
Efficient (k, n) Threshold Secret Sharing
Schemes Secure Against Cheating from n − 1

Cheaters

Toshinori Araki

NEC Corporation
t-araki@ek.jp.nec.com

Abstract. In (k, n) threshold secret sharing scheme, Tompa and Woll
consider a problem of cheaters who try to make another participant re-
construct invalid secret. Later, the model of such cheating is formalized
in some researches. Some schemes secure against cheating of these mod-
els are proposed. However, in these models, the number of colluding
participants is restricted to k − 1 or less. In this paper, we consider k
or more colluding participants. Of course, secrecy is not maintained to
such participants. However, if considering detecting the fact of cheating,
we need to consider a cheating from k or more colluding participants.
In this paper, we propose a (k, n) threshold secret sharing scheme that
is capable of detecting the fact of cheating from n − 1 or less colluding
participants. A scheme proposed by Tompa and Woll can be proven to
be a (k, n) threshold secret sharing scheme that is capable of detecting
the fact of cheating from n − 1 or less colluding participants. However,
our proposed scheme is much more efficient with respect to the size of
shares.

1 Introduction

Background. A (k, n) threshold secret sharing scheme [1,10] is a cryptographic
primitive used to distribute a secret s to n participants in such a way that a
set of k or more participants can recover the secret s and a set of k − 1 or less
participants cannot obtain any information about s. A piece of information held
by participant is called a share.

Various problems in (k, n) threshold secret sharing schemes are considered.
Above all, the problem of cheaters in threshold schemes is considered in various
researches.

Tompa and Woll [11] considered the following cheating scenario. Suppose that
colluding participants want to cheat another participant by submitting forged
shares in the reconstruction. They succeed if the reconstructed value is different
from the original secret. Later, a model of such cheating is formalized in [3,8].
Some schemes secure against cheating of these models are proposed [2,7,8,11].

Our Contribution. In the models of [3,8], the number of colluding participants
is restricted to k − 1 or less. However, we can consider k or more colluding

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 133–142, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

134 T. Araki

participants. Of course, secrecy is not maintained to such participants. However,
if considering detecting the fact of cheating, we need to consider a cheating from
k or more colluding participants. In this paper, we construct a (k, n) threshold
secret sharing scheme that is capable of detecting the fact of cheating from n−1
or less colluding participants.

Schemes in [2,7,8] are not capable of detecting the fact of cheating from k
or more colluding participants. Scheme in [11] is capable of detecting the fact
of cheating from n − 1 colluding participants. However our proposed scheme is
much more efficient with respect to the size of shares. Particularly, the size of
the share in the proposed scheme is a few bit longer than lower bound of [7]
when parameter k,n are small and |S|1 is smaller than 1/ε , where ε denotes the
successful probability of cheating and S denotes the set of secrets.

Organization. The rest of the paper is organized as follows. In Section 2, we
briefly review the models of secret sharing schemes capable of detecting cheating,
and we discuss previous works done on them. In Section 3, we introduce a new
model of cheating from n−1 or less colluding cheaters. In Section 4, we present an
efficient scheme secure in the new model. In Section 5, we consider the problem
of forged reconstruction result. In Section 6, we summarize our work.

2 Preliminaries

2.1 (k, n) Threshold Scheme

In secret sharing schemes, there are n participants P = {P1, . . . , Pn} and a dealer
D.

A model consists of two algorithms: ShareGen and Reconst. Share genera-
tion algorithm ShareGen takes a secret s ∈ S as input and outputs a list
(v1, v2, . . . , vn). Each vi is called a share and is given to a participant Pi. Or-
dinarily, ShareGen is invoked by the D. Secret reconstruction algorithm Reconst
takes a list of shares and outputs a secret s ∈ S. In a (k, n) threshold scheme
[1,10], any k or more participants can recover s but no subset of less than k
participants can determine any partial information about s.

2.2 Secret Sharing Schemes Secure Against Cheating

A secret sharing scheme capable of detecting cheating was first presented by
Tompa and Woll [11]. They considered the scenario that k − 1 or less cheaters
submit forged shares in the secret reconstruction phase. Such cheaters will suc-
ceed if another participant in the reconstruction accepts an incorrect secret2.

