English. Moreover, the research team had a Vietnamese
speaking researcher, who could have provided necessary explanation if required. The
researchers also explained to the participants the meanings of SPI de-motivators. It
was also explained to them that they were supposed to identify their personal
motivators for SPI efforts.

122 M. Niazi and M. Ali Babar

5 Findings

5.1 Demographics

Table 1 shows the profile of the participants. Twenty-three surveys were conducted in
eight organisations. We also wanted to analyse the responses based on a respondent’s
organisation size. To achieve this objective, we decided to cluster the participating
organisations into different groups based on their sizes in terms of number of software
development staff. Using the organisation size definition provided by the Australian
Bureau of Statistics [28], we divided these organisations into three categories:
SMALL (0 to => 19 employees), MEDIUM (20 to => 199 employees), and LARGE
(200+ employees). According to this categorisation of the organisations, six are small-
medium sized and two are large sized organisations.

Table 1. Demographics

ID Number of
employees

Number of
participants Titles of participants

1 80 2 Project manager, Team leader

2 70 6 Developer, Test leader, Programmer, Divisional
head, Developer, QA manager

3 150 2 Chief Technology Officer, QA manager

4 150 3
Design team leader, R&D team leader, QA
team leader

5 700 2 Project Manager, Process quality manager
6 150 2 QA Manager, Operation manager

7 50 4
QA manager, Project engineer, Project
leader, Project leader

8 200 2 QA coordinator, QA manager

5.2 SPI De-motivators Identified by All Practitioners

Table 2 presents the list of de-motivators cited by all practitioners. The most common
‘high’ value de-motivator (13 out of 23) is ‘lack of resources’. Lack of resources was
also identified as one of the major de-motivators by Baddoo and Hall [14].
‘Workload’ and ‘lack of management commitment’ are also most frequently cited
‘high’ value SPI de-motivators. Our results have confirmed the previous findings of
several accounts that describe the importance of ‘higher management support’,
‘resources’ and ‘time pressure for SPI initiatives’ [18; 29-32]. More than 40% of
practitioners consider ‘lack of SPI management skills’ as a ‘high’ value de-motivator.
We have also found that ‘low process priority’ is a common ‘high’ value de-
motivators for SPI. Research shows that normally SPI is not considered real work and
software practitioners are expected to do SPI implementation in addition to their day-
to-day software development activities [33].

 De-motivators of Software Process Improvement 123

Table 2. SPI de-motivators identified by all practitioners

Occurrence in surveys (n=23)
Perceived value

SPI de-motivators

High Medium Low Zero Not
sure

No
response

Budget constraints 7 8 5 0 3 0
Cumbersome processes 7 11 2 1 1 1
Commercial pressures 5 12 3 0 2 1
Customers 3 10 6 2 2 0
Fire fighting 2 6 7 2 5 1
Imposition 5 7 6 2 3 0
Inadequate communication 5 11 4 1 2 0
Inadequate metrics 5 9 2 2 3 2
Inertia 7 5 8 0 3 0
Inexperienced staff 4 12 5 2 0 0
Irrelevant objectives/deliverables 4 11 4 3 1 0
Isolated best practices 7 6 7 2 1 0
Lack of evidence of direct benefits 6 11 3 1 2 0
Lack of feedback 7 11 3 1 1 0
Lack of management
direction/commitment

11 9 1 1 1 0

Lack of resources 13 8 2 0 0 0
Lack of SPI management skills 10 9 3 0 1 0
Lack of standards 7 13 3 0 0 0
Lack of overall support 8 11 4 0 0 0
Large-scale programmes 1 13 6 1 2 0
Low process priority 9 7 4 0 3 0
Negative/bad experience 5 11 6 1 0 0
Organisational changes 5 10 6 0 2 0
Personality clashes 6 8 5 1 2 1
Project manager’s lack of technical
knowledge

3 12 4 2 1 1

Reduced creativity 5 7 6 3 2 0
Staff turnover 3 8 6 2 4 0
Time pressure/constraints 6 9 4 0 4 0
Workload 11 4 4 2 2 0

‘Lack of standards’ and ‘large-scale programmes’ are considered as the most
common ‘medium’ value SPI de-motivator (13 out of 23). Research has shown that
despite the importance of SPI implementation process, little empirical research has
been carried out on developing ways in which to effectively implement SPI
programmes [6; 18]. This suggests that the current problems with SPI are lack of SPI
implementation standards. Different organisations adopted different approaches,
based on their own individual experiences, in order to implement SPI initiatives rather
than following a standard SPI implementation approach. This has led organisations to
a chaotic situation with no standard for SPI implementation practices [34]. Because of
this lack of SPI implementation standards, organisation are spending long time on SPI
initiatives to realise the real benefits of this approach [7; 35]. More than half of the
practitioners have cited ‘commercial pressures’, ‘inexperienced staff’, and ‘project

124 M. Niazi and M. Ali Babar

manager’s lack of technical knowledge’ as ‘medium’ value de-motivators. Other most
frequently cited ‘medium’ value de-motivators are: ‘cumbersome processes’,
‘inadequate communication’, ‘irrelevant objectives/deliverables’, ‘lack of evidence of
direct benefits’, ‘lack of feedback’, ‘lack of overall support’ and ‘negative/bad
experience’.

We are surprised that the ‘inertia’ is the most common ‘low’ value de-motivator. In
the study conducted with more than 200 UK practitioners, ‘inertia’ was identified as
one of the major de-motivators [14]. We argue that this is a critical de-motivator as
one of the biggest obstacles to introducing SPI initiatives is the unwillingness of
practitioners to participate in this initiative. Other most frequently cited ‘low’ value
de-motivators are: ‘fire fighting’ and ‘isolated best practices’.

5.3 SPI De-motivators Identified by Different Groups of Practitioners

Table 3 shows the list of SPI de-motivators cited by developers and managers. We
suggest that understanding the similarities in SPI de-motivators across different
groups of practitioners can help to develop effective SPI implementation strategies.
This is because, where respondents from different groups of practitioners consider
that a de-motivator has an impact on SPI implementation then that de-motivator needs
to be taken very seriously. This is because we have a de-motivator that is replicated
across all groups of practitioners.

‘Lack of resources’ is the most common ‘high’ value de-motivator cited by
developers (5 out of 8). Management often agrees for SPI initiatives without sufficient
knowledge of the investment required for the initiative. In some organisations the
management assume that SPI initiative will occur with very little investment. In other
organisations, the management does not consider SPI initiative as a real project and
hesitate to allocate resources [33]. Different studies have described the importance of
resources for SPI initiatives: Florence [9] discusses the lessons learned in attempting
to but not getting software CMM Level 4 at The MITRE corporation, and states that
the organisation achieved CMM Level 3 due to sufficient resources were provided,
but failed to achieve Level 4 because of lack of resources; Kautz and Nielsen [10]
describe why implementation of SPI was not successful in one company than another
company: “the project managers were hesitant to use resources from their own
projects on any improvement activity” [10:pp4]. Other most common ‘high’
perceived value de-motivators cited by developers are: ’lack of SPI management
skills’, ‘lack of overall support’ and ‘workload’.

75% of the developers consider ‘inexperienced staff’ is the ‘medium’ value de-
motivator of SPI initiatives. We argue that experienced staff should be involved in
SPI initiative, since they have detailed knowledge and first hand experience of SPI
implementation. With experienced staff, less rework of the documentation items is
required, real issues can be resolved, and chances of destruction are reduced [10; 36].
Different accounts have discussed this de-motivator: Kautz and Nielsen [10] describe
the reason that one company failed its implementation of SPI: “the staff and technical
director had no prior experience with SPI and its potential benefits” [10:pp4]; Moitra
[36] describes the problems and difficulties of managing change for SPI and identifies
inexperienced staff as one of the barriers for SPI: “the quality and process
improvement people are often quite theoretical – they themselves do not understand

 De-motivators of Software Process Improvement 125

quite well the existing software development processes and the context in which they
are used” [36:pp202]. ‘Negative/ bad experience’ is considered to be ‘low’ value de-
motivator (4 out of 8).

Table 3. SPI de-motivators identified by different group of practitioners

Developers (n=8) Managers (n=15) SPI de-motivators
H M L Z NS/

NR
H M L Z NS/

NR
Budget constraints 1 4 2 0 1 6 4 3 0 2
Cumbersome processes 1 4 1 0 2 6 7 1 1 0
Commercial pressures 1 3 1 0 3 4 9 2 0 0
Customers 1 5 1 1 0 2 5 5 1 2
Fire fighting 0 3 1 1 3 2 3 6 1 3
Imposition 2 3 1 1 1 3 4 5 1 2
Inadequate communication 3 3 1 0 1 2 8 3 1 1
Inadequate metrics 2 3 0 1 2 3 6 2 1 3
Inertia 3 1 3 0 1 4 4 5 0 2
Inexperienced staff 1 6 1 0 0 3 6 4 2 0
Irrelevant
objectives/deliverables

2 4 1 1 0 2 7 3 2 1

Isolated best practices 1 3 2 1 1 6 3 5 1 0
Lack of evidence of direct
benefits

2 5 0 0 1 4 6 3 1 1

Lack of feedback 3 4 0 1 0 4 7 3 0 1
Lack of management
direction/commitment

2 4 1 0 1 9 5 0 1 0

Lack of resources 5 3 0 0 0 8 5 2 0 0
Lack of SPI management skills 4 3 0 0 1 6 6 3 0 0
Lack of standards 3 4 1 0 0 4 9 2 0 0
Lack of overall support 4 3 1 0 0 4 8 3 0 0
Large-scale programmes 0 4 3 0 1 1 9 3 1 1
Low process priority 3 3 1 0 1 6 4 3 0 2
Negative/bad experience 2 2 4 0 0 3 9 2 1 0
Organisational changes 2 4 2 0 1 3 6 4 0 1
Personality clashes 1 5 2 0 2 5 3 3 1 1
Project manager’s lack of
technical knowledge

1 5 1 0 1 2 7 3 2 1

Reduced creativity 2 3 3 0 1 3 4 3 3 1
Staff turnover 3 2 1 0 2 0 6 5 2 2
Time pressure/constraints 1 4 1 0 2 5 5 3 0 2
Workload 4 1 1 2 0 7 3 3 0 2

H=High, M=Medium, L=Low, Z= Zero, NS/ NR=Not sure/ No response

Table 3 shows that 60% of managers have cited ‘lack of management commitment’
as a ‘high’ value de-motivator. Nearly half of the managers have considered ‘lack of
resources’ and ‘workload’ as ‘high’ value de-motivators. We believe that managers
struggle with allocation of time for different activities relating to SPI and day to day
software development during SPI initiatives [37], since software practitioners are
expected to do SPI activities in addition to their day-to-day software development

126 M. Niazi and M. Ali Babar

activities [33]. More than half of the managers have cited ‘commercial pressures’,
‘inadequate communication’, ‘lack of standards’, ‘lack of overall support’, ‘large-
scale programmes’, and ‘negative/bad experience’ as ‘medium’ perceived de-
motivators.

Table 4. SPI de-motivators identified by SM and Large organisations

Small and Medium
(n=19)

Large (n=4) SPI de-motivators

H M L Z NS/ NR H M L Z NS/NR
Budget constraints 7 5 4 0 3 0 3 1 0 0
Cumbersome processes 7 7 2 1 2 0 4 0 0 0
Commercial pressures 5 9 2 0 3 0 3 1 0 0
Customers 2 9 5 2 1 1 1 1 0 1
Fire fighting 2 5 6 1 5 0 1 1 1 1
Imposition 5 5 5 2 2 0 2 1 1 0
Inadequate communication 3 9 4 1 2 2 2 0 0 0
Inadequate metrics 4 6 2 2 5 1 3 0 0 0
Inertia 6 5 7 0 1 1 0 1 0 2
Inexperienced staff 4 10 3 2 0 0 2 2 0 0
Irrelevant
objectives/deliverables

4 8 3 3 1 0 3 1 0 0

Isolated best practices 5 6 5 2 1 2 0 2 0 0
Lack of evidence of direct
benefits

6 8 2 1 2 0 3 1 0 0

Lack of feedback 7 7 3 1 1 0 4 0 0 0
Lack of management
direction/commitment

9 7 1 1 1 2 2 0 0 0

Lack of resources 10 8 1 0 0 3 0 1 0 0
Lack of SPI management
skills

8 8 2 0 1 2 1 1 0 0

Lack of standards 6 11 2 0 0 1 2 1 0 0
Lack of overall support 7 9 3 0 0 1 2 1 0 0
Large-scale programmes 1 10 6 1 1 0 3 0 0 1
Low process priority 6 7 4 0 2 3 0 0 0 1
Negative/bad experience 4 9 5 1 0 1 2 1 0 0
Organisational changes 5 7 6 0 1 0 3 0 0 1
Personality clashes 5 6 5 1 2 1 2 1 0 0
Project manager’s lack of
technical knowledge

2 10 3 2 2 1 2 1 0 0

Reduced creativity 5 5 5 3 1 0 2 1 0 1
Staff turnover 3 6 5 2 3 0 2 1 0 1
Time pressure/constraints 4 8 3 0 4 2 1 1 0 0
Workload 9 3 3 2 2 2 1 1 0 0

5.4 SPI De-motivators Identified by Practitioners of Large and Small-Medium
Sized Organisations

We hypothesized that small and medium (SM) sized organisations would have a
different pattern of response than large organisations. For example we expect that SM

 De-motivators of Software Process Improvement 127

sized organisations are more resource-constrained and require benefits to be returned
within shorter periods.

Table 4 shows the list of SPI de-motivators cited by small and medium (SM) sized
and large sized organisations. Most of the SM sized organisations have cited ‘lack of
resources’ as the ‘high’ perceived value de-motivator. Nearly 50% of SM sized
organisations have cited ‘lack of management commitment’ and ‘workload’ as the
‘high’ perceived de-motivators. More than 50% of SM sized organisations have cited
‘inexperienced staff’, ‘lack of standards’, ‘large-scale programmes’, and ‘project
manager’s lack of technical knowledge’ as the ‘medium’ perceived value de-
motivators.

Table 4 shows that most practitioners of large organisations have cited ‘lack of
resources’ and ‘low process priority’ as the ‘high’ perceived value de-motivators.
‘Cumbersome processes’ and ‘lack of feedback’ are the most common ‘medium’
perceived value de-motivator cited by large organisations (4 out of 4).

6 Validity

Construct validity is concerned with whether or not the measurement scales represent
the attributes being measured. The attributes are taken from a substantial body of
previous research [14; 27; 32]. The responses from the practitioners show that all the
attributes considered were relevant to their workspace. External validity is concerned
with the generalisation of the results to other environments than the one in which the
initial study was conducted [38]. External validity was examined by conducting
survey with 23 practitioners from eight organisations.

There are some limitations that we considered worth mentioning. A disadvantage
of the questionnaire survey method is that respondents are provided with a list of
possible de-motivators and asked to select from that list. This tends to pre-empt the
de-motivators investigated and to limit them to those reported in existing studies -
respondents only focus on the de-motivators provided in the list. It is also possible
that respondents may misinterpret the de-motivator provided in the questionnaire.
However, we tried to address this issue by explaining the meaning of each de-
motivator included in the questionnaire (Please see Appendix A for meanings of the
de-motivators). Another issue is that the questionnaire surveys are usually based on
self-reported data that reflects what people say happened, not necessarily what they
actually did or experienced. Our results are limited to the respondents’ knowledge,
attitudes, and beliefs regarding the factors that de-motivate them to support SPI
initiatives in their organisation. This situation can cause problems when
practitioners’ perceptions may be inaccurate or factors identified as important SPI
de-motivators may not be important at all. However, like the researchers of many
studies based on opinion data (e.g. [32; 39; 40]), we also have full confidence in our
findings because we have collected data from practitioners working in quite diverse
roles and directly involved in SPI activities within their organisations. Sample size

128 M. Niazi and M. Ali Babar

may be another issue as we collected data from only 23 practitioners from 8
Vietnamese organisations. To gain a broader representation of Vietnamese
practitioners’ views on this topic, more practitioners and organisations need to be
included in a study. Our participants belonged to only one country, Vietnam, which
is another limitation as the findings cannot be widely generalized to practitioners
from other countries.

7 Summary and Conclusion

We report on our empirical study of SPI de-motivators. We analysed the experiences,
opinions and views of practitioners in order to identify factors that de-motivate them
from SPI initiatives. Five types of SPI de-motivators assessments (high, medium, low,
zero, or do not know) were identified that have led us to the notion of a ‘perceived
value’ associated with each SPI de-motivator (from high value to no value). To have a
perceived high value, we refer to a de-motivator that is common across all
practitioners.

In order to describe the notion of perceived value within SPI de-motivators, we
have used the following criterion:

 If a perceived value of a SPI de-motivator is cited in the questionnaire surveys
with a frequency of >=50%, then we treat it as critical.

In order to answer RQ1, using above criterion, we have identified ‘lack of
resources’ as a ‘high’ perceived value SPI de-motivator. We have identified 5 SPI de-
motivators that have ‘medium’ perceived value: ‘commercial pressure’,
‘inexperienced staff’, ‘lack of standards’, ‘large-scale programmes’, and ‘project
manager’s lack of technical knowledge’.

In order to answer RQ2, our results show the opinion of each individual
practitioner group. Developers are de-motivated by: ‘lack of resources’, ‘lack of SPI
management skills’, ‘lack of overall support’ and ‘workload’. Managers are de-
motivated by: ‘lack of management direction/commitment’ and ‘lack of resources’.

In order to answer RQ3, our results show that SM sized organisations are de-
motivated by ‘lack of resources’. The large organisations are de-motivated by:
‘inadequate communication’, ‘isolated best practices’, ‘lack of management
direction/commitment’, ‘lack of resources’, ‘lack of SPI management skills’, ‘low
process priority’, ‘time pressure/constraints’, and ‘workload’.

Our results show a ‘lack of resources’ high perceived value de-motivator common
to all practitioner groups. This de-motivator is also common between SM sized and
large organisations. We have also found 2 ‘medium’ perceived value de-motivators
common to all practitioner groups: ‘lack of standards’ and ‘large-scale programmes’.
We suggest that focusing on these de-motivators offers SPI practitioners short-term
opportunities for successfully implementing SPI initiatives. This is because different
practitioners who were tackling real issues on a daily basis frequently cited these de-
motivators.

 De-motivators of Software Process Improvement 129

References

1. Standish-Group: Chaos - the state of the software industry. Standish group international
technical report, pp. 1–11 (1995)

2. Standish-Group: Chaos - the state of the software industry (2003)
3. SEI: Capability Maturity Model® Integration (CMMISM), Version 1.1. SEI, CMU/SEI-

2002-TR-029, Software Engineering Institute, USA (2002)
4. ISO/IEC-15504: Information technology - Software process assessment. Technical report -

Type 2 (1998)
5. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An Exploratory

Study of Why Organizations Do Not Adopt CMMI, in press for publication, Journal of
Systems and Software (2007)

6. Leung, H.: Slow change of information system development practice. Software quality
journal 8(3), 197–210 (1999)

7. SEI: Process Maturity Profile. Software Engineering Institute Carnegie Mellon University
(2004)

8. Davis, A., Hickey, A.: Requirements Researchers: Do We Practice What We Preach?
Requirements Engineering Journal 2002 7, 107–111 (2002)

9. Florence, A.: Lessons learned in attempting to achieve software CMM Level 4, CrossTalk
pp. 29–30 (August 2001)

10. Kautz, K., Nielsen, P.A.: Implementing software process improvement: Two cases of
technology transfer. In: Proceedings of the 33rd Hawaii Conference on System Sciences,
vol 7, pp. 1–10 Maui, USA (2000)

11. SEI: Process maturity profile of the software community. Software Engineering Institute
(2002)

12. Ngwenyama, O., Nielsen, P.: A Competing values in software process improvement: An
assumption analysis of CMM from an organizational culture perspective. IEEE
Transactions on Software Engineering 50, 100–112 (2003)

13. Khalil, O.E.M., Zawacki, R.A., Zawacki, P.A., Selim, A.: What Motivates Egyptian IS
Managers and Personnel: Some Preliminary Results. SIGCPR 97, 187–196 (1997)

14. Baddoo, N., Hall, T.: De-Motivators of software process improvement: An analysis of
practitioner’s views. Journal of Systems and Software 66(1), 23–33 (2003)

15. McDermid, J., Bennet, K.: Software Engineering research: A critical appraisal. IEE
Proceedings on software engineering 146(4), 179–186 (1999)

16. Hall, T., Wilson, D.: Views of software quality: a field report. IEEE Proceedings on
Software Engineering 144(2), 111–118 (1997)

17. Hall, T., Wilson, D.: Perceptions of software quality: a pilot study. Software quality
journal 7, 67–75 (1998)

18. Goldenson, D.R., Herbsleb, J.D.: After the appraisal: A systematic survey of Process
Improvement, Its benefits, And Factors That Influence Success. SEI, CMU/SEI-95-
TR-009, Software Engineering Institute, USA (1995)

19. Stelzer, D., Werner, M.: Success factors of organizational change in software process
improvement, Software process improvement and practice 4(4) (1999)

20. El-Emam, K., Fusaro, P., Smith, B.: Success factors and barriers for software process
improvement. Better software practice for business benefit: Principles and experience.
IEEE Computer Society, Los Alamitos (1999)

21. Rainer, A., Hall, T.: Key success factors for implementing software process improvement:
a maturity-based analysis. Journal of Systems & Software 62(2), 71–84 (2002)

130 M. Niazi and M. Ali Babar

22. Rainer, A., Hall, T.: A quantitative and qualitative analysis of factors affecting software
processes, Journal of Systems & Software, Accepted awaiting publication (2002)

23. Humphery, W.S.: Three Process Perspectives: Organizations, Teams, and People. Annuls
of Software Engineering 14, 39–72 (2002)

24. Chidamber, S.R.: An Analysis of Vietnam’s ICT and Software Services Sector, The
Electronic Journal on Information Systems in Developing Countries, pp. 1–11 (2003) (Last
accessed November 01, 2005), http://www.ejisdc.org

25. Niazi, M., Wilson, D., Zowghi, D.: A Maturity Model for the Implementation of Software
Process Improvement: An empirical study. Journal of Systems and Software 74(2),
155–172 (2005)

26. Coolican, H.: Research Methods and Statistics in Psychology. Hodder and Stoughton,
London (1999)

27. Niazi, M., Cox, K., Verner, J.: An empirical study identifying high perceived value
requirements engineering practices. In: Fourteenth International Conference on
Information Systems Development (ISD´2005) Karlstad University, Sweden (August
15-17, 2005)

28. Trewin, D.: Small Business in Australia: 2001. Australian Bureau of Statistics report
1321.0 (2002)

29. Basili, V.R., McGarry, F.E., Pajerski, R., Zelkowitz, M.V.: Lessons learned from 25 years
of process improvement: The rise and fall of the NASA software engineering laboratory.
In: International Conference on Software Engineering, Orlando, Florida, USA, pp. 69–79
(2002)

30. Butler, K.: Process lessons learned while reaching Level 4, CrossTalk (May 1997)
31. Pitterman, B.: Telcordia Technologies: The journey to high maturity, IEEE Software, pp.

89–96 (July/August 2000)
32. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process

Improvement: An Empirical Study. Software Process Improvement and Practice
Journal 11(2), 193–211 (2006)

33. Niazi, M., Wilson, D., Zowghi, D.: Critical Barriers for SPI Implementation: An empirical
study. In: IASTED International Conference on Software Engineering (SE 2004). Austria
pp. 389–395 (2004)

34. Zahran, S.: Software process improvement - practical guidelines for business success.
Addison-Wesley, London (1998)

35. Niazi, M.: Software Process Improvement: A Road to success. In: The 7th International
Conference on Product Focused Software Process Improvement, LNCS, pp. 395–401
(2006)

36. Moitra, D.: Managing change for (SPI) initiatives: A practical experience-based approach.
Software Process Improvement and Practice 4(4), 199–207 (1998)

37. Baddoo, N., Hall, T., Wilson, D.: Implementing a people focused SPI programme. In: 11th
European Software Control And Metrics Conference and The Third SCOPE Conference
on Software Product Quality, Munich (2000)

38. Regnell, B., Runeson, P., Thelin, T.: Are the Perspectives Really Different-Further
Experimentation on Scenario-Based Reading of Requirements. Empirical Software
Engineering 5(4), 331–356 (2000)

39. Baddoo, N., Hall, T.: Motivators of software process improvement: An analysis of
practitioner’s views. Journal of Systems and Software 62, 85–96 (2002)

40. Beecham, S., Tracy, H., Austen, R.: Software Process Problems in Twelve Software
Companies: An Empirical Analysis. Empirical software engineering 8, 7–42 (2003)

 De-motivators of Software Process Improvement 131

Appendix A: Definition of SPI De-motivators [14]

SPI de-motivators Definition

Budget constraints Limited budget for SPI activities
Cumbersome processes Difficult and bureaucratic processes
Commercial pressures Pressure to satisfy commercial objectives of

organisation
Customers Interference from customers
Fire fighting Short term policies for tackling problems
Imposition Imposing SPI without consultation with practitioners

Inadequate communication Lack of communication between practitioners
Inadequate metrics Inadequate metrics for SPI
Inertia Resistance to SPI
Inexperienced staff Staff with limited SPI knowledge
Irrelevant objectives/deliverables SPI objectives are not tailored to real organisational

needs
Isolated best practices Best practices are not shared within the organisation
Lack of evidence of direct
benefits

Practitioners are not provided with the evidence of the
success of SPI

Lack of feedback Practitioners are not given feedback of the SPI
outcomes

Lack of management
direction/commitment

No commitment for SPI from higher management

Lack of resources The organisation does not have the resources for SPI
Lack of SPI management skills Insufficient personnel with the appropriate skills for

SPI
Lack of standards There are no overall standards to software development
Lack of overall support SPI is not overwhelming supported by the practitioners
Large-scale programmes The SPI initiative is too big for the organisation
Low process priority SPI is given low priority as compared to other

project activities
Negative/bad experience Previous negative experiences of SPI
Organisational changes Organisational changes impact negatively on ongoing

SPI programmes
Personality clashes Personal politics frustrates the SPI effort
Project manager’s lack of
technical knowledge

Project managers do not possess technical knowledge
of software production

Reduced creativity SPI takes away individual creativity
Staff turnover High staff turnover undermine SPI initiatives
Time pressure/constraints Pressure to deliver product on time
Workload Practitioners have too much work and have insufficient

time for SPI

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 132–146, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Defining Software Processes Through Process
Workshops: A Multicase Study

Finn Olav Bjørnson1, Tor Stålhane1, Nils Brede Moe2, and Torgeir Dingsøyr2

1 Department of Computer and Information Science,
Norwegian University of Science and Technology

NO-7491 Trondheim, Norway
{bjornson,stalhane}@idi.ntnu.no

2 SINTEF Information and Communication Technology
NO-7465 Trondheim, Norway

{Nils.B.Moe,Torgeir.Dingsoyr}@sintef.no

Abstract. We present the application of the process workshop method to define
revised work processes in software development companies. Through two
empirical action research studies, we study the impact of company premises and
goals on the execution and subsequently on the results of the method. We
conclude that both premises and goals will influence the workshops, and
suggest how the focus of the workshops should be altered to achieve better
results depending on the context. We also strengthen previous claims that the
process workshops are a good arena that fosters discussion and organizational
learning, and that involvement in the workshops leads to higher acceptance and
usage of the resulting process.

Keywords: Software Process Improvement, Project Workshop, Empirical
Study, Action Research.

1 Introduction

The way we develop and maintain software, or the software process, has long been
regarded as crucial for software quality and productivity [16]. In many companies,
software development is performed in a rather informal fashion, and problems of late
and unsatisfactory deliveries are not uncommon.

Problems related to the use of informal development include problems with
transferring competence from one project to another, difficulties in establishing best
practices, and the widely varying nature of problems to be solved. In order to address
these challenges and to improve the quality of the software development process, a lot
of companies develop process guides to structure their work.

The process workshop (PWS) method was designed as a lightweight method to
help facilitate the development of such process guides. Apart from the original
introduction of the process workshop [11] and a Finnish application of the same
method [19], there is little empirical evidence on the practical application of this
method. This paper aims to add to the body of knowledge on process workshops as a

 Defining Software Processes Through Process Workshops: A Multicase Study 133

tool for software process improvement, and describes how company context and goals
affects the execution of the method and its results.

In the following we describe our work in two companies, hereafter referred to as
Alpha and Beta Company. One is a small and one is a medium sized software
company, and they both used process workshops to define their software process. Our
focus is on the process workshop itself and how processes were constructed. The
description of this process, i.e., how it will later appear in an electronic process guide,
and the cost-benfit of the process workshop method is as such outside the scope of
this paper. Our research goal which we want to answer in this paper is:

How do available information, company context and goals affect the execution and
results of process workshops?

The paper is structured as follows: In chapter 2 we take a closer look at related
work, and the method we adapted for our cases. Chapter 3 describes the research
method employed in each case. Chapter 4 gives a deeper introduction to each case.
Chapter 5 discusses the differences between the cases and our findings. Chapter 6
concludes our findings and describes possible routes for further research.

2 Related Work

When companies choose to design their own development processes, one option is to
assign the task to a group of expert “process engineers” as described by Becker-
Kornstaedt [7, 8]. One or more process engineers elicit process data from interviews,
documents, surveys, e-mails and observation, and then interpret this data to produce a
process model. This approach relies heavily on the experience and skill of the process
engineer. Therefore, without any structured method, quality and repeatability cannot
be ensured. It is, however, unlikely that the use of qualitative methods alone can
compensate for experience in process modeling and software engineering [8]. When
using a process engineer to formulate a process model, it is common to create a
descriptive model. A descriptive model is a model, which expresses processes
currently in use. Descriptive software process modeling is an important part of any
software process improvement (SPI) program, because descriptive modeling allows
process engineers to understand existing processes, communicate process and analyze
existing practices for improvement [8]. For this reason, much work has been done on
proposing languages, techniques and tools for descriptive process modeling.

An alternative to using process engineers is to involve the employees more in
designing the process models, for example through workshops [1, 17]. This type of
work takes up the heritage from employee participation in organizational develop-
ment, a part of Scandinavian work tradition as well as in most work on improvement,
from the Total Quality Management principles [10] to the knowledge management
tradition in Communities of Practice [25]. Participation is also one of the most
important foundations of organization development and change [17], and one of the
critical factors for success in software process improvement [13].

Some studies have found that employee involvement lead to organizational
effectiveness, measured through financial performance, turnover rate and workforce

134 F.O. Bjørnson et al.

morale [21, 24]. Another potential effect of participation is increased emotional
attachment to the organization, resulting in greater commitment, motivation to
perform and desire for responsibility. Riordan et al. [21] use a framework with four
attributes to define employee involvement:

• Participative decision
• Information sharing
• Training
• Performance-based rewards

There are several techniques available for achieving participation. Examples are
search conferences [20], survey feedback [6], autononomous work groups [14],
quality circles [14, 15]. All of which are predicated on the belief that increased
participation will lead to better solutions and enhanced organizational problem-
solving capability.

In software development, the software developers and the first-line managers are
the ones who are into the realities of the day-to-day details of particular technologies,
products, and markets. Hence, it is important to involve all who are part of the
software process, and have decisions regarding the development of process guides
made by those who are closest to the problem.

Consequently, and in order to get realistic descriptions with accurate detail as well
as company commitment in an efficient manner, all relevant employee groups should
be involved in defining the processes. This can be done by arranging several process
workshops [17] in the form of quality circles [15] as a tool to reach a consensus on
work practice. A quality circle is composed of volunteers who arrange regular
meetings to look at productivity and quality problems, and discuss work procedures
[15]. The strength of the circle is that they allow employees to deal with improvement
issues that are not dealt with in the regular organization. The quality circles used in
the process workshop have all been temporary, and created with a relative well-
bounded mandate to be fulfilled. Once a sub-process has been accomplished, the
circle is disbanded. This kind of quality circles is also known as “Task forces” [14].

2.1 The Process Workshop Method

In the studies reported in this paper, we used a method called process workshop [11].
The method is designed to involve the users of the future process in discussing and
defining the processes. It ensures that people discuss how they work – which fosters
learning even before the process guide is available in the company. It also assures
quality – the process guide is developed by people who know how to do the work; it
does not describe how external consultants or senior staff imagine what “ideal”
development processes should look like.

The process workshop approach to defining process(es) consists of six main steps
and five sub-steps as shown in Figure 1 below. Since the focus of our work is on the
process workshop itself, we only provide details of the relevant substeps here. More
details on the process workshops method can be found in [11].

 Defining Software Processes Through Process Workshops: A Multicase Study 135

Decide on
process(es) to

define

Invite participants

Process
workshop

Identify
activities

Define
sequence

Define input
and output

Define roles

Find related
documents

Delegate
responsibility for
implementation

Role-based
reading of

resulting process

Implement the
process in EPG

Fig. 1. Steps to define process in a workshop

The theoretical approach of the five sub steps are:

• Identify activities. Brainstorming on the main activities of the process by using the
KJ process [22] and documenting the result. The KJ is a creative group technique
to organize and find relations between seemingly unrelated ideas.

• Define the sequence of the activities. A suitable workflow between the activities
from the previous phase is found.

• Define inputs and outputs. Identify documents or artifacts that must be available to
start a given sub-process, and which documents that mark the end of such sub-
processes. Conditions that must be satisfied to begin or exit the sub-process can be
described in checklists.

• Define roles. Defining which roles should contribute in each activity.
• Related documents. Identify documents that either already exist in the company, or

new documents that would be helpful in carrying out the activities. Such
documents can be templates, checklists and good examples of input or output
documents.

136 F.O. Bjørnson et al.

A process workshop can be used both to make a descriptive process model and to
directly formulate a new and improved process. In the latter case process models are
improved directly in the workshops through the discussions, without an analysis of
the present situation.

3 Research Method

This study reports on two separate empirical studies. Each study investigated the
application of process workshops to define software processes for software
development companies. However, the research method differed slightly between the
two cases, and the companies are also at different stages in their improvement efforts.
The research method and the difference in application to the two companies are
described in this chapter. Two of the authors of this paper were responsible for the
research at the Alpha Company, while the two others handled the research at the Beta
Company.

Both Alpha and Beta were involved in the same national research project, aimed at
investigating software process improvement in software engineering. Due to the
cooperative nature of this research project, the research method adopted for both
companies was the participative research method, action research [4]. In order to
properly describe and differentiate the research methods used, we describe them
according to the five principles suggested by Davison et al. [9] (table 1) and the three
aspects of control structures suggested by Avison et al. [3] (table 2).

Table 1. The five principles of canonical action research, by Davison et al.

Principles of canonical action research
1. The principle of the researcher-client agreement.
2. The principle of cyclical process model.
3. The principle of theory.
4. The principle of change through action.
5. The principle of learning through reflection.

Table 2. Forms and Characteristics of the major AR control structures, by Avison et al.

Control aspect Forms Characteristics
Initiation Researcher Field experiment
 Practitioner Classic action research genesis
 Collaborative Evolves from existing interaction
Authority Practitioner Consultative action warrant
 Staged Migration of power
 Identity Practitioner and researcher are the same person
Formalisation Formal Specific written contract or letter of agreement
 Informal Broad, perhaps verbal, agreements
 Evolved Informal og formal projects shift into the

opposite form

 Defining Software Processes Through Process Workshops: A Multicase Study 137

At the Alpha company, the research on how to use project workshops to define
software process was carried out during 2003. The process was later implemented in
an electronic process guide, and the use of the guide over time was studied [17]. The
research on project workshops to define their software process at Beta Company was
carried out during 2005, in other words after the study at Alpha company. Since the
goal of the company was close to that of Alpha, we decided to adopt the method of
process workshops to define the process. The company wanted to define their process,
and the researchers got a chance to empirically evaluate the method previously
suggested and used at Alpha.

Concerning the first principle of researcher-client agreement, this research was
done in a general project on software process improvement, where both companies
wrote an improvement plan and the researchers wrote a research plan for each
company.

The research followed the action research model (principle two) proposed by
Susman and Evered [23] in discussing the situation at the companies, planning action,
taking action, evaluating action, and finally specifying for learning. The research has
gone through three “evolutionary” cycles at Alpha, however our focus for this paper
is on the first cycle in which the process workshops were held to establish the process.
At Beta we have only done one evolutionary cycle at the present time.

The third principle of theory, was satisfied for both companies through the research
questions and our focus on developing and testing the method based on the theory of
user involvement [14, 15, 21, 24].

The fourth principle of change through action was satisfied through the actions of
holding the project workshops. The results form the basis for a new electronic process
guide, which includes examples based on the defined process. These results have been
used to implement the new defined process at Alpha, whereas Beta has not come this
far yet.

The fifth principle of learning through reflection was achieved at Alpha through
project meetings in which the researchers and company representatives discussed
actions that were taken and analyses made by the researchers. At Beta the results were
discussed in a series of meetings, we held a post mortem analysis (PMA) [23] of the
project workshops to evaluate it at the end, and conducted an interview with the
person responsible for the process improvement initiative at the company.

From the aspect of control structures on action research, we can put the following
characteristics on the research projects. The initiation was collaborative for both
projects. Both the company and the researchers were in a common research project
aimed at improving software processes, and the research plan was developed from the
joint wishes of practitioners and researchers.

The authority of the projects is where we observe the main difference. At Alpha it
is characterised as staged. In the beginning, the researchers were heavily involved
with developing the workshops, while the company assumed more of the
responsibility and workload towards the end. At Beta we also characterise the
authority as staged, but the oposite effect was seen. In the beginning, the company
was very much involved with developing a solution, but as an external project

138 F.O. Bjørnson et al.

demanded more and more of their resources, power was transferred to the researchers
who had to carry much of the workload.

The formalization of both projects can be said to have evolved from formal in the
beginning, with a clear structure and plan, to more informal at the end.

4 Empirical Results from the Two Software Companies

In this chapter we describe the two companies in which we conducted our research in
greater detail. We describe the context, the practicalities surrounding the process
workshops, how the companies used the data from the workshops, and finally an
evaluation of the workshops themselves.

4.1 Alpha Company

Alpha Company was founded in 1984, and is one of the leading producers of
receiving stations for data from meteorological and Earth observation satellites. The
company has worked with large development projects, both as a prime contractor and
as a subcontractor. The company has approximately 60 employees, many with
master’s degrees in computing science, mathematics or physics.

The size of typical product development projects are 1000-4000 work hours.
Customers range from universities to companies like Lockheed Martin and Alcatel to
governmental institutions like the European Space Agency and the Norwegian
Meteorological Institute. Most of the software systems that are developed run on
Unix, many on the Linux operating system. Projects are managed in accordance with
quality routines from the European Corporation for Space Standardisation and ISO
9001-2000 [5].

The company had an extensive quality system which was cumbersome to use
because of the size and existence partly on file and partly on paper. Since it also did
not emphasize such aspects as incremental and component development, the QA
system came under increasing pressure to change. It became impossible to follow the
standards and even more impossible to do effective quality assurance work in the
projects. As part of being certified according to ISO 9001-2000, the company
decided to develop a process-oriented quality system [18].

Defining New Processes
Management of the project for defining the new processes was kept with the Quality
Assurance (QA) department. One of the two persons working in the QA department
had earlier worked as a developer and was now member of the top management. This
way this project was anchored both among the developers and managers.

In an initial workshop with both developers and managers it was defined that the
process descriptions had to:

• Reflect the “best practices” currently used within the company (take the best from

the earlier system into the new system).
• Comply with modern methodologies like the Unified Process and Component

Based Development.

 Defining Software Processes Through Process Workshops: A Multicase Study 139

• Integrate the process descriptions with important tools for development (e.g.
requirements definitions and use-case description).

• Be easy to tailor when a new project is started.
• Be released when the first processes are defined, so it becomes possible to give

instant feedback and then keep up the involvement

From these requirements it was decided that the new processes should be created

based on “best practice” in the company, with important input from the existing
system and engineering tools. It was never an option to first analyse the existing
processes and then improve them. This was because they wanted to get the new
processes defined quickly to meet the new ISO standard, and to use as little time as
possible to keep up the enthusiasm among the developers. The process workshop also
provided the possibility to discuss and improve today’s working processes without a
thorough analysis. It was also decided that the process descriptions were going to be
developed in “process workshops” to achieve participation.

After the requirements were defined, seven process workshops were arranged.
Alpha identified four main project types, and they chose “Product Development” - the
most common one - as a starting point for the subsequent process workshops.
“Product Development” was divided into four sub processes: “Specification”,
“Elaboration”, “Component Construction” and “System Integration”.

More than 20 people (1/3 of the staff) participated in one or more workshops. The
people who participated in the process workshops were selected by the quality
department to represent a variety of roles, experience and opinions. The workshops
usually lasted half a day.

Each workshop started by defining the sub-processes in the main process. Then we
defined each sub-process activities and their sequence. We used the KJ process [22]
for brainstorming and documenting the result. The KJ is a creative group technique to
organize and find relations between often seemingly unrelated ideas. After the
activities were identified and organized in workflows, the documents for input and
output to the process were defined. These documents could be already existing
templates, checklist and good examples. Next we identified related roles to each
process. After all the sub-processes were defined, the responsibilities for
implementing the processes into the electronic process guide.

Implementing the Processes
The implementation was executed by QA personnel in a self-made tool and released
on the intranet. The first prototype was ready after only a few weeks, and even though
the process guide was incomplete it was possible to start real-life testing with a few
projects. The projects were encouraged to respond immediately to the process
descriptions if they are unclear, uncompleted or unusable. In this way the users were
still involved in developing the process descriptions.

The company used 180 work hours in workshops and 1049 work hours in total for
development of the first version of the process guide.

140 F.O. Bjørnson et al.

4.2 Beta Company

The Beta Company has 20 employees. Their main activities are hiring out consultants
as developers, developing complete solutions for customers, and hiring out
consultants and project managers as advisors for selecting technology, strategy or
process. Typically, no more than four to five consultants are at any time working for
the same customer.

The managers of the company wish to leverage the company in the market by
providing solutions to the problems of their customers. The solutions should make
them stand out and increase the probability that the customers later return with new
projects. In order to do this, they wish to foster an environment were all ideas and
knowledge are shared freely among the employees, and where the employees can
draw upon the experience of each other to provide good services to their customers.
This work is difficult since a lot of the employees at any given time are out at the
customers’ site where they don’t have direct access to their colleagues.

One of the identified stumbling blocks for experience sharing and reuse was the
lack of a common process and a common set of document templates. In order to
remove, or at least reduce this problem, the company wanted to define, document and
implement a framework that could be used for development, consultancy and
operation. The framework should be easily accessible for all employees and should
help them to do their jobs better than today and to show Beta as a highly competent
consultancy company. The company started to drift away from this goal after
approximately six months and decided instead to document how they worked now. A
shift from prescriptive to descriptive modeling. Although never explicitly stated, the
focus was on identifying the documents – artifacts – that were produced, who
produced them and how. In addition it was important for the company to create an
awareness of and understanding for the use of a process that encompassed all
development activities. At present, the developers thought in terms of jobs – things to
do – not in terms of processes and artifacts. One of the goals was to make them think
and work in terms of processes and process steps.

Defining New Processes
When the researchers became involved, we saw it as a good oportunity to further test
the process workshop method to document their process. We used a sequence of
process workshops – one for each of the identified main processes that the company
used. The input to the workshops was mainly the developers’ experiences with the
way they had worked in previous projects. Since the company had no single, defined
process and each project more or less invented its own, this was a quite diverse source
of information and experience. Each participant brought with him experiences from
several processes.

Since part of the goal of the Beta Company was to see which artifacts were needed,
we tried to use the standard process worksheet, which has a separate area for
documents. However, the workshop participants ignored this area and preferred to

 Defining Software Processes Through Process Workshops: A Multicase Study 141

mix activities and documents in the same diagram. One of the reasons for this may be
that different workshop participants had different ideas about what was done in a
project. It was much easier to agree on the documents that are developed than to agree
on how they are produced.

We held a total of six workshops over a period of 12 months. Five of the
developers participated in two or more of the workshops while an extra five
participated in at least one. The workshops treated the processes: requirements,
estimation, analysis, implementation, testing and project control and follow-up
activities. In addition, we arranged a Post Mortem Analysis (PMA) [12] workshop to
assess the whole process workshop series.

We will not treat the results from each workshop in any detail but will instead
focus on the workshop process and its results. In addition, we will discuss some of the
results from the workshop PMA.

We used the KJ process to create the diagrams during the workshops. Based on the
resulting diagrams it was straight forward to see which documents were generated. It
is important to note that while the workshop participants were fairly clear on which
documents to produce, they are rather vague on the process steps.

Implementing the Processes
Even though documents such as use-case descriptions were generated in this process,
all of the documents created in the requirements process will resurface in later
processes and will be refined there. In the developers’ view it was therefore
unreasonable to claim that a certain document “belonged to” a certain process or
process step. For this reason, the company decided on the following approach to get a
unified process concept:

• Identify all documents and code them with information on the process they are

generated in and where they later are refined or used.
• Identify all document dependencies, i.e. which documents use which other

documents.
• Store templates and examples for all documents that are used in one or more

processes.
• Define a discussion tread for each document. This will enable all developers to

give input on their experience, what works, what does not and how can we improve
on the templates.

Evaluating the Workshop Approach
When all the company’s processes had been analyzed in a process workshop
we arranged a PMA to identify strong and weak points in the workshop process
used. Most of the negative points related to the lack of participation from the
company’s management and does not contribute to our understanding of the use
of process workshops. The KJ diagram for the positive points is shown below in
figure 3.

142 F.O. Bjørnson et al.

- The best activity for
internal learning in
Beta in 2005, 2006.

- Goal: the results will
be the foundation
for Beta.

- Good starting point
for further SPI work

- Need to upgrade
existing templates

- Important to get ideas from outside
the organization

- Good organization of workshop
sessions

- External participation added value
- Cooperation with researchers from
SPIKE

- Can use experiences from project
participation as input to our own
development process

- We could think outside the box –
easy to participate

- Active participants in the workshops
- The workshops have created
enthusiasm in Beta

- A forum for discussions on
processes

- Good brainstorming sessions
- Experience with the KJ
- Good visualization techniques
- Good structuring sessions

- Good opportunities for learning
- Provide good understanding
of the way we work

- Create awareness
- Gives an overview of process
- Transfer competence across
disciplines

- SPIKE has put focus on SPI
- Learning and exchange of
experience during workshops

- Makes produces documents
and templates visible

- Company shows
willingness to spend
resources on SPI

Operation

Techniques

Results

Learning Commitment

Positive points

- The best activity for
internal learning in
Beta in 2005, 2006.

- Goal: the results will
be the foundation
for Beta.

- Good starting point
for further SPI work

- Need to upgrade
existing templates

- Important to get ideas from outside
the organization

- Good organization of workshop
sessions

- External participation added value
- Cooperation with researchers from
SPIKE

- Can use experiences from project
participation as input to our own
development process

- We could think outside the box –
easy to participate

- Active participants in the workshops
- The workshops have created
enthusiasm in Beta

- A forum for discussions on
processes

- Good brainstorming sessions
- Experience with the KJ
- Good visualization techniques
- Good structuring sessions

- Good opportunities for learning
- Provide good understanding
of the way we work

- Create awareness
- Gives an overview of process
- Transfer competence across
disciplines

- SPIKE has put focus on SPI
- Learning and exchange of
experience during workshops

- Makes produces documents
and templates visible

- Company shows
willingness to spend
resources on SPI

Operation

Techniques

Results

Learning Commitment

Positive points

Fig. 3. Positive KJ diagram from the PMA

Our main experiences can be summed up as follows:

• In a company with many and varied versions of the same process it is easier to
focus on documents than on process steps. Dependencies between documents will
enforce a sequence of activities but the focus will be on what, not on how.

• Among the developers, the process workshops are conceived as a positive
contribution in several ways, e.g.:

• Gives an opportunity for active participation - not just asked what you do but be
able to use your own experience to contribute to the company’s processes.

• Get a better understanding of the way the company works – an opportunity for
learning.

• External participation – in this case the researchers – added value to the
workshops by introducing an outside view on the way the company works

5 Discussion

In this section we discuss our experience with conducting process workshops in
different contexts, and elaborate on what we have observed to be the strengths and
weaknesses of this approach to software process improvement.

Let us first examine some differences between the two companies and how they
chose to employ the process workshop, we have made a comparison in Table 3 below:

 Defining Software Processes Through Process Workshops: A Multicase Study 143

Table 3. Comparing Alpha and Beta

Alpha Company Beta Company
Medium sized company 60 employees Small sized company 20 employees
Mostly in-house projects for external
customers

Mostly external projects at customer sites

ISO 9001-2000 certified No formal certification
Extensive quality system was already in
place before the researchers arrived, but
it had become outdated and was too
cumbersome to use.

No quality system or defined process in
place. Each project followed its own
process.

Management of the improvement
project was handled by a separate
Quality Assurance department.

No Quality Assurance department
exists, the improvement project was
handled by a project manager.

The improvement project had good
anchoring with both management and
developers through the QA department.

The improvement achieved good
anchoring with the developers who
participated in the workshops but
suffered from poor anchoring with
management.

PWS used to define the future process
based on best practice. (Prescriptive
modeling)

PWS used to understand the current
process. (Descriptive modeling)

More than 20 people, 1/3 of the
employees, participated in one or more
workshops.

5 developers participated in two or
more workshops while another 5
participated in one of the six
workshops.

Half work-day workshops. ~4 hours ~3 hour workshops after office hours.
Responsibility for documentation of the
workshop results was distributed among
the participants.

Responsibility for documentation of the
workshop results was left to the
researchers.

Activity focus in the workshops. Document focus in the workshop.
Evaluation of the PWS based on
researcher observations and
observations of the use of the electronic
process guide.

Evaluation of the PWS based on
researcher observations, post mortem
analysis with PWS participants, and
interview with the project manager
responsible for the SPI effort.

The largest difference between the workshop methods employed in the two
companies is the focus of defining future processes based on best practice in Alpha
vs. defining the current process in Beta. Originally Beta wanted to define a future
process, but given the different processes that emerged through the workshops, it was
decided at an early stage to focus on the current processes. In retrospect we can
explain the difference in focus with the situation the companies was in at the
beginning of the improvement projects. The employees at Alpha were already used to
using a defined process, while Beta had no experience on using a company process.
This can also be linked to the project profile in the companies. While Alpha had fairly

144 F.O. Bjørnson et al.

homogeneous projects, Beta had a heterogeneous profile, with many consultants
spread over several external customer sites.

The difference in previous process knowledge also manifested itself in the discussions
and subsequently in the results of the workshops. While the employees at Alpha was
more comfortable discussing activities, or how things should be done, the employees at
Beta gravitated towards discussing documents or artifacts, or what should be done. That
being said, the discussions at both companies kept discussions on the activities of the
process to a fairly high level. Neither descended into a detailed description of how an
activity should be carried out. The tendency of workshop participants to keep the
discussion on a high level is also noted in the study by Pikkarainen [19].

Another result from our two case companies is that management support and
involvement is a major success factor. This is nothing new in the literature [13], but
we believe it deserves mentioning. At Alpha we had the support of top management
through the QA department. At Beta top management was interested, but did not have
the time or resources necessary to follow the project. This resulted in other external
projects taking precedence over the improvement project. There was also no external
drive towards formal certification like there was at Alpha, which could have increased
the importance of the improvement project. This can also be explained through Beta’s
relatively small size, with only 20 employees, putting bread on the table and paying
the bills came first. There were not enough resources to dedicate an employee to
driving the project. The practical result has been that the researchers have had to
provide some of the drive, and the project has taken longer time than anticipated.

Even though there were differences in the premises for the process workshops and
slight differences in the execution, both Alpha and Beta employees praised it as a good
arena for learning. The project workshops provided an arena where employees from
several departments could meet and discuss. This gave the participants a broader view of
how work was conducted in the organization. Through this open forum, the employees
could discuss and reflect on their own work methods. Not being forced into a new process
by external consultants or a distant QA department, creates an arena and opportunity for
what Argyris and Schön [2] describes as double looped learning. Pikkarainen et al. [19]
also found the workshop approach a good support for organizational learning.

Another effect we observed in both Alpha and Beta was that involvement in the
process workshop created ownership of the resulting process. This effect was studied
in Alpha, where it was shown that the participants of the workshop used the resulting
process guide much more than the employees who did not participate. Although Beta
has not implemented the resulting process yet, there have already been indications
that there is a difference between those who participated and those who did not.

6 Conclusion and Further Work

We have conducted empirical studies on the application of the process workshop
approach in two software companies. Our research question was “How do available
information, company context and goals affect the execution and results of process
workshops?” Based on the results and the previous discussion, we can conclude that:

• The premises of the company will strongly influence the execution of the project
workshops. If the employees of a company are used to working according to a

 Defining Software Processes Through Process Workshops: A Multicase Study 145

process, the workshops can be used to formulate the starting point of a new process
based on best practice. If, however, no clear process exists, the focus of the
workshops should be on reaching an agreement on the current process before
improvement is suggested.

• If the PWS approach is used to reach an agreement on the current process, a good
starting point is to focus the discussion on artifacts, or what should be produced,
rather than how it should be produced.

• If the PWS approach is used to specify future processes based on best practice, the
discussions should be focused towards activities, or how the projects should be run.

In addition to answering our research question, we have made three observations
pertaining to organizational learning and some related issues:

• The PWS approach is a good tool for organizational learning. Through the
discussions in the workshops, the employees start the learning process, even before
the process is available through a process guide.

• Involvement in the workshops fosters ownership of the resulting process, and as
such it is a good way to get the developers to actually use the process later.

• The process workshop is a lightweight approach to defining a process for
companies. As such it is well suited to small and medium sized companies. It does,
however, require some resources to be truly successful and therefore, management
support is important.

Further work in this area will be to investigate methods to spread the acceptance and
usage of the resulting process. In a previous study [17] we showed that participants had
a higher usage level of the resulting process than those who did not participate. In the
empirical studies reported in this paper, we had a participant level of about 1/3 of the
employees in each company. The challenge now becomes how to get the rest of the
employees involved to foster a higher acceptance level of the resulting process.

Acknowledgments. This work was conducted as a part of the Software Process
Improvement through Knowledge and Experience research project, supported by the
Research Council of Norway through grant 156701/220. We are very grateful to our
contact persons in the software consulting company for providing stimulating
discussions and help with organizing the work.

References

1. Ahonen, J.J., Forsell, M., Taskinen, S.-K.: A Modest but Practical Software Process
Modeling Technique for Software Process Improvement. Software Process Improvement
and Practice 7(1), 33–44 (2002)

2. Argyris, C., Schön, D.A.: Organizational Learning II: Theory, Method and Practise.
Addison Wesley, London (1996)

3. Avison, D., Baskerville, R., Myers, M.: Controlling Action Research Projects. Information
Technology & People 14(1), 28–45 (2001)

4. Avison, D., Lau, F., Myers, M., Nielsen, P.A.: Action Research. Comm. ACM 42(1),
94–97 (1999)

5. Avison, D.E., Fitzgerald, G.: Information Systems Development: Methodologies,
Techniques and Tools, 2nd edn. McGraw-Hill, New York (1995)

146 F.O. Bjørnson et al.

6. Baumgartel, H.: Using employee questionnaire results for improving organizations: The
survey feedback experiment. Kansas Business Review 12, 2–6 (1959)

7. Becker-Kornstaedt, U.: Towards Systematic Knowledge Elicitation for Descriptive
Software Process Modeling. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2001.
LNCS, vol. 2188, pp. 312–325. Springer, Berlin, Heidelberg (2001)

8. Carvalho, L., Scott, L., Jeffery, R.: An exploratory study into the use of qualitative
research methods in descriptive process modelling. Information and Software
Technology 47(2), 113–127 (2005)

9. Davison, R., Martinsons, M.G., Kock, N.: Principles of canonical action research.
Information Systems Journal 14(1), 65–86 (2004)

10. Deming, E.W.: Out of the Crisis (first published in 1982 by MIT Center for Advanced
Educational Services). The MIT Press, Cambridge, Massachusetts (2000)

11. Dingsoyr, T., Moe, N.B., Dybå, T., Conradi, R.: A workshop-oriented approach for
defining electronic process guides - A case study. In: Acuña, S.T., Juristo, N. (eds.)
Software Process Modelling, Kluwer International Series on Software Engieering, pp.
187–205. Kluwer Academic Publishers, Boston (2005)

12. Dingsøyr, T.: Postmortem reviews: purpose and approaches in software engineering.
Information and Software Technology 47(5), 293–303 (2005)

13. Dybå, T.: An Empirical Investigation of the Key Factors for Success in Software Process
Improvement. IEEE Transactions on Software Engineering 31(5), 410–424 (2005)

14. Guzzo, R.A., Dickson, M.W.: Teams in organizations: Recent research on performance
and effectiveness. Annual Review of Psychology 47, 307–338 (1996)

15. Lawler, E.E., Mohrman, S.A.: Quality Circles - after the Honeymoon. Organizational
Dynamics 15(4), 42–54 (1987)

16. Lehman, M.M., Belady, L.A.: Program Evolution: Processes of Software Change.
Academic Press, San Diego (1985)

17. Moe, N.B., Dingsøyr, T.: The impact of process workshop involvement on the use of an
electronic process guide: a case study. In: 31st EUROMICRO Conference on Software
Engineering and Advanced Applications, pp. 188–195 (2005)

18. Nilsen, K.R.: Process improvement through development of an extended electronic
process guide - from electronic process guide to integrated work tool. In: EuroSPI 2004.
Trondheim (2004)

19. Pikkarainen, M., Tanner, H., Lehtinen, J., Levonmaa, M., Hyry, H., Abrahamsson, P.: An
Empirical Evaluation of the Process Workshop Approach. In: 3rd International Conference
of Software Development (2005)

20. Purser, R.E., Cabana, S.: Involve employees at every level of strategic planning. Quality
progress 30(5), 66–71 (1997)

21. Riordan, C.M., Vandenberg, R.J., Richardson, H.A.: Employee Involvement Climate and
Organizational Effectiveness. Human Resource Management 44(4), 471–488 (2005)

22. Scupin, R.: The KJ Method: A Technique for Analyzing Data Derived from Japanese
ethnology. Human Organization 56(2), 233–237 (1997)

23. Susman, G., Evered, R.: An assessment of the scientific merits of action research.
Administrative Science Quarterly 23(4), 582–603 (1978)

24. Vandenberg, R.J., Richardson, H.A., Eastman, L.J.: The Impact Of High Involvement
Processes on Organizational Effectiveness. Group & Organization Management 24(3),
300–339 (1999)

25. Wenger, E.: Communities of practise: learning, meaning and identity. Cambridge
University Press, Cambridge, UK (1998)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 147–159, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improving an Industrial Reference Process by
Information Flow Analysis: A Case Study

Kai Stapel, Kurt Schneider, Daniel Lübke, and Thomas Flohr

Software Engineering Group, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany

{Kai.Stapel,Kurt.Schneider,Daniel.Luebke,
Thomas.Flohr}@inf.uni-hannover.de

Abstract. Reference processes are supposed to be the basis for collaboration
and mature cooperation in software development. Large business organizations
need large and diverse reference processes. However, process conformance is a
constant concern. There are many explanations why a project may deviate from
its reference process. This is especially true in larger software companies with a
lot of different projects and variants modeled in a single reference process.
During an industrial cooperation we have identified a phenomenon that adds to
the problem: Unclear and incorrect information flows. Process modeling
notations and practices in many large organizations nurture information flow
anomalies. We improved the information flows in the reference software
process by means of information flow analysis and flow patterns. A
comprehensible reference process with reasonable information flows is easier to
understand and therefore gains acceptance in the project team.

1 Introduction

Mature software organizations define and maintain software development processes
based on CMMI [1] or SPICE (ISO 15 504). Modeling a reference process for
software projects is a mandatory task in maturing environments. However, reference
process models generate new problems. Correctness and conformance have been
concerns for many years.

In this contribution, we report on collaboration with a financial institution. We
were asked to check and improve their large reference process model. During that
work, we identified an interesting class of problems that we traced back to
information flow anomalies. We applied information flow analysis to tackle the
problems.

The implementation of a large software development reference processes is
difficult in itself. Challenges include:

• Complex, unclear, incomprehensible reference processes: To cover every
intended use many processes tend to be complex. More documents and possible
branches are modeled rather than keeping it simple and understandable.
Unfortunate name assignments as well as sloppy descriptions make processes and

148 K. Stapel et al.

activities unclear. Furthermore the information flows are obscure. Complexity and
the lack of clarity as well as badly designed information flows lead to
incomprehensibility of the processes.

• Unrealistic requirements: Many processes require a lot of documentation work.
Almost every activity demands a document as a result. Most of the time this is due
to the fact that most process modeling techniques lack the ability to represent the
flow of information in other representation media than documents. The reference
process analyzed in our case study requires each and every project to produce
between 60 and 165 documents.

• Inflexible reference processes: Since processes are designed to fit many needs
they are often neither suitable for large nor for small projects. That is the reason
why tailoring is needed before each project.

• Faulty reference processes: Reference processes are faulty in two ways:
syntactically and semantically. Syntactical mistakes are caused by not following
modeling standards and guidelines, unthoughtful modeling or insufficient support
of the notation by the modeling tool. Semantic mistakes like multiple preparations
of identical contents or parallel alteration of the same information are caused by e.
g. distributed modeling and missing interface coordination. Hence, information
flows are not only obscure but also faulty.

At least some of these problems can be found in most reference software
development processes. As a consequence, many reference processes are not accepted
by project teams. We analyzed such a software development process in a case study at
an information technology service provider in the financial sector. We tried to narrow
the gap between reference and actual processes by means of information flow
analysis. Optimizing the information flows of a process leads to a more compre-
hensible and sound process which again affects its acceptance positively. The basic
concepts of information flow analysis will be described in the following section.

2 Information Flow Analysis Concepts (FLOW Project)

In this section the basic concepts of information flow analysis are presented, as far as
they are needed to understand the case study described in section 3. A detailed
introduction can be found in [2, 3]. Our FLOW project was initiated at the Leibniz
Universität Hannover in 2004. Besides the information flow analysis, FLOW is
concerned with active strengthening and coordination of flows. We develop specific
techniques and tools that improve information flows [3, 4]. However, these aspects
are beyond this paper.

2.1 Goals of Information Flow Modeling

Information that flows in a process or project is modeled to accomplish several goals:

• Reflection and manual analysis by experts helps to remove flow anomalies and to
shape information flows more adequate.

• Some anomalies can be described as information flow patterns. Pattern search can
then be semi-automated.

Improving an Industrial Reference Process by Information Flow Analysis: A Case Study 149

• Techniques and tools can be developed that specifically affect information flows.
• Known existing techniques can be reframed and used for information flow

improvement by specifying their information flow behavior.

2.2 Postulates of Information Flow Analysis

The approach of information flow analysis is based on some fundamental beliefs and
assumptions. A detailed description can be found in [5] and [6]:

• Information flows link processes and direct communication and, therefore, also
connect conventional and agile approaches.

• Experience is a special kind of information which is being modeled explicitly. It
often influences activities and acts as a catalyst.

• We introduce the state of information: “Fluid” information is verbal or non-
objectively reproducible information including e-mails and personal notes third
parties cannot access or reproduce. “Solid” information refers to written or
recorded information (like videos) which is long-term accessible to third parties.

• Coarse modeling of information content. Usually just requirements are modeled on
their way through the project. In special cases (a few) different types of
information can be used.

The last two points require explanation. Referring to information metaphorically as
either fluid or solid states of information is typical for FLOW. It points out that the
same information can appear in different shapes. Different states implicate different
characteristics similar to fluid and solid matter.

• Solid information can be recalled at any time. It is stored in documents or
recordings (video or audio). Access as well as storage cost time and effort, but they
are repeatable. Solid experience is a special kind of solid information. It is
available through checklists, best practices and (design) patterns.

• Fluid information, on the other side, is bound to people or other volatile media. We
call “fluid” whatever someone has in mind and which cannot be obtained or
reproduced by third parties. Fluid information can easily be transmitted by
conversations and supported by some hand writings. But fluid information can
easily be lost or forgotten. Fluid experience slowly grows in a person’s mind while
the person is doing or observing something.

Self-restriction at modeling is also important: We explicitly do not aim for “as
precise as possible” definitions and detailed distinctions between information flows.
We rather prefer modeling as coarse as possible. Detailed distinctions in meaning or
different forms of representation of information (as tables, texts, pictures) will not be
differentiated in our FLOW models. Modeling information flows aims for qualitative
optimization and not for exact mapping.

2.3 FLOW Notation

Information flows could be represented as data flow diagrams like in the 1970's [7].
The basic idea was – and still is – not to follow the control flow. It is rather important
where information flows at all. A visual notation helps to clarify certain situations and

150 K. Stapel et al.

patterns. It ought to transport the basic concepts and still may be open for
interpretations at some points. After all, it is a medium of communication for people
and not a programming language. It is supposed to comply with the following
requirements:

• Very easy understandable even for non computer scientists. Few, easy explainable
symbols. Ability to extend existing process notations.

• Means of expression for fluid and solid, respectively for information storages as
well as for information flows.

• Means of expression for experience and “other” information.
• The ability to establish relations to existing process notations.

Very, very simple but flexible notations were most appropriate wherever we used
information flow analysis so far [3, 8-10]. That was also the case in the following case
study. Table 1 depicts the symbols that satisfy the mentioned requirements.

Table 1. Symbols of information flow models; they can be used to extend other process
notations

information state store information flow experience flow activity

solid

fluid

The symbol for a fluid information store (smiley) is supposed to bring to mind that
someone has the information in his or her head. Experience is distinguished from
other information through a different color (in this case gray). The distinction between
experience and other information is mentioned here for the sake of completeness. It is
not needed in the following case study.

Additionally there is a link between FLOW and the used process notation. It is
defined via the activity symbol (usually a rectangle) which is then available in both
notations (FLOW and process). An activity incorporates incoming information and
reissues it as an outgoing flow. The activity symbol adopts an extended meaning. This
mechanism can be used to refine and structure combined FLOW-process models into
hierarchies. Formally speaking, the respective activity symbol belongs to both notations.

Fig. 1 pictures a combined FLOW-process model. The process part with activities
and documents is shaded gray. Below the process, FLOW symbols show requirements
and design activities in a certain situation. Both solid (documents) and fluid (people)
information flows appear. This composition needs to be optimized considering the
characteristics of solid and fluid information. This is the goal of a FLOW software
process improvement activity.

<activity>

<experience>
(optional)

<experience>
(optional)

<information type>
(optional)

<information type>
(optional)

<identifier>

<identifier>

Improving an Industrial Reference Process by Information Flow Analysis: A Case Study 151

requirements design maintenance

specification design

…requirements design maintenance

specificationspecification designdesign

…

customercustomer

interviewerinterviewer

analystanalyst domain
expert
domain
expert

specification
expert

specification
expert

designerdesigner

contractcontract

constraintsconstraints

Fig. 1. Part of a combined FLOW-process model

A fairly large financial service provider asked us to help in optimizing their
reference software development process. We used this opportunity to test the methods
of FLOW in a case study.

3 Case Study

In a master thesis [11] we analyzed a very large existing reference software
development process of an information technology service provider in the financial
sector. We applied information flow optimization as described above. The respective
company has more than 2500 employees. It has a large process model with 5 so called
process groups, one of which is the analyzed software development process. It is an
iterative incremental process aligned to RUP [12] that has grown historically. The
software development process is structured in 6 layers to be clear and concise. All
processes are maintained by a dedicated process department. It coordinates several
process modelers from different specialist departments, the so called process experts.
The process experts perform the actual process modeling. Many process experts and
process managers have contributed to the reference process as it stands today.

The analyzed software development process contains most of the problems raised
in the introduction, because of its size, its historical development and the many
different modelers. It is complex, inflexible, unrealistically demanding and
syntactically faulty. However, it is not just a messy and useless process model that the
company should or could get rid of – instead, it is a typical representative of reference
models in industry. Our goal was to identify causes and propose solutions for some
problems that we would find using FLOW optimization. Since the only modeled
information carriers in the process are documents and the document flow extraction is
fairly easy we started with a document flow analysis.

152 K. Stapel et al.

3.1 Document Flow

Document flows are a special kind of information flows where the information is
passed on exclusively by documents. For a detailed differentiation between document
and information flows see [11].

In order to analyze document flows they first need to be extracted from the process
model. Documents are modeled as prerequisites (inputs) and results (outputs) of
activities. Activities are connected through a relationship of dependency or sequence.
We say a “document flows” between activities A and B if the document is output of
activity A and input to activity B, and if the two activities are connected via the
directed sequence relationship. In the notation used, this relationship is denoted by an
arrow. Document flow extraction is not as straight-forward as it might appear. In
principle, one flow gets created for each document in the model.

The company uses a process modeling tool which is able to export the process in a
proprietary XML graph format. We developed a tool that extracts the document flows
from the XML representation and stores them in an open source graph file format,
namely the Graph eXchange Language [13]. The advantage of using an open format
is that any tool capable of reading and illustrating this format can be used to visualize
the extracted document flows. Such visualization helps to understand a flow and
makes it easier to find faulty flows.

We searched the process for anomalies aided by the extracted and visualized
document flows. Identified problems fall into two groups: either syntactic or semantic
document flow anomalies. Semantic anomalies are more severe and require manual
analysis steps. Syntactic anomalies, however, can be detected automatically during
the extraction process. The automatically found problems can be marked in the
visualization to guide their tracking. For example, we found 33 documents that are
created but never used, 70 documents that are needed in several activities but are
never created and even 113 documents that are contained in the model but are never
referenced by any activity, neither as input nor output. Altogether, 62% of all
documents in the process are affected by one of these anomalies. It is no wonder that
many project teams find the process confusing. Fortunately, purely syntactic
anomalies are fairly easy to fix. Sometimes the process modelers just forget to
connect a document to the according activity or two different names are used for the
same document. Both can be fixed during revision. Many not referenced documents
can be deleted from the process model, because they are not needed at all.

Semantic anomalies are more demanding, but also more rewarding to resolve. For
instance, we found several cases in which the branching after activities that affect the
further document flow (conditional activities) was missing. Fig. 2 depicts such a
situation in a proprietary process notation used by the analyzed company.

The left side of Fig. 2 shows the quality assurance process as is. A design
document is to be improved. A review step is supposed to make sure that the quality
of the improved design is okay. A review just “looks” at a document but does not alter
it. No changes are made during the review process. The actual problem with the left
side process is that no matter what outcome of the review, the improvement process is
finished according to the modeled process. Since a review is a conditional activity the
process should look like the one on the right side including the condition and the
branching. If the quality of the improved design is assured the process can stop and

Improving an Industrial Reference Process by Information Flow Analysis: A Case Study 153

review
document

quality
assured?

design improved

no

yes

improve
design

Designer

design

design

review
document

improve
design

Designer

design

design

design improved

review
document

review
document

quality
assured?

design improved

no

yes

improve
design

Designer

design

design

improve
design

Designer

design

design

review
document

review
document

improve
design

Designer

design

design

improve
design

Designer

design

design

design improved

as-is state should be state

Fig. 2. Left side: as-is problem: no branching after conditional activities. Right side: Fixed
process with condition and branching.

the document can be passed on (“yes” branch). But if the design is not good enough
yet it has to be improved again (“no” branch).

Multiple occurrence of this problem leads to more confusion with the people who
are supposed to work according to the process (the project teams). And finally
confusion leads to less acceptance of the process. Teams are asking: “The process
does not make sense to us, so why should we follow it”?

Many of the above-mentioned problems may sound ridiculous or avoidable.
Nevertheless, we had seen many of them in different settings at different companies
before. We decided it was more use to improve those real processes rather than to
deny their existence.

What can be done to avoid these problems? It looks like the process modeling did
not proceed accurately enough. The company should revise its process model and for
instance add branches after each decision where they are not present already. We also
proposed some extensions to the modeling guideline, so future revisions will be able
to avoid the detected anomalies. The former modeling guideline did not include hints
from the document flow point of view. That might be another reason for the many
syntactic document flow anomalies.

Document flow analysis identified a lot of anomalies already. Most of them were
syntactic problems with minor consequences caused by neglectful design. But there
still are problems that cannot be identified by means of pure document flow analysis.
What if a document is used to model direct communication, because there is no other
way to do this with a given process notation? What if direct communication is not
modeled at all?

154 K. Stapel et al.

3.2 Information Flow

Information flows are not limited to documented information being passed on. More
effective ways of communication will also be considered, like conversations, phone
calls, chats or e-mails (fluid information).

There are several ways to extract information flows from a process. The automatic
extraction from the reference process model can be tried. A so-called document
dependency graph can be used as a starting point. Such a graph is built by adding an
edge from document A to B whenever A is output of an activity of which B is input.
Assuming that the information in A depends on B an information flow from B to A
can be inferred. With this assumption and the document dependency graph,
information flows can automatically be extracted from the reference process.
Documents as containers channel information through the project. The flows obtained
in that way have two major disadvantages. First, the assumption does not always
apply. Second, flows occur only between documents. People and direct communi-
cation are left out again.

This is due to a common weakness in most process notations: there is no way to
refer to direct communication. To gain information flows including direct
communication a process needs to be analyzed in a real project situation. An
information flow expert could accompany a project and thereby note all flows. This is
often not possible because of secrecy issues. Interviewing project participants is a less
demanding approach.

In this case study we observed two extraction methods: The extraction from the
reference process model and the extraction via interviews. Although these methods
are not as effective and as accurate as e. g. the project monitoring they still produce
useful information flows.

Reference Process Extraction
Our first approach of analyzing the information flows was the automatic extraction
from the reference process model. To accomplish this we used the method described
above. First, we created the document dependency graph from the exported process
model. After that, presuming that document dependencies infer information flows, we
extracted the flows and even found some anomalies.

One problem we found was a not fully connected document dependency graph.
Most likely it was not fully connected because direct communication paths occurring
in actual processes could not be modeled in the reference process. Several disjoint
document clusters in the document dependency graph raise the question why there
should be totally independent information flows in a single development process.
Usually a project pursues only one goal. A process model should represent that by
producing a fully connected document dependency graph. The single goal of a
software development process is the creation of software. The main cluster of the
document dependency graph correctly contains the corresponding documents. The
other smaller clusters stem from some sub processes and should be connected to the
main cluster, since the sub processes do not create information independently from
the other development activities. However, they are not connected according to the
reference process.

Improving an Industrial Reference Process by Information Flow Analysis: A Case Study 155

Two causes may be responsible for that anomaly: Modeling without due care and
attention and shortcomings in the process notation. The first situation usually occurs
because the modelers don’t pay attention to the information flow perspective or they
may not know about the right information flow analysis methods and tools. Even in
case they are aware of information flows and breakdowns, they do not have or find a
tool to deal with them.

The second situation is the lack of ability to address non documented information
flows in most process notations. In actual software development processes there is a
connection between the document clusters. The documents are not connected directly
but via non documented information flows (fluid) like e-mails or verbal speech and
notes like e. g. in meetings. So the anomaly is caused because fluid flows cannot be
depicted in the model. Usually this kind of a problem gives the project teams a bad
feeling. They know that something is wrong. But they do not exactly know what and
where it is in the process when using the process view alone. Using the information
flow perspective clarifies things because it helps to identify the problem and where
exactly it occurs.

Other anomalies we identified were cyclic flows. They occur when two or more
documents depend on each other in a cyclic way. In the majority of cases this problem
can be solved by looking at the documents at the level of paragraphs. Usually
paragraphs do not depend on each other anymore. Modeling granularity, thus, is a key
concept to effective information flow analysis.

The anomalies derived by means of reference process extraction are a good
starting point for more specific information flow analyses, like interviews of the
people who perform the affected process. The information flow perspective also
helps to explain suspicious parts of the process that were not clear from the process
view alone.

Extraction by Interviews
The second information flow extraction method conducted was the extraction through
interviews. Two project leaders of two different projects were interviewed. Both were
supposed to use the same reference process model. But both described actual
processes were much simpler and easier to understand. Hence, the information flows
were not as confusing as the ones obtained from the reference process. We even found
some information flow patterns. The document creation process looked similar in
both actual processes and for each document to be created in them. First, the
document is created on the basis of a template. Then the document iteratively gets
extended or changed accompanied by a quality assurance step. This is the case for all
types of documents like specifications, product manuals and even the source code.
These patterns seem to be due to the compliance of the projects with the reference
process. So there already is a certain level of compliance. The many anomalies
usually hide that.

Beside the regular patterns we also found some problematic ones. One of which is
the problem of creating a document afterwards. An example of this problem is
depicted in Fig. 3.

156 K. Stapel et al.

create
software
design

implemen-
tation

functional
specification

write software
design

document
software
design

source
code

Designer

Wiki
create

software
design

implemen-
tation

functional
specification

functional
specification

write software
design

document
software
design

software
design

source
code

source
code

DesignerDesigner

WikiWiki

Fig. 3. Problem: Creation of design document afterwards

This FLOW shows a part of the actual software development process as described
by one of the interviewed project leaders. Starting from the functional specification a
software design is created. The devised design is kept in the minds of the designers,
handwritten notes and a system similar to a wiki. This information is then used to
implement the software. After that the design gets documented in the software design
document although the implementation is already finished. But why did the document
get created afterwards? That is because the reference process demands it. The process
department supervises the reference process compliance of each project and penalizes
non-compliances. To avoid the penalties the project created the document afterwards.

What is the solution to that problem? The process department would answer: “Use
the reference process depicted in Fig. 4 where starting from the functional
specification the software design gets created first and then based on that document
the software gets implemented”. The project team would answer: “Use the process
depicted in Fig. 3 without the additional creation of the software design document
afterwards”. Both parties have good reasons for their opinions. The process
department wants to make sure that everything gets documented correctly. The
project team however wants to successfully finish the project in time and on budget.
Too much documentation work slows things down unnecessarily.

create
software
design

implementation

functional
specification

source
code

software
design

create
software
design

implementation

functional
specification

functional
specification

source
code

source
code

software
design

software
design

Fig. 4. Software development information flow according to reference process

FLOW provides a solution in terms of decision support rules:

• Solid information flow: Use a solid information flow whenever the information
needs to be documented permanently. The solid state ensures traceability, third
party accessibility and repeatable unmodified accessibility of the information.

Improving an Industrial Reference Process by Information Flow Analysis: A Case Study 157

• Fluid information flow: Use a fluid information flow whenever effective
information transport is important. The fluid state (especially verbal
communication) ensures the fast and extensive exchange of information.

