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Abstract. In this article, we focus on second preimages for iterated
hash functions. More precisely, we introduce the notion of a b-block by-
pass which is closely related to the notion of second preimage but spec-
ifies additional properties. We will then give two examples of iterated
hash functions to which this notion applies: a double-block length hash
function and a single-block length hash function. Furthermore, we look
at NMAC and HMAC and show the implications of a b-block bypass
regarding forgery attacks. As a result it turns out that the impact of
second preimages for NMAC and HMAC heavily depends on how the
second preimages are constructed.
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1 Introduction

A cryptographic hash function maps a binary string of arbitrary length to a
fixed length binary string, called hash value. A cryptographic hash function H
has to be secure against the following attacks:

– Collision attack: Find two different messages m and m∗ �= m such that
H(m) = H(m∗)

– Preimage attack: For a given hash value h, find a message m such that
H(m) = h

– Second preimage attack: For a given message m, find a second message
m∗ �= m such that H(m) = H(m∗)

Based on the birthday paradox the expected complexity for a collision attack
is about 2n/2 hash computations, where n is the size of the hash value. For a
preimage attack and a second preimage attack the complexity is about 2n hash
computations. If, for a given hash function H , collisions and (second) preimages
can be found with a complexity less than 2n/2 and 2n, respectively, the hash
function is considered to be broken.

Recently, a lot of progress has been made in the cryptanalysis of hash func-
tions. Especially the breakthrough results of Wang et al. showing how to con-
struct collisions for MD5 and SHA-1 [15,16], have drawn a lot of attention to
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the analysis of hash functions in the research community. To date, most of the
attacks focus on collisions for iterated hash functions. Collisions are considered
to be less devastating than second preimages since the adversary needs to control
both messages. Kelsey and Schneier [7] have recently presented a new generic sec-
ond preimage attack on iterated hash functions following the Merkle-Damg̊ard
construction (cf. [4,13]). As a result, second preimages can be found in much less
than the theoretically expected 2n hash computations for very long messages.

Besides the cryptanalysis of hash functions it is of high interest to understand
the implications of these recent advances for applications employing hash func-
tions. For instance, which implications does a collision attack on a hash function
have for message authentication codes such as NMAC and HMAC? Recently,
some answers to this question have been published in [3,10,14].

Being motivated by these new results, we will look at the implications of sec-
ond preimages for NMAC and HMAC. We will start by introducing a new notion
for iterated hash functions, namely a b-block bypass, in Section 2. This notion is
closely related to the definition of a second preimage but specifies more details on
how the second preimage can be constructed. To justify the newly introduced
notion we discuss two hash functions for which a b-block bypass can be con-
structed. In Section 3, we analyze a double-block length hash function presented
at FSE 2006 [6], referred to as DBLH. We will show that if this hash function
scheme is instantiated with a block cipher following the FX construction [9] we
can construct a 2-block, respectively 3-block, bypass. As another example, we
will discuss the SMASH design strategy [11] in Section 4. We will show that the
second preimage attack presented by Lamberger et al. in [12] satisfies the defini-
tion of a b-block bypass. In Section 5, we analyze NMAC and HMAC employing
these hash functions. Finally, we present conclusions in Section 6.

2 The Notion of b-Block Bypass

In this section, we introduce a new property of iterated hash functions and show
which implications it has. For the remainder of this article, we assume without
loss of generality that we have message lengths that are a multiple of the block
length. Furthermore, we assume that the blocks required for MD strengthening
have been removed.

Definition 1. (b-Block Bypass) Let H be an iterated hash function. We say
that we can construct a b-block bypass for H, if for any b-block message m =
m1, . . . , mb we can find a b-block message m∗ = m∗

1, . . . , m
∗
b �= m such that for

any initial value h0 the following holds:

H(h0; m1, . . . , mi) �= H(h0; m∗
1, . . . , m

∗
i ) for i = 1, . . . , b − 1

H(h0; m1, . . . , mb) = H(h0; m∗
1, . . . , m

∗
b)

(1)

Remark 1. It follows directly from Definition 1 that the notions of b-block by-
pass and second preimage are closely related. To be more precise, if we can
construct a b-block bypass for an iterated hash function then it is possible to
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construct a second preimage m∗ for any given message m = m1, . . . , mt �= m∗

with t ≥ b. Furthermore, both the second preimage m∗ and the message m are
of equal length. Hence, a b-block bypass provides additional details such as the
dependency on the chaining value.

