
On Building Hash Functions from Multivariate

Quadratic Equations�

Olivier Billet, Matt J.B. Robshaw, and Thomas Peyrin

France Telecom R&D, Issy-les-Moulineaux, France
{forename.name}@orange-ftgroup.com

Abstract. Recent advances in hash functions cryptanalysis provide a
strong impetus to explore new designs. This paper describes a new hash
function mq-hash that depends for its security on the difficulty of solving
randomly drawn systems of multivariate equations over a finite field.
While provably achieving pre-image resistance for a hash function based
on multivariate equations is relatively easy, näıve constructions using
multivariate equations are susceptible to collision attacks. In this paper,
therefore, we describe a mechanism—also using multivariate quadratic
polynomials—yielding the collision-free property we seek while retaining
provable pre-image resistance. Therefore, mq-hash offers an intriguing
companion proposal to the provably collision-free hash function vsh.

1 Introduction

Cryptographic hash functions are essential components within the information
security infrastructure. A cryptographic hash function hash(·) is a function that
takes an arbitrary length input and generates a fixed length output of n bits.
Classically, there are three main properties of such functions which can be loosely
described in the following way [19]:

1. Pre-image resistance. Given an output y it is computationally hard to find
any input x such that hash(x) = y;

2. Second pre-image resistance. Given an input and output pair (x, y) so that
hash(x) = y, it is computationally hard to find an input x′ distinct from x
such that hash(x′) = y;

3. Collision resistance. It is computationally hard to find any two inputs x
and x′ such that hash(x) = hash(x′).

While there have been a variety of different hash function proposals over the
years, most currently deployed hash functions are closely built around design
principles which go back to MD4 [28]. Probably the most popular hash func-
tions in use today are MD5 [29] and SHA-1 [22]. However recent cryptanalytic
advances [32,33] have shown weaknesses that allow collisions to be computed

� This work has been supported in part by the French government through the
SAPHIR and MAC projects.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 82–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Building Hash Functions from Multivariate Quadratic Equations 83

for these hash functions much faster than by brute force. A more recent family
of hash functions [22] has been standardised by NIST in the U.S., but these
are closely related to SHA-1 and confidence in their construction is somewhat
undermined by recent cryptanalytic work on MD5 and SHA-1. An alternative
approach has been to build hash functions around a secure block cipher, see for
example [19,27] and more recently [26], and the widespread deployment of the
AES [21] may well provide new opportunities in this direction.

In this paper we consider a third approach and we base the security of a hash
function on a hard mathematical problem. Until recently this approach was very
limited, but there has been considerable success with vsh [8] which relates the
difficulty of finding collisions to a hard problem built around the mechanics of
current factoring techniques. A variant based on the discrete logarithm prob-
lem vsh-dl has also been proposed [17] and other proposals include the fsb
hash function [2] that is related to fast syndrome-based decoding problems and
lash [6] which is based on problems in lattice theory.

The new hash function in this paper, mq-hash, is built around the problem of
solving a system of multivariate quadratic equations. This is the same problem
that underpins the security of the stream cipher quad [4] and we will find it
useful to appeal to some of the results that feature in that design.

Designing a pre-image resistant compression function from a set of multivari-
ate quadratic polynomials without a care for collision-resistance is quite easy,
because it is enough to rely on the hard problem MQ. However, such näıve
constructions give rise to collision-full hash functions. So the difficult part in
building a hash function based on sets of multivariate quadratic polynomials is
in providing collision-resistance in a plausible way, but without sacrificing any
pre-image resistance or its proof. This is the purpose of the current paper.

Our paper is structured as follows. In the next section we provide some back-
ground on hash function design and the use of systems of quadratic polyno-
mials. We illustrate the difficulty of using quadratic polynomials directly by
demonstrating an intrinsic weakness. In Section 3 we describe our construction
mq-hash while we prove its structural security in Section 4 and its instanti-
ated security with explicit parameter values in Section 5. The performance of
our proposal and some variants are considered in Section 5.3 and we close by
highlighting open problems and drawing our conclusions in Section 6.

2 Hash Functions and Quadratic Equations

In this paper we consider the problem of building a hash function from one par-
ticular hard problem, namely that of solving a system of multivariate equations
over a finite field F. The natural one-wayness of this primitive, together with its
computational efficiency, provides an interesting starting point for a new hash
function proposal.