These rules can be used to tailor a process. The result is a more effective process

that produces adequate documentation.
In our case the project team and the process department should get together to

decide what is most appropriate in the given situation by means of the FLOW
decision support rules. This combined decision making also contributes to the
narrowing of the gap between the reference and the actual development process.

In this case study we found most of the reference process problems stated in the
introduction. By using FLOW techniques we could identify information flow
anomalies and propose solutions. More concise and thus understandable information
flows lead to better comprehensibility. The documentation requirements can be cut
down by using fluid flows whenever reasonable. All this leads to a better acceptance
of the reference process and therefore to better reference process conformance in the
projects.

4 Related Work

Zuser et al. [14] requests communication flows to be analyzed and documented well
(by models) in order to prevent redundant and superfluous flows. Efficient
communication flows neither involve too many roles nor inadequate document forms.
In this way loss-free communication can be established. Traceability is important to
prevent the loss of already made decisions. That is why especially decisions need to
be documented well. A modeling technique is introduced incorporating three kinds of
communication flows: verbal communication, communication via written documents
and communication via e-mail and talk memos. Furthermore, any flow holds
information about the flowing data (e.g. a weekly report). The approach presented by
Zuser et al. is fairly basic, because it does not mention patterns or techniques to
capture these flows explicitly. Furthermore, it is limited to analyze communication in
one work group and not in the whole process.

Hansen and Kautz [15] used so-called Knowledge Maps to identify and analyze
knowledge flows. The technique aims to detect and optimize knowledge flows in
order to distribute knowledge within a learning organization. Knowledge flows
connect roles, individuals or organizational units, if knowledge is exchanged between
these entities. These flows can be unidirectional or bidirectional. If necessary
information about frequency, intensity, contents, context and importance can be
attached to the flow. Hansen and Kautz identified four knowledge flow patterns: hubs,
black-holes, springs and missing links. Hubs are connected to many other entities
through flows; black-holes only consume knowledge while springs only produce it.
Finally, missing links indicate situations where a flow should be established but it is
absent. The authors successfully applied the Knowledge Map technique in a medium-
size organization. However, the identified patterns are very basic: When using FLOW
it is possible to detect other patterns like Chinese Whisper, in which information is
passed along many hubs. Thereby, information is lost and gets modified.

158 K. Stapel et al.

5 Conclusions and Outlook

In this paper we presented an approach for optimization of development processes by
means of information flow analysis. We started with an introduction of the FLOW
project which investigates methods, techniques and tool support for information flow
analysis. We then presented our experiences made using FLOW in industry. A large,
complex, highly demanding and faulty reference process was analyzed. Problems
from the information flow perspective were identified and solutions were proposed.
This helped to clarify and optimize the reference process. Such an improved reference
process will gain acceptance in the project teams and will therefore be implemented
better. The gap between reference and actual development processes will be
narrowed.

We first analyzed document flows in the case study because they can be extracted
fairly easy from the present reference process. The document flows already contained
a lot of anomalies. Most of them were of syntactical nature and hence easy to fix. The
elimination of these anomalies already leads to a clearer and easier to understand
process. But it still requires a lot of documentation work and some problems could not
be identified with pure document flow analysis, yet.

We then performed the actual information flow analysis. In interviews positive
information flow patterns were identified. Incorporating them into the reference
process helps to improve comprehensibility. Aside from the positive patterns we also
identified patterns indicating anomalies. Documents were created after they could
have been used purposefully just because the reference process required it. The
relevant information had been passed on before without the use of “solid” documents.
The FLOW decision support rules help to correct this situation by establishing either
fluid (e.g. direct communication) or solid (e.g. documents) information flows. Doing
both is unnecessary extra work.

Some anomalies detected were due to the missing ability of most process notations
to model fluid information flows in the reference process. Existing process modeling
tools need to be extended to incorporate effective communication methods
(conversation, e-mail, chat, video conference). One way to accomplish that would be
to enable combined FLOW-process models.

References

1. Ahern, D.M., Clouse, A., Turner, R.: CMMI® Distilled: A Practical Introduction to
Integrated Process Improvement. Addison-Wesley, Reading, MA (2001)

2. Schneider, K.: Software Process Improvement from a FLOW Perspective. In: Accepted for
the Workshop on Learning Software Organizations (LSO, 2005). Kaiserslautern (2005)

3. Schneider, K., Lübke, D.: Systematic Tailoring of Quality Techniques. In: World Congress
of Software Quality, Munich, Germany (2005)

4. Schneider, K.: Rationale as a By-Product. In: Dutoit, A.H., et al. (ed.) in Rationale
Management in Software Engineering, Springer, Berlin (2006)

5. Schneider, K.: Aggregatzustände von Anforderungen erkennen und nutzen. In:
GI-Fachgruppentreffen Requirements Engineering 2005. Hannover, Germany (2006)

6. Schneider, K.: Software-Engineering nach Maß mit FLOW. In: SQMcongress 2006.
Düsseldorf, Germany: SQS (2006)

Improving an Industrial Reference Process by Information Flow Analysis: A Case Study 159

7. DeMarco, T.: Structured Analysis and System Specification. Prentice-Hall, Englewood
Cliffs (1979)

8. Allmann, C., Winkler, L., Kölzow, T.: The Requirements Engineering Gap in the OEM-
Supplier Relationship. In: LSO+RE 2006. Hannover, Germany (2006)

9. Lübke, D., Schneider, K.: Leveraging Feedback on Processes in SOA Projects. In:
Richardson, I., Runeson, P., Messnarz, R. (eds.) Software Process Improvement. LNCS,
vol. 4257, Springer, Heidelberg (2006)

10. Schneider, K.: LIDs: A Light-Weight Approach to Experience Elicitation and Reuse. In:
Bomarius, F., Oivo, M. (eds.) PROFES 2000. LNCS, vol. 1840, Springer, Heidelberg
(2000)

11. Stapel, K.: Informationsflussoptimierung eines Softwareentwicklungsprozesses aus der
Bankenbranche, in FG Software Engineering. Leibniz Universität Hannover: Hannover
(2006)

12. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley
Professional, London (2003)

13. Holt, R., et al.: Graph eXchange Language (2002), http://www.gupro.de/GXL/
14. Zuser, W.: Software-Engineering mit UML und dem Unified Process. München: Pearson

Studium, p. 377 (2001)
15. Hansen, B.H., Kautz, K.: Knowledge Mapping: A Technique for Indentifying Knowledge

Flows in Software Organisations. In: Dingsøyr, T. (ed.) EuroSPI 2004. LNCS, vol. 3281,
pp. 126–137. Springer, Heidelberg (2004)

Connecting the Rationale for Changes
to the Ev olution of a Process

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1

Abstract In dynamic and constantly changing business environments, the need
to rapidly modify and extend the software process arises as an important issue.
Reasons include redistribution of tasks, technology changes, or required
adherence to new standards. Changing processes ad-hoc without considering
the underlying rationale of the process design can lead to various risks.
Therefore, software organizations need suitable techniques and tools for storing
and visualizing the rationale behind process model design decisions in order to
optimally introduce future changes into their processes. We have developed a
technique that support us in systematically identifying the differences between
versions of a process model, and in connecting the rationale that motivated such
differences. This results in a comprehensive process evolution repository that
can be used, for instance, to support process compliance management, to learn
from process evolution, or to identify and understand process variations in
different development environments. In this article, we explain the underlying
concepts of the technique, describe a supporting tool, and discuss our initial
validation in the context of the German V-Modell XT process standard. We
close the paper with related work and directions for future research.

1 Introduction

The field of software process modeling has become established within the software
engineering community. An explicit process model is a key requirement for high pro-
ductivity and software quality. The process description content might be collected in
several ways, for example by observing real projects, describing intended activities,
studying the literature and industry reports, or interviewing people involved in a
project [10]. Usually, considerable effort is invested into the definition of such pro-
cesses for an organization. Once the process is defined and institutionalized, modify-
ing it further becomes unavoidable due to various reasons, such as the introduction of
a new software development technology in a development team (e.g., new testing
support tools and techniques), a new/updated process engineering technology (e.g., a
new process modeling technique), new/updated standards/guidelines for software de-
velopment or process engineering, new/updated regulatory constraints, or new/updat-
ed standards/guidelines for software development or process engineering. Such
changes must be reflected accordingly in the corresponding process models. Achiev-

.

67663, Kaiserslautern and Germany

Alexis Ocampo and Martín Soto

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 16 –1 , 2007.
© Springer-Verlag Berlin Heidelberg 2007

0 74

{ocampo, soto}@iese.fraunhofer.de

ing a compromise that satisfies such a challenge usually depends on the information
available for rapidly judging if a change is consistent and can be easily adopted by
practitioners.

Having information about the reasons for process changes (i.e., the rationale) at
hand can be of great help to process engineers for facing the previously mentioned
challenges. Currently, the common situation is that there is a lack of support for sys-
tematically evolving process models. Combined with other facts such as budget and
time pressure, process engineers often take shortcuts and therefore introduce unsuit-
able or inconsistent changes or go through a long, painful update process. In many
cases, precipitous and arbitrary decisions are taken, and process models are changed
without storing or keeping track of the rationale behind such changes.

According to our experience, systematically describing the relationships between
an existing process and its previous version(s) is very helpful for efficient software
process model evolution [2]. Such relationships should denote differences between
versions due to distinguishable modifications. One can identify the purpose of such
modifications if one can understand the rationale behind them. Rationale is defined as
the justification of decisions [8]. Rationale models represent the reasoning that led to
the system or, in our case, to the process in their current form. Historically, much re-
search about rationale has focused on software/product design. By making rationale
information explicit, decision elements such as issues, alternatives, criteria, and argu-
ments can improve the quality of software development decisions. Additionally, once
new functionality is added to a system, the rationale models enable developers to
track those decisions that should be revisited and those alternatives that have already
been evaluated.

We are currently working on transferring rationale concepts into the process mod-
eling domain. We do this based on the assumption that the rationale for process
changes can be used for understanding the history of such changes, for comprehen-
sive learning, and for supporting the systematic evolution of software processes. We
are looking at the possibilities that can be used for documenting changes and
connecting them to their corresponding rationale.

This article presents a technique for comparing process models, recognizing a set
of standard changes, and connecting them to their respective rationale as follows: In
Section 2, we present the conceptual model for capturing rationale; In Section 3, we
present the technique for identifying changes. In Section 4, we illustrate the connec-
tion of changes to rationale; In Section 5, we briefly discuss our implementation of
this technique, as well as our experience in applying it to the German V-Modell XT
[33] process standard. In Section 6, we present a short description of related ap-
proaches for comparing models and for capturing rationale; and finally, in section 7,
we provide a summary and future research questions to be resolved.

2 Process Rationale

The following is a conceptual model that can be considered a second version of our
attempt to understand the information needs for capturing the rationale behind process
changes (see Fig 1). The results of our first attempt have been documented in [21]. In

Connecting the Rationale for Changes to the Evolution of a Process 161

order to complement our previous work, we decided to take the IBIS [14], QOC [18],
and DRL [15] approaches as the basis. These approaches are called argumentation-
based because they focus on the activity of reasoning about a design problem and its
solution [8]. Based on our previous experience in collecting rationale [21], we as-
sessed these approaches and defined a small subset of entities (see shadowed classes
in Fig 1) that suited our goal, namely capturing rationale in a more structured way,
while being careful of keeping the involved costs under control especially because
this issue has been highly criticized by rationale experts. We connected these basic
entities to three additional entities relevant for us, namely, event, changes, and pro-
cess entities (the non-shadowed classes in Fig. 1).

Fig 1. Rationale Model (UML static structure diagram)

An event is considered to be the trigger of issues. Events can be external or inter-
nal. Examples are:

– External: new/updated process engineering technology (e.g., a new process model-
ing technique); new/updated regulatory constraints

– Internal: responses to failures to pass internal or external appraisals, assessments or
reviews (e.g., changes needed to address a failure in passing an FDA audit);
new/updated best practices emerging from "lessons learned" in just-completed
projects (e.g., a new "best practice" approach to handling design reviews).

Issues can be problems or improvement proposals that are related to a (part of a)
process and that need to be addressed. Issues are stated usually as questions in prod-
uct-oriented approaches. In this work, the question has the purpose of forcing process
engineers to reason about the situation they are facing. Additionally, an issue also
contains a long description, a status (open, closed) and a discussion. The discussion is
intended for capturing the emails, memos, letters, etc. where the issue was treated by
process engineers. Additionally, an issue can be categorized by a type. This type can
be selected from a classification of issues that needs to be developed or customized
for an organization. It is possible to start with a preexisting classification (see for ex-
ample [21]) as a basis, which can be refined based on experience gained from process
evolution projects.

type
question
description
status
discussion

Issue

name
description
type

Event triggers

description
subject
assessment

Alternative

has

subject
description
justification

Resolution

description
Change

chooses

generates

triggers

resolves

processEntityId

Process Entity

affectsdescends

►

►

►

►

►

◄

◄

◄

162 A. Ocampo and M. Soto

.

subject (short description) or long descriptions. Alternatives are evaluated and as-
sessed by process engineers regarding their impact and viability.

A resolution chooses an alternative that gets implemented by changing the process
model. At the same time, one resolution could lead to opening up more issues. Note
that a resolution has a subject (short description), a long description, and a justifica-
tion. The justification is intended for capturing a summary of the analysis of the dif-
ferent alternatives, the final decision, and the proposed changes. Changes are the re-
sult of the decision captured in the resolution. They are performed on process entities.
Some examples of changes performed to process entities are: activity x has been in-
serted; artifact y has been deleted; activity x has been moved to be a sub-activity of
activity z.

Identifying which changes affect which process element is not an easy task. So far,
we have developed a mechanism that allows us to document the rationale information
proposed in Fig. 1 directly in the process model being altered [22]. The actual ratio-
nale information can be documented in special tables at the end of the process model
description. The process engineer can then introduce the rationale information, per-
form the changes to the respective process entities, and then establish a reference to
the corresponding rationale element. Then with the support of a special tool, the pro-
cess evolution repository is updated. Although the approach proves to be suitable, we
saw the need to provide more flexibility during the identification of process entities
being changed and the documentation of the rationale behind such changes. In the fol-
lowing section, we present the technique we developed for that purpose.

3 Pattern-Matching-Based Change Identification

Our change identification technique is based on the Delta-P approach for process evo-
lution analysis [28, 29]. This technique makes it possible to handle a wide variety of
types of changes in a completely uniform way, to flexibly define the types of changes
that are considered interesting or useful (this can be based on the structure and seman-
tics of the process' metamodel), and to restrict the results to only certain types of
changes, or even to certain interesting portions of a model.

3.1 A Normalized Representation for Process Models and Their Comparisons

Our first step consists of representing models (and later their differences) in such a
way that a wide range of change types can be described using the same basic formal-
ism. The representation we have chosen is based on that used by RDF [19] and simi-
lar description or metadata notations. For our purposes, this notation has a number of
advantages over other generic notations:

– Being a generic notation for graph-like structures, it is a natural representation for a
wide variety of process model types.

– It has a solid, standardized formal foundation.
– As shown below, the uniformity of the notation, which does not differentiate be-

tween relations and attributes, makes it possible to describe a wide range of

Alternatives are proposals for resolving the issue. Alternatives can be captured with

Connecting the Rationale for Changes to the Evolution of a Process 163

changes with a straightforward pattern-matching notation.

– Also as shown below, the fact that many model versions can be easily put together
into a single model makes it possible to use the same pattern-matching notation for
single model versions and for comparisons.
Fig. 2 shows an example of this representation. The graph contains only two types

of nodes, which we will call entity nodes (ovals in the figure) and value nodes (boxes
in the figure). Entity nodes have arbitrary identifiers as labels. Value nodes are la-
beled by the value they represent, which can belong to a basic type (string, integer,
boolean, etc.)

Fig. 2. A process model in normalized form

Arrows represent typed directed relations (type is given by their labels). Relations
may connect two entity nodes, or may go from an entity node to a value node. It is not
allowed for a relation to leave a value node. It is also not allowed for a node to exist
in isolation. All nodes must be either the start or the end point of at least one relation.
It follows that the graph is characterized completely by the set of the relations (edges)
present in it, since the set of nodes is exactly the set of all nodes that are the start or
the end of an edge.

The correspondence between attributed graphs and this normalized form is
straightforward:
– Entities and types correspond to entity nodes. For each entity instance and entity

type in the original graph, there is an entity node in the normalized graph. There is
also a type relation between each node representing an entity and the node repre-
senting its type.

– Attributes correspond to entity-value relations. For each entity attribute in the orig-

e1 e2

e3e5

Test Case Design

Test Case

Quality Technician Quality Manager

Describes the actual conditions
in which a test operation
should...

Activity

Role

Product
produces

involvesRole

involvesRole

isResponsibleFor

name name

name name

type

typetype

type
description

e4

Tester

The Test Case Design activity is concerned
with the definition of test cases for...

involvesRole

description

type

name

16 A. Ocampo and M. Soto 4

inal graph, there is a relation labeled with the attribute name that connects the enti-
ty with the attribute value (that is, attributes in the original metamodel are convert-
ed into relation types). The value is a separate (value) node.

– Entity relations correspond to entity-entity relations. For each relation connecting
two entities in the original graph, a relation connecting their corresponding entity
nodes is present in the normalized graph.1

Fig. 3 shows an evolution of the model presented in Fig. 2, using the normalized
notation, with changes also highlighted. Formally, this graph respects exactly the
same restrictions as the normalized model representation. The only addition is that
edges are decorated (using interrupted and bolder lines) to state the fact that they
were deleted, added, or simply not touched. This leads us to the concept of a compar-
ison graph or comparison model. The comparison model of two normalized models A
and B contains all edges present in either A or B, or in both, and only those edges.
Edges are marked (decorated) to indicate that the edge is only in A, only in B, or in
both A and B.

Fig. 3. A process model comparison in normalized form

The main aspect to emphasize here is the fact that all changes are actually reduced
to additions and deletions of relations between nodes. This results in part from the
fact that attributes are represented as relations, but also from the fact that nodes can-
not exist in isolation. It is possible (and safe) to identify entity additions and deletions
by looking for additions and deletions of type relations in the model.

1 Relations with attributes can be modeled by introducing entity nodes that represent them, but
the details are beyond the scope of this paper.

e1 e2

e3e5

Test Case Design

This activity is concerned
with the definition of test
cases for...

Test Case

Quality Technician Quality Manager

Describes the actual conditions
in which a test operation
should...

Activity

Role

Product
produces

involvesRole

involvesRole

isResponsibleFor

name name

name name

type

typetype

type
description

description

e4

Tester

The Test Case Design activity is concerned
with the definition of test cases for...

involvesRole

description

type

name

Connecting the Rationale for Changes to the Evolution of a Process 165

additions and deletions is useful because it permits describing many types of changes
uniformly. On the other hand, an adequate formalism to describe changes must have
clear, unambiguous semantics, and must be, at the same time, accessible to users. The
following sections discuss with the help of examples, the mechanism that we have
chosen for this task: a graphical pattern-matching language.

3.2 Example 1: Additions and Deletions

Our first example is related to one of the simplest possible model changes: adding or
deleting process entities. Fig. 4 shows four patterns that identify changes of this type
with different levels of generality. The pattern in Fig. 4a) matches all additions of pro-
cess activities, and for each match, sets the ?id variable with the identifier of the new
activity. In a similar way, the pattern in Fig. 4b) matches all deletions of process prod-
ucts. These patterns can be generalized to identify arbitrary additions and deletions:
the pattern in Fig. 4c) identifies all entity additions, and instances an additional vari-
able with the type of the added entity. Finally, Fig. 4d) shows a pattern that not only
finds new activities, but sets a variable with the corresponding name, a useful feature
if the results of matching the pattern are used, for example, to produce a report.

3.3 Example 2: Changes in Attribute Values

Just as important as identifying entity additions and deletions is finding entities whose
attributes were changed. Fig. 5 shows three patterns that describe changes in attribute
values. Fig. 5a) is basically an excerpt from the comparison graph in Fig. 3, which
captures the fact that an attribute description was changed. This pattern, however,
matches only the particular change shown in the example. The pattern in Fig. 5b) is a
generalized version of the first one. By using variables for the entity identifier, as well
as for the old and new property values, this pattern matches all cases where the de-
scription attribute of an arbitrary entity was changed. Note that each match sets the
value of the ?id variable to the identifier of the affected entity, and the values of ?old-
Value and ?newValue to the corresponding old and new values of the description
property. The pattern in Fig. 5c) goes one step further and uses a variable for the at-
tribute labels as well, which means it matches all attribute value changes. Note that

Fig. 4. Patterns for identifying entity additions and deletions

a) b) c)

?id

?name

name

d)

Activity

type

?id

Activity

type

?id

Product

type

?id

?type

type

16 A. Ocampo and M. Soto 6

The fact that the normalized representation reduces all changes to sets of relation

attribute value changes affecting process activities.

Fig. 5. Four patterns for identifying attribute value changes

Changes identified in this way can be fed into additional algorithms that perform
attribute-specific comparisons, such as, for example identifying added or deleted indi-
vidual words or characters in text-based attributes. This way, potentially expensive
specific comparison algorithms are only applied to relevant items.

4 Connecting Rationale to Process Changes

RDF has been designed with the intention of supporting the interchangeability of sep-
arate packages of metadata defined by different resource description communities We
have defined a separate RDF model containing the rationale concepts described in
Fig. 1. This allow us to reference the comparison model. Fig. 6 elaborates on the pre-
vious example and illustrates how we connect the comparison model to the rationale
model. The figure can be interpreted as having two separated RDF models, one for
the comparison of processes and the other one for the rationale for changes. Let us as-
sume that a review board met, discussed, and documented issue (i1) concerning the
expensive performance of the activity Test Case Design (e1) by more than one role,
i.e, Quality Manager (e3), Tester (e4), and Quality Technician (e5). The review board
analyzed two different alternatives (a1) and (a2), resolving to reduce costs (r1) by re-
moving the Quality Technician (e5) from the list of roles responsible for the Test
Case Design (e1). Afterwards, appropriate changes were performed to the process.

e1

This activity is
concerned
with the definition of
test cases for...

description

The Test Case Design
activity is concerned with the
definition of test cases for...

description

?id

?newValue

description

?oldValue

description

?id

?newValue

?attribute

?oldValue

?attribute

a) b)

c)

?id

?newValue

?attribute

?oldValue

?attribute

d)

Activity

type

these patterns match once for each changed property in each object. Finally, the pat-
tern in Fig. 5d) constitutes a specialization of its peer in Fig. 5c): it is restricted to all

Connecting the Rationale for Changes to the Evolution of a Process 16 7

Fig. 6. Connecting the rationale model to the comparison model

Using the pattern for identifying entity additions and deletions (see Fig. 4), we can de-
tect that entity e5 has been deleted. This can be counted as a change and labeled as c1.
We can then connect change c1 to the process entity e5 through the property affect-
sProcessEntity. Also, by using the pattern for identifying attribute value changes, we
can detect that the description has been modified. This change can be counted and la-
beled as c2. As in the previous case, we use the property affectsProcessEntity to con-
nect c2 to e1. Both changes were generated by a single decision, which in this case
corresponds to r1. We can then connect r1 to c1 and c2 through the generatesChange
property. The resolution r1 is also connected to the other elements of the rationale

e1 e2

e3e5

Test Case Design

This activity is concerned
with the definition of test
cases for...

Test Case

Quality Technician Quality Manager

Describes the actual
conditions in which a test
operation should...

Activity

Role

Product
produces

involvesRole

involvesRole

isResponsibleFor

name name

name name

type

typetype

type
description

description

e4

Tester

The Test Case Design activity is
concerned with the definition of test
cases for...

involvesRole

description

type

name

Resolution

r1

type

c1

generatesChange

affectsProcessEntity

description

c2

generatesChange

affectsProcessEntity

The review board agreed
on releasing the Quality
Technician from his
responsibility concerning
Test Case Design

Change
type

type

Issue
I1

Test Case Design is too
expensive for the
organization

a1

a2

Alternative

description

type

type

type

has

has

resolves

chooses

Rationale

16 A. Ocampo and M. Soto 8

model, namely alternatives and issues. This way we can go through comparison mod-
els identifying changes and connecting them to their corresponding rationale model.

5 Implementation and Validation

An implementation of the pattern-matching based change identification technique pre-
sented in the previous sections is available as part of the Evolyzer tool [29]. We have
tested our approach and tools by applying them to the various official releases of the
V-Modell XT [33], a large prescriptive process model intended originally for use in
German public institutions, but finding ever increasing acceptance from the German
private sector. As of this writing, the Evolyzer tool still lacks a graphical editor for
change patterns. However, patterns can be expressed as textual queries using a syntax
that basically follows that of the emerging SPARQL [25] query language for RDF.
Expressed as queries, patterns can be executed to find all their occurrences in a mod-
el. The V-Modell XT constitutes an excellent testbed for our approach and implemen-
tation. Converted to the normalized representation defined in Section 3.1, the latest
public version at the time of this writing (1.2) produces a graph with over 13,000
edges. This makes it a non-trivial case, where tool support is actually necessary to
perform an effective analysis of the differences between versions. Our first trial with
the V-Modell XT consisted of analyzing the evolution of the V-Modell XT itself,
where we compared 559 model versions that were produced in 20 months of actual
model development. First, we normalized each release by using a parser we imple-
mented in the interpreted, object-oriented Python programming language [17] which
is able to navigate through the XML-specific version of the V-Modell XT, identifying
the entities and properties, and moving this information to a process evolution reposi-
tory. The rationale model was obtained from processing the information stored in the
bug tracking system used for the continuous improvement of the V-Modell XT. This
system supports the change management process designed for the model. Users can
report problems and provide improvement suggestions in the form of change requests.
Such change requests are processed by the team responsible for the model. The result-
ing analysis and decisions are also documented in the tracking system. Once the ap-
proved changes are finished (using specialized model editing tools) a new version of
the V-Modell XT is stored in a configuration management system. In order to keep
track of the decisions implemented, the V-Modell XT team member provides a short
description of the change with a reference to the respective change request. We pro-
cessed the information contained in the bug tracking system as well as in the configu-
ration management system to create a rationale RDF model. With this rationale model
as a basis, we proceeded to calculate changes between versions, connect them to the
rationale model (as explained in the previous section), and store them in our process
evolution repository.

By using our patterns, we found 19104 changes between version 1 and version
559. 30% corresponded to entity additions, 27% to entity deletions, and 63% to at-
tribute modifications.

Fig. 7 shows the results of querying the rationale for process evolution repository
 using SPARQL queries via the Evolyzer tool. The query shows for each change the

Connecting the Rationale for Changes to the Evolution of a Process 169

Fig 7. Querying the Rationale for the V-Modell XT via the Evolyzer tool

6 Related Work

Several other research efforts are concerned in one way or another with comparing
model variants syntactically and providing an adequate representation for the result-
ing differences.

[1] and [16] deal with the comparison of UML models representing diverse aspects
of software systems. These works are oriented towards supporting software develop-
ment in the context of the Model Driven Architecture. Although their basic compari-
son algorithms are applicable to our work, they are not concerned with providing
analysis or visualization for specific users.

[20] presents an extensive survey of approaches for software merging, many of
which involve comparison of program versions. The surveyed works mainly concen-
trate on automatically merging program variants without introducing inconsistencies,
but not, as in our case, on identifying differences for user analysis.

[3] provides an ontology and a set of basic formal definitions related to the com-
parison of RDF graphs. [32] and [11] describe two systems currently under develop-
ment that allow for efficiently storing a potentially large number of versions of an
RDF model by using a compact representation of the raw changes between them.
These works concentrate on space-efficient storage and transmission of change sets,
but do not go into depth regarding how to use them to support higher-level tasks (like
process improvement).

An extensive base of theoretical work is available from generic graph comparison
research (see [13]), an area that is concerned with finding isomorphisms (or corre-
spondences that approach isomorphisms according to some metric) between arbitrary

1 A. Ocampo and M. Soto 70

.

cess entity that affected, the version where this occurred and the description of
 such a change.
 pro

graphs whose nodes and edges cannot be directly matched by name. This problem is
analogous in many ways to the problem that interests us, but applies to a separate
range of practical situations. In our case, we analyze the differences (and, of course,
the similarities) between graphs whose nodes can be reliably matched in a computa-
tionally inexpensive way.

Concerning rationale, Dutoit et al. [8] introduce the term software engineering ra-
tionale, claiming that this term is more useful for discussing rationale management in
software engineering. They emphasize that the software development life cycle con-
tains several activities where important decisions are taken, and where rationale plays
an important role. In software engineering, most approaches have contributed to the
rationale domain by providing new ideas and mechanisms to reduce the risk associat-
ed with rationale capture. Such approaches were conceived having in mind the goal of
providing short-term incentives for those stakeholders who create and use the ratio-
nale. For example, SCRAM [30], an approach for requirements elicitation, integrates
rationale into fictitious scenarios that are presented to users or customers so that they
understand the reason for them and provide extra information. It is expected that they
can see the use and benefit of rationale. Something similar happens in the inquiry cy-
cle [24], which is an iterative process whose goal is to allow stakeholders and devel-
opers to work together towards a comprehensive set of requirements.

Most of the approaches developed for software engineering rationale offer tool
support provided as either adaptations or extensions of specific requirements and de-
velopment tools, e.g., SEURAT [6], Sysiphus [9], DRIMER [23], or the Win-Win
Negotiation Tool [34], REMAP [26], and C-ReCS [12].

Little work has been done in other areas apart from design and requirements. One
of them is the process modeling area. Here, the need and value have been identified,
and a couple of research initiatives have been followed with the goal of generating ra-
tionale information from project-specific process models. One approach developed by
Dellen et al. [7] is Como-Kit. Como-Kit allows automatically deducing causal depen-
dencies from specified process models. Such dependencies could be used for assess-
ing process model changes. Additionally, Como-Kit provides a mechanism for adding
justifications to a change. The Como-Kit system consists of a modeling component
and a process engine. Como-Kit was later integrated with the MVP approach [5]. The
result of this integration effort was the Minimally Invasive Long-Term Organizational
Support platform (MILOS) [31]. Sauer presented a procedure for extracting informa-
tion from the MILOS project log and for justifying project development decisions
[27]. According to Sauer, rationale information could be semi-automatically generat-
ed. However, the approach does not capture information about alternatives that were
taken into account for a decision.

7 Conclusions and Outlook

Due to factors like model size and metamodel differences, the general problem of
identifying and characterizing changes in process models is not trivial. By expressing
models in a normalized representation, we are able to characterize interesting changes
using a graphical pattern matching language. Graphical patterns provide a well-de-

Connecting the Rationale for Changes to the Evolution of a Process 1 71

fined, unambiguous and, arguably, intuitive way to characterize common process
model changes, as our examples show.

Our implementation of pattern queries in the Evolyzer system demonstrates that
our pattern-based change identification technique can be used in practical situations
involving very large process models like the V-Modell XT. It is important to stress,
however, that the technique requires the process entities in compared models to have
stable identifiers that are used consistently across versions. This is normally the case
when comparing versions of the same model, but not when comparing models that
were created independently from each other.

Using RDF allowed us to connect two different data sets and create an even more
comprehensive one that makes it easier process engineers or stakeholders to analyze
and understand the evolution of a process. The information that we processed from
the V-Modell XT bug tracking system and stored in the process evolution repository
as a rationale model allowed us to answer questions that we would otherwise have to
guess, such as: Which process elements were affected by a change? Which issue had
the largest impact on a process? , Which type of issues demand the highest number of
changes? A remaining important research question deals with the visualization of the
large amount of information stored in a process evolution repository like the one of
the V-Modell XT. We are currently investigating mechanisms that facilitate visualiza-
tion, e.g., we are trying to identify a set of “most wanted queries” based on the special
interests of organizations interested in managing process evolution. Such queries can
be deduced from the goals of the organization and reduce the scope of the information
to be analyzed.

Acknowledgements. We would like to thank Sonnhild Namingha from Fraunhofer
IESE for proofreading this paper, and the members of the V-Modell XT team for pro-
viding us with the information needed to perform this work. This work was supported
in part by the German Federal Ministry of Education and Research (V-Bench Project,
No. 01| SE 11 A).

1 A. Ocampo and M. Soto 72

References

1. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003 - The Unified Modeling Language. Modeling Languages and
Applications. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

2. Armbrust, O., Ocampo, A., Soto, M.: Tracing Process Model Evolution: A Semi-Formal
Process Modeling Approach. In: Oldevik, Jon. (ed.) u.a.: ECMDA Traceability Workshop
(ECMDA-TW) 2005- Proceedings. Trondheim, pp. 57-66 (2005)

3. Berners-Lee, T., Connolly D.: Delta: An Ontology for the Distribution of Differences
Between RDF Graphs. MIT Computer Science and Artificial Intelligence Laboratory
(CSAIL) (last checked 2006-03-30) Online publication http://www.w3.org/DesignIssues/
Diff

4. Bohem, B., Egyed, A., Kwan, J., Port, D., Shah, A., Madachy, R.: Using the WinWin
Spiral Model: A Case Study. IEEE Computer 31(7), 33–44 (1998)

5. Bröckers, A., Lott, C.M., Rombach, H.D., Verlage, M.: MVP-L Language Report Version
2. Technical Report 265/95, Department of Computer Science, University of
Kaiserslautern, Germany (1995)

Connecting the Rationale for Changes to the Evolution of a Process 173

6. Burge, J., Brown, D.C.: An Integrated Approach for Software Design Checking Using
Rationale. In: Gero, J. (ed.) Design Computing and Cognition ’04, pp. 557–576. Kluwer
Academic Publishers, Netherlands (2004)

7. Dellen, B., Kohler, K., Maurer, F.: Integrating Software Process Models and Design
Rationales. In. Proceedings of 11th Knowledge-Based Software Engineering Conference
(KBSE ’96), Syracuse, NY, pp. 84-93 (1996)

8. Dutoit, A., McCall, R., Mistrík, I., Paech, B. (eds.): Rationale Management in Software
Engineering. Springer, Berlin (2006)

9. Dutoit, A., Paech, B.: Rationale-Based Use Case Specification. Requirements Engineering
Journal. 7(1), 3–19 (2002)

10. Heidrich, J., Münch, J., Riddle, W.E., Rombach, H.D.: People-oriented Capture, Display,
and Use of Process Information. In: Acuña, Silvia T (ed.) u.a.: New Trends in Software
Process Modeling. Singapore: World Scientific, Series on Software Engineering and
Knowledge Engineering, vol. 18, pp. 121–179 (2006)

11. Kiryakov, A., Ognyanov, D.: Tracking Changes in RDF(S) Repositories. In: Proceedings
of the Workshop on Knowledge Transformation for the Semantic Web, KTSW 2002.
Lyon, France (2002)

12. Klein, M.: An Exception Handling Approach to Enhancing Consistency, Completeness,
and Correctness in Collaborative Requirements Capture. Concurrent Engineering Research
and Applications 5(1), 37–46 (1997)

13. Kobler, J., Schöning, U., Toran, J.: The Graph Isomorphism Problem: Its Structural
Complexity. Birkhäuser (1993)

14. Kunz, W., Rittel, H.: Issues as Elements of Information Systems. Working Paper No. 131,
Institut für Grundlagen der Plannung, Universität Stuttgart, Germany (1970)

15. Lee, J.: A Qualitative Decision Management System. In: Winston, P.H., Shellard, S. (eds.)
Artificial Intelligence at MIT: Expanding Frontiers, vol. 1, pp. 104–133. MIT Press,
Cambridge, MA (1990)

16. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation
Testing and Version Control in Model Driven Software Development. In: OOPSLA
Workshop on Best Practices for Model-Driven Software Development, Vancouver (2004)

17. Lutz, M.: Programming Python, 2nd edn. O’Reilly & Associates, Sebastopol, California
(2001)

18. MacLean, A., Young, R.M., Belloti, V., Moran, T.: Questions, Options, and Criteria:
Elements of Design Space Analysis. Human-Computer Interaction 6, 201–250 (1991)

19. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation (2004) (last checked
2006-03-22) available from http://www.w3.org/TR/rdf-primer/

20. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering 28(5) (2002)

21. Ocampo, A., Münch, J.: Process Evolution Supported by Rationale: An Empirical
Investigation of Process Changes. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.)
Software Process Change. LNCS, vol. 3966, pp. 334–334. Springer, Heidelberg (2006)

22. Ocampo, A., Münch, J.: The REMIS Approach for Rationale-driven Process Model
Evolution. Submitted to ICSP 2007 (submitted, 2007)

23. Pena-Mora, F., Vadhavkar, S.: Augmenting Design Patterns with Design Rationale.
Artificial Intelligence for Engineering Desgin, Analysis, and Manufacturing 11, 93–108
(1996)

24. Potts, C., Bruns, G.: Recording the Reasons for Design Decisions. In: Proceedings of the
10th International Conference on Software Engineering (ICSE’10). Los Alamitos, CA, pp.
418–427 (1988)

25. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C
Working Draft (2006) (last checked 2006-10-22) available from http://www.w3.org/
TR/rdf-sparql-query/

1 A. Ocampo and M. Soto 74

26. Ramesh, B., Dhar, V.: Supporting Systems Development by Capturing Deliberations
During Requirements Engineering. IEEE Transactions on Software Engineering 18(6),
498–510 (1992)

27. Sauer, T.: Project History and Decision Dependencies. Diploma Thesis. University of
Kaiserslautern (2002)

29. Soto, M., Münch, J.: The DeltaProcess Approach for Analyzing Process Differences and
Evolution. Internal report No. 164.06/E, Fraunhofer Institute for Experimental Software
Engineering (IESE) Kaiserslautern, Germany (2006)

30. Sutcliffe, A., Ryan, M.: Experience with SCRAM, a Scenario Requirements Analysis
Method. In: Proceedings of the 3rd International Conference on Requirements
Engineering, 1988, Colorado Springs, CO, pp. 164–173 (1998)

31. Verlage, M., Dellen, B., Maurer, F., Münch, J.: A Synthesis of Two Process Support
Approaches. In: Proceed-ings of the 8th International Conference on Software Engineering
and Knowledge Engineering (SEKE’96), June 10-12, 1996, Lake Tahoe, Nevada, USA,
pp. 59–68 (1996)

32. Völkel, M., Enguix, C.F., Ryszard-Kruk, S., Zhdanova, A.V., Stevens, R., Sure, Y.: Sem-
Version - Versioning RDF and Ontologies. Technical Report, University of Karlsruhe
(2005)

33. V-Modell XT (last checked 2006-03-31) Available from http://www.v-modell.iabg.de/
34. WinWin. The Win Win Spiral Model. Center for Software Engineering University of

Southern California http://sunset.usc.edu/research/WINWIN/winwinspiral.html

28. Soto, M., Münch, J.: Process Model Difference Analysis for Supporting Process Evolution.
In: Richardson, I., Runeson, P., Messnarz, R. (eds.) LNCS,

vol. 4257,

 Springer, Heidelberg (2006)
EuroSPI 2006.

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 175–187, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Use of Non-IT Testers in Software Development

Vineta Arnicane

University of Latvia, Raina blvd. 19, Riga, Latvia
vineta.arnicane@lu.lv

Abstract. Because of a shortage of IT specialists, many companies which are
not involved in software development business are forced to use employees
who have minimal or no any knowledge about software development and IT as
testers (let’s call them non-IT testers). The author of this paper has used years
of experience in working with such testers to provide a description of them,
looking also at their most typical testing styles and the problems which occur
for testers, their colleagues and bosses, and the overall software development
processes. Non-IT testers often feel like second-class employees, because they
are forced to work in an environment in which they do not have sufficient skills.
This paper reviews issues which should be taken into account when training
these testers, including the question of what exactly they should be taught.
Examples and conclusions are used to provide advice on the more effective use
of non-IT testers to achieve positive results.

Keywords: Software testing, testing process improvement, tester training.

1 Introduction

In recent years, greater and greater attention in the world of software development has
been devoted to testing. At higher education institutions, testing-related training has
not attracted sufficient focus, however. Software design companies usually try to deal
with the issue of training testers on their own. Various educational programs have
been designed by software development companies. Alternatively, training services
are offered by specialized organizations or companies.

Companies at which software design is not the basic area of operations (non-IT
companies) lack professional testers. Often they lack well-qualified IT specialists as
such. Many companies hold on to the myth which says that testing is easy and
uncomplicated, that it can be handled by any employee [1]. Even software develop-
ment companies sometimes use beginners in the field as testers.

Non-IT companies often bring in non-IT testers - people who know nothing about
testing and, in some cases, nothing about IT as such or their knowledge is very weak.
However often they come from ranks of users and domain experts [2, 3]. Non-IT
testers are trying self-educate in testing, but it is very hard issue to them because there
are very few sources of information suitable for them. Most of literature requires
some IT background for reader.

When testing does not yield the expected results, companies find themselves ready
to pay for the training of these individuals in the field of testing.

176 V. Arnicane

This article is based on the author’s more than 10 years of experience in various
jobs in the industry. She has worked with non-IT testers and dealt with their training.
This paper reviews the most important observations and conclusions vis-à-vis issues
such as things which non-IT testers understand intuitively and without training, the
things about testing which they must be taught, the testing methods which they are
able to comprehend and apply, and the way in which non-IT testers should be
managed.

The author of the paper has conducted several training sessions for non-IT testers,
both informally and individually, and by developing training courses and teaching
specialized lessons for client organizations (the most detailed course involved 6
working days of study).

Section 2 of this paper characterizes non-IT testers, their advantages and
disadvantages. Section 3 shows the testing style of non-IT testers if they are not
trained in testing. Section 4 describes some lessons learned about training of non-IT
testers. Section 5 deals about some managing aspects of non-IT testers. Section 6
presents results of case studies and Section 7 summarizes conclusions and suggests
future work.

2 Non-IT Testers

People who are used as testers by companies can have different levels of knowledge
in the area of IT and testing, as well as in the area of the relevant company’s business.
Companies lack professional testers, and it is hard to find people with good IT skills
to work as testers [4] – even if they have little or no knowledge about the software
development process as such. This means that companies are forced to turn to people
who know about the company’s business but have weak or no knowledge about
testing or IT as such.

Non-IT people engage in testing on the basis of various circumstances. Sometimes
they are given full-time jobs at company IT departments as testers. Other times testing
is just a part of a broader set of duties.

The advantage of non-IT people is that they can have in-depth knowledge about
the area of business for which IT software is being designed [3]. Such employees
often have years of experience in the relevant area, but they have little knowledge
about the technologies that are used in system development and the architecture of the
resulting system. They don’t know much about testing methods and they may have
difficulties in preparing of good reports on problems that have been identified.

Deep knowledge about a company’s business allows non-IT testers to do good
work at the highest level of testing, where functional testing or usability testing must
be conducted – acceptance testing and system testing. If the non-IT tester has to do
low-level testing such as unit testing or low-level integration testing, however, serious
problems may very well occur. It would be equally complicated for that person to
make use of specific testing techniques such as performance testing. In regression
testing it is hard for them to analyse which areas of the system are functionally linked
to software improvements or additions and to test those areas.

 Use of Non-IT Testers in Software Development 177

3 The Intuitive Testing Style of Non-IT Testers

Before we provided training in each organization we interview non-IT testers, their
management, colleagues - programmers and analysts. Our goal is bring to light what
problems they have, what they expect from training and as result of it. So we have
found out that the most of problems are common in all companies. Let’s take a look at
them.

If non-If non-IT people are not trained as testers, they do the work intuitively.
There are several characteristics which different testing styles have in common. Let us
review the most important aspects of the work of non-IT testers:

• They use functional testing: Non-IT testers are more likely to engage in ad hoc
testing – without any system or consistency, often evaluating a software
application just from the visual perspective, testing standard usage, choosing the
“right path” with the “right data”, and doing work in the order in which it is usually
done;

• They are afraid of destroying the system: Perhaps intuition or experience tells a
non-IT person that the work of software could be damaged, but the person does not
do this so as not to create problems for colleagues and to allow them to continue
their work and to finish the development project on time. Potential problems are
not examined or analyzed, and the necessary problem reports are not filed;

• They consider a test case to be only a series of operations, not the relevant
data: Data planning, if any, is too primitive. All input data are sometimes seen as
identical, as factors which cannot really change testing results or procedures, so the
data which are entered and used during the testing process are not recorded. The
results are often evaluated casually – “that’s approximately how things should be”;

• They intuitively use boundary values and partitioning of data in equivalence
classes: If attention is focused on test data, border instances are intuitively
examined. This testing method is used at a fairly normal level;

• They cannot work with a database: Testers usually cannot prepare data in a
database, read data from tables, determine data which are not shown in user
interfaces or LOG data, or they cannot test whether the information on screen or in
a report is in line with data in the database;

• In testing, they use test data which are close to reality, establishing typical
situations and chains of activities: This is a great advantage for non-IT testers if
they come from a business with business knowledge. They know HOW and
WHERE the system will be used. On the other hand, they find it unnecessary to
test non-standard usages of the software, assuming that users know what they are
doing;

• They do not support testing as early as possible: These people do not see the
need for early testing, and they have problems in establishing testing examples on
the basis of requirements. It is hard for them to establish and examine a potential
system. Non-IT persons see this exclusively as the testing of ready-made software
– i.e., they need a program which can be really executed with test cases. They think
that systems must be tested and tests must be prepared only when the software is
ready, when it can be seen and used in real terms;

178 V. Arnicane

• Sometimes they have stereotypical thinking: If an organization has already used
an IT system that puts a stamp on thinking about the business organization and
about how the system should appear and what it should do. It is hard to ensure a
fundamental shift in approach, even though this is occasionally needed when new
technologies or necessary changes in business processes are implemented;

• They have problems in noting and describing strange behavior of software:
Non-IT testers do not react to “odd” behavior in the system even if it happens
repeatedly, pointing to various secondary factors which might have created the
problem. Often they do not react even if they spot something problematic in
system’s behaviour, because they think that the situation is as it should be or has
been created by a parallel processes. They do not try to ensure a repeat of the
questionable situation on purpose;

• They may not be able to prepare good problem reports: Usually there are
problems in preparing problem reports which go to the heart of the problem, which
are clear, precise and brief. Very rarely does anyone check the report to see
whether the software designer will be able to find mistakes on the basis of what has
been reported;

• They do not know how to briefly and properly document their work: Testers
not only do not know how to document what they are doing, but they are
sometimes afraid to do so, because they do not feel sufficiently competent.
Sometimes they do not want to spend time on documentation, because they
consider that to be a pointless waste of resources;

• They too often obey implicitly to IT people– programmers, analysts, their
managers [5, 6]: Non-IT testers feel insecure, they do not defend their judgments
in those cases when requirements are incomplete (e.g., when there are no
requirements as to usability or performance). If system developers for one reason
or another do not want any official registration of a problem, then they insist that
the discovered problem is not a mistake and must not be registered so as to
improve statistics or to put an official end to a stage in design. This often means
that problems are not registered even though they are very important, albeit not
readily visible. The result is that fundamental system aspects do not attract
sufficient attention, and sometimes they are not tested at all. Non-IT testers put up
with more or less useful software that has been developed by the system
developers, instead of insisting on their own views and ensuring that problems are
recorded in reports or demands for change. Testers wait until real users report a
similar problem before reporting on other, identical problems.

Non-IT testers have problems with situation in which the knowledge of a software
development or professional tester is needed about issues such as:

1. The way to test a real business situation – long-lasting use of a system, changing of
the server time and date to the end of the month or year;

2. The way to select test examples so that the testing is sufficiently effective, using
one test example to test various aspects of the system (introducing the
synchronization point);

3. The way to fill in a database with test data if the system does not have an
appropriate user interface for data entry or if the data come from outer interfaces in
the system;

 Use of Non-IT Testers in Software Development 179

4. The way to prepare larger volumes of testing data;
5. The way to prepare, maintain or commission test beds;
6. The way to test external interfaces.

Non-IT testers are happy to learn about testing procedures if the process is not too
complex or long-lasting, but there are problems with training materials. People
without a grounding in IT can find it difficult to use existing books or other sources
related to testing, because these usually require knowledge about computer sciences
and, particularly basic software design skills.

On the other hand, companies wish to train non-IT people to do testing quickly so
as to achieve better results. This means a search for people who can adapt training
materials to company needs and can provide special training.

4 Training of Non-IT People for Software Testing

When we prepare the training course in testing for non-IT people we have to consider
following items to meet their needs:

1. Their duties and responsibilities in software project, collection found in literature
[7,8] should be corrected;

2. Their problems stated in interviews and problems we know our experience they
might have;

3. Their experience in testing and project domain;
4. Their education background and age, gender.

These are the issues which non-IT people often hope for when it comes time for
training in the area of testing:

1. There will be no “technical details” – bytes, bits and symbol codes shouldn’t be
mentioned at all;

2. There will be no need to study the software development methodology – that is a
problem for the bosses, we will do what we are told to do;

3. The process will be as close as possible to the would-be used working style – “we
already do all our work properly”;

4. There will be as many examples as possible from the system and situation that are
to be tested so that the method can be learned more easily and put to use;

5. There will be nothing complicated even that seems to be the case at start – no
techniques that is hard to be understood, even if they are effective in use;

6. There will be no requirements related to anything which has to do with
programming or the technologies of software development.

What can be taught to non-IT people when it comes to testing? What are the skills
and areas of knowledge which can be learned comparatively easily? What will allow
such people to make use of their strengths – their high level of knowledge about the
relevant business?

• Defining uses on the basis of requirements: Non-IT testers can make use of their
extensive knowledge about their business and its processes and dependencies. Of use
here is knowledge in the drafting of models and the use of cause-and-effect diagrams
[9, 10] so as to justify and document the testing scenario which has been chosen;

180 V. Arnicane

• Use of boundary values and equivalence classes in the selection of testing data:
Intuitive methods can be improved with additional knowledge, or else testers who
are unfamiliar with these methods can simply be given a powerful weapon in terms
of coming up with good testing examples;

• Methods to reduce the number of test examples: Here we refer to knowledge
about screen form elements that are grouped according to dependencies, to the use
of orthogonal arrays, decision tables and analysis of combinations;

• Recording of test examples: People must learn how to record the test, the entered
data and the expected results;

• Knowledge about usability requirements: Non-IT people should be taught about
desirable placement of elements, the appearance of screen forms and reports,
undesirable practices and common mistakes. This knowledge allows testers to have
a greater belief in themselves, it allows them to justify their views and to stand up
against the pressure of system developers. Sometimes companies have their own
guidelines as to the appearance of user interfaces, and then testers can look to see
whether the guidelines are of an acceptable level of quality;

• Risk analysis: Risk analysis [9, 11] makes it possible to organize work more
effectively under conditions of limited time and resources, testing the most
important requirements and engaging in the most critical tests. Sometimes testers
do not want to do this, arguing that risk evaluation requires too much
bureaucracy;

• Basic skills in SQL queries: These allow testers to look at data in a database. In
more complicated cases, it is better if the query is written by someone from the
development group, but testers must know how to use the queries as necessary.
Queries of this kind, for instance, allow testers to check the LOG records of the
system;

• The role of the tester in projects and the aims of testing [10, 11, 12]: Testers
have a better sense of their job of finding mistakes than of proving that the system
is faultless. They understand their capabilities in terms of those mistakes which
they can and cannot define. Testers must understand that they alone cannot ensure
the quality of software, and they are not responsible for any shoddiness on the part
of the software developers [4];

• Writing problem reports: Testers must know how to prepare such reports, and
they must be aware of the required content [5]. It is desirable to remind them of
simple methods to note problems – how to obtain a snapshot of the screen, how to
use graphics editing to cut the necessary part out of an image, how to place the
image in the problem report itself, etc.;

• Real examples: Training should be based on examples from the system which is to
be tested – requirements, screen forms, reports, etc. In that case the training uses
concepts and business terms with which testers are familiar. It is easier to absorb
and remember new knowledge. Even if there is use of materials related to a part of
the system which has been tested and approved for use, people are sometimes
surprised at how many problems of that system part have gone unnoticed;

• Metrics [10, 11, 13]: How to measure size and coverage of own and team work,
how to feel problems in planning and designing of tests;

 Use of Non-IT Testers in Software Development 181

• Tester group’s place in project team, psychological aspect of testing and team
work [4, 5, 6, 12]: Testers should know advantages and disadvantages of internal
organization of software development team. Effect of psychological climate in
tester group and in all development team.

5 Specifics in Managing the Work of Non-IT Testers

All testers have many management problems in common, irrespective of how much
they know about IT. Management of non-IT testers, however, can be a specific
situation, largely as a result of the fact that non-IT testers feel greater humility is
dealing with system developers. That is because they feel insecure about their own
competence in the field of IT. However some issues are the same as IT testers have
[4, 8, 12, 14, 15, 16].

• Testers must feel that they are authorities and that their work is necessary:
During training, there is often revelation of things which testers do not dare say on
an everyday basis in conversation with their bosses – that there is insufficient
interest in their work, that they feel abandoned, that the results of their work are
ignored, that instructions have been given to define or not to define a problem, etc.
No one is interested in the fact that these people know or do not know something
specific about their work. Testers don’t know where to go for help. Training of
testers, therefore, should be offered in the presence of each tester’s immediate
superior;

• Managers must monitor the time use of the tester: Non-IT testers will need
additional time to design tests, at least at first time period. If there is insufficient
time, then testing will be limited to functionality in relation to standard usage.
Eventually such a tester will start to believe that there has been enough testing.
When repairs of mistakes are investigated, for instance, only the test which found
the problem is carried out, and there is no thought to the possible side-effects to the
fix;

• It is dangerous if non-IT testers are subordinated to the leader of the
developer group: Non-IT testers often yield before the views of IT people without
insisting upon their own experience and views about what the system should be
like. If the leader of the group is not interested in learning about mistakes for one
reason or another, then the tester is told that the mistakes are not mistakes, that no
problem report must be written and that the mistakes do not have to be registered.
For instance, there is no acceptance of mistakes related to the usability of software
– ones that are the result of the poor quality of the system’s design and ones that
are expensive to fix now. The consequences is that the tester calmly waits until
users report the problems, because group leaders usually respect the views of users;

• System developers and testers must both establish internal problem registers
(may be private): Sometimes project managers can try to reduce the number of
problem reports, instructing testers not to report some classes of errors. For
instance, they can insist that there be no reports on errors which are difficult to
reproduce. They can instruct testers not to report light-weight errors, especially if
already it is expensive to correct them. For instance, the testers are kept from

182 V. Arnicane

reporting on user interface problems, because “testers don’t know what users need”
or “users are satisfied with this interface.”

Shortages of time sometimes force software designers to present a module for
testing even though they know that there are mistakes therein.

In such and similar cases both developers and testers make their own internal
problem registers, usually in the form of spreadsheets. Testers can use the register
to remember those cases when there were suspicions of a mistake, but it was not
possible to repeat or to localize it sufficiently to prepare a problem report. If such
suspicious cases are kept in mind, it is possible to reveal the mistakes more
effectively later, when they have appeared again. For developers such register is
like reminder of mistakes that should be caught as soon as possible.

• A dictionary is necessary: Software developers and testers from the business side
of the operation must speak the same language and use the same contexts in the
same sense. There must be agreement on terminology. In practice it has been found
that there is great chaos in the use of testing terms.

6 Case Studies

Let us now look at three cases in which non-IT testers became involved in software
testing.

6.1 Case I

Our first case for review involves a governmental financial institution with some 500
employees. The organisation had a central office and few branches in various parts of
Latvia. The financial institution bought and then adapted software, installing it over
the course of two years after the purchase. The first work was done by a group of
three people, but eventually that group expanded to 12 people, including seven
software analysts and designers, two representatives from business operations who
determined the organisation’s specific requirements vis-à-vis the system, and three
consultants from the company which developed and sold the software.

The first levels of testing were handled by the development group. Non-IT testers
were more involved in the stages of system testing and acceptance testing.

At the very beginning of the project, one or two authorized users were defined in
each department of the organization to provide consultations to system developers
how the software should be created. In most of cases user representatives were non-IT
testers - without any education in IT or testing.

User representatives had two tasks. During development they had access to the
testing environment, and they were ordered to test all of the operations which they
might use in their work as soon as appropriate parts of software were added to testing
environment. It was their part of system testing. The second task was acceptance
testing – for few working days they handled as many of their everyday operations as
possible in the testing environment, and they also tested the operations which must be
handled at the end of a month or a year.

The user representatives were trained to use the system, but they were not trained
in the area of testing.

 Use of Non-IT Testers in Software Development 183

Initially there was user representatives were very passive in use of the system.
Statistics about the number of log-ins and the amount of time spent in the system were
distributed, and then testers tried to hook up to the system. After reviewing it a bit,
they stopped the work. They did not log out of the system, however, hoping to
improve statistics as to the amount of time that had been spent in the system.

When statistics were made available about the screen forms used in the system, the
number of reports and the time when these were presented, true work in the system
began, but not in a planned way. The authorized users tested the functionality when
requested to do so by the system developers.

User representatives did the testing in parallel to their everyday work. They were
paid extra money for their work during the acceptance testing, when the work was
done on weekends and holidays.

The results: The authorized users were passive as non-IT testers until it was proven
that their work was being registered. There was no planned or overall testing.

They said that one problem was busyness during everyday work, also speaking of a
lack of knowledge about how to do the testing.

Non-IT testers were irreplaceable in complex functional tests when it was
necessary to know whether testing results were correct or incorrect.

When problems were found or questions about the system occurred, non-IT testers
forwarded these via e-mail to the developers who then checked out the situation and
filed a problem report.

Non-IT testers avoided working with situations which sometimes occur on an
everyday basis, are permissible, but are atypical – entering specific data, for instance.

The non-IT testers found several functional problems, however, and once the
system went on line, they helped colleagues to learn how to use it. This improved the
speed and quality with which the new system was learned.

6.2 Case II

The second case relates to an insurance company with some 1,500 employees, a
central office, 30 branches, and many small sales facilities all over Latvia. Here, too,
software was bought and then adapted by the company’s own IT department. The
developers conducted unit testing and some of the integration testing. The IT
department had an independent testing group which conducted system testing and
planned acceptance testing. That was done by users – non-IT testers.

When the software was almost ready, one or two volunteers from each affiliate and
department of the company were asked to represent users. They were non-IT testers
and were trained on using the system. They received one working day of training on
how to conduct the testing.

The non-IT testers had access to the testing environment. First they were allowed
to learn about the system on their own, playing around with it and asking the
developers for consultations. Then there were planned testing activities. The
professional IT testers from IT department prepared use cases which each non-IT
tester had to handle. All of the system’s requirements were covered in this way. The
non-IT testers were encouraged to supplement the test cases or scenarios from their
own experience, choosing test data and activities on the basis of their own views.

184 V. Arnicane

Some of the assignments had to be carried out on a specific date and time and by
all testers at once. This tested the performance of the system to operate close to true
capacity – many connections and many demands simultaneously. User training was
also used to test the system’s performance.

The volunteer non-IT testers and users helped to test the reaction of the software to
major usage – something that is complicated and expensive to simulate.

The results: Later the volunteers helped colleagues to learn how to use the system
once it was on line. The carefully considered tests made it possible to examine several
aspects of the testing simultaneously. Not all of the non-IT testers operated equally
well or with equal motivations, however. The more active volunteers and those who
posted the best results in terms of defining problems later took regular part in the
testing of new versions of the software.

6.3 Case III

The third case also relates to an insurance company with many branch offices. This
company decided to design its own software, outsourcing some of the work. The
development team included company’s software developers, analysts and testers. The
testers were subordinate to the manager of the software development group.

It took several years to develop the software, and there was much personnel
turnover in the development group. At the end of the process, there were only few
software designers or analysts who had been with the group from the very beginning.

Testers were brought in when the software development was almost completed.
They were non-IT testers who had worked as full time testers on the company’s old
software. Some of them had 10 and more years of experience with testing, but they all
arrived at the process as users, and they had never been properly trained to conduct
the tests.

The software development process involved authorised users from each of the
organisation’s department too. Their duty was to help the software developers when
there were questions, as well as to approve the system requirements – software
requirements, prototypes, screen forms, reporting forms, etc. The developers
conducted unit testing, while the authorised users conducted acceptance testing. The
rest of the testing was handled by no-IT testers.

The testers were free to read the recorded system requirements, which were in
slightly formalized language. They drew up testing plans, test designs and scenarios.
The testing had to be conducted quickly, because the development process took
longer than had been expected, and the deadline for presenting the full system was
approaching.

The software had very few resources to make the work of the testers easier – for
instance it had not records in the LOG table (file) or the ability to receive intermediate
results of calculations. This happened because the software requirements referred only
to functional needs, but staff turnover and a lack of time meant that software
designers had to observe software requirements and designs very precisely.

There was serious training in the field of testing for non-IT testers– more than six
working days in all.

Testers were accustomed to using a database from the actual system in their
testing, as opposed to establishing their own testing data. They assume that the

 Use of Non-IT Testers in Software Development 185

database will contain all necessary incidents. Because of size and data confidentiality,
however, the actual database was not made available this time, and testers had serious
problems in preparing test data. The system received some key data from external
systems, not through the use of screen forms, and there were no tools for entering
those data into the database.

The results: Because of a lack of time, developers could not support the testers
sufficiently, and the testers mostly focused on the most important aspects of
functionality. The testers found it difficult to establish test data without a user
interface to enter them. Testers also had problems in testing the external interfaces of
the system.

Because of insufficient technical knowledge and capabilities, testers found it
difficult to conduct low-level integration testing. Basically the testers conducted
functional system testing.

The training allowed testers to learn about the requirements to be added to the
system requirements so as to make the testing easier Training improved the
qualifications of the testers, and it enhanced understanding among testers, developers
and bosses, but the change in working culture and processes occurred slowly, and
there were no rapid improvements in the quality of the testing. Serious work now
began to restructure the whole testing process.

6.4 Lessons Learned from Case Studies

Non-IT testers can best be used in combination with professional IT testers, because
they supplement one another. Non-IT users can test the system’s correspondence to
business processes, the use of the software, and the user interfaces – screen forms and
reports.

The work of non-IT testers should be supported by software developers. They can
help in placing test data in the database, establishing SQL queries, making testware
and handling other issues which require specific IT skills.

Non-IT testers can also establish usage scenarios and test data which are close to
reality, taking into account boundary value analysis and analysis of the equivalence
classes. Developers often cannot do this, because they know less about the nuances of
the relevant area of business. They can prepare simple SQL queries in the database to
check the data and to study records in LOG tables or files.

Non-IT testers can provide good assessment of the applicability of the system’s
user interface – are work place comfortable, can all functions be carried out, does the
system unnecessarily overburden vision or the memory, and is the system easy to use?

Training of non-IT testers in the area of testing does not always improve their work
results significantly. When time is short, they cannot make adequate use of their
knowledge, for instance.

7 Conclusions

Companies use non-IT testers for various reasons – there are no professional IT
testers, it’s hard to find them, they cost a lot of money, they don’t have a sufficient
understanding of the company’s business, etc. On the other hand, non-IT testers know

186 V. Arnicane

a lot about the company’s business and can learn and make effective use of many
things during the testing process.

Non-IT testers can have problems with testing documentation, description of test
designs, and justifying the test examples which have been chosen. This is largely
because testers fear demonstrating their lack of knowledge or skills, and they do not
want anyone to look at their mistakes. The company suffers as a result – testers
cannot learn from one another. If a tester departs, colleagues have problems in
adapting his or her test system. Even the testers themselves cannot always follow
along with the systematic aspects of their testing so that the system can be updated
when there are changes in the software.

It is better if non-IT tester training is not generalized. Training course should be
adapted to each organization. There are necessary lots of examples, making use of the
software that they actually being tested. In this case the training material is better
receivable to audience.

Non-IT testers accept theory unwillingly. All material should be clearly related
with their current testing activities and project where they are involved. Form the
other side they are well-disposed towards information that make clear situation in
project and they place in it, for instance, about software development methodology
used in their project, about possible ways to organize testers work in development
team.

Metrics should be presented very carefully, because the first reaction is that metrics
will have direct influence on their salaries. Surprisingly that such reaction was from
IT educated managers too. Even they perceived metrics as instrument to measure
efficiency of labor, not as tool to measure efficiency of testing process and motivator
to improve this process.

Audience often is enthusiastic to get feel of practical skills, for instance,
requirements analysis, simple and effective choice of test data, reduction of number of
test cases, ways for short recording of test cases.

Bosses should take part in the training, because it often lays bare problems about
which the bosses had no idea before. Especially in regard how non-IT testers
psychologically feel in interaction with programmers, analysts, users, their manager,
what technical problems they have but not dare explain to colleagues or management.

This paper describes our findings at this moment. There should be continued
research about problems non-IT testers have to face, which knowledge could help
them to deal with them. Training course content and exposition methods have to be
improved in order make it more efficient receivable to non-IT testers.

References

1. Black, R.: Critical Testing Processes. Addison-Wesley, Boston, San Francisco, New York,
Toronto, Montreal, London, Munich, Paris, Madrid, Capetown, Sydney, Tokyo,
Singapore, and Mexico City (2004)

2. Raccoon, L.B.S.: Definitions and demographics. Software Engineering Notes, vol. 26(1),
pp. 82–91. ACM Press, New York (2001)

3. Craig, R.D., Jaskiel, S.P.: Systematic Software Testing. Artech House Publishers, Boston,
London (2002)

 Use of Non-IT Testers in Software Development 187

4. Hutcheson, M.L.: Software Testing Fundamentals—Methods and Metrics. Wiley
Publishing, Inc, Indianapolis, Indiana (2003)

5. Myers, G.J.: The Art of Software testing, 2nd edn. John Wiley & Sons, Inc, Hoboken,
New Jersey (2004)

6. Cohen, C.F., Birkin, S.J., Garfield, M.J., Webb, H.W.: Managing Conflict in Software
Testing. Communications of ACM 47(1), 76–81 (2004)

7. Watkins, J.: Testing IT: An Off-the-Shelf Software Testing Process. Cambridge University
Press, Cambridge, United Kingdom (2001)

8. Black, R.: Managing the testing process: Practical Tools and Techniques for Managing
Hardware and Software Testing. Wiley Publishing, Inc, New York (2002)

9. van Veenendaal, E.: The Testing Practitioner. UTN Publishers, Den Bosch (2002)
10. Beizer, B.: Software Testing Techniques. 2nd edn. The Coriolis Group, LLC, Scottsdale

Arizona (1990)
11. Perry, W.E.: Effective Methods for Software Testing, 2nd edn. John Wiley & Sons, Inc,

New York, Chichester, Weinheim, Brisbane, Singapore, Toronto (2000)
12. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing: A Context

Driven Approach. John Wiley & Sons, Inc, New York, Chichester, Weinheim, Brisbane,
Singapore, Toronto (2002)

13. Chen, Y., Probert, R.L., Robeson, K.: Effective test metrics for test strategy evolution. In:
Proceedings of the 2004 conference of the Centre for Advanced Studies on Collaborative
research, pp. 111–123. IBM Press, Markham, Ontario (2004)

14. Kaner, C., Falk, J., Nquyen, H.Q.: Testing Computer Software, 2nd edn. John Wiley &
Sons, Inc, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto (1999)

15. Ash, L.: The Web Testing Companion—The Insider’s Guide to Efficient and Effective
Tests. Wiley Publishing, Inc, Indianapolis, Indiana (2003)

16. Black, R.: Managing the testing process. Microsoft Press, Redmond, Washington (1999)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 188–200, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Requirements Management Practices as Patterns for
Distributed Product Management

Antti Välimäki1 and Jukka Kääriäinen2

1 Metso Automation Inc, Tampere, Finland
antti.valimaki@metso.com

2 VTT, Oulu, Finland
jukka.kaariainen@vtt.fi

Abstract. System products need to be developed faster in a global development
environment. A more efficient user requirements collection and product feature
analysis become more important to meet strict time-to-market and quality
constraints. The goal of this research is to study and find the best practices to
support distributed business requirements management during the early phases
of product development. The paper describes the process of mining require-
ments management organizational patterns. The experiences and improvement
ideas of requirements management have been collected from a large company
operating in the sector of the process automation industry. The results present
issues that were found important when managing requirements in a distributed
environment. The results are further generalized in the form of an organiza-
tional pattern which makes it easier for other companies to reflect on and to
apply the results to their own cases.

Keywords: Requirements management, Product management, Distributed
development, Organizational patterns, Practices, Mining of patterns.

1 Introduction

Products are getting more complex with customer-specific features and an increasing
amount of people attending to development activities. The development environment
is often global without physical boundaries. At the same time, faster time-to-market
and better product quality is required as the companies should be more cost-effective
in harsh business environments. This creates pressures for product development
practices.

Product development is a customer-oriented activity where the accurate selection
of product features is essential for successful product development projects. The
selection of features is made in the early phases of product development, often
referred to as “product management” activity. The role of product management is to
work as a coordinator between marketing needs and requests for R&D capabilities in
order to develop the products within defined timelines and budget and quality
requirements [1]. Product managers are responsible for this activity. They gather
product ideas and transform them into product features that concretize the ideas. After

 Requirements Management Practices as Patterns for Distributed Product Management 189

various activities, product managers organize the features into the development
projects that are responsible for realizing the features in accordance with the
schedules. This process of transforming customer ideas into realizable features and
assigning them to practical development projects is essential for effective product
development. Therefore, it is important that tools and methods that support the
management of product ideas, requirements and features are in active use from the
beginning of the development process.

An engineering discipline that is responsible for managing these artifacts is
requirements engineering. Requirements engineering is a set of activities that cover
discovering, analyzing, documenting and maintaining a set of requirements for a
system [2]. There are plenty of methods and tools to support this activity. For
example, Parviainen et al. [3] have presented an inventory of existing requirements
engineering and management methods. They conclude that method descriptions often
lack the information of the methods' suitability to different environments and problem
situations, thus making the selection of an applicable method or combination of
methods to be used in a particular real-life situation, complicated. There is a need to
invest more effort in both industrial application as well as research to increase
understanding and deployment of the RE concepts and methods [3]. This has been
indicated also in Juristo et al. [4]. They conducted a survey about the state of
requirements engineering in European organisations (from a software development
viewpoint). They found that, at that time, immaturity still defines current RE
practices.

Product management viewpoint has received attention in recent studies e.g. [1], [5]
and [6]. Grynberg and Goldin [1] study how efficient requirements management can
facilitate the work of product managers in the telecommunication industry. Weerd et
al [5] have constructed a reference framework for software product management
including a requirements management as one key process area in the framework.
Ebert [6] presents a field study from Alcatel where the goal was to study how to
reduce project delays. The results showed that efficient requirements engineering is
already needed in the early phases of product development.

The best-practice companies manage the innovation process efficiently as seen in
the picture below (Fig.1) [7]. The best-practice companies will develop more new
products to sell than typical companies by effective idea analysing and feature
selection processes.

Nowadays, product development is distributed over multiple sites and customers
might also operate globally. Globalization forces companies to find ways to overcome
geographical barriers, and modern information technology offers excellent means to
achieve this goal. Global development has been in active research, for instance, in [8],
[9] and recently published as a special issue in [10]. Requirements management has
been studied in this context, for instance, in [11], [12], [13], [14] and [15].

When exploring solutions and practical experiences for product management and
its requirements management support, the authors found the knowledge somewhat
fragmented that has been indicated also in [5]. Therefore, the goal of the research is to
study the challenges and find practices to support distributed business requirements
engineering during the early phases of product development (i.e. product management
activity) (Fig. 2). Our research question was “How to systematize and improve
requirements management methods of product managers in distributed development?”

190 A. Välimäki and J. Kääriäinen

Fig. 1. How do best-practice companies manage innovation?

The contribution of this paper is twofold. First, it reports issues that were found
important for more effective and systematic management of requirements during the
early phases of product development. The results were generalized in the form of an
organizational pattern [16] (later on referred to as “pattern”), which makes it easier for
other companies to reflect on and to apply the results to their own cases. Second, it
reports the experiences of pattern mining process. The experiences of requirements

Fig. 2. Fuzzy front end of the innovation process [17]

 Requirements Management Practices as Patterns for Distributed Product Management 191

engineering and suggested solutions have been collected from a large company
operating in the sector of the automation industry.

This paper is organized as follows: The next section describes the industrial
context of the research. It also discusses the methods and description techniques used
in this research. Then the results are presented and discussed. Finally, Section 5
concludes the paper.

2 Research Approach

This section discusses industrial context and methods used in this research.
Furthermore, it briefly introduces the concept of patterns.

2.1 Industrial Context

This case study was carried out in a large company operating in the field of the
automation industry. The company operates in a multi-site environment and in the
future, the work of product managers will globalize even more covering several
countries. Therefore, the challenges of the global development environment were
studied and suggested solutions to overcome the challenges were defined. Product
development in a case company is organized according to product lines. This research
focuses on two product lines that consist of several products that are partly developed
in different sites. As it is no longer competitive to develop multiple products one at a
time, the case company has adopted a product platform approach. Therefore, the
product is based on a product platform where the customer-specific features are
configured. The product line evolves when new versions of the products are produced
containing whole new features or improvements to the existing features. The
management of features and requirements is complex since even one product version
can contain dozens of features that are further divided into hundreds of requirements.

2.2 Research Method

This research has been carried out in the following phases:

1. Problem definition and research planning
2. Questionnaire-based collection
3. Interviews
4. Analysis of results
5. Creation of patterns.

As described above, there was a two-step approach for data collection. First, an
enquiry was made for 12 product managers in two product lines. The outline of the
enquiry was based on the company process (The product management process of the
case company). The respondents were asked for their opinion about issues that are
important for efficient requirements engineering during product management
activities. They were also asked for their ideas about what kinds of challenges
distributed environment would place on operation.

Based on the enquiry, four experienced product managers were selected as
representatives who were interviewed using semi-structured interviews according to
the following framework. The framework presented the focus areas and questions for

192 A. Välimäki and J. Kääriäinen

discussions. The framework was structured based on company process and reference
process model (ISO 15504). The framework was further divided into views of
questions. The process phases in the framework were:

1. Collecting and processing product ideas
2. Collecting and processing business and customer requirements
3. Feature creation
4. Feature prioritization and selection
5. Adding features to product roadmap
6. From product roadmap to business plan

The views of questions in the framework were:

1. Tools: Issues that relate to tools
2. Process: Issues that relate to working methods, practices
3. Artifact: Issues that relate to forms, attributes etc. that are used to collect

and organize information about requests, requirements and features
4. Distribution: Issues that relate to the geographical distribution of work

The framework was used as a checklist for an interviewer and therefore it left room
for open discussion. Questionnaires and interviews produced raw data for analysis.
The process of selecting, simplifying, abstracting and transforming the raw case data
is called data reduction [18]. Reduced data was then presented as key
observations/challenges (later on referred to as “issues”) in table format to present
issues that were found important for more effective and systematic product
management in a distributed development environment. Then patterns were
constructed by using discussions and workshops in the organization and by applying
the pattern creation approach as described in [16].

2.3 Patterns

Patterns were used to present suggested solutions to overcome the challenges in the
organization. Patterns seemed to be one good method for describing solutions and
guidelines. There are different kinds of forms to describe patterns. For example, the
Alexandrian form [19] is used when organizational patterns were described in the
book [16]. In the Alexandrian form, the body starts with the statement of the context
which includes the problem. The next part is the solution for the described problem.
The more complicated organizational pattern form can be found in another piece of
research [20] that presents a framework of agile patterns. There are three types of
agile patterns which are practice patterns, concepts, and principles. Practice patterns
describe actions, e.g. the creation of a functional specification, while concepts
describe the attributes of an item, e.g. a functional specification. The third type,
principles, consists of guidelines for development activities. Based on the discussion
above, the patterns will be presented according to the following format:

•ID: An ID number of a pattern.
•Name: A short name of the pattern.
•Problem: Detailed description of the problems.
•Solution: Activities that will solve the problem. Activities can include other patterns.
•Guidelines: These are the guidelines on how to use this pattern.
•Consequences: The results and trade-offs when the pattern is applied.

 Requirements Management Practices as Patterns for Distributed Product Management 193

3 Analysis of Results

This section presents the results obtained from the enquiry and interviews of product
managers. Issues that present needs or challenges for solution are classified according
to the framework presented in the previous section. Patterns that describe suggested
solutions to overcome the challenges were developed based on these results and
literature inventory. In this paper few patterns are presented as examples.