Lemma 1. Let H be an iterated hash function for which we can construct a
b-block bypass. Then, for every message m = m1, . . . , mt with t ≥ b ≥ 1, we can
construct at least

�t/b�∑

j=1

(
t − j(b − 1)

j

)
(2)

distinct second preimages.

Proof. From Definition 1 it follows immediately that it doesn’t matter which b
consecutive blocks of the message m are taken to construct a second preimage
m∗ (cf. Figure 1).

If �t/b� ≥ 2, we can apply Definition 1 not only for one b-block sub-message of
m but for j sub-messages, with j ranging from 1, . . . , �t/b�. An illustration of this
fact is also shown in Figure 1. The problem of counting all these possible second
preimages of m boils down to counting the number of possibilities of putting
t − jb indistinguishable balls into j + 1 distinguishable urns. This number is
known to be (

t − j(b − 1)
j

)
,

cf. [5, page 38, Eq. (5.2)]. Summing over all j = 1, . . . , �t/b� proves (2). ��

Remark 2. The result of Lemma 1 seems intuitive. However, Lemma 1 does not
necessarily apply to the notion of second preimage but it always holds for the
notion of b-block bypass. Therefore, the notion of b-block bypass enables a better
insight on the possibilities for constructing a second preimage.
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Fig. 1. For a 2-block bypass we can construct for any 5-block message m = m1, . . . , m5

seven distinct second preimages. The shadowed rectangles show which blocks of the
original message m have been modified to construct the second preimage.

3 The Double Block-Length Hash Proposal DBLH

We start this section by introducing some notation. For the concatenation of two
variables, we write a‖b. Addition modulo 2 (XOR) is denoted by a ⊕ b. The bit
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length of variable a is denoted by |a|. We stick to the convention of [2] to denote
a difference by u′ = u ⊕ u∗. Furthermore, we write Fk(x) for the encryption of
the input x with an arbitrary block cipher F under the key k. The cipher F
processes blocks of n bits and the key length is denoted by |k|.

Shoichi Hirose proposed a double block-length hash function at FSE 2006 [6].
It is an iterated, block cipher based hash function. The compression function is
defined as follows:

gi = Fhi−1‖mi
(gi−1) ⊕ gi−1

hi = Fhi−1‖mi
(gi−1 ⊕ c) ⊕ gi−1 ⊕ c,

(3)

where c is an arbitrary constant (c �= 0), Fk (k = hi−1‖mi) is an arbitrary
block cipher, and hi‖gi is the chaining value with h0‖g0 the initial value (cf.
Figure 2). After t message blocks have been processed, the final hash value is
the concatenation ht‖gt. As it can be seen in (3), the key length of the underlying
block cipher Fk has to be greater than the block length. This is due to the fact
that |k| = |hi−1| + |mi|, where |hi−1| is the block length of the cipher. In [6],
Hirose proved the security of DBLH in the ideal cipher model.

3.1 Block Ciphers Following the FX Construction

The block cipher DESX [9] was proposed by Rivest to protect DES against
exhaustive key search attacks. Kilian and Rogaway proved the security of the
DESX construction in [8,9] against a key-search adversary. However, DESX is not
an ideal cipher. The general form of this construction is referred to as FX [8,9],
where F can be any block cipher with block length n and key length |k|. The
FX construction is defined as follows:

FXk‖k1‖k2(x) = Fk(x ⊕ k1) ⊕ k2 , (4)

where |k1| = |k2| = n.

3.2 DBLH with FX

For DBLH with underlying block cipher FXk‖k1‖k2(x), we can construct the
following three configurations (see Figure 2), where mi = li‖ri.