While evaluating a random set of m multivariate polynomials in n variables
is of polynomial complexity with respect to n, finding a common root of this set

84 O. Billet, M.J.B. Robshaw, and T. Peyrin

of polynomials is well known to be an NP-hard problem. This remains true even
when restricted to quadratic polynomials or to the case of two equations [12].

The problem of solving multivariate quadratic equations over a finite field F
is known as the MQ-problem. It is a hard problem, but also one that permits
efficient schemes. Consequently it has been used in the design of several crypto-
graphic applications. See [34] for an overview along with some additional infor-
mation that can be found in [4].

A tuple of multivariate quadratic polynomials consists of a finite ordered set
of polynomials of the form:

q(x1, . . . , xn) =
∑

1≤i≤j≤n

ai,j xixj +
∑

1≤k≤n

bk xk + c ,

where the constants are in a finite field F. The MQ problem can then be stated
as follows:

Problem 1 (MQ). Given a tuple q = (q1, . . . , qm) of m multivariate quadratic
polynomials in n unknowns defined over F, and the image y = (q1(z), . . . , qm(z))
of an element z randomly chosen from Fn through q, find an element x of Fn

such that y = (q1(x), . . . , qm(x)).

Solving a set of randomly chosen quadratic equations in several variables over a
finite field is a well-known hard problem [13]. That it is conjectured to be very
difficult not only asymptotically and in worst case, but already for well chosen
practical values of m and n makes it very attractive as a cryptographic building
block. Apart from degenerate parameters like n � m or n � m (see [31]) or low
rank polynomials, the complexity of the best known algorithms for solving the
problem are exponential in min(m, n), (see [3,31]).

This leads to the following näıve construction for a compression function based
on the evaluation of multivariate quadratic polynomials:

Attempt 1 (näıve and flawed). Let F be a finite field of size q and, assume
that we wish to compress a fixed-length input of ρ = r log2 q bits to give an out-
put of ν = n log2 q bits. A compression function g can be obtained by randomly
choosing a tuple (g1, . . . , gn) of n quadratic polynomials in r variables defined
over F:

Fr −→ Fn

x = (x1, . . . , xρ) �−→ g(x) =
(
g1(x), . . . , gν(x)

)
.

While the one-way property of Attempt 1 is straightforward to establish, it is
very easy to find collision and it would not be, in itself, an acceptable way to build
a cryptographic hash function. In the next section, therefore, we investigate more
closely the problem of collision resistance in the setting of multivariate quadratic
polynomials.

2.1 About Collision Resistance

Unfortunately there is no collision-resistance when using a system of quadratic
equations directly and it is hard to achieve this property in a simple way for

On Building Hash Functions from Multivariate Quadratic Equations 85

the following reason. For polynomial equations of degree d, any differential of
order d− 1 is an affine application. Thus, in the special case of sets of quadratic
polynomials, this amounts to saying that the set of first order differentials of any
quadratic polynomial in the original set is a set of affine mappings. This simple
fact has previously been used for instance by Fouque, Granboulan, and Stern to
attack an asymmetric multivariate scheme [11].

Theorem 1. Let Q be a tuple of e quadratic equations f1, . . . , fe in u variables
over a finite field F. For every value δ = (δ1, . . . , δu), it is possible to give,
with time complexity O(eu2), a parametrized description of the set of inputs
x = (x1, . . . , xu) and y = (y1, . . . , yu) colliding through Q and such that y−x = δ,
if any.

Proof. Given δ, one computes a linear system Lδ(z) = 0 in the indeterminate z
where Lδ is the affine mapping defined by Lδ : z �→ Q(z + δ) − Q(z). Thus, any
colliding pair (x, y) = (x, x+δ) for Q with prescribed difference δ translates into
a solution x of a linear system, and any standard algorithm for solving linear
system recovers the set of solutions of the collision equation Q(z) = Q(z+δ). ��
Theorem 1 thus basically implies that collisions can be easily constructed for
any näıve design like the one described in Attempt 1. Further, a hash function
design facilitating the analysis of differences might be subject to attack. It is
therefore reasonable to ask whether there is any way to plausibly achieve collision
resistance when using sets of multivariate quadratic polynomials, and yet to
provably retain the original one wayness property? The following sections answer
this question positively.

