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Abstract. The parallel FFT-Hashing function was designed by C. P.
Schnorr and S. Vaudenay in 1993. The function is a simple and light
weight hash algorithm with 128-bit digest. Its basic component is a multi-
permutation which helps in proving its resistance to collision attacks.

In this work we show a preimage attack on the parallel FFT-Hashing
function using 2t+64 + 2128−t time complexity and 2t memory, which
is less than the generic complexity 2128. Specifically, when t = 32, we
can find a preimage using 297 time and 232 memory. Our method can
be described as “disseminative-meet-in-the-middle-attack”. we actually
use the properties of multi-permutation (helpful against collision attack)
to our advantage in the attack. Overall, this type of attack (beating the
generic one) demonstrates that the structure of the parallel FFT-Hashing
function has some weaknesses when preimage attack is considered (and
relevant). To the best of our knowledge, this is the first attack on the
parallel FFT-Hashing function.

Keywords: Cryptographic Hash Function, Preimage Attack, the Paral-
lel FFT-Hashing function.

1 Introduction

Nowadays, motivated by the breaking of the MD4-style hash functions family,
novel constructions of cryptographic hash functions are required as are better
understanding of their design principles.
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The parallel FFT-Hashing function is an example of a potential novel con-
struction. This paper investigates this function, suggested by Schnorr and Vaude-
nay in 1993 [4] (improving and correcting previously broken designs [2,3,1,6,5]).
The parallel FFT-Hashing function uses a simple component called ‘multi-
permutation’ repeatedly. The designers proved that the parallel FFT-Hashing
function is collision resistant when the black box multi-permutations are given
by the oracle. On the other hand, the designers did not say anything about other
security notions such as preimage resistance and second preimage resistance.
Unlike MD4-style hash function whose compression function is not invertible,
the parallel FFT-Hashing function has a step function which is invertible. For
the parallel FFT-Hashing function (the MD4-style hash function), each message
string is applied only to one step function (one compression function). Also the
internal size of the parallel FFT-Hashing function is twice the output size. Thus,
one may think that the parallel FFT-Hashing function can be secure against
preimage attacks. Further, the FFT-Hashing function seems to be even secure
against time-memory trade-off attacks.

In this paper, however, we give an attack that finds a preimage with com-
plexity 2t+64 +2128−t and memory 2t, which is less than the cost of its (generic)
exhaustive search complexity (2128). This attack, therefore, demonstrates some
weaknesses in the structure of the design, at least when considered in settings
where protection against preimage finding is crucial. We note that our attack
exploits the properties of the multi-permutation components, i.e., we capitalize
on exactly the property that helps preventing collision attacks in finding the
preimage.

General Meet-in-the-Middle Attack. Our attack method is different from
the general meet-in-the-middle attack. To show this, we explain the general
meet-in-the-middle attack on the parallel FFT-Hashing function. Given a hash
output o, we want to find its preimage. The parallel FFT-Hashing function can
be described as in Fig. 1. The size of the internal state is 256 bits and the output
size is 128 bits. f (corresponding to a step function of the parallel FFT-Hashing
function) and g (corresponding to the last s steps which is the constant related
to the collision resistance property) can be inverted with complexity 1.

We choose randomly xi+1 ∼ xl and compute the corresponding value r in
Fig. 1 and store them in table. This is repeated to get 2t cases. Similarly, from
x1 ∼ xi we compute the corresponding value s in Fig. 1. If s is stored in the
table (i.e., we meet in the middle), we get a preimage of o. According to the

Fig. 1. The Structure of the parallel FFT-Hashing function. f and g are invertible.
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birthday paradox, in order to get one preimage we have to compute s from
random x1 ∼ xi 2256−t times. Therefore, we can get a preimage with complexity
2t + 2256−t and memory size 2t. On the other hand, this paper’s attack shows
that we can find a preimage with complexity 2t+64 + 2128−t and memory 2t.

2 The Parallel FFT-Hashing Function

In this section, we describe the parallel FFT-Hashing function [4]. The size of
each word is 16 bits. Here + is the addition modulo 216 and a�b = (a′b′ mod 216+
1) mod 216 where for a �=0 and b �=0 a′ = a and b′ = b and for a=0 and b=0 a′ =
216 and b′ = 216. L means the one-bit circular left shift on 4-bit strings and Rj

is the j-bit circular right shift on 16-bit strings. Further, c = 0000000011111111
is a 16-bit constant and s = 5 is the constant related to the number of steps
in Fig. 2, which guarantees the collision resistance. In our attack, we can find a
preimage for any s (even for big s). The initial value is (c0, c1, · · · , c15) which is 16
words. (c0, c1, c2, c3):=(0xef01, 0x2345, 0x6789, 0xabcd), (c4, c5, c6, c7):=(0xdcba,
0x9876, 0x5432, 0x10fe), c8+i:=ci for i=0,...,7 where ci is the bitwise logical
negation of ci. Each step of the parallel FFT-Hashing is depicted in Fig. 3.