Configuration I:
k‖k1‖k2 = li‖hi−1‖ri, where |li| = |k|, |hi−1| = |ri| = n

Configuration II:
k‖k1‖k2 = hi−1‖li‖ri, where |hi−1| = |k|, |li| = |ri| = n

Configuration III:
k‖k1‖k2 = li‖ri‖hi−1, where |li| = |k|, |ri| = |hi−1| = n

(5)
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Fig. 2. Three possible configurations of DBLH with FX as underlying block cipher.
The hatch denotes the key input of the block cipher F .

For each configuration, we can interchange li and ri. However, without loss of
generality, we take the configurations defined in (5) for the further analysis. Note
that if F is a block cipher with |k| < n then, for Configuration II, the chaining
variable hi−1 needs to be truncated to match the key length |k|. Which bits are
truncated does not have any impact on the analysis. For the remainder of this
section, we assume that F is a block cipher with |k| = n.

For the sake of simplicity, we will write DX to denote the instantiation of
DBLH with FX as underlying block cipher. If we speak of a specific configuration,
we append the number of the configuration. For instance for DBLH with FX in
Configuration II, we write DX-II.

3.3 Second Preimages for DX Based on a b-Block Bypass

We now demonstrate how to construct second preimages based on a 3-block
bypass for Configuration II of DX.

Theorem 1. For the iterated hash function DX-II we can construct a 3-block
bypass, since for every 3-block message m = m1, m2, m3 the following message
m∗ satisfies the conditions of Definition 1:

m∗ = m1 ⊕ (0‖u′), m2 ⊕ (v′‖w′), m3 ⊕ (z′‖z′) , (6)

where mi = li‖ri, |li| = |ri| = n, u′, v′ any value with |u′| = |v′| = n, and 0
is the n-bit all-zero binary string. Let t′ be the output difference of the left F
instance in iteration 2:

t′ = [Fh1(g1 ⊕ c ⊕ l2)] ⊕ [Fh1⊕u′(g1 ⊕ u′ ⊕ c ⊕ l2 ⊕ v′)] (7)

Then, w′ = u′ ⊕ t′ and the difference z′ in (6) is defined as
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z′ = [Fh1(g1 ⊕ l2) ⊕ r2 ⊕ g1] ⊕
[Fh1⊕u′(g1 ⊕ u′ ⊕ l2 ⊕ v′) ⊕ r2 ⊕ w′ ⊕ g1 ⊕ u′] . (8)

Furthermore, for an arbitrary message m = m1, . . . , mt with t ≥ 3, we can find
at least

�t/3�∑

j=1

(
t − 2j

j

)

second preimages based on this 3-block bypass.

Proof. We show that for the 3-block messages m and m∗, where

m = m1, m2, m3 = (l1‖r1), (l2‖r2), (l3‖r3)
m∗ = m1 ⊕ (0‖u′), m2 ⊕ (v′‖w′), m3 ⊕ (z′‖z′) = (l∗1‖r∗1), (l∗2‖r∗2), (l

∗
3‖r∗3)

l∗1 = l1 ⊕ 0, r∗1 = r1 ⊕ u′

l∗2 = l2 ⊕ v′, r∗2 = r2 ⊕ w′

l∗3 = l3 ⊕ z′, r∗3 = r3 ⊕ z′ ,

the output difference equals zero after three iterations. After one iteration, we
have

g1 = g0 ⊕ Fh0(g0 ⊕ l1) ⊕ r1

g∗1 = g0 ⊕ Fh0(g0 ⊕ l1) ⊕ r1 ⊕ u′ = g1 ⊕ u′

h1 = g0 ⊕ c ⊕ Fh0(g0 ⊕ c ⊕ l1) ⊕ r1

h∗
1 = g0 ⊕ c ⊕ Fh0(g0 ⊕ c ⊕ l1) ⊕ r1 ⊕ u′ = h1 ⊕ u′ .

After two iterations, chaining variable h2 is computed as follows

h2 = g1 ⊕ c ⊕ Fh1(g1 ⊕ c ⊕ l2) ⊕ r2

h∗
2 = g1 ⊕ u′ ⊕ c ⊕ Fh1⊕u′(g1 ⊕ u′ ⊕ c ⊕ l2 ⊕ v′) ⊕ r2 ⊕ w′ .