3 Construction of mq-hash

We now present one particular approach to using multivariate quadratic poly-
nomials in the design of a hash function. While we do so with general parameter
sets, we propose some concrete values in Section 5.3.

3.1 Preliminaries

While recent analysis [14,15] has provided new insight into the Merkle-Damg̊ard
paradigm [9,20], our goal has been to design a secure compression function for use
in this familiar way. The Merkle-Damg̊ard construction requires the specification
of an (μ+ν)-bit to ν-bit compression function compress. The compression func-
tion will be used repeatedly to hash the input message M in a component-wise
manner. We denote the block of a message being hashed at the i-th iteration
by Bi, where each block is of constant length μ bits. Clearly this requires padding
and the standard Merkle-Damg̊ard or MD-hardening is assumed. Thus we ap-
pend a single bit ‘1’ followed by as many ‘0’ as required to leave the message

86 O. Billet, M.J.B. Robshaw, and T. Peyrin

64 bits short of a multiple of μ. The remaining 64 bits are then used for a
representation of the length of the input message M in bits1. We will assume
that the message M requires t blocks after padding and so M = B1|| · · · ||Bt.

3.2 The Compression Function of mq-hash

At iteration i, for 1 ≤ i ≤ t, the compression function is used to update the
value vi−1 of an ν-bit chaining variable to vi. The initial value of the chaining
variable v0 is specified and fixed. Thus, at iteration i of the compression function
we have that vi = compress(vi−1, Bi). At the end of the iteration process, the
last chaining variable is used as the output of the hash function.

Figure 1 shows the compression function mq-hash. It uses two non-invertible
components with the first component f providing a stretching function while the
second, g, provides a shrinking function. These are embodied by randomly chosen
tuples of multivariate quadratic polynomials. Thus, in the process of proving the
necessary security properties, we have a construction that shares features with
the work of Aiello, Haber, and Venkatesan [1].

g

f

H
=

g
◦f

vi

Mivi−1

ηi

Fig. 1. Schematic description of the compression function of mq-hash, where vi denotes
the chaining variable and Bi the message block being hashed at iteration i

The compression function of mq-hash takes as input a message block Bi of
μ bits and a chaining variable vi−1 of ν bits. Let F be a finite field of size q so
that μ and ν are multiples of log2 q, say μ = m log2 q and ν = n log2 q. We also
fix another integer ρ = r log2 q so that r ≥ m + n. Then the stretching function
consists of a randomly chosen tuple (f1, . . . , fr) of r quadratic polynomials in
n + m variables defined over F. That is, f is given by:

1 Thus the maximum length of a message that can be hashed using mq-hash is 264 as
for many other hash functions [29,22].

On Building Hash Functions from Multivariate Quadratic Equations 87

Fn+m −→ Fr

x = (c1, . . . , cn, b1, . . . , bm) �−→ f(x) =
(
f1(x), . . . , fr(x)

)
,

where (b1, . . . , bm) stands for the μ-bit message block split into m elements of F,
and (c1, . . . , cn) stands for the ν-bit chaining variable split into n elements of F.
The shrinking stage is, in turn, defined by a randomly chosen tuple (g1, . . . , gn)
of n quadratic polynomials in r variables. That is, g is given by:

Fr −→ Fn

η = (η1, . . . , ηr) �−→ g(η) =
(
g1(η), . . . , gn(η)

)
.

The final compression function is then defined to be the composition of f and g
and vi = g ◦ f(vi−1, Bi) . For the construction to be secure, we will show that:

– the two functions f and g must be hard to invert;
– the stretch factor r

m+n in the first step must lie within a certain range.

The value of the stretch factor will be discussed in Section 5 and it will depend
on the number of bits hashed at each compression function iteration as well as
the length of the chaining variable.

In order to ease the exposition, we will assume for the rest of the paper that
the ground field F is the binary field GF(2) and it follows that m = μ, n = ν,
and r = ρ.

4 The Security of mq-hash

The work of Merkle and Damg̊ard allows us to concentrate on the properties of
the compression function g◦f . We first give elements of provable security for the
first pre-image resistance of mq-hash. Then we discuss the collision resistance
of mq-hash.

