


Lecture Notes in Computer Science 4586
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Josef Pieprzyk Hossein Ghodosi
Ed Dawson (Eds.)

Information Security
and Privacy

12th Australasian Conference, ACISP 2007
Townsville, Australia, July 2-4, 2007
Proceedings

13



Volume Editors

Josef Pieprzyk
Macquarie University, Department of Computing
Center for Advanced Computing - Algorithms and Cryptography
Sydney, NSW 2109, Australia
E-mail: josef@ics.mq.edu.au

Hossein Ghodosi
James Cook University
School of Mathematics, Physics, and Information Technology
Townsville, QLD 4811, Australia
E-mail: hossein@cs.jcu.edu.au

Ed Dawson
Queensland University of Technology, Information Security Institute
Brisbane, QLD 4001, Australia
E-mail: e.dawson@qut.edu.au

Library of Congress Control Number: 2007929635

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, E.4, F.2.1, K.4.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-73457-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73457-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12086818 06/3180 5 4 3 2 1 0



Preface

The 12th Australasian Conference on Information Security and Privacy—
ACISP2007—was held in Townsville, Queensland, July 2–4, 2007. This was the
first conference to be organized outside the traditional three venues: Brisbane
and Gold Coast, Melbourne, and Sydney and Wollongong. The conference was
sponsored by James Cook University, Center for Advanced Computing – Algo-
rithm and Cryptography at Macquarie University, Information Security Institute
at Queensland University of Technology, and the Research Network for Secure
Australia. We would like to thank Matthieu Finiasz and Thomas Baignères from
EPFL, LASEC, Switzerland for letting us use their iChair software that facili-
tated the submission and revision processes.

Out of 132 submissions, the Program Committee (PC) selected 33 papers
after a rigorous review process. Each paper got assigned to at least three referees.
Papers submitted by members of the PC got assigned to five referees. In the first
stage of the review process, the submitted papers were read and evaluated by the
PC members and then in the second stage, the papers were scrutinized during
a three-week-long discussion. We would like to thank the authors of all papers
(both accepted and rejected) for submitting their papers to the conference. A
special thanks go to the members of the PC and the external referees who gave
their time, expertise and enthusiasm in order to select the best collection of
papers.

As in previous years, we held a competition for the “best student paper.”
To be eligible, a paper had to be co-authored by a postgraduate student whose
contribution was more than 50%. Eight papers entered the competition. The
winner was Norbert Pramstaller from Graz University of Technology, Austria, for
the paper “Second Preimages for Iterated Hash Functions and Their Implications
on MACs.”

This year we had only one invited talk, which was given by Andreas Enge.
The title of the talk was “Contributions Cryptographic Curves.”

We would like to express our thanks to Springer and in particular, to Al-
fred Hofmann and Ronan Nugent for their continuing support of the ACISP
conference and for help in the conference proceeding production. Further, we
thank Michelle Kang, who helped us with the setting up and maintenance of the
ACISP Web site, Vijayakrishnan Pasupathinathan, who took care of the iChair
server and ACISP mailbox, Adam Shah for installation of the iChair server and
Elizabeth Hansford for assisting with conference organization.

July 2007 Josef Pieprzyk
Hossein Ghodosi

Ed Dawson



Organization

ACISP 2007
July 2–4, 2007, Townsville, Queensland, Australia

General Co-chairs

Hossein Ghodosi James Cook University, Australia
Ed Dawson QUT, Australia

Program Chair

Josef Pieprzyk Macquarie University, Australia

Program Committee

Paul Ashley IBM, Australia
Tuomas Aura Microsoft, USA
Lynn Batten Deakin University, Australia
Colin Boyd QUT, Australia
Andrew Clark QUT, Australia
Scott Contini Macquarie University, Australia
Nicolas Courtois University College London, UK and Gemalto, France
Yvo Desmedt University College London, UK
Christophe Doche Macquarie University, Australia
Ed Dawson QUT, Australia
Hossein Ghodosi James Cook University, Australia
Jovan Golić Telecom, Italy
Dieter Gollmann TUHH, Germany
Peter Gutmann University of Auckland, New Zealand
Kwangjo Kim ICU, Korea
Sevin Knapskog NTNU, Norway
Kaoru Kurosawa Ibaraki University, Japan
Tanja Lange TU/e, Netherlands
Javier Lopez University of Malaga, Spain
Keith Martin Royal Holloway, UK
Mitsuru Matsui Mitsubishi Electric, Japan
Paul Montague Motorola, Australia
Yi Mu University of Wollongong, Australia
Andrew Odlyzko University of Minnesota, USA
Eiji Okamoto University of Tsukuba, Japan
Rafail Ostrovsky UCLA, USA



VIII Organization

David Poincheval ENS, France
Bart Preneel K.U.Leuven, Belgium
Bimal Roy ISICAL, India
Rei Safavi-Naini University of Wollongong, Australia

University of Calgary, Canada
Jennifer Seberry University of Wollongong, Australia
Igor Shparlinski Macquarie University, Australia
Ron Steinfeld Macquarie University, Australia
Willy Susilo University of Wollongong, Australia
Henk van Tilborg TU/e, Netherlands
Serge Vaudenay EPFL, Switzerland
Huaxiong Wang Macquarie University, Australia

Nanyang Technological University, Singapore
Henry Wolfe University of Otago, New Zealand

External Reviewers

Ajith Abraham Avishek Adhikari Isaac Agudo
Man Ho Au Joonsang Baek Vittorio Bagini
Yun Bai Thomas Baignères Rana Barua
Daniel J. Bernstein Peter Birkner Xavier Boyen
Yang Cui Jan Camenisch Christophe De Cannière
Alvaro Cardenas Dario Catalano Agnes Chan
Chris Charnes Benoit Chevallier-Mames Sherman S. M. Chow
Yvonne Cliff Tanmoy Das Pascal Delaunay
Dang Nguyen Duc Ernest Foo Pierre-Alain Fouque
Jun Furukawa Krzysztof M. Gaj David Galindo
Juan Garay Danilo Gligoroski M. Choudary Gorantla
Jens Groth Kishan Chand Gupta Goichiro Hanaoka
Kjetil Haslum Swee-Huay Heng Jonathan Herzog
Shoichi Hirose Michael Hitchens Jeffrey Horton
Xinyi Huang Laurent Imbert Sebastiaan Indesteege
Mahabir Prasad Jhanwar Emilia Käsper Lars R. Knudsen
Markulf Kohlweiss Divyan M. Konidala Takeshi Koshiba
Kerstin Lemke-Rust Vo Duc Liem Chu-Wee Lim
Liang Liu Liang Lu Anna Lysyanskaya
Mark Manulis Abe Masayuki Krystian Matusiewicz
Luke McAven Miodrag Mihaljevic Ilya Mironov
Guglielmo Morgari Sean Murphy Pablo Najera
Gregory Neven Antonio Nicolosi Svetla Nikova
Wakaha Ogata Jose A. Onieva Dunkelman Orr
Pascal Paillier Sylvain Pasini Kenny Paterson
Maura Paterson Goutam Paul Souradyuti Paul
Kun Peng Slobodan Petrovic Raphael C.-W. Phan
Le Trieu Phong Geraint Price Havard Raddum



Organization IX

Mohammad Reza Reyhanitabar Rodrigo Roman Greg Rose
Chun Ruan Yasuyuki Sakai Somitra Sanadhya
Siamak Shahandashti Nicholas Sheppard Jason Smith
Makoto Sugita Daisuke Suzuki Katsuyuki Takashima
Qiang Tang Christophe Tartary Clark Thomborson
Toshio Tokita Jacques Traore Pim Tuyls
Frederik Vercauteren Charlotte Vikkelsoe Martin Vuagnoux
Guilin Wang Peishun Wang Shuhong Wang
Yan Wang Yongge Wang Brent Waters
Benne de Weger Christopher Wolf Hongjun Wu
Qianhong Wu Guangwu Xu Bo-Yin Yang
Qingsong Ye Hongbo Yu Steve Zdancewic
Sèbastien Zimmer



Table of Contents

Stream Ciphers

An Analysis of the Hermes8 Stream Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . 1
Steve Babbage, Carlos Cid, Norbert Pramstaller, and H̊avard Raddum

On the Security of the LILI Family of Stream Ciphers Against
Algebraic Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Sultan Zayid Al-Hinai, Ed Dawson, Matt Henricksen, and
Leonie Simpson

Strengthening NLS Against Crossword Puzzle Attack . . . . . . . . . . . . . . . . . 29
Debojyoti Bhattacharya, Debdeep Mukhopadhyay,
Dhiman Saha, and D. RoyChowdhury

Hashing

A New Strategy for Finding a Differential Path of SHA-1 . . . . . . . . . . . . . 45
Jun Yajima, Yu Sasaki, Yusuke Naito, Terutoshi Iwasaki,
Takeshi Shimoyama, Noboru Kunihiro, and Kazuo Ohta

Preimage Attack on the Parallel FFT-Hashing Function . . . . . . . . . . . . . . 59
Donghoon Chang, Moti Yung, Jaechul Sung, Seokhie Hong, and
Sangjin Lee

Second Preimages for Iterated Hash Functions and Their Implications
on MACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Norbert Pramstaller, Mario Lamberger, and Vincent Rijmen

On Building Hash Functions from Multivariate Quadratic Equations . . . 82
Olivier Billet, Matt J.B. Robshaw, and Thomas Peyrin

Biometrics

An Application of the Goldwasser-Micali Cryptosystem to Biometric
Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Julien Bringer, Hervé Chabanne, Malika Izabachène,
David Pointcheval, Qiang Tang, and Sébastien Zimmer

Soft Generation of Secure Biometric Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Jovan Dj. Golić and Madalina Baltatu

Secret Sharing

Flaws in Some Secret Sharing Schemes Against Cheating . . . . . . . . . . . . . . 122
Toshinori Araki and Satoshi Obana



XII Table of Contents

Efficient (k, n) Threshold Secret Sharing Schemes Secure Against
Cheating from n − 1 Cheaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Toshinori Araki

Cryptanalysis

Related-Key Amplified Boomerang Attacks on the Full-Round Eagle-64
and Eagle-128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Kitae Jeong, Changhoon Lee, Jaechul Sung, Seokhie Hong, and
Jongin Lim

Analysis of the SMS4 Block Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Fen Liu, Wen Ji, Lei Hu, Jintai Ding, Shuwang Lv,
Andrei Pyshkin, and Ralf-Philipp Weinmann

Forgery Attack to an Asymptotically Optimal Traitor Tracing
Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Yongdong Wu, Feng Bao, and Robert H. Deng

Public Key Cryptography

TCHo: A Hardware-Oriented Trapdoor Cipher . . . . . . . . . . . . . . . . . . . . . . 184
Jean-Philippe Aumasson, Matthieu Finiasz, Willi Meier, and
Serge Vaudenay

Anonymity on Paillier’s Trap-Door Permutation . . . . . . . . . . . . . . . . . . . . . 200
Ryotaro Hayashi and Keisuke Tanaka

Generic Certificateless Key Encapsulation Mechanism . . . . . . . . . . . . . . . . 215
Qiong Huang and Duncan S. Wong

Double-Size Bipartite Modular Multiplication . . . . . . . . . . . . . . . . . . . . . . . 230
Masayuki Yoshino, Katsuyuki Okeya, and Camille Vuillaume

Affine Precomputation with Sole Inversion in Elliptic Curve
Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Erik Dahmen, Katsuyuki Okeya, and Daniel Schepers

Construction of Threshold (Hybrid) Encryption in the Random Oracle
Model: How to Construct Secure Threshold Tag-KEM from Weakly
Secure Threshold KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Takeru Ishihara, Hiroshi Aono, Sadayuki Hongo, and Junji Shikata

Efficient Chosen-Ciphertext Secure Identity-Based Encryption with
Wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

James Birkett, Alexander W. Dent, Gregory Neven, and
Jacob C.N. Schuldt



Table of Contents XIII

Authentication

Combining Prediction Hashing and MDS Codes for Efficient Multicast
Stream Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Christophe Tartary and Huaxiong Wang

Certificateless Signature Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Xinyi Huang, Yi Mu, Willy Susilo, Duncan S. Wong, and Wei Wu

Identity-Committable Signatures and Their Extension to
Group-Oriented Ring Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Cheng-Kang Chu and Wen-Guey Tzeng

Hash-and-Sign with Weak Hashing Made Secure . . . . . . . . . . . . . . . . . . . . . 338
Sylvain Pasini and Serge Vaudenay

“Sandwich” Is Indeed Secure: How to Authenticate a Message with
Just One Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Kan Yasuda

Threshold Anonymous Group Identification and Zero-Knowledge
Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Akihiro Yamamura, Takashi Kurokawa, and Junji Nakazato

Non-interactive Manual Channel Message Authentication Based on
eTCR Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Mohammad Reza Reyhanitabar, Shuhong Wang, and
Reihaneh Safavi-Naini

E-Commerce

A Practical System for Globally Revoking the Unlinkable Pseudonyms
of Unknown Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Stefan Brands, Liesje Demuynck, and Bart De Decker

Efficient and Secure Comparison for On-Line Auctions . . . . . . . . . . . . . . . . 416
Ivan Damg̊ard, Martin Geisler, and Mikkel Krøigaard

Practical Compact E-Cash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Man Ho Au, Willy Susilo, and Yi Mu

Security

Use of Dempster-Shafer Theory and Bayesian Inferencing for Fraud
Detection in Mobile Communication Networks . . . . . . . . . . . . . . . . . . . . . . . 446

Suvasini Panigrahi, Amlan Kundu, Shamik Sural, and
A.K. Majumdar



XIV Table of Contents

On Proactive Perfectly Secure Message Transmission . . . . . . . . . . . . . . . . . 461
Kannan Srinathan, Prasad Raghavendra, and
Pandu Rangan Chandrasekaran

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475



An Analysis of the Hermes8 Stream Ciphers

Steve Babbage1, Carlos Cid2, Norbert Pramstaller3, and H̊avard Raddum4

1 Vodafone Group R&D,
Newbury, United Kingdom

steve.babbage@vodafone.com
2 Information Security Group,

Royal Holloway, University of London
Egham, United Kingdom
carlos.cid@rhul.ac.uk

3 IAIK, Graz University of Technology
Graz, Austria

norbert.pramstaller@iaik.tugraz.at
4 Dept. of Informatics, The University of Bergen,

Bergen, Norway
haavardr@ii.uib.no

Abstract. Hermes8 [6,7] is one of the stream ciphers submitted to the
ECRYPT Stream Cipher Project (eSTREAM [3]). In this paper we
present an analysis of the Hermes8 stream ciphers. In particular, we
show an attack on the latest version of the cipher (Hermes8F), which
requires very few known keystream bytes and recovers the cipher secret
key in less than a second on a normal PC. Furthermore, we make some
remarks on the cipher’s key schedule and discuss some properties of ci-
phers with similar algebraic structure to Hermes8.

Keywords: Hermes8, Stream Cipher, Cryptanalysis.

1 Introduction

Hermes8 is one of the 34 stream ciphers submitted to eSTREAM, the ECRYPT
Stream Cipher Project [3]. The cipher has a simple byte-oriented design, con-
sisting of substitutions and shifts of the state register bytes. Two versions of the
cipher have been proposed. Originally, the cipher Hermes8 [6] was submitted as
candidate to eSTREAM. Although no weaknesses of Hermes8 were found dur-
ing the first phase of evaluation, the cipher did not seem to present satisfactory
performance in either software or hardware [4]. As a result, a slightly modified
version of the cipher, named Hermes8F [7], was submitted for consideration dur-
ing the second phase of eSTREAM. In this paper we present an analysis of the
Hermes8 stream ciphers. In Section 2 we present an alternative description of
the Hermes8 ciphers. Section 3 describes an attack against the latest version
of Hermes8. Section 4 contains some remarks on the key schedule of Hermes8,
while we discuss some algebraic properties of the ciphers in Section 5.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 S. Babbage et al.

2 Description of Hermes8F

According to [7], Hermes8F is a stream cipher based on the Substitution– Per-
mutation network principle. Hermes8F is defined for two different key lengths:
Hermes8F-80 uses 80-bit keys, while Hermes8F-128 uses 128-bit keys. The ci-
pher uses two byte-oriented registers: a 17-byte state register and a 10-byte key
register (16 bytes for Hermes8F-128). Additionally, there is a single byte register
Accu, which seems to have the use of a memory register (Figure 1). The diffu-
sion is provided by moving pointers through both registers, while non-linearity
is provided by the AES S-Box [2].

The main operation of the cipher consists of the following steps:

1. XOR the value stored at Accu with a byte from the state register and a byte
from the key register;

2. Use the previous result as input for the AES S-Box;

3. Replace the state register value used in step 1. by the output of the S-Box;

4. Store the output of the S-Box also in Accu;

5. Increment both the state and key register pointers (denoted by p1 and p2,
respectively).

Fig. 1. Hermes8F stream cipher [7]

The steps above are performed at each clocking. A round of the cipher consists of
17 clockings. At every 7 clockings, two bytes of the key register are updated. The
updating function is also based on the AES S-Box (Section 4). In the cipher’s
initialization, the encryption key is loaded into the key register, and the IV is
loaded into the state register. The register Accu starts with the zero byte as
content1. The initialization process consists of five rounds (i.e. 85 clockings),
and so all the state registers are updated five times before the cipher enters
1 In Hermes8, the initial value of Accu is key-dependent; see Section 4.



An Analysis of the Hermes8 Stream Ciphers 3

the normal mode of operation. The first bytes of the keystream are produced
after two further rounds. The output consists of 8 bytes from the state register,
taken from alternating positions of the register. Further bytes of the output are
produced at every two rounds. More details of the algorithm can be found in [7].

2.1 Alternative Description of Hermes8F

We note that it follows from the description above that during the cipher oper-
ation, the contents of the registers Accu and state[p1 − 1] are always the same.
Thus a more natural description of Hermes8F is given in Figure 2. It consists of
the state register R, which is represented as a feedback shift register of length
17, defined as

st
i = state[p1 + i] , 0 ≤ i ≤ 16,

where state[p1] is the byte addressed by pointer p1 at time t. This FSR is updated
according to the following relations:

st+1
i = st

i+1 , 0 ≤ i ≤ 15,
st+1
16 = S(st

0 ⊕ st
16 ⊕ kt),

where the byte kt is the output of the key register K at time t (that is, k[p2]),
and S represents the AES S-Box.

s16 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

S

�

��

�

�

�

�

�

p1

�
State Register�

Accu

�

Key Register

. . .kt

p2

�

Fig. 2. Hermes8F as a feedback shift register

In our attack, we need to consider the reverse cipher (clocking the genera-
tor backwards, and so generating the keystream blocks in reverse order2). The
relation of the feedback register of the reverse cipher is given by

st
0 = S−1(st+1

16 ) ⊕ st
16 ⊕ kt

= S−1(st+1
16 ) ⊕ st+1

15 ⊕ kt.

The inverse cipher is depicted in Figure 3.
2 As pointed out by one of the anonymous referees, the backward keystream was also

used in the attack described in [5].



4 S. Babbage et al.

s16 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

S−1

�

�

��

�

��

�

p1

�
State Register�

Accu

�

Key Register

. . .kt kt+1

p2
�

Fig. 3. The inverse of Hermes8F

3 Cryptanalysis of Hermes8F

The attack we describe exploits two features of Hermes8F:

1. In contrast to the forward cipher, the reverse cipher has slow diffusion. (In
the forward cipher, the new byte s16 contributes to the feedback in the very
next clock. But in the reverse cipher, the new byte s0 has no influence on
the feedback until it has shifted all the way along to the s15 position.)

2. The IV does not affect the key register.

Let us consider the keystream produced by Hermes8F under a secret key and a
random IV, and let Bj be the jth set of 8 bytes output by the cipher. Thus, if
we define T = 34 · j + 85, we have

Bj = [sT
0 , sT

2 , sT
4 , sT

6 , sT
8 , sT

10, s
T
12, s

T
14].

Consider the first two sets of B1 and B2, for which T is equal to 7 × 17 = 119
and 9 × 17 = 153 respectively. Suppose that in addition to the last two bytes of
B2 (that is, s153

12 and s153
14 ), we also know the values of s153

13 , k150 and k149. Then
we have

S−1(s153
14 ) ⊕ s153

13 ⊕ k150 = S−1(s151
16 ) ⊕ s151

15 ⊕ k150 = s150
0 .

Likewise, we have that

S−1(s153
13 ) ⊕ s153

12 ⊕ k149 = S−1(s150
16 ) ⊕ s150

15 ⊕ k149 = s149
0 .

Now, assuming that we also know k133, we have

S−1(s150
0 ) ⊕ s149

0 ⊕ k133 = S−1(s134
16 ) ⊕ s134

15 ⊕ k133 = s133
0 = s119

14 .

We note however that s119
14 is the last byte of B1.



An Analysis of the Hermes8 Stream Ciphers 5

Thus consider an attack where we guess on the values of k133, k149 and k150

and verify against the known byte s119
14 . The equation we have is

S−1(S−1(s153
14 ) ⊕ s153

13 ⊕ k150) ⊕ S−1(s153
13 ) ⊕ s153

12 ⊕ k149 ⊕ k133 = s119
14 , (1)

where the key bytes and s153
13 are unknown. By setting c1 = S−1(s153

14 ) ⊕ k150

and c2 = s153
12 ⊕ s119

14 ⊕ k149 ⊕ k133 the equation can be more simply written as

S−1(s153
13 ⊕ c1) ⊕ S−1(s153

13 ) = c2. (2)

That is, a particular guess of the three key bytes is possible if and only if an
input difference of c1 to S−1 can lead to an output difference of c2. We know that
S−1 is affinely equivalent to the inverse mapping in GF(28), and thus it is rather
close to being APN [9]. This means that just under one half of all (c1, c2)-values
are possible, or equivalently that one half of the guesses of the three key bytes
remains as possible after checking them against (1).

Note that since c2 depends on the sum k149 ⊕ k133 we can never learn the
individual values of k149 and k133 this way, only the sum of them. Hence we are
not guessing on 3-byte values but only on 2-byte values, and the complexity of
guessing once is 216 and not 224. By repeating the guessing for several IVs we
can remove all wrong guesses, and find two bytes of information - the values of
k150 and k149 ⊕ k133.

The process above can be repeated using the output bytes s153
12 and s153

10 to
obtain k148 and k147 ⊕ k131, and so on, until we have 14 (or 30 in the case of
Hermes8F-128) bytes of information about the key register at times 121 ≤ t ≤
150. It is then not too hard to find the content of the key register at a specific
time t, and we can run the key register back to obtain the original encryption
key.

The attack requires no more than 16 bytes of output under a few (about
16) distinct IVs. In general, the complexity of the attack is of the order of
7×16×216 < 223 very simple operations for Hermes8F-80 (and 15×16×216 < 224

for Hermes8F-128). The attack (for Hermes8F-80) has been implemented on a
normal workstation, and succeeds in recovering the key in less than a second.

3.1 Analysis of Hermes8

We have considered extending the attack presented above to the original Hermes8
cipher. The main differences between Hermes8 and Hermes8F are the length
of the state register (23 bytes and 37 bytes for Hermes8-80 and Hermes8-128,
respectively, against 17 bytes for Hermes8F), and the number of rounds between
each output of the cipher (three rounds for Hermes8 against two rounds for
Hermes8F). Some of the features that we have exploited in our attack, such as
the simpler representation of the generator as a shift register, slow diffusion of the
reverse clocking cipher, and the fact that the key register is not IV-dependent,
apply also to Hermes8. The main difficulty in extending the attack to Hermes8
is the number of rounds between output of the cipher. With three full rounds in
Hermes8 between each output, the relations obtained contain a larger number of



6 S. Babbage et al.

unknown key and state register bytes. As the state register values are expected to
be different for each IV used, we have not been able to obtain a simple equation
such as (2) to derive key bits. Therefore a simple extension of the attack does
not seem to work against Hermes8. We note however that the increase in the
length of the state register alone would in no way have strengthened the cipher
against our attack.

4 Equivalent Keys in Hermes8

The key schedule for Hermes8 is described in detail in [6] and is illustrated in
Figure 4 (Hermes8F features a similar key scheduling method [7]). The cipher’s
designer presents a brief analysis of the key schedule and remarks the existence
of weak keys for Hermes8. More precisely, keys with equal byte patterns lead to
a repetition of byte values in the output of the key scheduling method [6]. In an
extreme case, the key defined as ki = 63hex, for 0 ≤ i ≤ 9, is invariant by the
key schedule, and it therefore always outputs the byte value 63hex (this follows
from the fact that S(00hex) = 63hex).

. . . . . . k[p2] k[p3] k[p4] k[] . . . . . .

S S

�

�

� �

�

�

� �

�

�

p2

�

Fig. 4. Hermes8 key schedule

A further property of the Hermes8 key schedule that seemed to have been
overlooked by the designer is the existence of equivalent keys. These are keys that
for a given IV result in the same keystream. This is an immediate consequence of
the structure of the key scheduling method and the key-dependent initialization
of the pointers p1, p2, src, and the Accu register [6].

Consider a key k∗, which results from the byte-wise rotation of the key k.
In order to get the same keystream we have to ensure that for both keys, the
pointers p1, src, and the register Accu have the same value, that is p1k

= p1k∗ ,
srck = srck∗ , and Accuk = Accuk∗ . Additionally, we require that the pointers p2k

and p2k∗ address the key register in such a way that the key scheduling method
produces the same output for both keys. For instance, consider the 80-bit version
of Hermes8 and assume the 10-byte cipher key is given by k = k0, . . . , k9. The



An Analysis of the Hermes8 Stream Ciphers 7

rotated key k∗ = k9, k0, . . . , k8 is equivalent to k if the following conditions are
satisfied:

cond. p1 : (k0 ⊕ k1 ⊕ k2) mod 23 = (k0 ⊕ k1 ⊕ k9) mod 23 (3)
cond. src : (k0 ⊕ k3 ⊕ k9) mod 7 = (k2 ⊕ k8 ⊕ k9) mod 7 (4)

cond. Accu : k6 ⊕ k7 ⊕ k8 = k5 ⊕ k6 ⊕ k7 (5)
cond. p2 : (k2 ⊕ k3 ⊕ k4) mod 10 = ((k3 ⊕ k4 ⊕ k5) mod 10) + 1 (6)

Condition (6) ensures that the output of the key schedule is the same for k and
k∗. If, in addition, the remaining conditions (3)-(5) are satisfied, then the key
stream generation is equivalent for both keys k and k∗. There are approximately

280−(8−log2(� 25623 �))−(8−log2(� 2567 �))−8−(8−log2(� 25610 �)+log2(1.109)) ≈ 261

keys k satisfying the conditions above, which are therefore essentially equivalent
to the key k∗ obtained by a simple cyclic shift of its bytes. A similar analysis
can be done for other rotation values of the key k, giving us approximately
5 × 261 ≈ 263 pairs of equivalent keys. Although this represents a very small
fraction of an 80-bit key space, the above argument shows however that Hermes8-
80 does not reach the theoretically expected entire 80-bit key space. In fact, if
we assume that 80-bit encryption keys are randomly generated, we have that
approximately 263 keys effectively occur with twice the expected probability,
while 263 keys do not occur at all.

5 Algebraic Structure

Given the highly algebraic structure of Hermes8, it is natural to consider the
feasibility of algebraic attacks against the cipher. The only two operations in
Hermes8 are the S-Box operation (which is based on the inversion over GF(28))
and XOR. Thus at each clocking, we can express the resulting register updated
through a relation over GF(28) (which in turn can be described as a set of
multivariate quadratic equations over GF(2)). After a number of rounds we
should have enough equations to solve the system of equations and therefore
recover the secret key. In our estimates however the size of the resulting system
appears to be too large to be solved in practice. This is due to the large number
of clockings between the cipher output. However it may be possible that one can
simplify some of the relations, or exploit this rich algebraic structure in some
other way.

We note that the attack presented in section 3 can also be mounted using a
more algebraic approach. Due to the algebraic structure of the S-Box, the ex-
pressions considered when describing the attack can also be written as a simple
system of multivariate equations. If we solve the system (e.g. by computing the
corresponding Gröbner basis under the appropriate monomial ordering), requir-
ing that the equations have solutions in GF(28), we obtain relations between
the key bytes. This corresponds to the bit of information we derived from the



8 S. Babbage et al.

relation (2). If we repeat this procedure for a number of IVs, we should obtain
enough such relations to allow us to solve the resulting system and recover the
respective key bytes. Again, this approach does not seem to work with Hermes8,
as we have not been able to obtain relations on the key bytes alone (they always
involve at least one unknown register value, which as noted in section 3.1, should
change with each different IV). Moreover, this algebraic approach does not seem
to be more efficient than the attack described early in this paper.

5.1 Algebraic Structure of a Variant of Hermes8

In this section we consider a slightly modified version of Hermes8, to illustrate
how its highly algebraic structure may be exploited. In this modified version, we
remove the final affine transformation from the Sbox, so that the variant uses as
S-Box the modified inversion in the Rijndael field only, that is S : x �→ x254. We
note that the only two operations of the cipher (SBox and XOR) correspond to
the exponentiation and addition in the Rijndael field F ∼= GF(28), respectively.
We also know that the original AES S-Box is affinely equivalent to the inversion,
and so this variant of Hermes8 should share much of the security properties with
the original Hermes8 cipher.

However the new cipher presents a very interesting property. Let τ : F → K

be any isomorphism from F to a field K ∼= GF(28) (in particular, we may have
K = F so that τ is an automorphism of F). Then we have

S(τ(x)) = τ(S(x)) and τ(x ⊕ y) = τ(x) ⊕ τ(y), ∀x, y ∈ F.

If we assume the simplified version of initialization of the cipher’s pointers
(as with Hermes8F), we can then use these relations to construct a very simple
chosen-key algebraic distinguisher against the cipher. Let KS = E(k, IV ) rep-
resent the keystream (of length m) generated by the cipher using initialisation
vector IV and encryption key k. Then we have

E(τ(k), τ(IV )) = τ(KS),

where τ(k) denotes the application of τ on each byte of the encryption key k
(similar for τ(IV ) and τ(KS)).

This property is called self-duality [1], and is similar to the complementation
property of DES [8]. In particular, it allows us to construct a simple method
that reduces the key space when performing exhaustive key search, as following.

Let k be the secret encryption key to be searched, so that an attacker has
access to the encryption operation E(k, ·), and can generate the keystream for
any IV . Let τ be an automorphism of F.

Prior to performing the exhaustive search, the attacker partitions the key
space into equivalence classes

k1 ≡ k2 ⇐⇒ k2 = τr(k1),

and given an IV , computes the set of initialisation vectors

{IV, τ(IV ), τ2(IV ), . . . , τn−1(IV )},



An Analysis of the Hermes8 Stream Ciphers 9

where n is the order of τ . It can now compute the set of keystreams of length m
(for m long enough)

KSi = τ−i(E(τ i(IV ), k)) = E(IV, τ−i(k))

for i = 0, . . . , n − 1.
To perform the exhaustive key search, for each equivalence class of encryption

keys, the attacker selects a key k′ and computes the keystream of length m K =
E(IV, k′). If K = KSi for some i, then τ i(k′) is a candidate for the encryption
key k. Otherwise k is not in the equivalence class of k′. This method should
reduce the complexity of exhaustive key search by a factor of about n, and is
similar to the method that exploits the complementation property of DES (which
uses the complementation map of order 2).

For a concrete example, let us consider the Frobenius automorphism defined
as τ : x �→ x2. Since the order of τ is 8, this method should reduce the complexity
of exhaustive key search to the order of 277 operations (enabling key recovery on
average in the order of 276 operations). From the many isomorphisms of fields
of order 28 [10], this map seems to provide the best reduction for the key space
search.

We note however that this property and method of attack does not apply
to the original Hermes8 cipher, since the affine operation in the SBox does not
commute with the field isomorphisms.

6 Conclusion

We presented in this paper an analysis of the Hermes8 [6] stream cipher, and
some of its variants. In particular, we showed how to mount an attack to recover
the secret key for the latest version of the cipher (Hermes8F-80) with complexity
of around the order of 223 operations, requiring a very small number of known
keystream bytes. Although we have not been able to extend the method of attack
used to the original version of Hermes8, we note that many of the features that
we have exploited - the simpler representation of the generator as a shift register,
slow diffusion of the reverse clocking cipher, and the fact that the key register
is not IV-dependent - apply also to Hermes8. An interesting topic for further
research is whether there are other stream ciphers that may have their security
compromised by analysis of the reverse cipher, as with Hermer8F.

Acknowledgments

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. We would also like to thank Vincent Rijmen for his suggestion to con-
sider the existence of equivalent keys for the Hermes8 stream ciphers.



10 S. Babbage et al.

References

1. Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael? Cryptology
ePrint Archive, 2002/157, (2002) http://eprint.iacr.org/2002/157/

2. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
3. eSTREAM, the ECRYPT Stream Cipher Project.

http://www.ecrypt.eu.org/stream/
4. De Cannière, C.: eSTREAM testing framework.

http://www.ecrypt.eu.org/stream/perf/
5. Golic, J.: Iterative Probabilistic Cryptanalysis of RC4 Keystream Generator. In:

Clark, A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 220–
233. Springer, Heidelberg (2000)

6. Kaiser, U.: Hermes8: A Low-Complexity Low-Power Stream Cipher. Cryptology
ePrint Archive, Report, /019. (2006) http://eprint.iacr.org/2006/019.pdf

7. Kaiser, U.: Hermes8F: A Low-Complexity Low-Power Stream Cipher. eSTREAM,
the ECRYPT Stream Cipher Project, Second Phase Ciphers.
http://www.ecrypt.eu.org/stream/p2ciphers/hermes8/hermes8f p2.pdf

8. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

9. Nyberg, K.: Diferentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

10. Raddum, H.: More Dual Rijndaels. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.)
Advanced Encryption Standard – AES. LNCS, vol. 3373, pp. 142–147. Springer,
Heidelberg (2005)

http://eprint.iacr.org/2002/157/
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/perf/
http://eprint.iacr.org/2006/019.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/hermes8/hermes8f_p2.pdf


On the Security of the LILI Family of Stream

Ciphers Against Algebraic Attacks

Sultan Zayid Al-Hinai1, Ed Dawson1, Matt Henricksen2, and Leonie Simpson1

1 Information Security Institute (ISI)
Queensland University of Technology (QUT), Australia

2 Institute for Infocomm Research, Singapore

Abstract. In this paper, we present an algebraic analysis of the LILI
family of stream ciphers, and in particular LILI-II, and investigate the
security provided against both standard and fast algebraic attacks. We
show that the size of the two registers used, the difference between their
lengths, the maximum number of times a register is clocked and the de-
gree of the filter function all play important roles in providing resistance
against algebraic attacks. Further, we show that the degree 10 filter func-
tion used in LILI-II has an algebraic immunity (AI) of 4. Using this, a
fast algebraic attack can be performed on LILI-II that significantly re-
duces the attack complexity, although not to such a degree that it is more
efficient than exhaustive key search. These algebraic attacks recover the
internal state of the cipher rather than the key bits. We investigate the
role of the initialization process in providing resistance to algebraic at-
tacks aimed at key recovery. The investigation shows that, generally, for
the LILI family of stream ciphers, the complexity of recovering key bits
using algebraic attacks is much worse than exhaustive key search because
of the very high degree equations generated during the initialization pro-
cess.

Keywords: streamciphers, algebraic attacks, filter function, clock-control,
initialization.

1 Introduction

Courtois and Meier introduced algebraic attacks on stream ciphers [11], in which
the keystream is used to solve a system of multivariate polynomial equations
related to the stream ciphers’ initial states. Many linear feedback shift register
(LFSR) based stream ciphers have since fallen to algebraic attacks [3, 8, 1, 26,
9, 10, 17, 6]. In this paper we examine the level of resistance of the LILI family
of stream ciphers [23] to algebraic attacks. Two well known instances from this
family are LILI-128 [14] and LILI-II [7]. These can be viewed as irregularly
clocked nonlinear filter generators. Two recent attacks on LILI-128 have been
proposed by Molland [21] and Molland and Helleseth [21]. However, applying
either of these attacks to LILI-II will result in an attack complexity that is
worse than exhaustive key search.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 11–28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



12 S.Z. Al-Hinai et al.

Courtois and Meier introduced two algebraic attacks on LILI-128 [11]. To date
there are no algebraic attacks reported on LILI-II. In this paper we consider the
resistance of these and other ciphers in the LILI family to algebraic attacks. We
derive a relationship between parameters that provide resistance to algebraic
attacks including the size of the registers, the difference in their lengths, the
degree of the Boolean function used and the number of times the controlled
register is clocked. In particular, for LILI-II, we show that the filter function
is not optimal with respect to algebraic attacks because there exist low degree
multiples. This has a substantial impact in reducing the overall attack complexity
of algebraic attacks on LILI-II. Although as will be shown this complexity is still
much greater than exhaustive key search.

In some communication systems, errors occur which require that the entire
message be re-sent. When synchronous stream ciphers such as the LILI family
are used, then security requires that a different keystream sequence be used.
To achieve this, a re-keying algorithm is needed to combine the secret key with
a publicly known initialization vector v to form the initial state for keystream
generation. If only a single segment of keystream is known, (no re-keying occurs)
then to break a particular instance of the cipher, the cryptanalyst must recover
the initial internal state S, using knowledge of the structure of the keystream
generator and some amount of the keystream, z. In contrast, with resynchronisa-
tion occurring, the cryptanalyst has access to related keystream produced under
the same k and for different but known v, typically sequential or differing in
only a few bits. The cryptanalyst’s task is then to recover k, given a set of (v, z)
pairs. For security in this scenario, it is required that the re-keying process does
not leak information about the key k. In this paper, we investigate the effect of
the initialization process of a cipher on the feasibility of algebraic attacks.

In Section 2, we give a description of the LILI family of stream ciphers and
of the specific designs for LILI-128 and LILI-II. In Section 3, a general algebraic
analysis of the LILI family is outlined. A more specific algebraic analysis of
LILI-II is given in Section 4, and we show that the filter function used in LILI-
II is not optimal with regards to providing resistance to algebraic attacks. We
present a polynomial multiple which significantly reduces the degree of equations
generated. A discussion of the importance of initialization for the LILI family of
stream ciphers in providing resistance to algebraic attacks is given in Section 5.
Section 6 concludes the paper.

2 Description

The LILI family of stream ciphers are keystream generators that use two binary
LFSRs and two non-linear functions to generate pseudorandom binary keystream
sequences. The feedback polynomials of both LFSRs are chosen to be primitive
polynomials. An all-zero state in either register is not permitted. The structure
of LILI keystream generators is illustrated in Figure 1.

The components of the keystream generator can be grouped into two subsys-
tems based on the functions they perform: clock control and data generation.



On the Security of the LILI Family 13

CLOCK CONTROL

LFSRc

� �

r

. . .

fc

ct

�

DATA GENERATION

LFSRd

� �

w

. . .

fd
�
zt

Fig. 1. The LILI Family of Keystream Generators

The l-bit LFSRc for the clock-control subsystem is regularly clocked. The
contents of r stages of LFSRc are input to a function, fc. The output of fc

is an integer between 1 and 2r, inclusive. Denote the sequence of outputs of
fc by ct = {ct}∞t=1. This is a periodic integer sequence, with period equal to
Pc = 2l − 1. The output of the clock-control subsystem controls the clocking of
the m-bit LFSRd.

Each time LFSRc is clocked, LFSRd is clocked between 1 and 2r times. The
contents of w stages of LFSRd are input to fd, a Boolean function of degree d.
The binary output of fd is the keystream bit zt. At time t, the binary output of
fd is the keystream bit zt. After zt is produced the process is repeated to form
the sequence z = {zt}∞t=1 .

The contents of LFSRc and LFSRd at time t are denoted as ct
i and dt

j

respectively for 1 ≤ i ≤ l and 1 ≤ j ≤ m and t ≥ 1. The parameters of two
specific designs from the LILI family; LILI-128 and LILI-II are shown in Table
1 and described in Sections 2.1 and 2.2 respectively.

Table 1. Parameters for two specific generators from the LILI family

Length of Period of Length of Period of Algebraic
LFSRc LFSRc LFSRd LFSRd degree of fd

LILI-128 39 bits 239 − 1 89 bits 289 − 1 6

LILI-II 128 bits 2128 − 1 127 bits 2127 − 1 10

2.1 LILI-128 Keystream Generator

LILI-128 [23] uses registers LFSRc and LFSRd of lengths l = 39 and m = 89
respectively. Thus the internal state size is 128 bits. Keystream generation is
performed as follows. At time t, the contents of the r = 2 stages 12 and 20
of LFSRc are used as inputs to the function fc. The output is calculated by



14 S.Z. Al-Hinai et al.

fc(ct
12, c

t
20) = 2ct

12 + ct
20 +1. The output is an integer between 1 and 4, inclusive.

The w = 10 inputs to fd are taken from the LFSRd positions (0, 1, 3, 7, 12,
20, 30, 44, 65, 80). We note that the function fd, given in [23], has an algebraic
degree of 6.

LILI-128 is intended for use with a 128-bit key, k, and an initialization vector,
v, of up to 128-bits. The re-keying scheme of LILI-128 provided in [13] is as
follows. Firstly, use k and v to form an initial internal state value. The initial
internal state value is formed by XORing two 128-bit vectors: k and v or a
128-bit vector formed from the concatenation of copies of v, if v is less than
128 bits. Secondly, use the first 39 bits of this sum to form the initial state
of LFSRc and the remaining 89 bits to form the initial state of LFSRd. In
[13] the rekeying process is defined with parameters a and b for the number of
applications, and the number of lead bits deleted from the outputs, respectively.
That is, after the initial loading of the LFSRs, run a applications of the cipher,
generating (128 + b) output bits each time, deleting the first b outputs and
reloading the LFSRs with the remaining 128 bits. For LILI-128 recommended
minimum values are a = 1 or a = 2 and b = 32, but preferably b = 64, or
b = 128. After the rekeying process has been performed the cipher is ready for
keystream generation. To align with the initialization process used for LILI-II,
we choose a = 2 and b = 0 to conduct further analysis on the initialization
process discussed in Section 5.1.

2.2 LILI-II Keystream Generator

LILI-II [7] uses registers LFSRc and LFSRd of lengths l = 128 and m = 127
respectively. Thus it has an internal state size of 255 bits. Keystream generation
is performed as follows. At time t, the contents of the r = 2 stages, c1 and c127,
of LFSRc are used as inputs to the function fc. The output is calculated by
fc(ct

1, c
t
127) = 2ct

1 + ct
127 +1. The output is an integer between 1 and 4, inclusive.

The w = 12 inputs to fd are taken from the LFSRd positions (0, 1, 3, 7, 12,
20, 30, 44, 65, 80, 96, 122). The function selected for fd and given in [7] has an
algebraic degree of 10.

The 255-bit initial state for LILI-II is formed from a 128-bit key k and a
128-bit initialization vector v in a three step process, as follows. Firstly, the
128-bit initial state of LFSRc is obtained by XORing k and v, and the 127-bit
initial state of LFSRd is obtained by deleting the first bit of k and the last
bit of v, and XORing the two resulting 127-bit binary strings. In the second
step, the cipher is clocked to produce an output string of length 255 bits. The
first 128 bits of this output are used to form a new state for LFSRc, and the
remaining 127 bits are used to form a new state for LFSRd. The third step
repeats step 2: the cipher is clocked to produce an output string of length 255
bits, of which the first 128 bits are loaded into LFSRc and the remaining 127 bits
are loaded into LFSRd. At this point the generator is ready for the production
of keystream.



On the Security of the LILI Family 15

3 Algebraic Analysis of the LILI Family of Stream
Ciphers

Algebraic attacks on stream ciphers involve generating and solving an overde-
fined system of multivariate polynomial equations relating the stream ciphers’
initial state values and known keystream bits. The complexity of an algebraic
attack is dominated by the degree of the equations generated, as the lower the
degree the more efficient the attack becomes. For LILI keystream generators, the
function fd is central to the generation of equations. Low degree multiples of fd

could be used to reduce the degree of generated equations, and hence the com-
plexity of an algebraic attack. In Section 3.1, we review methods for obtaining
low degree multiples of Boolean functions.

There are two existing algebraic attacks on ciphers from the LILI family;
both are attacks on LILI-128 [11] and demonstrate time-data tradeoffs. The
first attack involves guessing the initial state of LFSRc, then using the known
clocking sequence to form equations relating the initial state bits of LFSRd and
the keystream bits and attempting to solve these equations. This attack requires
218 keystream bits and 2102 operations. The second attack involves taking a
subsequence of keystream bits that are 2l−1 places apart, form equations relating
the initial state bits of LFSRd and these keystream bits and attempting to solve
these equations. This attack requires 257 keystream bits and 263 operations.
In Sections 3.2 and 3.3 respectively, we review these two attacks on LILI-128,
generalizing them to the entire LILI family.

3.1 Finding Low Degree Multiples of fd

A low degree multiple of an n-input Boolean function f of degree d is obtained
by multiplying the Boolean function by a well chosen function such that the
product of the two is of degree less than d. For algebraic attacks, finding such
low degree multiples reduces the complexity of the attack, possibly to a feasi-
ble level. For example, this approach was applied to the Boolean function of
the TOYOCRYPT-HS1 [25] stream cipher in [11]. The original TOYOCRYPT
output function was of degree 64, but a suitable multiple was found to give a
product with degree 3. Note that on average using a low degree multiple in an
algebraic attack doubles the keystream required to solve the generated system
of equations, as we multiply by a function that could have an output value of
either zero or one. This method was applied to fd of LILI-128 in [11], reducing
the degree of the output function from 6 to 4.

In [19], Meier et. al. proposed two algorithms for finding low degree multiples
of Boolean functions, both with complexity O(M3) where M =

∑d
i=1

(
n
i

)
is the

number of monomials. They also introduce the term algebraic immunity (AI),
as a measure of resistance of a function to this approach. A Boolean function g
is described as an annihilator of a Boolean function f if g is a nonzero function
and the product fg = 0 for all inputs. The algebraic immunity of a function f is
the minimum degree of all the nonzero annihilators of f and 1+f . More efficient



16 S.Z. Al-Hinai et al.

algorithms for finding low degree multiples of Boolean functions are given in
[4, 27] and [16], which reduce the complexity of finding low degree multiples to
O(M2), O(n2nM) and n(n + 1) steps, respectively.

For cryptanalytic purposes, finding low degree multiples of output functions
for keystream generators is performed in precomputation. The low degree multi-
ple may then be used in an algebraic attack. Note that for high degree Boolean
functions with a large number of inputs, the complexity of finding these low
degree multiples may exceed that of performing an exhaustive key search, but
as this occurs in a precomputation phase, it is a one-off cost which can then be
used for multiple key recovery attacks.

3.2 Attack 1 : Guessing the Controlling Register

In the first algebraic attack on LILI-128, the initial internal state of register
LFSRc is guessed, revealing the clocking pattern of LFSRd. For each guess, a
system of equations is constructed relating the unknown initial state bits from
LFSRd and the keystream bits. After substituting the keystream bits, an at-
tempt to solve the system of equations is made. If the system of equations is
inconsistent then the original guessed LFSRc state is wrong. Otherwise, the re-
covered initial state bits can be used to generate a candidate keystream. If this
agrees with the observed keystream then the guess is correct.

For other LILI generators, the output function fd may be of higher degree,
potentially providing greater resistance to algebraic attacks. In this case, in a
precomputation phase, the lowest degree multiples g of f can be determined,
as discussed in Section 3.1. The attack algorithm as shown in Figure 2 is then
applied.

As this approach requires guessing the internal state bits of LFSRc, which
has a complexity of 2l − 1. For each guess, one system of equations needs to
be solved, or attempted. This system has

[∑d
i=1

(
m
d

)]
equations. The computa-

tional complexity for solving the system of equations in step 1c using Strassen’s
algorithm [24] is given by Mω, with 2.807 ≤ ω ≤ 3. In order for this attack
to be applied to other members of the LILI family with complexity less than
exhaustive key search, the parameters must satisfy the following equation:

2l − 1

[
d∑

i=1

(
m

d

)]ω

< (2k − 1) (1)

3.3 Attack 2 : Keystream Decimation

In the second algebraic attack, the attacker targets LFSRd and avoids guessing
the clock control components by taking a regular decimation of the keystream.
Let Δd denotes the number of times LFSRd is advanced for one period of
LFSRc. It was shown in [14] that

Δd = (2l−r − 1) +
2r
∑

s=2

s × 2l−r (2)



On the Security of the LILI Family 17

Inputs : Feedback polynomials of LFSRc and LFSRd;
∑d

i=1

(
m
i

)

segments of keystream.
Outputs: Internal state bits of LFSRc and LFSRd.

1. Guess value for LFSRc.
2. Generate

∑d
i=1

(
m
i

)
output bits from LFSRc.

3. Use the output from Step 2 to produce the clocking sequence for
LFSRd.

4. Applying this clocking sequence, generate
∑d

i=1

(
m
i

)
equations from

LFSRd.
5. Substitute the known keystream bits in the appropriate positions

in the equations.
6. Solve the system of equations of LFSRd.
7. Use the recovered internal state bits of LFSRd and guessed bits of

LFSRc to produce a candidate keystream.
8. If candidate keystream matches known keystream go to 9. Other-

wise go to 1.
9. Output initial state values for LFSRc and LFSRd. Terminate.

Fig. 2. Algorithm for algebraic attack based on guessing the controlling register

The attack is performed in two phases: precomputation and a realtime phase.
In the precomputation phase, the lowest degree multiple of fd is computed as
discussed in Section 3.1. In addition,

∑d
i=1

(
m
i

)
equations are obtained from

LFSRd every Δd cycles. In [22], Saarinen suggests stepping LFSRd Δd number
of positions using either a vector-matrix multiplication with a precomputed m×
m bit matrix over GF (2), or by using a multiplication algorithm in GF (2m). In
the realtime phase the known keystream bits are substituted into the equations
and an attempt to solve the system of equations is made. The steps of the
precomputation and realtime phases of this approach are shown in the following
algorithm (Figure 3).

For this attack, we need to select keystream bits that are (2l − 1) apart.
Assume that we have found n independent low-degree multiples of fd. We form∑d

i=1

(
m
d

)
equations relating the initial internal state values for LFSRd and the

known keystream bits, and attempt to solve them. Let T denote the number
of keystream bits required for the attack to be successful. Therefore, the total
amount of keystream required for a successful attack is

T =

[

(2l − 1)
d∑

i=1

(
m

d

)]

/n (3)

The number of equations that can be generated from LFSRd can be computed
as follows. For each period of LFSRc, use one output or equation formed from
LFSRd. In terms of only the initial state bits of LFSRd, the maximum number



18 S.Z. Al-Hinai et al.

Precomputation phase
Inputs: Feedback polynomial of
LFSRd, ANF of fd.

Outputs: g, fdg = h and
∑

d

i=1

(
m

i

)

equations from LFSRd.

1. Compute the lowest degree multi-
ple of f according to [4].

2. Compute Δd using equation (2).
3. Form

∑
d

i=1

(
m

i

)
equations by

clocking LFSRd Δd cycles at one
time.

4. Terminate.

Realtime phase
Inputs:

∑
d

i=1

(
m

i

)
Precomputed equations;

∑
d

i=1

(
m

i

)
bits

of keystream
Outputs: LFSRc and LFSRd

1. Substitute known keystream bits into precomputed
equations.

2. Solve the resulting system of equations to recover the
initial internal state of LFSRd.

3. Use the newly obtained bits of LFSRd to recover the
internal state of LFSRc.

4. Output the initial state values for LFSRc and LFSRd.
5. Terminate.

Fig. 3. Algorithm for precomputation and realtime phases of the algebraic attack based
on keystream decimation

of distinct equations that can be obtained is 2m − 1, but this would require an
entire period of keystream. The total number of equations E is given by

E = (2m − 1)/gcd((Δd, 2m − 1)) (4)

The number of equations that can be generated from LFSRd must be greater
or equal to the number of keystream bits required to run the attack.

E ≥ (2l − 1)
d∑

i=1

(
m

d

)

/n (5)

After recovering the internal state of LFSRd, the cryptanalyst must recover the
internal state of LFSRc to complete the attack, increasing the overall attack
complexity. A worst case scenario involves a brute force attack to recover the
initial internal state of LFSRc. Alternative methods such as using correlation
or embedding attacks could be considered. Depending on the LFSR length and
the method used, the complexity of recovering LFSRc may be less than 2l − 1.
For the rest of this paper, we denote the complexity of recovering LFSRc by
CLFSRc.

Compared to the attack outlined in Section 3.2, the computational complexity
of this attack is lower, but it requires a greater number of keystream bits. The
above analysis shows that the resistance of the LILI family of stream ciphers to
both of these algebraic attacks depends on the number of times register LFSRd

is clocked, Δd, the degree d of the filter function fd, and the lengths, l and m,
of the two registers.

3.4 Fast Algebraic Attacks

Both of the attacks outlined in Sections 3.2 and 3.3 have a common last step,
involving solving a system of equations. Fast algebraic attacks [10] aim to reduce
the degree of the equations generated in the precomputation phase by linearly



On the Security of the LILI Family 19

combining some specific equations. This has a significant effect in reducing the
overall complexity of the attacks. Two algorithms have been proposed for this;
one for regularly clocked nonlinear filter generators which utilizes the well known
Berlekamp-Massey algorithm [10] and another for combining function generators
[2] which makes use of the theory of linear recurring sequences. A modified
Berlekamp-Massey algorithm given in [10] is claimed to be best suited for the
LILI family of keystream generators.

As with regular algebraic attacks, fast algebraic attacks are performed in two
phases: precomputation and a realtime phase. More specifically, in the precom-
putation phase, an attacker searches for a multiplier g to form a low degree
multiple h of f (that is, fg = h) with f of degree d and g and h of degree
e and dh respectively where e, dh < d. Using this g, low degree equations in
terms of the internal state bits are generated. Then the attacker uses the mod-
ified Berlekamp-Massey algorithm to form equations in which all monomials of
degree d or higher are eliminated. The number of consecutive keystream bits
required in order to find such relations is estimated to be about Td + Te where
Td =

∑dh

i=1

(
m
i

)
and Te =

∑e
i=1

(
m
i

)
The complexity of applying the modi-

fied Berlekamp-Massey algorithm to find the outputs to be linearly combined is
Td · log2

2Td. and the amount of memory required is T 2
e . In the realtime phase,

two main steps are involved; the substitution of the keystream bits into the sys-
tem of equations and solving the system of equations. During the substitution
step, monomials of degree higher than e are eliminated. In [18] Hawkes and Rose
point out that the original papers on fast algebraic attacks underestimated the
complexity of the substitution step and claimed that the best complexity for the
substitution step is 2 · Te · Td · log2 Td. The complexity of recovering the internal
state is further reduced to the complexity of solving system of equations in Te

only. We apply the analysis presented in this section to evaluate the resistance
of LILI-II to these fast algebraic attacks in Sections 4.3.

4 Algebraic Analysis of the LILI-II Stream Cipher

In this section, we first present an algebraic representation of the LILI family of
stream ciphers, then compute a low degree multiplier g of fd and consider using
this multiplier in applying the attacks outlined in Section 3 to LILI-II.

4.1 Algebraic Representation for the LILI Family of Stream Ciphers

The relationship between the internal state and the output of the LILI ciphers
can be obtained by incorporating the clock control outputs from LFSRc as
variables into LFSRd. Given fc relations between the two controlling bits ct

1,
ct
2, the number of times register LFSRd is clocked and the initial state of LFSRd

can be represented in an algebraic expression as follows:

dt+1
i = (ct

1 + 1)(ct
2 + 1)dt

i−1 + (ct
1 + 1)ct

2d
t
i−2 + ct

1(c
t
2 + 1)dt

i−3 + ct
1c

t
2d

t
i−4 (6)

where dt
i is the ith stage of LFSRd at time t. Specifically, the stages ct

1 and ct
2 are

c12 and c20, respectively, for LILI-128 and c1 and c127, respectively, for LILI-II.



20 S.Z. Al-Hinai et al.

Equation (6) shows that the degree of the equations in LFSRd increases by two
each time LFSRc is clocked.

4.2 Algebraic Attacks on LILI-II

The filter function fd is important in providing resistance to algebraic attacks.
The algebraic normal form (ANF) of fd is computed and presented in appendix
A. By inspection of the ANF of fd, we found a multiplier g of degree e = 2,
where g = (x11 + 1)(x7 + 1). This results in a product h of degree 4 as shown
below.

g · fd = (x11 + 1)(x7 + 1)fd = x2x4x7x11 + x3x7x8x11 + x1x7x9x11 + x7x10x11x12

+x2x4x7 + x3x7x8 + x1x7x9 + x2x4x11 + x1x7x11 + x2x7x11

+x3x7x11 + x4x7x11 + x5x7x11 + x6x7x11 + x3x8x11 + x7x8x11

+x1x9x11 + x7x9x11 + x7x10x11 + x7x10x12

+x10x11x12 + x2x4 + x1x7 + x2x7 + x3x7 + x4x7 + x5x7 + x6x7

+x3x8 + x7x8 + x1x9 + x7x9 + x7x10 + x1x11 + x2x11 + x3x11

+x4x11 + x5x11 + x6x11 + x7x11 + x8x11 + x9x11 + x10x11 + x10x12

+x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + 1 (7)

Further examination of fd using the algorithm outlined in [11] confirmed the
multiplier g = (x11 + 1)(x7 + 1) was one of thirty-two degree 2 multipliers that
exist for fd, and the only one of these multipliers that resulted in h of degree
4. Our implementation of the algorithm found the degree 2 multipliers in 82
seconds using Magma 2.11 on the SGI Origin 3000 using CPU at 600 MHz.
This demonstrates that fd of LILI-II has an algebraic immunity of at most 4.
In our attack we make use of this by multiplying the initial set of equations by
(x11 + 1)(x7 + 1). Note that this implies that zt is also multiplied by g, so only
gives a useful equation when zt is equal to 1.

Standard Algebraic Attacks of Section 3.2. If we consider applying the
attack described in Section 3.2 using the original function fd of degree 10, then
we need to solve equations involving M =

∑10
i=1

(127
i

)
= 247.7 unknowns with

a solution complexity of 2143.1 for ω = 3. From equation (1), this gives a total
attack complexity of 2128.2143 = 2271. However using g of degree 2 to form h of
degree 4, rather than fd of degree 10, reduces the degree of equations generated.
This in turn reduces the number of monomials to 223.3, and correspondingly
the attack complexity to 2198. This is a significant reduction in the complexity
of the algebraic attack on LILI-II, and is better than exhaustive search of the
initial 255-bit internal state, but is still much worse than exhaustive search on
the 128-bit key.

Standard Algebraic Attacks of Section 3.3. Similarly, applying the attack
of Section 3.3 using d = 10, requires Δd = 2129. The complexity of recovering
LFSRd by solving 247.8 equations using the linearization approach is 2143 with
a keystream requirement of T = 2128.247.8 = 2175.8. Since only E = 2127 − 1



On the Security of the LILI Family 21

equations can be generated from LFSRd, the amount of keystream required to
run the attack is clearly more than the number of independent equations that
can be generated. Further, the complexity of recovering the internal state of
LFSRc must be added.

Using the multiplier g to obtain equations of degree 4 reduces the complexity
of recovering the initial state of LFSRd to 270. Adding the complexity of recov-
ering LFSRc gives a total attack complexity of 270 + CLFSRc. There is also the
keystream requirement of (2128)(223) = 2151 bits, again more than the number
of independent equations that can be generated from LFSRd. Therefore, the
attack of Section 3.3 cannot be applied successfully to LILI-II for either the case
where fd of degree 10 is used or a reduced gfd of degree d = 4 is used.

Although neither attack is better than exhaustive key search, reducing the
degree from 10 to 4 significantly reduces the complexity of an algebraic attack
for recovering LFSRd . Table 2 below summarises the requirements for applying
the algebraic attacks of Sections 3.2 and 3.3 to both LILI-128 and LILI-II, with
the original function fd of degree 10, and reduced gfd of degree d = 4 respectively.

Table 2. Summary of the algebraic attacks of Sections 3.2 and 3.3 on both LILI-128
and LILI-II

Complexity of attack Complexity of attack
of Section 3.2 of Section 3.3

LILI-family Keystream Operations Keystream Max equations Operations

LILI-128, d=4 218 2102 257 289
− 1 263

LILI-II, d=10 248 2271 2176 2127
− 1 2143 + CLF SRc

LILI-II, d=4 223 2198 2151 2127
− 1 270 + CLF SRc

4.3 Fast Algebraic Attacks on LILI-II

In Section 3.4 it is noted that fast algebraic attacks can be applied to significantly
reduce the complexity of solving equations in the realtime phase of the attacks
described in Sections 3.2 and 3.3. Table 3 summarises the data obtained when
the fast algebraic attack approach is applied in each of these two cases.

The table illustrates the tradeoffs between keystream requirements and attack
complexity, and also the significant reduction in the complexity of recovering the
internal states for both ciphers when using e = 2. However, it can also be seen
that with fast algebraic attacks that the complexity of substituting the keystream

Table 3. Attack of Section 3.3 using fast algebraic attacks on both LILI-128 and
LILI-II

Attack of LILI-family d e Keystream Memory Precomputation Substitution Attack ops

Section 3.2 LILI-128 4 2 221 bits 214 bits 230 238.6 239.238.6 = 277.6

LILI-II 4 2 223.3 226 bits 232.4 241.8 241.8.2127 = 2168.8

Section 3.3 LILI-128 4 2 260 214 bits 230 238.6 230

LILI-II 4 2 2151.3 226 bits 232.4 241.8 241.8 + CLF SRc



22 S.Z. Al-Hinai et al.

bits into the system of equations is higher than the complexity of solving the
equations, and that the keystream requirement for the attack of Section 3.3
cannot be met. Although the attack of Section 3.2 requires less keystream bits,
its complexity is still more than the exhaustive key search.

5 Initialization and Algebraic Attacks

Most recently proposed stream ciphers use an internal state that is at least twice
as large as the key size to provide resistance to attacks such as time/memory/
tradeoff attacks. An initialization process expands the k bit key to fill the internal
state, possibly also incorporating initialisation vectors. This is the case for the
LILI ciphers. Most algebraic attacks, including those on LILI-128, aim to recover
the internal state of the cipher. In this section we consider two aspects of the
effect of the initialization process, as outlined in Section 2, on algebraic attacks
on the LILI ciphers. Firstly, we examine whether it is possible to recover key bits
directly in an algebraic attack, rather than state bits. Secondly, we investigate
the possibility that an attacker, having recovered internal state bits through a
standard algebraic attack, can extend the attack to key recovery.

5.1 Direct Recovery of Key Bits

If the variables represent the key bits rather than state bits for ciphers with
a relatively large internal state size then there are fewer variables to consider.
However, generating equations where the variables are the unknown key bits
requires consideration of the initialization process. From equation (6) in Section
4.1, it is clear that if the variables are key bit values, rather than the internal state
values, the generated system of equations contains k variables with maximum
degree of k, and the maximum number of monomials is given by

∑k
i=1

(
k
i

)
. In

contrast, if the variables are the initial internal state values, rather than the key
bit values, then the generated system of equations contains l + m variables with
maximum degree of l+d, where d is the degree of fd, and the maximum number
of monomials formed is equal to M =

∑l+d
i=1

(
l+m

i

)
.

After initialization, the contents of both registers are high degree functions of
all key bits. To recover the key bits of LILI ciphers using the approach outlined
in Section 3.2 requires guessing the initial contents of LFSRc. This provides one
set of equations. Now the clocking of LFSRd is known. The attacker then forms
another set of equations relating the known keystream values to the filtered out-
puts of LFSRd. However, each stage of LFSRd contains a high degree function
of key bit variables. To use this approach, the attacker needs to know what these
high degree functions are, and also to have the ability to solve them. Therefore,
the complexity of this approach is 2l ·

[∑d
i=1

(
k
i

)]ω

, for k
2 ≤ d < k.

For example, consider applying this to LILI-128 with 128-bit key and ini-
tialization vectors, and initialization parameters given by a = 2 and b = 0.
Assume that the degree of the key bit expressions in each stage of the regis-
ters after initialization is 64 ≤ d ≤ 128 and ω = 3. Applying the algebraic



On the Security of the LILI Family 23

attack of Section 3.2 requires guessing 39 bits of LFSRc multiplied with the
complexity of solving a system of equations generated using fd. Note that the
equations are a function of all the key bits, therefore there are 128 unknowns
in the generated system of equations. The overall attack complexity will be be-

tween 239
[∑64

i=1

(128
64

)]3
≈ 2495 and 239

[∑128
i=1

(128
i

)]3
≈ 2578.5. This exceeds the

complexity of exhaustive key search. Similarly, using this approach on LILI-II
requires a 128 bit guess of LFSRc, so will also be worse than exhaustive key

search. The overall attack complexity will be between 2128
[∑64

i=1

(128
i

)]3
≈ 2584

and 2667.5.
Alternatively, we consider the approach outlined in Section 3.3. This requires

decimation of the keystream by Δd, with a corresponding increase in the degree
of the underlying key bit equations. The equations generated from LFSRd will
be of a very high degree, probably the maximum degree. It appears infeasible to
generate these high degree equations, let alone solve them. However, assuming
this is possible, the overall attack complexity of this approach is

[∑d
i=1

(
k
i

)]ω

,

for k
2 ≤ d < k.

For example, consider applying this to LILI-128. The complexity of solving

these equations is between
[∑64

i=1

(128
i

)]3
≈ 2456 and

[∑128
i=1

(128
i

)]3
≈ 2539.5.

The same attack complexity will also be applicable to LILI-II when using this
approach for recovering the internal state of LFSRd, however, the amount of
keystream will be much greater in the case of LILI-II.

Table 4 summarizes the complexity of applying the attacks outlined in Sec-
tions 3.3 and 3.2 to LILI-128 and LILI-II after going through the initialization
phase. Note that the degree of the filter function fd used has a minimal effect in
increasing the degree of the generated equations, as at the end of initialization,
the contents of the stages of each register are high degree equations.

5.2 Recovering the Key Bits Given the Internal State Bits

Consider the initialization processes used in LILI-128 and LILI-II. To align the
initialization process for LILI-128 with that used for LILI-II, we choose the
parameters a = 2 and b = 0. Denote the first l +m output bits generated during
initialization by (z

′′

1 . . . , z
′′

l+m). Each z
′′

is a high degree function of the key bits.
These (z

′′

1 . . . , z
′′

l+m) bits are loaded into the cipher registers and the process
is repeated to generate another (l + m) bits denoted as (z

′

1 . . . , z
′

l+m). This is
reloaded and used to generate the keystream bits denoted {zt}∞t=1.

Assume that we have T known keystream bits (z1, . . . zT ) and have successfully
performed an algebraic attack to recover the initial internal state (z

′

1 . . . , z
′

l+m).
In order to recover the key bits (k1, . . . , k128), we need to use (z

′

1 . . . , z
′

l+m) as
keystream and apply an algebraic attack to recover (z

′′

1 . . . , z
′′

l+m). Given this
internal state, we can produce the entire keystream sequence for this (k, vi) pair,
but when a new initialization vector is used we will have to repeat the entire
attack to generate that keystream. The keystream requirement is approximately



24 S.Z. Al-Hinai et al.

∑l+m
i=1

(
l+m

d

)
bits using the linearization approach. But in this case, there are

only (l + m) outputs, which is much less than the needed data. The difficulty of
recovering the key bits from the internal state bits is further increased if some
output bits are discarded during the initialization.

For example consider applying this to key recovery on LILI-128. Suppose
that we have recovered (z

′

1 . . . , z
′

128). This attack [11] requires approximately
218 bits. For key recovery, we now need to repeat this attack using (z

′

1 . . . , z
′

128)
as the keystream bits. But there are only 128 outputs, which is much less than
required. Obviously, there is no way to proceed to recover the key bits. Similarly,
key recovery cannot be performed on LILI-II as only 255 bits (z

′

1 . . . , z
′

255) of
keystream are available to recover (z

′′

1 . . . , z
′′

255), which is much less than the
required keystream bits.

It is evident that the initialization process used in LILI-128 and LILI-II pre-
vents the direct recovery of the key bits using algebraic attacks, and it prevents
the recovery of the key bits even if the state bits can be recovered. An interest-
ing exercise is to investigate partial key guessing. That is guessing u-bits of the
k-bit secret key. For a carefully selected subset of key bits, this might reduce the
degree of the equations generated during initialization so that algebraic attacks
may be successfully applied to the reduced system.

Table 4. Summary of requirements for the algebraic attacks of Sections 3.2 and 3.3

Complexity of attack of Section 3.2 Complexity of attack of Section 3.3
LILI-family Keystream Operations Keystream Operations

LILI-128 2152 to 2179 2495 to 2578.5 2191 to 2218.8 2456 to 2539.5

LILI-II 2152 to 2179 2584 to 2667.5 2280 to 2307 2456 to 2539.5

Note that for LILI-128, the key size is equal the internal state size. This is
a vulnerability that can be exploited if the initialization process is weak. For
example, if the initialization parameters for LILI-128 include a = 0, then given
the internal state bits at any time t, the cipher can be wound back b clocks
to reveal the internal state at the start of initialization. As this is simply the
XOR of k and v, and v is known, then k is revealed. Hence the security of LILI-
128 against key recovery by known algebraic attacks depends on the choice of a
nonzero value for the parameter a.

6 Conclusion

In this paper, we analysed the security of the LILI family of stream ciphers
against both standard and fast algebraic attacks. Our analysis provides an in-
creased understanding of algebraic attacks on this type of cipher. It was shown
that the size of the two registers used, the difference between their lengths, the
maximum number of times a register is clocked and the degree of the filter func-
tion all contribute in providing resistance to algebraic attacks. For LILI-128,
the internal state bits can be recovered with complexity less than exhaustive



On the Security of the LILI Family 25

keysearch. For LILI-II, a low degree multiplier of the filter function is given,
implying the algebraic immunity of the filter function is at most 4. This dra-
matically reduces the complexity of algebraic attacks, including fast algebraic
attacks. However, even the reduced complexity exceeds exhaustive key search.

This paper also examines the role of initialization in reducing the effectiveness
of algebraic attacks for key recovery. This is important for applications where
rekeying is performed. It was shown that, even assuming a successful algebraic
attack has been performed, revealing the internal state for the LILI ciphers,
the complexity of recovering the secret key remains worse than exhaustive key
search. It appears that the initialization process provides the LILI ciphers with
resistance against key recovery attacks.

Acknowledgments. The authors wish to express their appreciation to both
Kenneth Wong for implementing the algorithm used in finding the low degree
multiple of LILI-II and to the High Performance Computing and Research Sup-
port at Queensland University of Technology for providing us with access to
their facility.

References

1. Alhinai, S., Batten, L., Colbert, B., Wong, K.: Algebraic attacks on clock con-
trolled stream ciphers. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 1–16. Springer, Heidelberg (2006)

2. Armknecht, F.: Improving fast algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004)

3. Armknecht, F., Krause, M.: Algebraic attacks on combiners with memory. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Hei-
delberg (2003)

4. Armknecht, F., Carlet, C., Gaborit, P., Kunzli, S., Meier, W., Ruatta, O.: Efficient
Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer,
Heidelberg (2006)

5. Batten, L., Canteaut, A., Viswanathan, K.: INDOCRYPT 2004. LNCS, vol. 3348,
pp. 84–91. Springer, Heidelberg (2004)

6. Berger, T., Minier, M.: Two Algebraic Attacks Against the F-FCSRs Using the
IV Mode. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) INDOCRYPT
2005. LNCS, vol. 3797, pp. 143–154. Springer, Heidelberg (2005)

7. Clark, A., Ed Dawson, J., Fuller, J., Golić, J., Lee, H-J., Millan, W., Moon, S-J.,
Simpson, L.: LILI-II Keystream Generator. In: ACISP 2002. LNCS, vol. 2384, pp.
25–39. Springer, Heidelberg (2002)

8. Cho, J., Pieprzyk, J.: Algebraic attacks on SOBER-t32 and SOBER-t16 without
stuttering. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 49–64.
Springer, Heidelberg (2004)

9. Courtois, N.: Cryptanalysis of Sfinks. In: Won, D.H., Kim, S. (eds.) ICISC 2005.
LNCS, vol. 3935, pp. 261–269. Springer, Heidelberg (2006)

10. Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)



26 S.Z. Al-Hinai et al.

11. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS,
vol. 2656, pp. 346–359. Springer, Heidelberg (2003)

12. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

13. Dawson, E., Golić, J., Millan, W., Simpson, L.: Response to Initial Report on
LILI-128.NESSIE submission, available at http://www.cryptonessie.org

14. Dawson, E., Clark, A., Golić, J., Millan, W., Penna, L., Simpson, L.: The
LILI-128 keystream generator.NESSIE submission. In: The proceedings of
the First Open NESSIE Workshop (Leuven, November 2000), available at
http://www.cryptonessie.org

15. Dalai, D., Gupta, K., Maitra, S.: Results on Algebraic Immunity for Cryptograph-
ically Significant Boolean Functions. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)

16. Didier, F.: Using Wiedemanna Algorithm to Compute the Immunity Against Al-
gebraic and Fast Algebraic Attacks. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 236–250. Springer, Heidelberg (2006)

17. Lee, D., Kim, J., Hong, J., Han, J., Moon, D.: Algebraic Attacks on Summation
Generators. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 34–48.
Springer, Heidelberg (2004)

18. Hawkes, P., Rose, G.: Rewriting Variables: The Complexity of Fast Algebraic At-
tacks on Stream Ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 390–406. Springer, Heidelberg (2004)

19. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

20. Molland, H., Helleseth, T.: An Improved Correlation Attack Against Irregular
Clocked and Filtered Keystream Generators. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 373–389. Springer, Heidelberg (2004)

21. Molland, H.: Improved linear consistency attack on irregular clocked keystream
generators. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 109–126.
Springer, Heidelberg (2004)

22. Saarinen, M.: A Time-Memory Tradeoff Attack Against LILI-128. In: Daemen, J.,
Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 231–236. Springer, Heidelberg
(2002)

23. Simpson, L., Dawson, E., Golić, J., Millan, W.: LILI Keystream Generator. In:
Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 248–261. Springer,
Heidelberg (2001)

24. Strassen, V.: Gaussian Elimination is Not Optimal. Numerische Mathematik 13,
354–356 (1969)

25. Sugimoto, K., Chikaraishi, T., Morizumi, T.: Design criteria and security evalua-
tions on certain stream ciphers. IEICE Technical Report, ISEC2000-69 (September
2000)

26. Wong, K., Colbert, B., Batten, L., Alhinai, S.: Algebraic attacks on clock con-
trolled cascade ciphers. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS,
vol. 4329, pp. 32–47. Springer, Heidelberg (2006)

27. Zhang, X., Pieprzyk, J., Zheng, Y.: On Algebraic Immunity and Annihilators. In:
Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 65–80. Springer,
Heidelberg (2006)

http://www.cryptonessie.org
http://www.cryptonessie.org


On the Security of the LILI Family 27

A Algebraic Normal Form of LILI-II Boolean Function

fd(x1, x2, . . . , x12) = x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x1x9+x2x4+

x3x8 +x5x11 +x6x7 +x7x10 +x7x11 +x7x12 +x10x12 +x2x7x11 +x2x7x12 +x4x7x11 +

x4x7x12 + x7x10x11 + x7x11x12 + x1x2x7x11 + x1x2x7x12 + x1x3x7x11 + x2x7x9x11 +

x2x7x9x12+x2x7x11x12+x3x4x7x11+x3x7x9x11+x4x7x11x12+x7x9x11x12+x1x2x3x7x9+

x1x2x7x11x12+x1x3x7x11x12+x1x7x9x11x12+x2x3x4x7x9+x2x3x5x7x9+x2x3x6x7x11+

x2x3x7x8x9+x2x3x7x9x10+x2x3x7x9x11+x2x3x7x9x12+x2x3x7x11x12+x2x3x9x11x12+

x2x7x8x9x11+x2x7x8x9x12+x2x7x9x10x11+x2x7x9x11x12+x3x5x7x11x12+x3x7x8x9x11+

x3x7x8x11x12+x3x7x9x10x11+x4x7x9x11x12+x7x8x9x11x12+x7x9x10x11x12+x2x3x4x9x11x12+

x2x3x6x7x9x11+x3x4x7x8x9x11+x3x6x7x8x9x11+x2x3x7x10x11x12+x3x7x9x10x11x12+

x3x5x7x8x9x11+x1x2x3x7x10x11+x2x3x6x9x11x12+x2x7x9x10x11x12+x1x3x4x7x11x12+

x1x3x7x10x11x12+x1x2x3x7x9x12+x2x3x6x7x11x12+x3x7x8x9x10x11+x2x3x5x7x11x12+

x3x5x6x7x9x11+x1x2x3x7x11x12+x3x5x6x7x11x12+x1x3x7x8x11x12+x3x4x7x10x11x12+

x1x3x5x7x9x11+x2x3x5x7x10x11+x2x3x4x7x10x11+x2x3x7x8x9x12+x2x3x4x7x9x12+

x2x3x8x9x11x12+x3x6x7x8x11x12+x4x5x6x7x8x11+x3x5x7x9x10x11+x2x3x5x9x11x12+

x2x3x9x10x11x12+x3x7x8x9x11x12+x3x4x7x9x11x12+x1x2x3x5x7x11+x1x3x4x7x9x11+

x3x5x7x8x11x12+x2x3x4x5x7x11+x3x6x7x9x11x12+x1x2x3x6x7x11+x2x3x5x7x8x11+

x2x3x5x6x7x11+x1x2x7x9x11x12+x2x3x7x8x9x11+x1x2x3x9x11x12+x3x4x5x7x9x11+

x3x4x6x7x11x12+x3x5x6x7x10x11x12+x2x3x5x7x8x10x11+x1x2x3x6x7x9x11+x1x3x5x7x8x9x11+

x2x3x4x6x7x11x12+x2x3x5x7x8x9x11+x2x3x4x5x6x7x11+x2x3x5x7x10x11x12+x1x3x4x5x7x11x12+

x1x3x6x7x9x10x11+x3x4x6x7x9x10x11+x2x3x4x5x7x11x12+x3x5x6x7x9x11x12+x1x3x6x7x10x11x12+

x1x3x6x7x8x11x12+x4x5x6x7x8x11x12+x2x3x5x6x7x11x12+x1x2x3x5x6x7x11+x2x3x4x7x10x11x12+

x3x5x7x8x9x10x11+x2x4x5x6x7x8x11+x1x3x4x7x9x11x12+x2x3x4x6x7x9x11+x1x2x3x6x7x10x11+

x2x3x4x7x9x10x11+x2x3x6x7x8x9x11+x2x3x4x5x7x8x11+x3x5x6x7x9x10x11+x1x2x3x7x9x10x11+

x4x5x6x7x8x10x11 + x1x2x3x7x8x11x12 + x3x6x7x9x10x11x12 + x1x2x3x4x7x11x12 +

x2x3x6x7x8x11x12+x3x4x5x6x7x8x11+x1x2x3x7x10x11x12+x1x3x5x7x8x11x12+x2x3x4x5x7x10x11+

x3x4x6x7x10x11x12+x3x4x6x7x9x11x12+x1x2x3x4x7x9x11+x1x3x5x6x7x9x11+x3x4x7x9x10x11x12+

x2x3x5x6x7x9x11+x4x5x6x7x8x9x11+x3x5x7x8x9x11x12+x1x3x5x6x7x11x12+x2x3x5x7x9x10x11+

x1x3x4x7x8x11x12+x3x4x7x8x10x11x12+x3x6x7x8x9x11x12+x1x3x4x5x7x9x11+x3x5x7x9x10x11x12+

x1x3x6x7x8x9x11+x1x3x5x7x10x11x12+x1x3x5x7x9x11x12+x1x2x3x4x5x7x11+x1x3x4x6x7x9x11+

x1x3x7x8x9x11x12+x3x4x6x7x8x11x12+x2x3x5x7x9x11x12+x3x4x5x7x9x10x11+x1x2x3x4x7x8x11+

x1x2x3x4x6x7x11 + x3x5x7x8x10x11x12 + x3x5x6x7x8x11x12 + x3x6x7x8x10x11x12 +

x3x6x7x8x9x10x11 + x1x2x3x6x7x11x12 + x3x4x5x7x8x11x12 + x1x2x3x4x6x7x9x11 +

x2x4x5x6x7x8x10x11+x1x2x3x4x7x8x10x11+x1x2x3x4x7x8x9x11+x3x4x5x6x7x8x10x11+

x4x5x6x7x8x9x11x12+x3x4x7x8x9x10x11x12+x1x2x3x4x6x7x10x11+x2x3x5x7x9x10x11x12+

x2x3x5x7x8x10x11x12+x1x2x3x5x6x7x8x11+x1x3x4x7x9x10x11x12+x1x3x6x7x9x10x11x12+

x2x3x4x5x7x8x9x11+x3x4x5x7x8x9x11x12+x3x4x5x6x7x9x10x11+x4x5x6x7x8x9x10x11+

x3x4x5x7x9x10x11x12+x2x3x4x5x7x10x11x12+x1x2x3x4x5x7x8x11+x1x3x5x6x7x10x11x12+

x2x4x5x6x7x8x9x11+x2x3x4x5x6x7x10x11+x1x2x3x4x6x7x11x12+x2x3x4x5x6x7x8x11+

x2x3x5x6x7x8x11x12+x1x2x3x5x7x10x11x12+x1x2x3x6x7x8x11x12+x1x2x3x6x7x9x10x11+

x2x3x4x7x8x9x11x12+x2x3x4x6x7x9x10x11+x3x5x6x7x8x9x10x11+x1x3x4x5x6x7x11x12+

x2x3x4x5x7x8x10x11+x3x4x5x6x7x8x9x11+x2x3x4x6x7x8x11x12+x1x3x4x7x8x9x11x12+

x2x3x6x7x8x10x11x12+x1x3x5x7x8x9x10x11+x1x2x3x6x7x10x11x12+x1x2x3x4x7x10x11x12+

x2x3x6x7x8x9x10x11+x2x3x4x5x6x7x11x12+x1x3x4x6x7x10x11x12+x2x3x5x7x8x9x11x12+

x2x3x4x7x8x10x11x12+x2x3x6x7x8x9x11x12+x2x3x5x6x7x10x11x12+x1x2x3x5x7x9x10x11+



28 S.Z. Al-Hinai et al.

x2x3x6x7x9x10x11x12+x1x2x3x5x7x8x11x12+x1x2x3x4x7x9x11x12+x1x3x7x8x9x10x11x12+

x2x3x5x6x7x9x10x11+x2x3x7x8x9x10x11x12+x2x3x4x5x6x7x9x11+x1x2x3x6x7x8x9x11+

x2x3x5x6x7x8x9x11+x1x2x3x5x6x7x9x11+x3x4x6x7x8x9x11x12+x1x2x3x4x7x9x10x11+

x1x3x4x5x7x9x10x11+x1x3x5x6x7x9x11x12+x4x5x6x7x8x10x11x12+x2x3x5x6x7x9x11x12+

x3x4x5x6x7x9x11x12+x1x3x6x7x8x9x11x12+x2x3x5x7x8x9x10x11+x2x3x4x6x7x10x11x12+

x2x4x5x6x7x8x11x12+x1x3x4x5x6x7x9x11x12+x2x3x4x5x6x7x9x11x12+x2x3x4x7x8x9x10x11x12+

x1x2x3x4x6x7x9x10x11+x1x2x3x4x5x7x8x9x11+x2x3x4x5x7x8x9x10x11+x2x3x5x7x8x9x10x11x12+

x1x2x3x4x7x9x10x11x12+x1x2x3x6x7x9x10x11x12+x4x5x6x7x8x9x10x11x12+x1x2x3x5x7x8x9x11x12+

x1x2x3x5x6x7x10x11x12+x1x2x3x4x5x7x9x11x12+x2x3x4x5x6x7x8x9x11+x3x4x5x6x7x8x9x10x11+

x2x4x5x6x7x8x9x10x11+x1x2x3x4x5x6x7x11x12+x2x3x4x5x6x7x9x10x11+x1x2x3x5x6x7x8x9x11+

x1x3x5x6x7x9x10x11x12+x2x3x4x5x6x7x8x10x11+x2x3x4x6x7x9x10x11x12+x1x2x3x7x8x9x10x11x12+

x1x3x4x6x7x9x10x11x12+x2x4x5x6x7x8x10x11x12+x1x2x3x4x6x7x10x11x12+x2x3x4x6x7x8x9x10x11+

x2x4x5x6x7x8x9x11x12+x1x2x3x4x5x6x7x9x11x12+x1x2x3x4x6x7x9x10x11x12+x1x2x3x5x6x7x9x10x11x12+

x2x3x4x5x6x7x8x9x10x11 + x2x4x5x6x7x8x9x10x11x12 + 1



Strengthening NLS Against Crossword Puzzle

Attack

Debojyoti Bhattacharya1, Debdeep Mukhopadhyay2, Dhiman Saha3,
and D. RoyChowdhury4

1 IIT-Kharagpur, Kharagpur, India
debojyoti.bhattacharya@gmail.com

2 IIT-Madras, Chennai, India
debdeep@cse.iitm.ernet.in

3 IIT-Kharagpur, Kharagpur, India
dhimans@cse.iitkgp.ernet.in

4 IIT-Kharagpur, Kharagpur, India
drc@iitkgp.ac.in

Abstract. NLS is a stream cipher proposal submitted to eSTREAM
project. In SAC 2006 Cho and Pieprzyk presented a linear distinguish-
ing attack called Crossword Puzzle attack on NLS where they have shown
that the bias of the distinguisher is around O(2−30). In this work we have
proposed a new function modular Slash which is nonlinear in nature and
strongly resistant against Linear Cryptanalysis. Replacing the modular
addition in the nonlinear filter (NLF) of NLS we have shown that the
Crossword puzzle attack presented by Cho and Pieprzyk can be pre-
vented. In the modified NLS the bias of the linear distinguisher reduces
to around O(2−60). Also we have shown that the implementation cost of
modular Slash, in terms of hardware and time delay, is less than modular
addition. The proposed function could be an interesting alternative to
modular addition, due to its better cryptographic properties and lesser
implementation cost.

Keywords: Stream ciphers, eSTREAM, Crossword Puzzle attack, Lin-
ear Approximations, Modular Addition, NLS.

1 Introduction

A stream cipher project called eSTREAM [1] has been launched by the Euro-
pean Network of Excellence in Cryptography (ECRYPT), to come up with a
collection of stream ciphers as de facto standard in industry and government
institutions as secure and efficient cryptographic primitives. A variety of differ-
ent design approaches has been followed by the designers in different submis-
sions and a variety of cryptanalytic techniques are also submitted to cryptan-
alyze and assess the security of those submitted stream ciphers. In traditional
stream ciphers, linear feedback shift register (LFSR) is used as one of the ma-
jor components. The output of the shift registers are passed to a nonlinear filter
(NLF) to produce the keystream. In recent days, modern stream ciphers are using

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 29–44, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



30 D. Bhattacharya et al.

nonlinear feedback shift register (NFSR) in place of LFSR. Several ciphers sub-
mitted to eSTREAM follow this approach. NLS [2] is one of the stream ciphers
submitted to eSTREAM and also a candidate in phase 2, follows this design
approach. In [3], Joo Yeon Cho and Josef Pieprzyk studied the NLS cipher and
its resistance against linear distinguishing attacks. Though the distinguishing
attacks do not allow to recover cryptographic key or any secret element of the
cipher under observation, the attack is important in the sense that it helps to
distinguish the cipher under attack from a truly random cipher.

In [3], Joo Yeon Cho and Josef Pieprzyk proposed an excellent linear distin-
guishing attack namely “Crossword Puzzle attack” (CP attack) against NLS
where they derived linear approximations for both the NFSR and the nonlinear
filter (NLF) and combined those approximations to build a linear distinguisher
to distinguish the output key-stream generated by NLS from a truly random
cipher. They showed that the bias of the distinguisher is around O(2−30) for
NLSv1 and hence the complexity of the attack is O(260) keystream words. They
also extend their attack to NLSv2 where the bias of the distinguisher is found
to be around O(2−48). Hence they claimed that the security margin of NLS is
small to guarantee the claimed security level in future.

In this paper, we propose a new boolean function named Slash (denoted by
�) which offers high non-linearity keeping the hardware implementation over-
head small. We cryptanalyzed our proposed function to show that it offers high
security against Linear Cryptanalysis. We modified NLS by replacing the mod-
ular addition used in the nonlinear filter (NLF) by modular Slash and showed
theoretically that the CP attack proposed in [3] fails. The bias of the linear
distinguisher built in the method of Joo Yeon Cho and Josef Pieprzyk reduces
to a value of around O(2−60) and hence the complexity of the attack increases
to around O(2120) keystream words. We show our computations only for NLSv1.
We also give the hardware architectural comparison of modular Slash function
with modular addition to show that both the hardware complexity and the time
delay to realize modular Slash are less than modular addition.

The rest of the work is organised as follows. Section 2 discusses some prelim-
inaries required for this work. Section 3 explores our proposed function. Perfor-
mance of the proposed function against Linear Cryptanalysis has been discussed
in Section 4. Section 5 briefly describes the NLS cipher and our suggested modifi-
cation. A brief description of the framework of the CP attack has been discussed
in Section 6. The analysis of the linear approximations for the NFSR and the
NLF for both the original NLS and the modified NLS are given in Section 7.
In Section 8 the complexity comparison of the CP attack on the original NLS
and the modified NLS has been discussed. Hardware and time delay comparison
of the new function with addition modulo 2n are given in Section 9. Section 10
concludes the work.

2 Preliminaries

Some basic definitions and notations have been discussed in this section. A
boolean function of n variables g(x) is a map g(x) : Fn

2 → F2, where Fn
2 is



Strengthening NLS Against Crossword Puzzle Attack 31

a vector space defined over F2. The operation x ⊕ y on two binary strings x
and y is the bitwise exclusive OR operation between the strings x and y. The
Hamming weight of a binary string x is the number of 1’s in the string and is
denoted by wt(x). The Hamming distance between two binary strings of equal
length (say x and y) is the number of positions where x and y differ and is
measured by wt(x ⊕ y).

Definition 1. A boolean function g(x), where x is an n variable binary string,
can be uniquely written as a sum (XOR) of products (AND). This is known
as Algebraic Normal Form (ANF). g(x1, x2, . . . , xn) = p0 ⊕ p1x1 ⊕ p2x2 ⊕ . . .
pnxn ⊕ p1,2x1x2 ⊕ pn−1,nxn−1xn ⊕ . . . ⊕ p1,2,...,nx1x2 . . . xn. The values of (p0,
p1, . . . , p1,2,...,n ∈ {0, 1}) uniquely represent a boolean function.

Definition 2. An n variable boolean function g(x1, x2, . . . , xn) is said to be an
affine function if the ANF of g is of the form g(x1, x2, . . . , xn) = ⊕n

i=0pixi ⊕ q
for pi, q ∈ {0, 1}. If q is 0, then the function is said to be linear.

Definition 3. Non-linearity of an n variable boolean function g is defined as the
minimum Hamming distance from the set of all affine functions of n variables,
i.e., Nf = mina∈AndH(g, a), where Hamming distance is defined as, dH(g, a) =
{#x|g(x) �= a(x)}. An is the set of all n variable affine functions.

Definition 4. [4] A boolean function g(x) of n variable, where n is even, is
called a Bent function if it has a non-linearity value 2n−1 − 2

n
2−1. This is the

highest possible non-linearity for an n variable boolean function if n is even.

Theorem 1. [5] The boolean function g(xn−1, xn−2, . . . , x0) = xn−1 xn−2 ⊕
xn−3xn−4⊕ . . .⊕x3x2⊕x1x0 is a bent function having nonlinearity value 2n−1−
2

n
2−1, where ’n’ is even and xn, xn−1, . . ., x0 are n independent random boolean

variables.

Definition 5. A bias ε(a, b) is defined as P = 1
2 (1 + ε), |ε| > 0 where P is the

probability that an approximation holds.

Piling-up Lemma. [6] If we have n independent approximations having biases
ε1, . . . , εn, then the bias of the approximation combining these n approximations
becomes

∏n
i=1 εi.

3 Proposed Boolean Operator: Slash

Definition 6. Slash: It is defined as an operation ′�′ which operates on two
1 bit boolean variables A and B and produces a 2 bit output Cout, O such that
A�B = Cout ‖ O. The output bits are defined as, O = A⊕B and Cout = AB. For
three 1 bit boolean variables, A, B, and Cin the definition extends to A�B�Cin

and the output bits are expressed as O = A⊕B ⊕ Cin and Cout = AB ⊕ Cin.

We present a function modular Slash using Slash operator below with proof of
its reversibility.



32 D. Bhattacharya et al.

– Forward: Let X = (xn−1, xn−2, . . . , x0) and Y = (yn−1, yn−2, . . . , y0) be
two n-bit data and Z = (zn−1, zn−2, . . . , z0) be the n-bit output, where
x0, y0, z0 denote the LSBs and xn−1, yn−1, zn−1 denote the MSBs. We define
the function Z = F (X, Y ) as below:

zi = xi ⊕ yi ⊕ ci−1

ci = xiyi ⊕ ci−1

c−1 = 0

ci is the carry term propagating from ith bit position to (i+1)th bit position.
The definition of ci is recursive as shown in the equation. The end carry cn−1
is neglected. This defines the operation Z = F (X, Y ) = (X � Y ) mod 2n

(Definition 6).
– Inverse: Let Z = (zn−1, zn−2, . . . , z0) be an n-bit input, Y = (yn−1, yn−2,

. . . , y0) be another n-bit input and X = (xn−1, xn−2, . . . , x0) be the n-bit
output, notation of LSB and MSB being the same as of the forward. We
define the inverse function X = G(Z, Y ) as below:

xi = zi ⊕ yi ⊕ di−1

di = xiyi ⊕ di−1

d−1 = 0

di is the carry term propagating from ith bit position to (i+1)th bit position.
The definition of di is recursive as shown in the equation. It can be noted
here that di = (zi ⊕ yi ⊕ di−1)yi ⊕ di−1 = ziyi ⊕ yi ⊕ di−1yi ⊕ di−1 =
yi(¬zi) ⊕ di−1(¬yi). This definition of di has been used in the hardware
design and result is shown in Table 2. The end carry dn−1 is neglected.

Theorem 2. If X, Y, Z be three n-bit data such that Z = F (X, Y ), where zi =
xi ⊕ yi ⊕ ci−1, ci = xiyi ⊕ ci−1 and c−1 = 0 and G is defined as X = G(Z, Y ),
where xi = zi ⊕ yi ⊕ di−1, di = xiyi ⊕ di−1 (∀ 0 ≤ i < n) and d−1 = 0 then G is
the inverse function of F .

Proof. Let, zi ⊕ yi ⊕ di−1 = pi

Given that, ci = xiyi ⊕ ci−1

∴ ci−1 = xi−1yi−1 ⊕ ci−2

= xi−1yi−1 ⊕ . . .⊕ c0

= xi−1yi−1 ⊕ . . .⊕ x0y0

According to the definition of F , zi = xi ⊕ yi ⊕ ci−1
According to the definition of G, di = xiyi ⊕ di−1

∴ di−1 = xi−1yi−1 ⊕ di−2

= xi−1yi−1 ⊕ . . .⊕ d0

= xi−1yi−1 ⊕ . . .⊕ x0y0

= ci−1



Strengthening NLS Against Crossword Puzzle Attack 33

∴ pi = zi ⊕ yi ⊕ di−1

= zi ⊕ yi ⊕ ci−1,( putting value of di−1)
= (xi ⊕ yi ⊕ ci−1)⊕ yi ⊕ ci−1

= xi

Hence the proof.

The following corollary follows from the definition of F (X, Y ).

Corollary 1. If X and Y are two n-bit numbers, then the operation F is com-
mutative, i.e F (X, Y ) = F (Y, X).

4 Performance of Slash Against Linear Cryptanalysis

In this section we give the performance measurement of our proposed function
against Linear Cryptanalysis (LC). Throughout the analysis we will consider
X = (xn−1, . . . , x0) and Y = (yn−1, . . . , y0) are two mutually independent ran-
dom variables of n bits each and each of the n bits of X and Y are mutually
independent random boolean variables.

Theorem 3. If two n bit numbers, X = (xn−1, xn−2, . . . , x0) and Y = (yn−1,
yn−2, . . . , y0) generate an n bit number Z = (zn−1, zn−2, . . . , z0) such that, Z =
F (X, Y ), then the probability pi of denoting zi, each output bit of Z by the linear
function xi ⊕ yi is pi = 1

2 (1 + (1
2 )i) and pi lies in the range 1

2 < pi ≤ 1 as i lies
in 0 ≤ i < n.

Proof. We denote the carry propagated from the ith bit position to (i + 1)th bit
position as ci. As per the definition of F , c−1 = 0. Hence z0 = x0 ⊕ y0 with
probability 1. Therefore p0 = 1. Now, z1 = x1 ⊕ y1 if there is no carry c0. But,
c0 = 0 holds with a probability of 3

4 as c0 = x0y0. Hence p1 = 3
4 .

Let pi be the probability of denoting zi as zi = xi ⊕ yi. Similarly zi+1 can be
expressed linearly with a probability of pi+1.

Fact: It is clear hereby that, zi+1 can be expressed linearly if the carry term
from ith bit position, ci = 0.

This scenario can be expressed as the union of the following two cases.

– Event A: This is the case when ci−1 = 0 and xi � yi generates a carry. If
ci−1 = 0, then zi could have been expressed linearly (using the Fact stated
above) and the probability of that by definition is pi. Hence, the probability
that A is true is 1

4 .pi.
– Event B: This is the case where ci−1 = 1 and xi� yi generates a carry. The

probability that event B is true is 3
4 .(1− pi).

From the above two events it is clear that zi+1 cannot be expressed linearly if
the event (A∪B) occurs. By definition the probability of this event is (1−pi+1),
as pi+1 is the probability that zi+1 can be expressed linearly.



34 D. Bhattacharya et al.

∴ (1 − pi+1) = P (A ∪B)
= P (A) + P (B)(A and B are mutually

exclusive events)

=
1
4
.pi +

3
4
.(1 − pi)

⇒ pi+1 =
1
4

+
1
2
.pi

Using the above recurrence relation we can write,

pi+1 =
1
4

+
1
2
.pi

=
1
4

+
1
2
.(

1
4

+
1
2
.pi−1)

=
1
4
.(1 +

1
2
) + (

1
2
)2pi−1

...

=
1
4
.(1 + (

1
2
) + . . . + (

1
2
)i) + (

1
2
)i+1p0

=
1
2
.(1 + (

1
2
)i+1), as p0 = 1

Hence, pi = 1
2 .(1 + (1

2 )i).
Therefore, pi = 1, when i = 0 and pi tends to 1

2 for high value of i. Hence the
proof.

From Theorem 3 it can be inferred that the bias of the linear approximation
relating to the ith bit position is (1

2 )i. In the following theorem, the maximum
value of the biases of all possible linear approximations of the output bits is
computed.

Theorem 4. If two n bit numbers X = (xn−1, xn−2, . . . , x0) and Y = (yn−1,
yn−2, . . . , y0) generate an n bit number Z = (zn−1, zn−2, . . . , z0) such that,
Z = F (X, Y ), then the bias of the best linear approximation of the ith output bit
of Z is 2−i.

Proof. From the definition of F it is evident that zi = xi⊕yi⊕ci−1, where ci−1 is
the carry propagated from ith bit position. The carry ci−1 is the only nonlinear
term of the equation. Therefore, in order to obtain various linear approximations
for the nonlinear part, linear approximations have to be found out for the carry
term. Each possible approximation of ci−1, denoted by Li−1 will give rise to
different biases which are equal to the bias of a linear approximation of zi. By
the definition of ci, we know that, ci = xiyi ⊕ xi−1yi−1 ⊕ . . .⊕ x0y0, i.e. ci is a
boolean function of 2(i + 1) variables. It has been proved in Theorem 1, that
ci is a bent function. Hence, it has a nonlinearity value 22(i+1)−1 − 2

2(i+1)
2 −1.

Hence, the probability of match for the best linear approximation of ci is :



Strengthening NLS Against Crossword Puzzle Attack 35

1− 22(i+1)−1−22(i+1)/2−1

22(i+1) = 1
2 + 2−(i+2). Therefore the output, zi = xi ⊕ yi ⊕ ci−1

can be approximated by a linear equation, z′i = xi ⊕ yi ⊕ Li−1, where Li−1 is
the best linear approximation for ci−1. Now, the largest probability that Li−1
matches ci−1 is 1

2 +2−(i−1+2) = 1
2 +2−(i+1) = 1

2 (1+2−i). Thus, the largest bias
of the best linear approximation for ci−1 and hence zi is 2−i.

We observe from the above theorems that the bias of any linear approximations
reduces considerably and makes the finding of linear approximations in the cipher
with a large bias more difficult.

5 Brief Description of NLS Stream Cipher

NLS key-stream generator uses NFSR whose outputs are given to a nonlinear
filter NLF that produces output key-stream bits. Detail of the cipher can be
found in [2].

NLS has two components, one NFSR and one NLF whose work is synchronised
by a clock. The state of NFSR at time t is denoted by σt = (rt[0], . . . , rt[16])
where rt[i] is a 32-bit word. The state is determined by 17 words. The transition
from the state σt to the state σt+1 is defined as follows :

1. rt+1[i] = rt[i + 1] for i = 0, . . . , 15;
2. rt+1[16] = f((rt[0] ≪ 19) � (rt[15] ≪ 9) � Konst)⊕ rt[4];
3. if t = 0(modf16), rt+1[2] = rt+1[2] � t;

where f16 is 65537 and � is the addition modulo 232. The Konst value is a 32-bit
key dependent constant. The function f : {0, 1}32 → {0, 1}32 is constructed using
an S-box with 8-bit input and 32-bit output and defined as f(a) = S-box(aH)⊕a
where aH is the most significant 8 bits of 32-bit word a. Each output key-stream
word νt of NLF is obtained as

νt = NLF (σt) = (rt[0] � rt[16])⊕ (rt[1] � rt[13])⊕ (rt[6] � Konst). (1)

The cipher uses 32-bit words to ensure a fast keystream generation.

5.1 Suggested Modification

The NLS key-stream generator has two components, one NFSR and one NLF.
We keep the NFSR same and change the Non-Linear Filter (NLF) only. We
replace the modular additions used in the NLF by our proposed Slash function.
We use Slash modulo 232. Hence in the modified NLS the output key-stream
word ν′t is obtained as :

ν′t = NLF ′(σt) = (rt[0]� rt[16])⊕ (rt[1]� rt[13])⊕ (rt[6]�Konst). (2)

Here � is Slash modulo 232.



36 D. Bhattacharya et al.

6 Brief Description of Crossword Puzzle (CP) Attack

The CP attack proposed in [3] is based on linear distinguisher [7] which uses
linear approximations of both the NFSR and the NLF. The roles of the two
nonlinear components are :

– NFSR transforms the current state σi to the next state σi+1 using some
function NF1, σi+1 = NF1(σi).

– NLF produces an output νi from the current state σi through a function
NF2, νi = NF2(σi).

The basic steps of the attack are :

1. Find a linear approximation of the non-linear state transition function used
by NFSR : l1(σi) = σi+1 with bias of ε1.

2. Find a linear approximation of the non-linear function applied by NLF :
l2(σj)⊕ l3(νj) = 0 with bias of ε2.

3. Obtain two sets of clock I and J such that
∑

i∈I(l1(σi)⊕σi+1)=
∑

j∈J l2(σj).
4. Build a distinguisher by computing

∑

i∈I

(l1(σi)⊕ σi+1)⊕
∑

j∈J

(l2(σj)⊕ l3(νj)) =
∑

j∈J

l3(νj) = 0

which has bias of ε|I| · ε|J|.
This is the basic outline of the attack. The attackers obtained linear approxi-
mations of both the NFSR and the NLF and combined them to build a linear
distinguisher with high bias value. In the following subsections we introduce our
suggested modification and show that how the attack can be thwarted using
this modification. We show that in the modified version the bias of the distin-
guisher decreases to such a low value that any practical attack using this linear
distinguisher is impossible.

7 Analysis of NFSR and NLF

As we have not changed the structure of the NFSR, the analysis given in [3]
holds. We briefly describe the analysis of NFSR here. Let αt be a 32-bit output
of the S-box that defines the transition function f . Then, the following equation
holds for the least significant bit.

αt,(0) ⊕ rt[0](13) ⊕ rt[15](23) ⊕Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (3)

where αt,(i) and x(i) stand for the i-th bit off the 32 bit words αt and x respec-
tively.(Throughout the paper, this notation will be used). To make the analysis
simpler initially Konst is taken as zero.



Strengthening NLS Against Crossword Puzzle Attack 37

7.1 Linear Approximation of αt,(0) and NFSR

In Table 1 the linear approximations for αt,(0) has been given. For detail, reader
can refer to [3]. Linear approximation of the NFSR can be obtained using the

Table 1. Linear approximations for αt,(0) when Konst = 0

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt[15](15)
1
2 (1 + 0.048828)

rt[0](10) ⊕ rt[0](6) ⊕ rt[0](5) ⊕ rt[15](20) ⊕ rt[15](16)
1
2 (1 + 0.048828)

rt[0](12) ⊕ rt[15](22)
1
2 (1 − 0.045410)

rt[0](12) ⊕ rt[0](11) ⊕ rt[0](10) ⊕ rt[15](22) ⊕ rt[15](21) ⊕ rt[15](20)
1
2 (1 − 0.020020)

linear approximation for αt,(0). If the first approximation from Table 1 is chosen,
then the following linear equation :

αt,(0) = rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt[15](15) (4)

holds with bias 0.048828 = 2−4.36. Combining equations (3) and (4), the follow-
ing approximation for NFSR holds

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt[15](15) =
rt[0](13) ⊕ rt[15](23) ⊕Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) (5)

with bias 2−4.36.

7.2 Linear Approximation of Modular Addition [3]

As the least significant bits are linear for modular addition � so the following
equation holds with probability 1.

(r[x] � r[y])(0) = r[x](0) ⊕ r[y](0) (6)

x(i) stands for ith bit of 32-bit word x. All consecutive bits i > 0 of � are
nonlinear. Consider the function (r[x] � r[y])(i)⊕ (r[x] � r[y])(i−1). The function
has a linear approximation as follows

(r[x] � r[y])(i) ⊕ (r[x] � r[y])(i−1) = r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) (7)

that has the bias 2−1.
In a similar way, the function (r[x] � r[y])(i) ⊕ (r[x] � r[y])(i−1) ⊕ (r[x] �

r[y])(i−2) ⊕ (r[x] � r[y])(i−3) has the following approximation. For i > 2,

(r[x] � r[y])(i) ⊕ (r[x] � r[y])(i−1) ⊕ (r[x] � r[y])(i−2) ⊕ (r[x] � r[y])(i−3) =
r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) ⊕ r[x](i−2) ⊕ r[y](i−2) ⊕ r[x](i−3) ⊕ r[y])(i−3)

(8)

that has a bias of 2−2.



38 D. Bhattacharya et al.

7.3 Linear Approximation of Modular Slash

Let us look at the change in bias due to the introduction of modular Slash in
place of modular addition. Let r[z] = r[x]� r[y]. As the least significant bits are
linear so the following equation holds with probability 1.

(r[x] � r[y])(0) = r[x](0) ⊕ r[y](0) (9)

which is same as of equation (6). All consecutive bits i > 0 are nonlinear.
The function (r[x]� r[y])(i) ⊕ (r[x]� r[y])(i−1) having a linear approximation

as follows

(r[x] � r[y])(i) ⊕ (r[x] � r[y])(i−1) = r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1)(10)

has bias of at most 2−i (theorem 4), considering this as the best linear approxi-
mation of the output bit r[z](i).

In a similar way the function (r[x] � r[y])(i) ⊕ (r[x] � r[y])(i−1) ⊕ (r[x] �
r[y])(i−2) ⊕ (r[x] � r[y])(i−3) has the following approximation. For i > 2,

(r[x] � r[y])(i) ⊕ (r[x] � r[y])(i−1) ⊕ (r[x] � r[y])(i−2) ⊕ (r[x] � r[y])(i−3) =
r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) ⊕ r[x](i−2) ⊕ r[y](i−2) ⊕ r[x](i−3) ⊕ r[y])(i−3)

(11)

has a bias of at most 2−i (theorem 4), considering this as the best linear approx-
imation of the output bit r[z](i).

7.4 Linear Approximation for NLF

Equation (1) defines the output key-stream generated by the original NLF and
equation (2) defines the output key-stream generated by the modified NLF. The
relation for the least significant bits of both the original and the modified NLF
having the following form holds with probability one (as observed from equation
(6) and (9)).

νt,(0)/ν′t,(0) = (rt[0](0) ⊕ rt[16](0))⊕ (rt[1](0)
⊕ rt[13](0))⊕ (rt[6](0) ⊕Konst(0)) (12)

For 2 ≤ i ≤ 31 and using equation (7), the original NLF function has linear
approximation of the following form :

νt,(i) ⊕ νt,(i−1) = (rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1))
⊕ (rt[1](i) ⊕ rt[13](i) ⊕ (rt[1](i−1) ⊕ rt[13](i−1))
⊕ (rt[6](i) ⊕Konst(i) ⊕ rt[6](i−1) ⊕Konst(i−1)) (13)

with the bias of (2−1)2 = 2−2 under the condition that Konst = 0 [3], when
modular addition has been used in the Filter function.



Strengthening NLS Against Crossword Puzzle Attack 39

When modular Slash has been used in the filter function, for 2 ≤ i ≤ 31 and
using equation (10), the modified NLF function has linear approximation of the
following form :

ν′t,(i) ⊕ ν′t,(i−1) = (rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1))
⊕ (rt[1](i) ⊕ rt[13](i) ⊕ (rt[1](i−1) ⊕ rt[13](i−1))
⊕ (rt[6](i) ⊕Konst(i) ⊕ rt[6](i−1) ⊕Konst(i−1)) (14)

with the bias of (2−i)2 = 2−2i under the condition, Konst = 0.
In case of modular addition, applying approximation (8), for i > 2 the follow-

ing expression holds

νt,(i) ⊕ νt,(i−1) ⊕ νt,(i−2) ⊕ νt,(i−3) =
(rt[0](i) ⊕ rt[0](i−1) ⊕ rt[0](i−2) ⊕ rt[0](i−3) ⊕ rt[16](i) ⊕ rt[16](i−1)

⊕ rt[16](i−2) ⊕ rt[16](i−3))⊕ (rt[1](i) ⊕ rt[1](i−1) ⊕ rt[1](i−2) ⊕ rt[1](i−3) (15)
⊕ (rt[13](i) ⊕ rt[13](i−1) ⊕ rt[13](i−2) ⊕ rt[13](i−3))⊕ (rt[6](i) ⊕ rt[6](i−1)

⊕ rt[6](i−2) ⊕ rt[6](i−3))⊕Konst(i) ⊕Konst(i−1) ⊕Konst(i−2) ⊕Konst(i−3))

with the bias (2−2)2 = 2−4 when Konst = 0.
In case of modular Slash, applying approximation (11), for i > 2 the following

expression holds

ν′t,(i) ⊕ ν′t,(i−1) ⊕ ν′t,(i−2) ⊕ ν′t,(i−3) =

(rt[0](i) ⊕ rt[0](i−1) ⊕ rt[0](i−2) ⊕ rt[0](i−3) ⊕ rt[16](i) ⊕ rt[16](i−1)

⊕ rt[16](i−2) ⊕ rt[16](i−3))⊕ (rt[1](i) ⊕ rt[1](i−1) ⊕ rt[1](i−2) ⊕ rt[1](i−3) (16)
⊕ (rt[13](i) ⊕ rt[13](i−1) ⊕ rt[13](i−2) ⊕ rt[13](i−3))⊕ (rt[6](i) ⊕ rt[6](i−1)

⊕ rt[6](i−2) ⊕ rt[6](i−3))⊕Konst(i) ⊕Konst(i−1) ⊕Konst(i−2) ⊕Konst(i−3))

with bias (2−i)2 = 2−2i, when Konst = 0.

8 Complexity Comparison of CP Attack on the Original
and Modified NLS

The main idea behind the CP attack is to find the best combination of approxi-
mations for both NFSR and NLF, while the state bits of the shift register vanish
and the bias of the resulting approximation is as big as possible [3]. The case for
Konst = 0 has been studied at first and then the attack has been extended to
Konst �= 0. We show that for non-zero Konst, even if we assume all zero values
for the lower 3 bytes of the Konst, the attack proposed in [3] does not work on
the modified NLS.

8.1 Case for Konst = 0

We first describe here the approximation chosen by the attacker in [3] and then
we show that in modified NLS, how the bias of this approximation decreases to
a low value such that any practical attack become impossible.



40 D. Bhattacharya et al.

The linear approximations of αt,(0) are given in Table 1. The third approxi-
mation from the table has been chosen which is

αt,(0) = rt[0](12) ⊕ rt[15](22) (17)

and the bias of this approximation is 0.045410 = 2−4.46. By combining equations
(3) and (17) the following approximation has been obtained

rt[0](12) ⊕ rt[15](22) ⊕ rt[0](13) ⊕ rt[15](23) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (18)

which has the same bias.
Approximation (18) has been divided into two parts : the least significant

bits and the other bits as

l1(rt) = rt[4](0) ⊕ rt+1[16](0)
l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23) (19)

Clearly, l1(rt) ⊕ l2(rt) = 0 with the bias 2−4.46. Since, l1(rt) has only the least
significant bit variables, approximation (12) can be applied which is true with
probability one. The following set of approximations are obtained.

l1(rt) = rt[4](0) ⊕ rt+1[16](0)
l1(rt+1) = rt+1[4](0) ⊕ rt+2[16](0)
l1(rt+6) = rt+6[4](0) ⊕ rt+7[16](0) (20)
l1(rt+13) = rt+13[4](0) ⊕ rt+14[16](0)
l1(rt+16) = rt+16[4](0) ⊕ rt+17[16](0)

Adding up all approximations of (20) and by applying approximation (12), the
following equation can be written

l1(rt)⊕ l1(rt+1)⊕ l1(rt+6)⊕ l1(rt+13)⊕ l1(rt+16) = νt+4,(0) ⊕ νt+17,(0) (21)

since rt+p[0] = rt[p].
Now focusing on l2(rt), where the bit positions involved are 12, 13, 22 and 23,

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23)
l2(rt+1) = rt+1[0](12) ⊕ rt+1[0](13) ⊕ rt+1[15](22) ⊕ rt+1[15](23)
l2(rt+6) = rt+6[0](12) ⊕ rt+6[0](13) ⊕ rt+6[15](22) ⊕ rt+6[15](23) (22)
l2(rt+13) = rt+13[0](12) ⊕ rt+13[0](13) ⊕ rt+13[15](22) ⊕ rt+13[15](23)
l2(rt+16) = rt+16[0](12) ⊕ rt+16[0](13) ⊕ rt+16[15](22) ⊕ rt+16[15](23)

Since, rt+p[0] = rt[p], the above approximations are presented as follows.

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt+15[0](22) ⊕ rt+15[0](23)
l2(rt+1) = rt[1](12) ⊕ rt[1](13) ⊕ rt+15[1](22) ⊕ rt+15[1](23)
l2(rt+6) = rt[6](12) ⊕ rt[6](13) ⊕ rt+15[6](22) ⊕ rt+15[6](23) (23)
l2(rt+13) = rt[13](12) ⊕ rt[13](13) ⊕ rt+15[13](22) ⊕ rt+15[13](23)
l2(rt+16) = rt[16](12) ⊕ rt[16](13) ⊕ rt+15[16](22) ⊕ rt+15[16](23)



Strengthening NLS Against Crossword Puzzle Attack 41

For original NLS, approximations (13) and (23) are combined which leads to the
following approximation.

l2(rt)⊕ l2(rt+1)⊕ l2(rt+6)⊕ l2(rt+13)⊕ l2(rt+16) =
νt,(12) ⊕ νt,(13) ⊕ νt+15,(22) ⊕ νt+15,(23) (24)

By combining the approximations (21) and (24) the final approximation has
been obtained that defines the distinguisher in [3], i.e.

l1(rt)⊕ l1(rt+1)⊕ l1(rt+6)⊕ l1(rt+13)⊕ l1(rt+16)
⊕ l2(rt)⊕ l2(rt+1)⊕ l2(rt+6)⊕ l2(rt+13)⊕ l2(rt+16) (25)
= νt,(12) ⊕ νt,(13) ⊕ νt+15,(22) ⊕ νt+15,(23) ⊕ νt+4,(0) ⊕ νt+17,(0)

= 0

As approximation (18) has been used five times and approximation (13) twice,
the bias of the approximation (25) is (2−4.46)5 · (2−2)2 = 2−26.3. Therefore, the
complexity of the attack is 252.6. For the modified NLS, to obtain the same
distinguisher defined above, we have to combine approximation (14) and (23)
which leads to the following approximation.

l2(rt)⊕ l2(rt+1)⊕ l2(rt+6)⊕ l2(rt+13)⊕ l2(rt+16) =
ν′t,(12) ⊕ ν′t,(13) ⊕ ν′t+15,(22) ⊕ ν′t+15,(23) (26)

By combining the approximations (21) (as same expression holds for ν′ also) and
(26) the final approximation is obtained that defines the distinguisher

l1(rt)⊕ l1(rt+1)⊕ l1(rt+6)⊕ l1(rt+13)⊕ l1(rt+16)
⊕ l2(rt)⊕ l2(rt+1)⊕ l2(rt+6)⊕ l2(rt+13)⊕ l2(rt+16) (27)
= ν′t,(12) ⊕ ν′t,(13) ⊕ ν′t+15,(22) ⊕ νt+15,(23) ⊕ ν′t+4,(0) ⊕ ν′t+17,(0)

= 0

As approximation (18) has been used five times and approximation (14) twice,
the bias of the approximation (27) is (2−4.46)5 · (2−13) · (2−23) = 2−58.3 (as bit
positions 13 and 23 are used in the approximation). Therefore, the complex-
ity of the attack for the modified NLS is 2116.6. Since the specification of the
NLS cipher allows the adversary to observe up to 280 keystream words per one
key/nonce pair [2], the attack is not successful for the modified NLS as bias of
the distinguisher is less than 2−40.

8.2 Case for Konst �= 0

The biases of linear approximations of both αt,(0) and the NLF vary with Konst
as it occurs as a parameter. Bias of the linear distinguisher has been explored
in [3] and it has been showed that with non-zero Konst the bias reduces.
According to [3] the Konst has been divided into two parts as



42 D. Bhattacharya et al.

Konst = (Konst(H), Konst(L)) where Konst(H) = (Konst(31), . . . , Konst(24)),
and Konst(L) = (Konst(23), . . . , Konst(0)). The biases of linear approximations
of αt,(0) depend on Konst(H) and those of NLF depend on Konst(L). Here we have
explored only the case where Konst(H) �= 0 and Konst(L) = 0.

Since the most significant 8-bits of Konst contribute to the form of αt,(0), bias
of approximation (17) fluctuates according to the value of Konst(H). The bias
of (17) becomes smallest when Konst(H) is around 51 or 179 and the biggest
when Konst(H) is around 127 or 255. The average bias of approximation (17)
with Konst(H) is 2−5.19 [3].

As explained in [3], for the original NLS, bias of the NLF with non-zero
Konst(L) decreases and the bias of (13)is around 2−3for any i > 0. Hence the bias
of the distinguisher (25) with non-zero Konst becomes (2−5.19)5 ·(2−3) = 2−31.95.

In case of the modified NLS, even if we consider Konst(L) = 0 and Konst(H) �=
0, combining approximations (17) and (14), the bias of distinguisher (27) be-
comes (2−5.19)5 · (2−13) · (2−23) = 2−61.95, which is low enough to thwart any
linear distinguishing attack.

8.3 Multiple Distinguisher

For original NLS the bias of the distinguisher (25) is very small for some values
of Konst(H) [3]. In order to address this problem, the attackers took the fourth
approximation from Table 1 which is

αt,(0) = rt[0](12) ⊕ rt[0](11) ⊕ rt[0](10) ⊕ rt[15](22) ⊕ rt[15](21) ⊕ rt[15](20) (28)

having average bias of 2−6.2. Using approximation (28), another approximation
of NFSR has been built which is

rt[0](10) ⊕ rt[0](11) ⊕ rt[0](12) ⊕ rt[0](13) ⊕ rt[15](20) ⊕ rt[15](21) ⊕ rt[15](22)
⊕ rt[15](23) ⊕Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (29)

By combining approximations (15) and (29) a new distinguisher has been built
having a bias of 2−37.8. The distinguisher is as follows

νt,(10) ⊕ νt,(11) ⊕ νt,(12) ⊕ νt,(13) ⊕ νt+15,(20) ⊕ νt+15,(21) ⊕ νt+15,(22) ⊕ νt+15,(23)

⊕ νt+4,(0) ⊕ νt+17,(0) = 0 (30)

By observing two distinguishers together and selecting always the better bias
among them, the success rate of the distinguishing attack has been improved.

For the modified NLS approximation (16) and (29) must be combined to
obtain the above distinguisher. The new distinguisher is

ν′t,(10) ⊕ ν′t,(11) ⊕ ν′t,(12) ⊕ ν′t,(13) ⊕ ν′t+15,(20) ⊕ ν′t+15,(21) ⊕ ν′t+15,(22) ⊕ ν′t+15,(23)

⊕ ν′t+4,(0) ⊕ ν′t+17,(0) = 0 (31)

Distinguisher (31) has a bias (2−6.2)5 · (2−13) · (2−23) = 2−67 (the calculation
is similar as in section 8.1). Here we observe that for both the distinguisher



Strengthening NLS Against Crossword Puzzle Attack 43

mentioned in [3], the bias is too low for any attack in case of the modified NLS.
The data complexity in both the cases are well above 280. As only 280 key-stream
words per key/nonce pair is allowed to be observed by an adversary (as per the
specification of NLS), the linear distinguishing attack or CP attack mentioned
in [3] can be resisted by the proposed modification.

9 Hardware and Time Complexity

We have analyzed the gate count and time delay of our proposed key mixing
function slash. Comparison and gate count and time delay is shown in Table 2.
Time delay is given in terms of AND gate delay. Delay of 1 XOR gate is consid-
ered to be equivalent to 1.5 AND gate delay [8] and delay of 1 AND gate and 1
OR gate are considered to be equal.

Table 2. Comparison of Gate Count and Time Delay

Function
Forward

Gate Count
Time Delay

#XOR #AND #OR #NOT

Addition modulo 2n (2n − 1) (2n − 3) (n − 2) - 2.5n + .5 AND gate

Slash modulo 2n 3(n − 1) n − 1 - - 1.5n AND gate

Reverse
Gate Count

Time Delay
#XOR #AND #OR #NOT

Subtraction modulo 2n (3n − 1) (2n − 3) (n − 2) - 2.5n + 2 AND gate

Reverse Slash modulo 2n 3(n − 1) (2n − 3) - 2(n − 1) 3(n − 1) AND gate

10 Conclusions

In this work we have modified the stream cipher NLS which is a candidate of
the eSTREAM project to prevent it against the Crossword Puzzle attack [3].
We modified the nonlinear filter (NLF) of NLS by replacing the modular ad-
dition with a new boolean operator modular Slash. The paper shows that the
complexity of the CP attack against the modified NLS has been increased to
around O(2120) keystream words from O(260) keystream words as published
in [3] against the original cipher. As the specification of the NLS allows only 280

keystream words to be observed per key/nonce pair [2], this attack becomes im-
practical against the modified NLS. We also showed that both the hardware cost
and time delay of modular Slash is less than modular addition. To summarize,
the paper shows that by suitably modifying the modular addition with modular
Slash, the stream cipher NLS could be strengthened against the CP attack at a
lower hardware cost.



44 D. Bhattacharya et al.

References

1. eSTREAM project. http://www.ecrypt.eu.org/stream/
2. Rose, G., Hawkes, P., Paddon, M., de Vries, M.W.: Primitive specification for nls.

(April 2005) http://www.ecrypt.eu.org/stream/nls.html
3. Cho, J.Y., Pieprzyk, J.: Crossword Puzzle Attack on NLS. In: SAC 2006 (2006)
4. Rothaus, O.S.: On “Bent” Functions. Journal of Combinatorial Theory 20(A),

300–305 (1976)
5. Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North

Holland (January 1983)
6. Matsui, M.: Linear Cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)

EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
7. Golic, J.D.: Linear models for keystream generators. IEEE Transactions on Com-

puters 45(1), 41–49 (1996)
8. Uyemura, J.P.: Introduction to VLSI Circuits and Systems. John Wiley & Sons,

New York (2002)

http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/nls.html


A New Strategy for Finding a Differential Path

of SHA-1

Jun Yajima1, Yu Sasaki2, Yusuke Naito2, Terutoshi Iwasaki3,
Takeshi Shimoyama1, Noboru Kunihiro2, and Kazuo Ohta2

1 FUJITSU LABORATORIES LTD.
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan

{jyajima,shimo}@labs.fujitsu.com
2 The University of Electro-Communications

1-5-1, Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
{yu339,tolucky,kunihiro,ota}@ice.uec.ac.jp

3 Chuo University
1-13-27, Kasuga, Bunkyou-ku, Tokyo, 112-8551, Japan

teiwasak@chao.ise.chuo-u.ac.jp

Abstract. In this paper, we propose a new construction algorithm for
finding differential paths of Round 1 of SHA-1 for use in the collision
search attack. Generally, the differential path of Round 1 is very complex,
and it takes much time to find one by hand. Therefore, we propose a
new search algorithm that consists of three sub searches, naming the
forward search, the backward search, and the joint search, so that we
can find a differential path by computers. By implementing our new
algorithm and doing some experiments on a computer, we actually found
383 differential paths in the joint search that are different from Wang’s.
Since it is designed by quite a new policy, our algorithm can search a
range of space that was not examined by existing algorithms.

1 Introduction

The hash function plays an important role in modern cryptology from both the
theoretical and the practical viewpoints, e.g., provably secure digital signature
schemes or time-stamp business services. Its important property is collision re-
sistance, that is, it is infeasible to find different messages with the same hash
value. Among developed hash functions, SHA-1 has been a widely used scheme
since it was issued by NIST as a Federal Information Processing Standard in
1995 [1].

The progress of collision attacks against SHA-1 is summarized as follows:
Wang et al.[2] pointed out the weakness of compression functions of SHA-1. It is
called the local collision (hereafter LC for short). The disturbance vector (DV)
[2] was introduced in order to find an appropriate combination of LCs for SHA-
1. Three conditions were required for DV for SHA-1 (see Table 2 of [3]). They
were several obstacles of attacks of SHA-1. The attack discussed in [4] is only
applicable to the reduced 53-step SHA-1.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 45–58, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



46 J. Yajima et al.

Paper [3] removed these obstacles and finally succeeded in attacking the full
80-step SHA-1 with 269 complexity, by adjusting the differential path of Round
1 to another possible differential path, and adopting the multi-block collision
technique introduced in [4,5].

Recently Wang et al. improved their attack with the complexity of 261 ∼ 262

by a new DV and advanced message modification techniques in [6,7].
Roughly speaking, their attack consists of the following procedures [3]: Ob-

taining message differentials ΔM = M ′−M from DVs, locating differential paths
which are the differences between two sequences of chaining variables yielded by
the calculation of H(M) and H(M ′), deriving the sufficient conditions of chain-
ing variables for the result of H(M) = H(M ′), and executing collision search by
constructing M using message modification (MM) so that M efficiently satisfies
all the chaining variable conditions (CVCs) and message conditions (MCs). Mes-
sage modification consists of basic and advanced message modifications (BMM
and AMM, respectively). The former is applied to steps 1 to 16, and the latter
is applied to steps larger than 16.

The followings remained unclear even after the previous studies: 1) How to
select good disturbance vectors, 2) How to locate differential paths, and derive
CVCs and MCs, and 3) How to perform advanced message modification.

Recently, many researches have discussed these unclear points. On 1), Wang
et al. propose a new DV as explained in the above that was found with heuris-
tic approach [6,7]. On 2), Hawkes et al. are trying to find a differential path
by the exhaustive search, but have not succeeded yet [8]. Cannière et al. pro-
posed on automated construction method of the differential path more efficient
than exhaustive search and have succeeded in case of 64-step SHA-1 [9]. And
they studied the characteristics of full-step SHA-1 in [10]. On 3), a heuristic ap-
proach proposed by Wang et al. is currently most efficient. In [6,7], they extend
applicable steps of AMM from step 21 to 24.

Contribution of this paper
We propose a new algorithm for constructing a differential path and deriving
CVCs and MCs of full-step SHA-1. The features of our algorithm are, 1) It
consists of 3 sub-searches of the forward search, the backward search, and the
joint search. 2) In the backward search, differential path candidates that are
combined of LCs are generated as far as possible. 3) In the forward search, the
differential path candidates are generated as many as possible. 4) In the joint
search, the differential path is generated by joining the results of the forward
search and the backward search. And in this search, we use the technique of carry
expansion. We implemented the automatic path generation software tool using
our algorithm. And by using this tool, we found 383 differential paths different
from Wang’s from the same DV. As far as we know, this is a first work for the
algorithm to find the differential path by automated search and succeeded it in
PC experiment. Moreover, our algorithm can be used to find a differential path
from another DV.

This paper is organized as follows: In Section 2 we describe the algorithm of
SHA-1. In Section 3 we explain the collision attack proposed by Wang et al.



A New Strategy for Finding a Differential Path of SHA-1 47

In Section 4 we explain our strategy and propose our original algorithm for
finding the differential path of SHA-1. In Section 5 we explain how to implement
our algorithm, and report the result of our experiment. Finally, in Section 6 we
conclude and survey future work.

2 Description of SHA-1[1]

SHA-1 input is an arbitrary length message M , and SHA-1 output is 160-bit data
H(M). The message is padded to realize a multiple of 512 bits. Padded message M
is divided into several messages Mi each 512 bits long (M = (M1||M2||...||Mn)).
These divided messages are input to the compression function. In this paper, we
call the calculation performed in a single run of the compression function 1 block.
We next explain the structure of the compression function of SHA-1. All calcula-
tions in this are 32-bit. Hereafter, we exclude the description of “mod 232”.

(i). Divide the input message Mj into 32-bit messages m0, m1, ..., m15.
(ii). Calculate m16 to m79 by mi = (mi−3 ⊕ mi−8 ⊕ mi−14 ⊕ mi−16) ≪ 1.
(iii). Calculate chaining variables ai, bi, ci, di, ei in step i by the following pro-

cedures.

ai = (ai−1 ≪ 5) + f(bi−1, ci−1, di−1) + ei−1 + mi−1 + ki−1,

bi = ai−1, ci = bi−1 ≪ 30, di = ci−1, ei = di−1.

(iv). (a0+a80, b0+b80, c0+c80, d0+d80, e0+e80) is the output of the compression
function.

Symbol “≪ j” denotes left cyclic shift by j bits. The above process of (ii)
to (iii) is repeated 80 times. Initial values a0, b0, c0, d0, e0 for the compression
function of the first block are the initial values of SHA-1. a0, b0, c0, d0, e0 for
the compression function from the second block are the output values of the
previous block. Steps 1-20 are called the Round 1. Steps 21-40, 41-60, and 61-80
are Round 2, Round 3 and Round 4, respectively, ki is a constant defined in each
round. Function f is a Boolean function defined in each round, (b∧c)∨(¬b∧d) in
the Round 1, b⊕c⊕d in the Round 2 and the Round 4 and (b∧c)∨(c∧d)∨(d∧b)
in the Round 3.

2.1 Notations

Δa : An Arithmetic differential value of a (a′ − a).
∇a : differential values of each bit in a 1.
1 For example, a′ = 0x5E50CA8B , b′ = 0x4223594C s.t. a = 0x1E4FCAAB , b =
0x0222596C, and Δa = Δb = 0x4000FFE0, ∇a and ∇b are as follows.
∇a = {0, +,0, 0, 0, 0, 0, 0, 0, 0, 0, +,−, −, −, −, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −, 0, 0, 0, 0, 0},
∇b = {0, +, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −, 0, 0, 0, 0, 0}.
(‘+’ shows the change from 0 to 1, and ‘−’ shows the change from 1 to 0.) We define
“carry expansion” as exchanging a nabla representation from a certain parameter
∇x to another nabla representation ∇xexp with respect to #∇x < #∇xexp and
Δx = Δxexp, where #∇x is the number of non-zero elements of ∇x. For example,
the above ∇a is a carry-expansion of ∇b (3-bit carry expansion).



48 J. Yajima et al.

δa : XOR differential value of a (a′ ⊕ a).
CVC(a) : Chaining Variable Condition of a 2.
HW(Δa) : Hamming Weight of Δa 3.
#carry(∇a) : Length of Carry Expansion of ∇a 4.

3 The Outline of Wang’s Attack

In this section, we introduce the collision search technique proposed by Wang et
al.[3,6,7]. One of features of their technique is to derive a collision message pair
at not one hash block but two consecutive blocks (Fig. 1). In their technique,
following conditions are needed for each block of a collision search.

1. Disturbance Vector(DV).
2. Differential Path, Chaining Variable Conditions(CVCs) and Message Con-

ditions(MCs) corresponding to the DV.
3. Message Modification(MM) corresponding to the result of 2

1MΔ Round1

)0(=ΔIV

+

1HΔ

Round2

Round3

Round4

Compression

Function

2MΔ Round1

+

)0(2 =ΔH

Round2

Round3

Round4

1H∇

1HΔ 1H∇

Compression

Function

Block 1 Block 2

Fig. 1. The outline of Wang’s attack in collision search phase

In [3,6,7], they describe (a part of) construction methods and results of 1-3
for the 1st block. Especially, the differential path is derived with a heuristic [11]
approach. For the 2nd block, they only estimate the complexity. Constitution
of 1-3 for the 2nd block must be done with respect to each result of collision
search for the 1st block. There are too much heuristic operations to construct
the differential path easily. Therefore, we propose the new algorithm for the
construction of the differential path with automated approach. Our algorithm is
described in the next section.
2 CVC is a condition that must be satisfied for collision search [3]. It exists in each

bit of each variable. For example, there are ‘0’, ‘1’, ‘=’, and ‘N’(no condition), etc,...
3 We define the hamming weight of Δa as the number of terms of essential differ-

ential values. For example, HW(231) = 1, HW(231 − 22) = 2 and HW(25 − 24 −
23) =HW(23) = 1.

4 We define the length of carry expansion of ∇a as the number #∇a− HW(Δa).



A New Strategy for Finding a Differential Path of SHA-1 49

4 Proposed Strategy for Finding Differential Path

We propose an algorithm for constructing a differential path of Round 1. It is
well known that differential paths for Round 2 to 4 can be plainly constructed
from a DV (just arrange the LCs that are determined by the DV), it is very
important to find an efficient algorithm for Round 1.

4.1 Strategy

Our goal is to construct the differential path and to derive CVCs and MCs of
Round 1 with a given DV. To construct it, the following parameters are needed.

- DV
- ∇IV
- δmi for i = 0, ..., 19 (derived by the DV)
- Differential values from Round 2(∇a20, ∇a19, ∇a18, ∇a17, ∇a16)

We construct the differential path, CVCs and MCs by searching on a com-
puter. When a differential path is searched from step 1 straightforwardly (for-
ward search), the search space becomes huge in several steps. (An image of the
search is shown at the Fig.2(a).) Hence, we try to reduce the search space. In
order to execute AMM effectively, a differential path should have CVCs with a
small number of conditions in step 11 to 20. We note that such differential path
is achieved by combining LCs with the backward search procedure from step
20. When a differential path in intermediate step has CVCs with large num-
ber of conditions, the path is excluded from this search. In our algorithm, we
compare the current path with the path made by LCs and give up the path if
the difference grows too much. Using this excluding algorithm, the search space
is efficiently reduced. However, if this search is continued back to step 1, the
search space is too large to find a differential path that has input differential
value ∇IV . (The image of the search is shown at the Fig.2(b).)

Consequently, we take the strategy of joining the results of the forward search
and the backward search. Then, we execute the forward search to find the can-
didates of differential path of step 1 to n, and we join the results of the forward
search and the backward search by using the joint search in the middle of Round 1
(step n+1 ∼ n+5). In the joint search, for (Δan, Δbn, Δcn, Δdn, Δen) taken from
the output of the forward search and (Δan+6, Δbn+6, Δcn+6, Δdn+6, Δen+6)
taken from the output of the backward search, we look for a path whose input
differentials are (Δan, Δbn, Δcn, Δdn, Δen) and whose outputs differentials are
(Δan+6, Δbn+6, Δcn+6, Δdn+6, Δen+6). We use for carry-expansion technique
for generating many candidates, which helps join the results of the two searches.
An image of the forward search is shown at the left of Fig.2(a). And the total
search range of our algorithm is shown at the right of Fig.2(c).

4.2 Proposed Algorithm

Our algorithm consists of three sub-searches. In our proposal algorithm, we
execute the forward search(step 1 ∼ n) and the backward search(step 20 ∼



50 J. Yajima et al.

Fig. 2. An illustration of the search range of our algorithm

n + 6) independently. And we input the results of the both searches to the joint
search(step n + 1 ∼ n + 5). In the joint search, carries of ∇an and ∇an+1 are
expanded in order to join the results of the forward search and the backward
search. The value of n is defined previously.

Forward search
In this search, many differential paths, CVCs and MCs for step 1 to n are con-
structed from DV and ΔIV . This search derives all candidates of the differential
path, CVCs and MCs in considering variations of the followings.

- CVCs of ∇ai in each step i.
- Signs of each bit in message differentials.
- Output differential values of rotation operation.
- Carries of ∇ai in each step i.

When we consider all variations mentioned the above, the number of results
becomes very huge. Therefore, it is infeasible to derive whole of the candidates
by this search. Hence we introduce the following parameters as thresholds.

– (MAX CARRY (i)) : The maximum values of #carry(∇ai) in each step i.
– (MAX HW (i)) : The maximum values of HW (Δai) in each step i.

The procedure at step i is as follows. The procedure is executed for i = 1 to n.

1. Take a sign (+, −) on each non-zero bit in the message differential in step i
and set MCs.

2. Take a {(∇ai−1, ∇bi−1, ∇ci−1, ∇di−1, ∇ei−1) and CVCs of (ai−1, bi−1, ci−1,
di−1, ei−1)} from the result of the previous step.

3. Calculate all variations of ff = {Δf(bi−1, ci−1, di−1) and CVCs of (bi−1, ci−1,
di−1)}. Discard all ff whose CVCs contradict the CVCs calculated in the
above steps.



A New Strategy for Finding a Differential Path of SHA-1 51

4. Calculate all variations of Δai = (Δai−1 ≪ 5) + Δf(bi−1, ci−1, di−1) +
Δmi−1 + Δei−1

5. Set ∇ai in the nabla expression of Δai whose #∇ai is
the smallest.

5. Discard Δai when HW (Δai) > MAX HW (i).
6. Expand carries of ∇ai up to MAX CARRY (i). And calculate CVC corre-

sponds with the expanded ∇ai. Calculate all variations of these {∇ai and
CVC of ai}.

7. Output FSout = {(∇ai, ∇bi, ∇ci, ∇di, ∇ei) and CVCs of (∇ai, ∇bi, ∇ci, ∇di,
∇ei)} as a result of the search at step i.

8. Execute 1-7 for all variations at step i.

Backward search
In this search, several differential paths, CVCs and MCs for step 20 to n + 6
are constructed from a DV and the differential values from Round 2. To execute
AMM efficiently, we construct the differential paths whose number of CVCs of
step 20 to n+6 is small. Such differential paths are constructed by arranging the
LCs that are determined by a DV. However, such differential paths cannot be
constructed for some values of DV. For example, when DV has ”1” in the same
bit position in consecutive 2 steps, we cannot construct such differential paths
for any CVC according to LC technique in Round 1. Then we use reference-
differential paths for excluding useless candidates. Let a reference-differential
path be a differential path simply constructed from LCs associated with given
DV. The values of MAX HW (i) must be defined at the beginning of the pro-
cedure. The procedure is as follows.

1. Take a sign (+, −) on each non-zero bit in the message differentials and set
MCs in step n+6 to 20. And make a reference-differential path corresponds
with the message differentials.

2. For i = 20 to n + 6, execute 3-7.
3. Take a {(∇ai, ∇bi, ∇ci, ∇di, ∇ei) and CVCs of (ai, bi, ci, di, ei)} from the

result of the step (i + 1).
4. Calculate Δfobj = Δei−1 − Δai − (Δai−1 ≪ 5) − Δmi−1. Δei−1 is taken

from the reference-differential path.
5. Calculate all variations of fb ={Δf(bi−1, ci−1, di−1) and CVCs of (bi−1, ci−1,

di−1) } Discard all fb whose CVCs contradict the CVCs calculated in the
following steps. And discard all fb if HW (Δf(bi−1, ci−1, di−1) − Δfobj) >
MAX HW (i)

6. Output BSout = (∇ai−1, ∇bi−1, ∇ci−1, ∇di−1, ∇ei−1) and CVCs of (∇ai−1,
∇bi−1, ∇ci−1, ∇di−1, ∇ei−1)} as a result of the search at step i.

7. Execute 3-6 for all variations of the output at step i.

Joint search
In this search, the results of the forward search(step 1-n) and the backward
search(step 20-n+ 6) are joined in step (n + 1 ∼ n + 5). An image of this search
is shown as Fig.3. In the figure, gray marks mean the result of the forward search,
and white marks mean the result of the backward search.
5 We note that Δai−1 ≪ 5 is not always equal to (a′

i−1 ≪ 5) − (ai−1 ≪ 5).



52 J. Yajima et al.

+

+

+

+

+

+

f +

+

+
<<<30

n+1

n+2

n+3

n+4

n+5

+

+

+

+

+

+

Expand the carry of

(   ) at this step.

Do not expand the carry

of any parameters.

1

2

3

4

5

n
a∇

1−
∇

n
a

2−
∇

n
a

3−
∇

n
a

4−
∇

n
a

5+
∇

n
a

4+
∇

n
a

3+
∇

n
a

2+
∇

n
a

1+
∇

n
a

1+
∇

n
a

2+
∇

n
a

3+
∇

n
a

4+
∇

n
a

<<<30

<<<30

<<<30

<<<30

<<<5

<<<5

<<<5

<<<5

<<<5

f

f

f

f

n
a∇

Expand the carry of

(   ) at this step.1+
∇

n
a

n
mΔ

1+
Δ

n
m

2+
Δ

n
m

3+
Δ

n
m

4+
Δ

n
m

Do not expand the carry

of any parameters.