There are two different models for secret sharing schemes capable of detecting
such cheating. Carpentieri, De Santis, and Vaccaro [4] first considered a model

1 Throughout the paper, the cardinality of the set X is denoted by |X |.
2 Please note that here we focus on the problem of detecting the fact of cheating with

unconditional security. Neither secret sharing schemes which identify cheaters [3,6]
nor verifiable secret sharing schemes [9,5] are within the scope of this paper.

Efficient (k, n) Threshold Secret Sharing Schemes 135

in which cheaters who know the secret try to make another participant recon-
struct an invalid secret. We call this model the “CDV model.” Recently, Ogata,
Kurosawa, and Stinson [8] introduced a model with weaker cheaters who do not
know the secret in forging their shares. We call this model the “OKS model.”

As in ordinary secret sharing schemes, each of these models consists of two
algorithms. A share generation algorithm ShareGen is the same as that in the
ordinary secret sharing schemes. A secret reconstruction algorithm Reconst is
slightly changed: it takes a list of shares as input and outputs either a secret or
the special symbol ⊥ (⊥ �∈ S.) Reconst outputs ⊥ if and only if cheating has
been detected. To formalize the models, we define the following simple game for
any (k, n) threshold secret sharing scheme SS = (ShareGen, Reconst) and for any
(not necessarily polynomially bounded) Turing machine A = (A1, A2), where A
represents cheaters Pi1 , . . . , Pik−1 who try to cheat Pik

.

Game(SS, A)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(i1, . . . , ik−1) ← A1(X);
// set X = s for the CDV model, X = ∅ for the OKS model.
(v′i1 , . . . , v

′
ik−1

, ik) ← A2(vi1 , . . . , vik−1 , X);

The advantage of cheaters is expressed as Adv(SS, A) = Pr[s′ ∈ S ∧ s′ �= s] ,
where s′ is a secret reconstructed from v′i1 , v

′
i2

, . . . , v′ik−1
, vik

and the probability
is taken over the distribution of S and over the random tapes of ShareGen and A.

Definition 1. A (k, n) threshold secret sharing scheme SS is called a (k, n, ε)-
secure secret sharing scheme if Adv(SS, A) ≤ ε for any adversary A.

2.3 Previous Work

In this subsection, we briefly review the known bounds and constructions of
(k, n, ε)-secure secret sharing schemes.

Tompa and Woll have proposed a scheme [11] that can be proven to be a
(k, n, εCDV)-secure secret sharing scheme in the CDV model. Where Vi denotes
the set of shares, the size of share |Vi| is as large as ((|S|−1)(k−1)

εCDV
+ k)2.

A lower bound for the size of shares in the CDV model is described as follows:

Proposition 1. [4] In the CDV model, the size of shares for (k, n, εCDV)-secure
secret sharing schemes is lower bounded by |Vi| ≥ |S|

εCDV
.

Ogata et al. improved this bound when the secret is uniformly distributed:

Proposition 2. [8] In the CDV model, if the secret is uniformly distributed,
then the size of shares |Vi| for (k, n, εCDV)-secure secret sharing schemes is lower
bounded by |Vi| ≥ |S|−1

ε2CDV
+ 1 .

136 T. Araki

Ogata et al. also presented the lower bound for the size of shares for (k, n, εOKS)-
secure secret sharing scheme in the OKS model as follows.

Proposition 3. [8] In the OKS model, the size of shares for (k, n, εOKS)-secure
secret sharing schemes is lower bounded by |Vi| ≥ |S|−1

εOKS
+ 1 .

Within the OKS model, Ogata et al. have proposed a (k, n, εOKS)-secure secret
sharing schemes that satisfies the bound of Proposition 3 with equality [8]. How-
ever, this scheme is proven to be secure only if the secret is uniformly distributed.
Within the CDV model, Cabello et al. have proposed a (k, n, εCDV)-secure secret
sharing scheme [2]. The size of share is a little longer than the lower bound of
Proposition 2. Further, the scheme is secure for arbitrary secret distribution, but
, in this scheme, the successful cheating probability is uniquely determined from
the size of the secret. Obana et al. have generalized this result in [7]. In this
scheme, the successful cheating probability can be chosen without regard to the
size of secret.