4.1 Preliminaries to the Study of Pre-image Resistance

In what follows, Uk denotes the uniform distribution over {0, 1}k. We say that
two distributions X and Y over the binary strings of size k are distinguishable
in time T with advantage ε if there exists a probabilistic algorithm D running
in time less than T such that:

∣∣∣∣ Pr
x∈X

[
D(x) = 1

] − Pr
y∈Y

[
D(y) = 1

]∣∣∣∣ ≥ ε .

We describe a pseudo-random number generator as a deterministic polynomial-
time algorithm G from {0, 1}l to {0, 1}k with k > l such that G(Ul) cannot be
distinguished from Uk in reasonable time (for instance with a time complexity
lower than 2s for some security level s) and with a non-negligible advantage.

88 O. Billet, M.J.B. Robshaw, and T. Peyrin

We say that a function g is non-invertible in time T with probability ε if for
any probabilistic algorithm B running in time less than T :

∣∣∣∣ Pr
z∈Ur

[
g
(
B(

g(z)
))

= g(z)
]∣∣∣∣ < ε .

An important aspect to our proofs will be the fact that a tuple of multivariate
quadratic equations with a small stretching factor is in effect acting as a pseudo-
random number generator. This ensures that the outputs from the stretching
function f does not have noticeable specific properties. Since this is a property
that underpins the design of quad, it is not surprising to find some of the
fundamental components for our work covered in [4].

Theorem 2. Let A be an algorithm that, on input a randomly chosen tuple f
of r multivariate quadratic equations in n + m binary unknowns distinguishes
the distribution {f1(x)|| · · · ||fr(x)}x∈Un+m over the binary strings of length r
from the uniform distribution Ur in time T and with advantage ε. Then A can
be converted into an algorithm B that inverts a tuple g of r randomly chosen
multivariate quadratic equations in n + m binary unknowns with probability ε/2
(over both g and the inputs) in time less than:

T̃ (T, n, m, ε) =
128(n + m)2

ε2

(
T + log

(
128(n + m)

ε2

)
+ r(n + m) + 2

)
.

Proof. The proof is a direct application of Theorems 2 and 3 from [4]. ��

The above theorem gives rise to two comments. First, the choice of the base
field is GF(2). However no obstacles to generalisations over other fields are an-
ticipated, though the reduction would obviously lead to another value of T̃ .
Second, the reduction achieved by Theorem 2 is not very tight. However this is
enough for us to derive secure parameters in Section 5.

4.2 Pre-image Resistance of mq-hash

The next theorem reduces the pre-image resistance of mq-hash’s compression
function to the problem of inverting random multivariate quadratic systems. Let
Tf (resp. g) be the time required to evaluate f (resp. g) on its input.

Theorem 3. Let A be an algorithm inverting g ◦ f in time T with probability ε,
where f is a randomly chosen tuple of r multivariate quadratic polynomials in
n + m binary unknowns and g is a randomly chosen tuple of m multivariate
quadratic polynomials in n binary unknowns. Then A can be either converted
into an algorithm inverting g in time T + Tf + Tg with probability ε or into
an algorithm that can invert randomly chosen tuples of r multivariate quadratic
polynomials in n + m binary unknowns in time T̃ (T + Tf + 3Tg, n, m, ε) with
probability ε/2.

On Building Hash Functions from Multivariate Quadratic Equations 89

Proof. Let us define Ã(x) = f
(A(g(x))

)
. By the assumption on algorithm A

∣∣∣∣ Pr
x∈Un+m

[
g ◦ f

(A(
g ◦ f(x)

))
= g ◦ f(x)

]∣∣∣∣ ≥ ε .

Thus g can be inverted by Ã in time T +Tf +Tg with probability ε when queried
with the distribution f(Un+m). So either g can be inverted in time T + Tf + Tg

with probability ε or f(Un+m) can be distinguished from Ur in time T +Tf +3Tg.
The theorem then follows from a direct application of Theorem 2. ��
Thus, assuming that g and f are hard to invert and that f is a pseudo-random
number generator, we deduce that their composition g ◦ f , that is mq-hash’s
compression function, is pre-image resistant.