Result of the Forward Search
Result of the Backward Search
Many variation of      fΔ

Fig. 3. An outline of the joint search

We think that when we have many candidates of Δf in each step, the results
of the forward search and the backward search are joined easily. To obtain many
candidates of Δf , we expand carries of ∇an, ∇an+1. This increases the variations
of the differential values of Δf in step n+2 ∼ n+5 (black marks). We note that
the values of Δan and Δan+1 are stable while carries of ∇an and ∇an+1 are
expanded. Therefore, no change of the differential paths found by the forward
search and the backward search is caused. In step n+1, we try to join the results
of the both searches by simple comparing of Δan+1.

The processing order of these 5 steps is n + 1, n + 2, n + 5, n + 3, and
n + 4. This order is efficient for the computer search. We explain the effective-
ness of this order in the next section. The values of MAX CARRY J(n) and
MAX CARRY J(n + 1) must be defined at the beginning of the procedure.

1. Read FSout from the result of the forward search. If all FSout = ∅, stop this
procedure as ”FAILURE”.

2. Read BSout from the result of the backward search. If all BSout = ∅, go back
to 1.

3. Execute from 4 to 8, for i = n + 1, n + 2, n + 5, n + 3, n + 4.



A New Strategy for Finding a Differential Path of SHA-1 53

4. If i = n + 2, expand carries of ∇an to MAX CARRY J(n) and calculate
CVC corresponds with the ∇an. Calculate all variations of these {∇an and
CVC of an}. If i = n+5, expand carries of ∇an+1 to MAX CARRY J(n+1)
and calculate CVC corresponds with the ∇an+1. Calculate all variations of
these {∇an+1 and CVC of an+1}. (If i = n + 1, n+ 3, n + 4, carry expansion
is not executed.)

5. Calculate all variation of fj = {Δf(bi−1, ci−1, di−1) and CVCs of (bi−1, ci−1,
di−1)} Discard fjs whose CVCs contradict the CVCs calculated in the an-
other steps.

6. Take a sign (+, −) on each non-zero bit of message differentials in step i and
set MCs. If all variations of sign are taken, go back to 2.

7. Calculate all variations of Δxi = Δai − Δmi−1 − (Δai−1 >>> 5) − Δai−5. If
all variations of Δxi are taken, go back to 6.

8. If the result of 5 and 7 are the same, go to 3 to continue the loop. If they are
not, go back to 7 to calculate the next candidate.

If this procedure is completed without any contradiction, the differential path
from step n+1 to n+5 is constructed successfully. Finally, the differential path,
CVCs, and MCs of all steps in Round 1 are completely constructed.

5 Implementation and Experiment

We implemented the three sub-searches proposed in section 4. In implementing
each search, we adopted the composition whose search space can be adjusted at
the execution time. We explain the details in each paragraph. We also imple-
mented efficient techniques to treat the operations of the arithmetic differential
value(Δa), the arithmetic differential value of each bit(∇a), the XOR differential
values (δa), and CVCs.

5.1 Implementation of Sub-Searches

Forward search
In this search, the number of search results at each step increases in exponential
according to the step. Therefore, this may cause the memory overflow. Then, we
implemented by the following policies in order to save the memory requirement.

– We implemented this search that we can control the amount of input data at
each step in the path search phase. (We input a part of results from previous
step in the path search phase.)

– We implemented this search that works just 1 step. (We execute this imple-
mentation n times repeatedly, in the path search phase.)

We treat the variables MAX HW (i) and MAX CARRY (i) that can be mod-
ifiable in the path search phase to manage the search space. It is not always
satisfy (Δai−1 ≪ 5) �= (a′i−1 ≪ 5) − (ai−1 ≪ 5). We discard ∇ai−1 related
Δai−1 that doesn’t satisfy this equation for simplify the implementation. When



54 J. Yajima et al.

Table 1. The range of each sub-search

Forward search step1 - step8

Backward search step14 - step20

Joint search step9 - step13

we want to expand the search space in the path search phase, we adjust the vari-
ables MAX HW (i) and MAX CARRY (i). The satisfaction of the equation is
checked between the item 6 and 7 in the forward search algorithm described in
§4.2.

Backward search
In this search, It is not always satisfy (Δai−1 ≪ 5) �= (a′i−1 ≪ 5)−(ai−1 ≪ 5).
We discard ∇ai−1 related Δai−1 that doesn’t satisfy this equation for simplify
the implementation like the forward search.

Joint search
In this search, carries of ∇an and ∇an+1 are expanded as described in §4.2. This
enables easy to join the result of the forward search and the backward search.
But this also greatly increases the variations of CVCs outputted at each step
and the number of states that should be stored into the memory. Especially, the
number of states depends on the variations of ∇an and ∇an+1.

We implemented in order of step n+1,n+2,n+5,n+3 and n+4 as shown in
Fig.3. According to this order, we can discard many of candidates at once whose
∇an or ∇an+1 cannot connect the FSout and BSout. Then, we can save greatly
the memory requirement and reduce the number of dependencies of each CVC.
In addition, the maximum length of carry-expansion of ∇an and ∇an+1 can be
modifiable in the path search phase.

5.2 Experiment

We searched a differential path by using the automatic path generation software
implemented in the previous sub-section. In this experiment, we used the data
described in [3] as input data, and we operated each sub-search with the following
ranges in Table 1. As a result of the experiment, we confirmed three sub-searches
independently worked correctly. The computer environment is as follows.

Computer environment
PC Fujitsu FMV LIFEBOOK Q8220
OS Microsoft Windows XP SP2
CPU Intel Core Solo U1400 1.2GHz
RAM DDR2 SDRAM PC2-4200 1GB

Forward search
In this experiment, we set the parameters as follows. As a result, we could obtain
millions of the output at step 8. The processing time from step 1 to 3 is shown



A New Strategy for Finding a Differential Path of SHA-1 55

Table 2. The results of the forward search

Step #search results Time

1 9 4.7 msec

2 2050 266 msec

3 257306 17.3 sec

in table 2. After step 4, number of obtained data becomes very huge when we
input all the results of the previous step. Then, we input partial data from the
previous step after step 4 to 8, and this partial search worked tens of hours until
the search was finished.

Parameters
step1-step3 : MAX HW (step) = 4, MAX CARRY (step) = 3
step4-step8 : MAX HW (step) = 3, MAX CARRY (step) = 0

Backward search
In this experiment, we set all the parameter MAX HW (i) to 2. As a result, we
could obtain 10 outputs at step 14. This search worked in about half a second.

Joint search
In this experiment, we set the parameters of carry expansion length of ∇a8 and
∇a9 to 16. We inputted data (the arithmetic differential value, the each bit
differential values and CVCs) described in [3]. In about CVCs, we reset some
bits to be ‘N’ that seems to be no condition theoretically when we start this
search. As a result, we could obtain 384 patterns of differential path, CVCs and
MCs. 383 in them were original paths, CVCs and MCs that are different from
Wang’s. It took 13.3 seconds for each input of a pair; one output of the forward
search and one output of the backward search.

6 Conclusion

In this paper, we proposed an new algorithm for the constructing differential
paths for a collision attack against SHA-1. The algorithm outputs a differential
path, CVCs and MCs of Round 1 corresponding with a given DV, a differential
value from Round 2 and ∇IV . By this algorithm, we can automatically construct
a differential path from various DV and ∇IV . There are three sub-searches in
our algorithm: the backward search, forward search, and joint search. In the
forward search, the search space is limited by the hamming weight and the carry
length of the differential values of output at each step. And in this condition,
the algorithm calculates all variation of the differential values, CVCs and MCs
for step 1 through n (ex.n = 8). In the backward search, it finds differential
paths whose number of CVCs is as few as possible at step 20 to n + 6 so that it
can make AMM efficiently to execute. Finally, the carry of two parameters are
expanded in the joint search, and both search results are tried to join in step
n + 1 to n + 5.



56 J. Yajima et al.

We implemented our proposal algorithm on the computer and executed com-
puter experiment by using the DV in [3]. We executed the forward search from
step 1 to 8, the backward search from step 20 back to 14 and the joint search
from step 9 to 13. As a result, we succeeded in obtaining millions outputs in the
forward search, 10 outputs in the backward search and 384 outputs in the joint
search. We found 383 patterns of paths with CVCs and MCs by the joint search
that are our original and differed from Wang’s. The processing time were tens
of hours in the forward search, half a second in the backward search and about
thirteen seconds to find a differential in the joint search. By these results, we can
confirm the correctness of our strategy, search algorithms and implementations.

In the future, we will try to find a collision message pair of SHA-1. In [7],
Wang insisted that the complexity to find a collision message pair is 261 ∼ 262.
We think that this complexity may be difficult to execute by present computers.
In order to much reduce the complexity, another DV different from Wang’s
might needed we think. Our algorithm and implementation can be used to find
a differential path from such the DVs .

References

1. NIST. Secure hash standard. Federal Information Processing Standard, FIPS180-1,
(April 1995)

2. Wang, X.: The Collision Attack on SHA-0. (in Chinese) (to appear)
http://www.infosec.edu.cn

3. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

4. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions in
SHA-0 and Reduced SHA-1. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

5. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

6. Wang, X., Yao, A.C, Yao, F.: Cryptanalysis on SHA-1 Hash Function. Keynote
Speech at CRYPTOGRAPHIC HASH WORKSHOP

7. Wang, X.: Cryptanalysis of Hash functions and Potential Dangers. Invited Talk at
CT-RSA (2006)

8. Hawkes, P., Paddon, M., Rose, G.: Automated Search for Round 1 Differentials for
SHA-1: Work in Progress. NIST SECOND CRYPTOGRAPHIC HASH WORK-
SHOP (August 2006)

9. Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics. ASIACRYPT
(2006)

10. Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. NIST SECOND CRYPTOGRAPHIC HASH WORKSHOP (Au-
gust 2006)

11. Wang, X.: Private Communication in Japan

http://www.infosec.edu.cn


A New Strategy for Finding a Differential Path of SHA-1 57

Appendix. An Example of the Results of the Joint Search

Table 3 and Table 4 show an example of the results of the joint search by using
the data described in [3]. Our original part of the differential path is step 9 to
13 and CVCs are a5 to a11. (The data from step 1 to 8 and from step 14 to 20
are as same as Wang’s.) We found such 384 differential paths. (One of them is
the same as Wang’s.)

Table 3. An example of our path(step9-13)

step xi−1 Δmi−1 Δai(no carry) ∇ai(with carry)

1 40000001 29, 30 29, 30 29, 30
2 2 −1, −3, 5, −29, −30, 31 1, 5, 29 −1, 2, −5, −6, 7, −29, −30, 31
3 2 0, 1, −6, 29 −0, 3, 10 −0, 3, −10, −11, −12, 13
4 80000002 6, 28, −29, −31 −1, 8, 15, −31 −1, 8, −15, −16, −17, 18, −31
5 1 0, −1, −4, 6, 28, 30, 31 −5, 20, 27 4, −5, −20, 21, 27
6 0 −1, −5, 28, 30, 31 10, 15, 25 −10, −11, 12, −15, 16, −25, 26
7 80000001 29 0, −4, −5, 31 0, −3, 5, −6, 31
8 2 −1, −4, −5, 29, 30 −18 18, ..., −25

9 2 0, −1, −6, − 29, 30 −2, −9 −1, 9, ..., −19
10 2 6, −29 1 1
11 0 1, −6,29, 30, 31 8 −8, 9
12 0 1, −29,30 −3 −3
13 1 0, 31 0 0

14 0 −5
15 80000002 −0, 1 −31 −31
16 2 +1, 4, −6, −30 1 1
17 80000002 −6, 30 −1, 31 −1, 31
18 0 −1, −4, 6, 29, 30, 31
19 2 29, 31 1 1
20 0 −6, 31



58 J. Yajima et al.

Table 4. CVCs of the original path(a5-a11)

Chaining Conditions on bits
variable 31-24 23-16 15-8 7-0

a1 a00----- -------- 1-----aa 1-0a11aa
a2 01110--- ------1- 0aaa-0-- 011-001-
a3 0-100--- -0-aaa0- --0111-- 01110-01
a4 10010--- a1---011 10011010 10011-10
a5 001a0--- --01-000 10001111 -010-11-
a6 1-0-0011 1-1001-0 111011-1 a10-000-
a7 0---1011 1a0111-- 101--010 -10-11-0
a8 -01---10 000000aa 001aa111 ---01-1-
a9 -10----- 10001000 0000000- ---11-1-
a10 1------- 0000000- 11100000 0-----0-
a11 1------- ------10 11111101 1-a-----
a12 0------- -------- -------- 10--11--
a13 -------- -------- -------- 11----10
a14 -0------ -------- -------- ----0-1-
a15 10------ -------- -------- ----1-0-
a16 --1----- -------- -------- ----0-0-
a17 0-0----- -------- -------- ------1-
a18 --1----- -------- -------- ----a---
a19 --b----- -------- -------- ------0-
a20 -------- -------- -------- -------1

The notation ‘a’ stands for the condition ai,j = ai−1,j and ‘b’ denotes the condition
a19,30 = a18,32 as same as in [3].



Preimage Attack on the Parallel FFT-Hashing

Function�

Donghoon Chang1, Moti Yung2, Jaechul Sung3, Seokhie Hong1,
and Sangjin Lee1

1 Center for Information Security Technologies(CIST), Korea University, Korea
{dhchang,hsh,sangjin}@cist.korea.ac.kr

2 RSA Laboratories and Department of Computer Science, Columbia University, New
York, USA

moti@cs.columbia.edu
3 Department of Mathematics, University of Seoul, Korea

jcsung@uos.ac.kr

Abstract. The parallel FFT-Hashing function was designed by C. P.
Schnorr and S. Vaudenay in 1993. The function is a simple and light
weight hash algorithm with 128-bit digest. Its basic component is a multi-
permutation which helps in proving its resistance to collision attacks.

In this work we show a preimage attack on the parallel FFT-Hashing
function using 2t+64 + 2128−t time complexity and 2t memory, which
is less than the generic complexity 2128. Specifically, when t = 32, we
can find a preimage using 297 time and 232 memory. Our method can
be described as “disseminative-meet-in-the-middle-attack”. we actually
use the properties of multi-permutation (helpful against collision attack)
to our advantage in the attack. Overall, this type of attack (beating the
generic one) demonstrates that the structure of the parallel FFT-Hashing
function has some weaknesses when preimage attack is considered (and
relevant). To the best of our knowledge, this is the first attack on the
parallel FFT-Hashing function.

Keywords: Cryptographic Hash Function, Preimage Attack, the Paral-
lel FFT-Hashing function.

1 Introduction

Nowadays, motivated by the breaking of the MD4-style hash functions family,
novel constructions of cryptographic hash functions are required as are better
understanding of their design principles.

� This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Advancement)
(IITA-2006-(C1090-0603-0025)). Part of this work was done while the first author
visited Columbia University.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 59–67, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



60 D. Chang et al.

The parallel FFT-Hashing function is an example of a potential novel con-
struction. This paper investigates this function, suggested by Schnorr and Vaude-
nay in 1993 [4] (improving and correcting previously broken designs [2,3,1,6,5]).
The parallel FFT-Hashing function uses a simple component called ‘multi-
permutation’ repeatedly. The designers proved that the parallel FFT-Hashing
function is collision resistant when the black box multi-permutations are given
by the oracle. On the other hand, the designers did not say anything about other
security notions such as preimage resistance and second preimage resistance.
Unlike MD4-style hash function whose compression function is not invertible,
the parallel FFT-Hashing function has a step function which is invertible. For
the parallel FFT-Hashing function (the MD4-style hash function), each message
string is applied only to one step function (one compression function). Also the
internal size of the parallel FFT-Hashing function is twice the output size. Thus,
one may think that the parallel FFT-Hashing function can be secure against
preimage attacks. Further, the FFT-Hashing function seems to be even secure
against time-memory trade-off attacks.

In this paper, however, we give an attack that finds a preimage with com-
plexity 2t+64 +2128−t and memory 2t, which is less than the cost of its (generic)
exhaustive search complexity (2128). This attack, therefore, demonstrates some
weaknesses in the structure of the design, at least when considered in settings
where protection against preimage finding is crucial. We note that our attack
exploits the properties of the multi-permutation components, i.e., we capitalize
on exactly the property that helps preventing collision attacks in finding the
preimage.

General Meet-in-the-Middle Attack. Our attack method is different from
the general meet-in-the-middle attack. To show this, we explain the general
meet-in-the-middle attack on the parallel FFT-Hashing function. Given a hash
output o, we want to find its preimage. The parallel FFT-Hashing function can
be described as in Fig. 1. The size of the internal state is 256 bits and the output
size is 128 bits. f (corresponding to a step function of the parallel FFT-Hashing
function) and g (corresponding to the last s steps which is the constant related
to the collision resistance property) can be inverted with complexity 1.

We choose randomly xi+1 ∼ xl and compute the corresponding value r in
Fig. 1 and store them in table. This is repeated to get 2t cases. Similarly, from
x1 ∼ xi we compute the corresponding value s in Fig. 1. If s is stored in the
table (i.e., we meet in the middle), we get a preimage of o. According to the

Fig. 1. The Structure of the parallel FFT-Hashing function. f and g are invertible.



Preimage Attack on the Parallel FFT-Hashing Function 61

birthday paradox, in order to get one preimage we have to compute s from
random x1 ∼ xi 2256−t times. Therefore, we can get a preimage with complexity
2t + 2256−t and memory size 2t. On the other hand, this paper’s attack shows
that we can find a preimage with complexity 2t+64 + 2128−t and memory 2t.

2 The Parallel FFT-Hashing Function

In this section, we describe the parallel FFT-Hashing function [4]. The size of
each word is 16 bits. Here + is the addition modulo 216 and a�b = (a′b′ mod 216+
1) mod 216 where for a �=0 and b �=0 a′ = a and b′ = b and for a=0 and b=0 a′ =
216 and b′ = 216. L means the one-bit circular left shift on 4-bit strings and Rj

is the j-bit circular right shift on 16-bit strings. Further, c = 0000000011111111
is a 16-bit constant and s = 5 is the constant related to the number of steps
in Fig. 2, which guarantees the collision resistance. In our attack, we can find a
preimage for any s (even for big s). The initial value is (c0, c1, · · · , c15) which is 16
words. (c0, c1, c2, c3):=(0xef01, 0x2345, 0x6789, 0xabcd), (c4, c5, c6, c7):=(0xdcba,
0x9876, 0x5432, 0x10fe), c8+i:=ci for i=0,...,7 where ci is the bitwise logical
negation of ci. Each step of the parallel FFT-Hashing is depicted in Fig. 3.

PaFFTHashing(M) = o0||o1|| · · · ||o7

M is the padded message for which M = m0||m1|| · · · ||mn−1 ∈ En

1. For i = 0, ... ,15 Do ei := ci (c0|| · · · ||c15 is the initial value.)
2. For j = 0, ... ,�n/3�+s-2 Do ( : Step j)

2.1 For i = 0, ... ,11 Do
If m3j+(i mod 3) is defined,

eL(i) := eL(i) + m3j+(i mod 3) for even i.
eL(i) := eL(i) � m3j+(i mod 3) for odd i.

2.2 For i = 0, ... ,7 Do in parallel
e2i := eL(2i)⊕eL(2i+1), e2i+1 := eL(2i)⊕(eL(2i+1) ∧c)⊕R2i+1(eL(2i+1))

2.3 For i = 0, ... ,15 Do ei := ei � ci

3. Output h4(M) := o0||o1|| · · · ||o7 for which oi = eL(2i) � eL(2i+1).

Fig. 2. The parallel FFT-hashing function

3 Attack Strategy and Several Properties

In this section, we describe the strategy of our preimage attack on the paral-
lel FFT-Hashing function. See Fig. 4. Our target is to find a padded preimage
m0||m1|| · · · ||m47 when a hash output o0||o1|| · · · ||o7 is given. This strategy con-
sists of 4 phases.

In the first phase, we choose a constant w0||w1|| · · · ||w6||w7. In the second
phase, we show how to find a message m0||m1|| · · · ||m23 such that the last 4
words of output of step 7.5 are w4||w5||w6||w7 with complexity 1 (time complex-
ity 1 means the time required to simulate 7.5 steps in this case, and the time of
computing the entire function once, in general).



62 D. Chang et al.

Fig. 3. Step j of the parallel FFT-Hashing function. Each box indicates the invertible
multi-permutation which is explained in property 2 in Section 3.

IV

Find m0 m1 … m23 with complexity 1

Output      
of Step 7.5 :

Find m24 m25 … m47 with complexity 1

o0 o1 … o7

Meet-in-the-Middle-attack

w0 w1 w2 w3 ?  ?  ?  ?  ?  ?  ?  ? w4 w5 w6 w7

?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ? w4 w5 w6 w7

Input        
of Step 7.5 :

IV

Find m0 m1 … m23 with complexity 1

Output      
of Step 7.5 :

Find m24 m25 … m47 with complexity 1

o0 o1 … o7

Meet-in-the-Middle-attack

w0 w1 w2 w3 ?  ?  ?  ?  ?  ?  ?  ? w4 w5 w6 w7

?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ?  ? w4 w5 w6 w7

Input        
of Step 7.5 :

Fig. 4. Preimage Attack Strategy

In the third phase, given hash output o0||o1|| · · · ||o7, we show how to find a
message m24||m25|| · · · ||m47 such that the first 4 words of the input of step 7.5
and the last 4 words of the input of step 7.5 are w0||w1||w2||w3 and w4||w5||w6||w7
with complexity 1, respectively (time complexity 1 means more precisely here the



Preimage Attack on the Parallel FFT-Hashing Function 63

time required to simulate 7.5+s steps). In the fourth phase, we find a preimage
with the meet-in-the-middle-attack method on the results of phases 2 and 3.
We can call this type of meet-in-the-middle-attack “disseminative-meet-in-the-
middle-attack” (i.e., partial values are first disseminated through the function
structure and the rest is completed employing man-in-the-middle).

We want to describe useful three properties which help us to find a preimage
of the parallel FFT-Hashing function.

Property 1: In each step, the last two words of the output e13, e15 depend only
on the input words e9, e11, e13, e15. See Fig. 3.

A permutation B : E2 → E2, B(a, b) = (B1(a, b), B2(a, b)), is a multi-
permutation if for every a, b ∈ E the mappings Bi(a, ∗), Bi(∗, b) for i = 1, 2
are permutations on E.

Property 2: Each box of Fig. 3 is an invertible multi-permutation [5] (E =
{0, 1}16). For example, for any b and i, if Bi(∗, b) is fixed, then ∗ and
Bi+1 mod 2(∗, b) are determined automatically. And for any a, a � ∗ and ∗ � a
are invertible permutations on {0, 1}16.

Property 3: For any a, b, c, d, a′, b′, c′, d′, t and all cases of Fig. 5, if we choose
the value of m, m′ and m∗ are determined automatically by property 2 and then
the undefined values are also determined.

Fig. 5. Four Cases of Property 3

4 Preimage Attack on the Parallel FFT-Hashing Function

In this section, we show how to get a preimage for a given hash output
o0||o1|| · · · ||o7. The original preimage is m0||m1|| · · · ||m42. After the preimage
is padded, the padded preimage is m0||m1|| · · · ||m47 where the last four words
w44||w45||w46||w47 indicate the message length and m43 is ‘1000000000000000’.
Our attack idea is a disseminative-meet-in-the-middle attack in the location of
output of Step 7.5.

First Phase (Choice of a constant w0||w1|| · · · ||w6||w7) See Fig. 6. We can de-
scribe the relations among (0)∼(35) like table 1. In table 1, a → b means that
the value of b is determined by the value of a. (0) ∼ (3) [the last 4 entries into
step 0 layer in Fig. 6] are already fixed values because they are initial values. So,



64 D. Chang et al.

Table 1. Relations among (0)∼(35) in Fig 6

(0),(1),(2),(3) → (20),(21) (20),(21) → (23)

(4),(5) → (22) (22),(23) → (25)

(6),(7) → (24) (24),(25) → (27)

(8),(9) → (26) (26),(27) → (29)

(10),(11) → (28) (28),(29) → (31)

(12),(13) → (30) (30),(31) → (33)

(14),(15) → (32) (32),(33) → (35)

(16),(17) → (34)

if we choose values of (4) ∼ (17), then the values of (20) ∼ (35) are determined
(via computation) by property 1 as we describe in table 1. And we choose the
values of (18) and (19). Finally, we let w4||w5||w6||w7 be (18)||(19)||(34)||(35)
and let w0||w1||w2||w3 be any fixed value.

Second Phase (find a message m0||m1|| · · · ||m23 which keeps the last 4
words of output of step 7.5 as a 4-word constant w4||w5||w6||w7 with com-
plexity 1) See Fig. 6. We can describe the relations among m0 ∼ m23 as
the following table 2 : Once m2 is fixed, m0 and m1 are determined by
property 3 because (4) and (5) are already fixed. Likewise, once m5 is
fixed, m3 and m4 are also determined by property 3 because (6) and (7)
are already fixed. Similarly, we can find m0 ∼ m23 satisfying the values
of (4) ∼ (19). Since we can assign m3i+2 random values for 0 � i � 7,
we know that there are 2128 m0 ∼ m23 satisfying the values of (4) ∼ (19).

Table 2. Relations among m0 ∼ m23 in Fig 6

m2 → m0,m1

m5 → m3,m4

m8 → m6,m7

m11 → m9,m10

m14 → m12,m13

m17 → m15,m16

m20 → m18,m19

m23 → m21,m22

Third Phase (given the hash output o0||o1|| · · · ||o7, we show how to find a mes-
sage m24||m25|| · · · ||m47 which makes the first 4 words of the input of step 7.5
and the last 4 words of the input of step 7.5 ‘w0||w1||w2||w3’ and ‘w4||w5||w6||w7’
with complexity 1.) See Fig. 7. Given a hash output o0||o1|| · · · ||o7, by property
2, we can invert o0||o1|| · · · ||o7 up-to the output of step 11 by giving arbitrary
random value to m36 ∼ m42. As described in the first paragraph of Section 4,
m43 ∼ m47 are already fixed. And w0 ∼ w7 are already fixed in the first phase,
so (40)∼(45) are determined as well. Further, since we know the output of step



Preimage Attack on the Parallel FFT-Hashing Function 65

Fig. 6. The First and Second Phases

11, (46) is also fixed through the inverting process. Then m34 is determined by
property 2 because (45) and (46) are already fixed. At this point we give arbi-
trary random values to m33 and m35. Now we have the output of Step 10. Then
m31 is determined by (44), at which point we give arbitrary random values to
m30 and m32. Then m27 and m28 are determined by (40) and (42). Then (36),
(38) and (39) are also determined, while m26 and m24 are also determined by
(38) and (39). Then, employing the property of multi-permutation, m25 is deter-
mined by (36). Then (37) is automatically determined, so m29 is also determined
by (37). Therefore, we can get m24 ∼ m47 satisfying w0 ∼ w7 with complexity
1. Since we can assign m30, m32, m33 and m35 ∼ m42 random values, we know
that there are 2176 m24 ∼ m47 cases.



66 D. Chang et al.

Fig. 7. The Third Phase

Fourth Phase (Meet-in-the-Middle-attack) We repeat the second phase 2t+64

times. Then we can get 2t m0 ∼ m23 which make the first 4-word of the output
of step 7.5 w0||w1||w2||w3. We store these 2t m0 ∼ m23 and the output of step
7.5 for each m0 ∼ m23. We repeat the third phase 2128−t times. According to the
birthday attack complexity, given a hash output o0||o1|| · · · ||o7, we can find a



Preimage Attack on the Parallel FFT-Hashing Function 67

padded preimage m0 ∼ m47 with 2t+64+2128−t time complexity and 2t memory.
This concludes our attack.

Note that our attack does not depend on the value of s which is the constant
related to the number of steps guaranteeing the collision resistance property. Also
our attack can be used in any word size case (in this paper, we only consider
16-bit word size).

5 Conclusion

In this paper, we described a preimage attack on the parallel FFT-Hashing
function which is the first attack on this design. For example we can find a
preimage with 297 time complexity and 232 memory which is less than the generic
preimage attack complexity of 2128.

References

1. Baritaud, T., Gilbert, H., Girault, M.: FFT Hashing is not Collision-free. In: Ruep-
pel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 35–44. Springer, Heidelberg
(1993)

2. Schnorr, C.P.: FFT-Hashing: An Efficient Cryptographic Hash Function. In: Pre-
sented at the rump session of the Crypto’91

3. Schnorr, C.P.: FFT-Hash II, efficient hashing. In: Rueppel, R.A. (ed.) EUROCRYPT
1992. LNCS, vol. 658, pp. 45–54. Springer, Heidelberg (1993)

4. Schnorr, C.P., Vaudenay, S.: Parallel FFT-Hashing. In: Anderson, R. (ed.) Fast
Software Encryption. LNCS, vol. 809, pp. 149–156. Springer, Heidelberg (1994)

5. Schnorr, C.P., Vaudenay, S.: Black Box Cryptanalysis of Hash Networks based on
Multipermutations. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp.
47–57. Springer, Heidelberg (1995)

6. Vaudenay, S.: FFT-Hash II is not yet Collision-free. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 587–593. Springer, Heidelberg (1993)



Second Preimages for Iterated Hash Functions

and Their Implications on MACs

Norbert Pramstaller, Mario Lamberger, and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Austria

{Mario.Lamberger,Norbert.Pramstaller,Vincent.Rijmen}@iaik.tugraz.at

Abstract. In this article, we focus on second preimages for iterated
hash functions. More precisely, we introduce the notion of a b-block by-
pass which is closely related to the notion of second preimage but spec-
ifies additional properties. We will then give two examples of iterated
hash functions to which this notion applies: a double-block length hash
function and a single-block length hash function. Furthermore, we look
at NMAC and HMAC and show the implications of a b-block bypass
regarding forgery attacks. As a result it turns out that the impact of
second preimages for NMAC and HMAC heavily depends on how the
second preimages are constructed.

Keywords: iterated hash functions, double block-length hash functions,
block-cipher based hash functions, differential cryptanalysis, second
preimage.

1 Introduction

A cryptographic hash function maps a binary string of arbitrary length to a
fixed length binary string, called hash value. A cryptographic hash function H
has to be secure against the following attacks:

– Collision attack: Find two different messages m and m∗ �= m such that
H(m) = H(m∗)

– Preimage attack: For a given hash value h, find a message m such that
H(m) = h

– Second preimage attack: For a given message m, find a second message
m∗ �= m such that H(m) = H(m∗)

Based on the birthday paradox the expected complexity for a collision attack
is about 2n/2 hash computations, where n is the size of the hash value. For a
preimage attack and a second preimage attack the complexity is about 2n hash
computations. If, for a given hash function H , collisions and (second) preimages
can be found with a complexity less than 2n/2 and 2n, respectively, the hash
function is considered to be broken.

Recently, a lot of progress has been made in the cryptanalysis of hash func-
tions. Especially the breakthrough results of Wang et al. showing how to con-
struct collisions for MD5 and SHA-1 [15,16], have drawn a lot of attention to

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 68–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Second Preimages for Iterated Hash Functions 69

the analysis of hash functions in the research community. To date, most of the
attacks focus on collisions for iterated hash functions. Collisions are considered
to be less devastating than second preimages since the adversary needs to control
both messages. Kelsey and Schneier [7] have recently presented a new generic sec-
ond preimage attack on iterated hash functions following the Merkle-Damg̊ard
construction (cf. [4,13]). As a result, second preimages can be found in much less
than the theoretically expected 2n hash computations for very long messages.

Besides the cryptanalysis of hash functions it is of high interest to understand
the implications of these recent advances for applications employing hash func-
tions. For instance, which implications does a collision attack on a hash function
have for message authentication codes such as NMAC and HMAC? Recently,
some answers to this question have been published in [3,10,14].

Being motivated by these new results, we will look at the implications of sec-
ond preimages for NMAC and HMAC. We will start by introducing a new notion
for iterated hash functions, namely a b-block bypass, in Section 2. This notion is
closely related to the definition of a second preimage but specifies more details on
how the second preimage can be constructed. To justify the newly introduced
notion we discuss two hash functions for which a b-block bypass can be con-
structed. In Section 3, we analyze a double-block length hash function presented
at FSE 2006 [6], referred to as DBLH. We will show that if this hash function
scheme is instantiated with a block cipher following the FX construction [9] we
can construct a 2-block, respectively 3-block, bypass. As another example, we
will discuss the SMASH design strategy [11] in Section 4. We will show that the
second preimage attack presented by Lamberger et al. in [12] satisfies the defini-
tion of a b-block bypass. In Section 5, we analyze NMAC and HMAC employing
these hash functions. Finally, we present conclusions in Section 6.

2 The Notion of b-Block Bypass

In this section, we introduce a new property of iterated hash functions and show
which implications it has. For the remainder of this article, we assume without
loss of generality that we have message lengths that are a multiple of the block
length. Furthermore, we assume that the blocks required for MD strengthening
have been removed.

Definition 1. (b-Block Bypass) Let H be an iterated hash function. We say
that we can construct a b-block bypass for H, if for any b-block message m =
m1, . . . , mb we can find a b-block message m∗ = m∗1, . . . , m

∗
b �= m such that for

any initial value h0 the following holds:

H(h0; m1, . . . , mi) �= H(h0; m∗1, . . . , m
∗
i ) for i = 1, . . . , b − 1

H(h0; m1, . . . , mb) = H(h0; m∗1, . . . , m
∗
b)

(1)

Remark 1. It follows directly from Definition 1 that the notions of b-block by-
pass and second preimage are closely related. To be more precise, if we can
construct a b-block bypass for an iterated hash function then it is possible to



70 N. Pramstaller, M. Lamberger, and V. Rijmen

construct a second preimage m∗ for any given message m = m1, . . . , mt �= m∗

with t ≥ b. Furthermore, both the second preimage m∗ and the message m are
of equal length. Hence, a b-block bypass provides additional details such as the
dependency on the chaining value.

Lemma 1. Let H be an iterated hash function for which we can construct a
b-block bypass. Then, for every message m = m1, . . . , mt with t ≥ b ≥ 1, we can
construct at least

�t/b�∑

j=1

(
t − j(b − 1)

j

)

(2)

distinct second preimages.

Proof. From Definition 1 it follows immediately that it doesn’t matter which b
consecutive blocks of the message m are taken to construct a second preimage
m∗ (cf. Figure 1).

If �t/b� ≥ 2, we can apply Definition 1 not only for one b-block sub-message of
m but for j sub-messages, with j ranging from 1, . . . , �t/b�. An illustration of this
fact is also shown in Figure 1. The problem of counting all these possible second
preimages of m boils down to counting the number of possibilities of putting
t − jb indistinguishable balls into j + 1 distinguishable urns. This number is
known to be (

t − j(b − 1)
j

)

,

cf. [5, page 38, Eq. (5.2)]. Summing over all j = 1, . . . , �t/b� proves (2). ��
Remark 2. The result of Lemma 1 seems intuitive. However, Lemma 1 does not
necessarily apply to the notion of second preimage but it always holds for the
notion of b-block bypass. Therefore, the notion of b-block bypass enables a better
insight on the possibilities for constructing a second preimage.

m3 m5m1 m4m2

m1
* m2

* m5m4m3

m1 m2
* m3

* m5m4

m1 m2 m3
* m4

* m5

m3m1 m2 m4
* m5

*

m1
* m2

* m3
* m4

* m5

m1
* m2

* m3 m4
* m5

*

m1 m2
* m3

* m4
* m5

*

Fig. 1. For a 2-block bypass we can construct for any 5-block message m = m1, . . . , m5

seven distinct second preimages. The shadowed rectangles show which blocks of the
original message m have been modified to construct the second preimage.

3 The Double Block-Length Hash Proposal DBLH

We start this section by introducing some notation. For the concatenation of two
variables, we write a‖b. Addition modulo 2 (XOR) is denoted by a ⊕ b. The bit



Second Preimages for Iterated Hash Functions 71

length of variable a is denoted by |a|. We stick to the convention of [2] to denote
a difference by u′ = u ⊕ u∗. Furthermore, we write Fk(x) for the encryption of
the input x with an arbitrary block cipher F under the key k. The cipher F
processes blocks of n bits and the key length is denoted by |k|.

Shoichi Hirose proposed a double block-length hash function at FSE 2006 [6].
It is an iterated, block cipher based hash function. The compression function is
defined as follows:

gi = Fhi−1‖mi
(gi−1) ⊕ gi−1

hi = Fhi−1‖mi
(gi−1 ⊕ c) ⊕ gi−1 ⊕ c,

(3)

where c is an arbitrary constant (c �= 0), Fk (k = hi−1‖mi) is an arbitrary
block cipher, and hi‖gi is the chaining value with h0‖g0 the initial value (cf.
Figure 2). After t message blocks have been processed, the final hash value is
the concatenation ht‖gt. As it can be seen in (3), the key length of the underlying
block cipher Fk has to be greater than the block length. This is due to the fact
that |k| = |hi−1| + |mi|, where |hi−1| is the block length of the cipher. In [6],
Hirose proved the security of DBLH in the ideal cipher model.

3.1 Block Ciphers Following the FX Construction

The block cipher DESX [9] was proposed by Rivest to protect DES against
exhaustive key search attacks. Kilian and Rogaway proved the security of the
DESX construction in [8,9] against a key-search adversary. However, DESX is not
an ideal cipher. The general form of this construction is referred to as FX [8,9],
where F can be any block cipher with block length n and key length |k|. The
FX construction is defined as follows:

FXk‖k1‖k2(x) = Fk(x ⊕ k1) ⊕ k2 , (4)

where |k1| = |k2| = n.

3.2 DBLH with FX

For DBLH with underlying block cipher FXk‖k1‖k2(x), we can construct the
following three configurations (see Figure 2), where mi = li‖ri.

Configuration I:
k‖k1‖k2 = li‖hi−1‖ri, where |li| = |k|, |hi−1| = |ri| = n

Configuration II:
k‖k1‖k2 = hi−1‖li‖ri, where |hi−1| = |k|, |li| = |ri| = n

Configuration III:
k‖k1‖k2 = li‖ri‖hi−1, where |li| = |k|, |ri| = |hi−1| = n

(5)



72 N. Pramstaller, M. Lamberger, and V. Rijmen

FF

gi-1hi-1

c

mi = li || ri

gihi

FF

gi-1hi-1

c

gihi

FF

gi-1hi-1

c

gihi

li

ri

li

ri

ri

li

Configuration II Configuration IIIConfiguration I

mi = li || ri mi = li || ri

FX FX FX FX FX FX

Fig. 2. Three possible configurations of DBLH with FX as underlying block cipher.
The hatch denotes the key input of the block cipher F .

For each configuration, we can interchange li and ri. However, without loss of
generality, we take the configurations defined in (5) for the further analysis. Note
that if F is a block cipher with |k| < n then, for Configuration II, the chaining
variable hi−1 needs to be truncated to match the key length |k|. Which bits are
truncated does not have any impact on the analysis. For the remainder of this
section, we assume that F is a block cipher with |k| = n.

For the sake of simplicity, we will write DX to denote the instantiation of
DBLH with FX as underlying block cipher. If we speak of a specific configuration,
we append the number of the configuration. For instance for DBLH with FX in
Configuration II, we write DX-II.

3.3 Second Preimages for DX Based on a b-Block Bypass

We now demonstrate how to construct second preimages based on a 3-block
bypass for Configuration II of DX.

Theorem 1. For the iterated hash function DX-II we can construct a 3-block
bypass, since for every 3-block message m = m1, m2, m3 the following message
m∗ satisfies the conditions of Definition 1:

m∗ = m1 ⊕ (0‖u′), m2 ⊕ (v′‖w′), m3 ⊕ (z′‖z′) , (6)

where mi = li‖ri, |li| = |ri| = n, u′, v′ any value with |u′| = |v′| = n, and 0
is the n-bit all-zero binary string. Let t′ be the output difference of the left F
instance in iteration 2:

t′ = [Fh1(g1 ⊕ c ⊕ l2)] ⊕ [Fh1⊕u′(g1 ⊕ u′ ⊕ c ⊕ l2 ⊕ v′)] (7)

Then, w′ = u′ ⊕ t′ and the difference z′ in (6) is defined as



Second Preimages for Iterated Hash Functions 73

z′ = [Fh1(g1 ⊕ l2) ⊕ r2 ⊕ g1] ⊕
[Fh1⊕u′(g1 ⊕ u′ ⊕ l2 ⊕ v′) ⊕ r2 ⊕ w′ ⊕ g1 ⊕ u′] . (8)

Furthermore, for an arbitrary message m = m1, . . . , mt with t ≥ 3, we can find
at least

�t/3�∑

j=1

(
t − 2j

j

)

second preimages based on this 3-block bypass.

Proof. We show that for the 3-block messages m and m∗, where

m = m1, m2, m3 = (l1‖r1), (l2‖r2), (l3‖r3)
m∗ = m1 ⊕ (0‖u′), m2 ⊕ (v′‖w′), m3 ⊕ (z′‖z′) = (l∗1‖r∗1), (l∗2‖r∗2), (l

∗
3‖r∗3)

l∗1 = l1 ⊕ 0, r∗1 = r1 ⊕ u′

l∗2 = l2 ⊕ v′, r∗2 = r2 ⊕ w′

l∗3 = l3 ⊕ z′, r∗3 = r3 ⊕ z′ ,

the output difference equals zero after three iterations. After one iteration, we
have

g1 = g0 ⊕ Fh0(g0 ⊕ l1) ⊕ r1

g∗1 = g0 ⊕ Fh0(g0 ⊕ l1) ⊕ r1 ⊕ u′ = g1 ⊕ u′

h1 = g0 ⊕ c ⊕ Fh0(g0 ⊕ c ⊕ l1) ⊕ r1

h∗1 = g0 ⊕ c ⊕ Fh0(g0 ⊕ c ⊕ l1) ⊕ r1 ⊕ u′ = h1 ⊕ u′ .

After two iterations, chaining variable h2 is computed as follows

h2 = g1 ⊕ c ⊕ Fh1(g1 ⊕ c ⊕ l2) ⊕ r2

h∗2 = g1 ⊕ u′ ⊕ c ⊕ Fh1⊕u′(g1 ⊕ u′ ⊕ c ⊕ l2 ⊕ v′) ⊕ r2 ⊕ w′ .

With w′ = u′ ⊕ t′ and t′ as defined in (7), we get

h∗2 = g1 ⊕ u′ ⊕ c ⊕ Fh1⊕u′(g1 ⊕ u′ ⊕ c ⊕ l2 ⊕ v′) ⊕ r2 ⊕ u′

⊕ Fh1(g1 ⊕ c ⊕ l2) ⊕ Fh1⊕u′(g1 ⊕ u′ ⊕ c ⊕ l2 ⊕ v′)
︸ ︷︷ ︸

t′

= g1 ⊕ u′ ⊕ c ⊕ r2 ⊕ u′ ⊕ Fh1(g1 ⊕ c ⊕ l2)
= h2 .

The difference in chaining variable g2 after two iterations is

g∗2 = g2 ⊕ z′ ,

where z′ is defined in (8). After three iterations, we get



74 N. Pramstaller, M. Lamberger, and V. Rijmen

g3 = g2 ⊕ Fh2(g2 ⊕ l3) ⊕ r3

g∗3 = g2 ⊕ z′ ⊕ Fh2(g2 ⊕ z′ ⊕ l3 ⊕ z′) ⊕ r3 ⊕ z′

= g2 ⊕ Fh2(g2 ⊕ l3) ⊕ r3

= g3

h3 = g2 ⊕ c ⊕ Fh2(g2 ⊕ c ⊕ l3) ⊕ r3

h∗3 = g2 ⊕ z′ ⊕ c ⊕ Fh2(g2 ⊕ z′ ⊕ c ⊕ l3 ⊕ z′) ⊕ r3 ⊕ z′

= g2 ⊕ c ⊕ Fh2(g2 ⊕ c ⊕ l3) ⊕ r3

= h3 .

Therefore, after three iterations the differences in the chaining variables are
g′3 = g3 ⊕ g∗3 = 0 and h′3 = h3 ⊕ h∗3 = 0. Since the difference of the chaining
variables g′0 = h′0 = 0, we have constructed a 3-block bypass for DX-II.

The final statement of the theorem is an immediate consequence of Lemma 1
with b = 3. ��
For Configuration I and III, we can prove similar theorems.

Theorem 2. For the iterated hash function DX-I, we can construct a 2-block
bypass, since for every two block message m = m1, m2 the following message m∗

satisfies the conditions of Definition 1:

m∗ = m1 ⊕ (0‖u′), m2 ⊕ (0‖u′) , (9)

where mi = li‖ri, |li| = |k|, |ri| = n, u′ any value with |u′| = n, and 0 is the
|k|-bit all-zero binary string.
Furthermore, for an arbitrary message m = m1, . . . , mt with t ≥ 2, we can find
at least

�t/2�∑

j=1

(
t − j

j

)

second preimages based on this 2-block bypass.

Theorem 3. For the iterated hash function DX-III, we can construct a 3-block
bypass, since for every 3-block message m = m1, m2, m3 the following message
m∗ satisfies the conditions of Definition 1:

m∗ = m1 ⊕ (u′‖v′), m2 ⊕ (0‖z′), m3 ⊕ (0‖(w′ ⊕ z′)) , (10)

where mi = li‖ri, |li| = |k|, |ri| = n, u′, v′ any value with |u′| = |k| and |v′| = n,
and 0 is the |k|-bit all-zero binary string. Once the values u′, v′ have been chosen
for the given input message block m1, the differences w′ and z′ can be computed:

w′ = [g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ r1) ⊕ h0]
⊕ [g0 ⊕ c ⊕ Fl1⊕v′(g0 ⊕ c ⊕ r1 ⊕ u′) ⊕ h0] ,

z′ = [g0 ⊕ Fl1(g0 ⊕ r1) ⊕ h0]
⊕ [g0 ⊕ Fl1⊕v′(g0 ⊕ r1 ⊕ u′) ⊕ h0]



Second Preimages for Iterated Hash Functions 75

Furthermore, for an arbitrary message m = m1, . . . , mt with t ≥ 3, we can find
at least

�t/3�∑

j=1

(
t − 2j

j

)

second preimages based on this 3-block bypass.

The proof of Theorem 2 and Theorem 3 works along the same lines as the proof
of Theorem 1 and is given in Appendix A and B.

4 The Hash Function Design Strategy SMASH

In [11], Knudsen presented a new design strategy for iterated hash functions.
For a message m = m1, m2, . . . , mt consisting of t blocks of length n, the hash
output ht+1 gets computed via

h0 = f(iv) + iv (11)
hi = f(hi−1 + mi) + hi−1 + θmi for i = 1, . . . , t (12)

ht+1 = f(ht) + ht, (13)

where f denotes a bijective, non-linear n-bit mapping. Note that “+” and mul-
tiplication by θ is defined as an operation in the finite field GF (2n) with the
only restriction that θ �∈ {0, 1}. In [11], also two instantiations of SMASH have
been proposed, namely SMASH-256 and SMASH-512 which produce a 256-bit,
respectively 512-bit output.

Let us for now consider a slightly reduced variant of SMASH-n by omitting
the final step (13) in the definition of SMASH-n. The main result of [12] is a
method to effectively construct preimages for this reduced variant. Their method
makes use of the following simple observation (which was already pointed out in
[11]): Let hi and h∗i be two intermediate hash values and let mi be an arbitrary
n-bit message block. Then, if we set m∗i = mi + hi−1 + h∗i−1 we have

hi + h∗i = (1 + θ)(hi−1 + h∗i−1).

This can be used to derive an equation of the form:

ht = a + b

t∑

j=1

δj(1 + θ)t−j , (14)

where 1 ≤ t ≤ n, a, b are values depending on the used initial value and compres-
sion function f , and the δi ∈ {0, 1} are unknowns on which the respective blocks
of the preimage m∗ = m∗1, . . . , m

∗
n will depend. Equation (14) can be interpreted

as an inhomogenous system of n linear equations in t variables over GF (2).
For the solvability of this system we have to look on the element θ. If (1 + θ)

is not contained in a proper subfield of GF (2n), then the elements (1 + θ)i are



76 N. Pramstaller, M. Lamberger, and V. Rijmen

linearly independent for 0 ≤ i ≤ n − 1. For SMASH-256 and SMASH-512, it is
easy to show that this condition is satisfied. In most applications we will have
n = 2�. Then, a randomly selected θ fulfills this requirement with probability
1 − 2−n/2.

Thus, if we set t = n in equation (14) we are guaranteed a unique solution
δ1, . . . , δn from which an n-block preimage m∗ can be constructed. For a more
detailed description of the method we refer to [12].

Remark 3. To clarify the multiple use of n we recapitulate: SMASH-n operates
on n-bit blocks but since we need exactly n variables to derive a unique solution
for the system (14) the method of [12] also produces a preimage consisting of n
blocks.

Because of (13) this preimage attack cannot be augmented to the full variant of
SMASH-n. However, we can use this result to construct an n-block bypass for an
arbitrary message m = m1, m2, . . . , mn. Let hn denote the chaining value com-
puted after n applications of (12) starting from our initial message m. Then, the
technique described above leads to a message m∗ such that h∗n = hn and there-
fore h∗n+1 = hn+1. The method shown in [12] guarantees that the constructed
second preimage m∗ differs from m at least in the first message block. Since this
can be carried out independent of the choice of h0 we arrive at the following
theorem:

Theorem 4. For almost all instantiations of SMASH-n, we can construct an
n-block bypass. Especially, we can construct a 256-block, respectively 512-block
bypass for the hash functions SMASH-256, respectively SMASH-512.

5 Implications of a b-Block Bypass for NMAC and
HMAC

In this section, we will look at the implications if one of the hash functions
described in Section 3 and Section 4 is employed in applications such as message
authentication codes. In particular, we will focus on NMAC and HMAC [1]:

NMACk1,k2(m) = H(k1, H(k2, m)) (15)
HMACk(m) = H(H(iv, k ⊕ opad), H(H(iv, k ⊕ ipad), m)) , (16)

where H(cv, m) denotes the application of the iterated hash function H with
chaining value cv (iv or ki) and t-block message m = m1, . . . , mt. For HMAC,
two appropriate padding methods ipad and opad for the secret key k are required
(see [1] for further details). Both constructions are depicted in Figure 3.

For NMAC the initial value and for HMAC the chaining value of the iterated
hash function H processing the message m are not known to an adversary unless
he/she knows the secret key k. Therefore, a second preimage attack on an iterated



Second Preimages for Iterated Hash Functions 77

H

H

H

H H

H

m

k2

k1

NMACk1k2 (m)
1 2

IV

IVk ipad

m k opad

HMACk (m)

Fig. 3. The NMAC (left) and HMAC (right) construction based on an iterative hash
function H

hash function for which the attacker needs to know certain chaining values will
not lead to an immediate forgery. On the other side, if the second preimage
attack is independent of the initial chaining value, an adversary will always
succeed in forging an authenticated message: for any given valid message-MAC
pair {m, MACk(m)} he/she can construct a second valid message-MAC pair by
just replacing m with the second preimage m∗. If we look at the hash functions
described in Section 3 and Section 4, we can now conclude the following:

Fact 1. The second preimages based on the 3-block bypass for DX-II and DX-III,
as well as the n-block bypass for SMASH-n cannot directly be exploited to mount
a forgery attack on NMAC and HMAC. This is an immediate consequence of
the fact that certain chaining values need to be known by the adversary for con-
structing the second preimage.

Fact 2. For the DX-I construction we see that the second preimage based on the
2-block bypass can be constructed in a pure differential way, i.e. it is indepen-
dent of the chaining values. Therefore, both NMAC and HMAC with DX-I as
underlying hash function are vulnerable to forgery attacks.

From these facts we observe that even if we can construct second preimages for
both hash functions in all configurations, the implications for the security of
hash-based MACs depend heavily on how the second preimage is constructed.

6 Conclusion

In this article, we have introduced the notion of b-block bypass for iterated hash
functions, which is closely related to the notion of second preimage. A b-block
bypass is more accurate in the sense that the structure of second preimages based
on a b-block bypass is more clear. We presented two entirely different hash func-
tions for which we can construct a b-block bypass. Even if we can construct
second preimages deterministically for both hash functions, we have shown that
if we look at NMAC/HMAC the implications are different. It turned out that



78 N. Pramstaller, M. Lamberger, and V. Rijmen

for NMAC/HMAC it is important how the second preimage is constructed: the
DX construction in Configuration I implies immediate forgery, whereby DX in
Configuration II and III as well as the SMASH construction do not lead to a
forgery attack on NMAC/HMAC. We can derive from our results that a weak
hash function does not necessarily imply a weak application employing this hash
function. Therefore, it makes sense to not only define properties for the hash
function but to specify additional properties concerning the application in which
a hash function is employed.

Acknowledgements

The authors wish to thank Florian Mendel, Christian Rechberger, and the anony-
mous referees for useful comments and discussions.

The work in this paper has been supported in part by the Austrian Science
Fund (FWF), project P18138 and by the European Commission through the
IST Programme under contract IST2002507 932 ECRYPT. The information in
this paper is provided as is, and no guarantee or warranty is given or implied
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

3. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

4. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

5. Feller, W.: An introduction to probability theory and its application, 3rd edn.
vol. I. John Wiley & Sons, New York (1968)

6. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions.
In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidel-
berg (2006)

7. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much less
than 2n Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

8. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidel-
berg (1996)



Second Preimages for Iterated Hash Functions 79

9. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an
Analysis of DESX). J. Cryptology 14(1), 17–35 (2001)

10. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (Extended Abstract). In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer,
Heidelberg (2006)

11. Knudsen, L.R.: SMASH - A Cryptographic Hash Function. In: Gilbert, H., Hand-
schuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 228–242. Springer, Heidelberg
(2005)

12. Lamberger, M., Pramstaller, N., Rechberger, C., Rijmen, V.: Second Preimages for
SMASH. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 101–111. Springer,
Heidelberg (2006)

13. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1989)

14. Rechberger, C., Rijmen, V.: On Authentication with HMAC and Non-Random
Properties. In: Financial Cryptography and Data Security, 11th International Con-
ference, FC, Lowlands, Scarborough, Trinidad/Tobago, February 12–15, 2007 (to
appear in LNCS)

15. Wang, X., Yao, A., Yao, F.: New Collision Search for SHA-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)

16. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

A Proof of Theorem 2

Proof. Assume, we have the following 2-block messages m, m∗, where:

m = m1, m2 = (l1‖r1), (l2‖r2)
m∗ = m∗1, m

∗
2 = m1 ⊕ (0‖u′), m2 ⊕ (0‖u′) = (l∗1‖r∗1), (l∗2‖r∗2)

l∗1 = l1 ⊕ 0 = l1, r∗1 = r1 ⊕ u′

l∗2 = l2 ⊕ 0 = l2, r∗2 = r2 ⊕ u′

After one iteration, we have

g1 = g0 ⊕ Fl1(g0 ⊕ h0) ⊕ r1

g∗1 = g0 ⊕ Fl1(g0 ⊕ h0) ⊕ r1 ⊕ u′ = g1 ⊕ u′ , and
h1 = g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ h0) ⊕ r1

h∗1 = g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ h0) ⊕ r1 ⊕ u′ = h1 ⊕ u′ .

The outputs after two iterations are

g2 = g1 ⊕ Fl2(g1 ⊕ h1) ⊕ r2

g∗2 = g1 ⊕ u′ ⊕ Fl2(g1 ⊕ u′ ⊕ h1 ⊕ u′) ⊕ r2 ⊕ u′

= g1 ⊕ Fl2(g1 ⊕ h1) ⊕ r2 = g2 , and



80 N. Pramstaller, M. Lamberger, and V. Rijmen

h2 = g1 ⊕ c ⊕ Fl2(g1 ⊕ c ⊕ h1) ⊕ r2

h∗2 = g1 ⊕ u′ ⊕ c ⊕ Fl2(g1 ⊕ u′ ⊕ c ⊕ h1 ⊕ u′) ⊕ r2 ⊕ u′

= g1 ⊕ c ⊕ Fl2(g1 ⊕ c ⊕ h1) ⊕ r2 = h2 .

Hence, g′2 = g2 ⊕ g∗2 = 0 and h′2 = h2 ⊕ h∗2 = 0. Since the difference of the
chaining variables g′0 = h′0 = 0, we have constructed a 2-block bypass for DX-I.
The final statement of the theorem is an immediate consequence of Lemma 1
with b = 2. ��

B Proof of Theorem 3

As for the proof of Theorem 1 and Theorem 2, we show that for the 3-block
messages m and m∗, where m = m1, m2, m3 = (l1‖r1), (l2‖r2), (l3‖r3) and

m∗ = m1 ⊕ (u′‖v′), m2 ⊕ (0‖z′), m3 ⊕ (0‖(w′ ⊕ z′)) = (l∗1‖r∗1), (l
∗
2‖r∗2), (l∗3‖r∗3)

l∗1 = l1 ⊕ u′, r∗1 = r1 ⊕ v′

l∗2 = l2 ⊕ 0, r∗2 = r2 ⊕ z′

l∗3 = l3 ⊕ 0, r∗3 = r3 ⊕ (w′ ⊕ z′) ,

the output difference equals zero after three iterations, i.e. g′3 = h′3 = 0. After
the first iteration, we have

g1 = g0 ⊕ Fl1(g0 ⊕ r1) ⊕ h0

g∗1 = g1 ⊕ z′, where
z′ = [g0 ⊕ Fl1(g0 ⊕ r1) ⊕ h0]

⊕ [g0 ⊕ Fl1⊕v′(g0 ⊕ r1 ⊕ u′) ⊕ h0] , and
h1 = g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ r1) ⊕ h0

h∗1 = h1 ⊕ w′, where
w′ = [g0 ⊕ c ⊕ Fl1(g0 ⊕ c ⊕ r1) ⊕ h0]

⊕ [g0 ⊕ c ⊕ Fl1⊕v′(g0 ⊕ c ⊕ r1 ⊕ u′) ⊕ h0] .

The difference of the chaining variables after two iterations is

g2 = g1 ⊕ Fl2(g1 ⊕ r2) ⊕ h1

g∗2 = g1 ⊕ z′ ⊕ Fl2(g1 ⊕ z′ ⊕ r2 ⊕ z′) ⊕ h1 ⊕ w′

= g2 ⊕ (w′ ⊕ z′) , and
h2 = g1 ⊕ c ⊕ Fl2(g1 ⊕ c ⊕ r2) ⊕ h1

h∗2 = g1 ⊕ z′ ⊕ c ⊕ Fl2(g1 ⊕ z′ ⊕ c ⊕ r2 ⊕ z′) ⊕ h1 ⊕ w′

= h2 ⊕ (w′ ⊕ z′) .

The output difference after three iterations is computed as follows. For the sake
of clearness, we write y′ = w′ ⊕ z′:



Second Preimages for Iterated Hash Functions 81

g3 = g2 ⊕ Fl3(g2 ⊕ r3) ⊕ h2

g∗3 = g2 ⊕ y′ ⊕ Fl3(g3 ⊕ y′ ⊕ r3 ⊕ y′) ⊕ h2 ⊕ y′

= g3 , and
h3 = g2 ⊕ c ⊕ Fl3(g2 ⊕ c ⊕ r3) ⊕ h2

h∗3 = g2 ⊕ y′ ⊕ c ⊕ Fl3(g2 ⊕ y′ ⊕ c ⊕ r3 ⊕ y′) ⊕ h2 ⊕ y′

= h3

Hence, g′3 = g3⊕g∗3 = 0 and h′3 = h3⊕h∗3 = 0. Since the difference of the chaining
variables g′0 = h′0 = 0, we have constructed a 3-block bypass for DX-III.
The final statement of the theorem is an immediate consequence of Lemma 1
with b = 3. ��



On Building Hash Functions from Multivariate

Quadratic Equations�

Olivier Billet, Matt J.B. Robshaw, and Thomas Peyrin

France Telecom R&D, Issy-les-Moulineaux, France
{forename.name}@orange-ftgroup.com

Abstract. Recent advances in hash functions cryptanalysis provide a
strong impetus to explore new designs. This paper describes a new hash
function mq-hash that depends for its security on the difficulty of solving
randomly drawn systems of multivariate equations over a finite field.
While provably achieving pre-image resistance for a hash function based
on multivariate equations is relatively easy, näıve constructions using
multivariate equations are susceptible to collision attacks. In this paper,
therefore, we describe a mechanism—also using multivariate quadratic
polynomials—yielding the collision-free property we seek while retaining
provable pre-image resistance. Therefore, mq-hash offers an intriguing
companion proposal to the provably collision-free hash function vsh.

1 Introduction

Cryptographic hash functions are essential components within the information
security infrastructure. A cryptographic hash function hash(·) is a function that
takes an arbitrary length input and generates a fixed length output of n bits.
Classically, there are three main properties of such functions which can be loosely
described in the following way [19]:

1. Pre-image resistance. Given an output y it is computationally hard to find
any input x such that hash(x) = y;

2. Second pre-image resistance. Given an input and output pair (x, y) so that
hash(x) = y, it is computationally hard to find an input x′ distinct from x
such that hash(x′) = y;

3. Collision resistance. It is computationally hard to find any two inputs x
and x′ such that hash(x) = hash(x′).

While there have been a variety of different hash function proposals over the
years, most currently deployed hash functions are closely built around design
principles which go back to MD4 [28]. Probably the most popular hash func-
tions in use today are MD5 [29] and SHA-1 [22]. However recent cryptanalytic
advances [32,33] have shown weaknesses that allow collisions to be computed

� This work has been supported in part by the French government through the
SAPHIR and MAC projects.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 82–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On Building Hash Functions from Multivariate Quadratic Equations 83

for these hash functions much faster than by brute force. A more recent family
of hash functions [22] has been standardised by NIST in the U.S., but these
are closely related to SHA-1 and confidence in their construction is somewhat
undermined by recent cryptanalytic work on MD5 and SHA-1. An alternative
approach has been to build hash functions around a secure block cipher, see for
example [19,27] and more recently [26], and the widespread deployment of the
AES [21] may well provide new opportunities in this direction.

In this paper we consider a third approach and we base the security of a hash
function on a hard mathematical problem. Until recently this approach was very
limited, but there has been considerable success with vsh [8] which relates the
difficulty of finding collisions to a hard problem built around the mechanics of
current factoring techniques. A variant based on the discrete logarithm prob-
lem vsh-dl has also been proposed [17] and other proposals include the fsb
hash function [2] that is related to fast syndrome-based decoding problems and
lash [6] which is based on problems in lattice theory.

The new hash function in this paper, mq-hash, is built around the problem of
solving a system of multivariate quadratic equations. This is the same problem
that underpins the security of the stream cipher quad [4] and we will find it
useful to appeal to some of the results that feature in that design.

Designing a pre-image resistant compression function from a set of multivari-
ate quadratic polynomials without a care for collision-resistance is quite easy,
because it is enough to rely on the hard problem MQ. However, such näıve
constructions give rise to collision-full hash functions. So the difficult part in
building a hash function based on sets of multivariate quadratic polynomials is
in providing collision-resistance in a plausible way, but without sacrificing any
pre-image resistance or its proof. This is the purpose of the current paper.

Our paper is structured as follows. In the next section we provide some back-
ground on hash function design and the use of systems of quadratic polyno-
mials. We illustrate the difficulty of using quadratic polynomials directly by
demonstrating an intrinsic weakness. In Section 3 we describe our construction
mq-hash while we prove its structural security in Section 4 and its instanti-
ated security with explicit parameter values in Section 5. The performance of
our proposal and some variants are considered in Section 5.3 and we close by
highlighting open problems and drawing our conclusions in Section 6.

2 Hash Functions and Quadratic Equations

In this paper we consider the problem of building a hash function from one par-
ticular hard problem, namely that of solving a system of multivariate equations
over a finite field F. The natural one-wayness of this primitive, together with its
computational efficiency, provides an interesting starting point for a new hash
function proposal.

While evaluating a random set of m multivariate polynomials in n variables
is of polynomial complexity with respect to n, finding a common root of this set



84 O. Billet, M.J.B. Robshaw, and T. Peyrin

of polynomials is well known to be an NP-hard problem. This remains true even
when restricted to quadratic polynomials or to the case of two equations [12].

The problem of solving multivariate quadratic equations over a finite field F
is known as the MQ-problem. It is a hard problem, but also one that permits
efficient schemes. Consequently it has been used in the design of several crypto-
graphic applications. See [34] for an overview along with some additional infor-
mation that can be found in [4].

A tuple of multivariate quadratic polynomials consists of a finite ordered set
of polynomials of the form:

q(x1, . . . , xn) =
∑

1≤i≤j≤n

ai,j xixj +
∑

1≤k≤n

bk xk + c ,

where the constants are in a finite field F. The MQ problem can then be stated
as follows:

Problem 1 (MQ). Given a tuple q = (q1, . . . , qm) of m multivariate quadratic
polynomials in n unknowns defined over F, and the image y = (q1(z), . . . , qm(z))
of an element z randomly chosen from Fn through q, find an element x of Fn

such that y = (q1(x), . . . , qm(x)).

Solving a set of randomly chosen quadratic equations in several variables over a
finite field is a well-known hard problem [13]. That it is conjectured to be very
difficult not only asymptotically and in worst case, but already for well chosen
practical values of m and n makes it very attractive as a cryptographic building
block. Apart from degenerate parameters like n� m or n� m (see [31]) or low
rank polynomials, the complexity of the best known algorithms for solving the
problem are exponential in min(m, n), (see [3,31]).

This leads to the following näıve construction for a compression function based
on the evaluation of multivariate quadratic polynomials:

Attempt 1 (näıve and flawed). Let F be a finite field of size q and, assume
that we wish to compress a fixed-length input of ρ = r log2 q bits to give an out-
put of ν = n log2 q bits. A compression function g can be obtained by randomly
choosing a tuple (g1, . . . , gn) of n quadratic polynomials in r variables defined
over F:

Fr −→ Fn

x = (x1, . . . , xρ) �−→ g(x) =
(
g1(x), . . . , gν(x)

)
.

While the one-way property of Attempt 1 is straightforward to establish, it is
very easy to find collision and it would not be, in itself, an acceptable way to build
a cryptographic hash function. In the next section, therefore, we investigate more
closely the problem of collision resistance in the setting of multivariate quadratic
polynomials.

2.1 About Collision Resistance

Unfortunately there is no collision-resistance when using a system of quadratic
equations directly and it is hard to achieve this property in a simple way for



On Building Hash Functions from Multivariate Quadratic Equations 85

the following reason. For polynomial equations of degree d, any differential of
order d− 1 is an affine application. Thus, in the special case of sets of quadratic
polynomials, this amounts to saying that the set of first order differentials of any
quadratic polynomial in the original set is a set of affine mappings. This simple
fact has previously been used for instance by Fouque, Granboulan, and Stern to
attack an asymmetric multivariate scheme [11].

Theorem 1. Let Q be a tuple of e quadratic equations f1, . . . , fe in u variables
over a finite field F. For every value δ = (δ1, . . . , δu), it is possible to give,
with time complexity O(eu2), a parametrized description of the set of inputs
x = (x1, . . . , xu) and y = (y1, . . . , yu) colliding through Q and such that y−x = δ,
if any.

Proof. Given δ, one computes a linear system Lδ(z) = 0 in the indeterminate z
where Lδ is the affine mapping defined by Lδ : z �→ Q(z + δ)−Q(z). Thus, any
colliding pair (x, y) = (x, x+δ) for Q with prescribed difference δ translates into
a solution x of a linear system, and any standard algorithm for solving linear
system recovers the set of solutions of the collision equation Q(z) = Q(z+δ). ��
Theorem 1 thus basically implies that collisions can be easily constructed for
any näıve design like the one described in Attempt 1. Further, a hash function
design facilitating the analysis of differences might be subject to attack. It is
therefore reasonable to ask whether there is any way to plausibly achieve collision
resistance when using sets of multivariate quadratic polynomials, and yet to
provably retain the original one wayness property? The following sections answer
this question positively.

3 Construction of mq-hash

We now present one particular approach to using multivariate quadratic poly-
nomials in the design of a hash function. While we do so with general parameter
sets, we propose some concrete values in Section 5.3.

3.1 Preliminaries

While recent analysis [14,15] has provided new insight into the Merkle-Damg̊ard
paradigm [9,20], our goal has been to design a secure compression function for use
in this familiar way. The Merkle-Damg̊ard construction requires the specification
of an (μ+ν)-bit to ν-bit compression function compress. The compression func-
tion will be used repeatedly to hash the input message M in a component-wise
manner. We denote the block of a message being hashed at the i-th iteration
by Bi, where each block is of constant length μ bits. Clearly this requires padding
and the standard Merkle-Damg̊ard or MD-hardening is assumed. Thus we ap-
pend a single bit ‘1’ followed by as many ‘0’ as required to leave the message



86 O. Billet, M.J.B. Robshaw, and T. Peyrin

64 bits short of a multiple of μ. The remaining 64 bits are then used for a
representation of the length of the input message M in bits1. We will assume
that the message M requires t blocks after padding and so M = B1|| · · · ||Bt.

3.2 The Compression Function of mq-hash

At iteration i, for 1 ≤ i ≤ t, the compression function is used to update the
value vi−1 of an ν-bit chaining variable to vi. The initial value of the chaining
variable v0 is specified and fixed. Thus, at iteration i of the compression function
we have that vi = compress(vi−1, Bi). At the end of the iteration process, the
last chaining variable is used as the output of the hash function.

Figure 1 shows the compression function mq-hash. It uses two non-invertible
components with the first component f providing a stretching function while the
second, g, provides a shrinking function. These are embodied by randomly chosen
tuples of multivariate quadratic polynomials. Thus, in the process of proving the
necessary security properties, we have a construction that shares features with
the work of Aiello, Haber, and Venkatesan [1].

g

f

H
=

g
◦f

vi

Mivi−1

ηi

Fig. 1. Schematic description of the compression function of mq-hash, where vi denotes
the chaining variable and Bi the message block being hashed at iteration i

The compression function of mq-hash takes as input a message block Bi of
μ bits and a chaining variable vi−1 of ν bits. Let F be a finite field of size q so
that μ and ν are multiples of log2 q, say μ = m log2 q and ν = n log2 q. We also
fix another integer ρ = r log2 q so that r ≥ m + n. Then the stretching function
consists of a randomly chosen tuple (f1, . . . , fr) of r quadratic polynomials in
n + m variables defined over F. That is, f is given by:

1 Thus the maximum length of a message that can be hashed using mq-hash is 264 as
for many other hash functions [29,22].



On Building Hash Functions from Multivariate Quadratic Equations 87

Fn+m −→ Fr

x = (c1, . . . , cn, b1, . . . , bm) �−→ f(x) =
(
f1(x), . . . , fr(x)

)
,

where (b1, . . . , bm) stands for the μ-bit message block split into m elements of F,
and (c1, . . . , cn) stands for the ν-bit chaining variable split into n elements of F.
The shrinking stage is, in turn, defined by a randomly chosen tuple (g1, . . . , gn)
of n quadratic polynomials in r variables. That is, g is given by:

Fr −→ Fn

η = (η1, . . . , ηr) �−→ g(η) =
(
g1(η), . . . , gn(η)

)
.

The final compression function is then defined to be the composition of f and g
and vi = g ◦ f(vi−1, Bi) . For the construction to be secure, we will show that:

– the two functions f and g must be hard to invert;
– the stretch factor r

m+n in the first step must lie within a certain range.

The value of the stretch factor will be discussed in Section 5 and it will depend
on the number of bits hashed at each compression function iteration as well as
the length of the chaining variable.

In order to ease the exposition, we will assume for the rest of the paper that
the ground field F is the binary field GF(2) and it follows that m = μ, n = ν,
and r = ρ.

4 The Security of mq-hash

The work of Merkle and Damg̊ard allows us to concentrate on the properties of
the compression function g◦f . We first give elements of provable security for the
first pre-image resistance of mq-hash. Then we discuss the collision resistance
of mq-hash.

4.1 Preliminaries to the Study of Pre-image Resistance

In what follows, Uk denotes the uniform distribution over {0, 1}k. We say that
two distributions X and Y over the binary strings of size k are distinguishable
in time T with advantage ε if there exists a probabilistic algorithm D running
in time less than T such that:

∣
∣
∣
∣ Pr
x∈X

[
D(x) = 1

]− Pr
y∈Y

[
D(y) = 1

]
∣
∣
∣
∣ ≥ ε .

We describe a pseudo-random number generator as a deterministic polynomial-
time algorithm G from {0, 1}l to {0, 1}k with k > l such that G(Ul) cannot be
distinguished from Uk in reasonable time (for instance with a time complexity
lower than 2s for some security level s) and with a non-negligible advantage.



88 O. Billet, M.J.B. Robshaw, and T. Peyrin

We say that a function g is non-invertible in time T with probability ε if for
any probabilistic algorithm B running in time less than T :

∣
∣
∣
∣ Pr
z∈Ur

[
g
(
B(

g(z)
))

= g(z)
]∣∣
∣
∣ < ε .

An important aspect to our proofs will be the fact that a tuple of multivariate
quadratic equations with a small stretching factor is in effect acting as a pseudo-
random number generator. This ensures that the outputs from the stretching
function f does not have noticeable specific properties. Since this is a property
that underpins the design of quad, it is not surprising to find some of the
fundamental components for our work covered in [4].

Theorem 2. Let A be an algorithm that, on input a randomly chosen tuple f
of r multivariate quadratic equations in n + m binary unknowns distinguishes
the distribution {f1(x)|| · · · ||fr(x)}x∈Un+m over the binary strings of length r
from the uniform distribution Ur in time T and with advantage ε. Then A can
be converted into an algorithm B that inverts a tuple g of r randomly chosen
multivariate quadratic equations in n + m binary unknowns with probability ε/2
(over both g and the inputs) in time less than:

T̃ (T, n, m, ε) =
128(n + m)2

ε2

(
T + log

(
128(n + m)

ε2

)

+ r(n + m) + 2
)

.

Proof. The proof is a direct application of Theorems 2 and 3 from [4]. ��

The above theorem gives rise to two comments. First, the choice of the base
field is GF(2). However no obstacles to generalisations over other fields are an-
ticipated, though the reduction would obviously lead to another value of T̃ .
Second, the reduction achieved by Theorem 2 is not very tight. However this is
enough for us to derive secure parameters in Section 5.

4.2 Pre-image Resistance of mq-hash

The next theorem reduces the pre-image resistance of mq-hash’s compression
function to the problem of inverting random multivariate quadratic systems. Let
Tf (resp. g) be the time required to evaluate f (resp. g) on its input.

Theorem 3. Let A be an algorithm inverting g ◦ f in time T with probability ε,
where f is a randomly chosen tuple of r multivariate quadratic polynomials in
n + m binary unknowns and g is a randomly chosen tuple of m multivariate
quadratic polynomials in n binary unknowns. Then A can be either converted
into an algorithm inverting g in time T + Tf + Tg with probability ε or into
an algorithm that can invert randomly chosen tuples of r multivariate quadratic
polynomials in n + m binary unknowns in time T̃ (T + Tf + 3Tg, n, m, ε) with
probability ε/2.



On Building Hash Functions from Multivariate Quadratic Equations 89

Proof. Let us define Ã(x) = f
(A(g(x))

)
. By the assumption on algorithm A

∣
∣
∣
∣ Pr
x∈Un+m

[
g ◦ f

(A(
g ◦ f(x)

))
= g ◦ f(x)

]
∣
∣
∣
∣ ≥ ε .

Thus g can be inverted by Ã in time T +Tf +Tg with probability ε when queried
with the distribution f(Un+m). So either g can be inverted in time T + Tf + Tg

with probability ε or f(Un+m) can be distinguished from Ur in time T +Tf +3Tg.
The theorem then follows from a direct application of Theorem 2. ��
Thus, assuming that g and f are hard to invert and that f is a pseudo-random
number generator, we deduce that their composition g ◦ f , that is mq-hash’s
compression function, is pre-image resistant.

4.3 Collision and Second Pre-image Resistance of mq-hash

There are two sets of multivariate quadratic polynomials corresponding to func-
tions f and g and it is their composition that gives the compression function
in mq-hash. Intuitively, the function g provides the actual compression. How-
ever, Theorem 1 demonstrated the potential ease of finding collisions when us-
ing g on its own. So in a first step we use a non-invertible function f . This
ensures that lifting collisions in g to yield pre-images for f is hard. However,
finding collisions for f must not be easy, or even better, f must be an injection.
This will be the rational behind what we term the stretch requirement for f .

The construction used in mq-hash is a close analogue to the construction
of Aiello, Haber, and Venkatesan [1]. Their claims for collision-resistance apply
equally to our own construction. Consider the compression function g ◦ f . We
know that g has collisions since it compresses but there can be no collisions
in f if f is an injection. For any collisions across g to be useful for the entire
compression function, they must (a) lie in the range of f and (b) be invertible
through f . The choice of stretch factor ensures that (a) is unlikely while the
choice of hard problem prevents (b).

Of course, this is not a proof, and a proof for the collision resistance in the
standard model remains an open problem. Nevertheless, it is possible to prove
this conjecture in the random oracle model, which, while less appealing than
the standard model, provides some evidence that the overall construction is
not completely flawed. It is interesting to note that this is one difference be-
tween mq-hash and vsh. While both proposals are able to provide a classical
hash function property in a provable manner, the remaining classical properties
are still conjectured to hold for mq-hash.

5 Establishing Parameters for mq-hash

While several elements of provable security for mq-hash were given in Section 4,
the limitations of such proofs are exposed when we instantiate the general con-
structions in practice. In this section, therefore, we study the security and per-
formance of mq-hash and illustrate the different trade-offs possible.



90 O. Billet, M.J.B. Robshaw, and T. Peyrin

Our proofs in Section 4 required that f be an injection; this was the basis
for the stretching role of f . But our construction also requires that solving a
random system of multivariate quadratic equations is a hard problem. Thus, we
observe that there are two conflicting practical constraints:

– A sufficiently large stretch is needed to ensure (to a degree of certainty that
is consistent with the intended security level) that there are no collisions in
the first part of the compression function.

– The system of equations that results, which will have more equations than
variables, must remain computationally non-invertible.

5.1 On the Injectivity of f

The following theorem provides a bound on the stretch factor needed for the first
stage f , embodied by a system of quadratic equations, to ensure its injectiveness.

Proposition 1. The probability that a tuple f of e randomly chosen quadratic
polynomials in u unknowns over a finite field F of size q, with e > u, is not an
injection is lower than q2u−e.

Proof. The linear part of the affine application Aδ(z) = f(z + δ) − f(z) is a
matrix of size e× u and is defined over a finite field F of size q. So As is of rank
less than u. But the probability that any matrix of size e× u and of rank u has
a uniformly randomly chosen element in its image is less than qu−e. Writing the
tuple f as f = f (2) + f (1) + f (0) where f (i) denotes the homogeneous part of
degree i, we see that for a randomly drawn value δ the constant f (2)(δ)+f (1)(δ)
is uniformly randomly distributed in Fe, independently of the coefficients of f (2).
Expanding the expression of Aδ as Aδ(z) = βf(2)(δ, z) + f (2)(δ) + f (1)(δ) where
βf(2) is the bilinear form associated to f , one see that:

Prδ∈Uu

[
Ker(Aδ) �= {0}

]
= Prδ∈Uu,c∈Ue

[
c ∈ Im(Aδ)

] ≤ qu−e .

The corresponding tuple f thus has less than qu−e chances of providing a
collision pair of the form (x, x+ δ) for any randomly chosen δ. Running through
all possible values for δ, we have that the probability of f being an injection is
greater than (1− qu−e)qu

and thus the probability of f not being an injection is
lower than q2u−e. ��
Interpreting this result and assuming that we seek a security level s, we have the
constraint 22u−e < 2−s, or e > 2u + s over the binary field as ground field F.
Hence, our construction will asymptotically show a stretch factor of two in the
case of the binary field.

5.2 On the Hardness of Inverting f

The hardness of the system solving problem is closely related to the ratio between
the number of equations and the number of variables. So we need to study the



On Building Hash Functions from Multivariate Quadratic Equations 91

complexity of solving randomly generated quadratic equation systems over the
field GF(2) when there are more equations than variables. This has been studied
in detail [3] and we summarize the results in our very special case.

Theorem 4. Solving a random system of e quadratic equations in u unknowns
over the field GF(2) by the best Gröbner basis algorithm requires

(
u
d

)ω operations
where ω ≈ 2.3 and

d =
u

2
− e +

e

2

√

2−
(u

e

)2
− 10

u

e
+ 2

√

8
(u

e

)3
+ 12

(u

e

)2
+ 6

u

e
+ 1 .

Proof. The proof is available in [3]. ��
Since we expect to use a stretch factor slightly bigger than two for our con-
struction, the complexity of solving with the best Gröbner basis methods will be
about

(
u

u/20

)ω. For the values proposed in Section 5.3 this complexity is much
higher than the security level.

# variables 80 128 160 256 512
time complexity 247 274 299 2153 2323

5.3 Performance Considerations

In this section, we investigate how the security requirements impact the per-
formances of mq-hash. For conservative settings and aiming at 80-bit security,
the use of the base field F = GF(2) seems mandatory. In this case, the chain-
ing variable could be 160 bits in length, the message block at each iteration
could be 32 bits in length, and the intermediate output from f should be around
464 bits. This would leave us with the parameter set n = ν = 160, m = μ = 32,
and r = ρ = 464 which are consistent with the security levels implied by The-
orem 4. The storage requirements for the first part of the computation, the
evaluation of f , is about 1 mb while the storage for the evaluation of g is less
than 2.2 mb. The total amount of storage is more than 3 mb of memory, so it
will not fit in the cache of contemporary processors, incurring a big performance
penalty that will severely restrict its practical use.

As usual, the property of provable security comes at a price. Crude estimates
for the performance of mq-hash show that it might be expected to run thousands
of times slower than SHA-1. However, we foresee that various modifications can
be made to the design of mq-hash so as to lower the gap of performance with
usual hash functions like SHA-1. We leave this question as an open research
subject.

5.4 Deploying Random Systems

One issue with using quadratic systems might be a concern about weak instances.
This is of special interest in the case of multivariate quadratic systems since



92 O. Billet, M.J.B. Robshaw, and T. Peyrin

trapdoors for this environment have been proposed as a fundamental feature of
several asymmetric schemes [16,23,24,25]. However, this is not such an unusual
issue in cryptographic deployment and shared equation systems can be generated
using a variety of techniques so as to allay suspicion. See, for example, the case
of dss [30].

5.5 Alternative Approaches

Our proposal mq-hash might be viewed as a first attempt to build a practical
hash function that relies for its security on multivariate quadratic equations.
There are several ways the work might be extended.

For instance, we might consider some slight variants to the structure of mq-
hash. It would be very natural to replace the fixed tuple f of multivariate
polynomials with tuples that are randomly re-generated at each iteration of the
compression function. Such a variant, outlined below, allows the tuple f to be
modified via some transformation of the chaining variable.

fg

Mi

vi

vi−1

It is interesting to observe that this approach, that we denote rmq-hash,
can be viewed as bringing us closer to some established block-cipher construc-
tions such as Matyas-Meyer-Oseas [7,27]: the one-way function f would be akin
to a block cipher with feed-forward and the treatment of the chaining variable
would be analogous to a (very) unusual key-schedule. While there are some in-
triguing challenges in this approach, early analysis suggests that such a scheme
would allow for a more compact system of equations with accompanying per-
formance advantages. This may well be an interesting structure to consider in
future work.

6 Conclusions

In this paper we have introduced a new hash function mq-hash. The security
of this hash function is based on the difficulty of solving systems of multivari-
ate quadratic equations, a problem that is well-studied and used elsewhere in



On Building Hash Functions from Multivariate Quadratic Equations 93

cryptography. The hash function mq-hash is provably pre-image resistant in the
standard model, and there is good evidence to support the conjecture that mq-
hash is collision-free and second pre-image resistant. However a proof in the
standard model remains an area of open research.

We believe there to be considerable promise in using multivariate quadratic
equations as a hard problem in symmetric cryptography. This is something that
has been pioneered with quad, and we anticipate similar success in the design
of other primitives. With regards to hash functions, however, there are some
particular challenges in using multivariate quadratic equations. In particular
one is forced to adopt a more complex construction than one might initially
like, and one must act carefully so as retain provable pre-image resistance. This
may well result in a wide variety of alternative constructions. In this paper
we have considered one particular approach and establishing a broader range
of designs with alternative security/performance trade-offs remains a topic of
ongoing research.

References

1. Aiello, W., Haber, S., Venkatesan, R.: New Constructions for Secure Hash Func-
tions. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 150–167. Springer,
Heidelberg (1998)

2. Augot, D., Finiasz, M., Sendrier, N.: A Family of Fast Syndrome Based Crypto-
graphic Hash Functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, pp. 64–83. Springer, Heidelberg (2005)

3. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: ICPSS, pp. 71–74
(2004)

4. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A Practical Stream Cipher with
Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 109–128. Springer, Heidelberg (2006)

5. Berbain, C.: Personal communication (November 21, 2006)

6. Bentahar, K., Page, D., Silverman, J.H., Saarinen, M.-J.O., Smart, N., LASH
(2006) Available from: http://csrc.nist.gov/pki/HashWorkshop/2006/

7. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

8. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable Collision-
Resistant Hash Function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 165–182. Springer, Heidelberg (2006)

9. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

10. Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signature
Scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 164–175. Springer, Heidelberg (2005)

11. Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate
schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–
353. Springer, Heidelberg (2005)

http://csrc.nist.gov/pki/HashWorkshop/2006/


94 O. Billet, M.J.B. Robshaw, and T. Peyrin

12. Fraenkel, A.S., Yesha, Y.: Complexity of Problems in Games, Graphs, and Alge-
braic Equations. Discr. Appl. Math. 1, 15–30 (1979)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co. New York (1979)

14. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M.k. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

15. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

16. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

17. Lenstra, A.K., Page, D., Stam, M.: Discrete logarithm variants of VSH. In: Nguyen,
P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 229–242. Springer, Heidelberg
(2006)

18. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge
(1997)

19. Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

20. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1989)

21. National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard (November 2001) Available from: http://csrc.nist.gov

22. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard
(August 2002) http://csrc.nist.gov

23. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EU-
ROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

24. Patarin, J., Courtois, N.T., Goubin, L.: QUARTZ, 128-Bit Long Digital Signatures.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer,
Heidelberg (2001)

25. Patarin, J., Courtois, N.T., Goubin, L.: FLASH, a Fast Multivariate Signature
Algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307.
Springer, Heidelberg (2001)

26. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining Compression
Functions and Block Cipher-based Hash Functions. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

27. Preneel, B.: Analysis and design of cryptographic hash functions. Ph.D. thesis.
Katholieke Universiteit Leuven (1993)

28. Ronald, L.: Rivest. RFC 1320: The MD4 Message-Digest Algorithm (April
1992)http://www.ietf.org/rfc/rfc1320.txt

29. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992)
http://www.ietf.org/rfc/rfc1321.txt

30. Smid, M.E., Branstad, D.K.: Response to Comments of the NIST Proposed Digital
Signature Standard. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
76–88. Springer, Heidelberg (1993)

http://csrc.nist.gov
http://csrc.nist.gov
http://www.ietf.org/rfc/rfc1320.txt
http://www.ietf.org/rfc/rfc1321.txt


On Building Hash Functions from Multivariate Quadratic Equations 95

31. Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving Underdefined Systems
of Multivariate Quadratic Equations. Public Key Cryptography, 211–227 (2002)

32. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Ziarko,
W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 17–36. Springer,
Heidelberg (2001)

33. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

34. Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes based on the problem of
Multivariate Quadratic equations. http://eprint.iacr.org/

http://eprint.iacr.org/


An Application of the Goldwasser-Micali

Cryptosystem to Biometric Authentication�

Julien Bringer1, Hervé Chabanne1, Malika Izabachène2, David Pointcheval2,
Qiang Tang2, and Sébastien Zimmer2

1 Sagem Défense Sécurité
2 Departement d’Informatique, École Normale Supérieure

45 Rue d’Ulm, 75230 Paris Cedex 05, France

Abstract. This work deals with the security challenges in authentica-
tion protocols employing volatile biometric features, where the authen-
tication is indeed a comparison between a fresh biometric template and
that enrolled during the enrollment phase. We propose a security model
for biometric-based authentication protocols by assuming that the bio-
metric features to be public. Extra attention is paid to the privacy issues
related to the sensitive relationship between a biometric feature and the
relevant identity. Relying on the Goldwasser-Micali encryption scheme,
we introduce a protocol for biometric-based authentication and prove its
security in our security model.

Keywords: Authentication, biometrics, privacy.

1 Introduction

Security protocols generally rely on exact knowledge of some data, such as a
cryptographic key, however there are particular applications where environment
and human participation generate variability. In biometric-based cryptosystems,
when a user identifies or authenticates himself using his biometrics, the biometric
feature, which is captured by a sensor (e.g. a camera for iris biometrics), will
rarely be the same twice. Thus, traditional cryptographic handling such as a
hash value is not suitable in this case, since it is not error tolerant. As a result,
the identification or authentication must be done in a special way, and moreover
precaution is required to protect the sensitivity (or privacy) of biometrics.

We here consider a practical environment where a human user wants to au-
thenticate himself to a database using his biometrics. A typical scenario is that
some reference biometric data is stored inside a database, through which the
server authenticates the user by checking whether or not a “fresh” biometric
template sent by the sensor matches with the reference one. Our main focus is
about biometrics such as iris [4], which can be extracted into binary strings.
Therefore, an authentication leads to a comparison between two binary vectors.
If the Hamming distance is adopted, then a comparison consists of computing
� Work partially supported by french ANR RNRT project BACH.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 96–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



An Application of the Goldwasser-Micali Cryptosystem 97

the Hamming distance between the reference data and the fresh template and
comparing this to a threshold.

To enforce privacy, we wish biometric data after their capture to be hidden in
some way so that an adversary is unable to find out who is the real person that
is trying to authenticate himself. Note that a live person is uniquely identified by
his biometrics and we want to hide the relationship between biometrics and the
identity (used in an application). To achieve this goal, an application dependent
identity is used and biometric matching is made over encrypted data. Moreover,
to retrieve data to be compared with from the database, we introduce a new
protocol to hide the index of record from the database.

1.1 Related Works

In [8] Juels and Wattenberg start the pioneering work by combining error cor-
rection codes with biometrics to construct fuzzy commitment schemes. Later on
two important concepts about, i.e., secure sketch and fuzzy extractor, are widely
studied. In [9], a number of secure sketch schemes have been proposed. In [6],
Dodis et al. formalize the concept of fuzzy extractor, and propose to use for
symmetric key generation from biometric features. In [2], Boyen et al. propose
applications to remote biometric authentication using biometric information.
Moreover, the work of Linnartz and Tuyls [10] investigates key extraction gener-
ated from continuous sources. In these schemes, biometric features are treated to
be secret and used to derive general symmetric keys for traditional cryptographic
systems.

There are a number of papers which deal with the secure comparison of two
binary strings without using error correcting codes. In the protocol proposed by
Atallah et al. [1], biometric features are measured as bit strings and subsequently
masked and permuted during the authentication process. The comparison of
two binary vectors modified following the same random transformation leads
then to the knowledge of the Hamming distance. The main drawback of their
protocol is that the client needs to store a number of secret values and update
them during every authentication process, as the security relies mainly on these
transformations.

Cryptographic protocols using homomorphic encryption may also allow us
to compare directly encrypted data. For instance, Schoenmakers and Tuyls im-
prove Paillier’s public encryption protocol and propose to use it for biometric
authentication protocols by employing multi-party computation techniques [12].

In summary, most of these protocols, except the work of [11] which uses biom-
etry for Identity-Based Encryption, rely on the assumption that biometric fea-
tures belonging to live users are private information. However, this assumption
is not true in practice. As a user’s biometric information, such as fingerprint,
may be easily captured in daily life. In this paper, we assume that the biomet-
ric information is public, but the relationship between a user’s identity and its
biometric information is private.



98 J. Bringer et al.

1.2 Our Contributions

In this paper we propose a general security model for biometric-based authen-
tication. The model possesses a number of advantages over the existing ones:
The first is that we lower the level of trust on the involved individual principals.
The second is that extra attention has been paid to the privacy issues related to
the sensitive relationship between a biometric feature and the relevant identities.
Specifically, this relationship is unknown to the database and the matcher.

We propose a new biometric authentication protocol which is proved secure
in our security model. Our protocol follows a special procedure to query the
database, which, as in the case of Private Information Retrieval (PIR) proto-
col [3], allows to retrieve an item without revealing which item is retrieved.
The protocol heavily exploits the homomorphic property of Goldwasser-Micali
public-key encryption scheme [7], its ability to treat plaintext bit after bit, and
the security is based on its semantic security, namely the quadratic residuosity
assumption.

1.3 Organization of This Work

The rest of the paper is organized as follows. In Section 2, we describe our
security model for (remote) biometric-based authentication. In Section 3, we
describe a new protocol for biometric authentication. In Section 4, we give the
security analysis of the new protocol in the new security model. In Section 5, we
conclude the paper.

2 A New Security Model

For a biometric-based remote authentication system, we assume the system
mainly consists of two parts: the client part and the server part. At the client
side, we distinguish the following two types of entities:

– A human being Ui, for any i ≥ 1, who registers his reference biometric
template bi at the server side, and provides fresh biometric information in
order to obtain any service from the authentication server.

– A sensor S which is capable of capturing the user’s biometric and extracting
it into a binary string, namely a fresh template.

In practice, the template extraction process may involve a number of compo-
nents, nonetheless, here we assume that the sensor implements all these function-
alities. Implicitly, we assume that the sensor can communicate with the server.

At the server side, we distinguish the following three types of entities:

– An authentication server, denoted AS, which deals with the user’s service
requests and provides the requested service.

– A database DB, which stores users’ biometric templates.
– A matcher M, which helps the server to make a decision related to a user’s

request of authentication.



An Application of the Goldwasser-Micali Cryptosystem 99

Fig. 1 below illustrates this model.

Ui S AS

DB

M

Fig. 1. Our model

Like most existing biometric-based systems (and many traditional cryptosys-
tems), in our security model, a biometric-based authentication protocol consists
of two phases: an enrollment phase and a verification phase.

1. In the enrollment phase, Ui registers its biometric template bi at the database
DB and its identity information IDi at the server AS.

2. In the verification phase, Ui issues an authentication request to the server
AS through the sensor S. The server AS retrieves Ui’s biometric information
from the database DB and makes its decision with the help of M.

We assume that a “liveness link” is always available between the sensor S and
the authentication server AS to ensure AS that the biometric it receives is from
a present living person. The possible methods to achieve this liveness link are be-
yond the scope of this paper, but one can think about organizational measures
or technical anti-spoofing countermeasures as those described in [5]. In addition,
classical cryptographic challenge / response may also be used. This liveness link
ensures that the server do not receive fake or replayed data. Since the sensor S is
responsible for processing the biometric features, hence, it should be fully trusted
and extensively protected in practice. Implicitly, the communications at the server
side are also properly protected in the sense of authenticity. We further assume
that all principals in the system will not collude and be honest-but-curious, which
means they will not deviate from the protocol specification. In practice, certain
management measures may be used to guarantee this assumption.

Let H be the distance function in the underlying metric space, for instance
the Hamming space in our case. We regard soundness as a pre-requisite of any
useful protocol. Formally, we have the following requirement.

Requirement 1. The matcher M can faithfully compute the distance H(bi, b
′
i),

where bi is the reference biometric template and b′i is the fresh biometric template
sent in the authentication request. Therefore, M can compare the distance to a
given threshold value d and the server AS can make the right decision.

Our main concern is the sensitive relationship between Ui’s identity and its bio-
metrics. We want to guarantee that any principal except for the sensor S cannot
find any information about the relationship. Formally, we have the following
requirement.



100 J. Bringer et al.

Requirement 2. For any identity IDi0 , two biometric templates b′i0 , b
′
i1

, where
i0, i1 ≥ 1 and b′i0 is the biometric template related to IDi0 , it is infeasible for
any of M, DB, and AS to distinguish between (IDi0 , b

′
i0) and (IDi0 , b

′
i1).

We further want to guarantee that the database DB gets no information about
which user is authenticating himself to the server. Formally, we have the following
requirement.

Requirement 3. For any two users Ui0 and Ui1 , where i0, i1 ≥ 1, if Uiβ
where

β ∈ {0, 1} makes an authentication attempt, then the database DB can only guess
β with a negligible advantage. Suppose the database DB makes a guess β′, the
advantage is | Pr[β = β′] − 1

2 |.

3 A New Biometric-Based Authentication Protocol

3.1 Review of the Goldwasser-Micali Scheme

The algorithms (K, E , D) of Goldwasser-Micali scheme [7] are defined as follows:

1. The key generation algorithm K takes a security parameter 1� as input, and
generates two large prime numbers p and q, n = pq and a non-residue x for
which the Jacobi symbol is 1. The public key pk is (x, n), and the secret key
sk is (p, q).

2. The encryption algorithm E takes a message m ∈ {0, 1} and the public key
(x, n) as input, and outputs the ciphertext c, where c = y2xm mod n and
y is randomly chosen from Z

∗
n.

3. The decryption algorithm D takes a ciphertext c and the private key (p, q) as
input, and outputs the message m, where m = 0 if c is a quadratic residue,
m = 1 otherwise.

It is well-known (cf. [7]) that, if the quadratic residuosity problem is in-
tractable, then the Goldwasser-Micali scheme is semantically secure. In other
words an adversary A has only a negligible advantage in the following game.

ExpIND-CPA
E,A

(sk, pk) ← K(1�)
(m0, m1) ← A(pk)

c ← E(mβ , pk), β ← {0, 1}
β′ ← A(m0, m1, c, pk)

return β′

At the end of this game, the attacker’s advantage AdvIND-CPA
E,A is defined to be

AdvIND-CPA
E,A =

∣
∣Pr[ExpIND-CPA

E,A = 1|β = 1] − Pr[ExpIND-CPA
E,A = 1|β = 0]

∣
∣.

Moreover the encryption protocol possesses a nice homomorphic property, for
any m, m′ ∈ {0, 1} the following equation holds.

D(E(m, pk) × E(m′, pk), sk) = m ⊕ m′



An Application of the Goldwasser-Micali Cryptosystem 101

Note that the encryption algorithm encrypts one bit at a time, hence, in order
to encrypt a binary string we need to encrypt every bit individually. We thus
have the following property.

Lemma 1 ([7]). Given any M ≥ 1, the attacker’s advantage in the following
game is negligible based on the quadratic residuosity assumption.

ExpP-IND-CPA
E,A′

(sk, pk) ← K(1�)
((m0,1, . . . , m0,M ), (m1,1, . . . , m1,M )) ← A′(pk)

c ← (E(mβ,1, pk), . . . , E(mβ,M , pk)), β ← {0, 1}
β′ ← A′((m0,1, . . . , m0,M ), (m1,1, . . . , m1,M ), c, pk)

return β′

3.2 Enrollment Phase

In the protocol we treat Ui’s biometric template bi as a binary vector of the
dimension M , i.e. bi = (bi,1, bi,2, . . . , bi,M ).

In the enrollment phase, Ui registers (bi, i) at the database DB, and (IDi, i)
at the authentication server AS, where IDi is Ui’s pseudonym and i is the index
of the record bi in DB. Let N denotes the total number of records in DB.

The matcher M possesses a key pair (pk, sk) for the Goldwasser-Micali scheme
(K, E , D), where pk = (x, n) and sk = (p, q).

3.3 Verification Phase

If the user Ui wants to authenticate himself to the authentication server AS, the
procedure below is followed:

1. The sensor S captures the user’s biometric data b′i, and sends E(b′i, pk) to-
gether with the user’s identity IDi to the authentication server AS, where

E(b′i, pk) = (E(b′i,1, pk), E(b′i,2, pk), . . . , E(b′i,M , pk)).

Note that a “liveness link” is available between S and AS to ensure that
data coming from the sensor are indeed fresh and not artificial.

2. The server AS retrieves the index i using IDi, and then sends E(tj , pk)
(1 ≤ j ≤ N) to the database, where tj = 1 if j = i, tj = 0 otherwise.

3. For every 1 ≤ k ≤ M , the database DB computes E(bi,k, pk), where

E(bi,k, pk) =
N∏

j=1

E(tj , pk)bj,k mod n,

Then it sends these E(bi,k, pk) (1 ≤ k ≤ M) to the authentication server
AS.

4. The authentication server AS computes νk (1 ≤ k ≤ M), where

νk = E(b′i,k, pk)E(bi,k, pk) mod n

= E(b′i,k ⊕ bi,k, pk)



102 J. Bringer et al.

It then makes a random permutation among νk (1 ≤ k ≤ M) and sends the
permuted vector λk (1 ≤ k ≤ M) to the matcher M.

5. The matcher M decrypts the λk (1 ≤ k ≤ M) to check if the Hamming
weight of the corresponding plaintext vector is equal to or less than d, and
sends the result to AS .

6. The authentication server AS accepts or rejects the authentication request
accordingly.

To sum up, S stores the public key pk, AS stores the public key pk and a table
of relations (IDi, i) for i ∈ {1, . . . , N}, DB contains the enrolled biometric data
b1, . . . , bN , and M possesses the secret key sk, then the protocol runs following
Fig. 2.

S
Capture b′

i from Ui

E(b′
i,pk),IDi−−−−−−−−→ AS

AS
Choose tj = δi,j

(E(tj ,pk))1≤j≤N−−−−−−−−−−−→ DB

AS
(E(bi,k,pk))1≤k≤M←−−−−−−−−−−−−

For 1 ≤ k ≤ M, compute
∏N

j=1 E(tj, pk)bj,k mod n

= E(bi,k, pk)

Compute
νk = E(b′

i,k, pk)E(bi,k, pk) mod n
= E(b′

i,k ⊕ bi,k, pk)

Take a random permutation σ,
compute λk = νσ(k)

λ1,...,λM−−−−−−→
M

Check the weight of
(D(λ1, sk), . . . , D(λM , sk))

AS OK / NOK←−−−−−−− DB

Fig. 2. The Authentication protocol

It is easy to verify that the sensor S performs at most 2M modular mul-
tiplications, the server performs 2N modular multiplications in step 2 (which
can be pre-computed) and M modular multiplications in step 4. The database
needs to perform MN

2 modular multiplications in step 3, if we assume that 0 and
1 are equally distributed in the set {bj,k}1≤j≤N,1≤k≤M . The matcher performs
M modular exponentiations to check quadratic residuosity modulo p. And the
overall communication complexity is linear on the number N of records in the
database.



An Application of the Goldwasser-Micali Cryptosystem 103

4 Security Analysis of the Protocol

The introduction of the matcher M, which holds the decryption key, effectively
limits the access to users’ biometric information. The matcher M can only
obtain the Hamming distance between two measurements of any user’s biomet-
rics, which actually can be thought of being public information. The server does
not store any biometric information, hence, compromise of the server leaks no
information to an outside attacker. Moreover, biometrics are almost always han-
dled in an encrypted form.

Indeed the biometric templates are stored in plaintext in the database DB,
however, without any relevant identity information. In case that the database
is compromised, no sensitive relationship information would be leaked, though
we consider encrypting the biometric templates in the database is an interesting
future research topic.

In the next section we show that the protocol satisfies the requirements de-
scribed in Section 2.

4.1 Fulfillment of Our Requirements

In step 4 of the protocol, we show that νk = E(b′i,k ⊕ bi,k, pk) for 1 ≤ k ≤
M . Obviously, the Hamming distance between bi and b′i, H(bi, b

′
i), is equal to

the Hamming weight of the plaintext vector corresponding to (ν1, . . . , νM ) and
(λ1, . . . , λM ). Hence, it is straightforward to verify that Requirement 1 is
fulfilled.

We next show that the authentication protocol satisfies Requirement 2 un-
der the quadratic residuosity assumption.

Theorem 1. For any identity IDi0 and two biometric templates b′i0 , b
′
i1

, where
i0, i1 ≥ 1 and b′i0 is the biometric template related to IDi0 , any of M, DB,
and AS can only distinguish between (IDi0 , b

′
i0) and (IDi0 , b

′
i1) with a negligible

advantage.

Proof. It is clear that the matcher M and the database DB have advantage 0 in
distinguishing between (IDi0 , b

′
i0) and (IDi0 , b

′
i1), because they have no access

to any information about users’ identities.
As to the server AS, the proof follows. From (IDi0 , b

′
iβ

) with β ∈ {0, 1}, if the
database AS can guess β with a non-negligible advantage δ, then we construct an
attacker A for the Goldwasser-Micali scheme (as defined in Lemma 1) which has
the advantage δ. The attacker simulates the protocol executions for the server
AS.

Suppose A receives pk from the challenger and gets a challenge cd = E(mid
, pk)

for mi0 �= mi1 , where d is a random bit chosen by the challenger. A simulates
the protocol executions by assuming that the matcher M and the database
DB take pk as the public key. Then A registers mi0 and mi1 in the database.



104 J. Bringer et al.

Note that it is straightforward to verify that the protocol execution for AS can
be faithfully simulated by A, and the knowledge of private key sk is not needed.
If the server AS outputs a guess β′, then A outputs the guess bit d′ = β′ for d.
As A wins if AS wins, the theorem now follows from Lemma 1. �	
Now we prove that the authentication protocol also satisfies Requirement 3
under the quadratic residuosity assumption.

Theorem 2. For any two users Ui0 and Ui1 , where i0, i1 ≥ 1, if Uiβ
where

β ∈ {0, 1} makes an authentication attempt, then the database DB can only
guess β with a negligible advantage.

Proof. If the database DB can guess β with a non-negligible advantage δ, then
we construct an attacker A for the Goldwasser-Micali scheme which has the
advantage δ.

Suppose A receives pk from the challenger and gets a challenge cd = E(md, pk)
for m0 = 0, m1 = 1, where d is a random bit chosen by the challenger. In addition,
DB takes pk as the matcher’s public key. For any i0, i1 ≥ 1 and i0 �= i1, A issues
a query with E(tj , pk) (1 ≤ j ≤ N), where E(ti1 , pk) = cd, E(ti0 , pk) = y2xcd

where y is randomly chosen from Z
∗
n, and tj = 0 for all 1 ≤ j ≤ N, j �= i0, j �= i1.

If the database DB outputs a guess β′, then A outputs the guess bit d′ = β′ for
d. And it is straightforward to verify that A wins if DB wins. �	

4.2 Advantages of the Protocol

To emphasize the interest of our protocol, we further compare it with one recent
protocol of Atallah et al. [1] which also allows the comparison between two binary
biometric templates.

In the protocol of Atallah et al. [1] two entities are involved: a server which
stores some information about the reference data b and a client (with a bio-
metric sensor) which sends other information derived from the measured data
b′. In the initialization phase, the client stores a random permutation Π1 of
{0, 1}n and three random boolean vectors s1, s2, r1. The client then sends s1 ⊕
Π1(b1 ⊕ r1), H(s1), H(s1, H(s2)) to the server for backup, where H is a hash func-
tion and b1 is the user’s biometric data. When measuring a new features vec-
tor b2, the client sends s1, Π1(b2 ⊕ r1) to the server which could then verify
the value of H(s1) and compute the Hamming distance of b1, b2 to check if it
is in an acceptable range. Thereafter, the remaining vectors are used to renew
all the information stored at the client and the server sides for a future
authentication.

The main drawback of this protocol is that the client needs to store secret val-
ues. Once these values are compromised, the attacker would be able to compute
a user’s biometric template easily by passively eavesdropping on the communi-
cation channel. It is also possible to show that an active attacker could imper-
sonate the client to the server. Finally, it is also clear that the user’s privacy is not



An Application of the Goldwasser-Micali Cryptosystem 105

ensured against the server. Therefore, it makes sense for us to explore new pro-
tocols that avoid these drawbacks.

Hence, the most important points that make our protocol more appropriate
for biometrics authentication protocols are the following. Firstly, no secret infor-
mation storage is required at the client side. Secondly, the protocol guarantees
the privacy of the relationship between the user’s identity and its biometric data,
and the privacy of the user’s biometric information.

5 Conclusion

In this paper, we considered a biometric authentication protocol where confi-
dentiality is required for biometric data solely for privacy reasons. We captured
these notions into a security model and introduced a protocol which is proved
secure in this security model. It remains an interesting issue to improve its per-
formance. For a better acceptability, we also want to look at an extension of this
work where biometric data inside the database are also encrypted.

Acknowledgment

We would like to thank Michel Abdalla for the fruitful discussions.

References

1. Atallah, M.J., Frikken, K.B., Goodrich, M.l.T., Tamassia, R.: Secure biometric
authentication for weak computational devices. In: Patrick, A.S., Yung, M. (eds.)
FC 2005. LNCS, vol. 3570, pp. 357–371. Springer, Heidelberg (2005)

2. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authenti-
cation using biometric data. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

3. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

4. Daugman, J.: How iris recognition works. ICIP (1), 33–36 (2002)
5. Daugman, J.: Iris recognition and anti-spoofing countermeasures. In: 7-th Interna-

tional Biometrics Conference (2004)
6. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys

from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

7. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, Cali-
fornia, USA, pp. 365–377. ACM Press, New York (1982)

8. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on
Computer and Communications Security, pp. 28–36 (1999)

9. Li, Q., Chang, E.: Robust, short and sensitive authentication tags using secure
sketch. In: MM&Sec ’06: Proceeding of the 8th workshop on Multimedia and se-
curity, pp. 56–61. ACM Press, New York (2006)



106 J. Bringer et al.

10. Jean-Paul, M., Linnartz, J.P., Tuyls, P.: New shielding functions to enhance pri-
vacy and prevent misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds.)
AVBPA 2003. LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003)

11. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

12. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier encrypted val-
ues. In: Vaudenay, S. (ed.) EUROCRYPT 2006, vol. 4004, pp. 522–537. Springer,
Heidelberg (2006)



Soft Generation of Secure Biometric Keys

Jovan Dj. Golić and Madalina Baltatu

Security Innovation, Telecom Italia
Via Reiss Romoli 274, 10148 Turin, Italy

{jovan.golic, madalina.baltatu}@telecomitalia.it

Abstract. A new, soft two-level approach for the generation of multiple
and revocable biometric keys, adapted to the analog nature of biometric
signals, is proposed. It consists of a novel soft code-offset construction for
the Euclidean metric, applied at the first level, and a code-redundancy con-
struction for the Hamming metric, preferably based on a Reed-Solomon
code, applied at the second level. The Shannon entropy analysis shows that
the new construction achieves maximal possible security. It is also shown
that the previously proposed constructions for the Euclidean metric are
vulnerable to biometric template reconstruction in the multiple-key
scenario.

Keywords: Biometric key, biometric authentication, template protec-
tion, Shannon entropy, Euclidean metric, Reed-Solomon codes.

1 Introduction

Biometric identification is a strong form of user authentication based on various
biometric data reflecting unique personal features, such as a person’s finger-
print, face, voice, or iris or retina eye scan. Biometric data have an intrinsic
lifetime nature, but are prone to limited variations, both inherently and due to
imperfect measurement. A biometric key can repeatedly be reproduced from live
biometric data and, as such, does not have to be stored. It is uniquely linked
to biometric data inasmuch as it should be unlikely to reproduce the key from
biometric data of other persons. Biometric keys can be used both for user au-
thentication and as cryptographic keys for various cryptographic applications.
In a system for biometric authentication or biometric key generation, for privacy
and identity theft concerns, it is highly desirable to avoid storage of biometric
reference templates. As some auxiliary information, which can be called a sketch
[5], related to original biometric data has to be stored, a basic requirement is
the property of biometric template protection, that is, if the sketch is compro-
mised, then the residual uncertainty/entropy about the biometric data and the
corresponding key should be sufficiently high. The sketch can be stored in a
centralized tamper-proof database or locally, in a tamper-proof hardware token,
such as a smart card, possessed by the user. For a wide deployment of systems
for biometric authentication and key generation, the second option is preferable.

Another important requirement for biometric keys is the property of key re-
vocability and key diversity. Namely, it should be possible to have different keys

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 107–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



108 J. Dj. Golić and M. Baltatu

for different applications and to revoke and renew some keys without affecting
the others. Clearly, as all these keys are linked to essentially the same biometric
data, this property requires some internal randomization in the key generation
algorithm. Yet another important prerequisite for biometric keys is that the
compromise of the biometric data, which is a realistic assumption [7], should not
compromise the biometric keys, neither those generated in the past nor those
to be generated in the future, of course, under the condition that no sketch is
compromised. This also requires some internal randomization.

The property of biometric key invariance under natural variations of biometric
samples, i.e., error tolerance, is relative to the underlying metric in the space
of biometric samples. The common metrics [5] considered in the literature are
the Hamming distance between two discrete feature vectors of equal length, the
edit distance between two discrete feature vectors of different length, and the set
difference between two sets of discrete feature vectors [10]. On the other hand,
the property of biometric template protection is relative to the information-
theoretic criterion used to measure the entropy. Both properties are captured in
the notions of secure fuzzy sketches and fuzzy extractors introduced in [5]. The
entropy measure proposed in [5] and used in the follow-up papers is the so-called
(average) min-entropy, which is equivalent to the (average) minimal probability
of decision error and is related to randomness extraction. For a given fuzzy sketch
construction, the objective is then to derive a lower bound on the min-entropy
of the biometric template when conditioned on a given sketch.

The main construction for the Hamming metric over discrete spaces is known
as the fuzzy commitment scheme [8] and, according to [5], is here referred to
as the code-offset construction. For a concrete example regarding iris biometric
data, see [7]. This construction can be regarded as a randomized generalization
of a previous construction [4], which is here referred to as the code-redundancy
construction. Both constructions are based on error-correcting codes, which are
necessarily linear in [4], and the error tolerance is provided by the error-correcting
capability of the code used. The analysis from [5] shows that the scheme [8]
is a secure fuzzy sketch with a decrease in the security level upper-bounded
by the number of redundancy symbols. However, it is later shown in [1] that
nonlinear codes do not necessarily maintain their security if multiple sketches in
the key diversity scenario are compromised. We point out that this insensitivity
of the min-entropy is due to the fact that the conditional min-entropy does not
characterize the statistical independence of random variables, like the Shannon
entropy. For this reason, it is interesting to analyze the information-theoretic
security of the code-offset construction for the Hamming and other metrics by
using the Shannon entropy. We also discuss more general security criteria and,
in particular, explain in more detail why randomized constructions are better
suited for biometric key generation than the non-randomized ones.

The main problems considered in this paper relate to the analysis and the
design of code-offset constructions for the Euclidean metric over real-valued
or integer-valued vector spaces. These constructions are significant in practice,
as the Euclidean metric is inherently adapted to measure variations in analog



Soft Generation of Secure Biometric Keys 109

biometric signals resulting from practical measurements. We describe some pre-
viously proposed constructions, namely, [9], [14], and [11], and point out that
they are variations of the basic construction [9]. Note that the construction [2]
also uses the Euclidean metric, but in a different, essentially single-key setting,
adapted to the set difference metric, where the biometric templates are repre-
sented as well-separated sets of integer-valued feature vectors. Starting from the
Shannon entropy analysis, we first demonstrate that the construction [9] is vul-
nerable to biometric template reconstruction in the multiple-key scenario. We
then define an appropriate modification of the code-offset construction by in-
troducing the wrap-around subtraction/addition for defining the sketch as an
offset vector and conduct the Shannon entropy analysis to show that the new
construction achieves maximal possible security, also in the multiple-key setting.

Then, we propose a new, so-called soft two-level approach for biometric key
generation. At the first level, the new soft (randomized) wrap-around code-offset
construction for the Euclidean metric is applied. As opposed to usual discretiza-
tion/quantization algorithms, this soft code-offset construction enables one to
keep the false rejection rate for each individual feature at a small, controllable
level. At the second level, a (non-randomized) code-redundancy construction for
the Hamming metric, preferably based on a Reed-Solomon code, is then applied.
Thanks to the first level soft construction, the second level construction has to
deal with a significantly reduced number of errors, and this renders the new
approach more effective than the usual hard approach, in which the discrete
features are obtained by quantization algorithms. Moreover, the security level is
controllable and maximal possible and allows key revocation and key diversity.

The code-offset constructions for the Hamming and Euclidean metrics are
described in Sections 2 and 3, respectively. General security criteria related to
biometric key generation are discussed in Section 4, whereas the information-
security analysis of the known code-offset construction for the Euclidean metric
and the corresponding attack in the multiple-key scenario are presented in Sec-
tion 5. The wrap-around code-offset construction for the Euclidean metric is
introduced and analyzed in Section 6. The soft two-level approach for biometric
key generation is proposed in Section 7. Conclusions are given in Section 8.

The full version of the paper [6] contains a more detailed discussion of the no-
tions of entropy, statistical independence, and randomness extraction as well as
the Shannon entropy analysis of a general code-offset construction for the Ham-
ming metric which allows a nice characterization and differentiation among the
codes with respect to the level of biometric template protection in the multiple-
key scenario. In addition, the new approach is illustrated by an experiment
related to face biometrics.

2 Code-Offset Construction for Hamming Metric

According to [8], [9], let the user biometric templates be represented as vectors
in a vector space Fn over a finite field F and let Fn be regarded as a metric
space induced by the Hamming distance, i.e., the number of coordinates in which



110 J. Dj. Golić and M. Baltatu

two vectors differ. Let C ⊆ Fn be an [n, k, d] error-correcting block code over F
which is capable of correcting any t errors and let there exist an efficient decoding
algorithm for correcting any t errors. Here, d = 2t + 1 is the minimum distance
of C (i.e., the minimum Hamming distance between two different codewords)
and k = log|F| |C| (i.e., the number of codewords is |C| = |F|k). A code C is
linear if it is closed under addition and multiplication by a scalar, i.e., if C is a
vector subspace of Fn.

The code-offset construction is randomized: during the enrollment, given a
biometric template x = (xi)n

i=1, select a random codeword z = (zi)n
i=1 and then

compute and store a sketch of x as the shift/offset vector w = x − z, whereas,
during the recovery or authentication, given a live biometric sample x′ and the
sketch w, compute z′ = x′− w and then decode z′ to z. (Alternatively, compute
w = z − x and z′ = x′ + w.) The procedure works provided that dist(x′, x) ≤ t,
because z′ − z = x′ − x then implies that dist(z′, z) ≤ t, in view of the fact
that the Hamming distance is preserved under the addition of a constant vector
(i.e., dist(x, y) = dist(x + v, y + v) and, in particular, dist(x, y) = dist(x − y, 0),
which is called the Hamming weight of x − y and usually denoted as ‖x − y‖).
Here, the recovered z is used for user authentication and key generation. For
user authentication, one may equivalently use x, recovered as x = z − w.

When the code C is linear, it is pointed out in [5] that one may alternatively
work in the syndrome domain and thus obtain a non-randomized construction
with a shorter sketch, n − k instead of n symbols long. Recall that a syndrome
of a vector v with respect to C, syn(v), is a vector of parity-check values on v
corresponding to a set of n−k linearly independent parity checks, i.e., codewords
of the dual code C⊥. (Accordingly, v ∈ C ⇔ syn(v) = 0.) More precisely, the
sketch of x is computed as w = syn(x) and x is recovered from x′ as x = x′ − e,
where e is the unique vector of the Hamming weight ≤ t such that syn(e) =
syn(x′) − w, which is obtained by the decoding algorithm. The recovered x can
then be used for key generation via randomness extraction. Alternatively, as
suggested in [4], one can use x as the information part of a codeword of length
n′ > n and compute the sketch of x as the redundancy part according to a
set of n′ − n linearly independent parity checks. The two constructions are here
called the syndrome and the code-redundancy constructions, respectively. The
syndrome construction is equivalent to a non-randomized version of the code-
offset construction in which x is mapped to any fixed codeword z in a linear code
possibly depending on x (e.g., the closest codeword or the zero codeword) and
the key is derived from x. However, the syndrome construction is not equivalent
to the randomized version described above in which the key is derived from the
random codeword z instead of the template x. For more details, see Section 4.

3 Code-Offset Construction for Euclidean Metric

In [8], the authors concentrated on the binary case F = {0, 1}, but they also sug-
gested that the code-offset construction can as well be applied to other spaces
supplied with an appropriate metric. In particular, when F is the set of real



Soft Generation of Secure Biometric Keys 111

numbers R and the metric is Euclidean, they suggested in [9] to use as a (count-
ably infinite) code the lattice of all the vectors in Rn whose coordinates are
integer multiples of a given positive real number q and to apply, as a decod-
ing algorithm, rounding off each coordinate to the closest integer multiple of q.
Then, for the ith coordinate, z′i − zi = x′i − xi implies that zi can be recovered
if |z′i − zi| < q/2 and this is true iff |x′i − xi| < q/2, where | · | denotes the ab-
solute value. The same randomized construction is also proposed in [14], except
that the parameter q can vary over different coordinates proportionally to the
standard deviation of the corresponding feature for a given user, but no efficient
decoding algorithm is indicated.

A similar, but non-randomized construction is proposed in [11], with the only
difference that the coordinates of codewords are additively shifted by q/2 and
the key is extracted in a different way. More precisely, for each coordinate, in
the enrollment, the offset is essentially computed with respect to the closest
instead of a randomly selected codeword coordinate and, in the recovery, the
closest codeword coordinate is recovered and only one key bit is then extracted
depending on whether the recovered coordinate value corresponds to an even or
odd multiple of q.

It is not noted in [8], [9], [14], and [11] that, for the lattices of real vectors
whose ith coordinate is an integer multiple of a given real number qi, decoding
to the closest codeword with respect to the Euclidean distance is equivalent to
decoding each coordinate to the closest codeword coordinate. The same is true
if the codeword coordinates are additively shifted by q/2 (or by any other real
number, possibly depending on i). Shifting by qi/2 enables one to simplify the
round-off algorithm to computing the integer part of z′i/qi, i.e., �z′i/qi�.

A security analysis of these constructions presented in Sections 4 and 5 shows
that all of them suffer from serious security weaknesses.

4 Security Aspects

The main components of a system for biometric user authentication and key
generation are a feature vector x representing a biometric template, a randomized
or non-randomized sketch w of x, a live biometric sample x′, and the key key. The
system should be such that a user can be authenticated by recovering the same
key from w and all x′ that are close to x with respect to some metric adapted to
the features. Here, both x and w are produced during the enrollment, but only w
is stored. The main security requirement is that of biometric template protection,
which means that the stored sketch w should not contain essential information
about the original biometric template x, if compromised to an attacker. At the
same time, w should contain enough information for recovering the same key
from all x′ close to x.

The template protection requirement can be put into precise mathematical
terms by defining the amount of information by using an appropriate entropy
measure. There have been a couple of papers dealing with the Shannon en-
tropy, such as [11] and [13], but the majority of papers in this area, following



112 J. Dj. Golić and M. Baltatu

up [5], have been using the so-called (average) min-entropy, which itself is
equivalent, i.e., monotonically functionally related to the (average) minimal
probability of decision/classification error and has a meaning with respect to
randomness extraction. When considered as a measure of uncertainty of one
random variable conditioned on another random variable, it reflects only the
one-step guessing/deciding about the random variable, whereas it can be shown
that the conditional Shannon entropy is closer to the logarithm of the minimal
average number of trials [12] required to correctly guess a random variable. Recall
that the average conditional Shannon entropy is called equivocation. All these
measures of uncertainty have different practical interpretations and may achieve
considerably different values of average conditional uncertainties, but the dif-
ferences become smaller if the unconditional probability distribution is close to
being uniform. Moreover, what in fact matters is the entropy/uncertainty loss or
mutual information defined as the (nonnegative) difference between the uncon-
ditional and average conditional entropies/uncertainties and, in this respect, one
may use any of these uncertainty measures to obtain essentially similar results.

However, the Shannon mutual information has an advantage that it can be
regarded as a measure of statistical independence of two random variables, that
is, they are (statistically) independent iff the mutual information is equal to zero,
whereas in terms of the min-entropy, the analogous condition is necessary, but
not sufficient. In a system for biometric key generation, this implies that, when
a sketch is compromised, a small upper bound on the Shannon entropy loss,
i.e., mutual information implies a small upper bound on the min-entropy loss,
whereas the converse is not true. Moreover, this also implies that the Shannon
entropy is more sensitive than the min-entropy for describing the entropy loss
when multiple sketches are disclosed, in the scenario of multiple enrollments. In
particular, the definition [5] of a secure sketch does not differentiate well among
different [n, k, d] error-correcting block codes in the code-offset construction [8]
and it is later shown in [1] that nonlinear codes need not remain secure un-
der multiple enrollments, meaning that a relatively large lower bound on the
min-entropy need not be preserved under multiple compromised sketches. The
Shannon entropy is thus more suitable for the multiple-key scenario and it turns
out that it nicely differentiates between secure and insecure code-offset construc-
tions with respect to multiple enrollments.

If a sketch or sketches are not compromised, then there is no need for random-
ness extraction, because one can obtain uniformly distributed biometric keys by
using internal (secret) random variables, as pointed out in this paper. In the
opposite, much less likely case, the generated biometric keys remain secret, but
are no longer uniformly distributed. However, even in this case, randomness ex-
traction for obtaining approximately uniformly distributed keys is not necessary
in many cryptographic applications.

In the setting of fuzzy sketches and fuzzy extractors, [5] and the follow-up
papers concentrate on the uncertainty of x given w as a security criterion. In
this case, it is not important whether the sketch is randomized or not. However,
as rightfully pointed out in [7], it is also important to consider the scenario



Soft Generation of Secure Biometric Keys 113

when the biometric data x or x′ are compromised and w remains secret, e.g.,
securely stored on a smart card, namely, whether false user authentication and
key recovery are then possible. Unlike the randomized sketches, where key and
x can be statistically independent, non-randomized sketches completely fail in
this scenario. A similar situation is encountered if key is compromised (e.g.,
through a weak cryptographic algorithm) and w remains secret. In this case, for
a randomized sketch, key can be revoked and a new one issued, whereas for a
non-randomized sketch, the key revocation is not possible.

To avoid that key uniquely determines x and still use a non-randomized
sketch, one may be tempted to derive key from x by using a simple many-to-one
function, e.g., the least significant bit of the closest codeword, as suggested in
[11]. On one hand, this does not enable key revocation and, on the other, intro-
duces another security weakness, i.e., given x, it is then easy to produce one or
many biometric templates y, very much different from x and, as such, possibly
corresponding to other users, that give rise to the same key or to an arbitrarily
chosen modification of key, even if key is unknown. We thus arrive at another
meaningful security criterion, which can be regarded as a kind of information-
theoretic collision resistance for biometric keys. Namely, given x and keyx, the
probability of producing another pair y and keyy, where y is not close to x
with respect to the metric considered and where keyy = keyx is a valid key for
y should be negligible. This criterion cannot be safisfied by a non-randomized
sketch, whereas, for a randomized sketch, it is desirable to avoid simple many-to-
one functions, such as extracting the bits, when deriving key from the internally
produced random variables, e.g., a random codeword z in a code-offset construc-
tion. Furthermore, deriving key directly from z instead of x is advantageous,
because x is then never used in the recovery algorithm.

5 Security of Euclidean Metric Construction

According to the constructions proposed in [9], [14], and [11], consider a ran-
domized Euclidean metric code-offset construction over R, where the code is a
Euclidean lattice L = {(s1q1, . . . , snqn)|(s1, . . . , sn) ∈ Zn}, with q1, . . . , qn be-
ing positive real numbers and Z denoting the set of integers. In particular, R
can be replaced by the set of rational numbers Q or by Z, corresponding to
a finite-precision arithmetic used in practice. More generally, we can also con-
sider a shifted lattice L = {(s1q1 + a1, . . . , snqn + an)|(s1, . . . , sn) ∈ Zn}, where
0 ≤ ai < qi, 1 ≤ i ≤ n. Let (X, Z, W ) be a triple of random variables correspond-
ing to a randomized Euclidean metric code-offset construction over R, where X
is a random biometric template (randomly chosen over different users and for
each user, over different measurements), Z is a random codeword from L, chosen
independently of X according to some probability distribution, and W = X −Z
is the corresponding random sketch. For the calculus of the Shannon entropies,
it is assumed that X , like Z, follows a discrete probability distribution over a
finite or countably infinite subset of Rn and that the entropies H(X) and H(Z)
are both finite.



114 J. Dj. Golić and M. Baltatu

Consequently, we have H(Z|X) = H(Z) and H(X |Z) = H(X). For practical
distributions of X , we generally have H(X − Z|X) = H(Z) < H(X − Z),
meaning that X − Z and X are not independent. In other words, W necessarily
contains some information about X and we also have H(X |W ) < H(X). Our
objective is to determine a useful lower bound on H(X |W ) = H(X |X − Z),
which measures the average uncertainty about the original biometric template
x used in the enrollment, given a compromised value of the sketch w.

The bottom line of our analysis is the so-called code-offset representation of
x, x = (x̂, xoff), where x̂ is the unique codeword obtained by rounding off the ith
coordinate of x to the closest integer multiple of qi shifted by ai and xoff is the
vector of the corresponding residues satisfying −qi/2 ≤ xoff

i < qi/2, for every
1 ≤ i ≤ n, where in the case of ambiguity, a coordinate is rounded off to the
bigger number. If ai = qi/2, then rounding off to the closest codeword coordinate
simplifies to computing the integer part of z′i/qi, i.e., �z′i/qi�+qi/2. As x uniquely
determines (x̂, xoff) and vice versa, we have H(X) = H(X̂, Xoff), where (X̂, Xoff)
is the corresponding pair of random variables uniquely representing X .

Consequently, L can be regarded as a perfect code and it follows that for
every x ∈ Rn, w = x̂− z + xoff uniquely determines (x̂ − z, xoff). More precisely,
xoff is uniquely determined by woff and x̂ − z is then uniquely determined as
w − xoff = ŵ + woff − xoff . In particular, if ai = 0, 1 ≤ i ≤ n, then xoff = woff

and x̂ − z = ŵ. As (x̂ − z, xoff) uniquely determines w, we thus get

H(X |W ) = H(X |X̂ − Z, Xoff). (1)

By using the calculus of conditional entropies, we can further derive

H(X |X̂ − Z, Xoff) =
(
H(X) − H(Xoff)

) −
(
H(X̂ − Z|Xoff) − H(Z)

)
. (2)

The first term on the right-hand side of (2) is independent of Z and satis-
fies H(X) − H(Xoff) = H(X |Xoff) = H(X̂ |Xoff), and the second term is the
mutual information between X̂ − Z and X̂ when conditioned on Xoff , i.e.,
H(X̂ − Z|Xoff) − H(Z) = I(X̂ − Z; X̂|Xoff) ≥ 0, where we used H(X̂ −
Z|, X̂, Xoff) = H(Z), which follows from Z and X being independent. The mu-
tual information will be equal to zero iff X̂ − Z and X̂ are independent when
conditioned on Xoff , which is equivalent to X̂ − Z and X̂ being independent,
because Z is independent of X . However, they are here always statistically de-
pendent, for all the probability distributions of Z and X̂, where Z and X̂ are
independent, because perfect masking or perfect secret sharing do not exist over
countably infinite sets [3].

Theorem 1. For a Euclidean metric code-offset construction over R, we have

H(X |W ) = H(X) − H(Xoff) −
(
H(X̂ − Z|Xoff) − H(Z)

)
, (3)

where

H(X̂ − Z|Xoff) − H(Z) > 0. (4)



Soft Generation of Secure Biometric Keys 115

In the multiple-key scenario, consider the case, which intuitively seems to be
the best for cryptanalysis, when the same biometric template is used in a num-
ber, m, of different enrollments, with independently selected random codewords
zj from the same code L, to yield a number of sketches wj = x − zj of the
same x, and assume that all the sketches are compromised. The corresponding
H(X |(Wj)m

j=1), is then lower-bounded by

H(X |(Wj)m
j=1) = H(X) − H(Xoff) −

(
H((X̂ − Zj)m

j=1|Xoff) − H(Z)
)

, (5)

where H((X̂−Zj)m
j=1|Xoff)−H(Z) > 0. Accordingly, Xoff is uniquely determined

by any W off
j and the information about X̂ contained in X̂−Zj , when conditioned

on Xoff , accumulates with multiple enrollments, which causes the conditional
entropy H(X |(Wj)m

j=1) in (5) to decrease with m, possibly to zero.
Let us now consider a particular case, suitable for practical implementation,

when Z has the uniform probability distribution over a finite subset of codewords

C = {(s1q1 + a1, . . . , snqn + an) | si ∈ Z, 0 ≤ si ≤ Ki − 1, 1 ≤ i ≤ n}. (6)

In this case, in the ith coordinate, for any given x̂i, the probability distribution
of x̂i − zi is uniform over the set {x̂i − siqi − ai|si ∈ Z, 0 ≤ si ≤ Ki − 1} and as
such is dependent on x̂i.

Moreover, the information about x̂i that is contained in x̂i−zi (i.e., wi) can be
rendered practically useful by using multiple enrollments. Let wi

min and wi
max

denote the minimal and maximal values of wi in all the enrollments, respectively.
Then, by using xi = wi + zi and ai ≤ zi ≤ (Ki − 1)qi + ai, we get

ai + wi
max ≤ xi ≤ (Ki − 1)qi + ai + wi

min. (7)

So, the range of possible values for x̂i is narrowing down with multiple enroll-
ments to only Ki − (wi

max −wi
min)/qi = Ki − (zi

max − zi
min)/qi discrete values,

the more so if the minimal and maximal values of randomly chosen codeword
coordinates, zi

min and zi
max, are closer to ai and (Ki − 1)qi + ai, respectively.

In addition, a practical estimate of xi can be computed by using the arithmetic
mean, wi

av, of the values wi resulting from different enrollments, as

xi
est = ai + 0.5(Ki − 1)qi + wi

av, (8)

and x̂i
est is then computed by rounding off xi

est.

6 Code-Offset Euclidean Metric Construction with
Wrap-Round Arithmetic

An interesting problem to be addressed is whether it is possible to remedy the
code-offset construction for the Euclidean metric so as to avoid the accumu-
lated information leakage resulting from multiple enrollments. In this section,
it is shown that this is possible by using the finite code C defined by (6), but,



116 J. Dj. Golić and M. Baltatu

instead of dealing with the usual addition/subtraction over the real numbers
as in Sections 3 and 5, we introduce a modified, so-called wrap-around sub-
traction/addition, adapted to the code in question. For convenience, we choose
ai = qi/2, 1 ≤ i ≤ n, i.e.,

C = {(s1q1 + q1/2, . . . , snqn + qn/2) | si ∈ Z, 0 ≤ si ≤ Ki − 1, 1 ≤ i ≤ n}.(9)

Therefore, there is an one-to-one correspondence between the codewords z =
(zi)n

i=1 and the integer vectors s = (si)n
i=1. The codewords z from C or, equiv-

alently, the vectors s are chosen uniformly at random and independently of the
biometric template vectors x.

The main distinction of the new code-offset construction is in the binary
operation defining a sketch w of x in terms of x and z. To this end, for every
y = (yi)n

i=1 ∈ Rn, let [y] = ([yi])n
i=1, where [yi] is equal to the unique real number

in [0, Kiqi) such that Kiqi divides yi − [yi], which can be called the residue of yi

modulo [0, Kiqi). During the enrollment, a sketch of a biometric template x is
then computed and stored as w = [x − z], whereas, during the recovery, a live
biometric sample x′ and the sketch w are combined into z′ = [x′ − w], which
is then decoded to the closest codeword z̃, by applying s̃i = �z′i/qi�, for each
1 ≤ i ≤ n. In other words, for the ith coordinate, provided that xi ∈ [0, Kiqi],
we have that wi = xi − zi if xi ≥ zi and wi = xi − zi + Kiqi if xi < zi and hence
the name wrap-around subtraction/addition.

Accordingly, we have that z′ = [z + [x′ − x]] and we are interested in char-
acterizing the conditions for a successful recovery, i.e., for z̃ = z. It follows that
for each 1 ≤ i ≤ n,

z̃i =zi ⇔ −qi

2
≤ z′i − zi <

qi

2
⇔

(
[x′i − xi] <

qi

2
∨ [x′i − xi] ≥ Kiqi − qi

2

)
, (10)

so that z can be recovered from z′ if qi/2 ≤ [x′i] − xi < qi/2. Moreover, if the
probability distribution of X is such that Pr{xi ∈ [qi/2, Kiqi − qi/2)} = 1, then

− qi

2
≤ z′i − zi <

qi

2
⇔ −qi

2
≤ [x′i] − xi <

qi

2
. (11)

This means that z can be recovered from z′ iff [x′] is close to x in the Euclidean
metric, provided that the range covered by the codewords is slightly bigger than
the range of x, to avoid wrap-around effects. Even if we allow xi = Kiqi − qi/2,
we would have |z′i − zi| < qi/2 ⇔ |[x′i] − xi| < qi/2.

We now show that the wrap-around code-offset construction overcomes the
security weakness of previous code-offset constructions for the Euclidean metric
explained in Section 5. We proceed along similar lines as in Section 5, by using
the code-offset representation of x with respect to the whole lattice L instead of
just the subset C. The first point to note is that the sketch w = [x̂ − z + xoff ]
uniquely determines ([x̂ − z], xoff) and vice versa, for every x ∈ Rn. Namely,
xoff is uniquely determined by woff and [x̂ − z] is then uniquely determined as
[w − xoff ]. Consequently, we similarly get

H(X |W ) = H(X |[X̂ − Z], Xoff) =

H(X) − H(Xoff) −
(
H([X̂ − Z]|Xoff) − H(Z)

)
. (12)



Soft Generation of Secure Biometric Keys 117

The second point to note is that, due to the wrap-around subtraction/addition,
the probability distribution of [x̂ − z] is uniform over the same set

C′ = {(s1q1, . . . , snqn)|si ∈ Z, 0 ≤ si ≤ Ki − 1, 1 ≤ i ≤ n}, (13)

for each x̂ ∈ L, because z is chosen uniformly at random and independently
of x and {[x̂ − z]|z ∈ C} = C′ for each x̂ ∈ L. This means that [X̂ − Z]
and X̂ are independent, i.e., since Z and X are independent, that [X̂ − Z] and
X̂ are independent when conditioned on Xoff . As a consequence, their mutual
information is equal to zero, i.e.,

I([X̂ − Z]; X̂|Xoff) = H(X̂ − Z|Xoff) − H(Z) = 0 (14)

and, hence, H([X̂ −Z]|Xoff) = H(Z). Together with (12), this yields the follow-
ing theorem.

Theorem 2. For the wrap-around Euclidean metric code-offset construction
over R, we have

H(X |W ) = H(X) − H(Xoff). (15)

The advantage of the derived Shannon entropy bound is that it also relates to
multiple enrollments. Namely, the behavior of H(X |([X−Zj])m

j=1) as m increases
depends on whether H([X̂ − Z]|Xoff) ≥ H(Z) holds with equality or not. In
the case of equality, [X̂ − Zj ] and X̂ are independent and since (Zj)m

j=1 are
independent even when conditioned on X , it follows that ([X̂ − Zj])m

j=1 and
X̂ are also independent. Accordingly, (14) remains to hold even for multiple
enrollments. We thus obtain the following corollary to Theorem 2.

Corollary 1. For the wrap-around Euclidean metric code-offset construction
over R and multiple enrollments, we have

H(X |(Wj)m
j=1) = H(X) − H(Xoff) (16)

or, in terms of the mutual information,

I(X ; (Wj)m
j=1) = H(X) − H(X |(Wj)m

j=1) = H(Xoff). (17)

Accordingly, Xoff is uniquely determined by any W off
j and [X̂ − Zj ] resulting

from multiple enrollments do not contain any information about X̂. So, the only
information about X leaked out through the sketches is that Xoff is uniquely
determined by any of the sketches, and this holds for any probability distribu-
tion of X . Due to inherent variations of biometric templates for a given user, the
information contained in Xoff can be regarded as marginal, whereas the informa-
tion contained in X̂ is characteristic and essential for a given user. In this sense,
one can regard the template protection achieved by the described construction
as being ideal, that is, maximal possible.



118 J. Dj. Golić and M. Baltatu

For any given w, [x] uniquely determines z and vice versa, through z = [[x]−w]
and [x] = [z + w]. Therefore, H(Z|W ) = H([X ]|W ) ≤ H(X |W ), with equality
iff Pr{xi ∈ [0, Kiqi)} = 1, 1 ≤ i ≤ n, i.e., iff [X ] = X . Since both x and
[x] have the same xoff in the code-offset representation, it follows that Theo-
rem 2 and Corollary 1 remain to hold if [X ] is substituted for X . Then, (15)
and (16) relate to the equivocations of the key H(Z|W ) = H([X ]|W ) and
H(Z|(Wj)m

j=1) = H([X ]|(Wj)m
j=1), respectively, (17) relates to I([X ]; (Wj)m

j=1),
whereas for I(Z; (Wj)m

j=1), we have

I(Z; (Wj)m
j=1) = H(Z) − H([X ]|(Wj)m

j=1) = H(Z) − H([X ]) + H(Xoff). (18)

We also have H([X ]|W ) = H(Z|W ) ≤ H(Z) =
∑n

i=1 log Ki ≤ ∑n
i=1 ki,, where

ki = �log Ki� is the number of bits in the binary representation of si, 1 ≤ i ≤ n. If
we choose Ki = 2ki , which means that the codeword parameter si is a uniformly
distributed ki-bit nonnegative integer, then we have H(Z) =

∑n
i=1 ki.

The mutual information H(Xoff) depends on the probability distribution of
X and can be upper bounded if the coordinates of x are represented as finite-
precision integers or rational numbers by a finite number of bits. In a practical
biometric key generation process, for each given user, the code parameter qi

should preferably be chosen to be proportional to the standard deviation of
the coordinate xi for that user. The whole process is then essentially invariant
under scaling and shifting of the coordinates of x, independently of the users.
Then, without loss of generality, we can assume that xi and qi are represented
as nonnegative integers, where qi is even and positive. In this case, in view of
(11), the key can be recovered if the ith coordinate of the biometric template
is perturbed by less than qi/2, for any 1 ≤ i ≤ n, and the information leakage
satisfies

H(Xoff) ≤
n∑

i=1

log qi, (19)

which, in practice, can be made negligible in comparison with H(X) or H([X ]).