3 New Model of Secret Sharing Schemes Secure Against
Cheating

Some kinds of cheating are not covered by the OKS(CDV) model. For example,
cheaters who know k or more shares are not considered. Schemes in [2,7,8] are
proven to be secure in the CDV model or OKS model. However, if cheaters
know k or more shares, these schemes are not secure. The successful cheating
probability is one.

Actually, cheating from k or more colluding participants exists. Of course,
secrecy is not maintained to such participants. However, if considering detecting
the fact of cheating, we need to consider a cheating from k or more colluding
participants. Therefore, it is highly desired to construct secret sharing schemes
capable of detecting cheating from k or more colluding participants with un-
limited computational power. To this end, we define new models : the OKSn−1

model and the CDVn−1 model which are slight modifications of the OKS model
and the CDV model, respectively. Cheaters in the new models are allowed to
know n − 1 shares. To characterize such cheaters, a game is defined as follows.

Game(SS, B)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(i1, . . . , in−1) ← B1(X);
// set X = s for the CDVn−1 model, X = ∅ for the OKSn−1 model.
(v′i1 , . . . , v

′
ik−1

, in) ← B2(vi1 , . . . , vin−1 , X).;

The advantage of cheaters is redefined by Adv(SS, B) = Pr[s′ ∈ S ∧ s′ �= s] ,
where s′ is a secret reconstructed from v′i1 , v

′
i2

, . . . , v′ik−1
, vin and the probability

is taken over the distribution of S and over the random tapes of ShareGen and
B. In CDVn−1 model, s seems to be non-valuable information for B2 , because k

Efficient (k, n) Threshold Secret Sharing Schemes 137

or more colluding cheaters can reconstruct secret . However, in the case of (n, n)
threshold structure, s is valuable for B2 .

Please note that the CDVn−1 model is the most powerful model of cheating.
Because, now, target participant’s share is the only information that cheaters
don’t know. Besides, please note that all the bounds for the OKS (CDV) model
(e.g. Propositions 1-3) are also valid for OKSn−1 (CDVn−1) since a scheme secure
in the OKSn−1 (CDVn−1) model is also secure in the OKS (CDV) model.

However, the schemes secure in the OKS(CDV) model are not necessarily
secure in the OKSn−1(CDVn−1) model. For example, the schemes presented in
[2,7,8] are not secure in the OKSn−1(CDVn−1) model. In these schemes, k or
more cheaters can know any other participant’s share vin . So, they can adjust
v′i1 , v

′
i2

, . . . , v′ik−1
such that reconstructed result from v′i1 , v

′
i2

, . . . , v′ik−1
, vin is the

value which they want.
However, the schemes presented in [11] can be proven to be secure in the

CDVn−1 model.
Next, we briefly review the scheme presented in [11].

3.1 The Tompa and Woll Scheme[11]

The share generation algorithm ShareGen and the share reconstruction algorithm
Reconst is described as follows3.

Share Generation. On input a secret s ∈ {0, . . . , |S| − 1}, the share generation
algorithm ShareGen outputs a list of shares (v1, . . . , vn) as follows. Here, q is a
prime such that q > (|S| − 1)(k − 1)/ε + n:

1. Generate random polynomial f(x) of degree k−1 over Zq such that f(0) = s.
2. Choose n distinct elements r1, . . . , rn uniformly and randomly from {1, . . . ,

q − 1}.
3. Compute vi = (f(ri), ri) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check. On input a list of k shares (vi1 , . . . ,
vik

), the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as
follows:

1. Reconstruct ˆf(0) from vi1 , . . . , vik
using Lagrange interpolation.

2. Output ˆf(0) if ˆf(0) < |S| holds. Otherwise Reconst outputs ⊥.

In this scheme, k or more cheaters can’t know any other participant’s share rin .
This scheme can be proven to be a (k, n, ε)-secure secret sharing scheme in the
CDVn−1 model, and the size of share |Vi| is q2 = ((|S|−1)(k−1)

ε + n)2. Further,
the scheme is secure for arbitrary secret distribution.

3 We made slight modification to the parameter of [11]. Because, the parameters in
[11] are the parameters considering at most k−1 cheaters. We change the parameters
to the parameters considering at most n − 1 cheaters.