Table 1. Collecting and processing product ideas

Viewpoint Issues
Tool - Common database for all stakeholders to collect ideas (P1 and P5)

- Stakeholder specific forms & views & possibility for pre-defined and
user-defined reports from database (P1, P2 and P6)
- Ability to define workflow according to company process (process
support) (P1)
- Ability to create bidirectional links between data objects (P6)

Process - Systematic but lightweight process for collecting, prioritizing and
analysing product ideas as well as for making decision about the realization
(P1)
- Ability to recognize if the idea already occurs in the system (if exists then
new idea will be linked to the existing one) (P1)
- Ability to assess the benefit and feasibility of the idea (P2)
- Ability to collect evaluation information about the idea (e.g. from
architects) (P1)
- Decision phase should provide possibility for go / no go / postpone /
already exists decisions for ideas (P1)
- Ability to describe and monitor the status of the idea in different lifecycle
phases (P1)

Artifact - Forms should be well-defined containing relevant attributes and multiple-
choice attribute’s value-ranges should be unambiguous (P1)
- Clear definition which attributes are mandatory and which informative
- In idea collection phase: e.g. ID, status, idea name, description, person,
source, target product, benefit/importance for a customer, cost estimation
- In analysing phase: e.g. status, novelty, feasibility, priority, product where
planned to be realized, implementation possibilities (who, required
schedule), related idea/requirement
- In decision phase: e.g. status, planned release/version
- Ideas at least in text format but also figures and video clips should be
possible to illustrate ideas
- Ability to describe traceability between ideas or between ideas and
requirements (P6)

Distribution - Secure global access to database regardless of time and place (P1)
- Discussion forum in tool. Each response should contain information
about author, date, time and discussion topic (P1, P5)
- Possibility to use teleconferencing , e-meeting tool, chat, web camera etc.
to increase communication efficiency (P5)

194 A. Välimäki and J. Kääriäinen

Table 2. Collecting and processing business and customer requirements

Viewpoint Issues
Tool - Same issues as in previous phase
Process - Product manager receives requirements from different sources as

customers, marketing, sales, support, service, competitor analysis,
technology providers etc. (P1)
- Requirements are added to the system by product manager, other
stakeholders or they can already exist in system (e.g. requirements that
have been created based on ideas on previous stage) (P1, P2)
- Product managers are responsible for analysing to find root causes of the
new requirements and making decisions about requirements
- Evaluations from experts can be collected for the requirements (e.g.
architects) (P1)

Artifact - Tailored forms for different types of requirements (e.g. business,
customer, functional requirement)
- Generic attributes for customer requirements are e.g. ID, name, priority,
status, description, person, source, product, benefits/savings for a customer,
estimated costs, estimated incomes
- Traceability should be possible between customer requirements as well as
between customer requirements and other artifacts (e.g. ideas, features)(P6)

Distribution - Same issues as in previous phase

Table 3. Feature creation

Viewpoint Issues
Tool - Same issues as in previous phase
Process - Product manager analyses requirements and makes feature proposal (P3)

- Product manager can collect evaluation information about requirements to
support analysis phase (from e.g. architects and project managers)
- When feature proposal has been made it will be linked to corresponding
requirement(s) (bidirectional traceability) (P6)

Artifact - Feature attributes are e.g. ID, name, description, priority, status, target
product, target project, responsible person, estimated costs, estimated
income, schedule
- Traceability should be possible between features as well as between
features and other artifacts (customer requirements) (P6)
- Non-functional requirements are used to describe quality requirements as
reliability, scalability and response time for functional requirements in
textual mode
- Functional requirements are used to describe requirements in more detailed
level. Often used cases and tasks (project tasks) are related to the
requirements. Tasks can be used to specify costs and schedule. Costs are
calculated from tasks based on task efforts and schedules based on start/end
dates

Distribution - Same issues as in previous phase

 Requirements Management Practices as Patterns for Distributed Product Management 195

Table 4. Feature prioritization and selection

Viewpoint Issues
Tool - Ability to define different criteria to make prioritization (P2)

- Ability to give higher weight for a certain criterion
- Ability to present results in visualized form (P2)
- Ability to compare different features to each other by a specific
algorithm which makes the comparison process more efficient (P2)

Process - Product manager makes prioritization according to different criteria
which can be e.g. value for different customer segments, value for
company, risk level (e.g. technology, resource, knowledge etc.), relation to
strategy, feature difference between competitors’ feature etc.
- Product manager is responsible for presenting features and their
benefits/costs to stakeholders. Presentation can be done through graphics
that help to compare different features (P2)

Artifact - Graphical presentations from features and comparison algorithms for
features

Distribution - Trust between different product managers and other managers are
important issue to make decision work more efficient
- Understanding of different cultures is important in global development
environment

Table 5. Adding features to product roadmap

Viewpoint Issues
Tool - Roadmap contains different views. One important view is Gantt-chart

that describes a schedule for the feature realization (P3)
Process - Product manager creates a product roadmap based on the company

strategy and e.g. market, competitor and technology intelligences (P3)
- Product manager is responsible for presenting features and their
benefits/costs to stakeholders. Presentation can be done using graphics
that help to compare different features (P2)

Artifact - Different graphical presentations that can be found in tool.
- Roadmap templates for Market, Product and Technology Roadmaps
(e.g. MS PowerPoint)

Distribution - Same issues as in previous phases

3.1 Results of Enquiry and Interviews

This section presents the results of enquiry and interviews organized according to the
framework defined in section 2.2. Results reflect issues that the respondents and
interviewees found important for more effective and systematic product management.
For each process phase, issues were mapped with a tool, process, artifact or
distribution -viewpoint based on the analysis (see Tables 1 to 6). Issues which were
used to construct patterns were labeled with a Pattern ID (e.g. P1 = Pattern 1).

196 A. Välimäki and J. Kääriäinen

Generally, interviews indicated that currently fairly simple, proven solutions are used
for the requirements management of early phases of product development. For
example, e-mail, text files, presentation templates, etc. In many cases these solutions
are sufficient. However, increasing efficiency demands and a shift to a distributed
development environment requires that a centralized database is needed for collecting,
managing and sharing requests, features and requirements.

Table 6. From Product Roadmap to Business Plan

Viewpoint Issues
Tool - A word processor is used to create a Business plan document
Process - Product manager creates a Business plan (in cooperation with project

managers and architects) that will be analysed according to innovation
process by head of department and other product managers (P4)
- Ensure traceability to detailed technical requirements that will be
defined in development project (P4, P6)

Artifact - Template for Business Plan (e.g. MS Word)
Distribution - Same issues as in previous phases

3.2 Suggested Solutions - Patterns

The results were analyzed and afterwards, some organizational patterns were created
(later on referred to as “pattern”) based on gathered information and related research
materials. Some of the important patterns from the viewpoint of distributed
development challenges and business requirements engineering are described below.

•ID: P1
•Name: Established Idea Database
•Problems: Often ideas from customers and from employees of the same company
are located in product managers’ mails and personal folders. Ideas are difficult to
analyze because there are no means to categorize or to manage them.
•Solution: When there is a common database for all ideas, they can be found from
one store. The ideas can also be categorized by different attributes to make it easier to
analyze them and make decisions about further measures. The effective user rights
methods and role based views to see certain data make it possible to maintain all
requested information security levels. For distributed idea management, it is also
important to have a possibility for global access regardless of time and place as well
as have a possibility to use a discussion forum inside the tool.
•Guidelines: The ideas are gathered from different customers and other sources and
they are stored in a common database. The needed attributes of ideas are updated to
make it easier to make a decision about the next actions. The ideas have their own
lifecycle and different employees with different roles are responsible for managing
ideas in different phases. Different measurements are also needed to make it visible
to see the status of idea handling
•Consequences: The database management needs resources, but the time is saved in
finding information more quickly. When all data is in one database, there is a lot of
work to ensure that only needed information is visible to certain user groups. The

 Requirements Management Practices as Patterns for Distributed Product Management 197

good idea management process is important because one customer’s idea can be the
key reason why the customer will buy the product. A good idea is also often a source
of more specific customer requirements or needs.

•ID: P2
•Name: Visualize information of requirements to make prioritization
•Problems: A lot of information is needed to understand how valuable and useful a
certain requirement is for a customer. It can also be difficult to find out afterwards
who was the source of requirements. One big question is also how risky a request is to
implement and is there a needed knowledge in use in a company. Prioritization of
requests with different customers and different interest groups is also difficult to
implement because different groups often have a different prioritization order.
•Solution: Customers’ needs, requirements and related features need to be stored in
one database. There are also needed different attributes to store important information
for prioritization e.g. a value for a customer, the amount of development work, a link
to strategy etc. Different prioritization views with different criteria are also important
for making a decision about which feature will be implemented. Relations between
requirements to features which implement the specific requirements are also
important to clarify the group of features which are needed and which requirements
are related to which features.
•Guidelines: Customer’s needs and requirements and related features are stored in a
database by product managers. The specified attributes are filled to make it easier to
make a query for a customer to find out what is the priority order of requirements or
features.
•Consequences: There is a lot of work to add attribute information to different
features. That is why it is important to choose which features are the main features
that will be updated with more specific attribute information and traceability links
between different artifacts.

Otnher patterns only by an id and a name are:

•ID: P3
•Name: Product Roadmap is needed to gather information from different views

•ID: P4
•Name: Business Plan presents the feasibility of grouped features

•ID: P5
•Name: Communication tools and the centralized requirements database are needed
for efficient distributed development

•ID: P6
•Name: Traceability based on easy to use bi-directional linking and visualized reports

4 Discussion

The results obtained from this study indicate some important issues for distributed
requirements management support for product management. The importance of
requirements management in the early phases of product development has also been

198 A. Välimäki and J. Kääriäinen

reported in other studies in industry, e.g. in [1] and [6]. Related research has indicated
that many methods and tools exist to support requirements engineering (e.g.
Parviainen et al. [3]). However, Graaf et al. [21] present that there seems to be a
relatively large gap between the used and the available methods and tools. Usually
fairly simple, pragmatic solutions were used which were based on proven technology.
This was also detected in this study. Fairly simple solutions are sufficient when
operating in local environments. However, in distributed development environments,
a secure shared information repository and electronic connections (e-meetings,
teleconferencing, web cameras, chat) were seen as essential solutions to support a
collaborative mode of work. This has also been indicated in other case studies related
to global product development. For instance, in Battin et al. [8] (e.g. intranet data
sharing, teleconferencing). Other major issues that emerged from the needs for more
effective requirements management for product managers were:

• need for reports from data objects to support product management
activities

• ability to link (bidirectional links) information objects (traceability)
• need for rich data formats (text, video clips, graphics)
• need for a systematic, common process which is tool-supported

(workflows)
• clear informative data formats for collecting information about requests,

features and requirements
• effective and visual support for prioritization

Grynberg and Goldin [1] have studied how efficient requirements management can
facilitate the work of product managers in the telecommunication industry. The article
examines what kind of needs product managers have for requirements management.
Basically, the same as in our study, there was the need to have a storage place for
requests and requirements that allowed linking, organizing, tracing, reporting and
sharing information. Lang and Duggan [12] have studied collaborative tool support
for requirements management. They derived a core set of requirements for
collaborative requirements management tools and assessed how the existing tools
comply with these requirements. Many tool related requirements are the same in our
study. Lang & Duggan [12] noticed that tools, at that time, did not provide sufficient
support for the collaborative mode of work. This sounds challenging since our next
step is to improve the existing situation in a case company with systematic process
and tool support for product management. Our results also highlight needs for process
support (ability for workflows) and visual support for prioritization. Visualization
support for prioritization has been studied, for example, in Regnell et al. [15]. They
present an industrial case study about a distributed prioritization process. They report
that product management found the proposed visualizations (charts) valuable as
decision-making support when selecting requirements for the next release. In our
study, respondents also highlighted the importance of visualization in the
prioritization process and its tool support especially when assessing the benefits and
costs of different features.

Patterns seem to be an interesting way to describe solutions for specific problems in
the requirement management process. It is possible to emphasize the important activities
and consequences of a pattern which will improve the efficiency of a process. For

 Requirements Management Practices as Patterns for Distributed Product Management 199

pattern mining, the research method described in this paper also seems to be a good way
to gather information for patterns and their contents. The patterns which have been
found in this research are useful but obviously they need to be adapted according to the
restrictions and possibilities of each individual development project.

5 Conclusions

An efficient innovation process is very important for best-practice companies. Good
ideas and requirements have to be handled and changed to business plans and other
change requests in product development faster and more efficiently than earlier, even
in a distributed development environment. This paper presents a research process and
a framework for mining practices and development needs in order to improve a fuzzy
front-end of an innovation process. The research method has included phases in which
the results of questionnaires and interviews have been described in the form of a table.
Furthermore, the results have been generalized in the form of organizational patterns
and a list of important issues.

The important issues from the view of tool, process, artifact and distribution in
different phases were studied. The results emphasise the need for a centralized
requirements management database which is possible to use around the world. The
visualized information is very important in order to improve decision making,
especially in the prioritization phase. Additionally, increased organizational know
how about products stored in requirements database is valuable for a company.

Organizational patterns seem to be one good method for describing solutions and
guidelines to a problem. Generalized patterns make it easier for other companies to
reflect on and to apply the results to their own cases. For pattern mining, the use of a
developed framework and research process, as presented in this paper provided a
good way to gather and organize information for patterns and their contents.

The future research directions will be the analysis of experiences with the current
patterns in future development projects, the improvement of the patterns, and the
creation of new patterns according to the feedback gained from projects.

Acknowledgements. This research is part of the ITEA project called TWINS
(Optimizing HW-SW Co-design flow for software intensive system development).
The work is funded by Tekes, Metso Automation and VTT. The authors would like to
thank all the respondents and interviewees for their assistance and cooperation. The
authors would also like to thank Prof. Pekka Abrahamsson from VTT and Prof. Kai
Koskimies from the University of Tampere for their valuable comments and support
for this study.

References

1. Grynberg, A., Goldin, L.: Product Management in Telecom Industry – Using
Requirements Management Process. In: Proceedings of the IEEE International Conference
on Software—Science, Technology & Engineering (SwSTE’03) (2003)

2. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practise Guide. John
Wiley & Sons, West Sussex (1997)

200 A. Välimäki and J. Kääriäinen

3. Parviainen, P., Tihinen, M., van Solingen, R., Lormans, M.: Requirements Engineering:
Process, Methods and Techniques. In: Silva, A., Mate, J. (eds.) Requirements Engineering
for Sociotechnical Systems, published by Idea Group (2005)

4. Juristo, N., Moreno, A.M., Silva, A.: Is the European industry moving toward solving
requirements engineering problems? IEEE Software 19(6), 70–77 (2002)

5. Weerd, I., Brinkkemper, I., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards a
Reference Framework for Software Product Management. In: 14th IEEE International
Requirements Engineering Conference (RE’06) (2006)

6. Ebert, C.: Understanding the product life cycle: four key requirements engineering
techniques. IEEE Software 23(3), 19–25 (2006)

7. Deloitte presentation using sources PDMA, PCA, Gap Gemini, Sopheon, referred in
Savolainen, T. Creating the basis for strategic innovation management (in finnish),
Helsinki University of Technology (Unpublished)

8. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging resources in global
software development. IEEE Software 18(2), 70–77 (2001)

9. Herbsleb, J.D., Grinter, R.E.: Splitting the organisation and integrating the code:
Conway’s law revisited. In: Proceedings of the 1999 International Conference on Software
Engineering, May 16-22 1999, pp. 85–95 (1999)

10. Damian, D., Moitra, D.: Guest Editors’ Introduction: Global Software Development: How
Far Have We Come? IEEE Software 23(5), 17–19 (2006)

11. Damian, D., Zowghi, D.: RE challenges in multi-site software development organizations.
Requirements engineering 8(3), 149–160 (2003)

12. Lang, M., Duggan, J.: A Tool to Support Collaborative Software Requirements
Management. Requirements Engineering 6(3), 161–172 (2001)

13. Hyysalo, J., Parviainen, P., Tihinen, M.: Collaborative embedded systems development:
survey of state of the practice. In: 13th Annual IEEE International Symposium and
Workshop on Engineering of Computer Based Systems, ECBS 2006 (2006)

14. Sinha, V., Sengupta, B., Chandra, S.: Enabling Collaboration in Distributed Requirements
Management. IEEE Software 23(5), 52–61 (2006)

15. Regnell, B., Höst, M., Natt och Dag, J, Beremark, P., Hjelm, T.: An Industrial Case Study
on Distributed Prioritisation in Market-Driven Requirements Engineering for Packaged
Software. In: Requirements Engineering, vol. 6 (1), pp. 51–62. Springer, London (2001)

16. Coplien, J.O., Harrison, N.B.: Organizational Patterns of Agile Software Development,
Pearson Prentice Hall (2005)

17. Pyötsiä, J.: Innovation Management in Network Economy. In: The Tenth International
Conference on Management of Technology, IAMOT 2001, Lausanne, Switzerland (2001)

18. Miles, M., Huberman, A.: Qualitative Data Analysis: An Expanded Sourcebook, 2nd edn.
Sage, Thousand Oaks, California (1994)

19. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language: Towns, Buildings, Construction. Oxford University Press, New York
(1977)

20. Bozheva, T., Elisa Gallo, M.: Framework of agile patterns. In: Proceedings of European
Software Process Improvement and Innovation Conference (EuroSPI) (2005)

21. Graaf, B., Lormans, M., Toetenel, H.: Embedded software engineering: The state of the
practice. IEEE Software 20(6), 61–69 (2003)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 201–206, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SPI Consulting in a Level 1 Company:
An Experience Report

Tomas Schweigert and Michael Philipp

SQS Software Quality Systems AG
Stollwerckstraße 11

51149 Köln
tomas.schweigert@sqs.de
michael.philipp@sqs.de

Abstract. It has been demonstrated by several case studies that SPI programs
generate a substantial benefit, especially for organizations with immature
processes. However, experience shows, that there is little buy in to SPI
programs from these organizations. The reason is the step by step approach in
ISO 15504 and as well in CMMi (Staged) especially the lack of ability to
deliver sufficient data for planning and confirming improvements. In these
cases a measurement oriented approach might work better because it increases
the probability of senior management commitment by focusing aspects which
are in the range of management perception.

1 Introduction

There are several case studies which demonstrate that there is a substantial benefit to
be had when Software Process Improvement (SPI) is implemented. The last was
published by SEI in 2005 [Gibson 2006]. It is also reported that 70% of SPI initiatives
fail [Statz 1997]. The two main reasons for failure are a lack of management
commitment or unrealistic expectations about what SPI can deliver. In organizations
with immature processes both risks have the same origin: the absence of measurement
and valid process data.

1.1 SPI from a Management Perspective

From a management viewpoint most SPI initiatives in organizations with immature
processes have a common problem: they might outline the improvement in a technical
manner but are not able to produce figures suitable for management confirmation of
the improvement. This leads to the management dilemma that the costs of SPI are
clear (As there is a defined Budget to be spent) but the benefits are not calculable. The
potential sponsor is in the position to believe the SPI approach (which leads to
unrealistic expectations) or to refuse it (which leads to al lack of commitment).

Alternatively an improvement project may be forced by the customer side as it was
historically with CMM or currently in Automotive SPICE but even then there is a
high risk that efforts are reduced to the minimum necessary to fulfill the customer

202 T. Schweigert and M. Philipp

requests. From a management perspective SPI provides compliance instead of
performance improvement [Constant 2005].

1.2 SPI from an Improvement Viewpoint

ISO 15504-4:2004 chapter 6 makes a clear statement that business goals should be
reviewed before defining an improvement initiative but only relates to processes.
After the processes are selected for improvement, ISO 15504 provides a step by step
approach through the capability each process. This can result in management
frustration because management has no chance to receive other quantitative
information than capability levels.

Fig. 1. The step by step approach might fit for technical staff or consultants but does not meet
the management information needs

Even if the improvement project is successful in a technical way, meaning that
technical people and project leaders accept the improved process and follow these
procedures, it is difficult to evaluate the benefits for the business because it is not sure
that the required data is available.

A common cause for this weakness is a lack of integration between quality
management systems, life cycle models, procedure models and process models. A
common symptom is insufficient project planning - isolated improvements for project
planning or quality management are not able to fix this problem because they address
the symptoms instead of the cause.

2 An Alternative Approach

During an SPI project in a German insurance company the SPI team faced the
challenge that the customer was tired of changing processes without any measurable

 SPI Consulting in a Level 1 Company 203

result. Historically the customer was tired of receiving papers from other firms with
recommendations derived from various sources of best practice guides. What the
customer really needed was evidence of substantial and provable benefits and not just
only recommendations to increase conformance.

Facing this challenge the SPI team decided to develop a recommendation with a
different approach. Defining a management cockpit for software projects the team
identified the core processes to deliver the needed data. These processes were selected
for enhancement. Additionally a set of core metrics were derived to support the
building of the management cockpit.

Fig. 2. Goal of the management cockpot is to provide information to the management at the
needed level

The senior management committed to the approach and decided to spend a budget
to implement the recommended improvements.

2.1 The Approach in Detail

The SPI team devised an approach which prioritized the metrics and data to define the
necessary improvements.

First the team defined a management cockpit which –after implementation- will
support project controlling by senior management.

Then the team defined a set of processes which addressed the technical and
business needs of the organization a planned a focused SPICE assessment to get a
clear picture of the current status.

After conducting this assessment and presenting the results to and discussing them
with several levels of management and technical staff the team defined the data that
each process has to deliver for the management cockpit.

The team then defined quality requirements for the data concentrating particularly
on the consistency of information.

204 T. Schweigert and M. Philipp

• From a bottom up viewpoint this means focusing on a few procedure
models with standardized measuring points to allocate data, figures and
qualitative information as well as looking at the usability of these results
for aggregation to ensure support of management purposes.

• From a top down viewpoint this means providing an extended controlling
and decision making support by building a consistent set of
communication ways throughout all management levels.

Fig. 3. The measurement driven approach uses management needs as a starting point for SPI
activities

Knowing, that this recommendation is an atypical starting point for SPI in an
organization with immature processes the SPI team believed in the commitment of the
senior management and delivered the recommendations for operational management
review.

After this step it was clear which processes were the focus of the SPI initiative -
project management, quality assurance, software testing, and quality management.

As a next step the team evaluated the impacts of these requirements on the selected
processes. Doing this the team looked at practices and artifacts to be implemented.

Looking at the process “project management” the team came to the conclusion that
effort estimation, planning and reporting were starting points to improve the ability to
control projects. This has a direct benefit for management as well as providing direct
support to the projects. As a consequence the management committed to implement a
standard procedure for effort, duration and cost estimation as well as a standard for
detailed level project planning and aggregated project reporting. This also promotes a
common understanding of artifacts and life cycle models for example, both software
engineers and project managers have the same definition of an increment and an
iteration.

Looking at the process “quality management”, the team recommended to give high
attention to a common understanding of quality throughout the whole IT-organization.
This meant having clearly defined interfaces between the processes with quality goals

 SPI Consulting in a Level 1 Company 205

for the related work products as well as quality gates to verify the quality of work
products. In addition, quality campaigns would be started to enhance the quality
awareness of the involved staff.

It was agreed that these requirements will lead to significant changes in the
behavior of the projects.

It was also agreed, that if this improvement project brought the selected processes
to an improved level this would be okay, but it was clearly stated, that the project had
no stated goal to reach a certain capability level.

At an organizational level, the SPI team recommended the initiation of the
integration of quality management, life cycle model, procedure model and process
model to ensure the effectiveness of the measurement model and to improve the
communication between management and project level.

All actions were compiled in a roadmap which included the steps necessary to
implement the management cockpit.

Comparing the roadmap with a best practice based improvement it has a different
structure even when several recommendations are equal.

2.2 Potential Risks

• Management commitment must be sustained throughout the whole
improvement project.

• All improvements must be institutionalized and integrated into the technical
and organizational infrastructure.

• Roles and responsibilities must be clearly defined including the role of an
improvement promoter. This role might be part of the job description for the
quality manager.

• Success must be measured and controlled continuously to ensure awareness
and learning from incidental failure.

• Measurements must be enhanced in predefined steps. In the initial phase
some basic measurements would be established to enable controlling in
selected areas of quality effectiveness and efficiency but in later phases
measurement will more and more focus on efficiency. This is a key risk in
the measurement concept.

2.3 Benefits of the Approach

• Even if the customer has immature processes, and is not willing to trust in
expectations based on case studies, it is possible to initiate software process
improvement projects.

• The strong focus on management needs helps to create a stable commitment
and to ensure adequate funding and time for the project.

• The clearly defined roadmap helps senior management to sell the
improvement project to project leaders and technical staff because they have
a substantial reason for the intended changes and not only another opinion.

• From the consultant viewpoint this approach is satisfactory because it helps
to create a difference in competency and quality to other consulting
companies which increases the probability of being selected as the preferred
supplier for further business.

206 T. Schweigert and M. Philipp

3 Summary

Management is not longer willing to fund the implementation of yet another process
improvement methodology even where cases studies show the approach to be valid.
The benefits to be gained not just for the organization but also for management must
be clearly addressed and delivered.

For this reason a step by step approach which is structured by maturity levels will
not work even if the implementation of single improvements is supported by isolated
measures.

Necessary is a complete measurement oriented approach with a management
cockpit on top.

References

[Gibson 2006] Gibson, D.L., Goldenson, D.R., Kost, K.: Performance Results of CMMI®-
Based Process Improvement, Technical Report SEI (2006)

[Statz 1997] Statz, J., Oxley, D., O’Toole, P.: Identifying and Managing Risks for Software
Process Improvement, stsc.hill.af.mil/crosstalk/1997/04

[Constant 2005] Constant, D.: What’s Gone Wrong with CMM/CMMi, Software Quality No
2/2005

On the Effects of Pair Programming on

Thoroughness and Fault-Finding Effectiveness of
Unit Tests

Lech Madeyski

Institute of Applied Informatics, Wroclaw University of Technology,
Wyb.Wyspianskiego 27, 50370 Wroclaw, Poland

Lech.Madeyski@pwr.wroc.pl
http://madeyski.e-informatyka.pl/

Abstract. Code coverage and mutation score measure how thoroughly
tests exercise programs and how effective they are, respectively. The
objective is to provide empirical evidence on the impact of pair pro-
gramming on both, thoroughness and effectiveness of test suites, as pair
programming is considered one of the practices that can make testing
more rigorous, thorough and effective. A large experiment with MSc stu-
dents working solo and in pairs was conducted. The subjects were asked
to write unit tests using JUnit, and to follow test-driven development
approach, as suggested by eXtreme Programming methodology. It ap-
peared that branch coverage, as well as mutation score indicator (the
lower bound on mutation score), was not significantly affected by us-
ing pair programming, instead of solo programming. However, slight but
insignificant positive impact of pair programming on mutations score in-
dicator was noticeable. The results do not support the positive impact of
pair programming on testing to make it more effective and thorough. The
generalization of the results is limited due to the fact that MSc students
participated in the study. It is possible that the benefits of pair program-
ming will exceed the results obtained in this experiment for larger, more
complex and longer projects.

1 Introduction

Pair programming (PP) [1] is key software development practice of eXtreme Pro-
gramming (XP) methodology [2] which has recently gained a lot of attention.
Pair programming is a practice in which two distinct roles, called a driver and
a navigator, are distinguished. They contribute to a synergy of the individuals
in a pair working together at one computer and collaborating on the same de-
velopment tasks (e.g. design, test, code). The driver is typing at the keyboard
and focusing on the details of the production code or tests. The navigator ob-
serves the work of the driver, reviews the code, proposes test cases, considers
the strategic implications [3,4] and is looking for tactical and strategic defects
or alternatives [5]. The rule is that all production code is written by two people

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 207–221, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

208 L. Madeyski

sitting at one machine [2]. In the case of solo programming, all activities are
performed by one programmer.

Test-driven development (TDD) [6,2], also known as test-first programming, is
another important and well known software development practice of XP method-
ology, supposed to be used with pair programming. TDD is a practice based on
specifying piece of functionality as a test (usually low-level unit test), before
writing production code, implementing the functionality, so that the test passes,
refactoring (e.g. removing duplication), and iterating the process. The tests are
run frequently, while writing production code. Kobayashi et al. [7] suggested
that pair programming, test-driven development and refactoring, which is the
inherent part of TDD development cycle, had a very good synergy. Therefore, it
seems reasonable to evaluate pair programming practice in the context of TDD.

Pair programming is supposed to be software development practice that can
influence unit testing to make it more rigorous, thorough, and effective. The
question is whether the impact of pair programming is significant or not.

2 Measures

Programmers who write unit tests should have a set of guidelines indicating
whether their software has been thoroughly and effectively tested.

2.1 Code Coverage

Measuring code coverage is one of such guidelines which can be applied, as code
coverage tools measure how thoroughly tests exercise programs [8]. However, it
remains a controversial issue whether code coverage is a good indicator for fault
detection capability of test cases [9]. Marick [8] shows that code coverage may
be misused, but code coverage tools are still helpful if they are used to enhance
thought, and not to replace it. Cai and Lyu [10] found that code coverage was a
good estimator for fault detection of exceptional test cases, but a poor one for
test cases in normal operations.

Kaner [9] lists 101 coverage measures. The important question is which code
coverage measure should be used. Useful insights concerning this question are
given by Cornett [11]. Statement coverage, also known as line coverage, re-
ports whether each executable statement is encountered. The main disadvan-
tage of statement coverage is that it is insensitive to some control structures.
To avoid this problem, decision coverage, also known as branch coverage, has
been devised. Decision coverage is a measure based on whether decision points,
such as if and while statements, evaluate to both true and false during test
execution, thus exercising both execution paths. Decision coverage includes state-
ment coverage, since exercising every branch must lead to exercising every state-
ment. However, a shortcoming of this measure is that it ignores branches within
boolean expressions which occur due to short-circuit operators. For example, it
can preclude calls to some methods. Unfortunately, the most powerful measures
as Modified Condition/Decision Coverage (MC/DC), created at Boeing and re-
quired for aviation software, or Condition/Decision Coverage are not available

On the Effects of PP on Thoroughness and Fault-Finding Effectiveness 209

for Java software. Therefore, branch coverage measure was used in our analysis,
as the best of available code coverage measures. This measure is offered by sev-
eral tools e.g. Clover, JCoverage, Cobertura. A detailed analysis revealed that
Clover, JCoverage and Cobertura calculate branch coverage in slightly differ-
ent ways. Therefore, to validate the results obtained by Clover, which has the
market leader status, branch coverage results were collected by JCoverage and
Cobertura as well. Finally, it appeared that the branch coverage results obtained
by JCoverage and Cobertura were in line with the results obtained by Clover,
and therefore only Clover results were included in further analysis.

2.2 Mutation Score

A way to measure the effectiveness of test suites is a fault-based technique, called
mutation testing, originally proposed by DeMillo et al. [12] and Hamlet [13]. Mu-
tation analysis is a way to measure the quality of the test cases, and the actual
testing of the software is a side effect [14]. The effectiveness of test suites for fault
localization is estimated on the seeded faults. The faults are introduced into the
program by creating a collection of faulty versions, called mutants. These mu-
tants are created from the original program by applying mutation operators
which describe syntactic changes to the programming language. The tests are
used to execute these mutants with the goal of causing each mutant to produce
incorrect output. Mutation score (or mutation adequacy), defined as a ratio of
the number of killed mutants to the total number of non-equivalent mutants,
is a kind of quantitative measurement of tests quality [15]. The total number
of non-equivalent mutants is a difference between total number of mutants and
the number of equivalent mutants. Equivalent mutants always produce the same
output as the original program, so they cannot be killed. Unfortunately, deter-
mining which mutant programs are equivalent to the original program is a very
tedious and error-prone activity, so even ignoring equivalent mutants is some-
times suggested [14]. Ignoring equivalent mutants means, we are ready to accept
the lower bound on mutation score (named mutation score indicator). Accepting
it results in cost-effective application of a mutation analysis and still provides
meaningful information about fault-finding effectiveness of test suites.

Empirical studies have supported the effectiveness of mutation testing. Walsh
[16] found empirically that mutation testing is more powerful than statement and
branch coverage. Frankl et al. [17] and Offutt et al. [18] found that mutation
testing was more effective at finding faults than data-flow. Fowler [19] found
mutation testing tool support useful in practice.

Although mutation testing is powerful, it is not meant as a replacement for
code coverage, only as a complementary approach useful to find code that is exe-
cuted by running tests, but not actually tested. Moreover, it is time-consuming,
and impractical to use without a reliable, fast and automated tool that gener-
ates mutants, runs the mutants against a suite of tests, and reports the mutation
score of the test suite. Unfortunately, mutation tools for Java, proposed so far,
have several limitations that prevent practitioners from using them. They are
too slow to be used in large software projects (e.g. Jester [20]), modify source

210 L. Madeyski

code of the software components and may break the code making operation risky
(e.g. Jester). They do not work with JUnit [21] tests, the most widely used unit
testing framework (e.g. MuJava [22,23]), do not support the execution of mu-
tants and are not freely available for download (e.g. JAVAMUT [24]). Therefore,
a new mutation tool, called Judy, has been developed, using aspect-oriented ap-
proach to speed up mutation testing [25]. Judy has a build-in support of JUnit
unit tests, and is under active development to offer a wide range of mutations.
Mutations set, used in the experiment, consists of 14 mutations, see Table 1.

Table 1. Judy Mutation Operators

ABS – Absolute value insertion AOR – Arithmetic operator replacement
LCR – Logical connector replacement ROR – Relational operator replacement
UOI – Unary operator insertion UOD – Unary operator deletion
SOR – Shift operator replacement LOR – Logical operator replacement
COR – Conditional operator replacement ASR – Assignment operator replacement
EOA – Reference and content assignment EOC – Reference and content assignment
replacement replacement
EAM – Accessor method change EMM – Modifier method change

The first five operators (ABS, AOR, LCR, ROR, UOI) were taken from Of-
futt et al.’s research [26] on identifying a set of sufficient mutation operators.
The idea of sufficient mutation operators is to minimize the number of muta-
tion operators, whilst getting as much testing strength as possible. Recently,
Ammann and Offutt [27] presented these five mutation operators along with
UOD, SOR, LOR, COR, ASR as program level mutation operators dedicated
to Java language. Ma et al. [28] found that EOA and EOC mutation operators
can model object-oriented (OO) faults that are difficult to detect and therefore,
can be thought of as good mutation operators for OO programs. Finally, EAM
and EMM mutation operators were added, as there is still no determined set
of selective mutation operators for class mutation operators. Thus, there is no
strong reason to exclude these operators [28].

Branch coverage and mutation score indicator were used as measures to de-
termine thoroughness and fault-finding effectiveness of the test suites.

3 Related Work

Researchers and practitioners have reported numerous, sometimes anecdotal
and favourable studies of pair programming. Beck and Andres wrote that a
pair is even more than twice as effective as the same two people programming
solo [2]. However, empirical evidence concerning pair programming practice ef-
fort overhead and speedup ratio often points to, more or less, the opposite, see
Table 2. The results of empirical studies suggest that the effort overhead is prob-
ably somewhere between 15% and 60%, and speedup ratio is between 20% and
over 40%. Another important question concerning pair programming practice is

On the Effects of PP on Thoroughness and Fault-Finding Effectiveness 211

Table 2. Empirical evidence on pair programming practice effort overhead Approaches:
S(Solo), P(Pair), SbS(side-by-side)

Study Environment Subjects Effort overhead and speedup ratio
associated with pair programming

[29] Industry 15(5P/5S) 42% overhead, 29% speed up
[3] Academic 41(14P/13S) 15%–60% overhead, 20%–42.5% speed up
[30] Academic 21(5P/5+6S) 60% overhead, 20% speed up
[31] Academic 25(5P/5SbS/5S) 50% overhead (but only 20% overhead

in the case of SbS programming
i.e. everyone has their own PC)

[32] Acad./Ind. 4 case projects Neither P nor S had consistently
(4/5.5/4/4-6) higher productivity.

[5] Industry 295(98P/99S) P in general did not reduce the time
required to solve the tasks correctly.

whether it improves the quality of software products. Empirical results concern-
ing the impact of pair programming practice on quality of software products
are summarized in Table 3. The results of empirical studies suggest that the
the positive impact of pair programming on software quality is questionable.

Table 3. Empirical evidence on the impact of pair programming practice on software
quality Approaches: S(Solo), P(Pair), T(TDD), C(Classic, test-last)

Study Environment Subjects Impact on software quality

[33] Academic 37(10P/17S) P did not produce more reliable code than S
whose code was reviewed.

[34,35] Academic 188 There was no difference in NATP(Number of
(28CS/28TS/ Acceptance Tests Passed) between S and P.
31CP/35TP) Package dependencies were not significantly

affected by P.
[32] Acad./Ind. 4 case projects Lower level of defect density in the case of P

(4/5.5/4/4-6) was not supported.
[5] Industry 295(98P/99S) P in general did not increase the proportion

of correct solutions.

To the author’s knowledge, there is no empirical evidence concerning the
impact of pair programming on thoroughness and fault-finding effectiveness of
unit tests. Therefore, the aim of this paper is to fill in this gap.

4 Experiment Description

The definition, design, as well as operation of the experiment are described in
this section.

212 L. Madeyski

4.1 Experiment Definition

The following definition determines the foundation for the experiment [36]:

Object of study. The objects of study are software development products
(developed code).

Purpose. The purpose is to evaluate the impact of pair programming practice
on software development products.

Quality focus. The quality focus is thoroughness and fault-finding effectiveness
of unit test suites, measured by code coverage and mutation score indicator,
respectively.

Perspective. The perspective is from the researcher’s point of view.

Context. The experiment is run using MSc students as subjects involved in the
development of finance accounting system in Java.

4.2 Context Selection

The context of the experiment was the Programming in Java course, and hence
the experiment was run off-line (not industrial software development) [36]. Java
was a programming language and Eclipse was an Integrated Development En-
vironment (IDE). All the subjects had prior experience, at least in C and C++
programming (using object-oriented approach). The course consisted of seven
lectures and fifteen laboratory sessions (90 minutes each), and introduced Java
programming language, using pair programming and test-driven development
as the key XP practices. The subjects’ practical skills in programming in Java,
using pair programming and test-driven development, were evaluated during the
first seven laboratory sessions. The experiment took place during the last eight
laboratory sessions. The problem, development of the finance accounting sys-
tem, was as close to a real one, as it is possible in academic environment. The
requirements specification consisted of 27 user stories. The subjects participating
in the study were mainly second and third-year (and few fourth and fifth-year)
computer science MSc students. MSc programme of Wroclaw University of Tech-
nology is a 5-year programme after high school. The experiment was part of a
research, conducted at Wroclaw University of Technology, with the aim of ob-
taining empirical evidence on the impact of pair programming and test-driven
development on different aspects of software products and processes [34,35,37].
The experiment analysis was run with subjects involved in 63 projects conducted,
using test-driven development approach, by 28 solo programmers (denoted as S)
and 35 pairs (denoted as P).

4.3 Variables Selection

The independent variable is the software development method used. The exper-
iment groups used solo (S) or pair programming (P) development method. The
dependent (response) variables are mean values of branch coverage (denoted as
BC) and mutation score indicator (denoted as MSI), described in Section 2.

On the Effects of PP on Thoroughness and Fault-Finding Effectiveness 213

4.4 Hypotheses Formulation

The crucial aspect of the experiment is to get to know and formally state what
is intended to evaluate in it. The following null hypotheses are to be tested:

– H0 BC, S/P — There is no difference in the mean value of branch coverage
(BC) between solo programmers and pairs (S and P).

– H0 MSI, S/P — There is no difference in the mean value of mutation score
indicator (MSI) between solo programmers and pairs (S and P).

4.5 Selection of Subjects

The subjects are chosen based on convenience. They are students taking the
Programming in Java course. Prior to the experiment, the students filled in a
pre-test questionnaire. The aim of the questionnaire was to get a picture of
the students’ background. It appeared that the mean value of programming
experience in calendar years was 3.7 for solos and 3.9 for pairs. The ability to
generalize from this context is further elaborated, when discussing threats to the
experiment.

4.6 Design of the Experiment

The design is one factor (the software development method), with two treatments
(S and P). The assignment to pair programming teams took into account the
subjects’ preferences (i.e. they were allowed to suggest partners), as it seemed
to be more natural and close to the real world practice. Thus this is a quasi-
experiment [38]. In the case of two solo projects questionnaires were not filled in.
In the case of one solo project, tests were not written and checked-in properly.
These projects were not included in the analysis. The design resulted in an
unbalanced design, with 28 solo programmers and 35 pairs.

4.7 Instrumentation and Measurement

The instruments [36] and materials for the experiment were prepared in advance,
and consisted of requirements specification (user stories), pre-test and post-test
questionnaires, Eclipse project framework, a detailed description of software de-
velopment approaches (S and P), duties of subjects, and instructions how to use
the experiment infrastructure (e.g. CVS version control system). Branch cov-
erage and mutation score indicator values were collected using Clover [39] and
Judy [25] tools, respectively.

4.8 Validity Evaluation

When conducting the experiment, there is always a set of threats to the validity
of the results. Cook and Campbell [40] defined statistical conclusion, internal,
construct, and external validity threats. To enable an analysis of the validity of
the current study, the possible threats are discussed, based on Wohlin et al. [36].

214 L. Madeyski

Threats to the statistical conclusion validity are concerned with the issues
that affect the ability to draw the correct conclusion about relations between the
treatment and the outcome of the experiment, e.g. choice of statistical tests, tools
and samples sizes, and care taken in the implementation and measurement of
the experiment [36]. Threats to the statistical conclusion validity are considered
to be under control. Robust statistical techniques, tools (e.g. SPSS) and large
sample sizes to increase statistical power are used. Non-parametric tests are used
which do not require a certain underlying distribution of the data. Measures
and treatment implementation are considered reliable. However, the risk in the
treatment implementation is that the experiment was spread across laboratory
sessions. To minimize the risk, access to the Concurrent Versions System (CVS)
repository was restricted to specific laboratory sessions (access hours and IP
addresses). The validity of the experiment is highly dependent on the reliability
of the measures. The basic principle is that when one measures a phenomenon
twice, the outcome should be the same. The measures used in the experiment
are considered reliable, because they can be repeated with the same outcomes.

The internal validity of the experiment concerns the question whether the
effect is caused by independent variables, or by other factors. Concerning the
internal validity, the risk of compensatory rivalry, or demoralization of subjects
receiving less desirable treatments must be considered. The group using the clas-
sical method (i.e. solo programming) may do their very best to show that the
old method is competitive. On the other hand, subjects receiving less desirable
treatments may perform not so well as they generally do. However, the subjects
were informed that the goal of the experiment was to measure different devel-
opment methods, not the subjects’ skills. A possible diffusion or imitation of
treatments were under control of the assistant lecturers. The threat of selection
was also under control, as the experiment was a mandatory part of the course.
It was also checked that mean programming experience (in calendar years) was
similar in each group (S and P). Moreover, according to questionnaires, mean
programming experience of the subjects who took part in the experiment, and
three solo subjects who were excluded from the analysis, were almost the same.

Construct validity concerns the ability to generalize from the experiment re-
sult to the concept behind the experiment. Some threats relate to the design of
the experiment, and others to social factors [36]. Threats to the construct va-
lidity are considered not very harmful. The mono-operation bias is a threat, as
the experiment was conducted on a single software development project. Using
a single type of measure is a mono-method bias threat. To reduce mono-method
threats, the post-test questionnaire was added, to enable qualitative validation
of the results. It appeared that subjects slightly favoured a pair programming
approach. Thus, there seems to be no apparent contradiction between qualita-
tive and quantitative results. Interaction of different treatments is limited due
to the fact that the subjects were involved in one study only. Other threats to
construct validity are social threats (e.g. hypothesis guessing and experimenter
expectancies). As neither the subjects nor the experimenters have any interest
in favour of one technique or another, we do not expect it to be a large threat.

On the Effects of PP on Thoroughness and Fault-Finding Effectiveness 215

As with most empirical studies in software engineering, an important threat
is the process conformance represented by the level of conformance of the sub-
jects to the prescribed techniques. Process conformance is a threat to statistical
conclusion validity, through the variance in the way the processes are actually
carried out, and also to construct validity, through possible discrepancies be-
tween the processes as prescribed, and the processes as carried out [41]. The
process conformance threat was handled by attempting to keep deviations from
occurring, with the help of assistant lecturers. They controlled how development
methods were carried out and forced subjects to follow the prescribed techniques.
Moreover, the subjects were informed of the importance of following proper de-
velopment methods.

Threats to external validity are the conditions that limit our ability to gen-
eralize the results of our experiment to industrial practice. The largest threat is
that the subjects were students, who had short experience in pair programming.
However, Kitchenham et al.[42] states that students are the next generation of
software professionals and thus, are relatively close to the population of interest.
Some indications on the similarities between student subjects and professionals
are also given by Höst et al. [43]. Moreover, Tichy argues why it is acceptable to
use students as subjects [44]. The threads to external validity were reduced by
making the experimental environment as realistic as possible (e.g. requirements
specification came from an external client).

4.9 Experiment Operation

The experiment was run at Wroclaw University of Technology and consisted
of a preparation phase and an execution phase. The preparation phase of the
experiment included lectures and training exercises, given directly before the
experiment, in order to improve skills and practice in the areas of pair pro-
gramming, test-driven development, and unit testing using JUnit. Lectures and
exercises were given by the author, as well as by assistant lecturers. The goal of
this preparation phase was to train student subjects sufficiently well to perform
the tasks asked of them. They had to not be overwhelmed by the complexity of,
or unfamiliarity with the tasks [44]. Therefore, it took seven laboratory sessions
(90 minutes each) to achieve the goal. Then, the subjects were given an introduc-
tory presentation of a finance accounting system and were asked to implement
it during eight laboratory sessions of the execution phase. Both, the preparation
phase and the execution phase, were conducted in classroom settings under con-
tinuous supervision of assistant lecturers. The subjects were divided into S and
P groups. In the experiment up-to-date development environment composed of
Java Development Kit, Eclipse development environment, JUnit testing frame-
work and also CVS repository were used. Additionally, the subjects filled in
pre-test and post-test questionnaires, to evaluate their experience and opinions,
as well as to enable qualitative validation of the results. The subjects were not
aware of the actual hypotheses stated. The data were collected automatically
by tools such as Clover and Judy (tool developed at the Wroclaw University of
Technology).

216 L. Madeyski

5 Analysis of the Experiment

The experiment data are analysed with descriptive analysis and statistical
tests.

5.1 Descriptive Statistics

Descriptive statistics of gathered measures are summarized in Table 4. Columns
“Mean”, “Std.Deviation”, “Std.Error”, “Max”, “Median” and “Min” state for
each measure and development method the mean value, standard deviation,
standard error, maximum, median and minimum, respectively.

Table 4. Descriptive statistics for branch coverage (BC) and mutation score indicator
(MSI)

Measure Development Mean Std.Deviation Std.Error Max Median Min
Method (M) (SD) (SE) (Mdn)

Branch Coverage S .38 .22 .042 .90 .39 .00
(BC) P .39 .21 .036 .83 .32 .09

Mutation Score S .39 .22 .042 .72 .43 .04
Indicator (MSI) P .47 .29 .049 .98 .44 .09

The first impression is that developers working in pairs (denoted as P), and
developers working solo (S) performed similarly. However, it appears that pair
programming seems to have some positive impact on mutation score indicator, as
there is over 20% increase in the mean value of MSI (.47 vs. .39). This difference
is supported by differences in minimum and maximum values of MSI but not
the median. However, it is worthwhile to mention that the mean is resistant to
sampling variation, whilst the median is more likely to differ across samples. This
is important, as we want to infer something about the entire population. The
accuracy of the mean as a model of the data can be assessed by the standard
deviation which, unfortunately, is rather large (compared to the mean). The
standard deviation, as well as boxplots in Figures 1 and 2 tell us more about the
shape of the distribution of the results.

Summarizing descriptive statistics in correct APA (American Psychological
Association) format [45], we can conclude that pairs achieved slightly higher mu-
tation score indicator (M = .47, SD = .29) than solo programmers (M = .39,
SD = .22), whilst branch coverage for pairs (M = .39, SD = .21) was similar
to solo programmers (M = .38, SD = .22). It is worth noting that mutation
analysis required about 30000 mutants to be created for 63 projects. To answer
the question whether the impact of pair programming on mutation score
indicator and branch coverage is significant, or not, statistical tests must be
performed.

On the Effects of PP on Thoroughness and Fault-Finding Effectiveness 217

PS

Development Method

1,00

0,80

0,60

0,40

0,20

0,00

B
ra

n
ch

 C
o

ve
ra

g
e

Fig. 1. Branch Coverage Boxplots

PS

Development Method

1,00

0,80

0,60

0,40

0,20

0,00

M
u

ta
tio

n
 S

co
re

In

d
ic

at
o

r

Fig. 2. Mutation Score Indicator Box-
plots

5.2 Hypotheses Testing

We start from exploratory analyses on the collected data to check whether they
follow the assumptions of the parametric tests (i.e. normal distribution, interval
or ratio scale, homogeneity of variance). The first assumption of parametric
tests is that our data have come from a population that has normal distribution.
Objective tests of the distribution are Kolmogorov-Smirnov and Shapiro-Wilk
tests. We find that the data are not normally distributed, see Table 5.

Table 5. Tests of Normality

Development Kolmogorov-Smirnov1 Shapiro-Wilk
Method Statistic df2 Significance Statistic df2 Significance

Branch Coverage S .121 28 .2003 .964 28 .423
(BC) P .147 35 .053 .936 35 .043

Mutation Score S .113 28 .2003 .933 28 .072
Indicator (MSI) P .125 35 .179 .922 35 .016

1 Lilliefors Significance Correction.
2 Degrees of freedom.
3 This is a lower bound of the true significance.

For the branch coverage data the distribution for pairs appears to be non-
normal (p < .05), whereas that for solos is normal according to the Shapiro-
Wilk test. It is worth noting that the Shapiro-Wilk test yields exact significance
values and is thus more accurate (though less widely used) than the Kolmogorov-
Smirnov test. For the mutation score indicator data results are similar. The
Shapiro-Wilk test is in fact significant for pairs but not for solos. This finding
alerts us to the fact that a non-parametric test should be used. Therefore the

218 L. Madeyski

hypotheses from section 4.4 are evaluated using the Mann-Whitney one way
analysis of variance by ranks. The Mann-Whitney non-parametric tests are used
for testing differences between the two experimental groups (S and P), when
different subjects are used in each group.

Table 6. Mann-Whitney Test Statistics (grouping variable: Development Method)

Branch Coverage Mutation Score
(BC) Indicator (MSI)

Mann-Whitney U 471.500 423.000
Wilcoxon W 877.500 829.000
Z -.256 -.927
Asymp. Sig. (1-tailed) .399 .177

Table 6 shows test statistics and significances. It appeared that branch
coverage was not significantly affected by pair programming approach (the
Mann-Whitney test statistics: U = 471.5, non-significant, z = −.26). Mutation
score indicator was not significantly affected by pair programming approach (the
Mann-Whitney test statistics: U = 423.0, non-significant, z = −.93), either. An
effect size (r = Z√

N
where Z is the z-score in Table 6, and N is the size of the

study i.e. 63) is an objective and standardized measure of the magnitude of ob-
served effect. The effect size is extremely small for branch coverage (r = −.03)
and a bit higher, but still rather small, for mutation score indicator (r = −.12).
The later result may suggest the need for further experimentation.

Why did not pair programming result in a significant increase of testing
thoroughness or fault-finding effectiveness, measured by branch coverage and
mutation score indicator, respectively? The plausible explanation is that when
software project is not big enough, and the requirements are decomposed into
small features (user stories), the impact of pair programming practice on branch
coverage and mutation score indicator may be insignificant, because develop-
ment skill may, to a certain extent, compensate for the lack of a second pair of
eyes.

Another possible explanation is that when the scope of the project is limited,
the impact of pair programming practice on branch coverage and mutation score
indicator may be insignificant, because of the limited number of tests.

6 Summary and Conclusions

The unique aspect of an experiment conducted at Wroclaw University of Tech-
nology was that it included the first ever assessment of the impact of pair pro-
gramming on thoroughness and fault-finding effectiveness of unit tests. Branch
coverage and mutation score indicator were examined to find how thoroughly
tests exercise programs, and how effective they are, respectively. It appeared that
the pair programming practice used by the subjects, instead of solo program-
ming, did not significantly affect branch coverage (U = 471.5, non-significant,

On the Effects of PP on Thoroughness and Fault-Finding Effectiveness 219

r = −.03), or mutation score indicator (U = 423.0, non-significant, r = −.12). It
means that the impact of pair programming on thoroughness and fault-finding
effectiveness of unit test suites was not confirmed. The validity of the results
must be considered within the context of the limitations discussed in the valid-
ity evaluation section. The study can benefit from several improvements before
replication is attempted. The most significant one is conducting a larger project,
while securing a sample of large enough size to guarantee a high-power design.
Further experimentation in other contexts (e.g. in industry, on larger projects)
is needed to establish evidence-based recommendations for the impact of pair
programming practice on thoroughness and effectiveness of test suites.

Acknowledgements

The author expresses his gratitude to the students and lecturers participating
in the experiment, the members of the e-Informatyka team and Norbert Radyk
for their help in preparing the measurement infrastructure and collecting data.
This work has been financially supported by the Ministry of Science and Higher
Education, as a research grant 3 T11C 061 30 (years 2006-2007).

References

1. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley, London
(2002)

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley, London (2004)

3. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the Case
for Pair Programming. IEEE Software 17(4), 19–25 (2000)

4. Williams, L.A., Kessler, R.R.: All I really need to know about pair programming I
learned in kindergarten. Communications of the ACM 43(5), 108–114 (2000)

5. Arisholm, E., Gallis, H., Dyb̊a, T., Sjøberg, D.I.K.: Evaluating Pair Programming
with Respect to System Complexity and Programmer Expertise. IEEE Transac-
tions on Software Engineering 33(2) 65–86 (2007)

6. Beck, K.: Test Driven Development: By Example. Addison-Wesley, London (2002)
7. Kobayashi, O., Kawabata, M., Sakai, M., Parkinson, E.: Analysis of the Interaction

between Practices for Introducing XP Effectively. In: ICSE ’06: Proceeding of the
28th International Conference on Software Engineering, New York, NY, USA, ACM
Press, pp. 544–550 (2006)

8. Marick, B.: How to Misuse Code Coverage. In: Proceedings of the 16th In-
ternational Conference on Testing Computer Software (1999), http://www.
testing.com/writings/coverage.pdf

9. Kaner, C.: Software Negligence and Testing Coverage. In: STAR 96: Proceed-
ings the 5th International Conference, Software Testing, Analysis and Review.
pp. 299–327 (1996)

10. Cai, X., Lyu, M.R.: The Effect of Code Coverage on Fault Detection under Different
Testing Profiles. SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

11. Cornett, S.: Code Coverage Analysis (Retrieved 2006), http://www.bullseye.com/
coverage.html

http://www.testing.com/writings/coverage.pdf
http://www.testing.com/writings/coverage.pdf
http://www.bullseye.com/coverage.html
http://www.bullseye.com/coverage.html

220 L. Madeyski

12. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on Test Data Selection: Help for
the Practicing Programmer. IEEE Computer 11(4), 34–41 (1978)

13. Hamlet, R.G.: Testing Programs with the Aid of a Compiler. IEEE Transactions
on Software Engineering 3(4), 279–290 (1977)

14. Offutt, A.J., Untch, R.H.: Mutation 2000: Uniting the Orthogonal. In: Mutation
testing for the new century, pp. 34–44. Kluwer Academic Publishers, Norwell, MA,
USA (2001)

15. Zhu, H., Hall, P.A.V., May, J.H.R.: Software Unit Test Coverage and Adequacy.
ACM Computing Surveys 29(4), 366–427 (1997)

16. Walsh, P.J.: A Measure of Test Case Completeness. PhD thesis, Univ. New York
(1985)

17. Frankl, P.G., Weiss, S.N., Hu, C.: All-Uses vs Mutation Testing: An Experimen-
tal Comparison of Effectiveness. Journal of Systems and Software 38(3), 235–253
(1997)

18. Offutt, A.J., Pan, J., Tewary, K., Zhang, T.: An Experimental Evaluation of Data
Flow and Mutation Testing. Software Practice and Experience 26(2), 165–176
(1996)

19. Venners, B.: Test-Driven Development. A Conversation with Martin Fowler, Part
V (Retrieved 2007), http://www.artima.com/intv/testdrivenP.html

20. Moore, I.: Jester a JUnit test tester. In: Marchesi, M., Succi, G. (eds.) XP 2001:
Proceedings of the 2nd International Conference on Extreme Programming and
Flexible Processes in Software Engineering pp. 84–87 (2001)

21. Gamma, E., Beck, K.: JUnit Project Home Page (Retrieved 2006), http://
www.junit.org/

22. Offutt, J., Ma, Y.S., Kwon, Y.R.: An Experimental Mutation System for Java.
SIGSOFT Software Engineering Notes 29(5), 1–4 (2004)

23. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: A Mutation System for Java. In: ICSE
’06: Proceeding of the 28th International Conference on Software Engineering, New
York, NY, USA, pp. 827–830. ACM Press, New York (2006)

24. Chevalley, P., Thévenod-Fosse, P.: A mutation analysis tool for Java programs.
International Journal on Software Tools for Technology Transfer (STTT) 5(1),
90–103 (2003)

25. Madeyski, L., Radyk, N.: Judy mutation testing tool project (Retrieved 2007),
http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.Judy

26. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An Experimental
Determination of Sufficient Mutant Operators. ACM Transactions on Software
Engineering and Methodology 5(2), 99–118 (1996)

27. Ammann, P., Offutt, J.: Introduction to Software Testing. (In progress) (2008)

28. Ma, Y.S., Harrold, M.J., Kwon, Y.R.: Evaluation of Mutation Testing for Object-
Oriented Programs. In: ICSE ’06: Proceeding of the 28th International Conference
on Software Engineering, New York, NY, USA, pp. 869–872. ACM Press, New
York (2006)

29. Nosek, J.T.: The Case for Collaborative Programming. Communications of the
ACM 41(3), 105–108 (1998)

30. Nawrocki, J.R., Wojciechowski, A.: Experimental Evaluation of Pair Programming.
In: ESCOM ’01: European Software Control and Metrics, pp. 269–276 (2001)

31. Nawrocki, J.R., Jasiński, M., Olek, L., Lange, B.: Pair Programming vs. Side-
by-Side Programming. In: Richardson, I., Abrahamsson, P., Messnarz, R. (eds.)
EuroSPI 2005. LNCS, vol. 3792, pp. 28–38. Springer, Heidelberg (2005)

http://www.artima.com/intv/testdrivenP.html
http://www.junit.org/
http://www.junit.org/
http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.Judy

On the Effects of PP on Thoroughness and Fault-Finding Effectiveness 221

32. Hulkko, H., Abrahamsson, P.: A Multiple Case Study on the Impact of Pair Pro-
gramming on Product Quality. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005,
pp. 495–504. ACM Press, New York (2006)

33. Müller, M.M.: Are Reviews an Alternative to Pair Programming? Empirical Soft-
ware Engineering 9(4), 335–351 (2004)

34. Madeyski, L.: Preliminary Analysis of the Effects of Pair Programming and Test-
Driven Development on the External Code Quality. In: Zieliński, K., Szmuc, T.
(eds.) Software Engineering: Evolution and Emerging Technologies Frontiers in
Artificial Intelligence and Applications. Frontiers in Artificial Intelligence and Ap-
plications, vol. 130, pp. 113–123. IOS Press, Amsterdam (2005)

35. Madeyski, L.: The Impact of Pair Programming and Test-Driven Development on
Package Dependencies in Object-Oriented Design — An Experiment. In: Münch,
J., Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 278–289. Springer,
Heidelberg (2006)

36. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell, MA, USA (2000)

37. Madeyski, L.: Is External Code Quality Correlated with Programming Experience
or Feelgood Factor? In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006.
LNCS, vol. 4044, pp. 65–74. Springer, Heidelberg (2006)

38. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Houghton Mifflin (2002)

39. Cenqua Pty Ltd: Clover project (Retrieved 2006), http://www.cenqua.com/
clover/

40. Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design and Analysis Issues.
Houghton Mifflin Company (1979)

41. Sørumg̊ard, L.S.: Verification of Process Conformance in Empirical Studies of Soft-
ware Development. PhD thesis, The Norwegian University of Science and Technol-
ogy (1997)

42. Kitchenham, B., Pfleeger, S.L., Pickard, L., Jones, P., Hoaglin, D.C., Emam, K.E.,
Rosenberg, J.: Preliminary Guidelines for Empirical Research in Software Engi-
neering. IEEE Transactions on Software Engineering 28(8), 721–734 (2002)

43. Höst, M., Regnell, B., Wohlin, C.: Using Students as Subjects — A Comparative
Study of Students and Professionals in Lead-Time Impact Assessment. Empirical
Software Engineering 5(3), 201–214 (2000)

44. Tichy, W.F.: Hints for Reviewing Empirical Work in Software Engineering. Em-
pirical Software Engineering 5(4), 309–312 (2000)

45. American Psychological Association: Publication manual of the American Psycho-
logical Association (2001)

http://www.cenqua.com/clover/
http://www.cenqua.com/clover/

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 222–236, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Agile Toolkit to Support Agent-Oriented and
Service-Oriented Computing Mechanisms

Asif Qumer and Brian Henderson-Sellers

Faculty of Information Technology, University of Technology, Sydney
2000 Broadway, NSW, Australia

{asif,brian}@it.uts.edu.au

Abstract. The complex nature of the software development paradigm and the
rapid acceptance of emerging abstraction mechanisms, such as agent-oriented
and service-oriented computing, highlight the increasing need for re-evaluation
of existing software development approaches that focus on agile software de-
velopment methodologies (primarily originating in object-oriented technology);
since existing object-oriented, structure-oriented and component-oriented
approaches embodied in an agile approach cannot be applied immediately to
agent and service-oriented computing. Therefore, we present here, an agile
toolkit (Java-based) to facilitate the construction of multi-abstraction or m-
abstraction situation-specific agile processes for software development projects.
This paper only presents the newly emergent abstraction concepts of agent and
service, and does not discuss the well-established object-oriented mechanism
used in current agile approaches.

Keywords: Agile methods, Agent-oriented, Service-Oriented, Method
Engineering, M-abstraction.

1 Introduction

Agile software development methods mainly focus on object-oriented software
technology [20] and lack the support for other emerging abstraction mechanisms such
as agent-oriented and service-oriented computing. According to Luck et al. [23], the
object-oriented paradigm is not immediately suitable for the development of
multiagent systems because it does not address the autonomous behaviour of agents.
The concepts of agents and objects are not the same. An agent is an autonomous,
interactive, communication-focused and flexible complex entity (existing in some
environment) that cooperates with other agents to solve a complex problem [18], [20],
[36]. In addition, the concept of service in the agent-oriented context is dissimilar to
the concept of services of an object. The emerging concept of service-oriented
computing demands the re-evaluation of software development methodologies
because the existing object-oriented, component-oriented or structure-oriented
analysis and design methods are not immediately applicable for the development of
service-oriented applications [13]. Service-oriented computing is a further higher-
level abstraction transition from objects and distributed components [12].

 An Agile Toolkit to Support Agent and Service-Oriented Computing Mechanisms 223

There are several agile and agent-oriented methods whilst very few service-
oriented application development methods have been reported; and none, to the best
of our knowledge, that integrate multiple paradigmatic architectures. Indeed, agent-
oriented and service-oriented methods are not yet mature enough to have attained
commercial status; and most of the agent and service-oriented methods only focus on
the analysis and design phases of the software development life cycle [23], [13]. This
paper presents a novel agile tool kit (Java-based) to create, tailor and customize agile
agent-oriented or agile service-oriented process fragments to create multiple
abstraction paradigm-based (called here “m-abstraction”) agile software development
processes by using a method engineering approach [22]. In summary, we are currently
developing an agile software solution framework, containing an embedded
m-abstraction tool kit, which is being used and tested for the construction of agile
processes for agent-oriented and service-oriented applications by using a method
engineering approach.

This paper is organized as follows: Section 2 provides an overview of the required
abstraction concepts. Section 3 describes agile and related concepts. Section 4
presents the organization of agile toolkit. Section 5 presents the evaluation and
application of the agile toolkit with a case study. Finally, Section 6 presents the
conclusions.

2 Abstraction: Agent and Service

A software system may be developed or modelled by using a number of abstraction
mechanisms such as object, component, agent or service. An abstraction is a logical
view of a real world problem or an entity from a specific (software) perspective; such
as the representation of real world entities by objects, agents, services, components,
features and procedures. These are all the examples of abstraction mechanisms

2.1 Multi-abstraction or M-Abstraction (M-Oriented)

A software development project may combine more than one abstraction mechanism
for a specific situation; for example, one project may involve the use of object-
oriented and agent-oriented or agent-oriented and service-oriented abstraction
together. In order to develop such a project, we need to have a methodology to
support both abstractions at the same time. A method that combines practices to
support more than one abstraction is called an m-abstraction or m-oriented method,
whereas the project is called an m-abstraction or m-oriented project.

2.2 Characteristics of Agent Abstraction

An agent is an autonomous, interactive, communication-focused and flexible complex
entity (existing in some environment) that cooperates with other agents to solve a
complex software problem [18], [20], [36]. Indeed, the complex nature of agents
makes multiagent systems difficult to build in comparison with object-oriented
systems. Agents can be categorized as information attitudes and pro-attitudes.
Information attitudes are: belief and knowledge. Pro-attitudes are: desire, intention,
obligation, commitment and choice [5], [37]. A number of logical frameworks that

224 A. Qumer and B. Henderson-Sellers

combine these agent attitudes have been proposed by different researchers. For
example, a popular logical framework that combines belief, desire and intention
(BDI) attitudes to characterize agents was proposed by Rao and Georgeff [32].

2.3 Characteristics of Service Abstraction

A software service is a logical view or an abstraction of a business process such as a
program or database for carrying out business-level operations [21], [13]. A service is
a contractually defined behaviour that is developed and provided by a service
provider and is used by other services or service consumers in compliance with a
service contract. According to Arsanjani [2], “a service is a software resource
(discoverable) with an externalized service description. This service description is
available for searching, binding, and invocation by a service consumer. The service
provider realizes the service description implementation and also delivers the quality
of service requirements to the service consumer. Service should ideally be governed
by declarative policies and thus support a dynamically re-configurable architectural
style”. A service-oriented architecture (SOA) is a system with a collection of services,
interactions and inter-connecting patterns [24]. A service-oriented software system is
a platform-independent system that is designed to follow a standard interface and
flexible collaboration contract, and can communicate in any mode at any time [34].

2.4 Agent-Oriented Analysis and Design

There are a number of agent-oriented software development methodologies but they
mainly focus on the analysis and design phases of the software development life
cycle.

Table 1. The key elements of an agent-oriented analysis and design

Agent-Oriented Analysis and Design
Identification Specification Realization

• System functionality
• Agents, goals/roles
• Use case modeling
• Agent interactions
• Agent flow

• Agent internal
• Agent interactions
• Multi-agent system

environment

• Agent instantiation and
deployment

Table 1 presents the key elements of an agent-oriented analysis and design concept
that we extracted from existing well-known agent-oriented methodologies such as
Tropos [15], Gaia [38], ROADMAP [19], MaSE [9], [36], Prometheus [26] and
PASSI [8]. The concepts of agent-oriented analysis and design together with the
concepts of agile practices will be used for the construction of agile agent-oriented
process fragments or practices.

2.5 Service-Oriented Analysis and Design

There are no standard service-oriented software development methodologies. Table 2
presents the key elements of service-oriented analysis and design that have been

 An Agile Toolkit to Support Agent and Service-Oriented Computing Mechanisms 225

distilled from existing service-oriented analysis and design architectures [2], [12],
[34]. The concepts of service-oriented analysis and design together with the concepts
of agile practices will be used for the construction of agile service-oriented process
fragments or practices.

Table 2. The key elements of a service-oriented analysis and design

Service-Oriented Analysis and Design
Identification Specification Realization

• Domain decomposition
• Goal-Service modeling
• Existing system

analysis

• Service specification
• Service flow specification
• Message and event specification
• Component Specification
• Component flow specification

• Service allocation to
components

• Component layer

2.6 Agent Service-Oriented Abstraction

According to agent-oriented and service-oriented analysis concepts (Tables 1 and 2), it
is clear that these are two independent abstractions and computational concepts. The
autonomous nature and collaborative actions to achieve desired goals are the highlighted
features of an agent whereas service does not support autonomy; it is an abstraction of a
business process with a service level agreement. Service is accessed via a message-
based infrastructure over the network resources. According to Cao et al. [6], integration
of agent and service is feasible and can be used for the development of agent service-
oriented applications. This is one of the motivations for the development of m-
orientation concepts. The concepts of m-orientation together with the concepts of agile
practices will be used for the construction of agile m-oriented process fragments or
practices for m-oriented software development projects.

3 Agile

In our Agile Software Solution Framework, three types of agile practices or agile
process fragments have been identified: agile methodology practices, agile
governance practices and finally agile knowledge engineering and management
practices. Agile process fragments will be used to deliver business value during and
after the development of m-oriented projects (Figure 1

3.1 Agile Practice or Agile Process Fragment Model

We have distilled agile process fragments from various agile methods such as
Extreme Programming [4], Dynamic Software Development [10], Feature Driven
Development [27], Adaptive Software Development [16], Scrum [33], and the Crystal
Family of Methodologies [7], [35]. All the identified and newly created fragments
will be stored in an agile fragment repository (agile knowledge-base). Table 3
presents the key elements of an agile process fragment model [31]. Agile process
fragments in the agile knowledge-base (see Appendix A) are used for the construction
of agile process fragments and processes for various abstractions. The model is used

226 A. Qumer and B. Henderson-Sellers

Business Values

Value to Customer
Value to Team
Value to Process
Value to Workspace
Value to Product

Abstractions

Agent-Oriented
Service-Oriented
Component-Oriented
Object Oriented
Others

Goal-Oriented

A
G
I
L
E

P
R
A
C
T
I
C
E

M-Oriented

Fig. 1. The two-dimensional view of an agile practice

Table 3. The key elements of an agile process fragment model specifications

Agile Process Fragment Description

ID & Name The unique ID and name of the process fragment.
Description & Purpose The related details and purpose of the process fragment.
Abstraction Which abstraction mechanism (object, agent, service

etc.) does the process fragment support?
Tools & People Which type of tools and people are required to

successfully use the process fragment?
Development Style Which development style (iterative, rapid) is required to

successfully use the process fragment?
Physical Environment Which physical environment (co-located or distributed)

is required by the process fragment?
Pre and Post Conditions Which pre and post conditions must be true before and

after the execution of the process fragment?
Constraints and Risks What are the possible constraints and risks attached to

the process fragment?
Degree of agility What is the degree of agility (measured in terms of

agility attributes) of the process fragment?
Business Value What business value is added by the process fragment?
Alerts What are the possible situations when the process

fragment should not be applied?

to describe such an agile process fragment is given in Appendix B as a DTD for
XML. This helps the developers (directions for self-organizing and empowered
teams) to decide on whether to include or exclude a particular agile process fragment
in a particular software process for a specific project. In addition, a 4-Dimensional
Analytical Tool is embedded to evaluate agile process fragments and the agility
measurement mechanism (embedded in 4-DAT) is used to measure the degree of
agility of each process fragment [28].

 An Agile Toolkit to Support Agent and Service-Oriented Computing Mechanisms 227

3.2 Agile Business Value

The agile alignment bridge is an issue that has not been investigated and highlighted
to any great extent by the agile community. Here, we propose that it should be,
because it has an impact on agile governance and on the agile software development
approach (both construction and application) in terms of the business value delivered.
The Business value to the organization includes: Value to Customer, Value to Team,
Value to Process, Value to Workspace, Value to Product

4 Agile Toolkit

Service-oriented architecture (SOA) has been used for the identification and
development (together with the case study organisation team) of the essential
components or services of the agile toolkit, each service having been implemented
and described by using java beans and XML respectively. From this SOA study, we
identified five main components (Figure 2) as : (1) agile knowledge-base; (2) agile
process fragment and agile process composer, publishers and registry; (3) agility
calculator, (4) knowledge-transformer and (5) visualizer. These were selected as
providing coverage for i) agility assessment, ii) knowledge (acquisition and storage),
iii) process creation and validation and iv) communication. The knowledge-base
provides the basic components (agile, abstraction and business value) for the
construction of agile process fragments and an agile process. An agile component
contains knowledge regarding agility [30], agile values and principles [1] [31] and
agile practices (agile software development, agile governance and agile knowledge
management). Abstraction contains knowledge regarding various abstraction
mechanisms (object, agent, service etc.). The business value component contains
knowledge related to possible business values (value to the customer, product, team,
workspace etc.) that could be expected from an agile process fragment or an agile
process. Agile process fragment represents an individual agile practice (see Appendix
A). The agile process contains a collection of agile process fragments (a composition
of agile practices by using a software development process meta-model [3], [14],
[17]). Composer provides the services for the composition of agile process fragments
and agile processes. The agility calculator [28] provided the services for the
calculation of degree of agility of a composed agile process fragment or process.
Publisher provides the services to transform the composed process fragments and
process into an XML [25] format (see Appendix B., for Document Type Definition
for XML) and then exports that to the registry. The registry (shared resource) contains
agile process fragments and agile processes (with the description of agile process
fragments), which are made accessible to developers. The registry exports and
imports process fragments to/from the knowledge transformer. The knowledge-
transformer transforms the related knowledge (process fragments etc.) to a useable
format between the knowledge-base and other agile toolkit components. Visualizer
provides an interactive interface to the user of a toolkit.

228 A. Qumer and B. Henderson-Sellers

Fig. 2. Components of the agile toolkit

5 Validation and Case Study: Enhanced Pair Programming, Pair
Review and On-Site Developer for a Service-Oriented
Application

Experiments and tests have been conducted for the assessment and the validation
of the agile toolkit. We used this toolkit for the construction of three new
agile process fragments: enhanced pair programming (EPP), pair review (PR) and
on-site developer for utilization in a service-oriented e-health project case study
(empirical testing). These new fragments, as used in the case study, are discussed
below.

5.1 The Case Study

The goal of this case study project was to introduce XP [4] into one of the software
development organization (our industry partner) for the development of a service-
oriented application (e-health).

Knowledge-base
Agile

Abstraction

Knowledge
Transformer

BusinessValue

SoftwareProcess ProcessFragment

Publisher Composer

Visualizer

Agility
Calculator

Meta-model

Registry

 An Agile Toolkit to Support Agent and Service-Oriented Computing Mechanisms 229

Table 4. The agile process fragment (Enhanced Pair Programming) specifications

Agile Process Fragment Description
ID & Name Enhanced Pair Programming (EPP)
Description & Purpose A self-organizing pair of two developers will work on

more than one independent components of a project but
they will exchange the development of the components.
The components will be owned by the pair not by the
individuals, i.e. pair-ownership for the component.

Abstraction Service-Oriented (Tested)
Tools & People Tools should allow for developing and sharing the work.

People should be able to communicate and cooperate,
self-organize, and have the necessary skills for iterative
development with minimal documentation.

Development Style Iterative and incremental
Physical Environment Preferably co-located
Pre and Post Conditions A high-level design and high-level test case design should

be available with a high level description of the project
components (services). During and after the each iteration
of EPP, the design, test cases, requirements and product
features will emerge; the product shall be in a stable state
with new features or modified features and will be
available for testing.

Constraints and Risks Only two or three co-located people in one set of EPP and
one must be senior. Social risks and personality conflict,
human resource risks (one person from the EPP may
leave or get sick etc. which may affect the development.)

Degree of agility 1.0
Business Value Reduced Production Cost

Reduced Duration
Reduced Documentation
Improved Product Quality
Trained team member
Trust but sufficient discipline, control and accountability

Alerts This approach may not work if all members of the EPP
are junior.

In the beginning of this case study, we decided to use only a single XP practice
“pair programming” (PP) and analysed it thoroughly before implementation [28],
[29], [11], finding several issues that did not allow us to use “pair programming” off
the shelf. Therefore, based on this industry experience and evaluation, we decided to
customize it by using the agile toolkit to make it useable for the case study e-health
development project. We found issues in PP - for example, we cannot hold
responsible a single person in a team, the team size grows as the square; there is no
option to accommodate an odd number of team members.

The agile toolkit had been used to customize PP by creating three new practices:
enhanced pair programming (EPP – see Table 4), pair review (PR – see Table 5) and
on-site developer (OSD – see Table 6). In EPP, we decided to use a minimum of two
developers (one senior and one junior developer) with an option to add another extra

230 A. Qumer and B. Henderson-Sellers

Table 5. The agile process fragment (Pair Review) specifications

Agile Process Fragment Description
ID & Name Pair Review (PR)
Description & Purpose In the pair review practice, a self-organizing pair of two

developers will be used that utilizes the self-testing and
exchange-testing techniques for unit testing and
integration testing.

Abstraction Service-Oriented (Tested)
Tools & People Testing tools should allow for the testing and sharing of

the work. People should be able to communicate and
cooperate, self-organize, and have the necessary skills for
iterative testing with minimal documentation.

Development Style Iterative and incremental
Physical Environment Preferably co-located
Pre and Post Conditions An executable-module with necessary test cases should

be available. During and after the each iteration of PR,
the design, test cases, requirements and product features
will emerge.

Constraints and Risks Only two or three co-located people in one set of PR and
one must be senior. Social risks and personality conflict,
human resource risks (one person from the PR may leave
or get sick etc. which may affect the development.)

Degree of agility 1.0
Business Value Reduced Production Cost

Reduced Duration
Reduced Documentation
Improved Product Quality
Trained team member
Trust but sufficient discipline, control and, accountability

Alerts This approach may not work if all members of the PR are
junior.

developer, if required. EPP developers had to work on individual computers on more
than one service (software components) of the e-health project, rather than two on one
computer and one component. In the EPP, one programmer should be senior (leader)
and with other one or two junior (new to agile or less experience) developers. The
senior developer led the development and was responsible for the design and the
implementation of the overall service component. The senior developer decided (with
the collaboration of other junior developer) which functions of the services would be
developed by whom and agreed to help and cooperate with each other for the
development of assigned services (software components). Developers in EPP
organized themselves by conducting their own small meetings. In-program
documentation and face-to-face communication were used to reduce unnecessary
documentation and overhead. The senior developer designed the component
implementation (code the overall component – skeleton code) and handed it over to
the junior for the detailed implementation of one of the specified functions of a
service (which they decided mutually). Meanwhile, the senior developer designed the
implementation skeleton for the second component; the junior developed a specified

 An Agile Toolkit to Support Agent and Service-Oriented Computing Mechanisms 231

function with the help of a senior and then asked for further directions regarding the
development of the component. In this way, by using an exchanged development
strategy, they iteratively developed the services (components).

In PR, the developers (two developers with an option to add another extra
developer) had to test the services by themselves (self-testing), exchange testing
(testing the functions/services of each others), and then finally had to perform the
integration testing together. The senior developer led the PR and was responsible for
the overall quality of the developed service component. The developers organized
themselves for PR by conducting their own small meetings. The developers used a
collaborative and communication-oriented (face-to-face) approach to reduce the
unnecessary documentation and waste.

The developers found EPP and PR very productive in comparison with a
traditional pair programming approach. EPP and PR both helped to improve the
quality of the services (components) before user acceptance testing and very few bugs
were reported during user acceptance testing. We also trained one junior developer for
an agile development environment. The junior developer reported that he was well
motivated by the senior colleague and he learned many new programming and testing
techniques. It has been observed that the junior developer worked very well with the
motivation of the senior as well as being self-motivated. In order to bring sufficient

Table 6. The agile process fragment (On-site Developer) specifications

Agile Process Fragment Description
ID & Name On-site Developer (OSD)
Description & Purpose Developer on the customer site during the start of the project

and the prototype development, in order to get quick feedback
for clarification of the requirements.

Abstraction Service-Oriented (Tested)
Tools & People Tools (portable) should allow rapid requirement gathering,

reporting and prototype development. A self-organizing team
needs the ability to demonstrate and communicate, and should
be able to produce a prototype and work to ensure that the
requirements are identified and addressed within the prototype
with a minimal documentation.

Development Style Iterative and incremental
Physical Environment Off-site (at the customer site)
Pre and Post Conditions Customer consent and approval for the requirements gathering.

During and after the each iteration of OSD, the design, test
cases, requirements and product features will emerge.