7 Soft Two-Level Construction

In a real biometric key generation system, during the enrollment of a given user,
a training set of real-valued feature vectors is first obtained by the biometric data
acquisition and feature extraction subsystems. A biometric template vector x is
then computed as the arithmetic mean of all the feature vectors, whereas the
code parameters qi are computed as qi = 2cσi, where σi is the standard deviation
of the ith feature over the training set, for each 1 ≤ i ≤ n. Here, the parameter
c may depend on the biometric data and features chosen and, e.g., may satisfy
1 ≤ c ≤ 3. In view of (11), c essentially determines the false rejection rate (FRR)
for each individual feature, e.g., under the normal distribution assumption. The
FRR for the feature vector as a whole then depends on the number, n, of features.



Soft Generation of Secure Biometric Keys 119

Unlike the template vector x, the code parameters qi are not essential to the user
and may as well be chosen as user independent.

In the proposed wrap-around code-offset construction for the Euclidean met-
ric, both user authentication and key generation are based on the codeword z̃ or,
equivalently, the codeword parameter vector s̃, recovered from a live biometric
sample x′ and the sketch w of x computed and stored during the enrollment.
A user is assumed to be authenticated correctly iff s̃ = s, where s is the value
computed in the enrollment. In practice, this condition is checked by a known
one-way collision-resistant hash function h via testing if h(s̃) = h(s), where h(s)
is computed and stored in the enrollment. If the user is successfully authenti-
cated, the key is then generated as key = s̃ or as key = f(s̃), where f is a known
one-way collision-resistant key derivation function, which, preferably, should in
addition be pseudorandom. By using key = f(s̃) instead of key = s̃, one does
not expose key through a possibly weak cryptographic algorithm. In addition
to s̃, the inputs to h and/or f can also include user-specific information such as
personal data and secret PINs and passwords.

If the number of features, n, is relatively large, then the overall FRR will
be unacceptably high, as each coordinate of s has to be recovered successfully
(see (11)). Consequently, in a real biometric key generation system, we have to
introduce further error tolerance, not with respect to the Euclidean metric, but
with respect to the Hamming metric related to coordinates of s. In other words,
we need to allow a successful user authentication even if s̃ and s differ from
each other in at most t coordinates. This can be done by applying another code-
offset construction, but adapted to the Hamming instead of Euclidean metric.
As this construction does not have to be randomized, we can use either the
syndrome construction, where s is regarded as a noisy codeword, or the code-
redundancy construction, where s is considered as the information part of a
codeword. The underlying error-correcting code should necessarily be symbol
based, as the errors to be corrected intrinsically relate to the symbols, i.e., blocks
of bits representing the coordinates of s.

The new sketch computed at the second level is then attached to the first
sketch resulting from the Euclidean metric code-offset construction, applied at
the first level. However, as the second level sketch is not randomized, it reduces
the entropy of s by revealing substantial information about s. While this is not
important for user authentication, for key generation it is desirable to remove
from s the amount of information leaked out through the second level sketch.
This can be done elegantly if the code applied at the second level is a maximum
distance separable code such as a Reed-Solomon code. In this case, the coordi-
nates of s are regarded as elements of F = GF(2k), where k ≥ max{ki|1 ≤ i ≤ n}
and, if ki < k, then si of length ki is extended to common length k by fixed
dummy bits. In the code-redundancy construction, to achieve an error tolerance
of t errors, the second level sketch v is composed of 2t k-bit blocks that are
computed as parity symbols according to a Reed-Solomon code. The amount of
information leaked out through the parity sketch v can then be removed from s
simply by discarding any 2t coordinates of s (with the largest bit lengths ki), to



120 J. Dj. Golić and M. Baltatu

obtain ŝ of length n−2t, to be used for key generation in place of s. Then, v may
even be allowed to be compromised, e.g., publicly known. The entropy of s is
thus reduced by no more than 2tk bits. If the offset sketch w is not compromised,
then ŝ is uniformly distributed, even if x or x′ are compromised. Otherwise, the
entropy of s is reduced to H(Z|W ) = H([X ])−H(Xoff) and, hence, the residual
entropy of ŝ is lower-bounded by H([X ])−∑n

i=1 log qi −2tk, if we work over the
integers. If the key needs to be uniformly distributed even if w is compromised,
then one may apply randomness extraction techniques as in [5].

During the recovery, the sketches are used in the same order in which they
are produced during the enrollment, i.e., s̃ is first obtained from a live biometric
sample x′ and the offset sketch w in the same way as before, and s̃′ is then
reconstructed from s̃ and the parity sketch v by a fast decoding algorithm for
a Reed-Solomon code capable of correcting up to t errors in the coordinates of
s̃. A user is assumed to be successfully authenticated iff s̃′ = s and this holds
iff d(s̃, s) ≤ t. The FRR can be reduced to an acceptable level by adjusting the
error tolerance level t. In a real application, since the false acceptance rate (FAR)
generally increases as t increases, a tradeoff between FRR and FAR is required.

The proposed combined code-offset construction, for the soft Euclidean metric
at the first level and the discrete Hamming metric at the second level, can be
referred to as a soft two-level construction. The Euclidean metric relates to each
individual feature and, as a measure of closeness, is adapted to the analog nature
of features stemming from practical measurements. The Hamming metric relates
to sets of features representing individual users and, as a measure of closeness,
allows for a successful key recovery even if, due to a large variation of features,
a number of key coordinates are erroneously reconstructed at the first level.

Alternatively, one may take a common hard approach, which, instead of the
first level construction, uses a discretization/quantization algorithm to convert
analog features into discrete values and then a randomized code-offset construc-
tion for the Hamming or some other discrete metric. However, the error tolerance
level then has to be much higher. Namely, the FRR for each individual feature
then depends on the offset of the biometric template with respect to quanti-
zation levels and generally increases as the offset increases. The importance of
the first level offset sketch is that it enables one to keep the FRR for each in-
dividual feature at a small, controllable level, which is not possible without the
additional information provided by the offset sketch. In conclusion, the proposed
soft two-level approach is important for improving the effectiveness and security
of practical systems for biometric user authentication and key generation.

8 Conclusions

Systems for biometric authentication and key generation are very important
in practice due to their capacity to strongly authenticate users, not only in
terms of what they know or possess, but also in terms of their unique physical
features, which are typically difficult to counterfeit, and due to their potential



Soft Generation of Secure Biometric Keys 121

to reproduce unique and yet multiple secret keys from live biometric samples
without a need for storing sensitive data or the keys themselves. The systems that
provide biometric key invariance under the variations of biometric data according
to the Euclidean metric are especially important, due to analog measurements.
In this paper, it is shown that the previously proposed systems of this type are
insecure in the multiple-key scenario and a new construction achieving maximal
possible security, even if the biometric data are compromised, is proposed. A
new combined, soft two-level approach that allows a number of coordinates of
the key to be erroneously reconstructed at the first level and then corrected at
the second level is also introduced.

References

1. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Proc. 11th ACM Confer-
ence on Computer and Communications Security, pp. 82–91 (2004)

2. Chang, E.-C., Li, Q.: Hiding secret points amidst chaff. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 59–72. Springer, Heidelberg (2006)

3. Chor, B., Kushilevitz, E.: Secret sharing over infinite domains. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 299–306. Springer,
Heidelberg (1990)

4. Davida, G.I., Frankel, Y., Matt, B.J.: On enabling secure applications through off-
line biometric identification. In: Proc. IEEE Symposium on Security and Privacy,
pp. 148–157 (1998)

5. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

6. Golić, J.Dj., Baltatu, M.: Entropy analysis and new constructions of biometric key
generation systems (submitted)

7. Hao, F., Anderson, R., Daugman, J.: Combining cryptography with biometrics
effectively, Technical Report UCAM-CL-TR-640, University of Cambridge (July
2005)

8. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proc. 6th ACM Con-
ference on Computer and Communications Security, pp. 28–36 (1999)

9. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. Patent Application WO
00/51244 A1 (August 2000)

10. Juels, A., Sudan, M.: A fuzzy vault scheme. In: Proc. IEEE International Sympo-
sium on Information Theory, p. 408 (2002)

11. Linnartz, J.-P., Tuyls, P.: New shielding functions to enhance privacy and prevent
misuse of biometric templates. In: Proc. 4th International Conference on Audio-
and Video-Based Biometric Person Authentication, pp. 393–402 (2003)

12. Sundaresan, R.: Guessing under source uncertainty. IEEE Trans. Inform. The-
ory 53, 269–287 (2007)

13. Tuyls, P., Goseling, J.: Capacity and examples of template-protecting biometric
authentication systems. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS,
vol. 3087, pp. 158–170. Springer, Heidelberg (2004)

14. Wu, Y.D.: Method of using biometric information for secret generation. Patent
Application WO 02/078249 A1 (March 2001)



Flaws in Some Secret Sharing Schemes

Against Cheating

Toshinori Araki and Satoshi Obana

NEC Corporation
{t-araki@ek,obana@bx}.jp.nec.com

Abstract. In this paper, we point out flaws in existing secret sharing
schemes against cheating. Namely, we show that a scheme proposed by
Ghodosi and Pieprzyk presented at ACISP 2000 and a one by Obana
and Araki presented at Asiacrypt 2006 are both insecure against single
cheater. We further show that the scheme by Obana et al. can be made
secure by slight modification.

1 Introduction

A secret sharing scheme is a cryptographic primitive used to distributedly share
a secret among participants in such a way that only a qualified set of participants
can recover the secret. It is a fundamental building block for many cryptographic
protocols, and because of its importance, it is still being studied actively for more
than a quarter century since the seminal papers presented by Shamir [13] and
Blakley [1].

Cheating prevention is one of the most important issues in secret sharing
schemes [15]. Tompa and Woll have pointed out that in Shamir’s k-out-of-n
threshold secret sharing scheme is vulnerable to cheating. Namely, they showed
that even a single user can make other participants reconstruct incorrect secret
by submitting invalid shares. They also proposed a scheme which can detect the
fact of cheating when invalid shares are submitted at that point.

The work of [15] has been followed by various literatures. Ogata, Kurosawa
and Stinson presented an efficient scheme for detecting cheating [11]. The size
of shares in their scheme is proven to be optimum when the secret is uniformly
distributed. Ghodosi and Pieprzyk also presented scheme which is only one bit
longer compared to the lower bound [7]. Cabello, Padró and G. Sáez presented
a near-optimum scheme which is secure even when cheaters know the secret
[5]. Recently, Obana and Araki presented schemes based on a special class of
universal hash families [10].

In this paper, we showed some of these schemes are insecure. Namely, we
showed that a scheme in [7] and one in [10] can be broken by only single cheater.
We also show that the flaw in [10] can be easily fixed by introducing “constant
padding” to the underlying universal hash family.

The rest of the paper is organized as follows. In Section 2, we briefly review
models of secret sharing schemes capable of detecting cheating. In Sections 3

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 122–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Flaws in Some Secret Sharing Schemes Against Cheating 123

and 4, we present attacks against the scheme given in [7] and [10], respectively.
in Section 5, we show a modified version of [10] in which the proposed attack no
longer works. In Section 6, we summarize our work.

2 Preliminaries

2.1 Secret Sharing Schemes

In secret sharing schemes, there are n participants P = {P1, . . . , Pn} and a dealer
D. The dealer D is in charge of generating partial information vi (1 ≤ i ≤ n)
of the secret. Each vi is called a share and is given to a participant Pi. The
set of participants who are allowed to reconstruct the secret is characterized
by an access structure Γ ⊆ 2P ; that is, participants Pi1 , . . . , Pik

are allowed
to reconstruct the secret if and only if {Pi1 , . . . , Pik

} ∈ Γ (for instance, the
access structure of a k-out-of-n threshold secret sharing scheme is defined by
Γ = {A | A ∈ 2P , |A| ≥ k}.) A model consists of two algorithms: ShareGen and
Reconst. Share generation algorithm ShareGen takes a secret s ∈ S as input and
outputs a list of shares (v1, v2, . . . , vn). Secret reconstruction algorithm Reconst
takes a list of shares and outputs a secret s ∈ S.

A secret sharing scheme is called perfect if the following two conditions are
satisfied for the output (v1, . . . , vn) of ShareGen(ŝ) where the probabilities are
taken over the random tape of ShareGen.

1. if {Pi1 , . . . , Pik
} ∈ Γ then Pr[Reconst(vi1 , . . . , vik

) = ŝ] = 1,
2. if {Pi1 , . . . , Pik

} �∈ Γ then Pr[S = s | Vi1 = vi1 , . . . ,Vik
= vik

] = Pr[S = s]
for any s ∈ S.

2.2 Secret Sharing Schemes Secure Against Cheating

A secret sharing schemes capable of detecting cheating was first presented by
Tompa and Woll [15]. They considered the scenario in which cheaters who do not
belong to the access structure submit forged shares in the secret reconstruction
phase. Such cheaters will succeed if another participants in the reconstruction
accepts an incorrect secret1. There are two different models for secret sharing
schemes capable of detecting such cheating. Carpentieri, De Santis and Vaccaro
[3] first considered a model in which cheaters who know the secret try to make
another participant reconstruct an invalid secret. As in [10], we call this model
the “CDV model.” Recently, Ogata, Kurosawa and Stinson [11] introduced a
model with weaker cheaters who do not know the secret in forging their shares.
We call this model the “OKS model.”

Each of these models consists of two algorithms. A share generation algo-
rithm ShareGen is the same as that in the ordinary secret sharing schemes. A
secret reconstruction algorithm Reconst is slightly different: it takes a list of
1 Please note that here we focus on the problem of detecting the fact of cheating with

unconditional security. Neither secret sharing schemes which identify cheaters [2,8]
nor verifiable secret sharing schemes [12,4] are within the scope of this paper.



124 T. Araki and S. Obana

shares as input and outputs either a secret or the special symbol ⊥ (⊥ �∈ S.)
Reconst outputs ⊥ if and only if cheating has been detected. We follow the se-
curity definition of [10]; that is, we define the following simple game for any
(k, n) threshold secret sharing scheme SS = (ShareGen, Reconst) and for any
(not necessarily polynomially bounded) Turing machine A = (A1, A2), where A
represents cheaters Pi1 , . . . , Pik−1 who try to cheat Pik

.

Game(SS, A)
s← S; // according to the probability distribution over S.
(v1, . . . , vn)← ShareGen(s);
(i1, . . . , ik−1)← A1(X);
// set X = s for the CDV model, X = ∅ for the OKS model.
(v′i1 , . . . , v

′
ik−1

, ik)← A2(vi1 , . . . , vik−1 , X);

The advantage of cheaters is expressed as Adv(SS, A) = Pr[s′ ∈ S ∧ s′ �= s] ,
where s′ = Reconst(v′i1 , v

′
i2

, . . . , v′ik−1
, vik

) and the probability is taken over the
distribution of S, and over the random tapes of ShareGen and A.

Definition 1. A (k, n) threshold secret sharing scheme SS is called a (k, n, ε)-
secure secret sharing scheme if Adv(SS, A) ≤ ε for any adversary A.

3 An Attack Against a Scheme in [7]

In this section, we present an attack against a k-out-of-n threshold secret sharing
scheme against cheating presented by Ghodosi and Pieprzyk in §4 of [7]. The
share generation algorithm and secret reconstruction algorithm of the target
scheme is described as follows.

Share Generation: On input a secret s ∈ GF(p), the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ GF(p)[X ] of degree 2k− 2 such that
fs(0) = s.

2. Compute vi = (fs(x2i−1), fs(x2i)) and output (v1, . . . , vn) where xi (1 ≤ i ≤
2n) are distinct elements of GF(p).

Secret Reconstruction and Validity Check: On input a list of k shares (vi1 , . . . , vik
)

where vij = (v2ij−1, v2ij ), the secret reconstruction algorithm Reconst outputs a
secret s or ⊥ as follows:

1. Reconstruct f̂s(x) from 2k−1 pieces (v2i1−1, v2i1), . . . , (v2ik−1−1, v2ik−1) and
v2ik−1 using Lagrange interpolation.

2. Output f̂s(0) if v2ik−1 = f̂s(x2ik
) holds. Otherwise, Reconst outputs ⊥.

In [7], it is claimed that the above scheme is (k, n, 1/p)-secure secret sharing
scheme in the OKS model. We will show it is incorrect by showing a simple attack
in which a single cheater can cheat the other participants with probability 1.



Flaws in Some Secret Sharing Schemes Against Cheating 125

An Attack Against the Scheme: Without loss of generality, we can assume P1
is cheater and it tries to fool the other participants P2, . . . , Pk. The aim of P1
is to make reconstruction algorithm Reconst reconstruct a secret s′ such that
s′ �= s. Since all shares v1, . . . , vk are generated by polynomial fs(x), the following
equality holds.

fs(x) =
2k∑

i=1

∏

1≤j≤2k
j �=i

x− xj

xi − xj
· vi

Now suppose that P1 forges its share from (v1, v2) to (v′1, v
′
2) then a polynomial

f ′s(x) reconstructed from v′1 = (v′1, v′2) and remaining k−1 shares vi = (v2i−1, v2i)
(2 ≤ i ≤ k) can be described as follows:

f ′s(x) =
2∑

i=1

∏

1≤j≤2k
j �=i

x− xj

xi − xj
· v′i +

2k∑

i=3

∏

1≤j≤2k
j �=i

x− xj

xi − xj
· vi

It is easy to see that cheater succeed in cheating if it can generate v′1 = (v′1, v′2)
such that the polynomial f ′s(x) computed above satisfies f ′s(0) �= fs(0) and
deg(f ′s(x)) = 2k − 2 (i.e. all the 2k pieces are consistent with a polynomial of
degree 2k − 2.)

Now we consider a polynomial Δfs(x) = f ′s(x) − fs(x) described as follows
where Δvi (i = 1, 2) is defined by Δvi = v′i − vi:

Δfs(x) =
2∑

i=1

∏

1≤j≤2k
j �=1

x− xj

xi − xj
·Δvi =

∏

1≤j≤2k
j �=1

x− xj

x1 − xj
·Δv1 +

∏

1≤j≤2k
j �=2

x− xj

x2 − xj
·Δv2

The following two observations are straightforward.

1. deg(f ′s(x)) = 2k− 2 if and only if the coefficient of x2k−1 equals 0 in Δfs(x)
(since deg(fs(x)) = 2k − 2.)

2. f ′s(0) �= fs(0) if and only if Δfs(0) �= 0.

The coefficient c2k−1, c0 of x2k−1 and x0 (i.e. constant term) of Δfs(x) can be
respectively described as follows:

c2k−1 =
∏

1≤j≤2k
j �=1

1
x1 − xj

·Δv1 +
∏

1≤j≤2k
j �=2

1
x2 − xj

·Δv2,

c0 =
∏

1≤j≤2k
j �=1

−xj

x1 − xj
·Δv1 +

∏

1≤j≤2k
j �=2

−xj

x2 − xj
·Δv2.

Therefore, by solving the following equations for arbitrarily chosen Δs (�= 0), P1
can successfully cheat the other participants P2, . . . , Pk with probability 1.

{ ∏
1≤j≤2k

j �=1

1
x1−xj

·Δv1 +
∏

1≤j≤2k
j �=2

1
x2−xj

·Δv2 = 0
∏

1≤j≤2k
j �=1

−xj

x1−xj
·Δv1 +

∏
1≤j≤2k

j �=2

−xj

x2−xj
·Δv2 = Δs

Note that the above equations have a unique solution (Δv1, Δv2) for any Δs �= 0
since

∏
1≤j≤2k

j �=1
(−xj) and

∏
1≤j≤2k

j �=2
(−xj) are distinct.



126 T. Araki and S. Obana

An Example of the Proposed Attack: Consider the following 2-out-of-3 threshold
scheme in which a secret s = 1 is chosen from GF(7) and the dealer chooses
fs(x) = 1 + x+ x2 of degree 2 (= 2k− 2) to generate shares and xi = i holds for
1 ≤ i ≤ 6.

Suppose P1 try to cheat P2 by forging their share (v1, v2) = (fs(1), fs(2)) =
(3, 0). As in the description of the proposed scheme, what P1 has to do is to
solve the following equations (Note that coefficients of the following equations
can be constructed only from the public data.)

{∏
1≤j≤4

j �=1

1
x1−xj

·Δv1 +
∏

1≤j≤4
j �=2

1
x2−xj

·Δv2 = Δv1 + 4Δv2 = 0
∏

1≤j≤4
j �=1

xj

x1−xj
·Δv1 +

∏
1≤j≤4

j �=2

xj

x2−xj
·Δv2 = 4Δv1 + Δv2 = Δs

Let Δs = 1 then (Δv1, Δv2) = (4, 6) is the solution of above equations.
Now suppose cheater P1 submits (v′1, v

′
2) = (v1 + Δv1, v2 + Δv2) = (0, 6) to

the reconstruction algorithm. With input (v′1, v
′
2) = (0, 6) and (v3, v4) = (6, 0),

the reconstruction algorithm first reconstructs a polynomial f̂s(x) = 2+x+4x2

which is consistent with f̂s(1) = 0, f̂s(2) = 6 and f̂s(3) = 6. We can verify that
f̂s(4) = 2+4+4 ·42 = 0 = fs(4) holds, which means that P1 succeeds in cheating
P2.

4 An Attack Against a Scheme in [10]

In this section, we present an attack against a k-out-of-n threshold secret sharing
scheme against cheating presented by Obana and Araki in §3.2 of [10]. The
scheme is designed to ensure security in the CDV model (i.e. cheaters know the
secret in forging their shares.) The basic idea of the scheme is to use a class of
universal hash families. Namely, they showed that if there exists an efficiently
samplable ε-SKDU2 hash family H whose domain is a set of secret S, then there
exists (k, n, ε)-secure secret sharing scheme. Where the hash family ε-SKDU2 is
defined as follows.

Definition 2. [10] A family of hash functions H : A → B is called a strongly
key-differential universal ε-SKDU2 if there exists b̂ ∈ B such that for any distinct
a, a′ ∈ A and for any c ∈ E,

|{he | e ∈ E , he(a) = b̂, he+c(a′) = b̂}|
|{he | e ∈ E , he(a) = b̂}| ≤ ε. (1)

Further, ε-SKDU2 is called an “efficiently samplable” if there exists an efficient
(i.e. polynomial time) algorithm to choose e ∈ E randomly from the set {e ∈ E |
he(a) = b̂} for any a ∈ A.

In [10], the following hash family H : GF(p)N → GF(p) is presented as an
example of N/p-SKDU2 and a secret sharing scheme against cheating which we
will break is constructed based on it.

H =

⎧
⎨

⎩
he0,e1

∣
∣
∣
∣
∣
∣
he0,e1(s1, . . . , sN ) = e0 −

N∑

j=1

sj · ej
1, ei ∈ GF(p)

⎫
⎬

⎭
(2)



Flaws in Some Secret Sharing Schemes Against Cheating 127

The share generation algorithm and secret reconstruction algorithm of the target
scheme is described as follows.

Share Generation: On input a secret s = (s1, . . . , sN ) ∈ GF(p)N , the share
generation algorithm ShareGen outputs a list of shares (v1, . . . , vn) according to
the following procedure. Please note that we sometimes regard s = (s1, . . . , sN)
as an element of GF(pN ) instead of GF(p)N .

1. Choose random e0, e1 ∈ GF(p) such that e0 −
∑N

j=1 sje
j
1 = 0.

2. Generate a random polynomials fs(x) ∈ GF(pN )[X ] and fe0(x), fe1(x) ∈
GF(p)[X ] of degree k − 1 such that fs(0) = s, fe0(0) = e0 and fe1(0) = e1.

3. Compute vi = (fs(i), fe0(i), fe1(i)) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input a list of k shares (vi1 , . . . , vik
),

the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as follows:

1. Reconstruct ŝ, ê0 and ê1 from vi1 , . . . , vik
using Lagrange interpolation.

2. Output s if ê0 −
∑N

j=1 ŝj ê
j
1 = 0 holds. Otherwise Reconst outputs ⊥.

An Attack against the Scheme: The proposed attack is straightforward from the
following lemma which shows the hash family H used to construct the above
scheme does not satisfy the conditions of ε-SKDU2 when b̂ = 0.

Lemma 1. Let H be the universal hash family defined by eq. (2) and E =
(e0, e1) ∈ GF(p)2. Then, for any s = (s1, . . . , sN ) ∈ GF(p)N , there exists a
constant (c0, c1) ∈ GF(p)2 and s′ = (s′1, . . . , s

′
N ) ∈ GF(p)N such that s′ �= s and

|{h(e0,e1) ∈ H | h(e0,e1)(s) = 0, h(e0+c0,e1+c1)(s
′) = 0}|

|{h(e0,e1) ∈ H | h(e0,e1)(s) = 0}| = 1

Proof. It suffices to show that there exist constants c0, c1 and s′ �= s such that
h(e0+c0,e1+c1)(s

′) is equivalent to h(e0,e1)(s) where h(e0,e1)(s) and h(e0+c0,e1+c1)
(s′) are described as follows:

h(e0,e1)(s) = e0 −
N∑

j=1

sje
j
1, h(e0+c0,e1+c1)(s

′) = (e0 + c0)−
N∑

j=1

s′j(e1 + c1)j

Fix c1 = ĉ1 (�= 0) arbitrarily and let sN = s′N , then we have the following
equalities since each coefficients of ej

1 (0 ≤ j ≤ N) must be identical.

N∑

j=i

(
j
i

)
s′j ĉ

j−i
1 = si (for 1 ≤ i ≤ N), e0 + c0 −

N∑

j=1

s′j ĉ
j
1 = e0

The former equalities can be rewritten as follows:

s′i = si −
N∑

j=i+1

(
j
i

)
s′j ĉ

j−i
1 (3)



128 T. Araki and S. Obana

Therefore, starting from s′N = sN , all s′j (j = N − 1, N − 2, . . . , 1) can be
computed using recurrent formula of eq. (3). Finally, c0 can be computed by

c0 =
N∑

j=1

s′j ĉ
j
1. (4)

�
Based on Lemma 1, we will present an attack by a single cheater who know the
secret in forging its share. As in the attack presented in §3, we can assume P1
is a cheater who tries to fool the other participants P2, . . . , Pk. Since P1 knows
the secret s, it can compute s′ �= s and (c0, c1) such that

(e0 + c0)−
N∑

j=1

s′j(e1 + c1)j = 0.

On the other hand, P1 knows that the following equations hold for its original
share v1 = (vs,1, ve0,1, ve1,1) where vi = (vs,i, ve0,i, ve1,i) (2 ≤ i ≤ k) is a share of
Pi and Li =

∏
1≤j≤k

j �=i

−j
i−j be a Lagrange coefficient.

s = L1vs,1 +
k∑

j=2

Ljvs,j , e0 = L1ve0,1 +
k∑

j=2

Ljve0,j , e1 = L1ve1,1 +
k∑

j=2

Ljve1,j

P1 also knows that the following s′, e′0 and e′1 are reconstructed if it submits
forged share v′1 = (v′s,1, v

′
e0,1, v

′
e1,1).

s′ = L1v
′
s,1+

k∑

j=2

Ljvs,j , e′0 = L1v
′
e0,1 +

k∑

j=2

Ljve0,j , e′1 = L1v
′
e1,1 +

k∑

j=2

Ljve1,j

Therefore, the following equalities hold where Δei = e′i − ei (i = 0, 1), Δvs,1 =
v′s,1 − vs,1 and Δvei,1 = v′ei,1 − vei,1 (i = 0, 1).

s′ − s = L1 ·Δvs,1, Δe0 = L1 ·Δve0,1, Δe1 = L1 ·Δve1,1

It is easy to see that when we set Δe0 = c0, Δe1 = c1 and compute Δvs,1,
Δve0,1, Δve1,1 then resulting v′s,1, v

′
e0,1, v

′
e1,1 will yield s′, e′0, e

′
1 satisfying

e′0 −
N∑

j=1

s′je
′j
1 = (e0 + c0)−

N∑

j=1

s′j(e1 + c1)j = 0,

which shows that the cheater P1 successfully cheats P2, . . . , Pk with probability
1. Note that all of v′s,1, v

′
e0

and v′e1
can be locally computed by P1.

An Example of the Proposed Attack: Consider the following 2-out-of-3 threshold
scheme in which a secret s = (s1, s2) = (1, 1) is chosen from GF(5) × GF(5)
and the dealer chooses fs(x) = (1 + α) + (1 + α)x ∈ GF(52)[X ] of degree 1 to



Flaws in Some Secret Sharing Schemes Against Cheating 129

generate shares for the secret. Also suppose that the dealer chooses e0 = 3 and
e1 = 1 among pairs of (e0, e1) satisfying e0 + s1e1 + s2e

2
1 = 0 and it chooses

polynomials fe0(x) = 3 + x and fe1(x) = 1 + x to generate shares of e0 and e1,
respectively.

Suppose P1 who knows the secret s = (1, 1) try to cheat P2 by forging their
share (vs,1, ve0,1, ve1,1) = ((2, 2), 4, 2). As in the description of the proposed
scheme, P1 first computes c0, c1, and s′1, s

′
2 such that

e0 + s1e1 + s2e
2
1 = (e0 + c0) + s′1(e1 + c1) + s′2(e1 + c1)2 (5)

holds for any e0 and e1. This can be done by assigning c1 = 1 (arbitrary element
of GF(5),) s′2 = s2(= 1) and compute s′1 and c0 from s1 and s2 according to eq.
(3) and eq. (4) as follows:

s′1 = s1 −
2∑

j=2

(
j
1

)
s′jc

j−1
1 = s1 −

(2
1

)
s′2c1 = 1− 2 · 1 · 1 = 4,

c0 =
2∑

j=1

s′jc
j
1 = 4 · 1 + 1 · 1 = 0.

The following equation shows that eq. (5) holds for any e0 and e1.

(e0 + c0) + s′1(e1 + c1) + s′2(e1 + c1)2

= e0 + 4(e1 + 1) + (e1 + 1)2 = e0 + e1 + e2
1 = e0 + s1e1 + s2e

2
1

Once P1 computes c0, c1, s
′
1 and s′2, it can computes

Δvs,1 = s′−s
L1

= 3+0·α
2 = (4, 0), Δve0,1 = c0

L1
= 0

2 = 0, Δve1,1 = c1
L1

= 1
2 = 3

and v′s,1 = vs1 + Δvs,1 = (1, 2), v′e0,1 = ve0,1 + Δve0,1 = 4 and v′e0,1 = ve0,1 +
Δve0,1 = 0.

Now suppose cheater P1 submits v′1 = (v′s,1, v
′
e0,1, v

′
e1,1) = ((1, 2), 4, 0) to the

reconstruction algorithm. With input v′1 and v2 = ((3, 3), 0, 3), the reconstruction
algorithm first reconstructs ŝ = (4, 1), ê0 = 3 and ê1 = 2 and outputs (4, 1) as
a correct secret since ê0 + s1ê1 + s2ê

2
1 = 0 holds, which means that P1 succeeds

in cheating P2.

5 Fixing the Flaw in [10]

In this section, we fix the flaw of the scheme attacked in the previous section.
More precisely, we slightly modify the family of hash family H defined by eq.
(2) in a way that it satisfies the properties of ε-SKDU2. Since the following
proposition has been proven in [10], we can easily construct (k, n, ε)-secure secret
sharing scheme based on this modified hash family.



130 T. Araki and S. Obana

Proposition 1. [10] If there exist linear secret sharing schemes over S and
E for a common access structure Γ and an efficiently samplable ε-SKDU2 H :
S → B with the set of key E, then there exists a secret sharing scheme capable
of detecting cheating for the access structure Γ in the CDV model such that the
successful cheating probability is equal to ε for arbitrary secret distribution.

The modification to the hash family H defined by eq. (2) is simple. The modified
hash family Ĥ is defined as follows:

Ĥ =

⎧
⎨

⎩
he0,e1

∣
∣
∣
∣
∣
∣
he0,e1(s1, . . . , sN ) = e0 − sN · eN+1

1 −
N−1∑

j=1

sj · ej
1, ei ∈ GF(p)

⎫
⎬

⎭

(6)
We can easily check that for h ∈ H (H : GF(p)N+1 → GF(p)), Ĥ : GF(p)N →
GF(p) can be also defined by

Ĥ = {ĥe0,e1 | ĥe0,e1(s1, . . . , sN ) = he0,e1(s1, . . . , sN−1, 0, sN), he0,e1 ∈ H}.

Therefore, modified hash family Ĥ can be viewed as “H with a constant padding.”
Now we will prove the following theorem:

Theorem 1. The family of hash function Ĥ : GF(p)N → GF(p) defined by eq.
(6) is ε-SKDU2 with ε = N+1

p .

Proof. First, it is easy to see that, for any s = (s1, . . . , sN ) ∈ GF(p)N , there
exist p hash functions he0,e1 ∈ Ĥ such that he0,e1(s) = 0. This is because for
any fixed e1, such e0 is uniquely determined by e0 = sN · eN+1

1 +
∑N−1

j=1 sj · ej
1.

Therefore, what we need to prove is the following: for any s, s′(�= s) and for any
c0 and c1,

|{h(e0,e1) ∈ H | h(e0,e1)(s) = 0, h(e0+c0,e1+c1)(s
′) = 0}| ≤ N + 1.

We will prove the following equivalent statement.

|{h(e0,e1) ∈ H | h(e0,e1)(s) = 0, h(e0+c0,e1+c1)(s
′)− h(e0,e1)(s) = 0}| ≤ N + 1.

There are two cases to be considered. In the first case, suppose c1 = 0. In this
case h(e0+c0,e1+c1)(s

′)− h(e0,e1) = h(e0+c0,e1)(s′)− h(e0,e1) = 0 can be written as
follows:

c1 − (s′N − sN ) · eN+1
1 −

N−1∑

j=1

(s′j − sj) · ej
1 = 0

For any fixed s, s′ and c1, the above equation can be viewed as univariate poly-
nomial Δh(e1) of degree at most N + 1. Since Δh(e1) have at most N + 1 roots
and, for each root ê1, there exists unique ê0 such that h(ê0,ê1)(s) = 0. Therefore,
we see that |{h(e0,e1) ∈ H | h(e0,e1)(s) = 0, h(e0+c0,e1+c1)(s

′) = 0}| ≤ N + 1
holds in this case.



Flaws in Some Secret Sharing Schemes Against Cheating 131

Now consider the second case in which c1 �= 0. In this case we consider the
number of roots of the following univariate polynomial Δh(e1) for any fixed
s, s′(�= s) and c1 �= 0:

Δh(e1) = c0 − s′N (e1 + c1)N+1 − s · eN+1
1 −

N−1∑

j=1

(
s′j(e1 + c1)j − sj · ej

1

)
= 0

Further, there are two cases to be considered. In the first case, suppose sN �= s′N .
In this case, Δh(e1) becomes a polynomial of degree N +1, which means that the
number of roots is at most N and, consequently, |{h(e0,e1) ∈ H | h(e0,e1)(s) =
0, h(e0+c0,e1+c1)(s

′) = 0}| ≤ N + 1 holds. Now we consider the second case
where s′N = sN and c1 �= 0. In this case, the coefficient of eN of Δh(e1) becomes
(N+1)·c1 �= 0. Therefore, there are at most N roots for Δh(e1), which shows that
|{h(e0,e1) ∈ H | h(e0,e1)(s) = 0, h(e0+c0,e1+c1)(s

′) = 0}| ≤ N +1 holds also in this
case. Since we have seen that |{h(e0,e1) ∈ H | h(e0,e1)(s) = 0, h(e0+c0,e1+c1)(s

′) =
0}| ≤ N + 1 holds in all cases, the theorem has been proven. �
Putting Proposition 1 and Theorem 1 together, we can construct (k, n, N+1

p )-

secure secret sharing scheme such that |S| = pN , |Vi| = pN+2 (= |S|(logp |S|−1)2

ε2 ).
The complete description of the scheme is as follows:

Share Generation: On input a secret s = (s1, . . . , sN ) ∈ GF(p)N , the share
generation algorithm ShareGen outputs a list of shares (v1, . . . , vn) according to
the following procedure. Please note that we sometimes regard s = (s1, . . . , sN)
as an element of GF(pN ) instead of GF(p)N .

1. Choose random e0, e1 ∈ GF(p) such that e0 − sNeN+1
1 −∑N−1

j=1 sje
j
1 = 0.

2. Generate a random polynomials fs(x) ∈ GF(pN )[X ] and fe0(x), fe1(x) ∈
GF(p)[X ] of degree k − 1 such that fs(0) = s, fe0(0) = e0 and fe1(0) = e1.

3. Compute vi = (fs(i), fe0(i), fe1(i)) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input a list of k shares (vi1 , . . . , vik
),

the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as follows:

1. Reconstruct ŝ, ê0 and ê1 from vi1 , . . . , vik
using Lagrange interpolation.

2. Output s if ê0− ŝN êN+1
1 −∑N−1

j=1 ŝj ê
j
1 = 0 holds. Otherwise Reconst outputs

⊥.

6 Conclusion

In this paper, we point out flaws in existing secret sharing schemes against
cheating. Namely, we show that the scheme proposed by Ghodosi and Pieprzyk
presented at ACISP 2000 and the one by Obana and Araki presented at Asi-
acrypt 2006 are both insecure against single cheater. We further show that the
scheme by Obana et al. can be made secure by slight modification.



132 T. Araki and S. Obana

References

1. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979, National
Computer Conference, vol. 48, pp. 313–317 (1979)

2. Carpentieri, M.: A Perfect Threshold Secret Sharing Scheme to Identify Cheaters.
Designs, Codes and Cryptography 5(3), 183–187 (1995)

3. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of Shares and Probability of
Cheating in Threshold Schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1993)

4. Cramer, R., Damg̊ard, I., Maurer, U.M.: General Secure Multi-party Computation
from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

5. Cabello, S., Padró, C., Sáez, G.: Secret Sharing Schemes with Detection of Cheaters
for a General Access Structure. Designs, Codes and Cryptography 25(2), 175–188
(2002)

6. den Boer, B.: A Simple and Key-Economical Unconditional Authentication
Scheme. Journal of Computer Security 2, 65–71 (1993)

7. Ghodosi, H., Pieprzyk, J.: Cheating Prevention in Secret Sharing. In: Clark, A.,
Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 328–341. Springer,
Heidelberg (2000)

8. Kurosawa, K., Obana, S., Ogata, W.: t-Cheater Identifiable (k, n) Secret Sharing
Schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423.
Springer, Heidelberg (1995)

9. MacWilliams, F., Sloane, N.: The Theory of Error Correcting Codes. North Hol-
land, Amsterdam (1977)

10. Obana, S., Araki, T.: Almost Optimum Secret Sharing Schemes Secure against
Cheating for Arbitrary Secret Distribution. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 364–379. Springer, Heidelberg (2006)

11. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum Secret Sharing Scheme Secure
against Cheating. SIAM Journal on Discrete Mathematics 20(1), 79–95 (2006)

12. Pedersen, T.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–149.
Springer, Heidelberg (1992)

13. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

14. Stinson, D.R.: On the Connections between Universal Hashing, Combinatorial De-
signs and Error-Correcting Codes. Congressus Numerantium 114, 7–27 (1996)

15. Tompa, M., Woll, H.: How to Share a Secret with Cheaters. Journal of Cryptol-
ogy 1(3), 133–138 (1989)



Efficient (k, n) Threshold Secret Sharing

Schemes Secure Against Cheating from n − 1
Cheaters

Toshinori Araki

NEC Corporation
t-araki@ek.jp.nec.com

Abstract. In (k, n) threshold secret sharing scheme, Tompa and Woll
consider a problem of cheaters who try to make another participant re-
construct invalid secret. Later, the model of such cheating is formalized
in some researches. Some schemes secure against cheating of these mod-
els are proposed. However, in these models, the number of colluding
participants is restricted to k − 1 or less. In this paper, we consider k
or more colluding participants. Of course, secrecy is not maintained to
such participants. However, if considering detecting the fact of cheating,
we need to consider a cheating from k or more colluding participants.
In this paper, we propose a (k, n) threshold secret sharing scheme that
is capable of detecting the fact of cheating from n − 1 or less colluding
participants. A scheme proposed by Tompa and Woll can be proven to
be a (k, n) threshold secret sharing scheme that is capable of detecting
the fact of cheating from n − 1 or less colluding participants. However,
our proposed scheme is much more efficient with respect to the size of
shares.

1 Introduction

Background. A (k, n) threshold secret sharing scheme [1,10] is a cryptographic
primitive used to distribute a secret s to n participants in such a way that a
set of k or more participants can recover the secret s and a set of k − 1 or less
participants cannot obtain any information about s. A piece of information held
by participant is called a share.

Various problems in (k, n) threshold secret sharing schemes are considered.
Above all, the problem of cheaters in threshold schemes is considered in various
researches.

Tompa and Woll [11] considered the following cheating scenario. Suppose that
colluding participants want to cheat another participant by submitting forged
shares in the reconstruction. They succeed if the reconstructed value is different
from the original secret. Later, a model of such cheating is formalized in [3,8].
Some schemes secure against cheating of these models are proposed [2,7,8,11].

Our Contribution. In the models of [3,8], the number of colluding participants
is restricted to k − 1 or less. However, we can consider k or more colluding

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 133–142, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



134 T. Araki

participants. Of course, secrecy is not maintained to such participants. However,
if considering detecting the fact of cheating, we need to consider a cheating from
k or more colluding participants. In this paper, we construct a (k, n) threshold
secret sharing scheme that is capable of detecting the fact of cheating from n−1
or less colluding participants.

Schemes in [2,7,8] are not capable of detecting the fact of cheating from k
or more colluding participants. Scheme in [11] is capable of detecting the fact
of cheating from n − 1 colluding participants. However our proposed scheme is
much more efficient with respect to the size of shares. Particularly, the size of
the share in the proposed scheme is a few bit longer than lower bound of [7]
when parameter k,n are small and |S|1 is smaller than 1/ε , where ε denotes the
successful probability of cheating and S denotes the set of secrets.

Organization. The rest of the paper is organized as follows. In Section 2, we
briefly review the models of secret sharing schemes capable of detecting cheating,
and we discuss previous works done on them. In Section 3, we introduce a new
model of cheating from n−1 or less colluding cheaters. In Section 4, we present an
efficient scheme secure in the new model. In Section 5, we consider the problem
of forged reconstruction result. In Section 6, we summarize our work.

2 Preliminaries

2.1 (k, n) Threshold Scheme

In secret sharing schemes, there are n participants P = {P1, . . . , Pn} and a dealer
D.

A model consists of two algorithms: ShareGen and Reconst. Share genera-
tion algorithm ShareGen takes a secret s ∈ S as input and outputs a list
(v1, v2, . . . , vn). Each vi is called a share and is given to a participant Pi. Or-
dinarily, ShareGen is invoked by the D. Secret reconstruction algorithm Reconst
takes a list of shares and outputs a secret s ∈ S. In a (k, n) threshold scheme
[1,10], any k or more participants can recover s but no subset of less than k
participants can determine any partial information about s.

2.2 Secret Sharing Schemes Secure Against Cheating

A secret sharing scheme capable of detecting cheating was first presented by
Tompa and Woll [11]. They considered the scenario that k − 1 or less cheaters
submit forged shares in the secret reconstruction phase. Such cheaters will suc-
ceed if another participant in the reconstruction accepts an incorrect secret2.

There are two different models for secret sharing schemes capable of detecting
such cheating. Carpentieri, De Santis, and Vaccaro [4] first considered a model

1 Throughout the paper, the cardinality of the set X is denoted by |X |.
2 Please note that here we focus on the problem of detecting the fact of cheating with

unconditional security. Neither secret sharing schemes which identify cheaters [3,6]
nor verifiable secret sharing schemes [9,5] are within the scope of this paper.



Efficient (k, n) Threshold Secret Sharing Schemes 135

in which cheaters who know the secret try to make another participant recon-
struct an invalid secret. We call this model the “CDV model.” Recently, Ogata,
Kurosawa, and Stinson [8] introduced a model with weaker cheaters who do not
know the secret in forging their shares. We call this model the “OKS model.”

As in ordinary secret sharing schemes, each of these models consists of two
algorithms. A share generation algorithm ShareGen is the same as that in the
ordinary secret sharing schemes. A secret reconstruction algorithm Reconst is
slightly changed: it takes a list of shares as input and outputs either a secret or
the special symbol ⊥ (⊥ �∈ S.) Reconst outputs ⊥ if and only if cheating has
been detected. To formalize the models, we define the following simple game for
any (k, n) threshold secret sharing scheme SS = (ShareGen, Reconst) and for any
(not necessarily polynomially bounded) Turing machine A = (A1, A2), where A
represents cheaters Pi1 , . . . , Pik−1 who try to cheat Pik

.

Game(SS, A)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(i1, . . . , ik−1) ← A1(X);
// set X = s for the CDV model, X = ∅ for the OKS model.
(v′i1 , . . . , v

′
ik−1

, ik) ← A2(vi1 , . . . , vik−1 , X);

The advantage of cheaters is expressed as Adv(SS, A) = Pr[s′ ∈ S ∧ s′ �= s] ,
where s′ is a secret reconstructed from v′i1 , v

′
i2

, . . . , v′ik−1
, vik

and the probability
is taken over the distribution of S and over the random tapes of ShareGen and A.

Definition 1. A (k, n) threshold secret sharing scheme SS is called a (k, n, ε)-
secure secret sharing scheme if Adv(SS, A) ≤ ε for any adversary A.

2.3 Previous Work

In this subsection, we briefly review the known bounds and constructions of
(k, n, ε)-secure secret sharing schemes.

Tompa and Woll have proposed a scheme [11] that can be proven to be a
(k, n, εCDV)-secure secret sharing scheme in the CDV model. Where Vi denotes
the set of shares, the size of share |Vi| is as large as ( (|S|−1)(k−1)

εCDV
+ k)2.

A lower bound for the size of shares in the CDV model is described as follows:

Proposition 1. [4] In the CDV model, the size of shares for (k, n, εCDV)-secure
secret sharing schemes is lower bounded by |Vi| ≥ |S|

εCDV
.

Ogata et al. improved this bound when the secret is uniformly distributed:

Proposition 2. [8] In the CDV model, if the secret is uniformly distributed,
then the size of shares |Vi| for (k, n, εCDV)-secure secret sharing schemes is lower
bounded by |Vi| ≥ |S|−1

ε2CDV
+ 1 .



136 T. Araki

Ogata et al. also presented the lower bound for the size of shares for (k, n, εOKS)-
secure secret sharing scheme in the OKS model as follows.

Proposition 3. [8] In the OKS model, the size of shares for (k, n, εOKS)-secure
secret sharing schemes is lower bounded by |Vi| ≥ |S|−1

εOKS
+ 1 .

Within the OKS model, Ogata et al. have proposed a (k, n, εOKS)-secure secret
sharing schemes that satisfies the bound of Proposition 3 with equality [8]. How-
ever, this scheme is proven to be secure only if the secret is uniformly distributed.
Within the CDV model, Cabello et al. have proposed a (k, n, εCDV)-secure secret
sharing scheme [2]. The size of share is a little longer than the lower bound of
Proposition 2. Further, the scheme is secure for arbitrary secret distribution, but
, in this scheme, the successful cheating probability is uniquely determined from
the size of the secret. Obana et al. have generalized this result in [7]. In this
scheme, the successful cheating probability can be chosen without regard to the
size of secret.

3 New Model of Secret Sharing Schemes Secure Against
Cheating

Some kinds of cheating are not covered by the OKS(CDV) model. For example,
cheaters who know k or more shares are not considered. Schemes in [2,7,8] are
proven to be secure in the CDV model or OKS model. However, if cheaters
know k or more shares, these schemes are not secure. The successful cheating
probability is one.

Actually, cheating from k or more colluding participants exists. Of course,
secrecy is not maintained to such participants. However, if considering detecting
the fact of cheating, we need to consider a cheating from k or more colluding
participants. Therefore, it is highly desired to construct secret sharing schemes
capable of detecting cheating from k or more colluding participants with un-
limited computational power. To this end, we define new models : the OKSn−1

model and the CDVn−1 model which are slight modifications of the OKS model
and the CDV model, respectively. Cheaters in the new models are allowed to
know n − 1 shares. To characterize such cheaters, a game is defined as follows.

Game(SS, B)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(i1, . . . , in−1) ← B1(X);
// set X = s for the CDVn−1 model, X = ∅ for the OKSn−1 model.
(v′i1 , . . . , v

′
ik−1

, in) ← B2(vi1 , . . . , vin−1 , X).;

The advantage of cheaters is redefined by Adv(SS, B) = Pr[s′ ∈ S ∧ s′ �= s] ,
where s′ is a secret reconstructed from v′i1 , v

′
i2

, . . . , v′ik−1
, vin and the probability

is taken over the distribution of S and over the random tapes of ShareGen and
B. In CDVn−1 model, s seems to be non-valuable information for B2 , because k



Efficient (k, n) Threshold Secret Sharing Schemes 137

or more colluding cheaters can reconstruct secret . However, in the case of (n, n)
threshold structure, s is valuable for B2 .

Please note that the CDVn−1 model is the most powerful model of cheating.
Because, now, target participant’s share is the only information that cheaters
don’t know. Besides, please note that all the bounds for the OKS (CDV) model
(e.g. Propositions 1-3) are also valid for OKSn−1 (CDVn−1) since a scheme secure
in the OKSn−1 (CDVn−1) model is also secure in the OKS (CDV) model.

However, the schemes secure in the OKS(CDV) model are not necessarily
secure in the OKSn−1(CDVn−1) model. For example, the schemes presented in
[2,7,8] are not secure in the OKSn−1(CDVn−1) model. In these schemes, k or
more cheaters can know any other participant’s share vin . So, they can adjust
v′i1 , v

′
i2

, . . . , v′ik−1
such that reconstructed result from v′i1 , v

′
i2

, . . . , v′ik−1
, vin is the

value which they want.
However, the schemes presented in [11] can be proven to be secure in the

CDVn−1 model.
Next, we briefly review the scheme presented in [11].

3.1 The Tompa and Woll Scheme[11]

The share generation algorithm ShareGen and the share reconstruction algorithm
Reconst is described as follows3.

Share Generation. On input a secret s ∈ {0, . . . , |S| − 1}, the share generation
algorithm ShareGen outputs a list of shares (v1, . . . , vn) as follows. Here, q is a
prime such that q > (|S| − 1)(k − 1)/ε + n:

1. Generate random polynomial f(x) of degree k−1 over Zq such that f(0) = s.
2. Choose n distinct elements r1, . . . , rn uniformly and randomly from {1, . . . ,

q − 1}.
3. Compute vi = (f(ri), ri) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check. On input a list of k shares (vi1 , . . . ,
vik

), the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as
follows:

1. Reconstruct ˆf(0) from vi1 , . . . , vik
using Lagrange interpolation.

2. Output ˆf(0) if ˆf(0) < |S| holds. Otherwise Reconst outputs ⊥.

In this scheme, k or more cheaters can’t know any other participant’s share rin .
This scheme can be proven to be a (k, n, ε)-secure secret sharing scheme in the
CDVn−1 model, and the size of share |Vi| is q2 = ( (|S|−1)(k−1)

ε + n)2. Further,
the scheme is secure for arbitrary secret distribution.

3 We made slight modification to the parameter of [11]. Because, the parameters in
[11] are the parameters considering at most k−1 cheaters. We change the parameters
to the parameters considering at most n − 1 cheaters.



138 T. Araki

4 Proposed Scheme

Tompa and Woll scheme’s Validity Check algorithm check whether reconstructed
secret is in range. This is the reason why their scheme needs very large field for
polynomial which distributes secret. In proposed scheme, we use one more poly-
nomial for distributing secret. Comparing two reconstructed secret, proposed
scheme’s Validity Check algorithm can check whether reconstructed secret is a
particular value. Then, the size of the field for polynomial can be made small.
Consequently, though proposed scheme uses two polynomials, the size of the
share is smaller than Tompa and Woll scheme.

In this section, we propose an efficient (k, n, ε)-secure secret sharing scheme
in the CDVn−1 model that is proven to be secure for any secret distribution.

The share generation algorithm ShareGen and the share reconstruction algo-
rithm Reconst are described as follows where p is a prime power and q is a prime
power such that q > max ((k − 1)/ε + n, p).

Share Generation. On input a secret s ∈ {0, . . . , p − 1}, the share generation
algorithm ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate random polynomial f(x) of degree k − 1 over GF(q) such that
f(0) = s, and g(x) of degree k − 1 over GF(p) such that g(0) = s.

2. Choose n distinct elements r1, . . . , rn uniformly and randomly from {1, . . . r},
r ≤ q − 1.

3. Compute vi = (f(ri), g(i), ri) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check. On input a list of k shares (vi1 , . . . ,
vik

), the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as
follows:

1. Reconstruct ˆf(0) and ˆg(0) from vi1 , . . . , vik
using Lagrange interpolation.

2. Output ˆf(0) if ˆf(0) = ˆg(0) holds. Otherwise Reconst outputs ⊥.

the properties of this scheme is summarized by the following theorem.

Theorem 1. The scheme of §4 is a (k, n, ε)-secure secret sharing scheme in the
CDVn−1 model with parameters |S| = p, ε = (k − 1)/(r − n + 1) and |Vi| =
p ·q ·r 
max (|S|2(k−1

ε +n+1), |S|(k−1
ε +n+1)2). Further, the scheme is secure

for arbitrary secret distribution.

Proof. Without loss of generality, we can assume P1, . . . , Pn−1 are cheaters and
they try to cheat Pn who has vn = (fn, gn, rn) by forging their shares vi =
(fi, gi, ri) (for 1 ≤ i ≤ k − 1.)

Now, suppose that cheaters try to cheat Pn by forging their shares to vi =
(f ′i , g

′
i, r
′
i)(for 1 ≤ i ≤ k − 1.), (r′1, f

′
1), . . . , (r

′
k−1, f

′
k−1), (rn, fn) define a polyno-

mial f̂ and (1, g′1), . . . , (k − 1, g′k−1), (n, gn) define a polynomial ĝ. They succeed
in cheating Pn if ˆf(0) = ˆg(0). In the other words, they succeed in cheating
if (r′1, f

′
1), . . . , (r

′
k−1, f

′
k−1), (rn, fn), (0, ˆg(0)) are passing through the same poly-

nomial f ′ of degree k − 1 such that f ′(0) = ˆg(0)(�= s). The cheaters can ob-
tain polynomial g from (0, s), (1, g1), . . . , (k − 1, gk−1). We can rewrite ˆg(0) by



Efficient (k, n) Threshold Secret Sharing Schemes 139

ˆg(0) = Lng(n) +
∑k−1

j=1 Ljg
′
j (Lj is a Lagrange coefficient), so cheaters can con-

trol the value ˆg(0) as they want by adjusting their shares. Now suppose a poly-
nomial f ′ that is passed by the points (r′1, f

′
1), . . . , (r

′
k−1, f

′
k−1), (0, ˆg(0)(�= s)).

The cheaters succeed in cheating if f ′(rn) = f(rn). The f ′ is different polyno-
mial from f , because f ′(0) = ˆg(0) �= s = f(0) . So, f ′ can intersect f in at
most k − 1 points. Here, rn is a random element of {1, . . . , r} − {r1, . . . , rn−1}.
Thus, the probability that f ′(rn) = f(rn) is at most (k − 1)/(r − n + 1). So
ε = (k − 1)/(r − n + 1). ��

5 Validity Check of Reconstruction Result

In previous work, participants can identify the fact of cheating only when they
participate in the reconstruction.

In some situation, participants want to verify whether there was cheating from
only reconstruction result. In this section, we consider the scenario that cheaters
forge the reconstruction result. Such cheaters will succeed if another participants
accepts an incorrect secret.

We define new models for secret sharing schemes capable if detecting such
cheating. These model consist of three algorithms: ShareGen, Reconst, and a
validity checking algorithm Check. The share generation algorithm ShareGen is
the same as that in the ordinary secret sharing schemes. A secret reconstruction
algorithm Reconst is slightly changed: it takes a list of shares as input and
outputs either a pair of secret s and “check data“ c or the special symbol ⊥
(⊥ �∈ S.) Reconst outputs ⊥ if and only if cheating has been detected. “check
data“ c is a value for checking the validity of the reconstructed secret. Check
takes a secret s, check data c, and one share vi and outputs either a secret s
or the special symbol ⊥ (⊥ �∈ S.) Check outputs ⊥ if and only if cheating has
been detected. To formalize the models, we define the following simple game for
threshold secret sharing scheme SS = (ShareGen, Reconst, Check) and for any
(not necessarily polynomially bounded) Turing machine C = (C1, C2), where C
represents cheaters Pi1 , . . . , Pin−1 who try to cheat Pin .

Game(SS, C)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(i1, . . . , in−1) ← C1(X);
// set X = s for the CDVn−1 model, X = ∅ for the OKSn−1 model.
(s′, c′) ← C2(vi1 , . . . , vin−1 , X);

The advantage of cheaters is expressed as Adv(SS, C) = Pr[s′ ∈ S ∧ s′ �= s] ,
where s′ = Check(s′, c′, vin) and the probability is taken over the distribution of
S and over the random tapes of ShareGen and C.

Definition 2. A (k, n) threshold secret sharing scheme SS is called a (k, n,
ε1, ε2) -secure secret sharing scheme with Validity check of reconstruction result



140 T. Araki

if Adv(SS, B) ≤ ε1 for any adversary B and Adv(SS, C) ≤ ε2 for any adversary
C.

Easily, we can construct a (k, n, ε1, ε2)-secure secret sharing scheme with Validity
check of reconstruction result from the scheme of Section 4.

Using reconstruction algorithm which outputs all inputs as check data, all
participants can check the validity of a reconstruction result by inputing k −
1 shares from check data and a share which they have to the reconstruction
algorithm.

But, in this scheme, the size of check data is very large. However, by slight
modification to the scheme of Section 4, we can construct more efficient scheme.

5.1 Modified Proposed Scheme

In this section, we propose a (k, n, ε1, ε2)-secure secret sharing scheme with Va-
lidity check of reconstruction result. This scheme is a slightly modified scheme of
the scheme of Section 4 and the check data is much smaller than trivial scheme.

The share generation algorithm ShareGen, the share reconstruction algorithm
Reconst, and the validity checking algorithm Check are described as follows where
p is a prime power and q is a prime power such that q > max ((k − 1)/εl + n, p)
(for l = 1, 2).

Share Generation. On input a secret s ∈ {0, . . . , p − 1}, the share generation
algorithm ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate random polynomial f(x) of degree k − 1 over GF(q) such that
f(0) = s, and g(x) of degree k − 1 over GF(p) such that g(0) = s.

2. Choose n distinct elements r1, . . . , rn uniformly and randomly from {1, . . . r}
r ≤ q − 1.

3. Compute vi = (f(ri), g(i), ri) and output (v1, . . . , vn)

Secret Reconstruction and Validity Check. On input a list of k shares (vi1 , . . .
, vik

), the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as
follows:

1. Reconstruct f̂ and ˆg(0) from vi1 , . . . , vik
using Lagrange interpolation.

2. Output ˆf(0) as secret and f̂ as check data if ˆf(0) = ˆg(0) holds. Otherwise
Reconst outputs ⊥.

Validity check of Reconstruction result. On input a polynomial f(x) of degree
k − 1 over GF(q) and a share vi = (fi, gi, ri), the validity checking algorithm
Check outputs a secret s or ⊥ as follows:

– Output f(0) if f(ri) = fi holds. Otherwise Reconst outputs ⊥.

In this validity check algorithm, f can be regarded not only as secret but also
as check data.

The properties of this scheme is summarized by the following theorem.



Efficient (k, n) Threshold Secret Sharing Schemes 141

Theorem 2. The scheme of §5.1 is (k, n, ε1, ε2)-secure secret sharing scheme in
the CDVn−1 model with parameters |S| = p,ε1 = ε2 = (k − 1)/(r − n + 1), and
|Vi| = p · q · r 
max (|S|2(k−1

εl
+ n + 1), |S|(k−1

ε1
+ n + 1)2) . Further, the scheme

is secure for arbitrary secret distribution.

Proof. Firstly, ε1 is proven to be (k − 1)/(r − n + 1) by similar discussion to the
proof of Theorem 1. Next, we will show that ε2 = (k−1)/(r−n+1). Without loss
of generality, we can assume P1, . . . , Pn−1 are cheaters and they try to cheat Pn

who has vn = (fn, gn, rn) by forging their check data to f ′ such that f ′(0) �= s.
They succeed in cheating Pn if f ′(rn) = fn. In other words, they succeed in

cheating Pn if f ′(rn) = f(rn). The f ′ is different polynomial from f , because
f ′(0) �= s. Here, rn is a random element of {1, . . . , r} − {r1, . . . , rn−1}. Thus,
the probability that f ′(rn) = f(rn) is at most (k − 1)/(r − n + 1). So ε2 =
(k − 1)/(r − n + 1). ��

In proposed scheme, the size of check data is only one polynomial represen-
tation of degree k − 1 over GF(q). This is much smaller than the check data of
trivial scheme.

6 Conclusion

In this paper, we proposed an efficient (k, n) threshold secret sharing scheme
capable of detecting cheating from n − 1 or less colluding participants.

Table 1 and Table 2 below compares the bit length of shares for the various
security parameters where the access structure considered is 3-out-of-5 threshold
access structure.

Compared to the scheme of [11] the size of the share in the proposed scheme
is smaller for all the security parameters. When |S| < 1/ε and k,n are small,

Table 1. Comparison of the bit length of the shares (for ε = 2−128)

|S| Known Bound Proposed Scheme Tompa and Woll

264 321 324 388

2128 385 388 516

2256 503 642 772

2512 769 1154 1284

Table 2. Comparison of the bit length of the shares (for ε = 2−256)

|S| Known Bound Proposed Scheme Tompa and Woll

264 577 580 644

2128 641 644 772

2256 769 772 1026

2512 1025 1282 1540



142 T. Araki

the size of the share in the proposed scheme is a few bits longer than the lower
bound of [7].

Finding more efficient (k, n, ε)-secure secret sharing schemes in the CDVn−1

model will be future work.

Acknowledgement

We thank the anonymous referees for useful and datailed comments.

References

1. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979, National
Computer Conference, vol. 48, pp. 313–137 (1979)

2. Cabello, S., Padró, C., Sáez, G.: Secret Sharing Schemes with Detection of Cheaters
for a General Access Structure. Designs, Codes and Cryptography 25(2), 175–188
(2002)

3. Carpentieri, M.: A Perfect Threshold Secret Sharing Scheme to Identify Cheaters.
Designs, Codes and Cryptography 5(3), 183–187 (1995)

4. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of Shares and Probability of
Cheating in Threshold Schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994)

5. Cramer, R., Damg̊ard, I., Maurer, U.M.: General Secure Multi-party Computation
from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

6. Kurosawa, K., Obana, S., Ogata, W.: t-Cheater Identifiable (k, n) Secret Sharing
Schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423.
Springer, Heidelberg (1995)

7. Obana, S., Araki, T.: Almost Optimum Secret Sharing Schemes Secure Against
Cheating for Arbitrary Secret Distribution. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 364–379. Springer, Heidelberg (2006)

8. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum Secret Sharing Scheme Secure
against Cheating. SIAM Journal on Discrete Mathematics 20(1), 79–95 (2006)

9. Pedersen, T.: Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–149.
Springer, Heidelberg (1992)

10. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

11. Tompa, M., Woll, H.: How to Share a Secret with Cheaters. Journal of Cryptol-
ogy 1(3), 133–138 (1989)



Related-Key Amplified Boomerang Attacks on

the Full-Round Eagle-64 and Eagle-128�

Kitae Jeong1, Changhoon Lee1, Jaechul Sung2, Seokhie Hong1,
and Jongin Lim1

1 Center for Information Security Technologies(CIST),
Korea University, Seoul, Korea

{kite,crypto77,hsh}@cist.korea.ac.kr, jilim@korea.ac.kr
2 Department of Mathematics, University of Seoul, Seoul, Korea

jcsung@uos.ac.kr

Abstract. In this paper we show that the full-round Eagle-64 and Eagle-
128 are vulnerable to the related-key amplified boomerang attack. The
attack on the full-round Eagle-64 requires 265 full-round Eagle-64 decryp-
tions with 237 related-key chosen ciphertexts, while the attack on the full-
round Eagle-128 requires about 2154.51 full-round Eagle-128 encryptions
with 294.83 related-key chosen plaintexts. These works are the first known
attacks on Eagle-64 and Eagle-128.

Keywords: Block Ciphers, Eagle-64, Eagle-128, Data-Dependent Oper-
ations, Related-key Amplified Boomerang Attack.

1 Introduction

Recently, several DDP-based ciphers have been proposed for hardware implemen-
tations with low cost, such as SPECTR-H64[4], the CIKS family - CIKS-1[13],
CIKS-128[2] and CIKS-128H[17], and Cobra family - Cobra-S128[3], Cobra-
F64a[3] and Cobra-F64b[3], Cobra-H64[16] and Cobra-H128[16]. Since all of
them use very simple key schedules in order to have no time consuming key
preprocessing, they are suitable for the applications of many networks requiring
high speed encryption in the case of frequent change of keys. However, most of
them have been cryptanalyzed because of a linearity of DDP and simply designed
key scheduling algorithms[6,7,8,9,10,11,12].

So, in order to eliminate a linearity of DDP and improve the security of DDP-
based ciphers, DDO-based ciphers, which use nonlinear CE (controlled elements)
boxes, Eagle-64 and Eagle-128 are proposed in [15,14], respectively. Eagle-64 and

� This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Advancement)
(IITA-2006-(C1090-0603-0025)) and the second author was supported by the Korea
Research Foundation Grant funded by the Korean Government(MOEHRD)(KRF-
2005-908-C00007).

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 143–157, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



144 K. Jeong et al.

Eagle-128 are 64-bit and 128-bit block ciphers with 128-bit and 256-bit secret
keys, respectively. They have better efficiency than conventional block ciphers
in both FPGA and ASIC implementations[14,15].

In this paper, however, we present the structural properties of the nonlinear
DDO used in Eagle-64 and Eagle-128, which allow us to make full-round related-
key amplified boomerang distinguishers. We then present related-key amplified
boomerang attacks on the full-round Eagle-64 and Eagle-128. The attack on the
full-round Eagle-64 requires 265 full-round Eagle-64 decryptions with 237 related-
key chosen ciphertexts, while the attack on the full-round Eagle-128 requires
about 2154.51 full-round Eagle-128 encryptions with 294.83 related-key chosen
plaintexts. These works are the first known attacks on Eagle-64 and Eagle-128.
Table 1 summarizes our results.

This paper is organized as follows; In Section 2, we briefly describe DDO-
boxes, used in Eagle-64 and Eagle-128, and the related-key amplified boomerang
attack. Section 3 describes Eagle-64, Eagle-128 and their structural properties.
In Sections 4 and 5, we present related-key amplified boomerang attacks on
Eagle-64 and Eagle-128, respectively. Finally, we conclude in Section 6.

Table 1. Results of our attacks on Eagle-64 and Eagle-128

Block Cipher Number of Attacked Rounds Data/Time Complexity

Eagle-64 8 (full) 237 RK-CC / 265 decryptions

Eagle-128 10 (full) 294.83 RK-CP / 2154.51 encryptions

RK-CC: Related-Key Chosen Ciphertexts, RK-CP: Related-Key Chosen Plaintexts

2 Preliminaries

In this section, we introduce some notations and DDO-boxes which are com-
ponents of Eagle-64 and Eagle-128 and the related-key amplified boomerang
attack. Following notations are used throughout the paper. A bit index will be
numbered from left to right, starting with bit 1. If P = (p1, p2, · · · , pn) then p1
is the most significant bit and pn is the least significant bit.

– ei,j : A binary string in which the i-th and j-th bits are one and the others
are zeroes, e.g., e1,3 = (1, 0, 1, · · ·, 0).

– ⊕ : Bitwise-XOR operation.
– ≫ : Right cyclic rotation.

2.1 DDO-Boxes

In general, a DDO-box can be performed with nonlinear controlled element (CE)
boxes, which are defined as follows.

Definition 1. Let F (X, V, Z) be a three-variable function F : {0, 1}n×{0, 1}m
2 ×

{0, 1}m
2 → {0, 1}n. F is called a n×m DDO-box, if F (X, V, Z) is a bijection for

any fixed m
2 -bit control vectors, V and Z.



Related-Key Amplified Boomerang Attacks 145

The n×m DDO-Box, denoted by Fn/m, is constructed as a superposition of the
elementary building box F2/2. As shown in Fig. 6(b) and 6(c) of Appendix A,
the F2/2 is controlled by two bits (v, z) and outputs two bits (y1, y2), represented
as a pair of two boolean functions with four variables y1 = f1(x1, x2, v, z) and
y2 = f2(x1, x2, v, z). The followings are two elementary DDO-boxes F2/2 and
F ′2/2 used in Eagle-64 and Eagle-128.

◦ F2/2 (x1, x2, v, z) = (y1, y2) ,

where y1 = vzx2 ⊕ vx2 ⊕ vx1 ⊕ zx1 ⊕ z ⊕ x2,

y2 = vzx1 ⊕ vz ⊕ vx2 ⊕ zx1 ⊕ zx2 ⊕ x1.

◦ F ′2/2 (x1, x2, v, z) = (y1, y2) ,

where y1 = vzx1 ⊕ vzx2 ⊕ vx1 ⊕ vx2 ⊕ zx1 ⊕ zx2 ⊕ z ⊕ v ⊕ x2,

y2 = vzx1 ⊕ vzx2 ⊕ vz ⊕ vx1 ⊕ vx2 ⊕ zx1 ⊕ zx2 ⊕ x1.

Fig. 6(d) of Appendix A shows the structure of Fn/n implemented as a active
cascade containing n

2 F2/2, and Fig. 6(e)((f)) and Fig. 7 of Appendix A depict
DDO-boxes F8/24(F

−1
8/24), F32/96(F

−1
32/96) and F64/192(F

−1
64/192), respectively. Be-

cause of their symmetric structure, the mutual inverses of Fn/m and F−1
n/m differ

only in the distribution of controlling bits over F2/2, e.g., F32/96(·, (V, Z)) and
F−1

32/96(·, (V ′, Z ′)) are mutual inverse when (V, Z) = (V1, Z1, V2, Z2, V3, Z3) and
(V ′, Z ′) = (V3, Z3, V2, Z2, V1, Z1).

2.2 The Related-Key Amplified Boomerang Attack

The related-key amplified boomerang attack[1,5] treats a block cipher E : {0, 1}n
×{0, 1}k → {0, 1}n as a cascade of two sub-cipher E = E1 ◦ E0. With the cho-
sen plaintext attack scenario, the related-key amplified boomerang distinguisher
works as follows. Note that the plaintext is just replaced with the ciphertext in
the chosen ciphertext attack scenario.

1. Choose two random n-bit plaintexts P, P ′ and compute two other plaintexts
P ∗ = P ⊕ α and P ′∗ = P ′ ⊕ α for a constant α.

2. With a chosen plaintext attack scenario, obtain the corresponding cipher-
texts C = EK(P ), C∗ = EK∗(P ∗), C′ = EK′(P ′) and C′∗ = EK′∗(P ′∗),
where K∗ = K ⊕ ΔK, K ′ = K ⊕ ΔK ′, K ′∗ = K ⊕ ΔK ⊕ ΔK ′ (i.e.,
K ⊕K∗ = K ′ ⊕K ′∗ = ΔK and K ⊕K ′ = K∗⊕K ′∗ = ΔK ′) and ΔK, ΔK ′

are key differences chosen by the attacker.
3. Check if C ⊕ C′ = C∗ ⊕ C′∗ = δ or C ⊕ C′∗ = C∗ ⊕ C′ = δ.

As stated, the related-key amplified boomerang distinguisher checks if two
pairs chosen from a ciphertext quartet have the same difference δ. If this dif-
ference δ holds with a higher probability than for a random cipher, then the
related-key amplified boomerang distinguisher can be applied effectively to the
underlying cipher. If the plaintext quartet (P, P ∗, P ′, P ′∗) satisfies the last δ-test,
we call such a quartet a right quartet.



146 K. Jeong et al.

0
KE

*
0
K
E

P

*P

0
KE ′

*
0
K
E

′

P′

*P′

α α

I

1
KE

*
1
K
E

1
KE ′

*
1
K
E

′

*I

I ′

*I ′
β β

γ

γ

C

*C

C′

*C′
δ

δ

Fig. 1. Related-Key Amplified Boomerang Distinguisher

The related-key amplified boomerang distinguisher can be formed by building
quartets of plaintexts (P, P ∗, P ′, P ′∗) that satisfy the following four differential
conditions.

– Differential Condition 1: P ⊕ P ∗ = P ′ ⊕ P ′∗ = α.
– Differential Condition 2: I ⊕ I∗ = I ′ ⊕ I ′∗ = β (for some β).
– Differential Condition 3: I ⊕ I ′ = γ (or I ⊕ I ′∗ = γ) (for some γ).
– Differential Condition 4: C⊕C′ = C∗⊕C′∗ = δ (or C⊕C′∗ = C∗⊕C′ = δ).

where I = E0
K(P ), I∗ = E0

K∗(P ∗), I ′ = E0
K′(P ′) and I ′∗ = E0

K′∗(P ′∗). In these
four differential conditions, α, δ, β and δ represent specific differences. Note that
differential conditions 2 and 3 imply I∗⊕I ′∗ = γ (or I∗⊕I ′ = γ) with probability
1. If these four differential conditions are satisfied, such a quartet (P, P ∗, P ′, P ′∗)
is a right quartet. See Fig. 1 for a schematic description of right quartets.

To begin with, we assume that we have m1 pairs of (P, P ∗) and m2 pairs of
(P ′, P ′∗) with difference α, where P, P ∗, P ′ and P ′∗ are encrypted with the keys
K, K∗, K ′ and K ′∗, respectively. Then about m1 · p and m2 · p pairs will satisfy
the related-key differential characteristic α→ β for E0 under the key difference
ΔK. Here, the probability p is computed as follows;

p = PrP,K

[
E0

K(P )⊕ E0
K∗(P ∗) = β| P ⊕ P ∗ = α, K ⊕K∗ = ΔK

]
.

Thus, we have about m1 ·m2 ·p2 quartets satisfying differential conditions 1 and
2. Moreover, we get I ⊕ I ′ = γ with probability 2−n. These assumptions enable
us to obtain about m1 ·m2 · 2−n · p2 quartets satisfying differential conditions
1, 2 and 3. As stated above, differential conditions 2 and 3 allow us to get
I∗⊕I ′∗ = γ with probability 1, and each of the pairs (I, I ′) and (I∗, I ′∗) satisfies
the related-key differential characteristic γ → δ for E1 with probability q. Here,
q is computed as follows.

q = PrI,K

[
E1

K(I)⊕ E1
K′(I ′) = δ| I ⊕ I ′ = γ, K ⊕K ′ = ΔK ′

]
.



Related-Key Amplified Boomerang Attacks 147

Therefore, the expected number of right quartets is about m1 ·m2 · 2−n · p2 · q2.
On the other hand, for a random cipher the expected number of right quartets
is about m1 · m2 · 2−2n. Thus, if p · q > 2−n/2, then the related-key amplified
boomerang distinguisher can distinguish E from a random cipher.

3 Eagle-64 and Eagle-128

In this section, we describe Eagle-64, Eagle-128 and their structural proper-
ties. Eagle-64 and Eagle-128 use a same iterative structure and are composed
of the round function Crypt(e) and the final transformation (FT), where e =
0(e = 1) denotes encryption(decryption) mode. The following is the r-round
encryption(e = 0) procedure of Eagle-64 and Eagle-128.

1. An input block P is divided into two subblocks PL and PR;
2. (L, R)← (PL, PR)
3. For j = 1 to r − 1 do :
◦ (L, R)← Crypt(0)

(
L, R, Q

(0)
j

)
, where Q

(0)
j is the j-th round key;

◦ Swap data subblocks : (L, R)← (R, L);

4. j = r do : (L, R)← Crypt(0)
(
L, R, Q

(0)
r

)
;

5. Perform the final transformation : (L, R)←
(
L⊕Q

(0)
r+1, R⊕Q

(0)
r+1

)
;

6. (CL, CR)← (L, R);
7. Return the ciphertext block C = (CL, CR).

In the decryption mode, P and Q
(0)
j are just replaced with C and Q

(1)
j , respec-

tively.

3.1 Description of Eagle-64

Eagle-64 encrypts 64-bit data blocks with an 128-bit secret key by iterating a
round function Crypt(e) 8 times. The round function Crypt(e) is specified in
Fig. 2(a). Here, three DDO-boxes F32/96, F

−1
32/96 and F16/16 are constructed by

using the F2/2 as depicted in Fig. 6 and Fig. 7 of Appendix A.
Two 96-bit controlling vectors V and V ′ corresponding to F32/96 and F−1

32/96
boxes are formed with the extension box E described as follows;

E(X) = V = (V1, Z1, V2, Z2, V3, Z3),

V1 = X, Z1 = X≫2, V2 = X≫6, Z2 = X≫8, V3 = X≫10, Z3 = X≫12.

The permutational involution I1 is performed as follows;

I1 = (1)(2, 9)(3, 17)(4, 25)(5)(6, 13)(7, 21)(8, 29)(10)(11, 18)(12, 26)
(14)(15, 22)(16, 30)(19)(20, 27)(23)(24, 31)(28)(32).



148 K. Jeong et al.

(a) (b)

( )e
jQ

64/192F

1I
1

64/192F −

E X
32/32F

V 1SPN −

SPN
X ′

EV ′
192

3264

32/32F
192

0I

0I

( )e
jQ

L R

L 1 2( || )R x x=

1x 2x

( )e
jQ

32/96F

1I

1
32/96F −

E X
16/16FV

96
1SPN −

16/16F
SPN
X ′

E
V ′
96

32 16

( )e
jQ

L R

L 1 2( || )R x x=

1x 2x

Fig. 2. One round of Eagle-64 (a) and Eagle-128 (b)

As shown in Fig. 3(a), SPN are composed of eight 4×4 S-boxes S0, · · · , S7. See
[15] for the detail description of S-boxes. Two permutational involutions I2, I3
are as follows;

I2 = (1)(2, 10)(3)(4, 12)(5)(6, 14)(7)(8, 16)(9)(11)(13)(15),
I3 = (1)(2, 5)(3, 9)(4, 13)(6)(7, 10)(8, 14)(11)(12, 15)(16).

Eagle-64 uses a simple key schedule. An 128-bit secret key K is divided into
four 32-bit blocks, i.e., K = (K1, K2, K3, K4) and then subkeys Ki (1 ≤ i ≤ 4)
are directly in procedure Crypt(e) as specified in Table 2.

Table 2. Key schedule of Eagle-64

Round (j) 1 2 3 4 5 6 7 8 9

Q
(0)
j (encryption) K1 K2 K3 K4 K1 K4 K2 K3 K2

Q
(1)
j (decryption) K2 K3 K2 K4 K1 K4 K3 K2 K1

Q
(0)
9 , Q

(1)
9 : round keys of the final transformation

3.2 Description of Eagle-128

Eagle-128 encrypts 128-bit data blocks with an 256-bit secret key by iterating
a round function Crypt(e) 10 times. The round function Crypt(e) is specified
in Fig. 2(b). These components are a little bit different from those of Eagle-64.
Note that two DDO-boxes F64/192 and F−1

64/192 consist of the F2/2, while the
F32/32 consists of the F ′2/2.

Given an input X , the output of E, V and V ′ corresponding to F64/192 and
F−1

64/192 boxes, are formed as follows;

E(X) = V = (V1, Z1, V2, Z2, V3, Z3),

Vi = X≫10(i−1), Zi = X≫10i−5 (i = 1, 2, 3).



Related-Key Amplified Boomerang Attacks 149

(a) (b)

2I

0S 1S 2S 3S

3I

4S 5S 6S 7S

1
0S
− 1

1S
− 1

2S
− 1

3S
− 1

4S
− 1

5S
− 1

6S
− 1

7S
−

2I

0S 1S 2S 3S

3I

4S 5S 6S 7S

Fig. 3. SPN used in Eagle-64 (a) and Eagle-128 (b)

Two permutational involutions I0 and I1 are performed as follows;

I0 = (1)(2, 34) · · · (2i− 1)(2j, 2j + 32) · · · (63)(32, 64),
I1 = (1)(2, 9)(3, 17)(4, 25)(5, 33)(6, 41)(7, 49)(8, 57)(10)(11, 18)(12, 26)

(13, 34)(14, 42)(15, 50)(16, 58)(19)(20, 27)(21, 35)(22, 43)(23, 51)
(24, 59)(28)(29, 36)(30, 44)(31, 52)(32, 60)(37)(38, 45)(39, 53)
(40, 61)(46)(47, 54)(48, 62)(55)(56, 63)(64).

SPN are defined in Fig. 3(b), in which 4×4 S-boxes S0, · · · , S7 are equal to those
used in Eagle-64 and two permutational involutions I2, I3 used in SPN, SPN−1

are performed as follows;

I2 = (1)(2, 18)(3)(4, 20)(5)(6, 22)(7)(8, 24)(9)(10, 26)(11)(12, 28)(13)
(14, 30)(15)(16, 32)(17)(19)(21)(23)(25)(27)(29)(31),

I3 = (1)(2, 5)(3, 9)(4, 13)(6)(7, 10)(8, 14)(11)(12, 15)(16)(17)(18, 21)
(19, 25)(20, 29)(22)(23, 26)(24, 30)(27)(28, 31)(32).

The key schedule of Eagle-128 is also simple. As shown Table 3, subkeys
Ki ∈ {0, 1}64 of the 256-bit secret key K = (K1, K2, K3, K4) are used directly
in procedure Crypt(e).

Table 3. Key schedule of Eagle-128

Round (j) 1 2 3 4 5 6 7 8 9 10 11

Q
(0)
j (encryption) K1 K2 K3 K4 K2 K1 K3 K4 K3 K2 K1

Q
(1)
j (decryption) K1 K2 K3 K4 K3 K1 K2 K4 K3 K2 K1

Q
(0)
11 , Q

(1)
11 : round keys of the final transformation

3.3 Properties of Eagle-64 and Eagle-128

In this subsection, we describe some properties for components of Crypt(e)

of Eagle-64 and Eagle-128, which allow us to construct related-key amplified
boomerang distinguishers. To begin with, we present several basic properties



150 K. Jeong et al.

of DDO-boxes (Property 1 and 2) and then, some differential probabilities of
S-boxes and SPN(SPN−1) (Property 3 and 4).

Property 1. Let Pr(CE) (ΔY/ΔX, (ΔV, ΔZ)) be a probability to have the output
difference ΔY , where CE ∈ {F2/2, F

′
2/2}, the input difference is ΔX and the

difference at the controlling input is (ΔV, ΔZ). Then we have the followings;

a) Pr(F2/2)((0, 0)/(0, 0), (0, 0)) = 1.
b) Pr(F2/2)(ΔY/ΔX, (1, 0)) = Pr(F2/2)(ΔY/ΔX, (0, 1)) = 2−2 for any ΔY, ΔX .
c) Pr(F ′

2/2)((0, 0)/(0, 0), (0, 0)) = 1.
d) Pr(F ′

2/2)(ΔY/ΔX, (1, 0)) = Pr(F ′
2/2)

(ΔY/ΔX, (0, 1)) = 2−2 for any ΔY, ΔX .
e) Pr(F ′

2/2)(ΔY/(0, 1), (0, 0)) = Pr(F ′
2/2)(ΔY/(1, 0), (0, 0)) = 2−1, where ΔY ∈

{(0, 1), (1, 0)}.
The above properties are also extended into the following properties.

Property 2. Let Pr(CE)(ΔY/ΔX, (ΔV, ΔZ)) be a probability to have the output
difference ΔY , where CE ∈ {Fn/m, F−1

n/m, Fn/n}, the input difference is ΔX and
the difference at the controlling input is (ΔV, ΔZ). Then we have the followings;

a) Pr(F −1
64/192)((e1)/(0), (e1,43,85, e6,48,90)) = 2−12.

b) Pr(F16/16)((0)/(0), (e1, 0)) = 2−2.
c) Pr(F32/32)((0)/(0), (e1, 0)) = 2−2.
d) Pr(F32/32)((e5,7,9,11,22,26)/(e5,7,9,11,22,26), (0, 0)) = 2−6.

Property 3. Let DPS(α → β) be a differential probability of 4 × 4 S-boxes
Si (i = 0, · · · , 7) to have the output difference β when the input difference is α.
Then we have the followings;

a) DPSi(0x0→ 0x0) = DPS−1
j (0x0→ 0x0) = 1 (i, j = 0, · · · , 7).

b) DPS1(0xE → 0x8) = DPS2(0xE → 0x8) = 3 · 2−3.
c) DPS−1

0 (0x6→ 0x8) = 2−3.

The above properties are also extended into the following properties.

Property 4. Let DPSPN (α→ β) be a differential probability of SPN to have the
output difference β when the input difference is α. Then we have the followings;

a) DPSPN (0x0→ 0x0) = DPSPN−1
(0x0→ 0x0) = 1.

b) DPSPN (0xAA00440→ 0x80000000) = 9 · 2−9.

4 Related-Key Amplified Boomerang Attack on Eagle-64

In this section,wedescribe a full-round(8 rounds) related-keyamplifiedboomerang
distinguisher of Eagle-64 and use it to attack the full-round Eagle-64. This attack
works through the decryption process of Eagle-64. We consider the case that K =
K ′∗ and K ′ = K∗ in this attack.



Related-Key Amplified Boomerang Attacks 151

Table 4. Two Related-Key Differential Characteristics of Eagle-64

Round (i) ΔIi ΔQ
(1)
i Probability

1 (e1, e1) = α e1 1

2 (0, 0) 0 1

Output (0, 0) = β · ·
3 (e1, e1) = γ e1 1

4 (0, 0) 0 1

5 (0, 0) 0 1

6 (0, 0) 0 1

7 (0, 0) 0 1

8 (0, 0) e1 2−2

FT (Round 9) (?||?, 0||?) 0 1

Output (?||?, 0||?) = δ · ·
ΔIi: the i-th round input difference, ΔQ

(1)
i : the i-th round key difference

4.1 A Full-Round Related-Key Amplified Boomerang Distinguisher
of Eagle-64

As stated before, the key schedule of Eagle-64 is very simple, i.e., round keys are
only 32-bit parts of a 128-bit secret key, and there are many useful properties
of F32/96, F−1

32/96, F16/16, SPN and SPN−1 which allow us to construct a good
related-key amplified boomerang distinguisher.

We consider the situation that we decrypt ciphertexts C = (CL, CR), C∗ =
(C∗L, C∗R), C′ = (C′L, C′R) and C′∗ = (C′∗L , C′∗R ) under keys K, K∗, K∗, K such
that α = C⊕C∗ = C′⊕C′∗ = (e1, e1), ΔK = K⊕K∗ = (0, e1, 0, 0), respectively.
Then, as shown in Table 4, we construct the first 2-round related-key differential
characteristic α → β for rounds 1-2 (E0) with probability 1(= p), where β =
(0, 0). Note that round i in Table 4 means round 9− i in encryption process of
Eagle-64 (i = 1, · · · , 8).

The second 6-round related-key differential characteristic is similar to the first
one. We decrypt intermediate values I = (IL, IR), I∗ = (I∗L, I∗R), I ′ = (I ′L, I ′R)
and I ′∗ = (I ′∗L , I ′∗R ) under keys K, K∗, K∗, K such that γ = I ⊕ I ′ = I∗ ⊕ I ′∗ =
(e1, e1) and ΔK = K ⊕ K∗ = (0, e1, 0, 0), respectively. Then we construct a
6-round related-key differential characteristic γ → δ for rounds 3-8 (E1) with
probability 2−2(= q), where δ = (?||?, 0||?) (see Table 4). Here, “?” denotes
a 16-bit unknown difference. The propagation of the difference in round 8 is
specified in Fig. 4. The input difference of the first F16/16 in the right branch
is 0. According to Property 2-b), the output difference of the first F16/16 in the
right branch is 0 with probability 2−2. Thus, according to Property 4-a), the
output difference of SPN is 0 with probability 1. So the output difference of
round 8 is (?||?, 0||?) with probability 2−2.



152 K. Jeong et al.

0

1e

32/96F

1I

1
32/96F −

E 16/16F
1SPN −

16/16F
SPN

E

0

1e
0

1e
1e

VΔ

? || ?

? || ?

? || ?

0

?

?
0

22q −=

00

0 || ?

32 16

0 0

? || ? 0 || ?

Fig. 4. Propagation of the difference in the last round (ΔV = (e1, e19, e39, e57, e75, e93))

4.2 Key Recovery Attack on the Full-Round Eagle-64

We are now ready to show how to exploit the above full-round distinguisher to
attack the full-round Eagle-64. We assume that Eagle-64 cipher uses the secret
key K and the related key K∗ with difference ΔK = K⊕K∗ = (0, e1, 0, 0). Our
attack procedure is as follows.

1. Choose a pool of 236 ciphertext pairs (Cj , C
∗
j ) with the difference α = (e1, e1)

(j = 1, · · · , 236) and construct 271 ciphertext quartets (Ci, C
∗
i , C′i, C

′∗
i ) (i =

1, · · · , 271). With a chosen ciphertext attack, (Ci, C
∗
i , C′i, C

′∗
i ) are decrypted

using the keys K, K∗, K∗, K, respectively, to get the corresponding plaintext
quartets (Pi, P

∗
i , P ′i , P

′∗
i ). We keep all these plaintexts in a table.

2. Check that Pi ⊕ P ′i = P ∗i ⊕ P ′∗i = (?||?, 0||?) for each i.
3. Guess a 32-bit subkey pair (K1, K

∗
1 ) of final transformation, where K∗1 = K1,

and do the following;
(a) Partially encrypt all plaintext quartets (Pi, P

∗
i , P ′i , P

′∗
i ) passing Step 2

with the guessed subkey pair (K1, K
∗
1 ) to get input values of F32/96, SPN

and SPN−1 in the last round. We denote these 64-bit quartets by
(Ti, T

∗
i , T ′i , T

′∗
i ), where Ti = (Ti,L, Ti,R) and Ti,L is the 32-bit input

value of F32/96 and Ti,R is the concatenation of 16-bit input value of
SPN and 16-bit input value of SPN−1 in the last round. Finally, check
that Ti ⊕ T ′i = T ∗i ⊕ T ′∗i = (e1, e1) for each i.

(b) If the number of quartets passing Step 3-(a) is greater than or equal to
6, output the guessed subkey pair (K1, K

∗
1 ) as the right 32-bit subkey

pair. Otherwise, go to Step 3.

This attack requires a pool of 236 ciphertext pairs and thus the data complex-
ity of this attack is 237 related-key chosen ciphertexts. The required memory for
this attack is about 240(= 236 · 2 · 8) memory bytes.

The time complexity of Step 1 is 237 full-round Eagle-64 decryptions. Each
ciphertext quartet can pass Step 2 with probability 2−32(= (2−16)2). So only



Related-Key Amplified Boomerang Attacks 153

239(= 271 ·2−32) ciphertext quartets pass Step 2. The time complexity of Step 3-
(a) is 265(= 232 ·237 · 12 · 18 ) full-round Eagle-64 decryptions on average. Therefore,
the time complexity of this attack is about 265(≈ 237 + 265) full-round Eagle-64
decryptions.

The probability that Step 3 outputs a wrong subkey quartet is 2−319.49(≈∑t
i=6(

(
t
i

) · (2−64·2)i · (1 − (2−64·2))t−i) · (232 − 1)). Here, t = 271 represents the
number of all possible ciphertext quartets generated by a pool of 236 ciphertext
pairs. Thus the possibility that the output of the above attack algorithm is a
wrong subkey pair is very low; Due to p · q = 2−2 in this attack, the expected
number of quartets for the right subkey is about 8(≈ 271 · 2−64 · (2−2)2) and
the probability that the number of quartets for the right subkey is no less than
6 is 0.81(≈∑t

i=6(
(

t
i

) · (2−64 · (2−2)2)i · (1 − 2−64 · (2−2)2)t−i)). Therefore, with
the success probability of 0.81, our related-key amplified boomerang attack can
break the full-round Eagle-64.

5 Related-Key Amplified Boomerang Attack on
Eagle-128

In this section, we briefly describe a related-key amplified boomerang attack on
the full-round(10 rounds) Eagle-128. Note that our attack on Eagle-128 works
through the encryption process of Eagle-128 and we consider the case that K =
K ′∗ and K ′ = K∗ in our attack.

5.1 A Full-Round Related-Key Amplified Boomerang Distinguisher
of Eagle-128

As shown in Table 5, if we encrypt plaintexts P, P ∗, P ′ and P ′∗ under keys
K, K∗, K∗, K such that α = P⊕P ∗ = P ′⊕P ′∗ = (0, e37,39,41,43,54,58), ΔK = K⊕
K∗ = (0, e1, 0, 0), respectively. Then we construct the first 4-round related-key
differential characteristic α→ β for rounds 1-4 (E0) with probability 9 · 2−29(=
p), where β = (0, 0). The second 6-round related-key differential characteristic
is constructed as follows; we encrypt intermediate values I, I∗, I ′ and I ′∗ under
keys K, K∗, K∗, K such that γ = I ⊕ I ′ = I∗ ⊕ I ′∗ = (e1, e1) and ΔK =
K ⊕ K∗ = (0, e1, 0, 0), respectively. Then we construct a 6-round related-key
differential characteristic γ → δ for rounds 5-10 (E1) with probability 2−2(= q),
where δ = (?||?, 0||?). Here, “?” denotes a 32-bit unknown difference.

5.2 Key Recovery Attack on the Full-Round Eagle-128

We assume that Eagle-128 cipher uses the secret key K and the related key K∗

with difference ΔK = K ⊕K∗ = (0, e1, 0, 0). Our attack procedure is as follows.

1. Choose a pool of 293.83 plaintext pairs (Pj , P
∗
j ) with the difference α =

(0, e37,39,41,43,54,58) (j = 1, · · · , 293.83) and construct 2186.66 plaintext quar-
tets (Pi, P

∗
i , P ′i , P

′∗
i ) (i = 1, · · · , 2186.66). With a chosen plaintext attack,



154 K. Jeong et al.

Table 5. Two Related-Key Differential Characteristics of Eagle-128

Round (i) ΔIi ΔQ
(0)
i Probability

1 (0, e37,39,41,43,54,58) = α 0 9 · 2−29

2 (e1, e1) e1 1

3 (0, 0) 0 1

4 (0, 0) 0 1

Output (0, 0) = β · ·
5 (e1, e1) = γ e1 1

6 (0, 0) 0 1

7 (0, 0) 0 1

8 (0, 0) 0 1

9 (0, 0) 0 1

10 (0, 0) e1 2−2

FT (Round 11) (?||?, 0||?) 0 1

Output (?||?, 0||?) = δ · ·
ΔIi: the i-th round input difference, ΔQ

(0)
i : the i-th round key difference

(Pi, P
∗
i , P ′i , P

′∗
i ) are encrypted using the keys K, K∗, K∗, K, respectively, to

get the corresponding ciphertext quartets (Ci, C
∗
i , C′i, C

′∗
i ). We keep all these

ciphertexts in a table.
2. Check that Ci ⊕ C′i = C∗i ⊕ C′∗i = (?||?, 0||?) for each i.
3. Guess a 64-bit subkey pair (K1, K

∗
1 ) of the final transformation, where K∗1 =

K1, and do the following;
(a) Partially decrypt all ciphertext quartets (Ci, C

∗
i , C′i, C

′∗
i ) passing Step 2

with the guessed subkey pair (K1, K
∗
1 ) to get input values of F64/192,

SPN and SPN−1 in the last round. We denote these 128-bit quartets
by (Ui, U

∗
i , U ′i , U

′∗
i ), where Ui = (Ui,L, Ui,R) and Ui,L is the 64-bit input

value of F64/192 and Ui,R is the concatenation of 32-bit input value of
SPN and 32-bit input value of SPN−1 in the last round. Finally, check
that Ui ⊕ U ′i = U∗i ⊕ U ′∗i = (e1, e1) for each i.

(b) If the number of quartets passing Step 3-(a) is greater than or equal to
6, output the guessed subkey pair (K1, K

∗
1 ) as the right 64-bit subkey

pair. Otherwise, go to Step 3.

This attack requires a pool of 293.83 plaintext pairs and thus the data com-
plexity of this attack is 294.83 related-key chosen plaintexts. The required mem-
ory for this attack is dominated by ciphertext pairs, which is approximately
298.83(= 293.83 · 2 · 16) memory bytes.

The time complexity of Step 1 is 294.83 full-round Eagle-128 encryptions. Each
plaintext quartet can pass Step 2 with the probability 2−64(= (2−32)2). So only
2122.66(= 2186.66 · 2−64) plaintext quartets pass Step 2. The time complexity
of Step 3-(a) is 2154.51(≈ 264 · 294.83 · 1

2 · 1
10 ) full-round Eagle-128 encryptions

on average. Therefore, the time complexity of this attack is about 2154.51(≈
294.83 + 2154.51) full-round Eagle-128 encryptions.



Related-Key Amplified Boomerang Attacks 155

0

64/192F

1I

1
64/192F −

E 32/32F
1SPN −

SPN

E

3264

32/32F

0I

0I

37,39,41,43,54,58e 0

1I

E 32/32F
1SPN −

SPN

E

3264

32/32F

0I

0I

0

0 0
0

0

0

0

1e

0

0
σ

σ

1e
0

0

1e 1e

1eVΔ

5,7,9,11,22,26 1,38,75,112,149,186,e V eσ = Δ =

12
4 2p −=

2
3 2p −=

6
1 2p −=

9
2 9 2p −= ⋅

29
1 2 3 4 9 2p p p p p −= ⋅ ⋅ ⋅ = ⋅

1e 1e

1e

? || ?

1e
1e

0

0

0
?

?0

VΔ

? || ?

? || ?

? || ? 0 || ?

22q −=

(a) (b)

0 0

64/192F

1
64/192F −

Fig. 5. Propagation of the difference in the first round (a) and the last round (b)

The probability that the output of the above attack algorithm is a wrong
subkey pair is 2−361.53(≈∑t

i=6(
(

t
i

)·(2−128·2)i ·(1−(2−128·2))t−i)·(264−1)). Here,
t = 2186.66 represents the number of all possible ciphertext quartets generated
by a pool of 293.83 ciphertext pairs. Because of the probability p ·q = 9 ·2−31, the
expected number of quartets for the right subkey is 8(≈ 2186.66 ·2−128 ·(9 ·2−31)2)
and the probability that the number of quartets for the right subkey is no less
than 6 is 0.81(≈ ∑t

i=6(
(

t
i

) · (2−128 · (9 · 2−31)2)i · (1 − 2−128 · (9 · 2−31)2)t−i)).
Therefore, the success rate of this attack is 0.81.

6 Conclusion

In this paper, we have presented the first known cryptanalysis results of the full-
round Eagle-64 and Eagle-128 by using related-key amplified boomerang attacks.
As summarized in Table 1, our attacks on Eagle-64 and Eagle-128 requires about
265 time complexity and 2154.51 time complexity smaller than the exhaustive
search, respectively. These results imply that Eagle-64 and Eagle-128 are still
vulnerable to the related-key attack, though Eagle-64 and Eagle-128 are designed
to advance conventional DDP-based ciphers which are vulnerable to the related-
key attack.

References

1. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–
525. Springer, Heidelberg (2005)

2. Goots, N., Izotov, B., Moldovyan, A., Moldovyan, N.: Modern cryptography: Pro-
tect Your Data with Fast Block Ciphers, Wayne, A-LIST Publish. (2003)



156 K. Jeong et al.

3. Goots, N., Moldovyan, N., Moldovyanu, P., Summerville, D.: Fast DDP-Based
Ciphers: From Hardware to Software. In: 46th IEEE Midwest International Sym-
posium on Circuits and Systems (2003)

4. Goots, N., Moldovyan, A., Moldovyan, N.: Fast Encryption Algorithm Spectr-
H64. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.) MMM-ACNS 2001.
LNCS, vol. 2052, pp. 275–286. Springer, Heidelberg (2001)

5. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced
Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

6. Ko, Y., Hong, D., Hong, S., Lee, S., Lim, J.: Linear Cryptanalysis on SPECTR-
H64 with Higher Order Differential Property. In: Gorodetsky, V., Popyack, L.J.,
Skormin, V.A. (eds.) MMM-ACNS 2003. LNCS, vol. 2776, pp. 298–307. Springer,
Heidelberg (2003)

7. Ko, Y., Lee, C., Hong, S., Lee, S.: Related Key Differential Cryptanalysis of Full-
Round SPECTR-H64 and CIKS-1. In: Wang, H., Pieprzyk, J., Varadharajan, V.
(eds.) ACISP 2004. LNCS, vol. 3108, pp. 137–148. Springer, Heidelberg (2004)

8. Ko, Y., Lee, C., Hong, S., Sung, J., Lee, S.: Related-Key Attacks on DDP based
Ciphers: CIKS-128 and CIKS-128H. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT 2004. LNCS, vol. 3348, pp. 191–205. Springer, Heidelberg (2004)

9. Lee, C., Hong, D., Lee, S., Lee, S., Yang, H., Lim, J.: A Chosen Plaintext Linear
Attack on Block Cipher CIKS-1. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.)
ICICS 2002. LNCS, vol. 2513, pp. 456–468. Springer, Heidelberg (2002)

10. Lee, C., Kim, J., Hong, S., Sung, J., Lee, S.: Related-Key Differential Attacks on
Cobra-S128, Cobra-F64a, and Cobra-F64b. In: Dawson, E., Vaudenay, S. (eds.)
Mycrypt 2005. LNCS, vol. 3715, pp. 245–263. Springer, Heidelberg (2005)

11. Lee, C., Kim, J., Sung, J., Hong, S., Lee, S.: Related-Key Differential Attacks
on Cobra-H64 and Cobra-H128. In: Smart, N.P. (ed.) Cryptography and Coding.
LNCS, vol. 3796, pp. 201–219. Springer, Heidelberg (2005)

12. Lu, J., Lee, C., Kim, J.: Related-Key Attacks on the Full-Round Cobra-F64a and
Cobra-F64b. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp.
95–110. Springer, Heidelberg (2006)

13. Moldovyan, A., Moldovyan, N.: A cipher Based on Data-Dependent Permutations.
Journal of Cryptology 15(1), 61–72 (2002)

14. Moldovyan, N., Moldovyan, A., Eremeev, M., Sklavos, N.: New Class of Crypto-
graphic Primitives and Cipher Design for Networks Security. International Journal
of Network Security 2(2), 114–225 (2006)

15. Moldovyan, N., Moldovyan, A., Eremeev, M., Summerville, D.: Wireless Networks
Security and Cipher Design Based on Data-Dependent Operations: Classification
of the FPGA Suitable Controlled Elements. In: Proceedings of the CCCT’04, vol.
VII, pp. 123–128, Texas, USA (2004)

16. Sklavos, N., Moldovyan, N., Koufopavlou, O.: High Speed Networking Security:
Design and Implementation of Two New DDP-Based Ciphers. In: Mobile Networks
and Applications-MONET, vol. 25(1-2), pp. 219–231. Kluwer Academic Publishers,
Mobile Networks and Applications-MONET (2005)

17. Sklavos, N., Moldovyan, N., Koufopavlou, O.: A New DDP-based Cipher CIKS-
128H: Architecture, Design & VLSI Implementation Optimization of CBC-
Encryption & Hashing over 1 GBPS. In: proceedings of The 46th IEEE Midwest
Symposium on Circuits & Systems, December 27-30, Cairo, Egypt (2003)



Related-Key Amplified Boomerang Attacks 157

A DDO-boxes

1 2( , , , )nX x x x= L

1 2 / 2( , , , )mV v v v= L

/ 1 2( ) ( , , , )n m nY F X y y y= = L

v
1x 2x

z
1y 2y

1f 2f

1x 2x

1y 2y

v
z

(a) (b) (c)

1 1,V Z

2 2,V Z

3 3,V Z 1 1,V Z

2 2,V Z

3 3,V Z

(f)(e)

2/ 2F1v
1x 2x

1z

1y 2y

(d)

2v
2z

3y 4y

3x 4x

L / 2nv
/ 2nz

1ny − ny

1nx − nx

1 2 / 2( , , , )nZ z z z= L

1 2 / 2( , , , )nV v v v= L

1 2 / 2( , , , )mZ z z z= L

1x 2x 7x 8x

1y 2y 7y 8y

3x 4x 5x 6x

3y 4y 5y 6y 1y 2y 7y 8y3y 4y 5y 6y

1x 2x 7x 8x3x 4x 5x 6x

2/ 2F 2/ 2F

2/ 2F 2/ 2F 2/ 2F 2/ 2F

2/ 2F 2/ 2F 2/ 2F 2/ 2F

2/ 2F 2/ 2F 2/ 2F 2/ 2F

2/ 2F 2/ 2F 2/ 2F 2/ 2F

2/ 2F 2/ 2F 2/ 2F 2/ 2F

2/ 2F 2/ 2F 2/ 2F 2/ 2F

2/ 2F/n mF

Fig. 6. (a) Fn/m, (b) F2/2, (c) F2/2, (d) Fn/n, (e) F8/24 and (f) F −1
8/24

(a)

8/ 24F 8/ 24F 8/ 24F 8/ 24F
1x L 8x 25x 32x

1 1,V Z
2 2,V Z
3 3,V Z

(b)

1
8/ 24F −

1 1,V Z
2 2,V Z
3 3,V Z1

8/ 24F − 1
8/ 24F − 1

8/ 24F −

8/ 24F
1 2 64( , , , )X x x x= L

1 2 64( , , , )Y y y y= L

8/ 24F
1 1,V Z
2 2,V Z
3 3,V Z

(c)

L

1 2 64( , , , )X x x x= L

1 2 64( , , , )Y y y y= L
1 1,V Z
2 2,V Z
3 3,V Z

L1
8/ 24F − 1

8/ 24F −

(d)

1y L 8y

L

25y 32yL

1y L 8y

1x L 8x

25y 32yL

25x 32xL

1x L 8x

1y L 8y

57x 64xL

57y 64yL
57x 64xL

57y 64yL

1x L 8x

1y L 8y

9x L 16x 17x L 24x

9y L 16y 17y L 24y

9x L 16x 17x L 24x

9y L 16y 17y L 24y

Fig. 7. (a) F32/96, (b) F −1
32/96, (c) F64/192 and (d) F −1

64/192



Analysis of the SMS4 Block Cipher

Fen Liu1, Wen Ji1, Lei Hu1, Jintai Ding2,
Shuwang Lv1, Andrei Pyshkin3,�, and Ralf-Philipp Weinmann3

1 State Key Laboratory of Information Security,
Graduate School of Chinese Academy of Sciences,

Beijing 100049, China
2 Department of Mathematical Sciences,

University of Cincinnati,
Cincinnati, OH, 45221, USA

3 Fachbereich Informatik,
Technische Universität Darmstadt,

64289 Darmstadt, Germany

Abstract. SMS4 is a 128-bit block cipher used in the WAPI standard
for providing data confidentiality in wireless networks. In this paper we
investigate and explain the origin of the S-Box employed by the cipher,
show that an embedded cipher similar to BES can be obtained for SMS4
and demonstrate the fragility of the cipher design by giving variants that
exhibit 264 weak keys.

We also show attacks on reduced round versions of the cipher. The
best practical attack we found is an integral attack that works on 10
rounds out of 32 rounds with a complexity of 218 operations; it can be
extended to 13 rounds using round key guesses, resulting in a complexity
of 2114 operations and a data complexity of 216 chosen pairs.

Keywords: block ciphers, cryptanalysis, UFN, algebraic structure.

1 Introduction

The Wired Authentication and Privacy Infrastructure (WAPI) standard is an
alternative to the security mechanisms for wireless networks that are specified
in IEEE 802.11i. It has been submitted to the International Standards Orga-
nization (ISO) by the Chinese Standards Association (SAC). Although it was
subsequently rejected by the ISO in favour of IEEE 802.11i, WAPI still is offi-
cially mandated for securing wireless networks within China.

For protecting data packets, the WAPI standard references a 128-bit block
cipher called SMS4 which initially was kept secret. In January 2006, the spec-
ification of this block cipher however was declassified and published [6]. Other
than a differential power attack [11] in a Chinese journal, no analysis of this
cipher has appeared in the open literature.

This document sheds light on the design of this block cipher and present a
preliminary analysis of its strength against cryptanalytic attacks.
� Supported by a stipend of the Marga und Kurt-Möllgaard-Stiftung.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 158–170, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Analysis of the SMS4 Block Cipher 159

In Section 2 we give a description of the SMS4 cipher. In Section 3 we show
how the SMS4 S-Box can be derived algebraically and how an embedding of
SMS4 similar to the Big Encryption System (BES) can be obtained. Section
4 describes an practical integral attack on a 10-round version of SMS4 that
can be extended to a theoretical attack on 13 rounds. Our results in Section
5 demonstrate the fragility of SMS4; we show that modifications of the round
constants can lead to a large subspace of weak keys. Finally, in Section 6 we
conclude this paper and summarize our findings.

1.1 Notation

In the following, we agree on the conventions used throughout the rest of this
paper.

Since all operations of the cipher are defined on either 8-bit, 32-bit or 128-bit
quantities, we shall use the following terminology: 8-bit values will simply be
called bytes, 32-bit values words and 128-bit values will be called blocks. Word
and block values shall be considered to be in big-endian order, i.e. the most-
significant bit is in the leftmost position when writing the value as a bitstring.

Let w <<< r denote a cyclic shift of the word w by r positions to the left.
Sometimes we will need to write down blocks or words in which certain bytes
are unknown. In these cases the symbol � shall denote bytes with unknown
values.

To concatenate multiple byte values into a word and multiple word values
into a block, we define a vector of bytes or words to be equivalent to a word
respectively block value. To access individual bit ranges of a value w we shall
use the notation w[i...j] to extract bits i to j, e.g. for w ∈ Z232 the expression
w[7...0] denotes the lowestmost byte of the word value w.

2 Description of the SMS4 Block Cipher

In this section we will give a top-down description of the SMS4 block cipher.
SMS4 is a 32 round unbalanced Feistel network; both the block and the key

size are 128 bits. Following the terminology of [10], the cipher is a homogeneous,
complete, source-heavy (96:32) UFN with 8 cycles.

Let the internal state be denoted by S = (S1, S2, S3, S4) where Si ∈ GF (2)32.
The round keys of the cipher shall be denoted by Ki ∈ GF (2)32.

Define the linear diffusion function λ as

λ : GF (2)32 → GF (2)32

x �→ x⊕ (x<<<2)⊕ (x<<<10)⊕ (x<<<18)⊕ (x<<<24)

and the brick-layer function γ applying an 8-bit S-Box to the input 4 times in
parallel as:

γ : GF (2)32 → GF (2)32

x �→ (ρ(x[31...24]), ρ(x[23...16]), ρ(x[15...8]), ρ(x[7...0]))



160 F. Liu et al.

The F -function then simply is the composition of these two functions

F : GF (2)32 ×GF (2)32 → GF (2)32

(X, Ki)→ λ(γ(X ⊕Ki))

and the round function R that maps Si to Si+1 under the round key Ki as:

R : GF (2)128 ×GF (2)32 → GF (2)128

(S1, S2, S3, S4, Ki) �→ (S2, S3, S4, S1 ⊕ F (S2 ⊕ S2 ⊕ S3, Ki))

The key schedule. of the cipher operates in a manner similar to the encryption
function. In total, 32 round key words ki are generated from a 128-bit cipher
key. For the key schedule a function F ′ is used that is almost identical to the
round function; the only thing changed is the linear transform. Instead of λ, the
following mapping λ′ is used:

λ′ : GF (2)32 → GF (2)32

x �→ x⊕ (x<<<13)⊕ (x<<<23)

In order to obtain the round keys, the cipher key K is first masked with a
so-called system parameter

T = 0xA3B1BAC656AA3350677D9197B27022DC

as follows:

k−4 = K[127..96] ⊕ T[127..96]

k−3 = K[95..64] ⊕ T[95..64]

k−2 = K[63..32] ⊕ T[63..32]

k−1 = K[31..0] ⊕ T[31..0]

The reasoning behind the masking of the cipher key is not explained in the
design document. The round key of the i-th round is computed as follows:

ki = ki−4 ⊕ λ′(γ(ki−3 ⊕ ki−2 ⊕ ki−1 ⊕ κi))

where κi are key constants. The key constants κi are of the form

κi = ((28 · i), (28 · i + 7), (28 · i + 14), (28 · i + 21))

where each component of the above vector is a byte, the operators · and + denote
the multiplication respectively addition in Z256.



Analysis of the SMS4 Block Cipher 161

i,0 Si,1 Si,2 Si,3

Si+1,0 Si+1,2 Si+1,3Si+1,1

F K i

S

Fig. 1. One round of the SMS4 Unbalanced Feistel Network

3 Algebraic Structure of SMS4

In the SMS4 specification [6], the origin of the S-box is not explained. All the
reader is left with is a table with 256 entries. However, we had a hunch that the
designers of the cipher had chosen an S-Box design similar to Rijndael; namely
that they used an inversion-based mapping. We were confirmed when we looked
at the difference distribution table and the linear charateristics of the SMS4
S-Box. These fit our assumption.

3.1 The SMS4 S-Box

We initially assumed the S-Box to be either of the form

S(x) = I(x) · A + C, (1)

or of the form
S(x) = I(x · A + C)

where I is the patched inversion over GF (28). The matrix A ∈ GL(8, 2), the
vector C ∈ GF (2)8 and the irreducible polynomial defining the finite field are
all undetermined. Experimentally we found that for none of the 30 irreducible
polynomials of degree 8, the above expression could be fulfilled for all values
of the SMS4 S-Box. However, for a simple permutation of the output bits, we
obtained a significant amount of coincident entries between an assumed S-Box
of the structure of equation 3.1 and the actual SMS4 S-Box.

The, next idea was to test S-Boxes of the form

S(x) = I(x ·A1 + C1) · A2 + C2, (2)

with A1, A2A ∈ GL(8, 2) and C1, C2 ∈ GF (2)8. An exhaustive search for A1 and
C1 is impractical, because the total number of the 8× 8 invertible matrixes is

N =
7∏

i=0

(28 − 2i) ≈ 5.348× 1018 ≈ 262.



162 F. Liu et al.

Because the affine matrix in the algebraic expression of the S-Box in AES is
a cyclic matrix, we decided to restrict ourselves to cyclic matrices for A1 and
A2. Cyclic matrices are determined by their first row. Since there are 255 non-
zero binary cyclic 8 × 8 matrices, we get a total complexity of less than 28 ×
28 × 28 × 30 < 229, which is practical. In fact, a cyclic matrix with first row
(a0, a1, · · · , an−1) is a invertible matrix if and only if the polynomial a0 + a1x +
· · ·+ an−1x

n−1 and xn − 1 are relatively prime. If n = 8, this condition is equal
to a0 + a1 + · · · + an−1 �= 0. Thus there exist only 27 invertible cyclic 8 × 8
matrices, causing the search complexity to decrease to less than 227.

Our experiments finally validated the structure of equation 2. We successfully
obtained a tuple (A1, A2, C1, C2) for which all elements of the S-Box all satisfy
equation 2. The irreducible polynomial is

f(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1,

the cyclic matrices in the algebraic expression are

A1 = A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1
1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and the row vectors are

C1 = C2 = (1, 1, 0, 0, 1, 0, 1, 1).

The results presented can also be obtained with less computational effort
by using the Affine Equivalence Algorithm for S-Boxes described in [2]. This
algorithm in turn is based on the To and Fro algorithm for the isomorphism of
polynomials [8].

3.2 Embedding SMS4

Similar to the embedding defined by Murphy and Robshaw for AES–128 [7], we
can embed SMS4 into a more elegant and structured cipher ESMS4 in which all
operations are performed over the finite field GF (28). In this section we will show
how this can be done. First note that the description we give is probabilistic,
since we do not allow the inversion of the value 0 to occur. The overall number
of S-Boxes in the cipher and key schedule is 256, henceforth the probability that
an arbitrary plaintext can be encrypted under an arbitrary key without causing
a zero inversion can be approximated by

( 255
256

)256 ≈ 1/e ≈ 36.7%.



Analysis of the SMS4 Block Cipher 163

First of all, let F denote the field ESMS4 will be defined over:

F = GF (28) =
GF (2)[x]

x8 + x7 + x6 + x5 + x4 + x2 + 1
= GF (2)(θ)

The state space, the key space and the message space of ESMS4 then are F 128,
the round key space is F 32. In accordance with [7] we define a vector conjugate
mapping φ that maps an element a ∈ F to an 8-tuple a ∈ F 8

φ(a) =
(
a20

, a21
, a22

, a23
, a24

, a25
, a26

, a27
)

and analogously maps a vector A ∈ Fn to A′ ∈ F 8n. The inverse of φ, Im(φ)
shall be called extraction mapping. For a GF (2)-linear function L operating
on a byte b := (b8, b7, b6, b5, b4, b3, b2, b1) we obtain a F -linear function L that
performs the equivalent operation on the vector φ(b) by first computing the
coefficients β1, . . . , β8 of the the linearized polynomial

L(b) =
8∑

k=1

βka2k−1

and then computing the matrix ML = (αi,j) with αi,j = β2i−1

1+((j−i) mod 8). The
function L then is defined as L : F 8 → F 8, v →ML ·v. We call ML the linearized
polynomial matrix form of L.

The S-Box layer. From Section 3.1 we know that the S-Box of SMS4 can be
decomposed into the form A◦ I ◦A, with A an affine-linear function over GF (2).
Analogously, for ESMS4, the S-Box operation can be performed by A ◦ I ◦ A,
with A being an affine-linear transform over F and I being the componentwise
inversion of elements on a vector v ∈ F 8. The linear part of A can be expressed
by multiplication of the linearized polynomial matrix form MA ∈ F 8×8 of the
linear part of A, whilst the constant can simply be embedded using φ. We define
C̃ = (φ(C1), φ(C1), φ(C1), φ(C1)) and Ã = Diag4(MA).

The linear transform λ. Let P ∈ GF (2)32×32 be the permutation matrix
such that for v ∈ GF (2)32, the product P · v corresponds to a cyclic shift of
elements of v by one position to the left. This matrix can be decomposed into
the following form

P =

⎛

⎜
⎜
⎝

M1 0 0 M2
M2 M1 0 0
0 M2 M1 0
0 0 M2 M1

⎞

⎟
⎟
⎠ , M1, M2 ∈ GF (2)8×8

By computing the linearized polynomial matrix forms for M1, M2

M̃1 = L(M1), M̃2 = L(M2)



164 F. Liu et al.

we obtain the following matrix that performs the equivalent action on a 32-tuple
of elements representing 4 bytes of the state:

P =

⎛

⎜
⎜
⎜
⎝

M̃1 0 0 M̃2

M̃2 M̃1 0 0
0 M̃2 M̃1 0
0 0 M̃2 M̃1

⎞

⎟
⎟
⎟
⎠

, M̃1, M̃2 ∈ F 8×8

Then the transformation λ is equivalent to the multiplication from the left
with the matrix

Λ1 = P 0 + P 2 + P 10 + P 18 + P 24

whilst for λ′ the corresponding matrix is

Λ2 = P 0 + P 13 + P 24.

The round function. The F-function function of the cipher ESMS4 can be
expressed as:

F̃ : F 32 × F 32 → F 32,

(X̃, K̃) �→ Λ1 ·
(
Ã · I

(
Ã ·

(
X̃ + K̃

)
+ C̃

)
+ C̃

)

The key schedule. The key generation function of ESMS4 is defined in the
same way as the F-function except for replacing Λ1 by Λ2.

The existence of the embedding stems from the fact that SMS4 uses only
GF (2)-linear operations and an inversion over GF (28). Since the number of S-
Boxes per cipher round is only a quarter of that of BES–128, we expect ESMS4
to be more amenable to experimenting with algebraic attacks without resorting
to scaling down the field or block size.

4 A Reduced-Round Attack Using Integrals

Integral cryptanalysis is a powerful cryptanalytic method that was first used to
break a reduced version of SQUARE [3], a predecessor of Rijndael. In following
we will use the notation of [5]. We will use [A1, A2, A3, A4] to denote a block and
(a1, a2, a3, a4) to denote a word.

Our attack is based on the following difference pairs for the round function of
SMS4:

[Δ, 0, 0, 0]→ [0, 0, 0, Δ] [0, 0, Δ, Δ]→ [0, Δ, Δ, 0]
[0, Δ, Δ, 0]→ [Δ, Δ, 0, 0] [0, Δ, 0, Δ]→ [Δ, 0, Δ, 0]

All these difference pairs are of probability one.



Analysis of the SMS4 Block Cipher 165

Table 1. Propagation of the 8 round integral

round no. (r) Sr,1 Sr,2 Sr,3 Sr,4

0 (C,C,C,A) (C,C,C,A) (C,C,C,A) (C,C,C,C)

1 (C,C,C,A) (C,C,C,A) (C,C,C,C) (C,C,C,A)

2 (C,C,C,A) (C,C,C,C) (C,C,C,A) (C,C,C,A)

3 (C,C,C,C) (C,C,C,A) (C,C,C,A) (C,C,C,A)

4 (C,C,C,A) (C,C,C,A) (C,C,C,A) (A,A,A,A)

5 (C,C,C,A) (C,C,C,A) (A,A,A,A) (S,S,S,S)

6 (S,S,S,S) (�,�,�,�)

7 (S,S,S,S) (�,�,�,�)

8 (S,S,S,S) (�,�,�,�)

Let P = [P1, P2, P3, P4] be a plaintext. Then the following collection of 256
plaintexts will allow us to attack the 9th round key of SMS4:

[P1 ⊕ δ, P2 ⊕ δ, P3 ⊕ δ, P4],

where δ ranges from 0 to 255.
A trace of this integral through the cipher is depicted in Table 1. Each letter C

denotes a distinct constant byte value whilst the letter A ranges over all possible
byte values. In our case, the letter S means that the sum of all bytes after the
γ function is zero. This integral will allow us to determine four key bytes of the
last round key.

Moreover, since

γ(S8,2 ⊕ S8,3 ⊕ S8,4 ⊕Ki) = λ−1(S8,1 ⊕ S9,4),

each key byte can be found independently.
Following the ideas of [4], this attack can be extended by an additional round

at the beginning using the following integral:

Δ (C, C, C, A) (C, C, C, A) (C, C, C, A)

where Δ = λ(0, 0, 0, Ã) ⊕ (C, C, C, C); with Ã independently ranging over all
byte values. Using a structure of 216 plaintexts allows us to parallelly determine
all bytes of the the 10th round key. We have implemented and experimentally
verified this attack.

The attack can be extended without increasing the data complexity by guess-
ing additional round keys. A theoretical attack on 13 rounds is thus possible with
a complexity of about 2114 cipher operations. Generic attacks on Feistel networks
with the structure of SMS4 (96:32 UFN) work on a significantly smaller number
of rounds, namely up to 7 rounds [9,10].

5 Weak Keys for Modified Round Key Constants

In this section we show that for slightly modified round key constants in the key
schedule, the cipher will exhibit a class of 264 weak keys. For all of these keys, the



166 F. Liu et al.

cipher exhibits an invariant property over an arbitrary number of rounds. This
invariance can be used to effectively distinguish the encryption function from
a random permutation. Once the use of a weak key is detected, the key search
space for an attacker of course shrinks from 2128 to 264. The property shows an
unexpected fragility of the cipher design and in our opinion casts serious doubt
on its strength.

Definition 1. Let a ∈ GF (2)2n. If a = b||b for an element b ∈ GF (2)n, then
we say that the element a has a 1/2-repetition property; alternatively a may be
called 1/2-repeated.

Theorem 1. Let (s1, . . . , sk) ∈ Z
k be a vector of shift offsets. Any 2n-bit func-

tion g : GF (2)2n → GF (2)2n of the form

x �→
k⊕

i=1

(x<<<si)

preserves the 1/2-repetition property.

Proof. Obviously the invariance condition is preserved under addition if it holds
for all elements of the sum. By induction the invariance condition for n-bit cyclic
shifts can be derived for 1-bit shits. �

Modifying all round key constants κi to be 1/2-repeated, we obtain 264 cipher
keys for which all round keys possess the 1/2-repetition property; note that
due to the masking of the cipher key with the system parameter in the key
generation the 264 actual cipher keys are not 1/2-repeated though. Both the
round key function and the round function preserve the invariance for these
keys. From this follows that for plaintexs in which each word is 1/2-repeated, we
obtain ciphertexts that also are 1/2-repeated. Henceforth, these cipher variants
are insecure.

6 Conclusions

We have given a detailed analysis of SMS4. Its design seems to be clearly in-
fluenced by Rijndael, although the UFN structure makes for a much simpler
implementation. We decomposed the S-Box into two affine linear transforms
and an inversion and have given an embedding to the cipher similar to BES. An
practical attack on 10 rounds of SMS4 has been demonstrated and the fragility
of the key schedule has been exposed. We think that our results are only a first
step in the cryptanalysis of SMS4 and that further improvements can be made.
Especially the point of algebraic cryptanalysis – for which this cipher is an ex-
cellent target – has not been addressed in this paper. This will be discussed in
a future paper.



Analysis of the SMS4 Block Cipher 167

References

1. Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002)

2. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A Toolbox for Cryptanal-
ysis: Linear and Affine Equivalence Algorithms. In: Biham, E. (ed.) Advances in
Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidel-
berg (2003)

3. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

4. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2000)

5. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

6. Beijing Data Security Technology Co. Ltd. Specification of SMS4 (in Chinese)
(2006) http://www.oscca.gov.cn/UpFile/,21016423197990.pdf

7. Murphy, S., Robshaw, M.J.B.: Essential Algebraic Structure within the AES. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg
(2002)

8. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of
polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–
200. Springer, Heidelberg (1998)

9. Patarin, J., Nachef, V., Berbain, C.: Generic Attacks on Unbalanced Feistel
Schemes with Contracting Functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 396–411. Springer, Heidelberg (2006)

10. Schneier, B., Kelsey, J.: Unbalanced Feistel Networks and Block Cipher Design.
In: Gollmann, D. (ed.) Fast Software Encryption. LNCS, vol. 1039, pp. 121–144.
Springer, Heidelberg (1996)

11. Zhang, L., Wu, W.: Difference Fault Attack on the SMS4 Encryption Algorithm
(in Chinese). Chinese Journal of Computers 29(9) (2006)

Appendix A: The SMS4 S-Box

Below you find the entries of the SMS4 S-Box in hexadecimal notation. For
example, for an input of 0xef the corresponding output can be read off in the
row labelled with the value e and the column labelled with f: 0x84.

http://www.oscca.gov.cn/UpFile/, 21016423197990.pdf


168 F. Liu et al.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 d6 90 e9 fe cc e1 3d b7 16 b6 14 c2 28 fb 2c 05
1 2b 67 9a 76 2a be 04 c3 aa 44 13 26 49 86 06 99
2 9c 42 50 f4 91 ef 98 7a 33 54 0b 43 ed cf ac 62
3 e4 b3 1c a9 c9 08 e8 95 80 df 94 fa 75 8f 3f a6
4 47 07 a7 fc f3 73 17 ba 83 59 3c 19 e6 85 4f a8
5 68 6b 81 b2 71 64 da 8b f8 eb 0f 4b 70 56 9d 35
6 1e 24 0e 5e 63 58 d1 a2 25 22 7c 3b 01 21 78 87
7 d4 00 46 57 9f d3 27 52 4c 36 02 e7 a0 c4 c8 9e
8 ea bf 8a d2 40 c7 38 b5 a3 f7 f2 ce f9 61 15 a1
9 e0 ae 5d a4 9b 34 1a 55 ad 93 32 30 f5 8c b1 e3
a 1d f6 e2 2e 82 66 ca 60 c0 29 23 ab 0d 53 4e 6f
b d5 db 37 45 de fd 8e 2f 03 ff 6a 72 6d 6c 5b 51
c 8d 1b af 92 bb dd bc 7f 11 d9 5c 41 1f 10 5a d8
d 0a c1 31 88 a5 cd 7b bd 2d 74 d0 12 b8 e5 b4 b0
e 89 69 97 4a 0c 96 77 7e 65 b9 f1 09 c5 6e c6 84
f 18 f0 7d ec 3a dc 4d 20 79 ee 5f 3e d7 cb 39 48

Appendix B: Equivalent Forms of the S-Box

Just as for the Rijndael S-Box [1], different equivalent representations of the
SMS4 S-Box can be obtained. The S-Box constructed by equation 2 in Section
3.1 is a composition of two affine transformations and a mapping I in the vector
space. I is a mapping in the vector space obtained from an inversion mapping in
GF (28), it is related to the chosen basis of the finite field. The basis defining I in
equation 2 is a polynomial basis {β7, · · · , β, 1} (β is a root of the polynomial),
which is defined by the irreducible polynomial x8 + x7 + x6 + x5 + x4 + x2 + 1.

Below we study the equivalent forms of algebraic expression of the S-Box,
namely we find other algebraic expressions when the inversion mapping of the
finite field is represented in different bases. We do not limit ourselves to polyno-
mial bases, we consider general bases of finite fields.

If {αn−1, · · · , α1, α0} and {βn−1, · · · , β1, β0} are two bases of GF (2n) over
GF (2), there must be a n × n invertible matrix M that satisfies the equation
below ⎛

⎜
⎝

αn−1
...

α0

⎞

⎟
⎠ = M

⎛

⎜
⎝

βn−1
...

β0

⎞

⎟
⎠ .

M is a transformation matrix from the basis {βn−1, · · · , β1, β0} to the basis
{αn−1, · · · , α1, α0}.
Lemma 1. Let I1, I2 : GF (2)n → GF (2)n be mappings corresponding to I un-
der the basis {αn−1, · · · , α1, α0} and {βn−1, · · · , β1, β0} respectively. Then

I1(x) = I2(x ·M) ·M−1



Analysis of the SMS4 Block Cipher 169

Proof. For any x ∈ GF (2n), if the denotation of x under two bases are

x = (xn−1, · · · , x0)

⎛

⎜
⎝

αn−1
...

α0

⎞

⎟
⎠ = (yn−1, · · · , y0)

⎛

⎜
⎝

βn−1
...

β0

⎞

⎟
⎠ ,

then
(xn−1, · · · , x0) ·M = (yn−1, · · · , y0). (3)

While

I1(xn−1, · · · , x0)

⎛

⎜
⎝

αn−1
...

α0

⎞

⎟
⎠ = I(x) = I2(yn−1, · · · , y0)

⎛

⎜
⎝

βn−1
...

β0

⎞

⎟
⎠ ,

namely that

I1(xn−1, · · · , x0) ·M

⎛

⎜
⎝

βn−1
...

β0

⎞

⎟
⎠ = I2(yn−1, · · · , y0)

⎛

⎜
⎝

βn−1
...

β0

⎞

⎟
⎠ ,

so
I1(xn−1, · · · , x0) ·M = I2(yn−1, · · · , y0).

Substituting equation 3 into the formula above, we obtain

I1(xn−1, · · · , x0) ·M = I2((xn−1, · · · , x0) ·M),

namely for any x ∈ GF (2)n,

I1(x) = I2(x ·M) ·M−1

Corollary 1. Select {β7, · · · , β1, β0} as the polynomial basis defined by the ir-
reducible polynomial x8 + x7 + x6 + x5 + x4 + x2 + 1. Let {α7, · · · , α1, α0} be
another polynomial basis of GF (28) and M be the transformation matrix from
{β7, · · · , β1, β0} to {α7, · · · , α1, α0}. Then under the basis {α7, · · · , α1, α0}, the
algebraic expression of the SMS4 S-Box is

S(x) = I1(xA1M + C1M)M−1A2 + C2. (4)

For convenience, A1, A2 of the equation 2 are called generator matrices of the
S-Box. According to Corollary 1, under the basis {αn−1, · · · , α0} the generator
matrices of the S-Box are A1M and M−1A2.

There are 30 irreducible polynomials of degree 8 over GF (2). Every irreducible
polynomial can define 8 different bases. Therefore there are 30× 8 = 240 alge-
braic expressions of the S-Box with different generator matrices. If we do not
limit ourselves to polynomial bases, the generator matrix A1M in the algebraic
expression of the S-Box can be any invertible matrix (correspondingly, M−1A2
is another matrix).



170 F. Liu et al.

Next we will prove that if we limit ourselves to cyclic matrices for A1, A2
under a polynomial basis, the basis must be the one mentioned in the previous
section. In this sense the algebraic expression presented in 3.1 is the simplemost
form that can be obtained.

Proposition 1. If restrict A1, A2 to be cyclic matrices, the algebraic expression
of the S-Box (A1, A2, C1, C2) presented in Section 3.1 is uniquely defined.

Proof. According to Corollary 1, for the other tuple

S(x) = I1(x · AT
1 ·M + C1 ·M) ·M−1 ·AT

2 + C2. (5)

holds. Assume that (AT
1 ·M) and (M−1 ·AT

2 ) are cyclic matrices, while A1, A2 are
cyclic matrices as well. Then MT and M must also be cyclic matrixes, namely
we get

⎛

⎜
⎝

αn−1

...
1

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c0 c1 c2 c3 c4 c5 c6 c7
c7 c0 c1 c2 c3 c4 c5 c6
c6 c7 c0 c1 c2 c3 c4 c5
c5 c6 c7 c0 c1 c2 c3 c4
c4 c5 c6 c7 c0 c1 c2 c3
c3 c4 c5 c6 c7 c0 c1 c2
c2 c3 c4 c5 c6 c7 c0 c1
c1 c2 c3 c4 c5 c6 c7 c0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

βn−1

...
1

⎞

⎟
⎠

We then can get a system of linear equations,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 = c0 + c1β + · · ·+ c7β
7

α = c0β + · · ·+ c6β
7 + c7

...
α7 = c0β

7 + c1 + · · ·+ c6β
5 + c7β

6

which can be transformed into:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α− β = c7(1− β8)
α(α − β) = c6(1− β8)
...
α6(α− β) = c1(1 − β8)

From this follows that

α =
c6

c7
=

c5

c6
=

c4

c5
=

c3

c4
=

c2

c3
=

c1

c2
.

Since we know that (α7, · · · , α, 1)T is a polynomial basis, it is impossible for α to
satisfy the above form. Hence our initial assumption is wrong. From this follows
that for generator matrices limited to cyclic matrices, the generator tuple of the
SMS4 S-Box is unique.



Forgery Attack to an Asymptotically Optimal

Traitor Tracing Scheme

Yongdong Wu1, Feng Bao1, and Robert H. Deng2

1 Institute for Infocomm Research (I2R), A-Star, Singapore
{wydong, baofeng}@i2r.a-star.edu.sg

2 School of Information Systems, Singapore Management University
robertdeng@smu.edu.sg

Abstract. In this paper, we present a forgery attack to a black-box
traitor tracing scheme [2] called as CPP scheme. CPP scheme has efficient
transmission rate and allows the tracer to identify a traitor with just one
invalid ciphertext.

Since the original CPP scheme is vulnerable to the multi-key attack,
we improved CPP to thwart the attack. However, CPP is vulnerable to
a fatal forgery attack. In the forgery attack, two traitors can collude
to forge all valid decryption keys. The forged keys appear as perfect
genuine keys, can decrypt all protected content, but are untraceable by
the tracer. Fortunately, we can patch this weakness with increasing the
decoder storage.

1 Introduction

With the advent and rapid development of networks, piracy is becoming a great
threat to the content service vendors. For example, the annual report by the Ca-
ble and Satellite Broadcasting Association of Asia (CASBAA)[3], which studied
TV markets across 11 Asian countries, predicted the number of illegal connec-
tions is expected to rise 20% to $5.2 million in 2006, and pay-TV piracy in Asia
is estimated to cost the industry $1.13 billion in 2006, up 6.6% from 2005. It
is apparent that the need for broadcast encryption systems is urgent and chal-
lenging. In the broadcast encryption system, each authorized user has a legal
decoder embedded with a unique decryption key. A content distributor encrypts
broadcast content such that only authorized users can decode protected content
with their legal decoders. However, a group of legal users may conspire to violate
copyright protection policies by reverse-engineering the legal decoders (e.g., [4]),
sharing their decryption keys, constructing and distributing pirate decoders. In
this pirate process, the legal user who gives her key to construct the pirate de-
coder is called as a traitor, while the person who has illegally access to protected
content is called as pirate, and the device of a pirate is a pirate decoder.

Kiayias and Yung [5,6] categorized the pirate-decoders according to their self-
protection capabilities. If a pirate decoder employs an internal reactive mech-
anism, it is called “abrupt”, otherwise, it is called “available”. One “abrupt”
method is the “aggressive action” mechanism [5] which crashes the host tracing

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 171–183, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



172 Y. Wu, F. Bao, and R.H. Deng

system, or releases a virus. The weakness of this method is that it is not able to
entirely prohibit tracing, especially in a virtual-machine protection environment
where the decoder code is run in a restrict manner. Another “abrupt” method is
the “shutting down” mechanism [7] which erases all internal decryption keys in
order to halt the tracing process. This “suicidal” approach apparently renders
the decoder useless. If the broadcaster can disseminate messages to permanently
shut down pirate decoders, the copyright protection goal of the broadcaster is
almost achieved. The “aggressive action” method has more impact on software
decoders, while the “shutting down” mechanism is more effective on hardware
decoders. Yet another “abrupt” method is the “blind” mechanism [8] which out-
puts ambiguous messages to confuse the tracer. To this end, a pirate decoder
analyzes the input messages, and then takes defensive actions. For example, if
the decoder detects invalidate ciphertexts in its input (e.g., in [9]), it outputs
garbage. This mechanism is applicable to both software and hardware decoders.

A broadcast encryption and traitor tracing (BETT) system is an effective tool
to frustrate pirates. Assume that each pirate decoder has at least one key for
decrypting encrypted messages, a tracer in BETT extracts at least one key from
a pirate decoder so as to incriminate at least one traitor. A BETT has two im-
portant performance parameters: traceability (i.e., number of tolerable traitors)
and transmission rate (i.e., the ratio between ciphertext size and plaintext size).
Clearly, a BETT system targets for high traceability, but low transmission rate.
Intuitively, it is not easy to achieve both goals for a BETT system. For exam-
ple, a näıve BETT system which assigns the same key to all users has the best
transmission rate (i.e., transmission rate is 1) but the worst traceability (i.e.,
traceability is 0); the combinatorial-key schemes [10]-[12] can tolerate t traitors
with the transmission rate O(t4 log n) where n is the number of users and t� n;
the hybrid scheme [13] enables full-public-traceability when its enabling block
size is linear to n, while the fully collusion resistant traitor tracing schemes
[14,15] are able to defeat t = n traitors with a transmission rate O(

√
n) but they

are vulnerable to the Denial-of-Trace (DOT) attack [16].
Since broadcast content is usually very large (e.g., 2M bit/s in MPEG2 movie),

any BETT scheme can be used in hybrid encryption system [17] such that the
entire system has asymptotically optimal transmission rate without reducing
the BETT traceability. Concretely, the broadcaster selects a random key K for
content M , and generates the protected content as < E1(PK, K), E2(K, M) >,
where PK is the BETT encryption key, E1(·) is the BETT encryption algorithm,
and E2(·) is a standard cipher such as RC4. Obviously, the transmission rate of
the above hybrid encryption system is close to 1, and its traceability is the same
as that of the original BETT. Nonetheless, hybrid encryption has one weakness
that the traitors may prefer to directly disclosing content key K on-line instead
of distributing pirate decoders off-line. Since the content key is known to all legal
users, it can not be used to identify traitors. To prevent traitors from disclosing
the content key, the broadcaster need directly encrypt content and broadcast the
ciphertext to the users, given that traitors are unwilling to disseminate decrypted
content in real-time due to high bandwidth requirement and legal risk.



Forgery Attack to an Asymptotically Optimal Traitor Tracing Scheme 173

Kiayas and Yung [1] propose the first BETT algorithm (called as KY scheme)
which directly encrypts content at constant transmission rate. Following the
same system model as the KY scheme, Chabanne, Phan and Pointcheval [2]
propose an asymptotically optimal BETT scheme (called as CPP scheme) with
transmission rate close to 1. Suppose that each pirate decoder has a unique
key, both KY scheme and CPP scheme have the same traitor tracing algorithm:
generating an invalid ciphertext and feeding it a pirate decoder, extracting a word
from the pirate decoder, and adopting collusion-secure code Γ [18] to arrest at
least one traitor. The traitor tracing algorithms in [1,2] are very efficient since
they can identify a traitor with just one ciphertext.

1.1 Our Contribution

The present paper investigates the security of KY and CPP schemes. Our major
contributions can be summarized as follows.

(1) Since CPP scheme inherit the KY scheme, both are vulnerable to the multi-
key attack [8]. Recently, Papers [19,20] found the weakness of KY scheme
but fixed it. This paper improved CPP scheme so as to defeat multi-key
attack too. Concretely, to trace a pirate decoder, the tracer crafts and sends
multiple invalid ciphertexts to the decoder such that decryption keys are
traced independently. Since pirate decoders can not always distinguish trac-
ing ciphertexts from broadcasting ciphertexts, the tracer is able to extract
some of the decryption keys using the indistinguishable tracing ciphertexts.
The extracted keys suffice to identify a traitor.

(2) We introduce a novel forgery attack to CPP scheme. The forgery attack
allows two traitors produce a forged key set which is a permutation of a
genuine key set. The pirate decoder embedded with the forged key set is able
to decrypt all encrypted content, but prevents the tracer from identifying
any one of the traitors. In addition, we describe a countermeasure which is
asymptotically Optimal in terms of transmission rate.

The rest of the paper is organized as follows. Section 2 introduces some pre-
liminaries. Sections 3 describes the upgraded CPP scheme. Section 4 presents
our forgery attack and countermeasure. In Section 5, we discuss practical issues
in traitor tracing schemes. The last section draws a conclusion.

2 Preliminaries

This section reviews the basic concepts used in the KY [1] and CPP [2] traitor
tracing schemes. Most of them are based on the definitions in [18]. For ease of
exposition, notations in this paper are listed in Table 1.

2.1 Marking Assumption

Definition 1. A set Γ0 = {W (1), W (2), . . . , W (n)} is called an (l, n)-code where
W (i) =< w

(i)
1 , w

(i)
2 , · · · , w(i)

l > is a codeword consisting of l binary symbols. The
codeword W (i) is assigned to user Ui.