4.3 Collision and Second Pre-image Resistance of mq-hash

There are two sets of multivariate quadratic polynomials corresponding to func-
tions f and g and it is their composition that gives the compression function
in mq-hash. Intuitively, the function g provides the actual compression. How-
ever, Theorem 1 demonstrated the potential ease of finding collisions when us-
ing g on its own. So in a first step we use a non-invertible function f . This
ensures that lifting collisions in g to yield pre-images for f is hard. However,
finding collisions for f must not be easy, or even better, f must be an injection.
This will be the rational behind what we term the stretch requirement for f .

The construction used in mq-hash is a close analogue to the construction
of Aiello, Haber, and Venkatesan [1]. Their claims for collision-resistance apply
equally to our own construction. Consider the compression function g ◦ f . We
know that g has collisions since it compresses but there can be no collisions
in f if f is an injection. For any collisions across g to be useful for the entire
compression function, they must (a) lie in the range of f and (b) be invertible
through f . The choice of stretch factor ensures that (a) is unlikely while the
choice of hard problem prevents (b).

Of course, this is not a proof, and a proof for the collision resistance in the
standard model remains an open problem. Nevertheless, it is possible to prove
this conjecture in the random oracle model, which, while less appealing than
the standard model, provides some evidence that the overall construction is
not completely flawed. It is interesting to note that this is one difference be-
tween mq-hash and vsh. While both proposals are able to provide a classical
hash function property in a provable manner, the remaining classical properties
are still conjectured to hold for mq-hash.

5 Establishing Parameters for mq-hash

While several elements of provable security for mq-hash were given in Section 4,
the limitations of such proofs are exposed when we instantiate the general con-
structions in practice. In this section, therefore, we study the security and per-
formance of mq-hash and illustrate the different trade-offs possible.

90 O. Billet, M.J.B. Robshaw, and T. Peyrin

Our proofs in Section 4 required that f be an injection; this was the basis
for the stretching role of f . But our construction also requires that solving a
random system of multivariate quadratic equations is a hard problem. Thus, we
observe that there are two conflicting practical constraints:

– A sufficiently large stretch is needed to ensure (to a degree of certainty that
is consistent with the intended security level) that there are no collisions in
the first part of the compression function.

– The system of equations that results, which will have more equations than
variables, must remain computationally non-invertible.

5.1 On the Injectivity of f

The following theorem provides a bound on the stretch factor needed for the first
stage f , embodied by a system of quadratic equations, to ensure its injectiveness.

Proposition 1. The probability that a tuple f of e randomly chosen quadratic
polynomials in u unknowns over a finite field F of size q, with e > u, is not an
injection is lower than q2u−e.

Proof. The linear part of the affine application Aδ(z) = f(z + δ) − f(z) is a
matrix of size e× u and is defined over a finite field F of size q. So As is of rank
less than u. But the probability that any matrix of size e × u and of rank u has
a uniformly randomly chosen element in its image is less than qu−e. Writing the
tuple f as f = f (2) + f (1) + f (0) where f (i) denotes the homogeneous part of
degree i, we see that for a randomly drawn value δ the constant f (2)(δ)+f (1)(δ)
is uniformly randomly distributed in Fe, independently of the coefficients of f (2).
Expanding the expression of Aδ as Aδ(z) = βf(2)(δ, z) + f (2)(δ) + f (1)(δ) where
βf(2) is the bilinear form associated to f , one see that:

Prδ∈Uu

[
Ker(Aδ) �= {0}] = Prδ∈Uu,c∈Ue

[
c ∈ Im(Aδ)

] ≤ qu−e .

The corresponding tuple f thus has less than qu−e chances of providing a
collision pair of the form (x, x+ δ) for any randomly chosen δ. Running through
all possible values for δ, we have that the probability of f being an injection is
greater than (1− qu−e)qu

and thus the probability of f not being an injection is
lower than q2u−e. ��
Interpreting this result and assuming that we seek a security level s, we have the
constraint 22u−e < 2−s, or e > 2u + s over the binary field as ground field F.
Hence, our construction will asymptotically show a stretch factor of two in the
case of the binary field.

5.2 On the Hardness of Inverting f

The hardness of the system solving problem is closely related to the ratio between
the number of equations and the number of variables. So we need to study the

On Building Hash Functions from Multivariate Quadratic Equations 91

complexity of solving randomly generated quadratic equation systems over the
field GF(2) when there are more equations than variables. This has been studied
in detail [3] and we summarize the results in our very special case.