Constraints and Risks The workspace at customer site may not be suitable for
developers. Customer or customer representative may not be
collaborative.

Degree of agility 1.0
Business Value Reduced Requirements Gathering Cost

Reduced Duration
Reduced Documentation

Alerts This approach will not work if the customer does not allow the
OSD team to work on their site.

232 A. Qumer and B. Henderson-Sellers

control and discipline to the EPP and PR trusted-team, we embedded the factor of
accountability. We allowed and empowered them to take their decisions but they had
to justify whatever they decided.

We also developed and used another practice during the case study: the “on-site
developer” (developer on the customer site during the start of the project and the
prototype development, in order to get the quick feedback for the clarifications of the
requirements). In this case study, we managed to develop and test these three new
practices and added to the customized version of XP. The results of these practices in
terms of their business value are: reduced production cost, reduced duration, reduced
documentation, improved product quality, a trained team member and a disciplined
team with responsibility and accountability. Tables 4-6 describe the practices based on
the process fragment model (Table 3).Initially, the old pair programming practice was
assessed [29] and the degree of agility was recorded as 0.60 (the range of value of the
degree of agility is [0.0 (Min.) – 1.0 (Max.)]. We also assessed the newly developed
practices EPP, PR and OSD and the degree of agility has been calculated by using 4-
DAT [28], which is 1.0.

7 Discussion

This paper presents the agile toolkit, which is a part of our newly developed agile
software solution framework. This toolkit facilitates the construction, modification or
tailoring of situation-specific agile m-oriented (m-abstraction) process fragments and
then supports the combination of those fragments into agile software processes (m-
abstraction: agent-oriented, aspect-oriented, service-oriented etc.) by using a method
engineering approach, feedback and a standard meta-model. The agile toolkit is also a
part of our agile workspace in which developers can truly create their own personal
software process fragments or processes in an agile manner. The agile toolkit has
been tested in one of our pilot projects in industry. The current design of the toolkit
has been implemented to fulfill the specific needs of the case study organisation;
therefore the implementation cannot be generalised, although the toolkit design could
be considered as generic and different organisations may implement this design
according to their own specific needs. The results of this case study clearly show that
the agile toolkit can be considered productive and can be used by developers or
process engineers for the tailoring or construction of situation-specific agile processes
for various abstractions. During the case study, it is has been found that currently the
desktop-based visualizer service could be more effective with a web-based visualizer
for an intranet; therefore, the case study organisation has the intention to develop the
web-based interface of the agile toolkit in the next increment. We also intend to
develop more features for the agile toolkit and undertake further empirical testing
ourselves.

Acknowledgment. We wish to thank the Australian Research Council for financial
support under the Linkage Grants Scheme. This is contribution number 07/03 of the
Centre for Object Technology Applications and Research. We are also grateful to the
people from both the research community and the software industry who helped us by
providing their valuable feedback and experience in the construction of the agile toolkit.

 An Agile Toolkit to Support Agent and Service-Oriented Computing Mechanisms 233

References

1. Agile Manifesto: Manifesto for Agile Software Development (2006), http://www.
agilemanifesto.org/

2. Arsanjani, A.: Service-oriented modeling and architecture (2004), http://www-
128.ibm.com/

3. Australian Standards: Standard metamodel for software development methodologies. AS
4651-2004 (2004), www.standards.com.au/

4. Beck, K.: Extreme Programming Explained. Addison-Wesley Pearson Education, Boston
(2000)

5. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., Torre, L.v.d.: The BOID Architecture:
Conflicts Between Beliefs, Obligations, Intentions and Desires. In: Proceedings of the fifth
international conference on Autonomous agents, pp. 9–16. ACM Press, New York, USA
(2001)

6. Cao, L., Zhang, C., Ni, J.: Agent Service-Oriented Architectural Design of Open Complex
Agent Systems. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, IEEE (2005)

7. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston (2002)
8. Cossentino, M.: From Requirements to Code with the PASSI Methodology. In:

Henderson-Sellers, B., Giorgini, P. (ed.) Idea Group Inc, Hershey, PA, USA (2005)
9. DeLoach, S.A.: Multiagent Systems Engineering: A Methodology and Language for

Designing Agent Systems. In: Proceedings of Agent-Oriented Information Systems (1999)
10. DSDM: DSDM Consortium, Dynamic Systems Development Method Ltd (2003)
11. Elssamadisy, A., Schalliol, G.: Recognizing and Responding to Bad Smells in Extreme

Programming. In: Proc. ICSE’02, ACM, Orlando, Florida, USA (2002)
12. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pearson

Education Inc, Upper Saddle River (2005)
13. Feuerlicht, G.: System Development Life-Cycle Support for Service-Oriented

Applications. In: New Trend in Software Methodologies, Tools and Techniques
(SoMeT2006), IOS Press, Quebec, Canada (2006)

14. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework. Pearson
Education, London (2002)

15. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development
Methodology: Processes, Models and Diagrams. In: Proceedings of the First International
Joint Conference on Autonomous Agents and Multi Agent Systems, Bologna, Italy, ACM
Press, New York (2002)

16. Highsmith, J.A.I.: Adaptive Software Development: A Collaborative Approach To
Managing Complex Systems. Dorset House Publishing, New York (2000)

17. ISO/IEC: Software Engineering - Metamodel for Development Methodologies. ISO/IEC
Standard 24744 (2007)

18. Jennings, N.R., Sycara, K., Wooldridge, M.J.: A Roadmap of Agent Research and
Development. Autonomous Agents and Multi-Agent Systems 1, 7–38 (1998)

19. Juan, T., Pearce, A., Sterling, L.: ROADMAP: extending the Gaia methodology for
complex open systems. In: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems: part 1, Bologna, Italy, ACM Press, New
York, NY, USA (2002)

20. Knublauch, H.: Extreme programming of multi-agent systems. In: Proceedings of the first
international joint conference on Autonomous agents and multiagent systems: part 2, pp.
704–711. ACM Press, NY, USA, Bologna, Italy (2002)

234 A. Qumer and B. Henderson-Sellers

21. Krogdahl, P., Luef, G., Steindl, C.: Service-oriented agility: Methods for successful
Service-Oriented Architecture (SOA) development, Part 1. IBM (2005), http://www-
128.ibm.com/

22. Kumar, K., Welke, R.J.: Method Engineering: A Proposal for Situation-specific
Methodology Construction. In: Systems Analysis and Design: A Research Agenda, John
Wiley and Sons, New York (1992)

23. Luck, M., Ashri, R., d’Inverno, M.: Agent-Based Software Development. Artech House,
Inc, London (2004)

24. Nickull, D.: Service-Oriented Architecture. Adobe Systems, Inc, San Jose, CA (2005)
25. O’Reilly: XML. (2006), http://www.xml.com/
26. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems. John Wiley & Sons,

New York (2004)
27. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development. Prentice-

Hall Inc, Upper Saddle River (2002)
28. Qumer, A., Henderson-Sellers, B.: Measuring agility and adoptability of agile methods: A

4-Dimensional Analytical Tool. In: Procs. IADIS International Conference Applied
Computing 2006 Guimarães, N., Isaias, P., Goikoetxea, A. (eds.) IADIS Press pp. 503–
507 (2006a)

29. Qumer, A., Henderson-Sellers, B.: Comparative evaluation of XP and Scrum using the 4D
Analytical Tool (4-DAT). In: Irani, Z., Sarikas, O.D., Llopis, J., Gonzalez, R., Gasco, J.
(eds.) Proceedings of the European and Mediterranean Conference on Information
Systems 2006 (EMCIS2006) CD, Brunel University, West London (2006b)

30. Qumer, A., Henderson-Sellers, B.: Crystallization of Agility: back to basics. In:
Proceedings of the International Conference on Software and Data Technologies
(ICSOFT2006), Portugal, INSTICC Press, vol 2, pp. 121–126 (2006c)

31. Qumer, A., Henderson-Sellers, B.: A Framework to Support Non-Fragile Agile Agent-
Oriented Software Development. In: Fujita, H., Mejri, M. (eds.) Proceedings of the
International Conference on new Software Methodologies, Tools and Techniques
(SoMeT2006), Quebec, Canada, pp. 84–100. IOS Press, Amsterdam (2006d)

32. Rao, A.S., Georgeff, M.P.: An Abstract Architecture for Rational Agents. In: Proceedings
of the Knowledge Representation and Reasoning, pp. 439–449 (1992)

33. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice-Hall,
Englewood Cliffs (2002)

34. Tsai, W.T., Malek, M., Chen, Y., Bastani, F.: Perspectives on Service-Oriented Computing
and Service-Oriented System Engineering. In: Proceedings of the Second IEEE
International Symposium on Service-Oriented System Engineering (SOSE’06), IEEE, NJ
(2006)

35. Williams, L., Cockburn, A.: Agile Software Development: It’s about Feedback and
Change. Computer, vol. 36 (2003)

36. Wood, M.F., DeLoach, S.A.: An overview of the multiagent systems engineering
methodology. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957,
Springer, New York (2000)

37. Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. Knowledge
Engineering Review 10, 115–152 (1995)

38. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems, pp. 285–312 (2000)

 An Agile Toolkit to Support Agent and Service-Oriented Computing Mechanisms 235

Appendix A: Agile Practices, Abstractions and Business Value

Table A1. Agile process fragments (practices), Abstractions, Business Value

Agile
Practices

XP

The Planning Game
Short Release
Metaphor
Simple Design
Testing
Refactoring
Pair Programming
Enhanced Pair
Programming
Pair Review
Collective Ownership
Continuous
Integration
40-Hour Week
On-Site Customer
On-Site Developer
Coding Standards

FDD

Domain Object
Modeling
Developing by Feature
Feature Teams
Class Ownership
Inspection
Regular Builds
Configuration
Management
Reporting/Visibility of
Results

ASD

The Project Mission
Development
Adaptive Cycle
Planning
Developing By
Components
Adaptive Management
Model
Collaborative Teams
Joint Application
Development by
Independent Agents
Customer Focus
Group Reviews
Software Inspection
Project Postmortem

SCRUM

Product Backlog
Daily Scrum Meeting
Sprint Planning
Meeting
Sprint
Sprint Review

DSDM

Active User
Involvement
Empowered Teams
Iterative and
Incremental
Development
Frequent Product
Delivery
Reversible Changes
Requirements are
Baselines at High-
level
Integrated Testing
Collaborative and
Cooperation Culture

CRYSTAL

Staging
Reflection Workshops
Progress Monitoring
Methodology Tuning
Holistic Diversity and
Strategy
Parallelism and Flux
User Viewings
Revision and Review

Agent-
Oriented

Identification of agents, agent roles/goals design of agent internal and properties,
agent interactions and relationships, the multi-agent environment and system.

Service-
Oriented

Service identification, service categorization, service exposure decisions,
choreography, quality of service, component identification, component specification,
service realization, service management, standard implementation, service allocation
to components, layering the SOA, technical prototyping, product selection,
architectural decisions.

Business
Value

Organization Business Values and Goals: Value to Customer, Value to Team, Value
to Process, Value to Workspace, Value to Product.

236 A. Qumer and B. Henderson-Sellers

Appendix B: Agile Process Fragment Modelling Using XML (DTD)

<!ELEMENT AgileProcessFragment
(id,name,description,purpose,abstraction,tools,people,
developmentstyle,physicalenvironment,precondition,
postcondition,constraints,risks,agility,businessvalue,
alerts)>

 <!ELEMENT id (#PCDATA)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT description (#PCDATA)>
 <!ELEMENT purpose (#PCDATA)>
 <!ELEMENT abstraction (#PCDATA)>
 <!ELEMENT tools (#PCDATA)>
 <!ELEMENT people (#PCDATA)>
 <!ELEMENT developmentstyle (#PCDATA)>
 <!ELEMENT physicalenvironment (#PCDATA)>
 <!ELEMENT precondition (#PCDATA)>
 <!ELEMENT postcondition (#PCDATA)>
 <!ELEMENT constraints (#PCDATA)>
 <!ELEMENT risks (#PCDATA)>
 <!ELEMENT agility (#PCDATA)>
 <!ELEMENT businessvalue (#PCDATA)>
 <!ELEMENT alerts (#PCDATA)>

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 237–246, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Achieving Success in Supply Chain Management
Software by Agility

Deepti Mishra and Alok Mishra

Department of Computer Engineering, Atilim University,
Incek, 06836, Ankara, Turkey

deepti@atilim.edu.tr, alok@atilim.edu.tr

Abstract. Supply chain management is comprehensive software. Due to its
scope and unpredictable, complex and unstable requirements, it is not possible
to develop it with predictable development process models. Agile methodolo-
gies are targeted towards such kind of problems that involves change and uncer-
tainty, and are adaptive rather than predictive. The aim of this paper is to
analyze the management and development methodologies used in development
of supply chain management software. This paper shows how to overcome risks
and handicaps in each development phase of a complex inventive project. It
also provides a set of guidelines regarding how the agile methods may be
adopted, combined and used in these kinds of projects.

Keywords: Agile methods, DSDM, FDD, Scrum, XP, Adaptive development,
SCM.

1 Introduction

Software development is a cooperative game of invention and communication [2]. All
agile methods such as Scrum, FDD, DSDM, Adaptive Software Development and es-
pecially Extreme Programming recognize this approach. Some of the key practices of
agile methods are: scheduling according to feature priorities, incremental delivery of
software, feedback from expert users, emphasis on face-to-face communication, pair
development, minimalist design combined with refactoring, test-driven development,
automated regression testing, daily integration, self organizing teams, and periodic
tuning of methods. Working software is the primary measure of success [9]. Agile
methods stress early and continuous delivery of software, welcome changing re-
quirements, and value early feedback from customers. Agile methods seek to cut out
inefficiency, bureaucracy, and anything that adds no value to a software product [9].

“Manifesto for Agile Software Development” describes the four comparative val-
ues underlying the agile position [10]:

• Individuals and interactions over processes and tools,
• Working software over comprehensive documentation,
• Customer collaboration over contract negotiation,
• Responding to change over following a plan.

238 D. Mishra and A. Mishra

In particular, agile methodologies are targeted toward problems involving change
and uncertainty, and are adaptive rather than predictive [4]. Agile methodologies also
emphasize collaboration and team interaction, valuing people over process. Agile
methodologies commonly advocate a barely sufficient process [3].

The aim of this paper is to analyze the management and development methodolo-
gies used in development of supply chain management software. This paper shows
how to overcome risks and handicaps in each development phase of a complex and
inventive project. It also provides a set of guidelines regarding how agile methods
may be adopted, combined and used in these kinds of projects.

2 Project Background

When the decision was taken to develop supply chain management software, the mar-
ket analysis was performed within the company. This software was not intended for a
specific customer. It was developed to be marketed. A team that includes a marketing
expert, a manager and a domain analyst contacted many customers in order to define
potential customer sectors and required services and functionalities. This market
analysis was actually based on optimization requirements since it is the most impor-
tant functionality that should be provided. After a couple of weeks, an abstract scope
of the product was defined. The base distinction that should be decided is if the pro-
ject is predictable or inventive [4] [6]. The development process, management values,
planning and estimation models appropriately associated with these two domains are
different. So, we analyzed the product and domain characteristics as following:

• Large scale of project
• Project complexity is high
• Acquaintance with the domain was less
• Insufficient requirement specification initially
• Requirement volatility was high
• Variety of customers
• Quick release was important to have an edge in the market
• There were multiple development teams and each team size was small. These

teams concurrently developed different parts of SCM (Supply Chain Management)
software.

• Getting near the start, reliable estimate of effort and cost was difficult.

Therefore, it would be a wrong decision to choose one of the traditional approaches
(predictive methods) (i.e. waterfall methodology etc.) that are used for more predict-
able kind of projects. As the evidence shows that this project is an inventive project
and it should be developed within the motivation of agile and iterative methods [6].
These methods can give you control over unpredictability by benefits of adaptivity. In
order to control unpredictability, the key is iterative and incremental development as
well as adaptive development. The success of supply chain management software pro-
ject was based on starting with agile methods and achieving optimal processes by cus-
tomizing them according to vision and benefiting from adaptivity. Since there is no

 Achieving Success in Supply Chain Management Software by Agility 239

systematic way to apply the agile methods, we benefited from that unsystematic ap-
proach that involved applying condition specific processes during development.
Within that self-adaptivity approach, each team member or sub-team, selected their
process according to characteristics of the module that they were developing but tuned
their processes to the whole project. Developing with an agile and iterative develop-
ment process opens the door to the possibility of smaller and more frequent releases.
Two primary benefits of this change are increased responsiveness and reduced risk. If
responsiveness increases then newly discovered customer needs could be addressed in
a much shorter timeframe, most probably with a demonstration since there was a run-
ning product although having core functionalities. The primary mechanism that al-
lows a team to steer towards its release goals was demonstrating working software
early and often to product owners, customers, and hopefully to end users [7]. Thus,
every iteration was an opportunity for the team to get feedback and guidance from
customers about how to make the system delivered on the release date the most valu-
able that it can be to the customer. It was better than presenting the product just by
discussions. Adaptive Development is an important concept to reduce the high-risk of
a new product, provides ability to customize the product for each customer, and
increases the responsiveness of production.

Fig. 1. Development Process for SCM Software

240 D. Mishra and A. Mishra

3 Requirement Analysis

Initially, information was collected from many potential customers and then workshops
were organized to define a vision and scope, and identify functions and features at a
high level (such as just the names of use cases and features). All information defined in
those sessions was collected within a requirement repository. At any point in time we
have likely collected a large number of “could do”, “should do” and “must do” require-
ments. These should be aggregated in a centralized repository where they can be
viewed, prioritized, and “mined” for future iterations. Requirements should also be read-
ily accessible to all team members, available to be enhanced and revised over time, and
remain reasonably current to directly drive testing as they are implemented.

It was observed that the product will consist of:

• a core part (solver and many heuristics for the optimization)
• a support part

o GIS (Geographical Information System) facility
o storage of data (should be able to integrate with an ERP system)
o reports
o GUIs.

Research for each facility and the domain analysis was performed as a separate,
scheduled parallel tasks and each one is assigned to a different team member. A test-
driven approach method was used in order to gain knowledge and decide whether it
should be developed from scratch or by integrating a pre-developed library or
product.

a) The solver and heuristics was a more domain specific and critical work. We had
many constraints such as performance related with the response time and data
transition part was most important because we had huge amount of data to be
processed within an acceptable time. Other constraints were accuracy, flexibility
and to achieve the right solution. The process started with preparing test data, test
cases and test environment (hardware and software), in order to evaluate the ex-
isting products (open-source as well as commercial) according to functionality
and defined constraints. As the team gained more knowledge about domain while
testing was in progress, it was realized that some customized solutions should be
implemented for some customers. Due to the problems mentioned above, we de-
cided to develop from scratch all the optimization parts including solver.

b) For the support part, the existing commercial and open-source products were
evaluated according to listed functionalities by the business expert. Finally, it was
decided that it would be more appropriate to integrate existing open source librar-
ies, not to develop a new one. The mandatory functionalities were provided by
these products, and the other functionalities would be developed by team mem-
bers. Requirements for the additional functionalities which were known were de-
fined and placed into the requirements repository.

The method used in supply chain management software during the study of scope,
vision and requirements analysis phase for facility analysis was a less documented ver-
sion of Dynamic Systems Development Method (DSDM). The fundamental idea behind
DSDM is that instead of fixing the amount of functionality in a product, and then

 Achieving Success in Supply Chain Management Software by Agility 241

adjusting time and resources to reach that functionality, it is preferred to fix time and re-
sources, and then adjust the amount of functionality accordingly. Also the roles defined
in that approach were combined and adapted, according to the team structure of the
company. Because of simplicity, more test-driven, close collaboration and communica-
tion, XP was also a part of this method. The methods that were used in SCM during this
study were hybrid and adapted implementation of the mentioned processes.

4 Project Management

The project management approach used in the supply chain management software
project was mainly based on the hybrid usage of Scrum and XP that are two types of
agile software development. The framework of Scrum activities, XP’s feedback and
communication were the concepts that were used for the management processes. The
Scrum Backlog and progress tracking approaches are minor variations of XP prac-
tices, and they are so simple that they are well within the XP spirit of "do the simplest
thing that could possibly work". Instead of using Scrum's 30-day timeboxed iteration
length, Scrum’s timeboxing concept was used but with XP adaptation, as XP prefers
shorter—one or two weeks—iterations. The reasons were inventive type of project,
unpredictable requirements, and need of customization for each customer. Also it was
important to release the product (may be a core or demo version) as soon as possible
for getting an edge in the market. It was not possible to make predictive planning us-
ing structural methods. In order to overcome high-risk; plans, estimations, schedules,
task assignments and measurements related to the management values should be made
within small time intervals (iterations), and at the end of the those intervals feedback
should be analyzed in order to plan successive iterations.

The approach used for the supply chain management software project to make
plans with development teams is called collaborative planning [2]. The initial plan-
ning meeting and each iteration planning meeting was held between project manager,
business expert and a representative from each development team. The initial meeting
was related to the planning of the scope analysis of GIS, solver and heuristics and
ERP inclusion in the system. During each iteration planning meeting, developers es-
timated the work that they were responsible for. The planning method used in the de-
velopment of this project was based on the rolling wave planning concept which is a
refinement of adaptive planning [2]. It implies that there is no detailed plan for whole
project development, unlike for iterations. There is no fixed plan of how many itera-
tions there will be, how long they are, or what will happen in each. But there were
milestones with dates defined in the development; the path of iterations to achieve
those milestones is left flexible or adaptive. It is better than trying to plan a detailed
speculative schedule for an unpredictable project. Such adaptive planning is the key
idea in agile methods. According to existing circumstances an abstract plan was done
but again not for the whole lifecycle of the project. The requirements, functionalities
were defined for the baseline. The primary plan in detail for each iteration was made
in order to achieve the baseline. During iteration planning meeting, goals were listed
that would be accomplished within a week period. The feedback from previous itera-
tions was used to plan current iteration. Goals were separated into one week accom-
plishable tasks according to estimations done by team members who were responsible

242 D. Mishra and A. Mishra

for the tasks. It means that each iteration time was fixed and tasks were divided into
subtasks that could be accomplished within that fixed time period. During those meet-
ings, technology, program structure and overall system functionalities were also dis-
cussed according to the information collected from many potential customers. An
iteration planning was based on existing emergent requirements, presence of re-
sources, and degree of knowledge of current iteration. Therefore, planning was closer
to optimal in terms of working towards milestones; each step can be performing the
most skillful thing we know to plan regarding risk, productivity, and effectiveness be-
cause each planning step is taken with maximum—and fresh—information. We take a
step, and then ask, "Given what we now know, what is the most skillful thing we
should do in the next step to work towards our milestone goal?" And repeat. The
milestones were used for each internal release due date and there were many iterations
planned within that period time.

5 Architectural Design

Preliminary architectural design was also done using the initial requirements. This is
supported by Mead [8] that architecture modelling and trade studies are important
activities that should take place during requirements engineering activities, not after
requirements have been defined. Software architecture must be considered during
requirements engineering to ensure that the requirements are valid, consistent,
complete, feasible etc. [8]. There were many development teams working
concurrently on different parts of SCM software. To avoid any confusion between
these teams and also to have a common picture of what they were developing, a team
consisting of project manager, development team representatives and a business ex-
pert made the core architecture of the system. This was the structure that specifies the
whole system as major components, modules; collaborations, interactions and inter-
faces between them, plus the responsibility of each module. All the defined modules
and components were drawn as black boxes and the interactions between them were
represented by arrows. Development of each module was assigned to different teams
as parallel tasks. The responsibilities and collaborations were defined clearly for each
module (i.e. Controller, IO manager) and sites (DBMS, GIS, Application Server).
This structure was also allowed to change as a result of customer’s feedback from fu-
ture iterations. Since it was basis structure and there was collective ownership on that
part by the team members, it was important to document that structure in order to be
accessed easily. The diagrams, responsibilities, functionalities and scenarios were re-
corded through the documents. Object-Oriented design techniques were used for ar-
chitectural design so as to increase applicability of the iterative and incremental de-
velopment process because OO design provides modularity, minimum coupling and
maximum cohesion, thus a flexible structure. Another benefit of using OO techniques
was to define the tasks parallel, since all modules provide encapsulation and loosely
coupled structure, each could be developed independently as a sub-product and then
be integrated easily because of well-defined interfaces. Once the core is built, team
leaders returned to their respective teams and the development was done in parallel
with multiple teams by using short iterations. Each team leader had a clearer picture
and common vision due to the architectural design and could better convey and main-

 Achieving Success in Supply Chain Management Software by Agility 243

tain that for the rest of the project. Further, each acts as a liaison to the other teams.
Also, after spending some close time with the other team leaders, there was improved
communication between them.

Each defined module (such as Computational, IO managers, GUIs, GIS, Reporting)
can use different development processes but all of them should be synchronized to the
development process of that architecture because it defines the overall system. Feature
Driven Development (FDD) which is a type of agile software development approach
and based on the iterative and incremental development was used during development
of that structure. The FDD approach does not cover the entire software development
process, but rather focuses on the design and building phases [1]. However, it has
been designed to work with other activities of a software development project and
does not require any specific process model to be used.

6 Project Development

This was done using Agile development methods (FDD and with Extreme program-
ming XP), their adaptive and hybrid usage. The programming language used during
development was pure java based on full object-oriented structure. Most Agile soft-
ware development literature cites its use for application development projects, often
implemented in object-oriented languages [4].

FDD consists of a set of “best practices” and the developers of the method claim
that even though the selected practices are not new, the specific blends of these ingre-
dients make the five FDD processes unique for each case. All practices available
should be used to get the most benefit of the method as no single practice dominates
the whole process.

The XP Values are Communication, Simplicity, Feedback, and Courage. The es-
sence of XP truly is simple. Be together with your customer and fellow programmers,
and talk to each other. Use simple design and programming practices, and simple
methods of planning, tracking, and reporting. Test your program and your practices,
using feedback to steer the project. Working together this way gives the team courage
[5]. XP aims at enabling successful software development despite vague or constantly
changing requirements in small to medium sized teams. Short iterations with small re-
leases and rapid feedback, customer participation, communication and coordination,
continuous integration and testing, collective ownership of the code, limited docu-
mentation and pair programming are among the main characteristics of XP. One of
the fundamental ideas of XP is that there is no process that fits every project as such,
but rather practices should be tailored to suit the needs of individual projects.

For each iteration (new functionality, defect fix, changing) during the development
of the core part (solver and many heuristics for the optimization), the requirements
were selected from the repository according to their priority and defined functionality
for that iteration. Their use-cases and working scenarios were prepared by the domain
expert and supplied to the development team. And then within the defined scope and
process for the overall structure, the design, planning and implementation was done
for each module that would be developed in order to make the increment for the sys-
tem. When each module in a particular increment was developed and integrated to the

244 D. Mishra and A. Mishra

overall system then the testing of the overall system was performed and result was
validated. Later, the product was released (end of the release or end of the iteration).

The other parts of the system included in the support category were GUIs, GIS, re-
ports, and storage of data. As we mentioned before, these parts of the system were
used as a layer to interact with the users of the system. The development of GUIs and
their integration to the system was done by a team that included highly-skilled per-
sons of that subject. The requirements and scenarios of usage were defined by the
business expert and development team. The required GUIs and their functionalities
were defined for each iteration and release in corresponding meetings in an abstract
way. According to plan that was defined for each iteration and release of the overall
project, the meetings had been performed before each iteration or release to define
everything related with GUIs between the team members that were responsible for
development of GUIs and the business expert. The iterations of GUIs were planned
according to development of selected GUIs which were prioritized and already de-
fined in the iteration plan of the overall project. In order to develop the GUIs, first the
business expert drew the GUIs using a design tool, and also documented the usage
scenario of those GUIs. Also the information about how and in which part of the
system, the data that would be gathered from these GUIs would be used. Later, a de-
velopment team prepared the empty forms of those GUIs just satisfying visual
requirements using all the documentation. After the validation process by unit and in-
tegration testing of those empty forms, they were integrated according to usage sce-
nario and their data bindings were done according to defined data flow to already built
structure of the overall system. The validation of those parts was done with integra-
tion tests by the development team and the business expert.

For the GIS (Geographical Information System) component, an open-source library
was chosen to be integrated and used in this product. The main functionalities were
provided by the library; all other required functionalities and services that were
planned were provided by our product. This part was also done with test-driven and
early development approach used in early phases of scope, vision and requirements
analysis.

The Report component part was also based on an open-source library. Since most
of the reports were already defined within a business domain, the main selection
criteria were technology that was used within the project, adaptability, flexibility,
portability and usability of the candidate libraries.

 Users can export or import their real data from or into this system through storage.
These activities may be done offline using corresponding modules and user interfaces,
visual services provided by the system itself or may be online through the integration
of the storage part of the system to the storage mechanism of the customers that may
be a database, an existing system or an ERP system. These considerations were dis-
covered in the early phases of scope, vision and requirements analysis. This part was
defined as a black box in the overall system design but for defining interfaces, a test-
driven and early development approach was used at early phases of scope, vision and
requirements analysis. The ERP products were analyzed and tested, their results and
possible requirements of database and availability of existing systems were discussed
in meetings that included development team members, a business expert and project
manager. The vague or conflicted suggestions were resolved by defining the test cases
and test data. Using the early development approach, a prototype or demo version was

 Achieving Success in Supply Chain Management Software by Agility 245

developed and tested. In these studies, knowledge was gained about development of
storage part, possible integration of that part to other systems or ERP systems with
their tested interfaces, usage of the databases, functional and non-functional require-
ments, constraints and the scope of this part was defined. The actual development and
detailed plan of that part was left to the phase of delivering the final product to the
customer because as mentioned before, this was a new product and it was not devel-
oped for a specific customer. But an initial design and development of the storage part
performed with a flexible, adaptable and portable structure in order to reduce the de-
livery risk. As we have already gained knowledge and experience in the early devel-
opment and testing of that part and a flexible and adaptable architecture and interfaces
were developed using the agile development approach, the delivery and acceptance of
customers would be successfully achieved.

The other agile development method used in the development of supply chain
management software just for demo versions, had different characteristics. During the
walkthroughs with the customers, they requested some demonstration of customized
solutions. Whenever such requests existed, all release and iteration plans were up-
dated or new plans were prepared. After it was decided to make such a demonstration,
the product backlog of that new release was prepared and backlog items were priori-
tized by the business expert and product owner. The planning of that emergent release
performed within a release meeting that might not be a regular meeting. If the release
backlog items fit or are already included in existing release (current release under de-
velopment), then the existing release plan had been updated for the successive itera-
tions, but if it did not then the existing release plan was changed or redirected to an
emergent demonstration release. The method used for the emergent development was
different from the existing one, which had shorter timeboxes, more customized solu-
tions and more visible development. During the meeting of this emergent release plan,
all tasks defined clearly, listed on a white board, estimation of each task was done by
the module developers. A schedule-driven approach was used during the iteration
planning because the time was fixed according to demonstration date and all defini-
tion of backlog items and their priorities were defined according to that approach. The
defined tasks and assigned team member’s name were written on cardboards and hung
up on walls. Team member responsible for a particular task was required to update
those cardboards as the task progresses. So progress of each task can be seen through
those cardboards if it was finished, tested, committed or should be validated. If some
tasks were dependent on each other, the team member could follow progress and up-
date their individual plans without interrupting other team members. This is a com-
bined and customized approach of agile methods and a very useful approach for such
emergent releases. This approach increases the visibility of development and the
awareness of how progress is going on. It also increases the morale and focus of the
development team members.

7 Conclusion

Agile methodologies are targeted towards problems involving change and uncertainty,
and are adaptive rather than predictive. These methods can control unpredictability by
using benefits of adaptivity. In order to control unpredictability, the key is iterative

246 D. Mishra and A. Mishra

and incremental development as well as adaptive development. As our Supply chain
management software project was an innovative project, key practices of agile
methods such as scheduling according to feature priorities, incremental delivery of
software, feedback from expert users, emphasis on face-to-face communication, pair
development, minimalist design combined with refactoring, test-driven development,
daily integration, self organizing teams, and periodic tuning of methods helped sig-
nificantly to achieve its successful implementation. As agile methods provide flexibil-
ity, it encourages the development teams and individuals towards creativity which is
essential for successful implementation of innovative projects.

As it was innovative, large scale, high risk project, we formally did the architec-
tural design along with documentation. This design documentation played an impor-
tant role in the successful implementation of this project and it will be helpful in the
maintenance phase also. The most important characteristic of development methods
used in this project is that they were adapted to circumstances in each phase of the de-
velopment. Agile development methods were combined so that new approaches are
resulted from this self-adaptivity approach. It was not possible to complete and fix all
the requirements because of the business domain and product characteristics. The
software development team handling such a large project was small. Communication
between team members was strong, as they were working in a small office and a busi-
ness expert already aware of the business domain was in the same office so that they
could interact whenever needed. The development approaches used in the supply
chain management software project involved less documentation than the process-
oriented approaches, usually emphasizing a smaller amount of documentation for a
given task or only the critical parts were documented.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development meth-
ods- Review and analysis. VTT Publications 478, 1–112 (2002)

2. Cockburn, A.: Agile Software Development. Addison-Wesley, London (2000)
3. Cockburn, A.: Agile Software Development. Addison-Wesley, London (2002)
4. Fowler, M.: The New Methodology, (April 2003), http://www.martinefowler.com/articles/
5. Jeffries, R., et al.: Extreme Programming Installed, vol. 172. Addison Wesley Longman,

Redwood City (2001)
6. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley, Lon-

don (2003)
7. Leffingwell, D., Muirhead, D.: Tactical Management of Agile Development: Achieving

Competitive Advantage, Rally Software Development Corporation, p. 1–23 (2004)
8. Shekaran, C., Garlan, D., Jackson, M., Mead, N.R., Potts, C., Reubenstein, H.B.: The role

of software architecture in requirements engineering. In: Proceeding of the First Interna-
tional Conference on Requirements Engineering, pp. 239–245 (April 18-22, 1994)

9. Tichy, W.F.: Agile Development: Evaluation and Experience, University of Karlsruhe,
tichy@ipd.uka.de

10. www.agilemanifesto.org

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 247–261, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Measurement Programs in SMEs – Defining
Software Indicators: A Methodological Framework

María Díaz-Ley1, Félix García2, and Mario Piattini2

1 Sistemas Técnicos de Loterías del Estado (STL)
Gaming Systems Development Department 28234 Madrid, Spain

Maria.diaz@stl.es
2 ALARCOS Research Group

Information Systems and Technologies Department
UCLM-Soluziona Research and Development Institute

University of Castilla-La Mancha,
13071 Ciudad Real, Spain

{Felix.Garcia,Mario.Piattini}@uclm.es

Abstract. Implementing a measurement program is not an easy task. It requires
effort, resources, budget, experts in the field, etc. The challenges to successfully
implement a measurement program in small settings are considerable and
greater than in large companies. Small and medium-sized enterprises (SMEs)
have an additional handicap: the existing methods and frameworks that support
measurement programs such as Goal Question Metric (GQM), Goal-Driven
Software Measurement, GQ(I)M, PSM and ISO/IEC 15939 do not fully satisfy
the needs of such companies. We propose MIS-PyME, a methodological
framework which supports small and medium enterprises (SMEs) in establish-
ing software measurement programs, especially as regards the definition of
software indicators. MIS-PyME is based on GQ(I)M and aims at supporting
SMEs measurement activities related to software process improvement tasks.
This framework has been applied in STL, where the main benefit derived from
the use of MIS-PyME has been an effortless, more accurate program definition
integrated into software process improvement practices.

Keywords: Methodological framework, measurement programs definition,
GQ(I)M, MIS-PyME.

1 Introduction

Measurement is a key technology for supporting the basic tasks of an improvement pro-
gram. Collecting and interpreting well-defined data provides organizations with the nec-
essary information to make well-founded decisions about process improvement[1].
Process improvement results in increased productivity, better quality, and reduced cycle
time, all of which make a company competitive in the software business[2].

Small organizational units are just as likely to be confronted with demands for
credible evidence about their ability to deliver quality products on time and on budget

248 M. Díaz-Ley, F. García, and M. Piattini

as large, multinational organizations. Similarly, managers in small settings are equally
or even more likely than their counterparts in larger organizational units to have to
make well-founded business decisions about process improvement and technology
adoption, and must have the wisdom of taking new business opportunities. Therefore,
implementing serious measurement programs is even more important in small organ-
izational settings [3].

Although measurement is applied in various areas, it has proved to be a complex
and difficult undertaking in the field of software and especially in the context of
SMEs [4]. The existing obstacles include limited resources and a limited budget, a
need for training, tight schedules, poor software measurement knowledge, a low cash
flow, a restricted mentality as regards software measurement, etc. [5]. [6]. [7].

Table 1. Requirements for measurement program models suited to SMEs

SMEs Re-
strictions

Measurement program model
for SMEs
Requirements

Benefits

Limited re-
sources,
schedule and
budget

- Easy to Understand and
Manage (EUM)
- Effortless (EFL): It
should guide users and help
them define measurement
programs in an effortless way
- Complete. (COM): It
should cover their process
improvement needs

- prevents users from spending too
much time defining measurement pro-
grams.
- does away with the need to contract
measurement experts to develop meas-
urement programs.

- Informative (INF): It
should contain full informa-
tion about the measurement
possibilities, the benefits of
using measurement and its
potential use in technical and
organizational management.

- makes users learn about measure-
ment.
- makes users learn about the benefits
deriving from its use.
- makes the measurement program
more accurate.

- Integration into the
Processes (INTP): It should
contain full information about
its practical integration into
the organization’s software
processes

- help measurements activities im-
plemented for different aims be coherent.
- measurement usefulness can be bet-
ter understood since its potential use is
clearly shown when the measurement
goal is derived from the software process
practices.
- measurement activities are better in-
tegrated into software processes.

Limited
training ,
poor soft-
ware meas-
urement
knowledge

Measurement Maturity Model
(MMM): It integrates a
measurement maturity model

- make the organization progress
across software measurement.
- advise the user to implement those
measurement goals which suit its meas-
urement maturity and prevent the user
from defining measurement goals which
cannot be successfully reached.

 Software Measurement Programs in SMEs – Defining Software Indicators 249

Our research aims at overcoming some of the obstacles mentioned in order to favor
the implementation of measurement programs in small settings. MIS-PyME (Marco
metodológico para la definición de Indicadores de Software orientado a PyME) is
based on GQ(I)M [8, 9] and its main focus is on defining software indicators, which
are the basic instruments for the analysis and interpretation of measurement objec-
tives, and therefore for decision making.

With MIS-PyME we intended to provide a methodological framework that would
help implement measurement practices which would support software process im-
provement activities suited to SMEs.

After listing the restrictions SMEs are confronted with in terms of software meas-
urement, we conclude by showing the requirements which software measurement
models should fulfill in order to be suited to SMEs regarding the definition of meas-
urement (Table 1). We will use this table to look at the benefits and the contributions
of our work.

This paper is organized as follows: Section 2 brings the MIS-PyME into context.
Section 3 provides a more detailed insight into the framework, and briefly lists its
specifications. Section 4 provides a case study examining the benefits derived from
the implementation of this framework in a medium-sized company and Section 5
outlines the benefits resulting from present and intended research.

2 Related Work

In this section we show the most outstanding models and standards which support the
definition of measurement programs, and the deficiencies of such standards as regards
their implementation in SMEs. Special attention should be paid to the measurement
models for the definition of measurement for SMEs which will be described below.
An analysis of software products, process re-use and the integration of these practices
into the measurement model will also be provided.

- Goal Question Metric GQM [10]. According to this model, there should exist an
independent team which leads measurement program initiatives. This team must
possess deep knowledge of measurement issues and have unrestricted access to
the leaders of each project. Implementing this model in a company made up of 10
people which desires to perform measurement initiatives by itself will pose a
challenge. Besides, there are authors who think that GQM encourages practitio-
ners to define measures that are difficult to analyze and collect [10-12]. This is a
drawback, especially for SMEs.

- In 1996, the SEI (Carnegie Mellon Software Engineering Institute) published the
Goal-Driven Software Measurement guidebook [8]. This extension to GQM is
called Goal Question Indicator Metric, GQ(I)M. Even if the definition of a meas-
urement program is easier with this model than with GQM [10] (since it provides
an intermediate layer - the indicator layer - as well as analyses, measurement ex-
amples, and supporting templates [9]), the project team still needs to have great
knowledge and high insight on the field of measurement, and must make big
efforts to define the measurement program.

250 M. Díaz-Ley, F. García, and M. Piattini

Moreover, neither GQM [10] or GQ(I)M [8] give any guideline as to how to inte-
grate measurement into software processes (INTP). GQ(I)M[8] contains some infor-
mation on how to learn about measurement possibilities but GQM [10] does not, and
none of them contains a measurement maturity model.

- PSM (Practical Software and Systems Measurement) [13] is a framework created
by the Department of Defense in 1994 and its goal is to provide project and tech-
nical managers with the Best Practices and guidelines in software measurement.
PSM focuses on issues in software projects which typically require management
and control. It does not however clearly show the usefulness of measurement
programs in supporting process improvement, and it does not provide any guide-
line on how to help the company improve through measurement maturity.

- ISO/IEC 15939 [14] lists the activities and tasks required in order to successfully
identify, define, select, apply, and improve software measurement or the meas-
urement structure in the organization under a generic project. However, it does
not give any detailed methodology for defining the measurement program, it is
not easy to implement effortlessly, and it does not give any information regarding
measurement benefits, software process integration or measurement maturity.

Table 2 sums up how the above measurement models fulfill the requirements
needed for a measurement definition model to be adapted to SMEs. The resulting val-
ues may be: “No”, “Yes”, “Some” or “-”, which occurs when the concept does not fit
into the model.

Table 2. Fulfillment of the measurement models requirements

Requirements GQM GQ(I)M PSM ISO/IEC
EUM YES YES YES SOME
EFL NO NO YES NO
COM - - SOME -
INF NO SOME YES NO
INTP NO NO NO NO
MMM NO NO NO NO

There are some studies that tailor some of the most widely known software meas-
urement models and standards mentioned to the needs of SMEs. One of these is the
work by Gresse et al. [4], who suggest the GQM Lightweight method. This approach
consists in integrating the re-use of context-specific quality and resource models into
the GQM model. This makes it unnecessary to start the model from scratch. This
approach saves some effort and by so doing matches one of the aims of our approach,
although the means to achieve this differ.

As far as process and product re-use are concerned, the latter having to do with the
re-use of indicators and measures in our methodology, Medonça et al. [15] approach
is to be taken into account. It is understood as a measurement model which integrates
the previous experience of a company into its methodology. Finally, some studies be-
lieve in the benefits of re-using software products, processes, and experiences to
achieve higher quality systems at a lower cost [16]. Some enterprises have developed
this issue as observed in [17], [18].

 Software Measurement Programs in SMEs – Defining Software Indicators 251

3 MIS-PyME Specification

Firstly, we present an overview of MIS-PyME; we go on to look at the main work
products of the framework, and provide a more detailed analysis of MIS-PyME. We
finish by summing up what the contributions of this measurement framework have
been.

3.1 MIS-PyME Framework Overview

MIS-PyME Framework deals with the definition of software indicators for SMEs. It is
based on GQ(I)M [8, 9]. However, the steps of the methodology have been modified
and tailored to the needs of SMEs. The main adaptations are:

- MIS-PyME supports this definition by providing measurement goals and indica-
tor templates which function as a guide to the definition of measurement pro-
grams in the frame of software process improvement.

- MIS-PyME includes a useful database of indicators and measures taken from
successfully implemented measurement programs.

- MIS-PyME provides a measurement maturity model which helps the company
improve its software measurement in an orderly fashion.

It must be borne in mind that the scope of MIS-PyME in the measurement process
only covers the “measurement planning process”.

3.2 MIS-PyME Specifications

This section gives an overview of MIS-PYME main work products and characteristics.

MIS-PyME Work Products. The main work products identified in MIS-PyME are
the following:

- MIS-PyME guide: A document which is intended as a guide for MIS-PyME
model. It is focused on two working methods. The first one is used when a pre-
cise measurement goal is required to be defined for process improvement. The
second one guides the organization and helps it progress through measurement
maturity in an orderly fashion.

- MIS-PyME measurement goals table: MIS-PyME framework proposes a set of
structured measurement goals usually required to implement improvement activi-
ties related to software processes. The goals are organized in a structure based on
the measurement maturity required to implement each goal defined.

- MIS-PyME indicator templates: An indicator template is defined for each meas-
urement goal. The indicator template will guide users and help them define indi-
cators and measures for a specific measurement goal. An indicator template
shows, among other things, the conditions required to successfully implement the
indicator regarding previous indicators required, conditions which must be ful-
filled in order to successfully implement the indicator and how to integrate this
indicator into the software process. These are typical questions which the indica-
tor tries to answer. Typical outcomes and their related analysis may also be de-
scribed and show the user what the potential of an indicator is, etc.

252 M. Díaz-Ley, F. García, and M. Piattini

- MIS-PyME database: Each MIS-PyME indicator template contains a set of ex-
amples of real indicators which have been defined in a successfully implemented
measurement program. The measures used as input for these MIS-PyME indica-
tor templates are also included in the database.

MIS-PyME Roles. MIS-PyME defines only three roles which have to be performed
by different people. The first one is the measurement analyst, who should be familiar
with the activities and processes carried out by the software development and
maintenance department. It is preferable if his or her usual work relates to the
definition of requirements, testing, configuration management or security, rather than
design or development tasks. The second one should be a top manager who supports
the measurement program initiative and has in-depth knowledge of the working
method, software processes and process improvement needs. The third one is the
reviewer, who will act at the “Verify the measurement program” status of the
methodology. This role will be played by at least two people; one of them will be a
project manager and the other one, a developer. The other steps in the methodology
are performed by the measurement analyst, who should ask the top manager for all
necessary information.

MIS-PyME Methodology Steps. We shall now briefly describe the MIS-PyME
methodology and the most important changes made in MIS-PYME methodology as
compared with GQ(I)M [8, 9] basic model. Figure 1 succinctly outlines this
methodology.

1. Identifying your process improvement goals: MIS-PYME first step refers to
GQ(I)M [8] step three, “Identifying your sub-goals”, but our initial goals will de-
rive from the software process model and they will not be business goals, but
management process improvement goals.

- Description: Defining the process improvement goals that you want to carry out
aided by software measurement. Identifying the related entities that will help
achieve this goal.

- Input: Needs of the organization in order to establish and improve software proc-
esses. Output: List of process improvement goals and related entities.

2. Formalizing measurement goals
- Description: Measurement goals are specified. After that, the object of study, the

purpose, the point of view, the environment and the measurement constraints are
defined. The template for the definition of measurement goals has been changed
with respect to that in GQ(I)M[8] so that it is easier to use. This has been
achieved inasmuch as the purpose of the measurement is restricted to a set of pre-
cise purposes, as Briand et al. [5] measurement goal template does.

- Input: List of process improvement goals and related entities. Output: MIS-PyME
measurement goal templates filled out.

3. Identifying if measurement goals have been defined:
- Description: Once measurement goals have been defined, verification of whether

the MIS-PYME measurement goals table already defines the required measure-
ment goals may follow.

 Software Measurement Programs in SMEs – Defining Software Indicators 253

- Input: MIS-PyME measurement goal table. Output: Register in MIS-PYME
measurement goal table and related MIS-PyME indicator template.

4. Defining Indicators: This is a three step status.
- Description: Indicators required to implement measurement goals are defined.
- Input: MIS-PYME indicator templates related to each measurement goal. Output:

MIS-PYME indicator templates filled out.
4.1. Specifying the indicators
- Description: If the measurement goals were in the MIS-PYME measurement

goals table, the measurement analyst might take a look at the recommendations,
restrictions, preliminary actions, information needs, etc. according to the MIS-
PYME indicator template established for that goal. He/she should otherwise be
guided by general recommendations provided by the generic MIS-PYME indica-
tor template.

- Input: MIS-PYME indicator templates related to each measurement goal. Output:
MIS-PyME indicator templates filled out.

4.2. Searching in MIS-PyME database:
- Description: When defining an indicator, measurement analysts may check for

any examples in the database related to the MIS-PYME indicator template re-
quired for the desired indicator. If a suitable one is found, they can directly and
effortlessly adapt the indicator proposed to the measurement program being de-
fined.

- Input: MIS-PYME indicator templates related to each measurement goal. Output:
MIS-PYME indicator examples.

4.3. Identifying sub-goals derived:
- Description: Any of the questions posed or the prerequisites recommended in the

MIS-PYME indicator template table may lead to another measurement goal. We
call these measurement-derived goals, which may also have their corresponding
measurement goal in the table for MIS-PYME measurement goals and their cor-
responding MIS-PYME indicator templates. Step 3.1 and 3.2 may then be re-
peated until all measurement-derived goals and their relevant indicators have
been defined.

- Input: MIS-PyME indicator template filled out. Output: list of derived measure-
ment goals.

5. Defining your measures and identifying the actions needed to implement them:
Step 7 and 8 of GQ(I)M[8] are joined at one point.

- Description: The measures that have to be collected are identified in detail and
defined in the checklists. It is defined which data is to be included/excluded from
the measured values, as well as how the data will be collected. The ability of the
organization to obtain the measures is analyzed, and the way in which they could
be collected is established. If it is not possible to collect the desired data, the indi-
cator specification may be modified based on this information

- Input: MIS-PyME indicator templates filled out. Output: measure definition
checklists and data collection specifications.

254 M. Díaz-Ley, F. García, and M. Piattini

6. Integrating measurement.
- Description: Integrating the measurement activities into previous measurement

processes and into other software processes is the aim of this step. MIS-PYME
provides guidance as to the structure of the (recommended) html document where
all the indicators, measures, and measurement sub-processes of the organization
are defined.

- Input: MIS-PyME indicator templates, measure definition checklists and collec-
tion specifications. Output: (updated) measurement process specification and
(updated) software process specification.

7. Verifying the measurement process
- Description: The measurement process resulting from the process is verified by

reviewers and modified if required.
- Input: Measurement process specification (updated) and software processes (up-

dated). Output: verified measurement process specification and verified software
processes.

Identifying your
process improvement

goals

Formalizing your
measurement goals

Defining Indicators

Identifying if
Measurement goals

Are defined

Specifying the
indicator

Searching in
MIS-PyME DB

Identifying derived
Sub-goals

Defining your
measures and identifying

the actions needed to
implement

them

Integrating
measurement

Verifying
Measurement

Process

Fig. 1. MIS-PyME methodology steps

3.3 MIS-PyME Contribution

Next table (see Table 3) shows how MIS-PyME fulfills the requirements mentioned in
section one for the definition of software measurement programs suited to SMEs. Af-
ter examining the table we can conclude that none of the measurement models shown
in section 2 equals our contribution in terms of requirements met.

 Software Measurement Programs in SMEs – Defining Software Indicators 255

Table 3. Contribution of MIS-PyME

REQ How it is fulfilled Description
MIS-PyME Guide
provides two working
methods

MIS-PyMe supports the definition of measurement
through any process improvement goal or progressive
measurement maturity.

EUM

Linkage between MIS-
PyME measurement
goals table – indicator
templates –examples
in DB

Users can easily obtain an overview of the whole defini-
tion process of a typical measurement goal by defining
the need (improvement process practice) to define
measures.

MIS-PyME measure-
ment goals table

Typical process improvement measurement goals have
been written down in the structured table, which should
help users to shape their idea of measurement goals.
Questions asked to project managers are better focused
thanks to the guidelines provided in the section “ques-
tions” in the indicator templates.
Section “analysis and interpretation” in the indicator
templates gives guidelines regarding the type of analysis
that can be performed on the indicator, as well as its
possible outcomes and interpretations.

MIS-PYME indicator
templates

Guidelines regarding typical indicator inputs or how the
indicator could be graphically displayed make the defi-
nition easier, especially if the measurement analyst is
not an expert in the measurement area.

EFL

MIS-PYME database These indicator and measure examples related to a
measurement goal make it easier to define the meas-
urement program and let the user improve and check
that definition.

COM MIS-PyME measure-
ment goals table

The measurement goals proposed. The related indicator
templates and examples cover the basic needs for typi-
cal software process models. This deals with the meas-
urement of product, projects and software processes.

MIS-PYME indicator
templates

Section “analysis and interpretation” gives guidelines
regarding the type of analysis that can be performed on
the indicator, as well as its possible outcomes and inter-
pretations, which also show the potential of the use of
measurement.

INF

MIS-PyME measure-
ment goals table, indi-
cator templates, Data-
Base

All the practical and theoretical information contained
in these products helps users learn and understand the
potential of the use of measurement and facilitates its
exploitation.

MIS-PyME measure-
ment goals table

The link between process improvement and the meas-
urement program is clearly established.

INTP.

indicator templates Fields regarding “post definition” and “indicator inte-
gration” give guidelines about how to integrate the indi-
cator into software processes.

MIS-PYME indicator
templates

“Restrictions of purpose” and “evolution” fields meet
the purpose of adjusting the indicator definition to the
current measurement maturity.

IMM

MIS-PYME guide This guides users and helps them define and implement
measurement goals according to their maturity level.

256 M. Díaz-Ley, F. García, and M. Piattini

4 Applying MIS-PyME Framework in the Context of STL

The first application of MIS-PyME in real small settings is described in this section.
The goal of this application was not to formally validate the framework but to obtain
some hands-on experience with the framework and see if it was fit to solve the prob-
lems of a real organization. This gave us the opportunity to detect the deficiencies
existing in its practical application and obtain the first feed-back regarding the accep-
tance of the framework by the organization and the preliminary benefits brought about
by its use.

4.1 Introduction

Software measurement initiatives have been encouraged for many years by the soft-
ware development and maintenance department in this company, which is formed by
39 people. However, the measurement process defined was not accurate enough and
had not been properly established throughout the department. Some deficiencies had
been detected, especially regarding those measures dealing with reliability. One of
them was for example that the purpose of some of the indicators implemented had not
been accurately established. An effort was made to try and evaluate the reliability of
the project at a time when no collective and stable model existed for the definition of
a fair evaluation threshold. Also, the input data was not enough for the analyses and
interpretations that had been performed on projects.

The need of accurately measuring products, projects and processes in the organiza-
tion increased since the number of projects and their scope was gradually increasing.
A commitment to establish a well defined and accepted measurement program started
to take shape.

The goals of the measurement program were as follows:

- To improve the definition of the indicators which had been previously established
but had not been much accepted. These are related to the following areas: reliabil-
ity of products under production, reliability of products under development
within the scope of a specific project, and precision of the estimates of the dura-
tion of projects.

- To define other indicators required for project, product and process management
related to estimation, development, service quality, and software process effec-
tiveness. These were divided into two periods:

 In the first period, only the measurement objectives which required data
to be collected just once during the project or those objectives related to
the monitoring of a process were defined and implemented

 In the second phase, those measurement objectives which required data
to be collected quite frequently, such as those related to project monitor-
ing, would be defined later once phase 1 had been implemented. We will
not deal with this phase in the present paper.

- To establish an easy and well documented methodological framework for the
definition of measurement programs.

- To develop easy measurement management tools.

 Software Measurement Programs in SMEs – Defining Software Indicators 257

4.2 Development and Implementation of the Measurement Program

The measurement program was carried out by a person from the development depart-
ment whose measurement knowledge was not bad, but he was not an expert in the
area. The director of the department, who supported the initiative and had a good
knowledge of the existing measurement needs, was the supervisor.

Initially, the measurement program was developed using GQ(I)M[8] measurement
definition model. It took one month to define the first phase of the measurement pro-
gram. The results were reviewed by some research members and by the director of the
development department. Among the weaknesses and potential improvements that
were detected are the following :

- In spite of the time the measurement analyst had spent trying to understand the
limitations of the purpose of the indicators, he failed to define some of the same.

- The measurement program was not meant to be applied to the development proc-
esses existing at the time, and there was not a clear idea as to what these indica-
tors were intended to be used for.

- The measurement process was not well structured. It was not well documented ei-
ther, and turned out to be hard to follow.

These and other problems detected were not solely caused by the fact that GQ(I)M
was used. If a measurement expert had defined the measurement program, he or she
might have succeeded, but it became evident that it would be quite easy to fail if
GQ(I)M was used even if the scope of the measurement program was restricted and
known, and even if the responsible for defining the measurement program was
already somehow familiar with software measurement.

Some aspects of GQ(I)M which could have lead to an unsuccessful measurement
program were indicated by the measurement analyst:

- Since the measurement analyst did not want to bother project managers, he posed
some of the questions to specify the goal himself. He failed in some of them.

- It was difficult to specify the indicators which would fulfill the measurement
goal.

- It was difficult to know the purposes of the indicator which it would be possible
to implement.

- It was difficult to define how to analyze the indicator.
- It was difficult to implement the measurement goal since many measures could

not be collected.
- It was difficult to document the measurement process and integrate it into other

measurement processes already established in an easy and understandable
fashion.

Due to these problems, the measurement program had to be interrupted. It would
be resumed two months later, since at that moment the responsible for the measure-
ment program had to devote his time to some other urgent project.

In the second attempt at using MIS-PyME framework, the participants in the meas-
urement program were the same as in the first attempt. The definition of the meas-
urement program took one month and a half.

As may be noticed, the measurement program took more time using MIS-PyME
than GQ(I)M. The reason is that, starting from the first version, the measurement

258 M. Díaz-Ley, F. García, and M. Piattini

program was more accurately defined and it was reviewed several times, as the devel-
opment director trusted the resulting measurement program definition, but did not
trust the one defined using GQ(I)M.

Part 1 of the measurement program defined 5 measurement goals and 20 software
indicators. The data collected for the other indicators that had already been imple-
mented stayed the same, but the way of analyzing the indicators was modified in most
of the cases.

The implementation of part 1 of the measurement program required some devel-
opments to be made in order to create tools that automated the measurement activities
as much as possible and tailor others. These developments were the following:

- Some new reports were implemented in the request for change & incident man-
agement system (Remedy).

- Some excel sheets were created in order to manage the measurement program.
One excel sheet was developed to manage development processes; the other, for
product management issues. The plan was to start using these easy sheets, and a
more complex and powerful tool in the future if necessary.

In figure 2 we show one of the implemented goals which consists in evaluating the
quality of project development services. This goal was defined by indicator IND-
PROC-CALIDADSRV which uses two input indicators. One indicator characterizes
the deviation between the first formal duration estimation of the projects and the real
duration of the same (IND-PROC-INEXACDURACION), and the second indicator
measures the reliability of the software developed by measuring the incidents oc-
curred in the course of production for each project one month after the last installation
of software (IND-PROC-FIABIMPL) related to the project.

The first indicator had already been defined and used before this initiative, but this
was not the case of the second. The common goal had been well defined by means of
IND-PROC- CALIDADSRV indicator definition.

IND-PROC-INEXACDURACION

0
50

100
150

"050
4"

"051
8"

"052
3"

"060
6"

projects

L
ab

o
u

r
d

ay
s

Estimation Duracion
Accuracy

IND-PROC-FIABIMPL

0
20
40
60

"0504"

"0518"

"0523"

"0606"

Projects

m
ed

iu
m

 F
ai

lu
re

s

Implementation
Reliability

Fig. 2. Service quality indicator (IND-PROC-CALIDADSRV) which contains two input indi-
cators: IND-PROC-INEXACDURACION and IND-PROC-FIABIMPL

Once the measurement program defined was implemented we analyzed this indicator
at the time as defined and required. IND-PROC-FIABIMPL had to be retrospectively
collected so as to be used with the other indicator IND-PROC-INEXACDURACION.
This indicator allows us to understand and evaluate the general quality of a software

 Software Measurement Programs in SMEs – Defining Software Indicators 259

project provided to our clients, and to ascertain if the on-time release of the software
product had a negative impact on software reliability, etc.

4.3 Lessons Learnt

The lessons learnt were analyzed after the first period of analysis was performed by
the responsible for the definition of the measurement program and the director of the
development department. We have divided their conclusions in two: The measure-
ment program that resulted from the experience and the methodology (MIS-PyME)
used.

A far as the measurement program is concerned, they reported that they trusted this
measurement program but did not trust other previous measurement programs. The
reasons were:

- This measurement program covers most of their basic needs.
- Its definition is quite complete as regards the questions which should be an-

swered for each indicator and the analysis and interpretation that can be done,
which also prevents users from making a free analysis or interpretation since they
have to adjust to what is defined.

- The measurement program was well integrated with the software processes.
- The measurement program was documented based on the Web, which made it

easier to read, access and use since it contained links to other reports on the soft-
ware processes, sheets, etc that might be required.

- However, there was still quite a lot of data that had to be manually collected and
included in the excel sheet, which they found to be quite bothersome.

Regarding the use of MIS-PyME framework as compared with our previous
experience:

- Questions asked to project managers are better focused thanks to the guidelines
provided by the MIS-PYME indicator templates.

- Fitness to the purpose is more easily achieved thanks to the guidelines regarding
the types of indicators and the restrictions in the implementation of each type of
indicator.

- MIS-PYME indicator templates give guidelines regarding the type of analysis
that can be performed on the indicator, as well as its possible outcomes and inter-
pretation. This information allows the analyst to learn some information and pass
it on to project managers as far as the potential of the results obtained from the
indicators analysis is concerned.

- Guidelines regarding typical indicator inputs (how the indicator could be graphi-
cally displayed), and indicator examples make the definition easier, especially if
the measurement analyst is not an expert in the measurement area.

- The integration of the measurement process into software processes is also easier
using MIS-PyME, since it informs about how to do this.

- MIS-PyME documentation is Web-based, which facilitates its use (easy access to
the required templates, etc.).

- The guide regarding how to document the measurement process helps to increase
the reliability of the resulting measurement process, making it easier to use and
more integrated as well.

260 M. Díaz-Ley, F. García, and M. Piattini

However, there are still some deficiencies in MIS-PyME model. Among several
mistakes found, the most outstanding problem was that MIS-PyME database, contain-
ing the indicators and measure examples, is still quite small and does not cover most
of the needs.

5 Conclusions and Further Research

In this paper we have proposed a methodological framework which makes it easier
to define measurement programs. The framework, which is called in Spanish
MIS-PyME (Marco metodológico de definición de Indicadores de Software para
PyMEs) is based on GQ(I)M [8, 9] and is designed to be used with software process
improvement practices. It provides a full and detailed guide that helps define common
required measurement goals based on indicator templates and a database that includes
examples of indicators and measures that have been implemented in successful meas-
urement programs. It also integrates a model to make the organization progress
through measurement.

We started by showing the characteristics required for a measurement definition
model suited to SMEs. We have shown how the most outstanding measurement mod-
els do not fulfill the requirements and, after reviewing MIS-PyME framework, we
have given a number of reasons why MIS-PyME framework does match these re-
quirements, thus proving the extent of our contribution.

The end of the paper presents the use of MIS-PyME for developing a measurement
program in the development department of Sistemas Técnicos de Loterías del Estado
(STL) where the results were positive.

In the future, we shall continue monitoring and refining this measurement frame-
work in order to validate the MIS-PyME framework for different SMEs. We have to
increase the MIS-PyME database and include other MIS-PyME measurement goals
and related indicators to consider other needs. The maturity model integrated in MIS-
PyME is the least developed area and we may focus on it in the years to come.

Acknowledgment

We would like to thank the staff of Sistemas Técnicos de Loterías del Estado (STL)
for their collaboration. This research has been sponsored by the COMPETISOFT
(CYTED, 506AC0287) and ESFINGE (Dirección General de Investigación del Minis-
terio de Educación y Ciencia, TIN2006-15175-C05-05) projects.

References

1. Brijckers, A., Differding, C.: The Role of Software Process Modeling in Planning Indus-
trial Measurement Programs. In: Proceedings of theThird International Sysmposium on
Software Metrics (METRICS’96) pp. 31–40 (1996)

2. Daskalantonakis, M.K.: A Practical View of Software Measurement and Implementation
Experiences Within Motorola. IEEE Transactions on Software Engineering 18(11),
998–1010 (1992)

 Software Measurement Programs in SMEs – Defining Software Indicators 261

3. Goldenson, D., Rout, T., Tuffley, A.: Measuring Performance Results in Small Settings:
How do you do it and what matters most? In: Proceedings of the First International Re-
search Workshop for Process Improvement in Small Settings, pp. 41–44 (2005)

4. Gresse, C., Punter, T., Anacleto, A.: Software measurement for small and medium enter-
prises. In: 7th International Conference on Empirical Assessment in Software Engineering
(EASE). Keele, UK (2003)

5. Briand, L.C., Differding, C.M., Rombach, H.D.: Practical Guidelines for Measurement-
Based Process Improvement. Software Process - Improvement and Practice 2(4), 253–280
(1996)

6. Mondragon, O.A.: Addressing Infrastructure Issues in Very Small Settings. In: Proceed-
ings of the First International Research Workshop for Process Improvement in Small Set-
tings, pp. 23–29 (2005)

7. Emam, K.E.: A Multi-Method Evaluation of the Practices of Small Software Projects. In:
Proceedings of the First International Research Workshop for Process Improvement in
Small Settings (2005)

8. Park, R.E., Goethert, W.B., Florac, W.A.: Goal-Driven Software Measurement-A Guide-
book: Carnegie Mellon University Pittsburgh: Software Engineering Institute (1996)

9. Goethert, W., Siviy, J.: Applications of the Indicator Template for Measurement and
Analysis, in Software Engineering Measurement and Analysis Initiative (September 2004)

10. Solingen, R.v., Berghout, E.: The Goal/Quesiton/Metric Method - A practical guide for
Quality Improvement of Software Development. Mc Graw Hill, New York (1999)

11. Solingen, R.v., Berghout, E.: Integrating Goal-Oriented Measurement in Industrial Soft-
ware Engineering: Industrial Experiences with and Additions to the Goal/Question/Metric
Method (GQM). In: Seventh International Software Metrics Symposium. London,
England, pp. 246–258 (2001)

12. Shepperd, M.: Foundations of Software Measurement. Prentice Hall, Hemel Hempstead,
England (1995)

13. PSM: Practical Software and Systems Measurement - A Foundation for Objective Project
Management Version 4.0c: Deptartment of Defense and US Army (November 2000)

14. ISO/IEC 15939, in Software Engineering - Software Measurement Process (2002)
15. Mendonça, M.G., et al.: An approach to improving existing measurement frameworks.

IBM Systems Journal 37(4) (1998)
16. Basili, V.R., Caldiera, G., Rombach, H.D.: The experience factory, in Encylopedia of

Software Engineering, J.J.M. (ed.) John Wiley & Sons, pp. 469–476
17. Druffel, E., Redwine, S.T., Riddle, W.E.: The STARS Program: Overview and Rationale,

pp. 21–29. IEEE Computer, Los Alamitos (1983)
18. Guerrieri.: Searching for Reusable Software Components with the RAPID Center Library

System. In: Proceedings of the Sixth National Conference on Ada Technology, pp.
395–406 (1988)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 262–272, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Smart Technologies in Software Life Cycle

Zane Bičevska and Jānis Bičevskis

Datorikas Instituts DIVI, A.Kalnina str. 2-7, Riga, Latvia
University of Latvia, Raina blvd. 19, Riga, Latvia

Zane.Bicevska@di.lv, Janis.Bicevskis@lu.lv

Abstract. In software life cycle models traditionally the main attention is
being paid to the software development, including requirement gathering
(specification), design, implementation and testing. Less research is devoted
to the system maintenance and operation despite the fact that these aspects
take up the main part of the duration of a successful system. In the paper
smart technologies are being analysed – architectural designs and software
components which using meta information on system and its usage conditions
are able to solve efficiently the problems of maintenance and usage: data
quality and performance monitoring, software flexibility and testability,
context dependant user interface. The advantages of smart technology usage
are pointed out helping to improve software maintenance and operation
processes.

Keywords: Smart technologies, Testing, Maintenance, Life Cycle models.

1 Introduction

The driver of nowadays IT industry is the speed and search for new technologies. It
has a strong impact on the process of application development: on the one hand, the
high competition in the market requests a high quality of products, and on the other
hand it restricts the time resources and capacity available for quality assurance.
Moreover, not only developers of development platforms and standard products are
faced with this dilemma but also the big community of individual and specific IT
solutions developers.

In particular developers of individual software are in a never ending loop – the
rapidly developing and heterogeneous environment (hardware, infrastructure,
software, data quality etc.) impacts the demand of individual IT solutions substan-
tially. Therefore the IT solutions are subject for further changes and it leads to non-
homogenous software that is hard to manage and to distribute.

The proposed way is to develop a „smart” software that like human beings would
be able to deal with unknown environment and adequately react on unexpected
events. Though development of smart software can take additional resources, it will
pay off in phases of software maintenance and operation. Authors propose such
software development that includes both the base functionality of information system

 Smart Technologies in Software Life Cycle 263

and additional features (services) for a better maintaining of the software. These
additional features, like scaffolding built in the construction process of a building, are
created in the process of software design and implementing. But unlike the building
process the “scaffolding” of an information system is never taken down, it stays in the
information system for it’s whole life time.

Conditionally, features for smart technology compatible software can be divided
into two big groups as follows:

1. External stability, when SW avoids performance incidents caused by impacts
of other system components, for instance, SW operation environments,
checking, security monitoring, availability monitoring and processing of
other external events

2. Internal stability, when SW avoids or at least limits impact of internal faults,
for instance, control of SW performance correctness in production (self-tests
of core functionality), automatic download of new versions and converting of
collected data and others.

The targets set in the self-adaptive software researches [1, 2] partially overlap with
the statements stated by the smart technologies. Self-adaptive SW researchers are
focusing on SW ability to adapt to implementation environment and external condi-
tions thus allowing even code translation to the targeted environment and defining
rules for SW reaction on external events. This report sets different targets: trouble-
shooting SW exploitation failures by applying automatic indication of possible
failures and reporting them to staff. Implementation of this approach is more
beneficial and convenient to use in practice.

Hereinafter the term of software being compatible with principles of smart
technology will be denoted as STSW.

2 Software Life Cycle Models and STSW

Since costs of hardware and infrastructure necessary for creating and operation of IT
solutions are decreasing rapidly, the main part of producing and maintaining costs are
those for software. Unfortunately the producing of high quality software up to users’
requirements, secure and easy to maintain is still just a dream of software developers.
The real problem is the lack of productive communication between customers and
developers. The customers being not well-informed about specifics of IT are not able
to formulate the system requirements clearly and precisely enough in order to use
them in the development of an application. There is no common communication
“language” understandable for both specialists and non-IT specialists that could serve
as a precise medium for defining the system requirements. The quite popular among
IT specialists Unified Modelling Language UML [3], is only very rarely suitable in an
environment being not very familiar with IT terminology.

264 Z. Bičevska and. J. Bičevskis

Nevertheless the main difficulty which software developers are faced to is not a
formulating of exact requirements but especially the changing requirements. Software
developers have to create software according to inaccurate and changing in the time
requirements. There are different life cycle models [4] traditionally applied to solve
the problem – linear models demanding a stepping back to the previous lifecycle
phases in case of nonconformity between requirements and the IT solution and
incremental models requiring the defining of requirements and implementing of them
gradually.

More effective than models described before are so-called prototyping models
when the development process is divided into numerous steps each of which are
finished with an intensive communication with a customer to see whether the results
fit to the desirable. The prototype as a communication “language” between customer
and developer seems to be very effective in sense of harmonization of requirements
and possibilities but it is a quite time-consuming process that is not suitable for
development projects with limited budgets and fixed deadlines.

The existing software life cycle models are mainly focused on the creating process
of software which is just the first step in the life of every software solution and
definitely not the longest one. Even very qualitative software can become out-of -
date in a very short period of time because of changing requirements and appearing of
new technologies.

This article analyses the STSW ideas that should ensure continued usage of
software in spite of changes.

3 The Principles of Smart Technology

The smart technology is based on the idea about “self-managing” software, respect-
tively software able to control of internal and external factors and accordingly
reacting on them. This report discusses currently the most popular components of the
smart technologies, admitting that their number might significantly increase in the
future.

1) Automatic updating of versions, ability to provide remote reporting on
missing components and actual status

2) Analysis of external environment, ability to check external environment and
adapt to it

3) Self-testing, dynamic tracing of control flow, events and values
4) Incorporation of business model into software
5) Data quality control
6) Performance monitoring
7) Security (confidentiality) monitoring
8) Availability monitoring

Detailed description of smart technologies features follows.
Smart technology overview is given in the following figure.

 Smart Technologies in Software Life Cycle 265

Fig. 1. Fundamental scheme of smart technology

3.1 Automatic Updating of Versions

Problem Identification
The first application of smart technologies is related to the field of delivering and
installing (distributing) of software. Information system equipped with smart
technology is able to analyse the environment which it is put into from viewpoint of
standard and specific parameters. As standard parameters are supposed to be for
example the operational system, the data base management system, browsers etc. used
on the concrete server or workstation.

Specific parameters are check of evidence of previous (possible damaged) software
versions as well as evidence of other specific solutions on the workstation. Typical
example of a dangerous software- “neighbour” are antivirus solutions which can
classify smart technology software as a virus and even block it up.

Similarly as for installation of a new version SW users should have a reverse link to
SW developer. Due to this reverse link developers can receive complete information on

Business model

Self-testing

Performance monitoring

Updates monitoring
Security monitoring

Core functionality

Data quality monitoring Availability monitoring

DB

Internet

administrator

administrator

user
user

266 Z. Bičevska and. J. Bičevskis

performance, including failure reports and statistics on activities that would allow
developers to improve SW quality. As a rule including of the above mentioned features
into SW requires components that are functioning throughout the whole life cycle of
SW and are considered as extension of core functionality that sometimes remaining
unaware to client.

Implementation
Currently all leading SW developers provide components that allow automatic
loading of update packages that after authorization by administrator are installed in
production. Similarly, special components allow sending reports on incidents that
have occurred during system operation. Unfortunately, only a very few systems
provide converting of the collected data to a new version and automated installation
of completely new versions. Moreover, simultaneous usage of different version can
cause hardly predictable consequences.

3.2 Analysis of External Environment

Problem Identification
Software ability to analyze features of the external environment and adapt itself to
these features is called external stability. Frequently, these problems are researched
separately “adaptive software” and “self-adaptive software”. There are two
approaches used in the praxis. In the first case the supplier of software dictates
requirements for external environment should be assured to guarantee the operation of
delivered software. This principle is consequently applied in the distribution of
software (standard) products when minimal basic requirements for hardware,
operating systems etc. are defined. This approach is not very effective in case of
collisions with other IT solutions or older versions of the same software, or other
factors. Another problem of this approach is limited access to the market if consumers
are not ready or able to satisfy the postulated minimal requirements.

The other way is to improve the software assuring the possibility to use the
software in very many different environments and their combinations. One of the very
popular keywords in this field is a platform independence which assures the usage of
software in various operating systems, on different data base management systems,
using various browsers etc. In fact there is a choice for a developer of “universal”
software between two ways. The first one is to develop a solution for every possible
(desired) combination of environments. The other one is to use only those technical
methods or development tools that cover a subset of possibilities supported by all
chosen target platforms. A typical example of the second way is a usage of a universal
subset of SQL requests to ensure the correct functioning of data requests in various
data base platforms. Apart from the chosen way this approach is expensive because of
disproportion between the potential benefit (satisfied customer) and the necessary
investment (very wide technical functionality).

Nevertheless the platform independence does not solve the problem of software
installing – there is still a big amount of time resources and efforts spent for analysing
of collision causes, for consultations and for improving of software to ensure the
adequacy of it to the specific environment.

 Smart Technologies in Software Life Cycle 267

Implementation
STSW bases on the idea from the real world which shows the ability of living beings
to adjust themselves to specific conditions.

In a similar way the software should be able to analyze versions and configurations
of the operating systems and the data base management systems in accordance with
the requirements of the application. In effect this check is much more complicated,
because the version number and some of the configuration only partly determine the
ability of the given application to fulfill their functions. We propose the following
Smart software development model. A Smart software application requirement
passport is created during the software development process in which the
requirements against the environment are fixed: for operating system and other of its
components, detailed on level of object classes, of DLL's and of others - .ini-
files, registry entries, location of files and folders, regional and language settings,
workstation settings etc. The creation of the passport is an obligation for the
developer; it happens by generation of the passport from the development
environment in which the application is created and is able to work. The created
passport is integrated into the SW. After implementation of the application in the
production environment a module prepared by the developer compares the production
environment parameters with the passport parameters. In the case of differences,
without starting the production of the application, the user is notified about the
differences and, if possible, the correct environment configuration is prepared. Our
experience [5, 6] shows, that in the case of distributed systems (also for WEB
applications) differences between the requirements of the application and the
environment are important and therefore it is necessary to use STSW to eliminate the
problem.

3.3 Self-testing

Problem Identification
The next feature of STSW also comes from the organic nature; it is a self-testing –
ability to control itself and understand the limits of own possibilities.

The STSW should be able to test itself before running in operation. Hardware tests
which are running every time the hardware is switched on are a common thing.
Unfortunately it is rather unusual to see this approach in software solutions.

Implementation
The self-testing could be done in the following way. There is set of core requirements
identified by customer; these are functions which are essential for using of software.
The core functionality can include basis functionality - for instance calculations,
workflows – but should not include requirements of lower importance – navigation,
comfort etc. developers create multifunctional tests that include the testing of a core
functions und incorporate (integrate) them into the software. In the application are
included a function of automated running of the incorporated tests and comparing of
the results with benchmark values.

268 Z. Bičevska and. J. Bičevskis

The self-testing activities can be run before the real operating of a system. It would
guarantee integrity of the system in a real production. There is a difference between
testing of a system as a part of quality assurance in the development process and self-
testing as a part of real operating of system in a production. The aim of self-tests is to
discover possible integrity problems in the production environment, and the self-tests
should be run and used all the time system is used in a production. Considering that
implementation mechanisms of self-testing provide additional tracing for control
flow, events and values. These tracking possibilities are necessary for the program-
mers during unit testing.

Of course the self-testing feature demands additional efforts in the software
development process. Nevertheless it is proven in the praxis [7] that this approach can
substantially improve quality of software.

3.4 Incorporation of Business Model into Software

Problem Identification
Information systems are built to support different business processes. It means the
primary business process is to perform business processes. Thus the most important
domain specific concepts are related to view of users. The IT solution must be able to
deliver information in domain specific terms understandable for users. This requi-
rement is often considered in messaging systems of different software solutions. But
STSW should enlarge the set of domain specific messages available in a system
adding an information about status of the system, offering a context-sensitive help
and statistics about events in the production environment still using domain specific
terms.