174 Y. Wu, F. Bao, and R.H. Deng

Table 1. Notations

Γ a collusion-secure code

W (i) a codeword in Γ
Ui the ith user with a unique codeword W (i)

T the set of the traitors
F(T;Γ) a feasible set for T
RT undetectable position set for T
n the number of users
l the length of a codeword
t the maximum number of tolerable traitors
ε the error probability of collusion-secure code Γ
M plaintext message

Let T be a set of codewords. For 1 ≤ j ≤ l, we say that position j is un-
detectable for T if all the codewords in T are identical in the jth position.
Formally, suppose T = {U1, U2, . . . , Ut}, position j is undetectable if w

(1)
j =

w
(2)
j = · · · = w

(t)
j . Let RT be the set of undetectable positions for T, i.e.,

RT = {j | w
(1)
j = w

(2)
j = · · · = w

(t)
j , 1 ≤ j ≤ l}. Assume that the users in T

can not change the symbols in RT, i.e., they can only construct a set of words
based on the marking assumption [18]:

Marking assumption:
Given two codewords W (1) = {w(1)

1 , w
(1)
2 , . . . , w

(1)
l } and W (2) =

{w(2)
1 , w

(2)
2 , . . . , w

(2)
l }, T = {W (1), W (2)}, RT is their undetectable posi-

tion set. Word Z = {z1, z2, . . . , zl} created from W (1) and W (2) must be
zj = w

(1)
j if j ∈ RT, or zj = “?”.

where “?” represents random.

2.2 Feasible Set

When a coalition creates new words according to the marking assumption, the
resulting set of words is called the feasible set of the coalition.

Definition 2 [18]. Let Γ0 be an (l, n)-code, T be a coalition of users, and
RT be the set of undetectable positions for T. Define the feasible set of T
as

F(T;Γ0) = {Z ∈ {0, 1, ?}l s.t. Z |RT
= W (u) |RT

, ∃Uu ∈ T}
where “?” represents random, Z |RT

are the symbols of Z in position set
RT. In summary, the feasible set contains all words which match the coali-
tion’s undetectable bits, and the marking assumption states that any coalition
of users is only capable of creating a word which lies in the feasible set of the
coalition.



Forgery Attack to an Asymptotically Optimal Traitor Tracing Scheme 175

2.3 Collusion-Secure Code

Given a word W ∈ F(T;Γ), where the size of T is at most t, if one can confirm
at least one member U ∈ T, we say that user U is identified, and the code Γ is
refereed to as t-collusion-secure.

Definition 3. If an (l, n)-code Γ allows a collusion of up to t users and has
a tracing algorithm that succeeds with probability 1 − ε, Γ is refereed to as a
(l, n, t, ε)-collusion-secure code.

2.4 Traitor Tracing System

The participants in a BETT system are: authority, broadcaster, tracer, user and
pirate. An authority generates and delivers the encryption key PK, decryption
keys SK’s and tracing key TK; a broadcaster is a service provider which encrypts
the content and broadcasts the encrypted content to users; each legal user has an
authorized decoder embedded with a unique decrypting key SK for consuming
the encrypted content, traitors are legal users who conspire to create a pirate
decoder; a tracer runs a traitor tracing algorithm with tracing key TK to extract
a token from a confiscated decoder and then identify a traitor with the token.
To identify a traitor, a tracer with white-box tracing algorithm must know the
internals of the pirate decoder, but a tracer with black-box tracing system knows
nothing of the decoder’s internals.

3 The Upgraded CPP Scheme

KY scheme is the first traitor tracing scheme with constant transmission rate.
Based on the same architecture as KY, CPP scheme achieves asymptotically
optimal transmission rate. Without loss of generality, we will in the rest of the
paper focus on CPP scheme unless stated otherwise.

CPP scheme is designed to broadcast encrypted messages at the optimal trans-
mission rate 1, and identify at least one traitor from a confiscated pirate decoder.
To achieve the objectives, the authority first sets up a 2-user 1-traitor BETT
system S. The authority then constructs a multi-user BETT system from l-
instantiations of S with (l, n, t, ε)-collusion-secure code Γ.

3.1 Two-User System

In a 2-user traitor tracing system S, there are two users U1 and U2, and each
user has an authorized decoder which is embedded with a unique decryption key
SK. If the broadcaster sends a valid ciphertext to the two users, the resulting
outputs of the two decoders are identical; however, if the input ciphertext to
the two decoder are invalid, their outputs will be different. The different results
enable the tracer to identify the user’s key unambiguously assuming that there
is at most one traitor. The CPP scheme includes the following modules: Setting
up, Encrypting E(·), Decrypting D(·) and Traitor tracing.



176 Y. Wu, F. Bao, and R.H. Deng

– Setting up: First, the authority selects the system parameters: a prime q
and two groups G1,G2 of order q, an admissible bilinear map ê : G1×G1 → G2,
a generator P ∈ G1, and sets g = ê(P, P ) which is a generator of G2. Next,
the authority picks two random numbers a, z1 ∈ Z∗q , a one-way function H,
and then calculates Q = aP , Z1 = gz1 . The public key is PK =< g, Q, Z1 >.
The authority key is < a, z1 >. Subsequently, the authority creates a random
matrix

K =
(
k10 k11

)
1×2,

where k1w1 =< d1w1 , f1w1 > such that d1w1 + af1w1 = z1 mod q, w1 = 0, 1.
For each user U1+w1 , her decoder key is SK =< d1w1 , f1w1P >.

– Encrypting: To encrypt a message M1, the broadcaster generates a random
r, and then creates the ciphertext

< A, B, C1 >=< rP, r2Q, M1 ⊕H(Zr2

1 ) > (1)

which will be broadcast to all the users.
– Decrypting: Upon receiving a ciphertext < A, B, C1 >, the decoder will

extract its decoder key < d1w1 , f1w1P >, then calculate

v1 = ê(d1w1A, A) · ê(f1w1P, B) = ê(d1w1rP, rP ) · ê(f1w1P, r2aP )

= gd1w1r2+af1w1r2
= g(d1w1+af1w1 )r2

= gz1r2
= Zr2

1

and recover the original message as m1 = C1 ⊕H(v1).
– Traitor tracing: CPP scheme has public traceability, i.e., its tracing key

TK is known to all. The tracer first selects random numbers r1 ∈ Zq

and r2 ∈ Zq, and then constructs an invalid ciphertext < A, B, C1 >=<
r1P, r2

2Q, C1 >. Secondly, he sends the invalid ciphertext to a pirate decoder,
and records the output m of the decoder. Thirdly, he calculates

v10 = ê(d10P, r2
1P ) · ê(Q, r2

2f10P ) = gd10r2
1+af10r2

2

v11 = ê(d11P, r2
1P ) · ê(Q, r2

2f11P ) = gd11r2
1+af11r2

2

w1 =

⎧
⎨

⎩

0 : m = C1 ⊕H(v10)
1 : m = C1 ⊕H(v11)
? : otherwise

Finally, user U1+w1 is identified as guilty if w1 	= “?”.

3.2 Multi-user System

As shown in Fig.1, the multi-user BETT system is constructed by repeatedly
using l-instantiations of two-user system Sj , j = 1, 2, . . . , l. Concretely, the func-
tions in the broadcast encryption algorithms are as follows.

– Key setup. After selecting the same system parameters<q,g, P,G1,G2,H, ê>
as those in the two-user system, the authority picks a random a ∈ Z∗q and
l elements zj ∈ Z∗q , computes Q = aP , Zj = gzj , j = 1, 2, . . . , l. The



Forgery Attack to an Asymptotically Optimal Traitor Tracing Scheme 177

public key is PK =< g, Q, Z1, Z2, . . . , Zl >, and the key of the authority is
< a, z1, z2, . . . , zl >. Thirdly, the authority creates a secret key matrix K as

K =

⎛

⎜
⎜
⎜
⎝

k10 k11
k20 k21
...

...
kl0 kl1

⎞

⎟
⎟
⎟
⎠

l×2

where sub-key kjwj =< djwj , fjwj P > such that

djwj + afjwj = zj mod q, wj = 0, 1. (2)

Any kjwj which satisfies Eq.(2) is a valid key of 2-user system Sj . From an
(l, n, t, ε)-collusion-secure code Γ, the authority randomly selects a binary
codeword W =< w1, w2, . . . , wl > and assign W to a user U such that her
decoder key is SK =< k1w1 , k2w2 , . . . , klwl

> .
– Encrypt. To encrypt a message M =< M1, M2, . . . , Ml >, the broadcaster

selects a random r, and generates the ciphertext

< A, B, C1, · · · , Cl >=< rP, r2Q, M1 ⊕H(Zr2

1 ), · · · , Ml ⊕H(Zr2

l ) > (3)

which is broadcast to all the users.
– Decrypt. After receiving a ciphertext < A, B, C1, C2, . . . , Cl >, for each

j ∈ [1, l], the sub-decoder of 2-user system Sj embedded with a sub-key
kjwj =< djwj , fjwj P > calculates

vj = ê(djwj A, A) · ê(fjwj P, B) = ê(djwj rP, rP ) · ê(fjwj P, r2aP )

= gdjwj
r2+afjwj

r2

= g(djwj
+afjwj

)r2

= gzjr2
= Zr2

j

Mj = Cj ⊕H(vj)

S1: M1 � E1(PK1, ·)
C1 � D1(k1w1 , ·) � m1

S2: M2 � E2(PK2, ·)
C2 � D2(k2w2 , ·) � m2

...
...

...
...

Sl: Ml
� El(PKl, ·)

Cl � Dl(klwl
, ·) � ml

Fig. 1. Multi-user broadcast encryption. The entire decoder consists of l sub-decoders

3.3 Multi-user Traitor Tracing

Although Chabanne, Phan and Pointcheval [2] elaborate their traitor tracing
method for 2-user system, they do not explicitly address the traitor tracing



178 Y. Wu, F. Bao, and R.H. Deng

algorithm for multi-user system. However, they mention that their scheme shares
the same black-box tracing capability as KY scheme [1]. Hence, to analyze the
multi-user tracing algorithm of CPP scheme, we adapt the KY scheme to CPP
scheme by merely customizing the encryption function. Since the original traitor
tracing scheme in [1] is vulnerable to the multi-key attack [8], in the following,
we fix the weakness in CPP. Specifically, in order to prevent a multi-key pirate
decoder from detecting the presence of a tracing process, the tracer creates l
invalid ciphertexts, and performs tracing on each 2-user system independently.
That is to say, the tracer

– Randomly selects numbers r1 ∈ Zq, r2 ∈ Zq, r ∈ Zq and t ∈ [1, l].

– Constructs a ciphertext < At, Bt, Ct >=< r1P, r2
2Q, Ct = Mt⊕H(Zr2

1
t > for

St, and generates < A, B, Cj >=< rP, r2Q, Cj = Mj ⊕H(Zr2

j ) > for other
Sj , j ∈ [1, t− 1] ∪ [t + 1, l].

– Sends the invalid ciphertexts

< t, At, Bt, Ct, A, B, C1, C2, . . . , Ct−1, Ct+1, . . . , Cl > (4)

to the pirate decoder.
– Obtains the output mt of the decoder, and calculates

vt0 = ê(dt0P, r2
1P ) · ê(Q, r2

2ft0P ) = gdt0r2
1+aft0r2

2

vt1 = ê(dt1P, r2
1P ) · ê(Q, r2

2ft1P ) = gdt1r2
1+aft1r2

2

wt =

⎧
⎨

⎩

0 : mt = Ct ⊕H(vt0)
1 : mt = Ct ⊕H(vt1)
? : otherwise

After repeating the above tracing method by scanning each word position at
least once, the tracer can obtain all the symbols in the word W ∈ {0, 1, ?}l. Based
on the security of the 2-user system and the marking assumption, W ∈ F(T;Γ).
Thus, the tracer can identify at least one traitor based on the collusion-secure
code (e.g., [18]).

Note that the ciphertext in Eq.(3) in the broadcast process should be changed
to that given in Eq.(4) assuming r1 = r2 	= r, in order that the tracing message
is indistinguishable from the normal broadcast message; otherwise, the pirate
decoder will be alerted from the abnormal message format.

4 Forgery Attack and Countermeasure

Section 3 fixes a security flaw of KY and CPP schemes such that they are free
from our multi-key attack. However, we will show in this section that CPP
tracing scheme is still vulnerable to a new forgery attack. This forgery attack
allows traitors to create perfect valid, and hence untraceable, decryption keys.



Forgery Attack to an Asymptotically Optimal Traitor Tracing Scheme 179

4.1 Forging Decryption Key

In the key setup stage of CPP scheme, each user is assigned a unique codeword
from the collusion-secure code Γ. Therefore, for any two users, their codewords
are different in at least one symbol. Without loss of generality, assume that
the different symbols is in the first position. Thus, the traitors have sub-keys
k10 =< d10, f10P > and k11 =< d11, f11P > that must satisfy

{
d10 + af10 = z1 mod q
d11 + af11 = z1 mod q

Denote Δd = d10 − d11 and Δf = f10 − f11. Thus Δd + aΔf = 0 mod q. To
fabricate a decryption key, the two traitors select a word W =< w1, . . . , wl >∈
F(T;Γ) randomly, hence kjwj =< djwj , fjwj P > is one sub-key of one of the
traitors. Denote Kj = {< d∗j , f

∗
j P >| sj ∈ Zq}, j = 1, 2, . . . , l, where

{
d∗j = djwj + sjΔd

f∗j P = fjwj P + sjf10P − sjf11P = fjwj P + sjΔfP = (fjwj + sjΔf )P (5)

Theorem. For all j ∈ [1, l], Kj is the whole key set for 2-user system Sj .
Proof.
(1)Soundness : For any j ∈ [1, l], assume that < d∗j , f

∗
j P >∈ Kj is generated

with a random sj ∈ Zq according to Eq.(5). Then,

d∗j + af∗j = djwj + sjΔd + a(fjwj + sjΔf )
= (djwj + afjwj ) + sj(Δd + aΔf ) = djwj + afjwj = zj mod q

Given a valid encryption < A = rP, B = r2Q, Cj = Mj ⊕ H(Zr2

j ) > of any
message Mj , a pirate decoder embedded with < d∗j , f

∗
j P > will compute

v∗j = ê(d∗jA, A) · ê(f∗j P, B) = ê(d∗j rP, rP ) · ê(f∗j P, r2aP )

= ê(p, p)d∗
j r2 · ê(P, P )af∗

j r2
= g(d∗

j+af∗
j )r2

= gzjr2
= Zr2

j

Mj = Cj ⊕H(v∗j )

Hence, the pirate decoder can decrypt any valid message correctly, i.e., every
element in Kj is a valid decrypting key for Sj .

(2)Completeness : For any legal key < dj , fjP > generated by the authority
for 2-user system Sj , according to Eq.(2), dj + afj = zj mod q. Since a and q
are co-prime, there are q legal keys in total for each 2-user system Sj . On the
other hand, since sj is randomly selected from Zq, the number of elements in
Kj is also q. Therefore, the traitors can generate the same number of legal keys
as the authority.

Moreover, for any dj , ∃sj = (dj − djwj
)Δ−1

d mod q such that d∗j = dj , i.e.,
the traitors and the authority produce the same legal keys for each 2-user system
Sj . �

Obviously, the traitors and the authority produce the same legal keys for
the whole multi-user system since all the Kj are constructed independently. We
should mention that the traitors do not know f∗j although they can construct
the legal sub-key < d∗j , f

∗
j P >.



180 Y. Wu, F. Bao, and R.H. Deng

4.2 Evading Tracing

Given a confiscated pirate decoder, the tracer produces an invalid ciphertext
< t, r1P, r2

2Q, Ct, rP, rQ, Cj > as Eq. (4) for tracing, j = 1, 2, . . . , t−1, t+1, . . . , l.
Upon receiving the above invalid ciphertext, the decoder calculates

v∗t = ê(d∗t A, A) · ê(f∗t P, B) = ê(d∗t r1P, r1P ) · ê(f∗t P, r2
2aP )

= ê(p, p)d∗
t r2

1 · ê(P, P )af∗
t r2

2 = g(d∗
t r2

1+af∗
t r2

2)

= gdtwtr2
1+aftwt r2

2 · gst(Δdr2
1+Δf r2

2)

m∗t = Ct ⊕H(v∗t )

According to Eq.(4), the tracer will set wt = “?” since he does not know v∗t
due to random number st. Consequently, no traitor will be identified.

4.3 Countermeasure

The present attack crucially depends on the shared secret a among all the sub-
systems Sj , j = 1, . . . , l. To defeat the attack, all the aj in Sj is independently
selected. We called this upgraded scheme as CPP′. Since the sub-systems S′j in
CPP′ are independently, the transmission rate of CPP′ is almost 3 and hence it
has the same performance as KY scheme. An improvement for managing stateless
decoder is to independently build a CPP scheme for broadcasting only and a CPP′

scheme for both broadcasting and tracing, then merge them together. Concretely,
in the broadcast and/or tracing stage, the provider randomly selects the t-th sub-
system S′t from CPP′ and l − 1 sub-systems {S1, S2, . . . , St−1, St+1, . . . , Sl} from
CPP. In this case, the transmission rate is still asymptotically optimal, but the
storage of the decoder is doubled.

5 Discussion

In a BETT system, a traitor has a decryption key, and hence she can always
obtain the decrypted content and distribute it off line. As a result, BETT is only
applicable to protection of on-line content dissemination, assuming that traitors
are unwilling to distribute decrypted content in real time due to high bandwidth
limitation and legal risk. In practical applications, we should take the following
issues into consideration.

5.1 Structured Messages

Decoders are usually designed to process formatted messages which are compli-
ant to international or industrial standards. For example, content sent to VCD
decoders follows MPEG format. Thus, messages transmitted in either normal
broadcast mode or traitor tracing mode must have clearly specified format or
structure. If a pirate decoder decrypts a ciphertext into an unstructured mes-
sages, it knows that a tracing is underway and then takes action. For this reason,
traitor tracing schemes in [1,2] seem to be impractical since they assume that a
pirate decoder is not able to distinguish random data from broadcast content.



Forgery Attack to an Asymptotically Optimal Traitor Tracing Scheme 181

5.2 Stateless Assumption

Many traitor tracing schemes assume stateless pirate decoders. However, this
stateless assumption seems too restrictive for several reasons.

– Nowadays, memory is getting cheaper. Embedding a few bytes of non-volatile
memory, which essentially costs nothing, makes a decoder stateful.

– Most decoders require non-volatile memory to store private data and to keep
track of history information. For example, in order to decode MPEG video,
a VCD decoder has to store recently decoded pictures in rendering a movie.

– Many authors assume that a traitor tracing scheme for stateless decoders can
be converted into a tracing scheme for stateful decoders using the conversion
algorithm [5]. Since the conversion algorithm increases the transmission rate
substantially, the total transmission rate is far from satisfactory if the tracer
attempts to defeat stateful pirate decoders.

If the pirate decoder is stateful by embedding several bytes, a lot of traitor
tracing algorithms including [1,2] are in trouble.

5.3 Codeword Length

In KY scheme [1] and CPP scheme [2], the length l of codeword is usually large.
Let’s evaluate l with the optimal collusion-secure code in [21], where

l = 100t2 · log(n/ε).
Assuming conservative parameters n = 1000, ε = 0.001, t = 10, each codeword is
of l = 1.38× 105 bits. Clearly, the length of a codeword is very long. The large
l has the following disadvantages:

– Each decoder has to store l = 1.38× 105 sub-keys. Since it’s very costly to
store hundreds of Mega-bytes of sub-keys in a tamper-resistant device, large
key size makes the sub-keys easily exposed to traitors.

– On account of all-or-nothing decryption mechanism, for one BETT cipher-
text, the decoder in both KY and CPP schemes must perform public-key
decryption l times, and it can not render the content until the last decryp-
tion is finished. This mechanism incurs a long rendering delay, and requires
lots of memory for storing the decrypted content.

– Packet loss or error is almost inevitable during delivery of a BETT ciphertext
(up to 104 packets assume the plaintext Mj is of 1024 bits). As long as
one packet is not received correctly, the decoder can not render the rest.
Therefore, large key size adversely affects the quality of service (QoS) of a
broacast system.

6 Conclusion

Designed as a black-box traitor tracing scheme with efficient transmission rate,
CPP scheme [2] directly encrypts broadcast content with public-key cryptosys-
tems, and identifies at least one traitor with just one invalid ciphertext. Although



182 Y. Wu, F. Bao, and R.H. Deng

security properties of CPP scheme is proved in theory, this paper points out that
a multi-key attack can foil the CPP traitor tracing algorithm. It also presented
an efficient countermeasure to the multi-key attack.

Albeit CPP scheme can be improved to prevent the multi-key attack, it is
vulnerable to a more severe forgery attack which is able to thwart even white-
box tracing. In the forgery attack, two traitors can collude to forge valid decoder
keys. The forged key appears as perfect genuine keys, can decrypt all protected
content, but is untraceable by the tracer.

We also discussed several important technical issues in practical broadcast
encryption and traitor tracing systems, such as structured messages. Most traitor
tracing schemes assume that a pirate decoder can not tell random data from
structured content, and require a tracer to send unstructured invalid ciphertexts
to the pirate decoder during a tracing process. This assumption is too restrictive
since in practice decoders can only interpret formatted data. Thus, an important
challenge for future research is to design traitor tracing schemes against format-
aware pirate decoders.

References

1. Kiayias, A., Yung, M.: Traitor Tracing with Constant Transmission Rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

2. Chabanne, H., Phan, D.H., Pointcheval, D.: Public Traceability in Traitor Tracing
Schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–
558. Springer, Heidelberg (2005)

3. CASBAA, Pay-TV Piracy on the Rise in Asia: Study, AsiaMedia Me-
dia News Dialy (October 24, 2006), http://news.yahoo.com/s/afp/20061024/

ennew afp/asiatvindustrycrime 061024162529

4. Evers, J.: Breaking Through Apple’s FairPlay, http://news.com.com/

Breaking+through+Apples+FairPlay/2008-1025 3-6129420.html

5. Kiayias, A., Yung, M.: On Crafty Pirates and Foxy Tracers. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002)

6. Kiayias, A., Yung, M.: Self Protecting Pirates and Black-Box Traitor Tracing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 63–79. Springer, Heidelberg
(2001)

7. Pfitzmann, B.: Trails of Traced Traitors. In: Anderson, R. (ed.) Information Hiding.
LNCS, vol. 1174, pp. 49–64. Springer, Heidelberg (1996)

8. Yan, J.J., Wu, Y.: An Attack on a Traitor Tracing Scheme,
http://eprint.iacr.org/2001/067

9. Boneh, D., Franklin, M.: An Efficient Public Key Traitor Tracing Scheme. In:
Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Hei-
delberg (1999)

10. Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

11. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing Traitors. IEEE Transactions on
Information Theory 46(3), 893–910 (2000)

12. Naor, M., Pinkas, B.: Threshold Traitor Tracing. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)

http://news.yahoo.com/s/afp/20061024/ennew_afp/asiatvindustrycrime_061024162529
http://news.yahoo.com/s/afp/20061024/ennew_afp/asiatvindustrycrime_061024162529
http://news.com.com/Breaking+through+Apples+FairPlay/2008-1025_3-6129420.html
http://news.com.com/Breaking+through+Apples+FairPlay/2008-1025_3-6129420.html
http://eprint.iacr.org/2001/067


Forgery Attack to an Asymptotically Optimal Traitor Tracing Scheme 183

13. Phan, D., Safavi-Naini, R., Tonien, D.: Generic Construction of Hybrid Public Key
Traitor Tracing with Full-Public-Traceability. In: Bugliesi, M., Preneel, B., Sas-
sone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 264–275. Springer,
Heidelberg (2006)

14. Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing With
Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

15. Boneh, D., Waters, B.: A Fully Collusion Resistant Broadcast, Trace and Revoke
System. In: ACM CCS, pp. 211–220 (2006)

16. Wu, Y., Deng, R.H.: A Multi-Key Pirate Decoder against Traitor Tracing Schemes.
Submission to IEEE Transactions on Information Forensics and Security (February
2007)

17. Bao, F., Deng, R., Feng, P., Guo, Y., Wu, H.: Secure and Private Distribution of
Online Video and several Related cryptographic Issues. In: Varadharajan, V., Mu,
Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 190–205. Springer, Heidelberg (2001)

18. Boneh, D., Shaw, J.: Collusion-Secure Fingerprinting for Digital Data. IEEE Trans.
on Information Theory 44(5), 1897–1905 (1998)

19. Wu, Y., Bao, F., Deng, R.H.: Attacks to and Improvement of Two Traitor Tracing
Schemes. Submission to Eurocrypto 2007 (November 7, 2006)

20. Kiayias, A., Yung, M.: Copyrighting Public-key Functions and Applications to
Black-box Traitor Tracing (December 3, 2006) http:/eprint.iacr.org/2006/458

21. Tardos, G.: Optimal Probabilistic Fingerprint Codes. STOC, pp. 116–125 (2003)

http:/eprint.iacr.org/2006/458


TCHo: A Hardware-Oriented Trapdoor Cipher

Jean-Philippe Aumasson1,�, Matthieu Finiasz2, Willi Meier1,��,
and Serge Vaudenay3

1 FHNW, Windisch, Switzerland
2 ENSTA, Paris, France

3 EPFL, Lausanne, Switzerland
http://lasecwww.epfl.ch/

Abstract. This paper improves the Finiasz-Vaudenay construction of
TCHo, a hardware-oriented public-key cryptosystem, whose security re-
lies on the hardness of finding a low-weight multiple of a given polynomial,
and on the decoding of certain noisy cyclic linear codes. Our improvement
makes it possible to decrypt in polynomial time (instead of exponential
time), to directly prove semantic security (instead of one-wayness), and
to achieve pretty good asymptotic performances. We further build IND-
CCA secure schemes using the KEM/DEM and Fujisaki-Okamoto hybrid
encryption frameworks in the random oracle model. This can encrypt an
arbitrary message with an overhead of about 5 Kb in less than 15 ms, on
an ASIC of about 10 000 gates at 4 MHz.

Keywords: public-key cryptosystem, post-quantum cryptography, hard-
ware, linear feedback shift register, polynomial multiples.

1 Introduction

Since the introduction of public-key cryptography [12,13], dozens of cryptosys-
tems appeared, based on hard problems like integer factorization, discrete log-
arithms, lattice reduction, knapsacks, etc., in various algebraic structures. But
their non-trivial constructions made their use somewhat difficult in constrained
environments (PDAs, RFID tags, etc.), where stream ciphers used to rule. In that
sense, a secure public-key cryptosystem with stream cipher-like design would be
a breakthrough. Furthermore, studying alternate designs for public-key encryp-
tion not based on factoring or discrete logarithm is an important duty for the
academic research community to prepare a post-quantum era [25].

In [14], Finiasz and Vaudenay introduced a new public-key cryptosystem
called TCHo, where the public key is a high-degree binary polynomial, and the
private key a sparse multiple of the latter. Security relies on the ad-hoc problem
of finding a low-weight multiple of a certain degree. This problem, or its vari-
ants, has been important in LFSR cryptanalysis since some attacks are possible
� Supported by the Swiss National Science Foundation under project number 113329.

�� Supported by Hasler Foundation http://www.haslerfoundation.ch under project
number 2005.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 184–199, 2007.
c© Springer-Verlag Berlin Heidelberg

http://www.haslerfoundation.ch


TCHo: A Hardware-Oriented Trapdoor Cipher 185

only when the feedback polynomial or one of its multiples is sparse [24]. A few
works [16,18,22] study the distribution of multiples of a given weight.

In this article, TCHo1 designates the original cryptosystem from [14] whereas
TCHo2 designates our variant. By default, TCHo refers to TCHo2.

TCHo1 encryption is probabilistic, and can be roughly described as the trans-
mission of a codeword over a noisy channel: one small LFSR encodes the message,
while a large one randomly initialized, along with a source of biased random bits,
produces the noise. A ciphertext is a XOR of the three bitstreams. The private
key is used to “delete” the bitstream of the large LFSR by a kind of convolution
product, thereby reducing the noise over the coded message, so as to be able to
decode the cyclic linear code spanned by the first LFSR. Although the design of
TCHo1 is very simple and well fitted for hardware, some major disadvantages are
its prohibitive decryption time complexity, of exponential cost, the absence in
[14] of an estimate of incorrect decryption probability, and the lack of asymptotic
complexities. In this paper, we

– propose a variant leading us to polynomial decryption time,
– estimate the error probability in decryption,
– study asymptotic parameters,
– prove semantic security of this new scheme, under certain assumptions,
– and suggest two hybrid constructions to reach IND-CCA security.

Finally we present performances of TCHo in a software implementation.

2 Preliminaries

2.1 Notations

The logarithm in base 2 is denoted log2, and log is the natural logarithm.
A bitstring x is a sequence of bits. Its length |x| is its number of bits, and

may be finite or infinite. Its Hamming weight, or simply weight, is its number of
ones. The concatenation of x and y is x||y. The sum over F2 is denoted +, and
the product ×. A bitstring x can be written (x1, x2, . . . , xn), and (0, . . . , 0) can
simply be denoted 0. The sum (also denoted +) of two bitstrings of equal length
produces a bitstring of same length, and is defined as a bitwise sum. A bitstream
is a bitstring of unspecified (possibly infinite) length produced by some device
or bit source, and shall be denoted by the symbol S with contextual subscript.
The symbol S� refers to the bitstream S truncated to its first � bits.

The degree of a polynomial P in F2[X ] is denoted deg(P ), and its weight is
its number of non-zero coefficients.

If we speak about random bits, or random sequence, etc., it is either uniform
or biased randomness, and the distribution is specified only where the meaning
can be ambiguous. A random source of independent bits with bias γ produces
a zero with probability 1

2 (1 + γ) (and a one with probability 1
2 (1 − γ)). The

produced bitstream is denoted Sγ , and Sγ(r) if we specify the seed r of the
generator. S0 is a uniform random bitstream.



186 J.-P. Aumasson et al.

When no probability distribution or space is explicitly set, randomly chosen
means randomly chosen among all the objects of this kind, with respect to a
uniform probability law.

A linear feedback shift register (LFSR) is entirely characterized by its feedback
function, defined by a feedback polynomial P =

∑∞
i=0 piX

i, the size of the LFSR
being the degree of this polynomial. We use the notation LP for the LFSR
with feedback polynomial P . The bitstream determined by the initial state s =
(s0, . . . , sdeg(P )−1) is denoted SLP (s) = (s0, . . . , si, . . . ), such that si+deg(P ) =
∑deg(P )−1

k=0 pksi+k.
We define the product of a binary polynomial K =

∑∞
i=0 kiX

i of degree d
and a bitstream Sd+N = (s0, . . . , sd+N−1) as

K ⊗ Sd+N = (s′0, . . . , s
′
N−1)

with s′i = sik0 + si+1k1 + · · · + si+dkd. The operator thus defined is distributive
over the bitstring sum, it verifies (PQ) ⊗ S = P ⊗ (Q ⊗ S) and P ⊗ SLP (x) = 0,
for all P, Q ∈ F2[X ], x ∈ F

deg(P )
2 , and S. As a consequence, if P divides K, for

any �, x, s we have K ⊗ (S�
LP (x) + s) = K ⊗ s.

We shall use the acronyms CCA, CPA, IND, OW, respectively standing for the
usual notions of Adaptive Chosen Ciphertext Attack, Chosen Plaintext Attack,
Indistinguishability, and One-Wayness.

2.2 Computational Problem

Like TCHo1, the main problem on which TCHo relies can be stated as follows:

Low Weight Polynomial Multiple (lwpm)
Parameters: Three naturals w, d and dP , such that 0 < dP < d and w < d.
Instance: P ∈ F2[X ] of degree dP .
Question: Find a multiple K of P of degree at most d and weight at most w.

In [14] the authors suggest several strategies to solve this problem (namely
birthday paradox [28], syndrome decoding [6,21], and exhaustive search). In-
spired from this, we make the following average-case assumption:1

Assumption 1. Let Gen be a random generator which generates a random poly-
nomial K of degree dK and weight wK until it has an irreducible factor P whose
degree dP is in a given interval [dmin, dmax]. The output of Gen is P . We as-
sume that wK log2

dK

dmax
≥ λ. For any d and w such that

(
d

w−1

) ≤ 2dmin and
w log2

d
dmax

≥ λ, the lwpm problem for an instance generated by Gen needs at
least 2λ operations to solve.

More concretely, the best algorithm to find one solution has a complexity within
the order of (d/dP )w−1 when the existence of a solution is unexpected and
2dP (d/dP )w−1/

(
d

w−1

)
when many solutions exist.

1 In [14], P is assumed to be primitive. Here, we only assume that it is irreducible as
discussed later.



TCHo: A Hardware-Oriented Trapdoor Cipher 187

As a nominal example, we will use wK = Θ(λ), dmin = Θ(λ2), dmax = Θ(λ2),
and dK = Θ(λ3). The assumption seemingly suggests that the problem needs
exponential time (in λ) to solve lwpm with w and d asymptotically equivalent
to the parameters of K. Hence, K can be used as a hidden trapdoor.

3 Description of the TCHo Scheme

3.1 Presentation

Just like TCHo1, TCHo uses a polynomial K of degree dK and weight wK as
a secret key; a polynomial P of degree dP ∈ [dmin, dmax] as a public key; it
produces ciphertexts of � bits and uses a random source of bias γ. We use in
TCHo a new parameter k (which replaces the old dQ from TCHo1 because it is
no longer the degree of a polynomial). It is the length of the plaintext.

TCHo differs from TCHo1 in the coding applied to the plaintext. In TCHo1, a
code spanned by an LFSR with an arbitrary primitive polynomial Q was used,
leading to an expensive decryption procedure. We can generalize TCHo1 and use
an arbitrary code C of dimension k and length � for which an efficient decoding
procedure exists, and denote C(x) the codeword of x in C. This code is subject
to many constraints and cannot be chosen at random. In the decryption process
of TCHo1, the ciphertext is multiplied by K to suppress S�

LP
. In this process,

the noise source S�
γ becomes like S�−dK

γwK . In the general case, the multiplication
by K being a linear operation, we will have K ⊗C(x) = C̃(x), where C̃ is a new
linear code of dimension k and length �−dK . This means that when decrypting a
ciphertext, one will have to decode in the modified code C̃. The only case where
decoding in C̃ can be efficient for an arbitrary K is when C is a truncated cyclic
linear code, that is, C is the output of an LFSR.2 In that case, as for TCHo1,
K ⊗C(x) is equal to C(x′) truncated to �−dK bits, where x′ is obtained from x
exactly as with TCHo1. TCHo is a particular instance of this generalized TCHo1

construction with a repetition code. These codes offer straightforward encoding
and decoding algorithms.

Another innovation of TCHo is that the need for P to be primitive is obviated;
let n be the order of the polynomial P . In [14] primitivity is required so as not to
have Xn + 1 as a trivial solution of lwpm, when n ≤ �. However, for randomly
chosen P , the order n is smaller than � with probability about �/2dP , which is
close to zero. Hence lwpm may remain as hard when P is a random irreducible
polynomial, not necessarily primitive.

Parameters. A security parameter λ defines a parameter vector

(k, dmin, dmax, dK , wK , γ, �).

Key Generation. We generate a random polynomial K of degree dK and
weight wK with constant term 1 until it has a primitive factor P of degree
dP belonging to the interval [dmin, dmax]. This works just like TCHo1, in time
2 Appendix A provides more discussion on the code selection.



188 J.-P. Aumasson et al.

O
(

dmax
dmax−dmin

d2
K log dK log log dK

)
using the Cantor-Zassenhaus algorithm [8]

and the probabilistic primitivity test from [14].

Encryption. TCHo encrypts a plaintext x of length k in the following way:

TCHoenc(x, r1||r2) = C(x) + S�
LP (r1) + S�

γ(r2).

The codeword C(x) of a bitstring x of length k is formed of contiguous repetitions
of x truncated to � bits, and so the minimum distance of the code is ��/k�. It
has length � and the code has dimension k. Complexity is O (� · dP ), provided
that the random generator has no higher complexity. The ciphertext length is �.
Note that �/k is the expansion factor of the message.

Decryption. Given y = TCHoenc(x, r1||r2), decryption works as follows:

1. K is used to delete SLP in y:3

K ⊗ y ≈ C̃(x) + S�−dK

γwK

where C̃(x) is equal to a truncated codeword C(x′), with x′ = f(x) for some
linear map f . Complexity is O (wK · �) for this operation only.

2. K ⊗ y is decoded to find x′. Decoding is performed using majority logic
decoding (MJD), which is equivalent to maximum likelihood decoding for
these codes, but runs in time O (� − dK), instead of O (

k · 2k
)
. It allows to

encrypt larger blocks.
3. TCHodec(y) = f−1(x′) = x is computed. This operation takes O (

k3
)

com-
plexity. Note that the matrix of f−1 can be precomputed from K and C.

The overall decryption complexity thus becomes O (
wK · � + k3

)
.

3.2 Reliability

Here C̃ has minimum distance δ = �(� − dK)/k�, but decoding more than �(δ −
1)/2� errors will of course be possible. The probability of erroneous decoding is
exactly the probability that at least one bit is more frequently erroneous than
correct, that is (under the heuristic assumption that the correlation in K ⊗ S�

γ

is similar to the correlation in S�−dK

γwK ),

ρ ≈ 1 −
⎛

⎝
δ∑

i=�δ/2�
2−δ(1 + γwK )i(1 − γwK )δ−i

(
δ

i

)
⎞

⎠

k

. (1)

3 Each bit of the word obtained after multiplying by K by S�
γ is the sum of wK bits

with bias γ. Hence they have a bias of γwK . However, the noisy bits are correlated,
depending on the offsets of the non-zero coefficients of K, but experiment shows that
K ⊗ S�

γ behaves mostly like S�−dK
γwK . So we write K ⊗ S�

γ ≈ S�−dK
γwK .



TCHo: A Hardware-Oriented Trapdoor Cipher 189

This probability can also be expressed using the central limit theorem (sum-
ming k times on the δ bits), and we get

ρ ≈ k · ϕ
(

−
√

γ2wK

1 − γ2wK
× � − dK

k

)

. (2)

where ϕ is the cumulative distribution function of a normal distribution:

ϕ(z) =
1√
2π

∫ z

−∞
e−t2/2dt.

Table 1. Examples of TCHo parameters vectors

k dmin–dmax dK wK γ 1
2 (1 − γwK ) � ρ

I65 128 5 800–7 000 25 820 45 0.981 0.289 50 000 2−26.5

II65 128 8 500–12 470 24 730 67 0.987 0.292 68 000 2−48.5

III 128 3 010–4 433 44 677 25 1 − 3
64 0.349 90 000 2−22.4

IV 128 7 150–8 000 24 500 51 0.98 0.322 56 000 2−22.9

V 128 6 000–8 795 17 600 81 1 − 3
128 0.427 150 000 2−13.0

VI 128 9 000–13 200 31 500 65 1 − 1
64 0.320 100 000 2−54.7

3.3 Selecting the Parameters

Table 1 shows some parameters suiting the security constraints for λ = 80.
Asymptotically, we choose the parameters in terms of λ and k as follows.

wK = Θ(λ) dK = Θ(λ2 · k) � = Θ(λ2 · k)
dmin = Θ(λ2) dmax = Θ(λ2) γ = 1 − Θ( 1

λ )

In addition to this, the plaintext length k must satisfy k = O (λ). We do not
provide any fixed relation between k and λ because, depending on the applica-
tion, we may either want to encrypt a constant-size plaintext (i.e. k = O (1)) or
a plaintext as long as possible (i.e. k = Θ(λ)). With those parameters

– key generation takes O (
λ4 · k2 · log λ · log log λ

)
,

– encryption takes O (
λ4 · k

)
,

– decryption takes O (
λ3 · k

)
,

– the unreliability is ρ = O
(

k
λ · 2−λ2

)
(heuristically),

– the private key length is wK log2 dK = O (λ log λ),
– the public key length is dP = O (

λ2
)
,

– the plaintext length is k,
– the ciphertext length is � = O (

λ2 · k
)
.



190 J.-P. Aumasson et al.

4 Security

Clearly, TCHo is not OW-CCA secure: given a valid ciphertext, it suffices to
modify one bit and ask an oracle to decrypt it to get with high probability the
plaintext corresponding to the original ciphertext. Thus it is not IND-CCA secure
either. Like RSA, TCHo is malleable, given a single ciphertext: if y is a ciphertext
of x, then y + C(x̃) is a valid ciphertext of x + x̃, for any x̃ ∈ {0, 1}k. In what
follows we study semantic security.

Lemma 2. There exists a constant ν such that for any λ, t, ε and TCHo param-
eters, if, for a random P generated by TCHo key generation, S�

LP
+ S�

γ cannot
be distinguished from S�

0 in time t with an advantage larger than ε, then TCHo

encryption is (t − ν · �, ε)-IND-CPA secure.

On the asymptotic side, letting t be polynomial and ε be exponentially small in
terms of λ, we obtain that TCHo is IND-CPA secure.

Proof. We proceed by reduction: let Aror = (Aror
1 , Aror

2 ) be an adversary in a real-
or-random game, which, given a chosen plaintext x = Aror

1 (1λ) and a bitstring z
of length �, decides whether z is a ciphertext of x or of an unknown randomly
chosen plaintext x′; this adversary returns Aror

2 (z) ∈ {0, 1}, and succeeds with
an advantage ε, in time t. Since a ciphertext of TCHo consists of some bitstring
noised with a random source, the ciphertexts space is equal to {0, 1}�, so there
are no trivial instances of the problem, and every element of {0, 1}� can be a
ciphertext of one or several messages.

We build a distinguisher between S�
LP

+S�
γ and S�

0 in the following way: given
an unknown instance S�

�, choose a plaintext x = Aror
1 (1λ) independently of S�

�,
and compute z = C(x) + S�

�, then return Aror
2 (z). If S�

� is random, then so is z,
otherwise z is a valid ciphertext of x, therefore we got an adversary distinguishing
a noised LFSR stream from random with exactly the same advantage than a real-
or-random one, in time greater than t. As real-or-random security implies [5]
semantic security, TCHo is IND-CPA secure.

The cost of simulation is O (�) so if Aror has complexity t − ν · �, for ν large
enough, the distinguisher has complexity bounded by t. 
�
Let P be a random polynomial of degree dP ∈ [dmin, dmax] and weight wP . In
order to determine whether a bitstring is S�

LP
+ S�

γ or S�
0, one strategy consists

in multiplying the stream by P , and deciding whether the obtained stream has
bias γwP or not. It is infeasible to distinguish a random source with bias γwP

from a uniform one as soon as γwP < 2−λ/2. Instead of multiplying by P , one
can multiply by multiples of P of lower weight and degree less than � and use
the obtained bits. For a random P there are on average

(
d−1
w−2

)
2−dP multiples of

weight w and degree d with non-zero constant term. Hence the total number of
bits of bias γw one can obtain using all the multiples of weight w is approximately

Nw ≈ 2−dP

�−1∑

d=w−1

(� − d)
(

d − 1
w − 2

)

= 2−dP

(
�

w

)

.



TCHo: A Hardware-Oriented Trapdoor Cipher 191

When there are too many such bits, we must reduce this number. Let N be the
number of used bits. We have N ≤ Nw. If γw is small, the advantage of the
best distinguisher using N bits is [4] Adv ≈ γw

√
N/(2π). The complexity of the

distinguisher using these N bits can be lower-bounded by the sum of

– wN (we have to calculate all bits),
– the cost of finding at least one multiple of P with degree up to � and weight

w, which can be lower bounded by (�/dP )w−1 × 2dP /
(

�
w−1

)
(we use here the

lower bound for syndrome decoding from [14]).

By optimizing over the choice of w and N , the best advantage-over-complexity
ratio for this strategy is

R = max
w∈[0,dP ]

N≥1

γw/
√

2π

w
√

N + 1√
N

(
�

dP

)w−1
× 2dP

( �
w)

.

Given the optimal w, the maximum in dependence of N is reached when

N = max

(

1,

(
�

dP

)w−1

× 2dP

w
(

�
w

)

)

.

By using the approximation
(

�
w

) ≈ �w/w! and the Stirling approximation we can
show that for w ∈ [0.33dP , 1.88dP ] this N is equal to 1. But then, R is bounded
by γw/w

√
2π which is maximal for the smallest w. On the other hand, for w <

0.33dP we can show that the R ratio increases with w so the best ratio is for the
threshold w such that N decreases to 1. We deduce that R = O (

γΩ(dmin)/dmin
)
.

With our asymptotic parameters, we obtain R = exp(−Ω(λ))/λ2.
For a more precise bound we shall use

R = max
w∈[0,dmax]

N≥1

γw/
√

2π

w
√

N + 1√
N

(
�

dmin

)w−1
× 2dmin

( �
w)

. (3)

Experience shows this is reached for N = 1. Intuitively, this means that using
a single multiple polynomial which is essentially easy to get is the best strategy
because the advantage benefit is not worth working hard on lowering w.

As an example, the parameter vector I65 (as well as II65) in Table 1 gives
R ≤ 2−65 for the optimal w = 1936 and N = 1. (Actually, all other parameter
vectors satisfy R ≤ 2−80.) Note that in the worst case where dP = dmin, “random
multiples” of P with degree close to dmin have random weights with expected
value dmin/2 = 2900 and standard deviation

√
dmin/2 = 38. So, a weight of 1936

is within 25 standard deviations, which is pretty large. With higher degrees, the
distance is more important. As our computation assumes that getting a bit of
bias γw is easy, our analysis may still be pessimistic. So, those parameters may
be more secure than what this R ≤ 2−65 bound suggests.



192 J.-P. Aumasson et al.

Assumption 3. Suppose dmin ≥ 2λ and γ ≤ 21−λ/dmin − 1 and the conditions
of Assumption 1 are met. Then, for any �, on average over P generated by Gen
as defined in Assumption 1, a distinguisher between S�

LP
+ S�

γ and S�
0 has an

advantage/complexity ratio lower than R as defined by Eq. (3).

This leads to the following result.

Theorem 4. Under Assumptions 1 and 3, there exists ν such that for any λ
and t and any TCHo parameters satisfying the conditions in Assumptions 1 and
3, TCHo is (t − ν · �, R · t)-IND-CPA secure.

Security Level Assessment. The above parameters provide semantic security
against adversaries with an advantage/complexity ratio upper bounded by R
as given by Eq. (3). More precisely, to compare this with a security level of
an exhaustive key search for an s-bit key, we should set R = 2−s in Eq. (3).
Asymptotically, we have s = Θ(λ). For the parameter vectors I65 and II65 we
have s ≥ 65. For all others we have s ≥ 80.

5 Construction of an IND-CCA Secure Scheme

We propose a generic hybrid construction by using the (revisited) Fujisaki-
Okamoto paradigm based on tag-KEM [1,2,15]. The encryption scheme obtained
offers IND-CCA security when the public encryption scheme is OW-CPA and Γ -
uniform, and the symmetric cipher one-time secure. For instance, one can simply
choose Symenc(ψ)(x) = x + F (ψ) for some random oracle F . The construction
requires two random oracles H and G. The IND-CPA security of TCHo implies
OW-CPA security, and the proof of Γ -uniformity of TCHo1 [14] applies to TCHo

as well. So the following hybrid encryption scheme is IND-CCA secure.

Encryption. Given a message x:

1. Choose a random σ uniformly in {0, 1}k

2. Compute the symmetric key: ψ ← G(σ)
3. Encrypt the message x: y ← Symenc(ψ)(x)
4. Encapsulate the key: χ ← TCHoenc(σ, H(σ||y))
5. Output the ciphertext (χ, y).

Decryption. Given a ciphertext (χ, y):

1. Compute the encapsulated key: ψ ← G(TCHodec(χ))
2. Decrypt the message: x ← Symdec(ψ)(y)
3. Output the plaintext x.

Table 1 shows examples of parameters for a symmetric encryption key of typical
length 128 bits. So the construction encrypts a message with an overhead of �
bits (the length of a ciphertext in TCHo).



TCHo: A Hardware-Oriented Trapdoor Cipher 193

6 Implementation of TCHo

TCHo was implemented in C++, using the NTL library [26] for arithmetic over
F2[X ], including GCD and factorization algorithms. All performances were mea-
sured on 1.5 GHz Pentium 4 computer.

6.1 Choice of Parameters

Here we summarize the inequalities that must hold to get IND-CPA and 2Θ(λ)

security, deduced from Assumptions 1 and 3, when using block repetition codes.

• To correctly decrypt, ρ, given by Eq. (2), must be small.
• K must be impossible to recover from P :

(
dK

wK−1

) ≤ 2dmin and wK log2
dK

dmax
≥ λ.

• Semantic security is assumed to hold when

dmin ≥ 2λ, γ ≤ 21−λ/dmin − 1 and R ≤ 2−λ,

where R is given by Eq. (3).

In practice, one may fix a block size k, a security level λ, and a ciphertext
length �, then deduce the degree and weight of K, an interval for the degree of a
public key P , and a bias γ for the pseudo-random bits. But there is no strict rule
to choose parameters (k, dmin, dmax, dK , wK , γ, �), indeed TCHo is very flexible,
and one may adapt them to its requirements, e.g. by allowing an average failure
probability so as to reduce the expansion, or by setting a high degree d for the
private key K and a high expansion in order to get a negligible error probability
ρ, at the price of a very long key generation. Experiments in Section 6.3 will give
concrete examples of these trade-offs.

6.2 Chosen Algorithms

Our LFSR implementation uses a variant of the block-oriented algorithm intro-
duced in [9,10]. In software, LFSR’s are slower than in hardware; for a random
polynomial of degree 6 000, our implementation could only reach a rate of 150
Kb/s. The number of bitwise operations required to compute a bitstream of
length � is roughly 1

16�dP . Our generator for Sγ uses a source of uniform pseudo-
random bits to produce blocks of n bits in two steps:

1. pick a weight q ∈ [0, n] (with suitable probability distribution),
2. pick a word of weight q (uniformly).

The first step is accomplished by partitioning the interval [0, 1] ⊂ Q into n
intervals with respect to the weight distribution induced by the bias, and then
picking a random, uniform rational number in this interval with high enough
precision. For blocks of 32 bits and precision 2−64, the statistical distance to



194 J.-P. Aumasson et al.

the ideal generator is negligible. The pseudo-random generator ISAAC [19] is
used as a source of random bits4. Compared to the LFSR, our generator is quite
efficient: more than 28 Mb of biased random bits are produced per second.

6.3 Software Implementation Results

Table 2 shows performances for the repetition codes scenarios described in Ta-
ble 1. Encryption time is roughly equal to the time needed to compute S�

LP (r1)

(in all scenarios S�
γ is computed in less than 1 ms), while for decryption the most

expensive operation is the multiplication by K (majority decoding and product
by the precomputed matrix require less than 1 ms).

Table 2. Performances of TCHo with repetition codes

enc. dec. kgen. unreliability sec. key pub. key plaintext ciphertext
(ms) (ms) (s) (bit) (bit) (bit) (bit)

I65 38.7 47.4 1 180 2−26.5 455 7 000 128 50 000
II65 148.0 115.4 361 2−48.5 507 12 470 128 68 000
III 75.5 49.0 2 290 2−22.4 281 4 433 128 90 000
IV 90.1 65.1 1 970 2−22.9 506 8 000 128 56 000
V 228.4 423.7 200 2−13.0 726 8 795 128 150 000
VI 232.5 178.7 870 2−54.7 652 13 200 128 100 000

Using precomputed look-up tables could speed up encryption: given a P , we
can compute a table of dP × � bits, containing the bitstreams produced by each
initial state of LP of weight 1. Computing such a table takes less than a second
using optimized algorithms, then the generation of a bitstream requires roughly
�
32 × dP

2 XOR operations (in our implementation, with a 32 bits processor).
Experimentally the time gain is not significant, since memory access takes a non-
negligible time (about 70 megabytes are precomputed for common parameters).

Results in Table 2 show that a trade-off must be made between key generation
time, encryption and decryption time, ciphertext expansion, and reliability. The
parameter sets proposed all tend to optimize one of these points while keeping
the others at a reasonable level. Depending on the application, users should
choose one set or an other.

– I65: Fast encryption/decryption for low security requirements of 265.
– II65: Well balanced parameters for low security requirements.
– III: Fast encryption/decryption. This also implies smaller key sizes.
– IV: Smaller message expansion and reasonably fast encryption/decryption.
– V: “Fast” key generation.
– VI: Negligible unreliability is reached.

4 Some weaknesses on ISAAC were reported in [3]. So the question whether ISAAC is
still appropriate for our design is left open.



TCHo: A Hardware-Oriented Trapdoor Cipher 195

One can note that, even though it is possible to improve them a little, the
ciphertext expansion and the key generation time will always remain very high.
Concerning ciphertext expansion it is possible to improve it significantly by en-
crypting larger blocks. For a standard 128 bit key exchange, it seems impossible
to go below blocks of 50 000 bits (for a security of 280 operations), but if more
data needs to be exchanged, using larger blocks (while adjusting � so as to keep
the same unreliability) can decrease expansion to a factor of about 100.

In contrast, not much can be done concerning the prohibitive key generation
time. Given the values of dmin and wK , while keeping the security constant, it
is possible to choose optimal values for dmax and dK . These values will always
correspond to dmax ≈ 1.5 dmin (it would be an equality if factorization was done
in quadratic time). However, factoring a polynomial of degree over 20 000 is a
costly operation which is difficult to speed-up.

6.4 Hardware Implementation

Encryption requires the computation of � bits from a large LFSR, as many bits
with bias γ, and the repetition of the plaintext ��/k� times. Let’s examine those
three operations.

– LFSR’s can be very fast in integrated circuits: the number of gates required
is roughly equal to the length of the register, and it outputs one bit per clock
cycle. We assume that the over-cost induced by our large registers does not
dramatically slow down the computation, and remains feasible in spite of
the unusual size.

– To compute the non-uniform random bitstream, one may use a specially
tuned generator fed with physical entropy; otherwise, a solution is to use an
algorithm producing non-uniform random sequence from a uniform one. For
instance, to generate words of given length, one may use a binary search tree
(precomputed) where each leaf is labeled with a word, and go through the
tree by successive coin flips in order to simulate the bias. Such a construction
roughly requires as many uniform bits as biased bits produced (in compar-
ison, our software generator needs about three uniform bits to compute a
biased one).

– Repetition of a word is straightforward.

Note that, since the operations are independent, parallelization is possible.
Decryption looks more complicated to implement, but it only consists of linear

operations over F2, usually easily implemented. For instance, there exists [29] a
library for FPGA devices performing matrix-vector product and dot product
efficiently (note that the product K ⊗ S is simply a sequence of dot products).
It also requires a small amount of additional memory to perform the majority
decoding (namely k log2

�−dK

k bits to count the number of occurrences of each
bit of m̃).

It thus appears that TCHo’s encryption and decryption only need hardware-
friendly operations (no integer multiplication or addition, no modular arith-
metic). However, the implementation should be flexible, so as to be adaptable



196 J.-P. Aumasson et al.

to any public key – that is, tune the LFSR taps. Unfortunately, we could not
implement TCHo in a hardware environment, but we can estimate requirements
and performances: looking at the parameters in Table 1, a 128-bit key can be
encrypted with a circuit of about 10 000 gates (for the LFSR and the repeti-
tion), with an external source of randomness. With an ASIC running at 4 MHz
(0.25 μs cycle time), we roughly estimate encryption time to 15 ms. The power
consumption is estimated to be of at most 20-100μW, which is suitable for RFID.

7 Comparison with Other Cryptosystems

The security of TCHo relies mostly on results from coding theory and it is thus
tempting to compare it to the famous code based cryptosystem of McEliece [23].
The two cryptosystems function in a similar way: first the message is encoded
using a public code, then some random noise is added to it. However, the two
constructions are quite different in the way noise is added: in McEliece’s cryp-
tosystem, a small amount of completely random noise is added to the codeword,
whereas in TCHo a huge amount of structured noise is added. In TCHo, this noise
should even be indistinguishable from an unbiased random binary sequence: de-
coding is only possible because this noise has a hidden structure. In McEliece,
it is the code which contains a hidden structure which make decoding possible.

To measure the efficiency of TCHo, we need to compare both the timing we
obtained for practical parameters and the asymptotic complexities of TCHo with
those of other ciphers. For practical comparisons we used the benchmark feature
of the Crypto++ library [11] running on the same 1.5 GHz Pentium 4 as our tests.
We then use RSA 1024/2048 as a reference for comparison with other systems.
Results are presented in Table 3. The key generation time of TCHo is of course
way higher than for any other public key cryptosystem, however, encryption and
decryption speed are close to those of RSA or elliptic curve cryptosystems [20].
NTRU [17] is however much faster. Anyway, we believe that for a hardware
oriented cryptosystem these performances are not bad.

From an asymptotic point of view, things are a little different. We need to
compare parameters yielding an equivalent asymptotic security of 2λ. For RSA
this means that we use a modulus of size O (

λ3
)

and for EC a group of order

Table 3. Comparison of TCHo with other public-key cryptosystems

security enc. dec. kgen. sk/pk pt ct
(ms) (ms) (s) (bit) (bit) (bit)

TCHo I65 265 38.7 47.4 1 180 455/7 000 128 50 000
TCHo IV 280 90.1 65.1 1 970 506/8 000 128 56 000

RSA 1024 272 0.4 12.8 0.3 2 048/1 024 1 024 1 024
RSA 2048 2102 1.0 75.0 1.8 4 096/2 048 2 048 2 048

EC on GF (2163) 278 16.9 10.2 – 160/326 160 326
NTRU ees251ep4 280 ∼ 0.1 ∼ 0.2 ∼ 0.003 502/2 008 251 2 008



TCHo: A Hardware-Oriented Trapdoor Cipher 197

Table 4. Asymptotic comparison of TCHo with other cryptosystems (the O ()’s have
been omitted)

security enc. dec. kgen. sk/pk pt ct

TCHo 2λ λ5 λ4 λ6 · log λ · log log λ λ · log λ/λ2 λ λ3

RSA 2λ λ6 λ9 λ12 λ3/λ3 λ3 λ3

EC 2λ λ3 λ3 λ3 λ/λ λ λ

NTRU 2λ λ2 λ2 λ2 λ/λ λ λ

McEliece 2λ λ2 λ2 · log λ λ3 λ2/λ2 λ λ

2O(λ). For NTRU, the asymptotic complexity is not explicitly known, but it is
assumed that a length of O (λ) can achieve a security of 2λ. The results obtained
are reported in Table 4, where we also added the McEliece cryptosystem5 [23]. It
appears that TCHo is better than RSA on all points, including the key generation
complexity. However, some alternate public-key cryptosystems remain better
asymptotically.

8 Conclusion

Our TCHo cryptosystem is much more efficient than TCHo1: encryption and de-
cryption algorithms are faster, larger blocks can be encrypted, a precise estimate
of the decryption failure probability can be given, and experimental results are
much better than for TCHo1. Meanwhile, TCHo performs pretty well asymp-
totically. It is semantically secure, which makes it possible to use it to build
an IND-CCA secure hybrid encryption scheme using the KEM/DEM framework.
However, it inherits some undesirable properties of the original scheme: first the
key generation is still heavy and the expansion rate remains huge.

As TCHo seems well suited for tiny hardware we may consider using it for
ensuring strong privacy in RFID as suggested in [27].

Finally, as TCHo security only relies on heuristic assumptions, further work
could be devoted to giving concrete elements of proof or attack.

References

1. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A new framework
for hybrid encryption. IACR ePrint archive 2005/027 (2005) Available at
http://eprint.iacr.org/2005/027 Newer version in [2]

2. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005) Older version in [1]

5 We could not find any practical timings to include in Table 3. For asymptotic
behavior we use a code of length 2m correcting t errors, with t = O

(
λ

log λ

)
and

m = O (log t + log log t).

http://eprint.iacr.org/2005/027


198 J.-P. Aumasson et al.

3. Aumasson, J.-P.: On the pseudo-random generator ISAAC. IACR ePrint archive
2006/438 (2006). Available at http://eprint.iacr.org/2006/438

4. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

5. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: Proceedings of the 38th Annual Symposium on Foun-
dations of Computer Science (FOCS’97), p. 394. IEEE Computer Society, Los
Alamitos (1997)

6. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in
a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378
(1998)

7. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity check
equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Heidelberg (2000)

8. Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation 36(154), 587–592 (1981)

9. Chowdhury, S., Maitra, S.: Efficient software implementation of linear feedback
shift registers. In: Pandu Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS,
vol. 2247, pp. 297–307. Springer, Heidelberg (2001)

10. Chowdhury, S., Maitra, S.: Efficient software implementation of LFSR and boolean
function and its application in nonlinear combiner model. In: Zhou, J., Yung, M.,
Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 387–402. Springer, Heidelberg
(2003)

11. Dai, W.: Crypto++ library. http://www.eskimo.com/∼weidai/
12. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on

Information Theory 22(6), 644–654 (1976)

13. Ellis, J.H.: The possibility of secure non-secret digital encryption. GCHQ-CESG
publication (1970)

14. Finiasz, M., Vaudenay, S.: When stream cipher analysis meets public-key cryptog-
raphy (invited talk). In: the Proceedings of SAC 2006, Lecture Notes in Computer
Science (to appear)

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
537–554. Springer, Heidelberg (1999)

16. Gupta, K.C., Maitra, S.: Multiples of primitive polynomials over GF(2). In: Pandu
Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 62–72.
Springer, Heidelberg (2001)

17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. LNCS, vol. 1423, pp.
267–288. Springer, Heidelberg (1998)

18. Jambunathan, K.: On choice of connection-polynominals for LFSR-based stream
ciphers. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp.
9–18. Springer, Heidelberg (2000)

19. Jenkins Jr., R.J.: ISAAC. In: Gollmann, D. (ed.) Fast Software Encryption. LNCS,
vol. 1039, pp. 41–49. Springer, Heidelberg (1996)

20. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

http://eprint.iacr.org/2006/438
http://www.eskimo.com/~weidai/


TCHo: A Hardware-Oriented Trapdoor Cipher 199

21. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275–280. Springer, Heidelberg (1988)

22. Maitra, S., Gupta, K.C., Venkateswarlu, A.: Results on multiples of primitive poly-
nomials and their products over GF(2). Theoretical Computer Science 341(1-3),
311–343 (2005)

23. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep. Jet Prop. Lab. California Inst. Technol. Pasadena, CA, pp. 114–116
(January 1978)

24. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg
(1988)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997)

26. Shoup, V.: NTL: A library for doing number theory. http://shoup.net/ntl/
27. Vaudenay, S.: RFID privacy based on public-key cryptography (invited talk). In:

Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 1–6. Springer, Hei-
delberg (2006)

28. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

29. Zhuo, L., Prasanna, V.K.: High performance linear algebra operations on recon-
figurable systems. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005.
LNCS, vol. 3628, Springer, Heidelberg (2005)

A On the Choice of the Code

TCHo1 uses a code C generated by L�
Q with a primitive polynomial Q of degree

k. The drawback of this code is that decoding requires O (
k2k

)
.

Note that if Q is a trinomial, decoding algorithms more efficient than MLD
exist; the Algorithm B in [24] or Gallager decoding as used, e.g., in [7] for fast
correlation attacks can be applied. The success probability of these algorithms
depends on the weight of the feedback polynomial of the LFSR, the bias γwK ,
and the ratio between the length of known output and the size of the LFSR
for which the initial state is searched for. Again, concerning the reliability of
these iterative algorithms, only experimental results seem to be available. For
trinomials it can be seen from Table 3 in [24] that, for example, correct decoding
is expected if the known output has length 100 times the LFSR-length, and
1
2 (1 + γwK ) is 0.6 or larger.

We rather use block repetition codes which is equivalent to setting Q = Xk+1
in TCHo1 although this would be illegal in TCHo1 since Xk +1 is not primitive.

http://shoup.net/ntl/


Anonymity on Paillier’s Trap-Door Permutation

Ryotaro Hayashi1,� and Keisuke Tanaka2

1 TOSHIBA Corporation
1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa 212-8582, Japan

2 Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology
W8-55, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

keisuke@is.titech.ac.jp

Abstract. It is said that an encryption scheme provides anonymity
when it is infeasible for the adversary to determine under which key the
ciphertext was created. (i.e. the receiver of the ciphertext is anonymous
from the point of view of the adversary.) From the previous results, we
can find four techniques, repeating, expanding, RSACD, and sampling
twice, for achieving the anonymity property of the encryption schemes
based on RSA.

In this paper, we focus on the four techniques described above in the
case using Paillier’s bijective function instead of the RSA function. We
slightly modify his function and construct a family of Paillier’s trap-door
permutations, and a family of Paillier’s trap-door permutations with a
common domain. We also apply our proposed families of Paillier’s trap-
door permutations to encryption with the above four techniques, and
prove their security.

Keywords: Paillier’s function, Paillier’s trap-door permutation, key-
privacy, anonymity, encryption.

1 Introduction

1.1 Background

It is said that an encryption scheme provides anonymity when it is infeasible for
the adversary to determine under which key the ciphertext was created. (i.e. the
receiver of the ciphertext is anonymous from the point of view of the adversary.)
Similarly, it is said that a signature scheme provides anonymity when it is in-
feasible to determine which user generated the signature. A simple observation
that seems to be folklore is that standard RSA encryption, namely, a ciphertext
is xe mod N where x is a plaintext and (N, e) is a public key, does not provide
anonymity, even when all moduli in the system have the same length. Suppose an
adversary knows that the ciphertext y is created under one of two keys (N0, e0)
or (N1, e1), and suppose N0 ≤ N1. If y ≥ N0 then the adversary bets it was
created under (N1, e1), else the adversary bets it was created under (N0, e0). It
� Work done while at the Dept. of Mathematical and Computing Sciences, Tokyo

Institute of Technology.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 200–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Anonymity on Paillier’s Trap-Door Permutation 201

is not hard to see that this attack has non-negligible advantage. To construct the
schemes with anonymity, it is necessary that the space of ciphertexts is common
to each user. We can say the same thing about RSA-based signature schemes.

From the previous results, we can find four techniques, repeating, expanding,
RSACD, and sampling twice, for achieving the anonymity property of cryptosys-
tems based on RSA.

Repeating. Repeating the evaluation of the encryption (respectively the sign-
ing) with plaintext x (resp. message m), random r, and the RSA function,
each time using different r until the resulting value is smaller than any public
key N of each user. In [1], Bellare, Boldyreva, Desai, and Pointcheval used
this technique for the encryption scheme.

Expanding. Doing the evaluation of the encryption (respectively the sign-
ing) with plaintext x (resp. message m), random r, and the RSA function,
and expanding it to the common domain. This technique was proposed by
Desmedt [4]. In [6], Galbraith and Mao used this technique for the undeni-
able signature scheme. In [12], Rivest, Shamir, and Tauman also used this
technique for the ring signature scheme.

RSACD. Doing the evaluation of the encryption (respectively the signing) with
plaintext x (resp. message m), random r, and the RSACD (RSA with a
Common Domain) function. For any N where |N | = k, the domain and the
range of the RSACD function with N are [0, 2k). This function was proposed
by Hayashi, Okamoto, and Tanaka [7].

Sampling Twice. Doing the evaluation of the encryption (respectively the
signing) twice with plaintext x (resp. message m), random r1 and r2, and
the RSA function, and applying the algorithm ChooseAndShift for the two
resulting values. Then, the output of this algorithm is uniformly distributed
over [0, 2k) for any |N | = k. This technique was proposed by Hayashi and
Tanaka [8].

The RSA-based anonymous encryption schemes with the above four tech-
niques were proposed, and these schemes are variants of RSA-OAEP (Bellare and
Rogaway [2], Fujisaki, Okamoto, Pointcheval, and Stern [5]). Bellare, Boldyreva,
Desai, and Pointcheval [1] proposed the scheme with the repeating technique,
which is called RSA-RAEP. Hayashi, Okamoto, and Tanaka [7] constructed the
scheme with the RSACD function. Hayashi and Tanaka [8] proposed the scheme
by using the sampling twice technique. In [8], they also mentioned the scheme
with the expanding technique for comparison, and they proved the security of
the scheme in [10].

In the security proofs, the anonymity (and the indistinguishability) of the
scheme with repeating [1], that with expanding [8,10], and that with sampling
twice [8] are reduced directly to the θ-partial one-wayness of the RSA function.
(Roughly speaking, given a function f and an element y = f(x), it is hard to
compute a θ fraction of the most significant bits of x.) Since the θ-partial one-
wayness of RSA is equivalent to the one-wayness of RSA for θ > 0.5 (Fujisaki,
Okamoto, Pointcheval, and Stern [5]), the schemes with repeating, expanding,
and sampling twice are secure assuming that RSA is one-way.



202 R. Hayashi and K. Tanaka

RSAN is one-way

[11]
�

� Paillier is one-way
[this paper]

� PCD is one-way

�

�
[5]

�

�
[this paper]

�

�
[this paper]

RSAN is
θ-partial one-way

Paillier is
θ-partial one-way

PCD is
θ-partial one-way

Fig. 1. Relationships between RSAN , Paillier, and PCD for θ > 0.5

In contrast, in the security proof, the anonymity (and the indistinguishability)
of the scheme with RSACD is reduced directly to the θ-partial one-wayness of the
RSACD function. Hayashi, Okamoto, and Tanaka [7] showed that the θ-partial
one-wayness of RSACD is reduced to the one-wayness of RSA for θ > 0.5.
Therefore, the scheme with RSACD is secure assuming that RSA is one-way.

1.2 Our Contribution

In [11], Paillier provided a trap-door one-way bijective function, and proved
that the function is one-way if and only if the problem of extracting N -th roots
modulo N is hard.

In this paper, we focus on the four techniques described above in the case using
Paillier’s bijective function instead of the RSA function. We slightly modify his
function and construct a family of Paillier’s trap-door permutations denoted by
Paillier. We also construct a family of Paillier’s trap-door permutations with a
common domain denoted by PCD, and prove the relations in Figure 1 for θ > 0.5.
Here, RSAN denotes an RSA family of trap-door permutations with the fixed
exponent N .

We prove that the one-wayness of Paillier is reduced to that of PCD. In [7],
Hayashi, Okamoto, and Tanaka proved that the one-wayness of RSA is reduced
to that of RSACD. Our proof is similar to theirs. However, we cannot prove the
partial one-wayness of Paillier by directly applying a similar argument for that of
RSA in [5]. Furthermore, although the construction of PCD is similar to that of
RSACD, we cannot prove the partial one-wayness of PCD by directly applying
a similar argument for that of RSACD in [7].

We also apply Paillier and PCD to encryption, and obtain Paillier-OAEP
(OAEP with Paillier’s trap-door permutation) with repeating, that with expand-
ing, that with sampling twice, and PCD-OAEP (OAEP with Paillier’s trap-door
permutation with a common domain). We prove that the anonymity and the
indistinguishability of Paillier-OAEP with repeating, that with expanding, and
that with sampling twice can be reduced directly to the θ-partial one-wayness
of Paillier. We also prove that the anonymity and the indistinguishability of
PCD-OAEP is reduced directly to the θ-partial one-wayness of PCD. From the
relations in Figure 1, our proposed schemes provide the anonymity and the in-
distinguishability assuming that RSAN is one-way.



Anonymity on Paillier’s Trap-Door Permutation 203

The organization of this paper is as follows. In Section 2, we review some defi-
nitions. In Section 3, after reviewing Paillier’s bijective function [11], we propose
a family of Paillier’s trap-door permutations denoted by Paillier and a family
of Paillier’s trap-door permutations with a common domain denoted by PCD.
We also show the relationships between Paillier, PCD, and RSAN . In Section 4,
we propose applications of Paillier and PCD to encryption and prove that our
schemes provide the anonymity and the indistinguishability in the random oracle
model assuming that RSAN is one-way.

Due to lack of space, all of the proofs have been omitted from this paper. See
the full version.

2 Preliminaries

In this section, we review some definitions.
First, we describe the definitions of families of functions, families of trap-door

permutations, and θ-partial one-wayness. We employ the definitions described
in [1].

Definition 1 (families of functions, families of trap-door permutations).
A family of functions F = (K, S, E) is specified by three algorithms.

– The randomized key-generation algorithm K takes as input a security pa-
rameter k and returns a pair (pk, sk) where pk is a public key and sk is an
associated secret key (In cases where the family is not trap-door, the secret
key is simply the empty string.).

– The randomized sampling algorithm S takes pk and returns a random point
in a set that we call the domain of the function and denote by DomF (pk).

– The deterministic evaluation algorithm E takes pk and x ∈ DomF (pk) and
returns an output we denote by Epk(x). We let RngF (pk) = {Epk(x) | x ∈
DomF (pk)} denote the range of the function.

We say that F is a family of trap-door permutations if DomF (pk) = RngF (pk),
Epk is a bijection on this set, and there exists a deterministic inversion algo-
rithm I that takes sk and y ∈ RngF (pk) and returns x ∈ DomF (pk) such that
Epk(x) = y.

Definition 2 (θ-partial one-wayness). Let F = (K, S, E) be a family of func-
tions. Let b ∈ {0, 1} and k ∈ N. Let 0 < θ ≤ 1 be a constant. Let A be an
adversary. We consider the following experiments:

Experiment Expθ-pow-fnc
F,A (k)

(pk, sk) ← K(k); x
R← DomF (pk); y ← Epk(x)

x1 ← A(pk, y) where |x1| = �θ · |x|�
if

(
Epk(x1||x2) = y for some x2

)
return 1 else return 0

We define the advantages of the adversary via

Advθ-pow-fnc
F,A (k) = Pr[Expθ-pow-fnc

F,A (k) = 1].



204 R. Hayashi and K. Tanaka

We say that the family F is θ-partial one-way if the function Advθ-pow-fnc
F,A (·) is

negligible for any adversary A whose running time is polynomial in k.

Note that when θ = 1 the notion of θ-partial one-wayness coincides with the
standard notion of one-wayness. We say that the family F is one-way when F is
1-partial one-way.

Next, we describe the RSA family of trap-door permutations with the fixed
exponent N denoted by RSAN . In [11], Paillier provided the trap-door one-way
bijective function whose one-wayness is equivalent to that of RSAN .

Definition 3 (the RSA family of trap-door permutations with the fixed
exponent N). The RSA family RSAN = (K, S, E) of trap-door permutations
with the fixed exponent N is as follows. The key generation algorithm K takes a
security parameter k and picks random, distinct primes p, q such that 2�k/2�−1 <
p, q < 2�k/2� and |p2q2| = 2k. It sets N = pq (i.e. 22k−1 < N2 < 22k.) and λ =
λ(N) = lcm(p−1, q−1). It returns a public key pk = (N, k) and a secret key sk =
(N, k, λ). DomRSAN (N, k) and RngRSAN (N, k) are both equal to Z

∗
N . The sampling

algorithm returns a random point in Z
∗
N . The evaluation algorithm EN,k(x) =

xN mod N and the inversion algorithm IN,k,λ(y) = yN−1 mod λ mod N .

3 A Family of Paillier’s Trap-Door Permutations and
That with a Common Domain

In this section, we propose a family of Paillier’s trap-door permutations and that
with a common domain.

3.1 Paillier’s Bijective Functions

In [11], Paillier provided the bijective function gN : {x1 + x2 · N |x1 ∈ ZN , x2 ∈
Z
∗
N} → Z

∗
N2 . The public key and the secret key are those for RSAN , respectively.

The function gN is defined as gN (x) = (1+Nx1)xN
2 mod N2 where x1 = x mod

N and x2 = x div N . By using the trap-door λ = lcm(p − 1, q − 1), we can
invert gN by computing g−1

N (y) = x1 + x2 · N , where x1 ← L(yλ mod N2)
λ mod N ,

x2 ← (y · (1 − Nx1))N−1 mod λ mod N, and L(u) = (u − 1)/N . He proved the
following proposition.

Proposition 1 ([11]). The family of Paillier’s bijective functions is one-way if
and only if RSAN is one-way.

3.2 A Family of Paillier’s Trap-Door Permutations

In this section, we propose a family of Paillier’s trap-door permutations denoted
by Paillier and prove that the θ-partial one-wayness of Paillier is equivalent to
the one-wayness of Paillier for θ > 0.5.



Anonymity on Paillier’s Trap-Door Permutation 205

The domain and the range of Paillier’s bijective function are different. In order
to construct a permutation based on Paillier’s bijective function, we consider a
function hN : Z

∗
N2 → {x1 + x2 · N |x1 ∈ ZN , x2 ∈ Z

∗
N} such that hN (x) =

(x div N)+(x mod N)·N . It is clear that hN is bijective and h−1
N (y) = (y div N)+

(y mod N) · N . Therefore, hN ◦ gN is a trap-door permutation over {x1 + x2 ·
N |x1 ∈ ZN , x2 ∈ Z

∗
N}.

We now propose a family of Paillier’s trap-door permutations denoted by
Paillier.

Definition 4 (the family of Paillier’s trap-door permutations). The spec-
ifications of the family of Paillier’s trap-door permutations Paillier = (K, S, E) are
as follows. The key generation algorithm K takes as input a security parameter k,
runs the key generation algorithm for RSAN , and returns a public key pk = (N, k)
and a secret key sk = (N, k, λ). DomPaillier(N, k) and RngPaillier(N, k) are both equal
to {x1 + x2 · N |x1 ∈ ZN , x2 ∈ Z

∗
N}. The sampling algorithm returns a random

point in DomPaillier(N, k). The evaluation algorithm EN,k(x) = FP
N (x), and the

inversion algorithm IN,k,λ(y) = GP
N,λ(y) are as follows. Note that FP

N = hN ◦ gN

and GP
N,λ = g−1

N ◦ h−1
N .

Function FP
N (x) Function GP

N,λ(y)
x1 ← x mod N ; x2 ← x div N y1 ← y mod N ; y2 ← y div N
Y ← (1 + Nx1)xN

2 mod N2 Y ← y1 · N + y2

y1 ← Y div N ; y2 ← Y mod N x1 ← L(Y λ mod N2)
λ mod N

y ← y1 + y2 · N x2 ← (Y · (1 − Nx1))N−1 mod λ mod N
return y x ← x1 + x2 · N

return x

From Proposition 1, we can easily see the following lemma.

Lemma 1. Paillier is one-way if and only if RSAN is one-way.

We can prove the following theorem. Note that we cannot prove the following
theorem by directly applying a similar argument for RSA in [5].

Theorem 1. The θ-partial one-wayness ofPaillier is equivalent to the one-wayness
of Paillier for θ > 0.5.

Fujisaki, Okamoto, Pointcheval, and Stern [5] showed that the θ-partial one-
wayness of RSA is equivalent to the one-wayness of RSA for θ > 0.5. In their
reduction, they assume the θ-partial inverting algorithm A for RSA with advan-
tage ε, and construct the inverting algorithm B for RSA by running A twice.
Then, the success probability of B is approximately

√
ε. Furthermore, their re-

duction can be extended to the case that θ is a constant fraction less than 0.5.
That is, B runs A 1/θ times, and the success probability decreases to approxi-
mately ε1/θ.



206 R. Hayashi and K. Tanaka

Fig. 2. The functions F PCD
N,k and GPCD

N,k,λ

Our reduction for Paillier is tighter than that for RSA in [5] with respect
to both the success probability and the running time. However, our reduction
cannot be extended to the case that θ is a constant fraction less than 0.5.

3.3 A Family of Paillier’s Trap-Door Permutations with a Common
Domain

In this section, we construct a family of Paillier’s trap-door permutations with
a common domain denoted by PCD and prove that the θ-partial one-wayness of
PCD is equivalent to the one-wayness of Paillier for θ > 0.5.

The construction of PCD. The construction of PCD is similar to that of
RSACD in [7].

Definition 5 (the family of Paillier’s trap-door permutations with a
common domain). The family of Paillier’s trap-door permutations with a com-
mon domain PCD = (K, S, E) is as follows. The key generation algorithm is
the same as that of Paillier. DomPCD(N, k) and RngPCD(N, k) are both equal to
{x1 +x2 ·N |(x1 +x2 ·N) ∈ [0, 22k), x1 ∈ ZN , (x2 mod N) ∈ Z

∗
N}. The sampling

algorithm returns a random point in DomPCD(N, k). The evaluation algorithm
EN,k(x) = FPCD

N,k (x), and the inversion algorithm IN,k,λ(y) = GPCD
N,k,λ(y) are as

follows. (See also Figure 2.)

Function FPCD
N,k (x) Function FPCD-1

N,k (x)
u ← FPCD-1

N,k (x); v ← FPCD-2
N,k (u) if (x < N2) u ← FP

N (x)
y ← FPCD-3

N,k (v) else u ← x

return y return u

Function FPCD-2
N,k (u) Function FPCD-3

N,k (v)
if (u < 22k − N2) v ← u + N2 if (v < N2) y ← FP

N (v)
elseif (22k − N2 ≤ u < N2) v ← u else y ← v

else v ← u − N2 return y

return v



Anonymity on Paillier’s Trap-Door Permutation 207

Function GPCD
N,k,λ(y) Function GPCD-1

N,k,λ(y)
v ← GPCD-1

N,k,λ(y); u ← GPCD-2
N,k,λ(v) if (y < N2) v ← GP

N,λ(y)
x ← GPCD-3

N,k,λ(u) else v ← y

return x return v

Function GPCD-2
N,k,λ(v) Function GPCD-3

N,k,λ(u)
if (v < 22k − N2) u ← v + N2 if (u < N2) x ← GP

N,λ(u)
elseif (22k − N2 ≤ v < N2) u ← v else x ← u

else u ← v − N2 return x

return u

The choice of N2 from (22k−1, 22k) ensures that all elements in DomPCD(N, k) are
permuted by FP

N at least once. Since FP
N is a permutation over DomPaillier(N, k),

both FPCD-1
N,k and FPCD-3

N,k are permutations over DomPCD(N, k). Since it is clear
that FPCD-2

N,k is a permutation over DomPCD(N, k), we have that FPCD
N,k is a per-

mutation over DomPCD(N, k).

The Properties of PCD. We show the θ-partial one-wayness of PCD is equiv-
alent to the one-wayness of PCD for θ > 0.5, and that the one-wayness of PCD
is equivalent to the one-wayness of Paillier.

We can prove the following theorem. Note that we cannot prove this by di-
rectly applying a similar argument for that of RSACD in [7].

Theorem 2. The θ-partial one-wayness of PCD is equivalent to the one-wayness
of PCD for θ > 0.5.

We can prove the following theorem in a similar way as that of the relationship
between RSA and RSACD in [7].

Theorem 3. If Paillier is one-way then PCD is one-way.

Fujisaki, Okamoto, Pointcheval, and Stern [5] proved that the one-wayness of
RSAN is equivalent to the θ-partial one-wayness of RSAN for θ > 0.5. Therefore,
the relations in Figure 1 are satisfied for θ > 0.5.

4 Applications to Public-Key Encryption with
Anonymity

4.1 Anonymity for Public-Key Encryption

The classical security requirements of public-key encryption schemes, for exam-
ple the indistinguishability under the adaptive chosen-ciphertext attack (IND-
CCA2), provide privacy of the encryption data. In [1], Bellare, Boldyreva, De-
sai, and Pointcheval proposed a new security requirement of encryption schemes
called “key-privacy” or “anonymity.” It asks that the encryption provides (in
addition to privacy of the data being encrypted) privacy of the key under which
the encryption was performed. They formalized the property of “anonymity” as
IK-CPA and IK-CCA (IK means “indistinguishability of keys.”).



208 R. Hayashi and K. Tanaka

In a heterogeneous public-key environment, encryption will probably fail to
be anonymous for trivial reasons. For example, different users might be using
different cryptosystems, or, if the same cryptosystem, have keys of different
lengths. In [1], a public-key encryption scheme with common-key generation is
described as follows.

Definition 6. Apublic-key encryption schemewith common-key generationPE =
(G, K, E , D) consists of four algorithms.

– The common-key generation algorithm G takes as input some security pa-
rameter k and returns some common key I.

– The key generation algorithm K is a randomized algorithm that takes as
input the common key I and returns a pair (pk, sk) of keys, the public key
and a matching secret key.

– The encryption algorithm E is a randomized algorithm that takes the public
key pk and a plaintext x to return a ciphertext y.

– The decryption algorithm D is a deterministic algorithm that takes the secret
key sk and a ciphertext y to return the corresponding plaintext x or a special
symbol ⊥ to indicate that the ciphertext was invalid.

We describe their definition of IK-CCA (the indistinguishability of keys against
the adaptive chosen-ciphertext attack).

Definition 7 (IK-CCA [1]). Let PE = (G, K, E , D) be an encryption scheme.
Let b ∈ {0, 1} and k ∈ N. Let A = (A1, A2) be the adversary which runs in two
stages and has access to the oracles Dsk0(·) and Dsk1(·). Note that si is the state
information. By using this, A1 passes some information, for example pk0, pk1,
to A2. We consider the following experiment. Note that in this experiment A2
cannot ask the challenge ciphertext y to either Dsk0(·) or Dsk1(·).

Experiment Expik-cca-b
PE,A (k)

I ← G(k); (pk0, sk0), (pk1, sk1) ← K(I)
(m, si) ← A1(pk0, pk1); y ← Epkb

(m); d ← A2(y, si); return d

The scheme PE is said to be IK-CCA secure if the advantage defined by

Advik-cca
PE,A (k) =

∣
∣
∣Pr[Expik-cca-1

PE,A (k) = 1] − Pr[Expik-cca-0
PE,A (k) = 1]

∣
∣
∣

is negligible for any polynomial-time adversary A.

In the following, we propose encryption schemes with anonymity by using Paillier,
PCD, and the four techniques described in Section 1.

4.2 Our Proposed Schemes

In this section, we propose Paillier-OAEP with repeating, that with expanding,
that with sampling twice, and PCD-OAEP.



Anonymity on Paillier’s Trap-Door Permutation 209

Definition 8 (Paillier-OAEP with repeating). Paillier-OAEP PE = (G, K,
E , D) with repeating is as follows. The common-key generation algorithm G takes
a security parameter k and returns parameters k, k0, and k1 such that k0 +k1 <
2k for all k > 1. This defines an associated plaintext-length function n = 2k −
k0 − k1. The key generation algorithm K takes k, k0, k1, runs the key-generation
algorithm of Paillier, and gets N, k, λ. The public key pk is N, k, k0, k1 and the
secret key sk is (N, λ), k, k0, k1. The other algorithms are depicted below. Let G
: {0, 1}k0 → {0, 1}n+k1 and H : {0, 1}n+k1 → {0, 1}k0 be hash functions. Note
that [x]� denotes the � most significant bits of x and [x]� denotes the � least
significant bits of x.

Algorithm Epk(x) Algorithm Dsk(y)
ctr ← −1 b ← [y]1; v ← [y]k0+k1+n

repeat if (b = 1)
ctr ← ctr + 1; r ← {0, 1}k0 w ← [v]k0+k1 ; x ← [v]n
u ← OAEP(x, r); v ← FP

N (u) if (w = 0k0+k1) z ← x else z ←⊥
until((v < 22k−1) ∨ (ctr = k1)) else
if (ctr = k1) y ← 1||0k0+k1 ||x u ← GP

N,λ(v); z ← OAEP−1(u)
else y ← 0||v return z
return y

where

Algorithm OAEP(x; r) Algorithm OAEP−1(u)
s ← (x||0k1) ⊕ G(r) s ← [u]n+k1 ; t ← [u]k0 ; r ← t ⊕ H(s)
t ← r ⊕ H(s) x ← [s ⊕ G(r)]n; p ← [s ⊕ G(r)]k1

return s||t if (p = 0k1) z ← x else z ←⊥; return z

Definition 9 (Paillier-OAEP with expanding). Paillier-OAEP PE=(G, K,
E , D) with expanding is as follows. The common-key generation algorithm G,
the key generation algorithm K, and the hash functions G, H are the same as
those of Paillier-OAEP with repeating. The other algorithms are depicted below.
Note that the valid ciphertext y satisfies y ∈ [0, 22k+160) and (y mod N2) ∈
RngPaillier(N, k).

Algorithm Epk(x) Algorithm Dsk(y)
r ← {0, 1}k0; u ← OAEP(x, r); v ← FP

N (u) v ← y mod N2

α
R← {0, 1, 2, · · · , �(22k+160 − v)/N2�} u ← GP

N,λ(v)
y ← v + αN2 z ← OAEP−1(u)
return y return z

Definition 10 (PCD-OAEP). PCD-OAEP PE = (G, K, E , D) is as follows.
The common-key generation algorithm G, the key generation algorithm K, and
the hash functions G, H are the same as those of Paillier-OAEP with repeating.



210 R. Hayashi and K. Tanaka

Repeating Expanding PCD Sampling Twice

# of mod. exp. to encrypt (average / worst) 1.5 / k1 1 / 1 1.5 / 2 2 / 2

# of mod. exp. to decrypt (average / worst) 1 / 1 1 / 1 1.5 / 2 1 / 1

size of ciphertexts 2k + 1 2k + 160 2k 2k

# of random bits to encrypt
(average / worst)

1.5k0 / k1k0
k0 + 160
/ k0 + 160

k0 / k0
2k0 + 2k + 3
/ 2k0 + 2k + 3

Fig. 3. The costs of the encryption schemes

The other algorithms are depicted below. Note that the valid ciphertext y satisfies
y ∈ RngPCD(N, k).

Algorithm Epk(m) Algorithm Dsk(y)
r

R← {0, 1}k0; u ← OAEP(x, r) u ← GPCD
N,k,λ(y); z ← OAEP−1(u)

y ← FPCD
N,k (u); return y return z

Definition 11 (Paillier-OAEP with sampling twice). Paillier-OAEP PE=
(G, K, E , D) with sampling twice is as follows. The common-key generation algo-
rithm G, the key generation algorithm K, and the hash functions G, H are the
same as those of Paillier-OAEP with repeating. The other algorithms are depicted
below. Note that the valid ciphertext y satisfies y ∈ [0, 22k) and (y mod N2) ∈
RngPaillier(N, k).

Algorithm Epk(x) Algorithm Dsk(y)
r1 ← {0, 1}k0; u1 ← OAEP(x, r1); v1 ← FP

N (u1) v ← y mod N2

r2 ← {0, 1}k0; u2 ← OAEP(x, r2); v2 ← FP
N (u2) u ← GP

N,λ(v)
y ← ChooseAndShiftN2,2k(v1, v2) z ← OAEP−1(u)
return y return z

where

Algorithm ChooseAndShiftN,k(x1, x2)

if (0 ≤ x1, x2 < 2k − N) return

{
x1 with probability 1

2
x1 + N with probability 1

2
elseif (2k − N ≤ x1, x2 < N) return x1
else

y1 ← min{x1, x2}; y2 ← max{x1, x2}

return

⎧
⎨

⎩

y1 with probability (1
2 + N

2k+1 ) × 1
2

y1 + N2 with probability (1
2 + N

2k+1 ) × 1
2

y2 with probability 1
2 − N

2k+1

We show the costs of our schemes in Figure 3. We show the number of modular
exponentiations to encrypt, the number of modular exponentiations to decrypt,
the size of ciphertexts, and the number of random bits to encrypt. We assume
that N is uniformly distributed in (22k−1, 22k).



Anonymity on Paillier’s Trap-Door Permutation 211

4.3 Security

PCD-OAEP. Fujisaki, Okamoto, Pointcheval, and Stern [5] proved OAEP with
any partial one-way permutation is secure in the sense of IND-CCA2 in the
random oracle model. Thus, PCD-OAEP is secure in the sense of IND-CCA2 in
the random oracle model assuming PCD is partial one-way.

We can also prove PCD-OAEP is secure in the sense of IK-CCA in the random
oracle model assuming PCD is partial one-way. More precisely, we can prove the
following lemma.

Lemma 2. For any adversary A attacking the anonymity of PCD-OAEP PE
under the adaptive chosen ciphertext attack, and making at most qdec decryption
oracle queries, qgen G-oracle queries, and qhash H-oracle queries, there exists a
θ-partial inverting adversary B for the PCD family, such that for any k, k0, k1,
and θ = 2k−k0

2k ,

Advik-cca
PE,A (k) ≤ 8qhash((1−ε1)(1−ε2))−1 ·Advθ-pow-fnc

PCD,B (k)+qgen ·(1−ε2)−1 ·2−k+2

where ε1 = 4
2k/2−3−1 , ε2 = 2qgen+qdec+2qgenqdec

2k0 + 2qdec
2k1 + 2qhash

22k−k0 , and the running
time of B is that of A plus qgen · qhash · O(k3).

Since if RSAN is one-way then PCD is θ-partial one-way for θ > 0.5 (See Fig-
ure 1.), PCD-OAEP is secure in the sense of IND-CCA2 and IK-CCA in the
random oracle model assuming RSAN is one-way.

Paillier-OAEP with Repeating. Fujisaki, Okamoto, Pointcheval, and Stern
[5] proved OAEP with any partial one-way permutation is secure in the sense
of IND-CCA2 in the random oracle model. Thus, Paillier-OAEP (OAEP with
Paillier’s trap-door permutation) is secure in the sense of IND-CCA2 in the
random oracle model assuming Paillier is partial one-way.

We can prove that if Paillier-OAEP provides the indistinguishability then that
with repeating also provides the indistinguishability. More precisely, if there ex-
ists a CCA2-adversary A = (A1, A2) attacking the indistinguishability of Paillier-
OAEP with repeating with advantage ε, then there exists a CCA2-adversary
B = (B1, B2) attacking the indistinguishability of Paillier-OAEP with advan-
tage ε/2. We construct B as follows.

1. B1 gets pk and passes it to A1. B1 gets (m0, m1, si) which is an output of
A1, and B1 outputs it.

2. B2 gets a challenge ciphertext y. If y ≥ 22k−1 then B2 outputs Fail and halts;
otherwise B2 passes (y′, si) to A2 where y′ ← 0||y. B2 gets d ∈ {0, 1} which
is an output of A2, and B2 outputs it.

If B does not output Fail, A outputs correctly with advantage ε. Since Pr[B
outputs Fail] < 1/2, the advantage of B is greater than ε/2.

Furthermore, we can prove that Paillier-OAEP with repeating is secure in
the sense of IK-CCA in the random oracle model assuming Paillier is partial
one-way. Noticing that the functions FPCD

N,k and GPCD
N,k,λ are replaced by FP

N and
GP

N,λ, respectively, and the domain of valid ciphertexts changes, we can prove
the following lemma in a similar way as that for PCD-OAEP.



212 R. Hayashi and K. Tanaka

Lemma 3. For any adversary A attacking the anonymity of Paillier-OAEP PE
with repeating under the adaptive chosen ciphertext attack, and making at most
qdec decryption oracle queries, qgen G-oracle queries, and qhash H-oracle queries,
there exists a θ-partial inverting adversary B for the Paillier family, such that
for any k, k0, k1, and θ = 2k−k0

2k ,

Advik-cca
PE,A (k) ≤ 16qhash((1−ε1)(1−ε2))−1 ·Advθ-pow-fnc

Paillier,B (k)+qgen·(1−ε2)−1·2−k+2

where ε1 = 1
2k/2−3−1 , ε2 = 2qgen+qdec+2qgenqdec

2k0 + 2qdec
2k1 + 2qhash

22k−k0 , and the running
time of B is that of A plus qgen · qhash · O(k3).

Since the θ-partial one-wayness of Paillier is equivalent to the one-wayness of
RSAN for θ > 0.5, Paillier-OAEP with repeating is secure in the sense of IND-
CCA2 and IK-CCA in the random oracle model assuming RSAN is one-way.

Paillier-OAEP with Sampling Twice. In order to prove that Paillier-OAEP
with sampling twice is secure in the sense of IND-CCA2, we need the restriction
as follows.

Since if c is a ciphertext of m for pk = (N, k) and c < 22k −N2 then c+N2 is
also a ciphertext of m. Thus, the adversary can ask c + N2 to decryption oracle
Dsk where c is a challenge ciphertext such that c < 22k − N2 and pk = (N, k),
and if the answer of Dsk is m, then the adversary knows that c is a ciphertext
of m for the key pk.

To prevent this attack, we add some natural restriction to the adversary in the
definition of IND-CCA2. That is, in the definition of IND-CCA2, it is mandated
that the adversary never queries Dsk on (c mod N2) + γN2 where γ ∈ �(22k −
(c mod N2))/N2�.

We think this restriction is natural and reasonable. Actually, in the case of
undeniable and confirmer signature schemes, Galbraith and Mao [6] defined the
anonymity on undeniable signature schemes with the above restriction. Hayashi
and Tanaka [8,9,10] also proved the anonymity of their schemes with the above
restriction.

If we add this restriction then we can prove that Paillier-OAEP with sampling
twice is secure in the sense of IND-CCA2 in the random oracle model assuming
Paillier is partial one-way. Noticing that the domain of valid ciphertexts changes,
we can prove this in a similar way as that for Paillier-OAEP with repeating.

Similarly, in order to prove that Paillier-OAEP with sampling twice is secure
in the sense of IK-CCA, we need the same kind of restriction. That is, it is
mandated that the adversary never queries Dsk0 on (c mod N0

2)+β0N0
2 where

β0 ∈ �(22k − (c mod N0
2))/N0

2�, and Dsk1 on (c mod N1
2) + β1N1

2 where β1 ∈
�(22k − (c mod N1

2))/N1
2�.

If we add this restriction then we can prove that Paillier-OAEP with sampling
twice is secure in the sense of IK-CCA in the random oracle model assuming
Paillier is partial one-way. More precisely, we can prove the following lemma,
and the proof is similar to that for PCD-OAEP.



Anonymity on Paillier’s Trap-Door Permutation 213

Lemma 4. For any adversary A attacking the anonymity of Paillier-OAEP PE
with sampling twice under the adaptive chosen ciphertext attack, and making at
most qdec decryption oracle queries, qgen G-oracle queries, and qhash H-oracle
queries, there exists a θ-partial inverting adversary B for the Paillier family, such
that for any k, k0, k1, and θ = 2k−k0

2k ,

Advik-cca
PE,A (k) ≤ 16qhash((1−ε1)(1−ε2))−1 ·Advθ-pow-fnc

Paillier,B (k)+qgen·(1−ε2)−1·2−k+2

where ε1 = 4
2k/2−3−1 , ε2 = 2qgen+qdec+2qgenqdec

2k0 + 2qdec
2k1 + 2qhash

22k−k0 , and the running
time of B is that of A plus qgen · qhash · O(k3).

Since the θ-partial one-wayness of Paillier is equivalent to the one-wayness of
RSAN for θ > 0.5, Paillier-OAEP with sampling twice is secure in the sense
of IND-CCA2 and IK-CCA in the random oracle model assuming RSAN is
one-way.

Paillier-OAEP with Expanding. In order to prove that Paillier-OAEP with
expanding is secure in the sense of IND-CCA2 and IK-CCA, we need a similar
restriction as that for Paillier-OAEP with sampling twice. That is, in the def-
inition of IND-CCA2, it is mandated that the adversary never queries Dsk on
(c mod N2) + γN2 where γ ∈ �(22k+160 − (c mod N2))/N2�. Similarly, in the
definition of IK-CCA, it is mandated that the adversary never queries Dsk0 on
(c mod N0

2) + β0N0
2 where β0 ∈ �(22k+160 − (c mod N0

2))/N0
2�, and Dsk1 on

(c mod N1
2) + β1N1

2 where β1 ∈ �(22k+160 − (c mod N1
2))/N1

2�.
If we add these restrictions then we can prove that Paillier-OAEP with ex-

panding is secure in the sense of IND-CCA2 and IK-CCA in the random oracle
model assuming Paillier is partial one-way. Noticing that the domain of valid
ciphertexts changes, we can prove them in a similar way as those for Paillier-
OAEP with repeating. In particular, we can prove the following lemma for the
anonymity property.

Lemma 5. For any adversary A attacking the anonymity of Paillier-OAEP PE
with expanding under the adaptive chosen ciphertext attack, and making at most
qdec decryption oracle queries, qgen G-oracle queries, and qhash H-oracle queries,
there exists a θ-partial inverting adversary B for the Paillier family, such that
for any k, k0, k1, and θ = 2k−k0

2k ,

Advik-cca
PE,A (k) ≤ 8qhash((1−ε1)(1−ε2))−1 ·Advθ-pow-fnc

Paillier,B (k)+qgen ·(1−ε2)−1 ·2−k+2

where ε1 = 4
2k/2−3−1 + 1

2159 , ε2 = 2qgen+qdec+2qgenqdec

2k0 + 2qdec
2k1 + 2qhash

22k−k0 , and the
running time of B is that of A plus qgen · qhash · O(k3).

Since the θ-partial one-wayness of Paillier is equivalent to the one-wayness of
RSAN for θ > 0.5, Paillier-OAEP with expanding is secure in the sense of IND-
CCA2 and IK-CCA in the random oracle model assuming RSAN is one-way.



214 R. Hayashi and K. Tanaka

References

1. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key
Encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001) http://www-cse.ucsd.edu/users/mihir/

2. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption – How to Encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

3. Boyd, C. (ed.): ASIACRYPT 2001. LNCS, vol. 2248. Springer, Heidelberg (2001)
4. Desmedt, Y.: Securing traceability of ciphertexts: Towards a secure software escrow

scheme. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS,
vol. 921, pp. 147–157. Springer, Heidelberg (1995)

5. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is Secure under
the RSA Assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001)

6. Galbraith, S.D., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer
Signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer,
Heidelberg (2003)

7. Hayashi, R., Okamoto, T., Tanaka, K.: An RSA Family of Trap-door Permutations
with a Common Domain and its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.)
PKC 2004. LNCS, vol. 2947, pp. 291–304. Springer, Heidelberg (2004)

8. Hayashi, R., Tanaka, K.: The Sampling Twice Technique for the RSA-based Cryp-
tosystems with Anonymity. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp.
216–233. Springer, Heidelberg (2005)

9. Hayashi, R., Tanaka, K.: Universally Anonymizable Public-Key Encryption. In:
Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 293–312. Springer, Heidel-
berg (2005)

10. Hayashi, R., Tanaka, K.: Schemes for Encryption with Anonymity and Ring Sig-
nature. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, Special Section on Cryptography and Information Security
E89-A 1, 66–73 (2006)

11. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

12. Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd [3], pp. 552–
565

http://www-cse.ucsd.edu/users/mihir/


Generic Certificateless Key Encapsulation

Mechanism�

Qiong Huang and Duncan S. Wong

Department of Computer Science,
City University of Hong Kong,

Hong Kong, China

Abstract. We propose the first generic construction of certificateless
key encapsulation mechanism (CL-KEM) in the standard model, which
is also secure against malicious-but-passive KGC attacks. It is based on
an ID-based KEM, a public key encryption and a message authentica-
tion code. The high efficiency of our construction is due to the efficient
implementations of these underlying building blocks, and is comparable
to Bentahar et al.’s CL-KEMs, which are only proven secure under the
random oracle model with no consideration of the malicious-but-passive
KGC attacks. The second contribution of our work is that we introduce
the notion of certificateless tag-based KEM (CL-TKEM), which is an
extension of Abe et al.’s work in the certificateless setting. We show that
an efficient CL-TKEM can be constructed by modifying our CL-KEM.
We also show that with a CL-TKEM and a one-time data encapsulation
mechanism (DEM), an efficient hybrid certificateless encryption can be
constructed by applying Abe et al.’s transformation in the certificateless
setting.

1 Introduction

In Asiacrypt 2003, Al-Riyami and Paterson introduced the concept of certificate-
less cryptography [3], which aims to solve the inherent key escrow problem of
identity-based cryptography [21]. Compared with identity-based cryptography,
certificateless cryptography requires less extent of users’ trust in the KGC (Key
Generation Center). Besides a unique identity ID, a user also independently gen-
erates a key pair (upkID, uskID). The complete public key of the user will consist
of both ID and upkID, and the corresponding private key will consist of uskID

and a partial key pskID, which is generated by the KGC according to the value of
ID. To encrypt a message, both ID and upkID are used; to decrypt a ciphertext,
both uskID and pskID are required. Without any of these two keys, decryption
cannot be performed properly.

Since the introduction of certificateless cryptography, there have been quite
a number of schemes proposed [29,13,17,12,4,18]. The original definition of cer-
tificateless cryptography [3] has seven algorithms, which were later simplified to

� The authors are supported by a grant from CityU (Project No. 7001959).

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 215–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



216 Q. Huang and D.S. Wong

five algorithms by Hu et al. in [12] and shown to be more versatile than the
original one. In this paper, we also use the five-algorithm variant to define a
certificateless cryptosystem.

Yum and Lee proposed a generic certificateless encryption scheme in [28]
which has later been shown to be insecure under the model of [3] by Libert
and Quisquater [17]. In [17], the authors also proposed a generic certificateless
encryption scheme. However, their scheme is only proven secure in the random
oracle model, which is a heuristic method for showing the security of crypto-
graphic schemes. The security may not preserve when the random oracle is re-
placed by a hash function, even if the scheme is reduced to some complexity (or
number-theoretic) assumption. Recently, Liu et al. [18] proposed a certificateless
encryption scheme which, to the best of our knowledge, is the first one in the
standard model. In [4], Au et al. considered another strong security model for
certificateless cryptography, in which users’ trust in the KGC is further relaxed.
By using the term introduced in [4], the KGC of a certificateless cryptosystem
can be malicious-but-passive. This means the KGC can be malicious so that it
may not follow the scheme specification for generating system parameters and
master key, while it does not actively replace a user’s public key or corrupt the
user’s secret key. The purpose of such a malicious-but-passive KGC is to com-
promise a user’s secret key without being detected. Since the KGC does not need
to replace the user’s public key or compromise the user’s machine for corrupting
the user’s secret key, in practice, it is very difficult to detect the occurrence of
this attack. Under the malicious-but-passive KGC attacking model, certificate-
less cryptosystems proposed in [3,13,16] have been shown to be insecure. We
can see that the newly proposed certificateless encryption scheme in [18] is also
insecure under this model. The only provably secure certificateless encryption
scheme against malicious-but-passive KGC attack currently available is due to
Libert and Quisquater [17], as showed in [4]. However, the security is only proven
in the random oracle model.

On the other side, most of the (public key) encryption schemes in the literature
have limited message spaces. That is, a message to be encrypted is assumed to
have a limited length or belong to a specific group. However, this is often not the
case in practice. It is inconvenient and expensive for people to transmit arbitrary
messages securely by using purely public key encryption schemes. To encrypt
large messages, symmetric encryption schemes are usually used as they enjoy
high efficiency. However, they also suffer from the key distribution problem. To
achieve high efficiency while getting rid of key distribution problem, in practice,
we adopt the hybrid encryption [8,23] mechanism, which encrypts bulk messages
using a symmetric encryption scheme and encrypts a symmetric key using a
public key encryption scheme. A hybrid encryption consists of two components:
key encapsulation mechanism (KEM, which is the asymmetric part) and data
encapsulation mechanism (DEM, which is the symmetric part). KEM encrypts
the symmetric encryption key while DEM encrypts the actual message. The
KEM/DEM framework was first formalized by Shoup in [22]. It is very attractive
and has been received a lot of attention in recent years [2,8,9,22,23,6,5,1].



Generic Certificateless Key Encapsulation Mechanism 217

To achieve the CCA2 security of the hybrid encryption, it is very natural and
reasonable for us to require both the KEM part and DEM part to be CCA2
secure. However, Kurosawa and Desmedt’s hybrid encryption scheme [15] is an
exception. Their scheme, which is a variant of Cramer and Shoup’s scheme [8],
has the encryption scheme being CCA2 secure, but the KEM part is not [11].
Dent proposed a number of efficient constructions of CCA2 secure KEMs based
on some weakly secure public key encryption schemes. Bentahar et al’s [5] ex-
tended Dent’s work into identity-based setting and certificateless setting, and
also proposed several efficient constructions of ID-based KEMs and certificate-
less KEMs. Later, Chen et al. [6] considered KEM/DEM framework for ID-based
encryption and proposed an efficient construction of ID-based KEM, which is
based on Sakai et al.’s key construction [20]. However, both Dent’s schemes and
Bentahar et al.’s schemes are only proven in the random oracle model. Besides,
the security of Bentahar et al’s certificateless KEM schemes does not consider the
malicious-but-passive KGC attack. Recently, Abe et al. [1] showed how to trans-
form weakly secure (i.e., selective-ID CPA, or adaptive-ID CPA) identity-based
KEMs to fully secure public key encryption schemes. But their transformation
only applies to a specific class of IB-KEMs, named partitioned IB-KEM. An
IB-KEM is partitioned if the encapsulated key K and the first part c1 of the
ciphertext does not depend on ID, and given c1 and ID, the second part of the
ciphertext c2 is uniquely determined.

(Tag-KEM.) Abe et al. introduced in [2] a strengthened variant of KEM, called
Tag-KEM, which is essentially a KEM but with a tag. It can be viewed as an
analogue of tag-based public key encryption [23,24,19,14]. Several methods for
constructing Tag-KEMs were given in [2]. Interestingly, they also showed that a
one-time secure DEM is enough for transforming a CCA2 secure Tag-KEM to a
CCA2 secure public key encryption. This is one of the most useful applications
of Tag-KEM.

Our Work. We propose the first generic construction of certificateless key en-
capsulation mechanism (CL-KEM) in the standard model, which is also secure
against malicious-but-passive KGC attacks. The construction is based on an ID-
based KEM IB-KEM, a public key encryption PKE and a message authentication
code MAC. The high efficiency of our construction is due to the efficient imple-
mentations of these underlying building blocks, and is comparable to Bentahar
et al.’s CL-KEMs [5], which are only proven secure under the random oracle
model with no consideration of the malicious-but-passive KGC attacks.

The idea of constructing a CL-KEM is as follows: first IB-KEM is invoked
to generate a key K along with its encapsulation; then PKE is invoked to hide
the encapsulation; at last, the final symmetric encryption key dk and a message
authentication key mk are generated from K, where mk is used by MAC for
ensuring the integrity of the ciphertext.

The second contribution of our work is that we introduce the notion of cer-
tificateless tag-based KEM (CL-TKEM), which is an extension of Abe et al.’s
work [2] from the conventional setting to the certificateless setting. We show that
an efficient CL-TKEM can be constructed by modifying our CL-KEM. We also



218 Q. Huang and D.S. Wong

show that with a CL-TKEM and a data encapsulation mechanism (DEM) secure
under our proposed notions, an efficient hybrid certificateless encryption can be
constructed by applying Abe et al.’s transformation in the certificateless setting.

Paper Organization. We review the definition and adversarial model of cer-
tificateless encryption in Sec. 2. In Sec. 3, we consider the certificateless KEM
(CL-KEM), describe some building blocks for constructing a CL-KEM, and then
show how to construct a CL-KEM in the standard model, which is also secure
against the malicious-but-passive KGC attack. In Sec. 4, we extend the work of
Abe et al. to the certificateless setting and give the construction of CL-TKEM
as well as a certificateless hybrid encryption scheme (CL-HE). The paper is
concluded in Sec. 5.

2 Definition and Adversarial Model

A certificateless encryption scheme [3,4] consists of five (probabilistic) polynomial-
time (PPT) algorithms:

– MasterKeyGen: On input 1k where k ∈ N is a security parameter, it generates
a master public/private key pair (mpk, msk).

– PartialKeyGen: On input msk and a user identity ID ∈ {0, 1}∗, it generates
a user partial key pskID.

– UserKeyGen: On input mpk and a user identity ID, it generates a user pub-
lic/private key pair (upkID, uskID).

– Enc: On input mpk, a user identity ID, a user public key upkID and a message
m, it returns a ciphertext c.

– Dec: On input a user partial key pskID, a user private key uskID, and a cipher-
text c, it returns the plaintext m or ⊥ indicating the failure of decryption.

In practice, the KGC (Key Generation Center) performs the first two algorithms:
MasterKeyGen and PartialKeyGen. The master public key mpk is then published
and it is assumed that everyone in the system can get a legitimate copy of mpk.
It is also assumed that the partial key is issued to the corresponding user via a
secure channel so that no one except the intended user can get it. Every user in
the system also performs UserKeyGen for generating its own public/private key
pair and publishes the public key. The correctness requirement is defined in the
conventional way. We refer readers to [3,4] for details.

Adversarial Model. We consider two security types: Type-I and Type-II,
along with two adversaries, A1 and A2, respectively. Adversary A1 can compro-
mise user private key uskID or replace user public key upkID, but can neither
compromise master private key msk nor get access to user partial key pskID.
Adversary A2 models a malicious-but-passive KGC [4] which controls the gen-
eration of the master public/private key pair, and that of any user partial key
pskID. The following are five oracles which can be accessed by the adversaries.

– CreateUser: On input an identity ID ∈ {0, 1}∗, if ID has not been cre-
ated, the oracle runs pskID ← PartialKeyGen(msk, ID) and (upkID, uskID) ←



Generic Certificateless Key Encapsulation Mechanism 219

UserKeyGen(mpk, ID). It then stores (ID, pskID, upkID, uskID) into List1 and
ID is said to be created. upkID is returned.

– RevealPartialKey: On input an identity ID, the oracle searches List for an
entry corresponding to ID. If it is not found, ⊥ is returned; otherwise, the
corresponding pskID is returned.

– RevealSecretKey: On input an identity ID, the oracle searches List for the
entry of ID. If it is not found, ⊥ is returned; otherwise, the corresponding
uskID is returned.

– ReplaceKey: On input ID along with a user public/private key pair (upk′,usk′),
the oracle searches List for the entry of ID. If it is not found, nothing will
be carried out. If usk′ = ⊥, the oracle sets usk′ = uskID. Then, it replaces
(ID, pskID, upkID, uskID) in List with (ID, pskID, upk′, usk′).

– Decryption: On input an identity ID and a ciphertext c, the oracle searches
List for the entry of ID. If it is not found, ⊥ is returned. Otherwise, it runs
m ← Dec(pskID, uskID, c) and returns m. Note that the original upkID (which
is returned by CreateUser oracle) may have been replaced by the adversary.

Remark : In the original adversarial model of certificateless encryption [3,17], it is
required that the Decryption oracle should provide correct decryptions even after
the user public key has been replaced by the adversary while the corresponding
user secret key is not known. We believe that the model is hardly realistic. In this
paper, we only require the Decryption oracle to perform the decryption task by
using the current user keys. This also captures the case in which the user public
key is replaced by the adversary, but the user secret key remains the same. It is
possible that the message m recovered from the ciphertext by using the current
uskID is ⊥.

We now specify the two security types using the following games. For simplicity,
we denote by C the challenger/simulator (instead of C1 or C2), and by A the
adversary in the game (instead of A1 in Game-I or A2 in Game-II).

Game-I (Game-II): Let k ∈ N be the security parameter.
1. If this is Game-I, C runs (mpk, msk) ← MasterKeyGen(1k), and then

invokes A on input 1k and mpk. If this is Game-II, C runs A on input
1k, which returns a master public key mpk to C.

2. In the game, A can query CreateUser, RevealPartialKey, RevealSecretKey,
ReplaceKey and Decryption. Note that in Game-II, the oracle Reveal-
PartialKey is not needed by A since it has the knowledge of the master
private key, and when A issues a query to oracle CreateUser, it has to
additionally provide user partial private key pskID.

3. A submits two equal-length messages (m0, m1) along with a target iden-
tity ID∗.

4. C selects a random bit b ∈ {0, 1}, computes a challenge ciphertext c∗

by running c∗ ← Enc(mpk, ID∗, upkID∗ , mb), and returns c∗ to A, where
upkID∗ is the user public key currently in List for ID∗.

5. A continues to issue queries as in step 2. Finally it outputs a bit b′.

1 Note that the list List is shared among all the oracles.



220 Q. Huang and D.S. Wong

A is said to win the game if b′ = b, and (1) A did not query Decryption on
(ID∗, c∗), (2) A did not query RevealPartialKey on ID∗ (if this is Game-I), (3)
A did not query RevealSecretKey on ID∗, nor query ReplaceKey on (ID∗, ·, ·) (if
this is Game-II). We denote by Pr[A Succ] the probability that A wins the
game, and define the advantage of A in Game-I (or Game-II) to be AdvA =∣
∣Pr[A Succ] − 1

2

∣
∣.

Definition 1. A certificateless encryption scheme CLE is said to be Type-I
ID-CCA2 secure (resp. Type-II ID-CCA2 secure) if there is no probabilistic
polynomial-time adversary A1 (resp. A2) which wins Game-I (resp. Game-
II) with non-negligible advantage. CLE is said to be ID-CCA2 secure if it is both
Type-I ID-CCA2 secure and Type-II ID-CCA2 secure.

3 Certificateless KEM

In this section, we first define a certificateless KEM (CL-KEM) and specify its
security requirements. Then we describe two of the building blocks used in our
CL-KEM construction. The building blocks are a strong one-time unforgeable
message authentication code and a key derivation function. Finally, we propose
a CL-KEM (Sec. 3.3) and show its security in the standard model.

A standard KEM (in the public key setting) is defined by the following three
PPT algorithms (KG, Encap, Decap):

– KG is a key generation algorithm, which takes 1k as input and outputs a
public/private key pair (pk, sk).

– Encap is a key encapsulation algorithm, which takes as input pk and outputs
an encapsulation key pair (K, e) ∈ Kpk × Epk, where e is called the encapsu-
lation of key K, and K is considered to be distributed uniformly in the key
space Kpk.

– Decap is a decapsulation algorithm, which takes as input (sk, e) and outputs
the corresponding key K, or an invalid encapsulation symbol ⊥.

Now we extend the standard KEM to the certificateless setting, and obtain the
definition of a certificateless KEM (CL-KEM).

A CL-KEM is defined by the following quintuple of PPT algorithms (Master
KeyGen, PartialKeyGen, UserKeyGen, Encap, Decap), the first three of which are
defined in the same way as that for a certificateless encryption scheme (Sec. 2):

– Encap takes as input (mpk, upkID, ID) and outputs an encapsulation key pair
(K, e) ∈ KK

mpk,upkID ,ID × Empk,upkID ,ID, where e is called the encapsulation of
key K and K is considered to be uniformly distributed in KK

mpk,upkID ,ID.
– Decap takes as input ((pskID, uskID), ID, e) and outputs the corresponding

key K, or a special symbol ⊥ indicating invalid encapsulation.

On the security requirements of a CL-KEM scheme, we consider two security
types: Type-I and Type-II, as we do for a certificateless encryption scheme
(Sec. 2). Similarly, adversaries in the corresponding games will have access to



Generic Certificateless Key Encapsulation Mechanism 221

the same oracles as that in the security models of a certificateless encryption
scheme (Sec. 2), except that oracle Decryption is replaced with Decapsulation,
which is defined as follows:

Decapsulation: On input an identity ID and an encapsulation e, the
oracle searches List for the entry of ID. If it is not found, ⊥ is returned.
Otherwise, it returns K ← Decap(pskID, uskID, ID, e).

The security games for Type-I and Type-II security are described as follows:

Game-I′ (Game-II′). The game descriptions are almost the same as those
of a certificateless encryption scheme, except that the Decryption oracle is
replaced with the Decapsulation oracle, and Step 3 and 4 are replaced with
the following:
3. A submits a target identity ID∗ ∈ {0, 1}∗.
4. C runs (K1, e

∗) ← Encap(mpk, upkID∗ , ID∗) and randomly selects K0 ←
KK

mpk,upkID∗ ,ID∗ . A coin b is then flipped, and (Kb, e
∗) is returned to A.

A wins the game if b′ = b and (1) it did not query Decapsulation on (ID∗, e∗),
(2) it did not query RevealPartialKey on ID∗ (if this is Game-I′), and (3) it did
not query ReplaceKey on (ID∗, ·, ·) nor query RevealSecretKey on ID∗ (if this is
Game-II′). We denote by Pr[A Succ] the probability that A wins the game and
define the advantage of A in the game to be AdvA =

∣
∣Pr[A Succ] − 1

2

∣
∣.

Definition 2. A certificateless key encapsulation mechanism CL-KEM is said
to be Type-I ID-CCA2 secure (resp. Type-II ID-CCA2 secure) if there is no prob-
abilistic polynomial-time adversary A1 (resp. A2) which wins Game-I′ (resp.
Game-II′) with non-negligible advantage. CL-KEM is said to be ID-CCA2 secure
if it is both Type-I ID-CCA2 secure and Type-II ID-CCA2 secure.

3.1 Message Authentication Code

A message authentication code MAC is a pair of polynomial-time algorithms
(Mac, Vrfy) such that:

– Mac takes as input a key mk ∈ KM and a message m, and outputs a tag
σ, where m is in some implicit message space. We denote this by σ ←
Macmk(m). Without loss of generality, we assume that the key space KM of
MAC is {0, 1}k where k is a security parameter.

– Vrfy takes as input a key mk, a message m and a tag σ and outputs a bit
b ∈ {0, 1} where the 1-value of b indicates ’accept’ and 0-value indicates
’reject’. We denote this by b ← Vrfymk(m, σ).

For the security of MAC, we consider the following game:

1. A random key mk ∈ {0, 1}k is chosen;
2. Adversary AM (1k) is allowed to submit one message m and get σ←Macmk(m).
3. Finally, AM outputs (m∗, σ∗).

We say that AM wins if 1 ← Vrfymk(m∗, σ∗) and (m∗, σ∗) �= (m, σ) (assuming
that AM did issue a query for a tag on input m in step 2).



222 Q. Huang and D.S. Wong

Definition 3. A message authentication code MAC is said to be strong one-
time unforgeable, if for any PPT adversary AM , the probability that AM wins
the game above is negligible in k.

3.2 Key Derivation Function (KDF)

As in [2,8], our proposed construction of CL-KEM (Sec. 3.3) also uses a key
derivation function, KDF2, that maps a key K generated by KEM into a pair
of keys (dk, mk) for data encapsulation mechanism DEM [2,8] and message au-
thentication code MAC. We require the output distribution (dk, mk) of KDF2
to be (computationally) indistinguishable from uniform, when the input K is
uniformly distributed.

Let KDF2 : KK → KD × KM and {KDF2}k be a family of functions indexed
by the key-spaces associated to the same security parameter k. In our case, KK

is the union of all KK
mpk,upkID ,ID. We require that the distribution of KDF2 is

indistinguishable from uniform over KD × KM . Formally, let

D1 = {(dk, mk)|K ← KK , (dk, mk) ← KDF2(K)} , and
D0 = {(dk, mk)|(dk, mk) ← KD × KM}

We say that KDF2 is secure if for any probability polynomial time algorithm
AKDF, the following probability
∣
∣
∣
∣Pr

[
b←{0, 1}, (dk, mk)←Db, b

′ ←AKDF((mpk, upkID, ID), KDF2, (dk, mk)); b′=b
]
− 1

2

∣
∣
∣
∣

is negligible in k, where the probability is taken over the choice of KDF2 which in-
cludes the coins of CL-KEM.MasterKeyGen and CL-KEM.UserKeyGen that deter-
mine KK , and the choice of (dk, mk), b and the coins of AKDF. In our construction
of certificateless KEM, we need to consider the following two distributions:

U1 = D1, and U0 = {(dk, mk)|K ← KK , (dk, ∗) ← KDF2(K), mk ← KM}
It is easy to obtain the following lemma:

Lemma 1. If KDF2 is secure, then for any PPT adversary A,

|Pr [1 ← A(dk, mk)|(dk, mk) ← U0] − Pr [1 ← A(dk, mk)|(dk, mk) ← U1]|
is negligible in k.

3.3 A Generic Construction of CL-KEM

Let IB-KEM = (KG, Extract, Encap, Decap) be an ID-CCA2 secure identity-based
key encapsulation mechanism [6], PKE = (KG, Enc, Dec) be an CCA2 secure
public key encryption scheme, KDF2 be a secure key derivation function, and
MAC = (Mac, Vrfy) be a strong one-time message authentication code. The
certificateless KEM CL-KEM is constructed as in Fig. 1.



Generic Certificateless Key Encapsulation Mechanism 223

– MasterKeyGen: On input 1k, the KGC runs (mpk, msk) ← IB-KEM.KG(1k)
and returns mpk.

– PartialKeyGen: On input an identity ID, the KGC runs pskID ←
IB-KEM.Extract(msk, ID) and returns pskID.

– UserKeyGen: On input 1k and mpk, the user ID runs (upkID, uskID) ←
PKE.KG(1k), and returns upkID.

– (dk, e) ← Encap(mpk,upkID, ID):

(K, ψ) ← IB-KEM.Encap(mpk, ID)

ϕ ← PKE.Enc(upkID, ψ)

(dk, mk) ← KDF2(K)

σ ← MAC.Macmk(ϕ)

e ← (ϕ, σ)

– dk ← Decap(pskID, uskID, ID, e):

(ϕ, σ) ← e

ψ ← PKE.Dec(uskID, ϕ)

K ← IB-KEM.Decap(pskID, ID, ψ)

(dk, mk) ← KDF2(K)

If 0 ← MAC.Vrfymk(σ, ϕ), dk ← ⊥.

Fig. 1. CL-KEM

Note that in CL-KEM.Decap, if either of PKE.Dec and IB-KEM.Decap outputs
⊥, then ⊥ is returned. For the security of the above construction of CL-KEM,
intuitively, the strong one-time unforgeability of MAC prevents the adversary
from gaining any advantage by manipulating the MAC; the ID-CCA2 security of
IB-KEM prevents the Type-I adversary from gaining advantage by manipulating
ψ; and the CCA2 security of PKE prevents the Type-II adversary from gain-
ing any advantage by manipulating ϕ. Also we should note that the malicious-
but-passive KGC attack is avoided since each user uses its own independently
generated parameters for PKE. Then we have the following two theorems:

Theorem 1. The CL-KEM proposed above is Type-I ID-CCA2 secure.

Theorem 2. The CL-KEM proposed above is Type-II ID-CCA2 secure.

Proof (Sketch). We consider Theorem 1 here. Below is the attacking game:

1. (mpk, msk) ← CL-KEM.MasterKeyGen(1k);
2. (ID∗, st) ← AO(1k, mpk);
3. (K1, ψ

∗)← IB-KEM.Encap(mpk, ID∗), ϕ∗←PKE.Enc(upkID∗ , ψ∗), (dk1, mk)←
KDF2(K1), σ∗ ← MAC.Macmk(ϕ∗); dk0 ← KD; b ← {0, 1};

4. b′ ← AO(st, (mpk, ID∗), (dkb, ϕ
∗, σ∗)).

Note that in step 2 and step 4, we denote by O the oracles that A has access to
in the game. We first modify the attacking game of the adversary in such a way
that the key of MAC, mk, is randomly selected at the beginning of the game,
which causes only negligible difference in the probability that the adversary wins
the game. This is guaranteed by Lemma 1.

Then we modify the game in a way that dk0 is generated by first randomly
select another key K0 and then run (dk0, ∗) ← KDF2(K0). Note that in the game
dk1 is still generated according to the scheme specification. Again, guaranteed
by the security of KDF2, the adversary’s advantage remains almost the same.



224 Q. Huang and D.S. Wong

Let (ID∗, (dkb, (ϕ∗, σ∗))) be the challenge encapsulation of A, and (ID, (ϕ, σ))
be a Decapsulation query issued by it. We say (ϕ, σ) is a valid encapsulation with
respect to ID if the Decapsulation oracle would not output ⊥ on input (ID, (ϕ, σ)),
and we denote by ForgeI the event that (ϕ, σ) is valid and σ is a valid MAC on
ϕ with respect to mk (i.e., 1 ← MAC.Vrfymk(ϕ, σ)).

Next, we further modify G2 in such a way that if event ForgeI occurs, we simply
halt the game. Guaranteed by the strong one-time unforgeability of MAC, this
modification results in only negligible difference in A’s advantage.

Finally, in the resulting game we can reduce the Type-I ID-CCA2 security
of CL-KEM to the ID-CCA2 security of IB-KEM. Given A, we construct a PPT
algorithm B to break the ID-CCA2 security of IB-KEM. On input the master
public key mpk, an Extrac oracle OE and a Decapsulation oracle OD, B runs
A on input mpk and a randomly selected MAC key mk ∈ KM , and uses its
own oracles to simulate oracles for A. B forwards A’s target identity ID∗ to its
own challenger. After receiving the challenge encapsulation (Kb, ψ

∗), it computes
ϕ∗ ← PKE.Enc(uskID∗ , ψ∗), σ∗ ← MAC.Macmk(ϕ∗) and (dk∗b , ∗) ← KDF2(Kb),
and returns (dkb, (ϕ∗, σ∗)) to A. Finally, it outputs the bit output by A. It’s
readily to see that B’s advantage is no less than A’s. Guaranteed by the ID-CCA2
security, we get that the advantage of A in the resulting game is negligible, and
thus so is A’s advantage in the original attacking game.

As for Theorem 2, the Type-II ID-CCA2 security of CL-KEM can be proved in
a similar way with above. It is guaranteed by the security of KDF2, the strong
one-time unforgeability of MAC and the CCA2 security of PKE. �	

The detailed proofs will be included in the full version of this paper. From the
theorems we immediately get the following corollary:

Corollary 1. CL-KEM is an ID-CCA2 secure certificateless KEM scheme.

Discussions : Since any ID-CCA2 secure identity-based encryption is trivially
an ID-CCA2 secure ID-based KEM, it is optional for us to instantiate IB-KEM
with such an IBE scheme, such as the schemes in [26,10]. As for PKE, we can
instantiate it with Cramer and Shoup’s scheme [7] or Kurosawa and Desmedt’s
scheme [15]. Besides these two, there are still many efficient public key encryption
schemes for us to choose.

There are a number of efficient strong one-time message authentication code
in the literature. For our case, we may use CBC-MAC with 128-bit AES as the
underlying block cipher. However, it is still a good choice for us to use strong
one-time MACs with information-theoretic security [25,27].

4 Hybrid Certificateless Encryption

In this section we show how to construct a hybrid certificateless encryption
scheme to encrypt messages of unbounded length, by using the certificateless
KEM CL-KEM and a one-time DEM scheme. (Readers can refer to [2] for a for-
mal definition of DEM.) We show that this can be achieved by extending the



Generic Certificateless Key Encapsulation Mechanism 225

idea of Abe et al. [2] to our certificateless setting. In short, their result shows
that a combination of a strengthened variant of (CCA2 secure) KEM, Tag-KEM,
and a one-time DEM leads to a CCA2 hybrid public key encryption. We show a
similar result detailed below but under the certificateless setting.

4.1 Our Certificateless Tag-KEM (CL-TKEM)

Essentially, a Tag-KEM is a KEM with a tag. The Encap algorithm of a KEM
is splitted into two in a Tag-KEM, Key and Encap. KG remains the same in a
Tag-KEM and Decap is modified to take a tag as an additional input. Similar to
the extension from KEM to Tag-KEM in the public key setting in [2], we now
extend CL-KEM to certificateless Tag-KEM (CL-TKEM):

– MasterKeyGen, PartialKeyGen, UserKeyGen are the same as those of a CL-
KEM.

– Key takes as input mpk, ID and upkID, and outputs a key dk and some
internal state information w. We denote it by (dk, w) ← Key(mpk, ID, upkID).

– Encap takes as input w and a tag τ ∈ {0, 1}∗, and outputs the corresponding
encapsulation e. We denote it by e ← Encap(w, τ).

– Decap takes as input pskID, uskID, ID, a tag τ and a purported encapsulation
e, and outputs the corresponding key dk, or a special symbol ⊥ indicating
invalid encapsulation. We denote it by dk ← Decap(pskID, uskID, ID, τ, e).

Analogously, we can define the security of CL-TKEM. In a CL-TKEM, an
adversary has access to the same five oracles as in a CL-KEM, with the only
exception that the Decapsulation oracle has a tag τ as an additional input. The
security of a CL-TKEM requires the adversary could not distinguish whether a
given dk is the one embeded in the encapsulation or not, with adaptive access to
these oracles, even though the tag is selected by itself. We also consider two types
of security of a CL-TKEM, and described the two games together as follows:

Game-I′′ (Game-II′′) : The first two steps of the games are the same as those
of a certificateless KEM.

3. A submits a target identity ID∗ to C, which then computes (dk1, w) ←
Key(mpk, upkID∗ , ID), randomly selects dk0 ← KD, flips a coin b ∈ {0, 1}
and returns dkb back to A.

4. A continues to issue queries to its oracles. At some point it submits a
target tag τ∗ to C, which then computes e∗ ← Encap(w, τ∗) and returns
e∗ back to A.

5. A continues to issue queries again. Finally it outputs a bit b′ as its guess
for whether e∗ is an encapsulation of dkb.

The conditions on which A wins the game are the same as those of a CL-KEM,
except that condition ’(1)’ is replaced with that A did not issue a Decapsulation
query on (ID∗, τ∗, e∗).



226 Q. Huang and D.S. Wong

Definition 4. A certificateless Tag-KEM CL-TKEM is said to be Type-I Tag-
ID-CCA2 secure (resp. Type-II Tag-ID-CCA2 secure) if there is no PPT adver-
sary AI (resp. AII) which wins Game-I′′ (resp. Game-II′′) with non-negligible
advantage. CL-TKEM is said to be Tag-ID-CCA2 secure if it is both Type-I Tag-
ID-CCA2 secure and Type-II Tag-ID-CCA2 secure.

Now we show how to modify the above construction of CL-KEM to a certificate-
less Tag-KEM CL-TKEM, as shown in Fig. 2.

– MasterKeyGen, PartialKeyGen and UserKeyGen are the same as those of CL-KEM.
– (dk, w) ← Key(mpk, upkID, ID):

(K, ψ) ← IB-KEM.Encap(mpk, ID)

(dk, mk) ← KDF2(K)

w ← (upkID, mk, ψ)

– e ← Encap(w, τ ):

(upkID, mk, ψ) ← w

ϕ ← PKE.Enc(upkID, ψ)

σ ← MAC.Macmk(ϕ‖τ )

e ← (ϕ, σ)

– dk ← Decap(pskID, uskID, ID, τ, e):

(ϕ, σ) ← e

ψ ← PKE.Dec(uskID, ϕ)

K ← IB-KEM.Decap(pskID, ID, ψ)

(dk, mk) ← KDF2(K)

If 0 ← MAC.Vrfymk(σ, ϕ‖τ ), dk ← ⊥.

Fig. 2. CL-TKEM

As we can see from the above construction, CL-TKEM differs from CL-KEM in
the generation of σ, and the tag τ merely appears in the MAC during the gener-
ation of an encapsulation. By the ID-CCA2 security of CL-KEM and the strong
one-time unforgeability of MAC, the adversary would not gain any advantage by
manipulating (ϕ, σ). Thus, we have the following theorem:

Theorem 3. CL-TKEM is a Tag-ID-CCA2 secure certificateless Tag-KEM.

The security proof is quite similar with those of Theorem 1 and 2. Due to the
page limitation, the complete proof has been skipped. It will be included in the
full version of this paper.

Discussion: The construction of Tag-KEM in [2] combines a KEM and a message
authentication code MAC. Since a MAC is already used in our construction of
CL-KEM, there is no need for us to add a new MAC into the construction of CL-
TKEM as in [2]. Thus, our construction of CL-TKEM is essentially the same as
that of CL-KEM, with only a difference in the generation of σ. The computation
cost of CL-TKEM is merely slightly more than that of CL-KEM, due to the larger
input to MAC.



Generic Certificateless Key Encapsulation Mechanism 227

4.2 Our Hybrid Certificateless Encryption

As shown in [2], a one-time secure data encapsulation mechanism DEM is enough
for constructing a CCA2 public key encryption scheme, by integrating with a
CCA2 secure Tag-KEM. Roughly speaking, at first a symmetric key is gener-
ated, and the message is encrypted under DEM by using this key, then the
resulting symmetric ciphertext is used as a tag to encrypt the key under the
Tag-KEM. Based on this idea, we can also construct a hybrid certificateless en-
cryption scheme CL-HE from a certificateless Tag-KEM CL-TKEM and a DEM.
The scheme is described as in Fig. 3.

– MasterKeyGen, PartialKeyGen and UserKeyGen are the same as those of CL-
TKEM.
– c ← Enc(mpk,upkID, ID, m):

(w, dk) ← CL-TKEM.Key(mpk, ID)

χ ← DEM.Encdk(m)

e ← CL-TKEM.Encap(w, χ)

c ← (e, χ)

– m ← Dec(pskID, uskID, ID, c):

(e, χ) ← c

dk ← CL-TKEM.Decap(pskID, uskID, ID, χ, e)

m ← DEM.Decdk(χ)

If dk = ⊥, then ⊥ is returned.

Fig. 3. CL-HE

Analogously to Theorem 3.1 in [2], we have the following theorem:

Theorem 4. The hybrid certificateless encryption scheme CL-HE proposed above
is ID-CCA2 secure, provided that the underlying certificateless Tag KEM CL-TKEM
is Tag-ID-CCA2 secure and DEM is one-time secure.

Again, due to the page limitation, the complete proof has been skipped. It will
be included in the full version of this paper.

5 Conclusion

We proposed the first generic construction of CL-KEM in the standard model,
which is also secure against malicious-but-passive KGC attacks. Our construc-
tion can be instantiated efficiently and is comparable to Bentahar et al.’s CL-
KEMs [5], which have only been proven secure under the random oracle model
with no consideration of the malicious-but-passive KGC attacks.

We also introduced notion of certificateless tag-based KEM (CL-TKEM),
which is an extension of Abe et al.’s work [2] from the standard setting to
the certificateless setting. We showed that an efficient CL-TKEM can be con-
structed by modifying our CL-KEM. We also showed that with a CL-TKEM and
a data encapsulation mechanism (DEM) secure under our proposed notions, an
efficient hybrid certificateless encryption can be constructed by applying Abe et
al.’s transformation in the certificateless setting.



228 Q. Huang and D.S. Wong

References

1. Abe, M., Cui, Y., Imai, H., Kiltz, E.: Efficient hybrid encryption from
ID-based encryption. Cryptology ePrint Archive, Report 2007/023 (2007)
http://eprint.iacr.org/2007/023

2. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005) Full paper can be found at http://eprint.iacr.org/2005/027

3. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

4. Au, M.H., Chen, J., Liu, J.K., Mu, Y., Wong, D.S., Yang, G.: Malicious KGC
attacks in certificateless cryptography. To appear in ACM ASIACCS 2007, also at
http://eprint.iacr.org/2006/255

5. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.: Generic con-
structions of identity-based and certificateless KEMs. Cryptology ePrint
Archive, Report 2005/058 (2005) Also to appear in Journal of Cryptology,
http://eprint.iacr.org/2005/012

6. Chen, L., Cheng, Z., Malone-Lee, J., Smart, N.: Efficient ID-KEM based on the
Sakai-Kasahara key construction. IEE Proceedings - Information Security 153(1),
19–26 (2006)

7. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput-
ing 33(1), 167–226 (2003)

9. Dent, A.: A designer’s guide to kems. In: Paterson, K.G. (ed.) Cryptography and
Coding. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003)

10. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

11. Herranz, J., Hofheinz, D., Kiltz, E.: The Kurosawa-Desmedt key encapsulation is
not chosen-ciphertext secure. Cryptology ePrint Archive, Report 2005/207 (2005)
http://eprint.iacr.org/2005/207

12. Hu, B.C., Wong, D.S., Zhang, Z., Deng, X.: Key replacement attack against a
generic construction of certificateless signature. In: Batten, L.M., Safavi-Naini, R.
(eds.) ACISP 2006. LNCS, vol. 4058, pp. 235–246. Springer, Heidelberg (2006)

13. Huang, X., Susilo, W., Mu, Y., Zhang, F.: On the security of certificateless signature
schemes from Asiacrypt 2003. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.)
CANS 2005. LNCS, vol. 3810, pp. 13–25. Springer, Heidelberg (2005)

14. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

15. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

16. Li, X., Chen, K., Sun, L.: Certificateless signature and proxy signature schemes
from bilinear pairings. Lithuanian Mathematical Journal 45(1), 76–83 (2005)

http://eprint.iacr.org/2007/023
http://eprint.iacr.org/2005/027
http://eprint.iacr.org/2006/255
http://eprint.iacr.org/2005/012
http://eprint.iacr.org/2005/207


Generic Certificateless Key Encapsulation Mechanism 229

17. Libert, B., Quisquater, J.-J.: On constructing certificateless cryptosystems from
identity based encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G.
(eds.) PKC 2006. LNCS, vol. 3958, pp. 474–490. Springer, Heidelberg (2006)

18. Liu, J.K., Au, M.H., Susilo, W.: Self-generated-certificate public key cryptography
and certificateless signature/encryption scheme in the standard model. To appear
in ACM ASIACCS 2007. Full paper http://eprint.iacr.org/2006/373

19. MacKenzie, P., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Def-
initions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 171–190. Springer, Heidelberg (2004)

20. Sakai, R., Kasahara, M.: Id based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054 (2003)
http://eprint.iacr.org/2003/054

21. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

22. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000)

23. Shoup, V.: ISO 18033-2: an emerging standard for public-key encryption (commit-
tee draft) (June 2004) Available at http://shoup.net/iso/

24. Shoup, V., Gennaro, R.: Secure threshold cryptosystems against chosen ciphertext
attack. Journal of Cryptology 15(2), 75–96 (2002)

25. Stinson, D.R.: Universal hashing and authentication codes. Designs, Codes, and
Cryptography 4(4), 369–380 (1994)

26. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidel-
berg (2005)

27. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981)

28. Yum, D.H., Lee, P.J.: Generic construction of certificateless encryption. In: Laganà,
A., Gavrilova, M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA
2004. LNCS, vol. 3043, pp. 802–811. Springer, Heidelberg (2004)

29. Yum, D.H., Lee, P.J.: Generic construction of certificateless signature. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 200–
211. Springer, Heidelberg (2004)

http://eprint.iacr.org/2006/373
http://eprint.iacr.org/2003/054
http://shoup.net/iso/


Double-Size Bipartite Modular Multiplication

Masayuki Yoshino, Katsuyuki Okeya, and Camille Vuillaume

Hitachi, Ltd., Systems Development Laboratory, Kawasaki, Japan
{masayuki.yoshino.aa,katsuyuki.okeya.ue,camille.vuillaume.ch}@hitachi.com

Abstract. This paper proposes new techniques of double-size bipartite
multiplications with single-size bipartite modular multiplication units.
Smartcards are usually equipped with crypto-coprocessors for accelerat-
ing the computation of modular multiplications, however, their operand
size is limited. Security institutes such as NIST and standards such as
EMV have recommended or forced to increase the bit-length of RSA
cryptography over years. Therefore, techniques to compute double-size
modular multiplications with single-size modular multiplication units has
been studied this decade to extend the life expectancy of the low-end
devices. We propose new double-size techniques based on multipliers im-
plementing either classical or Montgomery modular multiplications, or
even both simultaneously (bipartite modular multiplication), in which
case one can potentially compute modular multiplications twice faster.