PaFFTHashing(M) = o0||o1|| · · · ||o7

M is the padded message for which M = m0||m1|| · · · ||mn−1 ∈ En

1. For i = 0, ... ,15 Do ei := ci (c0|| · · · ||c15 is the initial value.)
2. For j = 0, ... ,�n/3�+s-2 Do ( : Step j)

2.1 For i = 0, ... ,11 Do
If m3j+(i mod 3) is defined,

eL(i) := eL(i) + m3j+(i mod 3) for even i.
eL(i) := eL(i) � m3j+(i mod 3) for odd i.

2.2 For i = 0, ... ,7 Do in parallel
e2i := eL(2i)⊕eL(2i+1), e2i+1 := eL(2i)⊕(eL(2i+1) ∧c)⊕R2i+1(eL(2i+1))

2.3 For i = 0, ... ,15 Do ei := ei � ci

3. Output h4(M) := o0||o1|| · · · ||o7 for which oi = eL(2i) � eL(2i+1).

Fig. 2. The parallel FFT-hashing function

3 Attack Strategy and Several Properties

In this section, we describe the strategy of our preimage attack on the paral-
lel FFT-Hashing function. See Fig. 4. Our target is to find a padded preimage
m0||m1|| · · · ||m47 when a hash output o0||o1|| · · · ||o7 is given. This strategy con-
sists of 4 phases.

In the first phase, we choose a constant w0||w1|| · · · ||w6||w7. In the second
phase, we show how to find a message m0||m1|| · · · ||m23 such that the last 4
words of output of step 7.5 are w4||w5||w6||w7 with complexity 1 (time complex-
ity 1 means the time required to simulate 7.5 steps in this case, and the time of
computing the entire function once, in general).
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Fig. 3. Step j of the parallel FFT-Hashing function. Each box indicates the invertible
multi-permutation which is explained in property 2 in Section 3.

IV

Find m0 m1 … m23 with complexity 1

Output      
of Step 7.5 :

Find m24 m25 … m47 with complexity 1

o0 o1 … o7

Meet-in-the-Middle-attack

w0 w1 w2 w3 ?  ?  ?  ?  ?  ?  ?  ? w4 w5 w6 w7
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Input        
of Step 7.5 :
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o0 o1 … o7

Meet-in-the-Middle-attack
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?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ? w4 w5 w6 w7

Input        
of Step 7.5 :

Fig. 4. Preimage Attack Strategy

In the third phase, given hash output o0||o1|| · · · ||o7, we show how to find a
message m24||m25|| · · · ||m47 such that the first 4 words of the input of step 7.5
and the last 4 words of the input of step 7.5 are w0||w1||w2||w3 and w4||w5||w6||w7
with complexity 1, respectively (time complexity 1 means more precisely here the
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time required to simulate 7.5+s steps). In the fourth phase, we find a preimage
with the meet-in-the-middle-attack method on the results of phases 2 and 3.
We can call this type of meet-in-the-middle-attack “disseminative-meet-in-the-
middle-attack” (i.e., partial values are first disseminated through the function
structure and the rest is completed employing man-in-the-middle).

We want to describe useful three properties which help us to find a preimage
of the parallel FFT-Hashing function.

Property 1: In each step, the last two words of the output e13, e15 depend only
on the input words e9, e11, e13, e15. See Fig. 3.

A permutation B : E2 → E2, B(a, b) = (B1(a, b), B2(a, b)), is a multi-
permutation if for every a, b ∈ E the mappings Bi(a, ∗), Bi(∗, b) for i = 1, 2
are permutations on E.

Property 2: Each box of Fig. 3 is an invertible multi-permutation [5] (E =
{0, 1}16). For example, for any b and i, if Bi(∗, b) is fixed, then ∗ and
Bi+1 mod 2(∗, b) are determined automatically. And for any a, a � ∗ and ∗ � a
are invertible permutations on {0, 1}16.

Property 3: For any a, b, c, d, a′, b′, c′, d′, t and all cases of Fig. 5, if we choose
the value of m, m′ and m∗ are determined automatically by property 2 and then
the undefined values are also determined.

Fig. 5. Four Cases of Property 3

4 Preimage Attack on the Parallel FFT-Hashing Function

In this section, we show how to get a preimage for a given hash output
o0||o1|| · · · ||o7. The original preimage is m0||m1|| · · · ||m42. After the preimage
is padded, the padded preimage is m0||m1|| · · · ||m47 where the last four words
w44||w45||w46||w47 indicate the message length and m43 is ‘1000000000000000’.
Our attack idea is a disseminative-meet-in-the-middle attack in the location of
output of Step 7.5.