Theorem 4. Solving a random system of e quadratic equations in u unknowns
over the field GF(2) by the best Gröbner basis algorithm requires

(
u
d

)ω operations
where ω ≈ 2.3 and

d =
u

2
− e +

e

2

√

2 −
(u

e

)2

− 10
u

e
+ 2

√
8

(u

e

)3

+ 12
(u

e

)2

+ 6
u

e
+ 1 .

Proof. The proof is available in [3]. ��
Since we expect to use a stretch factor slightly bigger than two for our con-
struction, the complexity of solving with the best Gröbner basis methods will be
about

(
u

u/20

)ω. For the values proposed in Section 5.3 this complexity is much
higher than the security level.

variables 80 128 160 256 512
time complexity 247 274 299 2153 2323

5.3 Performance Considerations

In this section, we investigate how the security requirements impact the per-
formances of mq-hash. For conservative settings and aiming at 80-bit security,
the use of the base field F = GF(2) seems mandatory. In this case, the chain-
ing variable could be 160 bits in length, the message block at each iteration
could be 32 bits in length, and the intermediate output from f should be around
464 bits. This would leave us with the parameter set n = ν = 160, m = μ = 32,
and r = ρ = 464 which are consistent with the security levels implied by The-
orem 4. The storage requirements for the first part of the computation, the
evaluation of f , is about 1 mb while the storage for the evaluation of g is less
than 2.2 mb. The total amount of storage is more than 3 mb of memory, so it
will not fit in the cache of contemporary processors, incurring a big performance
penalty that will severely restrict its practical use.

As usual, the property of provable security comes at a price. Crude estimates
for the performance of mq-hash show that it might be expected to run thousands
of times slower than SHA-1. However, we foresee that various modifications can
be made to the design of mq-hash so as to lower the gap of performance with
usual hash functions like SHA-1. We leave this question as an open research
subject.

5.4 Deploying Random Systems

One issue with using quadratic systems might be a concern about weak instances.
This is of special interest in the case of multivariate quadratic systems since

92 O. Billet, M.J.B. Robshaw, and T. Peyrin

trapdoors for this environment have been proposed as a fundamental feature of
several asymmetric schemes [16,23,24,25]. However, this is not such an unusual
issue in cryptographic deployment and shared equation systems can be generated
using a variety of techniques so as to allay suspicion. See, for example, the case
of dss [30].

5.5 Alternative Approaches

Our proposal mq-hash might be viewed as a first attempt to build a practical
hash function that relies for its security on multivariate quadratic equations.
There are several ways the work might be extended.

For instance, we might consider some slight variants to the structure of mq-
hash. It would be very natural to replace the fixed tuple f of multivariate
polynomials with tuples that are randomly re-generated at each iteration of the
compression function. Such a variant, outlined below, allows the tuple f to be
modified via some transformation of the chaining variable.

fg

Mi

vi

vi−1

It is interesting to observe that this approach, that we denote rmq-hash,
can be viewed as bringing us closer to some established block-cipher construc-
tions such as Matyas-Meyer-Oseas [7,27]: the one-way function f would be akin
to a block cipher with feed-forward and the treatment of the chaining variable
would be analogous to a (very) unusual key-schedule. While there are some in-
triguing challenges in this approach, early analysis suggests that such a scheme
would allow for a more compact system of equations with accompanying per-
formance advantages. This may well be an interesting structure to consider in
future work.

6 Conclusions

In this paper we have introduced a new hash function mq-hash. The security
of this hash function is based on the difficulty of solving systems of multivari-
ate quadratic equations, a problem that is well-studied and used elsewhere in

On Building Hash Functions from Multivariate Quadratic Equations 93

cryptography. The hash function mq-hash is provably pre-image resistant in the
standard model, and there is good evidence to support the conjecture that mq-
hash is collision-free and second pre-image resistant. However a proof in the
standard model remains an area of open research.

We believe there to be considerable promise in using multivariate quadratic
equations as a hard problem in symmetric cryptography. This is something that
has been pioneered with quad, and we anticipate similar success in the design
of other primitives. With regards to hash functions, however, there are some
particular challenges in using multivariate quadratic equations. In particular
one is forced to adopt a more complex construction than one might initially
like, and one must act carefully so as retain provable pre-image resistance. This
may well result in a wide variety of alternative constructions. In this paper
we have considered one particular approach and establishing a broader range
of designs with alternative security/performance trade-offs remains a topic of
ongoing research.