138 T. Araki

4 Proposed Scheme

Tompa and Woll scheme’s Validity Check algorithm check whether reconstructed
secret is in range. This is the reason why their scheme needs very large field for
polynomial which distributes secret. In proposed scheme, we use one more poly-
nomial for distributing secret. Comparing two reconstructed secret, proposed
scheme’s Validity Check algorithm can check whether reconstructed secret is a
particular value. Then, the size of the field for polynomial can be made small.
Consequently, though proposed scheme uses two polynomials, the size of the
share is smaller than Tompa and Woll scheme.

In this section, we propose an efficient (k, n, ε)-secure secret sharing scheme
in the CDVn−1 model that is proven to be secure for any secret distribution.

The share generation algorithm ShareGen and the share reconstruction algo-
rithm Reconst are described as follows where p is a prime power and q is a prime
power such that q > max ((k − 1)/ε + n, p).

Share Generation. On input a secret s ∈ {0, . . . , p − 1}, the share generation
algorithm ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate random polynomial f(x) of degree k − 1 over GF(q) such that
f(0) = s, and g(x) of degree k − 1 over GF(p) such that g(0) = s.

2. Choose n distinct elements r1, . . . , rn uniformly and randomly from {1, . . . r},
r ≤ q − 1.

3. Compute vi = (f(ri), g(i), ri) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check. On input a list of k shares (vi1 , . . . ,
vik

), the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as
follows:

1. Reconstruct ˆf(0) and ˆg(0) from vi1 , . . . , vik
using Lagrange interpolation.

2. Output ˆf(0) if ˆf(0) = ˆg(0) holds. Otherwise Reconst outputs ⊥.

the properties of this scheme is summarized by the following theorem.

Theorem 1. The scheme of §4 is a (k, n, ε)-secure secret sharing scheme in the
CDVn−1 model with parameters |S| = p, ε = (k − 1)/(r − n + 1) and |Vi| =
p ·q ·r
max (|S|2(k−1

ε +n+1), |S|(k−1
ε +n+1)2). Further, the scheme is secure

for arbitrary secret distribution.

Proof. Without loss of generality, we can assume P1, . . . , Pn−1 are cheaters and
they try to cheat Pn who has vn = (fn, gn, rn) by forging their shares vi =
(fi, gi, ri) (for 1 ≤ i ≤ k − 1.)

Now, suppose that cheaters try to cheat Pn by forging their shares to vi =
(f ′

i , g
′
i, r

′
i)(for 1 ≤ i ≤ k − 1.), (r′1, f

′
1), . . . , (r

′
k−1, f

′
k−1), (rn, fn) define a polyno-

mial f̂ and (1, g′1), . . . , (k − 1, g′k−1), (n, gn) define a polynomial ĝ. They succeed
in cheating Pn if ˆf(0) = ˆg(0). In the other words, they succeed in cheating
if (r′1, f

′
1), . . . , (r

′
k−1, f

′
k−1), (rn, fn), (0, ˆg(0)) are passing through the same poly-

nomial f ′ of degree k − 1 such that f ′(0) = ˆg(0)(�= s). The cheaters can ob-
tain polynomial g from (0, s), (1, g1), . . . , (k − 1, gk−1). We can rewrite ˆg(0) by

Efficient (k, n) Threshold Secret Sharing Schemes 139

ˆg(0) = Lng(n) +
∑k−1

j=1 Ljg
′
j (Lj is a Lagrange coefficient), so cheaters can con-

trol the value ˆg(0) as they want by adjusting their shares. Now suppose a poly-
nomial f ′ that is passed by the points (r′1, f

′
1), . . . , (r

′
k−1, f

′
k−1), (0, ˆg(0)(�= s)).

The cheaters succeed in cheating if f ′(rn) = f(rn). The f ′ is different polyno-
mial from f , because f ′(0) = ˆg(0) �= s = f(0) . So, f ′ can intersect f in at
most k − 1 points. Here, rn is a random element of {1, . . . , r} − {r1, . . . , rn−1}.
Thus, the probability that f ′(rn) = f(rn) is at most (k − 1)/(r − n + 1). So
ε = (k − 1)/(r − n + 1). ��

5 Validity Check of Reconstruction Result

In previous work, participants can identify the fact of cheating only when they
participate in the reconstruction.

In some situation, participants want to verify whether there was cheating from
only reconstruction result. In this section, we consider the scenario that cheaters
forge the reconstruction result. Such cheaters will succeed if another participants
accepts an incorrect secret.