Keywords: bipartite modular multiplication, double-size technique,
RSA, crypto-coprocessor, smartcard.

1 Introduction

The algorithm proposed by Kaihara et al. [KT05] called “bipartite modular mul-
tiplication” efficiently computes modular multiplications, which are time-critical
operations in public-key cryptosystems such as RSA [RSA78], ElGamal, DSA
and others. The bipartite modular multiplication utilizes both of the major ap-
proaches for computing modular multiplications: classical modular multiplica-
tions [MOV96] and Montgomery multiplications [Mon85], which run in parallel
during the bipartite computations. Furthermore, thanks to this combination of
two different approaches, the bipartite technique can not only potentially double
the speed of modular multiplications, but also remove costly precomputations
which are necessary for Montgomery multiplications, that is, the modular square
of the Montgomery constant.

The well-known RSA algorithm is the de facto standard for public-key cryp-
tography. However, the bit-length of RSA must be increased regularly because
of progresses in integer factorization techniques [RSA]. Many security institutes
have been increasing their recommended key-length for public-key cryptography
over years [EMV, ?, NIST]. Smartcards typically are not powerful enough to
compute modular multiplications with long bit-length in software, and need the
assistance of a crypto-coprocessor in hardware [NM96]. However, such crypto-
coprocessors suffer from an important restriction: their operand size is limited

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 230–244, 2007.
c© Springer-Verlag Berlin Heidelberg



Double-Size Bipartite Modular Multiplication 231

[Pai99]. On the one hand, thanks to the Chinese Remainder Theorem, private
computations require only single-size multiplications for computing a double-size
decryption or signature generation [QC82]. On the other hand, in the case of pub-
lic computations, the Chinese Remainder Theorem is of no help, and techniques
requiring public information only are necessary.

Double-size modular multiplication techniques have been studied for about
one decade. Residue Number Systems are combined with classical multiplications
[PP95] and Montgomery multiplications [BDK97]. These works motivated the
seminal paper for multi-size techniques, where Paillier showed how to efficiently
compute a kn-bit classical modular multiplication with n-bit classical modular
multiplication units [Pai99]. Later, Fischer et al. optimized the scheme for the
2n-bit case [FS03] and Chevallier-Mames et al. showed further improvements
[CJP03]. Furthermore, Yoshino et al. extended the double-size techniques to
Montgomery multiplications [YOV06].

Unfortunately, the double-size technique is much slower than the techniques
of the Chinese Remainder Theorem. For example, double-size techniques of
Chevallier-Mames et al. need 12 calculations of single-size classical multiplica-
tion. Therefore, in order to reduce computation time of double-size multiplica-
tion, high performance of single-size modular multiplication unit is necessary.
However, all of the previous techniques cannot be applied in the case where
the underlying multipliers are equipped with latest modular multiplication al-
gorithm, that is, bipartite multiplication. They cannot take advantage of the
attractive features of bipartite multiplications, such as greater speed and the
absence of precomputations.

This paper proposes a technique for computing 2n-bit bipartite modular mul-
tiplications with n-bit bipartite multiplication units, that can potentially double
processing speed when the gate size of the multiplier is doubled. In double-size
techniques, the performance has been evaluated by the number of calls to mul-
tipliers, and the proposal is the same as the best known method for classical
multiplications and better than for Montgomery multiplications. Therefore, the
proposal double-size techniques can get benefit from the greater speed of bi-
partite modular multiplication units, and be applied to modular exponentiation
with not only small exponent such as public computations, but also big expo-
nent such as private computations. From the viewpoint of system vendors such
as smartcard makers, when an algorithm of modular multiplication is selected for
a new coprocessor, the double-size technique should be ready for the new copro-
cessor, and keep compatibility for the current coprocessor, to enlarge key-length
according to recommendations of security standards. In fact, our double-size
technique is based on bipartite multiplications, will work with classical or Mont-
gomery multipliers, and even both of them running in parallel. Thanks to our
techniques, new coprocessors can be equipped with hardware implementation
of bipartite modular multiplication for high-speed computation and software
implementation of our scheme for enlargement of bit-length.

The rest of this paper is organized as follows. Section 2 introduces the bipartite
modular multiplications, and Section 3 reviews previous double-size techniques



232 M. Yoshino, K. Okeya, and C. Vuillaume

and states problems for applying them to the bipartite multiplications. Section 4
explains our idea for computing 2n-bit bipartite multiplications. Our technique
requires the n-bit quotients of the bipartite multiplications, thus, in Section 5
we describe approaches to compute such quotients. Section 6 gives features of
our proposal and shows results to compare the proposal to others. Finally, we
conclude with Section 7.

Notation. We let “n” denote the operand size of modular multiplication units,
the capital letters A, B and N denote 2n-bit integers, where N means modulus,
and is odd and greater than 2n because of 2n-bit public-key cryptosystems such
as RSA. We also let small letters denote the other integers, such as n-bit quotients
“q” and remainders “r”.

2 Modular Multiplications

The bipartite modular multiplication proposed by Kaihara et al. [KT05] is a
new technique which combines and unifies two major approaches: classical and
Montgomery multiplications. In hardware, Montgomery multiplications are often
preferred to classical modular multiplications due to the fact that they eliminate
the need to wait for carries and therefore reduce delays. On the other hand, Mont-
gomery multiplications use a different representation of integers, and in order to
convert integers to this representation, a precomputed modulus-dependent value
is required. In the case of public computations (for example signature verifica-
tions), the modulus is not known in advance, and the precomputations must be
performed online. In addition to potentially doubling the computation speed,
bipartite modular multiplications can decrease the precomputation effort, and
even eliminate it in some settings.

2.1 Bipartite Modular Multiplication

For n-bit integers x, y, w, the bipartite modular multiplication algorithm1 com-
putes a remainder r: r ≡ xy2−m (mod w), where 0 ≤ x, y < w, 0 ≤ m ≤ n,
w is coprime to 2m and 2−m is the inverse of 2m modulo w. The basic idea of
bipartite modular multiplications is to combine two major approaches: classical
modular multiplications and Montgomery multiplications. In the computational
process, two multiplications can be executed in parallel. More precisely, by split-
ting the multiplier y into two integers yh and yl such that y = yh2m + yl where
0 ≤ yh < 2n−m and 0 ≤ yl < 2m, the bipartite modular multiplication algo-
rithm executes one classical and one Montgomery multiplication according to
the following equation:

xy2−m ≡ x(yh2m + yl)2−m (mod w) ≡ xyh + xyl2−m (mod w).
1 The paper assumes that the bipartite modular multiplication includes classical mod-

ular multiplication (m = 0) and Montgomery multiplication (m = n) for simplicity,
although it is different from the original proposed by Kaihara [KT05], which defined
a range of m; 0 < m < n.



Double-Size Bipartite Modular Multiplication 233

Fig. 1. Basic idea of bipartite modular multiplications

Figure 1 illustrates the principle of bipartite multiplications. In the left side,
the classical multiplier subtracts the modulus w from the most significant bit of
the product xyh and save the remainder rC in the least significant side. In the
right side, unlike classical multiplications, the Montgomery multiplier adds the
modulus w and save the remainder rM in the most significant side. Finally, both
remainders are added, and, if necessary, the modulus w is subtracted.

3 Double-Size Techniques

The bit-length of RSA must be increased regularly because of progresses in inte-
ger factorization techniques [RSA]. Many security institutes have been increasing
their recommended key-length over years. For example, EMV, which is a stan-
dard specification for payment systems of smartcards, defined deadlines for using
some bit-lengths in the framework of RSA. For instance, 1024-bit RSA keys will
expire in 2009, and 1984-bit keys in 2016 [EMV]. In the US, the National In-
stitute of Standards and Technology (NIST) has recommended to use 1024-bit
RSA until 2010, 2048-bit RSA until 2030 and 3072 bits beyond 2030. One ap-
proach to extend the key-length is to implement double-size techniques; it allows
a hardware-software co-design without any necessity to change the hardware.

3.1 Previous Double-Size Modular Multiplications

Recently, Chevallier-Mames et al. [CJP03] optimized double-size techniques in
the case of classical modular multiplications and Yoshino et al. introduced
double-size Montgomery multiplications [YOV06]. Chevallier-Mames et al. pro-
posed Algorithm 1 to compute the 2n-bit classical modular multiplications (AB
mod N), given 2n-bit integers A, B and 2n-bit modulus N with MultModDiv
instructions which output the quotients qC and the remainders rC of n-bit clas-
sical modular multiplications: (qC , rC) = MultModDiv (x, y, w), where 0 ≤ x,
y < w, qC = �(xy)/w� and rC ≡ xy (mod w). The MultModDiv instruction can
be emulated with two calls to the multiplier outputting only the remainder rC
or small changes of the hardware multiplier itself to output the quotient qC .



234 M. Yoshino, K. Okeya, and C. Vuillaume

Yoshino et al. proposed Algorithm 2 to compute 2n-bit Montgomery multipli-
cations (AB2−2n mod N), where 0 ≤ A, B < N < 22n. They assumed another
instructions which compute quotients qM and remainders rM of n-bit Mont-
gomery multiplications satisfying the following equation: xy = qMw + rM2n,
where 0 ≤ x, y, rM < w and −2n < qM < 2n.

Algorithm 1. 2n-bit classical modular multiplication [CJP03]

Input: A = a12
n +a0, B = b12

n +b0, N = n12
n +n0, where 0 ≤ A, B < N < 22n, 0 ≤

a1, a0, b1, b0, n0 < 2n and 2n−1 ≤ n1 < 2n;
Output: AB (mod N);

1. (q1, r1) ← MultModDiv(a1, b1, n1)
2. (q2, r2) ← MultModDiv(q1, n0, 2

n)
3. (q3, r3) ← MultModDiv(a0 + a1, b0 + b1, 2

n − 1)
4. (q4, r4) ← MultModDiv(a0, b0, 2

n)
5. (q5, r5) ← MultModDiv(2n − 1, −q2 + q3 − q4 + r1, n1)
6. (q6, r6) ← MultModDiv(q5, n0, 2

n)
7. Return (−q6 − r2 + r3 − r4 + r5)2

n + (r2 + r4 − r6)

Algorithm 2. 2n-bit Montgomery multiplication [YOV06]

Input: A = a1z+a02
n, B = b1z+b02

n, N = n1z+n02
n, where 0 ≤ A, B < N < 22n, −

2n < a0, b0, n0 < 2n, 0 ≤ a1, b1 < 2n, 0 < n1 < 2n, 1 ≤ z < 2n and n1 and z are odd;
Output: AB2−2n (mod N);

1. (q1, r1) ← MultMonDiv(b1, z, n1)
2. (q2, r2) ← MultMonDiv(q1, n0, z)
3. (q3, r3) ← MultMonDiv(a1, b0 − q2 − r1, n1)
4. (q4, r4) ← MultMonDiv(a0, b1, n1)
5. (q5, r5) ← MultMonDiv(q3 + q4, n0, z)
6. (q6, r6) ← MultMonDiv(a1, r2, z)
7. (q7, r7) ← MultMonDiv(a0, b0, z)
8. Return (−q5 − q6 + q7 + r3 + r4)z + (−r5 − r6 + r7)2

n

3.2 Double-Size Bipartite Modular Multiplication

Unfortunately, previous double-size techniques cannot be applied straight-
forwardly to the case of bipartite modular multiplications for the following reasons.

Notion of Quotient. In double-size techniques, not only the remainders but
also the quotients of single-size modular multiplications are necessary. The no-
tion of quotient depends on the type of the multiplication: the quotients are
in the most significant side in the framework of the classical modular multipli-
cations, but in the least significant side in the framework of the Montgomery
multiplications. The bipartite modular multiplication combines remainders of
the classical multiplications and the Montgomery multiplications, but has no
definition of a quotient.



Double-Size Bipartite Modular Multiplication 235

Integer Representation. In the framework of double-size techniques, 2n-bit
integers are decomposed into n-bit integers. Double-size classical modular multi-
plications simply divide a 2n-bit integer X into x1 and x0 as follows: x1 consists
of the upper n bits of X and x0 of the lower n bits; then X = x12n + x0. Since
x0 is derived from the remainder (X mod 2n) and x1 is residual information,
that is, the quotient. In the case of Montgomery multiplications, x0 consists of
the upper n bits and x1 of the lower n bits of X , which is the opposite of the
classical multiplication; then X = x1+x02n. Both cases can clearly divide 2n-bit
integer X into x0 and x1 using the lower and upper n bits of X .

The bipartite modular multiplications outputs a remainder (X2−m mod 2n)
with parameter 2m where 0 ≤ m ≤ n. One could be tempted to consider the
following representation derived from the bipartite remainder by applying an
idea inspired by the cases of classical and Montgomery multiplications: X =
x12n−m+x02m. However, this approach fails since the equation cannot represent
integers close to 0 and 22n.

Least significant sideMost significant side

x1

x1

x0

x0

x0

X =

X =

X =

m-bit(n − m)
-bit

2n-bit

n-bit

n-bitn-bit

Classical

Montgomery

Bipartite

Fig. 2. 2n-bit representation for each modular multiplication

4 New Double-Size Techniques

This section explains our idea to compute 2n-bit bipartite modular multiplica-
tions using n-bit bipartite multipliers. Since we assume that there is an instruc-
tion implementing n-bit bipartite modular multiplications, such as a coprocessor
in a smartcard, Section 4.1 explains how to implement the instruction in practice.
Our double-size techniques need quotients of modular multiplications, therefore,
Section 4.2 shows another instruction to output the quotient, which is based
on the instruction in Section 4.1. Note that the bit-length of the instruction is
limited to n bits; thus we show how to split 2n-bit integers into small integers in
Section 4.3. Finally, Section 4.4 shows an algorithm to perform 2n-bit bipartite
multiplications with n-bit remainders and quotients.

4.1 Bipartite Modular Multiplication Units

First, we define the instruction of the bipartite modular multiplications in
Definition 1.



236 M. Yoshino, K. Okeya, and C. Vuillaume

Definition 1. For integers x, y, w, the BIP instruction is defined as r=BIP(x, y,
w) with r=xy2−m (mod w) where 0 ≤ x, y < w, 0 ≤ m ≤ n and gcd(w, 2m)=1.

The BIP instruction covers classical multiplications when m = 0 and Mont-
gomery multiplications when m = n.

4.2 Quotients of Bipartite Modular Multiplication

Similarly to previous double-size techniques, which make use of the quotients
of their respective multiplication algorithm, our scheme requires the quotient of
n-bit bipartite modular multiplications to construct the 2n-bit remainder. We
extend the notion of quotient to the case of bipartite modular multiplications.
Indeed, from Definition 1, the following equation holds: xy ≡ r2m (mod w).
This equation means that there is some integer q satisfying: xy = qw + r2m.
We call the integer q quotient of the bipartite modular multiplications. Now, we
define the instruction to output the quotient q in Definition 2.

Definition 2. For integers x, y, w, the XBIP instruction is defined as (q, r) =
XBIP(x, y, w) with r ≡ xy2−m (mod w) and q satisfying the equation: xy =
qw + r2m where 0 ≤ x, y < w, 0 ≤ m ≤ n and gcd(w, 2m) = 1.

Section 5 will show two different algorithms to build the XBIP instruction on the
BIP instruction.

4.3 2n-Bit Integer Representations

In double-size techniques, 2n-bit integer should be decomposed on two n-bit in-
tegers, later processed by n-bit bipartite multipliers. The decomposition utilizes
both quotients and remainders of the bipartite multiplication. Definition 3 and
Algorithm 3 show how to divide a 2n-bit integer into two integers.

Definition 3. 2n-bit integers X are represented as follows: X = x1z + x02m,
where 0 ≤ X < 22n, −2m < x1 ≤ (2n−m − 1)2m, 0 ≤ x0 ≤ 2z, z = 2n − 1 and
0 ≤ m ≤ n.

Algorithm 3 shows how to represent the 2n-bit integers with n-bit integers.

Algorithm 3. 2n-bit integer representation for bipartite modular multiplication

Input: X where 0 ≤ X < 22n;
Output: x1, x0 such that X = x1z + x02

m where −2m < x1 ≤ (2n−m − 1)2m,
0 ≤ x0 ≤ 2z, z = 2n − 1, and 0 ≤ m ≤ n. ;

1. t2 ← X/(2m+n)
2. t1 ← {X (mod 2m+n)}/2m

3. t0 ← X (mod 2m)
4. x1 ← t22

m − t0
5. x0 ← (t02

n−m + t2) + t1
6. Return (x1, x0)



Double-Size Bipartite Modular Multiplication 237

Proposition 1. Algorithm 3 outputs integers x1 and x0 satisfying the equation
X = x1z + x02m where 0 ≤ X < 22n, −2m < x1 ≤ (2n−m − 1)2m, 0 ≤ x0 ≤ 2z,
z = 2n − 1 and 0 ≤ m ≤ n.
We show the proof of Proposition 1 in Appendix A.

Since RSA requires 2n-bit odd modulus, Algorithm 3 can output odd x1 in
the case of 2n-bit modulus. This x1 can be modulus for the XBIP instruction,
because it is satisfied with the assumption of Definition 2; gcd(x1, 2m) = 1 where
0 ≤ m ≤ n.

There are many values acceptable for z, for instance, z = 2n + 1. We choose
z = 2n − 1, because it is easy to be satisfied with the assumption of XBIP
instruction; 0 ≤ x, y < z, where x and y are n-bit integers and z is n-bit modulus.
x0 and x1 may cause problems to break the assumption of XBIP instruction, such
as x0, x1 < 0 or x0 > 2n, but there is a way to avoid these problems which will
be introduced at the end of this section.

4.4 Double-Size Bipartite Modular Multiplications

Our new algorithm for double-size bipartite modular multiplications is derived
from Algorithm 1 which only requires the moduli n1 and z, and Algorithm
3 which set n1 as odd and z = 2n − 1. n-bit bipartite modular multiplications
output the n-bit remainder xy2−m (mod w), where 0 ≤ x, y < w and 0 ≤ m ≤ n,
therefore, our algorithm outputs the 2n-bit remainder of the bipartite modular
multiplication AB2−2m (mod N) where 0 ≤ A, B < N < 22n and 0 ≤ m ≤ n.

Algorithm 4. 2n-bit bipartite modular multiplication

Input: A = a1z +a02
m, B = b1z + b02

m, N = n1z +n02
m, where 0 ≤ A, B < N < 22n,

−2m < a1, b1, n1 ≤ (2n−m − 1)2m, 0 ≤ a0, b0, n0 ≤ 2z, z = 2n − 1 and 0 ≤ m ≤ n ;
Output: AB2−2m (mod N);

1. (q1, r1) ← XBIP(a1, b1, n1)
2. (q2, r2) ← XBIP(q1, n0, z)
3. (q3, r3) ← XBIP(a0 + a1, b0 + b1, z)
4. (q4, r4) ← XBIP(a0, b0, z)
5. (q5, r5) ← XBIP(z, −q2 + q3 − q4 + r1, n1)
6. (q6, r6) ← XBIP(q5, n0, z)
7. Return (q2 + q4 − q6 − r1 − r2 + r3 − r4 + r5)z + (r2 + r4 − r6)2

m

Theorem 1. Algorithm 4 computes AB2−2m (mod N) calling the XBIP in-
struction, provided that 0 ≤ A, B < N < 22n and 0 ≤ m ≤ n.

We show the proof of Theorem 1 in Appendix B.

Practical Implementation Issues
In order not to break the assumption of XBIP instruction, that is, 0 ≤ x, y < w,
Algorithm 4 needs to adjust values of intermediate data. There are two strategies:



238 M. Yoshino, K. Okeya, and C. Vuillaume

the first one is to change a value of modulus: Specially when modulus is small,
it requires little additional work. The second strategy is to change values of
multiplier x or/and multiplicand y; the work is more costly.

1. Modification of modulus
The modulus w must be greater than multiplier x and multiplicand y, how-
ever, step1 and step5 of Algorithm 4 use n1 as modulus, which is the out-
put of Algorithm 3 and can be smaller than or equal to x or y. In order
to solve the problem, when n1 ≤ max(x, y), we use (n1 + i2m) such that
n1+i2m > max(x, y) instead of n1 itself where 0 ≤ m ≤ n and i is some posi-
tive integer. This is based on the following fact: if xy = qn1+r2m, then xy =
q(n1 + i2m) + (−iq + r)2m holds.

2. Modification of multiplier or/and multiplicand
The intermediate value of multiplier x or multiplicand y can break the
assumption, such that x, y < 0. The problem is solved using the follow-
ing fact: if xy2−m (mod w) ≡ r, then (x + i2m)(y + j2m)2−m (mod w) ≡
r + jx + iy + ij2m holds, such that 0 ≤ x + i2m, y + j2m < w, where
0 ≤ m ≤ n, and i and j are some integers.

5 How to Compute Quotients of Bipartite Multiplications

In Section 4, we have defined the quotient of bipartite modular multiplications;
in fact, this quotient is necessary to compute the 2n-bit bipartite modular mul-
tiplications. We consider two types of settings, and in each case, show efficient
algorithms to calculate the quotients. In the first settings, we assume a pure soft-
ware implementation, based on normal n-bit multipliers implementing bipartite
modular multiplications such as the BIP instruction. Section 5.1 shows how to
compute the quotient with two calls to the n-bit multiplier. In the second set-
tings, modifications of the hardware multiplier are allowed, but still restricted to
n-bit operands. Section 5.2 shows how to modify the multipliers with minimal
changes.

5.1 Software Approach

Algorithm 5 is based on bipartite modular multipliers, and as such, will work
with classical or Montgomery multipliers, and even both of them running in
parallel. Algorithm 5 emulates the computation of the quotients with two calls
to the n-bit multipliers.

Theorem 2. Algorithm 5 computes the XBIP(x, y, w) instruction calling the BIP
instruction twice, provided that 0 ≤ x, y < w, 0 ≤ m ≤ n and gcd(w, 2m) = 1.

We show the proof of Theorem 2 in Appendix C.



Double-Size Bipartite Modular Multiplication 239

Algorithm 5. XBIP instruction calling BIP instruction

Input: x, y, w with 0 ≤ x, y < w, 0 ≤ m ≤ n and gcd(w, 2m) = 1;
Output: q, r;

1. r ←BIP(x, y, w)
2. r′ ←BIP(x, y,w + 2m)
3. q ← r − r′

4. If q ≤ −2m, q ← q + w + 2m.
5. Return (q, r)

5.2 Hardware Approach

Alternatively, the algorithm of bipartite modular multiplications itself can be
changed to keep intermediate data and output the quotient requiredby double-size
techniques. This subsection shows an algorithm implementing the XBIP instruc-
tion, which is essentially the same as the BIP instruction, but in addition, computes
the quotients of n-bit bipartite multiplications. It is necessary to build or change
themultipliers itself, however, the hardware cost ofXBIP instruction is almost same
as the BIP instruction. In Algorithm 6, the representation of the integers x, y, u and
r are stored in array of n-bit elements, where i = 0 is the least significant bit and
there are underlines under instructions inserted to compute quotients.

Algorithm 6. XBIP instruction based on a modified BIP

Input: x, y, w where 0 ≤ x, y < w, w′ = 1(−w−1 mod 2), 0 ≤ m ≤ n and
gcd(w, 2m) = 1 ;
Output: q, r;

1 qC ← 0, rC ← 0, qM ← 0 and rM ← 0
2 yh ← y/2m and yl ← y (mod 2m)
3 If m = 0, do the the classical multiplication steps.

Else if m = n, do the Montgomery multiplication steps.
Else do the the Montgomery steps and the classical multiplication steps in parallel.

(Montgomery multiplication steps) (Classical multiplication steps)

M1. For i from 0 to (m − 1),
do the following steps (a)–(c):
(a) ui ← (r0 + x0yi)w

′ mod 2
(b) qM ← qM − ui2

i

(c) rM ← (rM + xyi + uiw)/2
M2. If rM ≥ w,
do the following steps (a) and (b):
(a) rM ← rM − w
(b) qM ← qM − 2m

C1. For i from (n − 1) down to m
do the following steps (a)–(d):
(a) rC ← 2rC + xyi

(b) ui ← rC/w
(c) qC ← 2qC + ui

(d) rC ← rC − uiw

4 . r ← rC + rM and q ← qC + qM
5 . If r ≥ w do r ← r − w and q ← q + 2m

6 . Return (q, r)



240 M. Yoshino, K. Okeya, and C. Vuillaume

6 Remarkable Features

Design of Crypto-coprocessors. Due to progresses of mathematical crypt-
analysis techniques, the size of the key-length of most public-key cryptosys-
tems is growing rapidly. Hardware designers are often confronted with the fol-
lowing dilemma: having an efficient hardware multiplier, typically with a lim-
ited operand size, and being able to keep pace with new specifications and
larger key sizes. The latter feature is usually achieved using a hardware-software
co-design, for example with a double-size technique. Our scheme allows the
crypto-coprocessor to have such co-design, with a unique and fast hardware
implementation, as well as extensions supported in software.

Performance. Despite their limited computational power, low-end devices
such as smartcards can achieve high performance thanks to hardware acceler-
ators. in the framework of high-performance implementations, one should not
only consider the type of multiplier, but also the number of calls to the multi-
plier, which should be kept as small as possible. In the case of a pure software
approach, our 2n-bit bipartite modular multiplication requires only 12 calls to
the multipliers, which is the same calls as the best 2n-bit classical modular
multiplications proposed by Chevallier-Mames et al. [CJP03] and less calls than
2n-bit Montgomery multiplications proposed by Yoshino et al. [YOV06]. The
hardware approach for computing the quotient results in half the number of
calls compared to the software approach in similar conditions.

In addition, in the case where the classical multiplier has the same or a greater
bit-length than the Montgomery unit, our technique virtually eliminates the need
for precomputations for the Montgomery unit. In an RSA encryption/signature
verification with a small exponent, these precomputations require a computa-
tional effort on the same order as the encryption/verification, and since they are
modulus-dependent, they must be performed in the runtime. Therefore, the use
of bipartite multiplications results in significant improvements in speed.

Compatibility. Recently, even low-devices such as smartcards are equipped
with virtual machine such as Java Card and MULTOS which can actualize same
environments on different hardware. Therefore, the software on such environ-
ments should be supported even in different system environments. Unfortunately,
so far, the proposed double-size techniques only fit in the particular platform
they were designed for. From the viewpoint of software designers, a common
method for every hardware multiplier is desirable. Unlike the previous schemes,
our scheme accepts different types of n-bit multiplications.

Table 1 compares our techniques with the others. Our scheme supports not
only bipartite modular multiplications, but also classical and Montgomery multi-
plications. Furthermore, in double-size techniques, the performance is essentially
determined by the number of calls to the multiplier, and ours is the same calls as
the most optimized case of the classical multiplication proposed by Chevallier-
Mames et al.



Double-Size Bipartite Modular Multiplication 241

Table 1. Comparison of double-size techniques

Scheme
Montgomery
constants

Multipliers
Calls

Software Hardware
approach approach

Fischer et al. [FS03] 1(fixed) Classical 14 7

Chevallier-Mames et al. [CJP03] 1(fixed) Classical 12 6

Yoshino et al. [YOV06] 2n(fixed) Montgomery 14 7

1 Classical
This paper 2n Montgomery 12 6

0 < 2m < 2n Bipartite

7 Conclusion

We proposed a novel technique for 2n-bit bipartite modular multiplications based
on n-bit multiplication units. Our scheme works with not only Montgomery mul-
tipliers, but also classical multipliers, or even both of them running in parallel to
achieve even greater speed in bipartite modular multiplication settings. Thanks
to our techniques, hardware designers can design and modify coprocessors, take
advantage of the fast bipartite modular multiplication algorithm, and extend
their bit-length without changing the hardware of the coprocessor according to
future specifications of the key sizes. Furthermore, our scheme offers compati-
bility with different hardware multipliers, which is desirable for virtual environ-
ments, and achieves high performance: it needs the same number of calls to the
multiplier as the fastest known double-size technique for classical multiplications
but less number of calls than the best technique for Montgomery multiplications.

References

[BDK97] Bajard, J.-C., Didier, L.-S., Kornerup, P.: An RNS Montgomery Modular
Multiplication Algorithm. In: Proceedings of ARITH13, pp. 234–239. IEEE
Computer Society, Los Alamitos (1997)

[CJP03] Chevallier-Mames, B., Joye, M., Paillier, P.: Faster Double-Size Modular
Multiplication From Euclidean Multipliers. In: D.Walter, C., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 214–227. Springer, Hei-
delberg (2003)

[EMV] EMVco. EMV Issuer and Application Security Guidelines, Version 1.3
(2005) http://www.emvco.com/specifications.asp?show=4

[FS03] Fischer, W., Seifert, J.-P.: Increasing the bitlength of crypto-coprocessors.
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 71–81. Springer, Heidelberg (2003)

[HP98] Handschuh, H., Paillier, P.: Smart card crypto-coprocessors for public-
key cryptography. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998.
LNCS, vol. 1820, pp. 372–379. Springer, Heidelberg (2000)

[KT05] Kaihara, M.E., Takagi, N.: Bipartite modular multiplication. In: Rao, J.R.,
Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 201–210. Springer, Hei-
delberg (2005)

http://www.emvco.com/specifications.asp?show=4


242 M. Yoshino, K. Okeya, and C. Vuillaume

[LV01] Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. J. Cryp-
tology 14(4), 255–293 (2001)

[Mon85] Montgomery, P.L.: Modular multiplication without trial division. Mathe-
matics of Computation 44(170), 519–521 (1985)

[MOV96] Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied
Cryptography. CRC Press, Boca Raton (1996)

[NIST] National Institute of Standards ant Technology, NIST Special Publication
800-57 DRAFT, Recommendation for KeyManagement Part 1: General
(2006) http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

[NM96] Naccache, D., M’Räıhi, D.: Arithmetic co-processors for public-key cryptog-
raphy: The state of the art. In: CARDIS, pp. 18–20 (1996)

[Pai99] Paillier, P.: Low-cost double-size modular exponentiation or how to stretch
your cryptoprocessor. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS,
vol. 1560, pp. 223–234. Springer, Heidelberg (1999)

[PP95] Posch, K.C., Posch, R.: Modulo reduction in Residue Number Systems.
IEEE Transactions on Parallel and Distributed Systems 6(5), 449–454
(1995)

[QC82] Quisquater, J.-J., Couvreur, C.: Fast decipherment algorithm for rsa public-
key cryptosystem. Electronics Letters 18(21), 905–907 (1982)

[RSA] RSA Laboratories, RSA challenges, http://www.rsa.com/rsalabs
[RSA78] Rivest, R.L., Shamir, A., Adelman, L.M.: A method for obtaining digital sig-

natures and public-key cryptosystems. Communications of the ACM 21(2),
120–126 (1978)

[YOV06] Yoshino, M., Okeya, K., Vuillaume, C.: Unbridle the Bit-Length of a Crypto-
Coprocessor with Montgomery Multiplication. In: Preproceedings of the
13th Annual Workshop on Selected Areas in Cryptography (SAC’06), pp.
184–198 (2006)

A Proof of Proposition 1

Algorithm 3 outputs two n-bit integers x1 and x0 satisfying the equation X =
x1z + x02m where 0 ≤ X < 22n, −2m < x1 ≤ (2n−m − 1)2m, 0 ≤ x0 ≤ 2z,
z = 2n − 1 and 0 ≤ m ≤ n.

Proof. 2n-bit integer X can be decomposed on the following equation;

X = t22m+n + t12m + t0

where 0 ≤ m ≤ n, 0 ≤ t2 < 2n−m, 0 ≤ t1 < 2n and 0 ≤ t0 < 2m. Then,

X = t22m+n + t12m + t0

= (t22m − t0)(2n − 1) + (t2 + t1 + t02n−m)2m.

The part of second term, (t2 + t1 + t02n−m), is evaluated as follows.

t2 + t1 + t02n−m ≤ (2n−m − 1) + (2n − 1) + (2m − 1)
= 2n + (2n−m + 2m) − 3
≤ 2n + (2n + 1) − 3
= 2(2n − 1)

Since −2m < t22m − t0 ≤ (2n−m − 1)2m and 0 ≤ t2 + t1 + t02n−m ≤ 2(2n − 1),
then X = x1(2n −1)+x02m, where x1 = t22m−t0 and x0 = t2+t1+t02n−m. ��

http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
http://www.rsa.com/rsalabs


Double-Size Bipartite Modular Multiplication 243

B Proof of Theorem 1

Algorithm 4 computes AB2−2m (mod N) calling the XBIP instruction, provided
that 0 ≤ A, B < N < 22n and 0 ≤ m ≤ n.

Proof. Firstly, 2n-bit integers A, B, N are decomposed on the following equation;

A = a1z + a02m, B = b1z + b02m, N = n1z + n02m

where gcd(z, 2m)= 1 and 0 ≤ m ≤ n. Then, we continue to be the following.
The following equation holds by Karatsuba.

AB = (a1z + a02m)(b1z + b02m)
= a1b1z(z − 2m) + (a1 + a0)(b1 + b0)z2m − a0b0(z − 2m)2m (1)

First term of equation(1) is represented in the following equation. There is
underline related to computation with multipliers for easy reference.

a1b1z(z − 2m) = (q1n1 + r12m)z(z − 2m)
= (q1n1z + r1z2m)(z − 2m)
≡ (−q1n02m + r1z2m)(z − 2m)
= (−q1n0 + r1z)(z − 2m)2m

= (−q2z − r22m + r1z)(z − 2m)2m

= (−q2 + r1)z22m + (q2 − r1 − r2)z22m + r223m

Similarly, second term of equation(1) is represented in the following equation.

(a1 + a0)(b1 + b0)z2m = (q3z + r32m)z2m

= q3z
22m + r3z22m

Similarly, third term of equation(1) is represented in the following equation.

a0b0(z − 2m)2m = (q4z + r42m)(z − 2m)2m

= q4z
22m + (−q4 + r4)z22m − r423m

Then, whole equation(1) is represented in the following equation.

AB = (−q2 + q3 − q4 + r1)z22m

+(q2 + q4 − r1 − r2 + r3 − r4)z22m + (r2 + r4)23m

= (q5n1 + r52m)z2m

+(q2 + q4 − r1 − r2 + r3 − r4)z22m + (r2 + r4)23m



244 M. Yoshino, K. Okeya, and C. Vuillaume

= (q5n1z + r5z2m)2m

+(q2 + q4 − r1 − r2 + r3 − r4)z22m + (r2 + r4)23m

≡ (−q5n02m + r5z2m)2m

+(q2 + q4 − r1 − r2 + r3 − r4)z22m + (r2 + r4)23m

= (−q6z − r62m + r5z)22m

+(q2 + q4 − r1 − r2 + r3 − r4)z22m + (r2 + r4)23m

= {(q2 + q4 − q6 − r1 − r2 + r3 − r4 + r5)z + (r2 + r4 − r6)2m}22m

As a result, the following equation; AB2−2m = qz + r2m where q = (q2 + q4 −
q6 − r1 − r2 + r3 − r4 + r5) and r = (r2 + r4 − r6), proofs that algorithm 4
computes the remainder of 2n-bit bipartite modular multiplications. ��

C Proof of Theorem 2

Algorithm 5 computes the XBIP(x, y, w) instruction calling the BIP instruction
twice; r = BIP(x, y, w) with r ≡ xy2−m (mod w) and r′ = BIP(x, y, w + 2m)
with r′ ≡ xy2−m (mod (w + 2m)), provided that 0 ≤ x, y < w, 0 ≤ m ≤ n and
gcd(w, 2m) = 1.

Proof. Since w > 0 and −w2m < xy − r2m < w2,

−2m < q < w (2)

holds. From the equation: qw + r2m = q′(w + 2m) + r′2m, we have:

q2m = (q − q′)(w + 2m) + (r − r′)2m. (3)

Since (w + 2m) is coprime to 2m, q − q′ = δ2m holds, where δ is some integer.
The equation (3) is divided by 2m,

q = δ(w + 2m) + r − r′.

(w + 2m) is greater than the range of q by the equation (2), δ is uniquely
defined. From 0 ≤ r < w and 0 ≤ r′ < w + 2m, we have: −w − 2m < w < 2m.
If −2m < r − r′ < w, then δ = 0 and q = r − r′ holds. Else, in the case that
r − r′ ≤ −2m, δ = 1 and q = w + 2m + r − r′ holds. ��



Affine Precomputation with Sole Inversion in

Elliptic Curve Cryptography

Erik Dahmen1, Katsuyuki Okeya2, and Daniel Schepers1

1 Technische Universität Darmstadt, Fachbereich Informatik,
Hochschulstr.10, D-64289 Darmstadt, Germany

{dahmen,schepers}@cdc.informatik.tu-darmstadt.de
2 Hitachi, Ltd., Systems Development Laboratory,

1099, Ohzenji, Asao-ku, Kawasaki-shi, Kanagawa-ken, 215-0013, Japan
katsuyuki.okeya.ue@hitachi.com

Abstract. This paper presents a new approach to precompute all odd
points [3]P, [5]P, . . . , [2k − 1]P , k ≥ 2 on an elliptic curve over Fp. Those
points are required for the efficient evaluation of a scalar multiplication,
the most important operation in elliptic curve cryptography. The
proposed method precomputes the points in affine coordinates and
needs only one single field inversion for the computation. The new
method is superior to all known methods that also use one field
inversion. Compared to methods that require several field inversions for
the precomputation, the proposed method is faster for a broad range of
ratios of field inversions and field multiplications. The proposed method
benefits especially from ratios as they occur on smart cards.

Keywords: affine coordinates, elliptic curve cryptosystem, precompu-
tation, scalar multiplication.

1 Introduction

Koblitz [Kob87] and Miller [Mil86] independently proposed to use elliptic curves
for cryptographic purposes. The main advantage of elliptic curves is, that high
security can be achieved by using only small key sizes [BSS99].

One of the most time-consuming operation in cryptosystems based on elliptic
curves is a scalar multiplication [u]P , where u is the scalar and P is a point on an
elliptic curve over Fp. Scalar multiplications are computed using the double-and-
add algorithm. The number of point additions required by this algorithm can
be reduced by representing the scalar in a signed representation that provides
fewer non-zero digits [Ava04, Möl02, Möl04, MS04, OSST04, Sol00, SST04]. In
this case, the double-and-add algorithm requires several precomputed points.
For efficiency reasons, those points are usually represented in affine coordinates
[CMO98]. If the point P is not fixed, the precomputation cannot be performed
offline and requires a significant amount of time, since expensive field inversions
are required to precompute points in affine coordinates. Scalar multiplications
with non-fixed points for example occur in the Diffie-Hellman key exchange

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 245–258, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



246 E. Dahmen, K. Okeya, and D. Schepers

[DH76] and the verification step of the elliptic curve digital signature algorithm
[JM99]. One important research goal is to reduce the number of field inversions
that are involved in the precomputation. In [CJLM06], a method to compute
[3]P with only one inversion was proposed.

This paper generalizes this method and presents a new approach to precom-
pute points on an elliptic curve over Fp. The proposed scheme computes all odd
points [3]P, . . . , [2k−1]P , k ≥ 2 by using only one single field inversion, indepen-
dent of the number of points to precompute. The main idea is to use a recursive
strategy to express all values that have to be inverted using only known param-
eters. Then, all values are inverted simultaneously using the Montgomery trick,
e.g. see [CF05] p. 209. Further, the proposed scheme does not require additional
memory for temporary calculations.

Compared to previous approaches for the precomputation (e.g. [CMO98]), the
proposed method benefits from a large ratio of inversions and multiplications
(I/M). This ratio is especially large on smart cards that are equipped with
a cryptographic coprocessor, which is usually the case [Infineon, Renesas]. In
[Sey05], Seysen states that on such smart cards an I/M ratio of I > 100M is
realistic. In [CF05, ELM03, JP03], the authors state that on smart cards with a
cryptographic coprocessor, the inversion is best computed using Fermat’s little
theorem. This approach requires about log2 p field multiplications, where p is the
prime that defines the field. Note that p must be at least 160 bit to guarantee
security.

After introducing the proposed method, this paper states a thorough compar-
ison with known methods for the precomputation. Rather than specifying the
advantage of a certain method for a given I/M ratio, the I/M break even points
of the different methods are estimated. The I/M break even points provide in-
formation about which method is the most efficient for a certain I/M ratio. As
it will turn out, the proposed method is the most efficient for I/M ratios as they
occur on smart cards.

The remainder of this paper is organized as follows: Section 2 introduces the
basics of elliptic curves and scalar multiplications. Section 3 reviews known meth-
ods for the precomputation. Section 4 describes the proposed scheme. Section
5 compares the proposed scheme with known methods and Section 6 states the
conclusion.

2 Scalar Multiplications in Elliptic Curve Cryptography

An elliptic curve over a prime field Fp is defined by the implicit equation E :
y2 = x3 + ax+ b, where a, b ∈ Fp and p > 3 prime. A further condition on a and
b is, that the so-called discriminant Δ = 4a3 + 27b2 is non-zero. The points on
an elliptic curve can be used to construct an abelian group E(Fp) with identity
element O called the ”point at infinity” [BSS99]. Point additions (P + Q) and
doublings (2P ) are denoted by ECADD and ECDBL, respectively. Points on an
elliptic curve can be represented in several coordinate systems, such as affine
(A), projective (P), Jacobian (J ), modified Jacobian (J m), and Chudnovsky



Affine Precomputation with Sole Inversion 247

Jacobian (J c) coordinates [CMO98]. The number of field multiplications (M),
squarings (S), and inversions (I) required for an ECADD or ECDBL operation
depends on the coordinate system used to represent the points. See [CMO98] for
an overview of the costs and explicit formulas.

A scalar multiplication [u]P of a point P ∈ E(Fp) and a scalar u > 0 is de-
fined by adding P to itself u times. An efficient method to compute a scalar
multiplication is the double-and-add algorithm shown in Algorithm 1. This al-
gorithm uses an n-bit base-2 representation (un−1, . . . , u0) of u, e.g. the binary
representation or one of the representations proposed in [Ava04, Möl02, Möl04,
MS04, OSST04, Sol00, SST04].

Algorithm 1. Double-and-Add Algorithm
Require: Point P ∈ E(Fp), n-bit scalar u.
Ensure: Scalar multiplication [u]P
1: X ← O
2: for i = n − 1 down to 0 do
3: X ← ECDBL(X)
4: if ui �= 0 then X ← ECADD(X, [ui]P )
5: end for
6: return X

Algorithm 1 performs a point doubling in each iteration (line 3) and a point
addition each time the current digit ui is non-zero (line 4). Hence a scalar multi-
plication needs n · AHD ECADD + n ECDBL, where AHD denotes the average
Hamming density, i.e. the average density of non-zero digits in the base-2 repre-
sentation of u. The points [ui]P required in line 4 are precomputed beforehand.
Which and how many points must be precomputed depends on the base-2 rep-
resentation used for u.

To reduce the required number of field operations in the different steps of
Algorithm 1, the authors of [CMO98] represent the points using mixed coor-
dinates. They use J m coordinates for the result of a doubling followed by a
doubling (ui = 0) and J coordinates for the result of a doubling followed by an
addition (ui �= 0). The costs for a doubling then are 4M + 4S and 3M + 4S,
respectively. The precomputed points [ui]P are represented either in A or J c co-
ordinates. The costs for an addition then are 9M +5S or 12M +5S, respectively.
Using mixed coordinates, a scalar multiplication with Algorithm 1 requires

csA = n · AHD(9M +5S) + n
(
AHD(3M +4S) + (1−AHD)(4M +4S)

)
(1)

csJ c = n · AHD(12M +5S) + n
(
AHD(3M +4S) + (1−AHD)(4M +4S)

)
(2)

with precomputed points in A and J c coordinates, respectively.
A very flexible base-2 representation is the fractional window recoding method

[Möl02, Möl04, SST04]. For an arbitrary k ≥ 1, this representation uses the digits
in the digit set Dk = {0, ±1, ±3, . . . , ±(2k − 1)}. When used with Algorithm 1,
the k − 1 points [3]P, [5]P, . . . , [2k − 1]P must be precomputed. Note, that only



248 E. Dahmen, K. Okeya, and D. Schepers

the positive points must be precomputed, since point inversions are virtually for
free, e.g. if [−3]P is required by Algorithm 1, it is obtained from [3]P by an
”on-the-fly” point inversion [BSS99]. The AHD of this representation is

AHDk =
(

k

2�log2 k� + �log2 k� + 2
)−1

(3)

which is minimal among all base-2 representations that use this digit set [Möl04].
Note, that if k = 2w−2 for some w ≥ 2, the fractional window recoding method
has the same AHD as the width-w non adjacent form [Sol00] and its analogs
[Ava04, MS04, OSST04], i.e. 1/(w + 1).

Increasing the parameter k on the one hand decreases the AHD and there-
fore the number of ECADD operations in Algorithm 1 and on the other hand
increases the number of points that must be precomputed. Therefore, increas-
ing k does not automatically yield a better total performance, since additional
ECADD and ECDBL operations are required for the precomputation.

3 Precomputing the Required Points

In this section, several methods for the precomputation of the k − 1 points
[3]P, [5]P, . . . , [2k − 1]P required by the fractional window recoding method are
reviewed. Recall that according to [CMO98], the precomputed points should
be represented in A or J c coordinates. The most straightforward method is to
compute each point separately using the chain P → [2]P → [3]P → [5]P →
. . . → [2k − 1]P . This method needs

cpA = 2kM + (k + 1)S + kI (4)
cpJ c = (11k − 6)M + (3k + 3)S (5)

when using A or J c coordinates for the precomputed points, respectively. Storing
the points requires 2(k − 1) registers for affine coordinates and 5(k − 1) registers
for Chudnovsky Jacobian coordinates.

The following methods compute the points in A coordinates and trade inver-
sions for multiplications using the Montgomery trick for simultaneous inversions
[CF05] p. 209. This algorithm computes n inverses using 3nM + I.

Let k = 2w−2 for some w ≥ 2. In [CMO98] the authors compute the
points using the chain P → 2P → [3]P, [4]P → [5]P, [7]P, [8]P → . . . →
[2w−3 + 1]P, . . . , [2w−2 − 1]P, [2w−2]P → [2w−2 + 1]P, . . . , [2w−1 − 1]P . The in-
versions required in each of the w − 1 steps are computed simultaneously using
the Montgomery trick. In terms of k, this method needs

cpCMO = (5k + 2�log2 k	 − 8)M + (k + 2�log2 k	 − 1)S + (�log2 k	 + 1)I. (6)

The logarithm has to be rounded up to cover the case where k is chosen such
that it is not a power of 2. Storing the points requires 2(k − 1) registers.

The last method is a straightforward method that first computes the points
separately in P , J , J m, or J c coordinates. Then the points are converted to A



Affine Precomputation with Sole Inversion 249

coordinates. A conversion from P to A needs 2M + I. A conversion from J , J c,
or J m to A needs 3M + S + I. The inversions required for the conversion are
computed simultaneously using the Montgomery trick. These methods need

cpP→A = (17k − 10)M + (2k + 3)S + I (7)
cpJ→A = (18k − 14)M + (5k + 1)S + I (8)

cpJ c→A = (17k − 12)M + (4k + 2)S + I (9)
cpJm→A = (19k − 15)M + (7k − 3)S + I (10)

Storing the points in affine coordinates requires 2(k − 1) registers. However, it
has to be considered that the points require more memory prior to conversion
to affine coordinates. The required number of registers is 3(k − 1) for P and J
coordinates, 5(k − 1) for J c coordinates, and 4(k − 1) for J m coordinates.

4 Proposed Scheme

This section describes the proposed scheme. The proposed scheme computes the
required points [3]P, [5]P, . . . , [2k−1]P , k ≥ 2 directly in affine coordinates using
only one field inversion. The proposed scheme needs (10k − 11)M + (4k)S + I
for the precomputation and 2(k − 1) registers to store the points.

The proposed scheme computes [2i − 1]P = (xi+1, yi+1) as [2]P + [2i − 3]P ,
i = 2, . . . , k and therefore the computation of [2]P is also required. The formulas
to compute the points in affine coordinates are

[2]P = (x2, y2) : λ1 =
(3x2

1+a)
(2y1)

x2 = λ2
1 − 2x1

y2 = λ1(x1 − x2) − y1

[3]P = (x3, y3) : λ2 = (y2−y1)
(x2−x1)

x3 = λ2
2 − x2 − x1

y3 = λ2(x2 − x3) − y2

[2i − 1]P = (xi+1, yi+1) : λi = (yi−y2)
(xi−x2)

xi+1 = λ2
i − x2 − xi

yi+1 = λi(x2 − xi+1) − y2

(11)

The most time consuming operation when computing points in affine coordi-
nates is the field inversion required to invert the denominator of the λi. Call
those denominators δi. According to the last section, it is possible to compute
field inversions simultaneously using the Montgomery trick [CF05]. However to
do so, all values to invert must be known. For the precomputation this is not
the case, since each point depends on a previous computed point, e.g. [7]P =
[2]P + [5]P .

The main idea of the proposed scheme is to write down all δi using only the
base point P = (x1, y1) and the elliptic curve parameters a and b. Then, all δi

are known and can be inverted simultaneously using the Montgomery trick. The
proposed strategy is divided into four steps. The pseudocode of those steps can
be found in Appendix A.



250 E. Dahmen, K. Okeya, and D. Schepers

Step 1: The first step computes d1, . . . , dk, such that di = d2
1 · . . . · d2

i−1 · δi

holds for i = 1, . . . , k. This is done by the following recursive strategy which
successively substitutes the formulas for xi, yi in the formulas for xi+1, yi+1.

[2]P : d1 = 2y1

[3]P : d2 = A2
2 − B2

A2 = 3x2
1 + a

B2 = d2
1 · 3x1

[5]P : d3 = A2
3 − 2D3 − B3

A3 = −d2 · A2 − C3

B3 = d2
2 · B2

C3 = d4
1

D3 = d3
2

[7]P : d4 = A2
4 − D4 − B4

A4 = −d3 · A3 − C4

B4 = d2
3 (B3 + 3D3)

C4 = D3 (2A3 + C3)
D4 = d3

3

[2i − 1]P : di = A2
i − Di − Bi

i > 4 Ai = −di−1 · Ai−1 − Ci

Bi = d2
i−1 · Bi−1

Ci = Di−1 · Ci−1

Di = d3
i−1

For example, d1 = 2y1 = δ1 and

d2 = A2
2 − B2

= (3x2
1 + a)2 − (2y1)2 · 3x1

= (2y1)2
((

3x2
1 + a

2y1

)2

− 2x1 − x1

)

= (2y1)2
(
(λ2

1 − 2x1) − x1
)

= (2y1)2 (x2 − x1) = d2
1 · δ2.

Step 2: The second step computes the inverses of d1, . . . , dk using the Mont-
gomery Trick [CF05]. At first, the values ei =

∏i
j=1 di are computed for

i = 1, . . . , k. Next, the inverse of ek,

e−1
k = (d1 · . . . · dk)−1 = d−1

1 · . . . · d−1
k

is computed. Then, the inverses of d1, . . . , dk are obtained as

d−1
k = ek−1 · (d1 · . . . · dk)−1

d−1
i = ei−1 · (d1 · . . . · dk)−1 · dk · . . . · di+1, i = k − 1, . . . , 2

d−1
1 = (d1 · . . . · dk)−1 · dk · . . . · d2

Step 3. The third step recovers the inverses of the denominators δ−1
1 , . . . , δ−1

k

from d−1
1 , . . . , d−1

k computed in Step 2. According to Step 1,

di = d2
1 · . . . · d2

i−1 · δi ⇐⇒ δ−1
i = d2

1 · . . . · d2
i−1 · d−1

i

holds. Therefore, δ−1
i can be recovered as

δ−1
i = e2

i−1 · d−1
i , i = 1, . . . , k

using e1, . . . , ek computed in Step 2.



Affine Precomputation with Sole Inversion 251

Step 4. The fourth step computes the points [3]P, [5]P, . . . , [2k − 1]P , using the
inverses of the denominators δ−1

1 , . . . , δ−1
k recovered in Step 3 and the formulas

for point additions and doublings shown in Equation (11).

Theorem 1. In total, the proposed scheme needs

cpProp = (10k − 11)M + (4k)S + I (12)

to compute the points [3]P, [5]P, . . . , [2k − 1]P . Further, the proposed scheme
requires 2(k − 1) registers to store the points and no additional memory for
temporary calculations.

The proof of this theorem can be found in Appendix B.

5 Analysis

The proposed method as well as the methods reviewed in Section 3 trade field
inversions for multiplications and squarings. Hence, the advantage of a respec-
tive method depends on the ratio of inversions and multiplications I/M and the
ratio of squarings and multiplications S/M . In this analysis, the S/M ratio is
set to S = 0.8M . For software implementations of an inversion in a prime field,
the I/M ratios vary between I = 4M [ELM03, BSS99] and I = 80M [HMV04].
These ratios depend on many factors like the architecture, the methods used
for multiplication, modular reduction, and inversion, and the size of the prime
field. In software implementations, the inverse is usually computed using the
binary GCD algorithm [HMV04]. However, this algorithm is hardly available
in embedded devices like smart cards. On a smart card equipped with a cryp-
tographic coprocessor it is faster to compute the inverse using Fermat’s little
theorem, i.e. a−1 = ap−2 mod p, since it uses only operations that are supported
by hardware [CF05, ELM03, JP03]. When using Fermat’s little theorem to com-
pute an inversion in a prime field Fp the I/M ratio becomes very large, i.e. about
I = log2 p M , since the inverse is computed using a modular exponentiation. Ac-
cording to [Sey05], I/M ratios of I > 100M are realistic on smart cards equipped
with a cryptographic coprocessor. In the following, the I/M break even points
for the methods introduced in Section 3 and the proposed scheme are estimated.

I/M Break Even Points for the Precomputation. At first, the proposed
scheme is compared to the last four methods introduced in Section 3. Note that
all those methods require only one single inversion. If the S/M ratio S = 0.8M
is substituted in Equations (7)-(10) and (12) one gets

cpP→A = (17k − 10)M + (2k + 3)S + I = (18.6k − 7.6)M + I
cpJ→A = (18k − 14)M + (5k + 1)S + I = (22.0k − 13.2)M + I

cpJ c→A = (17k − 12)M + (4k + 2)S + I = (20.2k − 10.4)M + I
cpJm→A = (19k − 15)M + (7k − 3)S + I = (24.6k − 17.4)M + I

cpProp = (10k − 11)M + (4k) S + I = (13.2k − 11.0)M + I



252 E. Dahmen, K. Okeya, and D. Schepers

This shows that, regardless of the I/M ratio, the proposed method is more
efficient than precomputing the points in a different coordinate system and con-
verting them to A coordinates using the Montgomery trick.

The next step is to estimate the I/M break even points of the proposed
scheme, the precomputation proposed in [CMO98], and the straightforward pre-
computation in A coordinates. A comparison with the straightforward precom-
putation in J c coordinates will be done only for a complete scalar multiplication.
This is because the computation of a scalar multiplication is more expensive if
the precomputed points are represented in J c coordinates (see Equations (1) and
(2)). Table 1 shows for different k, for which I/M ratios the proposed scheme
and the affine precomputation are the most efficient. The method proposed in
[CMO98] is the fastest for the values in between.

Table 1. I/M break even points for the precomputation

k 2 3 4 5 6 7 8 9 10

Proposed � 9.0 � 9.7 � 9.9 � 10.0 � 10.5 � 12.9 � 15.4 � 12.5 � 14.4
Affine � 9.0 � 9.7 � 9.9 � 10.0 � 9.6 � 7.4 � 6.3 � 8.0 � 7.0

k 11 12 13 14 15 16 17 18 19

Proposed � 16.2 � 18.0 � 19.9 � 21.8 � 23.6 � 25.5 � 21.1 � 22.6 � 24.0
Affine � 6.3 � 5.8 � 5.5 � 5.2 � 5.0 � 4.8 � 5.4 � 5.2 � 5.0

For example if k = 8, the most efficient method is: the proposed method if
I/M ≥ 15.4, the [CMO98] method if 6.3 ≤ I/M ≤ 15.4, and the affine method
if I/M ≤ 6.3. This table is visualized in Figure 1. Obviously, the advantage of
one method is small if the I/M ratio is close to the break even point and large if
the I/M ratio is far away from the break even point. Also, the I/M break even
points shown in Table 1 are independent of the bit length of the scalar or the
size of the prime field, whereas the actual I/M ratio on a certain platform is not.
This comparison shows, that the affine and the [CMO98] method perform worse
than the proposed method on devices with a large I/M ratio such as smart cards
[Sey05].

I/M Break Even Points for a Scalar Multiplication. In section 2 it was
shown that a scalar multiplication requires three additional field multiplications
for each point addition if the precomputed points are represented in J c

coordinates instead of A coordinates. In order to compare the proposed scheme
with the straightforward precomputation in J c coordinates (from now on called
J c method), the total costs for a scalar multiplication must be considered. In
this case, the size of the prime field and the bit length n of the scalar is also
important. It is assumed that the scalar is recoded using the fractional win-
dow recoding method and therefore has an AHD as shown in Equation (3). Using



Affine Precomputation with Sole Inversion 253

2 4 6 8 10

10

12 14 16 18 20

20

0

5

15

25

30

Affine

[CMO98]

Proposed

k

I
/
M

Fig. 1. I/M break even points for the precomputation

Equations (1),(2),(5), and (12) one obtains that the proposed method is more
efficient than the J c method if

I/M < 0.2k + 7.4 + 3n · AHDk.

Table 2 shows the I/M break even points corresponding to a complete scalar
multiplication for different prime fields Fpn , where pn is an n bit prime. Smaller
I/M ratios benefit the proposed method.

Table 2. I/M break even points for the proposed and J c method

k 2 3 4 5 6 7 8 9 10

p192 151.8 136.0 123.4 118.1 113.3 109.0 105.0 103.2 101.6
p224 175.8 157.3 142.6 136.4 130.8 125.7 121.0 118.9 116.9
p256 199.8 178.7 161.8 154.7 148.2 142.4 137.0 134.6 132.3

The I/M break even point gets smaller if k grows. However, the total costs for a
scalar multiplication are minimal if k = 8. This can be determined by comparing
the total costs of the proposed method ((1)+(12)) and the J c method ((2)+(5))
for different k. The optimal value for k is independent from the I/M ratio,
since the proposed method requires only one inversion regardless of k. Note,
that such large I/M ratios as shown in Table 2 actually do occur, especially on
smart cards where the field inversion is computed using Fermat’s little theorem
[CF05, ELM03, JP03, Sey05].

The above comparison has one flaw, it does not consider the memory require-
ment of the precomputed points. Note, that the J c method requires 2.5 times
the memory of the proposed method for the same k. This is due to the fact
that a point in J c coordinates consists of five coordinates, whereas a point in
A coordinates consists of only two coordinates [CMO98]. Let r denote the max-
imum number of registers that can be used for the precomputed points. Then
kp =

⌊
(r + 2)/2

⌋
and kc =

⌊
(r + 5)/5

⌋
denote the maximum value of k that



254 E. Dahmen, K. Okeya, and D. Schepers

can be used for the proposed method and the J c method, respectively. For ex-
ample, if r = 15 then kp = 8 and kc = 4. The proposed method with k = 8
needs 1861M + I and the J c method with k = 4 needs 2008.4M for a scalar
multiplication with a 192 bit scalar. This means, that the proposed method is
more efficient as long as I/M ≤ 147.4. Table 3 shows the I/M break even point
corresponding to a complete scalar multiplication for different limitations on the
number of registers r and different prime fields Fpn , where pn is an n bit prime.
Again, smaller I/M ratios benefit the proposed method.

Table 3. I/M break even points for fixed registers

r 5 6,7 8,9 10,11 12,13 14 15-19 20-24 25-29 30-34 ≥ 35

kp 3 4 5 6 7 8 8 8 8 8 8
kc 2 2 2 3 3 3 4 5 6 7 8

p192 202.6 240.6 249.3 189.5 194.5 198.0 147.4 133.4 121.8 112.5 105.0
p224 237.3 283.8 296.2 226.3 234.4 240.7 179.4 160.8 145.1 131.9 121.0
p256 271.9 327.0 343.1 263.2 274.3 283.3 211.4 188.2 168.4 151.4 137.0

If less than five registers are available, the only option is to use the proposed
method. If more than 14 registers are available, the proposed method still uses
k = 8 since using a larger value would decrease the total performance. The same
argument holds for the J c method if more than 35 registers are available. Table
3 shows, that including the number of registers in the comparison increases the
I/M break even point of the proposed method and the J c method compared to
Table 2. The I/M break even points of the CMO method, the A method, and
the proposed method shown in Table 1 still hold, since all three methods require
the same number of registers for storing the precomputed points.

To summarize, the proposed method provides the most efficient precomputa-
tion for I/M ratios as they occur on smart cards [Sey05]. Another advantage
of the proposed method is, that it precomputes the points in affine coordinates
which require less storage space than J c coordinates. If the memory for the
precomputed points is limited, it is possible to choose larger values of k which
further improves a scalar multiplication compared to the J c method.

6 Conclusion

This paper presented a new method to precompute all odd points [3]P, . . . , [2k−
1]P , k ≥ 2 on an elliptic curve defined over a prime field Fp in affine coordinates.
The proposed method requires only one field inversion regardless of the number
of points to precompute. In total, the proposed scheme requires (10k − 11)M +
(4k)S + I field operations for the precomputation and no additional memory for
temporary calculations. The proposed method is the most efficient for a large
range of I/M ratios, especially for ratios as they occur on smart cards. Further
research includes an implementation of the proposed scheme on a smart card.



Affine Precomputation with Sole Inversion 255

References

[Ava04] Avanzi, R.: A Note on the Signed Sliding Window Integer Recoding and a
Left-to-Right Analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 130–143. Springer, Heidelberg (2004)

[BSS99] Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography (London
Mathematical Society). Lecture Note Series, vol. 265. Cambridge University
Press, Cambridge (1999)

[CF05] Cohen, H., Frey, G.: Handbook of elliptic and hyperelliptic curve cryptog-
raphy. CRC Press, Boca Raton (2005)

[CJLM06] Ciet, M., Joye, M., Lauter, K., Montgomery, P.: Trading Inversions for
Multiplications in Elliptic Curve Cryptography. Designs, Codes and Cryp-
tography 39(2), 189–206 (2006)

[CMO98] Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation
Using Mixed Coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998.
LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)

[DH76] Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transac-
tions on Information Theory IT-22(6), 644–654 (1976)

[ELM03] Eisenträger, K., Lauter, K., Montgomery, P.: Fast elliptic curve arithmetic
and improved Weil pairing evaluation. In: Joye, M. (ed.) CT-RSA 2003.
LNCS, vol. 2612, pp. 343–354. Springer, Heidelberg (2003)

[HMV04] Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryp-
tography. Springer, Heidelberg (2004)

[Infineon] Infineon Technologies, http://www.infineon.com/
[JM99] Johnson, D., Menezes, A.: The Elliptic Curve Digital Signature Algorithm

(ECDSA) University of Waterloo, Technical Report CORR 99-34 (1999),
available at http://www.cacr.math.uwaterloo.ca

[JP03] Joye, P., Paillier, P.: GCD-Free Algorithms for Computing Modular In-
verses. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 243–253. Springer, Heidelberg (2003)

[Kob87] Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computa-
tion 48(177), 203–209 (1987)

[Mil86] Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C.
(ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg
(1986)

[Möl02] Möller, B.: Improved Techniques for Fast Exponentiation. In: Lee, P.J., Lim,
C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg
(2003)

[Möl04] Möller, B.: Fractional Windows Revisited: Improved Signed-Digit Repre-
sentations for Efficient Exponentiation. In: Park, C.-s., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 137–153. Springer, Heidelberg (2005)

[MS04] Muir, J., Stinson, D.: New Minimal Weight Representations for Left-to-
Right Window Methods. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 366–383. Springer, Heidelberg (2005)

[OSST04] Okeya, K., Schmidt-Samoa, K., Spahn, C., Takagi, T.: Signed Binary
Representations Revisited. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 123–139. Springer, Heidelberg (2004)

[Renesas] Renesas Technologies, http://www.renesas.com/homepage.jsp/
[Sey05] Seysen, M.: Using an RSA Accelerator for Modular Inversion. In: Rao,

J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 226–236. Springer,
Heidelberg (2005)

http://www.infineon.com/
http://www.cacr.math.uwaterloo.ca
http://www.renesas.com/homepage.jsp/


256 E. Dahmen, K. Okeya, and D. Schepers

[Sol00] Solinas, J.A.: Efficient Arithmetic on Koblitz Curves. Design, Codes and
Cryptography 19, 195–249 (2000)

[SST04] Schmidt-Samoa, K., Semay, O., Takagi, T.: Analysis of Some Fractional
Window Recoding Methods and their Application to Elliptic Curve Cryp-
tosystems. IEEE Transactions on Computers 55(1), 1–10 (2006)

A Pseudocode of the Proposed Scheme

This section contains the pseudocode of the four steps of the proposed scheme.

Algorithm 2. Step 1: Computation of d1, . . . , dk

Require: P = (x1, y1), k, a
Ensure: d1, . . . , dk

1: d1 ← 2y1

2: C ← d2
1

3: A ← 3x2
1 + a

4: B ← C · 3x1

5: d2 ← A2 − B

6: E ← d2
2

7: B ← E · B
8: C ← C2

9: D ← E · d2

10: A ← −d2 · A − C
11: d3 ← A2 − 2D − B

12: E ← d2
3

13: B ← E (B + 3D)
14: C ← D (2A + C)
15: D ← E · d3

16: A ← −d3 · A − C
17: d4 ← A2 − D − B

18: for i = 5 to k do
19: E ← d2

i−1

20: B ← E · B
21: C ← D · C
22: D ← E · di−1

23: A ← −di−1 · A − C
24: di ← A2 − D − B
25: end for
26: return d1, . . . , dk.



Affine Precomputation with Sole Inversion 257

Algorithm 3. Step 2: Simultaneous inversion of d1, . . . , dk

Require: di, i = 1, . . . , k
Ensure: fi = d−1

i , ei =
∏i

j=1 di, i = 1, . . . , k
1: e1 ← d1

2: for i = 2 to k do
3: ei ← ei−1 · di

4: end for
5: T1 ← e−1

k

6: for i = k down to 2 do
7: T2 ← di

8: fi ← ei−1 · T1

9: T1 ← T1 · T2

10: end for
11: f1 ← T1

12: return e1, . . . , ek, f1, . . . , fk

Algorithm 4. Step 3: Retrieval of the inverses of the δ1, . . . , δk

Require: fi and ei, i = 1, . . . , k
Ensure: Inverse of denominators li = δ−1

i , i = 1, . . . , k
1: l1 ← f1

2: for i = 2 to k do
3: li ← e2

i−1 · fi

4: end for
5: return l1, . . . , lk

Algorithm 5. Step 4: Computation of the required points
Require: P = (x1, y1), k, a and li, i = 1, . . . , k
Ensure: 3P = (x3, y3), 5P = (x4, y4), . . . , (2k − 1)P = (xk+1, yk+1)
1: T ← (3x2

1 + a) · l1
2: x2 ← T 2 − 2x1

3: y2 ← T (x1 − x2) − y1

4: T ← (y2 − y1) · l2
5: x3 ← T 2 − x2 − x1

6: y3 ← T (x2 − x3) − y2

7: for i = 3 to k do
8: T ← (yi − y2) · li
9: xi+1 ← T 2 − x2 − xi

10: yi+1 ← T (x2 − xi+1) − y2

11: end for
12: return x3, . . . , xk+1, y3, . . . , yk+1



258 E. Dahmen, K. Okeya, and D. Schepers

B Proof of Theorem 1

This section states the proof of the Theorem 1 of Section 4.
Theorem 1. In total, the proposed scheme requires

(10k − 11)M + (4k)S + I

field operations to compute the points 3P, 5P, . . . , (2k−1)P . Further, the proposed
scheme requires 2(k − 1) registers to store the points and no additional memory
for temporary calculations.

Proof. The costs of each algorithm are calculated separately and summed up.
Additions and multiplications with small numbers are neglected since they can
be computed very fast. Algorithm 2 requires 8M +8S+(k−4)(4M +2S) = (4k−
8)M +(2k)S to compute the di. Algorithm 3 requires 3(k−1)M +I to invert the
di and compute the ei. Algorithm 4 requires (k−1)(S+M) = (k−1)M +(k−1)S
to recover the li. Algorithm 5 requires (4M +3S)+ (k − 2)(2M +S) = (2k)M +
(k + 1)S to compute the points [3]P, [5]P, . . . , [2k − 1]P . The sum of the costs of
all four steps is given as (10k − 11)M + (4k)S + I.

To store the points [3]P, [5]P, . . . , [2k − 1]P , 2(k − 1) registers are required.
Note, that since the double-and-add algorithm stores the intermediate results
in modified Jacobian coordinates, which are represented using four coordinates,
4 additional registers are required for the evaluation of a scalar multiplication.
Hence, 2k+2 registers are available in total. Algorithm 2 requires k+5 registers
to hold di and the temporary variables A, B, C, D, E. Algorithm 3 requires 2k +
2 registers to hold ei, fi and the temporary variables T1, T2. The fi can use
the same registers as the di which explains the necessity of line 7. Algorithm
4 requires k registers to hold li. The li can use the same registers as the fi.
Algorithm 5 requires 2k + 1 registers to hold xi, yi and one temporary variable
T . The xi and yi can use the same registers as the ei and li. In total, 2k + 2
registers are required and therefore no additional memory has to be allocated.

�



Construction of Threshold (Hybrid) Encryption

in the Random Oracle Model:
How to Construct Secure Threshold Tag-KEM

from Weakly Secure Threshold KEM

Takeru Ishihara1, Hiroshi Aono1, Sadayuki Hongo1, and Junji Shikata2

1 NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka, Kanagawa, Japan
ishiharat@nttdocomo.co.jp

2 Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Japan
shikata@ynu.ac.jp

Abstract. The security of a public key cryptosystem can be enhanced
by distributing secret keys among a number of decryption servers:
the threshold encryption approach. In EUROCRYPT 2005, Abe et al.
showed that the secure threshold key encapsulation mechanism with a
tag (threshold Tag-KEM) immediately yields secure threshold encryp-
tion; we only have to construct threshold Tag-KEM to construct thresh-
old encryption. In this paper, we propose a construction of CCA-secure
threshold Tag-KEM from threshold KEM (without a tag) that achieves
one-wayness by utilizing a signature scheme with tight security reduction.
Through our construction, we show the first instantiation of CCA-secure
threshold encryption whose ciphertext-size and encryption-cost are in-
dependent of the number of servers under the RSA assumption in the
random oracle model.

1 Introduction

1.1 Background

The threshold encryption scheme distributes the decryption function among a
number of decryption servers. Such a cryptosystem is especially useful in appli-
cations where it is dangerous to give the power of decryption to just one server.
In this paper, we focus on (γ, n)-threshold encryption (for simplicity, we refer
to threshold encryption in the sequel), where any γ out of n servers can decrypt
ciphertexts, while any combination of corrupted servers less than γ cannot.

The key encapsulation mechanism in the threshold settings (threshold KEM,
for short) and that with a tag (threshold Tag-KEM, for short) are used to encrypt
a key instead of a message. These schemes distribute the decryption function
among a number of decryption servers as in threshold encryption. Hereafter, we
refer to threshold (Tag-)KEM instead of (γ, n)-threshold (Tag-)KEM.

The security notions of threshold encryption are very similar to those of
public-key encryption: the notion of indistinguishability against chosen plaintext

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 259–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



260 T. Ishihara et al.

attacks (IND-CPA) in public key encryption corresponds to the notion of in-
distinguishability against chosen plaintext attacks in the threshold setting (IND-
TCPA), and the strongest security notion of threshold encryption corresponds to
the notion of indistinguishability against chosen ciphertext attacks (IND-CCA)
in public-key encryption, and hence is called indistinguishability against chosen
ciphertext attacks in the threshold setting (IND-TCCA) (See [13]).

The security notions of threshold (Tag-)KEM are similar to those of threshold
encryption; the strongest security notion of threshold (Tag-)KEM is IND-TCCA,
indistinguishability against chosen ciphertext attacks in the threshold setting.

The adversary, who is assumed to corrupt some servers and has access to their
internal data for threshold encryption, is classified as follows (See [13]).

– The adversary is said to be active if the adversary can modify its behavior.
Otherwise, the adversary is called passive.

– The adversary is said to be non-adaptive or static if the adversary is restricted
to choosing which servers to corrupt before any execution, while the adaptive
adversary can choose the servers to corrupt during the attack.

The above classification can also be applied to threshold (Tag-)KEM.

1.2 Related Works and Motivation

Many papers have dealt with threshold cryptosystem in the public key encryp-
tion setting (i.e. threshold encryption) and various threshold encryption and
construction methods have been proposed. In particular, if we pay attention to
the underlying computational assumption, threshold encryption falls into two
categories: those based on the discrete logarithm problem [5,6,10,20,23,24]; and
those based on the integer factoring problem [13,14,18,21]. Of particular note, the
scheme in [18] is constructed based on the GM-encryption scheme [15] and has
been shown to be secure under the Quadratic Residuosity Assumption (QRA).
Note that QRA is not proven to be equivalent to the integer factoring problem
itself. Also, the scheme in [13] has been proven to be secure under the Decisional
Composite Residuosity Assumption, which is thought to be stronger than QRA,
however, the ciphertext-size is shorter than that in [18]. Note that [5,6] achieve
IND-TCCA in the standard model.

A generic construction to obtain strong (i.e. IND-TCCA secure) threshold
encryption from weak (i.e. IND-TCPA) schemes was proposed in [13], and it
uses the zero-knowledge proof system. There are other approaches to obtaining
strong threshold encryption. In fact, methods that use signature schemes to
realize secure threshold encryption are proposed in [11,20,24]. However, these
methods [20,24] require strong assumptions: [20] assumes the generic model;
and [24] assumes the existence of a knowledge extractor that magically obtains
the knowledge without rewinding the prover. On the other hand, in the context
of multiple encryption, we note that Dodis and Katz [11] propose a composition
method that does not require such strong assumptions and can also be used for
constructing threshold encryption. If all components are secure in the standard
model, the resulting threshold encryption is also secure in the standard model.



Construction of Threshold (Hybrid) Encryption 261

However, unfortunately, the ciphertext-size and encryption-cost depend on the
number of servers in [11]. In prior works, these are constant with regard to the
number of servers. This dependence stems from their construction. Prior other
works require to share the decryption key, however, [11] requires to share a
message, to encrypt all shared messages in respective servers’ public keys, and
to sign a set of all ciphertexts. Our approach requires to share decryption key
and aims to construct secure threshold encryption without strong assumptions
such as the generic model or the existence of a magical knowledge extractor (in
the random oracle model).

In the context of key encapsulation mechanism and data encryption mecha-
nism (KEM/DEM), Abe et al. showed a new framework, named Tag-KEM/DEM
in EUROCRYPT 2005. They pointed out that (CCA-)secure threshold Tag-
KEM immediately yields secure threshold encryption by combining it with DEM
which is secure only against passive attacks; we only have to construct secure
threshold Tag-KEM. Motivated by this work, this paper proposes how to ob-
tain secure threshold Tag-KEM. Recall that secure threshold encryption can
generally be converted into secure encryption but not vice versa.

To the best of our knowledge, no threshold encryption uses the padding tech-
nique to enhance security. One reason is that the validity check must be done
before making the decryption shares to prevent the adversary from acquiring
any information other than invalid symbol in the threshold settings. Threshold
encryption based on the RSA assumption (in the random oracle model) is only
described in [11], however, [11] has a disadvantage as described above.

1.3 Our Contributions

In this paper, we propose a generic method to obtain IND-TCCA secure thresh-
old Tag-KEM from weakly secure threshold KEM by in the random oracle model
using signature schemes with tight security reduction. Note that Abe et al.
pointed out that it is easy to construct threshold Tag-KEM that meets IND-
TCCA if threshold encryption that meets IND-TCCA or threshold KEM that
meets IND-TCCA exists, whereas our starting point is threshold KEM (without
a tag ) that meets much weaker security, one-wayness.

Also, we provide four instantiations: Scheme A (RSA based construction) and
Scheme B (CDH based construction) are new. The other two mirror schemes
in [23], which shows the relationship between [23] and signature schemes in
[17,19,8]; our generic construction can also be viewed as a generalization of
Shoup and Gennaro’s schemes [23]. Our construction provides IND-TCCA se-
cure threshold encryption against both active and adaptive adversary if threshold
KEM is one-way for both active and adaptive adversary; our concrete instan-
tiations can be converted into IND-TCCA secure threshold encryption against
both active and adaptive adversary by using the single-inconsistent-player (SIP)
technique [7].

In summary, in this paper,

– We propose a generic construction method for IND-TCCA secure threshold
Tag-KEM from weakly secure threshold KEM.



262 T. Ishihara et al.

– We propose the first RSA-based threshold encryption that meets IND-TCCA
in which ciphertext-size and encryption-cost are independent of the number
of servers.

– We revisit Shoup-Gennaro’s schemes (and give a slight improvement) through
our generic construction method.

The rest of this paper is organized as follows. Section 2 describes threshold
encryption, threshold Tag-KEM, and signature schemes. Section 3 shows our
main result, a generic conversion from threshold KEM that meets one-wayness
against passive attacks into threshold Tag-KEM that meets IND-TCCA. Finally,
section 4 shows some examples of how our conversion can be implemented.

2 Preliminaries

This section is devoted to definitions of threshold encryption, threshold Tag-
KEM and signature schemes with tight security reduction.

2.1 Threshold Encryption

In this section we briefly explain the model of threshold encryption. In threshold
encryption, there are n decryption servers (simply called servers in the sequel), a
trusted dealer, a sender, and a combiner. All servers are assumed to be connected
by a complete network of private channels. In addition, all servers have access to
an authenticated broadcast channel so that the sender of a message can always
be correctly recognized. For simplicity, the servers are numbered 1, 2, . . . , n, and
the set of servers is denoted by P = {1, 2, . . . , n}. We assume that public-key ek
contains the verification key of partial decryption results and that server i has
secret key ski. The set of secret keys is denoted by SK = {ski}i∈P .

In place of describing the formal model of the threshold encryption, we de-
scribe here the difference between public-key encryption and threshold encryp-
tion. In threshold encryption, decryption function is realized by using a par-
tial decryption algorithm and a combining algorithm. The partial decryption
algorithm takes as input a ciphertext and outputs a partial decryption result
(or the invalid symbol). The combining algorithm takes as input a ciphertext
and γ partial decryption results and outputs a plaintext (or the invalid symbol).
For more details, see [13].

Threshold encryption is executed as follows. The trusted dealer runs the key
generation algorithm. The trusted dealer publishes a public-key and sends secret-
key ski to the server i over a secret channel. The sender creates a ciphertext by
encrypting a plaintext and broadcasts the ciphertext to all servers. After that,
γ servers can individually calculate partial decryption results by running the
partial decryption algorithm with their own secret keys, and they send the results
to the combiner. The adversary may change the partial decryption results issued
by the corrupted servers. By using the combining algorithm, the combiner first
checks the validity of the partial decryption results. If some of them are invalid,
the combiner returns an invalid symbol. If all are valid, it returns a plaintext m.



Construction of Threshold (Hybrid) Encryption 263

2.2 Threshold (Tag-)KEM

In this section we explain the formal model of the key encapsulation mechanism
in the threshold settings with a tag (threshold Tag-KEM, for short). Threshold
Tag-KEM is executed in a similar way to threshold encryption. In threshold Tag-
KEM, encapsulation is the same as in ordinary Tag-KEM, while decapsulation
is done by some servers and a combiner as in threshold encryption.

We give some definitions of threshold Tag-KEM below. They are obtained by
combining the definitions of threshold encryption in [13] with those of Tag-KEM
in [3]. From the definition of threshold Tag-KEM, we can obtain a definition of
threshold KEM (without a tag) by fixing a tag and a definition of (non-threshold)
Tag-KEM by replacing the partial decryption algorithm and the combining al-
gorithm with the decryption algorithm.

Definition 1. (Threshold Tag-KEM) A (γ, n)-threshold KEM with tags (thresh-
old Tag-KEM, for short) EkemT = (GtkemT , KtkemT , E tkemT , PDtkemT , U tkemT) is
composed of the following algorithms:

– The key generation algorithm GtkemT is a probabilistic algorithm that takes
as input a security parameter 1Λ, and outputs public key ek and a set of
secret keys SK = {ski}i∈P . It also determines space for tags T . We write
(ek,SK) ← GtkemT(1Λ) for this processing.

– The key generation algorithm KtkemT is a probabilistic algorithm that gen-
erates a one-time key z ∈ Kdem and internal state information s (a key z is
embedded in s). Kdem is a key space of DEM with regard to encapsulation-
key ek. We write (s, z) ← KtkemT(ek) for this processing.

– The encryption algorithm E tkemT is a probabilistic algorithm that takes as
input internal state information s , tag τ , and encapsulation key ek, and
outputs a ciphertext h. We write h ← E tkemT

ek (s, τ) for this processing.
– The partial decryption algorithm PDtkemT is a deterministic algorithm that

takes a ciphertext h, tag τ , and user i’s secret key ski, and outputs a partial
decryption result δi or an invalid symbol ⊥ which implies that the ciphertext
is invalid. We write δi(or ⊥) = PDtkemT

ski
(h, τ) for this processing.

– The combining algorithm U tkemT is a deterministic algorithm that takes as
input a public key ek, ciphertext h, partial decryption results PDRtkemT

Γ (h, τ)
for user set Γ , and tag τ , and outputs key z or an invalid symbol ⊥ which im-
plies that the input is invalid, where Γ∈{Γ ⊂ P||Γ |=γ} and PDRtkemT

Γ (h, τ)=
{δi1 , δi2 , . . . , δiγ }i1,i2,...,iγ∈Γ . We write z(or ⊥)=U tkemT

ek (h, PDRtkemT
Γ (h, τ), τ)

for this processing. Here, for any ek, z, and Γ , we require that z be embedded
in s and U tkemT

ek (E tkemT
ek (s, τ), PDRtkemT

Γ (E tkemT
ek (s, τ), τ), τ) = z.

We define the strongest security of threshold Tag-KEM, i.e., IND-TCCA, which
is only a combination of IND-TCCA in threshold encryption and that in Tag-
KEM. From the following definition, we obtain a definition of IND-TCCA in
Tag-KEM by replacing the partial decryption oracles and a combining algorithm
in the definition of threshold Tag-KEM with a decryption oracle.



264 T. Ishihara et al.

Definition 2. (IND-TCCA) Let EtkemT be a threshold Tag-KEM. Suppose that
A is an adversary that plays the following game for EtkemT .

1 The adversary A chooses γ − 1 servers to corrupt.
2 The key generation algorithm GtkemT is run. The secret keys of the corrupted

servers, a public key, and verification keys are given to A. The other secret
keys are kept secret and sent to the uncorrupted servers, respectively.

3 The adversary A gives arbitrary ciphertext to the set of the partial decryp-
tion oracles and obtains partial decryption results. This step is repeated as
polynomially many times as A wishes.

4 The key generation algorithm KtkemT is run and the challenger obtains s, k1.
The challenger also selects k0 ← Kdem, b ← {0, 1} uniformly at random.

5 The adversary obtains kb and repeats Step 3.
6 The adversary A chooses arbitrary tag τ and gives it to the challenger.
7 The challenger produces a target ciphertext by encrypting s with the tag τ

that A gives and sends back the target ciphertext.
8 The adversary A repeats Step 3, where there is the restriction that A cannot

give the target ciphertext to the partial decryption oracles.
9 The adversary A outputs b′.

If b′ = b, A wins. The advantage of A over EtkemT is defined by 2 Pr[b′ = b] − 1,
where the probability is taken over the coin flips ofA, GtkemT , E tkemT , and the choice
of b. The adversaryA (t, ε, qH , qD)-breaksEtkemT under chosen ciphertext attacks in
the threshold setting if A can win by making at most qH queries to random oracle H
and at most qD queries to the set of the partial decryption oracle {PDtkemT

ski
(·)}i∈P ,

within running time t, with advantage ε. EtkemT is called indistinguishable against
chosen ciphertext attacks in the threshold setting (IND-TCCA) if any polynomial-
time Turing machine A wins under chosen ciphertext attacks with the advantage
that is negligible with respect to the security parameter.

We define a notion of a threshold version of one-wayness (OW) in threshold
KEM.

Definition 3. (One-wayness) Let EkemT =(GkemT , KkemT , EkemT , PDkemT , UkemT)
be a threshold KEM. Suppose that A is an adversary that plays the following
game for EkemT .

1 The adversary A chooses γ − 1 servers to corrupt.
2 The key generation algorithm GkemT is run. The secret keys of the corrupted

servers, a public key, and verification keys are given to A. The other secret
keys are kept secret and sent to the respective uncorrupted servers.

3 The key generation algorithm KkemT is run. The challenger obtains s, z and
produces a target ciphertext by encrypting s. The challenger sends the target
ciphertext to the adversary.

4 The adversary A outputs z′.

If z′ = z holds, A wins. The adversary A (tkemT , εkemT)-breaks EkemT if A can win
within running time tkemT , with probability εkemT . EkemT is said to be one-way
(OW) if any polynomial-time Turing machine A wins with the advantage that
is negligible with respect to the security parameter.



Construction of Threshold (Hybrid) Encryption 265

2.3 Signature Scheme with Tight Security Reduction

In this section, we describe the definition of signature schemes.

Definition 4. A signature scheme Ssig = (Gsig, Ssig, V sig) consists of the follow-
ing algorithms:

– The key generation algorithm Gsig is a probabilistic algorithm that takes a
security parameter 1Λ as input and outputs a pair of signing key sgk and
verification-key vk. We write (sgk, vk)←Gsig(1Λ) for this processing.

– The signing algorithm Ssig is a (probabilistic) algorithm that takes a message
m and a signing key sgk, and outputs a signature σ for the message m. We
write σ ← Ssig

sgk (m) for this processing.
– The verification algorithm V sig is an algorithm that takes a pair of message

m and its signature σ and a verification-key vk as input, and outputs 1 or 0,
where it outputs 1 if the signature σ is valid and 0 otherwise. We write 1/0 =
V sig

vk (m, σ) for this processing. Here, we require that V sig
vk (m, Ssig

sgk (m)) = 1 for
any m and (sgk, vk) generated by Gsig.

If we clarify hash functions H used in the signature scheme, we denote the
signature scheme by Ssig

H = (Gsig
H , Ssig

H , V sig
H ).

We now give a one-time version of the strongest security notion in the signa-
ture scheme.

Definition 5. (sEUF-OCMA) Let A be an adversary that plays the following
game for Ssig.

1 The key generation algorithm Gsig is run. A obtains a verification key vk.
2 The adversary A outputs (m, σ) after making at most one query to the signing

oracle.

If Vsig
vk (m, σ) = 1 holds, A wins. There is an obvious restriction that (m, σ) is not

the answer of the query from the signing oracle. The adversary A (t, ε, qH)-breaks
Ssig under one-time chosen message attacks if A can win by making at most qH

queries to H, within running time t, with success probability of ε. Ssig is said
to be strongly existentially unforgeable against one-time chosen message attacks
(sEUF-OCMA) if any polynomial-time Turing machine A wins with probability
that is negligible with respect to the security parameter.

Moreover, suppose that the security of Ssig depends on the problem X . Namely,
suppose that there is a probabilistic polynomial-time algorithm that solves X with
probability of at most εX within running time tX using the adversary that (tsig, εsig,
qH)-breaks Ssig under OCMA. If εsig − εX is negligible and tX − tsig = o(1), then
Ssig achieves tight security reduction.

3 Construction of Secure Threshold Tag-KEM

In this section, we propose a generic conversion from threshold KEM that meets
OW into threshold Tag-KEM that meets IND-TCCA using signature schemes



266 T. Ishihara et al.

with tight security reduction. First, we introduce polynomial-time computable
functions to combine threshold KEM and signature schemes seamlessly. These
functions closely resemble those introduced in [1,2]. Intuitively, if the adversary
knows internal state information s whose encrypted form is a ciphertext h, the
decrypted result of the ciphertext h is useless. (In fact, internal state informa-
tion s contains the decrypted result of the ciphertext h.) To show the knowledge
of internal state information, we use signature schemes, where the ciphertext h
is treated as a verification key and internal state information s is treated as a
signing key. These functions describe how a ciphertext h and internal state infor-
mation s are transformed into a verification key and a signing key, respectively.

Definition 6. (Joint functions) Let Ssig = (Gsig, Ssig, V sig) be a signature scheme
and EkemT = (GkemT , KkemT , EkemT , PDkemT , UkemT) a threshold KEM. Joint func-
tions for these schemes, DeriveSgk, and DeriveV k, are defined as follows.

– The signing key derivation function DeriveSgk is a function that returns a
signing key sgk of Ssig from input internal state information s and encapsu-
lation key ek used in EkemT

ek (s), denoted by DeriveSgk(s, ek) = sgk.
– The verification-key derivation function DeriveV k is a function that, given

encapsulated form h = EkemT
ek (s) and encapsulation key ek, returns a verifica-

tion key vk that corresponds to signing key sgk generated by DeriveSgk(s,ek).
We denote DeriveV k(h, ek) = vk. Here, it is required that the distribution
of the resulting key pair (sgk, vk) created by DeriveSgk and DeriveV k is
the same as that of pairs of signing keys and verification-keys generated by
Gsig, if s and ek are chosen uniformly at random.

Here, we note the possibility of the existence of the joint functions. We can
construct a signature scheme with tight security reduction if Fiat-Shamir proof
of knowledge exists for relation W with one-way instance generator I by using
Construction 4 in [12]. Therefore, if the encryption algorithm is deterministic,
the case of DeriveSgk(s, ek) = s and DeriveV k(h, ek) = h is one candidate for
constructing our scheme.

We now provide a construction of the threshold Tag-KEM. The basic idea lies
in using non-interactive proof of knowledge to guarantee integrity; we use a sig-
nature scheme in which one, who produces a new signature, knows the answer to
the problem X on which security of the signature depends, whereas the notion of
plaintext-awareness means that one, who produces a new ciphertext, knows the
plaintext. Intuitively, this basic idea seems to be secure. However, as noted in
[23], security proofs would be difficult since rewinding causes another rewinding
and the proof does not end in polynomial time. Therefore, we use a signature
scheme with tight security reduction as a non-interactive proof of knowledge to
simulate partial decryption oracle which avoids such avalanches. In addition, to
ensure the integrity of the verification key, we put the verification key into hash
functions that are used in a signature scheme. Recall that the verification key in a
signature scheme is utilized in a non-malleable way assuming the existence of CA
(certification authority), whereas verification keys included in ciphertexts may



Construction of Threshold (Hybrid) Encryption 267

be malleable. Therefore, we put it into hash functions to ensure non-malleability.
From the viewpoints, our construction is provided as follows.

Scheme 1. Given a threshold KEM EkemT=(GkemT , KkemT , EkemT ,PDkemT ,UkemT)
and a signature scheme Ssig

H = (Gsig
H , Ssig

H , V sig
H ), where H is a hash function used in

the signature scheme, converted threshold Tag-KEM EtkemT = (GtkemT , KtkemT ,

E tkemT ,PDtkemT , U tkemT) is constructed as follows: Let Ssig
H′ = (Gsig

H’ , Ssig
H’ , V sig

H’ ) be
a signature scheme obtained from Ssig

H by replacing the hash function H with
the modified hash function H ′(·) = H(vk, ·), where vk is the verification-key.
Also, let G : {0, 1}∗ → {0, 1}Λ be a hash function. The key generation algorithm
GtkemT is the same as GkemT of EkemT .

(s, k) ← KtkemT(ek)
1. (s, z) ← KkemT(ek) (z is embedded in s)
2. k = G(z) (generation of session-key k)

C ← E tkemT
ek (s, τ), where C = (h, σ)

1. h = EkemT
ek (s) (key-encapsulation)

2. sgk = DeriveSgk(s, ek) (signing-key derivation)
3. vk = DeriveV k(h, ek) (verification-key derivation)
4. σ = Ssig

sgk,H’(τ) (signature generation by sgk and vk)
δi/⊥ = PDtkemT

ski
(C, τ) for ski ∈ SK, where C = (h, σ)

1. vk = DeriveV k(h, ek) (verification-key derivation)
2. Output invalid symbol ⊥ if V sig

vk, H’(τ, σ) = 0 (checking validity of the
signature)

3. δi = PDkemT
ski

(h) for ski ∈ SK.
k/⊥ = U tkemT

ek (C, PDRtkemT
Γ (C, τ), τ)

1. Output the invalid symbol ⊥, if h is invalid or there are some invalid
partial decryption results (verification of partial decryption results)

2. z = UkemT
ek (h, PDRkemT

Γ (h)), k = G(z) (extraction of session-key k)

The security of Scheme 1 is shown as follows. The proof of Lemma 1 will be
given in the full version of this paper.

Lemma 1. Let X be the computational problem (e.g. RSA or CDH). Suppose
there exists adversary AX1 that (tX1 , εX1)-solves the problem X , which means
AX1 solves X within time tX1 with probability εX1 , if there is an adversary Asig

that (tsig, εsig, qH′′ )-breaks Ssig
H under one-time chosen message attacks, where

tsig ≈ tX1 and εsig ≈ εX1 . Also, suppose there exists an adversary AX2 that
(tX2 , εX2)-solves the problem X if there is an adversary AkemT that (tkemT , εkemT)-
breaks EkemT . Then, if there is an adversary B that can (t, ε, qH , qD)-break
Scheme 1 under chosen ciphertext attacks in the threshold setting, there exists
an adversary BX that can (tX , εX)-solve the problem X with qH′′ + qG ≤ qH ,

εX ≥ ε · (εX1/εsig)qD+qH+1 · εX2

qH · εkemT

, (1)

tX ≤ t + (qD + qH + 1)(tsig − tX1) + (qD + 1)(tkemT − tX2) + qHtG,

where A makes at most qG queries to hash function G with maximum running
time tG for simulating the random oracle of G.



268 T. Ishihara et al.

If ε is not negligible under the condition where εkemT/εX2 and qH are polynomially
bounded in Λ, εX is also not negligible. Therefore, if we suppose εX is negligible,
ε must also be negligible and EtkemT is IND-TCCA. Here, we say X is hard if
there is no probabilistic polynomial-time algorithm that can solve the problem
X . Consequently, the above lemma induces the following theorem.

Theorem 1. Let X be a computational problem. If EkemT is a threshold KEM
that meets OW under the assumption of the hardness of the problem X, and
Ssig

H is a signature scheme that meets sEUF-OCMA with tight security reduction
under the assumption of hardness of the problem X, then Scheme 1 results in
the threshold Tag-KEM that meets IND-TCCA under the same assumption.

Remarks . This remark explains why we consider the situation where the se-
curity of threshold KEM and that of signature scheme depend on the same
assumption using Fig.1. Fig. 1 shows the relationship between threshold KEM,

(b) (c)

tight reduction

tight reduction

reduction

Hardness of problem X

Security of OW
(Threshold KEM)

Security of sEUF-OCMA

(Signature)

(a)

Fig. 1. Relationships among threshold KEM, signature scheme, and the base of security

signature, and the problem X in Scheme 1: if threshold KEM or the signature
scheme is broken, the problem X is solved by reduction. Arrow (a) in Fig.1
means that there is an extractor that extracts z in EkemT from h in EkemT with-
out rewinding if there is a forger that can forge valid a signature σ for some m
with fixed vk. This means that we do not need a magical extractor unlike [24].
In instantiations in Sect.4, to construct a signature based on (a), we construct
a signature based on (c) with tight reduction. Since the opposite of (b) is tight
reduction, the composition of (c) and the opposite of (b) leads to (a) with tight
reduction, which is needed in our scheme.

Notes: It is shown that Lemma 1 and Theorem 1 hold true even if we relax
the condition of security proof of signature scheme Ssig

H : the simulation of the
signing oracle is not necessarily shown tightly under the hardness of X but it
is enough to be shown loosely under the hardness of X. For example, Scheme 1
is applicable to the case where succeeding in a simulation of the signing oracle
depends on DDH whereas the security of threshold KEM depends on CDH. The
proof of the above case is done in a very similar way to that of Lemma 1.



Construction of Threshold (Hybrid) Encryption 269

4 Instantiations

In this section, we consider four instantiations. These are threshold encryption by
combining threshold Tag-KEM and a one-time pad, in which threshold Tag-KEM
is constructed by using Scheme 1 in Section 3. Of these, we actually describe
new two instantiations: one is the first provably secure scheme under the RSA
assumption in the random oracle model where ciphertext-size and encryption-
cost are independent of the number of servers; and the other is provably secure
under the CDH assumption in the random oracle model, which is slightly more
efficient than [23]. Two others of the four mirrors TDH1 and TDH2 in [23]. We
summarize four instantiations in Table 1, where Assumption means the hardness
of a problem (e.g., RSA or CDH). It should be noted that DEM parts can be
replaced by any symmetric-key scheme that is one-time secure against passive
attacks if we are interested in threshold hybrid encryption.

Table 1. Constructions of instantiations: threshold Tag-KEM that meets IND-TCCA
is composed of threshold KEM that meets OW and signature scheme that meets sEUF-
OCMA through our construction method; threshold hybrid encryption is a combination
of threshold Tag-KEM that meets IND-TCCA and weakly secure DEM (one-time pad)

IND-TCCA DEM IND-TCCA Hybrid Assumption
threshold Tag-KEM threshold encryption

OW sEUF-OCMA
threshold KEM signature scheme

GQ Identification Scheme A
Scheme in [21] and Fischlin’s in this paper RSA

transformation [12] (see Theorem 1)
Scheme B

Scheme in one-time in this paper
Scheme in [10] Chapter 4 of [8] pad (see Theorem 1) CDH

Scheme in Scheme TDH1 in [23]
Scheme in [10] Appendix B of [8] (see Theorem 1) CDH

Scheme TDH2 in [23]
Scheme in [10] Scheme in [19] (see Notes in Sect.3) DDH

We describe the first threshold encryption based on the RSA assumption in
the random oracle model where ciphertext-size and encryption-cost are inde-
pendent of the number of servers. Note that the scheme in [18] is secure under
Quadratic Residuosity Assumption (QRA), not the RSA assumption. In the pro-
posed instantiation, we use the scheme in [21] as threshold KEM. Note that the
paper [21] originally deals with a threshold signature scheme, however, we can
easily convert it into threshold KEM in the same way as [14]. In addition, we
use a signature scheme whose security depends on the RSA assumption with
tight security reduction obtained by combining the GQ Identification scheme
and Fischlin’s transformation [12]. A threshold encryption secure under RSA
assumption is described as follows.



270 T. Ishihara et al.

Scheme A . A threshold encryption EpubT = (GpubT , EpubT , PDpubT , UpubT) is
as follows.

Key generation: (ek,SK) ← K(1Λ), where ek = (e, N, v, h1, . . . , hn):
GpubT takes inputs Λ, ω, η, b, l, A as security parameters and selects strong Λ

2 -
bit primes p, q and calculates N = pq. Define p′, q′, and W as p = 2p′+1, q =
2q′+1, and W = p′q′, resp., where we require A to be sufficiently larger than
l × W . Select e(> n) s.t. gcd(e, φ(N)) = 1 and compute d that satisfies ed =
1 mod W . Define Δ = n! andf0 = d. Secret keys are generated as follows.
Choose random elements f1, . . . , fγ−1 ∈ ZW , and then define a polynomial
F (X) =

∑γ−1
j=0 fjX

j ∈ ZW [X ]. For 0 ≤ i ≤ n, set ski = F (i) mod W ∈
ZW as the secret key for the i-th server. A generator, v, of QN is selected
uniformly and hi = vΔski mod N(i = 1, 2, . . . , n) is a verification key for the
partial decryption result from the i-th server. Hash functions are defined as
G : ZN → Z2l , H : ZN × Z2l × ZN × Z2ω × Z2η × ZN → Z2b , Θ : Z6

N → Z2l .
Encryption: C ← EpubT(m; s):

1 h = se mod N, k = G(s), c = k ⊕ m(m ∈ {0, 1}l)
2 Select rj ∈ ZN (j = 1, 2, . . . , ω) and set r = {re

j}j=1,2,...,ω.
3 For j = 1, 2, . . . , ω, repeat the following calculations. Set chj as the value

that ensures that H(h, c, re
j , j, chj , rjs

chj ) equals 0 where chj ∈ Z2η (if no

such value exists, set chj such that H(h, c, re
j , j, chj , rjs

chj ) is minimum

for chj = 0, 1, 2, . . . , 2η − 1.) and calculate vj = rjs
chj mod N .

4 Set ch = {chj}j=1,2,...,ω, v = {vj}j=1,2,...,ω, and C = (h, c, r, ch,v).
Partial decryption: {δi, ei, yi}/ ⊥← PDpubT

ski
(C):

1 If
∑ω

j=1 H(h, c, re
j , j, chj , vj) ≤ ω does not hold, output ⊥ and abort.

2 If re
j = ve

jh
−chj mod N(j = 1, 2, . . . , ω) does not hold, output ⊥ and

abort.
3 Calculate δi ≡ h2Δsi mod N . Select r

R← ZA and xi = vr, x′i = hr. ei =
Θ(v, h, h2

i , δi, xi, x
′
i), yi = r + ei × 2Δski.

Combining: m/ ⊥= UpubT
ek (C, PDRpubT

Γ (h))
1 For each server i(∈ Γ = {i1, . . . , iγ}) that sends δi , check if Θ(v, h, h2

i , δi,
vyi/h2ei

i , hy/δei

i ) = ei holds. If it does not hold, output ⊥ and abort.

2
∏

i∈Γ δ
2λΓ

0,j

i mod N = s4Δ2
mod N

3 From h and s4Δ2
, calculate s. k = G(s),m = c ⊕ k

Here, we define λΓ
0,j = Δ ×

∏
j′∈Γ \{j}(−j′)

∏
j′∈Γ \{j}(j−j′) ∈ Z in the same way as [21]. s is

obtained from h and s4Δ2
, using the technique in [14] as follows. e and 4Δ2 are

co-prime from the property of e; integers X, Y that satisfy X × 4Δ2 +Y × e = 1
can be calculated in polynomial-time by using the extended Euclidean algorithm.
It holds that (s4Δ2

)X × (h mod N)Y = sX×4Δ2+Y×e = s mod N .

Here, DeriveV k(h, ek) = h, DeriveSgk(s, ek) = s, a tag of the threshold Tag-
KEM is c, and the answer to h is s. A more efficient scheme, RSA-PSS [9],
that has tight security reduction seems to be possible with our construction,



Construction of Threshold (Hybrid) Encryption 271

however, it seems to be difficult to use since function DeriveSgk is not efficiently
computable, that is, obtaining a signing key would cover the process of factoring
integers.

Next, we describe three instantiations based on DLP. Two schemes mirror
TDH1 and TDH2 in [23]. Interestingly, we can observe a relationship among
threshold encryption in [23], the scheme in Appendix B of [8] and the scheme
in [19] through our generic construction. In fact, Goh and Jarecki [17] already
mentioned the technique of replacing the proof of knowledge with the proof of
knowledge of equality as in [23]. Also, [17,8,19] use the same technique. Our
construction makes it easier to understand why [17,8,19] use the same technique
as [23]. This fact also means that our generic construction can be regarded
as a generalization of Shoup and Gennaro’s schemes [23]. Surprisingly, to the
best of our knowledge, no scheme based on the CDH or DDH assumption that
is more efficient than the schemes in [23] has been proposed since 1998, which
implies that Shoup and Gennaro’s threshold encryption schemes in [23] are quite
efficient. Table 1 shows that our construction involves such efficient schemes.

We describe the last one, a new scheme called Scheme B in Table 1. In Scheme
B, we use the threshold KEM that is similar to the scheme in [10], in which
ek = (g, ḡ), ḡ = gx, z = ḡs, h = gs, and SK is a set of shares obtained by the
Shamir’s secret sharing scheme to share x. Also, we use the signature scheme in
[8]. A threshold encryption scheme secure under the CDH assumption is formally
described as follows.

Scheme B . A threshold encryption EpubT = (GpubT , EpubT , PDpubT , UpubT) is
constructed as follows.

Key generation: (ek,SK) ← G(1Λ), ek = (g, y, p, q, Gq, y1, . . . , yn): Details are
as follows. Choose security parameter Λ, l, and (Gq, g), where Gq is a finite
cyclic group of prime order q and g is a generator of Gq. We assume that
Gq is a multiplicative subgroup of Z∗p with prime p, where q|(p − 1); all
arithmetic operations are done in modulo p unless otherwise noted. Select
x(∈R Zq) and publish y = gx. Publish hash functions G : Gq → {0, 1}l, H1 :
G2

q → Gq, H2 : Gq × {0, 1}l × {0, 1}l × G3
q → Zq, and Θ : G3

q → Zq. Random
elements f1, . . . , fγ−1 ∈ Zq are chosen, and f0 = x. Define a polynomial
F (X) =

∑γ−1
j=0 fjX

j. For 0 ≤ i ≤ n, set ski = F (i) mod q as a secret key

for the i-th server. yi = gski is a verification key for the partial decryption
result from the i-th server.

Encryption: Select plaintext m ∈ {0, 1}l, a label L, and r, s ∈R Zq. The ci-
phertext is C = (c, L, u, ū, e, f), where c = G(ys) ⊕ m, u = gs, w = gr, ḡ =
H1(u, w), ū = ḡs, w̄ = ḡr, e = H2(u, c, L, ḡ, ū, w̄), f = r + se mod q.

Partial decryption: First, check if e = H2(u, c, L, ḡ, ū, ḡf/ūe) holds after com-
puting ḡ = H1(u, gf/ue). If this condition does not hold, output (i, ⊥). Oth-
erwise, choose si ∈ Zq uniformly at random and compute ui = uski , ûi =
usi , ŷi = gsi , ei = Θ(ui, ûi, ŷi), fi = si + skiei. The output is (i, ui, ei, fi).



272 T. Ishihara et al.

Combining: First, check if e = H2(u, c, L, ḡ, ū, ḡf/ūe) holds. Second, check if
ei = Θ(ui, u

fi/uei

i , gfi/yei

i ) for i ∈ Γ , where Γ is a set of γ servers. If they

hold, compute m = G(
∏

i∈Γ u
λΓ
0,i

i ) ⊕ c, where λΓ
0,j =

∏
j′∈Γ \{j}(−j′)

∏
j′∈Γ \{j}(j−j′) ∈ Z.

Here, DeriveV k(h, ek) = h, DeriveSgk(s, ek) = s, and the answer to h is z.
If we use the Diffie-Hellman self-corrector [22], the reduction-cost in Scheme
B decreases as described in [23]. We note that Scheme 1 is pre-computable if
the used signature scheme is pre-computable. Therefore, Scheme B is also pre-
computable (see [8]). Also, note that we added u as input to H1 and H2, whereas
u can be removed as input of H2. Intuitively, this is because the role of ū is the
same as that of u in the viewpoint of a label. Furthermore, the parameters
g, h, y in [8] were removed from the input to the hash functions since this does
not influence the security of the signature scheme.

Acknowledgments. We would like to thank Masayuki Terada (NTT DoCoMo,
Inc.) for some discussions on improving this paper. We would also like to thank
anonymous referees for their valuable comments.

References

1. Abe, M.: Securing Encryption + Proof of Knowledge in the Random Oracle Model.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 277–289. Springer, Hei-
delberg (2002)

2. Abe, M.: Combining Encryption and Proof of Knowledge in the Random Oracle
Model. The Computer Journal 47(1), 58–70 (2004)

3. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Frame-
work for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

4. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

5. Boneh, D., Boyen, X., Halevi, S.: Chosen Ciphertext Secure Public Key Threshold
Encryption Without Random Oracles. In: Pointcheval, D. (ed.) CT-RSA 2006.
LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

6. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: CCS 2005, pp. 320–329. ACM Press, New York (2005)

7. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive secu-
rity for threshold cryptosystems. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 98–115. Springer, Heidelberg (1999)

8. Chevallier-Mames, B.: An Efficient CDH-based Signature Scheme with a Tight
Security Reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–
526. Springer, Heidelberg (2005)

9. Coron, J.-S.: Optimal Security Proofs for PSS and Other Signature Schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

10. Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)



Construction of Threshold (Hybrid) Encryption 273

11. Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

12. Fischlin, M.: Communication-Efficient Non-Interactive Proofs of Knowledge with
Online Extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005)

13. Fouque, P.-A., Pointcheval, D.: Threshold Cryptosystems Secure against Chosen-
Ciphertext Attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
351–368. Springer, Heidelberg (2001)

14. Fouque, P.-A., Pointcheval, D., Stern, J.: Sharing Decryption in the Context of
Voting or Lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104.
Springer, Heidelberg (2001)

15. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

16. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing Both Transmission and Memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

17. Goh, E., Jarecki, S.: A Signature Scheme as Secure as the Diffie-Hellman Prob-
lem. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS,
vol. 2656, pp. 401–415. Springer, Heidelberg (2003)

18. Katz, J., Yung, M.: Threshold Cryptosystems Based on Factoring. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer, Heidelberg
(2002)

19. Katz, J., Wang, N.: Efficiency Improvements for Signature Schemes with Tight
Security Reductions. In: CCS 2003, pp. 155–164. ACM Press, New York (2003)

20. Schnorr, C.-P., Jakobsson, M.: Security of Signed ElGamal Encryption. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer, Hei-
delberg (2000)

21. Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

22. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

23. Shoup, V., Gennaro, R.: Securing Threshold Cryptosystems against Chosen Ci-
phertext Attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
Springer, Heidelberg (1998) Journal of Cryptology 15(2), 75–96 (2002)

24. Tsiounis, Y., Yung, M.: On the Security of ElGamal Based Encryption. In: Imai,
H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer, Heidelberg
(1998)



Efficient Chosen-Ciphertext Secure

Identity-Based Encryption with Wildcards

James Birkett1, Alexander W. Dent1, Gregory Neven2,
and Jacob C.N. Schuldt1,3

1 Information Security Group,
Royal Holloway, University of London,

Egham, TW20 0EX, UK
{j.m.birkett,a.dent}@rhul.ac.uk

2 Department of Electrical Engineering, Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, 3001 Heverlee, Belgium;

and Département d’Informatique, Ecole normale supériure,
45 Rue d’Ulm, 75005 Paris, France
Gregory.Neven@esat.kuleuven.be

3 Institute of Industrial Science, University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

schuldt@iis.u-tokyo.ac

Abstract. We propose new instantiations of chosen-ciphertext secure of
identity-based encryption schemes with wildcards (WIBE). Our schemes
outperform all existing alternatives in terms of efficiency as well as secu-
rity. We achieve these results by extending the hybrid encryption (KEM–
DEM) framework to the case of WIBE schemes. We propose and prove
secure one generic construction in the random oracle model, and one
direct construction in the standard model.

1 Introduction

One of the major obstacles for the deployment of public-key cryptography in the
real world is the secure linking of users to their public keys. While typically solved
through public-key infrastructures (PKI), identity-based encryption [19,18,10,8]
can avoid some of the costs related to PKIs because it simply uses the identity
of a user (e.g., her email address) as her public key. This way, Bob can for
example send an encrypted email to Alice by encrypting it under her identity
alice@cs.univ.edu, which only Alice can decrypt using the private key that
only she can obtain from a trusted key distribution centre.

Abdalla et al. [1] recently proposed a very intuitive extension to this idea by
allowing the recipient identity to contain wildcards. A ciphertext can then be
decrypted by multiple recipients with related identities. For example, Bob can
send an encrypted email to the entire computer science department by encrypting
under identity *@cs.univ.edu, or to all system administrators in the university
by encrypting under identity sysadmin@*.univ.edu. This extension therefore
provides a very intuitive interface for identity-based mailing lists.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 274–292, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Efficient Identity-Based Encryption with Wildcards 275

Arbitrary-length plaintexts. As is the case for most public-key and
identity-based encryption schemes, the identity-based encryption with wildcards
(WIBE) schemes of [1] can only be used to encrypt relatively short messages,
typically about 160 bits. To encrypt longer messages, one will have to resort to
hybrid techniques: the sender uses the WIBE to encrypt a fresh symmetric key
K and encrypts the actual message under the key K. The basic construction
has been used within the cryptographic community for years, dating back to
the work of Blum and Goldwasser in 1984 [4], but its security for the case of
public-key encryption was not properly analysed until the work of Cramer and
Shoup [11]. One would intuitively expect these results to extend to the case of
WIBEs, but this was never formally shown to be the case.

Chosen-ciphertext security. The basic schemes of [1] are proved secure
under an appropriate adaptation of indistinguishability (IND) under chosen-
plaintext attack (CPA) [13], where the adversary is given access to a key deriva-
tion oracle and has to distinguish between encryptions of two messages of its
choice. This security notion is often not considered sufficient for practise though.
Rather, the community seems to have settled with the stronger notion of indis-
tinguishability under chosen-ciphertext attack (CCA) [16] as the “right” security
notion for practical use.

A generic construction. Canetti et al. [9] proposed a generic construction
of a CCA-secure hierarchical identity-based encryption (HIBE) scheme with up
to L hierarchy levels from any (L + 1)-level CPA-secure HIBE scheme and any
one-time signature scheme. Abdalla et al. adapted their techniques to the WIBE
setting, but their construction requires a (2L+2)-level CPA-secure WIBE scheme
to obtain an L-level CCA-secure one. (The reason is that the construction of [9]
prefixes a bit to identity strings indicating whether it is a real identity or a public
key of the one-time signature scheme. In the case of WIBE schemes, these bits
must be put on separate levels, because if not the simulator may need to make
illegal key derivation queries to answer the adversary’s decryption queries.)

Doubling the hierarchy depth has a dramatic impact on efficiency and secu-
rity of the schemes. First, the efficiency of all known WIBE schemes (in terms of
computation, key length, and ciphertext length) is linear in the hierarchy depth,
so the switch to CCA-security essentially doubles most associated costs. Sec-
ond, the security of all known WIBE schemes degrades exponentially with the
maximal hierarchy depth L. If the value of L is doubled, then either the scheme
is restricted to half the (already limited) number of “useful” hierarchy levels,
or that the security parameter must be increased to restore security. The first
measure seriously limits the functionality of the scheme, the second increases
costs even further.

For example, the WIBE scheme from [1] based on Waters’ HIBE scheme [20]
loses a factor of (2nqK)L in the reduction to the BDDH problem, where n is
the bit length of an identity string at each level of the hierarchy and qK is
the number of adversarial key derivation queries. Assume for simplicity that the



276 J. Birkett et al.

advantage of solving the BDDH problem in a group of order p > 2k is 2−k/2.
If n = 128 and qK = 220, then to limit an adversary’s advantage to 2−80 in
a WIBE scheme with L = 5 levels, one should use a group order of at least
160 + 56L = 440 bits. In the CCA-secure construction however, one needs a
group order of 160 + 56(2L + 2) = 832 bits, almost doubling the size of the
representation of a group element, and multiplying by eight the cost of most
(cubic-time) algorithms! Furthermore, since there are twice as many levels, the
ciphertext must contain twice as many group elements, so overall, ciphertexts
are four times as large and the cost of encryption and decryption is multiplied
by sixteen!

Our contributions. In this paper, we provide formal support for the use of hy-
brid encryption with WIBE schemes, and we present CCA-secure schemes that
are more efficient and secure than those obtained through the generic construc-
tion of [1]. We achieve these results by considering WIBE schemes as consisting
of separate key and data encapsulation mechanisms (KEM–DEM) [11], leading
to the definition of identity-based key encapsulation mechanisms with wildcards
(WIB-KEM). Here, the WIB-KEM encrypts a random key under a (wildcarded)
identity, while the DEM encrypts the actual data under this random key.

We first show that the combination of a CPA-secure (resp. CCA-secure) WIB-
KEM with a CPA-secure (resp. CCA-secure) DEM indeed yields a CPA-secure
(resp. CCA-secure) WIBE scheme. This result may be rather unsurprising, but
needed proof: it is necessary to validate the use of hybrid techniques for the
case of WIBEs, in the same way that it was necessary for the public-key [11] and
identity-based [3] cases. Furthermore, it should be noted that subtleties can arise
in the proving of such results, for example in the case of certificateless KEMs [3].

Obviously, any secure WIBE scheme can be used to instantiate the WIB-KEM
in the hybrid construction. (If the WIBE securely encrypts arbitrary messages,
it also securely encrypts random keys.) This solves the problem of encrypt-
ing arbitrary-length messages, but still requires a CCA-secure WIBE scheme
to achieve chosen-ciphertext security. As we argued above, all known instantia-
tions of such schemes suffer from efficiency problems due to the doubling of the
number of levels.

We therefore present a generic construction of L-level CCA-secure WIB-KEMs
in the random oracle model [2] along the lines of Dent [12] from any L-level WIBE
scheme that is one-way (OW) secure under chosen-plaintext attack. One-wayness
is a much weaker security requirement than CCA-security, allowing much more
efficient instantiations. In particular, one-wayness is implied by indistinguisha-
bility (for sufficiently large message spaces), so we can use any of the IND-CPA
secure constructions of [1]. We also note that this construction can also be used
to build CCA-secure HIBE schemes.

The resulting efficiency gains are summarised in Fig. 1. Abdalla et al. present
two efficient schemes in the random oracle model based on the HIBE schemes
of [5,7]. One can see that our schemes perform significantly better in terms of
key sizes, ciphertext length, and encapsulation and decapsulation times. When



Efficient Identity-Based Encryption with Wildcards 277

Scheme |mpk | |d | |C| Encap Decap Security loss

2-L(BB) 4L + 7 2L + 1 3L + 2 3L + 2 2L + 1 q2L+2
H

OW (BB) 2L + 3 L + 1 2L + 2 2L + 2 L + 1 qL
H

2-L(BBG) 2L + 6 2L L + 3 L + 3 2 q2L+2
H

OW (BBG) L + 4 L + 1 L + 3 L + 3 2 qL
H

2-L(Wa) (n + 3)L + 3 2L + 1 (n + 2)L + 2 (n + 2)L + 2 2L + 1 (2nqK)2L+2

no-RO (n + 1)L + 3 L + 1 (n + 1)L + 2 (n + 1)L + 2 L + 3 L(20(n + 1)qK)L

Fig. 1. Efficiency comparison between our CCA-secure schemes and those of [1]. The
BB, BBG and Wa schemes are the WIBE schemes based on [5,7,20] presented in [1]. The
no-RO scheme is our direct construction without random oracles. The 2-L(·) transfor-
mation refers to the generic CCA-secure construction of [1]; the OW (·) transformation
is our random-oracle based construction. We compare the schemes in terms of master
public key size (|mpk |), user secret key size (|d|), ciphertext size (|C|), key encapsula-
tion time (Encap), key decapsulation time (Decap), and the factor lost in the security
reduction to the underlying assumption. The given values refer to the number of group
elements for |mpk |, |d|, |C|; to the number of exponentiations for Encap; and to the
number of pairing computations for Decap. L is the maximal hierarchy depth and n is
the bit length of (a collision-resistant hash of) an identity string. The values qH, qK and
qD refer to the number of queries of an adversary to the random oracle, key derivation
oracle and decryption oracle, respectively.

taking into account the security loss, one either has to conclude that our scheme
supports twice the hierarchy depth, or that the inefficiency of the existing schemes
in terms of memory size and computation time is blown up by a factor of at least
two and eight, respectively.

Finally, we present a direct construction of a WIB-KEM scheme in the stan-
dard (i.e., non-random-oracle) model based on the HIB-KEM scheme by Kiltz
and Galindo [15], which on its turn is based on Waters’ HIBE scheme [20]. Note
that the original version of the Kiltz-Galindo HIB-KEM scheme [14] is insecure,
a fact which was noticed in [17], but the updated scheme in [15] does not suf-
fer from the same weakness. We compare our scheme’s efficiency to that of the
only standard-model CCA-secure scheme in [1], namely the scheme obtained by
applying their generic CCA transformation to the WIBE scheme based on Wa-
ters’ HIBE. For fair comparison, we consider the optimised variant suggested
in the full version of [1] that takes advantage of the fact that intermediate
levels only contain one-bit identities. Our scheme is twice as efficient as the
non-random-oracle scheme of [1] in terms of secret key size and pairing compu-
tations during decapsulation. The difference with regard to ciphertext size and
encapsulation time is less pronounced, but this is disregarding the difference
in security loss. As argued above, taking the security loss into account signifi-
cantly blows up the costs of the scheme of [1]. For completeness, we should add
that Fig. 1 hides the fact that our scheme relies on a hash function with a
slightly stronger security assumption than the standard notion of second-
preimage resistance.



278 J. Birkett et al.

2 Definitions

2.1 Notation

We first introduce some notation that we will use throughout the paper. We
let {0, 1}n denotes the set of bitstrings of length n, {0, 1}≤n denote the set
of bitstrings of length at most n, and {0, 1}∗ denote the set of bitstrings of
arbitrary length. The notation x

$← S denotes that x is assigned the value of
an element selected uniformly at random from the set S. If A is an algorithm,
then x ← AO(y, z) assigns to x the output of running A on inputs y and z, with
access to oracle O. A may be deterministic or probabilistic.

2.2 Syntax of WIBE Schemes, WIB-KEMs and DEMs

Syntax of WIBE schemes. A pattern P is a tuple (P1, . . . , Pl) ∈ ({0, 1}∗ ∪
{∗})l, for some l ≤ L, where L is the maximum number of levels. An identity
ID = (ID1, . . . , IDl′) “matches” the pattern P if l′ ≤ l and for all 1 ≤ i ≤ l′,
IDi = Pi or Pi = ∗. We write this as ID ∈∗ P . A WIBE scheme of depth L
consists of the following algorithms:

– Setup generates a master key pair (mpk ,msk).
– KeyDer(dID, IDl+1) takes the secret key dID for ID = (ID1, . . . , IDl), gen-

erates a secret key dID′ for the identity ID′ = (ID1, . . . , IDl+1). The root
user, who has identity ε = (), uses dε = msk as his private key. This will be
used to derive keys for single level identities.

– Encrypt(mpk , P, m) encrypts a message m ∈ {0, 1}∗ intended for all identities
matching a pattern P , and returns a ciphertext C.

– Decrypt(dID, C) decrypts ciphertext C using the secret key dID for an iden-
tity ID ∈∗ P and returns the corresponding message m. If the encryption is
invalid, the Decrypt algorithm “rejects” by outputting ⊥.

We will overload the notation for key derivation, writing KeyDer(msk , ID) to
mean repeated application of the key derivation function in the obvious way.
Soundness requires that for all key pairs (mpk ,msk) output by Setup, all 0 ≤
l ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {∗})l, all identities ID such that ID ∈∗ P ,
and all messages m ∈ {0, 1}∗:

Pr [Decrypt(KeyDer(msk , ID), Encrypt(mpk , P, m)) = m] = 1 .

Syntax of WIB-KEMs. We will now define an Identity-Based Key Encap-
sulation Mechanism with Wildcards (WIB-KEM). A WIB-KEM consists of the
following algorithms:

– Setup and KeyDer algorithms are defined as in the WIBE case.
– Encap(mpk , P ) takes the master public key mpk of the system and a pattern

P , and returns (K, C), where K ∈ {0, 1}λ is a one-time symmetric key and
C is an encapsulation of the key K.



Efficient Identity-Based Encryption with Wildcards 279

IND-WID security game for WIBEs:

1. (mpk ,msk) ← Setup
2. (P ∗, m0, m1, s) ← AO

1 (mpk)

3. b
$← {0, 1}

4. C∗ ← Encrypt(mpk , P ∗, mb)
5. b′ ← AO

2 (C∗, s)

OW-WID security game for WIBEs:

1. (mpk ,msk) ← Setup
2. (P ∗, s) ← AO

1 (mpk)

3. m
$← M

4. C∗ ← Encrypt(mpk , P ∗, m)
5. m′ ← AO

2 (C∗, s)

IND-WID security game for WIB-KEMs:

1. (mpk ,msk) ← Setup
2. (P ∗, s) ← AO

1 (mpk)
3. (K0, C

∗) ← Encap(mpk , P ∗)

4. K1
$← {0, 1}λ

5. b
$← {0, 1}

6. b′ ← AO
2 (Kb, C

∗, s)

IND security game for DEMs:

1. (m0, m1, s) ← A1()

2. K
$← {0, 1}λ

3. b
$← {0, 1}

4. C∗ ← Encrypt(K, mb)
5. b′ ← AO

2 (C∗, s)

Fig. 2. Security games for WIBEs, WIB-KEMs and DEMs

– Decap(mpk , dID, C) takes a private key dID for an identity ID ∈∗ P and
an encapsulation C, and returns the corresponding secret key K. If the
encapsulation is invalid, the Decap algorithm “rejects” by outputting ⊥.

A WIB-KEM must satisfy the following soundness property: for all pairs (mpk ,
msk) output by Setup, all 0 ≤ l ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {∗})l, and all
identities ID ∈∗ P ,

Pr [K ′ = K : (K, C) ← Encap(mpk , P ); K ′ ← Decap(KeyDer(msk , ID), C)] = 1 .

HIBE schemes and HIB-KEMs can be thought of as special cases WIBEs and
WIB-KEMs restricted to patterns without wildcards.

Syntax of DEMs. A DEM consists of a pair of deterministic algorithms:

– Encrypt(K, m) takes a key K ∈ {0, 1}λ, and a message m of arbitrary length
and outputs a ciphertext C.

– Decrypt(K, C) takes a key K ∈ {0, 1}λ and a ciphertext C and outputs either
the corresponding message m or the “reject” symbol ⊥.

The DEM must satisfy the following soundness property: for all K ∈ {0, 1}λ, for
all m ∈ {0, 1}∗, Decrypt(K, Encrypt(K, m)) = m.

2.3 Security Notions

Security games for WIBEs, WIB-KEMs and DEMs are presented in Figure 2.
In all four games, s is some state information and O denotes the oracles the
adversary has access to. In the OW-WID game, M denotes the message space
of the WIBE. This will depend on the system parameters.



280 J. Birkett et al.

Security of WIBE schemes. We use the security definitions of indistinguisha-
bility under chosen-plaintext and chosen-ciphertext as per [1]. In both WIBE
security games shown in Figure 2, A has access to a private key extraction ora-
cle, which given an identity ID outputs dID ← KeyDer(msk , ID). In the CCA
model only, A also has access to a decryption oracle, which on input (C, ID),
returns m ← Decrypt(KeyDer(msk , ID), C).

The adversary wins the IND-WID game (as shown in Figure 2) if b′ = b and it
never queried the key derivation oracle on any identity matching the pattern P ∗.
Furthermore, in the CCA model, the adversary must never query the decryption
oracle on (ID, C∗), for any ID matching the pattern P ∗. We define the advantage
of the adversary as ε = |2 Pr[b′ = b] − 1|.

The adversary wins the OW-WID-CPA game if m′ = m and it never queried
the key derivation oracle on any identity matching the pattern P ∗. We define
the advantage of the adversary to be ε = Pr[m′ = m].

Security of WIB-KEMs. In the IND-WID game for WIB-KEMs (also shown
in Figure 2) A has access to a private key extraction oracle, which given an
identity ID outputs dID ← KeyDer(msk , ID). In the CCA model only, A ad-
ditionally has access to a decapsulation oracle, which on input (ID, C), returns
K ← Decap(KeyDer(msk , ID), C).

Again, the adversary wins the IND-WID game if b′ = b and it never queried
the key derivation oracle on any identity matching the pattern P ∗. Furthermore,
in the CCA model, the adversary must never query the decapsulation oracle on
(C∗, ID), for any ID matching the pattern P ∗. We define the advantage of the
adversary as ε = |2 Pr[b′ = b] − 1|.
Security of DEMs. In the IND-CPA game for DEMs, the adversary has access
to no oracles. In the IND-CCA model, A2 may call a decryption oracle, which on
input C �= C∗ returns m ← Decrypt(K, C). Note that this oracle is only available
in the second phase of the attack. The adversary wins if b′ = b. We define the
advantage of the adversary as ε = |2 Pr[b′ = b] − 1|.
Definition 1. A WIBE scheme (resp. WIB-KEM) is (t, qK , ε) IND-WID-CPA
secure if all time t adversaries making at most qK queries to the key derivation
oracle have advantage at most ε in winning the IND-WID-CPA game described
above.

Definition 2. A WIBE scheme (resp. WIB-KEM) is (t, qK , qD, ε) IND-WID-
CCA secure if all time t adversaries making at most qK queries to the key deriva-
tion oracle and at most qD queries to the decryption (resp. decapsulation) oracle
have advantage at most ε in winning the IND-WID-CCA game described above.

The (t, qK , ε) IND-HID-CPA and (t, qK , qD, ε) IND-HID-CCA security of a HIBE
scheme and HIB-KEM are defined analogously.

Definition 3. A WIBE scheme is (t, qK , ε) OW-WID-CPA secure if all time t
adversaries making at most qK queries to the key derivation oracle have advan-
tage at most ε in winning the OW-WID-CPA game described above.



Efficient Identity-Based Encryption with Wildcards 281

Definition 4. A DEM is (t, qD, ε) IND-CCA secure if all time t adversaries
making at most qD decryption queries in the the IND-CCA game described above
has advantage at most ε.

When working in the random oracle model, we add the number of queries
made to the oracle as a parameter, so for example we would say a WIBE is
(t, qK , qD, qH , ε) IND-WID-CCA secure, where qH is the total number of hash
queries. The other definitions may be adapted in a similar manner.

3 Security of the Hybrid Construction

Suppose we are given an IND-WID-CCA secure WIB-KEM scheme WIB-KEM =
(Setup, KeyDer, Encap, Decap) and an IND-CCA secure data encapsulation
method DEM = (Encrypt, Decrypt). Let us also suppose that the length λ of keys
generated by the WIB-KEM is the same as the length of keys used by the DEM.
Then, following the method of [11], we can combine them to form a WIBE scheme
WIBE = (Setup, KeyDer, Encrypt′, Decrypt′) as follows:

– Encrypt′(mpk , P, m): Compute (K, C1) ← Encap(mpk , P ), C2 ← Encrypt
(K, m). Return C = (C1, C2).

– Decrypt′(dID, C): Parse C as (C1, C2). If the parsing fails, return ⊥. Oth-
erwise, compute K ← Decap(dID, C1). If Decap rejects, return ⊥. Finally,
compute m ← Decrypt(K, C2), and return m.

Theorem 5. Suppose there is a (t, qK , qD, ε)-adversary A = (A1, A2) against
IND-WID-CCA security of the hybrid WIBE. Then there is a (tB, qK , qD, εB)-
adversary B = (B1, B2) against the IND-WID-CCA security of the WIB-KEM
and a (tC , qD, εC)-adversary C = (C1, C2) against the IND-CCA security of the
DEM such that:

tB ≤ t + qDtDec + tEnc

tC ≤ t + qD(tDec + tDecap + tKeyDer) + qKtKeyDer + tEncap + tSetup

ε = εB + εC

where tEnc is the time to run the DEM’s Encrypt algorithm, tDec is the time to
run the DEM’s Decrypt algorithm, tSetup is the time to run Setup, tDecap is the
time to run Decap and tKeyDer is the time to run KeyDer.

The theorem and proof are straightforward generalisations to the WIBE case of
those in [11]. The proof is given in the full version of the paper. Intuitively, the
construction is secure as the KEM generates a one time symmetric key K, which
“looks” random to the adversary, (i.e. is computationally indistinguishable from
random) and this is enough for the DEM to be secure.



282 J. Birkett et al.

4 A Generic Construction in the Random Oracle Model

One approach to building systems secure against adaptive chosen ciphertext
attacks is to first construct a primitive that is secure against passive attacks,
and use some generic transformation to produce a system secure against the
stronger adaptive attacks. We will apply a method proposed by Dent in [12]
which converts an OW-CPA secure probabilistic encryption scheme into an IND-
CCA KEM. We will use the same idea to convert an OW-WID-CPA secure WIBE
scheme into an IND-WID-CCA secure WIB-KEM. Suppose we have an OW-
WID-CPA secure probabilistic WIBE scheme WIBE = (Setup, KeyDer, Encrypt,
Decrypt) with message space M. We will write Encrypt(mpk , P ∗, m; r) to mean
running the encryption algorithm with inputs (mpk , P ∗, m) using a ρ-bit string
of randomness r. We require that for all master keys mpk generated by Setup,
all patterns P , all messages m ∈ M and all ciphertexts C:

Pr
[
Encrypt(mpk , P, m; r) = C : r

$← {0, 1}ρ
]

≤ γ

where γ is a parameter of the scheme.
The only difficulty in applying the method of Dent [12] is that we must re-

encrypt the recovered message as an integrity check. In the WIBE setting, this
means we must know the pattern under which the message was originally en-
crypted. We assume that the set W = {i ∈ Z : Pi = ∗} is easily derived from the
ciphertext. This is certainly possible with the Waters and BBG based WIBEs
presented in [1]. If a scheme does not already have this property, it could be
modified so that the set W is included explicitly as a ciphertext component.
W can then be used to give an algorithm P, which on input (ID, C), where
C is a ciphertext and ID = (ID1, . . . , IDl) is an identity, returns the pattern
P = (P1, . . . , Pl) given by Pi = ∗ for i ∈ W(C) and Pi = IDi otherwise.

We will use WIBE to construct an IND-WID-CCA secure WIB-KEM

WIB-KEM = (Setup, KeyDer, Encap, Decap)

using two hash functions H1 : {0, 1}∗ × ({0, 1}n ∪ {∗}) → {0, 1}ρ and H2 :
{0, 1}∗ → {0, 1}λ, where λ is the length of keys output by the WIB-KEM. The
algorithms of the WIB-KEM are given by:

– Setup and KeyDer are exactly as in WIBE .
– Encap(mpk , P ): Choose a random message m

$← M. Compute r ← H1(m, P ),
K ← H2(m) and compute C ← Encrypt(mpk , P, m; r). Return (K, C)

– Decap(dID, C): Compute m ← Decrypt(dID, C). If m = ⊥, return ⊥. Com-
pute r ← H1(m, P(ID, C)) and check that C =Encrypt(mpk , P(ID, C), m; r).
If so, return K ← H2(m); otherwise return ⊥.

Theorem 6. Suppose there is a (t, qK , qD, qH , ε) adversary A against the IND-
WID-CCA security of the WIB-KEM in the random oracle model. Then there
is a (t′, qK , ε′) adversary B against the OW-WID-CPA security of the WIBE,
where:



Efficient Identity-Based Encryption with Wildcards 283

ε′ ≥ (ε − qD

( 1
|M| + γ

)
)/(qD + qH)

t′ ≤ t + qHtH + qDqHtEnc

where tEnc is the time taken to do an encryption, and tH is the time needed to
look up a hash value in a list.

This proof of this theorem is a straightforward generalisation of the result of
Dent [12]. The proof is given in the full version of the paper.

5 A Direct Construction without Random Oracles

5.1 The Kiltz-Galindo HIB-KEM

We present a construction for a WIB-KEM based on the Kiltz-Galindo HIB-
KEM [15]. This construction is based on the Waters HIBE [20] and belongs to the
Boneh-Boyen family of identity-based encryption schemes [6]. Before presenting
our construction, we briefly recall the definitions for bilinear maps and second-
preimage resistant hash functions:

Definition 7 (Bilinear map). Let G = 〈g〉 and GT be multiplicative groups of
prime order p. We say that e : G × G → GT is an admissible bilinear map if the
following hold true:

– For all a, b ∈ Zp we have e(ga, gb) = e(g, g)ab.
– e(g, g) is not the identity element of GT.
– e is efficiently computable.

Definition 8 (BDDH problem). We say that the BDDH problem in G is
(t, ε)-hard if

∣
∣
∣Pr

[
A(ga, gb, gc, e(g, g)abc) = 1 : a, b, c

$← Zp

]

− Pr
[

A(ga, gb, gc, e(g, g)d) = 1 : a, b, c, d
$← Zp

] ∣
∣
∣ ≤ ε

for any algorithm A running in time at most t.

Definition 9 (Second-preimage resistant hash function). A family
F{k∈K} : G → Zp of hash functions with key space K is called (t, ε) second-
preimage resistant if all time t algorithms A have advantage at most ε, where
the advantage of A is defined by:

Pr[x �= y ∧ Fk(x) = Fk(y) : x
$← G; k $← K; y ← A(k, x)] .

In principle, a key k for the hash function should be included as part of the
public parameters, but to simplify the description of the scheme, we will treat
the family of hash functions as if it were a fixed function.



284 J. Birkett et al.

We recall the Kiltz-Galindo HIB-KEM [15] in Figure 3. Note that the identities
at each level are assumed to be n bits long i.e., IDi ∈ {0, 1}n, and we set

[IDi] = {1 ≤ j ≤ n : the jth bit of IDi is one} .

We assume the function h1 : G → Z
∗
p is a second-preimage resistant hash func-

tion. The security of the Kiltz-Galindo scheme rests on the bilinear decisional
Diffie-Hellman (BDDH) problem. Kiltz and Galindo proved the following secu-
rity result of their scheme.

Theorem 10. If there exists a (t, qK, qD, ε) attacker for the Kiltz-Galindo HIB-
KEM in the IND-HID-CCA model, then there exists a (t′, ε′) algorithm which
solves the BDDH problem in G and a (th, εh) attacker against the second pre-
image resistance property of h1 such that t′ ≤ t + O(ε−2 · ln(ε−1)), th ≤ O(t)
and

ε′ ≥ ε − εh

(10(n + 1)q)L
− q/p ,

where q = qK + qD and p is the order of G.

Algorithm Setup:

v1, v2, v3, α
$← G ; z ← e(g,α)

ui,j
$← G for i = 1 . . . L, j = 0 . . . n

mpk ← (v1, v2, v3, u1,0, . . . , uL,n, z)
msk ← α
Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,IDl), IDl+1):
Parse d(ID1,...,IDl) as (d0, . . . , dl)

sl+1
$← Z

∗
p ; d′

l+1 ← gsl+1

d′
0 ← d0 ·

(
ul+1,0

∏
j∈IDl+1

ul+1,j

)sl+1

Return (d′
0, d1, . . . , dl, d

′
l+1)

Algorithm Encap(mpk , ID):
Parse ID as (ID1, . . . , IDl)

r
$← Z

∗
p ; C0 ← gr ; t ← h1(C0)

For i = 1 . . . l do

Ci ←
(
ui,0

∏
j∈[IDi]

ui,j

)r

Cl+1 ← (vt
1v

l
2v3)

r

K ← zr

Return (K, (C0, . . . , Cl+1))

Algorithm Decap(d(ID1,...,IDl), C):
Parse d(ID1,...,IDl) as (d0, . . . , dl)
Parse C as (C0, . . . , Cl+1)
t ← h1(C0)

If any of (g, C0, vt
1v

l
2v3, Cl+1)

or (g, C0, ui,0
∏

j∈[IDi]
ui,j , Ci),

for i = 1 . . . l is not a DH tuple
then K ←⊥
else K ← e(C0, d0)/

∏l
i=1 e(Ci, di)

Return K

Fig. 3. The Kiltz-Galindo HIB-KEM scheme

Note that the Kiltz-Galindo scheme generates keys which are elements of the
group GT, and we will follow this practise in our construction of the WIB-KEM.
However, our definition of a WIB-KEM requires that the keys it generates are
bitstrings. This discrepancy can be overcome by hashing the group element used
as the key using a smooth hash function. A hash function h : GT → {0, 1}λ is
ε-smooth if for all K ∈ {0, 1}λ and for all z ∈ G

∗
T, the probability

Pr[h(zr) = K : r
$← Zp] = 1/2λ + ε .



Efficient Identity-Based Encryption with Wildcards 285

5.2 The Kiltz-Galindo WIB-KEM

We attempt to build a WIB-KEM using a similar approach to that of Kiltz-
Galindo [15] using the techniques of Abdalla et al. [1]. A naive implementation
might try to construct an encapsulation algorithm as follows:

– Encap(mpk , P ) : Parse the pattern P as (P1, . . . , Pl) ∈ ({0, 1}n ∪ {*})l. Pick
r

$← Z
∗
p, set C0 ← gr, and for 1 ≤ i ≤ l compute Ci as

Ci ←
{(

ui,0
∏

j∈[Pi] ui,j

)r if Pi �= *
(
ur

i,0, . . . , u
r
i,n

)
if Pi = * .

Finally, compute t ← h1(C0), and Cl+1 ← (vt
1v

l
2v3)r.

The ciphertext C = (C0, . . . , Cl+1) is the encapsulation of key K = zr.

However, such an implementation would be insecure in the IND-WID-CCA
model. An attacker could output a challenge pattern P ∗ = (∗) and would receive a
key K and an encapsulation (C0, C1, C2) where C0 = gr∗

and C1 = (ur∗

0 , . . . , ur∗

n ).
It would be simple for the attacker then to construct a valid encapsulation of the
same key for a particular identity ID by setting C′1 ← ur∗

0
∏

j∈[ID] u
r∗

i . Thus, sub-
mitting the identity ID and the ciphertext (C0, C

′
1, C2) to the decryption oracle

will return the correct decapsulation of the challenge.
This attack demonstrates the importance of knowing the location of the wild-

cards that were used to create an encapsulation. We solve this problem by in-
creasing the scope of the hash function h1. In the original proof of security, the
hash function prevents an attacker from submitting a valid ciphertext C to the
decapsulation oracle where C has the same decapsulation as C∗ but C0 �= C∗0 .
We extend this to prevent an attacker from submitting a valid ciphertext C to
the decapsulation oracle where C has the same decapsulation but either C0 �= C∗0
or C and C∗ have wildcards in different positions. To do this we make use of a
function h2, which on input of a pattern P = (P1, . . . , Pl), returns a bitstring
b1b2 . . . bl, where bi = 1 if Pi is a wildcard, otherwise bi = 0. Note that two pat-
terns P1, P2 have wildcards in the same location if and only if h2(P1) = h2(P2).

However, since an attacker can submit ciphertexts to the decapsulation oracle
with patterns of his own choice, the increased scope of the hash function means
that we have to rely on a slightly stronger assumption than standard second-
preimage resistance. Informally, we will require the hash function to be second-
preimage resistant, even when the attacker is allowed to choose the first L bits
(corresponding to h2(P )) of the challenge input for which he tries to find a
collision. We formally define this property as follows:

Definition 11 (Extended second-preimage resistant hash function). A
family F{k∈K} : {0, 1}≤L × G → Zp of hash functions with key space K is called
(t, ε) extended second-preimage resistant if all time t algorithms A have advan-
tage at most ε, where the advantage of A is defined by

Pr[(lx, x) �= (ly, y) ∧ Fk(lx, x) = Fk(ly, y) : x
$← G; k $← K; (lx, ly, y) ← A(k, x)] .