With w′ = u′ ⊕ t′ and t′ as defined in (7), we get

h∗
2 = g1 ⊕ u′ ⊕ c ⊕ Fh1⊕u′(g1 ⊕ u′ ⊕ c ⊕ l2 ⊕ v′) ⊕ r2 ⊕ u′

⊕ Fh1(g1 ⊕ c ⊕ l2) ⊕ Fh1⊕u′(g1 ⊕ u′ ⊕ c ⊕ l2 ⊕ v′)︸ ︷︷ ︸
t′

= g1 ⊕ u′ ⊕ c ⊕ r2 ⊕ u′ ⊕ Fh1(g1 ⊕ c ⊕ l2)
= h2 .

The difference in chaining variable g2 after two iterations is

g∗2 = g2 ⊕ z′ ,

where z′ is defined in (8). After three iterations, we get
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g3 = g2 ⊕ Fh2(g2 ⊕ l3) ⊕ r3

g∗3 = g2 ⊕ z′ ⊕ Fh2(g2 ⊕ z′ ⊕ l3 ⊕ z′) ⊕ r3 ⊕ z′

= g2 ⊕ Fh2(g2 ⊕ l3) ⊕ r3

= g3

h3 = g2 ⊕ c ⊕ Fh2(g2 ⊕ c ⊕ l3) ⊕ r3

h∗
3 = g2 ⊕ z′ ⊕ c ⊕ Fh2(g2 ⊕ z′ ⊕ c ⊕ l3 ⊕ z′) ⊕ r3 ⊕ z′

= g2 ⊕ c ⊕ Fh2(g2 ⊕ c ⊕ l3) ⊕ r3

= h3 .

Therefore, after three iterations the differences in the chaining variables are
g′3 = g3 ⊕ g∗3 = 0 and h′

3 = h3 ⊕ h∗
3 = 0. Since the difference of the chaining

variables g′0 = h′
0 = 0, we have constructed a 3-block bypass for DX-II.

The final statement of the theorem is an immediate consequence of Lemma 1
with b = 3. ��

For Configuration I and III, we can prove similar theorems.

Theorem 2. For the iterated hash function DX-I, we can construct a 2-block
bypass, since for every two block message m = m1, m2 the following message m∗

satisfies the conditions of Definition 1:

m∗ = m1 ⊕ (0‖u′), m2 ⊕ (0‖u′) , (9)

where mi = li‖ri, |li| = |k|, |ri| = n, u′ any value with |u′| = n, and 0 is the
|k|-bit all-zero binary string.
Furthermore, for an arbitrary message m = m1, . . . , mt with t ≥ 2, we can find
at least

�t/2�∑

j=1

(
t − j

j

)

second preimages based on this 2-block bypass.

Theorem 3. For the iterated hash function DX-III, we can construct a 3-block
bypass, since for every 3-block message m = m1, m2, m3 the following message
m∗ satisfies the conditions of Definition 1:

m∗ = m1 ⊕ (u′‖v′), m2 ⊕ (0‖z′), m3 ⊕ (0‖(w′ ⊕ z′)) , (10)

where mi = li‖ri, |li| = |k|, |ri| = n, u′, v′ any value with |u′| = |k| and |v′| = n,
and 0 is the |k|-bit all-zero binary string. Once the values u′, v′ have been chosen
for the given input message block m1, the differences w′ and z′ can be computed:

w′ = [g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ r1) ⊕ h0]
⊕ [g0 ⊕ c ⊕ Fl1⊕v′(g0 ⊕ c ⊕ r1 ⊕ u′) ⊕ h0] ,

z′ = [g0 ⊕ Fl1(g0 ⊕ r1) ⊕ h0]
⊕ [g0 ⊕ Fl1⊕v′(g0 ⊕ r1 ⊕ u′) ⊕ h0]
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Furthermore, for an arbitrary message m = m1, . . . , mt with t ≥ 3, we can find
at least

�t/3�∑

j=1

(
t − 2j

j

)

second preimages based on this 3-block bypass.