We define new models for secret sharing schemes capable if detecting such
cheating. These model consist of three algorithms: ShareGen, Reconst, and a
validity checking algorithm Check. The share generation algorithm ShareGen is
the same as that in the ordinary secret sharing schemes. A secret reconstruction
algorithm Reconst is slightly changed: it takes a list of shares as input and
outputs either a pair of secret s and “check data“ c or the special symbol ⊥
(⊥ �∈ S.) Reconst outputs ⊥ if and only if cheating has been detected. “check
data“ c is a value for checking the validity of the reconstructed secret. Check
takes a secret s, check data c, and one share vi and outputs either a secret s
or the special symbol ⊥ (⊥ �∈ S.) Check outputs ⊥ if and only if cheating has
been detected. To formalize the models, we define the following simple game for
threshold secret sharing scheme SS = (ShareGen, Reconst, Check) and for any
(not necessarily polynomially bounded) Turing machine C = (C1, C2), where C
represents cheaters Pi1 , . . . , Pin−1 who try to cheat Pin .

Game(SS, C)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(i1, . . . , in−1) ← C1(X);
// set X = s for the CDVn−1 model, X = ∅ for the OKSn−1 model.
(s′, c′) ← C2(vi1 , . . . , vin−1 , X);

The advantage of cheaters is expressed as Adv(SS, C) = Pr[s′ ∈ S ∧ s′ �= s] ,
where s′ = Check(s′, c′, vin) and the probability is taken over the distribution of
S and over the random tapes of ShareGen and C.

Definition 2. A (k, n) threshold secret sharing scheme SS is called a (k, n,
ε1, ε2) -secure secret sharing scheme with Validity check of reconstruction result

140 T. Araki

if Adv(SS, B) ≤ ε1 for any adversary B and Adv(SS, C) ≤ ε2 for any adversary
C.

Easily, we can construct a (k, n, ε1, ε2)-secure secret sharing scheme with Validity
check of reconstruction result from the scheme of Section 4.

Using reconstruction algorithm which outputs all inputs as check data, all
participants can check the validity of a reconstruction result by inputing k −
1 shares from check data and a share which they have to the reconstruction
algorithm.

But, in this scheme, the size of check data is very large. However, by slight
modification to the scheme of Section 4, we can construct more efficient scheme.

5.1 Modified Proposed Scheme

In this section, we propose a (k, n, ε1, ε2)-secure secret sharing scheme with Va-
lidity check of reconstruction result. This scheme is a slightly modified scheme of
the scheme of Section 4 and the check data is much smaller than trivial scheme.

The share generation algorithm ShareGen, the share reconstruction algorithm
Reconst, and the validity checking algorithm Check are described as follows where
p is a prime power and q is a prime power such that q > max ((k − 1)/εl + n, p)
(for l = 1, 2).

Share Generation. On input a secret s ∈ {0, . . . , p − 1}, the share generation
algorithm ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate random polynomial f(x) of degree k − 1 over GF(q) such that
f(0) = s, and g(x) of degree k − 1 over GF(p) such that g(0) = s.

2. Choose n distinct elements r1, . . . , rn uniformly and randomly from {1, . . . r}
r ≤ q − 1.

3. Compute vi = (f(ri), g(i), ri) and output (v1, . . . , vn)

Secret Reconstruction and Validity Check. On input a list of k shares (vi1 , . . .
, vik

), the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as
follows:

1. Reconstruct f̂ and ˆg(0) from vi1 , . . . , vik
using Lagrange interpolation.

2. Output ˆf(0) as secret and f̂ as check data if ˆf(0) = ˆg(0) holds. Otherwise
Reconst outputs ⊥.

Validity check of Reconstruction result. On input a polynomial f(x) of degree
k − 1 over GF(q) and a share vi = (fi, gi, ri), the validity checking algorithm
Check outputs a secret s or ⊥ as follows:

– Output f(0) if f(ri) = fi holds. Otherwise Reconst outputs ⊥.

In this validity check algorithm, f can be regarded not only as secret but also
as check data.

The properties of this scheme is summarized by the following theorem.

Efficient (k, n) Threshold Secret Sharing Schemes 141

Theorem 2. The scheme of §5.1 is (k, n, ε1, ε2)-secure secret sharing scheme in
the CDVn−1 model with parameters |S| = p,ε1 = ε2 = (k − 1)/(r − n + 1), and
|Vi| = p · q · r
max (|S|2(k−1

εl
+ n + 1), |S|(k−1

ε1
+ n + 1)2) . Further, the scheme

is secure for arbitrary secret distribution.