286 J. Birkett et al.

As in the description of the Kiltz-Galindo HIB-KEM, we will treat the family of
hash functions as a fixed function to simplify the description of our scheme.

– Setup : Pick random elements v1, v2, α
$← G and compute z ← e(α, g) where

g is the generator of G. Furthermore, pick elements ui,j
$← G for 1 ≤ i ≤ L

and 0 ≤ j ≤ n. The master public key is mpk = (v1, v2, u1,0, . . . , uL,n, z) and
the master secret is msk = α.

– KeyDer(msk , ID1) : Pick s1
$← Zp. Compute d0 ← α(u1,0

∏
j∈[ID1] u1,j)s1

and d1 ← gs1 . The private key for ID1 is (d0, d1). This can be thought of
as an example of the next algorithm where the decryption key for the null
identity is d0 ← α.

– KeyDer(dID, IDl+1) : Parse the private key dID for ID = (ID1, . . . , IDl) as
(d0, . . . , dl). Pick sl+1

$← Zp and compute d′l+1 ← gsl+1 . Lastly, compute

d′0 ← d0 ·
(
ul+1,0

∏
j∈[IDl+1] ul+1,j

)sl+1

.

The private key for ID′=(ID1, . . . , IDl, IDl+1) is dID′ =(d′0, d1, . . . , dl, d
′
l+1).

– Encap(mpk , P ) : Parse the pattern P as (P1, . . . , Pl) ∈ ({0, 1}n ∪ {*})l. Pick
r

$← Z
∗
p, set C0 ← gr, and for 1 ≤ i ≤ l compute Ci as

Ci ←
{(

ui,0
∏

j∈[Pi] ui,j

)r if Pi �= *
(
ur

i,0, . . . , u
r
i,n

)
if Pi = * .

If Pi = * we will use the notation Ci,j to mean the jth component of Ci

i.e. ur
i,j . Finally, compute t ← h1(h2(P ), C0), and Cl+1 ← (vt

1v2)r. The
ciphertext C = (C0, . . . , Cl+1) is the encapsulation of key K = zr.

– Decap(dID, C) : Parse dID as (d0, . . . , dl′) and C as (C0, . . . , Cl+1). First
compute t ← h1(h2(P ), C0) where P is the pattern under which C was
encrypted. Note that h2(P ) is implicitly given by C, even though P is not.
Test whether

(g , C0 , vt
1v2 , Cl+1)

(g , C0 , ui,0
∏

j∈[IDi] ui,j , Ci) for 1 ≤ i ≤ l, Pi �= *

(g , C0 , ui,j , Ci,j) for 1 ≤ i ≤ l, Pi = *, 0 ≤ j ≤ n

are all Diffie-Hellman tuples. If not, return ⊥. Rather than doing this test
in the naive way by performing two pairing computations for each tuple,
they can be aggregated in a single test as follows. Choose random exponents
r

$← Zp, ri
$← Zp for Pi �= * and ri,j

$← Zp for Pi = *, 0 ≤ j ≤ n, compute

A ← (vt
1v2)r ·

∏

Pi �=*

(
ui,0

∏
j∈[IDi]ui,j

)ri ·
∏

Pi=*

n∏

j=0

u
ri,j

i,j

B ← Cr
l+1 ·

∏

Pi �=*

Cri

i ·
∏

Pi=*

n∏

j=0

C
ri,j

i,j



Efficient Identity-Based Encryption with Wildcards 287

and check whether e(g, B) = e(C0, A). If one or more of the tuples are not
Diffie-Hellman tuples, this test fails with probability 1 − 1/p. If it succeeds,
decapsulate the key by first setting

C′i ←
{

Ci if Pi �= *
Ci,0

∏
j∈[IDi] Ci,j if Pi = *

for 1 ≤ i ≤ l′

and then computing K ← e(C0, d0)/
∏l′

i=1 e(C′i, di).

Soundness. Given a correctly formed encapsulation C = (C0, . . . , Cl+1) of a
key K = zr for a pattern P , it can be verified that decapsulation of C with a
private key dID = (d0, . . . , dl′ ) for ID ∈∗ P yields the correct key since

e(C0, d0)
∏l′

i=1 e(C′i, di)
=

e
(
gr, α

∏l′

i=1

(
ui,0

∏
j∈[IDi] ui,j

)si
)

∏l′

i=1 e
((

ui,0
∏

j∈[IDi] ui,j

)r
, gsi

)

=
e(gr, α)

∏l′

i=1 e
(
gr,

(
ui,0

∏
j∈[IDi] ui,j

)si
)

∏l′

i=1 e
((

ui,0
∏

j∈[IDi] ui,j

)r
, gsi

)

= e(g, α)r

= zr .

Thus the scheme is sound.

Theorem 12. If there exists a (t, qK, qD, ε) attacker for the Kiltz-Galindo WIB-
KEM in the IND-WID-CCA model, then there exists a (t′, ε′) algorithm which
solves the BDDH problem in G and a (th, εh) attacker against the extended second
pre-image resistance property of h1 such that t′ ≤ t+O(ε−2 · ln(ε−1)), th ≤ O(t)
and

ε′ ≥ ε − εh − qD/p

L(20(n + 1)qK)L
,

where p is the order of G.

The proof is given in Appendix A.
Note that, as is the case for all known HIBE and WIBE schemes, the security

of our WIB-KEM degrades exponentially with the maximal hierarchy depth L.
The scheme can therefore only be used for relatively small (logarithmic) values
of L. We leave the construction of a WIB-KEM with polynomial efficiency and
security in all parameters as an open problem. Any solution to this problem
would directly imply a WIBE and a HIBE scheme with polynomial security as
well, the latter of which has been an open problem for quite a while now.

We also note that the security proof for our construction can be completed,
even if the used hash function is only assumed to be standard second-preimage
resistant. However, this will add an additional security loss of L2L with respect
to the hash function. Considering that security already degrades exponentially
with L, this will not be a significant addition to the existing security loss and
might be preferred instead of introducing a stronger assumption about the hash
function.



288 J. Birkett et al.

6 Conclusion

We have proposed new chosen-ciphertext secure instantiations of WIBE schemes
that improve on the existing schemes in both efficiency and security. To this
end, we extended the KEM–DEM framework to the case of WIBE schemes. We
proposed a generic construction in the random oracle model that transforms
any one-way secure WIBE into a chosen-ciphertext secure WIB-KEM. We also
proposed a direct construction of a WIB-KEM that is secure in the standard
model. Our schemes overall gain at least a factor two in efficiency, especially when
taking into account (as one should) the loose security bounds of all previously
existing constructions.

Acknowledgements

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The information in this document reflects only the authors’ views,
is provided as is and no guarantee or warranty is given that the information is
fit for any particular purpose. The user thereof uses the information at its sole
risk and liability. The first author was also funded in part by the EPSRC. The
third author is a Postdoctoral Fellow of the Research Foundation – Flanders
(FWO), and was supported in part by the Concerted Research Action (GOA)
Ambiorics 2005/11 of the Flemish Government and by the IAP Programme
P6/26 BCRYPT of the Belgian State (Belgian Science Policy).

References

1. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 93, pp. 62–73. ACM Press, New York (1993)

3. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions
of identity-based and certificateless KEMs. Cryptology ePrint Archive, Report
2005/058, (2005) http://eprint.iacr.org/

4. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme
which hides all partial information. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 289–299. Springer, Heidelberg (1985)

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

6. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

http://eprint.iacr.org/


Efficient Identity-Based Encryption with Wildcards 289

7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

8. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

9. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

10. Cocks, C.: An identity based encryption scheme based on quadratic residues.
In: Honary, B. (ed.) Cryptography and Coding. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

11. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal of Com-
puting 33, 167–226 (2004)

12. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptography
and Coding. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003)

13. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

14. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP
2006. LNCS, vol. 4058, pp. 336–347. Springer, Heidelberg (2006)

15. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracles. Unpublished manuscript (2007)

16. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

17. Sarkar, P., Chatterjee, S.: Transforming a CPA-secure HIBE protocol into a CCA-
secure HIBE protocol without loss of security. Cryptology ePrint Archive, Report
2006/362 (2006) http://eprint.iacr.org/

18. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Proc.
of SCIS 2000, Okinawa, Japan (January 2000)

19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, Springer, Heidelberg (1985)

20. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidel-
berg (2005)

A Proof of security for Kiltz-Galindo WIB-KEM

Proof (Sketch). We combine the ideas of Abdalla et al. [1] and Kiltz-Galindo [15].
We will assume that starred variables correspond to the challenge ciphertext. For
example, P ∗ is the challenge pattern. Consider a polynomial-time attacker A.
We begin the proof by changing the conditions in which A is said to win the
game so that A wins the game if b = b′ and it never submitted a ciphertext C
to the decapsulation oracle with t = t∗. Since t = h1(h2(P ), C0) and the pair
(C0, P ) uniquely defines the entire ciphertext, this collision can only occur if A

http://eprint.iacr.org/


290 J. Birkett et al.

submits the ciphertext C∗ to the decapsulation oracle before the challenge phase
(which can occur with probability at most qD/p since r is chosen at random) or
if there is an extended second pre-image collision in the hash function (which
occurs with probability at most εh).

We now show that we can reduce the security of the scheme in this game to the
DBDH problem. We begin by guessing the length of the challenge pattern and
the position of the wildcards within the pattern. We guess this correctly with
probability at least 1/(L2L) and we abort if the attacker outputs a challenge
pattern that differs from our guess or if the attacker makes an oracle query in
the first stage that implies that our guess is incorrect. Let W ⊆ {1, 2, . . . , L} be
the set of integers corresponding to the levels at which the wildcards appear in
the challenge pattern.

The basic principle of the proof is to handle levels i /∈ W in exactly the same
way as in the Kiltz-Galindo proof and to handle levels i ∈ W in a naive way. We
may extract private keys for identities in the same way as in the Waters HIBE.
If we guess the position of the wildcards in the challenge pattern correctly, then
this will mean we can extract private keys for all valid queries made by the
attacker.

Note that since we have guessed the length and the location of the wildcards
in the challenge pattern, we may immediately compute h2(P ∗) even though we
do not know the value of P ∗.

Setup. Our simulator takes as input a BDDH instance (ga, gb, gc, Z). We will
use gc as C∗0 in the challenge ciphertext. Hence, we can immediately compute
t∗ ← h1(h2(P ∗), C∗0 ). We use this to construct the public parameters for the
encryption scheme as follows:

v1 ← ga d
$← Zp v2 ← (ga)−t∗

gd z ← e(ga, gb) m ← 2q

Note that this implicitly defines α = gab. For each level i /∈ W we compute

ki ← {1, . . . , n} xi,0, xi,1, . . . , xi,n
$← Zp yi,0, yi,1, . . . , yi,n

$← {0, . . . , m − 1}
ui,0 ← gxi,0v

yi,0−km
1 ui,j ← gxi,j v

yi,j

1 for 1 ≤ j ≤ n

For each level i ∈ W we compute

xi,0, xi,1, . . . , xi,n
$← Zp ui,j ← gxi,j for 0 ≤ j ≤ n

We define the functions

Fi(IDi) ← −mki + yi,0 +
∑

j∈[IDi]

yi,j

Ji(IDi) ← xi,0 +
∑

j∈[IDi]

xi,j

Ki(IDi) ←
{

0 if yi,0 +
∑

j∈[IDi] yi,j ≡ 0 mod m

1 otherwise



Efficient Identity-Based Encryption with Wildcards 291

Note that Fi(IDi) ≡ 0 mod q if and only if Fi(IDi) = 0, and so we have
that Fi(IDi) ≡ 0 mod q implies Ki(IDi) = 0. Therefore, if Ki(IDi) = 1 then
Fi(IDi) can be inverted modulo q.

Key extraction oracle queries. Suppose an attacker makes a key extraction
oracle query on the identity ID = (ID1, . . . , IDl). If this query is legal, then
ID /∈∗ P ∗, which means that there must exists an integer i′ such that IDi′ �=
Pi′ �= ∗. We demand that Ki′(IDi′ ) = 1. This will occur with probability at least
1−1/m. To extract the private key for ID we randomly choose r1, r2, . . . , rl

$← Zp

and compute

d0 ← v
− J

i′ (ID
i′ )

F
i′ (ID

i′ )

1
∏l

i=1(ui,0
∏

j∈[IDi] ui,j)ri

di′ ← v
− 1

F
i′ (ID

i′ )
1 gri′ di ← gri for all i �= i′ .

A simple computation can verify that (d0, . . . , dl) is a valid private key for ID.
The probability that such a private key can be computed for every key extraction
oracle query is at least (1 − 1/m)qK ≥ 1 − qK/m. At this stage, the probability
that the key extraction simulator fails may not be independent of the value of
the message; hence, we use artificial aborts to ensure that we abort with the
same probability regardless of the message value. By answering key extraction
oracle queries in this way, we fail to accurately simulate the key extraction oracle
with probability at most qK/m.

Decryption oracle queries. Suppose an attacker makes a decryption oracle
query for a ciphertext C = (C0, . . . , Cl+1) and an identity ID = (ID1, . . . , IDl).
We first check that the ciphertext is consistent, i.e. that

(g , C0 , vt
1v2 , Cl+1)

(g , C0 , ui,0
∏

j∈[IDi] ui,j , Ci) for 1 ≤ i ≤ l, Pi �= *

(g , C0 , ui,j , Ci,j) for 1 ≤ i ≤ l, Pi = *, 0 ≤ j ≤ n

are all Diffie-Hellman tuples, where t = h1(h2(P ), C0) and P is the pattern under
which the ciphertext was encrypted. If these tests fail, then the decryption oracle
(correctly) outputs ⊥. If the tests succeed and t �= t∗ then we may decrypt the
ciphertext by computing K ← e

(
Cl+1/Cd

0 , gb
)1/(t−t∗).

The challenge ciphertext. We assume that we correctly guessed the location
of the wildcards in the challenge pattern P ∗ = (P ∗1 , . . . , P ∗l ). For every i /∈ W
we require that Fi(IDi) = 0. This will occur with probability at least 1/(nm)L

(as we require Ki(IDi) = 0 and the correct value ki to have been chosen). The
challenge ciphertext is then built as follows. We set

K∗ ← Z C∗0 ← gc C∗l+1 ← (gc)d .

For each i /∈ W , we set
C∗i ← (gc)Ji(IDi) .



292 J. Birkett et al.

For each i ∈ W , we set

C∗i,j ← (gc)xi,j for all 1 ≤ j ≤ n .

It is clear to see that if the attacker can distinguish a valid key K from a randomly
generated key K, then they will have distinguished a random value Z from the
value Z = e(g, g)abc. Hence, providing our simulation is correct, the simulator
solves the BDDH problem whenever the attacker breaks the WIB-KEM. ��



Combining Prediction Hashing and MDS Codes for
Efficient Multicast Stream Authentication

Christophe Tartary1 and Huaxiong Wang1,2

1 Centre for Advanced Computing, Algorithms and Cryptography
Department of Computing

Macquarie University
NSW 2109 Australia

2 Division of Mathematical Sciences
School of Physical and Mathematical Sciences

Nanyang Technological University
Singapore

ctartary@ics.mq.edu.au,
HXWang@ntu.edu.sg

Abstract. We study the multicast stream authentication problem when the com-
munication channel is under control of an opponent who can drop, reorder and
inject data packets. In this work, we consider that the stream to be authenticated
is divided into block of n packets and we assume that the sender can memorize
λ such blocks. Two important parameters for stream authentication protocols are
packet overhead and computing efficiency. Our construction will exhibit the fol-
lowing advantages. First, our packet overhead will be a few hashes long. Second,
the number of signature verifications per family of λ blocks will be O(1) as a
function of both λ and n. Third, hash chains will enable the receiver to check
the validity of received elements upon reception. As a consequence he will only
buffer those consistent with the original data packets. Fourth, the receiver will
be able to recover all the data packets emitted by the sender despite erasures and
injections by running the decoding algorithm of the maximal distance separable
code onto the elements which have passed the previous filtering process.

Keywords: Stream Authentication, Polynomial Reconstruction, Adversarial Net-
work, Erasure Codes, Prediction Hashing, Hash Chains.

1 Introduction

Multicast communication enables a single sender to distribute digital content to a large
audience via a public channel such as the Internet. It has applications in sensor net-
works, pay-TV, air traffic control, stock quotes and military defense systems for in-
stance. Nevertheless large-scale broadcasts prevent lost content from being redistributed
since the lost of any piece of data could generate a prohibitive number of redistribution
requests at the sender. Furthermore, the channel can be under the control of adver-
saries performing malicious actions on the data stream1. Thus the security of multicast

1 In broadcasting, the sequence of information sent into the network is called stream.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 293–307, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



294 C. Tartary and H. Wang

protocols relies on two aspects: the opponents’ computational powers and the network
properties. Several unconditionally secure schemes were designed in [3, 9, 38]. Unfortu-
nately their optimal security is at the cost of a large storage requirement or a single-time
use which makes these constructions unsuitable for practical applications. In this paper,
we will assume that the adversaries have bounded computational powers.

In recent years, many protocols were designed to deal with the multicast authenti-
cation problem [4]. An application such as a TV channel broadcasting 24 hours a day
implies that the size of the stream can be infinite. On the other hand, the receivers must
be able to authenticate data within a short period of delay upon reception. Since many
protocols will distribute private or sensitive content, non-repudiation of the sender is
required for most of them as using data from an incorrect origin can have disastrous
consequences during military operations for instance. As a consequence, schemes like
TESLA [31, 33] and its variations [20, 21, 32, 44] are not suitable since data authen-
ticity is guaranteed using message authentication codes whose keys are disclosed after
some period of time. Notice that the assumptions made by Perrig et al. to guarantee the
security of TESLA were proved to be insufficient by Jakimoski [16]. Thus, construc-
tions for multicast distribution rely on digital signatures to provide non-repudiation.
Nevertheless signing each data packet2 is not a practical solution as digital signatures
are generally too expensive to generate and/or verify. In addition, bandwidth limitations
prevent one-time and k-time signatures [12, 37] from being used due to their size. That
is why a general approach consists of generating a single signature and amortizing its
computational cost and overhead over several data packets using hash functions for in-
stance.

In order to deal with erasures, Perrig et al. [31, 33], Challal et al. [5], Golle and
Modadugu [13] and Miner and Staddon [26] appended the hash of each packet to sev-
eral followers according to specific patterns. In these papers, packet loss was modeled
by k-state Markov chains [11] and bounds on the packet authentication probability were
computed. Nevertheless the drawback of these schemes is that they rely on the reception
of signed packets which cannot be guaranteed over networks such as the Internet since
they only provide a best effort delivery. This problem restricts the range of applications
for the previous protocols.

An approach to overcome this problem is to split the signature into k smaller parts
where only � of them (� < k) are sufficient for recovery. Different techniques were
employed to obtain the dispersion of the signature: Perrig et al. [28, 29] and Park and
Cho [30] used the Information Dispersal Algorithm [35], Al-Ibrahim and Pieprzyk [1]
combined linear equations and polynomial interpolation whereas Pannetrat and Molva
[27] utilized erasure codes. Unfortunately none of these constructions tolerates a single
packet injection which is a major drawback since it is unlikely to have only reliable
network nodes between the sender and each receiver if you consider, in particular, the
Internet.

In 2003, Lysyanskaya et al. [22] used Reed-Solomon codes [36] to design a protocol
resistant to packet loss and data injections. Their augmented packets3 are O(1) bits long

2 Since the data stream is large, it is divided into fixed-size chunks called packets.
3 We call augmented packets the elements sent into the network. They generally consist of the

original data packets with some redundancy used to prove the authenticity of the element.



Combining Prediction Hashing and MDS Codes 295

while the number of signature verifications per block4 turns out to be O(1) as functions
of the block length n. In 2004, Karlof et al. designed a scheme called PRABS [17] com-
bining an erasure code (to recover lost content) and a one-way accumulator [2] based on
a Merkle hash tree [25] (to deal with injections). This approach is similar to Wong and
Lam’s scheme [45] but the number of signature verifications for PRABS is O(1) even
in the worst case. The bound on the number of signature verifications for PRABS is
much smaller than in [22] (see [42]) but this is at the expense of having Θ(log2(n))-bit
augmented packets since each of them has to carry �log2(n)� hashes.

In order to reduce this overhead, Di Pietro et al. proposed a modified distribution
of hashes so that the Merkle hash tree can still be reconstructed [10]. Another bene-
fit of their scheme is to decrease the number of decoding operations to be performed
at the receiver. Nevertheless this approach has two drawbacks. First, some augmented
packets still carry �log2(n)� hashes while others only have a few digests. This results
in important variations in packet sizes leading to irregular throughput of information in
the channel and can cause data congestion in the network. Second, the number of sig-
nature verifications to be performed by the receiver is equal to the number of injections
in the worst case which creates a potential weakness against Denial-of-Service (DoS)
attacks. In [6], Choi used PRABS as a subroutine to ensure the security of his predic-
tion hashing-based construction. Nevertheless this scheme exhibits the same logarith-
mic overhead as PRABS. Recently, Tartary and Wang proposed a construction based
on [22] and Maximal Distance Separable (MDS) codes [23] (denoted TWMDS in this
paper) which is resistant against packet loss and data injections and requires O(1) sig-
nature verifications like PRABS but only has a O(1)-bit packet overhead and allows
recovery of all data packets [42].

As the number of signature verifications for TWMDS is higher than PRABS (see Ta-
ble 2), we propose a multiple block construction similar to the approach by Tartary and
Wang [41] (denoted TWMB in this article). As TWMB, we will generate a single signa-
ture per family of λ blocks where each of them consists of n packets. The receivers will
still be able to authenticate data per block and it is possible to join the communication
group at any block boundary as in [41]. The number of signature verifications per family
of λ block will be identical to the number of verifications for a single block of TWMDS.
As for TWMDS, we will use MDS codes to provide full recovery of data packets. The
security of schemes in [22, 41, 42] relies on the use of a polynomial time algorithm
by Guruswami and Sudan called Poly-Reconstruct [15]. The idea of prediction hashing
(PH) is that each block of n packets conveys information which will be used to au-
thenticate (or predict) the following block of packets. Using PH, our construction will
enable to filter elements upon reception and thus the receiver will exclusively buffer
elements consistent with the original data stream. The first advantage is that memory is
not wasted by storing irrelevant pieces of data contrary to [6, 17, 22, 41, 42]. The sec-
ond benefit is that the previous filtering process will also reduce the number of queries
to Poly-Reconstruct to 2 per family of λ blocks which will speed up the authentication
process at the receiver considerably. The authenticated packets of our construction will
still be O(1) bits long as for TWMB and TWMDS.

4 In order to be processed, packets are gathered into fixed-size sets called blocks.



296 C. Tartary and H. Wang

This paper is organized as follows. In the next section, we will present our network
model as well as an algorithm from [42] to be used as a subroutine in our construction.
In Sect. 3 we will describe our authentication scheme. Its security and recovery property
will be studied in Sect. 4. In Sect. 5, we will compare our scheme to PRABS, TWMB
and TWMDS as our work can be seen as their extension. Finally we will summarize
our contribution to the multicast authentication problem.

2 Preliminaries

In this section, we introduce the assumptions and constructions to be used as subrou-
tines for our scheme. First, we present our network model. Second, we justify our choice
of erasure codes. Finally we recall a modified version of the algorithm Poly-Reconstruct
by Guruswami and Sudan since it will play a key role to deal with packet injections as
in [22, 41, 42].

Network Model. We consider that the communication channel is unsecured. This
means that it is under the control of an opponent O who can drop and rearrange packets
of his choice as well as inject bogus data into the network [24]. Our area of investigation
is the multicast stream authentication problem. Thus we can assume that a reasonable
number of original augmented packets reaches the receivers and not too many incorrect
elements are injected by O. Indeed if too many original packets are dropped then data
transmission becomes the main problem to treat since the small number of received el-
ements would be probably useless even authenticated. On this other hand, if O injects a
large number of forged packets then the main problem to be solved becomes increasing
the resistance against DoS attacks. In order to build our signature amortization scheme,
we need to split the data stream into blocks of n packets: P1, . . . , Pn. We define two
parameters: α (0 < α ≤ 1) (the survival rate) and β (β ≥ 1) (the flood rate). It is
assumed that at least a fraction α and no more than a multiple β of the number of aug-
mented packets are received. This means that at least �αn� original augmented packets
are received amongst a total which does not exceed �βn� elements.

We would like to point out that we are not interested in the cases (α = 1) and
(β = 1). Indeed, in the first case, all original data packets are received. Thus we only
need to distinguish correct elements from bogus ones which can be achieved using
Wong and Lam’s technique [45]. In the second case, there are no packet injections
from O. Thus using an erasure code (see [8] as an example) is sufficient to recover
P1, . . . , Pn. Therefore in this work we will only study the case: 0 < α < 1 < β. No-
tice, however, that our construction also works when α = 1 and β = 1.

Code Construction. In this paper we consider linear codes. A linear code of length
N , dimension K and minimum distance D is denoted [N, K, D]. The Singleton bound
states that any [N, K, D] code satisfies: D − 1 ≤ N − K[23]. It is known that any
[N, K, D] code can correct up to D − 1 erasures [46]. Thus a [N, K, D] code cannot
correct more than N − K erasures. In order to maximize the efficiency of our con-
struction, we are interested in codes correcting exactly N − K erasures. These codes
are called Maximum Distance Separable (MDS) codes [23]. Even if the scheme we



Combining Prediction Hashing and MDS Codes 297

propose works with any MDS code, we suggest to use the construction by Lacan and
Fimes [18] for better practical efficiency (see [42] for details). Note that any linear code
can be represented by a generator matrix G. Encoding a message m (represented as a
row vector) means computing the corresponding codeword c as: c := m G [23].

Polynomial Reconstruction Algorithm. In [15], Guruswami and Sudan developed
an algorithm Poly-Reconstruct to solve the polynomial reconstruction problem. They
proved that if T points were given as input then their algorithm output the list of all
polynomials of degree at most K passing through at least N of the T points provided:
T >

√
KN . We will use the same modified version of Poly-Reconstruct as in [42]

where it was named MPR. Denote IF2q the field representing the coefficients of the
polynomial. Every element of IF2q can be represented as a polynomial of degree at
most q −1 over IF2 [19]. Operations in IF2q are performed modulo a polynomial Q(X)
of degree q which is irreducible over IF2.

MPR
Input: The maximal degree of the polynomial K , the minimal number of agreeable
points N , T points {(xi, yi), 1 ≤ i ≤ T } and the polynomial Q(X) of degree q.
1. If there are no more than

√
KN distinct points then the algorithm stops.

2. Using Q(X), run Poly-Reconstruct on the T points to get the list of all polynomials
of degree at most K over IF2q passing through at least N of the previous points.
3. Write the list {L1(X), . . . , Lμ(X)} and each element: Li(X) := Li,0 + . . . +
Li,KXK where ∀i ∈ {0, . . . , K}Li,j ∈ IF2q . Form the elements: Li :=Li,0‖ · · · ‖Li,K .
Output: {L1, . . . , Lμ}: list of candidates

Note that Poly-Reconstruct runs in time quadratic in N and outputs a list of size at
most quadratic in N as well (see Theorem 6.12 and Lemma 6.13 from [14]).

3 Our Construction

We need a collision resistant hash function h [34] and an unforgeable signature scheme
(SignSK,VerifyPK) [40] the key pair of which (SK,PK) is created by a generator KeyGen
as in [17, 22, 41, 42].

Scheme Overview. We have λ blocks of packets {Pi,1, . . . , Pi,n}i=1,...,λ.
In order to use PH, we proceed backwards. We encode the last block using the
[n, �α n�, n−�αn�+1] code into the codeword (Cλ,1, . . . , Cλ,n). Then we append the
hashes h(Cλ,1), . . . , h(Cλ,n) to the packets of block λ − 1 and encode the resulting n
elements into (Cλ−1,1, . . . , Cλ−1,n). We repeat this process to the first block of pack-
ets. We generate the family signature as in [41]. That is, we compute the λ block hashes
hi := h(h(Ci,1)‖ · · · ‖h(Ci,n)) and sign h(h1‖ · · · ‖hλ) into σ. We build the family
polynomial F(X) of degree at most ρ n (for some constant ρ) the coefficients of which
represent h1‖ · · · ‖hn‖σ. In order to allow new members to join the communication
group at block boundaries, we build λ block polynomials B1(X), . . . , Bλ(X) of degree



298 C. Tartary and H. Wang

at most ρ n such as the coefficients of each Bi(X) represent h(Ci,1)‖ · · · ‖h(Ci,n). The
augmented packets of the family of λ blocks are such as:

∀i ∈ {1, . . . , λ} ∀j ∈ {1, . . . , n} APi,j := FID‖i‖j‖Ci,j‖Bi(j)‖F(j)

where FID represents the position of the family P1,1, . . . , Pλ,n within the whole stream.

Upon reception of data for the ith block, the receiver adapts his reaction whether or not
he knows its digests.

– If the hashes are known (via PH) then he only needs to filter the received elements
and drop those which are inconsistent with those digests. Finally he corrects era-
sures using the MDS code to recover the n data packets {Pi,1, . . . , Pi,n} as well as
the n hashes corresponding to block i + 1 which updates the values for PH.

– If the hashes are unknown then he proceeds as in [41]. That is, he first checks
whether the family signature corresponding to data he obtained is valid by recon-
structing F(X). If so, he checks whether the block information is consistent with
the previous signature by reconstructing Bi(X). Then he sorts the received pieces
of data and drops those which are inconsistent with Bi(X). Finally he corrects era-
sures using the MDS code to recover the n data packets {Pi,1, . . . , Pi,n} as well as
the n hashes corresponding to block i + 1 which updates the values for PH.

Formal Scheme Construction. We assume that α and β are rational numbers so that we
can represent them over a finite number of bits using their numerator and denominator.
In order to run Poly-Reconstruct as a part of MPR, we have to choose ρ ∈ (0, α2

β ).

Remark that it is suggested in [42] to choose ρ = α2

2 β to get a small list returned by Poly-
Reconstruct. Notice that ρ has to be rational since ρn is an integer. We also consider that
the [n, �α n�, n − �α n� + 1] code is uniquely determined (i.e. its generator matrix G
is known) when n, α, β and ρ are known. Denote IF2q̃ the field of this MDS code. The
values of q, q̃ as well as the length of the different pads used by our scheme have been
omitted due to space limitations and can be found in the extended version of this paper.
Table 1 summarizes the scheme parameters which are assumed to be publicly known.

Table 1. Public parameters for our authentication scheme

n: Block length Q̃(X): Polynomial representing the field for the MDS code
λ: Family length P : bit size of data packets
α, β: Network rates G: Generating matrix of the MDS code
ρ: Ratio Q(X): Polynomial representing the field for polynomial interpolation

The hash function h as well as Verify and PK are also assumed to be publicly known.
We did not include them in Table 1 since they can be considered as general parameters.
For instance h can be SHA-256 while the digital signature is a 1024-bit RSA signature.
We denote H the digest bit length and s the bit length of a signature. Since h and the
digital signature are publicly known, so are H and s.



Combining Prediction Hashing and MDS Codes 299

Authenticator
Input: The family number FID, the secret key SK, the parameters of Table 1 and data
packets P1,1, . . . , Pλ,n.

/* Packet Encoding */

1. Parse Pλ,1‖ · · · ‖Pλ,n as Mλ,1‖ · · · ‖Mλ,�αn� after padding. Encode the message
(Mλ,1, . . . , Mλ,�α n�) into the codeword (Cλ,1, . . . , Cλ,n) using the MDS code.
2. For i from λ − 1 to 1 do

2.1. Compute the hashes h(Ci+1,j) for j ∈ {1, . . . , n} and append them to packets
of block i as: P̃i,j := Pi,j‖h(Ci+1,j)
2.2. Parse P̃i,1‖ · · · ‖P̃i,n as Mi,1‖ · · · ‖Mi,�αn� after padding. Encode the
message (Mi,1, . . . , Mi,�α n�) into the codeword (Ci,1, . . . , Ci,n) using the MDS
code.

/* Block Identification */

3. For i from 1 to λ do
3.1. Parse h(C1,1)‖ · · · ‖h(Ci,n) as bi,0‖ · · · ‖bi,ρ n where each bi ∈ IF2q after
padding and compute the block hash hi as hi := h(h(C1,1)‖ · · · ‖h(Ci,n)).
3.2. Construct the block polynomial Bi(X) := bi,0 + bi,1 X + · · · + bi,ρ n Xρ n and
evaluate it at the first n points5 of IF2q .

/* Signature Generation */

4. Write hf as hf := h1‖ · · · ‖hλ. Compute the family signature σ as
σ := SignSK(h(FID‖λ‖n‖α‖β‖ρ‖hf)). Parse hf‖σ as f0‖ · · · ‖fρ n where each
fi ∈ IF2q after padding.
5. Construct the family polynomial F(X) := f0 + f1 X + · · · + fρ n Xρ n and evaluate
it at the first n points of IF2q .

/* Construction of Augmented Packets */

6. Build the augmented packet APi,j as APi,j := FID‖i‖j‖Ci,j‖Bi(j)‖F(j) for
i ∈ {1, . . . λ} and for j ∈ {1, . . . , n}.
Output: The λn augmented packets {AP1,1, . . . , APλ,n} which are sent to the network
per block of n elements {APi,1, . . . , APi,n}i=1,...,λ.

In order to verify the correctness of the family signature, the receiver will use the same
algorithm VerifySignatureFamily as TWMD [41].

VerifySignatureFamily
Input: The family number FID, the public key PK, the elements of Table 1 and a set of
pairs of field elements {(xi, yi), 1 ≤ i ≤ m}.
1. Run MPR on {(xi, yi), 1 ≤ i ≤ m} to get a list L of candidates for the family signa-
ture verification. If MPR rejects this input then the algorithm stops.
2. While the signature has not been verified and the list L has not been exhausted,
pick a new candidate h̃1‖ · · · ‖h̃λ‖σ̃. If VerifyPK(h(FID‖λ‖n‖α‖β‖ρ‖h̃1‖ · · · ‖h̃λ), σ̃)

5 Any element of IF2q can be represented as λ0Y
0 + λ1Y1 + . . . + λq−1Y

q−1 where each λi

belongs to IF2. We define the first n elements as (0, . . . , 0) , (1, 0, . . . , 0) , (0, 1, 0, . . . , 0) ,
(1, 1, 0, . . . , 0) and so on until the binary decomposition of n − 1.



300 C. Tartary and H. Wang

= TRUE then σ̃ is considered as the authentic family signature σ and the h̃i’s are mem-
orized within the table HashBlock as the authentic block digests hi’s.

3. If the signature has not been verified then our algorithm stops.
Output: (σ, HashBlock): family signature and hashes of the λ blocks

Our scheme embeds the digests of the codeword related to block i+1 into block i. This
will enable each receiver to filter data in order to speed up the authentication scheme and
reduce the number of elements to be buffered. We now present FilterElements which
provides on-the-fly verification of received elements.

FilterElements
Input: The family number FID, the block number BID, the elements of Table 1, a table
HashCodeword and a flow of packets.
1. Set T (i) := 0 for i ∈ {1, . . . , n}, set C′ := (∅, . . . , ∅) and KnownHashes =
FALSE.

2. Upon reception of a new data packet do
2.1. Write it as FIDi‖BIDi‖ji‖C′BIDi,ji

‖BBIDi,ji‖FBIDi,ji . If FIDi = FID or
BIDi = BID or ji /∈ {1, . . . , n} or T (ji) = 1 then discard the packet.
2.2 If h(C′BID,ji

) = HashCodeword(ji) then set T (ji) = 1 and set the jth
i coordi-

nate of C′ to C′BID,ji
.

/* After Reception of all Packets for Values (FID, BID) */

3. If C′ has less than �α n� non-erased coordinates then the algorithm stops.
Else
3.1. Correct the erasures of C′ using the MDS decoding process and denote
(M ′

BID,1, . . . , M
′
BID,�α n�) the corresponding message.

3.2. Remove the pad from M ′
BID,1‖ · · · ‖M ′

BID,�α n� and write the resulting string as
{

P ′BID,1‖h′BID,1‖ · · · ‖P ′BID,n‖h′BID,n if BID = λ
P ′BID,1‖ · · · ‖P ′BID,n otherwise

3.3. If BID = λ then set HashCodeword(i) = h′BID,i for i ∈ {1, . . . , n} and set
KnownHashes = TRUE.

Output: The set of identified packets {P ′BID,1, . . . , P
′
BID,n}, the boolean value Known-

Hashes and HashCodeword containing the digests of the next block.

It should be noticed that the boolean value KnownHashes indicates if the table of
digests HashCodeword has been updated. This enables the receiver to switch between
buffering all incoming data elements and on-the-fly validation of data.

The reader may notice that we only verified the consistency of the substring
FIDi‖BIDi‖ji‖C′BIDi,ji

to our parameters FID, BID, n and HashCodeword. Since we
did not check any condition on BBIDi,ji‖FBIDi,ji , one may think that an opponent can
submit an incorrect element making our decoding process fail. We would like to em-
phasize that it is not the case. As just noticed, the elements going successfully through
this process are written as FID‖BID‖θ‖CBID,θ‖x‖y for some θ ∈ {1, . . . , n}. Never-
theless the substring x‖y does not play any role in our algorithm since we only use



Combining Prediction Hashing and MDS Codes 301

CBID,θ to recover the original data packets. Therefore even if x‖y is a bogus string (i.e.
x‖y = BBID(θ)‖F(θ)) then it has no influence whatsoever on the output of FilterEle-
ments which makes the attack by the adversary pointless.

The array T is used to dodge duplication attacks by an opponent who would submit
several strings FID‖BID‖θ‖CBID,θ‖x‖y (for different values of x‖y) in order to exhaust
the receiver computational power by recomputing h(CBID,θ) whereas the original coor-
dinate CBID,θ has already been recovered.

We now introduce DecoderBlock used for the first block of the family. Notice that
DecoderBlock is a modification of DecoderBlockε from [41].

DecoderBlock
Input: The family number FID, the block number BID, the elements of Table 1, a set of
received packets RP.

/* Signature Verification */

1. Write the packets as FIDi‖BIDi‖ji‖C′BIDi,ji
‖BBIDi,ji‖FBIDi,ji and discard those hav-

ing FIDi = FID, BIDi = BID or ji /∈ {1, . . . , n}. Denote m′ the number of remaining
packets. If m′ < �α n� or m′ > �β n� then the algorithm stops.
2. Run VerifySignatureFamily on the m′ remaining points {(ji, FBID,ji), 1 ≤ i ≤ m′}.
If it rejects the input then the algorithm stops.

/* Block Hashes Verification */

3. Run MPR on the set {(ji, BBID,ji), 1 ≤ i ≤ m′} and get a list L of candidates for
block tag verification. If MPR rejects that set then the algorithm stops.
4. While the hash for block BID has not been verified and the list L has not been ex-
hausted, we pick a new candidate c̃ := h̃1

BID‖ · · · ‖h̃n
BID. If (h(c̃) = HashBlock(BID))

then the tag of block BID is verified and we set hj
BID = h̃j

BID for j ∈ {1, . . . , n}. If L is
exhausted without a successful block tag verification then the algorithm stops.

/* Packet Decoding */

5. Set C′ := (∅, . . . , ∅) and KnownHashes := FALSE. For each of the m′ remaining
packets, FID‖BID‖ji‖C′BID,ji

‖BBID,ji‖FBID,ji , if h(C′BID,ji
) = ht

BID for some
t ∈ {1, . . . , n} then set the tth coordinate of C′ to C′BID,ji

.
6. Perform Step 3 of FilterElements to recover the data packets as well as the digests of
the next block to be stored into HashCodeword.
Output: The set of identified packets {P ′BID,1, . . . , P

′
BID,n}, the boolean value Known-

Hashes and HashCodeword containing the digests of the next block.

Finally we build our dynamic decoder run by the receivers to authenticate data. We
assume that the boolean value KnownHashes is set to FALSE when a receiver joins the
communication group and re-initialized to FALSE when the receiver processes the first
received block of a new family FID′ (> FID).

DynamicDecoder
Input: The family number FID, the block number BID, the public key PK, the elements
of Table 1, a boolean KnownHashes, a table HashCodeword and a set of received pack-
ets RP.



302 C. Tartary and H. Wang

If KnownHashes = FALSE then
Query DecoderBlock on input (PK, FID, BID, λ, n, α, β, ρ,Q(X), RP)

Else
Query FilterElements on input (FID, BID, λ, n, α, β, ρ, HashCodeword, RP)

Output: The set of identified packets {P ′BID,1, . . . , P
′
BID,n}, the updated boolean value

KnownHashes and the updated table HashCodeword as output of either DecoderBlock
or FilterElements.

Note that when DynamicDecoder stops then the whole content of block BID is lost.
Nevertheless the definitions of α and β ensure that this will never happen (see Theo-
rem 2). In a practical point of view, one can choose α small and β large enough so that
the real threat of the opponent is bounded by those values. Nevertheless inaccurate val-
ues, such as α = 10−10 and β = 1010 for instance, will lead to excessive overhead and
computation. So the values α and β set by the sender should accurately reflect the op-
ponent actual ability. Developing techniques allowing the determination of such values
are beyond the scope of this paper.

4 Security and Recovery Analysis

Security of the Scheme. We adopt the same security definition as in [41]. It can be seen
as an extension to the notion of "family of blocks" of the definitions from [22, 42]. The
definition is as follows:

Definition 1. (KeyGen,Authenticator,DynamicDecoder) is a secure and (α, β)-correct
multicast authentication scheme if no probabilistic polynomial-time opponent O can
win with a non-negligible probability to the following game:

i) A key pair (SK, PK) is generated by KeyGen
ii) O is given: (a) The public key PK and (b) Oracle access to Authenticator (but O

can only issue at most one query with the same family identification tag FID)
iii) O outputs (FID, BID, λ, n, α, β, ρ,Q(X), RP)

O wins if one of the following happens:
a) (correctness violation) O succeeds to output RP such that even if it contains �αn�

packets (amongst a total number of elements which does not exceed �βn�) of some
authenticated packets set AP for some family identification tag FID and block identifi-
cation tag BID, the decoder still fails at identifying some of the correct packets.

b) (security violation) O succeeds to output RP such that the decoder returns
{P ′BID,1, . . . , P

′
BID,n} (for some BID ∈ {1, . . . , λ}) that was never authenticated by

Authenticator (as the BIDth block of a family of λ blocks) for the family tag BID and
parameters (λ, n, α, β, ρ, Q(X)).

As in [22, 41, 42], we have the following result regarding the security and correctness
of our construction whose proof has been omitted due to space limitations.

Theorem 1. Our scheme (KeyGen,Authenticator,DynamicDecoder) is secure and
(α, β)-correct.



Combining Prediction Hashing and MDS Codes 303

Recovery Property. We now prove that our scheme enables any receiver to recover the
n data packets for any of the λ blocks and the number of signature verifications to be
performed per family is O(1) as a function of both n and λ. As in [41, 42], we introduce
the following definition:

Definition 2. We say that the survival and flood rates (α, β) are accurate to the network
for a flow of n symbols if: (1) data are sent per block of n elements through the network
and (2) for any block of n elements {E1, · · · , En} emitted by the sender, if we denote
{Ẽ1, . . . , Ẽμ} the set of received packets then μ ≤ �βn� and at least �αn� elements of
{E1, · · · , En} belong to {Ẽ1, . . . , Ẽμ}. Condition (2) must be true for each receiver
belonging to the communication group.

We now assume that (α, β) is accurate for our network flow n in the remaining of this
paper. As shown in [42], it is a realistic assumption to consider the accuracy of (α, β)
for PRABS as well. We have the following result whose proof has been omitted due to
space limitations.

Theorem 2. For any FID, for any BID, each receiver recovers the n original data pack-
ets PBID,1, . . . , PBID,n. In addition the number of signature verifications to be performed
for the whole family of λ blocks is upper bounded by U(n) := min(�U1(n)�, �U2(n)�)
where:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U1(n) =
1
ρn

(
1

√
α2 − βρ

− 1

)

+
β

α2 − βρ
+

1
ρ

U2(n) =
β

2(α2 − βρ)
+

1
ρ

+

√
β2 + 4

ρ2 n2 (1 − ρα)

2(α2 − βρ)
− 1

ρn

which is O(1) as a function of the block length n and the family length λ.

5 Comparison of Authentication Protocols

In this section, we will compare our construction to PRABS, TWMB and TWMDS as
our approach can be seen as their extension. As underlined in Sect. 1, the computing ef-
ficiency and the packet overhead are two important factors to determine the practicality
of a stream authentication protocol. Our comparison focuses on these two factors.

Computing Efficiency. In the proof of Theorem 2 (see the extended version of the arti-
cle for details), it is shown that DecoderBlock is queried only once for the whole family
of λ blocks. Thus Poly-Reconstruct is run only twice per family (once within VerifySig-
natureFamily and once at Step 3 of DecoderBlock). At the same time, the receiver can
filter elements for the remaining λ − 1 blocks. Using PH, our filtering process allows
efficient buffering and faster authentication as the receiver treats elements upon recep-
tion (on-the-fly verification) and memorizes only the correct code coordinates.

Table 2 summarizes the benefits provided by the different authentication schemes. In
order to have a fair comparison, we assumed that PRABS and TWMDS were iterated λ



304 C. Tartary and H. Wang

Table 2. Efficiency comparison for multicast stream protocols

Signature Complexity Calls to Filtering Total
Verification Poly-Reconstruct Recovery

Our Scheme U(n) O(1) 2 Yes Yes
PRABS λ V (n) O(λ) N/A No No
TWMB U(n) O(1) λ + 1 No No

TWMDS λ U(n) O(λ) λ No Yes

times. Notice that the value V (n) can be found in [17] and is equal to
⌊
�β n�
�α n�

⌋
. Remark

that a comparison between U(n) and V (n) (when n = 1000) for different pairs (α, β)
can be found in [42].

Packet Overhead. In our scheme, augmented packets sent through the network are
written as: FID‖i‖j‖Ci,j‖Bi(j)‖F(j). The packet overhead is the length of the extra
tag of information used to provide authentication. Notice that an augmented packet
without a tag is assumed to be written as: FID‖i‖j‖Pi,j. Remember that the bit size of
packets Pi,j is P . Our overhead is: length(Ci,j) + length(Bi(j)) + length(F(j)) − P .
The element Ci,j belongs to the field used for the MDS code. Thus it is q̃ bits long.
In addition Bi(j) and F(j) are q bits long. Using the values q and q̃ (see the extended
version of this paper), we deduce that our packet overhead is:

⌈
n (P + H)

�αn�
⌉

+ 2
⌈

max(n H, λH + s)
ρ n + 1

⌉

− P

which is O(1) as a function of the block length n. Notice that when n is large the

previous value can be approximated by
( 1

α − 1
) P +

(
1
α + 2

ρ

)
H. Table 3 summarizes

the overhead comparison of the different authentication schemes.

Notice that the values
(⌈

n (P+H)
�αn�

⌉
− P

)
and

(⌈
nP
�αn�

⌉
− P

)
correspond to a stretch-

ing coefficient roughly equal to 1
α − 1. This is the price to pay in order to use the MDS

code which guarantees total recovery of all data packets. The apparent low overhead of
TWMB comes from the fact that scheme does not provide recovery of lost content (see
Table 2). Remark that when the survival rate α is close to 1 (i.e. the channel has a good
delivery rate), the previous values get close to H and 0 respectively. Thus the packet

overhead of our construction is asymptotically
(
1 + 2

ρ

)
hashes long.

Table 3. Overhead comparison for multicast stream protocols

Bit Size Complexity

Our Scheme
(⌈

n (P+H)
�αn�

⌉
− P

)
+ 2 q O(1)

PRABS
⌈

n H+s
�αn�

⌉
+ log2(n)H Θ(log2(n))

TWMB 2 q O(1)

TWMDS
(⌈

n P
�αn�

⌉
− P

)
+

⌈
n H+s
ρ n+1

⌉
O(1)



Combining Prediction Hashing and MDS Codes 305

If we compare our construction to TWMDS then our packet overhead is one field el-
ement plus, roughly, Hα bits longer. Notice, however, that our field elements are smaller
than those in TWMDS. Indeed λ can be seen as small in comparison to the block length

n and thus q <
⌈

nH+s
ρ n+1

⌉
.

6 Conclusion

In this paper, we presented a stream authentication protocol which can be considered
as an extension of PRABS, TWMB and TWMDS presented in [17, 41, 42]. Our con-
struction only requires the generation of a single signature for every family of λ blocks
of n packets and allows any group member to join the communication group at any
block boundary as TWMB. The number of signature verifications to be performed at
the receiver and the bit size of our packet overhead are O(1) as functions of n and λ,
contrary to PRABS, where they are linear in λ and logarithmic in n respectively. These
two advantages already existed for TWMB but our construction also allows total recov-
ery of the data packets which is not provided by either TWMB or PRABS. This feature
is beneficial when the packets represent audio or video information as our approach
prevent audio gaps and frozen images for instance. Furthermore, using PH, we are able
to save memory at the receiver as those hash chains enable him to decide whether or not
dropping data packets upon reception which is not possible for any of PRABS, TWMB
and TWMDS. As a consequence, the running time at the receiver is decreased since
he only needs to use the erasure code to recover the data packets contrary to PRABS,
TWMB and TWMDS where he must first build Merkle hash trees (for PRABS) or query
Poly-Reconstruct (for TWMB and TWMDS) before using the erasure code.

It should be noticed that we can improve the running time at the receiver even fur-
ther by using a trapdoor hash function [39] (such as Very Smooth Hash [7] for instance)
instead of a digital signature as in [43].

Acknowledgment

The authors would like to thank Professor Josef Pieprzyk for his valuable comments on
this work. The authors are also grateful to the anonymous reviewers for their feedback to
improve the quality of this paper. This work was supported by the Australian Research
Council under ARC Discovery Projects DP0558773 and DP0665035. The first author’s
work was also funded by an iMURS scholarship supported by Macquarie University.

References

[1] Al-Ibrahim, M., Pieprzyk, J.: Authenticating multicast streams in lossy channels using
threshold techniques. In: Lorenz, P. (ed.) ICN 2001. LNCS, vol. 2094, pp. 239–249.
Springer, Heidelberg (2001)

[2] Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to digital sig-
natures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer,
Heidelberg (1993)



306 C. Tartary and H. Wang

[3] Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly-
secure key distribution for dynamic conferences. In: Brickell, E.F. (ed.) CRYPTO 1992.
LNCS, vol. 740, pp. 471–486. Springer, Heidelberg (1992)

[4] Challal, Y., Bettahar, H., Bouabdallah, A.: A taxonomy of multicast data origin authentica-
tion: Issues and solutions. IEEE Communications Surveys and Tutorials 6(3), 34–57 (2004)

[5] Challal, Y., Bouabdallah, A., Bettahar, H.: H2A: Hybrid hash-chaining scheme for adaptive
multicast source authentication of media-streaming. Computer & Security 24(1), 57–68
(2005)

[6] Choi, S.: Denial of service resistant multicast authentication protocol with prediction hash-
ing and one-way key chain. In: ISM 2005, pp. 701–706. IEEE Press, New York (2005)

[7] Contini, S., Lenstra, A.K., Steinfeld, R.: VSH: an efficient and provable collision resistant
hash collision. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182.
Springer, Heidelberg (2006)

[8] Dana, A.F., Gowaikar, R., Palanki, R., Hassibi, B., Effros, M.: Capacity of wireless erasure
networks. IEEE Transactions on Information Theory 52(3), 789–804 (2006)

[9] Desmedt, Y., Frankel, Y., Yung, M.: Multi-receiver/multi-sender network security: Efficient
authenticated multicast/feedback. In: IEEE INFOCOM 1992, vol. 3, pp. 2045–2054. IEEE
Press, New York (1992)

[10] Di Pietro, R., Chessa, S., Maestrini, P.: Computation memory and bandwidth efficient dis-
tillation codes to mitigate DoS in multicast. In: SecureComm 2005, pp. 13–22. IEEE Press,
New York (2005)

[11] Fu, J.C., Lou, W.Y.W.: Distribution Theory of Runs and Patterns and its Applications.
World Scientific Publishing (2003)

[12] Gennaro, R., Rohatgi, P.: How to sign digital streams. In: Kaliski Jr., B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 180–197. Springer, Heidelberg (1997)

[13] Golle, P., Modadugu, N.: Authenticating streamed data in the presence of random packet
loss. In: NDSS 2001, pp. 13–22. Internet Society (2001)

[14] Guruswami, V.: List Decoding of Error-Correcting Codes. Springer, Heidelberg (2004)
[15] Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometric

codes. IEEE Transactions on Information Theory 45(6), 1757–1767 (1999)
[16] Jakimoski, G.: Primitives and Schemes for Non-Atomic Information Authentication. PhD

thesis, The Florida State University College of Arts and Sciences, Spring Semester (2006)
[17] Karlof, C., Sastry, N., Li, Y., Perrig, A., Tygar, J.D.: Distillation codes and applications to

DoS resistant multicast authentication. In: NDSS 2004 (2004)
[18] Lacan, J., Fimes, J.: Systematic MDS erasure codes based on Vandermonde matrices. IEEE

Communications Letters 8(9), 570–572 (2004)
[19] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications - Revised

Edition. Cambridge University Press, Cambridge (2000)
[20] Liu, D., Ning, P.: Multi-level μTESLA: Broadcast authentication for distributed sensor

networks. ACM Transactions in Embedded Computing Systems 3(4), 800–836 (2004)
[21] Liu, D., Ning, P., Zhu, S., Jajodia, S.: Practical broadcast authentication in sensor networks.

In: MobiQuitous 2005, pp. 118–129. IEEE Press, New York (2005)
[22] Lysyanskaya, A., Tamassia, R., Triandopoulos, N.: Multicast authentication in fully adver-

sarial networks. In: IEEE Symposium on Security and Privacy, pp. 241–253. IEEE Com-
puter Society Press, New York (2003)

[23] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland
(1977)

[24] Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

[25] Merkle, R.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,
vol. 435, pp. 218–238. Springer, Heidelberg (1989)



Combining Prediction Hashing and MDS Codes 307

[26] Miner, S., Staddon, J.: Graph-based authentication of digital streams. In: IEEE Symposium
on Security and Privacy, pp. 232–246. IEEE Press, New York (2001)

[27] Pannetrat, A., Molva, R.: Authenticating real time packet streams and multicasts. In: ISCC
2002, IEEE Computer Society Press, Los Alamitos (2002)

[28] Park, J.M., Chong, E.K.P., Siegel, H.J.: Efficient multicast packet authentication using sig-
nature amortization. In: IEEE Symposium on Security and Privacy, pp. 227–240. IEEE
Press, New York (2002)

[29] Park, J.M., Chong, E.K.P., Siegel, H.J.: Efficient multicast stream authentication using era-
sure codes. ACM Transactions on Information and System Security 6(2), 258–285 (2003)

[30] Park, Y., Cho, Y.: The eSAIDA stream authentication scheme. In: Laganà, A., Gavrilova,
M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3046, pp.
799–807. Springer, Heidelberg (2004)

[31] Perrig, A., Canetti, R., Tygar, J., Song, D.: Efficient authentication and signing of multicast
streams over lossy channels. In: IEEE Symposium on Security and Privacy, pp. 56–73.
IEEE Press, New York (2000)

[32] Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: Security protocols for
sensor networks. Wireless Networks 8(5), 521–534 (2002)

[33] Perrig, A., Tygar, J.D.: Secure Broadcast Communication in Wired and Wireless Networks.
Kluwer Academic Publishers, Boston (2003)

[34] Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security. Springer, Hei-
delberg (2003)

[35] Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault toler-
ance. Journal of the Association for Computing Machinery 36(2), 335–348 (1989)

[36] Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of Society for
Industrial and Applied Mathematics 8(2), 300–304 (1960)

[37] Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet authentica-
tion. In: ACM CCS’99, pp. 93–100. ACM Press, New York (1999)

[38] Safavi-Naini, R., Wang, H.: New results on multi-receiver authentication code. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 527–541. Springer, Heidelberg (1998)

[39] Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

[40] Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. Chapman & Hall/CRC (2006)
[41] Tartary, C., Wang, H.: Efficient multicast stream authentication for the fully adversarial

network. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 108–
125. Springer, Heidelberg (2006)

[42] Tartary, C., Wang, H.: Achieving multicast stream authentication using MDS codes. In:
Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 108–125.
Springer, Heidelberg (2006)

[43] Tartary, C., Wang, H.: Efficient multicast stream authentication for the fully adversarial
network. International Journal of Security and Network (Special Issue on Cryptography in
Networks) 2(3/4), 175–191 (2007)

[44] Wong, C.K., Chan, A.: Immediate data authentication for multicast resource constrained
networks. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp.
113–121. Springer, Heidelberg (2005)

[45] Wong, C.K., Lam, S.S.: Digital signatures for flows and multicasts. IEEE/ACM Transac-
tions on Networking 7(4), 502–513 (1999)

[46] Zanotti, J.-P.: Le code correcteur C.I.R.C. Available online at:
http://zanotti.univ-tln.fr/enseignement/divers/chapter3.html

http://zanotti.univ-tln.fr/enseignement/divers/chapter3.html


Certificateless Signature Revisited�

Xinyi Huang1, Yi Mu1, Willy Susilo1, Duncan S. Wong2, and Wei Wu1

1 Centre for Computer and Information Security Research
School of Computer Science & Software Engineering

University of Wollongong, Australia
{xh068,ymu,wsusilo}@uow.edu.au,weiwu81@gmail.com

2 Dept. of Computer Science, City University of Hong Kong, Hong Kong, China
duncan@cityu.edu.hk

Abstract. In this paper we revisit the security models of certificateless
signatures and propose two new constructions which are provably secure
in the random oracle model. We divide the potential adversaries accord-
ing to their attack power, and for the first time, three new kinds of ad-
versaries are introduced into certificateless signatures. They are Normal
Adversary, Strong Adversary and Super Adversary (ordered by their at-
tack power). Combined with the known Type I Adversary and Type
II Adversary in certificateless system, we then define the security of
certificateless signatures in different attack scenarios. Our new models,
together with the others in the literature, will enable us to better un-
derstand the security of certificateless signatures. Two concrete schemes
with different security levels are also proposed in this paper. The first
scheme, which is proved secure against Normal Type I and Super Type
II Adversary, enjoys the shortest signature length among all the known
certificateless signature schemes. The second scheme is secure against Su-
per Type I and Type II adversary. Compared with the scheme in ACNS
2006 which has a similar security level, our second scheme requires lower
operation cost but a little longer signature length.

Keywords: Certificateless cryptology, Random oracle, Security model,
Signature.

1 Introduction

In secret-key or symmetric-key cryptography, the sender and receiver share a
secret key. The sender uses the secret key to encrypt the message, and the
receiver uses the same secret key to decrypt the message. One drawback of
a symmetric system is that it requires the distribution of the secret key. They
must use a secure channel to transmit this secret key since anyone who overhears
or intercepts the key can later read, modify, and forge all encrypted messages. If
the sender and receiver are in separate geographical locations, key distribution
then becomes problematic.
� Supported by National Science Foundation of China (NSFC 60673070) and ARC

Discovery Grant DP0557493 and DP0663306.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 308–322, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Certificateless Signature Revisited 309

In order to solve this problem, Diffie and Hellman [7] introduced the concept
of public-key cryptography in 1976. In this system, each person has a pair of
keys: public key and private key. The public key is published, while the private
key is kept secret. All communications involve only public keys, and no private
key is ever transmitted or shared. Therefore, the need for the sender and re-
ceiver to share secret information is eliminated. A central problem for public
key cryptography is: proving that a user’s public key is authentic, and has not
been tampered with or replaced by a malicious third party. The usual approach
to solve this problem is to use a public key infrastructure (PKI), in which one or
more third parties, known as certificate authorities, issue certificates to bind a
user with his public key. Public key system which uses certificates is called as tra-
ditional public key system. History has shown that the certificates in traditional
PKI is generally considered to be costly to use and manage.

Identity-based (or ID-based) cryptography, as proposed by Shamir in [16],
was introduced to solve the above problem. In the new setting, the user’s public
key is some unique information about the identity of the user (e.g., a user’s
email address) which is assumed to be publicly known. Therefore, the need of
certification can be eliminated. In ID-based system, a trusted third party, called
the Key Generation Center (KGC), generates users’ private keys. The KGC first
publishes a “master” public key, and retains the corresponding master secret
key. To obtain a private key, one should contact KGC, which uses the master
secret key to generate the corresponding private key. However, this approach
creates a new inherent problem, namely the key escrow of a user’s private key,
since (KGC) must be completely trusted. This is due to the knowledge of the
KGC on the user’s private key. Hence, KGC can always impersonate any user
of his choice, and therefore, the essential assumption is a complete trust on the
KGC.

In 2003, Al-Riyami and Paterson [2] proposed a new type of public key system
that avoids the above mentioned drawbacks. They termed it as Certificateless
public key system. In contrast to the traditional public key system cryptogra-
phy, certificateless cryptography does not require any certificates to ensure the
authenticity of public keys. Certificateless cryptography relies on the existence
of a semi-trusted third party KGC who has the master secret key. In this sense,
it is similar to identity-based cryptography. Nevertheless, certificateless cryptog-
raphy does not suffer from the key escrow property that seems to be inherent in
the identity-based cryptography. In a certificateless system, KGC only supplies a
user with a partial private key DIDi

, which is computed from an identity IDi. The
user also holds a secret value which is chosen by himself. Then, the user com-
bines his partial private key with his secret value to generate his actual private
key. This private key is not available to the KGC. The user also combines his
secret value with system’s public parameters to generate his public key PKIDi .
The public key PKIDi

needs to be made available to the other participants (e.g.
transmit it along with messages, in the case of message signing). Hence, it is no
longer an identity-based cryptography, since the public key needs to be provided



310 X. Huang et al.

(but in contrast to the traditional cryptography, the public key does not require
any certificate).

Due to the lack of public key authentication, it is important to assume that
an adversary in the certificateless system can replace the user’s public key with a
false key of its choice, which is also known as Type I Adversary [2]. In order to
provide a secure certificateless signature scheme, this type of attacks must not be
able to produce signatures that can get through the verification algorithm with
the false public key. An assumption that must be made is that KGC does not
mount a public key replacement attack to a target user since he is armed with
this user’s partial private key. However, KGC might engage in other adversarial
activities: eavesdropping on signatures and making signing queries, which is also
known as Type II Adversary. In this way, the level of trust is similar to the
trust in a CA in a traditional PKI. However, there is a debate on how to define
these two types of attacks in the literature.

Related Work. The first concrete construction of the certificateless signature
(CLS) scheme was proposed in [2]. Recently, Huang, Susilo, Mu and Zhang [10]
pointed out a security weakness of this signature scheme. A generic construction
of CLS was proposed by Yum and Lee [17] in ACISP 2004. However, Hu, Wong,
Zhang and Deng [11] showed that the Yum-Lee construction is insecure and
proposed a fix in the standard model. In ACNS 2006, Zhang, Wong, Xu and
Feng [19] presented an efficient CLS scheme from pairings. Gorantla and Saxena
[9] introduced a new construction of CLS without providing formal proofs. Their
scheme has been shown to be insecure by Cao, Paterson and Kou [5]. Park
[14] showed that a similar problem also exists in the scheme proposed by Yap,
Heng and Goi [18]. The first concrete CLS scheme in the standard model was
proposed by Liu, Au and Susilo [12]. Au et al. [1] proposed a new model of Type
II adversary for certificateless systems and presented that several schemes using
the same key structure as [2] are vulnerable to this kind of attacks. According
to the conclusion given in [1], the scheme in [12] is not secure against the new
adversary defined in [1]. Similarly, this new kind of adversary can also break Li,
Chen and Sun’s scheme [13].

Motivations. In the security model of a signature scheme, the adversary is
allowed to access the sign oracle, which enables him to obtain some valid sig-
natures. This is for simulating the fact that the adversary may be able to gain
some signatures from the signer, eavesdropping, or a legitimate receiver. It is well
acceptable that the adversary should be provided with such kind of sign oracle
and obtain some “valid” signatures of messages that are adaptively chosen by
the adversary. But “valid” in certificateless system could have different mean-
ings, considering the fact that the adversary has the ability to replace any user’s
public key. Namely, signatures could be valid under the user’s original public
key chosen by this user himself or the false public key chosen by the attacker.

When the first CLS scheme was proposed in [2], there was no formal secu-
rity definition for CLS. The adversaries defined in CLE were used to analyze
its security. There have been some good works [1,11,12,19] on this topic and
some security models of CLS have been well-defined. Although these models are



Certificateless Signature Revisited 311

different from each other, almost all argue that the adversary should be allowed
to obtain signatures that can be verified with the false public key chosen by the
adversary himself. However, in the real world, the signatures that a realistic ad-
versary can obtain are usually generated by the signer himself and valid under
this signer’s original public key. So, the adversary defined in the known CLS
security models seems to enjoy more power than it could have in the real world.

If a CLS scheme is secure against the attacker defined in [1,11,12,19], then
it enjoys a higher security level. In this sense, the above security models are
reasonable and acceptable. Stronger models can ensure a CLS scheme with a
higher security level, but realistic models can lead to more efficient schemes.
Therefore, it is still worthwhile to define the adversary against CLS in the real
world, which can be regarded as the complementary to the known models. The
new models will enable us to better understand the security of CLS. Motivated
by the method in the survey of CLE given by Dent [6], we will define different
sign oracles to different adversaries and divide them by their attack power.

Our Contributions. In this paper, we revisit the security models of CLS and
propose two concrete certificateless signature schemes. First, we divide the po-
tential adversaries against certificateless signatures according to their attack
power. Three kinds of attackers are introduced to CLS for the first time: Nor-
mal Adversary, Strong Adversary and Super Adversary (ordered by their attack
power). Combined with the known Type I Adversary and Type II Adversary,
we can obtain Normal Type I Adversary, Strong Type I Adversary and etc. The
security models of CLS against these kinds of adversaries are also formulated.
We believe the new models, together with other known CLS models, will enable
us to better understand the security of CLS. Second, two concrete schemes are
proposed. The first scheme is provably secure against Normal Type I adversary
and Super Type II adversary which are defined in this paper. The signature
length of this scheme is the shortest compared to any existing CLS scheme in
the literature (as short as the BLS [4] signature). The second scheme is provably
secure against Super Type I and Type II Adversary. Compared with another
concrete scheme in ACNS 2006 [19] which has the similar security level, our
second scheme has lower operation cost but a little longer signature length.

Organization. In the next section, we will present the outline of CLS. In Sec-
tion 3, new types of adversaries in CLS are introduced and the security of certifi-
cateless signatures against different attackers are also defined. We then propose
our first construction of the certificateless signature in the Section 4.2. Its se-
curity analysis is also given in this section. The second certificateless signature
scheme is proposed in Section 4.3, together with the formal security proof. We
compare our two schemes with other schemes in Section 5. Finally, Section 6
concludes the paper.

2 Certificateless Signature

In this section, we firstly review the outline of CLS. Then we describe the basic
types of adversaries in CLS.



312 X. Huang et al.

2.1 Outline of the Certificateless Signature Schemes

A certificateless signature scheme is defined by six algorithms: Setup, Partial-
Private-Key-Extract, Set-Secret-Value, Set-Public-Key, Sign and Verify. The de-
scription of each algorithm is as follows.

– Setup: This algorithm takes as input a security parameter 1k and returns
the master secret key msk and master public key mpk. It also outputs a
parameter param which is shared in the system.

– Partial-Private-Key-Extract: This algorithm takes as input the master secret
key msk, the master public key mpk, system parameter param and an iden-
tity ID. It outputs a partial private key DID.

– Set-Secret-Value: This algorithm takes as input the master public key mpk
and system parameter param. It outputs a secret value xID ∈ S. Here S
denotes the set of the valid secret values.

– Set-Public-Key: This algorithm takes as input the master public key mpk,
system parameter param, an identity ID and this identity’s secret value xID ∈
S. It outputs the public key PKID ∈ PK. Here PK denotes the set of the
valid public key values.

– Sign: This algorithm takes as input the master public key mpk, system pa-
rameter param, an identity ID, this identity’s secret value xID ∈ S, partial
private key DID and a message M . It outputs a certificateless signature σ.

– Verify: This algorithm takes as input the the master public key mpk, sys-
tem parameter param, an identity ID, this identity’s public key PKID and a
message/signature pair (M, σ). It outputs true if the signature is correct, or
false otherwise.

In general, KGC (Key Generation Center) performs the algorithms Setup and
Partial-Private-Key-Extract.

2.2 Adversaries and Oracles

Similarly to the adversaries against CLE defined in [2], there are basically two
types of adversaries in CLS: AI and AII . AI simulates attacks when the adver-
sary (anyone except the KGC ) replaces the user public key PKID. However, AI

is not given this user’s partial private key DID. Adversary AII simulates attacks
when the adversary knows the master secret key but cannot replace the target
user’s public key. We will give a more detailed description of these two kinds of
adversaries in Section 3. Generally, there are three oracles which can be accessed
by both AI and AII :

1. Create-User: This oracle takes as input a query ID ∈ {0, 1}∗, if ID has
already been created, nothing is to be carried out by the oracle. Otherwise,
the oracle runs the algorithms Partial-Private-Key-Extract, Set-Secret-Value,
Set-Public-Key to obtain the partial private key DID, secret value xID and
public key PKID. Then it adds (ID, DID, xID, PKID) to the list L. In this
case, ID is said to be created. In both cases, PKID is returned.



Certificateless Signature Revisited 313

2. Public-Key-Replace: This oracle takes as input a query (ID, PK ′ID), where
ID denotes the identity which has been created and PK ′ID is a public key value
in the public key space PK. This oracle replaces user ID’s public key with
PK ′ID and updates the corresponding information in the list L. Note that
the adversary is not required to provide the secret value x′ID which is used
to generate PK ′ID

1.
3. Secret-Value-Extract: This oracle takes as input a query ID, where ID is

the identity which has been created. It browses the list L and returns the
secret value xID. Note that, the secret-value output by this oracle is the one
which is used to generate ID’s original public key PKID. The Secret-Value-
Extract oracle does not output the secret value associated with the replaced
public key PK ′ID.

3 Security Models

In this section, we discuss the definition of the security for a certificateless sig-
nature scheme.

3.1 Security Against a Normal Type I Adversary

In this section, we will consider the first kind of Type I adversary AI : Normal
Type I adversary. Informally, we want to capture the attack scenarios as follows:

1. AI can obtain some message/signature pairs (mi, σi) which are generated
by the target user ID using this ID’s secret value xID and partial private key
DID.

2. The target user ID will keep xID and DID as secret.
3. AI can replace the target user ID’s public key with PK ′ID which is chosen by

himself. He can also dupe any other third party to verify user ID’s signatures
using the replaced public key PK ′ID.

In the real world, the adversary may be able to gain ID’s some valid signatures
from eavesdropping or the intended receivers. These signatures are generated by
ID using his own secret value and partial private key. Although AI can replace
ID’s public key with PK ′ID which is chosen by himself, we assume that, in most
cases, it is hard for a realistic AI to get any signature that is valid under PK ′ID.
On the other hand, we also assume that user ID will keep (xID, DID) as secret
and AI can not obtain either of these two secrets. The existential unforgeability
of a certificateless signature scheme against a Normal Type I adaptively chosen
message and chosen identity adversary AI is defined as the following games:
1 In the security model defined in [10,18], adversary is required to issue a query

(ID, PK′
ID, x′

ID) to the oracle Public-Key-Replace, where x′
ID is the secret value

which is used to generate PK′
ID. It is not reasonable since an adversary could pick a

random element in the public key place PK and even himself does not know what
is the corresponding secret value.



314 X. Huang et al.

Phase 1: The challenger runs the algorithm Setup and returns the system pa-
rameters param and the system master pubic key mpk to AI .

Phase 2: In this phase, AI can adaptively access all the oracles defined in Sec-
tion 2.2. In addition, AI can also access the Partial-Private-Key-Extract
oracle and Normal Sign oracle which are defined as:
Partial-Private-Key-Extract: This oracle takes as input a query ID,
where ID is the identity which has been created. It browses the list L and
returns the partial private key DID.
Normal-Sign: This oracle takes as input a query (ID, m), where ID denotes
the identity which has been created and m denotes the message to be signed.
It outputs a signature σ such that true ← Verify(m, σ, params, ID, PKID).
Here PKID is the public key returned from the oracle Create-User.

Phase 3: After all the queries, AI outputs a forgery (m∗, σ∗, ID∗). Let PKID∗

be the current public key of the user ID∗ in the list L. We say AI wins the
game if the forgery satisfies the following requirements:
1. AI has never submitted (ID∗, m∗) to the oracle Normal-Sign.
2. AI has never submitted ID∗ to Partial-Private-Key-Extract oracle

or Secret-Value-Extract oracle.
3. true ← Verify(m, σ, params, ID, PKID∗).

The success probability of a Normal Type I adaptively chosen message and
chosen identity adversary AI wins the above games is defined as Succcma,cida

AI ,normal.

Definition 1. We say a certificateless signature scheme is secure against a (t,
qCU , qPPK , qPKR, qSV , qNS) Normal Type I adaptively chosen message and cho-
sen identity adversary AI , if AI runs in polynomial time t, makes at most qCU

queries to the oracle Create-User, qPPK queries to the oracle Partial-Private-
Key-Extract, qPKR queries to the oracle Public-Key-Replace, qSV queries to
the oracle Secret-Value-Extract, qNS queries to the oracle Normal-Sign and
Succcma,cida

AI ,normal is negligible.

3.2 Security Against a Strong Type I Adversary

In this section, we will boost the attack capabilities of the adversary AI and
define the second type of AI which is called “Strong Type I adversary”. We
want to capture the attack scenario that AI can see some message/signature
pairs (mi, σi) which are generated by algorithm Sign using the secret value sv
and the user ID’s partial-private key DID. Here the secret value sv can be the
original secret value xID chosen by the user ID, or, the secret value supplied by
the adversary AI . Similar models were also proposed in [11,19]. If a scheme is
secure against this Strong Type I adversary, it is also secure against a Normal
Type I adversary. On the other hand, more operation cost or longer signature
length are therefore needed to construct a CLS scheme that is secure under
this stronger model. If we put this kind of attack in the real world, it means
that the target user ID will use his own partial private key and the secret value



Certificateless Signature Revisited 315

supplied by AI to sign messages. It considers the scenario where the user ID
will intentionally help AI to attack himself. This assumption might stand in
some particular situations, but might be stronger for most other situations. The
existential unforgeability of a certificateless signature scheme against a Strong
Type I adaptively chosen message and chosen public key adversary AI is defined
by the similar games as defined in Section 3.1, with the only difference that the
strong Type I adversary AI can query a different sign oracle Strong-Sign which
will be defined later.

Phase 1: The challenger runs the algorithm Setup and returns the system pa-
rameters param and the system master public key mpk to AI .

Phase 2: In this phase, AI can adaptively access all the oracles defined in Sec-
tion 2.2. In addition, he can also access the Partial-Private-Key-Extract
oracle and Strong-Sign oracle which are defined as:
Partial-Private-Key-Extract: Same as defined in Section 3.1.
Strong-Sign: This oracle takes as input a query (ID, m, sv), where ID de-
notes the identity which has been created, m denotes the message to be
signed and sv is some information sv ∈ {nil} ∪ S.

– If sv = nil, this oracle uses ID’s original secret value xID and partial
private key DID to generate the signature σ for this message. It outputs
σ as the answer.

– Otherwise, sv ∈ S, this oracle uses sv and ID’s partial private key DID

to generate the signature σ for this message. It outputs σ as the answer.
Phase 3: After all the queries, AI outputs a forgery (m∗, σ∗, ID∗). Let PKID∗

be the current public key of the user ID∗ in the list L. We say a strong AI

wins the game if the forgery satisfies the following requirements:
1. AI has never submitted (ID∗, m∗, sv) (sv ∈ {nil} ∪ S) to the oracle

Strong-Sign.
2. AI has never submitted ID∗ to the oraclePartial-Private-Key-Extract.
3. true ← Verify(m, σ, params, ID, PKID∗).

The success probability of a Strong Type I adaptively chosen message and chosen
identity adversary AI wins the above game is defined as Succcma,cida

AI ,strong.

Definition 2. We say a certificateless signature scheme is secure against a
(t, qCU , qPPK , qPKR, qSV , qSS) Strong Type I adaptively chosen message and cho-
sen identity adversary AI , if AI runs in polynomial time t, makes at most
qCU queries to the oracle Create-User, qPPK queries to the oracle Partial-
Private-Key-Extract, qPKR queries to the oracle Public-Key-Replace, qSV

queries to the oracle Secret-Value-Extract, qSS queries to the oracle Strong-
Sign and Succcma,cida

AI ,strong is negligible.

3.3 Security Against a Super Type I Adversary

In this section, we will define the third type of AI : Super Type I adversary.
We want to capture the following attack scenario: AI can obtain some mes-
sage/signature pairs (mi, σi) such that true ← Verify(mi, σi, params, ID, PKID).



316 X. Huang et al.

Here PKID is chosen by AI , and it could be the user ID’s original public key, or
any valid public key value in the public key space. In the latter case, the Super
Type I adversary AI is not required to supply the corresponding secret value
which is used to generate the pubic key chosen by himself.

In the above scenario, we give AI as much power as possible. Namely, AI

can obtain some message/signature pairs which are valid under the public key
chosen by himself. Meanwhile, he dose not need to supply the secret value sv of
the public key chosen by himself. This accounts for the name “Super Adversary”.
It implies that there exists a black-box knowledge exactor which can extract the
secret value from the public key chosen by AI and then signs messages using ID’s
partial private key and this secret value. This is the strongest attacker compared
with other two attackers defined in Section 3.1 and Section 3.2. It is still unclear
whether it represents a realistic attack scenario. The existential unforgeability
of a certificateless signature scheme against a Super Type I adaptively chosen
message and chosen identity adversary AI is defined by the similar games as
defined in Section 3.1, with the only difference that AI can have access to the
oracle Super-Sign which will be defined later.

Phase 1: The challenger runs the algorithm Setup and returns the system pa-
rameters param and the system master public key mpk to AI .

Phase 2: In this phase, AI can adaptively access all the above oracles defined
in Section 2.2. In addition, he can also access the Partial-Private-Key-
Extract oracle and Super-Sign oracle which are defined as:
Partial-Private-Key-Extract: Same as defined in Section 3.1.
Super-Sign: This oracle takes as input a query (ID, m), where ID denotes the
identity which has been created and m denotes the message to be signed. This
oracle outputs a signature σ such that true ← Verify(m, σ, params, ID, PKID).
Here PKID denotes the user ID’s current public key in the list L. If this user’s
public key has not been replaced, PKID = PKID where PKID is the public
key returned from the oracle Create-User. Otherwise, PKID = PK ′ID where
PK ′ID is the latest public key value submitted to the oracle Public-Key-
Replace.

Phase 3: After all the queries, AI outputs a forgery (m∗, σ∗, ID∗). Let PKID∗

be the current public key of the user ID in the list L. We say a Super AI

wins the game if the forgery satisfies the following requirements:
1. AI has never submitted (ID∗, m∗) to the oracle Super-Sign.
2. AI has never submitted ID∗ to the oraclePartial-Private-Key-Extract.
3. true ← Verify(m, σ, params, ID, PKID∗).

The success probability of a Super Type I adaptively chosen message and chosen
identity adversary AI wins the above game is defined as Succcma,cida

AI ,super .

Definition 3. 2 We say a certificateless signature scheme is secure against
a (t, qCU , qPPK , qPKR, qSV , qSS) Super Type I adaptively chosen message and
chosen identity adversary AI , if AI runs in polynomial time t, makes at most
2 This definition is similar the one given in [1,12].



Certificateless Signature Revisited 317

qCU queries to the oracle Create-User, qPPK queries to the oracle Partial-
Private-Key-Extract, qPKR queries to the oracle Public-Key-Replace, qSV

queries to the oracle Secret-Value-Extract, qSS queries to the oracle Super-
Sign and Succcma,cida

AI ,super is negligible.

3.4 Type II Adversaries

The Type II adversary AII simulates the KGC who holds the master secret
key and might engage in other adversarial activities, such as eavesdropping on
signatures and making signing queries. According to the different sign oracles
AII can access, it can be further divided into: Normal AII (access the oracle
Normal-Sign), Strong AII (access the oracle Strong-Sign) and Super AII

(access the oracle Super-Sign). The existential unforgeability of a certificate-
less signature scheme against a Type II adaptively chosen message and chosen
identity adversary AII is defined by the following games:

Phase 1: The challenger runs the algorithm Setup and returns the system pa-
rameters param, the system master public key mpk and the master secret
key s to AII .

Phase 2: In this phase, AII can adaptively access all the oracles defined in
Section 2.2. In addition, he can also access only one of the following oracle:
Normal-Sign, Strong-Sign or Super-Sign.

Phase 3: After all the queries, AII outputs a forgery (m∗, σ∗, ID∗). We say AII

wins the game if the forgery satisfies the following requirements:
1. AII has never submitted (ID∗, m∗) to the sign oracle.
2. AI has never submitted ID∗ to the oracle Secret-Value-Extract.
3. true ← Verify(m, σ, params, ID∗, PKID∗). Here PKID∗ is the original pub-

lic key returned from the oracle Create-User.

The success probability of a Type II adaptively chosen message and chosen
identity adversary AII wins the above game is defined as Succcma,cida

AII
.

Definition 4. 3 We say a certificateless signature scheme is secure against a
(t, qCU , qPKR, qSV , qS) Type II adaptively chosen message and chosen identity
adversary AII , if AII runs in polynomial time t, makes at most qCU queries
to the oracle Create-User, qPKR queries to the oracle Public-Key-Replace,
qSV queries to the oracle Secret-Value-Extract, qS queries to the oracle Sign
and Succcma,cida

AII
is negligible. Here the oracle Sign can be one of the following

oracles: Normal-Sign, Strong-Sign or Super-Sign.

3.5 Malicious but Passive KGC Attack

Very recently, a new kind of Type II attack-Malicious but Passive KGC attack
is introduced in [1]. In the new attack, the KGC that holds the master secret
key is assumed malicious at the very beginning of the Setup stage of the system.
3 Similar definitions are also give in [11,12,19].



318 X. Huang et al.

KGC may generate his master public/secret key pair maliciously so that it can
launch a Type II attack more easily in the later stage of the system. Combined
with different Sign oracles, the security of the certificateless signature schemes
against malicious but passive KGC attack can be defined by the similar games
in [1]. Due to page limitation, we will describe it in the full version.

4 Our Proposed Schemes

4.1 Bilinear Groups and Security Assumptions

Let G1 denote an additive group of prime order p and GT be a multiplicative
group of the same order. Let P denote a generator in G1. Let e : G1 × G1 → GT

be a bilinear pairing with the properties defined in [4].

Discrete Logarithm Problem: Given (P, aP ) ∈ G1, find a.
Computational Diffie-Hellman Problem: Given a triple G1 elements (P, aP,
bP ), find the element abP .

4.2 Scheme I

In this section, we propose our first certificateless signature scheme which is se-
cure against a Normal Type I adversary and Super Type II adversary. It consists
of the following algorithms:

– Setup: Let (G1, GT ) be bilinear groups where |G1| = |GT | = p, for some
prime number p ≥ 2k, k be the system security number. e denotes the
bilinear pairing G1 × G1 → GT . Let H0, H1 : {0, 1}∗ → G

∗
1 be two secure

cryptographic hash functions. KGC chooses a random number s ∈ ZZ∗p and
a random element P ∈ G

∗
1. It sets system’s master public key Ppub = sP ,

master secret key as s and publishes {G1, GT , p, e, P, H0, H1, Ppub}.
– Partial-Private-Key-Extract: Given a user’s identity ID, KGC first computes

QID = H0(ID). It then sets this user’s partial private key DID = sQID and
transmits it to ID secretly.

– Set-Secret-Value: The user ID chooses a random number xID ∈ ZZ∗p and sets
xID as his secret value. Here the valid secret key value space is S = ZZ∗p.

– Set-Public-Key: Given the secret value xID, User ID can compute his public
key PKID = xIDP . Here the valid public key space is PK = G

∗
1.

– Sign: For a message m, the user ID computes the signature σ = DID +
xIDH1(m‖ID‖PKID).

– Verify: Given a pair (m, σ) and user ID’s public key PKID, anyone can check
whether e(σ, P ) ?= e(QID, Ppub)e(PKID, H1(m‖ID‖PKID)). If the equality
holds, outputs true. Otherwise, false.

Security Analysis of Scheme I

Theorem 1. If there is a (t, qCU , qPPK , qPKR, qSV , qNS) Normal Type I adap-
tively chosen message and chosen identity adversary AI which can submit ad-
ditional qR queries to random oracles and win the game defined in Section 3.1



Certificateless Signature Revisited 319

with probability Succcma,cida
AI ,normal, then there exists another algorithm B which can

solve a random instance of Computational Diffie-Hellman problem in polynomial
time with success probability

SuccCDH
B,G1

≥ (1 − 1
qCU

)qP PK+qSV (1 − 1
qNS+1 )qNS 1

qCU (qNS+1)Succcma,cida
AI ,normal.

Theorem 2. If there is a (t, qCU , qPKR, qSV , qSS) Super Type II adaptively cho-
sen message and chosen identity adversary AII which can submit additional qR

queries to random oracles and win the game defined in Section 3.4 with probabil-
ity Succcma,cida

AII ,super, then there exists another algorithm B which can solve a random
instance of Computational Diffie-Hellman problem in polynomial time with suc-
cess probability SuccCDH

B,G1
≥ (1− 1

qCU
)qSV (1− 1

qSS+1 )qSS 1
qCU (qSS+1)Succcma,cida

AII ,super.

Due to page limitation, the proofs will be presented in the full version of this
paper.

4.3 Scheme II

In this section, we propose our second certificateless signature scheme which is
secure against a Super Type I and Type II adversary. The first four algorithms
are the same as those defined in the first scheme, with the only exception that
H1 is defined as {0, 1}∗ → ZZp. The Sign and Verify algorithms are defined as:

– Sign: For a message m, the user ID computes the signature σ = (u, v, W )
where

• u = H1(m‖ID‖PKID‖r1P‖e(P, P )r2) for random numbers r1, r2 ∈ ZZp

which are chosen by user ID.
• v = r1 − uxID (mod p), W = r2P − uDID.

– Verify: Given a message/signature pair (m, σ = (u, v, W )) and user ID’s
public key PKID, anyone can check whether u

?= H1(m‖ID‖PKID‖vP +
uPKID‖e(W, P )e(QID, Ppub)u). If the equality holds, outputs true. Other-
wise, false.

Security Analysis of Scheme II

Theorem 3. If there is a (t, qCU , qPPK , qPKR, qSV , qSS) Super Type I adap-
tively chosen message and chosen identity adversary AI which can submit ad-
ditional qR queries to random oracles and win the game defined in Section 3.3
with probability Succcma,cida

AI ,super, then there exists another algorithm B which can
solve a random instance of Computational Diffie-Hellman problem in polynomial
time with success probability SuccCDH

B,G1
≥ 1

qCU
(1 − 1

qCU
)qP PK Succcma,cida

AI ,super.

Theorem 4. If there is a (t, qCU , qPKR, qSV , qSS) Super Type II adaptively cho-
sen message and chosen identity adversary AII which can submit additional qR

queries to random oracles and win the game defined in Section 3.4 with prob-
ability Succcma,cida

AII ,super, then there exists another algorithm B which can solve a
random instance of Discrete Logarithm problem in polynomial time with success
probability SuccDL

B,G1
≥ 1

qCU
(1 − 1

qCU
)qSV Succcma,cida

AII ,super.

Due to page limitation, the proof will be presented in the full version of this
paper.



320 X. Huang et al.

5 Comparison

In this section, we first compare our schemes with other known CLS schemes
from the aspect of security level.

Security Levels of Known CLS Schemes

Scheme Security against AI Security against AII

Al-Riyami and Paterson’s [2] insecure against AI,normal[10] insecure against AII,M−A[1]
Gorantla and Saxena’s [9] insecure against AI,normal [5] no formal proof provided

Huang et al.’s [10] insecure against AII,M−A[1]
Hu et al.’s [11] super AI strong AII,M−A [1]

Liu-Au-Susilo’s[12] super AI insecure against AII,M−A[1]
Li-Chen-Sun [13] no formal proof provided insecure against AII,M−A[1]
Yum-Lee’s [17] insecure against AI,normal [11] normal AII

Yap-Heng-Goi [18] insecure against AI,normal [14,20]
Zhang et al.’s [19] super AI super AII

Our Scheme I normal AI super AII

Our Scheme II super AI super AII

According to the comparison given in the above table, the only known CLS
scheme which can be proved secure against malicious but passive Type II ad-
versary is the generic scheme in [11] (its proof was given in [1]). Most other
schemes are insecure under this attack. Except our scheme II, Zhang et al.’s [19]
scheme4 in ACNS 2006 is the only concrete secure scheme with formal secu-
rity proofs against super adversaries. As we have explained in Section 2.2, the
Public-Key-Replace oracle defined in [10] is not reasonable, and therefore the
security of Huang et al.’s scheme against Type I adversary remains unknown.
Similarly, the security of Yap-Heng-Goi’s scheme [18] against Type II adversary
is also unknown.

We further compare our schemes with Zhang-Wong-Xu-Feng’s scheme [19] in
detail. The following notations will be used in the comparison.

Notations:
|G1|: bit length of a point in G1 |p|: bit length in ZZp

BP: bilinear pairing PA: point addition in G1

EG1 : exponentiation in G1 EG2 : exponentiation in G2

We omit other operations which are trivial when compared with the above
operations. In the comparison, we also assume that e(P, P ) and e(Ppub, QID) can
be pre-computed and therefore they are not counted into the operation cost in
this table.

Further Comparison with Zhang-Wong-Xu-Feng’s scheme[19]

Scheme Signature Operation Security
Length Cost

Our Scheme I |G1| 2BP+ Normal AI and
EG1+ PA Super AII

Scheme in [19] 2|G1| 3BP+ 3EG1+2PA Super AI and AII

Our Scheme II |G1| + 2|p| 1BP+ 4EG1+ 2EG2+2PA Super AI and AII

4 The Adversary models given in [19] are similar to the Strong Type I and II adversary
defined in our paper, however, it is claimed in [19] that their scheme is also secure
against the Super adversary.



Certificateless Signature Revisited 321

From the above table, one can see that our scheme I enjoys the shortest
signature length, but the others have a higher security level. The signature length
of our scheme II is a little longer than Zhang-Wong-Xu-Feng’s scheme [19]. For
the operation cost, our scheme II requires 1 bilinear pairing, 4 exponentiations
in G1, 2 exponentiations in G2 and 2 point additions. Zhang-Wong-Xu-Feng’s
scheme requires 3 bilinear pairing, 3 exponentiations in G1 and 2 point additions.
Since pairing operations cost much more than other operations, our scheme II
has lower operation cost than the scheme in [19].

6 Conclusion

In this paper, we first revisited the security models of certificateless signature
schemes and proposed three new types of adversaries. The security of certifi-
cateless signatures against these adversaries is formulated. We then proposed
two concrete certificateless signature schemes and proved their security in the
random oracle model. Our first scheme has the shortest signature length com-
pared to any existing CLS schemes in the literature. The second scheme has
lower operation cost but a little longer signature length, compared with another
concrete scheme in ACNS 2006 which has the similar security level.

References

1. Au, M.H., Chen, J., Liu, J.K., Mu, Y., Wong, D.S., Yang, G.: Malicious KGC
Attacks in Certificateless Cryptography. In: ASIACCS (2007), also available at
http://eprint.iacr.org/2006/255

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. Avail-
able online http://eprint.iacr.org/2003/126

4. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. Journal
of Cryptology 17, 297–319 (2004)

5. Cao, X., Paterson, K.G., Kou, W.: An Attack on a Certificateless Signature Scheme.
In: Cryptology ePrint Archive. Available online
http://eprint.iacr.org/2006/367

6. Dent, A.W.: A Survey of Certificateless Encryption Schemes and Security Models.
In: Cryptology ePrint Archive. Available online:
http://eprint.iacr.org/2006/211

7. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22, 644–654 (1976)

8. Goldwasser, S., Micali, S., Rivest, R.: A Secure Digital Signature Scheme. SIAM
Journal on Computing 17, 281–308 (1988)

9. Gorantla, M.C., Saxena, A.: An Efficient Certificateless Signature Scheme. In: Hao,
Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.)
CIS 2005. LNCS (LNAI), vol. 3802, pp. 110–116. Springer, Heidelberg (2005)

10. Huang, X., Susilo, W., Mu, Y., Zhang, F.: On the Security of Certificateless Sig-
nature Schemes from Asiacrypt 2003. In: Desmedt, Y.G., Wang, H., Mu, Y., Li,
Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 13–25. Springer, Heidelberg (2005)

http://eprint.iacr.org/2006/255
 http://eprint.iacr.org/2003/126
http://eprint.iacr.org/2006/367
http://eprint.iacr.org/2006/211


322 X. Huang et al.

11. Hu, B.C., Wong, D.S., Zhang, Z., Deng, X.: Key Replacement Attack Against a
Generic Construction of Certificateless Signature. In: Batten, L.M., Safavi-Naini,
R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 235–246. Springer, Heidelberg (2006)

12. Liu, J.K., Au, M.H., Susilo, W.: Self-Generated-Certificate Public Key Cryptogra-
phy and Certificateless Signature/Encryption Scheme in the Standard Model. In:
2007 ACM Symposium on InformAtion, Computer and Communications Security
- ASIACCS’07 (2007)

13. Li, X., Chen, K., Sun, L.: Certificateless Signature and Proxy Signature Schemes
from Bilinear Pairings. Lithuanian Mathematical Journal 45, 76–83 (2005)

14. Park, Je. H.: An Attack on the Certificateless Signature Scheme from EUC Work-
shops 2006. In: Cryptology ePrint Archive. Available online:
http://eprint.iacr.org/2006/442

15. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

16. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

17. Yum, D.H., Lee, P.J.: Generic Construction of Certificateless Signature. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 200–
211. Springer, Heidelberg (2004)

18. Yap, W.-S., Heng, S.-H., Goi, B.-M.: An Efficient Certificateless Signature Scheme.
In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y., Lee, D.C.,
Kim, D., Jeong, Y.-S., Xu, C.-Z. (eds.) Emerging Directions in Embedded and
Ubiquitous Computing. LNCS, vol. 4097, pp. 322–331. Springer, Heidelberg (2006)

19. Zhang, Z., Wong, D.: Certificateless Public-Key Signature: Security Model and
Efficient Construction. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 293–308. Springer, Heidelberg (2006)

20. Zhang, Z., Feng, D.: Key Replacement Attack on a Certificateless Signature
Scheme. In: Cryptology ePrint Archive. Available online
http://eprint.iacr.org/2006/453

http://eprint.iacr.org/2006/442
http://eprint.iacr.org/2006/453


Identity-Committable Signatures and Their

Extension to Group-Oriented Ring Signatures�

Cheng-Kang Chu and Wen-Guey Tzeng

Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan 30050

{ckchu,wgtzeng}@cs.nctu.edu.tw

Abstract. The identity of “Deep Throat”, a pseudonym of the infor-
mation source in the Watergate scandal, remained mysterious for more
than three decades. In 2005, an ex-FBI official claimed that he was the
anonymous source. Nevertheless, some are still inconvinced.

In this paper, we introduce a new notion of identity-committable sig-
natures (ICS) to ensure the anonymity of “Deep Throat” inside a group.
A member of an organization can sign a message on behalf of himself
(regular signature) or the organization (identity-committed signature).
In the latter case, the signer’s identity is hidden from anyone, and can
be opened by himself only. We describe the requirements of ICS and
give the formal definition of it. Then we extend the notion of ICS to
group-oriented ring signatures (GRS) which further allow the signer to
hide his identity behind multiple groups. We believe a GRS scheme is
more efficient and practical than a ring signature scheme for leaking se-
crets. Finally, we provide concrete constructions of ICS and GRS with
information-theoretic anonymity, that is, the identity of the signer is
fully-protected.

Keywords: group signatures, ring signatures, anonymous signatures.

1 Introduction

In the early of 1970s, Woodward and Bernstein, two reporters of Washington
Post, broke many stories that eventually led to the resignation of President
Richard M. Nixon. This is the famous Watergate scandal in the history of the
United States. The information source, assumed the pseudonym “Deep Throat”,
remained confidential for more than three decades. Woodward and Bernstein
guaranteed that they would not reveal Deep Throat’s identity unless he is willing
to or he died. It is not till 2005 that, Felt, the ex-FBI No. 2, claimed that he
was the anonymous source for Watergate affairs.

From this story, we learn some characteristics of being a “Deep Throat”:

– Full-Anonymity. Keeping identity anonymous is the most important thing for
Deep Throat. Even the president can not trace the information source. Felt

� Research supported in part by National Science Council grant 95-2221-E-009-031,
Taiwan and Taiwan Information Security Center at NCTU (TWISC@NCTU).

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 323–337, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



324 C.-K. Chu and W.-G. Tzeng

is fortunate that the reporters are dependable. If they were threatened or
bribed, the identity of Deep Throat may be exposed much early.

– Group Authenticity. Although we can not learn the identity of Deep Throat,
we should be able to verify that the information comes from a specific or-
ganization for these inside stories. The two reporters described above knew
that the information from Felt is trustworthy because Felt was working in
FBI at that time.

– Self-Identifiability. After the event, in order to benefit from the identity or
witness in the court, Deep Throat should be able to prove that he was the
information source. In fact, although the Washington Post confirmed that
Felt was Deep Throat, some people still question that.

Based on these characteristics, we try to construct a signature scheme in the
following scenario.

David, an employee of a government organization, owns a personal sign-
ing key issued by the organization. He uses this key to sign official
documents. One day, he discovers a startling scandal inside the orga-
nization. He decides to be a “Deep Throat”, i.e. anonymously expose
it to people. So he uses his signing key to generate a signature on a
report of the scandal on behalf of the organization rather than his
personal identity, and sends it to a journalist. The journalist first
verifies that the information indeed comes from someone inside the
organization, and then publishes it. No one, including the chief of
the organization who owns the master secret key, can determine the
identity of Deep Throat. After that, David continues his work in that
organization as usual. Someday, if David wishes to, he can exhibit a
witness identifying himself as Deep Throat.

Consider the existent signature schemes which may achieve this objective.
For group signatures, there is a group manager with identifiability. David will
be afraid to expose the scandal. For ring signatures, David needs to collect all
public keys (or identities) of the staff in the organization to form the ring. The
computation and communication costs are too large to be practical. Besides, in
some secret agency, the identities of its staff are classified. David may not be
able to get the public keys of other secret agents.

In this paper, we propose a new notion of identity-committable signatures
(ICS) which fits for the above scenario. A member of an organization can sign
a message on behalf of himself (regular signature) or the organization (identity-
committed signature). In the latter case, the signer’s identity is hidden from
anyone, and can be opened by himself only. We describe the requirements of
ICS and give the formal definition of it. Then we extend the notion of ICS to
group-oriented ring signatures (GRS) which further allow the signer to hide his
identity behind multiple groups. Deep Throat who works in FBI can sign secrets
on behalf of numerous related organizations such as FBI, CIA, NSA, etc. The
size of the signature is only linear to the number of included organizations. Since
the signer can include the whole members of a group at a time, a GRS scheme
is more efficient and practical than general ring signature schemes.



Identity-Committable Signatures and Their Extension 325

Related Works. In fact, ICS are intermediate between group signatures and
ring signatures. We consider some concrete constructions of these two signature
schemes:

– Group signatures: The notion of group signatures was introduced by Chaum
and Van Heyst [17]. Since then, many other schemes were proposed [18, 15,
12,13,3,6,4,9,25,11]. Some works mentioned separability [26,14], where the
identifying ability can be designated to a revocation manager. It is possible
to use such separable group signature to construct ICS, but we try to find
more direct and more efficient solutions. Some group signature schemes with
traceability [24,31] give the signer self-identifiability, but there is still a group
manager identifying the signer.

– Ring signatures: Rivest, Shamir, and Tauman [33, 34] first introduced the
notion of ring signatures. Subsequently, many constructions were proposed
under various settings of signing keys [36,1,21,20,8]. Some works also men-
tioned the self-identifiability [33,29]. But in their constructions, this property
either needs to store witnesses with size linear to the number of non-signers
in the ring, or only guarantees the computational anonymity. Linkable ring
signatures [35, 27, 28] stress the ability of checking whether two ring sig-
natures are signed by the same signer. There are some ID-based construc-
tions [36, 22, 19, 30, 5] and constant-size constructions [20, 30, 5]. All these
schemes need a private key generator (PKG) with a master secret. In fact,
we can regard signers under the same PKG as the members of a group. So
signing on behalf of the whole group is a better idea than signing on behalf
of a list of group members. Even for constant-size schemes, the computation
cost of the signing and verifying procedures are linear to the number of ring
members.

2 Definition of ICS

In this section we give the formal definition of identity-committable signatures.

2.1 Components

An identity-committable signature scheme consists of the following algorithms.

– Setup(1λ): For the security parameter in unary, 1λ, the algorithm chooses
a master secret key K and outputs the corresponding public parameter μ.

– Extract(μ, ID, K): Output the private key SK for the identity ID.
– Sign(μ, m, SK): Output the regular signature σ on message m.
– Verify(μ, ID, m, σ): If σ is signed by ID’s private key on m, output ‘accept’;

otherwise, output ‘reject’.
– IC-Sign(μ, m, SK): Output an identity-committed signature σIC on mes-

sage m and a witness ω for identifying.
– IC-Verify(μ, m, σIC): If σIC is signed by a private key of the organization

on m, output ‘accept’; otherwise output ‘reject’.



326 C.-K. Chu and W.-G. Tzeng

– Identify(μ, ID, ω, σIC): If σIC is a valid identity-committed signature and
ω opens σIC to ID, output ‘valid’; otherwise output ‘invalid’.

Let PKG be the private key generator of an organization. PKG first runs
Setup, and publishes the public parameters. Then it issues the private key for
each organization member by performing Extract. Each member uses Sign and
Verify algorithms for regular signing and verification. When a member tries to
anonymously sign a message, he performs IC-Sign to get the identity-committed
signature and a witness. He outputs the signature to the verifier such that the
verifier can verify it via the IC-Verify algorithm. The signer holds the witness
secretly for later revealing his identity if he wants. Someday, he can execute
Identify by using the witness to prove that he is the original signer.

2.2 Security Definition

Bellare et al. [7] characterize the fundamental properties of group signatures
in terms of two crucial security requirements. But the two requirements are not
sufficient for ICS. Informally speaking, an identity-committable signature scheme
should satisfy the following properties.

1. Completeness: With the private key issued by the PKG of an organization,
one can sign messages on behalf of himself or the organization. In the latter
case, he can prove that he is the original signer.

2. Unforgeability: The scheme should be secure against existential forgery of
regular signature under adaptively chosen message and identity attack.

3. ICS-Unforgeability: For someone outside the organization, the scheme should
be secure against existential forgery of identity-committed signature under
adaptively chosen message attack.

4. ICS-Anonymity: No one but the signer himself can identify the signer of an
identity-committed signature.

5. ICS-Binding: The identity-committed signature can only be opened to the
original signer.

Formally, we have the following definition for an identity-committable signa-
ture scheme.

Definition 1 (Identity-Committable Signatures). Define the following or-
acles which can be queried adaptively by any probabilistic polynomial-time algo-
rithm (PPTA) A against the challenger C.

– ExtractA(ID): C returns the private key for identity ID.
– SignA(ID, m): C returns a regular signature of identity ID on message m.
– IC-SignA(ID, m): C returns an identity-committed signature on m along

with a witness which identifies ID as the signer.

An identity-committable signature scheme is secure if it meets the following re-
quirements.



Identity-Committable Signatures and Their Extension 327

– Completeness. For any m and ID, it holds that

Pr[Verify(μ, ID, m, σ) = accept : σ ← Sign(μ, m, SK);
SK ← Extract(μ, ID, K); (μ, K) ← Setup(1λ)] = 1

and

Pr[IC-Verify(μ, m, σIC) = accept, Identify(μ, ID, ω, σIC) = valid :
(σIC , ω) ← IC-Sign(μ, m, SK); SK ← Extract(μ, ID, K);
(μ, K) ← Setup(1λ)] = 1.

– Unforgeability. Given the public parameters and access of all oracles, no
PPTA A can output a valid regular signature (ID, m, σ) with non-negligible
probability if ExtractA(ID) and SignA(ID, m) are never queried.

– ICS-Unforgeability. Given the public parameters and access of Sign and
IC-Sign oracles, no PPTA A can output a valid identity-committed sig-
nature (m, σIC) with non-negligible probability if SignA(ID∗, m) and IC-
SignA(ID∗, m) are never queried for any ID∗.

– ICS-Anonymity. Given the public parameters and access of all oracles,
no PPTA A has a non-negligible advantage against a challenger C in the
following game:
1. A chooses two identities ID0, ID1 and a message m, and sends them to

C.
2. C chooses b ∈R {0, 1}, and computes an identity-committed signature

σIC on m by IDb’s private key. Then C sends σIC to A.
3. A outputs the guess b′. If b′ = b, A wins the game.

– ICS-Binding. Given the public parameters and access of all oracles, no
PPTA A can output a valid identity-committed signature (m, σIC) and two
witnesses (ID, ω) and (ID′, ω′) with non-negligible probability.

3 Definition of GRS

In this section we give the formal definition of group-oriented ring signatures.

3.1 Components

A group-oriented ring signature scheme consists of the following algorithms.

– Setup(1λ): For the security parameter 1λ, the algorithm chooses a master
secret key K and outputs the corresponding public parameter μ.

– Extract(μ, ID, K): Output the private key SK for the identity ID.
– GR-Sign(L, m, SK): For the list L of public parameters of all groups, out-

put a group-oriented ring signature σGR on message m.
– GR-Verify(L, m, σGR): If σGR is signed by a private key of a group in the

list L, output ‘accept’; otherwise output ‘reject’.



328 C.-K. Chu and W.-G. Tzeng

Each PKG of groups first performs Setup, and publish the public parameters.
It also issues the private key for each group member by performing Extract.
When a signer wants to sign messages on behalf of some groups, he takes the
public parameters of these groups to form the list L. Then the signer executes
GR-Sign to generate the group-oriented ring signature. The verifier also takes
the list L, and executes GR-Verify to confirm that σGR is signed by a member
of one group in L.

3.2 Security Definition

We have the following definition for a group-oriented ring signature scheme.

Definition 2 (Group-Oriented Ring Signatures). Define the following or-
acles which can be queried adaptively by any PPTA A against the challenger C
with a list L of public parameters.

– ExtractA(i, ID): C returns the private key for identity ID of the i-th group
in L.

– GR-SignA(i, L′, ID, m): C returns a group-oriented ring signature, signed
by identity ID of the i-th group in L, on m for the list L′. Note that L′ must
contain the i-th parameter of L, but the other parameters of L′ need not be
in the list L.

A group-oriented ring signature scheme is secure if it meets the following
requirements.

– Completeness. For any m, ID and L, it holds that

Pr[GR-Verify(L, m, σGR) = accept : σGR ← GR-Sign(L, m, SK);
SK ← Extract(μ, ID, K); (μ, K) ← Setup(1λ); μ ∈ L] = 1.

– Unforgeability. Given a list of public parameters L = (μ1, . . . , μl) and
access of all oracles, let C be the set of μi ∈ L where ExtractA(i, ID∗) is
queried for any ID∗. No PPTA A can output a valid group-oriented ring
signature (L∗, m, σGR) with non-negligible probability if L∗ ⊆ L\C and GR-
SignA(i∗, L∗, ID∗, m) is never queried for any i∗ and ID∗.

– Anonymity. Given a list of public parameters L = (μ1, . . . , μl) and access of
all oracles, no PPTA A has a non-negligible advantage against a challenger
C in the following game:
1. A chooses two identities (i0, ID0), (i1, ID1), a list L∗ and a message m,

where μi0 , μi1 ∈ L∗, and sends them to C.
2. C chooses b ∈R {0, 1}, and computes a group-oriented ring signature σGR

on m for L∗ by the private key of IDb of the ib-th group in L. Then C
sends σGR to A.

3. A outputs the guess b′. If b′ = b, A wins the game.



Identity-Committable Signatures and Their Extension 329

4 Concrete Constructions

In this section we first think of a generic construction of ICS and then propose
specific constructions of ICS and GRS.

4.1 Generic ICS Construction

We first provide a generic ICS scheme from an ID-based signature scheme Σ =
(SetupΣ , ExtractΣ , SignΣ , VerifyΣ) and a commitment scheme Γ = (CommitΓ ,
RevealΓ ). The organization designates a special IDG as the group identity, and
issues the corresponding private key SKG along with personal private keys to all
members. When a member wants to generate an identity-committed signature,
he uses the key SKG to sign the message and commits the regular signature
on that message. In the Identify process, the signer just reveals the regular
signature from the commitment. The detail is given as follows.

– Setup(1λ): Perform SetupΣ(1λ) to get the public parameters μ and master
secret key K. Define a group identity IDG which differs from all members.
Output (μ, IDG, K).

– Extract(μ, ID, K): Perform ExtractΣ(μ, IDG, K) and ExtractΣ(μ, ID, K)
to get SKG and SKID, respectively. Output (SKG, SKID) as the private
key for identity ID.

– Sign(μ, m, SKID): Output the regular signature σ = SignΣ(μ, m, SKID).
– Verify(μ, ID, m, σ): Output the result of VerifyΣ(μ, ID, m, σ).
– IC-Sign(μ, m, SKG, SKID): PerformCommitΓ (σ) to get a committed value γ

and a witness ω, where σ = SignΣ(μ, m, SKID). Then compute σG =
SignΣ(μ, m||γ, SKG). Output the identity-committed signature σIC =(σG, γ)
and the witness ω.

– IC-Verify(μ, m, σIC): Parse the identity-committed signature σIC as
(σG, γ). Output the result of VerifyΣ(μ, IDG, m||γ, σG).

– Identify(μ, ID, ω, σIC): If σIC = (σG, γ) is a valid identity-committed sig-
nature on m, then output the result of VerifyΣ(μ, ID, m, σ), where σ =
RevealΓ (γ, ω).

The security of this scheme directly comes from the security of Σ and Γ . Note
that if Γ has perfect hiding property, the scheme is information-theoretically
anonymous.

Although the generic scheme meets the security requirements of ICS, it is
weak in some scenario while all group members use the same private key to
generate identity-committed signatures. For example, if Alice signs a personal
message in the private communication with Bob, Bob may use Alice’s signa-
ture to generate an identity-committed signature, and then frame Alice as Deep
Throat. Moreover, the generic scheme loses some additional properties such as
chosen-linkability and private-communicability introduced later.



330 C.-K. Chu and W.-G. Tzeng

4.2 The ICS Scheme Based on Pairings

Let G and G1 be two cyclic groups of prime order p. We write G additively and
G1 multiplicatively. Let e : G × G → G1 is a map with the following properties:

– Bilinear: for all P, Q ∈ G and a, b ∈ Z, e(aP, bQ) = e(P, Q)ab.
– Non-degenerate: for some P ∈ G, e(P, P ) �= 1.

We say that G is a bilinear group [23] if the group operations in G and G1, and
the bilinear map are efficiently computable.

Our scheme needs three following complexity assumptions. The first two are
the discrete logarithm problem and the computational Diffie-Hellman problem
in bilinear group G. The third one is the Diffie-Hellman problem with chosen
bases.

Discrete Logarithm Problem (DLP). The discrete logarithm problem in
an (additive) cyclic group G is, given P, aP ∈ G, to output a ∈ Zp. We
say that a PPTA algorithm A has advantage ε in solving DLP in G if

Pr[A(P, aP ) = a : P, aP ∈R G] ≥ ε.

The DL assumption in G holds if no PPTA A has non-negligible advantage
ε in solving DL problem in G.

Computational Diffie-Hellman Problem (CDHP). The computational
Diffie-Hellman problem in an (additive) cyclic group G is, given P, aP, bP ∈
G, to output abP ∈ G. We say that a PPTA algorithm A has advantage ε
in solving CDHP in G if

Pr[A(P, aP, bP ) = abP : P, aP, bP ∈R G] ≥ ε.

The CDH assumption in G holds if no PPTA A has non-negligible advantage
ε in solving CDH problem in G.

Chosen-Base CDH Problem (CB-CDHP). The chosen-base CDH problem
in an (additive) cyclic group G is, given P, aP, bP ∈ G, to output Q, abQ ∈
G\{eG}, where eG is the identity of G. We say that a PPTA algorithm A
has advantage ε in solving CB-CDHP in G if

Pr[A(P, aP, bP ) = (Q, abQ), Q ∈ G\{eG} : P, aP, bP ∈R G] ≥ ε.

The CB-CDH assumption in G holds if no PPTA A has non-negligible ad-
vantage ε in solving CB-CDH problem in G.

The ICS Scheme. The algorithms of our construction are described as follows.
The construction is based on the ID-based signature scheme proposed by Cha
and Cheon [16], which can be proved secure in the random oracle model.

– Setup(1λ): On input security parameter 1λ, randomly choose two groups
G and G1, a bilinear map e and a generator P defined above. Choose two
random values x, y ∈ Zp, compute

PX = xP and PY = yP.



Identity-Committable Signatures and Their Extension 331

Choose two cryptographically secure hash functions H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ × G → Zp. Output (x, y) as the master secret key and μ =
(G, G1, e, P, PX , PY , H1, H2) as the public parameters.

– Extract(μ, ID, x, y): Let QID = H1(ID), compute

Q′ID = xQID and SID = xyQID.

Output (Q′ID, SID) as the private key for identity ID.
– Sign(μ, m, Q′ID, SID): Compute

U = rQ′ID and V = (r + h)SID,

where r ∈R Zp and h = H2(m, U). Output the regular signature σ =
(Q′ID, U, V ).

– Verify(μ, ID, m, σ): Parse the regular signature σ as (Q′ID, U, V ). Compute
QID = H1(ID) and h = H2(m, U). Check that

e(QID, PX) ?= e(Q′ID, P ) and e(U, PY ) ?= e(V, P )e(Q′ID, −PY )h.

If both equations hold, output ‘accept’; otherwise output ‘reject’.
– IC-Sign(μ, m, Q′ID, SID): Randomly choose a value w ∈ Z

∗
p\{1}, compute

Q = wQID, Q′ = wQ′ID, U = rQ′ and V = (r + h)S,

where S =wSID, r ∈R Zp and h = H2(m, U).Output the identity-committed
signature σIC = (Q, Q′, U, V ) and the witness w.

– IC-Verify(μ, m, σIC): Parse the identity-committed signature σIC as
(Q, Q′, U, V ). Compute h = H2(m, U). Check that

e(Q, PX) ?= e(Q′, P ) and e(U, PY ) ?= e(V, P )e(Q′, −PY )h.

If both equations hold, output ‘accept’; otherwise output ‘reject’.
– Identify(μ, ID, w, σIC ): Compute QID = H1(ID). If σIC = (Q, Q′, U, V )

is a valid identity-committed signature and QID = w−1Q, output ‘valid’;
otherwise output ‘invalid’.

Note that we cannot verify whether w = 1 in the IC-Verify algorithm. One
may directly use a standard signature for some ID as an identity-committed
signature. However, this is reasonable because ICS is designed for exposing mes-
sages. If someone already signed a message m, then the identity-committed sig-
nature for the same m is meaningless.

The security argument of this construction can be found in Appendix A.

Additional Properties. In addition to the properties of ICS we defined, our
construction provides two characteristics.

– Chosen-Linkability. The signer can decide the linkability of his
identity-committed signatures. If a signer wants to show that some identity-
committed signatures are signed by him, he can use the same witness w to
mask his identity. The verifier knows that the signatures with the same Q
come from the same signer.



332 C.-K. Chu and W.-G. Tzeng

– Private-Communicability. One can privately communicate with the signer of
an identity-committed signature without revealing the signer’s identity. For
an identity-committed signature (Q, Q′, U, V ), one can treat Q as the public
key of the signer, and encrypt messages using Boneh and Franklin’s IBE
scheme [10] (let Q be the hashed value of H1). The ciphertext can be posted
onto some bulletin board, and only the original signer1 can decrypt the
message.

4.3 Group-Oriented Ring Signatures

Abe et al. [1] proposed a ring signature scheme that allows mixed use of dif-
ferent flavors of keys at the same time. All participants can choose their keys
with different parameter domains. By applying their construction to our ICS
scheme, we get an efficient GRS scheme. A signer can sign messages on behalf
of the organization which he belongs to, and then take the public parameters of
other organizations to form a ring signature. These groups have their own public
parameters, respectively.

First, we slightly modify IC-Sign and IC-Verify of our ICS scheme to be a
three-move type signature scheme.

– IC-Sign’(μ, m, Q′ID, SID): Randomly choose a value w ∈ Z
∗
p\{1}, compute

Q = wQID, Q′ = wQ′ID, U = rQ′ and V = (r + h)S,

where S = wSID, r ∈R Zp and h = H ′2(m, e(U, PY )). Output the identity-
committed signature σIC = (Q, Q′, h, V ) and the witness w.

– IC-Verify’(μ, m, σIC): Parse the identity-committed signature σIC as
(Q, Q′, h, V ). Compute U ′ = e(V, P )e(Q′, −PY )h. Check that

e(Q, PX) ?= e(Q′, P ) and h
?= H ′2(m, U ′).

If both equations hold, output ‘accept’; otherwise output ‘reject’.

The security proof is similar to the proof of the original scheme. We omit it here.
Let L = {μ(i) = (G(i), G

(i)
1 , e(i), P (i), P

(i)
X , P

(i)
Y , H

(i)
1 , H

(i)
2 )|1 ≤ i ≤ n} be the

list of public parameters of the n groups that the signer wants to form the ring.
Assume that the signer belongs to the s-th group. The GRS scheme is as follows.

– Setup and Extract: The same as the algorithms of the ICS scheme.
– GR-Sign(L, m, Q′ID, SID)

• For i = s: Perform IC-Sign’(μ(s), m, Q′ID, SID) to get the identity-
committed signature (Q(s), Q′(s), h(s), V (s)) and set

U ′(s) = e(s)(V (s), P (s))e(s)(Q′(s), −P
(s)
Y )h(s)

.

1 The PKG also can decrypt the message, but we can use the certificateless encryption
scheme [2] to eliminate the trust of PKG.



Identity-Committable Signatures and Their Extension 333

• For i = s + 1, . . . , n, 1, . . . , s − 1: Randomly choose z(i) ∈ Z and V (i) ∈
G

(i). Compute

Q(i) = z(i)P (i), Q′(i) = z(i)P
(i)
X , and h(i) = H

(i)
2 (L, m, U ′(i−1))

and set U ′(i) = e(i)(V (i), P (i))e(i)(Q′(i), −P
(i)
Y )h(i)

.
Output σGR = (h(1), (Q(1), Q′(1), V (1)), . . . , (Q(n), Q′(n), V (n))).

– GR-Verify(L, m, σGR)
For i = 1, . . . , n, compute

U ′(i) = e(i)(V (i), P (i))e(i)(Q′(i), −P
(i)
Y )h(i)

,

where h(i) = H
(i)
2 (L, m, U ′(i−1)) if i �= 1. Check that

e(i)(Q(i), P
(i)
X ) ?= e(i)(Q′(i), P (i)) and h(1) ?= H

′(1)
2 (m, U ′(n)).

If both equations hold, output ‘accept’; otherwise output ‘reject’.

Certainly, the signer can also add some single persons to the list of the ring.
By the generic construction of [1], these individual public keys can be “three-
move type” or “trapdoor-one-way type”. Therefore, this extension improves the
efficiency of ring signatures without loss of generality.

The security proofs of this construction is based on the proofs of the ICS
scheme. The detail will be provided in the full version of this work.

5 Conclusions

In this paper we introduce the new notion of identity-committable signatures
that allow the signer to “commit” his identity on the signature generated on be-
half of the signer’s group. Later, the signer can open the identity and prove
that he is the original signer. Furthermore, we also introduce the extension
of ICS, group-oriented ring signatures, which can be regarded as a very effi-
cient and practical ring signature scheme. We give the definitions of ICS and
GRS schemes. Finally, we provide the implementations providing unconditional
anonymity, chosen-linkability and private-communicability.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)



334 C.-K. Chu and W.-G. Tzeng

4. Ateniese, G., de Medeiros, B.: Efficient group signatures without trapdoors. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 246–268. Springer, Hei-
delberg (2003)

5. Au, M.H., Liu, J.K., Yuen, Y.H., Wong, D.S.: Id-based ring signature scheme secure
in the standard model. Cryptology ePrint Archive, Report 2006/205 (2006)

6. Baudron, O., Stern, J.: Non-interactive private auctions. In: Syverson, P.F. (ed.)
FC 2001. LNCS, vol. 2339, pp. 364–378. Springer, Heidelberg (2002)

7. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS,
vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

8. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

10. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

11. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

12. Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997)

13. Camenisch, J., Michels, M.: A group signature scheme with improved efficiency.
In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174.
Springer, Heidelberg (1998)

14. Camenisch, J., Michels, M.: Separability and efficiency for generic group signature
schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430.
Springer, Heidelberg (1999)

15. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical Report 260, Institute for Theoretical Computer Science, ETH
Zurich (March 1997)

16. Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidel-
berg (2002)

17. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

18. Chen, L., Pedersen, T.P.: New group signature schemes. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995)

19. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In:
Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
499–512. Springer, Heidelberg (2005)

20. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

21. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson,
T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer,
Heidelberg (2003)



Identity-Committable Signatures and Their Extension 335

22. Herranz, J., Sáez, G.: New identity-based ring signature schemes. In: Lopez, J.,
Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 27–39. Springer,
Heidelberg (2004)

23. Joux, A.: A one round protocol for tripartite diffie-hellman. Journal of Cryptol-
ogy 17(4), 263–276 (2004)

24. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer,
Heidelberg (2004)

25. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidel-
berg (2005)

26. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)

27. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)

28. Liu, J.K., Wong, D.S.: Linkable ring signatures: Security models and new schemes.
In: Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A., Lee, H.P., Mun, Y., Taniar,
D., Tan, C.J.K. (eds.) Computational Science and Its Applications – ICCSA 2005.
LNCS, vol. 3481, pp. 614–623. Springer, Heidelberg (2005)

29. Lv, J., Wang, X.: Verifiable ring signature. In: Proceedings of The 3rd International
Workshop on Cryptology and Network Security (CANS ’03, in conjunction with
DMS ’03), pp. 663–667 (2003)

30. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes,
A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

31. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 372–386. Springer, Heidelberg (2004)

32. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

33. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

34. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret: Theory and applica-
tions of ring signatures. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.)
Theoretical Computer Science. LNCS, vol. 3895, pp. 164–186. Springer, Heidelberg
(2006)

35. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separa-
ble linkable threshold ring signatures. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004)

36. Zhang, F., Kim, K.: Id-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

A Security Proofs of The ICS Scheme Based on Pairings

Since the completeness requirement can be checked straightforward, we pro-
vide the other security arguments as follows. The proof techniques of unforge-
ability and ICS-unforgeability are similar to that of the underlying signature
scheme [16]. We omit the detail proofs of them because of the lack of space.



336 C.-K. Chu and W.-G. Tzeng

Lemma 1. [16, Lemma 1] If there is an algorithm A that forges a regular
signature of our scheme under adaptively chosen message and identity attack
with advantage ε in time t, then there is an algorithm A1 which can forge a
signature under chosen message and given identity attack with advantage ε1 ≥
ε(1 − 1

p ) 1
qH1

in time t1 ≤ t, where qH1 is the maximum number of queries to H1

made by A.

Lemma 2. If there is an algorithm A1 that forges a regular signature of our
scheme under adaptively chosen message and given identity attack with advan-
tage ε1 ≥ 10(qS + 1)(qS + qH2)/p in time t1, then there is an algorithm B which
can solve CDHP with advantage ε′ ≥ 1/9 in time t′ ≤ 23qH2t1/ε1, where qH2

and qS are the maximum number of queries to H2 and Sign, respectively.

Theorem 1 (Unforgeability). If there is an algorithm A that forges a regular
signature of our scheme under adaptively chosen message and identity attack
with advantage ε ≥ 10(qS + 1)(qS + qH2)qH1/(p − 1) in time t, then there is
an algorithm B which can solve CDHP with advantage ε′ ≥ 1/9 in time t′ ≤
23qH1qH2 t

ε(1− 1
p ) , where qH1 , qH2 and qS are the maximum number of queries to H1,

H2 and Sign, respectively.

Proof. By the above two lemmas, the theorem holds.

Theorem 2 (ICS-Unforgeability). If there is an algorithm A that forges an
identity-committed signature of our scheme under adaptively chosen message
attack with advantage ε ≥ 10(qSIC + 1)(qSIC + qH2)/p in time t, then there is
an algorithm B which can solve CB-CDHP with advantage ε′ ≥ 1/9 in time
t′ ≤ 23qH2t/ε, where qH1 , qH2 and qSIC are the maximum number of queries to
H1, H2 and IC-Sign, respectively.

Theorem 3 (ICS-Anonymity). Our scheme has the information-theoretic
ICS-Anonymity property.

Proof. For a valid identity-committed signature σIC = (Q, Q′, U, V ), it can be
opened to any identity ID∗ because there is a w∗ such that

Q = w∗QID∗ ,

where QID∗ = H1(ID∗). Therefore, the signature has information-theoretic ICS-
Anonymity.

Theorem 4 (ICS-Binding). If there is an algorithm A that breaks ICS-Binding
property with advantage ε in time t, then there is an algorithm B which can solve
DLP with advantage ε′ ≥ ε(1 − 1

p2 ) 1
q2

H1
in time t′ ≤ t, where qH1 is the maximum

number of queries to H1.



Identity-Committable Signatures and Their Extension 337

Proof. On input (P̃ , aP̃ ), B computes a as follows.

1. Run Setup and execute A on the output system parameters.
2. Answer the oracle queries as the real scheme except that when A queries

HA1 (IDj) and HA1 (IDj′) for two randomly chosen j, j′ ∈ {1, 2, . . . , qH1},
return P̃ and aP̃ respectively.

3. A outputs an identity-committed signature (Q, Q′, U, V ) on m, and two wit-
nesses (w, ID) and (w′, ID′). If ID �= IDj or ID′ �= IDj′ , output fail and
abort. Otherwise, output a = w/w′.

We can see that since Q = wQID = wP̃ and Q = w′QID′ = w′aP̃ , the value
a is properly computed. Moreover, since H1 is modeled as a random oracle, the
output distribution of all oracles queried by A are indistinguishable from the
distribution of the real scheme. By the assumption of A, we have

Pr[w and w′ are witnesses for ID and ID′] ≥ ε.

For the same reason, the probability that A outputs valid witnesses (w, ID) and
(w′, ID′) without queries to H1(ID) and H1(ID′) is negligible. That is,

Pr[ID = IDi, ID′ = IDi′ , i, i′ ∈ {1, 2, . . . , qH1}|
w and w′ are witnesses for ID and ID′] ≥ 1 − 1

p2 .

Moreover, since j and j′ are randomly chosen, we have

Pr[ID = IDj = P̃ , ID′ = IDj′ = aP̃ |
ID = IDi, ID′ = IDi′ i, i′ ∈ {1, 2, . . . , qH1}] ≥ 1

q2
H1

.

By combining these equations, we have

Pr[B outputs the correct answer a for DLP ] ≥ ε · (1 − 1
p2 ) · 1

q2
H1

.



Hash-and-Sign with Weak Hashing Made Secure

Sylvain Pasini and Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland

http://lasecwww.epfl.ch

Abstract. Digital signatures are often proven to be secure in the ran-
dom oracle model while hash functions deviate more and more from
this idealization. Liskov proposed to model a weak hash function by a
random oracle together with another oracle allowing to break some prop-
erties of the hash function, e.g. a preimage oracle. To avoid the need for
collision-resistance, Bellare and Rogaway proposed to use target collision
resistant (TCR) randomized pre-hashing. Later, Halevi and Krawczyk
suggested to use enhanced TCR (eTCR) hashing to avoid signing the
random seed. To avoid the increase in signature length in the TCR con-
struction, Mironov suggested to recycle some signing coins in the message
preprocessing. In this paper, we develop and apply all those techniques.
In particular, we obtain a generic preprocessing which allows to build
strongly secure signature schemes when hashing is weak and the inter-
nal (textbook) signature is weakly secure. We model weak hashing by a
preimage-tractable random oracle.

1 Introduction

A textbook signature scheme usually does a poor job because it restricts to input
messages of fixed length and is often weakly secure. In order to sign messages
of arbitrary length, hash functions [17,15,19,20] and the so-called hash-and-sign
paradigm appeared. Clearly, the hash function must be collision resistant but
they are threaten species these days [23,22,24]. In this paper we wonder how to
recycle signature schemes that are currently implemented and based on (now)
weak hash functions. To do so, we consider generic transform using preprocessing
based on [4,9,13].

One crucial task is to find a model which fits to the current security of hash
functions. A solution is to use the Liskov [12] idea. It consists of a random
oracle that are provided together with another oracle that “breaks” the hash
function, e.g. a first preimage oracle. We apply the preimage-tractable random
oracle model (PT-ROM) to model weak hashing in digital signatures.

A natural solution to avoid the collision-resistance assumption is to add ran-
domness in hashing. Bellare and Rogaway [4] proposed to sign (K, HK(m)) with
a random salt K where H is a Target Collision Resistant (TCR) hash func-
tion (also known as universal one-way hash function). More recently, Halevi and
Krawczyk [9] proposed the concept of enhanced TCR (eTCR) hash function,

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 338–354, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Hash-and-Sign with Weak Hashing Made Secure 339

some eTCR construction techniques, and the RMX construction based on cur-
rent hash functions. This latter scheme only adds a randomized preprocessing on
the input message and thus standard implementations can be used as-is. As an
application to their eTCR constructions, they suggest to use it as preprocessing
for signatures and thus the salt K needs not to be signed. Here, we prove in
our PT-ROM that this construction is strongly secure based on any textbook
signature scheme which is weakly secure.

The disadvantage of the methods using a random seed K is that K must be ap-
pended to the signature. To avoid the increase in signature length, Mironov [13]
proposed for DSA [7,6], RSA-PSS [3], and the Cramer-Shoup [5] schemes to
re-use the randomness from the signature scheme instead of adding a new one.
Finally, we generalize this construction and propose a generic transform that
applies to special signature schemes. Indeed, we define special signature scheme
for which we can split the sign algorithm in two parts: first, there is a random-
ized algorithm independent from the input message, then there is a deterministic
algorithm which outputs the signature. We call these schemes Signatures with
Randomized Precomputation (SRP). This makes the preprocessing transform
less generic because we must assume that the signature generates some ran-
dom coins which are available before the message is processed and which are
extractable from the signature.

In this paper, we start with some preliminaries and then we present the
hash-and-sign paradigm with many existing hashing methods. In particular, we
present the TCR-based from Bellare-Rogaway [4] and eTCR-based signature
from Halevi-Krawczyk [9] constructions. In Section 4, we give a formal proof of
the Halevi-Krawczyk construction using weak hashing. In the subsequent sec-
tion, we generalize the technique by Mironov [13] and we give a formal security
proof. Finally, we present a direct application to DSA and validate the Halevi-
Krawczyk construction with RMX preprocessing.

2 Preliminaries

Given a security parameter λ, we say that f(λ) is polynomially bounded and we
write f(λ) = poly(λ) if there exists n such that f(λ) = O(λn) when λ → +∞.
We say that f(λ) is negligible and we write f(λ) = negl(λ) if there exists x > 0
such that f(λ) = O(x−λ) when λ → +∞. For the sake of readability, our
theorems are stated in terms of asymptotic complexity although they are proven
by using exact complexities in some real-life computational model. The security
parameter λ is almost always hidden in notations.

2.1 Digital Signature Schemes

Let M be the set of possible input messages, i.e. the domain. We define fixed
message-length digital signature schemes (FML-DS) any signature scheme which
applies only to a restricted message space M = {0, 1}r(λ) and arbitrary message-
length digital signature (AML-DS) schemes the schemes when M = {0, 1}∗.



340 S. Pasini and S. Vaudenay

We formalize a digital signature scheme S by three algorithms: The setup
algorithm (Kp, Ks) ← S.setup(1λ) generates a key pair depending on a security
parameter λ. The sign algorithm σ ← S.sign(Ks, m) outputs a signature σ ∈ S
of a message m ∈ M. The verify algorithm b ← S.verify(Kp, m, σ) tells whether
the pair (m, σ) is valid or not. It returns 1 if and only if the signature is valid
and 0 otherwise.

An FML-DS can be transformed into AML-DS following the hash-and-sign
paradigm. Here, hashing is used as a domain extender. For instance, DSA [7,6]
is based on SHA-1 [20] while RSA [16] uses MD5 [15] in the standard PKCS #1
v1.5 that is used in X.509 [11].

Consider an adversary A against S. A plays a game against a challenger C
who can sign messages. The goal of A is to yield a valid pair (m̂, σ̂) which was
not produced by C. Textbook signature schemes such as ElGamal [8] or plain
RSA [16] signatures are often existentially forgeable. We consider the strong
security model EF-CMA and the weak security model UF-KMA.

UF-KMA and EF-CMA Games. The signature scheme is said (T, �, ε)-UF-KMA
(resp. EF-CMA) resistant if any adversary A bounded by a complexity T and �
valid signatures on known (resp. chosen) messages cannot win the game of Fig. 1
(resp. Fig. 2) with probability higher than ε1. The scheme is said UF-KMA secure
(resp. EF-CMA-secure) if for any T = poly and � = poly there exists ε = negl
such that the scheme is (T, �, ε)-UF-KMA (resp. EF-CMA) resistant.

A C
Kp←−−−− (Kp, Ks) ← S.setup(1λ)
m̂←−−−− pick m̂ ∈u M

∀i ∈ 1..� : mi ∈u M
mi||σi←−−−− σi ← S.sign(Ks, mi)

select σ̂
σ̂−−−−→ b ← S.verify(Kp, m̂, σ̂)

A win if b = 1, m̂ �= mi

Fig. 1. UF-KMA game

A C
Kp←−−−− (Kp, Ks) ← S.setup(1λ)

∀i ∈ 1..� :

select mi
mi−−−−→
σi←−−−− σi ← S.sign(Ks, mi)

select m̂, σ̂
m̂||σ̂−−−−→ b ← S.verify(Kp, m̂, σ̂)

A win if b = 1, m̂ �= mi

Fig. 2. EF-CMA game

2.2 Hash Functions

Collision Resistant Hash Functions. (CRHF) are hash functions in which we
cannot construct two inputs x and y such that H(x) = H(y) and x �= y2.
We say H depending on a security parameter λ is CRHF if any polynomially
bounded adversary finds collisions with negligible probability.

Target Collision Resistant (TCR) Hash Functions. was introduced by Naor and
Yung [14] and then renammed in [4]. A (T, ε)-TCR is a keyed function H :
{0, 1}k × {0, 1}∗ �→ {0, 1}n such that any adversary bounded by a complexity

1 Our results holds even if the winning conditions are replaced by (m̂, σ̂) �= (mi, σi).
2 Note that this definition is not so formal as discussed in Rogaway [18].



Hash-and-Sign with Weak Hashing Made Secure 341

T cannot win the game of Fig. 3 with probability higher than ε. For Hλ :
{0, 1}k(λ) × {0, 1}∗ �→ {0, 1}n(λ), we say H is TCR if any polynomially bounded
adversary wins with negligible probability.

Enhanced Target Collision Resistant (eTCR) hash function. was introduced by
Halevi and Krawczyk [9]. A (T, ε)-eTCR is a stronger TCR function such that
any adversary bounded by a complexity T cannot win the game of Fig. 4 with
probability higher than ε. We say H is eTCR if any polynomially bounded
adversary wins with negligible probability. A OW-eTCR hash function is an
eTCR hash function for which (κ, m) �→ Hκ(m) is also OW.

A C
m−−−−−−−→
K←−−−−−−− pick K ∈U {0, 1}k

m̂−−−−−−−→
A win if HK(m̂) = HK(m), m̂ �= m

Fig. 3. TCR game

A C
m−−−−−−−→
K←−−−−−−− pick K ∈U {0, 1}k

m̂‖K̂−−−−−−−→
A win if HK̂(m̂) = HK(m), (m, K) �= (m̂, K̂)

Fig. 4. eTCR game

Random Oracle Hashing. A Random Oracle R : {0, 1}∗ �→ {0, 1}n often repre-
sents a uniformly distributed random hash function [2]. It is simulated by an
oracle managing a table that is initially empty. When R receives a query with
input m and there is an (m, r) entry in the table, it simply returns r. Otherwise,
it picks a random value r ∈ {0, 1}n, returns it, and inserts a new entry (m, r) in
the table.

Preimage-Tractable Random Oracle Hashing. Preimage-Tractable Random Ora-
cles were introduced by Liskov [12]. It is used to idealize some weak hash function
for which preimages are computable, i.e. the one-wayness is not guaranteed. It
consists of two oracles:

– the first oracle G can be used to compute images like a random oracle, i.e.
r = G(m),

– the second oracle preimageG can be used to find a preimage of a hashed value.
When preimageG is queried with input r, it picks uniformly at random an
element within the set of all its preimages, i.e. it outputs m ∈u G−1(r).

The simulation of G is done as for random oracle hashing with a table T. To
simulate preimageG, upon a new query r we first compute the probability q to
answer an m that is not new, i.e. q = Pr

[
(G−1(r), r) ∈ T| �(m′,r′)∈T G(m′) = r′

]
.

Then flip a biased coin b with Pr[b = 0] = q and if b = 0 we pick uniformly one
(m, r) in T otherwise we pick uniformly one m such that (m, r) /∈ T, insert (m, r)
in T. Finally, answer by m. Note that this oracle can be used to find collisions
as well.

From a theoretical viewpoint, the preimage-tractable random oracle is as pow-
erful as the random oracle since preimageG(0‖α) ⊕ preimageG(1‖α) is indifferen-
tiable from a random oracle even when (G, preimageG) is a preimage-tractable



342 S. Pasini and S. Vaudenay

random oracle. Our motivation is to model weak hash functions which are in
place without changing the algorithm implementations.

3 Domain Extension

3.1 Deterministic Hash-and-Sign

Given a hash function H : {0, 1}∗ → {0, 1}k and an FML-DS S0 on domain
{0, 1}k, we construct S′ on domain {0, 1}∗ by S′.sign(Ks, m) = S0.sign (Ks,
H(m)).

Theorem 1. If H is a collision resistant hash function and S0 is EF-CMA-
secure, then S′ is EF-CMA-secure.

This folklore result is nicely treated in [18].

Theorem 2. If H is a random oracle and S0 is UF-KMA-secure, then S′ is
EF-CMA-secure.

The proof of this folklore result is rather straightforward. Indeed, H brings
collision resistance in domain extension as well as unpredictability.

3.2 Randomized Hash-and-Sign

The idea of using a TCR comes from Bellare and Rogaway [4] and was also
reused recently by Mironov [13]. The constructed signature consists of the pair
(κ, S.sign(Ks, κ‖Hκ(M))) where Hκ(·) is a TCR hash function. The following
result is a straightforward generalization of Mironov [13].

Theorem 3. Consider an FML-DS S0 with domain {0, 1}r and a function G0 :
{0, 1}∗ �→ {0, 1}r. We assume that G0(X) is indistinguishable from Y ∈u {0, 1}r

when X ∈u {0, 1}2r. Let H : {0, 1}k × {0, 1}∗ �→ {0, 1}n be a TCR hash function
and R : {0, 1}k+n �→ {0, 1}r be a random oracle. We construct two AML-DS S
and S′ by

S.sign(Ks, m) = S0.sign (Ks, G0(m))
S′.sign(Ks, m) = (κ ‖ S0.sign (Ks, R (κ‖Hκ(m)))) with κ ∈u {0, 1}k

Assuming that S is EF-CMA-secure, then S′ is also EF-CMA-secure.

This means that if there exists a domain extender G0 that makes S secure, then
S′ is secure.

Proof. Consider H : {0, 1}k × {0, 1}∗ �→ {0, 1}n is a (T + μH , εH)-TCR hash
function for μH to be defined later, R : {0, 1}k+n �→ {0, 1}r is a random oracle
bounded to q queries, and S0 an FML-DS scheme with r-bit input messages. We
assume that the construction S is (T + μS , �, εS)-EF-CMA secure for μS to be
defined later. We assume that G0 is (T +μG, q+�+1, εd)-PRG when restricted to



Hash-and-Sign with Weak Hashing Made Secure 343

(2r)-bit inputs. We will prove that the construction S′ is (T, �, εS+�εH +εc+εd)-
EF-CMA secure where εc represents a probability of collision on the outputs of
the random oracle.

We consider an adversary A playing the EF-CMA game against S′. We assume
without loss of generality that A queries R with Hκ̂(m̂) before releasing the final
forgery (m̂, κ̂, σ̂) (so we have up to q + 1 queries to R). By using an algorithm
B, we prove that we can reduce A to an adversary against either the signature
construction S or the TCR hash function H .

A B C Di

Kp
←−−−−

Kp
←−−−− (Kp, Ks) ← S0.setup(1λ)

xi
−−−−→

gi
←−−−−

simR
mj

−−−−→

κj‖σj
←−−−−

simSign

mj
−−−−−−−−−−−−−−−−−−−−−−−−→

κj
←−−−−−−−−−−−−−−−−−−−−−−−−

m̄j
−−−−→

σj
←−−−−

σj ← S0.sign(Ks, G0(m̄j))

κj ∈u {0, 1}k

bm‖bκ‖bσ

−−−−→

bh ← Hbκ( bm)

bx ← bκ‖bh

find m̄:
G0(m̄) = simR(bx)

bm
−−−−−−−−−−−−−−−−−−−−−−−−→

m̄‖bσ

−−−−→ bS ← S0.verify(Kp, G0(m̄), bσ)

check ∀j :
Hκj

( bm) �= Hκj
(mj)

Fig. 5. Reduction to EF-CMA or TCR games (from EF-CMA)

The reduction is depicted on Fig. 5. Clearly, B has to simulate the random
oracle R and the signing oracle that we refer to simR and simSign respectively.
The simulations work as follows:

simR: B manages a table T initially empty. For each R-query with input x:
– if simR(x) is not defined in T, B picks a random m̄ uniformly in {0, 1}2r

and answers g ← G0(m̄). Hence, a new entry (x, g, m̄) is inserted in T,
meaning simR(x) = g = G0(m̄). Note that the third entry m̄ will be used
by simSign only.