The proof of Theorem 2 and Theorem 3 works along the same lines as the proof
of Theorem 1 and is given in Appendix A and B.

4 The Hash Function Design Strategy SMASH

In [11], Knudsen presented a new design strategy for iterated hash functions.
For a message m = m1, m2, . . . , mt consisting of t blocks of length n, the hash
output ht+1 gets computed via

h0 = f(iv) + iv (11)
hi = f(hi−1 + mi) + hi−1 + θmi for i = 1, . . . , t (12)

ht+1 = f(ht) + ht, (13)

where f denotes a bijective, non-linear n-bit mapping. Note that “+” and mul-
tiplication by θ is defined as an operation in the finite field GF (2n) with the
only restriction that θ �∈ {0, 1}. In [11], also two instantiations of SMASH have
been proposed, namely SMASH-256 and SMASH-512 which produce a 256-bit,
respectively 512-bit output.

Let us for now consider a slightly reduced variant of SMASH-n by omitting
the final step (13) in the definition of SMASH-n. The main result of [12] is a
method to effectively construct preimages for this reduced variant. Their method
makes use of the following simple observation (which was already pointed out in
[11]): Let hi and h∗

i be two intermediate hash values and let mi be an arbitrary
n-bit message block. Then, if we set m∗

i = mi + hi−1 + h∗
i−1 we have

hi + h∗
i = (1 + θ)(hi−1 + h∗

i−1).

This can be used to derive an equation of the form:

ht = a + b

t∑

j=1

δj(1 + θ)t−j , (14)

where 1 ≤ t ≤ n, a, b are values depending on the used initial value and compres-
sion function f , and the δi ∈ {0, 1} are unknowns on which the respective blocks
of the preimage m∗ = m∗

1, . . . , m
∗
n will depend. Equation (14) can be interpreted

as an inhomogenous system of n linear equations in t variables over GF (2).
For the solvability of this system we have to look on the element θ. If (1 + θ)

is not contained in a proper subfield of GF (2n), then the elements (1 + θ)i are
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linearly independent for 0 ≤ i ≤ n − 1. For SMASH-256 and SMASH-512, it is
easy to show that this condition is satisfied. In most applications we will have
n = 2�. Then, a randomly selected θ fulfills this requirement with probability
1 − 2−n/2.

Thus, if we set t = n in equation (14) we are guaranteed a unique solution
δ1, . . . , δn from which an n-block preimage m∗ can be constructed. For a more
detailed description of the method we refer to [12].

Remark 3. To clarify the multiple use of n we recapitulate: SMASH-n operates
on n-bit blocks but since we need exactly n variables to derive a unique solution
for the system (14) the method of [12] also produces a preimage consisting of n
blocks.

Because of (13) this preimage attack cannot be augmented to the full variant of
SMASH-n. However, we can use this result to construct an n-block bypass for an
arbitrary message m = m1, m2, . . . , mn. Let hn denote the chaining value com-
puted after n applications of (12) starting from our initial message m. Then, the
technique described above leads to a message m∗ such that h∗

n = hn and there-
fore h∗

n+1 = hn+1. The method shown in [12] guarantees that the constructed
second preimage m∗ differs from m at least in the first message block. Since this
can be carried out independent of the choice of h0 we arrive at the following
theorem:

Theorem 4. For almost all instantiations of SMASH-n, we can construct an
n-block bypass. Especially, we can construct a 256-block, respectively 512-block
bypass for the hash functions SMASH-256, respectively SMASH-512.

5 Implications of a b-Block Bypass for NMAC and
HMAC

In this section, we will look at the implications if one of the hash functions
described in Section 3 and Section 4 is employed in applications such as message
authentication codes. In particular, we will focus on NMAC and HMAC [1]:

NMACk1,k2(m) = H(k1, H(k2, m)) (15)
HMACk(m) = H(H(iv, k ⊕ opad), H(H(iv, k ⊕ ipad), m)) , (16)

where H(cv, m) denotes the application of the iterated hash function H with
chaining value cv (iv or ki) and t-block message m = m1, . . . , mt. For HMAC,
two appropriate padding methods ipad and opad for the secret key k are required
(see [1] for further details). Both constructions are depicted in Figure 3.