Proof. Firstly, ε1 is proven to be (k − 1)/(r − n + 1) by similar discussion to the
proof of Theorem 1. Next, we will show that ε2 = (k−1)/(r−n+1). Without loss
of generality, we can assume P1, . . . , Pn−1 are cheaters and they try to cheat Pn

who has vn = (fn, gn, rn) by forging their check data to f ′ such that f ′(0) �= s.
They succeed in cheating Pn if f ′(rn) = fn. In other words, they succeed in

cheating Pn if f ′(rn) = f(rn). The f ′ is different polynomial from f , because
f ′(0) �= s. Here, rn is a random element of {1, . . . , r} − {r1, . . . , rn−1}. Thus,
the probability that f ′(rn) = f(rn) is at most (k − 1)/(r − n + 1). So ε2 =
(k − 1)/(r − n + 1). ��

In proposed scheme, the size of check data is only one polynomial represen-
tation of degree k − 1 over GF(q). This is much smaller than the check data of
trivial scheme.

6 Conclusion

In this paper, we proposed an efficient (k, n) threshold secret sharing scheme
capable of detecting cheating from n − 1 or less colluding participants.

Table 1 and Table 2 below compares the bit length of shares for the various
security parameters where the access structure considered is 3-out-of-5 threshold
access structure.

Compared to the scheme of [11] the size of the share in the proposed scheme
is smaller for all the security parameters. When |S| < 1/ε and k,n are small,

Table 1. Comparison of the bit length of the shares (for ε = 2−128)

|S| Known Bound Proposed Scheme Tompa and Woll
264 321 324 388
2128 385 388 516
2256 503 642 772
2512 769 1154 1284

Table 2. Comparison of the bit length of the shares (for ε = 2−256)

|S| Known Bound Proposed Scheme Tompa and Woll
264 577 580 644
2128 641 644 772
2256 769 772 1026
2512 1025 1282 1540

142 T. Araki

the size of the share in the proposed scheme is a few bits longer than the lower
bound of [7].

Finding more efficient (k, n, ε)-secure secret sharing schemes in the CDVn−1

model will be future work.

Acknowledgement

We thank the anonymous referees for useful and datailed comments.

References

1. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979, National
Computer Conference, vol. 48, pp. 313–137 (1979)

2. Cabello, S., Padró, C., Sáez, G.: Secret Sharing Schemes with Detection of Cheaters
for a General Access Structure. Designs, Codes and Cryptography 25(2), 175–188
(2002)

3. Carpentieri, M.: A Perfect Threshold Secret Sharing Scheme to Identify Cheaters.
Designs, Codes and Cryptography 5(3), 183–187 (1995)

4. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of Shares and Probability of
Cheating in Threshold Schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994)

5. Cramer, R., Damg̊ard, I., Maurer, U.M.: General Secure Multi-party Computation
from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

6. Kurosawa, K., Obana, S., Ogata, W.: t-Cheater Identifiable (k, n) Secret Sharing
Schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423.
Springer, Heidelberg (1995)

7. Obana, S., Araki, T.: Almost Optimum Secret Sharing Schemes Secure Against
Cheating for Arbitrary Secret Distribution. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 364–379. Springer, Heidelberg (2006)

8. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum Secret Sharing Scheme Secure
against Cheating. SIAM Journal on Discrete Mathematics 20(1), 79–95 (2006)

9. Pedersen, T.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–149.
Springer, Heidelberg (1992)

10. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

11. Tompa, M., Woll, H.: How to Share a Secret with Cheaters. Journal of Cryptol-
ogy 1(3), 133–138 (1989)

	Efficient (k, n) Threshold Secret SharingSchemes Secure Against Cheating from n − 1Cheaters
	Introduction
	Preliminaries
	(k,n) Threshold Scheme
	Secret Sharing Schemes Secure Against Cheating
	Previous Work

	New Model of Secret Sharing Schemes Secure Against Cheating
	The Tompa and Woll Scheme [11]

	Proposed Scheme
	Validity Check of Reconstruction Result
	Modified Proposed Scheme

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