Implementation
The proposed feature can be implemented in STSW by incorporating of business
process models into the software, by linking of software processes to business
processes. It can be achieved using an instruments (procedure calls) of a system that
ensures coincidence of business processes and software objects. In this case the
business process model serves as meta-information for description of software
functions.

The described approach has been partially implemented in the [8] solution that
includes messaging system and user manual according to business processes. It was
achieved due to the technical architecture of the solution which based on an
interpreter being able to interpret descriptions of business processes and act
accordingly to them.

3.5 Control of Data Quality

Problem Identification
A very important component of STSW is delivering of the diagnosed information to
developers. The most primitive way to inform users and developers about accidents in
the production is a users’ activities log which is a part of every modern information
system.

 Smart Technologies in Software Life Cycle 269

STSW requires not only ability to register and collect information (being passive)
but also a possibility to compare the information with quality requirements (meta-
information), to measure it and distribute it to the appropriate staff (being active).

In the case of very developed systems there should be a feature for trying to solve
occurred problems of systems by itself. It relates with activities of assuring of external
stability of system that are able to find and install the missing components and drivers.

The special role in the production plays the quality of data in the data base. The
data model (ER model) just partially defines limitations and dependencies among data
elements. The detailed control of inputs is usually supported by software procedures
but they can also be incomplete.

Additional difficulties defy if there are events having time gaps between events and
the fixation of the events in the data base. In these cases input of inconsistent and low
quality date is possible.

Implementation
The solution of the problem could be an including of a special independent
component (smart component) into the IT solution that regularly upon staff request
ensures the conformity of data in the data base and consistency rules.

Doubtless, the attributes of data quality und measuring of them is specific for every
application [9]. But the general theory [10] discusses us how to define and measure
the quality of collected data. The practical experience shows that autonomous data
quality monitoring have been implemented only in a few IT solutions.

3.6 Performance Monitoring

Problem Identification
Performance analysis has become especially important since portals and Web
applications are widely used. The essence of the problem is the inability of the portal
or Web application developers to forecast with the sufficient precision the user
request intensity and request types. Thus the developers can not identify the
“bottlenecks” during the development. The approach to the problem solving, partly, is
to use generators (11) of Web page requests, being able to deliver to the portal a
request flow defined in advance. Measuring the performance parameters at different
loads the developers are trying to forecast the performance of the Web application in
real production environment. Unfortunately the measurements are taken in a test
environment not in a real one and the real flow of requests is substituted with a
simplified one.

Implementation
STSW offers such solution to the problem: developers in due time insert the means of
measurement of load and time parameters into the application. During everyday usage
these means are in an inactive state. The means can be activated by the system
maintenance staff in appropriate situations thus getting precise information about
“bottlenecks” of the system. As an additional feature STSW performance monitoring
can contain the notification of maintenance staff on reaching the critical values of
system reaction time.

270 Z. Bičevska and. J. Bičevskis

3.7 Security Monitoring

Problem Identification
Security – possibility to use a system only by destined users – is one of the most critical
IT requirements. Usually the ensuring of IT solution’s security is limited by usage of
users’ enrolment and authorising mechanisms. But it is quite simplified approach as the
responsibility for the security is delegated to users of the system. It is well-known that
security is impacted not only by users but also by other factors – incompleteness of
operating systems and programming environments, errors of infrastructure and
inadequate operating of a system – most of which are unknown for users

The idea of smart technologies is to perform, at least partially, additional activities
for ensuring of security. STSW can support the management of passwords and user
information by accepting only very secure (not guessable) passwords and regular
warning about necessity to change password and to control the uniqueness of it.
Additionally STSW could inform the appropriate employee and users about external
attempts to access a system or to read sensitive data. These features can be relatively
easy implemented due to the agents technologies.

Implementation
All features mentioned in this chapter are successfully implemented in the [7] solution
that lets ascertain for any mobile phone number which mobile phone operator it
belongs to. Everybody can use the service and have the information about one number
per request but nobody can retrieve the whole list of mobile phone numbers belonging
to one operator. STSW can detect the attempts to create complete lists of numbers
belonging to one operator and send warning messages to responsible persons. STSW
should be also protected against automated “scanning” of passwords.

3.8 Availability Monitoring

Problem Identification
Similarly as in previous case access to the system, respectively use of the system
when it is necessary, is the most crucial criteria (request) for the IS. These requests
are met by establishing appropriate infrastructure usually using double power supply,
Internet access and double servers. However, this is an expensive way to achieve the
accessibility and, moreover, it does not provide the aimed result. The remaining
problem is that working online the integrity of database should be ensured in case one
of the servers is down.

Implementation
More up-to-date solutions are provided by load-balancing methods [12]. According to
this solution remote servers and power supply clusters are established in order to
ensure auto switching to other servers in case one of the servers is down. However,
mechanic switching among servers and notification of personnel on failure via short
messaging still does not resolve more complicated problem – data synchronization on
simultaneously operating servers in case the servers has run down.

Thus, more additional efforts and customized approach are requested in each
particular situation. Doubtless, such possibilities should be foreseen during designing

 Smart Technologies in Software Life Cycle 271

of the system architecture and should be included into STSW, and can be carried out
via agent technologies.

Similarly as in previous case monitoring of availability has been carried out [7].

4 Conclusions

Software confirming to the principles of Smart technology offers a number of
advantages compared to the currently used platform independent configuration-fixed
solutions:

1. Smart technologies have a number of advantages for information system
maintenance and development. They have an important impact on software
life cycle model. They are usable in incremental models, less useful in linear
models.

2. Adding of smart technologies to the software after the implementation is useful
for the external stability support. Internal stability support is achieved
including smart technology already in the software architecture design phase –
later inclusion is expensive and time-consuming.

3. Implementation of smart technology principle in software takes fewer
resources than full-range configuration support. In the same time smart
technology places fewer constraints on the acceptable means of expression.

4. Data quality control mechanisms have to be created at the metalevel and
separated from the other business logic. In such a manner it is possible to
achieve high reusability and openness to the changes of these mechanisms.

5. Smart technologies allow reducing the efforts for software testing and setting
up, thus increasing the client service level.

6. Smart technologies assist to provide software performance in an environment
containing heterogeneous platforms and infrastructure.

References

[1] Laddaga, R., Robertson, P.: Self Adaptive Software: A Position Paper. In: International
workshop on Self Adaptive Software Properties in Complex Information systems, 2004,
Bertinoro, Italy (2004)

[2] Wang, Q.: Towards aRule Model for Self-adaptive Software ACM SIGSOFT Software
Engineering Notes, vol. 30(1) (January 2005)

[3] Arlow, J., Neustadt, I.: UML and the Unified Process. Addison-Wesley, London (2002)
[4] Pressman, R.S.: Software Engineering. A Practitioner’s Approach, 6th edn. McGrawHill,

New York (2005)
[5] Andzans, A., Mikelsons, J., Medvedis, I., et al.: ICT in Latvian Educational System - LIIS

Approach. In: Proceedings of The 3rd International Conference on Education and
Information Systems: Technologies and Applications, July 14-17, 2005 Orlando, Florida,
USA (2005)

[6] Latvian Education Informatization System – LIIS [on-line]. Available on internet:
http://www.liis.lv

[7] Available on internet: http://www.numuri.lv
[8] Available on internet: http://www.liaa.gov.lv

272 Z. Bičevska and. J. Bičevskis

[9] Loshin, D.: Enterprise Knowledge Management: The Data Quality Approach. Morgan
Kaufman, Seattle (2001)

[10] Wang, Richard, Y., Ziad, Mostapha, Lee, Y.W.: Data Quality. Kluwer Academic
Publishers, Boston (2000)

[11] Available on internet: http://www.mercury.com/us/products/performance-center/loadrunner/
[12] Shimonski, R.J.: Windows Server 2003 Clustering & Load Balancing, Osborne McGraw-

Hill, ISBN 0-07-222622-6

Convertibility Between IFPUG and COSMIC

Functional Size Measurements

J.J. Cuadrado-Gallego1, D.Rodŕıguez1, F. Machado2, and A. Abran3

1 Department of Computer Science
University of Alcalá

28805 Alcalá de Henares Madrid, Spain
{jjcg,daniel.rodriguezg}@uah.es
2 Universidad Catlica del Uruguay

Av. 8 de Octubre 2738
11600 Montevideo, Uruguay

fmachado@ucu.edu.uy
3 École de Technologie Supérieure

1100, rue Notre-Dame Ouest
Montral, Qubec

Canada H3C 1K3
alain.abran@ele.etsmtl.ca

Abstract. Since 1984 the International Function Point Users Group
(IFPUG) has produced and maintained a set of standards and techni-
cal documents about a functional size measurement methods, known as
IFPUG, based on Albrecht Fuction Points. On the other hand, in 1998,
the Common Software Measurement International Consortium (COS-
MIC) proposed an improved measurement method known as Full Func-
tion Points (FFP). Both the IFPUG and the COSMIC methods both
measure functional size of software, but produce different results. In this
paper, we propose a model to convert functional size measures obtained
with the IFPUG method to the corresponding COSMIC measures. We
also present the validation of the model using 33 software projects mea-
sured with both methods. This approach may be beneficial to companies
using both methods or migrating to COSMIC such that past data in
IFPUG can be considered for future estimates using COSMIC and as a
validation procedure.

Keywords: Functional Size measurement, IFPUG, COSMIC, Software
Estimation.

1 Introduction

Function Point Analysis or FPA is one the oldest and most widely used soft-
ware functional size measurement method. It was proposed by Albrecht and his
colleagues at IBM in 1979. Since 1984 this method is promoted by the Inter-
national Function Point Users Group (IFPUG) [7]. In 1994, the International
Organization for Standardization (ISO) set up a working group to establish an

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 273–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

274 J.J. Cuadrado-Gallego et al.

international standard for functional size measurement. This group did not pro-
duce a measurement standard, but a set of standards and technical documents
about functional size measurement methods, known as the ISO/IEC 14143 se-
ries [1,2,3,4,5]. The FPA method became the standard ISO/IEC 20926 [11] in
2003, its unadjusted portion being compliant with the ISO/IEC 14143 [1]. Start-
ing in 1998, a set of experts in software measurement created the Common
Software Measurement International Consortium or COSMIC, and proposed
an improved measurement method known as Full Function Points (COSMIC
FFP) [6]. This method became the standard ISO/IEC 19761 in 2003 and is also
ISO/IEC 14143 compliant. Both IFPUG and the COSMIC-FPP methods mea-
sure functional size of software, but produce different results. For this work, we
briefly compare IFPUG and COSMIC definitions and propose a model to convert
functional size measures obtained with the IFPUG method to the corresponding
COSMIC FFP measures. To do so, we have used a repository of 33 projects
measured using both methods.

The organisation of the paper is as follows. Section 2 provides a high level
view of the mapping between both methods. Section 3 presents and analyses our
approach and its empirical validation. Finally, Section 4 concludes the paper and
future work is outlined.

2 Analysis of Correspondence Between Definitions

This section presents a very high level view of the components and relationships
for IFPUG and COSMIC measurement methods needed to obtain correspon-
dences between the concepts defined by such components and relationships to
determine under which conditions it would make sense to compare the measure-
ments obtained with both methods.

There are three initial concepts in the measurement of software functionality
size shared for both methods: the purpose of a measurement, the scope of a mea-
surement and the application boundary. Such concepts define what is measured
and what it is measured for. In it possible to have a mapping between both
methods for the key terms: (i) the purpose of a measurement ; (ii) the scope of a
measurement and (iii) the definition of boundary. The same happens with other
key concepts in the software functional size measurement that must be consid-
ered; three are related to data (the object of interest or entity, the data group
or file and the data attribute or data elements) and two to its transformation
processes (the functional process or transactional function). Table 1 summarizes
the correspondence of concepts between COSMIC and IFPUG.

After analyzing both methods, it can be concluded that: (i) the software
functional size measures obtained shall be comparable when the purpose and
the scope of the measurement coincide, as well as the application boundary;
obviously, the application to be measured also has to be the same. These con-
cepts are practically identical in both methods; (ii) both methods coincide when
they divide the user data processing requirements into units, using practically the

Convertibility Between IFPUG and COSMIC Functional Size Measurements 275

Table 1. Correspondence of concepts between COSMIC and IFPUG

COSMIC IFPUG
Purpose of a measurement Purpose of the count
Scope of a measurement Scope of the count
Boundary Application boundary
User User
Object of interest Entity
Data group File
Data attribute Data elements
Functional process Transactional function

same criterion. Consequently, functional processes in COSMIC will be transac-
tional functions in IFPUG and vice versa; and (iii) both methods also coincide
in grouping data sets using practically the same criterion. Consequently, data
groups in COSMIC will correspond to files in IFPUG and vice versa.

3 Conversion Rule Proposed

There are several situations in which it is possible to know reasonably the result-
ing data movements for each object of interest. Some of those objects of interest
will correspond to Internal Logical Files (ILF) or External Interface Files (EIF),
according to the equivalences established so that it is possible to express the
number of data movements according to the number of File Types Referenced
(FTR) between IFPUG and COSMIC. There is a data movement for each FTR
in the External Outputs where an object of interest is deleted: the application
writes when deleting the corresponding data group. In this case, there is usually
an error or confirmation message. Preliminarily, we could generalize that the
minimum number of data movements in an elementary process is equal to the
number of FTRs adding one:

CFSUMIN = FTR + 1 (1)

where CFSUMIN (COSMIC Function Size Unit) is the minimum size of the
functional process measured in COSMIC and FTR is the number of File Type
Referenced in IFPUG. However, in COSMIC, the minimum number of data
movements in a functional process is 2 CFSU. When the number of FTR is
zero, Eq. (1) only returns 1 data movement. We need to reformulate Eq. (1) to
consider this case:

CFSUMIN = Max(2, FTR + 1) (2)

The theoretical maximum of data movements cannot be determined from the
number of FTRs. Even if there are four data movements at the most for each
file type referenced, there could be other data movements that will not im-
ply persistent data groups; for example, commands, parameters, etc. However,

276 J.J. Cuadrado-Gallego et al.

from the above analysis it is possible to assume the maximum number of data
movements according to the elementary process type:

– In external inputs (EI), there are usually no more than two data movements
in the same functional process for each file type referenced: there are two
data movements, one for the input and the other for the writing of the data
of an object of interest.

– In external outputs (EO) and External Queries (EQ), where data of an object
of interest are read and shown, neither is there usually more than two data
movements in the same functional process for each file type referenced, one
for reading and one for the output of the object of interest.

– In all elementary processes there is usually an error or confirmation message.
– In EO, generally, there is also an output of data created during the elemen-

tary process, or an entry command or parameter.

We could generalize that the maximum number of data movements in an
elementary process is equal to the double number of file types referenced plus one,
for external entries and inquiries, and plus one for external outputs. Considering
that the number of file types referenced could be zero, and that the size measured
in COSMIC cannot be lower than 2, the above is expressed as follows:

CFSUMAXEI/EQ = Max(2, 2 · FTR + 1) (3)

CFSUMAXEO = 2 · FTR + 2 (4)

where CFSUMAXEI/EQ is the maximum size of the external input or external
queries functional process measured in COSMIC, CFSUMAXEO is the maximum
size of the external output functional process measured in COSMIC and as before
FTR is the number of file types referenced.

In short, given the measurement of an application with IFPUG, of which the
number of transactional functions and the number of FTRs in such functions are
known, we propose as a hypothesis that such application will have a COSMIC
size within the interval given by the following equation:

∑EI
i=1 Max(2, FTRi + 1) +

∑ EO
i=1 Max(2, FTRi + 1) +

∑EQ
i=1 Max(2, FTRi + 1)

≤ CFSU ≤
∑ EI

i=1 Max(2, 2 · FTR + 1) +
∑ EO

i=1 Max(2, 2 · FTR + 1) +
∑ EQ

i=1 Max(2, 2 · FTR + 1)

(5)

4 Experimental Validation of the Conversion Rules

The data used in this qualitative analysis come from 33 software applications,
measured with IFPUG version 4.1 and COSMIC version 2.2. Out of these 33
software applications, one is a case study documented by IFPUG [7]. Data from
IFPUG were taken as such and only the measurement with COSMIC was carried
out. Another application is a case study provided by IBM Rational as example
RUP [8]; this application was already measured with COSMIC and only the

Convertibility Between IFPUG and COSMIC Functional Size Measurements 277

measurement with IFPUG was performed. Another application is a case study
described in Fetcke [9]; the data from IFPUG and COSMIC were obtained as
such from a case study used to compare different software measurement meth-
ods. The remaining 30 applications were final projects of students attending the
Software Engineering course at the University of Alcalá, Madrid, Spain. These
software development projects included the description of the application and
the measurements with both methods. These measures were obtained by a team
of three junior measurers, which later were verified by another senior measurer
and finally by the authors. Some projects from the Software Engineering courses
at the University of Alcalá were discarded when the description of the appli-
cation did not enable the validation of the measures obtained. The differences
in the measures were generally due to different interpretations of user require-
ments and furthermore, rules of IFPUG and COSMIC methods are stated in a
natural language and thus, subject to ambiguity and interpretation. However,
all differences were exhaustively revised and reconciled.

The intervals in our set of measures vary between 78 and 462 function points,
with a mean of 291.2 function points, and a standard deviation of 98.6 function
points. The summary of the results of the measurement appears on Table 2.
IFPUG is the size measured in function points without adjustments with IF-
PUG 4.1; ILF+EIF is the number of data functions, internal logical files plus
external interface files in each project; EI+EO+EQ are the number of trans-
actional functions in each project, external inputs plus external outputs plus
external inquiries; FTR is the total number of file types referenced in all func-
tional processes of each project. Lastly, COSMIC is the functional size measured
in COSMIC units.

We used two complementary techniques for our experimental research (i) the
direct verification on a relatively large number of cases, where we evaluated
our hypothesis; and (ii) statistical analysis to generalize the findings. The first
technique consists of evaluating a model in a relatively large set of cases and
confirming that the expression in Eq. (5) is always verified. In each case, the
same software application is measured both with the IFPUG method and with
the COSMIC method. If in any of such cases, the expression in Eq. (5) is not
verified, we would be able to affirm that the corresponding model does not enable
any conclusion regarding the size of an application measured with COSMIC from
the intermediate measures resulting from the measurement of such application
with COSMIC. On the contrary, if the expression in Eq. (5) is verified in all cases,
we will be able to state that the corresponding model adequately describes the
cases considered, but we will not be able to make general statements for other
applications not included in the cases considered.

We now describe the statistical analysis. To do so, we defined two random
variables: one as the difference of the value measured with COSMIC and the
minimum value given by Eq. (5), and the other as the difference between the
maximum given by Eq. (5) and the value measured with COSMIC. The former
represents the distance between the lower extreme of the range and the value
measured with COSMIC, while the latter represents the distance between the

278 J.J. Cuadrado-Gallego et al.

Table 2. Project Measurement Results

Proj ID IFPUG ILF+EIF EI+EO+EQ FTR COSMIC
1 95 5 16 27 68
2 126 10 14 37 80
3 78 3 16 27 72
4 329 25 44 71 177
5 340 14 72 108 195
6 324 6 82 87 267
7 177 9 33 33 108
8 381 12 65 163 278
9 360 12 62 139 210

10 286 14 46 58 191
11 462 14 65 169 286
12 283 7 53 122 263
13 109 5 21 21 65
14 432 19 79 149 294
15 326 12 74 91 200
16 331 13 62 84 234
17 236 9 42 88 158
18 324 10 62 132 297
19 311 6 63 126 310
20 346 14 63 91 263
21 410 19 88 88 215
22 395 14 84 97 279
23 279 14 52 65 166
24 324 13 61 91 224
25 412 19 64 163 248
26 315 11 66 123 313
27 157 9 20 107 215
28 307 14 45 155 264
29 167 8 22 89 125
30 299 11 54 111 267
31 269 19 39 66 144
32 299 12 57 114 277
33 320 15 47 103 155

value measured with COSMIC and the upper extreme of the range. To accept
statistically that the value measured with COSMIC is always within the interval,
both variables must have a known distribution with positive mean. The second
and fourth columns in Table 3 show the maximum and the minimum given by
Eq. (5) in relation to the COSMIC measure.

The significance level chosen for these statistical tests is 98%, corresponding
to α = 0.02, because, as the affirmations about the variables are independent
among them, the significance level resulting from the combination of both will
be equal to 98%2 ≥ 95%, corresponding to α = 0.05.

The first step in the statistical analysis is to characterize these random vari-
ables, calculating some of their descriptive statistics and determining their

Convertibility Between IFPUG and COSMIC Functional Size Measurements 279

Table 3. Measurements Minimum and Maximum calculated according to the Model

Proj ID Minimum CFSU Maximun D ↓ D ↑
1 43 68 73 25 5
2 51 80 88 29 8
3 43 72 73 29 1
4 115 177 198 62 21
5 180 195 301 15 106
6 169 267 278 98 11
7 66 108 114 42 6
8 228 278 403 50 125
9 201 210 352 9 142

10 112 191 200 79 9
11 208 286 357 78 71
12 175 263 312 88 49
13 42 65 68 23 3
14 228 294 392 66 98
15 165 200 436 35 236
16 146 234 244 88 10
17 130 158 236 28 78
18 194 297 342 103 45
19 189 310 329 121 19
20 156 263 268 107 5
21 178 215 278 37 63
22 181 279 292 98 13
23 117 166 199 49 33
24 152 224 260 72 36
25 227 248 400 21 152
26 189 313 324 124 11
27 129 215 249 86 34
28 200 264 375 64 111
29 111 125 208 14 83
30 165 267 295 102 28
31 105 144 180 39 36
32 171 277 285 106 8
33 150 155 269 5 114

distributions with the respective distribution parameters. Table 4 shows descrip-
tive statistics for variables D ↓ and D ↑.

As we can see in Table 4, the mean between both variables is positive. After
several tests with different distributions, we found that both variables follow
an exponential distribution, the first with λ = 0.017 and the second with λ =
0.019. The data adjustment with exponential distribution was performed using
the Kolmogorov-Smirnov test [10]. In this test, the null hypothesis H0 is that
variables follow an exponential distribution; the alternative hypothesis HA is
that they do not follow an exponential distribution. The test results for both
variables appear in Table 5.

280 J.J. Cuadrado-Gallego et al.

Table 4. Statistics for the random variables D ↓ and D ↑

Statistic D ↓ D ↑
Mean 60.36 53.64∑

35.68 55.75
σ2 1272.99 3108.05

Median 62 34
Min 5 1
Max 124 236

Table 5. Kolmogorov-Smirnov test for variables D ↓ and D ↑

D ↓ D ↑
D 0.173 0.148

p-value 0.254 0.431
a 0.02 0.02

We accept the null hypothesis H0 that samples follow an exponential distri-
bution, as the p-value calculated is higher than the significance level α = 0.02 in
both cases. The risk of rejecting the null hypothesis H0 when it is true is 25.36%
and 43.09% for the below and above differences, respectively. Figures 1 and 3
show the histograms for the variables D ↓ and D ↑ respectively. Figures 2 and
4 show the distributions accumulated for both variables. In these graphs it is
possible to visually check the test results, in the sense that the adjustment in
both cases is good, but it is better for variable D ↑.

The fact that both variables D ↓ and D ↑ have exponential distribution
not only confirms our hypothesis, but further corroborates our hypothesis. On
the one hand, it means that the probability of obtaining smaller differences

Fig. 1. Histogram for D↓

Convertibility Between IFPUG and COSMIC Functional Size Measurements 281

Fig. 2. Accumulative distribution for D↓

Fig. 3. Histogram for D↑

Fig. 4. Accumulative distribution for D↑

282 J.J. Cuadrado-Gallego et al.

between measures and extremes is higher, and the probability of obtaining larger
differences between measures and extremes is lower. Also, on the other hand, it
also means that the distances are always positive, i.e., measures using COSMIC
will never be outside the interval calculated according to our model.

5 Conclusions and Future Work

In this paper, we proposed a method to convert from IFPUG Function Points de-
fined by the International Function Point Users Group (IFPUG) to COSMIC Full
Function Points (COSMIC FFP) defined by the Common Software Measurement
International Consortium (COSMIC). Although both methods produce different
results, we have empirically shown an equation that limits interval of the conver-
sion to be within a range. Such approach can be beneficial to companies using
both methods or in the process of migrating to COSMIC such that past data
measured using IFPUG can be considered for future estimates using COSMIC.
Also, when organizations used both methods to improve their estimates, the
approach of this paper can be used as an additional validation procedure.

Future work will consist in performing further case studies and validations
within academia and industrial organizations.

Acknowledgements

We would like to thank the Spanish Ministry of Science and Technology for
supporting this research (Project CICYT TIN2004-06689-C03).

References

1. ISO/IEC: Iso/iec 14143-1:1998 information technology – software measurement –
functional size measurement — part 1: Definition of concepts. Technical report, In-
ternational Standards Organization & International Electrotechnical Commission
(1998)

2. ISO/IEC: Iso/iec 14143-2:2002 information technology — software measurement—
functional size measurement — part 2: Conformity evaluation of software size mea-
surement methods to iso/iec 14143-1:1998. Technical report, International Stan-
dards Organization & International Electrotechnical Commission (2002)

3. ISO/IEC: Iso/iec tr 14143-3:2003 information technology — software measurement
— functional size measurement — part 3: Verification of functional size measure-
ment methods. Technical report, International Standards Organization & Interna-
tional Electrotechnical Commission (2003)

4. ISO/IEC: Iso/iec tr 14143-4:2002 information technology — software measurement
— functional size measurement — part 4: Reference model. Technical report, In-
ternational Standards Organization & International Electrotechnical Commission
(2002)

5. ISO/IEC: Iso/iec tr 14143-5:2004 information technology — software measurement
— functional size measurement — part 5: Determination of functional domains for
use with functional size measurement. Technical report, International Standards
Organization & International Electrotechnical Commission (2004)

Convertibility Between IFPUG and COSMIC Functional Size Measurements 283

6. COSMIC: Cosmic measurement manual ver. 2.2. Technical report, Common Soft-
ware Measurement International Consortium (2003)

7. IFPUG: Ifpug: Case study 1 release 3.0. Technical report, International Function
Point Users Group (2005)

8. IBM: Course registration system. Technical report, IBM Rational (2004)
9. Fetcke, T.: The warehouse software portfolio: A case study in functional size mea-

surement. Technical Report 1999-20, Technische Universitaet Berlin, Fachbereich
Informatik (1999)

10. Montgomery, D., Ruger, G.: Applied Statistics and Probability for Engineers. John
Wiley Sons, Inc, New York, USA (2003)

A Framework for Measuring and Evaluating

Program Source Code Quality

Hironori Washizaki1, Rieko Namiki2, Tomoyuki Fukuoka2, Yoko Harada2,
and Hiroyuki Watanabe2

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
washizaki@nii.ac.jp

2 Ogis-RI Co., Ltd., MS-Shibaura Bldg., 13-23, Shibaura 4, Minato-ku, Tokyo, Japan
{Namiki Rieko,fukuoka tomoyuki,Harada Yoko,Watanabe}@ogis-ri.co.jp

Abstract. The effect of the quality of program source code on the cost
of development and maintenance as well as on final system performance
has resulted in a demand for technology that can measure and evaluate
the quality with high precision. Many metrics have been proposed for
measuring quality, but none have been able to provide a comprehensive
evaluation, nor have they been used widely. We propose a practical frame-
work which achieves effective measurement and evaluation of source code
quality, solves many of the problems of earlier frameworks, and applies
to programs in the C programming language. The framework consists of
a comprehensive quality metrics suite, a technique for normalization of
measured values, an aggregation tool which allows evaluation in arbitrary
module units from the component level up to whole systems, a visual-
ization tool for the evaluation of results, a tool for deriving rating levels,
and a set of derived standard rating levels. By applying this framework
to a collection of embedded programs experimentally, we verified that
the framework can be used effectively to give quantitative evaluations of
reliability, maintainability, reusability and portability of source code.

1 Introduction

In today’s world, where value is controlled in every corner of society by software
systems from the embedded to enterprise level, demand is increasing for a sys-
tem of technology to measure and evaluate system quality characteristics (e.g.
reliability) to use the evaluation results to maintain and improve the system.
In this paper we propose a quality evaluation framework based on quantitative
quality measures, for software engineers involved in development, maintenance
or procurement of software, or others involved in improvement of development
processes. We deal with quantitative measures of quality that take measurements
of program source code written in the C programming language.

There is great demand for practical technologies which can measure and eval-
uate quality with high precision and identify quality characteristics that will
cause problems or will need improvement, because the quality of the source code
has a significant effect on the overall system performance and cost of develop-
ment and maintenance. In the past, various techniques for measuring quality

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 284–299, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Framework for Measuring and Evaluating Program Source Code Quality 285

have been proposed, but they generally have not covered quality characteris-
tics comprehensively and the metrics or measured results have not been widely
used[1].

In response, we propose a framework which applies to source code written in
the C programming language and implements quality measurements and evalu-
ation effectively. The framework is independent of any person/evaluator proper-
ties, and resolves the problems of conventional approaches.

2 Problems with Conventional Quality Measurements

From a quality point of view, measurement methods can be classified into four
types based on amount of information. A Metric contains the least amount of
information, and simply measures a particular property without relating it to
quality. A Quality Metric measures a property and includes a way to interpret the
measurement result in terms of a quality characteristics. Quality Metrics is used
to refer to multiple such metrics for a single quality characteristics and a Quality
Metrics Suite treats several quality metrics and systematically summarizes the
results of each.

Though many metrics have been proposed, it is generally difficult to select an
appropriate one from among them or to interpret the measurement results[2].
Further, they and measured values have not been broadly useful[1]. For qual-
ity measures which apply to source code in particular, the main problems are
summarized below.

(P1) Non-comprehensive suites: In order to take into account tradeoffs be-
tween different quality characteristics (e.g. time-behaviour vs. analysability), it
is desirable to be able to measure and evaluate all quality characteristics, which
effect the final system’s quality in use, at the same time. However, most of the
existing metrics which apply to source code do not relate measurement values
to quality, or provide a quality metric which measures quality based on only a
single characteristic. There are a few suites which handle source code, includ-
ing REBOOT[3], QMOOD[4], SPC suite[5], the suite from Ortega[6], the EASE
project result[7] and the ISO/IEC TR 9126-3 reference implementation[8]; how-
ever, they all require additional input besides the source code (e.g. a design
model) and/or they lack comprehensive coverage of the measurable and assess-
able source code characteristics specified by the ISO9126-1[9] (or equivalent)
quality model.

(P2) Lacking in ability to break-down or overall evaluation: Generally,
source code written in a high-level programming language has a layered struc-
ture, with inclusion relationships between multiple logical and physical modules.
For example, in the C programming language, generally functions are included
in files, files in directories, and directories in the system, giving a four-layer
structure. In this case, it is desirable to measure and evaluate the quality of
individual module units according to various objectives, such as comparing the
entire integrated system quality with another system and evaluating the quality

286 H. Washizaki et al.

of individual small modules in order to identify problematic parts. However, no
quality metrics suite has been proposed which can measure source code quality
for arbitrary units from component up to the overall system.

(P3) Difficulty in deriving standard rating levels: In order to evaluate
quality from measurement results, rating levels which determine the allowable
range of values for each type of measurement (i.e. thresholds), and assessment
criteria which evaluate the results in units of quality characteristic and can com-
bine them into an integrated result is required[10]. Generally, to derive rating
levels, a set of samples are used, which are then divided into superior and inferior
groups based on some criteria (e.g. a particular usage scenario[5] or qualitative
evaluations[11,12]). The distributions of measured values in both groups are com-
pared, and the upper and lower bounds of the range which statistically contains
most of the measurements from the superior group are used as the thresholds.
However, traditional techniques have required additional information, such as
usage scenarios or qualitative evaluations, in addition to the source code and it
has not always been easy to derive rating levels.

3 Proposed Framework for Quality Evaluation

We propose a practical framework which effectively measures and evaluates the
quality of programs from source code written in the C programming language.
The overall scheme, the solutions to the problems described above, and details
of each of the elements of the framework are described below.

3.1 Overall Approach and Solutions to Problems

The structure of the framework is shown in Figure 1. It is made up of five
elements: the quality metrics suite, an aggregation tool, a visualization tool,
a rating levels derivation tool, and actual derived rating levels. Note that the
framework does not include actual measurement tools. Rather, we make use of
existing tools (e.g. QAC[13] and Logiscope[14]) which both apply to C source
code and cover the metrics specified in the suite.

– Quality metrics suite: We extended the ISO9126-1 quality model to create a
more comprehensive model, and built a collection of metrics together with
associated quality characteristics based on this quality model by defining the
interpretation of measurements from a quality standpoint. This resolved the
problem P1 of conventional approaches.

– Aggregation and visualization tools: We resolved the problem P2 by imple-
menting a technique for normalizing the results of each measurement in the
suite to a value from 0 to 100 based on rating levels, and a mechanism for
aggregating and summarizing module scores in step-wise gradations. The vi-
sualization tool transforms the collection of totaled scores into an evaluation
report that is easier to understand intuitively.

A Framework for Measuring and Evaluating Program Source Code Quality 287

Source codes

……
……
……
……

Development/quality
assurance team

Develops /
procures

Measurement tools Measured values

Goal Question Metric

(a) Quality metrics suite Rating levels

(1) Inputs Outputs

(b) Rating level
deriving tool

Scores

Outputs

(2)(3) Inputs

(c) Aggregation
tool

Outputs

(d) Visualization
tool

Outputs

(3) Inputs (4) Inputs

Evaluation
reports

Correspondence

Quality measurement/evaluation framework

(5) Refers to

Fig. 1. Structure of the quality measurement/evaluation framework

– Rating level derivation tool and reference values: We resolved the problem
P3 by implementing a mechanism to derive rating levels statistically. The
mechanism requires a set of source codes that are acceptable from a quality
point of view. Then, by applying our metrics suite and the above three tools
to several existing embedded software programs, we derived some actual
rating levels and included them in the framework as reference values for
software in the same domain.

The process flow for using the framework is shown below. Step (2) is not
always required after rating levels have been derived for the target problem
domain; however the rating levels should be continuously improved by iterating
the process and accumulating measurement results, because the rating levels
highly depend on the set of source codes used for the level derivation.

(1) Measurements (measured values) are obtained by applying measurement
tools that handle the metrics specified in the quality metrics suite to the
source code being measured.

(2) If rating levels are to be derived, this is done by applying the rating level
derivation tool to measurements of source code that are acceptable from a
quality point of view. If such codes are not available, the framework uses
source codes which has been improved from a quality point of view, without
any significant changes in functionality.

(3) The measurements are entered into the aggregation tool to get the aggregate
result of all of the scores. Internally, the aggregation tool uses the quality
metrics suite as well as the derived rating levels.

(4) An evaluation report is created by entering the aggregate results into the
visualization tool.

(5) The report is used to identify problematic parts or quality characteristics
that need improvement and can be useful in resolving them.

288 H. Washizaki et al.

3.2 Details of Structural Elements

The details of the elements and techniques that compose the framework are
described below.

(a) Quality metrics suite
Using the ISO9126-1 general quality model as a starting point, we repeatedly
interviewed several software professionals to narrow-down to the internal quality
characteristics (static, not dynamic, qualities that can be measured and evalu-
ated) of program source code that are not dependent on a particular program-
ming language. The resulting quality model is shown in Figure 2. Note that
functionality and usability have been excluded because they are difficult to mea-
sure using the source code only.

Source code
internal quality

Reliability

Maintainability

Portability

Efficiency

Reusability

Maturity
Fault tolerance

Analysability

Time behaviour
Resource utilization

Changeability
(including Stability)
Testability
Adaptability
Portability compliance

Quality type Quality characteristics Quality sub-characteristics

Fig. 2. Quality model

– Reliability: The ability to maintain specified performance levels when used
under the specified conditions[9]. We take maturity and fault tolerance as
sub-characteristics, while recoverability and reliability compliance (not the
”reliability” itself) are excluded because they are difficult to measure and
evaluate from the source code only.

– Efficiency: The ability to provide appropriate performance relative to the
amount of resources consumed when used under clearly specified conditions[9].
Sub-characteristics are time behaviour and resource behaviour, while effici-
ency compliance has been excluded.

– Maintainability: The ease to which modifications can be made[9]. Sub-
characteristics are analysability, changeability and testability, while main-
tainability compliance has been excluded. Also, to avoid duplication, the
stability characteristic in ISO9126-1 is included under changeability.

– Portability: The ability to be transferred from one environment to another[9].
Sub-characteristics are adaptability and portability compliance, while instal-
lability, co-existence and replaceability have been excluded because they are
difficult to measure and evaluate from the source code alone.

A Framework for Measuring and Evaluating Program Source Code Quality 289

– Reusability: The extent to which a system or module-unit parts can be re-
used in a different environment. This is not regulated in ISO9126-1, but
considering its importance, particularly with respect to development effi-
ciency within the same problem domain, we have added it as another quality
characteristic separate from portability.

Next, we applied the Goal-Question-Metric (GQM) method[15], and assigned
a metric to each quality sub-characteristic in the quality model. The GQM
method is a goal-oriented method for mapping a goal to a metric by using a
question which must be evaluated in order to determine whether the goal has
been achieved or not. It is used within the framework to assign the metrics to
the quality characteristics being evaluated.

We posed questions so that the evaluation could be made independently of the
programming language of the source code being evaluated, and with the goals
being to measure and evaluate each of the quality sub-characteristics. Finally,
we narrowed down possible (programming-language dependent) metrics to those
which could provide answers to the questions by measured values. If a given ques-
tion was at a relatively high abstraction level, or was more removed from the
available programming-language-dependent metrics, we handled it by dividing
into sub-questions. In this way, the suite is structured in four layers, with the
goals and questions being independent of language, and the sub-questions and
metrics being basically language-dependent. This raises the reusability of the
framework by clearly separating the fixed part of the framework (i.e. common-
ality) from the part which may require modification (i.e. variability).

An excerpt from the suite is shown in Figure 31. The suite is made up of 47
questions, 101 sub-questions and 236 metrics. As metrics, we used those which
are supported by existing tools for the C programming language (such as QAC
and Logiscope), the degree of conformance to existing coding style guides for
the C language (such as MISRA-C[17] and IPA/SEC’s guide[18]), and other
metrics which seemed necessary for particular questions or sub-questions where
currently available measurement tools did not apply. 19% of the metrics could
not be measured using currently available tools. One such example is the very
specialized measurement, ”number of branches due to macros.” Further, 29%
of the questions (either directly or via sub-questions) could not be assigned a
metric at all. In the future, we will reduce or eliminate the proportion of metrics
and questions that are not covered by developing new measurement tools. A
selection of metrics from the full list is shown in Table 1. The table includes the
following details to help the evaluator understand each metric.

– Type of measurement scope: System (ID: MSyXXX), Directory (MMdXXX), File
(MFlXXX) or Function (MFnXXX).

– Type of rating level[19]: Threshold (quality is interpreted to be best when
the measurement value is a particular value, or within a particular range),
Minimal (the smaller the better) or Maximal (the larger the better).

1 The entire suite is published in [16].

290 H. Washizaki et al.

– Scale type[20]: Nominal, Ordinal, Interval, or Ratio.
– Programming language dependency type: Not (not dependent on language),

Not-OO (non-object-oriented language dependent), OO (dependent on
object-oriented language), C (C programming language), C++ (C++), or
C&C++ (C or C++).

Table 1. List of metrics used (excerpt)

ID Metric name Rating Scale Dependency

MSy021 Number of recursive passes Minimal Ratio Not
MMd027 Number of elements located directly below the directory Threshold Ratio Not
MFl003 ELOC Threshold Ratio Not
MFn072 Cyclomatic number Minimal Ratio Not

MFn066 Max. nesting depth in
control structure.
MFn072 Cyclomatic number.
MFn069 Estimated no. of static
paths.

Q3702 Is the logic
not too complex?

MFn095 Depth of layers in call
graph

Q3701 Is the
function-call nesting
not deep?

Q3700 Are the functions
not too complicated?

Purpose: Evaluate
Issue： the easiness of
identifying styles,
structure, behaviour and
parts for maintenance
Object: source code
Viewpoint: developer

Analysability
Maintainabilit
y

……………………Fault tolerance

Msy021: Number of recursive
paths.

Q0401: Is there not
any recursive call?

Q0400: Is it possible to
estimate the size of
resources to be used?

MMd027: Number of sub
elements
MMd008: Number of functions
MFl003: Effective number of
lines.

Q0201: Is the
number of partition
elements
appropriate?

Q0200: Is the scope not
too large?

…………

MFl134: Number of un-initialized
const objects.
MFl107: Number of arrays with
fewer initialization values than
elements.
MFl133: Number of strings which
do not maintain null termination.
MFl169: Number of enumerations
not adequately initialized.

Q0101 Has memory
been initialized
properly?

Q0100: Is the code not
prone to faults?

Purpose： Evaluate
Issue： the frequency of
faults
Object: source code
Viewpoint: end-user

Maturity
Reliability

MetricSub-questionQuestionGoalSub-characteristicCharacteristic

MFn066 Max. nesting depth in
control structure.
MFn072 Cyclomatic number.
MFn069 Estimated no. of static
paths.

Q3702 Is the logic
not too complex?

MFn095 Depth of layers in call
graph

Q3701 Is the
function-call nesting
not deep?

Q3700 Are the functions
not too complicated?

Purpose: Evaluate
Issue： the easiness of
identifying styles,
structure, behaviour and
parts for maintenance
Object: source code
Viewpoint: developer

Analysability
Maintainabilit
y

……………………Fault tolerance

Msy021: Number of recursive
paths.

Q0401: Is there not
any recursive call?

Q0400: Is it possible to
estimate the size of
resources to be used?

MMd027: Number of sub
elements
MMd008: Number of functions
MFl003: Effective number of
lines.

Q0201: Is the
number of partition
elements
appropriate?

Q0200: Is the scope not
too large?

…………

MFl134: Number of un-initialized
const objects.
MFl107: Number of arrays with
fewer initialization values than
elements.
MFl133: Number of strings which
do not maintain null termination.
MFl169: Number of enumerations
not adequately initialized.

Q0101 Has memory
been initialized
properly?

Q0100: Is the code not
prone to faults?

Purpose： Evaluate
Issue： the frequency of
faults
Object: source code
Viewpoint: end-user

Maturity
Reliability

MetricSub-questionQuestionGoalSub-characteristicCharacteristic

Fig. 3. Quality metrics suite (excerpt)

For example, Figure 3 gives several language-independent questions (e.g.
Q3700) which help to evaluate how easy the source code is to analyze. Q3700
is quite abstract and difficult to measure directly, so it is broken-down into sev-
eral sub-questions, including Q3701 and Q3702. Finally, metrics are assigned to
each sub-question to make it possible to obtain data to answer them. The single
metric, MFn095, is assigned to Q3701, and three metrics, MFn066, MFn072 and
MFn069, are assigned to Q3702. By making these assignments, source code qual-
ity can be evaluated in quality-sub-characteristic units from the measurement

A Framework for Measuring and Evaluating Program Source Code Quality 291

values. For example, it is clear in Table 1, that the measured value for the cy-
clomatic number of a function[21] can be used to evaluate the analysability of
the source code. Also, since the type of rating level for cyclomatic number is
”Minimal”, the smaller the measurement value is, the better the analysability is
for that part of the code.

(b) Technique and tool for deriving rating levels
In order to evaluate the permissible range of values for a particular quality
characteristic from the measurements obtained using the suite, a rating level for
each metric is required. Within the framework, such a rating level is derived
using a collection of existing program source codes (denoted as the “acceptable
set”) that are acceptable from a quality point of view.

If such codes are not available, the framework uses source codes (denoted
as the “after-improvement set”) to which some quality improvements have been
made while not altering the functionality, as an alternative to the acceptable set.
Due to tradeoffs between different quality characteristics, there might be quality
characteristics that have got worse compared to the before-improvement set,
among all characteristics. However, we think the after-improvement set can be
regarded approximately as an acceptable one, because some developers or clients
accepted the set instead of the corresponding before-improvement in fact.

Measurements were made on the acceptable set or the after-improvement
set, and rating levels of three different types were derived using the upper and
lower hinges (i.e. 75th and 25th percentiles) of the statistical distributions of
measurements from each metric as described below:

– Minimal: The rating level is below the upper hinge.
– Maximal: The rating level is above the lower hinge.
– Threshold: The rating level lies between the upper and lower hinges.

This derivation technique was implemented using spreadsheet software func-
tions on the Excel worksheet. We applied this technique to three quality-improved,
industrial embedded software S1, S2, S3 (automobile or internal printer software)
that we were able to obtain. The measurement values for programscale, before and
after quality improvements, for the total of six programs are shown in
Table 2. Comparing the programs before and after improvements, the improved
versions appear to be implemented with a larger number of functions but the num-
ber of lines of code in each function is smaller.

As an example of another metric, the distribution of results from metric
MFn072, “Cyclomatic number,” before and after improvement, are shown in

Table 2. Scale totals for samples used

Type Number of files Number of functions ELOC

Before improvement 603 3,269 174,650
After improvement 842 4,873 116,015

Total 1,445 8,142 290,665

292 H. Washizaki et al.

1 1 11 1 1

11

16

8.5

5

7

4

2
3

1
0

2

4

6

8

10

12

14

16

18

(All) Before
improvement

After
improvement

C
yc

lo
m

at
ic

nu
m

be
r

Fig. 4. MFn072 – Distribution of cyclomatic numbers (box-plot diagram)

Figure 4 as a box-plot diagram. In the box plot, the upper and lower edges
of the rectangle indicate the upper and lower hinges, the value in the box is
the median value, and the lines above and below the box give upper and lower
adjacents. Figure 4 shows that compared to the before-improvement set, the
after-improvement set tends to yield smaller values. Since the rating level type
for the cyclomatic number values is ”Minimal” (as shown in Table 1), the rating
level allows values below the upper hinge of 4.

(c) Normalization/aggregation tool
To achieve an overall quality evaluation, we aggregate the measurements from
the various metrics in the suite into quality-characteristic and module units by
normalizing each measurement value, using the rating level, to a value from 0
to 100. More specifically, if a measurement value falls within the rating level
as described above, it receives a score of 100. If it falls above the upper outer
fence (upper hinge + 3·H-Spread) derived from the improved code set or below
the lower outer fence (lower hinge - 3·H-Spread), it receives a score of zero. ”H-
Spread” (i.e. interquartile range) means the value of ”upper hinge - lower hinge”.
A linear graph between these outer fences for each metric is created, and scores
are interpolated linearly from the graph.

As an example, normalized values for measurements of the cyclomatic number
are shown in Figure 5. According to Figure 4, the upper hinge for the improved
code set is 4, and H-Spread is 3 (= 4-1), so a straight line from a measurement
value of 4 to the value 4 + 3 · 3 = 13 is drawn in the score graph in Figure 5.
Then, if the cyclomatic number is 2, the score taken from the graph is 100.

By transforming measurement values to normalized scores using a continuous,
linear score graph in this way, small changes are reflected intuitively in the
score, and values from different metrics can be compared with each other. It
is also conceivable to construct the measurement normalization graphs using
other forms such as non-linear curves or discontinuous step functions[22], but for
the purpose of understanding overall trends in how small measurement values
affect quality characteristics, these other graph types do not improve the results
significantly, so linear graphs were selected as most appropriate.

A Framework for Measuring and Evaluating Program Source Code Quality 293

void foo(int p) {
if (p < LIMIT) {
bar();

} else {
baz();

}
}

Example of function: foo
Measured value:
cyclomatic number = 2

Measured
value

100

0

Score

2

Measured score
= 100

Measurement Normalization 1 4 13

Rating
level

Upper hinge,
after improvement

Upper outer fence
(Upper hinge + H-Spread x 3)

Score graph

Fig. 5. Calculating the score for cyclomatic number

Next, a weighting is applied to each of the normalized scores, and they are
aggregated in quality-characteristic, sub-characteristic and module units. The
weighting mechanism allows for the influence of each of the questions or met-
rics to be adjusted but the standard settings simply use an even distribution
(i.e. simply take the average). The aggregation model which forms the basis for
aggregating the scores is shown as a UML class diagram in Figure 6. Also, the
constraints related to scores in Figure 6 are given below in OCL[23].

context CharacteristicResult
-- Score is a weighted sum of the scores from each of the sub-characteristics
inv: score = SubCharacteristicResult->iterate(c:SubCharacteristicResult;

result:Real=0 | result+c.score*c.SubCharacteristic.weight)
-- The total of all sub-characteristic weights is 1
inv: SubCharacteristicResult->SubCharacteristic->collect(weight)->sum() = 1
context SubCharacteristicResult
inv: Score=QuestionResult->iterate(q:QuestionResult;

result:Real=0 | result+q.score*q.Question.weight)
inv: QuestionResult->Question->collect(weight)->sum() = 1
context QuestionResult
inv: Score=MeasurementResult->iterate(m:MeasurementResult;

result:Real=0 | result+m.score*m.Metric.weight)
inv: MeasurementResult->Metric->collect(weight)->sum()=1
context MeasurementResult inv:
if underMeasurement.target <> Metric.target
-- Score is the average of the total of the same metric’s measurement
-- result scores of all of the target program module unit’s childs
score=underMeasurement->child->collect(MeasurementResult)->select(Metric.
id=self.Metric.id)->collect(score)->sum()/underMeasurement->child->size()
else
-- Score is equal to the measurement value normalized by using rating level
endif

An example of score calculation and aggregation based on the aggregation
model is shown as a UML object diagram in Figure 7. For simplicity, quality
characteristics and sub-characteristics, rating levels, directories and functions
have been omitted, and only evaluation of the reliability of the whole system,

294 H. Washizaki et al.

Characteristic
Result

Characteristic
Result

scorescore

SubCharacteristic
Result

SubCharacteristic
Result

scorescore

Question
Result

Question
Result
scorescore

MeasurementResultMeasurementResult

measuredValue
score
measuredValue
score

1* 1 *
1 *

* 1

sub

1 *

*

CharacteristicCharacteristic

namename
SubCharacteristicSubCharacteristic

score
weight
score
weight

GoalGoal QuestionQuestion

id
weight
id
weight

MetricMetric
id
target:{Sy, Md, Fl, Fn}
weight

id
target:{Sy, Md, Fl, Fn}
weight

RatingLevelRatingLevel

upperHinge
lowerHinge
upperHinge
lowerHinge

1 * 1 1 1..*

*

* 1

sub

1 *

1
1

1
*

1
*

1
*

1
*

ProgramModuleUnitProgramModuleUnit

SystemSystem

1

1*

1

child

target:{Sy, Md, Fl, Fn} target:{Sy, Md, Fl, Fn}

target=#Sytarget=#Sy
DirectoryDirectory

target=#Mdtarget=#Md
FileFile

target=#Fl target=#Fl
FunctionFunction

target=#Fn target=#Fn

underMeasurement

Fig. 6. Characteristic/module unit score calculation/aggregation model

S :SystemS :System

:MeasurementResult:MeasurementResult

score=40score=40

f1.c :Filef1.c :File

f2.c :Filef2.c :File

:CharacteristicResult:CharacteristicResult

score=71.25score=71.25
:QuestionResult:QuestionResult

score=52.5score=52.5

:QuestionResult:QuestionResult

score=90score=90

:CharacteristicResult:CharacteristicResult

score=85score=85
:QuestionResult:QuestionResult

score=85score=85
:MeasurementResult:MeasurementResult

score=100score=100

:MeasurementResult:MeasurementResult

score=70score=70

:CharacteristicResult:CharacteristicResult

score=20score=20
:QuestionResult:QuestionResult

score=20score=20
:MeasurementResult:MeasurementResult

score=30score=30

:MeasurementResult:MeasurementResult

score=10score=10

:MeasurementResult:MeasurementResult

score=65score=65

:MeasurementResult:MeasurementResult

score=90score=90

:Characteristic:Characteristic

name=Reliabilityname=Reliability
:Question:Question

id=Q0100id=Q0100

:Question:Question

id=Q0400id=Q0400

:Metric:Metric

id=MFl134id=MFl134

:Metric:Metric

id=MFl107id=MFl107

:Metric:Metric

id=MSy021id=MSy021

Scores at system level

Scores at file level

Scores at file level

Suite (excerpt)

Fig. 7. Example of calculating the score using the aggregation model

S, is shown. Further, the evaluation is made based on only two files, f1.c and
f2.c, and not on all directories. In Figure 7, the reliability score for S (71.25) is
calculated for two questions from the scores from three metrics. Since the metrics
MF1134 and MF1107 apply directly to the files, the average of the scores from
measurement values from f1.c and f2.c was used. Figure 7 shows that detailed
scores for each quality-characteristic or question can be obtained for the whole

A Framework for Measuring and Evaluating Program Source Code Quality 295

system or for individual module (file) units (e.g. the reliability score for f1.c
is 85). This normalization/aggregation technique has been implemented using
Excel macros.

(d) Visualization tool and example of use
We implemented a visualization tool which displays the scores obtained from
normalization and aggregation in module units for each quality characteristic,
and allows detailed inspection based on module-inclusion relationships. The tool
is implemented in Ruby and generates an evaluation report consisting of a col-
lection of linked HTML pages using the scores calculated in Excel. An example
is shown in Figure 8. The person evaluating the code can use the generated pages
to get a comprehensive understanding of quality trends from the module level
up to the overall system.

Fig. 8. Report examples (left: system/directory, right: characteristic in detail)

3.3 Applicable Scope of the Framework

Because the framework covers quality from the overall system down to a detailed
level, it can be used to evaluate quality over a wide range, from management
level down to the individual module developer. Specifically, the scores can be
used to identify and prioritize problematic characteristics or parts that need
quality improvements. Also, if a range of allowable scores (e.g. 75 to 100 points)
is set as an assessment criterion for an organization or project, scores can be
used as a non-functional requirement during the development or procurement
process.

The framework can be used in the following situations:

– Implementing or procuring C programs in the embedded software domain:
Entire framework can be reused.

– Implementing or procuring C programs in the non-embedded software do-
main: All of the framework except for the derived rating level described in
this paper can be reused if a collection of acceptable source code (or source
code to which some quality improvements have been made) is available in
the problem domain. If such a sample is not available, all of the framework

296 H. Washizaki et al.

except the rating level and technique for deriving a rating level can be reused,
and another technique for deriving a rating level can be incorporated in the
framework.

– Implementing or procuring programs in other languages: The goals and ques-
tions within the suite which are language independent can be reused.

4 Experimental Evaluation

In the following, we evaluate the validity and usefulness (especially quality im-
provement reflection capability) of the framework by using several real programs.

4.1 Validity of the Framework in Quality Evaluation

We evaluate the validity of the framework by comparing two evaluation results
for the same set of source codes: a qualitative evaluation by using a questionnaire,
and a quantitative evaluation by using the framework.

First, we created a table of questions to evaluate each quality sub-characteristic
with a four-level score (0, 50, 75 or 100 points), and applied it to the three em-
bedded software programs (S1, S2, S3) that were used to derive the rating level
in section 3.2. The programmer in charge of each program before improvements
or the person accepting the program after improvements was asked to perform
this qualitative evaluation by answering the questions. Table 3 shows the average
results of this evaluation in quality-characteristic units2. ”Before” and ”After” in
the table show the results for the code before and after quality improvements were
made. For two of the program, S1 and S2, the qualitative evaluation showed im-
provement for almost all quality characteristics.

Table 3. Qualitative quality results using the query table

Reliability Efficiency Maintainability Portability Reusability
Before After Before After Before After Before After Before After

S1 92 92 80 83 75 95 69 100 92 100
S2 59 79 67 71 54 78 76 88 60 83
S3 – 92 – 78 – 75 – 88 – 83

Next, we compared the results of the qualitative evaluation described above
with the quantitative results from the framework in order to verify the validity
of the framework. The quantitative evaluation results for each of the programs,
before and after improvement, are shown in Table 4. We examine the validity of
the framework for each quality characteristic below:

– Reliability, maintainability and reusability: As with the qualitative evalua-
tion results, the quantitative evaluation results for each of these characteristics

2 Due to some reasons, the before-improvement qualitative results for S3 were not
available.

A Framework for Measuring and Evaluating Program Source Code Quality 297

showed improvement, suggesting that the framework is valid for them. How-
ever, one program (S3) did not show improvement in reusability afterwards,
so it may be necessary to add additional metrics and corresponding quality
mappings.

– Portability: The quantitative result for programs S2 and S3 showed improve-
ment afterwards, so the framework may be useful for this evaluating this
quality characteristic. However, the improvement seen in the qualitative eval-
uation of S1 was not reflected in the quantitative evaluation, so it may be
necessary to adjust or add to the metrics or quality mappings used.

– Efficiency: For all programs, the quantitative evaluation results showed dif-
ferent tendencies than the qualitative evaluation results for before and after
quality improvements, suggesting that the metrics used were not appropri-
ate. One reason for this may be that it is fundamentally difficult to estimate
the final system’s efficiency by only using the source code[24]. We will need
to make revisions to the metrics used here.

From the above-mentioned results, it is found that the framework can be
used effectively to give quantitative evaluations of reliability, maintainability,
reusability and portability of source code.

Table 4. Quantitative quality evaluation results using the framework

Reliability Efficiency Maintainability Portability Reusability
Before After Before After Before After Before After Before After

S1 79 83 96 92 80 88 87 86 80 92
S2 88 99 99 96 74 89 94 96 0 95
S3 85 90 96 86 67 75 77 82 0 0

4.2 Quality Improvement Reflection Capability of the Framework

We used another embedded program which controls a Japanese shelf of gods for
verifying the quality improvement reflection capability of the framework. In an
earlier version, the program had maintenance problems such as the heavy use
of global variables and the very long main() function. To solve these problems,
we restructured the program by shifting global variables to non-global variables
(such as local variables) and by dividing long functions into small ones. The
excerpts of the programs before and after improvements are the following.

/*************** shrine.c, before improvements ***************/
extern int mic_threshold; extern int show_mic_value; ...
void main(void) {

MY_ADCSR.BYTE = 0x31; while(!MY_ADCSR.BIT.ADF);
PADDR = 0x7F; PADR.BIT.B2 = 0;
PADR.BIT.B3 = 0; PADDR = 0x0C | PADDR; ...

/*************** shrine.c, after improvements ***************/
int main() {

start_microphone(); init_switch(); init_motor(); ...

298 H. Washizaki et al.

Figure 9 shows the quantitative evaluation results using the framework for
each of the programs. The result of the after-improvement reflects a significant
improvement in maintainability since several metrics related to maintainability
provide different values. Regarding this example, it is found that the framework
has the quality improvement reflection capability. Note that efficiency has been
slightly decreased in the after-improvement due to the division of functions; this
is a typical example of tradeoff between maintainability and efficiency.

Fig. 9. Quantitative results using the framework for shrine.c

5 Conclusion and Future Work

In this paper, we propose a framework for evaluating the quality of program
source code in order to resolve several problems faced by existing techniques.
The framework focuses mainly on the C programming language and incorporates
a quality metrics suite, a normalization and aggregation tool, a rating level
derivation tool, and a set of actual rating levels. The framework is useful mainly
for evaluating the quality of C language source code in module units from a
detailed level up to whole systems and from individual quality sub-characteristics
up to overall system quality. It would also be possible to apply the framework
to source code in other languages by changing the sub-questions and metrics in
the measurement suite. We verified that the framework can be used effectively
to evaluate programs for reliability, maintainability, reusability and portability
by applying it to several embedded software programs.

In further research, we plan to re-examine the metrics for some of the quality
characteristics (particularly efficiency) to improve the accuracy of our quality
evaluation by investigating the relation between the internal measured values
(obtained by the framework) and possible external measurement values. Also,
by applying the framework to many more programs, we will investigate how
effective it is, and how it depends on the problem domain.

References

1. Ogasawara, H., et al.: Evaluating Effectiveness of Software Metrics, Union of
Japanese Scientists and Engineers, 20SPC Research subcommittee report (2004)

2. Chaudron, M.: Evaluating Software Architectures, http://www.win.tue.nl/
mchaudro/swads/

http://www.win.tue.nl/ mchaudro/swads/
http://www.win.tue.nl/ mchaudro/swads/

A Framework for Measuring and Evaluating Program Source Code Quality 299

3. Sindre, G., et al.: The REBOOT Approach to Software Reuse, Journal of Systems
and Software, 30(3) (1995)

4. Bansiya, J., Davis, C.G.: A Hierarchical Model for Object-Oriented Design Quality
Assessment, IEEE Transactions on Software Engineering, 28(1) (2002)

5. Supervised by Kanno, A., et. al.: Software quality maintenance technology for the
21st Century, Union of Japanese Scientists and Engineers (1994)

6. Ortega, M., et al.: Construction of A Systematic Quality Model for Evaluating A
Software Product, Software Quality Journal, 11(3) (2003)

7. Monden, A.: A Study of Data Collection using EPM and Analysis using GQM. In:
4th Empirical Software Engineering Workshop (2005)

8. ISO/IEC TR 9126-3: Software engineering – Product quality – Part 3: Internal
metrics (2003)

9. ISO/IEC 9126-1: Information technology – Software product evaluation: Quality
Characteristics and Guidelines for their use (2001)

10. ISO/IEC 14598-1: Information technology – Software product evaluation: Part 1:
General overview (1998)

11. Washizaki, H., et al.: A Metrics Suite for Measuring Reusability of Software Com-
ponents. In: Proc. 9th IEEE International Software Metrics Symposium (2003)

12. Hirayama, M., et al.: Evaluating Usability of Software Components, Information
Processing Society of Japan Journal, 45(6) (2004)

13. Programming Research Ltd.: QAC, http://www.programmingresearch.com/
14. Telelogic: Logiscope, http://www.telelogic.com/corp/products/logiscope/
15. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineering

Data, IEEE Transactions on Software Engineering, 10(6) (1984)
16. http://www.ogis-ri.jp/solution/QAFramework.html
17. The Motor Industry Software Reliability Association: MISRA-C: 2004 – Guidelines

for the use of the C language in critical systems (2004), http://www.misra-c2.com/
18. IPA/SEC: C-Language Coding best practices for Embedded software Guide,

Shoeisha Inc. (2006)
19. Emi, K., Lewerentz, C.: Applying Design-Metrics to Object-Oriented Frameworks.

In: Proc. 3rd IEEE International Software Metrics Symposium (1996)
20. ISO/IEC 15939:2002, Software engineering – Software measurement process (2002)
21. McCabe, T.J., Watson, A.H.: Software Complexity, Crosstalk, Journal of Defense

Software Engineering, 7(12) (1994)
22. Kazman, R., et al.: Making Architecture Design Decisions: An Economic Approach,

CMU/SEI-2002-TR-035 (2002)
23. OMG: UML 2.0 OCL Specification, http://www.omg.org/docs/ptc/05-06-06.pdf
24. Washizaki, H., et al.: Experiments on Quality Evaluation of Embedded Software

in Japan Robot Software Design Contest. In: Proc. 28th International Conference
on Software Engineering (ICSE 2006), pp.551–560 (2006)

http://www.programmingresearch.com/
http://www.telelogic.com/corp/products/logiscope/
http://www.ogis-ri.jp/solution/QAFramework.html
http://www.misra-c2.com/
http://www.omg.org/docs/ptc/05-06-06.pdf

Software Fault Prediction with Object-Oriented

Metrics Based Artificial Immune Recognition
System

Cagatay Catal1 and Banu Diri2

1 TUBITAK-Marmara Research Center, Information Tech. Ins., 41470 Turkey
cagatay.catal@bte.mam.gov.tr

2 Yildiz Technical University, Computer Engineering Dept., 34349 Turkey
banu@ce.yildiz.edu.tr

Abstract. Software testing is a time-consuming and expensive process.
Software fault prediction models are used to identify fault-prone classes
automatically before system testing. These models can reduce the testing
duration, project risks, resource and infrastructure costs. In this study,
we propose a novel fault prediction model to improve the testing process.
Chidamber-Kemerer Object-Oriented metrics and method-level metrics
such as Halstead and McCabe are used as independent metrics in our
Artificial Immune Recognition System based model. According to this
study, class-level metrics based model which applies AIRS algorithm can
be used successfully for fault prediction and its performance is higher
than J48 based approach. A fault prediction tool which uses this model
can be easily integrated into the testing process.

1 Introduction

Software systems are becoming more and more complex and people’s quality ex-
pectations are increasing. Therefore, it is necessary to manage these expectations
as an engineering discipline called Software Quality Engineering [1]. Software
Quality Engineering consists of many Quality Assurance activities and an im-
portant subset of them is testing. Other subsets are fault prevention, inspection,
fault tolerance, formal verification and fault prediction.

These subsets can detect many software problems and even improve software
testing process. Improvements in the testing process will reduce development life-
cycle, project risks, resource and infrastructure costs. Because testing process
is time-consuming and expensive, we may anticipate this problem with fault
prediction models. These models provide a test strategy by focussing on fault-
prone modules and testing duration decreases with this approach. In this study,
we propose a novel fault prediction model to improve the testing process. Our
goal is to predict the classes that will contain faults at the next release of an
Object-Oriented System.

Current software metrics and defect data are used to construct the prediction
model for the next release of software. Most of the datasets which locate in

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 300–314, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Software Fault Prediction with Object-Oriented Metrics 301

PROMISE repository [2] have been collected at NASA as a part of Software
Metrics Data Program for development projects. In this study, we have used
datasets from this repository to construct our fault prediction model.

Metrics are independent variables and the fault-proneness of module is the
dependent variable. Process or product metrics can be used for independent
variables but mostly product metrics are used. Method-level and class-level
metrics are two different metrics groups inside product metrics. Actually, Object-
Oriented programming and procedural programming can benefit from method-
level metrics because these programming paradigms have methods. In this study,
class-level and method-level metrics have been used.

We use Object-Oriented metrics from Chidamber-Kemerer (CK) metrics suite
[3] and we desire to enhance the performance of our prediction model with these
metrics. Genetic Programming, Decision Trees, Neural Networks, Case-based
Reasoning, Fuzzy Logic, Logistic Regression and Discriminant Analysis have
been applied effectively for software fault prediction. As method-level metrics,
Object-Oriented metrics are widely used for fault prediction and recent studies
focused on these metrics [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], and [14].

In this paper, we applied class-level metrics and method-level metrics for AIRS
based fault prediction model. We also investigated each of CK metrics within
our proposed model. Our aim is not validating individual metrics, but applying
AIRS to build a better fault prediction model. Furthermore, we used different
statistical techniques such as correlation-based feature selection technique to
select relevant features and investigated the power of the model. In addition,
this study indicates that OO metrics are more useful than traditional metrics
for our proposed model. Performance criteria shows that our model which uses
CK metrics and lines of code provides better prediction capability than other
models given in literature. According to experimental results, the performance of
our prediction model is remarkable. This study is a part of our on-going research
on software quality modeling and we aim to reach our vision by using Artificial
Immune Systems paradigm.

This paper is organized as follows: the following section presents datasets and
OO metrics. Section 3 describes evaluation criteria. Section 4 introduces natural
and artificial immune systems. Section 5 provides experimental results. Section 6
presents conclusions and future works.

2 Metrics and Dataset

Chidamber-Kemerer OO metrics have been proposed in 1994 [3]. They have
been used by many tool vendors and researchers . This study uses six Object-
Oriented metrics of CK metrics. Also, we tried to get benefit from four more
class level metrics too. Koru et al. [15] identified these four metrics for KC1
project, Percent Pub Data, Access To Pub Data, Dep On Child, and Fan In. We
have also attempted to take advantage from traditional method-level metrics
which are based on Halstead and McCabe metrics. McCabe is interested in the
complex pathways and Halstead focuses on the readiness of the source code.

302 C. Catal and B. Diri

KC1 dataset has method-level metrics and Koru et al. [15] converted them
into class-level ones using minimum, maximum, average and sum operations.
Therefore, 21 method-level metrics were converted into 84 class-level metrics. We
had 84 metrics from method-level metrics transformation and 10 metrics from
class-level metrics. Transformed metrics are shown in Table 1. Object-Oriented
metrics are Percent Pub Data, Access To Pub Data, Dep On Child, Fan In,
Coupling Between Obj, Depth Of Inheritance Tree, Lack Of Cohes Of Methods,
Num Of Children, Response For Class, and Weighted Method Per Class.

Object-Oriented metrics which have been used in this study are described
below [4], [2]:

– WMC (Weighted Methods per Class) is # of methods which locate in each
class.

– DIT (Depth of Inheritance Tree) is the distance of the longest path from a
class to the root in the inheritance tree.

– RFC (Response for a Class) is # of methods which can be executed to
respond a message.

– NOC (Number of Children) is # of classes which are direct descendants for
each class.

– CBO (Coupling Between Object Classes) is # of different non-inheritance-
related classes to which a class is coupled.

– LCOM (Lack of Cohesion in Methods) is related to the access ratio of at-
tributes.

– Percent Pub Data is the percentage of data which is public or protected.
– Access To Pub Data is the amount of public or protected data access for a

class.
– Dep On Child shows whether a class is dependent on a descendant or not.
– Fan In is the number of calls by higher modules.

WMC, DIT, RFC, NOC, CBO, and LCOM belong to Chidamber and Kemerer
[3] suite. In 1996, Basili et al. [10] studied these metrics. Rosenberg et al. [16]
suggested six CK metrics plus cyclomatic complexity, lines of code, and comment
percentage for reliability assessment. In 1999, Briand et al. [17] observed that
CBO, RFC and LCOM are considerably correlated for fault-proneness of classes
by using logistic regression. In 2000, Briand et al. [12] explored the impact of
lines of code metric (SLOC) and concluded that CBO, RFC, DIT, SLOC, NOC
are important metrics for fault prediction. In 2001, Briand et al. [18] reported
that NOC is not significant and this study is contradictory with his previous
research. Tang et al. [19] reported that DIT, NOC, CBO are not significant and
only WMC, RFC are significant. Yu et al. [13] showed that WMC, SLOC, CBO,
RFC, LCOM, NOC are significant but DIT is not important for fault prediction.
Gyimothy et al. [5] resulted that NOC is not significant but SLOC and other CK
metrics are significant for fault prediction. Zhou et al. [4] showed that except
DIT all the other CK metrics and SLOC are significant. According to previous
studies, we can say that most of these studies used logistic regression, and WMC,
RFC, CBO are almost found to be significant for fault prediction [4].

Software Fault Prediction with Object-Oriented Metrics 303

Table 1. Transformed Metrics

Attributes Information
loc McCabe’s line count of code
v(g) McCabe’s cyclomatic complexity
ev(g) McCabe’s essential complexity
iv(g) McCabe’s design complexity
n Halstead total operators + operands
v Halstead volume
l Halstead program length
d Halstead difficulty
i Halstead intelligence
e Halstead effort
b Halstead
t Halstead’s time estimator
lOCode Halstead’s line count
lOComment Halstead’s count of lines of comments
lOBlank Halstead’s count of blank lines
lOCodeAndComment Lines of comment and code
uniq Op Unique operators
uniq Opnd Unique operands
total Op Total operators
total Opnd Total operands
branchCount Branch count of the flow graph

3 Performance Measurement Criteria

Faults in software systems exist in small portions of components and this in-
formation has been confirmed in many researches [20], [21]. Therefore, datasets
which are studied for software fault prediction model are skewed. PROMISE
repository has some fault datasets from NASA projects and the largest one,
JM1, has 19% faulty modules. 15% of KC1, 7% of PC1, 21% of KC2 and 10% of
CM1 have faults. ROC (receiver operating characteristics) analysis can be used
for these datasets but it has some limitations. Researchers still study on different
measurement techniques for skewed datasets and F-measure is the most popu-
lar one. Different criteria and non-public datasets prevent software engineering
community to find the best prediction model and make it difficult to compare
the models. Recently Ma et al. [22] used G-mean1, G-mean2 and F-measure
in order to benchmark different machine learning algorithms. In this study, we
use these performance indicators to evaluate our model. Some researchers use
sensitivity and specificity indicators to assess their models [23]. El-Emam et al.
[24] suggested using J coefficient of Youden [25] for binary classifiers in software
engineering. El-Emam et al. [23] calculated the AUC (area under curve) from
ROC curve. If AUC is about 1.0, that model is said be perfect for classification.
Recently, many researchers started to apply F-measure in order to benchmark
and assess software fault prediction models [15], [22]. We constructed our model
using past project metrics from KC1 project and tested using cross-validation.

304 C. Catal and B. Diri

After cross-validation, we built the confusion matrix given in Table 2 and then
computed the performance indicators (G-mean1, G-mean2, F-measure) using
following formulas. ROC analysis uses confusion matrix and formulas use values
from this matrix.

Table 2. Confusion Matrix

NO(Predicted) YES(Predicted)
NO(actual) True Negative (TN) False Positive (FP)
YES(actual) False Negative (FN) True Positive (TP)

Faulty modules are regarded as positive (YES) and faulty-free modules are
regarded as negative (NO). In this study, we computed following performance
indicators and their formulas are given below [22]:

– Recall (PD): Recall is the percentage of fault-prone modules that are classi-
fied correctly and it is computed using Equation 1.

Recall =
TP

TP + FN
(1)

– Accuracy: Accuracy is the likelihood of correctly predicted number of mod-
ules and it is computed using Equation 2.

Accuracy =
TP + TN

TP + FN + FP + TN
(2)

– TNR: TNR is the ratio of correctly predicted faulty-free modules and it is
computed using Equation 3.

TNR =
TN

TN + FP
(3)

– Precision: TNR is the fraction of faulty modules that are actually faulty and
it is computed using Equation 4.

Precision =
TP

TP + FP
(4)

– G-mean1 and G-mean2: These indicators are recently used for benchmarking
and they are computed using Equation 5 and Equation 6.

G − mean1 = sqrt(PD ∗ Precision) (5)

G − mean2 = sqrt(PD ∗ TNR) (6)

– F-measure: This indicator is the harmonic average of Precision and PD.

Ma et al. [22] investigated various machine learning algorithms for fault predic-
tion and they used G-mean1, G-mean2 and F-measure in order to benchmark.
In this study, we calculate them after 10-fold cross-validation.

Software Fault Prediction with Object-Oriented Metrics 305

4 Immune Systems and Artificial Immune Recognition
Systems

4.1 Natural Immune Systems

Immune system has two mechanisms that interact with each other. The first
one is the innate immune system and there is no need to interact with the rel-
evant pathogen in the past for this type of mechanism [26]. The second one
is the adaptive immune system which enhances its ability in order to detect
more pathogens after the interaction. Lymphocytes are classified as B-cells and
T-cells. Each lymphocyte can bind to a particular invader which is known as
antigens. B-cells are antibody-secreting cells and T-cells kill antigens [27]. The
similarity degree between B-cell and antigen is called affinity. If the antigen is
detected by B-cell, B-cell is cloned with a process which is called clonal expan-
sion. These clones are mutated using somatic hypermutation process according
to the affinity level. Some of these clones are differentiated into B memory cells
in order to respond rapidly for the next attack from same invader and there-
fore immune system is said to have memory feature. Furthermore, best fitting
clones with antigens survive and this process is known as clonal selection. Dis-
tributed control, learning by experience, adaptation and parallel processing are
main features of immune systems.

4.2 Artificial Immune Systems

Neural Networks, Evolutionary Computation, Genetic Algorithms, Swarm Intel-
ligence, Ant Optimization and Artificial Immune Systems are examples of bi-
ologically inspired computing paradigms. Artificial Immune Systems (AIS) are
machine learning algorithms which inspire from vertebrate immune systems to
solve complex problems. They have been used for pattern recognition, computer
security, function optimization, robotics, scheduling, aircraft control, data min-
ing and anomaly detection problems [28]. Some researchers in AIS community
studied on immune network theory [29], [30] which has been proposed by Jerne
[31] even though immunologists refuted this theory [32]. Timmis et al. [30] de-
veloped a resource limited artificial immune systems and used the term artificial
recognition ball (ARB) to represent the collection of similar B cells. When each
antigen is presented to the ARB, cells acquire resources based on the stimula-
tion value but resources are limited. Therefore, least stimulated cells are removed
until the numbers of distributed resources are smaller than the allowable num-
ber. This approach has also been used by Watkins [28] for Artificial Immune
Recognition System (AIRS) algorithm but Watkins [28] did not use network
representation. Another interesting mechanism in immune system is negative
selection. Natural immune systems destroy antibodies that bind to self cells us-
ing negative selection. Otherwise, some proteins of human body can be detected
as invader by some antibodies and autoimmunity problem can occur. Forest et
al. [33] imitated this mechanism and proposed an algorithm which has three
steps: describe self, produce detector and observe anomalies [27]. This algorithm

306 C. Catal and B. Diri

has been used to detect computer viruses. The other mechanism is clonal selec-
tion and De Castro et al. used this process to propose an algorithm which is
called CLONALG [34]. Clonal selection process includes recognition of antigen,
cloning, mutation and differentiation to memory cells. Even though CLONALG
looks like evolutionary algorithms, very distinct features exist such as working
with binary representation.

4.3 Artificial Immune Recognition Systems (AIRS) Algorithm

Most of studies in AIS have focused on unsupervised learning algorithms until
2001 and Watkins [28] decided to show that artificial immune systems could
be used for classification problems. The only exception was Carter’s study [35]
that proposed a classification system based on AIS in 2000 and his approach
was complex. Watkins [28] demonstrated that AIS which uses supervised learn-
ing could be used for classification problems [36]. This algorithm uses resource-
limited approach of Timmis et al. study [30] and clonal selection principles of De
Castro et al. [34] study. After first AIRS algorithm, some researchers proposed a
modified AIRS which has a better complexity and a few decreasing in accuracy
[37]. Watkins [38] also developed a parallel AIRS. AIRS algorithm has powerful
features which are listed below [39]:

– Generalization: It does not need all the dataset for generalization and it has
data reduction capability.

– Parameter Stability: Even though user-defined parameters are not optimized
for the problem, reduction of its performance is very small.

– Performance: It has been demonstrated that its performance is best for some
datasets and remarkable.

– Self-regulatory: There is no need to choose a topology before training.

AIRS algorithm has 5 steps: Initialization, antigen training, competition for
limited resource, memory cell selection and classification [39]. First step and last
step is applied just one time but step 2, 3, 4 are used for each sample in dataset.
Sample is called antigen for AIRS algorithm. Brownlee [39] coded this algorithm
for Java language and now it is accessible from wekaclassalgos.sourceforge.net
website. Activity diagram of this algorithm is given in Figure 1. Details of the
algorithm are given below but more detail can be accessed through source code
which is distributed with GPL (General Public License) license.