For NMAC the initial value and for HMAC the chaining value of the iterated
hash function H processing the message m are not known to an adversary unless
he/she knows the secret key k. Therefore, a second preimage attack on an iterated
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Fig. 3. The NMAC (left) and HMAC (right) construction based on an iterative hash
function H

hash function for which the attacker needs to know certain chaining values will
not lead to an immediate forgery. On the other side, if the second preimage
attack is independent of the initial chaining value, an adversary will always
succeed in forging an authenticated message: for any given valid message-MAC
pair {m, MACk(m)} he/she can construct a second valid message-MAC pair by
just replacing m with the second preimage m∗. If we look at the hash functions
described in Section 3 and Section 4, we can now conclude the following:

Fact 1. The second preimages based on the 3-block bypass for DX-II and DX-III,
as well as the n-block bypass for SMASH-n cannot directly be exploited to mount
a forgery attack on NMAC and HMAC. This is an immediate consequence of
the fact that certain chaining values need to be known by the adversary for con-
structing the second preimage.

Fact 2. For the DX-I construction we see that the second preimage based on the
2-block bypass can be constructed in a pure differential way, i.e. it is indepen-
dent of the chaining values. Therefore, both NMAC and HMAC with DX-I as
underlying hash function are vulnerable to forgery attacks.

From these facts we observe that even if we can construct second preimages for
both hash functions in all configurations, the implications for the security of
hash-based MACs depend heavily on how the second preimage is constructed.

6 Conclusion

In this article, we have introduced the notion of b-block bypass for iterated hash
functions, which is closely related to the notion of second preimage. A b-block
bypass is more accurate in the sense that the structure of second preimages based
on a b-block bypass is more clear. We presented two entirely different hash func-
tions for which we can construct a b-block bypass. Even if we can construct
second preimages deterministically for both hash functions, we have shown that
if we look at NMAC/HMAC the implications are different. It turned out that



78 N. Pramstaller, M. Lamberger, and V. Rijmen

for NMAC/HMAC it is important how the second preimage is constructed: the
DX construction in Configuration I implies immediate forgery, whereby DX in
Configuration II and III as well as the SMASH construction do not lead to a
forgery attack on NMAC/HMAC. We can derive from our results that a weak
hash function does not necessarily imply a weak application employing this hash
function. Therefore, it makes sense to not only define properties for the hash
function but to specify additional properties concerning the application in which
a hash function is employed.
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A Proof of Theorem 2

Proof. Assume, we have the following 2-block messages m, m∗, where:

m = m1, m2 = (l1‖r1), (l2‖r2)
m∗ = m∗

1, m
∗
2 = m1 ⊕ (0‖u′), m2 ⊕ (0‖u′) = (l∗1‖r∗1), (l∗2‖r∗2)

l∗1 = l1 ⊕ 0 = l1, r∗1 = r1 ⊕ u′

l∗2 = l2 ⊕ 0 = l2, r∗2 = r2 ⊕ u′

After one iteration, we have

g1 = g0 ⊕ Fl1(g0 ⊕ h0) ⊕ r1

g∗1 = g0 ⊕ Fl1(g0 ⊕ h0) ⊕ r1 ⊕ u′ = g1 ⊕ u′ , and
h1 = g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ h0) ⊕ r1

h∗
1 = g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ h0) ⊕ r1 ⊕ u′ = h1 ⊕ u′ .

The outputs after two iterations are

g2 = g1 ⊕ Fl2(g1 ⊕ h1) ⊕ r2

g∗2 = g1 ⊕ u′ ⊕ Fl2(g1 ⊕ u′ ⊕ h1 ⊕ u′) ⊕ r2 ⊕ u′

= g1 ⊕ Fl2(g1 ⊕ h1) ⊕ r2 = g2 , and
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h2 = g1 ⊕ c ⊕ Fl2(g1 ⊕ c ⊕ h1) ⊕ r2

h∗
2 = g1 ⊕ u′ ⊕ c ⊕ Fl2(g1 ⊕ u′ ⊕ c ⊕ h1 ⊕ u′) ⊕ r2 ⊕ u′

= g1 ⊕ c ⊕ Fl2(g1 ⊕ c ⊕ h1) ⊕ r2 = h2 .