– otherwise, B answers simR(x) as defined in T.
simSign: For each sign-query with input m:

1. B computes h ← Hκ(m), x ← κ‖h where κ is returned by Di on query
m,

2. B queries simR(x). Let m̄ be such that simR(x) = G0(m̄) from T,
3. B queries C with m̄ to obtain its signature σ,
4. finally, B returns κ‖σ to A.

B is allowed to � queries to the S0.sign oracle, so A is also allowed to � queries
to simSign. Note that the simSign simulation is perfect but the simR simulation
is not. At the end, if A succeeds, he returns a forged pair (m̂, κ̂, σ̂) to B. We use
the proof methodology of Shoup [21]:



344 S. Pasini and S. Vaudenay

– Let game0 be the EF-CMA game against S′ depicted on Fig. 2.
– Let E1 be the event that there were no collision on the output of R. Let

game1 be game0 in which E1 occurred.
Clearly, when E1 does not occur, there is a collision on the R outputs. Since
there is at most q + � + 1 elements in the simR table, this probability is
bounded by εc ≤ (q+�+1)2

2 2−r. So, Pr[A wins game0]−Pr[A wins game1] ≤ εc.
– Let game2 be game1 where the R oracle was replaced by the simR simulator.

Let A′ simulate A and simR in which picking a random m̄, computing
g ← G0(m̄), and inserting (x, g, m̄) in the table is replaced by getting a
random g∗ from a source Σ and storing (x, g∗) in the table. We consider
the two following sources: Σ0 picks g∗ with uniform distribution and Σ1
picks m̄ and output g∗ ← G0(m̄). Note that using Σ0 perfectly simulates
game1 while using Σ1 perfectly simulates game2. At the end, A′ checks
whether the EF-CMA game succeeded. Clearly, this is a distinguisher of
some complexity T + μG between Σ0 and Σ1 by using q + � + 1 samples. So,
|Pr[A wins game1] − Pr[A wins game2]| ≤ εd.

– Let game3 be the simulated EF-CMA game of Fig. 5. Since the simula-
tion simSign of the signing oracle is perfect, we have Pr[A wins game3] =
Pr[A wins game2].

– Let E4 be the event that the final m̄ was not queried to C. Let game4 be the
game3 in which E4 occurred. In that case, A can be perfectly reduced to an
EF-CMA adversary of complexity T + μs against C. So, Pr[A wins game4] ≤
εS .
Clearly, if E4 did not occur, m̄ was previously queried to C. Let m̄ = m̄j , i.e.
m̄ was queried by B to C at the jth sign-query. Thus, B queried simR with
an input xj and obtained (xj , G0(m̄j), m̄j). Since there were no collision on
simR, m̄ = m̄j implies that x̂ = xj thus κ̂ = κj and ĥ = hj . We have
Hκ̂(m̂) = Hκ̂(mj). m̂ is different from all mi since A won his attack against
S′. Hence, A can be perfectly reduced to a TCR adversary against Dj and
Pr[A wins game3] − Pr[A wins game4] ≤ �εH .

We conclude by considering the above reductions that μH and μS are within the
order of magnitude of the simulation cost which is polynomial. ��
The problems of such constructions are that (1.) we do not have a full reduction
to the weak security of S0; (2.) the signature enlarges; (3.) κ must be signed; (4.)
we still need a random oracle R (implicitly meaning collision-resistant hashing)
so the role of R is to concentrate on unpredictability and nevertheless, R is now
restricted to {0, 1}k+m.

Halevi and Krawczyk [9] also use a randomized hashing but avoid signing
the κ salt. Indeed, they use an eTCR hash function. In [9], they proposed a
construction technique for eTCR based on weak hashing and suggested to use it
as preprocessing for signature schemes. The signature consists of the pair (κ, σ)
where σ is S.sign(Ks, Hκ(m)). One problem is that they do no provide any proof
of security for the signature so far. Indeed, they only focus on the problem for
constructing an eTCR hash function based on weak hashing.



Hash-and-Sign with Weak Hashing Made Secure 345

4 Strong Signature Schemes with Weak Hashing

We consider a deterministic hash-and-sign signature S put together with the
Halevi and Krawczyk [9] message processing. Namely, given a weakly-secure
FML-DS S0 we construct a strongly-secure AML-DS S′ as follows:

σ′ ← S′.sign(Ks, m):
• pick κ ∈u {0, 1}k

• s ← Hκ(m)
• h ← G(s)
• σ′ ← (κ‖S0.sign(Ks, h))

b ← S′.verify(Kp, m, σ′): (σ′ = κ‖σ)
• s ← Hκ(m)
• h ← G(s)
• b ← S0.verify(Kp, h, σ)

where H : {0, 1}k × {0, 1}∗ to {0, 1}n is an eTCR hash function family, G :
{0, 1}n → {0, 1}r a (weak) hash function, and S0 is an UF-KMA secure FML-DS
on domain {0, 1}r. Clearly, for S defined by S.sign(Ks, m) = S0.sign(Ks, G(m)),
our construction can be seen as a regular AML-DS based on hash-and-sign with
an extra randomized preprocessing Hκ(·).

Theorem 4. Consider H is an OW-eTCR hash function family, and G is a
preimage-tractable random oracle. If S0 is an UF-KMA-secure FML-DS, then
S′ in the above AML-DS construction is EF-CMA-secure.

Clearly, we can build strong signature schemes for arbitrary messages based on
any weak signature scheme restricted to fixed-length input messages without
collision-resistance and without a full random oracle. The remaining drawback
is that the signature enlarges.

Note that the OW assumption on H is necessary since G is assumed to be
preimage-tractable (otherwise, existential forgeries on S0 would translate in ex-
istential forgeries on S′). and eTCR hash functions may be not OW. Indeed, if
H is eTCR, then H ′ defined by

H ′κ(m) =
{

0‖m if κ = 0 . . . 0 and |m| = n − 1,
1‖Hκ(m) otherwise.

is eTCR as well but not OW. However, when there exists a set of messages
M such that H is a PRG when restricted to {0, 1}k×M, then eTCR implies
OW-eTCR.

Proof. Let us assume that S0 is (T +μ, �, εS)-UF-KMA-secure, H is (T +μ, εH)-
eTCR and (T + μ, εw)-OW, and G is a random oracle limited to q < � queries
where μ is some polynomially bounded complexity (namely, the overhead of some
simulations). We will show that S′ is (T, �−q, εf +qp ·εw +(�−q)·εH +q ·εS)-EF-
CMA-secure where εf represents a probability of failure during the reduction.

We start by considering an EF-CMA adversary A against our constructed
scheme S′. We assume that A is bounded by complexity T . By using an algorithm
B, we transform A into either an UF-KMA adversary against S0 or into an eTCR
adversary against H as depicted on Fig. 6. Here, C plays the role of the challenger



346 S. Pasini and S. Vaudenay

A B C Di′′

Kp
←−−−−−−−

Kp
←−−−−− (Kp, Ks) ← S0.setup(1λ)

h
∗

←−−−−− h∗
∈u {0, 1}r

∀i ∈ 1..� : h̄i ∈u {0, 1}r

h̄i‖σ̄i
←−−−−− σ̄i ← S0.sign(Ks, h̄i)

si
−−−−−−−→

hi
←−−−−−−−

simG
hi′

−−−−−−−→

si′

←−−−−−−−

preimageG
mi′′

−−−−−−−→

κi′′‖σi′′

←−−−−−−−

simSign
mi′′

−−−−−−−−−−−−−−−−−−−−−−−−→

κi′′

←−−−−−−−−−−−−−−−−−−−−−−−−

κi′′ ∈u {0, 1}k

bm‖bκ‖bσ

−−−−−−−→ bs ← Hbκ( bm)
bm‖bκ

−−−−−−−−−−−−−−−−−−−−−−−−→ check Hbκ( bm) = Hκi′′
(mi′′)

bh ← simG(bs)
bσ

−−−−−→ bS ← S0.verify(Kp, h∗, bσ)

Fig. 6. Reduction to the UF-KMA or eTCR games (from EF-CMA)

in the UF-KMA game of Fig. 1 while each Di′′ plays the role of the i′′th challenger
in the eTCR game of Fig. 4.

Clearly, algorithm B has to simulates for A the signing oracle and the two
oracles that model the preimage-tractable hash function that we refer by simSign,
simG, and preimageG respectively. To simulate G and preimageG, we use another
existing preimage-tractable random oracle G0 and preimageG0 and we construct
a random permutation ϕ such that G = ϕ ◦ G0. We consider a growing pool of
values of s. The pool is initially empty. A new s is put in the pool if it is queried
to simG or returned by preimageG. Without loss of generality, we assume that
A makes no trivial queries to simG. Namely, he does not query simG with an s
already in the pool. Similarly, we assume that if ŝ = Hκ̂(m̂) is not in the pool,
A queries simG(ŝ) before releasing m̂‖κ̂‖σ̂ to make sure that ŝ is in the pool. (So
we may have q + 1 queries to simG.) The simulations work as follows:

simG: At the beginning of the game, B picks a random t ∈u {1..q}. When A
submits a G-query with input s:
– if ϕ(G0(s)) is undefined, it answers the next h̄i in the sequence ex-

cept that for the tth query it answers h∗. Hence, there is a new entry
ϕ(G0(s)) = h in the ϕ table.

– If ϕ(G0(s)) is already defined, B aborts.
preimageG: When A submits a preimageG query with input h, if x = ϕ−1(h) is

not defined, it picks a random x on which ϕ(x) is not defined and define
ϕ(x) = h. Then, it queries preimageG0(x) and answers s.

simSign: When A submits a sign-query with input m, B queries a new Di′′ with
input m, gets κ, and computes s = Hκ(m). If s is in the pool, B abort.
Otherwise, B runs h ← simG(s) without counting this query (that is, use the
next h̄i in the sequence and not h∗). Thus, simG(s) is equal to one of the h̄i

and B uses the corresponding signature σ̄i to answer κ‖σ̄i.

Note that B has � signed samples from C, thus A is limited to � queries to simG
and simSign. So, q + qs ≤ �. At the end, if A succeeds his EF-CMA game, he
will send a tuple (m̂, κ̂, σ̂) to B.



Hash-and-Sign with Weak Hashing Made Secure 347

We use the proof methodology of Shoup [21]:

– Let game0 be the EF-CMA game against S′ of Fig. 2.
– Let game1 be the simulated EF-CMA game against S′ depicted on Fig. 6.

Clearly, the simulations fails when a ϕ(G0(s)) is already defined while query-
ing simG with s or when s = Hκ(m) was already in the pool while querying
simSign. Let εf the bound on this failure probability. By using the difference
lemma [21] we obtain Pr[A wins game0] − Pr[A wins game1] ≤ εf . Note that
εf ≤ Pr[B fails on a simG query] + Pr[B fails on a simSign query]. We con-
sider A is bounded by q, qp and qs queries to simG, preimageG, and simSign
respectively, and a space of 2r elements. First, we compute the probability
that B fails on a simG query, i.e. there were a collision of G0(s) for one s
queried to simG with one G0(s′) for s′ in the pool. By considering the queries
from A and from simSign, there are at most q + qs + 1 queries to simG and
at most q + qs + qp + 1 elements still defined in the pool. Since they are
uniformly distributed, the probability that two elements collide is 2−r. So,
Pr[B fails on a simG query] ≤ (q + qs + 1)(q + qs + qp + 1) · 2−r.

Now, we compute the probability that B fails on a simSign query, i.e. s
was already in the pool. There are at most qs queries to simSign and at most
q + qs + qp + 1 elements s in the pool. For each query-s pair, we have the
following scenario: A queries simSign with m, B queries D with m, gets κ,
computes Hκ(m), and looks if it is s. Clearly, this scenario can be described
as game (a) of Fig.7. Let p the maximal success probability among all random
coins of the adversary A in the game (a).

A C

select s, m
s‖m

−−−−−−−→

κ
←−−−−−−− pick κ ∈U {0, 1}k

Success if: s = Hκ(m)

game (a)

A

′
C

select m0
m0

−−−−−−−→

κ
←−−−−−−− pick κ ∈U {0, 1}k

pick κ′
∈U {0, 1}k m0‖κ

′

−−−−−−−→

Success if: Hκ(m0) = Hκ′(m0), κ′
�= κ

game (b)

Fig. 7. Reduction to the eTCR Game

Now, consider game (b) depicted on Fig.7. Clearly, this game is harder than
the eTCR game since A′ has no control on the second message returned to
C, i.e. it is m0. We know that εH is a bound on the success probability of A′

in the eTCR game. Thus, we have:

εH ≥ Pr[s0 = Hκ(m0) = Hκ′(m0) and κ′ �= κ]
≥ Pr[s0 = Hκ(m0) = Hκ′(m0)] − Pr[κ′ = κ]
= p2 − 2−k.

We conclude that p ≤
√

εH + 2−k and so, εf ≤ (q + qs +1)(q + qs + qp +1) ·
2−r + qs(q + qs + qp + 1) ·

√
εH + 2−k is negligible.



348 S. Pasini and S. Vaudenay

– Let E2 be the event that the forgery m̂‖κ̂‖σ̂ is such that ŝ ← Hκ̂(m̂) was
queried to simG. Let game2 be game1 in which E2 occurred.
Since we made sure that ŝ is in the pool, if E2 does not occur, the ŝ was
returned by some preimageG(h) for the first time once. Note that when
preimageG returns an unused value, it is uniformly distributed among all un-
used values. Clearly, A has to find a pair (m̂, κ̂) with Hκ̂(m̂) = ŝ which breaks
the one-wayness of H . So, Pr[A wins game1] − Pr[A wins game2] ≤ qp · εw.

– Let E3 be the event that ŝ is different from all si′′ ← Hκi′′ (mi′′ ). Let game3
be game2 in which E3 occurred.
Clearly, if E3 did not occur, ŝ is equal to si′′ for a certain i′′. Recall that
since A won his game m̂ is different from all mi′′ . So, A found m̂ and κ̂
such that Hκ̂(m̂) = Hκi′′ (mi′′ ). Here, A can perfectly be reduced to an
eTCR adversary against all Di′′ . So, Pr[A wins game2]−Pr[A wins game3] ≤
qs · εH ≤ (� − q) · εH .

– Let E4 be the event that ĥ = h∗. In other words the forged value ĥ is equal
to the expected value h∗. Let game4 be game3 in which E4 occurred. Here,
A can perfectly be reduced to an UF-KMA adversary against S0. Clearly,
Pr[A wins game4] ≤ εS .
Finally Pr[A wins game3] ≤ q ·εS since E4 occurred with probability 1/q and
so Pr[A wins game4]/ Pr[A wins game3] = 1/q.

��

5 The Entropy Recycling Technique

To keep the same signature length, we have to avoid to append κ in the signature.
The idea from [13] is to use the randomness computed in the signature scheme
instead of introducing a new random parameter. Mironov [13] present specific
modifications for the DSA [7,6], RSA-PSS [3], and Cramer-Shoup [5] signature
schemes. In this section, we generalize the construction from Mironov. For that,
we introduce a special sort of signature schemes: Signature with Randomized
Precomputation.

A Signature with Randomized Precomputation (SRP) is any signature scheme
for which the signature algorithm can be separated in two parts:

– first, a probabilistic precomputation algorithm generates the randomness
without the message to be signed,

– then, a signature algorithm signs the message using the previous randomness.

Note that the randomness must be recoverable from the signature itself, which
requires another algorithm extract. We can formalize any SRP scheme by the
following five algorithms:

(Kp, Ks) ← S.setup(1λ)
(ξ, r) ← S.presign(Ks) r ← S.extract(Kp, σ)
σ ← S.postsign(Ks, m, ξ) b ← S.verify(Kp, m, σ)



Hash-and-Sign with Weak Hashing Made Secure 349

Actually, all digital signature schemes can be written this way (e.g. with r void),
but we need r to have a large enough entropy. We provide the necessary quan-
titative definitions for that in Appendix. When talking about the entropy of a
SRP scheme, we implicitly mean the entropy of r generated by S.presign(Ks)
given a key Ks.

Theorem 5. Consider H is an eTCR hash function with t-bit keys and S0 is a
FML-SRP. We assume that the signature construction S based on S0 defined by

σ′ ← S.sign(Ks, m):
• pick κ ∈u {0, 1}t

• (ξ, r) ← S0.presign(Ks)
• σ ← S0.postsign(Ks, Hκ(m), ξ)
• output κ‖σ

b ← S.verify(Kp, m, κ‖σ):
• b ← S0.verify (Kp, Hκ(m), σ)
• output b

is an EF-CMA secure AML-SRP requiring an additional randomness κ.We as-
sume that the SRP produces t-bit strings that are indistinguishable from uni-
formly distributed ones.

Consider R is a random oracle with k-bit output strings limited to q queries.
The signature construction S′ defined by

σ′ ← S′.sign(Ks, m):
• (ξ, r) ← S0.presign(Ks)
• σ ← S0.postsign(Ks, HR(r)(m), ξ)
• output σ

b ← S′.verify(Kp, m, σ′): (σ′ = σ)
• r ← S0.extract(Kp, σ)
• b ← S0.verify

(
Kp, HR(r)(m), σ

)

• output b

is also EF-CMA-secure even by re-using the randomness from the SRP.

Proof. Assume that the AML-SRP construction S is (T + μ, �, εS)-EF-CMA
secure and that r is (T + μ, �, εd)-PR where μ is some polynomially bounded
complexity due to the game reduction. In the following, we prove that the con-
struction S′ is (T, �, εS +εc)-EF-CMA secure where εc represents the probability
of collision on the R outputs as defined in Lemma 3. We consider any EF-CMA
adversary A against S′. As depicted on Fig. 8, we transform A into an EF-CMA
adversary against the eTCR-based scheme S by using an algorithm B which
simulates the random oracle R, the transform of S′.sign to S.sign, and replaces
the final (m̂, σ̂) by (m̂, κ̂, σ̂).

The simulations works as follows:

simR works as defined in Section 2.2.
simSign When A submits a sign-query with input m, B obtains (κ, σ) by querying

C and deduces r ← S.extract(Kp, σ). If r is free in the simG table, it lets
κ = R(r) and returns σ to A, otherwise B fails.

B is allowed to � queries to the S0.sign oracle, so A is also allowed to � queries
to simSign. At the end, if A succeeds his EF-CMA game, he will send a tuple
(m̂, κ̂, σ̂) to B. We use one more time the proof methodology of Shoup [21]:



350 S. Pasini and S. Vaudenay

A B C

Kp
←−−−−−−−−−−

Kp
←−−−−−−−−−− (Kp, Ks) ← S.setup(1λ)

select mi

mi
−−−−−−−−−−→

σi
←−−−−−−−−−−

simSign
mi

−−−−−−−−−−→

κi‖σi
←−−−−−−−−−−

pick κi, si ← Hκi
(mi)

σi ← S.sign(Ks, si)

select ri

rj
−−−−−−−−−−→

hj
←−−−−−−−−−−

simR

select bm, bσ
bm‖bσ

−−−−−−−−−−→ br ← S.extract(Kp, bσ)

bκ ← R(br)
bm‖bκ‖bσ

−−−−−−−−−−→ b ← S.verify(Kp, Hbκ( bm), bσ)
Winning condition: b = 1 and bm /∈ {m1, . . . m�}

Fig. 8. Reduction to the EF-CMA game against the eTCR-based scheme S

– Let game0 be the EF-CMA game against S′ of Fig. 2.
– Let game1 be the simulated EF-CMA game against S′ depicted on Fig. 6.

Clearly, the simulation fails if simSign fails, i.e. if an rj in simSign is not free
in the simR table. Let εc the bound on this probability of collision.
Let E1 the event that all rj are free in the simR table. So, game1 is game0
in which E1 occurred. Here, A can perfectly be reduced to an EF-CMA
adversary against S. So Pr[A wins game2] ≤ εS .
We obtain Pr[A wins game0]−Pr[A wins game1] ≤ εc by using the difference
lemma [21]. A detailed expression of εc is given on Lemma 3. It is clearly
negligible.

��

6 Application to DSA

We apply Theorem 4 and Theorem 5 to offer a quick fix to DSA in the case that
SHA-1 [20] became subject to preimage attacks. Here, standard implementations
of DSA could still be used: only a “message preprocessing” would be added.
First, note that DSA without hashing can be described using our SRP formalism
of Section 5. We denote by m the messages of arbitrary length (input of the
sign algorithm) and by h the digest in DSA, i.e. the 160-bit sting. The public
parameters are q a 160-bit prime, p = a · q + 1 a 1024-bit prime, and g ∈ Zp a
generator of order q.

The DSA construction is depicted on Fig. 9 where f(m) describes some func-
tion mapping the arbitrary message length to a fixed length strings which rep-
resents the “message preprocessing”.

DSA uses the (original) hash-and-sign paradigm. f(m) is simply

h ← H∗(m)

where H∗ is a collision resistant hash function.
Consider textbook DSA is an UF-∅MA-secure FML-DS. Note that it is exis-

tentially forgeable. Theorem 4 says that the scheme of Fig. 9 where f(m) is

h ← G(Hκ(m)) where κ ∈u {0, 1}k,



Hash-and-Sign with Weak Hashing Made Secure 351

(Ks, Kp) ← S.setup(1λ): pick Ks ∈u Zq

Kp ← gKs mod p

σ ← S.sign(Ks, m, k, r): pick k ∈u Z
∗
q

r ← (gk mod p) mod q
h ← f(m)

s ← h+Ks·r
k

mod p
σ ← (r, s)

b ← S.verify(Kp, m, σ): h ← f(m)

check r = (g
h
s

mod qy
r
s

mod q mod p) mod q

Fig. 9. The DSA Construction

is EF-CMA-secure when G is a preimage-tractable random oracle (say SHA-
1 in practice) and H is a one-way eTCR hash function. Thus, we build an
EF-CMA-secure AML-DS based on DSA without collision-resistance. Assuming
that G(Hκ(m)) can be instantiated by SHA1(RMX(κ, m)) where RMX denotes
the implementation from Halevi-Krawczyk [10] of the message randomization,
the Halevi-Krawczyk construction is secure. The drawback is that the signature
enlarges sending κ.

Instead of picking some new randomness κ we re-use randomness from the
presign algorithm if the implementation of DSA allows it, i.e. we use R(r) where
R is a random oracle. Theorem 5 says that the scheme of Fig. 9 where f(m) is

h ← G(HR(r)(m))

is EF-CMA-secure as well.
From Theorem 4 and Theorem 5, we deduce that our construction is (T, Q, ε′s)-

EF-CMA-secure where ε′s ≤ εf + qp · εw + (� − q) · εH + q · εS + εc. Assuming
an adversary bounded by a time complexity T and an online complexity Q ≤ T ,
considering that εH , εs and εw are all equals to T ·2−160, k is 160-bit long, q, qs,
and � are bounded by Q, and qp is bounded by T , we obtain εf ≤ 9 ·Q ·T ·2−160,
εc ≤ Q2 · 2−160 and so

ε′s ≤ (
12 · Q · T + Q2) · 2−160.

Clearly, Q · T must be bounded by 2160. Since Q is often near 230, we deduce
that T can be close to 2130 which is much better than actual implementations
requiring a complexity T bounded by 280 to avoid collision attacks.

In summary, by using Theorem 4 and Theorem 5, we build a DSA-based EF-
CMA-secure scheme for input messages of arbitrary length and with signatures
as long as the original DSA scheme.

7 Conclusion

Consider any signature implementation S based on a textbook signature scheme
S0 and using the original hash-and-sign paradigm with a hash function G, i.e.



352 S. Pasini and S. Vaudenay

S.sign(Ks, m) = S0.sign(Ks, G(m)). Assume that S0 is weakly secure and that
some weakness on G was reported.

By using Theorem 4, we can build a strongly secure implementation by
adding a preprocessing Hκ(m) where H is an OW-eTCR hash function. Our new
construction S′ defined by S′.sign(Ks, m) = S.sign(Ks, Hκ(m)) = S0.sign(Ks,
G(Hκ(m))) is strongly secure and actual implementations can still be used, it
simply needs to “preprocess” the input message. This assumes that G can be
modeled as a preimage-tractable random oracle.

References

1. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS ’93. LNCS,
vol. 1120, pp. 62–73. ACM Press, New York (1996)

3. Bellare, M., Rogaway, P.: The exact security of digital signatures – how to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

4. Bellare, M., Rogaway, P.: Towards Making UOWHFs Practical. In: Kaliski Jr., B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997)

5. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
ACM Transactions on Information and System Security 3(3), 161–185 (2000)

6. Digital signature standard (DSS). Federal Information Processing Standard, Pub-
lication 186-2, U.S. Department of Commerce, NIST (2000)

7. Digital signature standard (DSS). Federal Information Processing Standard, Pub-
lication 186, U.S. Department of Commerce, NIST (1994)

8. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

9. Halevi, S., Krawczyk, H.: Strengthening Digital Signatures via Randomized Hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

10. Halevi, S., Krawczyk, H.: The RMX Transform and Digital Signatures (2006)
http://www.ee.technion.ac.il/$\sim$hugo/rhash/

11. Housley, R., Ford, W., Polk, W., Solo, D.: RFC 2459: Internet X.509 Public Key
Infrastructure Certificate and CRL Profile. IETF RFC Publication (1999)

12. Liskov, M.: Constructing an Ideal Hash Function from Weak Ideal Compression
Functions. In: SAC ’06, pp. ???–?? (2006)

13. Mironov, I.: Collision-Resistant No More: Hash-and-Sign Paradigm Revisited. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 140–156. Springer, Heidelberg (2006)

14. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: ACM Symposium on Theory of Computing, pp. 33–43 (1989)

15. Rivest, R.L.: The MD5 message digest algorithm. Technical Report Internet RFC-
1321,IETF (1992)

16. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

http://www.ee.technion.ac.il/$sim $hugo/rhash/


Hash-and-Sign with Weak Hashing Made Secure 353

17. Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A.J., Vanstone,
S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg
(1991)

18. Rogaway, P.: Formalizing Human Ignorance: Collision-Resistant Hashing without
the Keys. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 221–228.
Springer, Heidelberg (2006)

19. Secure hash standard. Federal Information Processing Standard, Publication 180,
U.S. Department of Commerce, NIST (1993)

20. Secure hash standard. Federal Information Processing Standard, Publication 180-1,
U.S. Department of Commerce, NIST (1995)

21. Shoup, V.: Sequences of Games: A Tool for Taming Complexity in Security Proofs.
Cryptology ePrint Archive, Report 2004/332. http://eprint.iacr.org/

22. Wang, X., Yin, Y., Yu, H.: Finding collisions in the full SHA1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

23. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.J.F.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

24. Wang, X., Yu, X., Yin, L.Y.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

A Probability of Collisions

We provide the necessary quantitative definitions of the entropy of a random
variable.

Definition 1. Let X a random variable in a set X with distribution D. We
define:
the min-entropy of X by: H∞(D) = − logmaxx∈DX Pr[X = x]
the Renyi entropy (of order 2) of X by: H2(D) = − log

∑
x∈DX Pr[X = x]2

Mironov [13] computed the probability of collision on the outputs of a random
oracle R.

Lemma 1 ([13]). Let R denotes a set of possible rj values with cardinality q.
We consider � i.i.d. trials ri with distribution D. Let εc be the probability that at
least one of the trials is in R or at least two of the trials are equal. We have

εc ≤ 2−2·H∞(D) · �2 · q + 2−H∞(D) · �2 (1)

Note that we can use another bound for εc in terms of Renyi entropy as described
in Lemma 2 or as pseudo-randomness as described in Lemma 3.

Lemma 2. Let R denotes a set of possible rj values with cardinality q. We
consider � i.i.d. trials ri with distribution D. Let εc be the probability that at
least one of the trials is in R or at least two of the trials are equal. We have

εc ≤ �2

2
· 2−H2(D) + � · √

q · 2−H2(D)
2 (2)

http://eprint.iacr.org/


354 S. Pasini and S. Vaudenay

Proof. Let px = Pr[r = x]. We have

εc = Pr[∃i, j : i �= j, ri = rj or ri ∈ R]

≤ �2

2

∑

x

p2
x + �

∑

x∈R
px ≤ �2

2

∑

x

p2
x + �

√
q

√
∑

x

p2
x

��
Lemma 3. Let R denotes a set of possible rj values with cardinality q. We
consider � i.i.d. trials ri with distribution D. Let εc be the probability that at
least one of the trials is in R or at least two of the trials are equal. Assuming
that D is (�, ε)-PR in {0, 1}ρ, we have

εc ≤ q · 2−ρ +
�2

2
· 2−ρ + ε (3)



“Sandwich” Is Indeed Secure:

How to Authenticate a Message
with Just One Hashing

Kan Yasuda

NTT Information Sharing Platform Laboratories, NTT Corporation
1-1 Hikarinooka Yokosuka-shi, Kanagawa-ken 239-0847 Japan

yasuda.kan@lab.ntt.co.jp

Abstract. This paper shows that the classical “Sandwich” method,
which prepends and appends a key to a message and then hashes the
data using Merkle-Damg̊ard iteration, does indeed provide a secure Mes-
sage Authentication Code (MAC). The Sandwich construction offers a
single-key MAC which can use the existing Merkle-Damg̊ard implemen-
tation of hash functions as is, without direct access to the compression
function. Hence the Sandwich approach gives us an alternative for HMAC
particularly in a situation where message size is small and high perfor-
mance is required, because the Sandwich scheme is more efficient than
HMAC: it consumes only two blocks of “waste” rather than three as in
HMAC, and it calls the hash function only once, whereas HMAC re-
quires two invocations of hash function. The security result of the Sand-
wich method is similar to that of HMAC; namely, we prove that the
Sandwich construction yields a PRF(Pseudo-Random Functions)-based
MAC, provided that the underlying compression function satisfies PRF
properties. In theory, the security reduction of the Sandwich scheme is
roughly equivalent to that of HMAC, but in practice the requirements
on the underlying compression function look quite different. Also, the
security of the Sandwich construction heavily relies on the filling and
padding methods to the data, and we show several ways of optimizing
them without losing a formal proof of security.

Keywords: Message Authentication Code, MAC, Hash Function, Com-
pression Function, Merkle-Damg̊ard, Envelope MAC, RFC1828, HMAC.

1 Introduction

A Message Authentication Code (MAC) is a symmetric-key cryptographic prim-
itive that is widely used for ensuring authenticity and data integrity. It is an
algorithm, usually deterministic, that takes as its input a message M (which
may not be encrypted), processes it with a secret key K and then produces
a fixed-length output τ called “tag”. A secure MAC protects tags from being
forged.

A MAC is commonly realized via a cryptographic hash function, like SHA-1
or SHA-256 [1], for its performance and availability in software libraries. A hash

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 355–369, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



356 K. Yasuda

function is usually constructed by a smaller primitive called “compression func-
tion.” A compression function only processes messages of a fixed length. In order
to create a hash function that accepts messages of variable lengths, the messages
are padded and the compression function is iterated via a mode of operation. The
most widespread mode is so called Merkle-Damg̊ard strengthening (padding) and
iteration. We are interested in hash functions that are implemented in this way.

The hash function, however, is keyless. In order to use it as a MAC, we must
somehow make the hash function keyed. We briefly review four types of keying
the hash function h, along the course of [2].

“Prefix” Method. This faulty way prepends a key K to a message M and then
lets the hash value τ = h(K‖M) be the tag. It is well known that this method is
vulnerable against so called the “extension attack.” Namely, an adversary asks
its oracle the tag τ = h(K‖M) for a message M , computes a value τ ′ = h(τ, M ′)
where τ is used as the initial vector for h and M ′ an arbitrary message, and then
succeeds in submitting the pair (M‖M ′, τ ′) as a forgery.

“Suffix” Method. An obvious way to avoid the extension attack is to append,
rather than prepend, the key K to the message M and then obtain the tag
τ = h(M‖K). This gets around the extension attack but suffers from the collision
attack. Namely, let M, M ′ be two messages that produce a collision of the keyless
hash function h, so that h(M) = h(M ′). Then an adversary queries its oracle
the tag τ = h(M‖K) and then submits a pair (M ′, τ) as a forgery. For more
discussions on the notion of collision resistance for keyless hash functions, see [3].

“Sandwich” Method. The combination of the above two approaches origi-
nates from the “hybrid method” in [4], where the tag τ is computed as τ =
h(K‖p‖M‖K ′) with two independent keys K, K ′ and key filling (padding) p. A
proof of security of the hybrid method is essentially given in [5]. The single-key
version, in which the tag τ is computed as τ = h(K‖p‖M‖K), appears in the
standardization of IPSec version 1 [2,6,7] and is known as the “envelope MAC.”
The envelope MAC, however, is shown to be vulnerable against key recovery
attack [8] (which is more threatening than forgery attack.) We note that it is
the lack of appropriate filling between the message M and the last key K, rather
than the usage of a single key, that contributes to this key recovery attack.

Nowadays these hybrid/envelope techniques seem to attract little interest,
mainly due to the above key recovery attack and the affirmative adoption of
HMAC (described below) in IPSec version 2 ([7] is “obsoleted” by [9] which is
also now “historic.” [6] is still present only for the purpose of backward com-
patibility.) This paper calls attention back to this classical method. It is the
contribution of this paper to show that the “Sandwich” scheme, which basi-
cally works as τ = h(K‖p‖M‖p′‖K), indeed yields a secure, single-key MAC, as
long as the underlying compression function satisfies Pseudo-Random-Function
(PRF) properties and appropriate fillings p, p′ and padding methods are com-
bined with. It should be remarked that as a byproduct the Sandwich scheme
precludes the key recovery attack.



“Sandwich” Is Indeed Secure 357

HMAC. HMAC is introduced in [10] with a (rather rough but formal) proof
of security. Its new proof with complete reduction to the compression function
is given in [11]. HMAC works as follows. It first computes the intermediate
value v = h

(
(K ⊕ IPAD)‖IPAD′‖M

)
and then computes the tag τ = h

(
(K ⊕

OPAD)‖OPAD′‖v
)
, where ⊕ denotes bitwise exclusive-OR and IPAD, IPAD′,

OPAD, OPAD′ are pre-defined constants. Note that unlike the other methods
mentioned so far, HMAC requires two invocations of hash function h.

Organization of This Paper. In Sect. 2 we identify the improvements in
performance of the Sandwich scheme as compared to that of HMAC. In Sect. 3
we review some preliminaries of hash function, which are necessary in Sect. 4
to define the basic construction of the Sandwich scheme and to state its main
security result. In Sect. 5 we compare this result to that of HMAC [11].

Section 7 is devoted for the security proof of the basic Sandwich construction,
preceded by necessary definitions in Sect. 6. As to the reduction techniques in
Sect. 7, we follow the line of [11], rather than that of [5] which essentially contains
a proof of security for two-key hybrid method. Our approach enables us to prove
the security of the single-key Sandwich scheme and also to compare our result
directly with that of HMAC in [11].

It is also the contribution of this paper to introduce several variants of the
basic Sandwich construction. Sections 8, 9 and 10 discuss these derivatives and
show ways to modify the filling and padding methods in the basic construction,
with improved efficiency and without loss of formal proofs of security. We em-
phasize the fact that although these improvements seem only subtle and minor,
they become valuable in a situation with severe resource requirements and/or
with short messages. The security results in Sect. 8 and 10 make use of the
multi-oracle families introduced in [5].

2 Performance Comparison to HMAC

In Table 1 we summarize the performance comparison between the Sandwich
method and HMAC. The Sandwich method consumes (at most) two blocks of
“waste,” corresponding to the very first and last blocks for the key. HMAC, on
the other hand, consumes one more block for processing the intermediate value
v, totaling three blocks (The “waste” is defined to be the number of invocations
of compression function in the scheme minus that in the usual Merkle-Damg̊ard.)

Also, the Sandwich method calls a hash function only once, as in h(K‖M‖K),
whereas HMAC requires two invocations of a hash function, one for produc-
ing the intermediate hash value v = h

(
(K ⊕ IPAD)‖IPAD′‖M

)
, and then

another for processing the hash value v with the key K as in h =
(
(K ⊕

OPAD)‖OPAD′‖v
)
.

These problems of HMAC are discussed and improved in [12] (which appears
in the standardization of CDMA2000 [13], where these drawbacks are critical.)
Yet, the improved algorithm [12] still requires two invocations for long messages.
The Sandwich scheme affords a way to authenticate any message with just one
invocation.



358 K. Yasuda

Table 1. Numbers of waste blocks and hash function calls

Waste blocks Hash function calls

Sandwich 1-2 1

HMAC 3 2

3 Hash Function Basics

Compression Function. A compression function f is a keyless function f :
{0, 1}n+d → {0, 1}n. The first n bits of the input to f are referred to as a
“chaining variable,” where as the last d bits of the input are referred to as a “data
input” or “message block.” Typical values of n and d are (n, d) = (160, 512) for
SHA-1 and (n, d) = (256, 512) for SHA-256. Hereafter in this section we fix our
choice of compression function f .

Merkle-Damgård Iteration. The Merkle-Damg̊ard iteration allows us to
extend the domain of f from {0, 1}n+d to {0, 1}d∗, the set of bit strings whose
lengths are multiples of d bits. Namely, the function FIV : {0, 1}d∗ → {0, 1}n is
constructed as follows: Let M ∈ {0, 1}d∗ and divide M into message blocks as
M = m1‖ · · · ‖m�, mi ∈ {0, 1}d. Then the hash value FIV (M) is defined by:

v1 ← f(IV ‖m1), vi ← f(vi−1‖mi) for i = 2, . . . , �, FIV (M) def= v�,

where the initial vector IV ∈ {0, 1}n is a pre-defined constant.

Padding. The current implementation of hash function is equipped with a
padding so called the Merkle-Damg̊ard strengthening. It is a padding method
that takes the form of M‖π(|M |) ∈ {0, 1}d∗ for messages M ∈ {0, 1}≤Ñ whose
lengths are at most Ñ bits (Note that the function π takes as its input the
length |M | in bits of the message M .) A typical value of Ñ is 264. The Merkle-
Damg̊ard iteration and strengthening are combined to yield the hash function
h : {0, 1}≤Ñ → {0, 1}n by h(M) def= FIV

(
M‖π(|M |)).

Dual Families. There are two ways of keying the compression function f . One
is to key it via the first k bits of data input, yielding f�K : {0, 1}n+p → {0, 1}n

with K ∈ {0, 1}k and p
def= d−k > 0, precisely defined by f�K (v‖z) def= f(v‖K‖z)

for v ∈ {0, 1}n, z ∈ {0, 1}p. The other way keys the chaining variable, yielding
f�

Ǩ
: {0, 1}d → {0, 1}n with Ǩ ∈ {0, 1}n defined by f�

Ǩ
(m) def= f(Ǩ‖m) for

m ∈ {0, 1}d. If we are allowed to call only h (and not f), then we do not have
direct access to the chaining variable. Hence f� appears explicitly whenever
we try to key, whereas f� appears only implicitly for the purpose of security
analysis.

Other Keyed Families. The Merkle-Damg̊ard iteration FIV can be also (im-
plicitly) keyed, by replacing the initial vector IV with a key Ǩ ∈ {0, 1}n. This
gives us a function family

{
FǨ : {0, 1}d∗ → {0, 1}n

}
. We then extend the domain



“Sandwich” Is Indeed Secure 359
 
 
 
 
 
 
 
 
 
 
 
 
 

fIV

Kk0p 

τf

m1

f

m`k10ν 

f

Kkπ(λ)

n n

d 

Fig. 1. Sandwich scheme, basic version

{0, 1}d∗ to {0, 1}∗ via the trivial padding M‖10ν, where ν
def= d−(|M | mod d)−1

(We view ν as a function of M and often write ν(M) to denote this quantity.)
This defines another function family

{
F̄Ǩ : {0, 1}∗ → {0, 1}n

}
via F̄Ǩ(M) def=

FǨ(M‖10ν).

4 Our Contribution

Figure 1 depicts the basic construction of the Sandwich scheme (We call it “ba-
sic,” because later in Sect. 8, 9 and 10 we introduce several derivatives with opti-
mized filling or padding.) The basic Sandwich method S takes as its input a mes-
sage M and a key K ∈ {0, 1}k and lets the hash value τ = h(K‖0p‖M‖10ν‖K)
be the tag, with ν = ν(M). The message M is divided into d-bit blocks as
M = m1‖ . . . ‖m�, where � =

⌈
(|M | + 1)/d

⌉
and m� is a bit string whose length

varies from 0 (the null string) to d − 1 bits. Note that the length of the data
K‖0p‖M‖10ν‖K is λ

def= d(�+1)+k bits, which is input to the padding function
π, and we are assuming |π(λ)| = p. We view λ as a function of M and often
write λ(M) to denote this quantity. Now we have the basic Sandwich scheme
SK : {0, 1}N → {0, 1}n, where N = Ñ − d − 1 − k.

The main contribution of this paper is to show that the basic Sandwich ap-
proach S gives a secure, single-key MAC. More precisely, we prove that it yields
a PRF-based MAC, under the conditions that π(λ) �= 0p for any λ and that
both f� and f� are PRFs.

5 Security Comparison to HMAC

The security of HMAC also relies on the pseudorandomness of f� and f� [11].
In order for these functions to be PRFs, they must resist adversary’s queries to
its oracles. In Table 2 we compare these numbers.

It should be noted that the two “2”s in Table 2 come from very different
nature. The “2” in the Sandwich scheme has roots in collision resistance, whereas
the “2” in HMAC originates from a key derivation. f� in the Sandwich method
must resist two oracle queries m, m′ of adversary’s choice, while f� in HMAC
only needs to resist constant queries IV ‖IPAD′ and IV ‖OPAD′. In this regard,
HMAC is based on a weaker assumption.

Theoretically, there is no difference between the requirement that f� is a
PRF and one that f� is a PRF, as long as k = n (The difference is just which



360 K. Yasuda

Table 2. Numbers of oracle queries that compression function must resist

f� (Keyed via message block) f� (Keyed via chaining variable)

Sandwich q + 1 2

HMAC 2 q

bits of input are keyed). In practice, however, the nature of data input and that
of chaining variable are quite dissimilar, for an adversary can directly access the
former but not the latter. In fact, existing compression functions like SHA-1 and
SHA-256 are designed so that data input and chaining variable are processed
in completely separate procedures. It seems that we have to wait for further
research [14,15] on existing compression functions to identify this difference in
them.

Also, the coefficients in the security reduction of the Sandwich scheme are
fundamentally the same as those in that of HMAC. The result given in Sect. 7 is
essentially tight, due to the general “birthday attack” [16]. For more discussions
on the exact tightness of this type of reduction, see [11].

6 Security Definitions

The notation x
$← X denotes the operation of selecting an element x uniformly

at random from a set X . An adversary is an algorithm A, possibly probabilistic,
that may have access to a oracle. The notation AO ⇒ x denotes the event that A
with the indicated oracle outputs x. Oracles are often defined in a “game” style.
We then write AG ⇒ x to denote the event that A outputs x in the experiment
of running A as specified in game G.
PRFs. Any PRF is a secure MAC [17]. All the MACs that appear in this pa-
per are PRF-based. Consider a function family {fK : X → Y }K∈KEY . A prf-

adversary A tries to distinguish between two oracles, one being fK(·), K $← KEY

and the other being f(·), f $← {f : X → Y }. Succinctly, define

Advprf
f (A) def= Pr

[
AfK ,K

$← ⇒ 1
]

− Pr
[
Af

$← ⇒ 1
]

to be the prf-advantage of A against f .
cAU. The notion of “computationally Almost Universal (cAU)” measures a sort
of collision resistance. An au-adversary A, given access to no oracle, just outputs
a pair of messages (M, M ′) ∈ X × X . Then define

Advau
f (A) def= Pr

[
fK(M) = fK(M ′) ∧ M �= M ′

∣
∣
∣A ⇒ (M, M ′), K $← KEY

]

to be the au-advantage of A against f .
Resources. An adversary A’s resources are measured in terms of the time
complexity t, the number q of oracle queries and the length μ in bits of each



“Sandwich” Is Indeed Secure 361

query. The time complexity t includes the total execution time of an overlying
experiment (the maximum if more than one experiments are involved) plus the
size of the code of A, in some fixed model of computation. We write Tf (μ) to
denote the time needed for one computation of f on a input whose length is μ
bits. For ∗ ∈ {prf, au, . . .} we write

Adv∗f (t, q, μ) def= maxAdv∗f (A),

where max is run over adversaries, each having time complexity at most t and
making at most q oracle queries, each query of at most μ bits. One or more of
the resources are often omitted from the notation if irrelevant in the context. In
particular, we often omit the time complexity of an au-adversary A, due to the
following lemma.

Lemma 1. For any time complexity t, we have

Advau
f (t, μ) ≤ Advau

f (2 · Tf(μ), μ).

Proof. Let A be an au-adversary against f that has time complexity at most t
and outputs messages of at most μ bits each. By definition we have

Advau
f (A) =

∑

M,M ′

(
Pr

[
{M, M ′} = {M̄, M̄ ′}

∣
∣
∣A ⇒ (M̄, M̄ ′)

]

×
[
fK(M) = fK(M ′)

∣
∣
∣ K

$← KEY
])

,

where the summation is over all pairs {M, M ′} of two distinct messages whose
lengths are at most μ bits each. Hence, there exists a pair (M, M ′) of distinct
messages such that Advau

f (A) ≤ Pr [fK(M) = fK(M ′)]. Then we can create a
new adversary B that has M, M ′ hardwired as a part of its code and simply
outputs these messages. �

7 Security Proof of the Basic Construction

The following theorem states the security result of the basic Sandwich scheme.

Theorem 1. Let f : {0, 1}n+p → {0, 1}n be a compression function and SK :
{0, 1}≤N → {0, 1}n the basic Sandwich scheme constructed from f , as described
in Sect. 4. Then the basic Sandwich scheme S is a PRF, provided that both f�

and f� are PRFs. More formally, we have

Advprf
S (t, q, μ) ≤ Advprf

f�(t, q + 1) +
(

q

2

)

·
((

2 ·
⌈μ

d

⌉
+ 1

)
· Advprf

f�(t′, 2) +
1
2n

)

,

where t′ = 4 · �(μ/d) + 1� · Tf .

The following three lemmas prove the above theorem.



362 K. Yasuda

Adversary B Adversary C

Query IV ‖0p to oracle f� s ← 0; τ1, . . . , τq
$← {0, 1}n

and obtain Ǩ = f�(IV ‖0p) i
$← {1, . . . , q − 1}; j

$← {i + 1, . . . , q}
Run A; On A’s query M do: Run A; On A’s query M do:

Compute v ← F̄Ǩ(M) s ← s + 1

Query v‖π(λ(M)) to oracle f� Ms ← M

and obtain τ = f�(
v‖π(λ)

)
Reply τs to A

Reply τ to A Output (Mi, Mj)
Output whatever A outputs

Fig. 2. Description of adversaries B and C

Game G Game G′

f� $←
{
f : {0, 1}n+p → {0, 1}n

}
f� $←

{
f : {0, 1}n+p → {0, 1}n

}

Ǩ ← f�(IV ‖0p) Ǩ
$← {0, 1}n

On query M On query M

reply f�(
F̄Ǩ(M)‖π(λ(M))

)
reply f�(

F̄Ǩ(M)‖π(λ(M))
)

Fig. 3. Intermediate games G and G′

Lemma 2. If f� is a PRF and F̄ (constructed from f as in Sect. 3) is cAU,
then the basic Sandwich scheme S is a PRF. More formally, we have

Advprf
S (t, q, μ) ≤ Advprf

f�(t, q + 1) +
(

q

2

)

· Advau
F̄ (μ).

Proof. Let A be a prf-adversary against S that has time complexity at most
t and makes at most q ≥ 2 oracle queries, each of at most μ bits. We shall
construct a prf-adversary B against f� and an au-adversary C against F̄ , each
using A as a subroutine, as described in Fig. 2. Note that B has time complexity
at most t and makes at most q + 1 oracle queries, and C outputs two messages,
each of at most μ bits. We show that

Advprf
S (A) ≤ Advprf

f�(B) +
(

q

2

)

· Advau
F̄ (C).

Let G, G′ be two games defined in Fig. 3. These games define oracles for the
adversary A.

Claim. We have

Advprf
f�(B) def= Pr

[
Bf�

K ,K
$← ⇒ 1

]
− Pr

[
Bf� $← ⇒ 1

]

= Pr
[
ASK ,K

$← ⇒ 1
]

− Pr
[
AG ⇒ 1

]
.



“Sandwich” Is Indeed Secure 363

Proof. If oracle f� to B is given by f�K , K
$← {0, 1}k, then observe that B cor-

rectly simulates the oracle SK , K
$← {0, 1}k for A. Hence Pr

[
Bf�

K ,K
$← ⇒ 1

]
=

Pr
[
ASK ,K

$← ⇒ 1
]
. On the other hand, if oracle f� to B is given by f� $←

{
f : {0, 1}n+p → {0, 1}n

}
, then running BA exactly corresponds to running AG .

Thus Pr
[
Bf� $← ⇒ 1

]
= Pr

[
AG ⇒ 1

]
.

Claim. Game G is equivalent to Game G′.
Proof. Recall that we assume the condition π(λ(M)) �= 0p for every M . Hence
in Game G we have F̄Ǩ(M)‖π(λ(M)) �= IV ‖0p for every query M , and while
replying to A’s queries the random function f� is never invoked on the input
value IV ‖0p. This means that in Game G the key Ǩ = f�(IV ‖0p) is a random
value independent from A’s queries, and the equivalence to Game G′ follows.

Now we assume, without loss of generality, that the adversary A never repeats a
query and that the total number of A’s queries is always exactly q rather than at
most q, no matter how replies to A’s queries are made. Let M1, . . . , Mq represent
A’s queries in order.

Let E be the event that F̄Ǩ(Mi)‖π(λ(Mi)) = F̄Ǩ(Mj)‖π(λ(Mj)) occurs for
some 1 ≤ i < j ≤ q. Observe that as long as E does not occur, Game G′ for A and
running A with the oracle S

$← {
S : {0, 1}≤N → {0, 1}n

}
proceed exactly the

same. Therefore, by the Fundamental Lemma of Game Playing [18], we obtain

Pr
[
AG

′ ⇒ 1
]

− Pr
[
AS

$← ⇒ 1
]

≤ Pr[E].

Claim. We have

Pr[E] ≤
(

q

2

)

· Advau
F̄ (C).

Proof. Let E′ denote the event that F̄Ǩ(Mi) = F̄Ǩ(Mj) for some 1 ≤ i < j ≤ q,
so that Pr[E] ≤ Pr[E′]. For 1 ≤ α < β ≤ q let E′α,β denote the event that
F̄Ǩ(Mα) = F̄Ǩ(Mβ) occurs while F̄Ǩ(Mᾱ) �= F̄Ǩ(Mβ̄) for all 1 ≤ ᾱ < β̄ <
β. Notice that the events E′α,β for 1 ≤ α < β ≤ q are disjoint and E′ =∨

1≤α<β≤q E′α,β . Then

Advau
F̄ (C) ≥ Pr

⎡

⎣
∨

1≤α<β≤q

E′α,β ∧ (i, j) = (α, β)

⎤

⎦

=
∑

1≤α<β≤q

Pr
[
E′α,β ∧ (i, j) = (α, β)

]

=
∑

1≤α<β≤q

Pr
[
E′α,β

]
· Pr

[
(i, j) = (α, β)

]

=
1

(
q
2

)
∑

1≤α<β≤q

Pr
[
E′α,β

]
=

1
(

q
2

) Pr[E′] ≥ 1
(
q
2

) Pr[E].



364 K. Yasuda

Now we see that

Advprf
S (A) def= Pr

[
ASK ,K

$← ⇒ 1
]

− Pr
[
AS

$← ⇒ 1
]

= Pr
[
ASK ,K

$← ⇒ 1
]

− Pr
[
AG ⇒ 1

]
+ Pr

[
AG

′ ⇒ 1
]

− Pr
[
AS

$← ⇒ 1
]

≤ Advprf
f�(B) +

(
q

2

)

· Advau
F̄ (C).

�
Lemma 3. Let f : {0, 1}n+d → {0, 1}n be a compression function. If F (con-
structed from f as in Sect. 3) is cAU, then so is F̄ . More formally, we have

Advau
F̄ (t, μ) ≤ Advau

F (t, μ + d).

Proof. Let A be an au-adversary against F̄ that has time complexity at most
t and outputs messages (M, M ′) of at most μ bits each. Then we can easily
construct an au-adversary B against F , by letting B simply output the pair
(M‖10ν(M), M ′‖10ν(M ′)). Note that M �= M ′ implies M‖10ν(M) �= M ′‖10ν(M ′).

�
Lemma 4. Let f : {0, 1}n+d → {0, 1}n be a compression function. If f� is a
PRF, then F (constructed from f as in Sect. 3) is cAU. More formally, we have

Advau
F (t, μ) ≤

(
2 ·

⌈μ

d

⌉
− 1

)
· Advprf

f�(t′, 2) +
1
2n

,

where t′ = t + 2 · �μ/d� · Tf , Tf being the time for one evaluation of f .

Proof. This result is obtained in [11]. �
Now from the above lemmas we have

Advprf
S (t, q, μ) ≤ Advprf

f�(t, q + 1) +
(

q

2

)

· Advau
F̄ (μ)

≤ Advprf
f�(t, q + 1) +

(
q

2

)

· Advau
F (μ + d)

≤ Advprf
f�(t, q + 1) +

(
q

2

)

·
((

2 ·
⌈μ

d

⌉
+ 1

)
· Advprf

f�(t′, 2) +
1
2n

)

,

where t′ = 2 · TF̄ (μ) + 2 · �(μ/d) + 1� · Tf ≤ 4 · �(μ/d) + 1� · Tf . This proves
Theorem 1.

8 Variant A: Reducing the First Filling 0p

The filling 0p after the first key K may be considered as consuming, particularly
if p is large. Figure 4 describes a variant of the basic Sandwich scheme, which



“Sandwich” Is Indeed Secure 365

uses a one-bit filling 0 rather than 0p. Note that in this variant a message M is
now divided into blocks as M = m1‖m2‖ . . . ‖m� with |m1| = p−1, |m2| = · · · =
|m�−1| = d and 0 ≤ |m�| ≤ d−1. In case |M | ≤ p−2 the entire message M = m1
is processed by the very first block (In this variant the condition π(μ) �= 0p−1

is not required. Also, the functions ν and λ and the number N are re-defined
accordingly.) 

 
 
 
 
 
 
 
 
 
 
 
 

fIV

Kk0k m1k10 ν

τf

Kk1kπ(λ) 

fIV

Kk0k m1

τf

m2

f

m`k10 ν 

f

Kk1kπ(λ)

Fig. 4. Variant A: Reducing the filling 0p to 0

This variant is secure. However, its analysis is more complex than that of the
basic construction. The proof of security requires novel techniques that are not
included in that of the basic version. Intuitively, this is because now an adversary
can change the value of Ǩ via querying different m1. Owing to the pseudoran-
domness of f� (and appropriate fillings 0 and 1 after the key K), for different
m1, m

′
1, m

′′
1 , . . . the adversary “sees” independently random keys Ǩ, Ǩ ′, Ǩ ′′, . . .

(This, however, demands that f� be resistant against 2q oracle queries rather
than q+1.) Now the difficulty lies in the treatment of the event that a “collision”
is detected. Observe that there can be two different cases for a collision. One
is with the same key as in F̄Ǩ(M) = F̄Ǩ(M ′) with M �= M ′, and the other
with different keys as in F̄Ǩ(M) = F̄Ǩ′(M ′) (and not necessarily M �= M ′.) The
first case can be handled in the same way as in the basic version. The problem
is that we also have to bound the latter probability by the pseudorandomness
of f�.

We deal with this problem along the course of prefix-free PRFs and multi-
oracle families [5]. Recall that F is a prefix-free PRF if f� is a PRF. Next we
extend the result of multi-oracle families in [5] from PRFs to prefix-free PRFs.
We can then bound the collision probability by the multi-oracle family of F . This
does not affect the query number for f� (It still remains to be 2) but worsens
the coefficient roughly by a factor of 2. We state the result concretely in the
following theorem.



366 K. Yasuda

Theorem 2. Let f : {0, 1}n+d → {0, 1}n be a compression function and SK :
{0, 1}≤N → {0, 1}n the Variant A constructed from f . Then we have

Advprf
S (t, q, μ) ≤ Advprf

f�(t, 2q) +
(

q

2

)

·
(

4 ·
(⌈μ

d

⌉
+ 2

)
· Advprf

f�(t′, 2) +
1
2n

)

,

where t′ = t + 2q · �μ/d� · Tf .

9 Variant B: Improving the Second Filling 10ν

We go back to the basic Sandwich construction and discuss how to avoid the
waste that occurs when the message size |M | happens to be exactly equal to a
multiple of d bits. Note that in such a case, the filling bits 1‖0d−1 is appended
after the message M , producing an extra one block of compression function. We
show a technique to get rid of this increase. 

 
 
 
 
 
 
 
 
 
 
 
 

fIV

Kk0p 

τf

m1

f

m`k10ν 

f

Kk0kπ(λ)

fIV

Kk0p 

τf

m1

f

m`—1 

f

Kk1kπ(λ)

Fig. 5. Variant B: Case m� is not null (upper) and m� null (lower)

The technique works as follows: If the message size |M | is not equal to a
multiple of d, then the usual filling 1‖0ν is appended after the message M ,
and then the key K is appended, followed by 0‖π(λ). On the other hand, if
the message size |M | happens to be exactly a multiple of d, then no filling is
appended after the message M ; instead, we directly append the key K after the
message M and then append the padding 1‖π(λ) (Again, the function λ and the
number N are re-defined accordingly, and we assume π(λ) �= 0p−1 for all λ in
this variant.)

This variant is also secure, and the proof of security does not require much
modification to that of the basic version. So let us review the reduction proofs
and see this new scheme actually preserves the security. First, the construction of
adversary B naturally transforms into the new setting. The equivalence between
Game G and Game G′ still holds, for we assume π(λ) �= 0p−1, and hence Ǩ is
a random value independent from A’s queries. A collision on the input value



“Sandwich” Is Indeed Secure 367

for f� can be divided into two cases in accordance with the padding K‖0 and
K‖1, but both cases are bounded by Advau

F̄ . So there is no degradation in the
reduction:

Theorem 3. Let f : {0, 1}n+d → {0, 1}n be a compression function and SK :
{0, 1}≤N → {0, 1}n the Variant B constructed from f . Then

Advprf
S (t, q, μ) ≤ Advprf

f�(t, q + 1) +
(

q

2

)

·
((

2 ·
⌈μ

d

⌉
+ 1

)
· Advprf

f�(t′, 2) +
1
2n

)

,

where t′ = 4 · �(μ/d) + 1� · Tf .

We can extend this idea to gain further improvement, if there is enough “room”
in the last block. Namely, let σ be the maximum number such that K‖1‖m�‖π(λ)
fits in the last block with m� ∈ {0, 1}σ (Again, the number λ is re-defined accord-
ingly.) For a message M with |m�| > σ, we use the first case m�‖10ν‖K‖0‖π(λ)
as is in the last two blocks. On the other hand, if |m�| ≤ σ (including the case
m� null), then we process the data K‖1‖m�‖π(λ) with only one computation
in the very last block (and in the latter case note that for m� �= m′� we require
m�‖π(λ) �= m′�‖π(λ′).)

10 Variant C: Handling the Last Padding π(λ)

In this section we study the case where the block size d is too small to accommo-
date both the key K and padding π(λ) in one block. The purpose of introducing
this variant is twofold. One is to show the general applicability of the Sandwich
approach with a low-ratio compression function. The other is to point out the
powerfulness of the multi-oracle family techniques that we also used in Sect. 8. 

 
 
 
 
 
 
 
 
 
 
 
 

fIV

Kk0p 

τf

m1

f

m`k10ν 

f

π(λ)

f

Kk1p

Fig. 6. Variant C: Padding with low-ratio compression function

The difference between this variant and the basic version is in the last padding.
In this variant we use two blocks in order to process the second key K and the
padding π(λ) via K‖1p‖π(λ) (This, of course, does not provide any improvement
in efficiency, and again, the function λ and the number N are re-defined.)

This variant is also secure, but the difficulty in analysis lies in the very last
block. That is, we can “extract” a prf-adversary B against f� and an au-
adversary C against F̄ as in Sect. 7, but there still remains a “gap” (The gap
arises from the very last block.) We have to fill in this gap somehow by the



368 K. Yasuda

pseudorandomness of f�. We do this via the multi-oracle family of f�. This
does not increase the query number “2,” and the degradation in the reduction
is only minor:

Theorem 4. Let f : {0, 1}n+d → {0, 1}n be a compression function and SK :
{0, 1}≤N → {0, 1}n the Variant C constructed from f . Then

Advprf
S (t, q, μ) ≤ Advprf

f�(t, q + 1)

+
(

q

2

)

·
((

2 ·
⌈μ

d

⌉
+ 1

)
· Advprf

f�(t′, 2) +
1
2n

)

+ q · Advprf
f�(t′′, 1),

where t′ = 4 · �(μ/d) + 1� · Tf and t′′ = t + 2q · Tf .

11 Concluding Remarks

The Sandwich approach offers a secure, single-key MAC which is more efficient
than HMAC. The improvement in performance becomes beneficial especially for
situations with severe resource requirements and/or with short messages. For
short messages, the optimization techniques in variants A and B are quite effec-
tive. Any combination of the three variations A, B and C would work, provided
that appropriate filling and padding methods are devised and used with.

The security reduction of the Sandwich scheme, in theory, is roughly equiva-
lent to that of HMAC. They both rely on the pseudorandomness of f� and f�.
The difference between the requirement of f� being a PRF and that of f� a
PRF would result in a difference between the security of the Sandwich scheme
and that of HMAC. Thus in reality we have to wait for further research on exist-
ing hash functions like SHA-1 and SHA-256 in order to analyze how they satisfy
the two requirements and to identify the differences.

Lastly, we remark that the key recovery attack known for previous hybrid
and envelope MACs no longer applies to the Sandwich scheme presented here.
A straight-forward observation tells us that a key recovery against the Sandwich
scheme essentially amounts to the key recovery against f�.

Acknowledgments

The author would like to thank ACISP2007 anonymous referees for their helpful
comments, references to [4,8] and suggestions to improve notation and terminol-
ogy. The final revision work of this paper has benefited greatly from advisory
comments made by Kazumaro Aoki, including the reference to [2].

References

1. NIST: Secure hash standard, FIPS PUB 180-2 (2002)
2. Kaliski, B., Robshaw, M.: Message authentication with MD5. CryptoBytes (The

Technical Newsletter of RSA Laboratories) 1(1), 5–8 (1995)



“Sandwich” Is Indeed Secure 369

3. Rogaway, P.: Formalizing human ignorance: Collision-resistant hashing without the
keys. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 211–228.
Springer, Heidelberg (2006)

4. Tsudik, G.: Message authentication with one-way hash functions. ACM Computer
Communication Review 22(5), 29–38 (1992)

5. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. IEEE Symposium on Foundations
of Computer Science, 514–523 (1996)

6. Metzger, P., Simpson, W.A.: IP authentication using keyed MD5. IETF, RFC 1828
(1995)

7. Metzger, P., Simpson, W.A.: IP authentication using keyed SHA. IETF, RFC 1852
(1995)

8. Preneel, B., van Oorschot, P.C.: On the security of two MAC algorithms. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer, Heidel-
berg (1996)

9. Metzger, P., Simpson, W.A.: IP authentication using keyed SHA1 with interleaved
padding (IP-MAC). IETF, RFC 2841 (2000)

10. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

11. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

12. Patel, S.: An efficient MAC for short messages. In: Nyberg, K., Heys, H.M. (eds.)
SAC 2002. LNCS, vol. 2595, pp. 353–368. Springer, Heidelberg (2003)

13. TR45.AHAG: Enhanced cryptographic algorithms, revision B. TIA (2002)
14. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the security of HMAC and NMAC

based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)

15. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

16. Preneel, B., van Oorschot, P.C.: On the security of iterated message authentication
codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

17. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in mes-
sage authentication and authenticated encryption. Cryptology ePrint Archive: Re-
port 2004/304 (2004)

18. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)



Threshold Anonymous Group Identification and

Zero-Knowledge Proof

Akihiro Yamamura, Takashi Kurokawa, and Junji Nakazato

National Institute of Information and Communications Technology,
4-2-1, Nukui-Kitamachi, Koganei, Tokyo, 184-8795 Japan

{aki,blackriver,nakazato}@nict.go.jp
http://crypto.nict.go.jp/english/

Abstract. We show that the communication efficient t-out-of-m scheme
proposed by De Santis, Di Crescenzo, and Persiano [Communication-
efficient anonymous group identification, ACM Conference on Computer
and Communications Security, (1998) 73–82] is incorrect; an authorized
group may fail to prove the identity even though the verifier is honest.
We rigorously discuss the condition where the scheme works correctly.
In addition, we propose a new scheme attaining Θ(mn) communication
complexity, where n is the security parameter. It improves the current
best communication complexity Θ(mn log m) of the t-out-of-m scheme,
and it can be also considered as a zero-knowledge proof for t out of m
secrets.

Keywords: t-out-of-m Anonymous Group Identification, Non-singular
Matrix, Zero-Knowledge Proof.

1 Introduction

An identification scheme allows users to identify themselves to a verifying au-
thority in a secure sense, that is, it does not reveal the secret information. An
anonymous group identification scheme allows users to identify themselves as a
member of a group of users in a secure and anonymous sense, that is, it does not
reveal secret information or their identity. Such a scheme is called 1-out-of-m
scheme. An anonymous group identification scheme is extended to a threshold
scheme that allows at least t out of m users (t < m) to identify themselves in a
secure and anonymous way. Let us call it a t-out-of-m scheme in this paper.

A group identification scheme can be divided into two phrases: an initialization
phase and an identification phase. The first phase is executed only once, at the
start-up of the system, and consists of the following: the center and the users
run a protocol such that at the end each user will be given a public and private
key, to be used later, every time they need to run an identification phase. The
second phase is run every time a group of users wish to identify themselves to the
verifying authority run a protocol, in which usually such users try to convince the
verifying authority of some statement which certifies their knowledge of private
keys received in the initialization phase. It is required that qualified groups of

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 370–384, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Threshold Anonymous Group Identification and Zero-Knowledge Proof 371

users can successfully identify themselves, while unauthorized groups of users
cannot. A full and general account on anonymous group identification schemes
is discussed in [2] based on the closure properties of statistical zero-knowledge
languages under monotone logic formula composition.

The communication complexity of the scheme by De Santis, Di Crescenzo,
Persiano and Yung[2] is Θ(mn) and Θ(mn log m) for a 1-out-of-m scheme and
a t-out-of-m scheme, respectively. In [1], De Santis, Di Crescenzo, and Persiano
improved communication complexity to Θ(m+n) and Θ(tm+n) for a 1-out-of-m
scheme and a t-out-of-m scheme, respectively, where n is the security parameter.
In this paper, we shall point out that the t-out-of-m scheme in [1] is incorrect,
that is, an authorized group may fail to identify themselves even though the
verifier is honest. A small example where the scheme does not work will be
shown in order to convince the readers. Then we briefly discuss the condition for
the scheme to work correctly even though the condition is too restrictive. We also
propose a new t-out-of-m scheme whose communication complexity is Θ(mn).
Since the t-out-of-m scheme in [2] is Θ(mn log m) and the t-out-of-m scheme in
[1] is incorrect, the communication complexity of the proposed scheme is best
ever as far as we know. The proposed scheme can be seen as a zero-knowledge
proof in which a prover knowing t out of m secrets can convince the verifier. In
such a scheme, a prover does not necessary to reveal which secret he actually
knows in addition to that a prover does not have to reveal any secret. In addition,
we briefly discuss how to extend the proposed t-out-of-m scheme to a t-out-of-m
scheme in which every user can choose her own secret key as the 1-out-of-m
scheme of Lee, Deng and Zhu [5] in which every user can choose her own secret
key whereas the secret keys are provided by a center and distributed to the users
in [2] and [1].

2 t-Out-of-m Scheme of De Santis, Di Crescenzo and
Persiano

2.1 Description of the Scheme

Initialization: Suppose that there are m legitimate users Ui (i = 1, 2, 3, . . . , m).
The center C generates a Blum integer x, where the size of x is n, and sends
a quadratic residue yi and its root wi, that is yi = w2

i mod x to every user Ui

(i = 1, 2, 3, . . . , m). The public key and the secret key of the user Ui are yi and
wi, respectively.

Identification: Every group of at least t users should be able to identify them-
selves to the verifier V in a secure and anonymous way. Suppose that a subgroup
P (called a prover) consisting of t users, Ui1 ,Ui2 , . . . ,Uit (2 ≤ t ≤ m), wishes to
identify itself to the verifier V. Then P computes an integer u as the product of
a random subset of {y1, y2, . . . , ym} times integer r2 mod x, where r is randomly
chosen from ZZ∗x. Then P sends u to V. Now V sends t random bits b1, b2, . . . , bt

and t linearly independent vectors h1, h2, . . . , ht ∈ {0, 1}m to P as a challenge.



372 A. Yamamura, T. Kurokawa, and J. Nakazato

Then P answers with an integer s ∈ ZZ∗x and bits d1, d2 . . . , dm satisfying

u = s2yd1
1 yd2

2 · · · ydm
m (mod x) (2.1)

and ⎛

⎜
⎜
⎝

h11 h12 . . . h1m

h21 h22 . . . h2m

. . . . . . .
ht1 ht2 . . . , htm

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

d1
d2
...

dm

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

b1
b2
...
bt

⎞

⎟
⎟
⎟
⎠

(mod 2), (2.2)

where h1 = (h11, h12, . . . , h1m), . . ., ht = (ht1, ht2, . . . , htm). Note that in [1] the
matrix equation (2.2) is given by hj � d = bj (1 ≤ j ≤ t), where d denotes the
vector (d1, d2, . . . , dm). Then P solves the equation (2.2) for di1 , di2 , . . . dit .

In [1], P (consisting of Ui1 ,Ui2 , . . . ,Uit) sets dj to be cj for j ∈ {1, 2, . . . , m}\
{i1, i2, . . . , it} and then solves the equation

⎛

⎜
⎜
⎝

h1i1 h1i2 . . . h1it

h2i1 h2i2 . . . h2it

. . . . . . . .
hti1 hti2 . . . , htit

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

di1

di2
...

dit

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

b1 − (
∑

h1jdj)
b2 − (

∑
h2jdj)

...
bt − (

∑
htjdj)

⎞

⎟
⎟
⎟
⎠

(mod 2), (2.3)

where j ranges over {1, . . . , m} \ {i1, . . . , it} in the sums in the right-hand side.
Note that this is equivalent to the matrix equation (2.2). Then P computes s as
rwci1⊕di1

i1 · · ·wcit⊕dit

it mod x.
The verifier V checks whether or not both (2.1) and (2.2) are satisfied. If this

is the case, V accepts, otherwise he rejects the protocol session. The protocol
flow is illustrated in Fig. 1.

2.2 Flaw in the Scheme and How to Repair

The selection of a challenge in the t-out-of-m anonymous group identification
scheme in [1] is not appropriate. The vectors hi (1 ≤ i ≤ t) are assumed to be
linearly independent in [1], however, this does not guarantee the existence of the
solution for (2.3) from the point of view of linear algebra. As a matter of fact,
that the vectors hi (1 ≤ i ≤ t) are linearly independent does not imply the t × t
submatrix ⎛

⎜
⎜
⎝

h1i1 h1i2 . . . h1it

h2i1 h2i2 . . . h2it

. . . . . . . .
hti1 hti2 . . . , htit

⎞

⎟
⎟
⎠

is non-singular, and so (2.3) does not necessarily have a solution. We shall show
an easy counterexample in Section 2.3. This must be fixed by changing the
assumption on the matrix

H =

⎛

⎜
⎜
⎜
⎝

h1

h2

...
ht

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

h11 h12 . . . h1m

h21 h22 . . . h2m

. . . . . . .
ht1 ht2 . . . , htm

⎞

⎟
⎟
⎠ .



Threshold Anonymous Group Identification and Zero-Knowledge Proof 373

The Protocol (P, V)

Prover (Ui1
, . . . , Uit

) Verifier

Uniformly choose r ∈ ZZ∗
x;

uniformly choose c1, . . . , cm ∈ {0, 1};

set u = r2 · y
c1
1 · · · y

cm
m mod x.

For j ∈ {1, . . . , m} \ {i1, . . . , it},

set dj = cj ;

find di1
, . . . , dit

∈ {0, 1} such that

hj � d = bj , for j = 1, . . . , t,

where d = d1 ◦ · · · ◦ dm;

set s = r · w
ci1

⊕di1
i1

· · · w
cit

⊕dit
it

mod x.

uniformly choose linearly independent

h1, . . . , ht ∈ {0, 1}m.

uniformly choose b1, . . . , bt ∈ {0, 1}.

If u = s2 · y
d1
1 · · · y

dm
m mod x and

hj � d = bj , for j = 1, . . . , t then

output: ACCEPT;
else output: REJECT.

u �

(h1, b1), . . . , (ht, bt)�

s, d1, . . . , dm�

Fig. 1. De Santis etc. schemes (t-out-of-m)

A necessary and sufficient condition for every prover consisting of t users to have
a solution of (2.3) for arbitrary (b1, b2, . . . , bt) is that every t × t submatrix of H
is non-singular. On the other hand, since each row vector hi of the matrix H is
chosen uniformly and randomly, every t minor (t × t submatrix) of the matrix
H is not necessarily non-singular. In fact, we have the following lemma.

Lemma 1. Suppose 2 ≤ t ≤ m − 2. Every t × m matrix H over the finite field
ZZ2 = {0, 1} contains a singular t × t submatrix.

Proof. Assume that every t× t submatrix of H is non-singular. In particular, the
left most t×t submatrix is non-singular. Applying elementary column operations
(multiplying H on the right by m × m elementary matrices properly), we can
transform H to

H ′ =

⎛

⎜
⎝

1 . . . t t + 1 . . . m

1 1 . . . 0 ∗ . . . ∗
...

...
. . .

...
...

. . .
...

t 0 . . . 1 ∗ . . . ∗

⎞

⎟
⎠.

We may also assume that every t × t submatrix of H ′ is non-singular. Put
H ′ = (h′ij) and h′

j = (h′1j , . . . , h
′
tj)

T (1 ≤ j ≤ m), where (h′1j , . . . , h
′
tj)

T is the
transpose of (h′1j , . . . , h

′
tj).



374 A. Yamamura, T. Kurokawa, and J. Nakazato

Now suppose that a certain k-th column vector h′
k (t + 1 ≤ k ≤ m) in H ′

has a 0 entry at a certain i-th row (1 ≤ i ≤ t). Then t (≥ 2) column vectors
h′

1, . . . , h′
i−1, h′

i+1, . . . , h′
t, h

′
k are linearly dependent because all entries of them

along the i-th row equal to 0:

H ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 . . . i . . . t t + 1 . . . k . . . m

1 1 . . . 0 . . . 0 ∗ . . . ∗ . . . ∗
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

i 0 . . . 1 . . . 0 ∗ . . . 0 . . . ∗
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

t 0 . . . 0 . . . 1 ∗ . . . ∗ . . . ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Thus by the non-singularity of H ′, we can find that all entries of h′
k equal to

1. Because 2 ≤ m − t, there exits at least two column vectors h′
k1

and h′
k2

(k1 �= k2, t + 1 ≤ k1, k2) in H ′ whose entries of them equal to 1:

H ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 . . . i . . . t t + 1 . . . k1 . . . k2 . . . m

1 1 . . . 0 . . . 0 ∗ . . . 1 . . . 1 . . . ∗
...

...
. . .

...
. . .

...
...

. . . 1
. . . 1

. . .
...

i 0 . . . 1 . . . 0 ∗ . . . 1 . . . 1 . . . ∗
...

...
. . .

...
. . .

...
...

. . . 1
. . . 1

. . .
...

t 0 . . . 0 . . . 1 ∗ . . . 1 . . . 1 . . . ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore, t (≥ 2) column vectors containing h′
k1

and h′
k2

are linearly depen-
dent. It contradicts the hypothesis. �

We remark here the probability that a randomly chosen square matrix of size n
over ZZ2 (n ≥ 2) is non-singular is at most 0.375. Because the order of GLn(IFq)
is qn(n−1)/2 ∏n

i=1(q
i − 1) [6] and the number of square matrices of size n over

IFq is qn×n, the probability that a randomly chosen square matrix of size n over
IFq is non-singular is

qn(n−1)/2 ∏n
i=1(q

i − 1)
qn×n

=
∏n−1

i=0 (qn − qi)
qn×n

=
n−1∏

i=0

(1 − qi

qn
) =

n∏

i=1

(1 − 1
qi

).

Hence, the probability that a randomly chosen square matrix of size n over ZZ2
(n ≥ 2) is non-singular is bounded by (1 − 1/2) · (1 − 1/22) = 0.375.

Lemma 1 implies (2.3) is not always solvable because the corresponding matrix
may be singular. Therefore, P is not always able to find d1, d2, . . . , dm satisfying
(2.1) and (2.2). We can also conclude that the scheme works adequately only
under the condition m = t + 1. Unfortunately, this condition is too restrictive
and so the scheme is unsatisfactory. Under the condition the challenge, which is
defined as a (m−1)×m matrix H , given by V must have the property that every
(m−1)×(m−1) minor is non-singular. In addition, P also has to check whether
or not the challenge received is adequate, that is, every (m − 1)× (m − 1) minor
is non-singular. This imposes more computation task upon both V and P.



Threshold Anonymous Group Identification and Zero-Knowledge Proof 375

2.3 Small Counterexample

We here exemplify the case that an authorized group cannot prove their identity.
Suppose that m = 3 and t = 2. So every group consisting of at least 2 users
must be able to prove the identity, but we shall show this is not true in general.
Let P consist of the user U1 and U2. Following the protocol, P chooses bits
c1, c2, c3, r ∈ ZZ∗x and computes u = r2yc1

1 yc2
2 yc3

3 . Then u is sent to V. Now
V chooses vectors h1, h2 from {0, 1}3 and bits b1, b2. Suppose that V chooses
h1 = (010), h2 = (001). Note that h1, h2 are linearly independent as required.
There are only two possible cases, (1) b2 = c3 mod 2 and (2) b2 = 1 − c3 mod 2,
and these happen with the equal probability 1

2 . Here, we suppose b2 = 1 − c3
is chosen by V. By the protocol, P sets d3 = c3 and tries to find d1 and d2
satisfying

(
0 1 0
0 0 1

)
⎛

⎝
d1
d2
d3

⎞

⎠ =
(

b1
1 − c3

)

(mod 2). (2.4)

The equation (2.4) turns out to be d2 = b1 mod 2 and d3 = 1 − c3 mod 2, which
contradicts to our assumption d3 = c3. Therefore, P is unable to find d1, d2, d3
satisfying (2.4) and in fact fails to prove their identity.

We remark that the matrix
(

0 1 0
0 0 1

)

has a 2 × 2 submatrix which is singular,

therefore P is not always able to respond to the challenge. It is also easy to see
that if h1 = (010), h2 = (101) then P can find the desired d1, d2, d3 and in fact
every group consisting of at least 2 users can respond correctly. Unfortunately,
in the scheme of [1], the matrix is chosen by V and so not always P proves the
identity. In the next section, we fix this flaw.

3 Proposed t-Out-of-m Anonymous Group Identification

In this section, we construct t-out-of-m (1 ≤ t < m) anonymous group identifi-
cation. The main idea in [1] is that the verifier gives a randomly chosen matrix
and bits as a challenge, and then the prover has to respond correctly to this
challenge using the secret information. However, the challenge given by the ver-
ifier is not always adequate for the prover to respond correctly as we saw in the
previous section. Our basic idea for constructing a t-out-of-m anonymous group
identification is similar to the idea but we give the matrix by another method
different from the one in [1]. In our construction, a matrix, which is a part of
a challenge in [1], is provided by the public keys and the matrix equation for
giving a correct response can be solved only by an authorized group of users.
The anonymity property is perfect zero-knowledge, and the communication com-
plexity is Θ(mn) which improves Θ(mn log m) of the previous construction [2].
The construction in [1] has Θ(tm + n), unfortunately, the scheme is incorrect.
Therefore, our construction achieves the best communication efficiency ever.



376 A. Yamamura, T. Kurokawa, and J. Nakazato

3.1 Proposed Scheme

Let G be a cyclic group of prime order p, and g a generator of G. We assume
that the size of p (= �p	) is equal to the security parameter n. The genera-
tor g is a public information. We suppose the discrete logarithm problem of
G is intractable. We divide a scheme into three phases: the initialization, the
challenge-and-response, and the verification. In our scheme, there are three play-
ers; a group of users, a verifier and a center (or trusted third party). The center
sets up the system parameters for each user and the verifier and thereafter will
not participate in any session.

Initialization. The center chooses randomly and uniformly the secret keys
{wj,i} (1 ≤ j ≤ t and 1 ≤ i ≤ m) from ZZp. Each user Ui (1 ≤ i ≤ m) re-
ceives a secret key (w1,i, w2,i, . . . , wt,i). The corresponding public key for Ui is
(gw1,i , gw2,i , . . . , gwt,i) and these keys are publicized. We denote the group ele-
ment gwj,i by yj,i (1 ≤ j ≤ t and 1 ≤ i ≤ m). Since the discrete logarithm
problem for G = 〈g〉 is intractable, it is impossible to obtain wj,i from yj,i. Fur-
thermore, the center checks whether or not the following condition holds.

Condition: For every t × t submatrix A of
⎛

⎜
⎜
⎝

w1,1 w1,2 · · · w1,t w1,t+1 · · · w1,m

w2,1 w2,2 · · · w2,t w2,t+1 · · · w2,m

. . . . . . . . . . . . . . . . . . . . . .
wt,1 wt,2 · · · wt,t wt,t+1 · · · wt,m

⎞

⎟
⎟
⎠ , (3.1)

the matrix
(
1T A
0 1

)

is non-singular, where 1 is the 1× t vector whose entries are

1 and 1T is its transpose, and 0 is the 1 × 1 vector whose entry is 0.

Lemma 2. The matrix
(
1T A
0 1

)

is almost always non-singular for every t × t

matrix A. In precise, if we choose uniformly and randomly wi,j from ZZp, the

probability that the matrix
(
1T A
0 1

)

is singular for a certain t × t submatrix of

A is bounded above by
(

m
t

)

(t − 1)/p.

Proof. Counting the number of events that the matrix
(
1T A
0 1

)

is singular for a

certain t × t submatrix A of (3.1), we investigate the number of solutions of the
following equation in t × m unknowns wi,j(1 ≤ i ≤ t, 1 ≤ j ≤ m)

∏

All t×t submatrix A of (3.1)

∣
∣
∣
∣
1T A
0 1

∣
∣
∣
∣ = 0

because we can consider the number of solutions as an upper bound of the
number of events. We note the following fact. Let IFq be a finite field of order q



Threshold Anonymous Group Identification and Zero-Knowledge Proof 377

and f ∈ IFq[x1, . . . , xn] with deg(f) = d �= 0. Then the equation f(x1, . . . , xn) =
0 has at most dqn−1 solutions in IFn

q . The reader is referred to Theorem 6.13 in
[6] for a proof.

Expanding each determinant by its first column cofactors, the degree of this

equation is at most
(

m
t

)

(t−1). By the fact mentioned above, we can obtain an

upper bound of the number of solutions
(

m
t

)

(t − 1)ptm−1. So the probability

of the event that for a certain t × t submatrix A the matrix
(
1T A
0 1

)

is singular

is bounded above by
(

m
t

)

(t − 1)ptm−1/ptm =
(

m
t

)

(t − 1)/p. �

Challenge and Response. We may assume without loss of generality that the
prover P consists of t users U1,U2, . . . ,Ut and wishes to identify itself to the
verifier V.

First, P chooses uniformly and randomly elements c0, c1, c2, . . . , cm from ZZp

and computes r1, r2, . . . , rt by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = gc0
∏m

i=1(y1,i)ci

= gc0(gw1,1)c1(gw1,2)c2 · · · (gw1,t)ct(gw1,t+1)ct+1 · · · (gw1,m)cm

r2 = gc0
∏m

i=1(y2,i)ci

= gc0(gw2,1)c1(gw2,2)c2 · · · (gw2,t)ct(gw2,t+1)ct+1 · · · (gw2,m)cm

...
rt = gc0

∏m
i=1(yt,i)ci

= gc0(gwt,1)c1(gwt,2)c2 · · · (gwt,t)ct(gwt,t+1)ct+1 · · · (gwt,m)cm .

(3.2)

Note that yj,i are public information and so it can be computed. Then P sends
(r1, r2, . . . , rt) to V.

Second, V chooses uniformly and randomly an element b from ZZp and sends it
to P as a challenge.

Third, P computes the response d0, d1, d2, . . . , dm as follows. Set
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 = c0 + w1,1c1 + w1,2c2 + · · · + w1,tct

f2 = c0 + w2,1c1 + w2,2c2 + · · · + w2,tct

...
ft = c0 + wt,1c1 + wt,2c2 + · · · + wt,tct

ft+1 = b − (ct+1 + ct+2 + · · · + cm).

(mod p) (3.3)

Note that r1 = gf1+w1,t+1ct+1+···+w1,mcm , r2 = gf2+w2,t+1ct+1+···+w2,mcm , . . . , rt =
gft+wt,t+1ct+1+···+wt,mcm . Then P solves the following system of linear equations
in the variables X0, X1, . . . , Xt over the field ZZp.



378 A. Yamamura, T. Kurokawa, and J. Nakazato

⎛

⎜
⎜
⎜
⎜
⎝

1 w1,1 w1,2 · · · w1,t

1 w2,1 w2,2 · · · w2,t

. . . . . . . . . . . .
1 wt,1 wt,2 · · · wt,t

0 1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X0
X1
X2
...

Xt

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f1
f2
...
ft

ft+1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c0 + w1,1c1 + w1,2c2 + · · · + w1,tct

c0 + w2,1c1 + w2,2c2 + · · · + w2,tct

...
c0 + wt,1c1 + wt,2c2 + · · · + wt,tct

b − (ct+1 + ct+2 + · · · + cm)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(mod p)

(3.4)

The equation (3.4) has a unique solution by Lemma 2 because the matrix(
1T A
0 1

)

is almost always non-singular for every t × t submatrix A of (3.1).

We note that similarly every group consisting of at least t users can solve the
equation (3.4) by Lemma 2. This is the missing point in [1] which suffers from a
flaw because of lacking rigorous argument in linear algebra. Let (d0, d1, . . . , dt)
be the solution of (3.4). Then P defines

dj = cj (3.5)

for every j (t + 1 ≤ j ≤ m). Then P sends (d0, d1, . . . , dt, dt+1, . . . , dm) to V as
a response.

Verification. Receiving (d0, d1, . . . , dt, dt+1, . . . , dm), to verify the response V
checks the validity of the following system of equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r1 = gd0(y1,1)d1(y1,2)d2 · · · (y1,t)dt(y1,t+1)dt+1 · · · (y1,m)dm

r2 = gd0(y2,1)d1(y2,2)d2 · · · (y2,t)dt(y2,t+1)dt+1 · · · (y2,m)dm

...
rt = gd0(yt,1)d1(yt,2)d2 · · · (yt,t)dt(yt,t+1)dt+1 · · · (yt,m)dm

(3.6)

and
b = d1 + d2 + · · · + dt + dt+1 + · · · + dm(mod p). (3.7)

Recall that g, yi,j (1 ≤ j ≤ t, 1 ≤ i ≤ m) are public information and so V
can verify (3.6) and (3.7). If all the equations hold then V accepts the response
as correct, otherwise, rejects the protocol session. See Fig. 2 for the protocol
flow when V consists of the users U1,U2, . . . ,Ut. Clearly, the protocol can be
similarly run by a more general prover consisting of Ui1 ,Ui2 , . . . ,Uit .

3.2 Algorithms

All the computation required to P and V can be performed in polynomial time
in the security parameter n. We note that the system of linear equations (3.4)
can be solved efficiently using the Gaussian elimination. Checking whether or
not every t minor of the matrix (3.1) is non-singular may be omitted if the
computation is a critical issue.



Threshold Anonymous Group Identification and Zero-Knowledge Proof 379

The Protocol

Prover (U1, . . . , Ut) Verifier

uniformly choose c0, . . . , cm ∈ ZZp;

for j = 1, . . . , t,

set rj = gc0
Qm

i=1(yj,i)
ci

set di = ci (t + 1 ≤ i ≤ m)

find d0, d1, . . . , dt such that

0

B
B
@

1 w1,1 · · · w1,t
. . . . . . . .

1 wt,1 · · · wt,t
0 1 · · · 1

1

C
C
A

0

B
B
B
@

d0
.
.
.

dt

1

C
C
C
A

=

0

B
B
B
B
B
@

f1
.
.
.

ft
ft+1

1

C
C
C
C
C
A

(modp),

where

8
>>>>>>>>><

>>>>>>>>>:

f1 = c0 + w1,1c1 + · · · + w1,tct
f2 = c0 + w2,1c1 + · · · + w2,tct

.

.

.
ft = c0 + wt,1c1 + · · · + wt,tct
ft+1 = b − (ct+1 + ct+2 + · · · + cm).

uniformly choose b ∈ ZZp.

if b = d1 + · · · + dm and

for j = 1, . . . , t,

rj = gd0
Qm

i=1(yj,i)
di

then
output: ACCEPT;
else output: REJECT.

r1, . . . , rt �

b�

d0, . . . , dm�

Fig. 2. Proposed protocol (in the case that P consists of U1,U2, . . . ,Ut)

4 Properties of the Proposed Scheme

Security of an anonymous group identification scheme is evaluated from three as-
pects: correctness, soundness and anonymity. In this section we see the proposed
scheme satisfies all these properties.

4.1 Correctness

We shall show that the prover P consisting of at least t members always succeeds
in identifying itself to V. As the previous section, we assume that P consists of
U1,U2, . . . ,Ut. Note that P can solve the equation (3.4) because the matrix

⎛

⎜
⎜
⎜
⎜
⎝

1 w1,1 w1,2 · · · w1,t

1 w2,1 w2,2 · · · w2,t

. . . . . . . . . . . .
1 wt,1 wt,2 · · · wt,t

0 1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

(4.1)



380 A. Yamamura, T. Kurokawa, and J. Nakazato

is almost always non-singular by Lemma 2. Let (d0, . . . , dm) be the solution of
(3.4). We note that f1, f2, . . . , ft, ft+1 are known only to P. Then we have

rj =gc0

m∏

i=1

(yj,i)ci

=gc0(gwj,1)c1(gwj,2)c2 · · · (gwj,t)ct(gwj,t+1)ct+1 · · · (gwj,m)cm

=gc0+wj,1c1+wj,2c2+···+wj,tct+wj,t+1ct+1+···+wj,mcm

=g(c0+wj,1c1+wj,2c2+···+wj,tct)+wj,t+1dt+1+···+wj,mdm

=gfj+wj,t+1dt+1+···+wj,mdm

=g(d0+wj,1d1+wj,2d2+···+wj,tdt)+wj,t+1dt+1+···+wj,mdm

=gd0(yj,1)d1(yj,2)d2 · · · (yj,t)dt(yj,t+1)dt+1 · · · (yj,m)dm

(4.2)

for every 1 ≤ j ≤ t by (3.2), (3.4) and (3.5). Therefore, (3.6) is satisfied. On the
other hand, we have

b =ft+1 + ct+1 + ct+2 + · · · + cm

=ft+1 + dt+1 + dt+2 + · · · + dm

=d1 + d2 + · · · + dt + dt+1 + dt+2 + · · · + dm (mod p)
(4.3)

by (3.3), (3.4) and (3.5). Thus, the equation (3.7) is also satisfied. It follows
that every prover P consisting of at least t users always succeeds in providing a
correct response (d0, d1, . . . , dm) by solving the system of equations (3.4). Thus,
P can always prove its identity to V and so the protocol is correct.

4.2 Soundness

We shall show that no prover Q consisting of less than t users succeeds in
convincing V. Suppose that a prover Q consists of t−1 users U1,U2, . . . ,Ut−1.
First, Q sends r1, r2, . . . , rt possibly following (3.2). Then Q receives b ∈ ZZp

uniformly and randomly chosen by V. Now Q has to send d0, d1, . . . , dm such
that (3.6) and (3.7) are satisfied. The prover Q can control the information
c0, c1, . . . , cm and know their own secret keys: wj,i (1 ≤ j ≤ t and 1 ≤ i ≤ t− 1).
Suppose that Q can provide such d0, d1, . . . , dm. Then we have

gc0−d0+wj,t(ct−dt)+···+wj,m(cm−dm)

=gwj,1(d1−c1)+wj,2(d2−c2)+···+wj,t−1(dt−1−ct−1)
(4.4)

for every j (1 ≤ j ≤ t) by (3.2) and (3.6). If we set zj = c0 − d0 + wj,t(ct − dt) +
wj,t+1(ct+1 − dt+1) + · · · + wj,m(cm − dm) (1 ≤ j ≤ t), then we have

gzj = gwj,1(d1−c1)+wj,2(d2−c2)+···+wj,t−1(dt−1−ct−1) (4.5)

for every j (1 ≤ j ≤ t). Note that z1, z2, . . . , zt are uniformly distributed over
ZZt

p because wj,t, . . . , wj,m (1 ≤ j ≤ t) are chosen randomly and uniformly from
ZZ∗p and secret to Q. The system of equations (4.5) is equivalent to



Threshold Anonymous Group Identification and Zero-Knowledge Proof 381

⎛

⎜
⎜
⎜
⎝

z1
z2
...
zt

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

w1,1 w1,2 · · · w1,t−1
w2,1 w2,2 · · · w2,t−1

...
wt,1 wt,2 · · · wt,t−1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

d1 − c1
d2 − c2

...
dt−1 − ct−1

⎞

⎟
⎟
⎟
⎠

(mod p). (4.6)

Let T be the linear transformation given by the matrix (wj,i)1≤j≤t,1≤i≤t−1.
Then it maps ZZt−1

p into ZZt
p. On the other hand, the vector (z1, z2, . . . , zt) is

uniformly distributed over ZZt
p. Finding c0, c1, . . . , cm, d0, d1, . . . , dm satisfying

(4.6) is equivalent to the event that a randomly and uniformly chosen vector
(z1, z2, . . . , zt) belongs to the range T (ZZt−1

p ). The probability of such an event

is is estimated as
|ZZt−1

p |
|ZZt

p|
= 1

p , which is negligible. Consequently, the probability

that Q provides d0, d1, . . . , dm satisfying (3.6) and (3.7) is negligible.
Likewise we can show that every group of less than t members fails to identify

itself to V. Therefore, the proposed scheme satisfies the soundness; no group
consisting of less than t users can identify itself.

4.3 Anonymity

In the protocol, the authorized group P provides (d0, d1, . . . , dt, dt+1, . . . , dm).
Note that (c0, . . . , cm) is uniformly and randomly chosen from ZZm+1

p and we
have (dt+1, . . . , dm) = (ct+1, . . . , cm). Hence, (dt+1, . . . , dm) is uniformly dis-
tributed over ZZm−t

p .
Next we shall show that (d0, . . . , dt) is also uniformly and randomly dis-

tributed over ZZt+1
p . By (3.3) and (3.4), we have the following equation

⎛

⎜
⎜
⎝

1 w1,1 w1,2 · · · w1,t

1 w2,1 w2,2 · · · w2,t

. . . . . . . . . . . .
1 wt,1 wt,2 · · · wt,t

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d0
d1
d2
...
dt

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1 w1,1 w1,2 · · · w1,t

1 w2,1 w2,2 · · · w2,t

. . . . . . . . . . . .
1 wt,1 wt,2 · · · wt,t

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c0
c1
c2
...
ct

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(mod p).

Therefore, we have

(d0, d1, . . . , dt)T = (c0, c1, . . . , ct)T + (z0, z1, . . . , zt)T ,

where (z0, z1, . . . , zt) ∈ Ker(T ), where T stands for the linear transformation
ZZt+1

p → ZZt
p given by the matrix

⎛

⎜
⎜
⎝

1 w1,1 w1,2 · · · w1,t

1 w2,1 w2,2 · · · w2,t

. . . . . . . . . . . .
1 wt,1 wt,2 · · · wt,t

⎞

⎟
⎟
⎠ .

Note that the vector subspace Ker(T ) is one-dimensional and so (z0, z1, . . . , zt) ∈
Ker(T ) gives the freeness to guarantee the equation (3.7). Thus, (d0, . . . , dm) is



382 A. Yamamura, T. Kurokawa, and J. Nakazato

uniformly and randomly distributed over ZZm+1
p . This implies that the scheme

attains the perfect zero-knowledge, that is, the protocol does not reveal any
knowledge on the secret keys and identity of the users in the information theo-
retical sense.

5 Communication Complexity

The messages transmitted between the group U of t members and the verifier
V are (r1, r2, . . . , rt), b, and (d0, d1, . . . , dm), where ri ∈ 〈g〉 (1 ≤ i ≤ t) and
b, d0, d1, . . . , dm ∈ ZZp. Hence, the size of messages is n(m + t + 2), where m
is the number of users, n is the security parameter, that is, �log p	 = n and t
(t ≤ m) is the size for authorized groups. It follows that the proposed scheme
attains Θ(nm) communication complexity.

In [1], De Santis, Di Crescenzo and Persiano claim that their t-out-of-m scheme
would have Θ(tm + n) communication complexity, however, even an authorized
group almost always fails to identify itself and so the scheme does not satisfy
the necessary functionality. Only when m = t+1 the scheme is correct and then
the communication complexity is estimated as Θ(m2 + n). Therefore, the best
communication complexity has been Θ(mn log m) by De Santis, Di Crescenzo,
Persiano and Yung [2] up to date. The proposed scheme improves the commu-
nication complexity and is best ever as far as we know.

Table 1. Communication complexity

De Santis, Di Crescenzo De Santis, Di Crescenzo Proposed scheme
Persiano and Yung [1] and Persiano [2] in this paper

Θ(mn log m) Θ(tm + n) (protocol is incorrect) Θ(mn)
Θ(m2 + n) if m = t + 1

5.1 Issues on Public Keys

Our scheme improves the communication complexity, however, we sacrifices the
size of both secret and public keys. A secret key of Ui is (w1,i, w2,i, . . . , wt,i) of t
randomly chosen elements of ZZ∗p, and a public key is (gw1,i , gw2,i , . . . , gwt,i) con-
sisting of the elements of the group 〈g〉. Therefore their sizes are tn, respectively,
and so these depend on the size of authorized groups.

It is also an issue on how to compute the answer (d0, d1, . . . , dm) without
revealing each user’s secret keys each other. A similar problems occur in the
scheme in [1] as well. When a prover P (consisting of Ui1 , . . . ,Uit) computes
s = rwci1⊕di1

i1 · · · wcit⊕dit

it mod x in Section 2, each Uij has to provide the secret
key wij if cij ⊕ dij = 1. Therefore some of secret keys must be revealed.

An easy (but not realistic) solution is to use the public and secret keys for
only one session unanimously; once a certain authorized group U establish a
session with V then not only the members in U but every user gives away
one of his secret and public keys. For this purpose, multiple key pairs for each



Threshold Anonymous Group Identification and Zero-Knowledge Proof 383

users should be prepared and stored for the future use. It is desired to solve
the equation (3.4) in a secret way, that is, each user Ui in P does not need
to reveal his secret key (w1,i, . . . , wt,i) to the other members of P. We note
that this cannot be done in a perfect zero-knowledge sense because a solu-
tion (d0, . . . , dm) together with (c0, . . . , ct) gives some information of the matrix
(4.3) since we have (d0, d1, . . . , dt)T = (c0, c1, . . . , ct)T + (z0, z1, . . . , zt)T , where
(z0, z1, . . . , zt) ∈ Ker(T ) and T is the linear transformation given by the matrix
above as in Section 4.3.

As a referee points out that the proposed scheme (and in fact another t-out-
of-m scheme) can be seen as a zero-knowledge proof in which a prover knows t
out of m secrets and convinces the verifier. In such a scheme, a prover does not
necessary to reveal which secret he actually knows in addition to that a prover
does not have to reveal any secret. We also note that in the zero-knowledge proof
a prover is required to know t out of m secrets to convince the verifier but not
necessarily to have all m secrets.

6 Discussion

As the scheme of Lee, Deng and Zhu [5], it is possible to extend to a general
case where each user makes his own secret key by himself because the secret
keys are chosen randomly and uniformly from ZZ∗p and then the public keys are
announced by each user. There are a small issue of checking whether or not each
t × t minor in the matrix (3.1) is non-singular. This is not an easy task and we
leave it out for our future work.

Next let us discuss another plausible remedy of the scheme in [1]. One may
suggest to repair the t-out-of-m scheme in [1] just by running it several times.
Until the prover P obtains a matrix in which the corresponding t × t submatrix
is non-singular, P does not go forward. When such a matrix is given to P as a
challenge, P can compute a correct response and returns it to V. So it seems the
protocol could be repaired in this way. Unfortunately, the remedy by running
several times causes another vulnerability; the anonymity of the prover is vio-
lated. An honest verifier V is able to obtain information on the prover’s identity
as we see below. So the remedy does not work.

Suppose that the prover P responds a correct answer to a challenge matrix H
after several trials. Then H must contain a singular t × t submatrix by Lemma
1 unless m = t + 1. Let P1 be the prover corresponding to the t × t singular
submatrix. Note that P1 is unlikely to be P because P1 may be unable to pre-
pare a correct response because their corresponding matrix is singular and so the
equation (2.2) may be unsolvable, on the other hand, P could do so. Although
V generates randomly H , he knows which t × t submatrix of H is singular.
Thus V can conclude the prover is not P1 with high probability. Likewise, V
can obtain enormous information on the prover’s identity just by eliminating
provers corresponding to a singular submatrices. Moreover, if V is dishonest,
he has much more chance to specify the prover by carefully selecting challenge



384 A. Yamamura, T. Kurokawa, and J. Nakazato

matrices. For example, he could generate a challenge matrix whose specified
t× t submatrices are singular, and then observes how the prover responds to this
challenge. In this way, a dishonest verifier detects who the prover is.

Lastly, the authors would like to thank anonymous referees for their construc-
tive comments and suggestions.

References

1. De Santis, A., Di Crescenzo, G., Persiano, G.: Communication-efficient anonymous
group identification. In: CCS ’98: Proceedings of the 5th ACM conference on Com-
puter and communications security, pp. 73–82 (1998)

2. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula
closure of SZK. In: FOCS’94: Proceedings of the 35th Annual Symposium on Foun-
dations of Computer Science, pp. 454–465 (1994)

3. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptology 1,
77–94 (1988)

4. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comp. 18, 186–208 (1989)

5. Lee, C.H., Deng, X., Zhu, H.: Design and security analysis of anonymou group iden-
tification protocols. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274,
pp. 188–198. Springer, Heidelberg (2002)

6. Lidl, R., Niderreiter, H.: Finite fields, 2nd edn. Cambridge University Press, Cam-
bridge (1997)



Non-interactive Manual Channel Message

Authentication Based on eTCR Hash Functions

Mohammad Reza Reyhanitabar, Shuhong Wang, and Reihaneh Safavi-Naini∗

CCISR, SCSSE, Faculty of Informatics,
University of Wollongong,

NSW, Australia
{mrr790, shuhong, rei}@uow.edu.au

∗Department of Computer Science, University of Calgary, 2500 University Drive NW,
Calgary Ab T2N 1N4
rei@cpsc.ucalgary.ca

Abstract. We present a new non-interactive message authentication
protocol in manual channel model (NIMAP, for short) using the weakest
assumption on the manual channel (i.e. assuming the strongest adver-
sary). Our protocol uses enhanced target collision resistant (eTCR) hash
family and is provably secure in the standard model. We compare our
protocol with protocols with similar properties and show that the new
NIMAP has the same security level as the best previously known NIMAP
whilst it is more practical. In particular, to authenticate a message such
as a 1024-bit public key, we require an eTCR hash family that can be
constructed from any off-the-shelf Merkle-Damg̊ard hash function using
randomized hashing mode. The underlying compression function must be
evaluated second preimage resistant (eSPR), which is a strictly weaker
security property than collision resistance.

Keywords: Message authentication, manual channel, eTCR hash family,
randomized hashing, hash function security.

1 Introduction

Message authentication protocols provide assurance that a received message is
genuine and sent by the claimed sender. Authentication protocols have been
studied in asymmetric (assuming PKI ) and symmetric (assuming shared secret
keys) settings. Manual channel (or two-channel) authentication model is a re-
cently proposed model, motivated by security requirements of ad hoc networking
applications. In this model a user wants to send an authenticated message to a
receiver. There is neither a shared secret key between communicants nor there
is a public key infrastructure. However the sender, in addition to an insecure
broadband channel (e.g. a wireless channel) that is used to send the message,
has access to a second narrow-band channel, referred to as manual channel that
is authenticated in the sense that messages over this channel cannot be modified,
although they can be delayed, replayed or removed. The channel is low capac-
ity and can only transfer up to a few hundred bits. A manual channel models

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 385–399, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



386 M.R. Reyhanitabar, S. Wang, and R. Safavi-Naini

human assisted channels such as face-to-face communication, telephone conver-
sation between two parties, or communication between two devices facilitated by
a human: a person reads a short number on a device display and inputs it into
a second device using a keyboard. The short authentication string sent over the
manual channel is called SAS [22]. A number of interactive and non-interactive
protocols have been proposed in this model and their security has been proven
in computational and unconditional security frameworks [8, 7, 1, 17, 12, 15].
In this paper we consider computationally secure non-interactive message au-
thentication protocols (NIMAPs) in manual channel model and assume a weak
manual channel as defined by Vaudenay [22] (see Sect. 2) which corresponds
to the strongest adversary. We note that in NIMAP the scarce resource is the
bandwidth of the manual channel.

Computationally Secure NIMAPs Using Manual Authentication. Bal-
fanz, Smetters, Stewart, and Wong [1] (referred to as BSSW protocol) were the
first to propose a manual channel NIMAP that was based on collision resistant
hash functions. The basic idea is to send the massage m over the insecure chan-
nel, and send its hash value, computed using collision resistant hash function,
over the manual channel. Vaudenay [22] proposed a formal security model for
manual authentication protocols and gave a security reduction from the security
of the protocol to collision resistance property of the hash function. He showed
that to guarantee security against an adversary having time T = 2n, the SAS
length must be at least 2n bits.

Gehrmann, Mitchell, and Nyberg [7] proposed a number of protocols, MANA
I, II and III, of which only MANA I is a NIMAP. MANA I requires low bandwidth
for manual channel. For example to make the probability of a successful attack
less than about 2−17, one should use a SAS of length about 40 bits. The protocol
requires manual channel to also provide confidentiality and Vaudenay in [22]
pointed out that the manual channel must be at least stall-free. We will not
include MANA I in our comparisons because of these extra requirements on
manual channel.

Pasini-Vaudenay [17] presented a NIMAP (referred to as PV protocol) that
requires, a hash function that is second preimage resistant, and a trapdoor com-
mitment scheme in Common Reference String (CRS) model. Although compared
with BSSW that uses collision resistant hash functions, PV protocol has weaker
security requirements on hash functions (i.e. second preimage resistance), but it
needs a secure trapdoor commitment scheme in CRS model which makes it a
more demanding protocol.

Mashatan and Stinson [12] proposed a new property, Hybrid Collision Re-
sistance(HCR) for hash functions and proposed a NIMAP (referred to as MS
protocol) that is provably secure assuming the hash function is HCR. Mashatan
et al use random oracle model to show that HCR is a weaker security property
than CR for hash functions and so the protocol is of interest because it achieves
the same level of security and efficiency as PV protocol without requiring a com-
plex commitment scheme and the added assumption of CRS. In Section 3 we
show that there is no clear method of instantiating the hash function used in this



Non-interactive Manual Channel Message Authentication 387

protocol to be used for arbitrary length messages. In particular, we point out
that popular Merkle-Damg̊ard construction cannot be used for domain exten-
sion of HCR functions. This leaves construction of efficient NIMAPs for arbitrary
length messages in weak manual authentication model, an open problem.

Our Contributions. We propose a new NIMAP in weak manual channel model
that uses a hash function family and is provably secure in standard model. The
protocol is based on an enhanced target collision resistant (eTCR) hash function
family and can be constructed using randomized hashing mode of a Merkle-
Damg̊ard hash function (Theorem 4 of [9]).

To evaluate our protocol we consider underlying security assumptions of exist-
ing NIMAP protocols that use weak manual channel model. This includes BSSW,
PV and MS protocols. In all these cases, and also in the case of our protocol, the
security relies on (in BSSW and our protocol reduces to) the required property
of the hash function. We give a careful comparison of these properties (colli-
sion resistance, second-preimage-resistance, HCR and eTCR ) from two view
points. Firstly, in terms of implication or separation, i.e showing whether one
property implies the other one, or there is a clear separation between them, and
secondly, if the property can be guaranteed for arbitrary length messages. This
latter requirement removes restriction on the message length sent over the man-
ual channel. Our comparison also includes evaluated second preimage resistance
(eSPR) property, a property of compression functions introduced to construct
eTCR hash function families through Merkle-Damg̊ard construction in the ran-
domized hashing mode [9]. We show that eSPR notion is not strictly stronger
than HCR notion, using previously known results [9] that eSPR is not strictly
stronger than SPR notion.

The comparison is of of interest because of its direct application to NIMAP
and also for grading properties of hash functions.

Paper Organization. In Section 2 we describe communication and security
model for manual channel authentication. In Section 3 we give an overview of
security notions for hash functions and describe the three security notions, eSPR,
eTCR and HCR, that are directly related to our NIMAP and MS protocol. In
Sect. 4 we present a new protocol and analyze its security. We also compare it
with previous protocols and show its potential advantages. The paper is con-
cluded in Sect. 5.

2 Communication and Security Model

Communication Model. We consider the problem of noninteractive authenti-
cation between a sender Alice and a verifier Bob: Alice wants to send a message,
M , to Bob such that Bob can be assured that the message has come from
Alice (entity authentication) and has not been modified by an adversary Eve
(message authentication). It is assumed that Alice and Bob have access to two
communication channels; a broadband insecure channel (denoted by −→) and an
authenticated narrow-band channel (denoted by =⇒ ). It is further assumed that



388 M.R. Reyhanitabar, S. Wang, and R. Safavi-Naini

the authenticated narrow-band channel is linked to the identity of the sender,
i.e. Alice. In other words when Bob receives a message from this channel he is
ensured that it is generated by Alice although the message can be a replay of
a previous one. The most important restriction on the narrow-band channel is
the limitation on the bandwidth: the channel can transmit messages of length
at most n which in some applications n can be as small as 32 bits.

As a real world example of this scenario consider user-aided pairing of two
wireless devices (e.g. Bluetooth) such as a mobile phone and a laptop. The user
can read a message consisting of a number of characters on the screen of mobile
phone and type them on laptop keyboard. In this case the user establishes the
authenticated channel manually. These kinds of human controlled authenticated
channel are also called manual channels.

Security Model. We assume weak authenticated channel model and the strong
adversary described in Vaudney [22]. The adversary Eve has full control over
the broadband channel, i.e. she can read, modify, delay, drop messages, or insert
new ones. In the weak manual channel model, it is assumed that Eve can read,
delay, replay and drop messages sent over manual channel, but she cannot modify
or insert messages into this channel. In other words there is no extra security
assumptions, like confidentiality or stall-freeness, on a weak manual channel.
A manual channel with some additional security requirements on it is called a
strong manual channel. It is also assumed that the adversary can employ adaptive
chosen message attack: she can adaptively choose the input message to be sent
by Alice and make Alice to produce messages of the protocol to be sent over the
two channels. The number of such queries made by Eve is her online complexity
and is denoted by Q. A second resource of Eve is her offline complexity, denoted
by T , denoting the time spent on processing the messages in the attack. We
assume that Eve has bounded computational resources.

A typical manual channel NIMAP works as follows. On input message M
Alice uses (possibly randomized) algorithms to compute a tag x and a short
authentication string (SAS) s. The message M together with the tag x are
sent over insecure broadband channel and SAS is sent over the authenticated
channel. Note that x may be a null string in which case no tag will be sent over
the insecure channel. Figure 1 shows communication flows in such a protocol.
We note that in PV protocol the message might not be explicitly sent over the
insecure channel. However the message in their protocol can be transformed (i.e.
re-coded) into our representation. The transformation is public and so will not
affect security of the protocol. Received messages by Bob are denoted by M ′, x′

and s′ to show possible effects of an adversary. The verification process (accept
or reject a received message) by Bob is abstractly denoted by a (publicly known )
deterministic binary function Verify(.). The function outputs 1 if the acceptance
conditions (specified for the protocol) are satisfied by the received message, and
0 otherwise.

Definition 1 (Successful attack). An adversary Eve, having resources Q
(number of queries made from Alice) and T (time complexity), is successful if
with probability at least ε, she can make Bob output (Alice , M ′) while M ′ has



Non-interactive Manual Channel Message Authentication 389

Alice Bob

Input: M

Compute x
M, x−−−→ M ′, x′

Compute s
s

=⇒ s′

output (Alice, M ′)
if Verify(M ′, x′,s′)=1; else reject

Fig. 1. A typical manual channel NIMAP

never been an input of protocol on Alice side, i.e. it has never been authenticated
by Alice. The protocol is called (T, Q, ε)-secure if there is no (T, Q, ε)-breaking
adversary against it.

Note that to be considered a successful adversary, Eve should respect the commu-
nication and security model described above. For example she can only replay
a previously obtained s from Alice but she cannot modify it or inject a new
one. More specifically if Eve has made Q queries from Alice and has collected
a data set {(Mi, xi, si); 1 ≤ i ≤ Q}, then a successful attacker Eve should find
an M ′ /∈ {Mi; 1 ≤ i ≤ Q}, any x′ and an s′ ∈ {si; 1 ≤ i ≤ Q} such that Ver-
ify(M ′, x′, s′)=1.

Proving security of a manual channel NIMAP consists of two steps. Firstly one
should show that the protocol is (T ′, 1, ε′)-secure, i.e. secure against adversaries
that can only make one query from Alice (called one-shot adversaries in [22] )
and have time complexity T ′. This is done by transforming such an adversary
against the protocol into an adversary that can defeat security assumptions on
the underlying building primitive(s) of protocol. The second step of proof (i.e.,
showing that protocol is (T, Q, ε)-secure ) can be done (Lemma 6 in [22]) by
transforming a (T, Q, ε)-breaking adversary to a (T ′, 1, ε′)-breaking adversary,
where ε′ = ε

Q .

3 Hash Functions and Security Notions

Cryptographic hash functions play an important role in design of NIMAPs as
well as many other cryptographic protocols like MACs and digital signature
schemes. There are numerous informal and formal definitions of security for
hash functions. Definitions can be application specific. For example Brown [4]
defined Zero-Finder-Resistance as the difficulty of finding a preimage for zero
(i.e. finding a domain element that is hashed to 0) and showed it to be a necessary
security assumption for the hash functions to prove security of DSA algorithm.

The most widely used security notions for hash functions are Collision resis-
tance(CR), Second-preimage resistance(SPR) and Preimage resistance(PR) and
are required in applications such as digital signature, commitment and password



390 M.R. Reyhanitabar, S. Wang, and R. Safavi-Naini

protection. Informal definitions of these notions for a fixed hash function and
formal definitions of CR notion and one of its weaker variants, UOWHF (Uni-
versal One Way Hash Function) for a family of hash functions, can be found
in [5, 6, 13, 14, 16]. UOWHF notion (originally defined in asymptotic security
framework in [14]) is also called TCR (Target Collision Resistance) (rephrased
in concrete security framework in [3]).

Informally, for a fixed hash function H , CR means that it is computationally
hard to find two distinct inputs M ′ �= M that collide under hash function, i.e.
H(M) = H(M ′). SPR means that for a given input M , it is computationally
hard to find M ′ such that M ′ �= M and H(M) = H(M ′). PR refers to one-
wayness property and means that it is computationally hard to find a preimage
(domain element x) for a given hash value (range element y), so that these
constitute a valid (input, output) pair for the hash function (i.e. H(x) = y).

Regarding CR notion, there is a foundational problem, that is formal definition
of CR security notion can only be given for a family of hash functions (also called
keyed hash function) and not for a fixed hash function. There are also some other
subtleties regarding formal definitions of security notions for hash functions and
studying relationships (implications and separations) between different security
notions. More details on CR definition dilemma and also a comprehensive formal
treatment of security notions (including implications and separations between
CR, SPR, PR and TCR notions), can be found in [18, 21, 19].

In comparing two security notions for hash functions, we say that notion A
is stronger than notion B if A implies B; that is if a hash function H satisfies
notion A then it also satisfies notion B. For instance, CR is a stronger security
notion than SPR and the implication is shown in [18] and [21] for keyed and
unkeyed settings, respectively.

3.1 Definitions for eSPR, eTCR and HCR Notions

We review in more details three security notions relevant to the discussion in
the next section. First we recall Merkle-Damg̊ard construction that provides a
method of extending domain for hash functions.

Merkle-Damg̊ard Construction. For a compression function H : {0, 1}n+b →
{0, 1}n, an L-round Merkle-Damg̊ard construction is a method of constructing
a hash function MDL[H ] : {0, 1}n+L.b → {0, 1}n with an extended domain. For
an initial value C0 ∈ {0, 1}n and a message M = M1||M2|| . . . ||ML consisting
of L blocks each of size b bits, it outputs an n-bit hash value denoted by CL as
shown in Figure 2:

– The input message M is divided into L blocks M1, ..., ML, each block Mi of
length b bits.

– The chaining variable C is initialized to C0.
– For i=1 ... L :

Ci = H(Ci−1, Mi)
– CL is output as the hash value.



Non-interactive Manual Channel Message Authentication 391

If the input message length is not a multiple of the block length b, proper
padding can be used. For a fixed initial value C0 we denote the transformation
by MDC0

L [H ] : {0, 1}Lb → {0, 1}n.

Fig. 2. L-round Merkle-Damg̊ard construction

By strengthened Merkle-Damg̊ard we mean Merkle-Damg̊ard with a proper
length indicating padding and some fixed initial value. Strengthened Merkle-
Damg̊ard’s construction converts a compression function to a hash function for
arbitrary length input while preserving CR property of the compression function.

In the sequel, we use $← and R←, to denote randomly selecting (computing )
according to a specific distribution (output distribution of a probabilistic algo-
rithm) and uniform distribution, respectively.

For the definition of HCR we follow [12] but parameterize the game explicitly
with the length of the randomness (l2). (As noted in [12], l2 and n are security
related parameters.) We use a state variable State to show the state information
that the adversary A keeps between its attack phases.

Definition 2 (HCR notion). A compression function H : {0, 1}l1+l2 → {0, 1}n

is (T, ε) − HCR[l2] if no adversary A, having time at most T , can win the fol-
lowing game with probability at least ε:

Game(HCR[l2], A)

(M, State) $← A() //M ∈ {0, 1}l1

K
R← {0, 1}l2

M ′ $← A(K, State) //M ′ ∈ {0, 1}l1+l2

A wins the game if M ′ �= M ||K and H(M ′) = H(M ||K)

Note that HCR[l2] notion for an arbitrary-input-length hash function H : {0, 1}∗ →
{0, 1}n can be defined by a game in which the adversary can output M ∈ {0, 1}∗
and M ′ ∈ {0, 1}∗, in the above game.

eSPR notion is defined for a compression function[9].

Definition 3 (eSPR notion). A compression function H : {0, 1}n+b → {0, 1}n

is (T, L, ε)- eSPR if no adversary, spending time at most T and using messages
of length L(in b-bit blocks), can win the following game with probability at least
ε. It is assumed that the adversary knows the initial value C0 before starting the
game, i.e. either C0 is chosen at random and given to the adversary (uniform



392 M.R. Reyhanitabar, S. Wang, and R. Safavi-Naini

setting) or it is a parameter of the game that the adversary will receive as an
‘advice’ (non-uniform setting).

Game(eSPR, A )

Δ1, . . . , ΔL
$← A() //Δi ∈ {0, 1}b

, L ≥ 2
r

R← {0, 1}b

M = ΔL ⊕ r; C = MDC0
L−1[H ](Δ1 ⊕ r, ..., ΔL−1 ⊕ r)

(C′, M ′) $← A(C, M) //C′ ∈ {0, 1}n , M ′ ∈ {0, 1}b

A wins the game if C′||M ′ �= C||M and H(C′||M ′) = H(C||M)

eTCR security notion is defined in [9] for arbitrary-input-length hash function
families. Note that HCR and eSPR security notions were defined for a single
hash function or a fixed compression function.

Definition 4 (eTCR notion). An arbitrary-input-length hash function
family, H : {0, 1}k × {0, 1}∗ → {0, 1}n, is (T, ε)- eTCR[m], if no adversary
spending time at most T can win the following game with probability at least ε.
We use a state variable State to keep adversary state between its attack phases:

Game(eTCR[m])

(M, State) $← A() //M ∈ {0, 1}m

K
R← {0, 1}k

(K ′, M ′) $← A(K, State) //K ′ ∈ {0, 1}k and M ′ ∈ {0, 1}∗

A wins the game if (K, M) �= (K ′, M ′) and HK(M) = HK′(M ′)

A method of constructing an eTCR hash function family is using an iterated
hash method (e.g. Merkle-Damg̊ard construction) with a compression function.
Halevi et al’s iterated construction [9] reduces eTCR notion to eSPR property for
the compression function (Theorem 1). In [9], the length(in blocks) of the target
message M , is denoted by L (L = m/b, where b denotes block length in bits) and
is considered as another resource parameter of the adversary. So, alternatively
the adversary can be denoted as a (T, L, ε) adversary and the notion can be
defined as (T, L, ε)-eTCR, instead of specifying parameter m as a superscript.

3.2 Relations Among eSPR, eTCR and HCR Notions

In this section we study relationships between the three notions, eSPR, eTCR
and HCR.

eSPR versus HCR. We show that eSPR notion is not stronger than HCR
notion. That is there exist compression functions that are eSPR but not HCR.

This can be shown by considering the following two relations.

– R1. Halevi et al [9] pointed out a separation between eSPR and SPR and
argued that (depending on the structure of the compression function) there
exist compression functions that are eSPR but not SPR.



Non-interactive Manual Channel Message Authentication 393

– R2. We show if a compression function is not SPR then it is not HCR either
(i.e., HCR is stronger notion than SPR). This can be seen by noting that an
adversary A against SPR property can be used to construct an adversary B
against HCR property. To win in HCR game, B forwards M ||K to A and
outputs A’s response (which is a second preimage of H(M ||K) ) as M ′ in
HCR game. Clearly B succeeds whenever A succeeds.

Now if eSPR is stronger than HCR, then combined with R2 we can conclude
that eSPR is stronger that SPR. This contradicts R1 and so eSPR is not a
stronger notion than HCR .

Relation Between HCR and eTCR. We show (constructively) that ex-
istence of a (T, ε)-HCR [l2] compression function implies existence of a (T, ε)-
eTCR compression function family.

Assume that we have a (T, ε)-HCR[l2] compression function
H : {0, 1}l1+l2 → {0, 1}n. We construct a compression function family as follows:
H = {HK}K∈{0,1}l2 , where HK : {0, 1}l1 → {0, 1}n and HK(M) = H(M ||K).
To show that the constructed family H is (T, ε)- eTCR, we note that an adversary
A against eTCR property of the family H can be transformed into an adversary
B against HCR property of H with the same advantage. Adversary B plays
HCR game against H while accessing A. In the first move, B runs A to choose
a message M . After receiving K, B forwards it to A who will generate (K ′, M ′)
such that HK(M) = HK′(M ′). Upon receiving (K ′, M ′) form A, adversary B
outputs M ′||K ′ in final move of its HCR game. Clearly B wins HCR game
against H whenever A wins eTCR game against H.

Using Merkle-Damg̊ard Construction for HCR. Let MDL[H ] denote a
L-round strengthened Merkle-Damg̊ard construction. We show that a collision
finding adversary A against MDL[H ] can be used to construct an algorithm B
that defeats MDL+1[H ] in HCR[l2] sense. We assume in HCR game |K| = l2 > 0
(for l2 = 0, HCR is the same as CR). B works as follows:

Algorithm B invokes A to obtain two colliding messages M and M ′ each of
length L blocks. (Note that a successful adversary against strengthened Merkle-
Damg̊ard construction results in such a collision). In the first move of HCR game
against MDL+1[H ], algorithm B commits to M and when receives a random
challenge K ∈ {0, 1}l2 , it outputs M ′||K as colliding pair with M ||K. Clearly B
succeeds whenever A succeeds.

In MS protocol, if the sum of the lengths of the message to be sent (i.e. l1) and
the security parameter l2 (e.g. l2 = 70 as in [12]) becomes more than one block,
the hash function should be applied to a message with length more than one
block and it should provide HCR property. In above, we showed that without
CR assumption on one-round Merkle-Damg̊ard version (i.e. compression function
using specified initial value C0 as part of input), the hash function cannot provide
HCR property as needed in MS in such a case.



394 M.R. Reyhanitabar, S. Wang, and R. Safavi-Naini

Reduction from eSPR to eTCR. The following theorem reproduced from
[9] gives an explicit construction for eTCR hash function family.

Theorem 1. [9] Assume that h : {0, 1}n+b → {0, 1}n is a (T, L + 1, ε)- eSPR
compression function that is also (T ′, ε′)-OWH. The (L + 1)-round Merkle-
Damg̊ard construction based on h as compression function and used in random-
ized hashing mode, defines a family of hash functions H̃r : {0, 1}b × {0, 1}Lb →
{0, 1}n that is (T−O(L), L, ε′+(L+1)ε)- eTCR secure. This family is constructed
as H̃r(M) = H̃(r, M) = MDC0

L+1[h](r, M1⊕r . . . ML⊕r), where M = M1||...||ML

and C0 is a known initial value.

As argued in [9], the second property in addition to eSPR , i.e., (T ′, ε′)- OWH,
is implied by eSPR assuming a mild structural property for the compression
function and is redundant. We refer the reader to [9] for more discussion on this
matter.

4 A NIMAP Based on eTCR Hash Function Families

4.1 Protocol Description and Security Reduction

Assume that we have a (T, ε)- eTCR hash function family H : {0, 1}k×{0, 1}<m →
{0, 1}n, where m is the maximum size of input length( e.g.,m = 264). We construct
a secure NIMAP between a claimant, Alice, and a verifier, Bob, in weak manual
channel model. The NIMAP is as follows:

1. On input message M , Alice chooses uniformly at random a key x ∈ {0, 1}k

and computes s = Hx(M);
2. Alice sends (M , x) to Bob over the insecure channel and sends s = Hx(M)

over the authenticated channel;
3. Bob receives (M ′, x′) via insecure channel and s′ via authenticated channel;
4. Bob outputs (Alice, M ′) if s′ = Hx′(M ′) and rejects M ′ otherwise.

The proposed protocol is illustrated in Figure 3.

Alice Bob

Input: M

x ∈R {0, 1}k M, x−−−→ M ′, x′

s = Hx(M)
s

=⇒ s′

output (Alice, M ′)
if s′ = Hx′(M ′); else reject

Fig. 3. A new manual channel NIMAP based on eTCR hash family



Non-interactive Manual Channel Message Authentication 395

The following Theorem guarantees security of the NIMAP.

Theorem 2. Let H : {0, 1}k × {0, 1}<m → {0, 1}n be a (TH , εH)- eTCR hash
function family. The proposed NIMAP as in Fig. 3 is a (T, Q, ε)-secure NIMAP,
where T = TH − μQ − σ, ε = QεH. Constants μ and σ represent the maximum
time complexity of Alice over all Q queries and the time required for a single
hash computation, respectively.

Proof. First we show that any (T ′, 1, ε′)-breaking adversary Â against our
NIMAP can be used to construct a (T ′ + σ, ε′)-breaking adversary B against
eTCR hash family H. Then we complete the proof by a general reduction from
any (T, Q, ε)-breaking adversary A to a (T ′, 1, ε′)-breaking adversary Â, where
T ′ = T + μQ and ε′ ≥ ε

Q .

To prove the first part, let Â be a (T ′, 1, ε′)-breaking adversary against the
NIMAP. That is, the adversary makes a single query from Alice to obtain
(M, x, s) and then spends time at most T ′ to mount a successful attack, i.e.
produces (M ′, x′) where M ′ �= M and Hx′(M ′) = s. Note that it is possible to
have x′ = x. Adversary B against H plays eTCR game using Â as follows. It runs
Â and obtains the query M and commits to it in the first move of eTCR game.
After receiving the hash function key, i.e. x ∈ {0, 1}k , B computes s = Hx(M)
in time σ, and forwards x and s to Â. Adversary Â within time T ′ produce
(M ′, x′). Adversary B outputs M ′ as the second message and x′ as the second
hash function key in eTCR game. This means that B succeeds in time T ′ + σ
and with the same success probability ε′ as Â.

The second part of the proof is a general transformation between a Q-query
adversary and 1-query adversary [22]. For completeness of the proof, we have in-
cluded the proof (i.e. two-party NIMAP). Let A be a (T, Q, ε)-breaking adversary
against the NIMAP. We can construct a (T ′, 1, ε′)-breaking adversary Â as follows.

Adversary Â chooses uniformly at random j ∈ {1, 2, . . . , Q} and runs A. When
A makes its i − th query M i, adversary Â selects at random an xi ∈R {0, 1}k,
computes si = Hxi(M i) and provide A with xi and si. This is done for every
i− th query except when i = j in which case Â forwards the query (j − th query
of A) to Alice (in real protocol) and uses Alice’s response to respond A. When
A succeeds, it outputs (M ′, x′, s′) where s′ = Hx′(M ′), M ′, is different from all
previously queried messages and s′ is a replay of one of the previously obtained
authenticated messages. With probability 1

Q we have s′ = sj and so Â succeeds
with probability ε′ ≥ ε

Q . Denote by μ the maximum overall time to run the
protocol once, i.e., to compute x and s on an input M , where the maximum is
over Q queries made by A. It is easy to see that time complexity of algorithm Â
is T ′ = T + μQ. This completes the proof of the theorem.


�
4.2 Comparison with Previous Schemes

We compare our proposed NIMAP with the existing NIMAP protocols using
weak manual channel, namely BSSW [1], PV [17] and MS [12]. The comparison
is made for the same level of security, from following viewpoints:



396 M.R. Reyhanitabar, S. Wang, and R. Safavi-Naini

1. Security assumptions required for the underlying primitives (commitment
schemes and/or hash functions)

2. Required bandwidth for the manual channel (i.e., the SAS length).

Security Assumptions. We consider security assumptions required by BSSW,
PV, MS and our protocol when there is no restriction on the length of the input
message.

The BSSW protocol uses a fixed (unkeyed) hash function and requires it to be
collision resistant (CR). CR is a strong security assumption for a hash function
which cannot be formally defined for a single hash function [2, 18]. To obtain
the property for arbitrary length messages Merkle-Damg̊ard construction can be
used [19].

The PV protocol uses SPR which is a weaker assumption than CR ([21, 18]).
PV protocol also requires a secure trapdoor commitment scheme in CRS model.
Furthermore, the commitment string c is taken as an input to the hash function
([17]) and so the hash domain needs to be of arbitrary size (if one uses an
arbitrary commitment scheme ); i.e., one needs an arbitrary-input-length hash
function that provides security in SPR sense.
To compute SAS length, PV assumes that hash function provides ideal security
in SPR sense, i.e., a hash function with security level of 2−n, where n is the hash
size. This assumption for the case of long messages is not satisfied by iterated
Merkle-Damg̊ard hash functions (like MD5, SHA1, RIPEMD-160, Whirlpool) as
shown by recent analysis in [11].

MS protocol also uses a fixed hash function satisfying HCR property. The
HCR[l] is a notion between CR and SPR, depending on the value of l. As shown
in subsection 3.2, the commonly used Merkle-Damg̊ard domain extension con-
struction does not guarantee HCR (without CR assumption) and so it is not
clear how to construct an arbitrary-input-length HCR hash functions from a
fixed-input-length one.

Our NIMAP uses an eTCR hash family to hash arbitrary-length messages.
Standard Merkle-Damg̊ard iteration in randomized hashing mode can be used
to construct such an eTCR hash family from an eSPR compression function
(i.e. a fixed-input-length hash function) [9]. Hence security of our protocol is
reduced to eSPR property for a fixed-input-length hash function. It has been
argued [9] that eSPR notion is weaker than CR and also is not stronger than
SPR. We also argued in subsection 3.2 that eSPR is not stronger than HCR.
The above argument shows that our protocol, when used for arbitrary length
messages, requires less demanding security assumption (namely, eSPR-ness of a
fixed-input-length hash function) and benefits from provable security framework
in constructing eTCR hash family for arbitrary length messages (Theorem 1).

Manual Channel Bandwidth. Assume an adversary with the same resources
and required security level (denoted by ε) as in [12]. Namely, we require the
NIMAP to be (T, Q, ε)-secure , where T ≤ 270, Q ≤ 210 and ε = 2−20.

In BSSW the SAS length must be at least 140 bits. In PV protocol a SAS
of length 100 is required (, but as mentioned above for arbitrary long messages
PV requires that the used hash function provides ideal SPR security for long



Non-interactive Manual Channel Message Authentication 397

messages which is not satisfied by Merkle-Damg̊ard constructions due to recent
attacks in [11]). MS can theoretically reach the same level of security using a
SAS of 100 bits for l2 = 70 bits (, but we are not aware of a practical hash
function that provides HCR for arbitrary-length messages without need to a
stronger than HCR assumption on the underlying compression function and as
we showed Merkle-Damg̊ard constructions cannot be used for this purpose).

Our NIMAP needs a SAS with length n = 100 + log2(L + 2) bits, where L
denotes the message length in blocks. (See more details and computation of SAS
length below.) For a 1024-bit message using SHA1 in randomized hashing mode
(L = 2), the required SAS length will be 102 bits. Our NIMAP can still use
randomized hashing mode for messages up to about 249 bits using a SAS of only
140 bits.

To calculate SAS length for our protocol to have a NIMAP that is (T, Q, ε)-
secure (for T = 270, Q = 210, ε = 2−20), using Theorem 2, we need a hash
function family that is 2−30 (=2−20/210) secure in eTCR sense. Using Theorem
1, we can construct such an eTCR family assuming that the compression function
is eSPR with ε = 2−30

L+2 and L being the number of blocks in the input message of
the eTCR function .(We assumed that ε′ = ε in Theorem 1). The length of SAS
(i.e. required n) must be computed for each message length taking into account
non-tightness of the reduction between eTCR and eSPR notions. One can use
compression function of a standard hash function like SHA1 and truncate its
output to n bits. Assuming that the compression function provides 2−n security
level in eSPR sense1 , i.e. ε = T 2−n, the SAS length of our NIMAP, i.e. n, for
messages of length L blocks, is n = 100 + log2(L + 2) bits.

5 Conclusion

We proposed a new practical non-interactive message authentication protocol
in manual channel model using a family of eTCR secure hash functions. For
applications such as sending a public key where message length is small (e.g.
1024 bits), using randomized hashing mode one can construct an eTCR hash
family using an off-the-shelf Merkle-Damg̊ard hash function (e.g. SHA1). In this
case security of the scheme will be based on eSPR property of the compression
function which is strictly weaker than collision resistance property. For longer
messages however, randomized hashing may not produce optimal result (shortest
SAS) because of the non-tightness of reduction. Using randomized hashing for
messages of up to 249 bits results in SAS of around 140 bits. Other constructions
of eTCR with tighter reduction can be directly used in the proposed NIMAP
and could result in shorter SAS.

Acknowledgments. The authors would like to thank the anonymous review-
ers for their insightful comments and suggestions. Mohammad Reza Reyhan-
itabar is fully supported by IPRS and UPA Scholarships from the University
1 Note that this assumption is not the same as in PV, since here we require such

a property from a compression function in eSPR sense (i.e., only for single-block
inputs) and not for arbitrary-length messages as in PV in SPR sense.



398 M.R. Reyhanitabar, S. Wang, and R. Safavi-Naini

of Wollongong. Shuhong Wang is fully supported by the ARC Discovery Grant
DP0558490.

References

[1] Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: Talking to Strangers: Au-
thentication in ad-hoc Wireless Networks. In: Network and Distributed Sytem
Security Symposium, San Diego, California, U.S.A (February 2002)

[2] Bellare, M., Rogaway, P.: Introduction to Modern Cryptography (Page
3 of) Chapter 5: Hash Functions. Available at Bellare’s homepage via:
http://www-cse.ucsd.edu/users/mihir/cse207/index.html

[3] Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

[4] Brown, D.: Generic Groups, Collision Resistance and ECDSA. Journal of Designs,
Codes and Cryptography 35, 119–152 (2005)

[5] Damg̊ard, I.B.: Collision Free Hash Functions and Public Key Signature Schemes.
In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–
216. Springer, Heidelberg (1988)

[6] Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

[7] Gehrmann, C., Mitchell, C.J., Nyberg, K.: Manual Authentication for Wireless
Devices. RSA Cryptobytes 7(1), 29–37 (2004)

[8] Gehrmann, C., Nyberg, K.: Security in Personal Area Networks. Security for Mo-
bility, IEE, London, pp. 191–230 (2004)

[9] Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

[10] Hong, D., Preneel, B., Lee, S.: Higher Order Universal One-Way Hash Functions.
In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 201–213. Springer,
Heidelberg (2004)

[11] Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

[12] Mashatan, A., Stinson, D.R.: Noninteractive Two-Channel Message Authenti-
cation Based on Hybrid-Collision Resistant Hash Functions. Cryptology ePrint
Archive, Report 2006/302

[13] Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

[14] Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic
Applications. In: Proc. of 21st ACM Symposium on the Theory of Computing,
pp. 387–394 (1990)

[15] Naor, M., Segev, G., Smith, A.: Tight Bounds for Unconditional Authentication
Protocols in the Manual Channel and Shared Key Models. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 214–231. Springer, Heidelberg (2006)

[16] Preneel, B.: Analysis and Design of Cryptographic Hash Functions. Doctoral dis-
sertation, K.U.Leuven (1993)

[17] Pasini, S., Vaudenay, S.: An Optimal Non-interactive Message Authentication
Protocol. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 280–294.
Springer, Heidelberg (2006)

http://www-cse.ucsd.edu/users/mihir/cse207/index.html


Non-interactive Manual Channel Message Authentication 399

[18] Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS,
vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

[19] Rogaway, P.: Formalizing Human Ignorance: Collision-Resistant Hashing without
the Keys. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 221–
228. Springer, Heidelberg (2006)

[20] Rivest, R.: Abelian Square-Free Dithering for Iterated Hash Functions. Presented
at ECRYPT Hash Function Workshop, Cracow (June 21, 2005)

[21] Stinson, D.R.: Some Observation on the Theory of Cryptographic Hash Functions.
Journal of Design, Codes and Cryptography 38, 259–277 (2006)

[22] Vaudenay, S.: Secure Communications over Insecure Channels Based on Short
Authenticated Strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
309–326. Springer, Heidelberg (2005)



A Practical System for Globally Revoking the

Unlinkable Pseudonyms of Unknown Users�

Stefan Brands1, Liesje Demuynck2, and Bart De Decker2

1 Credentica & McGill School of Comp. Science
1010 Sherbrooke St. W., Suite 1800, Montreal, QC, Canada H3A 2R7

brands@{credentica.com,cs.mcgill.ca}
www.credentica.com

2 K.U.Leuven, Department of Computer Science
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{Liesje.Demuynck,Bart.DeDecker}@cs.kuleuven.be
www.cs.kuleuven.be

Abstract. We propose the first single sign-on system in which a user
can access services using unlinkable digital pseudonyms that can all be
revoked in case she abuses any one service. Our solution does not rely
on key escrow: a user needs to trust only her own computing device
with following our protocols in order to be assured of the unconditional
untraceability and unlinkability of her pseudonyms. Our solution in-
volves two novel ingredients: a technique for invisibly chaining the user’s
pseudonyms such that all of them can be revoked on the basis of any
one of them (without knowing the user’s identity with the issuer) and
a sublinear-time proof that a committed value is not on a list without
revealing additional information about the value. Our solution is highly
practical.

1 Introduction

Traditionally, most authenticated relations between users and online services are
established on the basis of username and password. As users interact with more
and more online services, however, passwords become increasingly vulnerable
to phishing and to replay by dishonest service providers. In addition, users are
struggling to remember usernames and passwords, which in turn poses a signif-
icant burden on the support systems of service providers. As a result, more and
more organizations are migrating to secure single sign-on (SSO) systems for their
users. SSO systems allow a user to access many services without having to man-
ually authenticate more than once. In addition, SSO systems give organizations
the ability to globally revoke all access privileges of users for any reason. This is
desirable in intra-organizational settings where SSO is used for giving employees
� This research was performed under the auspices of McGill University (School of

Comp. Science) from 07-2005 until 02-2006 when the second author was visiting the
first author at Credentica. Liesje Demuynck is supported by a research assistantship
and travel credit from the Fund for Scientific Research, Flanders (Belgium).

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 400–415, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



A Practical System for Globally Revoking 401

online access to corporate resources: when an employee leaves a company, for
example, the organization can centrally revoke all her access privileges.

The demand for secure SSO systems goes beyond organizational boundaries.
In the past years, industry efforts have resulted in a number of specifications and
standards aimed at cross-organizational SSO. However, to date very few organi-
zations have adopted cross-organizational SSO systems, especially in consumer-
facing settings. A major reason for this lack of adoption is that the current
generation of cross-organizational SSO systems create potential privacy and se-
curity problems for both users and service providers. These systems revolve
around a central server (also known as an identity provider) that sees in real
time which users interact with what service providers. The identity provider can
arbitrarily deny access or revoke all access capabilities of any user at any time.
Furthermore, the identity provider can impersonate users and can gain access to
accounts they may have established with service providers. While these powers
may be desirable in intra-organizational settings, they tend to be overly invasive
to autonomous users and service providers.