– Initialization: Dataset is prepared for training step. Affinity Threshold vari-
able is constructed.

– Antigen Training : Antigens (training data) are presented to the memory
pool one by one. Recognition cells in memory pool are stimulated and given
a stimulation value. The recognition cell which has a maximum stimulation
value is selected as the best match memory cell and used for affinity mat-
uration process. This cell is cloned and mutated. Clones are added to the
Artificial Recognition Ball (ARB) pool. The number of clones is calculated

Software Fault Prediction with Object-Oriented Metrics 307

using Equation 8. Equation 7 shows how to calculate stim value. ClonalRate
and hyperMutationRate are user-defined parameters.

stim = 1 − affinity (7)

numClones = stim ∗ clonalRate ∗ hypermutationRate (8)

– Competition for limited resource: Competition begins when mutated clones
are added to the ARB pool. ARB pool is stimulated with antigen and lim-
ited resource is assigned according to stimulation values. ARBs which do
not have enough resources are thrown from pool. If stopping criteria is sat-
isfied, process stops. Otherwise, mutated clones of ARBs are generated and
recursion goes on until stopping criteria is met.

– Memory cell selection: In previous step, when stopping criteria is met, ARB
which has a maximum stimulation score is chosen as candidate memory cell.
If ARB’s stimulation value is better than the original best matching memory,
ARB is copied to the memory cell pool.

– Classification: Learning process is finished before this step starts. Final mem-
ory cell pool is used for cross-validation or testing new data. K-nearest neigh-
bor (k-nn) approach is applied in this step.

5 Experimental Results

AIRS has been used for fault prediction on NASA public datasets by Catal
et al. [40]. AIRS algorithm along with the Correlation Based Feature Selection
technique provides high performance for large scale projects. Catal et al. [40]
did not use Object-Oriented (OO) Metrics but applied method-level metrics.
This study uses OO metrics for AIRS based prediction model. Significant OO
metrics and best combination of OO metrics have been identified in this study.
The significance level of each OO metric is based on the performance of AIRS
based model and performance indicators are G-mean1, G-mean2 and F-measure.
Results are shown in Table 3. According to the Table 3, AIRS based fault pre-
diction model which applies the combination of CK metrics with lines of code
metric has better prediction performance than other AIRS based models which
use other independent variables.

In Table 3, we can see that DIT is the only metric which is not significant for
fault prediction when threshold level for performance indicators is chosen 0.5.
The indicators of other CK metrics are higher than 0.5 when AIRS based model
uses k as 1 or 3. This empirical result is consistent with Zhou et al.’s study
[4] which applied Univariate Logistic Regression in order to identify significant
metrics for the same dataset. They stated that DIT is the only metric which is
not significant according to their ungraded severity faults analysis. Even though
our approach is based on the performance indicators of our prediction model,
results are same. Tang et al. [19], Yu et al. [13] and El Emam et al. [8] showed
that DIT is not significant using logistic regression, ordinary least square linear
regression and logistic regression respectively.

308 C. Catal and B. Diri

Fig. 1. This diagram shows the activity diagram of AIRS algorithm

According to Table 3, we can conclude that CBO metrics is the most sig-
nificant CK metrics because of its highest performance indicators. Again this
important result is consistent with Zhou et al. study [4] which states that CBO

Software Fault Prediction with Object-Oriented Metrics 309

Table 3. Experimental results with AIRS for kc1-class-level file

Inputs k PD ACC Prec G-1 G-2 F
WMC 1 0.548 0.538 0.506 0.527 0.545 0.526
WMC 3 0.504 0.517 0.576 0.539 0.505 0.538
DIT 1 0.470 0.469 0.459 0.465 0.471 0.465
DIT 3 0.508 0.496 0.447 0.476 0.507 0.475
RFC 1 0.472 0.476 0.506 0.488 0.469 0.488
RFC 3 0.570 0.565 0.553 0.561 0.568 0.561
NOC 1 0.517 0.503 0.447 0.481 0.515 0.480
NOC 3 0.510 0.552 0.729 0.610 0.518 0.600
CBO 1 0.639 0.683 0.765 0.690 0.672 0.696
CBO 3 0.594 0.627 0.706 0.647 0.615 0.645
LCOM 1 0.520 0.524 0.541 0.530 0.520 0.530
LCOM 3 0.541 0.524 0.471 0.505 0.536 0.503
SLOC 1 0.558 0.545 0.506 0.532 0.553 0.531
SLOC 3 0.579 0.552 0.482 0.528 0.568 0.526
6 CK metrics 1 0.633 0.662 0.718 0.674 0.653 0.673
6 CK metrics 3 0.646 0.676 0.729 0.686 0.667 0.685
SLOC + 6 CK metrics 1 0.653 0.655 0.659 0.656 0.654 0.656
SLOC + 6 CK metrics 3 0.712 0.724 0.741 0.726 0.721 0.726
94 metrics 1 0.613 0.662 0.765 0.685 0.649 0.681
94 metrics 3 0.631 0.669 0.741 0.684 0.658 0.682
10 OO metrics 1 0.590 0.614 0.671 0.629 0.604 0.628
10 OO metrics 3 0.621 0.641 0.682 0.651 0.634 0.650
SLOC + 10 OO metrics 1 0.650 0.662 0.682 0.666 0.658 0.666
SLOC + 10 OO metrics 3 0.676 0.710 0.765 0.719 0.702 0.718
cfsSubsetEvaluated metrics 1 0.690 0.710 0.741 0.715 0.705 0.715
cfsSubsetEvaluated metrics 3 0.669 0.696 0.741 0.704 0.689 0.703
consistencySubsetEvaluated metrics 1 0.647 0.690 0.765 0.704 0.679 0.701
consistencySubsetEvaluated metrics 3 0.640 0.676 0.741 0.689 0.666 0.687
SLOC, WMC, RFC, NOC, CBO, LOCM 1 0.633 0.662 0.718 0.674 0.653 0.673
SLOC, WMC, RFC, NOC, CBO, LOCM 3 0.659 0.690 0.741 0.699 0.681 0.698

Fig. 2. Performance effect of each CK metrics for AIRS based model

310 C. Catal and B. Diri

Table 4. Experimental results for kc1 file with AIRS and other techniques

Methods PD ACC Prec G-1 G-2 F
Logistic 0.752 0.711 0.317 0.488 0.727 0.446
Discriminant 0.638 0.790 0.390 0.499 0.722 0.484
Tree 0.193 0.848 0.523 0.318 0.432 0.282
RuleSet 0.187 0.852 0.564 0.325 0.427 0.281
Boosting 0.169 0.862 0.732 0.352 0.409 0.275
KStar 0.509 0.855 0.532 0.521 0.684 0.520
VF1 0.957 0.195 0.156 0.387 0.231 0.269
RF (0.9,0.1) 0.844 0.711 0.330 0.528 0.761 0.475
RF (0.8,0.2) 0.700 0.782 0.387 0.520 0.747 0.498
RF (0.7,0.3) 0.561 0.825 0.447 0.501 0.700 0.498
AIRS1 (k=3) 0.634 0.746 0.298 0.435 0.586 0.405
cfs-AIRS1(k=3) 0.692 0.763 0.368 0.504 0.628 0.480
cfs-AIRS1(k=1) 0.589 0.660 0.426 0.501 0.569 0.494
pca-AIRS1(k=3) 0.563 0.653 0.383 0.464 0.548 0.456
pca-AIRS1(k=1) 0.574 0.634 0.448 0.507 0.561 0.503
cse-AIRS1(k=3) 0.708 0.773 0.374 0.515 0.638 0.489
cse-AIRS1(k=1) 0.647 0.715 0.426 0.525 0.609 0.514

Table 5. Benchmark of our model with Koru et al.[15] for kc1-class-level-data

Dataset Algorithms and Inputs Class Type Prec Recall F
kc1-class-level-data J48, 94 metrics HR 0.62 0.68 0.65

J48, 94 metrics LMR 0.76 0.71 0.73
kc1-class-level-data k=3 for AIRS and SLOC, WMC,

DIT, RFC, NOC, CBO, LCOM HR 0.66 0.70 0.68
k=3 for AIRS and SLOC, WMC,
DIT, RFC, NOC, CBO, LCOM LMR 0.78 0.74 0.76

kc1-class-level-data J48 and SLOC, WMC, DIT, RFC,
NOC, CBO, LCOM HR 0.63 0.63 0.63
J48 and SLOC, WMC, DIT, RFC,
NOC, CBO, LCOM LMR 0.74 0.74 0.74

is the most important CK metric according to the R2 value. R2 value shows
the effect of the independent variables in Univariate Analyses. However, they
identified that SLOC has higher R2 value than CBO. Therefore, SLOC is more
important metric than CBO according to their analyses but this is not true for
our study. Even though there is a difference at this point, two studies result that
CBO is the most significant metric in CK metrics suite. In Figure 2, performance
effects of them are shown.

According to Koru et al. [15], class-level data provide better prediction perfor-
mance than method-level data. We also compared some prediction models which
use method-level data with our new model which uses class-level data. KC1
defect dataset which has only method-level metrics were used by Catal et al.
[40] and results are shown in Table 4. This table has also experimental result

Software Fault Prediction with Object-Oriented Metrics 311

from Ma et al.’s study [22] which proposes Random Forests for software defect
prediction. Even though best prediction model, RF, with method-level data is
used, its performance indicators are lower than our new AIRS based model for
class-level data. We can conclude that the usage of class-level data rather than
method-level one improves the prediction performance for our model. Koru et al.
[15] obtained better prediction performances with J48 and KStar for kc1-class-
level dataset. Furthermore, they stated that comparing various algorithms is not
their main purpose.

Our next step for our experiments is to compare our new AIRS based model
with results of Koru et al. [15] study because we used the same dataset with
their study. Their performance indicators are Precision, Recall and F-measure
and therefore we computed these values for our experiments. The comparative
results are shown in Table 5. Our AIRS based prediction model provides higher
F-measure values, 0.68 and 0.76, than J48 based model for both HR and LMR
classes. Because metrics were different for two approaches, we computed the
performance of J48 technique with same metrics we used in our model. The
last two lines in Table 5 show these results. According to the F-measure values
in Table 5, we can conclude that AIRS based prediction model with six CK
metrics and lines of code provide better prediction performance than J48 based
prediction approach.

6 Conclusions and Future Work

Software testing process is an expensive one and it needs to be improved. Fault
prediction models can reduce the testing duration, resource and infrastructure
costs. Previous studies used different techniques to construct such a model but
our aim is to use the Artificial Immune Systems paradigm which provides re-
markable results in many complex problems such as intrusion detection.

In this study, we created our model using Artificial Immune Recognition Sys-
tem (AIRS) algorithm which is a supervised learning one. First, we tried to apply
individual Object-Oriented metrics as independent variables for AIRS. Then, we
tried several combinations of Object-Oriented (OO) metrics with method-level
metrics. OO metrics with lines of code metric provided a better prediction per-
formance than other combinations. The acquired results are remarkable for our
Fault Prediction Research Program. We believe that the experimental results will
give an impetus to us for our on-going research on software quality prediction.

This paper makes a number of contributions: First, we show new evidence
which points out the association between six CK metrics and fault-proneness
for AIRS based fault prediction models. Furthermore, we identified the signif-
icance level of CK metrics and results were consistent with other studies in
literature. DIT was not significant and CBO was very significant for our model
as in literature. Second, as a new model, we propose an AIRS based fault-prone
module classification system with Object-Oriented metrics. Third, we show new
evidence that class-level data is better than method-level data. Last, we present
the effectiveness of our model and compare it with J48.

312 C. Catal and B. Diri

One drawback of our study as Zhou et al. [4] study is the use of a single
project dataset because there are no more public NASA datasets in PROMISE
repository as kc1 which has OO metrics. For the future, we will try to develop a
prediction model that can be used when there is no previous fault or metrics data
for a software system. When there is no previous data about metrics or fault,
this classification problem (faulty or not-faulty) can be thought as a clustering
problem. After constructing clusters, an expert is needed to give a label to each
cluster. Clustering approach with expert opinion will not be a fully automated
process but it will facilitate the testing process when there is no previous fault
data for a software system.

References

1. Tian, J.: Software Quality Engineering: Testing, Quality Assurance, and Quantifi-
able Improvement. John Wiley and Sons Inc, Hoboken (2005)

2. Sayyad, S.J., Menzies, T.J.: The PROMISE Repository of Software Engineer-
ing Databases, University of Ottawa, Canada (2005), http://promise.site.
uottawa.ca/SERepository

3. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object-Oriented Design.
IEEE Trans. on Software Eng 20(6), 476–493 (1994)

4. Zhou, Y., Leung, H.: Empirical Analysis of Object-Oriented Design Metrics for
Predicting High and Low Severity Faults. IEEE Trans. on Software Eng 32(10),
771–789 (2006)

5. Gyimothy, T., Ference, R., Siket, L.: Empirical Validation of Object-Oriented
Metrics on Open Source Software for Fault Prediction. IEEE Trans. on Software
Eng. 31(10), 897–910 (2005)

6. Subramanyan, R., Krisnan, M.S.: Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity. IEEE Trans. on Software Eng. 29(4), 297–310 (2003)

7. Alshayeb, M., Wei, L.: An Empirical Validation of Object-Oriented Metrics in
Two Different Iterative Software Processes. IEEE Trans. on Software Eng. 29(11),
1043–1049 (2003)

8. El Emam, K., Benlarbi, S., Goel, N., Rai, S.N.: The Confounding Effect of Class
Size on the Validity of OO Metrics. IEEE Trans. on Software Eng. 27(7), 630–650
(2001)

9. Chidamber, S.R., Darcy, D.P., Kemerer, C.F.: Managerial Use of Metrics for
Object-Oriented Software: An Exploratory Analysis. IEEE Trans. on Software
Eng. 24(8), 629–639 (1998)

10. Basili, V.R., Briand, L.C., Melo, W.L.: A Validation of Object-Oriented Design
Metrics as Quality Indicators. IEEE Trans. on Software Eng. 22(10), 751–761
(1996)

11. Succi, G., Pedrycz, W., Stefanovic, M., Miller, J.: Practical Assessment of the
Models for Identification of Defect-Prone Classes in Object-Oriented Commercial
Systems Using Design Metrics. J. Systems and Software 65(1), 1–12 (2003)

12. Briand, L.C., Wust, J., Daly, J.W., Porter, D.V.: Exploring the Relationships be-
tween Design Measures and Software Quality in OO Systems. J. Systems and
Software 51(3), 245–273 (2000)

13. Yu, P., Systa, T., Muller, H.: Predicting Fault-Proneness Using OO Metrics. In:
Proc. Sixth European Conf. Software Maintenance and Reeng. pp. 99–107 (2002)

http://promise.site.uottawa.ca/SERepository
http://promise.site.uottawa.ca/SERepository

Software Fault Prediction with Object-Oriented Metrics 313

14. Briand, L.C., Melo, W.L., Wust, J.: Assessing the Application of Fault-Proneness
Models Across OO Software Projects. IEEE Trans. on Software Eng. 28(7),
706–720 (2002)

15. Koru, A.G., Liu, H.: An Investigation of the Effect of Module Size on Defect Pre-
diction Using Static Measures. In: Int’l Workshop on Predictor Models in Software
Engineering, Missouri, USA, pp. 1–5 (2005)

16. Rosenberg, L., Stapko, R., Gallo, A.: OO Metrics for Reliability. In: IEEE Int’l.
Symposium on Software Metrics (1999)

17. Briand, L.C., Wust, J., Ikonomovski, S.V., Lounis, H.: Investigating Quality Factors
in Object-Oriented Designs. In: 21st Int’l Conf. Software Eng. pp. 345–354 (1999)

18. Briand, L.C., Wust, J., Lounis, H.: Replicated Case Studies for Investigating Qual-
ity Factors in Object-Oriented Designs. Empirical Software Eng. 6(1), 11–58 (2001)

19. Tang, M.H., Kao, M.H., Chen, M.H.: An Empirical Study on Object-Oriented
Metrics. In: Sixth Int’l Software Metrics Symposium, pp. 242–249 (1999)

20. Moller, K.H., Paulish, D.: An Empirical Investigation of Software Fault Distribu-
tion. In: First International Software Metrics Symposium, pp. 82–90 (1993)

21. Ohlsson, N., Alberg, H.: Predicting Fault-prone Software Modules in Telephone
Switches. IEEE Trans. on Software Eng. 22(12), 886–894 (1996)

22. Ma, Y., Guo, L., Cukic, B.: A Statistical Framework for the Prediction of Fault-
Proneness, Advances in Machine Learning Application in Software Eng. Idea Group
Inc. (2006)

23. El Emam, K., Melo, W., Machado, J.: The Prediction of Faulty Classes Using OO
Design Metrics. J. Systems and Software 56(1), 63–75 (2001)

24. El Emam, K., Benlarbi, S., Goel, N., Rai, S.N.: Comparing Case-based Reasoning
Classifiers for Predicting High Risk Software Components. J. Systems and Soft-
ware 55(3), 301–320 (2001)

25. Youden, W.: Index for Rating Diagnostic Tests Cancer, vol. 3(1), pp. 32–35 (1950)
26. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational

Intelligence Approach. Springer, Heidelberg (2002)
27. Kim, J.W.: Integration Artificial Immune Algorithms for Intrusion Detection, PhD

Thesis, University College London, Dept. of Computer Science (2002)
28. Watkins, A.: AIRS: A Resource Limited Artificial Immune Classifier, Master The-

sis, Mississippi State University (2001)
29. Timmis, J.: Artificial Immune Systems: A Novel Data Analysis Technique Inspired

by the Immune Network Theory, PhD Thesis, University of Wales, Aberystwyth
(2001)

30. Timmis, J., Neal, M.: Investigating the Evolution and Stability of a Resource Lim-
ited Artificial Immune Systems. In: Genetic and Evolutionary Computation Con-
ference, Nevada, USA, pp. 40–41 (2000)

31. Jerne, N.K.: Towards a Network Theory of the Immune System, Ann Immunol.
125C, pp. 373–389

32. Langman, R.E., Cohn, M.: The Complete Idiotype Network is an Absurd Immune
System. Imm. Today 7(4), 100–101 (1986)

33. Forest, S., Hofmeyr, S., Somayaji, A.: Computer Immunology. Comm. of the
ACM 40(10), 88–96 (1997)

34. De Castro, L.N., Von Zubben, F.J.: The Clonal Selection Algorithm with Engi-
neering Applications. In: Genetic and Evolutionary Computation Conference, pp.
36–37 (2000)

35. Carter, J.H.: The Immune System as a Model for Pattern Recognition and Classi-
fication, Journal of American Medical Informatics Association, 7(1) (2000)

314 C. Catal and B. Diri

36. Hamaker, J.S., Boggess, L.: Non-Euclidean Distance Measures in AIRS, an Artifi-
cial Immune Classification System, Congress of Evolutionary Computation (2004)

37. Watkins, A., Timmis, J.: Artificial Immune Recognition System (AIRS): Revi-
sions and Refinements, ICARIS 2002, University of Kent, Canterbury, pp. 173–181
(2002)

38. Watkins, A.: Exploiting Immunological Metaphors in the Development of Serial,
Parallel, and Distributed Learning Algorithms, PhD Thesis, Mississippi State Uni-
versity (2005)

39. Brownlee, J.: Artificial Immune Recognition System: A Review and Analysis, Tech-
nical Report. No 1-02, Swinburne University of Technology (2005)

40. Catal, C., Diri, B.: Software Defect Prediction Using Artificial Immune Recognition
System. In: The IASTED Int’l Conference on Software Eng, Austria. pp. 285–290
(2007)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 315–329, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Operational Planning, Re-planning and Risk Analysis
for Software Releases

Ahmed Al-Emran1,2,3 and Dietmar Pfahl1,3

1 Schulich School of Engineering, University of Calgary, Canada
2 Software Engineering Decision Support Laboratory, University of Calgary, Canada

3 Centre for Simulation-based Software Engineering Research (CeSSER),
University of Calgary, Canada

{aalemran,dpfahl}@ucalgary.ca

Abstract. Software release planning takes place on strategic and operational
levels. Strategic release planning aims at assigning features to subsequent
releases such that technical, resource, risk and budget constraints are met.
Operational release planning focuses on the realization of a single software
release. Its purpose is to assign resources to feature development tasks such that
total release duration is minimized under given process and project constraints.
Re-planning becomes necessary on operational level due to addition or deletion
of features during release development, or due to changes in the workforce. The
allocation of resources to feature development tasks may depend on the
accurate estimation of planning parameters such as feature size, developer
productivity or development task dependencies. Risk analysis can help assess
the vulnerability of a chosen release plan due to these dependencies. This paper
presents a simulation-based approach to planning, re-planning and risk analysis
of software releases on operational level. The core element of the approach is
the process simulation model REPSIM-2 (Release Plan Simulator, Version 2).
We describe the functionality of REPSIM-2 and illustrate its usefulness for
planning, re-planning and risk analysis through application scenarios.

Keywords: software release planning, operational planning, process simulation,
risk analysis.

1 Introduction

One of the key questions of incremental software development is to decide which
features can be offered at which release. This decision depends on the customer
needs, technological constraints, and the resources and time frame available to
implement the features.

Software release planning takes place on strategic and operational levels. Strategic
release planning aims at assigning features to subsequent releases such that technical,
resource, risk and budget constraints are met. Once a strategic release plan has been
generated, i.e., a decision has been made on which features are to be developed in
which release, operational release planning focuses on the development of the
identified features in a single software release. The purpose of operational release

316 A. Al-Emran and D. Pfahl

planning is to assign resources to feature development tasks (e.g., design,
implementation, and test) such that total release duration is minimized under given
process and project constraints. Re-planning may become necessary on operational
level for many reasons, for example, due to addition or deletion of features during
release development, or due to changes in the workforce. The allocation of resources
to feature development tasks may depend on the accurate estimation of planning
parameters such as feature size, developer productivity or development task
dependencies. Risk analysis can help assess the vulnerability of a chosen release plan
due to these dependencies.

Good software release planning on both strategic and operational levels is
extremely important [7]. A bad release plan may cause late delivery of high-value
features, unsatisfied customers, budget overrun, and thus decreased competitiveness.
Since many planning parameters and the features themselves are under continuous
change [12], software release planning becomes a very dynamic task, and related
decision-making problems are difficult to solve [6]. While satisfactory solutions for
software release planning (and re-planning) on strategic level have recently been
published in [3], [5], [10], more research is still needed to develop efficient and
effective methods and tools in support of operational release planning.

The research presented in this paper focuses on a simulation model – REPSIM-2
(Release Plan Simulator, Version 2) – emphasizing on planning, re-planning, and risk
analyses associated with operational release development plans of single releases. The
presented simulation-based approach is applicable to any given solution to a specific
strategic release planning problem. A solution to the strategic release planning
problem, i.e., the assignment of features to subsequent releases, provides the
following pieces of information for each individual release: number of features to be
developed, number of task types needed to develop these features, number of
developers available, estimates of the efforts needed per task type to develop a
feature, estimates of the task type specific productivities of the available developers,
and technical dependencies between subsequent task types. These pieces of
information are needed to generate solutions to operational release planning and are
referred to as problem parameters in the remainder of this paper. An introduction into
existing methods supporting strategic release planning can be found in [11].

The remainder of this paper is structured as follows. Section 2 provides the
motivation behind this research based on existing work performed in the area of
software release planning. Section 3 describes the simulation model REPSIM-2.
Section 4 illustrates the applicability and usefulness of REPSIM-2 with the help of a
case example. Section 5 discusses achievements and limitations of REPSIM-2 and
suggests directions for future research.

2 Related Work

Both optimization and simulation approaches have been proposed in the context of
operational software release planning.

For example, OPTIMIZERASORP (Optimize Resource Allocation for Software
Release Planning) is an optimization approach that generates simultaneously feature
allocation plans for subsequent releases and operational feature implementation plans

 Operational Planning, Re-planning and Risk Analysis for Software Releases 317

for individual releases [5]. Thus it combines strategic and operational release
planning. OPTIMIZERASORP considers tasks associated with features, a pool of
developers to carry out these tasks, the productivity of developers to perform these
tasks, and mappings between tasks and developers for realization of features within
releases and maximizing release value. While OPTIMIZERASORP offers a guaranteed
level of optimality regarding the allocation of resources in the context of operational
release planning, it does not support automatic re-planning, e.g., re-allocation of
developers in the middle of a release implementation due to changes in planning
parameters.

OPTIMIZERASORP is an example of a method that simultaneously formulates
several release planning decision problems as one complex mathematical optimization
problem. While the solution to this optimization problem has been shown to be
optimal with regards to some objective function (cf. [5] for details), the formulation of
the optimization problem is static in the sense that it does not allow for dynamic re-
planning as easily as simulation-based approaches potentially do. For example, the
scenario for re-planning discussed in Section 4 of this paper would be either
impossible to solve or would require considerable effort to model them as part of the
existing optimization-based approach. In addition, none of the existing mathematical
optimization approaches can take into account non-deterministic situations, i.e.,
situations where values of model parameters are randomly sampled from empirically
derived or assumed probability distributions. As a consequence, existing models
applied to solve release planning problems via mathematical optimization cannot be
used for risk analyses.

The first simulation model proposed to tackle issues in the context of strategic and
operational software release planning was presented in [4]. Assuming a continuous
stream of new incoming requirements, the model is used to decide how many
requirements can be handled in a software release, and to investigate potential
bottlenecks within subsequent releases. Bottlenecks are associated with task overload
situations, i.e., situations in which the level of available resources assigned to specific
tasks is too small to process incoming new (or from previous releases postponed)
requirements. The model is also used to evaluate resource allocation changes that
supposedly avoid previously identified overload situations. The problem dealt with in
[4] is different from the problem focused on in this paper for two reasons, because it
does not facilitate the analysis of specific developer allocations to feature/task-
combinations within individual releases.

REPSIM-1 (Release Plan Simulator, Version 1)1 [9] is a System Dynamics
simulation model that can be used to perform risk analyses on existing operational
release plans. Combined process and Monte-Carlo simulation as suggested in [8] is
used to evaluate the sensitivity of existing plans to possible planning errors. Planning
errors can relate to alterations in expected developer productivity, feature and task
specific work volume (effort), and degree of task dependency. Risk analyses allow
decision-makers to perform “what-if” analyses on a proposed operational release plan,
helping them prepare for potentially required manual re-planning in the case of

1 Note that the simulation model presented in [PAR06] is actually called REPSIM. In order to

stress the fact that the simulation model presented in this paper is an enhancement of
REPSIM, a version number has been added.

318 A. Al-Emran and D. Pfahl

unplanned changes. However, automatic re-planning (and initial planning) is not
supported.

DynaReP (Dynamic Re-Planner) is a discrete-event process simulation model
developed using the tool EXTENDTM (http://www.imaginethatinc.com). The model
supports both initial generation and re-planning of operational release plans [2].
While initial plans generated by DynaReP are typically require about 5-10% more
calendar time for the development of a single release of identical size and with the
same available work force than plans generated with OPTIMIZERASORP, DynaReP can
easily be used for automatic re-planning each time a change in planning parameters is
identified during the development of a release.

REPSIM-2, which is described in more detail below, combines the planning and
re-planning capabilities of DynaReP and the risk analysis capabilities of REPSIM-1.
Given the possibility of REPSIM-2 to generate initial operational release plans (and
doing dynamic re-planning), the risk analysis capabilities are used differently than in
REPSIM-1, where release duration and developer allocation to feature/task-
combinations are fixed. Instead of expressing risk in terms of work backlog, i.e., the
amount of work that cannot be finished within the given constraints, REPSIM-2
expresses risk in terms of extended release duration.

3 The REPSIM-2 Model

REPSIM-2 is a process simulation model developed using the System Dynamics (SD)
modeling and simulation tool VENSIMTM (http://www.ventana.com). SD is a
simulation modeling technique originally developed in the late 1950s [For61]. It has
been applied to the domain of software engineering since the late 1980s [AbM91].
REPSIM-2 supports the following planning, re-planning, and risk analysis tasks:

• Planning: Generating initial operational development plans for single software
releases. Initial planning involves the assignment of developers to feature-
specific development tasks such that the overall development time is as short as
possible under the applied heuristic. Input data for initial planning are estimates
of (1) required nominal efforts per feature and task, (2) productivity levels per
developer and task, and (3) levels of dependencies between subsequent tasks per
feature.

• Re-planning: Revising existing operational development plans for a single
software release due to one or more of the following events:

• A new feature needs to be included in a release.
• A planned feature is removed from the release.
• A developer becomes unavailable.
• A developer is added to the development team.
• The estimated task dependency is bigger/smaller than expected.
• The work volumes of features were under-estimated/over-estimated.
• The productivities of developers were over-estimated/under-estimated.

• Risk analysis: Analyzing initial (or revised) operational development plans for a
single software release with regards to the sensitivity of duration and developer

 Operational Planning, Re-planning and Risk Analysis for Software Releases 319

allocation structure in response to variation of feature effort, developer
productivity, and task dependency estimates.

The following sub-sections describe the heuristic used for assigning developers to
feature-specific development tasks, the set of problem parameters and variables that
characterize an operational release plan, and some implementation details of the
simulation model REPSIM-2.

3.1 Model Heuristic

The heuristic used for assigning developers to feature/task-pairs essentially consists in
matching the next available developer with the highest task-specific productivity to
the next waiting feature with the largest effort (for a specific task). If only one
developer with very low productivity is currently idle, then this mapping procedure
can result in assigning a developer with low productivity to a large feature. To avoid
such a worst case situation, a set of threshold variables are defined which exclude
developers with productivity below a certain value to be assigned to feature/task-
pairs. Details on the implementation of the model heuristic are given in Section 3.3.

3.2 Problem Parameters and Their Representation in the Model

Applying the heuristic described above, REPSIM-2 generates operational release
development plans of a single software release by calculating a mapping from the 6-
tuple (F, T, D, eff, prod, dep) to the three dimensional matrix F-T-D-alloc, with the
goal to minimize release duration. The problem parameters F, T, D, eff, prod, dep, and
F-T-D-alloc are defined as follows:

• F = {F[i] | 0 < i ≤ f, with i, f ∈ N} is a set of f features, with N denoting the set of
natural numbers.

• T = {T[j] | 0 < j ≤ t, with j, t ∈ N ∧ T[j-1] << T[j] for j > 1} is a set of t
completely ordered development task types (in the following denoted as “tasks”).
The order “<<” defined on T specifies a start-to-start and end-to-end dependency
between two subsequent tasks T[j-1] and T[j], i.e., task T[j] cannot start before
task T[j-1] has started, and task T[j] cannot end before task T[j-1] has been
completed. Typical examples of subsequent tasks are design, implementation,
and test.

• D = {D[k] | 0 < k ≤ d, with k, d ∈ N} is a set of d developers.
• eff: (F, T) R0

+, with R0
+denoting the set of non-negative real numbers, is a

function that assigns an estimated work load (volume) to each feature/task-
combination. The volume may be specified, for example, in terms of person-
weeks.

• prod: (D, T) R0
+ is a function that assigns an estimated relative productivity

factor to each developer/task-combination. For example, if the productivity factor
of a specific developer/task-combination (D[k], T[j]) equals y and the effort for a
specific feature/task-combination (F[i], T[j]) equals x person-weeks, then developer
D[k] is expected to be able to perform the task T[j] of feature F[i] in x/y weeks. A
productivity factor that equals 0 for a specific developer/task-combination (D[k],

320 A. Al-Emran and D. Pfahl

T[j]) implies that developer D[k] is not able to perform task T[j], no matter which
feature is affected.

• dep: DEP ⊆ T x T [0, 1], where DEP = {(T[p], T[q]) | T[p], T[q] ∈ T ∧ T[p]
<< T[q]} is a function that further refines the order “<<” defined on T. REPSIM-
1 can be adjusted to the following three different versions of dep:

• dep1(T[j-1], T[j]) = x ∈ [0, 1] specifies that work on task T[j] can only start, if at
least x times eff(T[j-1]) has been completed.

• dep2(T[j-1], T[j]) = x ∈ [0, 1] specifies that for task T[j] the work on x times
eff(T[j]) can only start, if task T[j-1] has been completed. For task T[j] the work
on (1-x) times eff(T[j]) can start as soon as work on task T[j-1] has started.

• dep3(T[j-1], T[j]) = x ∈ [0, 1] specifies that for task T[j] the work on x times
eff(T[j]) can only start, if at least x times eff(T[j-1]) has been completed. For task
T[j] the work on (1-x) times eff(T[j]) can start as soon as work on task T[j-1] has
started.

• For 0 < x < 1: dep3 is less restrictive than dep1 and dep2. For x = 0 and x = 1: dep1
= dep2 = dep3. In the following, only the implementation of REPSIM-2 using task
dependency type dep1 will be presented. An older implementation of REPSIM-2
using task dependency dep3 has been described in [9].

• F-T-D-alloc is a function that at each point in time assigns a specific developer to
a specific feature/task-combination. An important constraint of developer
allocation requires that one developer can only be allocated to one feature/task-
combination at a time.

The above listed parameters, characterizing the operational release planning problem,
are represented in REPSIM-2 through the following model subscripts2, parameters,
and result variable:

• Feature: F1, F2, … is a subscript representing the set of features F.
• Task: T1, T2, … is a subscript representing the set of tasks T.
• Developer: D1, D2, … is a subscript representing the set of developers D.
• Eff-F-T[Feature, Task] is a 2-dimensional matrix constant representing the values

of function eff for each feature/task-combination.
• Prod-T-D[Task, Developer] is a 2-dimensional matrix constant representing the

values of function prod for each task/developer-combination.
• Task-Dependency[Task] is a vector representing the degree of dependency

between subsequent tasks as defined by the function dep. This parameter could
be defined to be also feature/task-combination specific if a second subscript (i.e.,
Feature) was added.

• Alloc-F-T-D[Feature, Task, Developer] is a 3-dimensional matrix representing
the values of function F-T-D-alloc for each feature/task/developer-combination.
The values in each cell of this matrix can either be “0” or “1”, where “1”

2 In order to facilitate the individual representation of multiple features, development tasks, and

resources (developers), the implementation of REPSIM-2 made extensive use of subscripting
offered by VENSIMTM. The use of subscripts keeps the model compact while making it
scalable.

 Operational Planning, Re-planning and Risk Analysis for Software Releases 321

indicates that a developer has been assigned to a feature/task-combination during
specified time steps.

An example of an operational release plan with 8 features, 3 tasks, and 6 developers is
shown Figure 1. It uses the estimated task-specific efforts per feature and assumed
task-specific productivities per developer shown in Tables 1(a) and 1(b), respectively.

Assignment of developers to feature/task-combinations:

0 7.5 15 22.5 30

Time (Week)

F1,T1
F1,T2
F1,T3
F2,T1
F2,T2
F2,T3
F3,T1
F3,T2
F3,T3
F4,T1
F4,T2
F4,T3
F5,T1
F5,T2
F5,T3
F6,T1
F6,T2
F6,T3
F7,T1
F7,T2
F7,T3
F8,T1
F8,T2
F8,T3

D6

D4

D4

D3

D4

D4

D2

D2

D6

D1

D3

D2

D3

D1

D6

D1

D1

D1

D6

D4

D2

D5

D5

D5

Assignment of developers to feature/task-combinations:

0 7.5 15 22.5 30

Time (Week)

F1,T1
F1,T2
F1,T3
F2,T1
F2,T2
F2,T3
F3,T1
F3,T2
F3,T3
F4,T1
F4,T2
F4,T3
F5,T1
F5,T2
F5,T3
F6,T1
F6,T2
F6,T3
F7,T1
F7,T2
F7,T3
F8,T1
F8,T2
F8,T3

D6

D4

D4

D3

D4

D4

D2

D2

D6

D1

D3

D2

D3

D1

D6

D1

D1

D1

D6

D4

D2

D5

D5

D5

Fig. 1. Example of an operational release plan of a single release

Table 1. (a) Task-specific efforts per feature; (b) Task-specific productivities per developer

Effort Estimates
[person-week]

Productivity
Estimates

[dimensionless]

F1 F2 F3 F4 F5 F6 F7 F8 D1 D2 D3 D4 D5 D6

T1: Design 3 8 6 3 5 7 10 6 1.5 1 2 0 0.5 2

T2: Implementation 6 3 10 3 6 5 5 8 2 1.5 1 2 1.5 1
Task
Type

T3: Test 6 2 5 6 4 3 6 10 1 2 0 1.5 2 1

3.3 Model Structure

Figures 2 and 3 present the core structure of the REPSIM-2 model using the graphical
modeling language provided by VENSIMTM, hiding most of the auxiliary variables
used for intermediate calculations and calculations of specific output values.

Figure 2 shows the view of the model structure that generates the work-flow
dynamics of an operational release development plan in REPSIM-2.

322 A. Al-Emran and D. Pfahl

F-T
F-T-inflow F-T-outflow

actual-Eff-F-T

actual-Prod-T-D

actual-Prod-F-T-D

Eff-Variation

Prod-Variation

Eff-F-T

Prod-T-D

Cum-F-
T-outflow

F-T-inflow-
waiting

Task-Dependency

<Alloc-F-T-D>

Fig. 2. Flow-graph representation of the release plan work-flow in REPSIM-2

The variable F-T[Feature, Task] is at the heart of the model. It represents the

volume (in terms of effort) of a feature/task-combination currently being worked on.
Its quantity is controlled by the inflow and outflow rates F-T-inflow[Feature, Task]
and F-T-outflow[Feature, Task], respectively, using the following integral equation:

∫ −=
t

duujioutflowTFujiinflowTFtjiTF
0

))](,[__)](,[__()](,[_

The following model variables are shown in Figure 2:

• F-T[Feature, Task]: a 2-dimensional matrix of accumulation variables (often
called “levels” or “stocks” in the SD literature) representing for each feature/task-
combination the work load that is ready to be worked on.

• F-T-inflow[Feature, Task]: a 2-dimensional matrix of adjustment variables (often
called “rates” or “valves” in the SD literature) that control for each feature/task-
combination by how much new volume the corresponding cell of variable F-
T[Feature, Task] increases per time step.

• F-T-outflow[Feature, Task]: a 2-dimensional matrix of adjustment variables that
control for each feature/task-combination by how much volume the
corresponding cell of variable F-T[Feature, Task] decreases per time step. If F-T-
outflow[Feature, Task] is greater than 0 for a specific feature/task-combination,
actual work is done in relation to this feature/task-combination.

• Cum-F-T-outflow[Feature, Task]: a 2-dimensional matrix of accumulation
variables representing the volumes of a feature/task-combination that have been
completed.

• F-T-inflow-waiting[Feature, Task]: a 2-dimensional matrix of accumulation
variables representing the volumes of feature/task-combinations that are waiting
to be ready such that they can be worked on.

At the beginning of a simulation, the variable F-T-inflow-waiting[Feature, Task] is
initialized by assigning the total work loads of each feature/task-combination. When

 Operational Planning, Re-planning and Risk Analysis for Software Releases 323

and how much of the waiting volumes are ready, i.e., moved into the corresponding
cells of variable F-T-[Feature, Task], depends mainly on Cum-F-T-outflow[Feature,
Task] and the type of task dependency. For example, if task dependency dep1 has
been selected with a value of 0.3, quantities stored in variable F-T-inflow-
waiting[Feature, Task] will be moved into variable F-T[Feature, Task], only if the
values stored in variable Cum-F-T-outflow[Feature, Task] that correspond to
predecessor tasks of respective features have achieved a value of at least 30% of their
estimated volume.

In order to be able to perform various kinds of stability analyses on an existing
release plan, REPSIM-2 offers the following parameters to model users:

• Eff-Variation[Feature] is a vector of parameters (i.e., model constants)
representing an adjustment factor that, if different from 1, modifies the original
effort estimates related to each individual feature. This factor could be defined to
be also task-specific if a second subscript (i.e., Task) was added.

• Prod-Variation[Developer] is a vector of parameters representing an adjustment
factor that, if different from 1, modifies the original productivity estimates related
to each individual developer. Again, this factor could be defined to be also task-
specific by adding a second subscript (i.e., Task).

The auxiliary variables actual-Eff-F-T, actual-Prod-T-D, and actual-Prod-F-T-D are
needed to calculate modifications of the initial estimates for feature/task-combination
specific effort estimates and task/developer-combination specific productivity levels.

Alloc-F-T-D

assign-task remove-from-task

Idle-D-Pool Assigned-
D-Poolallocate-D

<F-T>

<TIME STEP>

release-D

<TIME STEP>

Threshold

"Assigned-D-Pool"[Developer]

0 7.5 15 22.5 30
Time (Week)

D1

D2

D3

D4

D5

D6

F2

F6 F4 F5 F6 F6

F3 F3 F3 F3

F5 F4

F2 F2 F1 F1

F8 F8 F8

F7 F1 F5 F3

F7

Alloc-F-T-D

assign-task remove-from-task

Idle-D-Pool Assigned-
D-Poolallocate-D

<F-T>

<TIME STEP>

release-D

<TIME STEP>

Threshold

"Assigned-D-Pool"[Developer]

0 7.5 15 22.5 30
Time (Week)

D1

D2

D3

D4

D5

D6

F2

F6 F4 F5 F6 F6

F3 F3 F3 F3

F5 F4

F2 F2 F1 F1

F8 F8 F8

F7 F1 F5 F3

F7

"Assigned-D-Pool"[Developer]

0 7.5 15 22.5 30
Time (Week)

D1

D2

D3

D4

D5

D6

F2

F6 F4 F5 F6 F6

F3 F3 F3 F3

F5 F4

F2 F2 F1 F1

F8 F8 F8

F7 F1 F5 F3

F7

Fig. 3. Flow-graph representation of the heuristic used to assign developers to feature-specific
tasks in REPSIM-2

Figure 3 shows the implementation of the underlying model heuristic according to
which developers are assigned to feature/task-combinations.

Accumulation variables Idle-D-Pool[Developer] and Assigned-D-Pool[Developer]
are vectors representing the set of developers that are idle or assigned to a
feature/task-combination. A developer can only be assigned to a new task, when the

324 A. Al-Emran and D. Pfahl

respective value of Idle-D-Pool[Developer] equals “1”. As soon as a developer is
assigned, the value of the corresponding cell in Idle-D-Pool switches from “1” to “0”,
while the respective value of Assigned-D-Pool[Developer] switches from “0” to “1”.
As soon an assigned developer has finished a task, the respective values are toggled
once more. The Gantt chart on the right hand side of Figure 3 shows an example
allocation of developers to features (without explicitly specifying the task type).

Level variable Alloc-F-T-D[Feature, Task, Developer] equals “1” as long as a
developer is assigned to a specific feature/task-combination, otherwise “0”. The
following conditions have to be fulfilled, before a specific cell of the three-
dimensional matrix Alloc-F-T-D can switch from “0” to “1” at a point in time:

• There is work waiting to be done for any features/task-combination ("F-
T"[Feature,Task]>0)

• The work volume (effort) of the waiting feature/task-combination is the
maximum of all waiting feature/task-combinations ("Eff-Rank-F-
T2"[Feature,Task]=VMAX("Eff-Rank-F-T2-Unalloc"[Feature!,Task]))

• The productivity of a candidate developer is greater than the threshold
productivity ("actual-Prod-T-D"[Task, Developer]>Threshold[Task])

• A candidate developer with sufficient productivity is actually idle ("Idle-D-
Pool"[Developer]>0:AND: "Assigned-D-Pool"[Developer]<1)

• If several equally large feature/task-combinations for the same feature but
different tasks are subject to be assigned the same developer at the same point in
time, the predecessor task will be worked on first (Test[Task, Developer]>0))

An important model parameter needed to implement the model heuristic is
Threshold[Task], a vector of productivity threshold values used to restrict the
availability of developers per task type. For example, if the model has design,
implementation, and test tasks, the vector has three cells. For a specific type of task, if
a developer does not possess a productivity value higher than that of the
corresponding Threshold parameter, then that developer will not be allowed to carry
out that type of task. Instead of setting the Threshold parameter manually, REPSIM-2
can be instrumented to use the optimization functionality offered by VENSIMTM,
automatically assigning values to each task-specific productivity threshold value such
that the overall duration of a calculated release plan becomes minimal. Note that
values for these parameters have to be re-calculated at each time a change is made in
the planning parameters (e.g., addition of a new feature or drop-out of a developer).

REPSIM-2 contains additional auxiliary variables which are either used for
intermediate calculations or for calculations of specific output values. Due to space
limitations all auxiliary variables cannot be explained in detail here. The complete set
of model equations will be provided on request by the author.

4 Example Application Scenarios

Using the planning example presented in Section 3.2 as a starting point (baseline
scenario), in this section we illustrate some of the re-planning and risk analysis

 Operational Planning, Re-planning and Risk Analysis for Software Releases 325

capabilities of REPSIM-2 (cf. introduction of Section 3 for a complete list of
capabilities). The baseline scenario had the following characteristics:

• 8 features to be developed: F1, F2, …, F8.
• 3 tasks to be carried out for each feature: T1, T2, and T3 (e.g., design,

implementation, and test, respectively).
• 6 developers available to work on each feature-specific tasks: D1, D2, …, D6.
• The estimated work volume (in person-weeks) for each feature-specific task and

the estimated productivity of each developer per task type (cf. Table 1).
• Task dependency is 100%, i.e., for each feature a subsequent tasks can only be

started when the predecessor task has been completed.

Effort estimates may be acquired via expert interviews or by using effort estimation
techniques. Productivity estimates may be based on performance data from past
projects, ideally in combination with skill analyses [1].

Using REPSIM-2, the operational release development plan is estimated to have a
total duration of 22.71 person-weeks when using the developer allocation to
feature/task-combinations shown in Figure 1.

4.1 Scenario 1: Re-planning Due to Late Feature Inclusion

Due to space limitations, only one typical re-planning situation will be presented here:
addition of a late feature when development activities on an initially defined set of
features have already started.

Fig. 4. Feature F9 is included in a release under development after 3 and 6 weeks, repectively

run111case0-baseline
run111case0-s1a
run111case0-s1b

"F-T-outflow"[Feature,Task]

0 7.5 15 22.5 30
Time (Week)

F1,T1
F1,T2
F1,T3
F2,T1
F2,T2
F2,T3
F3,T1
F3,T2
F3,T3
F4,T1
F4,T2
F4,T3
F5,T1
F5,T2
F5,T3
F6,T1
F6,T2
F6,T3
F7,T1
F7,T2
F7,T3
F8,T1
F8,T2
F8,T3
F9,T1
F9,T2
F9,T3

326 A. Al-Emran and D. Pfahl

We assume that the development organization started working according to the
initial plan presented above and in Section 3 (baseline scenario). After some time has
elapsed, a new feature, F9, is required by the customer to be included in the current
release. We also assume that the estimated work volume (effort) for each of the tasks
T1, T2, and T3 of F9 equals 8 person-weeks. Figure 4 shows how the allocation of
developers to feature/task-combinations changes, if F9 is added after 3 weeks
(Scenario 1a) and 6 weeks (Scenario 1b), respectively. As is to be expected, the total
duration of the release increases: from 22.71 weeks to 23.75 weeks and 25.78 weeks,
respectively (cf. left-hand side of Figure 4). In addition, the developer allocation
patterns change for most of the features (cf. right-hand side of Figure 4).

It is interesting to see that the relationship between the point in time when a new
feature is added and the overall duration of the (larger) release is not linear. Adding
feature F9 after 3 weeks (Scenario 1a) increases the total duration of the release
increases by only 1.04 weeks (+4.6%), while adding feature F9 after 6 weeks
(Scenario 1b) increases the total duration already by 3.08 weeks (+13.6%). This jump
in duration increase becomes even larger, when observing that work on feature F9
only starts shortly after end of week 4 in Scenario 1a. The delay by 1 week is due to
the fact that none of the five developers with design productivity greater than 0
finishes work on features F2, F3, F6, F7, or F8 before end of week 4 and thus cannot
be assigned to a new task.

It should be noted that REPSIM-2 can handle situations with more than one feature
added (or deleted) at different points in time. Moreover, addition/deletion of features
can be combined with increase/decrease of number of developers and/or changes in
effort and productivity estimates at any points in time, thus providing a powerful
decision-support tool.

4.2 Scenario 2: Risk Analysis

A common situation in release development projects is uncertainty about the accuracy
of effort estimates and developer productivity. The effects of estimation errors on
total project duration can be assessed by running stochastic simulation. Instead of
assigning deterministic values to model parameters representing task-specific effort
estimates for features (model parameter Eff-F-T[Feature, Task]) and task-specific
productivities of developers (model parameter Prod-T-D[Task, Developer]) these
values can be sampled from plausible input distributions. The process simulation
model REPSIM-2 can be executed in stochastic mode using multivariate Monte-Carlo
simulation.

The results from running the baseline scenario introduced in Section 3 in stochastic
mode are shown in Table 2. The baseline case represents the deterministic simulation
run without variation of feature/task effort estimates and without variation of task-
specific developer productivity estimates. In the baseline case, the minimum,
maximum, mean and median durations equal 22.71 weeks. Standard deviation and
normalized standard deviation (last column of Table 2) equal 0. Scenarios 2a-e
represent each 50 simulation runs with different probability distribution sampling
patterns for effort and productivity estimates. Both parameters, Eff-F-T and Prod-T-D

 Operational Planning, Re-planning and Risk Analysis for Software Releases 327

are sampled from triangle distributions of the type TRIANG(min, peak, max), where
min represents the minimum value, max represents the maximum value, and peak
represents the most probable value. The following TRIANG distributions were used
in Scenarios 2a to 2e, respectively: TRIANG(0.9, 1, 1.1), TRIANG(0.9, 1, 1.2),
TRIANG(0.8, 1., 1.2), TRIANG(0.8, 1. 1.3), TRIANG(0.7, 1, 1.3).

Table 2 shows the average values over all feature/task and developer/task
combinations of all simulation runs (per scenario). One can see that the normalized
variation of release duration has about the same magnitude (column (Norm)) as the
normalized variation of the model input parameters Eff-F-T and Prod-T-D, if the
normalized variation is below 0.1. For larger input variations it seems that a damping
effect occurs. For example, Scenario 2e has normalized input variations of 0.1209 and
0.1308 for parameters Eff-F-T and Prod-T-D, respectively, while release duration has
only a normalized variation of 0.1004. This damping effect may partly be due to
mutual compensation between over-estimated and under-estimated effort volumes and
productivities. In addition, extreme effort and productivity over/under-estimation
might partly be compensated by varying developer allocations to feature/task-
combinations. The degree of structural variation, similar to the variation in developer
assignment presented in Figure 4 (table on right hand side), has not yet been further
analyzed, but it can be assumed based on analysis of individual cases (not shown here
due to space limitations) that the structure of developer assignments can change
strongly in response to small changes in effort and productivity estimates.

Table 2. Impact of variation in effort and productivity estimates on total duration

Scenario #Runs Parameter Min Max Mean Median StDev (Norm)
Eff. Var. 1 1 1 1 0 0

Prod. Var. 1 1 1 1 0 0

Baseline

1
Duration 22.71 22.71 22.71 22.71 0 0
Eff. Var. 0.9199 1.0824 1.0006 1.0007 0.0404 0.0404

Prod. Var. 0.9117 1.0885 0.9977 0.9947 0.0433 0.0434

Scenario
2a

50

Duration 21.0625 27.5000 23.0194 23.0625 1.0851 0.0471
Eff. Var. 0.9244 1.1694 1.0344 1.0286 0.0618 0.0597

Prod. Var. 0.8203 1.0859 0.9626 0.9641 0.0661 0.0687

Scenario
2b

50

Duration 21.5313 27.5938 24.5413 24.4688 1.4198 0.0579
Eff. Var. 0.8399 1.1647 1.0012 1.0014 0.0808 0.0807

Prod. Var. 0.8234 1.1770 0.9955 0.9894 0.0866 0.0870

Scenario
2c

50

Duration 19.4688 29.6250 23.0375 22.7813 2.0589 0.0894
Eff. Var. 0.8446 1.2517 1.0350 1.0289 0.1018 0.0983

Prod. Var. 0.7320 1.1742 0.9603 0.9594 0.1090 0.1135

Scenario
2d

50

Duration 20.0938 29.6250 24.8225 24.6875 2.1110 0.0850
Eff. Var. 0.7598 1.2471 1.0018 1.0021 0.1212 0.1209

Prod. Var. 0.7351 1.2654 0.9932 0.9841 0.1299 0.1308

Scenario
2e

50

Duration 18.0313 28.5938 23.1494 23.0469 2.3240 0.1004

328 A. Al-Emran and D. Pfahl

5 Conclusions and Future Work

In this paper, we presented the design and application of the simulation model
REPSIM-2. This model is an enhanced version of the simulation model REPSIM-1
(Release Plan Simulator, Version 1), which can be used for analyzing the sensitivity
of defined operational software release plans to changes in developer productivity,
task-specific feature effort estimates, and task dependencies. A major disadvantage of
REPSIM-1 was its lacking capability to generate operational software release plans.
REPSIM-2 has overcome this shortcoming by integrating the planning heuristic of the
simulation model DynaReP.

REPSIM-2 can be used to support operational planning, re-planning, and risk
analyses tasks in the context of the realization of a single software release. One of the
strengths of REPSIM-2 is its scalability. New release planning problems with
different numbers of features, developers and task types can easily be accommodated
by a simple change of subscript value ranges. Also, new types of dependencies, e.g.,
dependencies between features or developers, or 1-to-n relationships between
subsequent tasks could easily be accommodated by re-formulating or enhancing
conditions used in one or more model equations. Thanks to the highly reusable model
structure, no structural changes in the model would be required in these cases.

It should be mentioned that the example application presented in Section 4 was
kept small in order to be able to show a complete set of results in the limited space
available. The same types of analyses were actually applied to five larger cases
involving up to 65 features and 13 developers. It should also be pointed out that the
effort and productivity estimates used in these cases were directly taken from
industrial applications conducted in the context of strategic release planning.

The value of REPSIM-2 is two-fold. Firstly, it supports decision-makers in solving
complex re-planning problems emerging from any combination (and possibly
repeated occurrence) of changes in number of features, number of available
developers, task dependencies, and effort or productivity estimates. Secondly, it
supports decision-makers in assessing the risk associated with inaccurate estimates of
efforts, productivities and task-dependences. The second point is particularly useful as
most of these estimates are mostly based on subjective expert estimates and thus
planning errors are likely to happen. Based on risk analyses conducted with REPSIM-
2, decision-makes can at least anticipate where potential re-planning is likely to occur
in response to observed under- or over-estimation of efforts, productivities, and task-
dependencies.

The biggest limitation of REPSIM-2 is that it cannot guarantee optimal (initial or
revised) plans. As pointed out earlier in the paper, optimization methods such as
OPTIMIZERASORP generate operational release plans that are typically 5-10% more
effective, e.g., in terms of release development duration. However, since these
optimization methods can neither be directly used for dynamic re-planning nor for
stochastic (or sensitivity) analyses, REPSIM-2 offers an interesting alternative for
situations where frequent changes in planning parameters are likely to occur.

Future work on improving REPSIM-2 will focus on (i) enhancing the model
heuristic in order to improve effectiveness; (ii) including feature dependency
constraints that specify whether a feature must be realized before another feature; (iii)

 Operational Planning, Re-planning and Risk Analysis for Software Releases 329

improving model usability (e.g., data input via GUI, connection to external database,
etc.); and (iv) validating the proposed approach in an industrial environment.

Acknowledgements

Part of the work presented was financially supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada under Discovery Grant no.
327665-06.

References

1. Acuňa, S.T., Juristo, N., Moreno, A.M.: Emphasizing human capabilities in software
development. IEEE Software 23(2), 94–101 (2006)

2. Al-Emran, A.: Dynamic Re-Planning of Software Releases, Master Thesis, University of
Calgary (2006)

3. Albourae, T., Ruhe, G., Moussavi, M.: Lightweight Replanning of Software Product
Releases. In: Proceedings of International Workshop on Software Product Management,
Minneapolis/St. Paul, Minnesota, USA (2006)

4. Höst, M., Regnell, B., Dag, J., Nedstam, J., Nyberg, C.: Exploring Bottlenecks in Market-
Driven Requirements Management Processes with Discrete Event Simulation. Journal of
Systems and Software 59(3), 323–332 (2001)

5. Ngo-The, A., Ruhe, G.: Optimized Resource Allocation for Incremental Software
Development. TR 062/2006, Laboratory for Software Engineering Decision Support,
University of Calgary (2006)

6. Momoh, J.: Applying Intelligent Decision Support to Determine Operational Feasibility of
Strategic Software Release Planning. Masters thesis, Department of Electrical and
Computer Engineering, University of Calgary, Canada (2004)

7. Penny, D.A.: An Estimation-Based Management Framework for Enhancive Maintenance
in Commercial Software Products. In: Proceedings of International Conference on
Software Maintenance, pp. 122–130 (2002)

8. Pfahl, D.: ProSim/RA – Software Process Simulation in Support of Risk Assessment. In:
Biffl, S., et al. (ed.) Value-based Software Engineering, pp. 263–286. Springer, Berlin
(2005)

9. Pfahl, D., Al-Emran, A., Ruhe, G.: Simulation-Based Stability Analysis for Software
Release Plans. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.) Software Process
Change SPW/ProSim 2006. LNCS, vol. 3966, pp. 262–273. Springer, Berlin-Heidelberg
(2006)

10. Ruhe, G., Ngo-The, A.: Hybrid Intelligence in Software Release Planning. International
Journal of Hybrid Intelligent Systems 1(2), 99–110 (2004)

11. Ruhe, G., Saliu, O.: The Art and Science of Software Release Planning. IEEE
Software 22(6), 47–53 (2005)

12. Stark, G., Skillicorn, A., Ameele, R.: An Examination of the Effects of Requirements
Changes on Software Maintenance Releases. Journal of Software Maintenance: Research
and Practice 11, 293–309 (1999)

Project Cost Overrun Simulation

in Software Product Line Development

Makoto Nonaka1, Liming Zhu2, Muhammad Ali Babar3, and Mark Staples2

1 Faculty of Business Administration, Toyo University, Japan
nonaka-m@toyonet.toyo.ac.jp

2 National ICT Australia
{liming.zhu,mark.staples}@nicta.com.au

3 Lero, University of Limerick, Ireland
Muhammad.alibabar@ul.ie

Abstract. The cost of a Software Product Line (SPL) development
project sometimes exceeds the initially planned cost, because of require-
ments volatility and poor quality. In this paper, we propose a cost over-
run simulation model for time-boxed SPL development. The model is
an enhancement of a previous model, specifically now including: con-
sideration of requirements volatility, consideration of unplanned work
for defect correction during product projects, and nominal project cost
overrun estimation. The model has been validated through stochastic
simulations with fictional SPL project data, by comparing generated un-
planned work effort to actual change effort, and by sensitivity analysis.
The result shows that the proposed model has reasonable validity to esti-
mate nominal project cost overruns and its variability. Analysis indicates
that poor management of requirements and quality will almost double
estimation error, for the studied simulation settings.

Keywords: process simulation, cost overrun estimation, software prod-
uct line development.

1 Introduction

Software Product Line (SPL) development can shorten the total cycle time, the
duration from the beginning of core asset development to the end of product
development, by applying large-scale reuse [1]. However, effort estimation, plan-
ning, and development management for SPL are more complex and difficult
than those for sequential development, because of inter-connected relationships
between core assets and products, concurrency of their projects, and multiple
deadline management [2]. In addition, there are still general problems with soft-
ware effort estimation because of unplanned work [3] and requirements volatility
[4]. The total cycle time can sometimes be longer than initially planned because
of these problems.

Requirements volatility is the tendency of requirements to change over time.
High requirements volatility has a large impact on cost and effort overruns [5].
Some unexpected critical requirements changes are in practice unavoidable, and

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 330–344, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Project Cost Overrun Simulation in Software Product Line Development 331

can for example be caused by faults on external components to be compensated
by software, or by marketing issues requiring new functionality to catch up with
other competitive products.

Quality problems are also important factors for cost overruns. A certain num-
ber of defects will inevitably remain in released software products, as software
testing can not demonstrate the absence of defects [6]. When residual defects
in core assets are detected after their release to product projects (not to cus-
tomers), corrective maintenance is usually performed to modify the core assets.
When multiple product projects are undertaken simultaneously during core as-
set maintenance phase, corrective maintenance in core assets sometimes brings
associated rework to all ongoing product projects that depend on the core as-
sets, to adapt the products to the changed core assets. We have called this type
of rework “adaptive rework” [7].1 In addition, each product project will also be
delayed caused by defects injected during the project.

Though the reasons why software effort estimation error appears have been
shared among software professionals [3,9], it is still difficult to predict the amount
of overrun and its variability, or the level of risk, in specific situations. The vari-
ability of effort estimation gives us more useful information than traditional
minimum-maximum intervals to indicate its uncertainty [10]. This can be esti-
mated by a simulation approach. With regard to the quality problem in core
assets, we previously proposed a simulation model for estimating project delay
and its variability in SPL development [7]. Though the model was validated to
be capable of estimating reasonable project delay and its variability, it did not
consider requirements volatility and rework caused by defects injected during
product projects as sources of project delay.

Literature shows that avoiding project delay is sometimes considered to be
a high priority for project success [11]. For such projects, delay will be avoided
even though much additional cost is required. Cost overrun estimation for time-
boxed projects therefore should be studied. However, in our previous model, any
piece of adaptive rework causes project delay, which in practice may be resolved
without delay but with additional cost.

Even in the literature concerning effort estimation and simulation in SPL de-
velopment, these problems have not been sufficiently considered [2,12,13,14,15].
In this paper, we propose a project cost overrun simulation model for time-
boxed SPL development by enhancing our previous model. The major enhance-
ments from the previous model include: consideration of requirements volatility,
consideration of unplanned work for defect correction during product projects,
and nominal project cost overrun estimation. A homogeneous Poisson process is
introduced to represent requirements volatility. We use a similar technical ap-
proach as in our previous model to represent effort of defect correction during
product projects. We estimate nominal cost overruns in month scale instead of

1 The meaning of “adaptive rework” in this paper and that of “adaptive maintenance”
in an IEEE standard [8] are somewhat different. Adaptive maintenance is defined
in [8] as “modification of a software product performed after delivery to keep a
computer program usable in a changed or changing environment.”

332 M. Nonaka et al.

person-month scale, which makes our previous model applicable to time-boxed
projects. We conduct stochastic simulations with fictional project data by using
the enhanced model. The following are the research questions to be explored.
How much cost overrun and its variability in SPL development are expected when
(a) requirements change in product projects, and (b) product quality changes due
to residual defects in core assets and defects injected during product projects?

The reminder of this paper is organized as follows. Sect. 2 describes the pro-
posed simulation model, which includes the previous model and the enhanced
features. Simulation results and derived implications are described in Sect. 3.
Sect. 4 discusses model evaluation. Sect. 5 contains a discussion and describes
related work. Concluding remarks are described in Sect. 6.

2 Project Cost Overrun Simulation Model

2.1 Assumed SPL Development and Unplanned Work Types

SPL development involves two types of development activities2: core asset de-
velopment and product development. Core projects create common assets to be
reused by products. Core assets are maintained during a core asset maintenance
phase to correct residual defects in core assets. Product projects create products
by instantiating core asset variation points and by adding individually required
functionality. We assume that total product development effort is much larger
than total effort of core projects, which is considered to be non-matured SPL
development [16].

We also assume that multiple product projects can be undertaken simultane-
ously, if products are considered independent of each other. In this situation, at
least the following three types of unplanned work depicted in Fig.1 will occur,
which affect project cost and schedule overruns:

1. adaptive rework in product projects caused by residual defects in core assets,
2. requirements changes for products, and
3. defect correction in product projects before release.

Note that requirements change and defect correction for core projects are not
considered here, as we assume the impact of core projects on total cost overruns is
small for non-matured SPL development. Requirements changes occurring after
core assets release are considered to be incorporated into the next core project.

The work type “adaptive rework” has been already considered in our previous
work [7], which is summarized in the next section. In Sect. 2.3 and 2.4, we
explain effort models for the other two types of unplanned work, which are the
enhancements from the previous model.

2 Another type of activity “managing the SPL as a whole” is described in [1]. We
only represent development activities in our model, though the model itself may
contribute to an improved understanding of SPL management.

Project Cost Overrun Simulation in Software Product Line Development 333

dev. phase maintenance phase

defect correction

adaptive reworkadaptive rework

requirements changerequirements change

core

project

product

project #1

product

project #2

corrective maintenance

Fig. 1. Assumed SPL development and unplanned work

2.2 Adaptive Rework Effort Model

To determine total adaptive rework effort, the frequency of adaptive rework and
its effort are considered. The frequency is closely correlated with the number
of residual defects in core assets. The effort of each piece of adaptive rework
will in practice relate to the strength of dependency between core assets and
products. This assumption is partly supported by [17,18,19] showing that design
complexity has a large influence on maintenance effort. The duration will also
relate to what development phase it occurs in. Literature reports that the ratio
of the cost of finding and fixing a defect during design, test, and field use is 1 to
13 to 92 [20] or 1 to 20 to 82 [21].

From this discussion, we select the following factors to determine the effort of
adaptive rework. Note that we do not assume any specific methods to estimate
or measure these factors.

1. The number of residual defects in core assets (NRDcore). It will depend
on product size, product complexity, process quality, and other factors. We
assume that NRDcore can be estimated.

2. The strength of dependency (DEP). We consider DEP between core assets
and products as well as among core assets. It is represented as a continuous
variable that ranges from 0 to 1. DEP = 0 means no dependency, and DEP
= 1 means the strongest. In practice, there may be different levels of de-
pendency for different changes, but we use a single DEP value to represent
the worst-case dependency. DEP might reflect attributes such as coupling
between core components and product components, or the number of depen-
dent product components reusing a core component.

3. Work effort multiplier (WEM). We introduce WEM to represent the ratio of
the effort of pieces of adaptive rework for each development phase in which
adaptive rework occurs. We assume that each product project follows sequen-
tial processes. WEM can be estimated by investigating organizational defect
modification data. It is represented as a continuous variable that ranges from
0 to 1, and used to calculate the effort of adaptive rework.

4. Effort distribution of worst case adaptive rework (EffDistwcar). Worst case
adaptive rework is supposed to represent the adaptive rework in the following
worst-case settings: the defect correction completion time is at the end of the

334 M. Nonaka et al.

1249

957

343
231

0

500

1000

1500

< 1 hour < 1 day < 3days 3days <

Effort to Complete Change

(b) Implimentation of Requirements Change(a) Error Correction

4341

912
417

9024

0

5000

10000

< 1 hour < 1 day < 3days 3days <

Effort to Complete Change

O
b
s
e
rv
a
ti
o
n
s

Fig. 2. Change effort distributions from SEL data [22] drawn by the authors

product project, and DEP is the strongest. We use a probability function
for representing an EffDistwcar. We assume that an EffDistwcar has a right-
skewed distribution, which is based on the Software Engineering Laboratory
(SEL) data subset [22] showing that an effort distribution for error correction
is right-skewed as depicted in Fig. 2 (a). The range of the EffDistwcar will be
wider than the SEL data distribution, as it represents worst cases of adaptive
rework instead of actual effort. It may also have a larger variability than the
SEL data distribution, as some residual defects bring multiple changes in a
product.

With these parameters, the effort of adaptive rework can be determined as
follows. The nominal effort of adaptive rework ∆Effar·i(dj) (in months) caused
by the defect dj in the project i is assumed to be represented by the formula

∆Effar·i(dj) = EffDist−1
wcar·i(p) × WEMi(tdj) × DEPki × ε, (1)

where EffDist−1
wcar·i(p) is the inverse function of EffDistwcar for the project i.

The probability p is given at random. WEM for the project i is represented with
WEMi(tdj) when the defect dj correction is completed in core asset maintenance
phase at the time tdj . DEP between the core assets k and the product i (or core
assets i) is represented with DEPki. The parameter ε is 1 if tdj is within the
period of the project i. Otherwise, ε is 0.

The defect correction completion time td can be determined by applying a
Software Reliability Growth Model (SRGM) [23]. Suppose that all residual de-
fects in core assets which bring adaptive rework are detected during core asset
maintenance phase. If we draw an SRGM curve during the phase, the defect cor-
rection completion time of these defects can be determined by assigning a time
to each defect along with the curve depending on reliability growth. An SRGM
curve can therefore be considered to represent the organization’s capability for
defect detection.

Note that the scale of nominal adaptive rework effort is in months, not in
person-months. As our simulation model does not consider the number of re-
sources as a parameter, we use nominal effort with a month scale. Though

Project Cost Overrun Simulation in Software Product Line Development 335

this does not represent the absolute effort overruns, we can compare relative
magnitude of the effort.

2.3 Requirements Change Effort Model

To determine the total requirements change effort, we consider as parameters (1)
the number of unavoidable critical requirements change requests, (2) the change
request arrival time, and (3) the effort of each piece of requirements change.

To represent (1) and (2), we consider that a homogeneous Poisson process is
applicable. A homogeneous Poisson process is a stochastic process which is de-
fined in terms of the occurrences of events with a known average event occurrence
rate. It is widely used to represent discrete event arrivals in simulation studies.
However, we do not have any supporting evidence showing that requirements
change arrival is represented by using a Poisson process. Actually, some proper-
ties of a Poisson process may not conform to the characteristics of requirements
change. For example, the probability of two or more requirements changes in a
small interval should be essentially 0 if requirements change follows a Poisson
process, which does not reflect practical characteristics of requirements change
arrival. Though there are several limitations for its application, we use a Poisson
process because of its utility for simulation studies.

Suppose that RC represents the mean of requirements changes per month.
Based on a Poisson process, the interval between any pair of successive require-
ments changes T follows the probability distribution

Pr(T > t) = exp(−RC × t). (2)

By generating a continuous value ranging from 0 to 1 at random and assigning
it to the inverse function of the formula (2) as probability, each interval between
two successive requirements change arrivals can be determined. By repeating
this calculation until accumulative intervals excess the duration of a product
project, the number of requirements changes is bounded.

By following the same assumption as adaptive rework effort model, the effort
of each requirements change can be determined as follows. The nominal effort of
requirements change ∆Effreq·i(rj) (in months) caused by the change request rj

in the project i is assumed to be represented by the formula

∆Effreq·i(rj) = EffDist−1
wcreq·i(p) × WEMi(trj), (3)

where EffDist−1
wcreq·i(p) is the inverse function of the effort distribution proba-

bility function concerning the worst case requirements change for the project i.
WEMi(trj) is in the same notation of formula (1). EffDistwcreq can be considered
to have almost the same distribution patterns like Fig. 2 (b).

Nurmuliani [5] reported that the average rate of overall requirements change
during development lifecycle increased sharply when analysis and documents
reviews were being completed, and decreased as the project was getting closer
to the end of its lifecycle. We can reflect Nurmuliani’s observation by changing
RC during product projects.

336 M. Nonaka et al.

2.4 Defect Correction Effort Model

To determine the total defect correction effort, we consider as parameters (1) the
number of defects injected during a product project (NDproduct), (2) the defect
correction completion time of these defects, and (3) the effort of each piece of
defect correction.

NDproduct can be estimated based on estimated product size, process quality,
and past experience like NRDcore. The defect correction completion time can
be determined by using an SRGM in the same way described in Sect. 2.2. By
introducing EffDistwcdc representing worst case defect correction, the nominal
effort of defect correction ∆Effdc·i(rj) (in months) caused by the defect dj in the
product project i is assumed to be represented by the following formula:

∆Effdc·i(dj) = EffDist−1
wcdc·i(p) × WEMi(tdj), (4)

where EffDist−1
wcdc·i(p) is the inverse function of EffDistwcdc for the project i.

WEMi(trj) is in the same notation of formula (1). EffDistwcdc can be considered
to have almost the same distribution patterns like Fig. 2 (a).

2.5 Model Assumptions

The simulation model relies on the following assumptions.

1. The total effort for product projects is much larger than that for core
projects, as stated in Sect. 2.1.

2. Adaptive rework, requirements change, and defect correction occur at the
time when the causal defect is detected or the causal requirements change
request arrives. Actually, this assumption is not true in practice, as defect
correction delay is typically observed [24].

3. The effort of adaptive rework decreases from EffDistwcar depending on DEP
and WEM. The effort of requirements change and defect correction decreases
from EffDistwcreq and EffDistwcdc respectively, depending on WEM. These
assumptions are partly supported by [17,18,19,20,21].

4. Adaptive rework for completed projects is not performed even though later
defect corrections in dependent core assets may be performed.

5. Adaptive rework, requirements change, and defect correction never inject
other defects. This assumption is supported from a differenct viewpoint by
the observation in [24] showing that the impact of imperfect defect correction
is in practice negligible.

6. There is no relationship between any two pieces of adaptive rework, require-
ments change, or defect correction.

3 Simulation Results

3.1 Project Data and Parameters

We have studied a fictional SPL development project for simulation. There are
various kinds of team arrangements for SPL development. We suppose that a

Project Cost Overrun Simulation in Software Product Line Development 337

core project along with its maintenance phase and product projects are con-
ducted concurrently by different teams. We also suppose that product projects
are scheduled close together to shorten total cycle time as much as possible.

Table 1 shows an overall plan for the project. The first two rows represent
when each project is planned to start and finish. The next row “team” repre-
sents the team to be assigned for each project. The next four rows represent
dependency between core assets and products as well as among core assets. In
this project, 4 core assets are scheduled to be developed by the team C indepen-
dent of the product teams PA and PB, while 10 products by the two product
teams concurrently. For example, the product project p3 is planned to start at
4th months, to finish at 7th months, and to be conducted by the team PB. The
scheduled total cycle time is 15 months.

Table 1. A SPL development project for simulation

core projects product projects
c1 c2 c3 c4 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

start (months) 0 2 5 7 2 2 4 5 7 8 9 11 12 13
finish (months) 2 4 7 9 5 4 7 8 9 12 11 13 15 15
team C C C C PA PB PB PA PB PA PB PB PA PB

c1 − x x x x x x x x x x x x x
c2 − − x x x x x
c3 − − − x x x x
c4 − − − − x x x x

Note that product sizes of core assets and products as well as the number of
assigned resources for each project are not considered here, because these factors
do not directly affect simulation results in the proposed model. Product size does
affect NRDcore and NDproduct as described in Sect. 2.2 and 2.5. DEP might be
partly dependent on product size.

Several patterns for NRDcore, NDproduct, and RC are studied to explore the
research questions. For the other parameters, a fixed value is applied. Table 2
shows the values for these parameters.

Regarding to RC, the values in Table 2 are determined based on [5] reporting
that mean requirements change per week is approximately between two and
three. To reflect Nurmuliani’s observation [5] stated in Sect. 2.3, we divide a
product project into halves and assign different values plus and minus two from
those values for the both part of the project. For example, to represent RC for
the pattern no.2, we use 8 for the first half of a project and 4 for the latter half.

To generate the distributions of EffDistwcar, EffDistwcreq, and EffDistwcdc,
we use the right-hand side half of a normal distribution with the parameters
shown in Table 2. The parameters µ and σ for each distribution are determined
subjectively to follow almost the same distribution patterns in Fig. 2. The reason
why EffDistwcar has a larger standard deviation than the others is that some
residual defects bring multiple changes in a product, as described in Sect.2.2.

338 M. Nonaka et al.

Table 2. Simulation parameters

parameters pattern no. remarks
1 2 3 4

NRDcore 4 6 8 10 for each core asset
NDproduct 2 4 6 8 for each product project (per month)

RC 3 6 9 12 for each product project (per month)

DEP 0.5
WEM 0.05 to 1.0 a linear model with a factor of 20
EffDistwcar µ = 0, σ = 4 the right-hand side of normal distribution
EffDistwcreq µ = 0, σ = 2 the right-hand side of normal distribution
EffDistwcdc µ = 0, σ = 2 the right-hand side of normal distribution

For WEM, a simple linear model ranging from 0.05 to 1.0 is used, which can
represent a factor of 20 differences of defect correction cost during design and
test [20,21].

We need to consider another parameter for SRGM to determine defect cor-
rection completion time for both adaptive rework and defect correction. Though
numerous SRGMs have been proposed in the literature [23], we apply the fol-
lowing simple logarithmic function

y = 1 + loga x, (5)

where y represents cumulative rate of defect correction and x represents normal-
ized duration (0 < x ≤ 1). In this simulation a = 20 is used. It means that, for
example, 60% of defects are corrected before 30% of the duration, and 90% of
defects before 75% of the duration.

3.2 Result 1: In-Depth View of Simulation Results

Fig. 3 shows an in-depth simulation result under the parameters NRDcore = 4,
NDproduct = 2 and RC = 3, which represents when corrective maintenance in
core assets and requirements changes occur. One can see that more requirements
changes are appeared in the first half of each product project, as we use two
different values of RC for first and latter half of the project.

Fig.4 shows the effort histograms of generated unplanned work under the same
simulation setting in Fig. 3. The shapes of these histograms are all skewed to
the right, as EffDistwcar, EffDistwcreq, and EffDistwcdc also have right-skewed
distributions. The range of Fig.4 (a) is almost the same as those of Fig.4 (b) and
(c), though EffDistwcar has larger variability than the others. This is because
the effort of each piece of adaptive rework is decreased by multiplying DEP
whose value is 0.5. The frequency differences among Fig.4 (a, b, c) depend on
the parameters such as NRDcore, NDproduct and RC as well as the number of
product projects.

With these figures, one can understand how cost overruns are calculated by
the simulation model.

Project Cost Overrun Simulation in Software Product Line Development 339

0 5 10 15

team PB

team PA

c4

c3

c2

c1

(months)

maintenance phasedev. phase

corrective maintenance

requirements change

Fig. 3. In-depth view of a simulation result

effort (days)

F
r
e
q
u
e
n
c
y

0.0 1.0 2.0 3.0

0

4

8

1
2

effort (days)

F
r
e
q
u
e
n
c
y

0.0 0.5 1.0 1.5 2.0

0

5

1
0

2
0

effort (days)

F
r
e
q
u
e
n
c
y

0.0 0.5 1.0 1.5 2.0 2.5

0

1
0

2
0

3
0

(a) adaptive rework (b) requirements change (c) defect correction

Fig. 4. Effort histrograms of generated unplanned work under the same setting in Fig. 3

3.3 Result 2: Variability of Project Cost Overrun

To explore how much project cost overruns and its variability are expected, we
conducted 100-run simulations for several combinations of the parameters. The
boxplots in Fig. 5 represent the selected results. The mean and the standard de-
viation of each combination are shown in the tables below the boxplots. All dis-
tributions appeared in Fig. 5 are symmetrical shapes. Note that each y-axis has
a different range of nominal cost overruns among boxplots. In Fig. 5 (a, b, c), we
have focused on one parameters. That is, we set the value zero for the other two
parameters to show the isolated effect on nominal cost overrun. Fig. 5 (d) repre-
sents the simulation results changing all of these parameters at the same time.