Hence, g′2 = g2 ⊕ g∗2 = 0 and h′
2 = h2 ⊕ h∗

2 = 0. Since the difference of the
chaining variables g′0 = h′

0 = 0, we have constructed a 2-block bypass for DX-I.
The final statement of the theorem is an immediate consequence of Lemma 1
with b = 2. ��

B Proof of Theorem 3

As for the proof of Theorem 1 and Theorem 2, we show that for the 3-block
messages m and m∗, where m = m1, m2, m3 = (l1‖r1), (l2‖r2), (l3‖r3) and

m∗ = m1 ⊕ (u′‖v′), m2 ⊕ (0‖z′), m3 ⊕ (0‖(w′ ⊕ z′)) = (l∗1‖r∗1), (l
∗
2‖r∗2), (l∗3‖r∗3)

l∗1 = l1 ⊕ u′, r∗1 = r1 ⊕ v′

l∗2 = l2 ⊕ 0, r∗2 = r2 ⊕ z′

l∗3 = l3 ⊕ 0, r∗3 = r3 ⊕ (w′ ⊕ z′) ,

the output difference equals zero after three iterations, i.e. g′3 = h′
3 = 0. After

the first iteration, we have

g1 = g0 ⊕ Fl1(g0 ⊕ r1) ⊕ h0

g∗1 = g1 ⊕ z′, where
z′ = [g0 ⊕ Fl1(g0 ⊕ r1) ⊕ h0]

⊕ [g0 ⊕ Fl1⊕v′(g0 ⊕ r1 ⊕ u′) ⊕ h0] , and
h1 = g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ r1) ⊕ h0

h∗
1 = h1 ⊕ w′, where

w′ = [g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ r1) ⊕ h0]
⊕ [g0 ⊕ c ⊕ Fl1⊕v′(g0 ⊕ c ⊕ r1 ⊕ u′) ⊕ h0] .

The difference of the chaining variables after two iterations is

g2 = g1 ⊕ Fl2(g1 ⊕ r2) ⊕ h1

g∗2 = g1 ⊕ z′ ⊕ Fl2(g1 ⊕ z′ ⊕ r2 ⊕ z′) ⊕ h1 ⊕ w′

= g2 ⊕ (w′ ⊕ z′) , and
h2 = g1 ⊕ c ⊕ Fl2(g1 ⊕ c ⊕ r2) ⊕ h1

h∗
2 = g1 ⊕ z′ ⊕ c ⊕ Fl2(g1 ⊕ z′ ⊕ c ⊕ r2 ⊕ z′) ⊕ h1 ⊕ w′

= h2 ⊕ (w′ ⊕ z′) .

The output difference after three iterations is computed as follows. For the sake
of clearness, we write y′ = w′ ⊕ z′:
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g3 = g2 ⊕ Fl3(g2 ⊕ r3) ⊕ h2

g∗3 = g2 ⊕ y′ ⊕ Fl3(g3 ⊕ y′ ⊕ r3 ⊕ y′) ⊕ h2 ⊕ y′

= g3 , and
h3 = g2 ⊕ c ⊕ Fl3(g2 ⊕ c ⊕ r3) ⊕ h2

h∗
3 = g2 ⊕ y′ ⊕ c ⊕ Fl3(g2 ⊕ y′ ⊕ c ⊕ r3 ⊕ y′) ⊕ h2 ⊕ y′

= h3

Hence, g′3 = g3⊕g∗3 = 0 and h′
3 = h3⊕h∗

3 = 0. Since the difference of the chaining
variables g′0 = h′

0 = 0, we have constructed a 3-block bypass for DX-III.
The final statement of the theorem is an immediate consequence of Lemma 1
with b = 3. ��
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