References

1. Aiello, W., Haber, S., Venkatesan, R.: New Constructions for Secure Hash Func-
tions. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 150–167. Springer,
Heidelberg (1998)

2. Augot, D., Finiasz, M., Sendrier, N.: A Family of Fast Syndrome Based Crypto-
graphic Hash Functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, pp. 64–83. Springer, Heidelberg (2005)

3. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: ICPSS, pp. 71–74
(2004)

4. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A Practical Stream Cipher with
Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 109–128. Springer, Heidelberg (2006)

5. Berbain, C.: Personal communication (November 21, 2006)

6. Bentahar, K., Page, D., Silverman, J.H., Saarinen, M.-J.O., Smart, N., LASH
(2006) Available from: http://csrc.nist.gov/pki/HashWorkshop/2006/

7. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

8. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable Collision-
Resistant Hash Function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 165–182. Springer, Heidelberg (2006)

9. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

10. Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signature
Scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 164–175. Springer, Heidelberg (2005)

11. Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate
schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–
353. Springer, Heidelberg (2005)

http://csrc.nist.gov/pki/HashWorkshop/2006/

94 O. Billet, M.J.B. Robshaw, and T. Peyrin

12. Fraenkel, A.S., Yesha, Y.: Complexity of Problems in Games, Graphs, and Alge-
braic Equations. Discr. Appl. Math. 1, 15–30 (1979)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co. New York (1979)

14. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M.k. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

15. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

16. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

17. Lenstra, A.K., Page, D., Stam, M.: Discrete logarithm variants of VSH. In: Nguyen,
P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 229–242. Springer, Heidelberg
(2006)

18. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge
(1997)

19. Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

20. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1989)

21. National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard (November 2001) Available from: http://csrc.nist.gov

22. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard
(August 2002) http://csrc.nist.gov

23. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EU-
ROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

24. Patarin, J., Courtois, N.T., Goubin, L.: QUARTZ, 128-Bit Long Digital Signatures.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer,
Heidelberg (2001)

25. Patarin, J., Courtois, N.T., Goubin, L.: FLASH, a Fast Multivariate Signature
Algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307.
Springer, Heidelberg (2001)

26. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining Compression
Functions and Block Cipher-based Hash Functions. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

27. Preneel, B.: Analysis and design of cryptographic hash functions. Ph.D. thesis.
Katholieke Universiteit Leuven (1993)

28. Ronald, L.: Rivest. RFC 1320: The MD4 Message-Digest Algorithm (April
1992)http://www.ietf.org/rfc/rfc1320.txt

29. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992)
http://www.ietf.org/rfc/rfc1321.txt

30. Smid, M.E., Branstad, D.K.: Response to Comments of the NIST Proposed Digital
Signature Standard. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
76–88. Springer, Heidelberg (1993)

http://csrc.nist.gov
http://csrc.nist.gov
http://www.ietf.org/rfc/rfc1320.txt
http://www.ietf.org/rfc/rfc1321.txt

On Building Hash Functions from Multivariate Quadratic Equations 95

31. Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving Underdefined Systems
of Multivariate Quadratic Equations. Public Key Cryptography, 211–227 (2002)

32. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Ziarko,
W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 17–36. Springer,
Heidelberg (2001)

33. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

34. Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes based on the problem of
Multivariate Quadratic equations. http://eprint.iacr.org/

http://eprint.iacr.org/

	On Building Hash Functions from Multivariate Quadratic Equations
	Introduction
	Hash Functions and Quadratic Equations
	About Collision Resistance

	Construction of $MQ-HASH$
	Preliminaries
	The Compression Function of $MQ-HASH$

	The Security of $MQ-HASH$
	Preliminaries to the Study of Pre-image Resistance
	Pre-image Resistance of $MQ-HASH$
	Collision and Second Pre-image Resistance of $MQ-HASH$

	Establishing Parameters for $MQ-HASH$
	On the Injectivity of f
	On the Hardness of Inverting f
	Performance Considerations
	Deploying Random Systems
	Alternative Approaches

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