As compared with Fig. 5 (a, b, c), NRDcore has the smallest impact on nomi-
nal cost overruns as well as its variability than the other two parameters, for the
studied simulation settings. Meanwhile, RC has the largest impact on nominal
cost overrun than the other two parameters. Of course, these results completely
rely on what values we have studied for each parameter, which is shown in
Table 2. So we can not generalize which parameter has the largest impact on
nominal cost overruns. These results only demonstrate the capability of the sim-
ulation model to estimate nominal cost overruns as well as its variability based
on these parameters. If one gives values of these parameters for a specific project,
the possible overruns and its variability can be estimated by the proposed model.

Fig. 5 (d) implies that project cost overruns can be held down if requirements
volatility and quality are well managed. The mean nominal project cost overruns

340 M. Nonaka et al.

(a) NRDcore (c) RC (d) all of them

1 2 3 4

1.84 3.83 5.99 8.14

0.29 0.50 0.51 0.65

1 2 3 4

3.37 6.70 10.28 13.64

0.30 0.47 0.57 0.73

1 2 3 4

0
.5

1
.0

1
.5

2
.0

pattern no.

n
o
m
in
a
l
c
o
s
t
o
v
e
rr
u
n
 (
m
o
n
th
s
)

pattern no. 1 2 3 4

mean 0.69 1.00 1.44 1.77

s.d. 0.10 0.13 0.17 0.16

1 2 3 4

1

2

3

4

pattern no.

1 2 3 4

2

4

6

8

1
0

pattern no.

1 2 3 4

4

6

8

1
0

1
4

pattern no.

(b) NDproduct

1 2 3 4

0.88 1.89 2.76 3.77

0.10 0.17 0.20 0.25

Fig. 5. Simulation results for estimating nominal project cost overruns (Note: y-scales
are different)

for the best combinations of these parameters is 3.37 months, while that for
the worst case is 13.64 months. As the planned total cycle time is 15 months,
the difference between the best and the worst cases are quite significant. The
balanced relative estimation error [25] for the mean worst case is 90.1%, which
is not regretfully an unrealistic error among typical software projects [26]. It
implies that poor management on requirements and quality will result in almost
doubled estimation error for the worst case of the studied simulation settings.

On the other hand, the differences of variability are relatively small compare
to those of the means. For example, the standard deviation of the best case is
0.30 months, while that of the worst case is 0.73 months. It is because that most
pieces of unplanned work are distributed among smaller values, even though
a lot of unplanned work is generated for the worst case. This result might be
different if the assumption no.6 in Sect. 2.5 is changed.

4 Model Evaluation

Because of the nature of simulation study, it is impossible to validate all as-
pects of the proposed simulation model comprehensively. However, the utility
of the model can be evaluated by using empirical data, even though it will not
demonstrate comprehensive validation. As we are in the process of trying to col-
lect empirical data, we follow some of typical validation aspects for simulation
studies [27], which has been applied in our previous work [7].

Conceptual model validity and data validity: The proposed model is considered
to be reasonably valid under the assumptions described in Sect. 2.5, because
the proposed formulas are partly supported by several empirical observations as
stated in Sect. 2. Data validity as input to the model is also supported by these
empirical observations in terms of determining effort distributions. However,
there are some limitations of the model, which is discussed in Sect. 5.1.

Project Cost Overrun Simulation in Software Product Line Development 341

Operational validity: In general, operational validity is difficult to assess when no
observable problem entity is available. In such a case, comparison to other mod-
els is one of meaningful approaches to validate a simulation model [27]. However,
this approach is not applicable in this case, because both COCOMO II [12] and
COPLIMO [13], a COCOMO II based cost estimation model for SPL develop-
ment, do not produce variability of estimated effort. These models have a lot of
parameters such as effort multipliers, but these parameters are deterministic but
not stochastic. In addition, the proposed model is not capable of being compared
to these models, as the model uses nominal cost scale. Sensitivity analysis is an-
other useful approach to demonstrate operational validity of the model, which
we have already discussed in Sect. 3.3. It can be considered that the model has
reasonable validity, but some limitations still exist.

Another possible approach is to evaluate the generated adaptive rework by the
simulation program rather than total cycle time. By comparing the distributions
of the generated adaptive rework in Fig. 4 to the change effort distribution
from the SEL data in Fig. 2, both distributions can be subjectively judged to
be similar. At least, we can conclude that the simulation model is capable of
producing reasonable adaptive rework distributions.

5 Discussion and Related Work

5.1 Limitation of the Model

One of the most important limitations of this study is that the proposed model
uses nominal cost scale but absolute cost scale. That is, the model estimates
cost overruns in month scale but not in person-month scale. This limitation
comes from the lack of considerations for resources and product size. In ad-
dition, the model does not consider unplanned work during core asset devel-
opment phase. Matured SPL development tends to have more effort on core
projects rather than product projects [16], so this limitation should be overcome
to increase applicability of the model. Now we are in the process of enhancing
the simulation model to overcome these limitations and some assumptions as
well.

Another arguable assumption in this model is the usage of DEP. We assume
that the effort of a piece of unplanned work decreases linearly from worst-case
effort by multiplying DEP. We do not have any supporting evidence for this
assumption at this moment. We might say that this assumption is not very un-
realistic by carefully looking at the generated unplanned work distributions. In
addition, we do not have any specific method to caliblate DEP. It might reflect
attributes such as coupling between core components and product components,
number of dependent product components reusing a core component, and in-
heritance depth between core and product components. Those attributes and
measured values have to be translated into DEP and calibrated by checking
generated adaptive rework distributions like Fig. 4 (a).

342 M. Nonaka et al.

5.2 Related Work

Software process modeling approaches can be categorized into the following three
types [28]: analytical models such as COCOMO II [12], continuous simulations
such as system dynamics models [29,30], and discrete-event simulations [31].
Some studies use a combination of those approaches [14,28,32]. The proposed
model is a discrete-event simulation.

Discrete-event simulation models are suitable for detailed analyses of the pro-
cess and project performance, while continuous simulation models are useful to
represent effects of feedback and changes in a continuous fashion [33]. As the pro-
posed model represents sequential events concerning defects and requirements
change requests, the use of a discrete-event simulation model is reasonable.

Several studies have appeared in the literature on estimating the benefits of
SPL development [13,34,35]. These studies use more macro-level analytical mod-
els than our model. The primary purpose of the studies [34,35] is for estimating
the return on investment of SPL development compared with non-SPL devel-
opment. COPLIMO [13] is a deterministic cost estimation model for SPL and
does not represent uncertainty, as well as COCOMO II [12]. COCOMO-U [15]
introduces uncertainty into COCOMO II, but does not mention how the model
can be applied to SPL development.

Chen et al. proposed a discrete-event SPL process simulator using COPLIMO
as their cost model [14]. Schmid et al. studied SPL planning strategies through
deterministic simulations [2]. These two studies have similar research questions
to ours. However, these studies do not explicitly use factors such as NRDcore,
NDproduct, DEP, and requirements volatility. They are also not capable of cal-
culating the level of risk of estimated effort under uncertainty, as they are based
on deterministic simulation models.

6 Conclusions

In this paper, we proposed a stochastic simulation model for estimating nominal
project cost overruns and its variability in time-boxed SPL development, based
on our previous model. Simulation results demonstrate that the model is capa-
ble of estimating reasonable nominal cost overruns and its variability. We have
shown that poor management on requirements and quality will result in almost
doubled estimation error, for the studied settings. The model has been partially
validated by comparing generated unplanned work to actual change effort, which
consequently demonstrates the validity of estimated project cost overruns.

Our immediate future work is to enhance the model to overcome limitations
and assumptions, consider calibration of the parameters, and to validate the
model by using empirical project data. We are now working on these issues.

Acknowledgments. This study was partially supported by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B),
16700042, 2005. NICTA is funded through the Australian Government’s Backing

Project Cost Overrun Simulation in Software Product Line Development 343

Australia’s Ability initiative, in part through the Australian Research Council.
The third author was working with NICTA when this paper was produced.

References

1. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley, MA (2001)

2. Schmid, K., Biffl, S.: Systematic management of software product lines. Softw.
Process Improve. Pract. 10, 61–76 (2005)

3. Genuchten, M.v.: Why is software late? an empirical study of reasons for delay in
software development. IEEE Trans. Softw. Eng. 17 (1991)

4. Subramanian, G.H., Breslawski, S.: An empirical analysis of software effort esti-
mate alterations. J. Systems and Software 31, 135–141 (1995)

5. Nurmuliani, N., Zowghi, D., Fowell, S.: Analysis of requirements volatility dur-
ing software development life cycle. In: Proc. 2004 Australian Softw. Eng. Conf.
(ASWEC’04) (2004)

6. Dijkstra, E.: Notes on structured programming. In: Dahl, O.J., Dijkstra, E., Hoare,
C.A.R. (eds.) Structured Programming, Academic Press, London (1972)

7. Nonaka, M., Zhu, L., Babar, M.A., Staples, M.: Project delay variability simulation
in software product line development. In: Proc. Intl. Conf. Software Process (ISCP)
(to appear)

8. IEEE: Ieee std. 1219-1998, ieee standard for software maintenance (1998)
9. Jørgensen, M., Moløkken, K.: Reasons for software effort estimation error: Impact

of respondent role. information collection approach, and data analysis method.
IEEE Trans. Softw. Eng. 30, 993–1007 (2004)

10. Jørgensen, M.: Realism in assessment of effort estimation uncertainty: It matters
how you ask. IEEE Trans. Softw. Eng. 2004, 209–217 (2004)

11. Procaccino, J.D., Verner, J.M.: Software project managers and project success: An
exploratory study. J. Systems and Software 79, 1541–1551 (2006)

12. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E.,
Madachy, R., Reifer, D., Steece, B.: Software Cost Estimation with COCOMO II.
Prentice-Hall, Englewood Cliffs (2000)

13. Boehm, B.W., Brown, A.W., Madachy, R., Yang, Y.: A software product line
life cycle cost estimation model. In: Proc, Intl. Symp. Empirical Softw. Eng.
(ISESE’04), pp. 156–164 (2004)

14. Chen, Y., Gannod, G.C., Collofello, J.S.: A software product line process simulator.
Softw. Process Improve. Pract. 11, 385–409 (2006)

15. Yang, D., Wan, Y., Tang, Z., Wu, S., He, M., Li, M.: Cocomo-u: An extension
of cocomo ii for cost estimation with uncertainty. In: Wang, Q., Pfahl, D., Raffo,
D.M., Wernick, P. (eds.) Software Process Change. LNCS, vol. 3966, pp. 132–141.
Springer, Heidelberg (2006)

16. Bosch, J.: Maturity and evolution in software product lines: Approaches, artefacts
and organization. In: Proc. 2nd Intl. Conf. Softw. Product Lines 2002, pp. 257–271
(2002)

17. Epping, A., Lott, C.M.: Does software design complexity affect maintenance effort?
In: Proc. 19th Softw. Eng. Workshop. 1994, pp. 297–313 (1994)

18. Bocco, M.G., Moody, D.L., Piattini, M.: Assessing the capability of internal metrics
as early indicators of maintenance effort through experimentation. J. Software
Maintenance and Evolution 17, 225–246 (2005)

344 M. Nonaka et al.

19. Ramanujan, S., Scamell, R.W., Shah, J.R.: An experimental investigation of the
impact of individual, program, and organizational characteristics on software main-
tenance effort. J. Systems and Software 54, 137–157 (2000)

20. Kan, S.H., Dull, S.D., Amundson, D.N., Lindner, R.J., Hedger, R.J.: As/400 soft-
ware quality management. IBM Systems Journal 33, 62–88 (1994)

21. Remus, H.: Integrated software validation in the view of inspections / reviews. In:
Proc. Symposium on Softw. Validation, pp. 57–64. Elsevier, North-Holland (1983)

22. SEL: Sel, (software engineering laboratory) data (1997), http://www.cebase.org
23. Musa, J.D.: Software Reliability Engineering. Osborne/McGraw-Hill (1998)
24. Defamie, M., Jacobs, P., Thollembeck, J.: Software reliability: assumptions, reali-

ties and data. In: Proc. 1999 Intl. Conf. Softw. Maintenance (ICSM’99) pp. 337–345
(1999)

25. Miyazaki, Y., Takanou, A., Nozaki, H., Nakagawa, N., Okada, K.: Method to es-
timate parameter values in software prediction models. Inf. Softw. Technol. 33,
239–243 (1991)

26. Moløkken, K., Jørgensen, M.: A comparison of software project overruns–flexible
versus sequential development models. IEEE Trans. Softw. Eng. 31, 754–766 (2005)

27. Sargent, R.G.: Validation and verification of simulation models. In: Proc. 31st Conf.
Winter Simulation pp. 39–48 (1999)

28. Donzelli, P.: A decision support system for software project management. IEEE
Software 23, 67–75 (2006)

29. Abdel-Hamid, T., Madnick, S.: Software Project Dynamics- An Integrated Ap-
proach. Prentice-Hall, Englewood Cliffs, NJ (1991)

30. Calavaro, G.F., Basili, V.R., Iazeolla, G.: Simulation modeling of software develop-
ment process. In: Proc. 7th European Simulation Symposium. Soc. for Computer
Simulation (1995)

31. Antoniol, G., Cimitile, A., Lucca, G.A., Penta, M.: Assessing staffing needs for
a software maintenance project through queuing simulation. IEEE Trans. Softw.
Eng. 30, 43–58 (2004)

32. Martin, R., Raffo, D.: Application of a hybrid process simulation model to a soft-
ware development project. J. Systems and Software 59, 237–246 (2001)

33. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software process simulation modeling:
Why? what? how? J. Systems and Software 46, 113–122 (1999)

34. Cohen, S.: Predicting when product line investment pays. Technical Report Te-
chinical Report CMU/SEI-2003-TN-017, Software Engineering Institute, Carnegie
Mellon University (2003)

35. Böckle, G., Clements, P., McGregor, J.D., Muthig, D., Schmid, K.: Calculating roi
for software product lines. IEEE Software 21, 32–38 (2004)

http://www.cebase.org

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 345–357, 2007.
© Springer-Verlag Berlin Heidelberg 2007

E-Service Architecture Selection Based on Multi-criteria
Optimization

Edzus Zeiris and Maris Ziema

Riga Technical University, Faculty of Computer Science and Information Technology
Meza 1/3, LV-1048, Riga, Latvia
{edzus,maris}@zzdats.lv

Abstract. The selection of the most acceptable architecture of e-services system
is very important issue. One and the same e-service can be designed using
different alternative architectures. Each system has different execution indices
that are very important for the e-services clients and providers. This article
shows solutions for compromise or the most acceptable selection of the
architecture of e-services system using more than one criterion at the same time.
The solution is based on the theory of graphs and usage of multi-criteria
methods and their basics is following: E-service algorithm is described with an
algorithm graph. Using segmentation of algorithm graph web service graphs are
obtained that are assessed with characteristic numerical values of system
architecture. Several characteristics of system architecture are: Reusability,
Costs of Production and Time of Execution. The task of multi-criteria
optimization of web service graphs is defined when as result the compromise or
the Pareto set of web service graphs is evaluated. The most acceptable solution
of system architecture is selected from Pareto set by using additional
information. The usage of offered method is demonstrated with help of practical
example.

1 Architecture of E-Services System

Currently achievements of information technologies create not only possibilities but
also a necessity for simple and efficient means how to ensure information receipt,
processing, saving and exchange. Internet has become one of main means for
furnishing and receiving information and services.

In such context there occurs necessity to talk about electronic services or e-
services, their development, structure and architecture. E-service traditionally is
realized as a set of actions of information systems. It contains functional possibilities
of several systems as a result giving material and nonmaterial wealth for society
(physical and legal persons). Electronic services contain four levels of electronization:
1st – information about the service is available on the internet; 2nd – it is possible to
download forms that are necessary for receiving the service; 3rd – it is possible to
hand in data electronically for receiving the service; and 4th – complete the
electronization of service. Providers of the service and clients must ensure the
electronization of service. Further in this article we will understand that e-service is a

346 E. Zeiris and M. Ziema

service that is electronizated according to electronization levels for usage on the
internet.

For electronic services of levels 3 and 4, it is useful to look at architecture of
E-services’ systems.

Let’s view common architecture of e-services system [1, 2].

Consumers

Prezentation

E-services

Backend Systems

Web services
Composite Web

services

Infrastructure

Audit Security

Web Services Orchestration E-Services Registry

Messaging

Transactions Utilities

Data center

XML Schemas
Catlog

E-Services
catalog UDDI

Starndards and metadology

Business logic

Infrastructure layer

Service layer

Physical layer

Fig. 1. E-services system architecture

In the logical scheme of architecture (Fig. 1) is shown how the systems that are
involved in the service are linked into e-service. There should be elaborated a group
of XML schemes for every object of data which should be involved into realization of
e-service. Data acquisition from the relevant functional backend system is realized by
means of web services. Web service is program component which interfaces can be
described with Web Service Description Language (WSDL) and which can be
accessed by sending standardized XML messages via standard net protocols. For
example SOAP over HTTP. Web services are used to compose e-services. By
making calls of web services, also metadata is sent that describes the request.
Information that is necessary for filling in auditing registrations is transferred via
metadata.

As orchestration (integration) environment of process should be used the BPEL
(Business Process Execution Language) processor, as a result of this are e-services
that are delivered to applications ensuring e-services for end users, e.g. portals, one-
stop agencies, etc. E-services’ input forms, milestones, information about payments
and results of fulfillment are delivered by HTML or by XML pages which may be
used in the portal in order to implement the service by using XSLT transformation.

Holders of web services and e-services, i.e. specialists of institutions and system
operators who are responsible for maintenance and development of web services and
e-services should have a possibility to communicate mutually on various issues
related to execution and development of web services and e-services, as well as
execute asynchronous e-services. System of messages is provided for this purpose.

 E-Service Architecture Selection Based on Multi-criteria Optimization 347

System of messages ensures work with messages and work assignments. Application
of messages is integrated with E-services’ register from which it receives data about
XML schemes, web services and e-services. On the other hand, application of
messages is a client of orchestrations, because the messages about the execution of
web service and e-service are being received from them. Data about all XML
schemes, web services and E-services are registered in one common register “E-
services’ register”. There are maintained all versions of schemes, web services and e-
services in order to provide this information available for anyone being involved in
elaboration and development of e-services.

In architecture of e-service systems there should be also paid attention to the
security system. The main goal of establishing e-services’ security system is to ensure
successful performance of the e-service in all steps. Main tasks of the security system
are to provide authentication and authorization of clients, integrity and accessibility of
the service.

It is necessary to regulate all processes and outputs by relevant standards and
guidelines.

E-service systems’ architecture is established as a hub with external interfaces
being able to integrate systems in e-services. Functionality of such architecture allows
various types of topologies. Depending from requirements and physical placement, it
is possible to select where and how to perform one or the other action. Possible
topologies can be as one central hub and as well as divided peer-to-peer architecture
of mutually linked hubs or multilevel hierarchies that are much more complicated.

In such architectural type, each e-service basically is determined by its algorithm
that is formed as separate orchestration. Such orchestrations link together one or
several web services of functional systems into e-service. Combinable web services
can be simple and composed. Orchestrations of e-services are the variable part of such
architectural type and it is necessary to elaborate it for every service individually.
Further in the article we will view one part from architecture of the e-services system
that we can see in Fig. 1 on the level of business logics [3, 4, 5, 6].

2 Architecture Selection Problem for E-Service

E-service orchestration is essential component of the service. It defines the e-service
algorithm and therefore the execution (result). Web services and their orchestrations
that are used in these services characterize the entire e-service. Due to this reason,
further by the architecture of e-service we will understand web services involved in
the service and their orchestration.

By forming e-services, as well as other systems, it is known that one and the same
result may be reached by executing various algorithms. When forming e-services such
problem is very topical as orchestrations of services often are made by elaborators
with different qualifications and therefore the quality of the established e-services
often is different in various measurements. To increase the quality of the elaborated
services, it is necessary to assess one or the other orchestration of the e-service and
select the best from several ones [7, 8].

In similar situations other authors offer to select the architecture by one or more
evaluating criteria that are based on experience. For example Jan Bosch related work

348 E. Zeiris and M. Ziema

[9, 10]. Solution offered by the author differs in that there is architecture assessing
formula and optimal architecture assessing formula. Then selected architecture results
are compared with optimal architecture evaluated values. Not always optimum is
reached in this, because not all possible solutions are considered. This article contains
solution that is different because all possible solutions are examined and all possible
solutions of optimum set are evaluated.

A service in its essence consists of several activities that can be fulfilled
synchronously or asynchronously. Each of activities has to be complete in order to
comply with principles of Service Oriented Architecture (SOA) – execution of one
activity is not related with status of other activities. By establishing Web services in
the SOA environment, one should be guided by two basic principles [11]. Firstly, a
high cohesion – it means that in one Web service should be combined uniform
activities, and secondly, a minimal coupling – Web service should work
autonomously, independent of other services in order to increase its reusability.

For the sake of convenience in this article by one activity of the service we will
understand the web service which realizes it. There must be solved one problem, how
to divide the service algorithm throughout web services, while designing e-service.
Whether to design one web service, whether as many as possible where each web
service contains minimal functionality in order it would conform to SOA?

Let us imagine simple example of e-service offered by some institution that allows
service client to request information from institution. The requested information is
sent to client in asynchrony way. The requested information is prepared
automatically from the knowledge base. If no information is found, then request is
formatted and sent to office-worker of this institution for manual preparation. All
clients of institution and cooperation with them are registered in CRM system
therefore the process of this e-service is following:

1. Find client in CRM system. If it is impossible to find this client, then go
to the 2nd step; otherwise go to the 3rd step.

2. Register new client in CRM.
3. Register client’s request in CRM system.
4. Find requested information in data base. If there is no such information

then go to the 5th step; otherwise go to the 6th step.
5. Prepare request for office-worker of institution for manual execution.
6. Prepare requested information answer, register in the documentation

system and send it to the client.

Knowledge base system already has Web service interfaces for integration with
other systems that have all required functionality. Documentation system has one
interface for document registration that can be realized as Web service.
Documentation system is developed by other company, therefore it can’t be modified
(e-service process is shown in Fig. 2).

This kind of selection problem of architecture service is related to CRM system.
Registration in CRM system must be done in three steps that increase time of
execution. All CRM registration steps can be merged in one step due to minimize
time of execution, but such merging increases CRM costs of additional improvements
on the basis of frequently repeated long term usage. For example if institution decides
to offer e-service where only client registration will be needed in CRM system.

 E-Service Architecture Selection Based on Multi-criteria Optimization 349

Further in this article it will be described how to make a selection among various
solutions of the e-service architecture.

To select the best e-service architecture it is offered to use theory of graphs.
Initially algorithm graph of e-service should be defined, which according to its
essence is algorithm description of e-service execution in the form of orientated
graph, where each vertex contains certain number of activities to-be-executed in the e-
service in order it would conform to SOA principles, and edges are informative links
among activities. It is possible to segment the graph of algorithm in various ways, by
thus altering parameters of algorithm activities. Graph segmentation means that there
are being searched combinations of graph vertexes in all possible ways. The
segmented graph may be transformed as web service graph where each web service is
realizing functionality from the segment of algorithm graph. Such web service graph
that has developed as a result of segmentation of algorithm graph may be regarded as
characterization of the e-service architecture.

Selection of architecture can be realized as the task of finding set of web service
graphs that correspond to Pareto – optimum according to N set criteria [12].

3 E-Service Architecture Description with Graph

Essence of the e-service is determined by its execution algorithm. If the e-service
execution process is known then it is possible to describe the service execution
algorithm precisely, e.g. in any programming language. It is possible to describe the
e-service as a set of web services with links describing architecture of the given
service. Let’s define the e-service algorithm graph as an orientated graph

),(LSG = , where }{ nsssS ,..., 21= is a final set – vertexes of the graph which

according to their essence are to-be-executed activities of the e-service algorithm, and

SSL ×⊂ are edges of the graph. The edge),(kji ssl = in the graph means that in

e-service algorithm after execution of the activity js there follows execution of the

activity ks . Edges in the e-service algorithm graph indicate the information flow.

Example of the e-service algorithm graph is shown in Fig. 2. The vertex marked by
‘1’ is the beginning of the algorithm. Vertexes „4” and „6” are made by various
elaborators, therefore they are in various patterns.

1
2

3 4
5

6

Fig. 2. E-Service graph

There must be taken under consideration some restrictions that are related to SOA
when establishing e-service algorithm graph in order it could be used as the basis for
establishing architecture of e-services:

350 E. Zeiris and M. Ziema

Every algorithm graph vertex is must be able to realize to-be-executed activity that

is included in it. It means that the vertex is acting in an atomar transaction and is not
related to realized algorithms in other vertexes. This condition is related to high
cohesion and minimal coupling.

− Every vertex should contain at least one to-be-executed activity. In practice it is
related to algorithm-implementing methods. For further goals let’s mark the

implementing methods of vertex activities by { }g
sssss iiiii

mmmm ,...,, 210=Μ and

the number of every method’s lines j
si

m by)(j
si

mΟ

− Activities repeating during the algorithm execution time cannot be established
in the graph as various vertexes

∅=∩∈∈≠∀
ji ssjijiji MMSsSsssss ,,,,, . It is necessary in

order to ensure high cohesion and initially exclude processing of unuseful versions.

In order to make the graph segmentation and formally describe it, let’s view graph

G as depiction Γ arranging for every vertex a subset ()Ssi ⊂ in vertexes’ set S .

This subset according to its essence is reachable vertexes from vertex is . isΓ are

edges outgoing from the vertex and is1−Γ are incoming edges into the vertex. For

such e-services’ algorithm graph exists at least one vertex ()Sss ∈00 which does not

have any incoming edge ∅=Γ−
0

1s , that we will name as the beginning of e-service

algorithm, and likewise exists at least one vertex ()Sss rr ∈ which does not have any

outgoing edges) ∅=Γ rs , this we will name as the result of e-service algorithm

[13].

For example, as in the graph in Fig. 2 }"1{"0 =s , }"6{"=rs ,

}"6","5{"}"4{" =Γ , }"3{"}"4{"1 =Γ− .

4 Graph Measurement

Web services’ graph is obtained by segmenting algorithm graph. There are possible

several segmentations, let’s define set { }GX ′= , containing all possible graphs

that are recursively derived from initial web services’ graph G. Alterations of the

graph are made by merging the vertexes. Merge s′of two vertexes is and js is as

merge of both vertexes’ outgoing and ingoing edges. ji sss Γ∪Γ=′Γ and

ji sss 111 −−− Γ∪Γ=′Γ . A set of methods in the newly established vertex is formed

 E-Service Architecture Selection Based on Multi-criteria Optimization 351

as following
ji sss MMM ∪=′ Measurements of the number of lines are summing

up, by merging vertexes.
Rather often during the execution of e-service there are involved various functional

systems that have been created by various elaborators, therefore it is not possible to
realize these activities of systems in one web service. Initially for this purpose it is
necessary for every vertex of algorithm graph to determine with which one it is not
able to be merged. In other words, for every algorithm graph vertex let’s arrange

indication ()isI . In such way merge of vertexes s′ is possible only then

if () ()ji sIsI = .

Let’s define characteristic values of Web services’ graph in terminology of
architecture. This article contains only three of all possible characteristics to show the
method in selection of architecture. The selection of architecture can be added
with ∞<< N0 characteristics.

Graph of web services is characterized by:

− Reusability ARSD;
− Costs of Production C;
− Time of Execution T.

Further the metrics of web service graphs of e-services and their formulas are
assigned in a way that all of them can be minimized.

Reusability
Development of web services for establishing of e-services is a very labor intensive
process. Costs are sufficiently high and not always in the beginning there are so many e-
service users in order to be worthwhile for short-term. Web services should be
established in that way so they would be useful as well as for short-term as for long-term.
For such purposes it is necessary to establish services in a way so they can be maximally
reused. It is necessary to establish services maximally independent from other resources
in order to be used for various goals where the functionality of previously established
services will be needed. While talking about web services, it is assumed that they
conform to SOA, so they are maximally independent from others, do not contain status
information and can work autonomously. If there are fulfilled such conditions, then it is
possible to talk about maximal cohesion of services and minimal coupling.

In case when web services are used for establishing e-services, by inserting them
into the web services’ graph of e-service, it is possible to assess dependency of the
established web services’ graph. In this article with Reusability we will understand
Web service dependency of others Web services. In other cases there must be
included functionality of web service’s atomism in measurements of reusability.

To calculate the average web service’s dependency of other services ARSD
(Average Required Service Dependency) [14] upon other services in web services’
graph, let’s use the formula as following:

∑
=

∗=
n

i
iR

n
ARSD

1

1
, (1)

352 E. Zeiris and M. Ziema

where Sn = is a total number of web services in web services’ graph, and iR is

the number of services linked with web service i, or in other words, the number of

incoming and outgoing edges in web services’ graph vertex iii ssR 1−Γ+Γ= .

Costs of Production
To decrease costs of effort for the e-service, it is important to put in minimal work for
elaboration of each service. As a basic we will take LOC (Lines Of Code) assessment

method to calculate the costs of effort [15]. To calculate effort costs
isC of each web

services’ graph Vertex, let’s use the algorithm as following:

p

iC
Mm

ss sWmC
isis

ii ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+Ο= ∑

∈

)()((2)

)(iC sW is the number describing web service implementation code lines in web

services’ graph vertex is , what is constant for every realization environment of web

services. We will use degree p according to LOC method that can be influenced from
chosen programming language. Degree p characterizes the implementation
complexity of realization in the programming language (p according to its essence is a
fractional number). E-service elaboration costs C are calculated as following:

∑
∈

=
Ss

s

i

i
CC (3)

Time of Execution
For calculating execution time of e-service, let’s adjust average execution time in

milliseconds
ist for each web services’ graph vertex with average amount of input

data [16]. Additional time)log(
isws tt = is needed to execute every of vertex in e-

services’ realization environment. E-service total time of execution activity is
calculated as following:

dataepak
Ss

wss ttttT
i

i
+++= ∑

∈
)((4)

In order to execute e-service in any of execution environment we have to add

additional time)log(ntepak = to the execution time, where Sn = (the number of

web services in the graph) and the time ∑
∈

=
Ll

ldata

i

i
tt that is needed to transfer data

from one e-service web service graph vertex to the next one. The average time in

milliseconds
il

t should be adjusted for each of web services’ graph edges Lli ∈ in

order to transfer data via this edge [17, 18].

 E-Service Architecture Selection Based on Multi-criteria Optimization 353

5 Multi-criteria Graph Optimization

Essence of the task is to find all possible web services’ graphs from the set X, which
are the most appropriate (either none the worse) according to all pointed out criteria
(reusability, costs of production, time of execution). It is essential to view
simultaneously all criteria as it is not possible to determine which one is the most
important and they are not comparable with each other. Let’s solve this problem as
multi-criteria task which can be reduced in order to find Pareto compromise’s set P :

() PXQ
X

→→
Ω∈

min , (5)

where () { })()...(),(21 XqXqXqXQ N= - criteria that must be minimized; Ω - X

definition area.

Let’s call solution Ω∈*i
X as Pareto optimal PX

i
∈* only in case if there does

not exist Ω∈jX such that

() ()*iiji XqXq ≤ (6)

for all { }Ni ,...2,1= , where at least one is a strict nonequivalence. In other words,

there will not appear more appropriate value in the set Ω for any value of PX
i

∈* .

The e-service algorithm graph is given. Initially it is assumed as web services’

graph G. The task is to find the set of graphs { }*GP ′= that conforms to

Ω restrictions and minimizes criteria Q (in our case 1q is reusability that is

calculated as in formula (1), 2q are costs of production that are calculated as in

formula (3) and 3q is time of execution that is calculated as in formula (4)).

The graphs of Web services that are found in the set P are the possible solutions of
architecture [19].

6 Multi-criteria Optimization Solution

Let’s demonstrate the offered model by a simple example. Let’s make selection of
web services’ graphs as a multi-criteria optimization based on the e-service algorithm
graph shown in Fig. 2.

Let’s define the following indications of algorithm graph vertexes I.
I(1)=I(2)=I(3)=I(5)=1, I(4)=2, I(6)=3.

Firstly all possible architecture solutions must be found in order to get optimal
architecture solutions. Let’s calculate all possible combinations of vertex segments
(it’s very important to find the combinations, because from the architectural point of
view there is no difference in the sequence of vertex segmentation). Segmentation of
vertexes can be made by using different algorithms. One of the simplest ways how to
find graphs is to use recursive algorithm that merges each two vertexes of graph if the

354 E. Zeiris and M. Ziema

indices I for the vertexes are equal until the moment when graph has only one vertex.

We use the same algorithm for the graphs that we have found. Set { }GX ′= , in our

case, contains 15 derived graphs shown in Table 1, from which we are able to find

graphs that belong to Pareto set { }*GP ′= .

When all possible segments of graph vertex are found, the assessment formulas (1),
(3) and (4) are used to get numerical values for optimization (see Table 1).

Table 1. All graph segmentation solutions

Nr. Graph Costs of
Production

Time of
Execution

Reusability Pareto

1. G’
1 52.4976 33.0130 2.333

2. G’
2 50.5569 31.0913 2.000

3. G’
3 48.5386 24.0181 2.000 *

4. G’
4 46.4327 26.1841 2.667 *

5. G’
5 48.5386 33.2854 2.500

6. G’
6 48.5386 33.2874 2.500

7. G’
7 50.5569 32.9885 2.400

8. G’
8 48.5386 35.1828 3.000

9. G’
9 48.5386 35.1831 3.000

10. G’
10 50.5569 35.2251 2.800

11. G’
11 48.5386 26.6704 2.500

12. G’
12 50.5569 25.9691 2.000

13. G’
13 48.5386 28.1635 2.500

14. G’
14 50.5569 35.2253 2.800

15. G’
15 50.5569 35.2269 2.800

Evaluated values must be compared in all dimensions using the formula (6) to get
the set of Pareto optimum.

For the given example the Pareto set consists of two solutions, depicted in Fig. 3.
Solutions are obtained by merging vertexes – in one case “1”, “2” and “3”, and in
other “1”, “2”, “3” and “5”.

Fig. 3. Optimized graphs of web services

 E-Service Architecture Selection Based on Multi-criteria Optimization 355

To demonstrate graphically multi-criteria optimization and the set of Pareto
optimum, let’s choose two criteria:

− Time of Execution;
− Reusability.

Pareto set is shown in Fig. 4. Graphically Pareto solutions are closer to the zero
point of coordinate axes.

Time of Execution

R
eu

sa
b
il
it
y

All Solutions

Pareto Optimum

0

q1(x)

q2(x)

Fig. 4. Multi-criteria optimization example

Pareto set according to these criteria consists of the solution shown in Fig. 4. If
there in not many opportunities to choose from many solutions as in the given
example, then the selection of the solution may be made by e-service designers on the
basis of their experience, or we can set up priorities that can be realized by decreasing
the number of criteria. Also it is possible to use any of multi-criteria optimization
methods [19].

7 Conclusion

It is very complicated task to establish an e-service. One of the problems is the e-
service designing – distribution of the service throughout web services and
establishing of their orchestration. The selection of the concrete solution affects
several essential e-service execution assessments (Costs of Production, Time of
Execution, Reusability and others). Execution assessments and number of them are
related to the requests, needs of customer and specific characteristics of service. Each
added criteria and its evaluation formula must be carefully verified because wrong
formula can give incorrect solutions. Initially it is offered to establish an e-service
algorithm graph to be transformed as a web service graph in order to select any

356 E. Zeiris and M. Ziema

concrete solution. The formulas (1), (3), (4) are offered for graphs assessment of web
services. It is offered to use multi-criteria optimization in order to make a selection
among all possible versions. Multi-criteria optimization is a process of searching for
Pareto optimum when as a result Pareto set is obtained. Graphs of web services
available in Pareto set are the possible solutions of architecture. Usually the
assessments of service’s architectural solutions mutually conflicts, therefore the usage
of each it must be carefully considered, because they increase the number of possible
optimal solutions. Web services’ graphs available in the Pareto set may be designed in
details, implemented and executed in the execution environment of e-services.

The approach mentioned in the article may be applied for all types of e-services, as
well as in similar situations.

References

1. Secretariat of Electronic Government Affairs of Latvia home page, http://www.eps.gov.lv/
2. Latvian E-Government home page, http://www.eparvalde.lv/
3. The Open Web Applications Security Projects. A Guide to Building Secure Web

Applications and Web Services. 2.0 Black Hat Edition (2005.07.27)
4. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison Wesley,

London (2000)
5. Secretariat of Electronic Government Affairs of Latvia. Conception of Integrated

Information System of Government. Riga (2005)
6. Microsoft Corporation. Connected Government Framework. Architecture and Design

Blueprint (2005)
7. Papazoglou, M.P.: Service – Oriented Computing: Concepts, Characteristics and

Directions. In: Keynote for the 4th International Conference on Web Information Systems
Engineering, – pp. 3–12 (December 10-12, 2003)

8. Papazoglou, M.P., Yang, J.: Design Methodology for Web Services and Business
Processes. In: Proceedings of the Third International Workshop on Technologies for
E-Services, – pp. 54–64 (2002)

9. Bengtsson, P.B.J.: Assessing optimal software architecture maintainability. In: Fifth
European Conference on Software Maintenance and Reengineering, – pp. 168–175 (2001)

10. Lundberg, L., Bosch, J.: Daniel Häggander and Per-Olof Bengtsson Quality Attributes in
Software Architecture Design. In: Proceedings of the IASTED 3rd International
Conference on Software Engineering and Applications, – pp. 353–362 (October 1999)

11. Zeiris, E., Ziema, M.: E-Services Development Problems. In: Scientific Proceedings of
Riga Technical University. Computer Science. Series 5. Riga vol. 19. –pp. 48–53 (2004)

12. Chatterjee, S., Webber, J.: Developing Enterprise Web Services. An Architect’s Guide.
Hewlett-Packard Corp. (2004)

13. Dambits, J.: Modern graph theory. Computer Science Centre Riga (2002)
14. Qian, K., Liu, J., Tsui, F.: Decoupling Metrics for Services Composition. In: Proceedings

of the 5th IEEE/ACIS International Conference on Computer and Information Science and
1st IEEE/ACIS International Workshop on Component-Based Software Engineering,
Software Architecture and Reuse (ICIS-COMSAR’06) (2006)

15. Kan, S.H.: Metrics and Models in Software Quality Engineering, 2nd edn. Addison
Wesley, London (2003)

 E-Service Architecture Selection Based on Multi-criteria Optimization 357

16. Sion, R., Tatemura, J.: Dynamic Stochastic Models for Workflow Response Optimization,
2005. In: IEEE International Conference on Web Services (Industry Track) IEEE ICWS
(2005)

17. Cardoso, J., Sheth, A., Miller, J.: Workflow Quality of Service. In: International
Conference on Enterprise Integration and Modelling Technology and International
Enterprise Modelling Conference (ICEIMT/IEMC-02). Valencia, Spain, – p. 13 (2002)

18. Yu, T., Lin, K.-J.: Service Selection Algorithms for Composing Complex Services with
Multiple QoS Constraints. In: International Conference on Service-Oriented Computing
2005 – pp. 130–143 (2005)

19. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers,
Boston (1998)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 358–373, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Component-Based Process
for Developing Automotive ECU Software*

Jin Sun Her, Si Won Choi, Du Wan Cheun, Jeong Seop Bae, and Soo Dong Kim

Department of Computer Science, Soongsil University
511 Sangdo-dong, Dongjak-Ku, Seoul, Korea 156-734

{jsher,swchoi,dwcheun,jsbae}@otlab.ssu.ac.kr, sdkim@ssu.ac.kr

Abstract. Software plays a vital role in operating modern automobiles, and it is
a key element in providing innovative features such as Collision Prevention
System. There are two essential issues to be resolved; managing software
complexity, and reducing software cost and time-to-market. A key solution to
these two issues is to maximize reusing components in building various
Electronic Control Units (ECUs). Component-based development (CBD) is
regarded as an effective reuse technology. However, current CBD
methodologies do not effectively support developing reusable automotive
components and ECUs. Hence, in this paper, we first define variability types
and variation points for ECUs. Based on the variability types, we propose a
component-based development process for developing ECUs. To assess the
applicability of the proposed CBD process, we present the case study of
developing an innovative automotive ECU for Automatic Parking System
(APS).

1 Introduction

For modern automobiles, software is regarded as important as mechanical hardware
elements since software monitors and controls various hardware devices and
components. Moreover, software plays a key role in providing innovative features.

ECU of automobiles is an embedded microcontroller which provides automobile-
intrinsic essential functionality such as controlling engine, operating air bags, and
controlling traction stability. A ECU consists of several software components, and the
components interact with various setpoint generators, sensors and actuators [1].

However, there are two essential issues to be resolved; managing software
complexity, and reducing software cost and time-to-market [2]. Software of modern
automobiles nowadays now handles around 80 controllers and hundreds of sensors
and actuators connected on multiple bus systems. Hence, such software provides up to
2,500 functionalities, and its size can be up to 10 million lines of code.

A key solution to these two issues is to maximize reusing components in building
various ECUs. Among the few reuse technologies, CBD is known to be effective for
developing automotive software since CBD provides effective features for supporting

* This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant

funded by the Korea government(MOST) (No. R01-2005-000-11215-0).

 A Component-Based Process for Developing Automotive ECU Software 359

modularity, capturing commonality into components, customizing variability within
components, assembling in plug-n-play fashion, and maintaining through
replacement.

However, current CBD methodologies do not effectively support developing
reusable automotive components and ECUs. Moreover, current research works
including [1] do not handle variability among various ECUs and automobiles
explicitly; rather they emphasize its significance.

Hence, in this paper, we first define types of variability which can occur in ECUs.
Based on the variability types, we propose an effective component-based
development process for developing ECUs. To show the applicability of the proposed
CBD process, we present the case study of developing an innovative automotive ECU
for Automatic Parking System (APS). Then we assess the approach in terms of
process evaluation criteria.

2 Related Works

AUTomotive Open System Architecture (AUTOSAR) is a standard architecture for
automotive software [3]. In this architecture, AUTOSAR provides a process for
generating ECU software using reusable components. However AUTOSAR does not
address concrete specification of software components and the method for mapping
software components into ECU.

Schauffele’s research provides the core process for the development of electronic
systems and software as well as methods and tools [4]. The software components are
implemented through general software life cycle. However, this research does not
provide the process for developing reusable automotive software component which
embeds variability. In addition, the core process does not include detailed instructions
and activities for developing this software.

Hardung’s work proposes a framework which supports automotive manufacturers
to reuse software [1]. This framework consists of three processes; core asset
development process, product development process, and management process.
However, this work mainly focuses in classifying the types of software components
and relating the process to the environment such as repository and tools. Therefore,
specific instructions and guidelines are not sufficiently provided for developing
automotive software.

3 Variability of ECU

In this section, we define types of variability which can occur in ECUs. ECU consists
of ECU architecture and several software components as shown in Fig. 1. The ECU
architecture is a generic structure for an ECU, and it consists of software components
and their relationships. Star icon denotes the places where variability occurs.

Variability on Software Component: Software component provides the functionality
of ECU and it contains attributes for persistent data. Attribute variability can occur in a
software component and it denotes occurrences of variation points on the set of
attributes needed by components. More specifically, variations on attributes can occur

360 J.S. Her et al.

on the different number and/or data types of attributes. For example, attributes of
Antilock Brake System (ABS) components for automobile X can be the road surface
roughness and speed of the car’s wheel. And, the attributes for automobile Y can
include the throttle condition in addition to the two attributes of automobile X.

Fig. 1. Places Where Variability Occurs

Variability on Logic Component: Logic component implements the control logic
and workflow of the ECU and makes decision for providing the functionality. It
receives data from setpoint generator and sensor components, and sends the
manipulated data to the actuator and output device components. Hence, the variability
can occur on logics and workflows. Logic variability denotes occurrences of variation
points on the algorithm or logic of methods in a component. For example, logics for
computeParkingPath() method of Automatic Parking System (APS) varies according
to automobile models such as sedan, SUV, and Van.

Workflow variability denotes occurrences of variation points on the sequence of
method invocations. For APS, sequence of invoking applyBrake(),
applyAccelerator(), setForward(), setBackward(), turnLeft(), and turnRight()
methods varies depending on the automobile models.

Variability on Sensor Component: Sensor component acquires various signals and
data through hardware sensor elements and sends it to the logic components.
Variability on sensor components denotes occurrence of variation point on the types
of sensors needed. For APS, depending on the types of sensor, different device drivers
such as ultrasonic sensor driver or laser sensor driver are required.

Variability on Actuator Component: Actuator component delivers decisions and
controlling commands to various hardware actuators. Variability on actuator
components denotes occurrence of variation point on the types of actuators needed.
For example, depending on the types of actuator, different transmission controller
such as 4 step transmission controller or 5 step transmission controller are needed.

Variability on Setpoint Generator Component: Setpoint generator component is to
acquire input from hardware setpoint generators. Variability on setpoint generator
components denotes occurrence of variation point on the types of setpoint generators
needed. For APS, Parking Button can be a setpoint generator component. Parking
button can be implemented as touch pad on LCD or switch type button on dashboard.

Variability on Output Device Component: Output device component outputs the
status of the automobile, needed information, audible data, and so on. Variability on

 A Component-Based Process for Developing Automotive ECU Software 361

output device components denotes occurrence of variation point on the types of output
devices needed. For instance, LCD software component appears differently depending
on the LCD resolution type such as 480*320 or 640*480.

Variability on Component Interface: Software components implement pre-defined
Component Interfaces. Variability on component interface denotes occurrences of
variation points on the method signatures of the component interface. For a same
functionality, each ECU may have its own convenient form of API, i.e. method name,
orders and types of parameters, and its return type.

4 Component-Based Process for ECU

In this section, we propose two sub-processes for developing ECUs; Component
Engineering (CE) and ECU Engineering (EE) as in Fig. 2. The CE process is to
engineer reusable components, and the EE process is to develop target ECUs by
reusing components.

Component Engineering (CE) ECU Engineering (EE)

Analyze
ECU Requirement

1

Cluster
Components into ECU

2

Design
Components

3

Implement
ECU

4

Analyzed
ECU Requirement

A List of Clustered
Components

Executable
ECU

Component
Model

ECU Interface
Specification

Workflow
Design

ECU
Requirement

Software
Components

Elicit a Set of
ECU Requirements

1

Identify
Reusable Features

2

Analyze
Variability

3

Identify
Components

4

SRSs
for ECU

Variability
Model

List of
Components

Requirements for
Automotive Features

Commonality
Model

Design
Component Interface

5

Design
Components

6

Interface
Specification

Component
Design Model

Fig. 2. Process for Developing ECUs

4.1 Component Engineering (CE)

CE-1. Elicit a Set of ECU Requirements: This activity is to elicit a set of ECU
requirements from automotive requirements for potential ECUs in a domain. We
suggest the following four steps for this activity. The first step is to decide the scope
of ECUs because there are many kinds of requirements, constraints, and field of
automotive development. The second step is to trim the acquired requirements for the
ECU scope because the acquired requirements may cover different scopes. The third
step is to extract the software requirement from system requirements which consist of
software and hardware requirements. The fourth step is to normalize the various ECU

362 J.S. Her et al.

software requirements. The acquired requirements may mostly be inconsistent in their
vocabulary used, the writing styles and the levels of description details. Finally we
define a list of features, for each normalized software requirement specification (SRS)
which includes functional and non-functional requirement.

CE-2. Identify Reusable Features: This activity is to analyze the normalized
requirements and to extract features that are common to a number of target ECUs. We
suggest two criteria, Commonality and Business Value, to determine whether the
features identified in CE-1 will be designed into reusable components or not.

We suggest the following three steps for this activity. The first step is to measure
reusability for each feature which is identified in CE-1. The criterion of Commonality
is to measure how many target ECUs requires each feature. This can be computed by

using Comm(Fi) metric; Comm(Fi) = j(Fi) / k, where j(Fi)

is the summation of ECU which requires featurei (Fi) and k is the number of
total ECUs in the normalized requirement specification. The decision whether a
feature is common or not can be made by feature comparison table. This table consists
of feature list, feature description, and a degree of commonality.

The criterion of Business Value is to evaluate the business value of each feature.
This evaluation can be made on various value appraisal factors such as market
demand, financial sponsorship, high mark-up, and future value. The complete list of
such factors cannot be defined due to the diversity of ECUs and project situations.
Hence, we define a generic metric where different sets of factors can be uniformly

applied; BizValue(Fi) = j(Fi) / k, where j(Fi) is the summation of all
business value item (Valj) for the featurei (Fi) and k is the number of business value.

Now, we combine two metrics into a single metric, Reusability(Fi) for each feature.
We use weight values for the two criteria.

Reusablility(Fi) = Comm(Fi)*Wcomm+BizValue(Fi)*Wvalue, where Wcomm is the
weight for commonality and Wvalue is the weight for the business value. We define a
reusability range/degree of features to decide whether a feature can be reusable
feature or not after measuring reusability for each feature. The criteria for reusability
range of features are applied in various projects differently due to the diversity of
projects.

The second step is to specify a family ECU SRS based on reusable features from a
set of normalized SRS. This family ECU SRS is a basis for performing CE-3 through
CE-6. The third step is to define a Commonality Model. The commonality model
includes a feature diagram which consists of the reusable features and description of
reusable features [5]. The set of reusable features identified here determines the scope
of components that will be identified.

CE-3. Analyzing Variability: This activity is to analyze the variability of reusable
features [6]. That is, we need to identify minor difference of a reusable feature for the
diversity of ECUs. Variability of a reusable feature is a minor difference on attributes,
logics, workflows, and interfaces [7][8]. Hence, the variability exists within the
commonality. For each reusable feature, we identify variation points and their types
referring to the variability types defined in section 3.

We suggest following three steps for this activity. The first step is to define
variability comparison table. For each reusable feature, compare all the feature

 A Component-Based Process for Developing Automotive ECU Software 363

description in the commonality model. If a minor variation occurs on attribute, logic,
or workflow among the requirement specifications for each reusable feature, the
feature contains variability. The second step is to define variable feature table. Once
variable features are identified, define the name of variable feature, variation point,
variation point type, set of variant, and scope of variation point. The third step is to
add variability to the feature diagram. Finally, variability model includes variability
comparison table, variable feature table, and feature diagram with variability.

CE-4. Identify Components: This activity is to identify reusable components from the
identified reusable features. We suggest two step identification technique based on the
bottom-up approach suggested in [9]. The first step is to cluster related features from
the feature diagram in CE-2 to identify preliminary component list according to the
rules suggested in [9] and [10]. According to the identified type of component, sensor,
actuator, setpoint generator, or output component variability may occur. The second
step is to conduct structural modeling. We analyze the structural view to revise the
preliminary component list. This is because identifying component is affected by data
coupling and cohesion such as class hierarchy and relationship among classes. The
preliminary component list is revised by clustering the classes according to the rules
suggested in [9] and [10]. Then, a domain expert adds additional reusable components
by considering ECU profile and business ROI. This activity delivers a list of
components with the list of features and classes assigned to each component.

CE-5. Design Component Interfaces: This activity is to design the interfaces for the
identified components. The first step is to define provided interface by referring to the
feature lists of each component. The second step is to define required interface which
specifies the external services needed to fulfill the functionality of the component.
When defining the provided and required interfaces, ECU level interfaces and
workflow design can be considered. Typically, interfaces are classified into
component interfaces and ECU interfaces as in Fig. 3.

ECU

SW-C

SW-C

SW-C

ECU

ECU

ECU Intra-ECU Workflow

Inter-ECU Workflow

ECU-Level Interface

SW-C-Level Interface

Fig. 3. Two Kinds of Interfaces in Automotive Software

Component interface is used for interacting among components within one ECU,
whereas ECU interface is used for interacting among ECUs. Workflows can also be
classified into intra-ECU workflow and inter-ECU workflow as in Fig. 3. By referring
to the intra-ECU workflow, we can identify additional interfaces. In addition,
interface variability can occur on the identified interfaces. Therefore, we should
identify the variation points and variants for them. The third step is to specify

364 J.S. Her et al.

interface with related components, interface signature, interface type, pre-condition,
post-condition, and constraints.

CE-6. Design Components: This activity is to refine the internal details of each
component and design variability within components. When designing components,
the implementation environment such as development language and platform should
be considered. We suggest a three-step instruction.

The first step is to refine the structural model from CE-4. In this step, we first
determine the target platform and language such as C++ and Java. And then we refine
conceptual class diagram to platform specific class diagram which has platform
specific data type, method signature, and data structure.

The second step is to represent the variability in the class diagram and design
variability mechanism in detail. In order to present and design variability, we should
refine feature level variability information into class level variability information.
When designing the variability mechanism, various techniques such as selection
technique, plug-in technique, and external profile technique can be considered [6].

The third step is to design the dynamic model. Based on the platform specific class
diagram, we design a data flow diagram and platform specific sequence diagram.
Workflow variability is represented on the data workflow diagram and platform
specific sequence diagram.

4.2 ECU Engineering (EE)

EE-1. Analyze ECU Requirement: This activity is to analyze the requirement for a
target ECU. ECU requirement may come from the previous projects or be newly
developed by considering the current needs and future expectations. We suggest
analyzing the requirement from two views; functional and non-functional view.

The first step is to analyze the functionality of a target ECU. Here, we need to
analyze functional, structural, and behavioral models by using any conventional
method such as structured analysis and object-oriented analysis. We suggest using
Use Case Model for depicting functionalities, Data Flow Diagram or Class Diagram
for analyzing required and provided data, and Sequence Diagram or State Machine
Diagram for representing workflows of the target ECU. Additionally, we suggest
Function Type Table for identifying open loop and closed loop which are used as the
basis for analyzing dynamic view and comprehending functionality.

The second step is to analyze non-functional requirement such as quality
requirement, real-time requirement, hardware constraints, and resource constraints.
We suggest Quality Requirement Specification for specifying quality attributes. It
consists of the name of quality attribute, description of each attribute, and priority
among them. We also suggest a Time-Schedule Table for specifying real-time
requirement. It consists of the name of function, execution time, response time, and
activation/deadline point among them.

EE-2. Cluster Components into ECU: This activity is to identify and group the
components needed to fulfill the requirement of the target ECU. Like the ECU of
AUTOSAR, a ECU typically consists of several components [3]. We now propose a
four-step metric based instruction.

 A Component-Based Process for Developing Automotive ECU Software 365

The first step is to comprehend the specifications of available components in terms
of their functionality, interfaces, constraints, non-functional requirement, and
variability. The second step is to compare the available components to the ECU
requirement to determine candidate components. As shown in Fig. 4, we consider the
functional conformance of each component when determining the candidate
components. Functional conformance can be acquired from the metric below. And
here are the terms used in the metric. Let AvailableCompi be an available component,
and CandidateCompj be a candidate component which is selected from the available
components. Let Fi(S) be the ith function of S where S can be a component or a ECU.

Number of Syntactic and Semantic Elements Required from Fi(ECU)

Number of Syntactic and Semantic Elements Provided by Fi(AvailableCompn)

FunctionalConformance(Fi(AvailableCompn), Fi(ECU))

=

where syntactic elements include data, logic, workflow, and interface, and the
semantic elements include precondition, postcondition, invariant, and side effect.
Note that we should also consider variants provided by each component. According to
the value of this metric, we can determine the components to be discarded and those
to be customized in the further activity.

Functional Conformance Non-Functional ConformanceFunctional Coverage

Clusterj

CandidateComp1

CandidateComp2

CandidateCompz

…

Cluster1

Cluster2

Clustern

…

AvailableComp1

AvailableComp2

AvailableComp3

…

AvailableCompy

Fi(AvailableComp1)

Fi(ECU)

A Set of Available
Components

A Set of Candidate
Components

A Set of Clusters Final Cluster

Fig. 4. Metrics Used in Clustering Components

The third step is to define all possible clusters of components which satisfy the
functionality of the target ECU. As shown in Fig. 4, functional coverage is used to
define the clusters. Let Clusteri be a set of CandidateComp, and let SetF(Clusteri) be
the union of the set of functions of the candidate components allocated into the
Clusteri. We should select the clusters with FunctionalCoverage(Clusteri) near 1.

Number of Functions in SetF(ECU)

Number of Functions in SetF(Clusteri)FunctionalCoverage(Clusteri) =

366 J.S. Her et al.

The fourth step is to select a cluster of components which highly satisfies the
nonfunctional requirement of the target ECU with no complication. This can be
determined by using the metric, NonFunctionalConformance.

Number of REQNFR Required from Target ECU

Number of REQNFR Provided by ClusteriNonFunctionalConformance(Clusteri) =

Here the REQNFR is the quality requirement, real time requirement, cost and
memory size preferences. Finally, this activity outputs a list of clustered components
that will be allocated to the ECU.

EE-3. Design ECU: This activity is to design the internal details of each target ECU.
This will include customizing the clustered components and defining ECU workflow
between the clustered components. We propose a five-step instruction.

The first step is to define ECU interfaces for invoking services provided by the
ECU. ECU interfaces can be selected among component interfaces or be newly
defined by considering the connection between ECU and other devices such as sensor,
actuator, or virtual function bus (VFB), etc. The second step is to resolve any conflicts
among components since clustered components from EE-2 can have overlapped
functions between components. Since resources of ECU are restricted, we remove the
redundant functions during the customization. The third step is to design the
workflow of method invocations among components referring to the behavioral
models and time-schedule table from EE-1. The fourth step is to customize
components which require customizations. By following the customization instruction
in the component specification, we supply the right variant for the target ECU.
Common customization techniques are parameterization, selection, plug-in, and
external profiles. The fifth step is to design ECU specific components. Since
customized components cannot fully satisfy functionalities of ECU requirements, the
ECU specific components are designed. Then, a ECU specific component model is
integrated with the customized components. The deliverables of this activity are ECU
interfaces, workflow, and component model.

EE-4. Implement ECU: This activity is to implement the target ECU. This activity
takes ECU specification, ECU interface specification, ECU workflow and produces
ECU executable. We propose three-step instruction.

The first step is to generate ECU interface from ECU interface specification.
Then, we implement the workflow among components according to the workflow
design. Furthermore, we may also implement additional design elements such as
connectors to make the cluster of components fully satisfy the ECU requirements. The
second step is to simulate the generated code before it is applied to real world. The
specific ECU software is generated in this step. The time scheduler such as RTOS
scheduler is also generated. The third step is to port and configure the generated code
for ECU software. The executable code is loaded into ECU hardware. The technical
simulation is performed in this step.

After performing the four activities, typical verification and validation activities
are followed, including integration test, acceptance test and system test.

 A Component-Based Process for Developing Automotive ECU Software 367

5 Case Study

We conduct a case study of applying the proposed development process; CE and EE
on a ECU for an innovative automotive feature called Automatic Parking System
(APS). Due to the paper length, we only show the representative results of applying
the activities.

a. Parallel Parking b. T-Spot Parking

Fig. 5. Two Modes of Automatic Parking Systems

CE-1. Elicit a Set of ECU Requirements: There are different levels of automation and
different methods of automatic parking. We gathered requirement specifications for three
different automobile models. Although there are minor variations, the general
functionality of APS is to find the optimal path for parking by measuring the distance
between the automobile and its surrounding objects, and to drive the car automatically
without the driver’s intervention. There are two basic modes for APS, as shown in Fig. 5.

CE-2. Identify Reusable Features: Table 1 is a result of comparing features among
three automobile models. 33 reusable features are identified from three domains
according to criteria of commonality and business value.

Table 1. Reusable Feature List

Reusable
Feature ID Domain Reusable Feature Name

Family Member
Remarks

H D K
RF01

Parking Region
Definition

Create Parking Path Rule i)
… … … … …

RF09 Store Parking Path Rule i)
RF11 Detect Obstacle Rule i)
RF12

Parking Path
Creation

Calculate Distance Rule i)
… … … … … ..

RF19 Create Path Line Rule ii) + BizValue
RF23 Search Tracks Rule i)
RF24

Parking
Execution

Alert Alarms Rule i)
RF27 Adjust Steering Rule i)
RF28 Active Throttle Rule i)
RF29 Active Brake Rule ii) + BizValue
RF32 Alarms Fault Rule i)

… … … … …

CE-3. Analyzing Variability: The variability is analyzed from the commonality model
of CE-2. We analyzed six variable features among 33 reusable features; RF01, RF02,
RF05, RF08, RF10, and RF11 as shown in Table 2.

368 J.S. Her et al.

Table 2. Variable Feature Table

VP
ID

Variable
Feature

Variation
Point

Variation
Point
Type

Set of Variants Scope of
Variation

PointH D K

VP01 RF01 Workflow
of Create Workflow

Detecting
Obstacles Generate
PathID Calculate
Distance Generate
Path Display Path

…

Detecting
Obstacles

Calculate
Distance

Generate Path
Display Path

Selection

… … … … … … … …

VP06 RF11
Workflow
of Alarms

Fault
Workflow

Detect Fault
Determine

Criticalness Display
Info. Alarm to

Driver

Detect Fault
Determine

Criticalness
Alarm to Driver

Display Info

 Selection

CE-4. Identify Components: From the reusable features of CE-2, we identified ten
components for sensors, actuators, setpoint generators, and logic types as shown in
Table 3.

Three sensor components are to acquire the car speed, video scene, and the
distances constantly during automatic parking, and the four actuators are to control
the engine throttle, transmission mode (either forward or backward), steering
direction, and brakes. Two logic components are to find the optimal parking path and
to execute the parking by using sensor and actuator components. The setpoint
generator component Parking Mode Selector lets the driver to select the various
automatic parking options.

Table 3. A Part of Component List

Component Feature Domain Type Name

Actuator
Component

Throttle Controller Component
Control Throttle

Powertrain Calculate Throttle Position
…

Transmission Controller Component Shift Transmission Powertrain …
… … …

Logic
Component Path Finder Component Compute Parking Path ……

CE-5. Design Component Interfaces: In this activity, we designed workflow and
defined interfaces for the components from CE-4. To define a set of interfaces for the
components, we first explored the functionalities. For example, Parking Executor
component controls wheel, steering, throttle valve and fuel injector. To control these
actuators, the calculated path for specific parking spot is needed. We defined these
controls as the provided interfaces such as setWheelAngle(), setSteeringAngle(),
regulateThrottleValve(), and regulateFuelInjector(). And we defined the requiring
services as the required interfaces such as getParkingPath(). Then we finally specified
these interfaces in terms of related component, interface signature and type, pre- and
post- condition, and constraints as shown in Table 4.

 A Component-Based Process for Developing Automotive ECU Software 369

Table 4. Interface Specification for ParkingExecution

Related Comp. Interface
Signature Interface Type Pre-condition Post-condition Constraints

parking
Execution

setWheelAngle
(turningRadius,
turningAngle)

Provided Initialization of
wheel angle (0)

Regulation of
wheel angle

(turning angle)

Wheel angle
can be regulated

from 0 ~42 .

CE-6. Design Components: In this activity, we designed a class for each component.
For example, PathFinder component has one class with 13 attributes and 11
operations. As a result, we performed this activity using the object-oriented approach,
due to the granularity of components.

EE-1. Analyze ECU Requirement: In this activity, we analyze the APS, for a
simulator vehicle, SSU-SUV-7 which is a new SUV model. The APS uses an ultra
sonic sensor for calculating the distance from the vehicle to object. The gap between
the vehicle and object is less than 10 inches. The APS button on LCD is used for
setpoint generator.

EE-2. Cluster Components into ECU: To acquire a set of components for the APS
ECU, we first comprehended the specifications of the 46 available components and
extracted 24 candidate components. Using the candidate components, we derived 9
clusters of components, and finally acquired a cluster with 10 components as shown
in Fig. 6.

To select the candidate components, we computed the functional conformance for
the functions. For example, the compute steering angle function of the
ParkingExecutor component has the functional conformance of 0.875 since the
number of syntactic and semantic elements provided by compute steering angle
function of the ParkingExecutor component was 7 and those required from the ECU
was 8. We get 24 candidate components by selecting the components with high
functional conformance. Then, we made 9 matches of clusters with the functional
coverage near 1. For each cluster, we computed the non-functional conformance and
cluster 3 had the highest value.

Hence, the final list of components is SpeedSensor, Camera, DistanceSensor,
ParkingRegionAnalyzer, PathFinder, ParkingExecutor, TransmissionController,
ThrottleController, SteeringController, and BrakeController.

EE-3. Design ECU: In this activity, we customized the setpoint generator component,
Parking Mode Selector, for a simulator vehicle, SSU-SUV-7 which is a new city SUV
model. Using the same APIs, we only customized the visual interfaces using a LCD
touch screen.

In this activity, we also designed ECU interface and ECU workflow. Fig. 7 shows
a workflow for executing the parallel parking. This workflow shows normal flow for
the parking. As an exceptional flow, collision may be detected, and in this case the
system controls the brake of vehicle.

EE-4. Implement ECU: In this activity, we show the pseudo code of computing
parking path which is invoked during the parking execution workflow of Fig. 7. As
shown in Fig. 8, a parking path is acquired by computing the way from the car’s
initial position to the target parking space.

370 J.S. Her et al.

AvailableAvailable
ComponentsComponents

CandidateCandidate
ComponentsComponents

ClustersClusters Final ClusterFinal Cluster

Speed
Sensor Camera

Distance
Sensor Path

Finder

Parking
Region

Analyzer Parking
Executor

Transmission
Controller Steering

Controller

Throttle
Controller

Brake
Controller

Speed
Sensor

Camera

Distance
Sensor

Path
Finder

Parking
Region

Analyzer

Parking
Executor

Transmission
Controller Steering

Controller

Throttle
Controller

Brake
Controller

Speed
Sensor Camera

Distance
Sensor

Path
Finder

Parking
Region

Analyzer Parking
Executor

Transmission
Controller

Steering
Controller

Throttle
Controller Brake

Controller

Key
Sensor

Door
Sensor

Engine
Immobilizer

Theft
Attack

Determiner

Attack
Notifier

Stability
Analyzer

Collision
Monitor

Ultrasonic
Sensor

… … …

T-Spot
Path

Finder

Parallel
Path

Finder

Parallel
Parking
Executor

T-Spot
Parking
Executor

Parking
Region

Selector

Ultrasonic
Sensor

T-Spot
Path

Finder

Parallel
Path

Finder

Parallel
Parking
Executor

T-Spot
Parking
Executor

Parking
Region
Selector

Camera

Distance
Sensor

Parking
Executor

Transmission
Controller

Steering
Controller

Brake
Controller

Ultrasonic
Sensor

T-Spot
Path

Finder

Parking
Region
Selector

Path
Finder

Parking
Executor

Transmission
Controller

Steering
Controller

Throttle
Controller

Ultrasonic
Sensor

Parallel
Path

Finder

Parking
Region

Selector

Speed
Sensor Camera

Distance
Sensor Path

Finder

Parking
Region

Analyzer Parking
Executor

Transmission
Controller

Steering
Controller

Throttle
Controller

Brake
Controller

Cluster 1

Cluster 2

Cluster 3

Fig. 6. Clustering Components

DistanceSensor Camera PathFinderParkingRegionAnalyzerParkingExecutor TransmissionController ThrottleControllerSteeringController

1 : getAvailableRegion()
2 : distance := getDistance()

3 : image := getImage()

4 : parkingRegion

5 : parkingPath := calculatePath()

6 : controlSteering()

7 : controlTrasmission()

8 : controlThrottle()

Fig. 7. Workflow for Parallel Parking

PathFinder PathFinder::calculatePath(CarPosition initialPosition, TargetParkingSpacePosition
lastPosition){

…
bool side;
//Calculate Direct Path
side = decideParkingSide(frontLeftWheelCoordinateX, spaceFrontLeftX,

frontRightWheelCoordinateX);
turningWheelCoordinateX = decideParkingSideX(side);
turningWheelCoordinateY = decideParkingSideY(side);
…

//Calculate First Turning Path
if (side == RIGHT){

turningWheelCoordinateX = decideParkingSideX(LEFT);
turningWheelCoordinateY = decideParkingSideY(LEFT);
idealCoordinateY = (spaceFrontLeftY + spcaeRearLeftY) / 2 + (wheelBase / 2);

}
…
 return PathFinder;
}

Fig. 8. Pseudo Code of Computing Parking Path

 A Component-Based Process for Developing Automotive ECU Software 371

6 Assessment

6.1 Assessment by Evaluating the Process

In this section, we compare the proposed process with three related works specified in
section 2, in terms of process evaluation criteria.

Table 5. Comparison Result

 Processes
Criteria

AUTOSAR Schauffele’s Hardung’s
work

Suggested
Process

Systematic Activity
Precise & Stepwise Instructions - - -

Conciseness
Comprehensiveness

Applicability
Specification of Artifacts -

Traceability - -
 Well supported Supported Partially supported - Not supported

Here are the criteria that a process should adhere to. The criterion of systematic
activity is to evaluate if the set of activities or the sequence of activities are logically
defined. The criterion of precise and stepwise instructions is to evaluate if the
instructions of each activity are defined in a detailed and concrete manner. The
criterion of conciseness is to evaluate if the set of activities, instructions, and artifacts
are concisely defined. Too many activities or artifacts should make the process more
complicated. The criterion of comprehensiveness is to evaluate if the instruction sets

ECU Engineering (EE)

Analyzed ECU Requirement

A List of Clustered Components

Executable ECU

Component ModelECU Interface SpecificationWorkflow Design

SRSs for ECU

Variability Model

List of Components

Commonality Model

Interface Specification

Component Design Model

Component Engineering (CE)

ECU Requirement

Requirements Analysis Elements

Analysis Model Clustering Condition

C
om

po
ne

nt
s

C
lu

st
er

ed
 C

om
po

ne
nt

s

Dynamic Model
Workflow

Clustered Components
Workflow Element

A
nalysis M

odel
C

ustom
ization D

ecision,
Specific C

om
ponents

A
nalysis M

odel
Interface

Component Interface
ECU Interface

Clustered Component
Customized Component

Workflow
Code

Component
Code

Interface Code

Features Reusable Features

Reusable Features Variable Features

Variable Features
VP, Variants in Components

R
eusable Features

Features in C
om

p
onents

Features in Components Interface

Workflow Dynamic Model

C
lass D

iagram
Structural M

odel

V
P, V

ariants
V

ariability in C
om

p. M
odel

D
ifferences in Features
V

ariable Feature

Fig. 9. Traceability among Artifacts

372 J.S. Her et al.

are described easily and concretely to be followed. The criterion of applicability is to
evaluate if the activities, instruction sets and the artifacts are applicable in real
projects. The criterion of specification of artifacts is to evaluate if the key elements
and templates of the artifacts are concretely defined. The criterion of traceability is to
evaluate if the elements of the artifacts between the preceding and the following
activities can be traced.

As evaluated in Table 5, the process is given with systematic activities and the
activities are given with stepwise instructions. We showed that the process is
applicable by applying the process to APS. And it can be said that traceability
between artifacts are well supported since the elements among the artifacts can be
traced as shown in Fig. 9.

6.2 Assessment by Evaluating ECU Specific Criteria

In this section, we assess our approach if it well supports the requirements of an ECU
engineering process.

AUTOSAR Compliance. Our proposed meta- model of ECU conforms to the ECU
structures specified in AUTOSAR [3] and implied in SAE International [1]. By
conforming to AUTOSAR, it becomes possible to focus on developing reusable
software components which are independent to hardware.

ECU Specific Variability. The six types of variability we identified were derived from
technical observations on variability among existing automobile parts. And, the
variation points identified during the case study were modeled with the six variability
types we defined.

ECU Engineering Specific Activities. Defining components, clustering components
into ECU, defining ECU level interfaces are the essential activities of ECU
engineering. Identifying commonality and variability are also the activities that are on
high demand nowadays in ECU engineering.

7 Concluding Remarks

Software is a key component of modern automobiles since software monitors and
controls various hardware devices and components. Software is essential in
implementing innovative and intelligent automotive features. Software is presented in
the ECU unit of automobiles. We pointed out two issues in designing ECUs;
managing software complexity and reducing the software cost. Component-based
development (CBD) is believed to be effective in resolving the issues. Especially,
variability management of CBD can increase the reusability of ECU software
components and so reduce the software cost.

Hence, in this paper, we first identified six places where the variability may occur
in ECU. Interdependency between variability types emerges as an issue here and this
is left as a future work. Based on the variability types, we proposed a component-
based development process for developing ECUs. The process consists of two sub-
processes; Component Engineering and ECU Engineering. And, we provided
instructions for all the activities. We also conducted a case study of applying the

 A Component-Based Process for Developing Automotive ECU Software 373

process in implementing Automatic Parking System. Through the case study and the
assessment in section 6, it is shown that ECUs can be developed in a cost-effective
way by reusing ECU components.

References

1. Hardung, B., Kolzow, T., Kruger, A.: Reuse of Software in Distributed Embedded
Automotive Systems. In: Proceedings of the 4th ACM International Conference on
Embedded Software, pp. 203–210 (2004)

2. Broy, M.: Challenges in Automotive Software Engineering. In: Proceeding of the 28th
International Conference on Software Engineering (ICSE ’ 06), pp. 33–42 (2006)

3. AUTOSAR, version 2.0.0, (March 2006), www.autosar.org
4. Schauffele, J., Zurawka, T.: Automotive Software Engineering: Principles, Processes,

Methods, and Tools, SAE International (2005)
5. Griss, M.: Product-Line Architecture. In: Chapter 22 of Component-Based Software

Engineering, Addison Wesley, London (2001)
6. Kim, S., Min, H., Rhew, S.: Variability Design and Customization Mechanisms for COTS

Components. In: Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A., Lee, H.P., Mun, Y.,
Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 57–66. Springer,
Heidelberg (2005)

7. Kim, S., Her, J., Chang, S.: A Theoretical Foundation of Variability in Component-based
Development. Information and Software Technology 47, 663–673 (2005)

8. Pohl, K., Bockle, G., Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

9. Choi, S.W., Chang, S.H., Kim, S.D.: A Systematic Methodology for Developing
Component Frameworks. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004.
LNCS, vol. 2984, pp. 359–373. Springer, Heidelberg (2004)

10. Kim, S., Chang, S.: A Systematic Method to Identify Software Components. In:
Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC ‘04),
Busan, Korea, pp. 538–545 (2004)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 374–388, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Systematic Approach to
Service-Oriented Analysis and Design∗

Soo Ho Chang and Soo Dong Kim

Department of Computer Science
Soongsil University, Seoul, Korea

shchang@otlab.ssu.ac.kr, sdkim@ssu.ac.kr

Abstract. Service-oriented computing (SOC) has several unique features which
are not typically presented in conventional object-oriented development (OOD)
and component-based development (CBD), including the commonalty of
service functionality, publish and discovery paradigm of services and dynamic
composition of possibly 3rd party’s independent unit services. Hence, OOD and
CBD-based analysis and design methods are not effective and expressive
enough to model service-oriented applications. Rather, Service-Oriented
Analysis and Design (SOAD) has to be defined by using some of the two
modeling paradigms and by adding SOC-unique modeling mechanisms.
In this paper, we first present a technical comparison among OOD, CBD and
SOAD to derive the design criteria for SOAD. And, we define the key artifacts
that have to be delivered during SOAD. Based on this, we present a SOAD
process which takes service requirements as the initial input and delivers
service specifications, compositions, and verified service components as the
final deliverables. Each of the five phases in the process is defined with its
overview, artifacts, and work instructions. Finally, we present a case study of
applying our process to a service domain to reveal its effectiveness and
applicability. Once the proposed SOAD is well applied, SOAD artifacts can be
more systematically and efficiently implemented with current SOA standards.

1 Introduction

Service-Oriented Computing (SOC) is emerging as a new paradigm for building and
maintaining applications in a cost effectiveness way. With increased support with
SOA tools, the paradigm of publish-discover-compose services becomes more
common, and it has significant benefits for ROI perspective as well as technical
perspective. However, there is a considerable amount of gap between the promises of
SOC and the maturity of service engineering methodology. The main cause of the gap
is the lack of effective analysis and design methods. That is, there is a great demand
on effective service-oriented analysis and design (SOAD) methodology [1].

Service-oriented computing (SOC) has several unique features which are not typically
presented in conventional object-oriented development (OOD) and component-based

∗ This work was supported by Seoul Research and Business Development Program (10557).

 A Systematic Approach to Service-Oriented Analysis and Design 375

development (CBD). In SOC, services should be designed not just for a dedicated client,
but for a family of potential clients. Hence, the commonality of services should be well
modeled into service components. Services are not tightly coupled to certain client
applications; rather they are published in service repositories, discovered by clients
dynamically, and composed to fulfill the functionality expected by clients. Hence, SOAD
must provide facilities for supporting SOC-specific features in addition to conventional
software modeling facilities.

Since current SOA standards are largely based on the object-oriented paradigm and
CBD, existing OOD and CBD methods may seem to be useful for SOAD. However,
OOD and CBD methods by themselves are not effective and expressive enough to
model service-oriented applications. Rather, SOAD has to be defined with SOC-
specific modeling facilities on top of the two existing paradigms.

Hence, our research goal is to define a systematic and effective SOAD which
extends OOD and CBD. In this paper, we first present a technical comparison among
OOD, CBD and SOAD to better understand their similarities and differences in
Section 3. From the comparison, we derive the design criteria for our SOAD method.
And, we define the key artifacts that have to be delivered during SOAD in Section 4.
Based on these preliminary works, we propose a SOAD process which takes service
requirements as the initial input and delivers service specifications, compositions, and
verified service components as the final deliverables in Section 5. Each of the five
activities in the process is defined with its overview, artifacts, and work instructions.
We present a case study of applying our process to a service domain to reveal its
effectiveness and applicability in Section 6. Once the proposed SOAD is well applied,
SOAD artifacts can be more systematically and efficiently implemented with current
SOA standards of WSDL [2], UDDI [3], BPEL[4] and SOAP[5].