First Phase (Choice of a constant w0||w1|| · · · ||w6||w7) See Fig. 6. We can de-
scribe the relations among (0)∼(35) like table 1. In table 1, a → b means that
the value of b is determined by the value of a. (0) ∼ (3) [the last 4 entries into
step 0 layer in Fig. 6] are already fixed values because they are initial values. So,
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Table 1. Relations among (0)∼(35) in Fig 6

(0),(1),(2),(3) → (20),(21) (20),(21) → (23)
(4),(5) → (22) (22),(23) → (25)
(6),(7) → (24) (24),(25) → (27)
(8),(9) → (26) (26),(27) → (29)

(10),(11) → (28) (28),(29) → (31)
(12),(13) → (30) (30),(31) → (33)
(14),(15) → (32) (32),(33) → (35)
(16),(17) → (34)

if we choose values of (4) ∼ (17), then the values of (20) ∼ (35) are determined
(via computation) by property 1 as we describe in table 1. And we choose the
values of (18) and (19). Finally, we let w4||w5||w6||w7 be (18)||(19)||(34)||(35)
and let w0||w1||w2||w3 be any fixed value.

Second Phase (find a message m0||m1|| · · · ||m23 which keeps the last 4
words of output of step 7.5 as a 4-word constant w4||w5||w6||w7 with com-
plexity 1) See Fig. 6. We can describe the relations among m0 ∼ m23 as
the following table 2 : Once m2 is fixed, m0 and m1 are determined by
property 3 because (4) and (5) are already fixed. Likewise, once m5 is
fixed, m3 and m4 are also determined by property 3 because (6) and (7)
are already fixed. Similarly, we can find m0 ∼ m23 satisfying the values
of (4) ∼ (19). Since we can assign m3i+2 random values for 0 � i � 7,
we know that there are 2128 m0 ∼ m23 satisfying the values of (4) ∼ (19).

Table 2. Relations among m0 ∼ m23 in Fig 6

m2 → m0,m1

m5 → m3,m4

m8 → m6,m7

m11 → m9,m10

m14 → m12,m13

m17 → m15,m16

m20 → m18,m19

m23 → m21,m22

Third Phase (given the hash output o0||o1|| · · · ||o7, we show how to find a mes-
sage m24||m25|| · · · ||m47 which makes the first 4 words of the input of step 7.5
and the last 4 words of the input of step 7.5 ‘w0||w1||w2||w3’ and ‘w4||w5||w6||w7’
with complexity 1.) See Fig. 7. Given a hash output o0||o1|| · · · ||o7, by property
2, we can invert o0||o1|| · · · ||o7 up-to the output of step 11 by giving arbitrary
random value to m36 ∼ m42. As described in the first paragraph of Section 4,
m43 ∼ m47 are already fixed. And w0 ∼ w7 are already fixed in the first phase,
so (40)∼(45) are determined as well. Further, since we know the output of step
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Fig. 6. The First and Second Phases

11, (46) is also fixed through the inverting process. Then m34 is determined by
property 2 because (45) and (46) are already fixed. At this point we give arbi-
trary random values to m33 and m35. Now we have the output of Step 10. Then
m31 is determined by (44), at which point we give arbitrary random values to
m30 and m32. Then m27 and m28 are determined by (40) and (42). Then (36),
(38) and (39) are also determined, while m26 and m24 are also determined by
(38) and (39). Then, employing the property of multi-permutation, m25 is deter-
mined by (36). Then (37) is automatically determined, so m29 is also determined
by (37). Therefore, we can get m24 ∼ m47 satisfying w0 ∼ w7 with complexity
1. Since we can assign m30, m32, m33 and m35 ∼ m42 random values, we know
that there are 2176 m24 ∼ m47 cases.
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Fig. 7. The Third Phase

Fourth Phase (Meet-in-the-Middle-attack) We repeat the second phase 2t+64

times. Then we can get 2t m0 ∼ m23 which make the first 4-word of the output
of step 7.5 w0||w1||w2||w3. We store these 2t m0 ∼ m23 and the output of step
7.5 for each m0 ∼ m23. We repeat the third phase 2128−t times. According to the
birthday attack complexity, given a hash output o0||o1|| · · · ||o7, we can find a
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padded preimage m0 ∼ m47 with 2t+64+2128−t time complexity and 2t memory.
This concludes our attack.

Note that our attack does not depend on the value of s which is the constant
related to the number of steps guaranteeing the collision resistance property. Also
our attack can be used in any word size case (in this paper, we only consider
16-bit word size).

5 Conclusion

In this paper, we described a preimage attack on the parallel FFT-Hashing
function which is the first attack on this design. For example we can find a
preimage with 297 time complexity and 232 memory which is less than the generic
preimage attack complexity of 2128.
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