2 Related Works

Zimmermann’s Work introduces an integration of Business Process Modeling (BPM),
Enterprise Architecture (EA), and Object-oriented Analysis and Design (OOAD) [6].
It introduces three major level of abstractions in SOA; operations as single logical
units of a work, services as logical groupings of the operations, and business
processes. It also represents how the three methods can be applied to service-oriented
analysis and design, what should be more defined.

Arsanjani’s work presents seven layers of SOA; operational system layer,
enterprise component layer, services layers, business process choreography layer,
presentation layer, integration layer, and QoS layer [7]. For each of these layers,
design and architectural decision activities are needed. Especially, they proposes five
activities called service identification, service classification or categorization,
subsystem analysis, component specification, service allocation, and service
realization, which are performed in service-oriented modeling.

Erl addresses a service oriented-analysis and design process with subordinate
instructions [8]. The work proposes three steps for service-oriented analysis and five
steps for service-oriented design process. Especially, in the service modeling step in
service oriented analysis, service candidates, candidate service compositions,
application services, and service operations are modeled. Based on the analyzed

376 S.H. Chang and S.D. Kim

business process, three layers, business process layer, service interface layer, and
application layer, are designed with SOA standards such as BPEL, WSDL, and SOAP.

There are more works on service-oriented analysis and design such as [9] and [10].
Those works emphasize identification and specification of services as well as
integration of the services. And, in the most works, services are derived from business
process. However, defining approaches or methods to service-oriented analysis and
design is still in early stage. They generally represent what should be done rather than
mentioning how can be done. For more comprehensive and detailed analysis and
design method, it would be refined with step-wised process with concrete artifacts and
instructions.

3 Comparison of OOAD, CBD, and SOAD

OOAD is widely used in developing various applications [11]. CBD is another
common development paradigm which extends OOAD with the notion of component,
which is a larger grained unit than objects [12][13]. Both OOAD and CBD are well
supported by major middleware standards such as CORBA, EJB and .NET. In this
section, we compare the three approaches to highlight the similarities and differences
as the basis for defining our SOAD method.

We first derive comparison criteria from the perspectives of software process and
methods; Reuse Unit, Reuse Coverage, Variability Management, Interface,
Aggragation Facility, Key Artifacts, Artifact Representation and Representative
Processes. The comparison is summerized as in the Table 1.

Table 1. Comparison among OOAD, CBD, and SOAD

 OOAD CBD SOAD
Reuse Unit Object/Class Component Service

Reuse Coverage Application-specific
Reusable

across Applications
Reusable

across domains
Variability

Management
Polymorphysm

Port, Requires Interface,
Customization

Service Adaptation
(Immature)

Interface
Provided Interfce

Bundled with Objects
Interface separated
from Components

WSDL Interface
separated from

Component Interfaces

Platform
Independence

Dependent Dependent
Services are

independent due to
XML-based standards

Aggregation
Facility

Composite Objects Component
Composition s.a.
Orchestration and

Choreography

Key Artifacts
Objects,

their relatinoships
Component, Interface

Process, Service,
Composition, ...

Artifact
Representation

UML UML
SOA: BPEL, WSDL,

UDDI, SOAP
Representative

Processes
RUP Catalysis, etc. None Yet

 A Systematic Approach to Service-Oriented Analysis and Design 377

All three approaches provide facilities for increasing reusability, but at different
degrees. CBD provides enhanced reusability through interfaces and coarse-grained
components, and SOAD even extends the CBD reusability with the notion of publish-
discover-compose paradigm.

For variability management, OOAD is limited to polymorphism (i.e. overloading
and overriding), and CBD provides additional mechanisms of component
customization and connectors [14]. In SOAD, variability management is considered
to be an essential requirement for successful SOC, but there is not yet a strong
consensus on how the variability should be handled. There only exist some
preliminary works on service adaptation [15] [16].

For the interfaces, there is no standard for representing interfaces in CBD.
However, interface specification in WSDL is common for SOC. Moreover,
component interface is realized for specific implementation platforms, whereas
WSDL interfaces of services are independent from any specific implementation
platforms.

For aggregating smaller-grained functions or elements into a large one, CBD
provides a unit of component, and SOAD adds a composition mechanism such as
orchestration and choreography. Also, the task of service discovery for composition is
new.

For the artifacts, CBD provides more artifacts than OOAD, and SOAD provides
even more artifacts as shown in the table. For the artifact representation, SOC
provides more standards such as WSDL, UDDI, BPEL and SOAD. While there exist
several representative processes for OOAD and CBD, there is neither a standard for
SOAD process nor detailed SOAD instructions yet [9].

From the comparison, we derive criteria for designing our SOAD. Fundamental
modeling facilities of OOAD and CBD can also be applied to SOAD. For example,
the notion of component in CBD can still be used in implementing service
components. Separating interfaces from components in CBD should be same for
SOAD. However, SOAD needs to be enhanced with additional facilities such as
service modeling, service interface design, and composition. SOAD should be defined
for additional SOC artifacts such as WSDL interfaces, service registry in UDDI, and
composition specification in BPEL. Moreover, a well-defined SOAD process along
with engineering instructions is demanded.

4 Layers of Service-Oriented Architectures

SOA-based applications typically embed some form of layered architecture [8][17].
Among the different architectures, we identify four layers for the purpose of service
analysis and design elements as shown in Figure 1. Each layer is defined with its goal
and key artifacts, in subsequent sections.

Business Process Layer: As the top layer, Business Process Layer is to define
business processes expected by service clients. Business Process (BP) represents a
cohesive unit of the service perceived by service clients, not by component engineers.
Hence, it is defined independently from implementation technology and platforms.
Typically, a BP is a larger-grained than a use case and a method of objects, and it is
defined with a service workflow among smaller-grained activities.

378 S.H. Chang and S.D. Kim

The goal of this layer is to specify all the business processes expected by clients,
and so they are used as the basis for further engineering works such as identifying unit
services, interfaces and eventually service components.

The key artifacts of this layer are Business Process Specification, which includes
workflows of participating activities. Each activity is defined with its functional and
non-functional requirements and any constraints.

Business Process
Layer

Unit Service
Layer

Service Interface
Layer

Service Component
Layer

Remote or Local

…

… …Unit
Service

Unit
Service

Unit
Service

Business
Process

Business
Process

Business
Process

Service
component

Service
component

Service
component

Fig. 1. Key artifacts of SOAD in the four layers

Unit Service Layer: An activity of a workflow (i.e. a business process) is a conceptual
unit of work, perceived by clients. It will eventually be performed by a software
element, which we call a unit service, UnitService. That is, an activity is fulfilled by
running a unit service. The main distinction between them is that an activity is a
conceptual unit perceived by clients and a UnitService is its corresponding task
defined from engineering perspective. Hence, the notion of UnitService is a vehicle
that bridges clients’ view to engineers’ view.

Another key value of introducing UnitService is that a UnitService can be reused
by more than one activity. That is, we analyze the various activities of the workflows,
and define a set of unit services. Some unit services may be common among the
business processes, and hence they are reusable in several business processes.

The relationship between activities and unit services can be in different forms, as
shown in Figure 2. An activity itself can be decomposed into even smaller-grained
sub-activities such as activity 1.2 and activity 1.2.2. A UnitService can map to an
activity of any granularity as long as the functionality and extra-functional property
are conformed. Also, a group of multiple (sub) activities can be map to a single
UnitService. Hence, there is a many-to-one relationship between the activities and the
unit services and the figure shows several different mapping relationships. The
motivation for elaborating different forms of mappings is to maximize the
identification of unit services which can be reused by various activities and sub-
activities. Once unit services are identified, it is specified with its service
functionality, an interface, pre and post conditions, and constraints.

 A Systematic Approach to Service-Oriented Analysis and Design 379

Business Process
Layer

Unit Service
Layer

… …Unit
Service

Unit
Service

Unit
Service

Activity 1 Activity 2 Activity 3

Activity 1.1 Activity 1.2 Activity 1.3 Activity 1.4

Activity 1.2.1 Activity 1.2.2 Activity 1.2.3

…

…

…

…

Unit
Service

Activity 3.1.1 Activity 3.1.2

Activity 3.1 …

Decomposition Mapping activity to UnitService Control flow of the activities

…

(1) (2) (3)

Fig. 2. Relationships between Activities and Unit Services

Service Interface Layer: In SOC, the interfaces of services are specified separately
from service components, and service providers publish the services in WSDL in
UDDI service registries. Hence, the unit services identified should be bound to
interfaces of the published services which fulfill the requirement of the unit services.
Therefore, the Service Interface Layer contains the interfaces of services published by
service provides, and it separates the unit services from the service components. By
having this layer, unit services can be bound to any compatible interfaces, and the
interfaces can be realized by and bound to any compatible service components.

Service Component Layer: This layer is to specify service components which
implement the service interfaces. Some components are like the one in CBD, and
typically implemented with objects on OO/CBD platforms such as EJB [12]. Other
components can be simply wrappers of legacy applications. There is a difference
between the two types on how components are implemented, but they both have to
provide physical interfaces that conform to the published interfaces (in WSDL) of the
Service Interface Layer. For example, we may implement service components in EJB
and provide physical interfaces in the forms of EJB Home and Remote interfaces,
which conform to the WSDL service interfaces.

Business
Process

Activity
Unit

Service
Service

Interface

*
*

Service
Component

Component
Interface

1* ** 11

1
*

Fig. 3. Key artifacts of SOAD in the four layers

We summarize the relationships among the key artifacts of the four layers in
Figure 3. The workflow of a business process is executed by one or more unit
services, and unit services are bound to service interfaces. And, the service interfaces
are bound to component interfaces of service components.

380 S.H. Chang and S.D. Kim

Business Process Layer

Unit Service Layer

Service Interface Layer

Service Component Layer

Service for
reserving hotel

Service for
checking

availability

Service for
finding hotels …

HotelFinderService

opFindeHotels(fromDate,
toDate,
area)

HotelRoseService
isAvailable()
getHotelRoseInfo()
reserveHotel(roomType,

fromDate,
toDate,

HotelRoseService
isAvailable()
getHotelRoseInfo()
reserveHotel(roomType,

fromDate,
toDate,

HotelFinderEJB

«ejb»

HotelRose

«ejb»

HotelLily

«ejb»

Service for
getting hotel
information

HotelFinding
Process

HotelReservation
Process

Claim Process

Fig. 4. Four Layers for Hotel Search and Reservation Services

We show an example of instantiating the four layers for a domain of hotel search
and reservation service, as in Figure 4.

5 Process and Instructions

In this section, we present a SOAD process which consists of five phases; Identifying
Business Processes, Defining Unit Services, Discovering Services, Developing
Services, and Composing Service. The Figure 5 shows the phases with associated
deliverables.

Fig. 5. Overall Process with Key Artifacts

 A Systematic Approach to Service-Oriented Analysis and Design 381

5.1 Phase 1. Identifying Business Processes

This phase is to analyze the set of available service requirements, and to identify the
set of business processes which are expected by service clients. It is carried out in
three steps.

The first step is to acquire a set of service requirements. Since services in SoC are
not just for a dedicated client but for potentially a family of clients, we need to
acquire a comprehensive set of available service requirements. The service
requirement is analogous to the conventional software requirement specification, but
the requirement is formulated for the notion of service rather than software
functionality. In addition to the available service requirements, it may be useful to
predict and foresee the future potential services.

The second step is to compare the services from different requirements, and to
derive a set of target services which will be eventually implemented. This can be
done by conventional commonality and variability analysis techniques of CBD [18] or
feature analysis of product line engineering [19].

The third step is to define a business process (i.e. workflow) for each of the target
services. A business process is a flow of business logic and rules for the target
service. Hence, it is best described as a workflow of one or more activities where an
activity is a smaller grained business task within a workflow. Workflows can be
described in any business process specification language or notation such as BPM.

5.2 Phase 2. Defining Unit Services

This phase is to take the business process specifications from phase 1, and to design
and specify reusable unit services. The first step is to analyze the workflows and their
activities for the business processes and to identify the commonality. Web services
generally have the characteristics of loose coupling, composability, interoperability,
reusability, extensibility, vendor diversity, and discoverability [1][9]. Hence the unit
services that will be derived in phase 2 should have the characteristics of loose
coupling and reusability, since the other characteristics are provided by WSDL
interfaces, component implementations, and UDDI registries.

Extracting unit services would not be carried out mechanically, rather it requires
the understanding of the domain, skill of commonality analysis, and intuition. But we
formulate and suggest some guidelines for conducting this task, although these
guidelines are not meant to be complete but to provide some clues.

 Considering the data sets manipulated; Functions specified in activities are to
manipulate data and to provide its responsibility. Therefore, consider the data
sets manipulated by activities in determining the cohesion between the activities.
If two activities are highly cohesive, they can be satisfied by and bound to a
single UnitService.

 Considering Service Clients/Invokers; Clients initiate activities in a business
process. If the clients are different, two activities can be invoked at different
time. Then, it would be better to design different unit services so that the unit
services can be effectively invoked in different time lines.

 Considering player performing the activity; The player performing the activity is
mapped to the organization of the corresponding service provider. Then, it

382 S.H. Chang and S.D. Kim

would be effective for UnitService to be differently defined if it is expected that
providers are different.

 Considering reusability of the activity; Some activities are repeated in several
business processes or higher level of activities. The activities have a possibility
of reuse even in the business processes. If UnitService for the activities is
defined, reusability for the business processes would be leveraged.

Once we identify the unit services, as the second step, we define an interface of
each UnitService. The interface includes one or more operations which are
represented with a set of an operation name, input parameters, and a return type. In
this step, what should be done with a UnitService is syntactically defined in terms of
the operation name, the input parameters, and the return type.

Then pre- and post conditions of defined interface should be defined. The states
before and after invoking the UnitService are identified. The UnitService is expected
to be implemented as components and to be configured flexibly. For the
characteristics of cohesion and loose coupling, identifying pre and post conditions to
which service components should conform is essential.

With the interface and pre and post conditions, we should design behavioral and
structural models for the functionality of the UnitService. In OOAD, UML is
generally used for the models and it can be applied to the models in this steps. During
the modeling step, any associated constraints should be identified. The last step is to
write unit service specifications with their interfaces, behavioral and structural
models, and the constraints.

5.3 Phase 3. Discovering Services

Unit services are bound to service interfaces which can be either the interfaces of
externally developed components or interfaces of internally developed components.
This phase is to discover service interfaces which conform to the unit service
specification. It can be done by searching candidate service interfaces from service
registries, comparing the found interfaces with the specification of UnitService, and
acquiring appropriate service interfaces.

Unit Service
Layer

Service Interface
Layer

Service Component
Layer

Unit Service

Functionality
models

Constraints

provides

conformsimplements

link

Pre and post
condition

Required
interface

conforms

Service
component

Fig. 6. Relationships between UnitService, Service Interface and Component

 A Systematic Approach to Service-Oriented Analysis and Design 383

To find candidate service interfaces from UDDI registries, keyword-based
matching technique is commonly used. However, it would be better to apply
semantic-based matching using the semantic description of unit service specification.

As explained in Section 4.2, the elements of UnitService include an interface, pre
and post conditions, structural and behavioral models, and constraints. The operations
in the required interface should be mapped to the operations in the service interface.
And, the service components for the service interface should implement the
functionality models, and it should also conform to the pre and post conditions and
other constrains. Figure 6 shows the relationships between the elements of a
UnitService and a service interface and components.

5.4 Phase 4. Developing Services

After conducting phase 3, there may be some unit services which are not yet bound to
the published service interfaces. For such unit services, one should develop service
components from scratch or by wrapping legacy systems. This phase is to develop
such new services and their service interfaces.

Initially, we try to identify available legacy systems for the functionality of the
UnitService. If there are candidates, such system can be wrapped with service
interfaces which specified with standard specification such as WSDL. If there still
remain unresolved unit services, new service components with their interfaces are
newly developed by using the unit service specifications. Finally, both types of new
services and interfaces are registered in UDDI registries.

5.5 Phase 5. Composing Services

By applying the phases 1 through 4, we now have a set of unit services and service
interfaces. This phase is to define service compositions with unit services and service
interfaces. Physical representation of service compositions can be done a business
process specification language such as BPEL.

Service composition can be in two styles; choreography and orchestration [20]. By
analyzing the characteristics of business processes, we determine the composition
style and define the composition, say in BPEL. Then, it can be executed by process
executing engine such as Active BPEL.

6 Case Study of Hotel Reservation

Based on the proposed process in the Section 5, we present a case study for Hotel
Reservation service. This service is to explore candidate hotels based on user’s
preference and perform the following scenario as shown in the Figure 8. For BPEL
execution as well as Web service development, we use WebSphere Process Server 6.0
and IBM WebSphere Integration Developer 6.0.2.

Phase 1. Identifying Business Processes. Based on the scenario, we identify three
activities; A1.Finding Appropriate Hotels, A2.Choosing a Hotel, and A3. Reserving

384 S.H. Chang and S.D. Kim

the Hotel. Then, we decompose the A1 into five sub-activities; A1.1 Get user profile,
A1.2 Find hotel finding services, A1.3, Check availability of hotel service, A1.4 Take
hotel information, and A1.5 Return the hotel information as shown in the Figure 8.

• John enters a total hotel reservation service system (THRSS).
• John enters ID and PW.

Based on the ID, the THRSS analyzes the user’s preference and history.
(John is a scholar who frequently attends international conference in software engineering)

• John enters the period, area, room type, and the hotel grade.
• THRSS selects a hotel finding service from candidate hotel finding services, which is

competitive to find hotels in the area John enters.
• The competitive hotel finding service returns a list of candidate hotels and their WSDL

information for service interfaces by which THRSS can access to each hotel.
• THRSS checks the current availability of the individual hotel.
• THRSS takes individual information for currently available hotels by using the returned

WSDLs.
• THRSS returns the information.
• John chooses one hotel from the returned information.
• THRSS reserves the hotel John chose.
• John may want to cancel the reservation because ….
• ….

Fig. 7. The part of the Hotel Reservation Scenario

A1. Finding
Appropriate Hotels

(with Service)

A2.
Choosing a Hotel

(by Human)

A3.
Reserving the Hotel

(with Service)

A1.1
Analyze

user profile

A1.2
Find hotel

finding services

A1.3
Check availability
of hotel services

A1.4
Take

hotel information

A1.5
Return

hotel information

decomposition
…

Fig. 8. The Decomposition of Activities in the Hotel Reservation Process

Business Process
Layer

Unit Service
Layer

…
…Unit Service for

finding hotels
Unit Service

from Hotel Rose
Unit Service

from Hotel Lily

Decomposition Mapping activity to UnitService Control flow of the activities

…

A1. Finding
Appropriate Hotels

(with Service)

A2.
Choosing a Hotel

(by Human)

A3.
Reserving the Hotel

(with Service)

A1.1
Analyze

user profile

A1.2
Find hotel

finding services

A1.3
Check availability
of hotel services

A1.4
Take

hotel information

A1.5
Return

hotel information
…

Unit Service for
analyzing user

profile

Fig. 9. Identifying unit services from activities in business process

 A Systematic Approach to Service-Oriented Analysis and Design 385

The activity, A3, can be more decomposed. But, we omit the parts due to the page
limitation.

I. Required Interface Specification
Operation 1 - findCandidateHotels
• Set of input parameters

– Check in date: Date
– Check out date: Date
– Room type: enumeration type of {single, double, twin, suite}
– Level: enumeration type of {1,2,3,4,5}

• Return type
The operation requires a list of object type elements for the return type where the object includes;
– The name of the hotel
– Interface type of the hotel service including operation name, a set of input parameters, and return type.
– The endpoint of the interface

• Pre condition
– The use preference should be identified with pre-defined type.

• Post condition
– N/A

II. Functionality Specification
Operation 1 - findCandidateHotels
• Behavioral Model

• Finding logic
…

«contoller »
Component A

«entity»
UserPreference

«entity»
Us erHis tory

analyze()

« inter face»
IdentifyHotelFinder

getContext()

doTas k1()

serviceReques t()

[s ituation a]

[s ituation b]

…

cine

III. Constraints Specification
• Response time

– It should not be over 3 sec.
• Reliability of the transaction

– The found hotel should provide the service.
• Exception handling

– …

Fig. 10. A UnitService specification of the service, finding candidate hotels

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://ejbs" …. >
<wsdl:types>

…
<element name="opFindHotels">

<complexType>
<sequence>

<element name="dFrom" nillable="true" type="xsd:string"/>
<element name="dTo" nillable="true" type="xsd:string"/>
<element name="sArea" nillable="true" type="xsd:string"/>

</sequence>
…

<wsdl:portType name="HotelFinderA">
<wsdl:operation name="opFindHotels">

<wsdl:input message="impl:opFindHotelsRequest" name="opFindHotelsRequest"/>
<wsdl:output message="impl:opFindHotelsResponse" name="opFindHotelsResponse"/>
…

<wsdl:binding name="HotelFinderASoapBinding" type="impl:HotelFinderA">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="opFindHotels">

…
<wsdl:service name="HotelFinderAService">
<wsdl:port binding="impl:HotelFinderASoapBinding" name="HotelFinderA">
<wsdlsoap:address location="http://203.253.23.170:9082/routerProject/services/HotelFinderA"/>
…

Fig. 11. Service Interface of the finding candidate hotels, in WSDL

Phase 2. Defining Unit Services. Drawing from the decomposition, we identify four
unit services; Analyzing User Profile, Finding candidate hotels, checking availability
of the each found hotel, and requesting information to the found hotels as shown in
the Figure 9. For the activities A1.1 and A1.2, the activities should be performed by

386 S.H. Chang and S.D. Kim

«WSDL»
UserPreferenceAnalysis

opGetHotelPreference
(userID)

«ejb»

«HomeInterface»
PreferenceAnalyzer

User Profile

«Interface»
PreferenceAnalyzer

opGetHotelPreference()

«Bean»
PreferenceAnalyzer

opGetHotelPreference()

Fig. 12. Service Component and Interface for Analyzing User Preference Service

different player with different data. Therefore, they are defined with different unit
services. For the activities A1.3 and A1.4, the activities can be carried out by each
hotel service. Therefore, the two activities are defined with one UnitService.
However, several candidate hotels can be identified from A1.2.

For the each UnitService, we write UnitService specifications. Figure 10 shows the
example of UnitService specification for the unit service, finding candidate hotels.

In the specification, there is one operation, findCandidateHotels. The operation has
three input parameters and returns an object including hotel name, its service
interfaces, and the endpoint of the interfaces.

Phase 3. Discovering Services. For the defined unit services, Figure 11 shows the
WSDL interface of the UnitService, finding candidate hotels. In the XML interface,
opFindHotels is defined with three parameters and a return type.

External Provider

User
Interface

«WSDL»
Interface

«WSDL»
Interface

BPEL Process Server

Service server

A1.1
Analyze

user profile

A1.2
Find hotel

finding services

A1.3
Check availability
of hotel services

A1.4
Take

hotel information

A1.5
Return

hotel information

Unit Service for
finding hotels

Unit Service for
analyzing user

profi le

Unit Service
from Hotels …

«WSDL»
Interface

«WSDL»
Interface

UnitService Service Interface in WSDL

«ejb»

HotelFinder

«ejb»

Preference Analyzer

External Provider

Internal Provider

Fig. 13. The Service Integration Architecture

 A Systematic Approach to Service-Oriented Analysis and Design 387

Phase 4. Developing Services. For analyzing the user preference, finding external
services is not enough. It should be developed internally. So, the UnitService is
implemented with EJB as shown in the Figure 12. The unit service has WSDL
interface including a operation, opGetHotelPreference. The operation is bound to the
component interface (i.e. EJB remote interface, PerferenceAnalyzer)

Phase 5. Composing Services. After discovering and developing the services, we
integrate the services with BPEL. The Hotel reservation process includes two internal
services and other external services. The PreferenceAnalyzer component is newly
developed, and HotelFinder is discovered from internal UDDI registry. Other
services, providing hotel information, are provided by each hotel. So, we don’t need
to know the service components but service interfaces.

7 Conclusion

SOC is emerging as a new paradigm for building and maintaining applications in a
cost effectiveness way. However, there is a considerable amount of gap between the
promises of SOC and the maturity of service engineering methodology. The main
cause of the gap is the lack of effective analysis and design methods. That is, there is
a great demand on effective service-oriented analysis and design (SOAD)
methodology.

SOC has several unique features which are not typically presented in conventional
OOD and CBD. They include the increased commonality of services and the
paradigm of publish-discover-compose services. Hence, SOAD has to be defined with
SOC-specific modeling facilities on top of the two existing paradigms.

In this paper, we proposed a systematic and effective SOAD which extends OOD
and CBD. We first presented a technical comparison among OOD, CBD and SOAD
to better understand their similarities and differences. From the comparison, we
derived the design criteria for our SOAD method. And, we defined the key artifacts
that have to be delivered during SOAD. Based on these preliminary works, we
proposed a SOAD process which takes service requirements as the initial input and
delivers service specifications, compositions, and verified service components as the
final deliverables. Each of the five activities in the process was defined with its
overview, artifacts, and work instructions. Finally, we presented a case study of
applying our process to a service domain to reveal its effectiveness and applicability.
As a future work, the process can be extended with service adaptation techniques.
That is, analyzing and designing service variability and its adaptation can be
appended. Once the proposed SOAD is well applied, SOAD artifacts can be more
systematically and efficiently implemented with current SOA standards of WSDL,
UDDI, BPEL and SOAP.

References

[1] Sigh, M., Huhns, M.: Service-Oriented Computing: Semantics, Processes, Agents. Wiley,
Chichester (2005)

[2] W3C, Web Services Description Language (WSDL) Version 2.0, W3C Candidate
Recommendation (March 27, 2006)

388 S.H. Chang and S.D. Kim

[3] OASIS, Universal Description Discovery & Integration (UDDI) specification, Version 3.0
(July 2002), http://uddi.org/pubs/uddi-v3.00-published-20020719.htm

[4] OASIS, Web Services Business Process Execution Language (BPEL) Version 2.0, Public
Review Draft, (August 23rd, 2006)

[5] W3C, Simple Object Access Protocol (SOAP) Version 1.2, W3C Recommendation (June
24, 2003)

[6] Zimmermann, O., et al.: Elements of Service-Oriented Analysis and Design, IBM
Developer Works (2004)

[7] Arsanjani, A.: Service-oriented Modeling and Architecture, IBM Developer Works
(2004)

[8] Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
Englewood Cliffs (2005)

[9] Marks, E., Bel, M.: Service Oriented Architecture: A Planning and Implementation Guide
for Business and Technology. Wiley, Chichester (2006)

[10] OASIS, A Methodology for Service Architectures, OASIS Draft, (October 26th, 2005)
[11] Blaha, M., Rumbaugh, J.: Object-Oriented Modeling and Design with UML, 2nd edn.

Prentice Hall, Englewood Cliffs (2005)
[12] Heineman, G.T., Councill, W.T.: Component-Based Software Engineering. Addison-

Wesley, London (2001)
[13] Szyperski, C.: Component Software Beyond Object-Oriented Programming. Addison-

Wesley, London (2002)
[14] Min, H., et al.: Using Smart Connectors to Resolve Partial Matching Problems in COTS

Component Acquisition. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.
(eds.) CBSE 2004. LNCS, vol. 3054, Springer, Heidelberg (2004)

[15] Sam, Y., et al.: Web Services Customization: A Composition-based Approach. In: the
proceedings of the International Conference on Web Engineering (ICWE) ’06, IEEE,
Orlando (2006)

[16] Kongdenfha, W., et al.: An Aspect-Oriented Framework for Service Adaptation. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)

[17] Arsanjani, A.: Service-Oriented Modeling and Architecture (SOMA), IBM
Developerworks (2004)

[18] Kim, S., et al.: A Theoretical Foundation of Variability in Component-Based
Development, Information and Software Technology (IST), vol. 47(10) (July 2005)

[19] Pohl, K., Bockel, G., Linden, F.: Software Product Line Engineering. Springer,
Heidelberg (2005)

[20] Peltz, C.: Web Services Orchestration and Choreography. In: Computer (October 2003),
vol. 36(10), pp. 46–52. IEEE, NJ (2004)

Improving the Problem Management Process
from Knowledge Management Perspective

Marko Jäntti, Aki Miettinen, Niko Pylkkänen, and Tommi Kainulainen

University of Kuopio, Department of Computer Science,
P.O Box 1627, 70211, Kuopio, Finland

mjantti@cs.uku.fi

Abstract. IT organizations are continuously looking for systematic
methods to manage IT services. Combining IT service management pro-
cesses and knowledge management processes is an interesting topic be-
cause knowledge management will be included in the next release of IT
Infrastructure Library (ITIL). In this paper, we focus on examining how
knowledge management can be used to support the improvement of the
ITIL-based problem management process. The research question in this
paper is: how to improve the software problem management process by
using a knowledge management framework. We use a case study research
method to examine how an IT service provider identifies, creates, stores,
shares and uses the knowledge of software problems. The main contri-
bution of this paper is to provide a list of process improvement ideas
collected during a knowledge management study in the case organiza-
tion: TietoEnator Energy, Finland.

1 Introduction

The software problem management process is focused on collecting information
on problems in IT products and services, identifying defects related to prob-
lems, removing defects and preventing problems and defects before they occur.
Problem management is one of the key subprocesses within a service support
and maintenance process [1]. In ISO 20000 Service Management standard [2],
that is fully aligned with IT Infrastructure Library (ITIL) [3], problem man-
agement belongs to resolution processes that also include incident management
and change management [4]. In CoBIT framework [5], problem management is
categorized into Delivery and Support processes (DS10). Problem management
is responsible for both resolving already reported problems but also preventing
problems before they occur.

Problem management can be understood as “defect management performed
by the service desk”. In the ITIL, problem management is divided into prob-
lem control and error control activities. Problem control aims to identify the
root cause of the problem and define a temporary or permanent solution to the
problem. In this study, we define a problem as “any difficulty that a user or a cus-
tomer encounters while using the software product or an IT service”. If the root
cause of a problem is a software fault (a defect), the problem will be escalated

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 389–401, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

390 M. Jäntti et al.

to the error control activity that is similar to the defect management process
[6], [7], [8]. Hence, traditional defect management methods such as defect causal
analysis [9], defect profiles [10], and defect estimation models [11] can be used
to support the problem management activities. Additionally, traditional defect
management metrics (defect density, defect removal rate) [12] are still useful for
problem managers.

Knowledge Management in turn is focused on generating, representing, stor-
ing, transfering, transforming, applying, embedding and protecting organiza-
tional knowledge [13]. There are various frameworks and approaches available for
organizations who are planning to implement a knowledge management process:
Knowledge management framework of CEN (European Committee for Stan-
dardization) [14], DISER (Design and implementation of Software Engineering
Repositories) [15], CRISP-DM (Cross Industry Standard Process for Data Min-
ing) [16], and Knowledge Value Chain model [17]. In this paper we focus on CEN
framework that consists of five core knowledge activities: identify, create, store,
share and use knowledge.

1.1 Our Contribution

The purpose of the knowledge management is to create and apply the knowledge
about products and services, customers and technology. In this study, we focus
our research on exploring how the knowledge about software problems is identi-
fied, created, stored, shared and used in our case organization. Previous studies
have discussed problem management from the viewpoint of software maintenance
[18], [19].

This study is a part of the work of an ongoing research project SOSE (Service
Oriented Software Engineering) at the University of Kuopio, Finland. SOSE
project aims to research methods for improving the quality of IT services. This
study continues the work of our previous studies where we identified difficulties
regarding defect management and presented a list of challenges in the problem
management processes.

The main contribution of this paper is to provide IT organizations with in-
formation how knowledge management models and IT service management pro-
cesses can be combined to improve the quality of the service support processes.
The research question in this paper is: how to improve the software problem
management process by using a knowledge management framework. The Lessons
Learned list with process improvement suggestions is based on the case study
with one case organization: a large IT service provider.

The rest of the paper is organized as follows. In Section 2 we describe the
research method of this study. In Section 3, main findings from the case study are
presented. Section 4 is the analysis of findings. The discussion and the conclusions
are given in Section 5.

2 Research Methods
This paper focuses on examining software problem management from knowledge
management perspective. The research question in this paper is: how to improve

Improving the Problem Management Process 391

the software problem management process by using a knowledge management
framework. We examine how IT organizations identify, create, store, share and
use the knowledge of software problems.

A case study research method was used in this study [20] to investigate the
problem management process within its real-life context. At first, we selected an
appropriate knowledge management framework for the study. The CEN model
was selected because the basic structure of the model (with 5 phases) is simple
and it is published by a well-known standardization organization. The CEN
model also addresses that customers, suppliers, and business partners play an
important role in the knowledge management process (see Fig. 1).

TietoEnator

Customers:
Energy

Companies

Service Desk:
Incident Mgmt

Knowledge Base
Articles

Product Support:
Problem Mngmt

Product Development

Service Requests,
Incidents

Processes:
W2E, ITIL

3rd Party
Service

Providers:
Servers,

Databases

Energy, Utility Solutions

Create
Knowledge

Share
Knowledge

Store
Knowledge

Use
Knowledge

Identify
Knowledge

Customer Main
User

Customer
Users

Identify
Knowledge

Identify
Knowledge

Identify
Knowledge

Fig. 1. The context of the case study

2.1 Case Organization

The case organization of this study (TietoEnator Oyj) is a large IT service
company in Scandinavia with over 15 000 employees. TietoEnator provides ap-
plication services and information systems to customers in various domains, such
as energy, telecom and media, and healthcare. The business unit TietoEnator
Energy develops and maintains customer information systems and energy data
management systems. This case was selected for this study because they were in-
terested both using ITIL framework and improving the knowledge management
process. We used a case study research method because it is a good research
method for studying information systems in organizations.

392 M. Jäntti et al.

2.2 Data Collection Methods

The study started in February 2006 as a pilot project with the case organization.
The goal of the pilot project was to improve the service support process including
incident management and problem management. The following data collection
methods were used in this study:

– The observations made by a researcher and a research assistant (February-
March 2006) in the case organization

– Informal interviews and discussions in monthly SOSE research project meet-
ings (researchers and three companies including the case organization)

– A research assistant’s observations in the case organization (March-December
2006)

– A service improvement meeting between the case organization and its cus-
tomer (an energy company) (December 21, 2 hours)

– A knowledge base meeting (January 4, 2 hours)

Data collection methods in February - March 2006 were participative ob-
servation (a researcher and a research assistant) in support and maintenance
team meetings, informal interviews with the case organizations’s workers includ-
ing a service desk engineer, an incident manager, a problem manager, and a
system analyst. From April 2006, only a research assistant has participated in
the support team meeting of the case organization and had an access to the
incident/problem repository. The members of the service improvement meet-
ing included one researcher, two research assistants, two incident managers, a
customer main user and a service desk engineer. The knowledge base meeting in-
cluded one researcher, two research assistants, two incident managers, a change
manager and a product development team member. This case study consisted
of the following questions:

– General questions
• Why is the organization interested in knowledge management?
• Which tools are used for knowledge management purposes?
• Has the organization already defined any knowledge management proce-

dures?
– Identify knowledge: Who are the teams or persons responsible for identifying

knowledge for problem management?
– Create knowledge: What kind of knowledge is created for problem manage-

ment?
– Store knowledge: How does the organization store the problem management

knowledge?
– Share knowledge: Which methods are used to share knowledge about prob-

lems?
– Use knowledge: How the problem management process uses the gathered

knowledge?

Improving the Problem Management Process 393

2.3 Data Analysis Method

As a background work for the data analysis, questions were categorized by knowl-
edge management process areas: identify, create, store, share and use knowledge.
A within-case analysis technique was used to analyze data from the case orga-
nization [21]. Data analysis was focused on 1) identifying how knowledge man-
agement activities are related to the case organization’s problem management
process, and 2) identifying improvements to the problem management process.

3 Using Knowledge Management to Support the Problem
Management Process

The case organization was interested in knowledge management because they
had just launched a knowledge base. The problem was that the knowledge base
was poorly connected to the business process descriptions. Their goal was that
defining knowledge management activities would help the introduction of the
knowledge base in problem management and incident management processes.
SOSE research project’s task was to help the case organization to define a pro-
cess how the knowledge base can be combined to the service support processes.
Because the organization had not used any knowledge management models ear-
lier, we started to analyze the knowledge management activities through the
CEN knowledge management framework [14]. The CEN model consists of five
activities: 1) Identify, 2) Create, 3) Store, 4) Share, and 5) Use knowledge. In this
section, we examine how these activities are related to the case organization’s
problem management process.

3.1 Identify Knowledge

In the first phase (Identify knowledge), the organization should identify what
knowledge is needed and why it is needed. All members of the organization should
know the goal of knowledge management and their own role in the knowledge
management process. In the case organization, the goal of knowledge manage-
ment was to support proactive problem management with a knowledge base. We
observed that knowledge about problem management comes from the following
sources:

– Customers (main users, normal users)
– Service desk teams(service desk workers, incident manager)
– Product support teams (problem specialists, problem manager)
– Product development teams (developers, coders and testers)
– Company partners (3rd party service providers, research organizations)

3.2 Create Knowledge

In the second activity, the organization creates either new knowledge for prod-
ucts and services that might lead to innovations or new knowledge for processes

394 M. Jäntti et al.

and procedures (for example, process improvements). The knowledge can also
be classified into personal level or team level knowledge, or explicit and tacit
knowledge. Explicit knowledge is recorded or formal knowledge and thus easy to
share. Tacit knowledge in turn is not available as a text and it includes personal
beliefs and experiences. Our case organization creates following knowledge for
the problem management process:

– Customers create problem descriptions, queries and product requirements.
– Service desk teams create incidents (see Fig. 2), service requests, change

requests and development ideas. Incident manager performs customer satis-
faction surveys regarding service support activities.

– Product support teams create problem records, work-arounds (temporary
solutions for problems) and descriptions of permanent solutions.

– Product development teams create product releases, release notes, and user
documentation.

– 3rd party service providers create problem descriptions, and research orga-
nizations create process improvement ideas.

Fig. 2. The service desk creates incident records

3.3 Store Knowledge

Third activity (Store knowledge) can be implemented, for example, by using
knowledge bases and document management systems. The primary goal should

Improving the Problem Management Process 395

be holding the knowledge, not the people within the organization. Besides formal
database records, the knowledge can appear as organizational routines, process
diagrams or checklists [22]. In the case organization, the service support tool
(including incident and problem records) plays an crucial role regarding this
activity. The case organization used following methods to store knowledge:

– A description of the problem management process has been stored in the
organization’s business framework WayToExcellence.

– Incidents, service requests, problems, RFCs, and development ideas are stored
in the service support tool.

– General (not customer-specific) problem solutions are stored as knowledge
base articles (see Fig. 3).

– Release notes are stored in the customer extranet.
– User documentation is usually stored as power point files, PDF and MS word

files in windows directories.

Fig. 3. A knowledge base article for problem management

3.4 Share Knowledge

The goal of the fourth activity (Share knowledge) is to share knowledge to
the right place at the right time taking account in quality requirements for

396 M. Jäntti et al.

the knowledge. Transfering knowledge is most effective through interaction be-
tween people, for example, in coffee break discussions, team meetings, and work-
shops. Sharing the knowledge can be done using various information channels:
databases, intranet, internet, seminars, and training. However, it might happen
that workers do not accept knowledge provided by their colleagues because of
their own beliefs. The following techniques were used by the case organization
to share knowledge:

– Customers can browse their own service requests, frequently asked questions
and knowledge base articles (see Fig. 4) in the web-based support system.

– Customers have access to the customer extranet that contains marketing
material, release notes and user manuals.

– Service desk teams, product support teams and product development teams
have access to all incident and problem records.

– Product development teams share information on errors through the service
support tool.

Fig. 4. A shared knowledge base article

3.5 Use Knowledge

The benefits of knowledge management are not achieved until the knowledge
is used in the organization. The final activity (Use knowledge) connects the
previous activities together. Using the knowledge from previous activities helps
organization to identify weak areas in the processess and find new ways to create

Improving the Problem Management Process 397

Customer satisfaction
survey I/2006
Customer satisfaction
survey II/2006

How fast were
problems solved

How much
information did

you get about the
solutions

How useful were
the solutions

The quality of the
solutions

How well were the
promises and

agreements kept

Fig. 5. Customer satisfaction data helps to improve the problem management process.
Data values are not from a real case.

and use knowledge. Therefore, this activity serves as a bridge between identify-
ing, creating, storing and sharing of knowledge. A good example how the case
organization uses knowledge, are frequent customer satisfaction surveys that
are conducted to improve the quality of support services including the problem
management process (see Fig. 5).

4 Analysis

The following list of “Lessons Learned” describes the process improvements iden-
tified during the case study.

1. Identify knowledge - Customer: A customer-level should be divided into cus-
tomer main user and customer user levels in process descriptions. These
stakeholders use different ways to find problem resolutions and to report
problems.

2. Identify knowledge - Service desk: Service desk workers do not have enough
time to produce knowledge base articles during a working day but they can
provide ideas for KB articles.

3. Identify knowledge - Service desk: Service desk workers have difficulties to
find latest versions of user manuals and instructions from the Windows
directories.

398 M. Jäntti et al.

4. Create knowledge - Customer: Customers should be able to create free form
feedback of the problem solutions described in knowledge base articles. In
addition to a KB rating function (see Fig. 4), a feedback text field is needed.

5. Create knowledge - Problem management: Problem management teams
should be responsible for creating workarounds for problems as knowledge
base articles.

6. Store knowledge - Problem Management: Problem solutions should be writ-
ten by using customers’ language avoiding too technical terms.

7. Store knowledge - Problem Management: Persons, who store KB articles,
should check that the attachments of the KB article are visible to customers
(attachment access = external)

8. Share knowledge: Customers would like to have information about new
knowledge base articles by email.

9. Share knowledge: There is need for a service board that reviews knowledge
base articles in the case organization before they are published and is re-
sponsible for maintaining the knowledge base content.

10. Use knowledge: More persons need to be trained to use customer satisfaction
survey tool for problem management purposes.

11. Use knowledge: A problem review process is needed. Knowledge from prob-
lem trend analyses (for example, statistics of component failures) is impor-
tant for problem reviews.

4.1 The Summary of the Evaluation

Knowledge management systems consist of both information system activities
and management and organizational activities [23]. Information system activities
include identifying, creating, storing, sharing, and using knowledge. In the case
organization, these activities had not been defined. Instead of establishing a for-
mal knowledge management process, we suggested that knowledge management
activities could be integrated with the organization’s business processes.

Management and organizational activities include, for example, creating a
knowledge culture in the organization, and defining practices for knowledge man-
agement [24]. The service support manager of the case organization considered
the knowledge management ideas presented by researchers as important and
useful for improving the problem management process. The management had
started creating a knowledge culture where anybody within the organization
could access the information about problems.

During this study, we identified that our case organization got the following
benefits of the integration of knowledge management and problem management
models: 1) clear rules how to maintain (add, modify, delete) the content of prob-
lem management knowledge base, 2) identification of new knowledge sources for
the problem management process and 3) more information about the communi-
cation gaps within the support processes.

Besides the CEN model, also other knowledge management models might be
useful for improving the problem management process, such as a knowledge do-
main model for customer services [25]. The knowledge domain model consists of

Improving the Problem Management Process 399

three tiers. Tier one includes general data and information services that are usu-
ally provided by call-centres, tier two consists of advisory services. These services
provide customers with information on software problems and their resolutions.
Tier three consists of knowledge and expert services which also include meta-level
knowledge of the other tiers. In further studies, it could be interesting to combine
the structure of the knowledge domain model and the activities of the CEN model
together and use the combined model to analyze service support processes.

5 Discussion and Conclusions

This study aimed to answer the research question how problem management pro-
cess can be improved by using a knowledge management model. Major benefits of
the integration of knowledge management and problem management processes in
this study were 1) clearer rules for maintaining the problem management knowl-
edge base, 2) identification of problem management knowledge sources and 3)
information about the communication gaps within the organizations processes.

However, the analysis of integrating problem management and knowledge
management processes is not exhaustive. More research efforts are needed to
explore the sources of problem management knowledge and the communication
between stakeholders involved in knowledge management activities. As a result
of the analysis, several interesting challenges regarding problem management
and knowledge management were identified. The results of this study are useful
for process managers who are responsible for improving support processes such
as problem management. We observed that using the combination of problem
management and knowledge management methods is relatively easy within one
organization. However, the larger the network of stakeholders is, the more diffi-
cult it is to describe the combined process. This paper provides process managers
with a list of process improvements identified during the study that focused on
combining an ITIL-based problem management model and a knowledge man-
agement model.

However there are threats to the validity of this case study. First, regarding
the construct validity of the case study research, we should be able to collect ev-
idence from several sources. This study described experiences on one knowledge
management model with one case organization that uses an ITIL-based problem
management model. In order to get a richer view of integration of problem man-
agement methods and knowledge management methods, we need to test different
types of models in practice. Additionally, we need to interview, besides service
desk and product support teams, also product development teams that were ig-
nored in this study. Second, there is the threat to external validity. The results
presented in this paper are valid only in our case organization: TietoEnator,
Energy. Results may not be generalizable to other service provider organizations
because they use different service management tools and processes.

The main contribution of this study lies in helping IT organizations to iden-
tify how knowledge management concepts can be used to support the problem
management process. In future studies we focus on examining the multi-actor
network regarding problem management.

400 M. Jäntti et al.

Acknowledgment

This paper is based on research in the SOSE project (2004-2006), funded by the
National Technology Agency TEKES, European Regional Development Fund
(ERDF), TietoEnator Corp., Savon Voima Oyj, Softera Solutions Oy, DNA Fin-
land Oy, and Navicore Oy.

References

1. ISO/IEC 12207: Information Technology Software Life-Cycle Processes. ISO/IEC
Copyright Office (1995)

2. ISO/IEC 20000:2005: Information Technology - Service Management. ISO/IEC
Copyright Office (2005)

3. Office of Government Commerce: ITIL Service Delivery. The Stationary Office, UK
(2002)

4. Hochstein, A., Tamm, G., Brenner, W.: Service-oriented it management: Benefit,
cost and success factors. In: Proceedings of the Thirteenth European Conference
on Information Systems, Regensburg, Germany, University of Regensburg (2005)

5. COBIT 4.0: Control Objectives for Information and related Technology: COBIT
4.0. IT Governance Institute (2005)

6. Quality Assurance Institute: A software defect management process. Research Re-
port number vol. 8 (1995)

7. Florac, W.: Software quality measurement a framework for counting problems and
defects. Technical Report CMU/SEI-92-TR-22 (1992)

8. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P.: Experiences with defect
prevention. IBM Syst. J. 29(1), 4–32 (1990)

9. Leszak, M., Perry, D.E., Stoll, D.: A case study in root cause defect analysis. In:
ICSE ’00: Proceedings of the 22nd international conference on Software engineer-
ing, New York, NY, USA, pp. 428–437. ACM Press, New York (2000)

10. Hirmanpour, I., Schofield, J.: Defect management through the personal software
process. Crosstalk, The Journal of Defense Software Engineering (2003)

11. Biffl, S.: Evaluating defect estimation models with major defects. J. Syst.
Softw. 65(1), 13–29 (2003)

12. Jalote, P.: CMM in Practice, Processes for Executing Software Projects at Infosys.
Addison-Wesley, London (2000)

13. Schultze, U., Leidner, D.: Studying knowledge management in information systems
research: discourses and theoretical assumptions. MIS Quarterly 26(3), 213–242
(2002)

14. CEN Workshop Agreement CWA 14924-1: European Guide to Good Practice in
Knowledge Management, Part 1. European Committee for Standardization (2004)

15. Bomarius, F., Feldmann, R.: Get your experience factory ready for the next decade:
Ten years after how to build and run one. Profes 2006 Tutorial, Amsterdam, Nether-
lands (2006)

16. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,
Wirth, R.: CRISP-DM 1.0: Step-by-step data mining guide. CRISP-DM consortium
(2000)

17. Lee, C., Yang, J.: Knowledge value chain. Journal of Management Develop-
ment 19(9), 783–794 (2000)

Improving the Problem Management Process 401

18. Kajko-Mattsson, M.: Problem management maturity within corrective mainte-
nance. Journal of Software Maintenance 14(3), 197–227 (2002)

19. Kajko-Mattsson, M., Forssander, S., Olsson, U.: Corrective maintenance maturity
model (cm3): maintainer’s education and training. In: ICSE ’01: Proceedings of the
23rd International Conference on Software Engineering, Washington, DC, USA,
pp. 610–619. IEEE Computer Society, Los Alamitos (2001)

20. Yin, R.: Case Study Research: Design and Methods. Sage Publishing, Beverly Hills,
CA (1994)

21. Eisenhardt, K.: Building theories from case study research. Academy of Manage-
ment Review 14, 532–550 (1989)

22. Kokkoniemi, J.: Experiences from generating checklists. In: Boumedine, M., Touzet,
C. (eds.) Proceedings of the Fourth IASTED International Conference on Knowl-
edge Sharing and Collaborative Engineering, St. Thomas, US Virgin Islands,
IASTED, ACTA Press, pp. 51–62 (2006)

23. Malhotra, Y.: Integrating knowledge management technologies in organizational
business processes: getting real time enterprises to deliver real business perfor-
mance. Journal of Knowledge Management 9(1), 7–28 (2005)

24. Iske, P., Boersma, W.: Connected brains: Question and answer systems for knowl-
edge sharing: concepts, implementation and return on investment. Journal of
Knowledge Management 9(1), 126–145 (2005)

25. Cheung, C., Lee, W., Wang, W., Chu, K., To, S.: A multi-perspective knowledge-
based system for customer service management. Expert Systems with Applica-
tions 24(4), 457–470 (2003)

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 402–404, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Experience on Applying Quantitative and Qualitative
Empiricism to Software Engineering

Marcus Ciolkowski1,2 and Andreas Jedlitschka2

1 TU Kaiserslautern
P.O. Box 3049

67653 Kaiserslautern, Germany
ciolkows@informatik.uni-kl.de

2 Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany
jedl@iese.fraunhofer.de

Abstract. The workshop addresses practitioners and/or researchers who are in-
terested in empirical software engineering, software process improvement, and
quality management.Practitioners are being addressed specifically, since this
workshop is also intended to find out what kind of information practitioners
need, which kind of support they expect from research regarding the aggrega-
tion of information, and how they select software engineering technology.

1 Motivation

Many academics and practitioners believe that evaluation has a vital role to play in
software engineering. As well as evaluating both application level and component
level products, software engineers need to be concerned with the evaluation of devel-
opment processes, engineering methods and supplier organizations.

The state of the art of empirical software engineering was assessed in the 2006
Dagstuhl Seminar on Empirical Software Engineering [1]. Workshop participants
agreed that the community has matured since 1992 but is still in a very early phase
compared to other disciplines. Improvements were suggested, among others, with re-
gard to complementary usage of quantitative and qualitative studies [2].

The aim of the workshop is to address the question of future directions for empiri-
cal software engineering. This includes improving empirical methodology, or infor-
mation needed by industry. It is planned that participants submit short submission
statements, and that selected participants are invited to submit an extended version of
their paper for submission.

The workshop itself is the fifth one in the workshop series on Empirical Software
Engineering. The first one was held in conjunction with the PROFES 2002 in Ro-
vaniemi, the second one was held in conjunction with the Empirical Software Engi-
neering International Week 2003 in Rome, the third on was held in conjunction with
PROFES 2005 in Oulu, the fourth one took place in Amsterdam in conjunction with
PROFES 2006.

 Experience on Applying Quantitative and Qualitative Empiricism 403

2 Topics of Interest

• Innovative approaches for empirical software engineering methods. Example ques-
tions addressed:

• What are your experiences from applying quantitative and qualitative-
methods (preferably a combination of different methods)?

• How can contributions from other fields, such as medicine and psychol-
ogy, help in Empirical Software Engineering?

• What are your experiences with advanced methods that are not yet stan-
dard in empirical software engineering?

• Which approaches for analyzing / summarizing sets of empirical studies
can be worthwhile for Empirical Software Engineering?

• Clearly Information needed for decision making from empirical studies.
Example questions addressed:

• Have you tried to introduce a technology and wanted to base your deci-
sion on empirical findings?

• Which types of empirical studies were helpful?
• Which were not? For which reasons (e.g., wrong type of study, orunhelp-

fully reported)?
• Under which conditions are studies helpful to practitioners?
• How does empirical research have to adapt to industrial needs?

• Weaknesses in current empirical methodology. Example questions addressed:
• Where do we need to improve existing empirical practice, and how?

• Conditions under which can we integrate/synthesize evidence. Example questions
addressed:

• Which kind of evidence can be integrated?
• Which information is of interest?

• Handling of context information. Example questions addressed:
• How can we specify for which context areas an analysis is valid?
• Can we define a “standard” set of metrics that are relevant to measure

context in every situation?

3 Workshop Chairs

Marcus Ciolkowski (University Kaiserslautern and Fraunhofer IESE)
Andreas Jedlitschka (Fraunhofer IESE)

4 Program Comittee

Reidar Conradi, NTNU Helen Sharp, Open University
Tore Dyba, SINTEF Silke Steinbach-Nordmann, Fh IESE
Tracy Hall, University of Hertfordshire Mikael Svahnberg, BTH
Natalia Juristo, UPM Guilherme Travassos, COPPE/UFR
Dietmar Pfahl, University of Calgary Sira Vegas. UPM
Per Runeson, Lund Univ. Alf Inge Wang, NTNU

404 M. Ciolkowski and A. Jedlitschka

References

1. Basili, V.R., Rombach, D., Schneider, K., Kitchenham, B., Pfahl, D., Selby, R.W. (eds.):
Empirical Software Engineering Issues: Critical Assessment and Future Directions, Interna-
tional Workshop Dagstuhl Castle, Germany, January 2007, 4336. Springer, Heidelberg
(to appear)

2. Basili, V.R., Rombach, D.: Schneider: Preface; in [1] pp. V-XI technology

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 405–406, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Using Metrics to Improve Software Testing

Alfred Sorkowitz

International Institute for Software Testing,
636 Mendelssohn Avenue North,
Golden Valley, MN 55427, USA

sork1@hotmail.com

Abstract. Software Metrics can aid in improving your organizations Testing
Process by (1) providing insight and early visibility into the "real" status of the
testing effort, and (2) aid in making assessments as to whether progress, pro-
ductivity and quality goals are being met. This tutorial presents a practical guide
on how to start taking advantage of these new tools/techniques to aid in improv-
ing the testing process. These metric based tools and techniques have success-
fully been used by (1) software test teams, (2) software developers and, (3)
SQA and IV&V staffs.

1 What You Will Learn

• The cost of inadequate software testing. The economic impacts of poor testing
from a recent report from the National Institute of Standards and Technology.

• A set of “best practices” software metrics with numerous examples, variations,
and case studies. These metrics can track the "real status", quality, and produc-
tivity of the testing effort, as well as provide an indication of future problems.

2 Audience

A practical overview of metrics-based testing designed for technical and managerial
professionals concerned with improving quality, performance, and productivity of
software testing.

3 Presenters’ Background

Mr. Alfred Sorkowitz was a Computer Scientist with the Department of the Navy,
and was responsible for developing real-time, software-intensive systems. Prior to
joining the Dept of the Navy, he was Director of the Standards and Quality Control
Staff, United States Department of Housing and Urban Development. The staff was re-
sponsible for Software Standards and SQA, for all in-house as well as contractor devel-
oped software.While at HUD, he initiated a successful testing procedure to improve the
quality of testing that utilizes automated tools and software metrics. A paper on this

406 A. Sorkowitz

effort was published in a special issue of the IEEE Computer Society magazine devoted
to Software Quality Assurance, and was later reprinted and widely distributed in the
Department of Defense Computer Institute "Selected Computer Articles".

Mr. Sorkowitz has published papers and has presented seminars on Software Met-
rics, SQA, and Testing at conferences sponsored by the IEEE Computer Society,
ACM, and the British Computer Society.

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 407–409, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Increase ICT Project Success with Concrete Scope
Management

Carol Dekkers1 and Pekka Forselius2

1 Quality Plus Technologies, Inc.
8430 Egret Lane

SEMINOLE FL USA 33776
dekkers@qualityplustech.com

2 Software Technology Transfer Finland STTF Ltd
Tekniikantie 14, 2nd floor

FIN- 02150 Espoo, Finland
pekkaf@sttf.fi

Abstract. With the Standish group's CHAOS report proclaiming ICT project
success on a mere one-third of projects, project managers have an obligation
worldwide to gain control of the situation. Through concrete scope manage-
ment processes, ICT project managers can learn and embrace proven ap-
proaches that measure the size of software projects, streamline the requirements
articulation and management, and impose solid change management controls, to
keep projects on time and on budget. Scope management is not rocket science,
however, with 2/3 of the world's ICT projects deemed as failures, it is apparent
that managing scope is not a natural byproduct of project management. Learn
approaches and tips used in Europe, Australia, and North America that have
dramatically increased the success on ICT projects by trained scope managers.

1 Outline

1. Introduction to unique project management issues on ICT projects
2. Scope management as PMBOK knowledge area-opportunities and concepts for

ICT projects
3. Scope manager role and responsibilities.
4. Scope management processes and areas of application.
5. How to apply solid scope management for success on ICT projects.

2 Learning Objectives

• Identify the unique challenges and opportunities on ICT (Information and commu-
nication technology)

• Clearly apply PMBOK scope management concepts to ICT projects through glob-
ally proven scope management

408 C. Dekkers and P. Forselius

• Embrace the role and responsibilities for professional scope management for ICT
projects

3 Presenters’ Background

Carol Dekkers, PMP, CMC, P.Eng. A recent past president of the International
Function Point Users Group (IFPUG) Board of Directors. Previously held various
volunteer positions including 13 years of service to the IFPUG board and membership
(5 years on the Board). Technical advisor to the International Software Benchmarking
Standards

Group (ISBSG). Past Chair of PMI Metrics SIG, past member of PMI Leadership
Institute LI’04 class, Member of the American Society for Quality (ASQ) Software
Division council, and track chair for the annual Congress – Software Division track
(Since 2002) Project editor to ISO on Functional Size Measurement (ISO/IEC JTC1
SC7 WG 12), and a current U.S. delegate to ISO SC7 (Software Engineering) since
1994.

Professional designations include: Certified Management Consultant (CMC), Cer-
tified Function Point Specialist (CFPS), Information Systems Professional (ISP), and
Professional Engineer (P.Eng.-Canada)

Recognized expert in the software metrics field and author of many articles on
function points, software metrics, and the human aspects of introducing change. Visit-
ing scientist for measurement with the Software Engineering Institute (SEI) at Carne-
gie Mellon University. Management consultant, trainer and practitioner with interna-
tional experience in software metrics, function points and measurement program start-
up. Frequent presenter and trainer at metrics and quality conferences including
IFPUG, Quality Assurance Institute (QAI) , American Society for Quality Control
(ASQC), Applications of Software Measurement (ASM), Canadian Information Proc-
essing Society (CIPS), Applied Computer Research (Client/Server conference).

Carol’s system development background includes ten years of progressive experi-
ence in all phases of the systems development life cycle across a wide range of meth-
odologies and development technologies. Her project management experience in-
volved financial, judicial, MIS, engineering and scientific systems, in both private and
public sectors. She is co-author of two books: Practical software measurement: Ad-
vice from the experts (IFPUG, Addison-Wesley, 2004), and Practical Project Estima-
tion, 2nd Edition (ISBSG, 2005).

Pekka Forselius, MBA, MSc. Pekka Forselius is a Business partner, CEO and pro-
ject management consultant at Software Technology Transfer Finland (STTF) Oy.
Developed the Experience Pro data-collection concept and is the product manager of
Experience Pro software. Researcher and developer of project management methods
and concepts, including FiSMA Scope Management and KISS Functional Sizing. As
research associate at INSEAD since 1996 and at University of Brunel since 2003, his
research specialty is organisational learning, in particular corporate memory and
benchmarking.

MSc in informatics and an executive MBA from the University of Jyväskylä. Since
2000, is the primary representative of the national body of Finland to ISO/IEC
JTC1/SC7 standardisation working group WG12, Functional Size Measurement. Vice

 Increase ICT Project Success with Concrete Scope Management 409

President of the international benchmarking organisation (ISBSG), a member of the
executive committee of the COSMIC consortium and past board member of the
Finland Information Processing Association (FIPA).

Co-author of two books: Tivi-projektien johtaminen (ICT project management,
TTL, 2005) and Practical Project Estimation, 2nd Edition (ISBSG, 2005) and also co-
author of chapter 5 of Applied Statistics for Software Managers (Prentice Hall, 2002).

J. Münch and P. Abrahamsson (Eds.): PROFES 2007, LNCS 4589, pp. 410–411, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Agile Software Development:
Theoretical and Practical Outlook

Pekka Abrahamsson1 and Jari Still2

1 VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT

Pekka.Abrahamsson@vtt.fi
2 F-Secure Corporation

Tammasaarenkatu 7
PL 24, 00181 Helsinki, Finland
jari.still@f-secure.com

Abstract. Agile Software development has become to be one of the most promi-
nent approaches in the field of software engineering. The amount of empirical
evidence is quickly building up and it is known that already one out of seven
software companies use agile processes. Many of the major corporations have
announced to pursue for agile solutions with the aim of improving dramatically
the lead-times, costs and quality aspects. Little is still known about the theoreti-
cal underpinnings of agile approaches. This tutorial serves for two purposes.
First it demonstrates how agile solutions are theoretically founded and then in
very pragmatic terms shows a longitudinal four-year case study how F-Secure,
an antivirus company, from Finland transformed from iterative development to
agile development framework. The case study also demonstrates which solutions
worked and which ones proved to offer serious obstacles in the way. Finally, the
business impact of the agile development is outlined based on empirical data.
The tutorial will consist of interactive lectures, exercises and group work. The tu-
torial is targeted to software engineers and managers as well as academics.

1 Outline

1. Agile software development: Background, principles and approaches (Scrum, XP,
Mobile-D™).

2. A theory for agile software development.
3. The four deployment strategies.
4. Case F-Secure: Four years of agile development
5. Business impact figures.

2 Learning Objectives

• Understand the rationale, background and theoretical basis for agile development
• Learn different ways of deploying agile methods and principles
• Gain concrete understanding of the possible business impact envisioned

 Agile Software Development: Theoretical and Practical Outlook 411

3 Presenters’ Background

Pekka Abrahamsson is research professor at VTT Technical Research Centre of
Finland. Currently, he is on leave from the University of Tampere where he is a full
professor in the field of Information Systems and Software Engineering. His current
responsibilities include managing a FLEXI-ITEA2, which involves 38 organizations
from 7 European countries. The project aims at developing agile innovations for
global software development. His research interests are centred on mobile application
development, business agility, agile software production and embedded systems. He
leads the team who has designed an agile approach for mobile application develop-
ment - the Mobile-D™. He has coached several agile software development projects
in industry and authored 50+ scientific publications focusing on software process and
quality improvement, agile software development and mobile software. His profes-
sional experience involves 5 years in industry as a software engineer and a quality
manager.

Jari Still – Jari Still F-Secure Oy's Oulu Office site manager and the head of mobile
R&D. Still has been working at F-Secure since 2000. Between the years from 1991 to
2000 Still was working as CEO of Modera Point Oy. Before 1991 Still had worked with
e.g. Nokia Mobile Phones and Siemens. Still is one of the founders of the Oulu Soft-
ware Forum, and currently acting as a Chairman of the Forum (www.swforum.net).
Other posts have been e.g. Chairman of revontuliryhmä and member of the Board in
several companies. Related to Agile process and product development Still is acting as a
leader in AGILE-ITEA -project at F-Secure and he is also a member of the management
group of AGILE-VTT -project.

Author Index

Abrahamsson, Pekka 410
Abran, Alain 273
Al-Emran, Ahmed 315
Amengual, Esperança 108
Arnicane, Vineta 175

Babar, Muhammad Ali 118, 330
Bae, Jeong Seop 358
Belkébir, Youssef 35
Bičevska, Zane 262
Bičevskis, Jānis 262
Bjørnson, Finn Olav 132
Bourque, Pierre 35

Car, Željka 51
Catal, Cagatay 300
Chang, Soo Ho 374
Chen, Weibing 5
Cheun, Du Wan 358
Choi, Si Won 358
Ciolkowski, Marcus 402
Conradi, Reidar 5
Cuadrado-Gallego, Juan Jose 273

Dekkers, Carol 4, 407
Dı́az-Ley, Maŕıa 247
Dingsøyr, Torgeir 132
Diri, Banu 300
Doucet, Mikel 35

Figueiredo, Sávio 81
Flohr, Thomas 147
Forselius, Pekka 407
Fukuoka, Tomoyuki 284

Galinac, Tihana 51
Garćıa, Félix 247

Harada, Yoko 284
Henderson-Sellers, Brian 222
Her, Jin Sun 358

Jäntti, Marko 389
Jedlitschka, Andreas 402
Ji, Junzhong 5

Kääriäinen, Jukka 188
Kainulainen, Tommi 389
Kim, Soo Dong 358, 374
Krikhaar, René 65

Laporte, Claude Y. 35
Li, Jingyue 5
Liu, Chunnian 5
Lübke, Daniel 147

Ma, Jianqiang 5
Machado, Fernando 273
Madeyski, Lech 207
Mas, Antònia 108
Mermans, Martin 65
Miettinen, Aki 389
Mishra, Alok 237
Mishra, Deepti 237
Moe, Nils Brede 20, 132
Montoni, Mariano 81

Namiki, Rieko 284
Niazi, Mahmood 96, 118
Nonaka, Makoto 330

Ocampo, Alexis 160

Pfahl, Dietmar 315
Philipp, Michael 201
Piattini, Mario 247
Pylkkänen, Niko 389

Qumer, Asif 222

Rocha, Ana Regina 81
Rodŕıguez, Daniel 273
Rombach, H. Dieter 1

Santos, Gleison 81
Schneider, Kurt 147
Schweigert, Tomas 201
Šmite, Darja 20
Sorkowitz, Alfred 405

414 Author Index

Soto, Martin 160
St̊alhane, Tor 132
Stapel, Kai 147
Staples, Mark 330
Still, Jari 3, 410

Urtāns, Guntis 2

Välimäki, Antti 188

Washizaki, Hironori 284
Watanabe, Hiroyuki 284
Wilson, David 96

Zeiris, Edzus 345
Zhu, Liming 330
Ziema, Maris 345
Zowghi, Didar 96

	Title Page
	Preface
	Conference Organization
	Table of Contents
	Software Development and Globalization
	Software Development Globalization from the Baltic Perspective
	Experiences in Applying Agile Software Development in F-Secure
	People Side of IT Globalization
	An Industrial Survey of Software Outsourcing in China
	Introduction
	Related Work and Research Questions
	Differences in Natural Languages
	Effective Communication
	Overtime Work

	Research Design
	The Preliminary Questionnaire
	The Pre-study to Verify and Refine the Preliminary Questionnaire
	The Main Study to Collect Data

	Results and Discussions of Research Questions
	Overview of Collected Questionnaires
	Results and Discussions

	Final Discussion
	General Discussion
	Threats to Validity

	Conclusion and Future Work
	References

	Understanding Lacking Trust in Global Software Teams: A Multi-case Study
	Introduction
	Global Software Development – Different, Complex, Urgent
	GSD Teams and Trust

	Key Factors Causing Lack of Trust
	The Effect of Lacking Trust
	Research Context and Method
	Data Sources
	Data Analysis

	Results
	Project A
	Project B
	Project C
	Project D
	Key Factors Causing Lack of Trust and the Effects of Lacking Trust in the Projects

	Discussion
	Key Factors Causing Lacking Trust
	Effects of Lacking Trust
	Recommendations

	Conclusion and Future Work
	References

	Utilization of a Set of Software Engineering Roles for a Multinational Organization
	Introduction
	IBM- Rational Unified Process
	IEEE/EIA Standard 12207
	The SWEBOK Guide

	Comparing the Role Definitions and the Reference Documents: An Example
	Utilization of the Set of Roles During Project Planning and Launch Activities
	Overview of the BES SWE
	Typical Agenda of a Project Launch Session
	Project Tailoring
	Project Organization
	Training Plan

	Conclusion
	References

	Software Verification Process Improvement Proposal Using Six Sigma
	Introduction
	Research Framework
	Implementation of the Six Sigma Project
	Problem Definition
	Data Collection and Analysis

	Software Verification Process Improvement Proposal
	Improvement Proposal
	Improvement Benefits in the Target Project
	Guidelines for Implementing Improvements in General

	Conclusion
	References

	Software Development Improvement with SFIM
	Introduction
	Change Management Models
	CMMI and 7S Model
	SFIM: Seven Forces Improvement Method
	SFIM Case Study
	Project Planning, Monitoring and Control
	Software Quality
	Other Areas of Attention
	SFIM Conclusions

	Related Work
	Conclusions
	References

	SPI-KM - Lessons Learned from Applying a Software Process Improvement Strategy Supported by Knowledge Management
	Introduction
	Software Process Improvement
	Supporting SPI Through Knowledge Management
	SPI-KM: A Software Process Improvement Approach Supported by Knowledge Management
	SPI-KM Phases
	Taba Workstation: Supporting the SPI-KM Strategy

	Results of an Empirical Study of SPI Experiences that Adopted the SPI-KM Strategy
	Methodology
	Study Findings: The Lessons Learned
	Discussion on the Lessons Learned

	Conclusions and Future Work
	References

	Organisational Readiness and Software Process Improvement
	Introduction
	Background
	Study Design
	Findings
	SPI Implementation Readiness of Organisation A
	SPI Implementation Readiness of Organisation B
	SPI Implementation Readiness of Organisation C

	Discussion
	Case Study Validity
	Conclusion
	References

	Software Process Improvement Through Teamwork Management
	Introduction
	Teams in Software Projects
	Teamwork in Maturity Models
	Teamwork Key Factors
	Team Management
	Coordination
	Effective Communication
	Team Composition
	Motivation

	ISO/IEC 15504. Teamwork Aspects
	Team Management
	Coordination
	Effective Communication
	Team Composition
	Motivation

	Conclusions and Further Work
	References

	De-motivators of Software Process Improvement: An Analysis of Vietnamese Practitioners’ Views
	Introduction
	Background
	Perceived Value
	Study Design
	Findings
	Demographics
	SPI De-motivators Identified by All Practitioners
	SPI De-motivators Identified by Different Groups of Practitioners
	SPI De-motivators Identified by Practitioners of Large and Small-Medium Sized Organisations

	Validity
	Summary and Conclusion
	References

	Defining Software Processes Through Process Workshops: A Multicase Study
	Introduction
	Related Work
	The Process Workshop Method

	Research Method
	Empirical Results from the Two Software Companies
	Alpha Company
	Beta Company

	Discussion
	Conclusion and Further Work
	References

	Improving an Industrial Reference Process by Information Flow Analysis: A Case Study
	Introduction
	Information Flow Analysis Concepts (FLOW Project)
	Goals of Information Flow Modeling
	Postulates of Information Flow Analysis
	FLOW Notation

	Case Study
	Document Flow
	Information Flow

	Related Work
	Conclusions and Outlook
	References

	Connecting the Rationale for Changes to the Evolution of a Process
	Introduction
	Process Rationale
	Pattern-Matching-Based Change Identification
	A Normalized Representation for Process Models and Their Comparisons
	Example 1: Additions and Deletions
	Example 2: Changes in Attribute Values

	Connecting Rationale to Process Changes
	Implementation and Validation
	Related Work
	Conclusions and Outlook
	References

	Use of Non-IT Testers in Software Development
	Introduction
	Non-IT Testers
	The Intuitive Testing Style of Non-IT Testers
	Training of Non-IT People for Software Testing
	Specifics in Managing the Work of Non-IT Testers
	Case Studies
	Case I
	Case II
	Case III
	Lessons Learned from Case Studies

	Conclusions
	References

	Requirements Management Practices as Patterns for Distributed Product Management
	Introduction
	Research Approach
	Industrial Context
	Research Method
	Patterns

	Analysis of Results
	Results of Enquiry and Interviews
	Suggested Solutions - Patterns

	Discussion
	Conclusions
	References

	SPI Consulting in a Level 1 Company: An Experience Report
	Introduction
	SPI from a Management Perspective
	SPI from an Improvement Viewpoint

	An Alternative Approach
	The Approach in Detail
	Potential Risks
	Benefits of the Approach

	Summary
	References

	On the Effects of Pair Programming on Thoroughness and Fault-Finding Effectiveness of Unit Tests
	Introduction
	Measures
	Code Coverage
	Mutation Score

	Related Work
	Experiment Description
	Experiment Definition
	Context Selection
	Variables Selection
	Hypotheses Formulation
	Selection of Subjects
	Design of the Experiment
	Instrumentation and Measurement
	Validity Evaluation
	Experiment Operation

	Analysis of the Experiment
	Descriptive Statistics
	Hypotheses Testing

	Summary and Conclusions
	References

	An Agile Toolkit to Support Agent-Oriented and Service-Oriented Computing Mechanisms
	Introduction
	Abstraction: Agent and Service
	Multi-abstraction or M-Abstraction (M-Oriented)
	Characteristics of Agent Abstraction
	Characteristics of Service Abstraction
	Agent-Oriented Analysis and Design
	Service-Oriented Analysis and Design
	Agent Service-Oriented Abstraction

	Agile
	Agile Practice or Agile Process Fragment Model
	Agile Business Value

	Agile Toolkit
	Validation and Case Study: Enhanced Pair Programming, Pair Review and On-Site Developer for a Service-Oriented Application
	The Case Study

	Discussion
	References

	Achieving Success in Supply Chain Management Software by Agility
	Introduction
	Project Background
	Requirement Analysis
	Project Management
	Architectural Design
	Project Development
	Conclusion
	References

	Software Measurement Programs in SMEs – Defining Software Indicators: A Methodological Framework
	Introduction
	Related Work
	MIS-PyME Specification
	MIS-PyME Framework Overview
	MIS-PyME Specifications
	MIS-PyME Contribution

	Applying MIS-PyME Framework in the Context of STL
	Introduction
	Development and Implementation of the Measurement Program
	Lessons Learnt

	Conclusions and Further Research
	References

	Smart Technologies in Software Life Cycle
	Introduction
	Software Life Cycle Models and STSW
	The Principles of Smart Technology
	Automatic Updating of Versions
	Analysis of External Environment
	Self-testing
	Incorporation of Business Model into Software
	Control of Data Quality
	Performance Monitoring
	Security Monitoring
	Availability Monitoring

	Conclusions
	References

	Convertibility Between IFPUG and COSMIC Functional Size Measurements
	Introduction
	Analysis of Correspondence Between Definitions
	Conversion Rule Proposed
	Experimental Validation of the Conversion Rules
	Conclusions and Future Work
	References

	A Framework for Measuring and Evaluating Program Source Code Quality
	Introduction
	Problems with Conventional Quality Measurements
	Proposed Framework for Quality Evaluation
	Overall Approach and Solutions to Problems
	Details of Structural Elements
	Applicable Scope of the Framework

	Experimental Evaluation
	Validity of the Framework in Quality Evaluation
	Quality Improvement Reflection Capability of the Framework

	Conclusion and Future Work
	References

	Software Fault Prediction with Object-Oriented Metrics Based Artificial Immune Recognition System
	Introduction
	Metrics and Dataset
	Performance Measurement Criteria
	Immune Systems and Artificial Immune Recognition Systems
	Natural Immune Systems
	Artificial Immune Systems
	Artificial Immune Recognition Systems (AIRS) Algorithm

	Experimental Results
	Conclusions and Future Work
	References

	Operational Planning, Re-planning and Risk Analysis for Software Releases
	Introduction
	Related Work
	The REPSIM-2 Model
	Model Heuristic
	Problem Parameters and Their Representation in the Model
	Model Structure

	Example Application Scenarios
	Scenario 1: Re-planning Due to Late Feature Inclusion
	Scenario 2: Risk Analysis

	Conclusions and Future Work
	References

	Project Cost Overrun Simulation in Software Product Line Development
	Introduction
	Project Cost Overrun Simulation Model
	Assumed SPL Development and Unplanned Work Types
	Adaptive Rework Effort Model
	Requirements Change Effort Model
	Defect Correction Effort Model
	Model Assumptions

	Simulation Results
	Project Data and Parameters
	Result 1: In-Depth View of Simulation Results
	Result 2: Variability of Project Cost Overrun

	ModelEvaluation
	Discussion and Related Work
	Limitation of the Model
	Related Work

	Conclusions
	References

	E-Service Architecture Selection Based on Multi-criteria Optimization
	Architecture of E-Services System
	Architecture Selection Problem for E-Service
	E-Service Architecture Description with Graph
	Graph Measurement
	Multi-criteria Graph Optimization
	Multi-criteria Optimization Solution
	Conclusion
	References

	A Component-Based Process for Developing Automotive ECU Software
	Introduction
	Related Works
	Variability of ECU
	Component-Based Process for ECU
	Component Engineering (CE)
	ECU Engineering (EE)

	Case Study
	Assessment
	Assessment by Evaluating the Process
	Assessment by Evaluating ECU Specific Criteria

	Concluding Remarks
	References

	A Systematic Approach to Service-Oriented Analysis and Design
	Introduction
	Related Works
	Comparison of OOAD, CBD, and SOAD
	Layers of Service-Oriented Architectures
	Process and Instructions
	Phase 1. Identifying Business Processes
	Phase 2. Defining Unit Services
	Phase 3. Discovering Services
	Phase 4. Developing Services
	Phase 5. Composing Services

	Case Study of Hotel Reservation
	Conclusion
	References

	Improving the Problem Management Process from Knowledge Management Perspective
	Introduction
	Our Contribution

	Research Methods
	Case Organization
	Data Collection Methods
	Data Analysis Method

	Using Knowledge Management to Support the Problem Management Process
	Identify Knowledge
	Create Knowledge
	Store Knowledge
	Share Knowledge
	Use Knowledge

	Analysis
	The Summary of the Evaluation

	Discussion and Conclusions
	References

	Experience on Applying Quantitative and Qualitative Empiricism to Software Engineering
	Motivation
	Topics of Interest
	Workshop Chairs
	Program Comittee
	References

	Using Metrics to Improve Software Testing
	What You Will Learn
	Audience
	Presenters’ Background

	Increase ICT Project Success with Concrete Scope Management
	Outline
	Learning Objectives
	Presenters’ Background

	Agile Software Development: Theoretical and Practical Outlook
	Outline
	Learning Objectives
	Presenters’ Background

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (ISO Coated v2 300% \050ECI\051)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