The SSO system proposed in this paper overcomes these problems, while
preserving the ability to globally deny access to any user who abuses a service.

Outline of our Solution. Our system also relies on a central identity provider,
but any unwanted powers in that provider are eliminated. The identity provider
is responsible for issuing to each user a number of digital pseudonyms, which are
a special kind of authentication tokens. Users hook their pseudonyms up with
service providers and authenticate in subsequent visits by proving knowledge
of a secret pseudonym key. Digital pseudonyms are unconditionally unlinkable
and untraceable, even vis-à-vis collusions of service providers and the identity
provider; thus, by using a different pseudonym with each service provider, each
user can ensure that her account information with different service providers
cannot be compiled into a super-dossier. Replay attacks are prevented, be-
cause secret pseudonym keys are never disclosed when authenticating to service
providers. Assuming user devices transparently manage pseudonyms on behalf of
their users, users can be given an SSO experience; for instance, a single password
could locally unlock all of a user’s pseudonyms for the duration of a session.

To enable the global revocation of all of a user’s pseudonyms in case the
user abuses any one service, the identity provider invisibly chains all of these
pseudonyms. Hereto, the identity provider invisibly encodes into all of a user’s
pseudonyms a set of random numbers that are unique to that user (without the
identity provider knowing those numbers). For each pseudonym that a service
provider associates with a user, the service provider requires its user to disclose
one of these encoded random numbers. By disclosing a different random num-
ber for each pseudonym, users preserve the unconditional unlinkability of their
pseudonyms. At the same time, service providers can blacklist disclosed numbers
in such a manner that users can efficiently prove that their encoded numbers are
not blacklisted without revealing any additional information about them.

This revocation technique does not impinge on user privacy, nor does it give
covert powers to service providers and the identity provider. Firstly, the encoding



402 S. Brands, L. Demuynck, and B. De Decker

of the invisible numbers into digital pseudonyms requires the cooperation of the
user at issuing time. Secondly, in order to be able to blacklist a user, a service
provider must ask all users who request access to prove that they are not on its
blacklist. Thirdly, in order to compute a blacklist proof users require the blacklist
as input, and so they can inspect the blacklist and sanction unreasonable requests
for blacklist proofs. Fourthly, proving that one is not on the revocation list does
not reveal any information about one’s identity.

Comparison to Other Work. Blind signatures, invented in the eighties by Chaum
[16,18], allow users to authenticate using unconditionally unlinkable pseudonyms.
However, when using blind signatures as pseudonyms it is impossible to revoke
the pseudonyms of a fraudulent user, whether on the basis of the user’s identity
with the issuer or on the basis of misuse of any one service. Thus, blind signatures
provide privacy for users by trading away security for service providers.

Various adaptations of blind signatures have been proposed to enable global
revocation in the context of electronic cash systems, to ensure either (1) that a
designated party can identify all e-coin payments of a particular account holder
or (2) that all of a payer’s payments can be identified if that user engages in
a fraudulent payment transaction. In the context of SSO systems, these two
features correspond to the ability to revoke all of a user’s pseudonyms for a
known user (i.e., based on the user’s identity with the issuer) and of an unknown
user, respectively. Various proposals to extend electronic cash systems with one
or both of these features have been presented. Unfortunately, in all of these
proposals, the privacy of users is in fact illusional. Namely, most techniques
[7,27,10,24,23] rely on key escrow: the bank encodes into each e-coin a tracing
key that its user must disclose in encrypted form at payment time, so that it
can be decrypted by a designated “escrow agent (or set of parties) if needed. In
e-cash systems not requiring a trused escrow agent [12,28], users have to settle
for computational unlinkability and untraceability only.

More recently, Camenisch et al. [8,13] and Nguyen [26] proposed credential
revocation mechanisms based on dynamic accumulators. Dynamic accumulators
enable individuals to prove list membership in constant time in the list size. The
security of these accumulators relies on non-standard intractability assumptions,
such as the strong RSA assumption and the q-strong Diffie-Hellman assumption.
In addition, the schemes merely allow one to revoke the credentials of users on
the basis of their identity with the issuer; it is not possible to revoke all of the
pseudonyms of an unknown user. Finally, the proofs of knowledge in [13] are
statistical zero-knowledge only and the set of accumulatable values is limited to
prime numbers in a predefined interval.

An accumulator-based membership proof consists of two steps; the compu-
tation of the user’s current “witness” (which is a secret value related to the
user’s accumulated value) and the execution of a zero-knowledge proof of knowl-
edge. Although the latter can be executed in constant time, the former requires
a time complexity which is at least linear in the number of elements deleted
from the accumulator. Consider, for example, an accumulator to which no ele-
ments are added and of which n elements are removed, and assume that a small



A Practical System for Globally Revoking 403

exponentiation has an exponent size equal to the maximal size of an accumulated
value. In this setting, the recomputation of a witness may require n small ex-
ponentiations. (In [13], this corresponds to two exponentiations with very large
exponents.) In addition, the final witness can only be computed when the final
blacklist is known. Hence, not all of a user’s exponentiations can be precomputed.

In the context of direct anonymous attestation, Brickell et al. [6] suggest
a technique in which a user provides the service provider with a pseudonym
NV = ζf for f a user-specific secret value and ζ a random generator of a group
in which the discrete logarithm (DL) problem is hard. The purpose of NV is
twofold: (1) providing the service provider with a pseudonym and (2) enabling
revocation based either on the knowledge of f or on a list of other pseudonyms
{(NV ′) = (ζ′)f ′

, . . .}. The latter can be achieved by proving in zero-knowledge
the relation (logζ′ NV ′ �= logζ NV ) for all NV ′ in the list [15]. This solution
has two major drawbacks. Firstly, the user’s unlinkability is only computational.
Second, the proof that a pseudonym is not revoked based on a list of pseudonyms
requires a number of exponentiations linear in the length of the blacklist.

Brands [5] proposed a practical digital credential mechanism that allows an
issuer to invisibly encode into all of a user’s credentials a unique number that the
issuer can blacklist in order to revoke that user’s credentials. This mechanism
does not rely on key escrow and preserves the unconditional untraceability and
unlinkability of credentials; as such, it offers the same privacy strength as our
proposal. Base credentials in the system are as efficient as standard DSA signa-
tures, and the blacklist technique (which consists of repeating a NOT-proof for
each blacklist element) is provably secure under the DL assumption. However,
Brands’ proposal does not allow the revocation of all of the pseudonyms of an
unknown user. In addition, the complexity of the cryptographic proof for show-
ing that one’s invisibly encoded number is not contained in a blacklist grows
linearly in the size of the blacklist. As such, the proposal is not practical for
large blacklists.

Our proposal addresses both shortcomings by extending Brands’ credentials
system using two new techniques: a generalization of Brands’ credentials so that
multiple credentials can be revoked based on something unique to any one of
them, and a sublinear-time cryptographic blacklist proof that is secure under
the DL assumption.

Organization of the Paper. Section 2 provides a backgrounder on Brands’ cre-
dential techniques and compares the system with other credential systems. Sec-
tion 3 describe our cryptographic protocols in detail and analyzes their security
and privacy properties. Finally, Sections 4 and 5 analyze the practicality of the
proposal and outline various extensions and variations.

2 Digital Credentials

Our new system is based on Brands’ credential techniques [5]. Section 2.1 pro-
vides a backgrounder on these techniques. To motivate the choice for Brands’
system, Section 2.2 compares this system with other credential techniques.



404 S. Brands, L. Demuynck, and B. De Decker

2.1 Backgrounder of Brands’ Digital Credentials

In the system of Brands [5], credentials are issued by a Credential Authority
(CA) that has its own key pair for digitally signing messages. When issuing a
credential to a user Alice, the CA through its digital signature binds one or more
attributes to a digital credential public key, the secret key of which only Alice
knows. The whole package that Alice receives is called a digital credential.

Alice can show her digital credential to Bob by providing him with her digital
credential public key and the CA’s signature. If desired, she selectively discloses
a property of the attributes in her digital credential, while hiding any other
information about these attributes. Finally, to prevent Bob from replaying the
digital credential, Alice digitally signs a nonce using her secret key.

Since Alice reveals the digital credential public key and the CA’s signature
when showing a digital credential, these elements must be uncorrelated to the
information that the CA sees when it issues the digital credential, even if the
CA tries to cheat. At the same time, the CA must be able to encode the de-
sired attributes into the digital credential, even if Alice tries to cheat. Here
is how l attributes, (x1, . . . , xl), are encoded in a digital credential. The tuple
(x1s, . . . , xls, s) is Alice’s secret key for the digital credential. Alice generates s
at random from Zq in the issuing protocol. Even though Alice may disclose some
attributes to Bob in the showing protocol, she keeps s secret at all times; this
ensure that only she knows the entire secret key. The digital credential public
key is the product h = (gx1

1 · · · gxl

l h0)s. Elements g1, . . . , gl, h0 are random gen-
erators of a group Gq of prime order q; they are part of the CA’s public key.
The digital credential public key reveals no information about x1, . . . , xl: for any
public key and for any tuple (x1, . . . , xl), there is exactly one s ∈ Zq that would
make the match. At the same time, regardless of the choice of l and under the
DL assumption in Gq, Alice cannot compute a digital credential public key for
which she knows more than one secret key [5, Proposition 2.3.3]. Hence, by sign-
ing the digital credential public key the CA indirectly binds a unique attribute
tuple to Alice’s digital credential: the CA’s signature binds Alice’s public key,
which in turn binds her secret key containing the attributes.

To show a digital credential to Bob, Alice transmits to him the digital cre-
dential public key and the CA’s digital signature. In addition, she selectively
discloses a property of the attributes and digitally signs a nonce using her secret
key. Alice’s signature, which is derived from a proof of knowledge, proves not only
that she knows a secret key but also that the attributes in her digital creden-
tial satisfy the particular attribute property she is disclosing to Bob. Under the
DL assumption in Gq, Bob cannot compute any secret key when presented with
Alice’s digital credential public key, regardless of which property of (x1, . . . , xl)
Alice discloses to him. Alice can demonstrate a wide spectrum of properties to
Bob. Among others, using the notation (x1, . . . , xl) = rep(g1,...,gl)h to refer to a
representation (x1, . . . , xl) such that h = gx1

1 . . . gxl

l , Alice can prove any of the
following properties:

– Knowledge of a representation containing known attribute values [5, Chapter
3]: Alice can prove knowledge of a representation (x1, . . . , xl) of h ∈ Gq with



A Practical System for Globally Revoking 405

respect to any (g1, . . . , gl) ∈ Gl
q, and in doing so she can disclose any subset

D ⊂ {x1, . . . , xl}. For an example subset D = {xj−1, xj}, we denote this
protocol by PK{(χ1, . . . , χj−2, χj+1, . . . , χl) : (χ1, . . . , χj−2, xj−1, xj , χj+1,
. . . , χl) = rep(g1,...,gl)h}. (Greek letters represent the values that remain
unknown to Bob.)

– Knowledge and equality of discrete logarithms [17]: Given values h1, h2, g1, g2,
g3 and g4 in Gq, Alice can demonstrate her knowledge of a tuple (x1, x2, x3)
such that h1 = gx1

1 gx2
2 and h2 = gx1

3 gx3
4 . We denote this protocol by PK{(χ1,

χ2, χ3) : (χ1, χ2) = rep(g1,g2)h1 ∧(χ1, χ3) = rep(g3,g4)h2}. It can be extended
towards a proof of equality of arbitrary exponents using arbitrary base tuples.

– Knowledge of discrete logarithms constituting successive powers [11, Chapter
3]: Let h1, . . . , hn, g1 and g2 be values in Gq. Alice can prove knowledge of
values x, y1, . . . , yn ∈ Zq such that hi = gxi

1 gyi

2 for i ∈ {1, . . . , n}. We denote
this protocol by PK{(χ, γ1, . . . , γn) : (χ, γ1) = rep(g1,g2)h1 ∧ (χ2, γ1) =
rep(g1,g2)h2 ∧ . . . ∧ (χn, γn) = rep(g1,g2)hn}.

– Knowledge of a discrete logarithm unequal to zero [5, Chapter 3]: Let h be a
value in Gq. Alice can demonstrate to Bob that she knows a representation
(x1, x2) of h w.r.t. base tuple (g1, g2) ∈ (Gq)2, such that x1 �= 0. We denote
this protocol by PK{(χ1, χ2) : (χ1, χ2) = rep(g1,g2)h∧ χ1 �= 0}. Brands calls
this a NOT proof.

– AND connections: All previous formulae can be combined by “AND” con-
nectives. Given formulae F1(x1,1, . . . , x1,l1), . . . , Fn(xn,1, . . . , xn,ln) about
secrets (xi,1, . . . , xi,li) (i = 1, . . . , n), we denote this protocol by
PK{(χ1,1, . . . , χn,ln) : F1(χ1,1, . . . , χ1,l1) ∧ . . . ∧ Fn(χn,1, . . . , χn,ln)}.

Under the DL assumption, all protocols are perfect honest-verifier zero-
knowledge. They can be made concurrent zero-knowledge at virtually no over-
head by using techniques of Damg̊ard [21].

We briefly review the most important properties of Brands’ credential system
based on the Chaum-Pedersen based issuing protocol [5, Section 4.5.2].

Proposition 1. Brands’ credential system [5] satisfies the following properties.

1. If an honest user Alice accepts the credential issuing protocol, she retrieves
a credential secret key (x1, . . . , xl, s), a corresponding public key h and a
signature sign(h), such that (h, sign(h)) is uniformly distributed over the set
{(h, sign(h))|h ∈ Gq \ {1}}.

2. Assuming the Chaum-Pedersen protocol [17] is secure, it is infeasible to ex-
istentially forge a credential.

3. For any credential public key h and signature sign(h), for any tuple (x1, . . . ,
xl), and for any view of CA on a credential issuing protocol in which p =
gx1
1 . . . gxl

l is used as initial input (with (x1, . . . , xl) known by CA), there is
exactly one set of random choices that an honest user Alice could have made
during the execution of this issuing protocol such that she would have output
a credential containing both h and sign(h).

4. Let h be a valid credential public key. Under the DL assumption and provided
that s �= 0, proving knowledge of a representation (x∗1, . . . , x

∗
l , s
∗) of h−1

0



406 S. Brands, L. Demuynck, and B. De Decker

w.r.t. (g1, . . . , gl, h) is equivalent to proving knowledge of a valid secret key
(x∗1s, . . . , x

∗
l s, s) corresponding to h. Moreover, the relation s∗ = −s−1 holds.

5. Consider any number of arbitrarily interleaved executions of a showing proto-
col with a computationally unbounded Bob in which Alice only discloses for-
mulae about the attributes that do not contain s, and in which she uses only
proofs of knowledge that are statistically witness-indistinguishable. Whatever
information Bob can compute about the credential attributes, he can also
compute using merely his a priori information (i.e., without engaging in
showing protocol executions) and the status of the requested formulae.

Assumption 1. Under the DL assumption, if a computationally bounded at-
tacker A, after engaging in an execution of the issuing protocol with CA, in
which p = g

x∗
1

1 . . . g
x∗

l

l is used as input, outputs a valid credential containing a
secret key (x1, . . . , xl, s), then (x1, . . . , xl, s) = (x∗1s, . . . , x

∗
l s, s) with overwhelm-

ing probability. This assumption remains valid even when polynomially many
executions of the issuing protocol are arbitrarily interleaved.

2.2 Comparison to Other Credential Systems

Before moving on to the new system, we compare Brands’ system with the CL-
based systems of Camenisch and Lysyanskaya [9,14]. The core of the CL-based
systems is a signature scheme with additional protocols for the retrieval of a
signature on committed values and for the demonstration of signature possession
in zero knowledge. Consequently, a credential can be shown unlinkably multiple
times and all pseudonyms based on the same credential can be revoked by simply
revoking the credential.

We compare the complexity of Brands’ scheme [5, Section 4.5.2] with the op-
timized CL-RSA scheme of [1] and the CL-DL system of [14]. The evaluation
considers communication sizes and workloads in the number of exponentiations.
Multiplications and additions are neglected, as their demand on computational
resources is many orders of magnitude smaller. As for the schemes, we adopt
Brands’ scheme for a subgroup construction with |p| = 1600, |q| = 256 and
|s| = 160 (see Brands [5, Section 4.5.2]), a CL-RSA scheme with parameters
�m = 256, �c = 160, �s = 80, �e = 259 and �n = 1600 (see Bangerter et al. [1]),
and a CL-DL scheme based on a bilinear map over elliptic curves, with |q| = 256,
|G| ≈ 21600 and a zero-knowledge challenge length of 160 bits (see Camenisch et
al. [14]). Workloads are approximated by the number of small (256-bit) expo-
nentiations that must be performed1. In addition, we assume the complexity of
a bilinear pairing to be competitive to that of a small exponentiation. We eval-
uate an issuing protocol for a credential with l user-chosen attributes which are
unknown to CA and a showing protocol in which no properties of the attributes
are demonstrated. Table 1 summarizes the results.

Compared to the CL-RSA scheme, Brands’ credentials are cheaper in all as-
pects. With respect to CL-DL, they are much cheaper to show and slightly more
1 Larger exponentiations are reduced to small exponentiations using the guideline that

an x-bit exponentiation roughly compares to x/y y-bit exponentiations.



A Practical System for Globally Revoking 407

Table 1. A comparison of complexity for different credential systems

size of credentials
Brands 32l + 328 bytes
CL-RSA 32l + 473 bytes
CL-DL 96l + 128 bytes

issuing protocol
#expon. Alice #expon. CA comm.

offline online offline online

Brands 2l + 6 3 2 l + 3 32l + 1116 bytes
CL-RSA 3l + 14 7 - 2l + 21 62l + 1405 bytes
CL-DL 2l + 2 - 2l + 3 l + 3 96l + 213 bytes

showing protocol
#expon. Alice #expon. Bob comm.

offline online offline online

Brands l + 2 - - l + 7 32l + 748 bytes
CL-RSA 2l + 18 - - 2l + 9 62l + 785 bytes
CL-DL 4l + 8 - - 6l + 8 96l + 380 bytes

expensive to retrieve. Brands’ credentials cannot be shown unlinkably. This prop-
erty can however be simulated by using multiple copies of the same credential.
One additional credential for identical attributes occupies 296 bytes and can
be retrieved by 7 exponentiations from Alice. Hence, for l attributes, about l/5
Brands credentials occupy the same amount of space as one CL-DL credential.
Additionally, the retrieval of l/7+2 of Brands credentials costs roughly as much
for Alice as the retrieval of one CL-RSA credential.

The CL-DL scheme is based on elliptic curves and bilinear pairings. The
adopted bilinear map must provide efficient computations as well as adequate
security for the DL problem. Hence, the system’s key setup must be chosen very
carefully. In contrast, the CL-RSA scheme as well as Brands’ system are very
flexible in their choice of key setup.

Provided the issuer’s key-setup is performed correctly, both Brands’ system
and the CL-DL scheme guarantee unconditional privacy for the user. In Brands’
system, this key-setup can easily be checked by ensuring that p and q are prime
and that q|p − 1. In contrast, the CL-RSA scheme provides statistical privacy
only. Its procedure for checking the key-setup requires a signed proof of knowl-
edge with binary challenges. In the setting described above, constructing the
proof requires about 6(l + 1)�c small exponentiations, while verifying it requires
7(l + 1)�c small exponentiations.

Brands’ credentials can easily be incorporated in wallets-with-observers
[20,3,5] such that all inflow and outflow is prevented. The integration of trusted
modules that can protect the security interests of the identity provider, rely-
ing parties, and/or third parties, is critical in many applications. It is not clear
whether and how this can be achieved for the CL-based schemes.



408 S. Brands, L. Demuynck, and B. De Decker

Brands’ system also offers other unique features, such as the ability to se-
lectively censor user-disclosed attribute values from signed showing protocol
transcripts, the ability to recertify previous issued credentials without know-
ing their attribute values and the ability to selectively update attribute val-
ues in previously issued credentials without knowing the values themselves.
Note that the latter two properties could also be achieved using the CL-based
schemes. In contrast to Brands’ solution, however, their proposals are highly
inefficient.

Brands’ scheme does not provide multi-show unlinkability but achieves un-
conditional privacy and highly practical showing protocols. Because of the latter
property and its richer feature set, we have opted for Brands’ system.

3 The New System

The principal parties in our system are a user U , an identity provider IP and
l service providers Si (i = 1, . . . , l). U retrieves her pseudonyms from IP and
uses them to authenticate to service providers. In the remainder of the paper,
Si refers to the service provider as well as to the provided service.

In order to obtain her pseudonyms, U contacts IP and both parties engage
into a pseudonym retrieval protocol. As private output of this protocol, U re-
trieves a set of l unlinkable pseudonyms, such that each of them encodes the
same random tuple (d1, . . . , dl). To access service Si, U authenticates herself
with her i-th pseudonym and additionally discloses di. She also proves, for each
j ∈ {1, . . . , l}, that value dj encoded in her credential is not on a blacklist Lj .
Blacklists are formed as follows: for any user U , if U abuses service Sj then U ’s
value dj is added to a public blacklist Lj.

Next, we describe the system setup and the protocols for pseudonym retrieval,
pseudonym registration and subsequent authentication to service providers.

3.1 System Setup

To set up the system, IP decides on a group Gq of prime order q in which the DL
assumption is believed to hold. She generates a keypair (sk, pk) suitable for issu-
ing digital credentials containing l+1 attributes. We assume (g1, . . . , gl+1, h0) ∈
Gq to be part of IP ’s public key pk. Credential public keys are of the form
gx1
1 . . . gxl

l gt
l+1h

s
0, where (x1, . . . , xl, t, s) is the credential secret key.

Additionally, each service provider Si sets up and publishes an empty list Li

that can only be modified by Si. Si also publishes values ai, bi ∈R Gq where
zi = logai

bi is privy to Si.
A pseudonym is a tuple (P, sign(P )). Here, P �= 1 is a credential public

key. User U is said to be the owner of (P ,sign(P )) if she knows P ’s secret key
(x1, . . . , xl, t, s).



A Practical System for Globally Revoking 409

3.2 Pseudonym Retrieval

Before retrieving a set of pseudonyms, U authenticates her identity to IP . As-
suming U meets the enrollment requirements of IP , the following protocol is
then executed:

1. User U generates random values d(1,1), . . . , d(1,l), e ∈R Zq and sends p1 =

(
∏l

i=1 g
d(1,i)
i )ge

l+1 to IP .
2. IP retrieves p1, picks l random values d(2,1), . . . , d(2,l) ∈R Zq and computes

p = p1
∏l

i=1 g
d(2,i)
i . She sends d(2,1), . . . , d(2,l) to U .

3. U creates di = d(1,i)+d(2,i) for i = 1, . . . , l and computes p = (
∏l

i=1 gdi

i )ge
l+1.

4. IP and U perform l instances of the credential issuing protocol of Brands [5,
Section 4.5.2], using p as initial input. As a result, user U obtains l tuples
(Pi, sign(Pi)), and l values si ∈ Zq, such that Pi = (ph0)si for i = 1, . . . l.
(All protocol executions may be done in parallel.)

During steps 1 to 3, a random tuple (d1, . . . , dl) ∈R (Zq)l is created such that
neither U nor IP can control its final value. Note that, because of the random
selection of e by U , this tuple remains unconditionally hidden from IP . Based
on (d1, . . . , dl, e), a list of l pseudonyms (Pi, sign(Pi)) (1 ≤ i ≤ l) is then created
for U during step 4.

Provided U has followed the protocol, the resulting pseudonyms are uncondi-
tionally unlinkable and untraceable. U can also compute a secret key (d1si, . . . ,
dlsi, esi, si) for each pseudonym (Pi, sign(Pi)). As a result of Assumption 1, the
same tuple (d1, . . . , dl, e) is encoded into all of these secret keys, even when U
tries to cheat. We will refer to (d1, . . . , dl, e) as the tuple encoded into Pi, and
to dj (j ∈ {1, . . . , l}) as the j-th value encoded into Pi.

The following result states the infeasibility to create a pseudonym encoding a
value which is the same as the value encoded into another user’s pseudonym.

Proposition 2. Under the discrete logarithm assumption in Gq and for fixed
values d ∈ Zq and i ∈ {1, . . . , l}. For any attacker A engaging into a pseudonym
retrieval protocol with IP and as such retrieving a valid pseudonym (P, sign(P )).
With negligible probability, value d is the i-th value encoded into P .

3.3 Pseudonym Registration with the Service Provider

To register pseudonym (Pi, sign(Pi)) with service provider Si, user U shows
(Pi, sign(Pi)) and discloses value di encoded into Pi. U and Si then perform
(possibly in signed proof mode)

PK{(δ1, . . . , δi−1, δi+1, . . . , δl, ε, ς) :

(δ1, . . . , δi−1, d, δi+1, . . . , δl, ε, ς) = rep(g1,...,gl,gl+1,Pi)h
−1
0 }

Si accepts the protocol if and only if she accepts this proof and if Pi �= 1
and if (Pi, sign(Pi)) constitutes a valid message/signature pair. Si then stores



410 S. Brands, L. Demuynck, and B. De Decker

(Pi, di) and associates it with a new account or perhaps with a legacy account
that it maintains on U . (the latter requires a one-time legacy or out-of-band
authentication step to ensure the right association is made).

As per Proposition 1 (property 4), this protocol proves Alice’s ownership
of (Pi, sign(Pi)) and proves that the disclosed value di is indeed the i-th value
encoded into Pi. Furthermore, as a result of Proposition 1 (property 5), Si cannot
find out more information about the tuple (d∗1, . . . , d

∗
l , e
∗) encoded into Pi, than

what she can deduce from her previous knowledge and the fact that d∗i = di.

3.4 Accessing a Service

Upon having registered her pseudonym with Si, U may either disconnect and
return later on to access the service, or proceed immediately. In either case, to
access the service of Si, U and Si engage in the following protocol, for blacklists
{L1, . . . , Ll} as defined earlier. In step 1 of the following protocol, Si checks
whether di belongs to her own blacklist Li; in step 2, U proves that each j-th
value dj (j ∈ {1, . . . , l} \ {i}) encoded into Pi does not belong to blacklist Lj .

1. Si verifies if di ∈ Li. If so, she aborts the protocol and rejects U ’s request.
If not, she proceeds to step 2.

2. If all of the blacklists Lj for j ∈ {1, . . . , i − 1, i + 1, . . . , l} are empty, then
U must prove knowledge to Si of her pseudonym key (assuming she is not
still in the pseudonym registration session with Si, in which case this step
can be skipped); this can be done using the standard proof of knowledge
of a representation, without disclosing any attributes (di has already been
disclosed and proven to be correct). If not all of the blacklists are empty,
then the following steps are executed for each j ∈ {1, . . . , i − 1, i + 1, . . . , l}
for which Lj is not empty:
(a) Both U and Si look up Lj = {y1, . . . , yn}. They set m = �√n 
 for

n = |Lj| and compute the coefficients ai,j ∈ Zq (i ∈ {1, . . . , m}, j ∈
{0, . . . , m}) of the following polynomials in Zq.
p1(x) = (x− y1)(x− y2) . . . (x− ym) = a1,mxm +a1,m−1x

m−1 + . . .+a1,0
p2(x) = (x − ym+1) . . . (x − y2m) = a2,mxm + a2,m−1x

m−1 + . . . + a2,0
...
pm(x) = (x−y(m−1)m+1) . . . (x−yn) = am,mxm+am,m−1x

m−1+. . .+am,0
(b) U chooses random values r1, . . . , rm ∈R Zq and generates values Ck =

a
dk

j

i brk

i for all values k ∈ {1, . . . , m}. She also computes vk = pk(dj),
wk = ak,mrm + . . . + ak,2r2 + ak,1r1 and Cvk

= avk

i bwk

i for k = 1, . . . , m.
All values Ck, Cvk

(k ∈ {1, . . . , m}) are sent to Si.
(c) Si receives Ck, Cvk

for all k ∈ {1, . . . , m} and checks for each k ∈
{1, . . . , m} if Cvk

= (Cm)ak,m(Cm−1)ak,m−1 . . . (C1)ak,1a
ak,0
i . If this fails,

Si aborts and rejects U ’s request.
(d) Next, the following proof of knowledge is executed. The proof makes use

of the techniques described in Section 2. Si accepts only if she accepts
the proof.



A Practical System for Globally Revoking 411

PK{(δ1, . . . , δl, ε, ς, ρ1, . . . , ρm, υ1, . . . , υm, ω1, . . . , ωm) :

(δ1, . . . , δj , . . . , δl, ε, ς) = rep(g1,...,gl+1,Pi)h
−1
0 ∧ (1)

(δj , ρ1) = rep(ai,bi)C1 ∧ . . . ∧ (δm
j , ρm) = rep(ai,bi)Cm ∧ (2)

(υ1, ω1) = rep(ai,bi)Cv1 ∧ υ1 �= 0 ∧ . . . ∧
(υm, ωm) = rep(ai,bi)Cvm ∧ υm �= 0} (3)

We now explain what happens in step 2. In step 2a, elements in Lj are divided
into subsets Lj,k of size m = �√|Lj| 
. The polynomials pk(.) (k = 1, . . . , m)
are then constructed such as to contain only the elements of Lj,k as roots. For
each k in {1, . . . , m}, values Ck and Cvk

are constructed in step 2b. Ck hides a
power dk

j of dj , while Cvk
hides the mapping pk(dj) of dj . Note that

(Cm)ak,m(Cm−1)ak,m−1 . . . (C1)ak,1a
ak,0
i

= a
ak,mdm

j +...+ak,1dj+ak,0

i b
ak,mrm+...+ak,1r1
i

= Cvk
.

In step 2d, U proves that the values hidden in C1, . . . , Ck are consecutive powers
of the same value dj (equation 2), that this value dj is also the j-th value encoded
into Pi (equation 1), and that values pk(dj) hidden in Cvk

for k = 1, . . . , m differ
from zero (equation 3). The latter proves that dj is not a root of any of the
polynomials pk (k ∈ {1, . . . , l}), and hence does not belong to Lj .

Proposition 3. Under the discrete logarithm assumption, provided that Pi �= 1,
the subprotocol in step 2 is a perfect honest-verifier zero-knowledge proof that for
all j ∈ {1, . . . , l} \ {i}, the j-th value encoded into Pi does not belong to blacklist
Lj.

Proposition 4. Consider a computationally unbounded service provider Si and
an honest user U . Consider any number of arbitrary interleaved executions of step
2 for a pseudonym (P, sign(P )) with P �= 1 and for the same or different lists Lj

(j ∈ {1, . . . , l} \ {i}). Whatever information Si can compute about (d1, . . . , dl)
encoded into P , Si can also compute it using merely her a-priori information
and the shown formulae dj �∈ Lj (∀j ∈ {1, . . . , l} \ {i}).
For a detailed proof of Propositions 3 and 4, we refer to our technical report [4].

The following result can now easily be seen to hold, based on Propositions 1,
3 and 4.

Proposition 5. Under the DL assumption, the following holds for any regis-
tered pseudonym (Pi, sign(Pi)) and di that Si has accepted, assuming Si accepts
U ’s blacklist proof. With overwhelming probability, U is the owner of a valid
pseudonym (Pi, sign(Pi)) which has not been revoked and for which di is the i-th
value encoded into Pi. Furthermore, Si cannot find out any more information
about the values encoded into Pi than what she can deduce from her a-priori
information, the fact that (Pi, sign(Pi)) has not been revoked and the fact that
di is the i-th value encoded into Pi.



412 S. Brands, L. Demuynck, and B. De Decker

We also have the following result.

Proposition 6. Given non-empty sets D1, . . . , Dl ⊂ Zq, for any pseudonym
(P, sign(P )) such that P encodes a tuple (d1, . . . , dl) ∈ D1 × . . . × Dl, for any
view of IP in an execution of a retrieval protocol and for any j ∈ {1, . . . , l}.
There are exactly (

∏l
i=1 |Di|).(q − 1)l−1q2(l−1) �= 0 sets of random choices that

an honest user U could have made during the execution of this retrieval protocol,
such that she would have output (P, sign(P )) as her j-th pseudonym.

That is, a computationally unbounded IP cannot link a pseudonym (P, sign(P ))
to its retrieval protocol, even if she would know the tuple (d1, . . . , dl) encoded
into P . This is an immediate result of Proposition 1 (property 3) and the spec-
ifications of the credential issuing protocol ([5, Section 4.5.2]). Namely, there
are exactly

∏l
i=1(|Di|) tuples (d1, . . . , dl, e) such that p (and hence P ) will be

correctly formed. Furthermore, only 1 set of random choices remains during the
j-th instance of the credential issuing protocol, and q2(q − 1) sets of choices
during each other instance i ∈ {1, . . . , l} \ {j}.

4 Efficiency Analysis

The retrieval protocol is executed only once between U and IP . It requires U
to perform 9l + 1 exponentiations in Gq, of which 3l + 1 exponentiations can
be precomputed. IP in turn performs 3l + 1 exponentiations. A total of 2l + 2
elements in Gq, and 3l elements in Zq are communicated. By way of example,
if we take l = 100, and if we set Gq to be the unique q-order subgroup of the
multiplicative group Z

∗
p for primes p and q of 1600 and 256 bits respectively, this

amounts to 901 exponentiations for U , 301 exponentiations for IP , and 49kB of
transferred data.

With regard to the service access protocol, we take into account the following
optimizations:

1. The proofs of knowledge of step 2d, for all j ∈ {1, . . . , l}\{i}, can be collapsed
into a single proof protocol. As a result, equation 1 has to be performed only
once.

2. The check in step 2c can be sped up using the batch verification techniques
[2]. Si hereto chooses random values o1, . . . , om in a set V ⊂ Zq, and checks

the following equation:
∏m

k=1 Cok
vk

?= a
∑ m

k=1 ak,0ok

i

∏m
i=1 C

∑ m
k=1 ak,iok

i . If this
check succeeds, the probability that Si correctly accepts step 2c is at least
1 − 1/|V |.

3. Si can complement blacklists using whitelists. A whitelist L′j ⊂ Lj represents
the set of values for which U has already passed the blacklist proof. A tuple
(L′1, . . . , L

′
l) of whitelists is stored, both by U and by Si, for each credential

(P, sign(P )). Assuming the elements in Lj are ordered chronologically, it is
sufficient for U and Si to only store the last value that passed the proof.
Whenever U requests access to Si, she merely needs to perform a blacklist
proof with respect to the “delta-blacklists” L∗j = Lj \ L′j for j = {1, . . . , l}.



A Practical System for Globally Revoking 413

4. All of U ’s exponentiations can be precomputed using a variation of Brands’
error correction factors technique [5, Section 5.4.2]. A detailed description
of this protocol can be found in our technical report [4]. Note that these
precomputation can be performed even before the final blacklist is known.
All that is needed is an upper bound on

√
n for n the size of the blacklists.

5. By employing her private value zi, Si can collapse her multi-exponentiations
ax

i by
i into one exponentiation of the form ax+ziy

i .

Using these optimizations, U performs 8
∑l

j=1,j �=i(�
√|Lj| 
)+ l + 2 exponentia-

tions in Gq and Si performs 7
∑l

j=1,j �=i(�
√|Lj| 
)+2l+6 exponentiations. A total

of 4
∑l

j=1,j �=i(�
√|Lj| 
) + 3 elements in Gq and 5

∑l
j=1,j �=i(�

√|Lj| 
) + (l + 5)
elements in Zq are communicated. For an example value l = 100 and regardless
of the construction of Gq. For blacklists L1, . . . , Ll of more that 20 entries each,
our blacklist technique is more efficient than the parallel execution of a NOT
proof [5, Section 3.4.1] for each list entry.

5 Extensions and Variations

Abuse of any one service in practice may not necessitate banning the abuser
from the entire system. In some cases, it may suffice to ban the abuser either
from accessing just that service or from accessing a subset of all services. The
former can be accommodated by blacklisting the user’s public key, the latter by
giving users different batches of pseudonyms for use at different service providers.
Furthermore, users can be banned only temporarily by deleting their blacklisted
numbers from the blacklists at a later stage.

By employing Brands’ issuing protocol [5, Section 4.5.2], we enable the so-
called refreshing of credentials [5, pp 190-191]. For example, if U loses the secret
key of some of her pseudonyms, she could get a fresh set of pseudonyms with
the same encoded values by refreshing one of her previous pseudonyms; in order
to avoid linkability at this time, one of her old pseudonyms could be set aside
to allow the bootstrapping of other pseudonyms with the same encoded values.

The complexity of steps 2a-2d of our blacklist protocol2 is linear only in the
number of multiplications for calculating the coefficients ai,j . The number of
exponentiations and the size of the communication are sublinear in the length of
the blacklist. More precisely, U performs 8�√|Lj| 
 exponentiations in Gq and
Si performs 7�√|Lj | 
 + 3 exponentiations. A total of 4�√|Lj | 
 elements in Gq

and 5�√|Lj| 
 + 2 elements in Zq are communicated. On top, the protocol can
be transformed in an equally efficient protocol for proving than an element is on
a whitelist. For this, equation 3 of step 2d is replaced by the following equation:
((0, ω1) = rep(ai,bi)Cv1 ∨ . . . ∨ (0, ωm) = rep(ai,bi)Cvm).

Our blacklisting technique can be adapted to fit any homomorphic commit-
ment scheme for which similar zero-knowledge proofs are available. Among oth-
ers, it can be used with the RSAREP scheme of Brands [5, Section 2.3.3] and
2 Equation 1 of step 2d can be omitted for a proof that d �∈ L without d having to be

encoded into a credential.



414 S. Brands, L. Demuynck, and B. De Decker

the integer commitment scheme of Damg̊ard and Fujisaki [22]. Note that the
latter does not support Brands’ NOT-proof. Instead, the NOT relation must be
demonstrated by proving a statement [(x ≥ 1)∨(x ≤ −1)]. This can be achieved
in constant time using well-known techniques [25,19]. In both cases, the result-
ing zero-knowledge proof protocols require O(|L|1/2) exponentiations from both
parties and O(|L|1/2) communicated values.

References

1. Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic framework for the
controlled release of certified data. In: IWSP (2004)

2. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

3. Brands, S.: Untraceable off-line cash in wallets with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, Springer, Heidelberg (1994)

4. Brands, S., Demuynck, L., De Decker, B.: A pract. system for globally revoking the
unlinkable pseudonyms of unknown users. Technical report, K.U.Leuven (2006)

5. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge (2000)

6. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
Conference on Computer and Communications Security, pp. 132–145 (2004)

7. Brickell, E.F., Gemmell, P., Kravitz, D.W.: Trustee-based tracing extensions to
anonymous cash and the making of anonymous change. In: SODA (1995)

8. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, Springer, Heidelberg (2001)

9. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

10. Camenisch, J., Maurer, U.M., Stadler, M.: Digital payment systems with passive
anonymity-revoking trustees. Journal of Computer Security 5(1), 69–90 (1997)

11. Camenisch, J.: Group Signature Schemes and Payment Systems Based on the Dis-
crete Logarithm Problem. PhD thesis, ETH Zurich (1998)

12. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidel-
berg (2005)

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

14. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

15. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

16. Chaum, D.: Blind signatures for untraceable payments. In: McCurley, K.S., Ziegler,
C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440, Springer, Hei-
delberg (1999)



A Practical System for Globally Revoking 415

17. Chaum, D., Pedersen, T.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, Springer, Heidelberg (1993)

18. Chaum, D.: Blind signature system. In: McCurley, K.S., Ziegler, C.D. (eds.) Ad-
vances in Cryptology 1981 - 1997. LNCS, vol. 1440, p. 153. Springer, Heidelberg
(1999)

19. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

20. Cramer, R., Pedersen, T.P.: Improved privacy in wallets with observers (extended
abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 329–343.
Springer, Heidelberg (1994)

21. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

22. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

23. George, I.: Davida, Yair Frankel, Yiannis Tsiounis, and Moti Yung. Anonymity
control in e-cash systems. In: Financial Cryptography, pp. 1–16 (1997)

24. Jakobsson, M., Yung, M.: Distributed ”magic ink” signatures. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 450–464. Springer, Heidelberg (1997)

25. Lipmaa, H.: Statistical zero-knowledge proofs from diophantine equations
26. Nguyen, L.: Accumulators from bilin. pairings and applications. In: Menezes, A.J.

(ed.) CT-RSA 2005. LNCS, vol. 3376, Springer, Heidelberg (2005)
27. Stadler, M., Piveteau, J.-M., Camenisch, J.: Fair blind signatures. In: Guillou,

L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 209–219.
Springer, Heidelberg (1995)

28. Wei, V.K.: More compact e-cash with efficient coin tracing. Cryptology ePrint
Archive, Report 2005/411 (2005) http://eprint.iacr.org/

http://eprint.iacr.org/


Efficient and Secure Comparison for On-Line

Auctions

Ivan Damg̊ard, Martin Geisler, and Mikkel Krøigaard

BRICS, Dept. of Computer Science, University of Aarhus

Abstract. We propose a protocol for secure comparison of integers
based on homomorphic encryption. We also propose a homomorphic en-
cryption scheme that can be used in our protocol and makes it more
efficient than previous solutions. Our protocol is well-suited for applica-
tion in on-line auctions, both with respect to functionality and perfor-
mance. It minimizes the amount of information bidders need to send,
and for comparison of 16 bit numbers with security based on 1024 bit
RSA (executed by two parties), our implementation takes 0.28 seconds
including all computation and communication. Using precomputation,
one can save a factor of roughly 10.

1 Introduction

Secure comparison of integers is the problem of designing a two-party or multi-
party protocol for deciding whether nA ≥ nB for given integers nA, nB, while
keeping nA, nB secret. There exists many variants of this problem, depending
on whether the comparison result is to be public or not, and whether nA, nB

are known to particular players, or unknown to everyone. But usually, protocols
can be easily adapted to fit any of the variants. Secure comparison protocols are
very important ingredients in many potential applications of secure computa-
tion. Examples of this include auctions, benchmarking, and secure extraction of
statistical data from databases.

As a concrete example to illustrate the application of the results from this
paper, we take a closer look at on-line auctions: Many on-line auction systems
offer as a service to their customers that one can submit a maximum bid to
the system. It is then not necessary to be on-line permanently, the system will
automatically bid for you, until you win the auction or your specified maximum
is exceeded. We assume in the following what we believe is a realistic scenario,
namely that the auction system needs to handle bidders that bid on-line manu-
ally, as well as others that use the option of submitting a maximum bid.

Clearly, such a maximum bid is confidential information: both the auction
company and other participants in the auction have an interest in knowing such
maximum bids in advance, and could exploit such knowledge to their advantage:
The auction company could force higher prices (what is known as “shill bidding”)
and thereby increase its income and other bidders might learn how valuable a
given item is to others and change their strategy accordingly.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 416–430, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Efficient and Secure Comparison for On-Line Auctions 417

In a situation where anyone can place a bid by just connecting to a web site,
the security one can obtain by storing the maximum bids with a single trusted
party is questionable, in particular if that trusted party is the auction company.
Indeed, there are cases known from real auctions where an auction company has
been accused of misusing its knowledge of maximum bids.

An obvious solution is to share the responsibility of storing the critical data
among several parties, and do the required operations via secure multiparty
computation. To keep the communication pattern simple and to minimize prob-
lems with maintenance and other logistical problems, it seems better to keep the
number of involved players small. We therefore consider the following model:

An input client C supplies an � bit integer m as private input to the compu-
tation, which is done by players A and B. Because of our motivating scenario,
we require that the input is supplied by sending one message to A, respectively
to B, and no further interaction with C is necessary. One may, for instance,
think of A as the auction house and B as an accounting company. We will also
refer to these as the server and assisting server.

An integer x (which we think of as the currently highest bid) is public input.
As public output, we want to compute one bit that is 1 if m > x and 0 otherwise,
i.e., the output tells us if C is still in the game and wants to raise the bid, say by
some fixed amount agreed in advance. Of course, we want to do the computation
securely so that neither A nor B learns any information on m other than the
comparison result.

We will assume that players are honest but curious. We believe this is quite a
reasonable assumption in our scenario: C may submit incorrectly formed input,
but since the protocol handles even malformed input deterministically, he cannot
gain anything from this: any malformed bid will determine a number x0 such
that when the current price reaches x0, the protocol output will cause C to leave
the game. So this is equivalent to submitting x0 in correct format. Moreover,
the actions of A and B can be checked after the auction is over – if C notices
that incorrect decisions were taken, he can prove that his bid was not correctly
handled. Such “public disgrace” is likely to be enough to discourage cheating
in our scenario. Nevertheless, we sketch later in the paper how to obtain active
security at moderate extra cost.

1.1 Our Contribution

In this paper, we first propose a new homomorphic cryptosystem that is well
suited for our application, this is the topic of Section 2. The cryptosystem is much
more efficient than, e.g., Paillier-encryption [1] in terms of en- and decryption
time. The efficiency is obtained partly by using a variant of Groth’s [2] idea of
exploiting subgroups of Z

∗
n for an RSA modulus n, and partly by aiming for a

rather small plaintext space, of size θ(�).
In Section 3 we propose a comparison protocol in our model described above,

based on additive secret sharing and homomorphic encryption. The protocol is
a new variant of an idea originating in a paper by Blake and Kolesnikov [3]. The
original idea from [3] was also based on homomorphic encryption but required



418 I. Damg̊ard, M. Geisler, and M. Krøigaard

a plaintext space of size exponential in �. Here, we present a new technique
allowing us to make do with a smaller plaintext space. This means that the
exponentiations we do will be with smaller exponents and this improves effi-
ciency. Also, we save computing time by using additive secret sharing as much
as possible instead of homomorphic encryption.

As mentioned, our encryption is based on a k bit RSA modulus. In addition
there is an “information theoretic” security parameter t involved which is ap-
proximately the logarithm of the size of the subgroup of Z

∗
n we use. Here, t needs

to be large enough so that exhaustive search for the order of the subgroup and
other generic attacks are not feasible. Section 4 contains more information about
the security of the protocol.

In the protocol, C sends a single message to A and another to B, both of
size O(� log � + k) bits. To do the comparison, there is one message from A to
B and one from B to A. The size of each of these messages is O(�k) bits. As
for computational complexity, both A and B need to do O(�(t+ log �)) multipli-
cations mod n. Realistic values of the parameters might be k = 1024, t = 160,
and � = 16. In this case, counting the actual number of multiplications works
out to roughly 7 full scale exponentiations mod n, and takes 0.28 seconds in our
implementation, including all computation and communication time. Moreover,
most of the work can be done as preprocessing. Using this possibility in the
concrete case above, the on-line work for B is about 0.6 exponentiations for A
and 0.06 for B, so that we can expect to save a factor of at least 10 compared
to the basic version. It is clear that the on-line performance of such a protocol
is extremely important: auctions often run up a certain deadline, and bidders in
practice sometimes play a strategy where they suddenly submit a much larger
bid just before the deadline in the hope of taking other bidders by surprise. In
such a scenario, one cannot wait a long time for a comparison protocol to finish.

We emphasize that, while it may seem easier to do secure comparison when
one of the input numbers is public, we do this variant only because it comes up
naturally in our example scenario. In fact, it is straightforward to modify our
protocol to fit related scenarios. For instance, the case where A has a private
integer a, B has a private integer b and we want to compare a and b, can be
handled with essentially the same cost as in our model. Moreover, at the expense
of a factor about 2 in the round, communication and computational complexities,
our protocol generalizes to handle comparison of two integers that are shared
between A and B, i.e., are unknown to both of them. It is also possible to keep
the comparison result secret, i.e., produce it in encrypted form. More details on
this are given in Section 5.

Finally, in Section 6 we describe our implementation and the results of a
benchmark between our proposed protocol and the one from Fischlin [4].

1.2 Related Work

There is a very large amount of work on secure auctions, which we do not attempt
to survey here, as our main concern is secure protocols for comparison, and the
on-line auction is mainly a motivating scenario. One may of course do secure



Efficient and Secure Comparison for On-Line Auctions 419

comparison of integers using generic multiparty computation techniques. For
the two-party case, the most efficient generic solution is based on Yao-garbled
circuits, which were proposed for use in auctions by Naor et al. [5]. Such methods
are typically less efficient than ad hoc methods for comparison – although the
difference is not very large when considering passive security. For instance, the
Yao garbled circuit method requires – in addition to garbling the circuit – that
we do an oblivious transfer of a secret key for every bit position of the numbers
to compare. This last part is already comparable to the cost of the best known
ad hoc methods.

There are several existing ad hoc techniques for comparison, we already men-
tioned the one from [3] above, a later variant appeared in [6], allowing compar-
ison of two numbers that are unknown to the parties. A completely different
technique was proposed earlier by Fischlin in [4].

It should be noted that previous protocols typically are for the model where
A has a private number a, B has a number b, and we want to compare a and
b. Our model is a bit different, as we have one public number that is to be
compared to a number that should be known to neither party, and so has to be
shared between them. However, the distinction is not very important: previous
protocols can quite easily be transformed to our model, and as mentioned above,
our protocol can also handle the other models at marginal extra cost. Therefore
the comparison of our solution to previous work can safely ignore the choice of
model.

Fischlin’s protocol is based on the well-known idea of encrypting bits as
quadratic residues and non-residues modulo an RSA modulus, and essentially
simulates a Boolean formula that computes the result of the comparison. Com-
pared to [3,6], this saves computing time, since creating such an encryption is
much faster than creating a Paillier encryption. However, in order to handle the
non-linear operations required in the formula, Fischlin extends the encryption
of each bit into a sequence of λ numbers, where λ is a parameter controlling the
probability that the protocol returns an incorrect answer. Since these encryptions
have to be communicated, we get a communication complexity of Ω(λ�k) bits.
The parameter λ should be chosen such that 5� · 2−λ is an acceptable (small
enough) error probability, so this makes the communication complexity signifi-
cantly larger than the O(�k) bits one gets in our protocol and the one from [6].

The computational complexity for Fischlin’s protocol is O(�λ) modular multi-
plications, which for typical parameter values is much smaller than that of [3,6],
namely O(�k) multiplications.1 Fischlin’s result is not directly comparable to ours,
since our parameter t is of a different nature than Fischlin’s λ: t controls the prob-
ability that the best known generic attack breaks our encryption scheme, while λ
controls the probability that the protocol gives incorrect results. However, if we
assume that parameters are chosen to make the two probabilities be roughly equal,
then the two computational complexities are asymptotically the same.

1 In [3,6] the emphasis is on using the comparison to transfer a piece of data, conditioned
on the result of the comparison. For this application, their solution has advantages
over Fischlin’s, even though the comparison itself is slower.



420 I. Damg̊ard, M. Geisler, and M. Krøigaard

Thus, in a nutshell, [3,6] has small communication and large computational
complexity while [4] is the other way around. In comparison, our contribution
allows us to get “the best of both worlds”. In Section 6.3 we give results of a com-
parison between implementations of our own and Fischlin’s protocols. Finally,
note that our protocol always computes the correct result, whereas Fischlin’s
has a small error probability.

In concurrent independent work, Garay, Schoemakers and Villegas [7] propose
protocols for comparison based on homomorphic encryption that are somewhat
related to ours, although they focus on the model where the comparison result
is to remain secret. They present a logarithmic round protocol based on emulat-
ing a new Boolean circuit for comparison, and they also have a constant round
solution. In comparison, we do not consider the possibility of saving computa-
tion and communication in return for a larger number of rounds. On the other
hand, their constant round solution is based directly on Blake and Kolesnikov’s
method, i.e., they do not have our optimization that allows us to make do with
a smaller plaintext space for the encryption scheme, which means that our con-
stant round protocol is more efficient.

2 Homomorphic Encryption

For our protocol we need a semantically secure and additively homomorphic
cryptosystem which we will now describe.

To generate keys, we take as input parameters k, t, and �, where k > t > �.
We first generate a k bit RSA modulus n = pq for primes p, q. This should be
done in such a way that there exists another pair of primes u, v, both of which
should divide p − 1 and q − 1. We will later be doing additions of small numbers
in Zu where we want to avoid reductions modulo u, but for efficiency we want u
to be as small as possible. For these reasons we choose u as the minimal prime
greater than � + 2. The only condition on v is that it is a random t bit prime.

Finally, we choose random elements g, h ∈ Z
∗
n such that the multiplicative

order of h is v modulo p and q, and g has order uv. The public key is now
pk = (n, g, h, u) and the secret key is sk = (p, q, v). The plaintext space is Zu,
while the ciphertext space is Z

∗
n.

To encrypt m ∈ Zu, we choose r as a random 2t bit integer, and let the
ciphertext be

Epk(m, r) = gmhr mod n.

We note that by choosing r as a much larger number than v, we make sure that
hr will be statistically indistinguishable from a uniformly random element in the
group generated by h. The owner of the secret key (who knows v) can do it more
efficiently by using a random r ∈ Zv.

For decryption of a ciphertext c, it turns out that for our main protocol,
we will only need to decide whether c encrypts 0 or not. This is easy, since
cv mod n = 1 if and only if c encrypts 0. This follows from the fact that v is the
order of h, uv is the order of g, and m < u. If the party doing the decryption has



Efficient and Secure Comparison for On-Line Auctions 421

also stored the factors of n, one can optimize this by instead checking whether
cv mod p = 1, which will save a factor of 3–4 in practice.

It is also possible to do a “real” decryption by noting that

Epk(m, r)v = (gv)m mod n.

Clearly, gv has order u, so there is a 1–1 correspondence between values of m
and values of (gv)m mod n. Since u is very small, one can simply build a table
containing values of (gv)m mod n and corresponding values of m.

To evaluate the security, there are various attacks to consider: factoring n will
be sufficient to break the scheme, so we must assume factoring is hard. Also
note that it does not seem easy to compute elements with orders such as g, h
unless you know the factors of n, so we implicitly assume here that knowledge
of g, h does not help to factor. Note that it is very important that g, h both
have the same order modulo both p and q. If g had order uv modulo p but was 1
modulo q, then g would have the correct order modulo n, but gcd(g−1, n) would
immediately give a factor of n. One may also search for the secret key v, and so
t needs to be large enough so that exhaustive search for v is not feasible. A more
efficient generic attack (which is the best we know of) is to compute hR mod n
for many large and random values of R. By the “birthday paradox”, we are likely
to find values R, R′ where hR = hR′

mod n after about 2t/2 attempts. In this
case v divides R − R′, so generating a few of these differences and computing
the greatest common divisor will produce v. Thus, we need to choose t such that
2t/2 exponentiations is infeasible.

To say something more precise about the required assumption, let G be the
group generated by g, and H the group generated by h. We have H ≤ G and
that a random encryption is simply a uniformly random element in G. The
assumption underlying security is now

Conjecture 1. For any constant � and for appropriate choice of t as a function
of the security parameter k, the tuple (n, g, h, u, x) is computationally indistin-
guishable from (n, g, h, u, y), where n, g, h, u are generated by the key generation
algorithm sketched above, x is uniform in G and y is uniform in H .

Proposition 2. Under the above conjecture, the cryptosystem is semantically
secure.

Proof. Consider any polynomial time adversary who sees the public key, chooses
a message m and gets an encryption of m, which is of the form gmhr mod
n, where g has order uv and h has order v modulo p and q. The conjecture
now states that even given the public key, the adversary cannot distinguish
between a uniformly random element from H and one from G. But hr was
already statistically indistinguishable from a random element in H , and so it
must also be computationally indistinguishable from a random element in G.
But this means that the adversary cannot distinguish the entire encryption from
a random element of G, and this is equivalent to semantic security – recall that
one of the equivalent definitions of semantic security requires that encryptions
of m be computationally indistinguishable from random encryptions.



422 I. Damg̊ard, M. Geisler, and M. Krøigaard

The only reason we set t to be a function of k is that the standard definition
of semantic security talks about what happens asymptotically when a single
security parameter goes to infinity. From the known attacks sketched above, we
can choose t to be much smaller than k. Realistic values might be k = 1024, t =
160.

A central property of the encryption scheme is that it is homomorphic over u,
i.e.,

Epk(m, r) · Epk(m′, r′) mod n = Epk(m + m′ mod u, r + r′).

The cryptosystem is related to that of Groth [2], in fact ciphertexts in his system
also have the form gmhr mod n. The difference lies in the way n, g and h are
chosen. In particular, our idea of letting h, g have the same order modulo p and
q allows us to improve efficiency by using subgroups of Z∗n that are even smaller
than those from [2].

3 The Protocol

For the protocol, we assume that A has generated a key pair sk = (p, q, v) and
pk = (n, u, g, h) for the homomorphic cryptosystem we described previously.
The protocol proceeds in two phases: an input sharing phase in which the client
must be on-line, and a computation phase where the server and assisting server
determine the result while the client is offline.

In the input sharing phase C secret shares his input m between A and B:

– Let the binary representation of m be m� . . . m1, where m1 is the least sig-
nificant bit. C chooses, for i = 1, . . . , �, random pairs ai, bi ∈ Zu subject to
mi = ai + bi mod u.

– C sends privately a1, . . . , a� to A and b1, . . . , b�. This can be done using
any secure public-key cryptosystem with security parameter k, and requires
communicating O(� log � + k) bits.2 In practice, a standard SSL connection
would probably be used.

In the second phase we wish to determine the result m > x where x is the
current public price (with binary representation x� . . . x1).

Assuming a value y ∈ Zu has been shared additively between A and B, as
C did it in the first phase, we write [y] for the pairs of shares involved, so [y]
stands for “a sharing of” y. Since the secret sharing scheme is linear over Zu,
A and B can compute from [y], [w] and a publicly known value α a sharing
[y + αw mod u]. Note that this does not require interaction but merely local
computation. The protocol proceeds as follows:

– A and B compute, for i = 1, . . . , � sharings [wi] where

wi = mi + xi − 2ximi = mi ⊕ xi.

2 We need to send � log � bits, and public-key systems typically have θ(k)-bit plaintexts
and ciphertexts.



Efficient and Secure Comparison for On-Line Auctions 423

– A and B now compute, for i = 1, . . . , � sharings [ci] where

ci = xi − mi + 1 +
�∑

j=i+1

wj .

Note that if m > x, then there is exactly one position i where ci = 0,
otherwise no such position exists. Note also, that by the choice of u, it can
be seen that no reductions modulo u take place in the above computations.

– Let αi and βi be the shares of ci that A and B have now locally computed.
A computes encryptions Epk(αi, ri) and sends them all to B.

– B chooses at random si ∈ Z
∗
u and s′i as a 2t bit integer and computes a

random encryption of the form

γi = (Epk(αi, ri) · gβi)si · hs′
i mod n.

Note that, if ci = 0, this will be an essentially random encryption of 0,
otherwise it is an essentially random encryption of a random nonzero value.
B sends these encryptions to A in randomly permuted order.

– A uses his secret key to decide, as described in the previous section, whether
any of the received encryptions contain 0. If this is the case, he outputs
“m > x”, otherwise he outputs “m ≤ x”.

A note on preprocessing: one can observe that the protocol frequently instructs
players to compute a number of form hr mod n where r is randomly chosen in
some range, typically [0 . . . 22t[. Since these numbers do not depend on the input,
they can be precomputed and stored. As mentioned in the Introduction, this has
a major effect on performance because all other exponentiations are done with
very small exponents.

4 Security

In this section the protocol is proven secure against an honest but curious ad-
versary corrupting a single player at the start of the protocol.

The client C has as input its maximum bid m and all players have as input
the public bid x. The output given to A is the evaluation of m > x, and B and
C get no output.

In the following we argue correctness and we argue privacy using a simulation
argument. This immediately implies that our protocol is secure in Canetti’s
model for secure function evaluation [8] against a static and passive adversary.

4.1 Correctness

The protocol must terminate with the correct result: m > x ⇐⇒ ∃i : ci = 0.
This follows easily by noting that both xi − mi + 1 and wi is nonnegative so

ci = xi − mi + 1 +
�∑

j=i+1

wj = 0 ⇐⇒ xi − mi + 1 = 0 ∧
�∑

j=i+1

wj = 0.



424 I. Damg̊ard, M. Geisler, and M. Krøigaard

We can now conclude correctness of the protocol since xi − mi + 1 = 0 ⇐⇒
mi > xi and

∑�
j=i+1 wj = 0 ⇐⇒ ∀j > i : mj = xj , which together imply

m > x. Note that since the sum of the wj is positive after the first position in
which xi �= mi, there can be at most one zero among the ci.

4.2 Privacy

Privacy in our setting means that A learns only the result of the comparison,
and B learns nothing new. We can ignore the client as it has the only secret
input and already knows the result based on its input.

First assume that A is corrupt, i.e, that A tries to deduce information about
the maximum bid based on the messages it sees. From the client, A sees both
his own shares a1, . . . , a�, and the ones for B encrypted under some semantically
secure cryptosystem, e.g., SSL. From B, A sees the message:

(Epk(αi, ri) · gβi)si · hs′
i mod n.

By the homomorphic properties of our cryptosystem this can be rewritten as

Epk(si · αi, si · ri) · Epk(si · βi, s
′
i) = Epk(si(αi + βi), si · ri + s′i).

In order to prove that A learns no additional information, we can show that A
could – given knowledge of the result, the publicly known number and nothing
else – simulate the messages it would receive in a real run of the protocol.

The message received and seen from the client can trivially be simulated as
it consists simply of � random numbers modulo u and � encrypted shares. The
cryptosystem used for these messages is semantically secure, so the encrypted
shares for B can be simulated with encryptions of random numbers.

To simulate the messages received from B, we use our knowledge of the result
of the comparison. If the result is “m > x”, we can construct the second message
as � − 1 encryptions of a nonzero element of Z

∗
u and one encryption of zero in

a random place in the sequence. If the result is “m ≤ x”, we instead construct
� encryptions of nonzero elements in Z

∗
u.

If we look at the encryptions that B would send in a real run of the protocol,
we see that the plaintexts are of form (αi + βi)si mod u. Since si is uniformly
chosen, these values are random in Zu if αi + βi �= 0 and 0 otherwise. Thus the
plaintexts are distributed identically to what was simulated above. Furthermore,
the ciphertexts are formed by multiplying g(αi+βi)si by

hsiri+s′
i = hsirihs′

i .

But h has order v which is t bits long, and therefore taking h to the power of
the random 2t bit number s′i will produce something which is statistically in-
distinguishable from the uniform distribution on the subgroup generated by h.
But since hsiri ∈ 〈h〉, the product will indistinguishable from the uniform dis-
tribution on 〈h〉. So the s′i effectively mask out siri and makes the distribution
of the encryption statistically indistinguishable from a random encryption of



Efficient and Secure Comparison for On-Line Auctions 425

(αi + βi)si. Therefore, the simulation is statistically indistinguishable from the
real protocol messages.

The analysis for the case where B is corrupt is similar. Again we will prove
that we can simulate the messages of the protocol. The shares received from the
client and the encryptions seen are again simply � random numbers modulo u
and � random encryptions and are therefore easy to simulate. Also, B receives
the following from A:

Epk(αi, ri).

But since the cryptosystem is semantically secure, we can make our own random
encryptions instead and their distribution will be computationally indistinguish-
able from the one we would get by running the protocol normally.

5 Extensions

Although the protocol and underlying cryptosystem presented in this paper are
specialized to one kind of comparison, both may be extended. In this section
we will first consider how the protocol can be modified to handle more general
comparisons where one input is not publically known, and we will also sketch
how active security can be achieved. In the final version of this paper we will
consider applications of the cryptosystem to general multiparty computation.

5.1 Both Inputs Are Private

Our protocol extends in straightforward way to the case where A and B have
private inputs a, b and we want to compare them. In this case, A can send to
B encryptions of the individual bits of a, using his own public key. Since the
cryptosystem is homomorphic over u, B can now do the linear operations on the
bits of a and b that in the original protocol were done on the additive shares of
the bits. Note that B has his own input in cleartext, so the encryptions of the
exclusive-or of bits in a and b can be computed without interaction, using the
formula x ⊕ y = x + y − 2xy which is linear if one of x, y is a known constant.
B can therefore produce, just as before, a set of encryptions of either random
values or a set that contains a single 0. These are sent to A for decryption. The
only extra cost of this protocol compared to the basic variant above is that B
must do O(l) extra modular multiplications, and this is negligible compared to
the rest of the protocol.

5.2 Both Inputs Are Shared, Shared Output

The case where both numbers a, b to compare are unknown to A and B can
also be handled. Assume both numbers are shared between A and B using
additive shares. The only difficulty compared to the original case is the com-
putation of shares in the exclusive-or of bits in a and b. When all bits are un-
known to both players, this is no longer a linear operation. But from the formula



426 I. Damg̊ard, M. Geisler, and M. Krøigaard

x⊕ y = x+ y − 2xy, it follows that it is sufficient to compute the product of two
shared bits securely. Let x, y be bits that are shared so x = xa + xb mod u and
y = ya +yb mod u, where A knows xa, ya and B knows xb, yb. Now, xy = xaya +
xbyb+xbya+xayb. The two first summands can be computed locally, and for, e.g.,
xayb, A can send to B an encryption Epk(xa). B chooses r ∈ Zu at random and
computes an encryption Epk(xayb − r mod u) using the homomorphic property.
This is sent to A, and after decryption (xayb−r mod u, r) forms a random sharing
of xayb. This allows us to compute a sharing of xy, and hence of x ⊕ y. Putting
this method for computing exclusive-ors together with the original protocol, we
can do the comparison at cost roughly twice that of the original protocol.

It follows from an observation in [9] that a protocol comparing shared inputs
that gives a public result can always be easily transformed to one that gives the
result in shared form so it is unknown to both parties. The basic idea is to first
generate a shared random bit [B] where B is unknown to both parties. Then
from (bit-wise) shared numbers a, b, we compute two new shared numbers c =
a+(b−a)B, d = b+(a−b)B, this just requires a linear number of multiplications.
Note that (c, d) = (a, b) if B = 0 and (c, d) = (b, a) otherwise. Finally, we
compare c, d and get a public result B′. The actual result can then be computed
in shared form as [B ⊕ B′].

5.3 Active Security

Finally, we sketch how one could make the protocol secure against active cheat-
ing. For this, we equip both A and B with private/public key pairs (skA, pkA)
and (skB , pkB) for our cryptosystem. It is important that both key pairs are
constructed with the same value for u. The client C will now share its input as
before, but will in addition send to both players encryptions of all of A’s shares
under pkA and all of B’s shares under pkB . Both players are now committed to
their shares, and can therefore prove in zero-knowledge during the protocol that
they perform correctly. Since the cryptosystem is homomorphic and the secret
is stored in the exponent, one can use standard protocols for proving relations
among discrete logs, see for instance [10,11,12]. Note that since the two public
keys use the same value of u, it is possible to prove relations involving both
public keys, for instance, given EpkA(x) and EpkB (y), that x = y. In the final
stage, B must show that a set of values encrypted under pkA is a permutation
of a set of committed values. This is known as the shuffle problem and many
efficient solutions for this are known – see, e.g., [13]. Overall, the cost of adding
active security will therefore be quite moderate, but the computing the exact
cost requires further work: The type of protocol we would use to check players’
behavior typically have error probability 1 divided by the smallest prime factor
in the order of the group used. This would be 1/u in our case, and the protocols
will have to be repeated if 1/u is not sufficiently small. This results in a tradeoff:
we want a small u to make the original passively secure protocol more efficient,
but a larger value of u makes the protocols we use for checking players’ behavior
more efficient. An exact analysis of this is outside the scope of this paper.



Efficient and Secure Comparison for On-Line Auctions 427

6 Complexity and Performance

In this section we measure the performance of our solution through practical
tests. The protocol by Fischlin [4] provides a general solution to comparing
two secret integers using fewer multiplications than the other known general
solutions. We show that in the special case where one integer is publicly known
and the other is additively shared between two parties, our solution provides for
faster comparisons than our adaptation of [4].

6.1 Setup and Parameters

As described above, our special case consists of a server, an assisting server and
a client. The client must be able to send his value and go offline, whereafter the
other two parties should be able to do the computations together. In our protocol
the client simply sends additive shares to each of the servers and goes offline.
However, the protocol by Fischlin needs to be adapted to this scenario before we
can make any reasonable comparisons. A very simple way to mimic the additive
sharing is for the client to simply send his secret key used for the encoding of
his value to the server while sending the actual encoding to the assisting server.
Clearly the computations can now be done by the server and assisting server
alone, where the server plays the role of the client.

Together, the key and encoding determine the client’s secret value, but the
key or the encoding alone do not. The key of course reveals no information about
the value. Because of semantic security, the encryption alone does not reveal the
secret to a computationally bounded adversary.

Another issue is to how to compare the two protocols in a fair way. Naturally,
we want to choose the parameters such that the two protocols offer the same
security level, but it is not clear what this should mean: some of the parameters
in the protocols control events of very different nature. Below, we describe the
choices we have made and the consequences of making different choices.

Both protocols use an RSA modulus for their encryption schemes, and it is
certainly reasonable to use the same bit length of the modulus in both cases, say
1024 bits. Our encryption scheme also needs a parameter t which we propose to
choose as t = 160. This is because the best known attack tries to have random
results of exponentiations collide in the subgroup with about 2160 elements.
Assuming the adversary cannot do much more than 240 exponentiations, the
collision probability is roughly 22·40/2160 = 2−80.

We do not have this kind of attack against Fischlin, but we do have an error
probability of 5� · 2−λ per comparison. If we choose the rationale that the prob-
ability of “something going wrong” should be the same in both protocols, we
should choose λ such that Fischlin’s protocol has an error probability of 2−80.
An easy computation shows that for � = 16, λ = 86 gives us the desired error
probability, and it follows that λ = 87 works for � = 32.

We have chosen the parameter values as described above for our implemen-
tation, but it is also possible to argue for different choices. One could argue,
for instance, that breaking our scheme should be as hard as factoring the (1024



428 I. Damg̊ard, M. Geisler, and M. Krøigaard

bit) modulus using the best known algorithm, even when the generic attack is
used. Based on this, t should probably be around 200. One could also argue that
having one comparison fail is not as devastating as having the cryptosystem
broken, so that one could perhaps live with a smaller value of λ than what we
chose. Fischlin mentions an error probability of 2−40 as being acceptable. These
questions are very subjective, but fortunately, the complexities of the protocols
are linear in t and λ, so it is easy to predict how modified values would affect
the performance data we give below. Since we find that our protocol is about 10
times faster, it remains competitive even with t = 200, λ = 40.

6.2 Implementation

To evaluate the performance of our proposed protocol we implemented it along
with the modified version of the protocol by Fischlin [4] described above. The
implementation was done in Java 1.5 using the standard BigInteger class for the
algebraic calculations and Socket and ServerSocket classes for TCP communica-
tion. The result is two sets of programs, each containing a server, an assisting
server, and a client. Both implementations weigh in at about 1,300 lines of code.
We have naturally tried our best to give equal attention to optimizations in the
two implementations.

We tested the implementations using keys of different sizes (k in the range
of 512–2048 bits) and different parameters for the plaintext space (� = 16 and
� = 32). We fixed the security parameters to t = 160 and λ = 86 which, as noted
above, should give a comparable level of security.

The tests were conducted on six otherwise idle machines, each equipped
with two 3 GHz Intel Xeon CPUs and 1 GiB of RAM. The machines were
connected by a high-speed LAN. In a real application the parties would not be
located on the same LAN: for credibility the server and assisting server would
have to be placed in different locations and under the control of different or-
ganizations (e.g., the auction house and the accountant), and the client would
connect via a typical Internet connection with a limited upstream bandwidth.
Since the client is only involved in the initial sharing of his input, this should not
pose a big problem – the majority of network traffic and computations are done
between the server and assisting server, who, presumably, have better Internet
connections and considerable computing power.

The time complexity is linear in �, so using 16 bit numbers instead of 32 bit
numbers cuts the times in half. In many scenarios one will find 16 bit to be
enough, considering that most auctions have a minimum required increment for
each bid, meaning that the entire range is never used. As an example, eBay
require a minimum increment which grows with the size of the maximum bid
meaning that there can only be about 450 different bids on items selling for
less than $5,000 [16]. The eBay system solves ties by extra small increments,
but even when one accounts for them one sees that the 65,536 different prices
offered by a 16 bit integer would be enough for the vast majority of cases.



Efficient and Secure Comparison for On-Line Auctions 429

6.3 Benchmark Results

The results of the benchmarks can be found in Tab. 1. From the table it is clear
to see that our protocol has performed significantly faster in the tests than the
modified Fischlin protocol. The results also substantiate our claim that the time
taken by an operation is proportional to the size of � and that we do indeed
roughly halve the time taken by reducing the size of � from 32 to 16 bits.

Table 1. Benchmark results. The first column denotes the key size k, the following
columns have the average time to a comparison. The average was taken over 500 rounds,
after an initial warm-up phase of 10 rounds. All times are in milliseconds. The abbre-
viation “DGK” refers to our protocol and “F” refers to the modified Fischlin protocol.
The subscripts refer to the � parameter used in the timings.

k DGK16 F16 DGK32 F32

512 82 844 193 1,743
768 168 1,563 331 3,113

1024 280 2,535 544 5,032
1536 564 4,978 1,134 10,135
2048 969 8,238 1,977 16,500

We should note that these results are from a fairly straight-forward imple-
mentation of both protocols. Further optimizations can likely be found, in both
protocols.

7 Conclusion

This paper has demonstrated a new protocol for comparing a public and a se-
cret integer using only two parties, which among other things has applications
in on-line auctions. Our benchmarks suggest that our new protocol is highly
competitive and reaches an acceptably low time per comparison for real-world
application.

We have also shown how to extend the protocol to the more general case where
we have two secret integers and to the active security case. However, further work
is needed to evaluate the competitiveness of the extended protocols.

Acknowledgments

The authors would like to thank Tomas Toft, Rune Thorbek, Thomas Mølhave,
and the anonymous referees for their comments and suggestions.

References

1. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)



430 I. Damg̊ard, M. Geisler, and M. Krøigaard

2. Groth, J.: Cryptography in subgroups of Zn. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 50–65. Springer, Heidelberg (2005)

3. Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing
on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529.
Springer, Heidelberg (2004)

4. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–472.
Springer, Heidelberg (2001)

5. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: EC ’99, pp. 129–139. ACM Press, New York (1999)

6. Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing en-
crypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107,
Springer, Heidelberg (2006)

7. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer
comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
330–342. Springer, Heidelberg (2007)

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

9. Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis,
University of Aarhus, Aarhus, Denmark (2007)

10. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptol-
ogy 4(3), 161–174 (1991)

11. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

12. Brands, S.: Rapid demonstration of linear relations connected by boolean oper-
ators. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333.
Springer, Heidelberg (1997)

13. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)

14. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

15. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transactions on Information
Theory 24, 106–110 (1978)

16. eBay Inc.: Bid increments. Available online (2006) http://pages.ebay.com/help/
buy/bid-increments.html

http://pages.ebay.com/help/buy/bid-increments.html
http://pages.ebay.com/help/buy/bid-increments.html


Practical Compact E-Cash

Man Ho Au, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
{mhaa456,wsusilo,ymu}@uow.edu.au

Abstract. Compact e-cash schemes allow a user to withdraw a wal-
let containing k coins in a single operation, each of which the user can
spend unlinkably. One big open problem for compact e-cash is to allow
multiple denominations of coins to be spent efficiently without executing
the spend protocol a number of times. In this paper, we give a (partial)
solution to this open problem by introducing two additional protocols,
namely, compact spending and batch spending. Compact spending al-
lows spending all the k coins in one operation while batch spending
allows spending any number of coins in the wallet in a single execution.
We modify the security model of compact e-cash to accommodate these
added protocols and present a generic construction. While the spending
and compact spending protocol are of constant time and space complex-
ities, complexities of batch spending is linear in the number of coins to
be spent together. Thus, we regard our solution to the open problem as
partial. We provide two instantiations under the q-SDH assumption and
the LRSW assumption respectively and present security arguments for
both instantiations in the random oracle model.

Keywords: E-Cash, constant-size, compact, bilinear pairings.

1 Introduction

Electronic cash (e-cash) was invented by Chaum[12] in 1982. In its simplest form,
an e-cash system consists of three parties (the bank B, the user U and the shop
S) and four main procedures (account establishment, withdrawal, payment and
deposit). The user U first performs an account establishment protocol with the
bank B. The currency circulating around is quantized as coins. U obtains a coin
by performing a withdrawal protocol with B and spends the coin by participating
in a spend protocol with S. To deposit a coin, S performs a deposit protocol
with B.

Security of e-cash refers to the fact that only the bank B can produce a
coin and for offline schemes, users who double-spent should be identified. The
problem of double-spending only occurs in the electronic world due to easy dupli-
cation of digital coins. On the other hand, honest spenders cannot be slandered
to have double spent (exculpability), and when the shops deposit the money
from the payee, the bank should not be able to trace who the actual spender

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 431–445, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



432 M.H. Au, W. Susilo, and Y. Mu

is (anonymity). Many e-cash systems that provide the function of identifying
double-spenders have been proposed, but most of them rely on a trusted third
party (TTP) to revoke the anonymity so as to identify the double-spenders
[7,17,11]. While the TTP cannot slander an honest user, its existence in fact
implies that even honest users are not anonymous.

High efficiency is also of key importance for practical e-cash systems. For
efficiency, we look at: (1) the time and bandwidth needed for the withdrawal,
payment and deposit protocols; (2) the size of an electronic coin; and (3) the
size of the bank’s database.

Camenisch, Hohenberger and Lysyanskaya [8] proposed a secure offline anony-
mous e-cash scheme (which we shall refer to as CHL scheme from now on) which
is compact to address the efficiency issue. In their scheme, a wallet containing k
coins can be withdrawn and stored in complexity O(λ+log(k)) for a security pa-
rameter λ, where each coin can be spent unlinkably with complexity O(λ+log(k))
as well. Au et al. [3] construct compact e-cash from another approach by using
a bounded accumulator. However, both schemes involve extensive use of proof-
of-knowledge and the exact cost of each operation is somehow hard to quantify.
One big open problem of compact e-cash, as stated in the CHL paper, is how to
spend several coins in the wallet together efficiently.

Related Results. Compact e-cash scheme is closely related to k-TAA[20] and
itself can be regarded as a multi-show credential system[13]. The main difference
between a compact e-cash and a k-TAA is that in the former case, a token
can only be used for a total of k times while in the latter, a token can be
shown for k-times to each application provider where k is specified by each
application provider independently. In some sense a k-TAA is more general. If
the authentication of the k-TAA can be done non-interactively, that k-TAA
scheme can be used as a compact e-cash system as follows. All shops play the
role of a single application provider with k being specified by the bank, while the
bank plays the role of a GM. A user withdraws a coin by obtaining a credential
from the bank and spend the coin by authenticating himself to the shop non-
interactively. The shop deposits by submitting the authentication transcript back
to the bank.

Our Contributions. Specifically, we make the following contributions

– We solve an open problem stated in the CHL paper by introducing the idea
of compact spending and batch spending into compact e-cash systems.

– We present generic construction of compact e-cash system with these two
added protocols and propose two instantiations

– We formalize a model to accommodate batch spending and compact spend-
ing protocols into compact e-cash schemes and present security arguments
for our schemes.

– We outline how size of the wallet can be chosen arbitrarily by users while
preserving user privacy during spending.



Practical Compact E-Cash 433

Organization. We discuss related works and technical preliminaries in the next
section. A security model is shown in Section 3. The construction is shown in
Section 4, accompanied by security analysis. Finally we conclude in Section 5.

2 Preliminaries

2.1 Notations

Let ê be a bilinear map such that ê : G1 × G2 → GT .

– G1 and G2 are cyclic multiplicative groups of prime order p.
– each element of G1, G2 and GT has unique binary representation.
– g0, h0 are generators of G1 and G2 respectively.
– ψ : G2 → G1 is a computable isomorphism from G2 to G1, with ψ(h0) = g0.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, ê(xa, yb) = ê(x, y)ab.
– (Non-degenerate)ê(g0, h0) �= 1.

G1 and G2 can be the same or different groups. We say that two groups (G1,
G2) are a bilinear group pair if the group action in G1, G2, the isomorphism ψ
and the bilinear mapping ê are all efficiently computable.

2.2 Mathematical Assumptions

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman
(DDH) problem in G is defined as follow: On input a quadruple (g, ga, gb, gc) ∈
G

4, output 1 if c = ab and 0 otherwise. We say that the DDH assumption holds
in G if no PPT algorithm has non-negligible advantage over random guessing in
solving the DDH problem in G.

Definition 2 (q-Strong Diffie-Hellman[4]). The q-Strong Diffie-Hellman (q-
SDH) problem in (G1, G2) is defined as follow: On input a (q + 2)-tuple (g0, h0,

hx
0 , hx2

0 , · · · , hxq

0 ) ∈ G1 × G
q+1
2 , output a pair (A, c) such that A(x+c) = g0 where

c ∈ Z
∗
p. We say that the q-SDH assumption holds in (G1, G2) if no PPT algorithm

has non-negligible advantage in solving the q-SDH problem in (G1, G2).

Definition 3 (y-DecisionalDiffie-HellmanInversion Assumption[14,8]).
The y-Decisional Diffie-Hellman Inversion problem (y-DDHI) in prime order
group G is defined as follow: On input a (y + 2)-tuple (g, gx, gx2

, · · · , gxy

,
gc) ∈ G

y+2, output 1 if c = 1/x and 0 otherwise. We say that the y-DDHI
assumption holds in G if no PPT algorithm has non-negligible advantage over
random guessing in solving the y-DDHI problem in G.

Definition 4 (LRSW Assumption[16]). The LRSW problem in prime order
group G is defined as follow: Let G = 〈g〉 be a prime order cyclic group of
order p and u = gx, v = gy. Define Ou,v(·) as an oracle such that on input
a value m ∈ Zp, output (a, ay, ax+mxy) for a randomly chosen a ∈ G. The
problem is on input g, u, v, and the oracle Ou,v(·), output (m, a, b, c) such that



434 M.H. Au, W. Susilo, and Y. Mu

m �= 0 ∧ a ∈ G ∧ b = ay ∧ c = ax+mxy and m has not been input to
Ou,v(·). We say that the LRSW assumption holds in G if no PPT algorithm has
non-negligible advantage in solving the LRSW problem in G.

Definition 5 (eXternal Diffie-Hellman). The eXternal Diffie-Hellman
(XDH) problem in (G1, G2, GT ) is defined as solving the DDH problem in G1
given the following three efficient oracles

1. solving DDH problem in G2,
2. computing the isomorphism from G2 to G1,
3. and computing the bilinear mapping of groups G1 × G2 to GT .

We say that the XDH assumption holds in (G1, G2, GT ) if no PPT algorithm
has non-negligble advantage in solving the XDH problem in (G1, G2, GT ).

The above assumption implies that the isomorphism is computationally one-way,
i.e. there does not efficient way to complete ψ−1 : G1 → G2. This has proven to
be false in supersingular curves while it is conjectured to hold over MNT curves.
See [5] for a more throughout discussion.

2.3 Building Blocks

Verifiable Random Function. One of the building blocks of our e-cash system
is the verifiable random function (VRF) from [14], which we shall refer to as DY
VRF. The notion VRF was introduced in [18]. Roughly speaking, a VRF is a
pseudo-random function with non-interactive proof of correctness of its output.
The VRF defined in [14] is described as follow. The function f is defined by a
tuple (Gp, p, g, s), where GT is a cyclic group of prime order p, g a generator of
Gp and s is a seed in Zp. On input x, fGp,p,g,s(x) = g

1
s+x+1 . Efficient proof such

that the output is correctly formed (with respect to s and x in some commit-
ment scheme such as Pedersen Commitment [19]) exists and the output of f is
indistinguishable from random elements in Gp if the y-DDHI assumption in Gp

holds.

Signature with Efficient Protocols. A signature scheme with efficient pro-
tocols refers to signature scheme with the following two protocols: (1) a pro-
tocol between a user and a signer with keys (pk, sk). Both the user and the
signer agreed on a commitment scheme such as Pedersen commitment. The user
input is a block of messages (m1, · · · , mL) and a random value r such that
C=Commit(m1, · · · , mL, r). After executing the protocol, the user obtains a sig-
nature on (m1, · · · , mL) from the signer while the signer learns nothing about
the block of messages; (2) a protocol to prove the knowledge of a signature.
This allows the user to prove to a verifier that he is in possession of a signature.
Examples include CL signature, CL+ signature [9,10] and a modification of the
short group signature from Boneh et al.[5] that is called BBS+[1].



Practical Compact E-Cash 435

3 Security Model

3.1 Syntax

A compact e-cash system with compact spending and batch spending is a tu-
ple (BankSetup, UserSetup, WithdrawalProtocol, SpendProtocol, BSpendProtocol,
CSpendProtocol, DepositProtocol, RevokeDoubleSpender, VerifyGuilt) of nine poly-
nomial time algorithms/protocols between three entities, namely Bank, Mer-
chant and User. The following enumerates the syntax.

– BankSetup. On input an unary string 1λ, where λ is the security parameter,
the algorithm outputs the bank’s master secret bsk and the public parameter
bpk.

– UserSetup. On input bpk, outputs a key pair (pk, sk). Since merchants are a
subset of users, they may use this algorithm to obtain keys as well.

– WithdrawalProtocol. The user with input (pk, sk) withdraws a wallet w of
k coins from the bank. The bank’s input is the master secret bsk. After
executing the protocol, the user obtains a wallet w while the bank (possibly)
retains certain information τw, called the trace information.

– SpendProtocol. This is the normal spend protocol when the user spends a
single coin to a merchant. The user input is w and the merchant’s identity.
After the protocol, the merchant obtains a transcript including a proof of
validity π of a coin from the wallet, and possibly some auxiliary information
aux, and outputs 0/1, depending whether the payment is accepted. The
user’s output is an updated wallet w′.

– BSpendProtocol. This is the batch spend protocol when the user spends n
coins, n < k, together to a merchant. The user input is w and the merchant’s
identity. After the protocol, the merchant obtains a transcript including a
proof of validity π of n coin from the wallet, and possibly some auxiliary
information aux, and outputs 0/1, depending whether the payment is ac-
cepted. The user’s output is an updated wallet w′.

– CSpendProtocol. This is the compact spend protocol when the user spends all
k coins in his wallet w together to a merchant. The user input is w and the
merchant’s identity. After the protocol, the merchant obtains a transcript
including a proof of validity π of a wallet w, and possibly some auxiliary
information aux, and outputs 0/1, depending whether the payment is ac-
cepted.

– DepositProtocol. In a deposit protocol, the merchant submits (π, aux) to the
bank for deposit. The bank outputs 0/1, indicating whether the deposit is
accepted. It is required whenever an honest merchant obtains (π, aux) by
running any of the spend protocols with some user, there is a guarantee that
this transaction will be accepted by the bank. The bank adds (π, aux) to
the database of spent coins.

– RevokeDoubleSpender. Whenever a user double spends, this algorithm allows
the bank to identify the double spender. Formally, on input two spending
protocol transcripts involving the same coin, the algorithm outputs the pub-
lic key pk of the double-spender. Intuitively, there are three possible cases



436 M.H. Au, W. Susilo, and Y. Mu

for a user to double-spend, namely, normal spend twice (or batch spend in-
volving same coin), compact spend twice, or normal spend (or batch spend)
and then compact spend or vice versa. The bank also output a proof πD to
prove that user pk indeed double-spends.

– VerifyGuilt This algorithm allows the public to verify that the user with
public key pk is guilty of double-spending. In particular, when the bank uses
RevokeDoubleSpender and output πD and pk of the double-spender, everyone
can check if the bank is honest.

SpendProtocol, BSpendProtocol and CSpendProtocol shall be collectively called
spend protocols. In situations where ambiguity may arise, we shall refer to exe-
cuting SpendProtocol as normal spending.

Remarks: We omit the Trace and VerifyOwnership algorithm defined in the
CHL paper because our system does not support it, just as the first version in
the CHL paper. We should remark, however, we can extend our system using the
same technique as in the CHL paper to support these two algorithms. Details of
extension can be found in the full version of the paper[2].

3.2 Security Notions

We first provide an informal description of the security requirements. A secure
compact e-cash scheme should possess correctness, balance, anonymity and ex-
culpability, introduced as follows.

– Correctness. If an honest user runs WithdrawalProtocol with an honest bank
and runs any of the spend protocols with an honest merchant, the merchant
accepts the payment. The merchant later runs Deposit with the bank, which
will accept the transaction.

– Balance. This is the most important requirement from the bank’s point of
view. Roughly speaking, balance means that no collusion of users and mer-
chants together can deposit more than they withdraw. More precisely, we
require that collusion of users and merchants, having run the withdrawal
protocol for n times, cannot deposit more than nk coins back to the bank.
In case they do deposit nk + 1 coins, at least one of the colluders must
be identified. A related notion is revocability, which means identity of the
double-spender must be revoked. It is straight forward to see that revocabil-
ity is implied by the definition of balance.

– Anonymity. It is required that no collusion of users, merchants and the bank
can ever learn the spending habit of an honest user.

– Exculpability. It is required that an honest user cannot be accused of having
double-spent, even all other users, merchants and the bank colludes.

From our definition, it can be seen that it is the bank’s responsibility to
identify the double-spender. The rationale behind this is that a user can always
spend the same coin to different merchants in an offline e-cash system and the
merchant has no way to detect such double-spending.



Practical Compact E-Cash 437

Next we are going to formally define the security model. While the model in
CHL uses the UC framework, our model is game-based.

The capability of an adversary A is modeled as oracles.

– Withdrawal Oracle: A presents a public key pk and engages in the With-
drawalProtocol as user and obtains a wallet. The oracle stores pk in a set
XA.

– Spend Oracle: A now acts as a merchant and request users to spend coins
with it. It can request for CSpend, BSpend or normal Spend for any user of
its choice.

– Hash Oracle: A can ask for the values of the hash functions for any input.

We require that the answers from the oracles are indistinguishable from the view
as perceived by an adversary in real world attack.

Definition 6 (Game Balance)

– (Initialization Phase.) The challenger C takes a sufficiently large security
parameter λ and runs BankSetup to generate bpk and also a master secret
key bsk. C keeps bsk to itself and sends bpk to A.

– (Probing Phase.) The adversary A can perform a polynomially bounded num-
ber of queries to the oracles in an adaptive manner.

– (End Game Phase.) Let qw be the number of queries to the Withdrawal Oracle
and qs be the number of queries to the Spend Oracle. Note that a compact
spending query to the Spend Oracle is counted as k queries and a batch
spending of n coins query is counted as n queries. A wins the game if it can
run kqw + qs + 1 deposit to C such that C cannot point to any of the users
during the Withdrawal Oracle query by running RevokeDoubleSpender.

The advantage of A is defined as the probability that A wins.

Definition 7 (Game Anonymity)

– (Initialization Phase.) The challenger C gives a sufficiently large security
parameter λ to A. A then generates bpk and bsk. A gives bpk to C. Since A is
in possession of bsk, only Hash oracle query is allowed in Game Anonymity.

– (Challenge Phase.) C then chooses two public keys PK and PK ′ and presents
them to A. C runs the WithdrawalProtocol with A acting as bank to obtain
several wallets w0, · · · , wt and w′0, · · · , w′t on behalf of the two public keys,
where t and t′ are specified by A. A then acts as merchant and ask for spend-
ing from C. A is allowed to specify which wallet C uses, with the restriction
that it cannot ask C to over-spend any of the wallets. Finally, A chooses a
type of spending (normal spend, BSpend or CSpend) as challenge. A also
chooses one wallet w from user PK and one wallet w′ from user PK ′ from
the set of wallets that are legal for the challenge (for example, if wallet w0
has spent k−1 times already and BSepnd 2 coins is chosen as the challenge,
A cannot specific wallet w0). C then flips a fair coin to decide to use w or
w′ for the challenge spending.



438 M.H. Au, W. Susilo, and Y. Mu

– (End Game Phase.) The adversary A decides which public key C uses.

A wins the above game if it guesses correctly. The advantage of A is defined
as the probability that A wins minus 1

2 .

Definition 8 (Game Exculpability)

– (Initialization Phase.) The challenger C gives a sufficiently large security
parameter λ to A. A then generates bpk and bsk. A gives bpk to C. Since A is
in possession of bsk, only Hash oracle query is allowed in Game Exculpability.

– (Challenge Phase.) C runs the WithdrawalProtocol for qj times with A act-
ing as bank to obtain wallets w1, · · · , wqj . A then act as merchant and ask
for spending from C. A is allowed to specific which wallet C uses, with the
restriction that it cannot ask C to over-spend any of the wallets. A can also
ask to corrupt any of the user in the above withdrawal protocol. A corrupted
user needs to surrender its private key as well as the wallet to A.

– (End Game Phase.) A runs two deposit protocol with C. A wins the game
if RevokeDoubleSpender on this two deposit protocol points to a user in any
of the withdrawal protocol during initialization and that user has not been
corrupted.

The advantage of A is defined as the probability that A wins.

A compact e-cash scheme with compact spending is secure if no PPT adversary
can win in Game Balance, Game Anonymity and Game Exculpability with non-
negligible advantage.

4 Our Constructions

4.1 Generic Construction

BankSetup. Let (KeyGen, Sign, Verify) be a signature scheme with efficient pro-
tocols as discussed. Let Vrf(·) be an verifiable random function as discussed.
The bank generates the parameter of a signature scheme with efficient protocols
using KeyGen and is in possession of the signing key. It also publishes, preferably
using another key pair of the signature scheme, σ1 =Sign(1), · · · , σk = Sign(k).
Each user is in possession of a DL type key pair (x, ux).

Withdrawal. To withdraw, the user obtains a signature σx =Sign(s,t,x,y,r) using
the signature generation protocol. The banks learns nothing about the block of
messages (s, t, x, y, r). The User keeps (σx, s, t, x, y, r) as its wallet secret and
sets the counter J = 1.

Spend Protocols. For payment, the user and the merchant with identity I ∈
{0, 1}∗ first agree on the transaction information info. Then, they compute R =
H(info, I) locally, for some cryptographic hash function H .

Spend. To spend a single coin, the user then sends to the merchant C which
is a commitment of (s, t, x, y, r, J) and also S = Vrf(s, J), T = PKVrf(t, J)R.



Practical Compact E-Cash 439

Note that PK = ux and Vrf(s, x) denotes the verifiable random function as
discussed on input x with respect to seed s. It then sends the following signature
of knowledge to the merchant.

ΠSpend : SPK

{

(σx, s, t, x, y, r, σJ , J) :

Verify(σx, s, t, x, y, r) = 1 ∧
Verify(σJ , J) = 1 ∧ S = Vrf(s, J) ∧

T = uxVrf(t, J)R ∧ C = Commit(s, t, x, y, r, J)
}

(R)

If ΠSpend is a valid SPK, the merchant accepts the payment. Finally, the user
increases the counter J of his wallet by 1. When J is bigger than k, the user can
no longer spend his wallet unlinkably.

Compact Spend. To spend the whole wallet, the user then sends to the merchant
C which is the commitment of (s, t, x, y, r) and also Tc = PKVrf(y, 0)R. Then,
it sends the following signature of knowledge to the merchant.

ΠCSpend : SPK

{

(σx, s, t, x, y, r) :

Verify(σx, s, t, x, y, r) = 1 ∧ Tc = uxVrf(y, 0)R

∧ C = Commit(s, t, x, y, r)
}

(R)

Finally, the user discloses s, t to the merchant. If ΠCSpend is valid and s, t is
indeed the value in the commitment, the merchant accepts the whole payment.

Batch Spend. To spend n coins together, the user then sends to the merchant
C which is the commitment of (s, t, x, y, r, J) and also Si = Vrf(s, J + i), Ti =
PKVrf(t, J + i)R for i = 0, · · · , n − 1. Then, it sends the following signature of
knowledge to the merchant.

ΠBSpend : SPK

{

(σx, s, t, x, y, r, σJ , J, σJ+n−1) :

Verify(σx, s, t, x, y, r) = 1 ∧ Verify(σJ , J) = 1 ∧
S0 = Vrf(s, J) ∧ T0 = uxVrf(t, J)R ∧

· · · ∧ Si = Vrf(s, J + i) ∧ Ti = uxVrf(t, J + i)R ∧ · · · ∧
Sn−1 = Vrf(s, J + n − 1) ∧ Tn−1 = uxVrf(t, J + n − 1)R ∧

Verify(σJ+n−1, J + n − 1) = 1 ∧ C = Commit(s, t, x, y, r, J)
}

(R)

If ΠBSpend is a valid SPK, the merchant accepts the payment. Finally, the user
increases the counter J of his wallet by n.

Remarks. S is called a serial number. For each wallet, only k valid serial num-
bers can be generated. Should a user attempt to double-spend, he must use a
duplicated serial number. On the other hand, during CSpend, the user submits



440 M.H. Au, W. Susilo, and Y. Mu

s to the merchant and this is equivalent to submitting all k possible serial num-
bers. This is the main technique we used to achieve compact spending. Once
double-spending is identified, T is the component used to revoke identity of
double-spender, as shown in the RevokeDoubleSpender algorithm.

We achieve constant-size compact e-cash, due to the idea from [21], by having
the bank publishes k signatures on 1 to k. User proving possession of these
signatures on counter j indirectly proves counter j has not reached the limit k.
Proving j is within 1 to k directly require a complexity of O(logk) while with
this technique, constant-size is achieved. The price is that public parameter size
is increased to k. Note that if the bank is dishonest and gives signature on k +1
to a user, the user is able to spend the wallet for k + 1 times without being
noticed. However, this does not compromise the security since this only breaks
the balance property which is exactly against the interest of the bank. Thus, it
gives no incentive for the bank to behave dishonestly in this way.

Deposit. To deposit, the merchant simply gives the bank the whole communi-
cation transcript during the spend protocol. The bank verifies the transcript
exactly as the merchant did. In addition, the bank has to verify that I is in-
deed the identity of the merchant and R = H(info, I) is not used before by that
merchant. This is to prevent colluding users and merchants from submitting a
double spent coin (which have identical transcripts). It also prevents a malicious
merchant from eavesdropping an honest transaction and depositing it (in that
case, identity of the malicious merchant does not match with I). In case the
check is successful, the bank stores S, T, R to the database. In case it is CSpend,
the bank computes Si = Vrf(s, i) for i = 1, · · · , k. The bank then stores all
(S, T, R)

(
(S, Tc, s, t, R) in case it is CSpend

)
for each spending in the database.

RevokeDoubleSpender. When a new spending transcript is received, the bank
checks if S exists in the database. If yes, then it is a double-spent coin. The bank
identifies the double-spender as follows. There are three cases:

– (Double-spending of a single coin.) Let the entry in the database be (S, T ′,
R′) and the current transcript be (S, T, R). The bank computes PK as

(T R′

T ′R )1/(R′−R).
– (CSpend and spend a single coin.) Suppose the entry in database is (S, Tc, s, t)

and the current transcript is (S, T, R). The bank checks for an i such that
S = Vrf(s, i) and computes PK = T/(Vrf(t, i)R).

– (Double CSpend.) Suppose the two entries are (s, t, Tc, R) and (s, t, T ′c, R
′).

The bank computes PK = (T R′
c

T ′R
c

)1/(R′−R).

Remarks. Double spending can be falsely identified if there exists J, J ′ ≤ k such
that J+s = J ′+s′ for two different wallets. However, the probability is negligible
if k is much smaller than the security parameter. This applies to the CHL scheme
too. The proof πD such that bank is honest is the two double-spend transcripts.

VerifyGuilt. The bank outputs the double-spent transcripts as well as the public
key of the double-spender. Everyone can check if the bank is honest by invoking



Practical Compact E-Cash 441

the algorithm RevokeDoubleSpender on the two transcripts since it does not
require any of the bank’s secret.

4.2 Scheme 1 (Instantiation Using BBS+ Signature and DY VRF)

Following the generic construction, efficient compact e-cash can be constructed
readily by choosing a suitable signature scheme with efficient protocols and VRF.
One additional criterion is that PK{(t, x, j) : T = uxVrf(t, x, j)R} can be effi-
ciently done since that may not be efficient for any VRF. Below we instantiate
a q-SDH based compact e-cash using BBS+ signature and DY VRF.

BankSetup. Let λ be the security parameter. Let (G1, G2) be a bilinear group pair
with computable isomorphism ψ as discussed such that |G1| = |G2| = p for some
prime p of λ bits. Also assume Gp is a group of order p where DDH is intractable.
Let H : {0, 1}∗ → Zp be a cryptographic hash function. Let g0, g1, g2, g3, g4, g5
be generators of G1, h0, h1, h2, h3, h4, h5 be generators of group G2 such that
ψ(hi) = gi and u0, u1, u2, u3 be generators of Gp such that related discrete loga-
rithm of the generators are unknown. This can be done by setting the generators
to be output by a hash function of some publicly known seed. The bank randomly
selects γ, γr ∈R Z

∗
p and computes w = h0

γ , wr = h0
γr . The bank’s public key is

bpk = (g0, g1, g2, g3, g4, g5, h0, w, wr, u0, u1, u2, u3, k) and the bank’s secret key is
bsk = (γ, γr). It also publishes σi = (Bi, di) s.t. ê(Bi, wrh

di
0 ) = ê(g0, h0)ê(g1, h0)i

for i = 1, · · · , k. These are the BBS+ signature on i for i = 1, · · · , k. k has to
be much smaller than 2λ. For efficiency consideration, it also publishes Ej =
ê(gj, h0) for j = 0, · · · , 5 and Ew = ê(g2, w), Ewr = ê(g2, wr) as part of the
public key.

UserSetup. We assume PKI is implemented, that is, each user is equipped with
a discrete logarithm type public and private key pair (u0

x, x) ∈ Gp × Z
∗
p.

WithdrawalProtocol. A user randomly selects s′, t, y, r ∈R Z
∗
p and sends C′ =

gs′

1 gt
2g

x
3 gy

4gr
5, along with the proof Π0 = PK{(s′, t, x, y, r) : C′ = gs′

1 gt
2g

x
3 gy

4gr
5 ∧

PK = ux
0} to the bank. The bank verifies that Π0 is valid and randomly selects

s′′ ∈R Z
∗
p. It computes C = C′gs′′

1 and selects e ∈R Z
∗
p. It then computes

A = (g0C)
1

e+γ and sends (A, e, s′′) to the user. User computes s = s′ + s′′ and
checks if ê(A, whe

0) = ê(g0g
s
1g

t
2g

x
3 gy

4gr
5, h0). He then stores (A, e, s, t, x, y, r) as his

wallet secret and sets counter J = 1.

Spend Protocols. Let the user wallet be (A, e, s, t, x, y, r, J) such that J ≤ k. The
merchant with identity I and the user first agree on the transaction information
info and compute R = H(info, I) locally.

Single Coin Spend Protocol. The user computes S = u
1

s+J+1
1 , T = ux

0u
R

t+J+1
1 .

The user also computes the following quantities A1 = gr1
1 gr2

2 , A2 = Agr1
2 , A3 =

gJ
1 gt

2g
r3
3 , A4 = gr4

1 gr5
2 , A5 = BJgr4

2 , for r1, r2, r3, r4, r5 ∈R Z
∗
p, in G1. Recall that

(BJ , dJ ) is the BBS+ signature on J published by the bank. The following SPK
Π1 is then computed.



442 M.H. Au, W. Susilo, and Y. Mu

Π1 : SPK

{

(r1, r2, r3, r4, r5, δ1, δ2, δ3, δ4, δ5, δJ , δt, e, dJ , s, t, x, y, r, J) :

A1 = gr1
1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧

ê(A2,w)
E0

= Es
1E

t
2E

x
3 Ey

4Er
5Eδ1

2 Er1
w ê(A2, h0)−e ∧

u1
S = SJSs ∧ A3 = gJ

1 gt
2g

r3
3 ∧ Ax

3 = gδJ
1 gδt

2 gδ3
3 ∧

uR
1

T = T JT tu−δJ

0 u−δt

0 u−x
0 ∧ A4 = gr4

1 gr5
2 ∧

AdJ
4 = gδ4

1 gδ5
2 ∧ ê(A5,wr)

E0
= EJ

1 Eδ4
2 Er4

wr ê(A5, h0)−dJ

}

(R)

where δ1 = r1e, δ2 = r2e, δ4 = r4dJ , δ5 = r5dJ , δJ = Jx, δt = tx, δ3 = r3x.

The user sends S, T, A1, A2, A3, A4, A5 along with Π1 to the merchant for
payment. The merchant then verifies Π1 and accepts the payment if it is valid.

CSpend Protocol. To spend the whole wallet, the user computes Tc = ux
0u

R
y+1
1 .

He also computes the following quantities A1 = gr1
1 gr2

2 , A2 = Agr1
2 , A3 = gy

1gr3
2

for r1, r2, r3 ∈R Z
∗
p, in G1. The following SPK Π2 is then computed.

Π2 : SPK

{

(r1, r2, r3, δ1, δ2, δ3, δy, e, x, y, r) :

A1 = gr1
1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧

ê(A2,w)
E0Es

1Et
2

= Ex
3 Ey

4Er
5Eδ1

2 Er1
w ê(A2, h0)−e ∧

A3 = gy
1gr3

2 ∧ Ax
3 = g

δy

1 gδ3
2 ∧ uR

1
Tc

= T y
c u
−δy

0 u−x
0

}

(R)

where δ1 = r1e, δ2 = r2e, δy = yx, δ3 = r3x.

The user sends Tc, s, t, A1, A2, A3, along with Π2 to the merchant for payment.
The merchant then verifies Π2 and accepts the payment if it is valid.

BSpend Protocol. To spend n coins such that J + n − 1 ≤ k, the user computes

Si = u
1

s+J+i

1 , Ti = ux
0u

R
t+J+i

1 for i = 1 to n. Denotes I = J + n − 1. The user also
computes the following quantities A1 = gr1

1 gr2
2 , A2 = Agr1

2 , A3 = gJ
1 gt

2g
r3
3 , A4 =

gr4
1 gr5

2 , A5 = BJgr4
2 , A6 = gr6

1 gr7
2 , A7 = BIg

r6
2 , for r1, r2, r3, r4, r5, r6, r7 ∈R Z

∗
p,

in G1. Recall that (BJ , dJ), (BI , dI) are the BBS+ signatures published by the
bank on J and I respectively. The following SPK Π3 is then computed.

Π3 : SPK

{

(r1, r2, r3, r4, r5, r6, r7, δ1, δ2, δ3, δ4, δ5,
δ6, δ7, δJ , δt, e, dJ , dI , s, t, x, y, r, J) :

A1 = gr1
1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧ ê(A2,w)

E0
= Es

1Et
2E

x
3 Ey

4Er
5Eδ1

2 Er1
w ê(A2, h0)−e ∧

u1
S1

1
= SJ

1 Ss
1 ∧ · · · ∧ u1

Si
i

= SJ
i Ss

i ∧ · · · ∧ u1
Sn

n
= SJ

nSs
n ∧

A3 = gJ
1 gt

2g
r3
3 ∧ Ax

3 = gδJ
1 gδt

2 gδ3
3 ∧

uR
1

T 1
1

= T J
1 T t

1u
−δJ

0 u−δt

0 (u1
0)
−x ∧ · · · ∧

uR
1

T i
i

= T J
i T t

i u−δJ
0 u−δt

0 (ui
0)
−x ∧ · · · ∧

uR
1

T n
n

= T J
n T t

nu−δJ

0 u−δt

0 (un
0 )−x ∧

A4 = gr4
1 gr5

2 ∧ AdJ
4 = gδ4

1 gδ5
2 ∧

ê(A5,wr)
E0

= EJ
1 Eδ4

2 Er4
wr ê(A5, h0)−dJ ∧ A6 = gr6

1 gr7
2 ∧



Practical Compact E-Cash 443

AdI
6 = gδ6

1 gδ7
2 ∧ ê(A7,wr)

E0En−1
1

= EJ
1 Eδ6

2 Er6
wr ê(A7, h0)−dI

}

(R)

where δ1 = r1e, δ2 = r2e, δ4 = r4dJ , δ5 = r5dJ , δ6 = r5dI , δ7 = r7dI , δJ =
Jx, δt = tx, δ3 = r3x.

The user sends S1, T1, · · · , Sn, Tn, A1, A2, A3, A4, A5, A6, A7 along with Π3 to
the merchant for payment. The merchant then verifies Π3 and accepts the pay-
ment if it is valid.

Deposit, RevokeDoubleSpender and VerifyGuilt have been described in the generic
construction.

4.3 Scheme 2 (Instantiation Using CL+ Signature and DY VRF)

We can also build a compact e-cash system from CL+[10] Signature and DY
VRF[14]. Due to space limitation, concrete instantiation of scheme 2 is shown
in [2].

Following the parameters suggested by Boneh et al.[6,5], we can take p = 170
bits and each group element in G1, G2 can be represented by 171 bits. Assume
elements in Gp are represented by 171 bits (using another elliptic curve group
where pairing is not available[15]). We list the time and space complexity of our
schemes and the CHL scheme in Fig.1. For the CHL scheme, we take the public
modulus N to be 1024 bits.

CHL this paper(scheme 1) this paper (scheme 2)

Withdrawal 704 bytes 213 bytes 384 bytes

Single Spend 1.9 kB 596 bytes 640 bytes

Batch Spend (n > 1 coins) N/A 702 + 43n bytes 682 + 43n bytes

Compact Spend (k coins) N/A 383 bytes 491 bytes

Deposit Same as respective Spend protocols

Bank’s Store (per spent coin) 0.3 kB 64 bytes 64 bytes

Fig. 1. Space Efficiency of different protocols

4.4 Extensions

Our schemes can be extended to support full coin tracing using the same method
as in [8]. It can also be extended to support arbitrary wallet size. Due to space
limitation, these extensions are shown in the full version of the paper[2].

4.5 Security Analysis

Proofs of the following theorems can be found in the full version [2].

Theorem 1. Our first scheme is secure under the q-SDH assumption and the
k-DDHI assumption in the random oracle model.



444 M.H. Au, W. Susilo, and Y. Mu

CHL this paper (scheme 1) this paper (scheme 2)

Single Spend

User 18ME 17ME + 2P 24ME +8P

Merchant 11ME 10ME + 4P 6ME +20P

Bank 11ME 10ME + 4P 6ME +20P

Batch Spend (n > 1 coins)

User N/A (4n + 18)ME + 2P (4n + 11)ME + 10P

Merchant N/A (2n + 11)ME + 6P (2n + 5)ME + 25P

Bank N/A (2n + 11)ME + 6P (2n + 5)ME + 25P

Compact Spend

User N/A 10ME + 1P 17ME + 4P

Merchant N/A 6ME + 2P 4ME + 13P

Bank N/A 6ME + 2P 4ME + 13P

Fig. 2. Computational Cost of Spend protocols. (ME=Multi-based Exponentiation,
P=Pairing).

Theorem 2. Our second scheme is secure under the LRSW assumption and the
k-DDHI assumption in the random oracle model.

5 Concluding Remarks

We introduced the idea of compact spending and batch spending into compact e-
cash, presented security model to accommodate the new idea, and gave efficient
and secure constructions. One problem of our system is that since BBS+/CL+
(or CL) signatures do not support concurrent signature generation, withdrawal
must be done in a sequential manner. The same drawback is also present in
the original compact e-cash [8]. It remains an open problem to design a secure
compact e-cash scheme which supports concurrent withdrawal.

Acknowledgments

We would like to thank Colin Boyd and the anonymous reviewers of ACISP 2007
for their helpful comments and suggestions.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-Size Dynamic k-TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

2. Au, M.H., Susilo, W., Mu, Y.: Practical compact e-cash. Cryptographic eprint
archive (2007)

3. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumulator.
In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, Springer, Heidelberg (2006)



Practical Compact E-Cash 445

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

7. Brickell, E., Gemmell, P., Kravitz, D.: Trustee-based Tracing Extensions to Anony-
mous Cash and the Making of Anonymous Change. In: SODA ’95: Proceedings of
the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for In-
dustrial and Applied Mathematics, pp. 457–466 (1995)

8. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidel-
berg (2005)

9. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

10. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

11. Canard, S., Traoré, J.: On fair e-cash systems based on group signature schemes.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 237–248.
Springer, Heidelberg (2003)

12. Chaum, D.: Blind Signatures for Untraceable Payments. In: McCurley, K.S.,
Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440, pp.
199–203. Springer, Heidelberg (1999)

13. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

14. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005)

15. Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear maps. In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 455–467.
Springer, Heidelberg (2005)

16. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. Selected
Areas in Cryptography 184–199 (1999)

17. Maitland, G., Boyd, C.: Fair Electronic Cash Based on a Group Signature Scheme.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 461–
465. Springer, Heidelberg (2001)

18. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: FOCS, pp.
120–130 (1999)

19. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO, pp. 129–140 (1991)

20. Teranishi, I., Furukawa, J., Sako, K.: k-Times Anonymous Authentication (Ex-
tended Abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp.
308–322. Springer, Heidelberg (2004)

21. Teranishi, I., Sako, K.: k-times anonymous authentication with a constant proving
cost. Public Key Cryptography, pp. 525–542 (2006)



Use of Dempster-Shafer Theory and Bayesian

Inferencing for Fraud Detection in Mobile
Communication Networks

Suvasini Panigrahi1, Amlan Kundu1, Shamik Sural1, and A.K. Majumdar2

1 School of Information Technology
2 Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur, India

{Suvasini.Panigrahi@sit,kunduamlan@sit,shamik@sit,
akmj@cse}.iitkgp.ernet.in

Abstract. This paper introduces a framework for fraud detection in
mobile communication networks based on the current as well as past be-
havioral pattern of subscribers. The proposed fraud detection system
(FDS) consists of four components, namely, rule-based deviation de-
tector, Dempster-Shafer component, call history database and Bayesian
learning. In the rule-based component, we determine the suspicion level
of each incoming call based on the extent to which it deviates from
expected call patterns. Dempster-Shafer’s theory is used to combine
multiple evidences from the rule-based component and an overall sus-
picion score is computed. A call is classified as normal, abnormal, or
suspicious depending on this suspicion score. Once a call from a mo-
bile phone is found to be suspicious, belief is further strengthened or
weakened based on the similarity with fraudulent or genuine call history
using Bayesian learning. Our experimental results show that the method
is very promising in detecting fraudulent behavior without raising too
many false alarms.

Keywords: Mobile communication networks, fraud detection, Dempster-
Shafer theory, Bayesian learning.

1 Introduction

The telecommunications industry has expanded dramatically in the last few
years with the development of affordable mobile phone technology. With the
increasing number of mobile phone subscribers, global mobile phone fraud is
also set to rise. Telecommunication fraud occurs whenever a perpetrator uses
deception to receive telephony services free of charge or at a reduced rate. It is a
worldwide problem with substantial annual revenue losses for many companies.
Mobile communication fraud, which is the focus of this work, is particularly
appealing to fraudsters, as calling from the mobile terminal is not bound to a
physical location and it is easy to get a subscription. This provides a means
for illegal high-profit business for fraudsters requiring minimal investment and

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 446–460, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Use of Dempster-Shafer Theory and Bayesian Inferencing 447

relatively low risk of getting caught. Mobile phone fraud is defined as the unau-
thorized use, tampering or manipulation of a mobile phone or service.

Although actual figures are not available, according to the Communications
Fraud Control Association, the mobile telecommunications industry suffers loss
of $35- $40 billion annually, due to fraud in its networks [1]. Telecom and Network
Security Review reports that in USA, the financial losses account for about 2
percent to 6 percent of the total revenue of network operators, thus playing a
significant role in total earnings. As noted by Barson et al. [2], the true losses
are expected to be even higher and it is difficult to give precise estimates, since
the telecommunication companies are reluctant to reveal figures on fraud losses.
Furthermore, fraudulent attacks cause lots of inconveniences to the victimized
subscriber which might motivate the subscriber to switch to a competing carrier.
Since operators are facing increasing competition, the reputation of a network
operator may suffer from an increasing number of fraud cases since potential
new subscribers would be very reluctant to switch to a carrier which is troubled
with fraud. From the above discussion, it is clear that the losses caused by fraud
acts as the primary motivation for fraud detection in mobile telecommunication
networks. In addition to financial losses, fraud may also cause distress, loss of
service, and loss of subscriber confidence [3]. Thus, mobile telecommunication
fraud is a significant problem which needs to be addressed and detected in the
strongest possible manner.

There are many different types of telecom fraud and these can occur at various
levels. The two most prevalent types are - subscription fraud and superimposed
or surfing fraud. Subscription fraud occurs when the fraudster obtains a subscrip-
tion to a service, often with false identity details, with no intention of paying.
This is at the level of a phone number and all calls from this number will be
fraudulent. Superimposed fraud is the use of a service without having the nec-
essary authority and is usually detected by the appearance of phantom calls on
a bill. It involves a legitimate account with some legitimate activity, but also
includes some superimposed illegitimate activity by a person other than the ac-
count holder. Superimposed fraud will generally occur at the level of individual
calls and the fraudulent calls will be mixed with the legitimate ones. Superim-
posed fraud can remain undetected for a long time. It is particularly expensive
and prevalent in major cities throughout the USA. Superimposed fraud poses a
bigger problem for the telecommunications industry and for this reason we focus
on identifying this type of fraud.

The early fraud detection systems examined whether two instances of one
subscription were used at the same time (overlapping calls detection mechanism),
evidencing card cloning. While this procedure efficiently detects cloning, it misses
a large number of other fraud cases. A more advanced system is a velocity trap
which detects card cloning by using an upper speed limit at which a mobile phone
subscriber can travel. Subsequent calls from distant places provide evidence for
card cloning. Although a velocity trap is a powerful method of detecting card
cloning, it is ineffective against new forms of fraud. Therefore, there is a need for



448 S. Panigrahi et al.

the development of dynamic and adaptive fraud detection mechanisms, based
on the behavioral modeling of calling activity.

2 Related Work

In this section, published work with relevance to fraud detection in mobile
telecommunication networks is reviewed.

Moreau et al. [4] describe a rule-based system, which accumulates number or
duration of calls that match specific patterns in one day and calculate the average
and standard deviation of the daily values. Moreau et al. [5] have used supervised
neural networks for detection of fraud in mobile telecommunication networks.
Burge et al. [6] represent short-term behavior by the probability distribution
of calls made by a subscriber in one day. The ”Current User Profile” (CUP) is
examined against the ”User Profile History” (UPH), which is the average of the
CUPs generated by that subscriber. Taniguchi et al. [7] have presented three
approaches, namely, a supervised feed-forward neural network, Gaussian mix-
ture model and Bayesian networks to detect fraud in communication networks.
Fawcett and Provost [8] have combined data mining and machine learning tech-
niques for detecting fraudulent usage of cellular telephones based on profiling
subscriber behavior. Murad and Pinkas [9] use three profile levels - call profile,
daily profile and overall profile to represent subscriber behavior. Any significant
deviation from the subscriber’s normal behavior is detected as fraudulent. Ros-
set et al. [10] illustrate rule-based fraud detection by using two separate levels
of data, subscriber-level data and behavior-level data. Burge and Shawe-Taylor
[11] have introduced an unsupervised neural network technique for developing
behavior profiles of mobile phone subscribers for use in fraud detection. Grosser
et al. [12] have focused on the problem of detecting unusual behavioral changes
of mobile phone subscribers by building data structures corresponding to current
and history profile of subscribers. Briotos et al. [13] have detected subscribers
who are using their mobile phones in a disloyal way. Kou et al. [14] present a
comprehensive review of current techniques used in fraud detection in different
domains. Bolton and Hand [15] have described the tools available for statistical
fraud detection.

Usually, the more advanced a service is, the more is its vulnerability to fraud.
In the future, operators will need to adapt rapidly to keep pace with new chal-
lenges posed by fraudulent subscribers. While conventional approaches to fraud
detection and analysis may be sufficient to cope with some current types of fraud,
they are less able to handle new possibilities. It is well-known that every sub-
scriber has certain calling behavior which establishes an activity profile for him.
A particular usage pattern may be normal for one subscriber while abnormal for
other subscribers. In addition, there may be changes in subscriber behavior ow-
ing to personal or seasonal needs. Due to progress of technology, fraudsters can
also adopt new fraud techniques resulting in new usage patterns. Hence, systems
that cannot evolve or ”learn”, soon become outdated resulting in large number
of false alarms. Thus, there is a need for FDSs which can combine multiple



Use of Dempster-Shafer Theory and Bayesian Inferencing 449

evidences including patterns of genuine subscribers as well as fraudsters, learn
their calling patterns, and adapt to the changes in their behavior. In this paper,
we propose a unique FDS that combines different evidences using Dempster-
Shafer theory. In addition, Bayesian learning takes place by applying prior knowl-
edge and observed data on suspicious calls. To the best of our knowledge, this
is the first ever attempt to develop a mobile phone FDS using information fu-
sion and Bayesian learning. In this paper, we use the terms call and transaction
interchangeably since a subscriber’s call results in a transaction updating the
service provider’s database.

The rest of the paper is organized as follows. We propose a mobile phone FDS
and describe its components in Section 3. In Section 4, we discuss the results
obtained from extensive simulation with stochastic models. Finally, we conclude
in Section 5 of the paper.

3 Proposed Approach

We propose an FDS which monitors behavioral patterns of a mobile phone sub-
scriber by comparing his most recent activity patterns with past usage pat-
terns. The proposed FDS may be abstractly represented as a 5-tuple < M, P,
Ψ(T Mi

j,ρ ), θLT , θUT >, where:

1. M = {M1, M2, ..., Mn} is the set of mobile phones on which fraud detection
is performed.

2. P = {P (M1), P (M2), ..., P (Mn)} is the set of profiles, where each P (Mi)
corresponds to the profile of the subscriber of the mobile phone Mi. The
subscriber behavior information, which facilitates reliable fraud detection,
is derived from the toll tickets (TT) provided by the network operator. TT
contains details of the call made by a subscriber. We have used 6 compo-
nents of a TT to generate subscriber profiles which are considered to be the
most relevant fraud detection features. Each subscriber profile may be rep-
resented as a 6-tuple: < IMSI, Destination No, Call Duration, Call T ype,
Call Date, Call T ime >
– IMSI: International Mobile Subscriber Identity which identifies a sub-

scriber uniquely.
– Destination No: the number that was called.
– Call Duration: the duration of the call in seconds.
– Call T ype: the type of the call (local, national, international). We rep-

resent the various call types as: local: 0, national: 1, international: 2.
– Call Date: starting date of the call.
– Call T ime: starting time of the call. We have partitioned the start time

into 4 time windows (morning, daytime, evening, night).
3. Ψ(T Mi

j,ρ ) is the suspicion score of a call T Mi

j,ρ and ρ is the time gap between
successive calls of a particular type on the same mobile phone.

4. θLT is the lower threshold, where 0 ≤ θLT ≤ 1.
5. θUT is the upper threshold, where 0 ≤ θUT ≤ 1.



450 S. Panigrahi et al.

3.1 FDS Components

The proposed FDS has the following 4 major components:

– Rule-based Deviation Detection Component (RBDDC)
– Dempster-Shafer Combination Component (DSCC)
– Call History Database Component (CHDC)
– Bayesian Learning Component (BLC)

Rule-Based Deviation Detection Component (RBDDC)
RBDDC consists of generic as well as subscriber-specific rules which classify
an incoming call as seemingly genuine or seemingly fraudulent with a certain
probability. The probability value is termed as the suspicion score of the incoming
call. The suspicion score measures how the call’s behavior deviates from the
normal usage profile of the mobile phone subscriber. We compute suspicion score
for each call on a mobile phone and the score is updated whenever there is a new
call on that particular mobile phone. We briefly discuss two of the rule-based
techniques below.

– Breakpoint Analysis (R1)
Break point analysis is an unsupervised outlier detection tool that is used for
behavioral fraud detection. It is a tool that identifies changes in spending
behavior based on the call information in a single account [16]. The term
”break point” signifies an observation or time where anomalous behavior is
detected. For the mobile telecommunication application, recent calls on a
mobile phone are compared with previous usage patterns to detect sudden
changes in the behavior of a subscriber. In this method, a sliding window
of fixed length is used such that as a call occurs, it enters the window and
the oldest call in the window is removed. Calls in the most recent part of
the window are then compared with those in the early part of the window
to find if a change in calling behavior has occurred. Statistical tests are
employed to see if the recent calls conform to the ’normal behavior’ of the
subscriber or if they follow a different pattern when compared to the older
calls. We have used Call Duration attribute as the comparison criterion.
Suppose the sliding window W contains Z calls in all: X calls to form the
profile and the next Z - X calls to test for an increase in Call Duration.
Mean values of Call Duration in each window are compared using a simple
t-test for computational efficiency. The t-test assesses whether the means of
two groups are statistically different from each other. The formula for the
t-test is given as:

tvalue =
meanprofile − meantest
√

varprofile

nprofile
+

vartest

ntest

(1)

where, meanprofile: Mean of the calls that form the profile, meantest : Mean
of the calls that form the test data, varprofile: Variance of the calls that form
the profile, vartest : Variance of the test calls, nprofile: Number of calls that
form the profile, ntest : Number of test calls.



Use of Dempster-Shafer Theory and Bayesian Inferencing 451

Depending on positive or negative tvalue we can define the degree of variation
(dvariation) of test calls from the normal profile calls as given by Eq. (2):

dvariation =

{
1 − abs(meanprofile − meantest)

max call duration
if tvalue > 1

0 otherwise
(2)

where, max call duration is the maximum call duration among all calls
in W .

– Frequency Deviation Detection (R2)
We have used another rule to detect excessive activity on an account in terms
of frequency of calls and the corresponding call type. An example of high
activity could be excessive number of international calls in a day. To identify
the sudden increase in frequency of calls of a particular call type we build
a profile of subscriber’s calling frequency along with each transaction’s call
type. We monitor behavioral patterns of a mobile phone by comparing its
most recent activity with the history profile of its usage. We compute the
frequency deviation (fd) of a subscriber by the following expression:

fd =

⎧
⎨

⎩
1 − abs(dailyavg − monthlyavg)

max frequency
if dailyavg > monthlyavg

0 otherwise
(3)

where, dailyavg: average frequency of calls of type t per day, monthlyavg :
average frequency of calls of type t per month, max frequency: maximum
frequency of calls of type t per day in a particular month.

Dempster-Shafer Combination Component (DSCC)
The role of the DSCC is to combine evidences from the rules R1 and R2 at
RBDDC in order to compute suspicion score of a call. Dempster-Shafer theory
(D-S theory) is a mathematical theory of evidence based on belief functions and
plausible reasoning. The D-S theory assumes a Universe of Discourse U, also
called Frame of Discernment, which is a set of mutually exclusive and exhaus-
tive possibilities. Wang et al. [17] have presented a distributed intrusion detection
system which uses D-S theory to combine information. They have shown that
multi-sensor data fusion scheme gives much better performance than single sen-
sor. Chen and Venkataramanan [18] have applied Dempster-Shafer approach to
distributed intrusion detection in Ad Hoc networks. They have combined data
from multiple nodes in a distributed intrusion detection system to estimate the
likelihood of intrusion.

We have used the D-S theory in the context of mobile phone fraud detection
as follows. For every incoming call T Mi

j,ρ , the rules R1 and R2 share their inde-
pendent observations about the behavior of the call. These observations, which
serve as evidences, are combined to form a decision about the call’s genuineness.
The main advantage of Dempster-Shafer approach is that no a priori knowledge
is required, making it potentially suitable for anomaly detection of a previously



452 S. Panigrahi et al.

unseen pattern. The Dempster’s rule of combination gives a numerical procedure
for combining observations from the RBDDC to compute suspicion score of a
call. If two basic probability assignments (BPA’s) m1(h) and m2(h) are given,
they combine into a third basic probability assignment m(h) defined by the
following expression:

m(h) = m1(h) ⊕ m2(h) =

∑
x∩y=h m1(x) ∗ m2(y)

1 − ∑
x∩y=h m1(x) ∗ m2(y)

(4)

For the mobile phone fraud detection problem, the frame of discernment U con-
sists of two possible values for any suspected call T Mi

j,ρ which is given as: U =
{fraud, ¬fraud}. For this U, the power set has three possible elements: hypoth-
esis h = {fraud} implying that T Mi

j,ρ is fraudulent; hypothesis h = {¬fraud}
that it isn’t; and universe hypothesis U that T Mi

j,ρ is either fraudulent or isn’t
(suspicious). The basic probability assignments for the two rules R1 and R2 can
now be given as follows:

– BPA for R1: A call that is detected as a breakpoint, have the following basic
probability assignments according to the measure of degree of variation as
given by Eq. (2):

m1(h) = 1 − abs(meanprofile − meantest)
max call duration

m1(h) = 0

m1(U) = 1 −
(

1 − abs(meanprofile − meantest)
max call duration

) (5)

– BPA for R2: A call for which frequency deviation is detected, the following
basic probability assignments is done according to the measure of frequency
deviation as given by Eq. (3):

m2(h) = 1 − abs(dailyavg − monthlyavg)
max frequency

m2(h) = 0

m2(U) = 1 −
(

1 − abs(dailyavg − monthlyavg)
max frequency

) (6)

Here the zero in the basic probability assignment of h means that rule Ri

gives zero degree of belief regarding the trustworthiness of the call T Mi

j,ρ . Hence,
evidences of both R1 and R2 give no support to the belief that call T Mi

j,ρ is genuine.
Following the Dempster’s rule for combination as given by Eq. (4), the combined
belief of R1 and R2 in h denoted by P (h) is calculated as: P (h) = m1(h)⊕m2(h).
Based on the suspicion score P (h), the call on a particular mobile phone can be
detected as normal, abnormal, or suspicious. Since P (h) and P (h) add to unity,
P (h) = 1 − P (h).



Use of Dempster-Shafer Theory and Bayesian Inferencing 453

Call History Database Component (CHDC)
Huge amounts of mobile phone history call data are collected and warehoused in
the CHDC for extracting useful information about subscribers’ usage which facil-
itates the detection of any anomalous activity on the mobile telecommunication
network. The calls that are labeled as suspicious by the DSCC are passed to the
CHDC for strengthening or weakening of the belief based on the similarity with
fraudulent or genuine call history. Once a mobile phone is labeled as suspicious,
further calls on this mobile phone are allowed but each call is checked by the
FDS. This is done to avoid troubling the legitimate subscribers with occasional
high level of activity. Since the expected behavior of a fraudster is to gain as
much as possible in a limited time, any malicious behavior can be detected by
monitoring the Call Gap (ρ) of calls on a mobile phone along with each call’s
Call T ype. For accomplishing this, we have built a ”Subscriber Profile History”
(SPH) for individual subscribers and a ”Generic Fraud History” (GFH) for com-
paring the new calling behavior to profiles of generic fraud. SPH is built from
past calling pattern of individual subscribers and GFH is built from past fraud
data. The call detail summaries are updated in real time so that the fraud can
be detected as soon as it occurs.

In our framework, we define 12 mutually exclusive and exhaustive events by
partitioning Call Gap into 4 time slots and considering each of the three call
types. Each event Dxy depends on the particular time slot (x) in which it occurs,
where x ∈ {1, 2, 3, 4} and the Call T ype (y), where y ∈ {0, 1, 2}. The set of events
is given by: D = {D10, D20, D30, D40, D11, D21, D31, D41, D12, D22, D32, D42}.
The event D10 is defined as the occurrence of a call on the same mobile phone
Mi within 8 hours of the last call (x = 1) of local Call T ype (y = 0) which can
be expressed as:

D10 = True|{∃T Mi

j,ρ ∧ ((0 < ρ ≤ 8) ∧ Call T ype = 0)} (7)

In a similar way, the events D20, D30 and D40 can be expressed as:

D20 = True|{∃T Mi

j,ρ ∧ ((8 < ρ ≤ 16) ∧ Call T ype = 0)} (8)

D30 = True|{∃T Mi

j,ρ ∧ ((16 < ρ ≤ 24) ∧ Call T ype = 0)} (9)

D40 = True|{∃T Mi

j,ρ ∧ ((ρ > 24) ∧ Call T ype = 0)} (10)

The definition of the remaining events follows from the above. It may be
noted that we have empirically chosen the above definitions of D′xys. Other
events could be similarly defined. We next compute the values of P (Dxy|h)
and P (Dxy|h) from the SPH and GFH respectively. P (Dxy|h) measures the
probability of occurrence of Dxy given that the call is originating from a fraudster
and P (Dxy|h) measures the probability of occurrence of Dxy given that the call
is originating from a legitimate subscriber. We have created two look-up tables
FCFT (Fraud Call Frequency Table) and GCFT (Genuine Call Frequency Table)



454 S. Panigrahi et al.

to determine the values of P (Dxy|h) and P (Dxy|h). The likelihood functions
P (Dxy|h) and P (Dxy|h) are computed by the following expressions:

P (Dxy|h) =
No.ofoccurrencesofDxy

No.ofcallsinGFH
(11)

P (Dxy|h) =
No.ofoccurrencesofDxyonMi

No.ofcallsinSPHonMi
(12)

Using Eqs. (11) and (12), P (Dxy) can be computed as follows:

P (Dxy) = P (Dxy|h)P (h) + P (Dxy|h)P (h) (13)

Bayesian Learning Component (BLC)
BLC is used to update the suspicion score obtained from the DSCC in the light of
the new evidence from the CHDC. Whenever new information Dxy is available,
we revise our initial belief using Bayes Rule which can be written as:

P (h|Dxy) =
P (Dxy|h)P (h)

P (Dxy|h)P (h) + P (Dxy|h)P (h)
(14)

The goal of Bayesian Learning is to find the most probable hypothesis hmap

given the training data. This is known as the Maximum A Posteriori Hypothesis
(MAP Hypothesis) given by:

hmap = max
h∈H

P (h|Dxy) (15)

For applying MAP hypothesis, we calculate the posterior probability for hypoth-
esis h : fraud as:

P (fraud|Dxy) =
P (Dxy|fraud)P (fraud)

P (Dxy|fraud)P (fraud) + P (Dxy|¬fraud)P (¬fraud)
(16)

Similarly, the posterior probability for hypothesis h : ¬fraud is calculated as
given by Eq. (17):

P (¬fraud|Dxy) =
P (Dxy|¬fraud)P (¬fraud)

P (Dxy|fraud)P (fraud) + P (Dxy|¬fraud)P (¬fraud)
(17)

Depending on which of the posterior value is greater, the future actions are
decided by the FDS.

3.2 Methodology

The flow of events in our FDS has been depicted by the block diagram in Figure
1. We explain the steady-state operation of the FDS starting at any arbitrary jth

call T Mi

j,ρ on mobile phone Mi. The call is first handled by the RBDDC. Based on



Use of Dempster-Shafer Theory and Bayesian Inferencing 455

the suspicion score Ψ(T Mi

j,ρ ) of this call, it is categorized as genuine, suspicious or
fraudulent. If Ψ(T Mi

j,ρ ) < θLT , the call is considered to be genuine. On the other
hand, if Ψ(T Mi

j,ρ ) > θUT then the call is declared to be fraudulent and manual
confirmation is made with the legitimate subscriber. In case θLT ≤ Ψ(T Mi

j,ρ ) ≤
θUT , then the mobile phone Mi is labeled as suspicious and further calls on this
mobile phone are investigated. The purpose is to lower false positives and at the
same time not to compromise with true positives.

Rule-based
Deviation
Detection

D-S Combination

Bayesian
Learning

Suspicion Level
Analysis

Fraud Detection

D-S Combination

Call History Database

 

 

 

 

SPH GCFT

GFH FCFT

   

 

 

Fig. 1. Block diagram of the FDS

A suspicious behavior on a mobile phone may occur due to some isolated calls
occasionally made by a legitimate subscriber or it could be really committed by
a fraudster. When the (j + 1)th call T Mi

j+1,ρ′ occurs on the same mobile phone
Mi, it is again passed through the RBDDC. In case the call is again found to be
suspicious, the call is further analyzed by the FDS by passing it to the CHDC.
Depending on the call gap ρ′ and the Call T ype, the FDS determines which
of the events Dxy has occurred and retrieves the corresponding P (Dxy|h) and
P (Dxy|h) values from the tables FCFT and GCFT respectively.

The value of P (Dxy) is then calculated using Eq. (13) and the initial belief
about the mobile phone is updated using Eq. (14). After computing the poste-
rior beliefs, if P (h|Dxy) ≥ P (h|Dxy) then we again apply the D-S theory for
combining the posterior belief P (h|Dxy) of the jth call and the P (h) value of
the (j + 1)th call on mobile phone Mi, else we output only P (h) value of the
(j + 1)th call. Based on the overall belief Ψ(T Mi

j+1,ρ′ ) thus obtained, it is checked
to see to which of the three categories viz. genuine, suspicious, or fraudulent the
(j+1)th call belongs and the cycle repeats. The progression of the above method
continues until the suspicion score goes down and finally falls below the lower
threshold θLT or goes up and ultimately exceeds the upper threshold θUT .



456 S. Panigrahi et al.

4 Simulation and Results

We demonstrate the effectiveness and usefulness of our FDS by testing it on
large scale data. Due to unavailability of real life mobile phone call data for
testing, we developed a simulator to model the behavior of genuine subscribers
as well as that of fraudsters. In this section, we first describe the components of
our transaction simulator and then we analyze the performance of the proposed
FDS. The simulator has the following three components as shown in Figure 2.

Fig. 2. Transaction simulator

– MarkovModulatedPoissonProcessModule (MMPPM):AMarkov-modulated
Poisson Process is a Poisson process that has its parameter λ controlled by an
underlying Markovprocess. The proposed MMPPM has two states: good state
G and fraud state F with arrival rates λG and λF , respectively. Transition from
G to F takes place with probability qGF and the transition from F to G takes
place with probability qFG.

– Markov Chain Genuine Gaussian Distribution Module (MCGGDM): This
block consists of a finite Markov chain having three states S0, S1 and S2
corresponding to the three call types local, national and international, re-
spectively. The transition probabilities among the states, represented by qij

where i ∈ {0, 1, 2} and j ∈ {0, 1, 2}, are given in a genuine transition proba-
bility table (GTPT). The Markov chain captures the changes of Call T ype of
genuine calls based on the profile of the subscriber. We have also used Gaus-
sian distribution to generate Call Duration for genuine subscribers since
it is the most commonly observed probability distribution in many natural
processes. It is represented by a Gaussian process GPG having mean μG

and standard deviation σG as shown in Figure 2. The simulator can handle
different subscriber profiles by varying μG and σG.

– Markov Chain Fraud Gaussian Distribution Module (MCFGDM): This com-
ponent is used to generate synthetic Call T ype and Call Duration for fraud-
sters and is similar to MCGGDM. The values associated with the fraud
transition probability table (FTPT) are changed to capture the changing



Use of Dempster-Shafer Theory and Bayesian Inferencing 457

behavior of fraudsters. The values of μF and σF are also varied to capture
different categories of fraudsters during generation of fraudulent calls.

We have used standard metrics to study the performance of the system under
different test cases. True positives (TP) are the fraudulent calls caught by the
system and false positives (FP) are the genuine calls labeled as fraudulent (also
called false alarms). Different possible cases were considered over a large number
of calls. The performance of the FDS is dependent on lower threshold (θLT )
and upper threshold (θUT ). In Table 1(a), we show the variation of TP/FP at
different values of θLT and θUT . It is seen that as θLT increases, TP decreases.
The same trend is true for θUT also. If θUT is set too high, then most of the
frauds will go undetected whereas if θUT is set too low then there will be a large
number of false alarms leading to serious denial-of-service. Similarly, high value
of θLT will pass most of the frauds and on the other hand low value of θLT

will lead to unnecessary investigation of large number of genuine calls. Hence,
selection of θUT and θLT has an associated tradeoff. It is seen that θLT = 0.3
and θUT = 0.7 is a good operating point with sufficiently high TP rate and
reasonably low FP rate.

Table 1. Variation of TP/FP (%) with (a) θLT and θUT (b) λG and λF

θLT

θUT 0.2 0.25 0.3 0.35

0.7 95/10 93/9 93/5 90/5

0.75 94/9 91/7 89/5 88/4

0.8 92/8.5 90/6 86/3.5 84/2

0.85 88/7 87/4 83/3 82/1

λG

λF 0.2 0.25 0.3 0.35

6 92/5 91/7 88/8 84/10

7 93/3 92/5 90/6.5 87/8

8 95/3 92.5/4 91/4.5 89/7

9 96/2 94/3 91/4 90/6

(a) (b)

The arrival rate of calls can also influence the performance of the FDS. In
Table 1(b), we show the variation of TP/FP at different values of λG and λF ,
while keeping θLT = 0.3 and θUT = 0.7. It shows that with increase in λG, TP
decreases and FP increases due to increase in number of genuine calls. As the
Poisson arrival rate in fraud state λF increases, TP increases and FP decreases
due to increase in number of fraudulent calls.

As the state transition rate qGF increases at constant qFG, it increases the
number of fraud calls resulting in increasing TP and decreasing FP as shown in
Figure 3(a). Similarly, by increasing the state transition rate qFG at constant
qGF we obtain an outcome opposite to that of the previous case which is shown
in Figure 3(b).

The variation of TP and FP with mean μG is shown in Figure 4(a). As μG

increases at fixed value of μF , the behavior of the genuine subscriber resembles
that of fraudsters, which causes TP to decrease and FP to increase. Similarly,
increasing mean μF , at fixed value of μG, causes large behavioristic deviation
from normal profile resulting in increasing TP and decreasing FP as shown in
Figure 4(b).



458 S. Panigrahi et al.

0
20
40
60
80

100

0.2 0.4 0.6 0.8qGF

%
 N

u
m

b
e
r 

o
f 

tr
a
n

s
a
c
ti

o
n

s
TP FP

(a)

0
20
40

60
80

100

0.2 0.4 0.6 0.8
qFG

%
 N

u
m

b
e
r 

o
f 

tr
n

a
s
a
c
ti

o
n

s

TP FP

(b)

Fig. 3. Variation of TP/FP with (a) qGF (b) qF G

0
20

40
60

80
100

10 20 30 40

%
 N

u
m

b
e
r 

o
f

 t
ra

n
s
a
c
ti

o
n

s

TP FP

(a)

0
20
40
60
80

100

30 40 50 60

%
 N

u
m

b
e

r 
o

f 
tr

a
n

s
a

c
ti

o
n

s

TP FP

(b)

Fig. 4. Variation of TP/FP with (a) μG (b) μF

5 Conclusions

Mobile phone fraud has become a high priority problem on the agenda of most
mobile network operators since fraud is the significant source of lost revenue
to the mobile telecommunications industry. Furthermore, it lowers subscribers’
confidence in the security of their calls. Efficient fraud detection systems can
save operators from financial loss and also help restore subscribers’ confidence.
In this paper, we have introduced a novel approach for fraud detection in mobile
communication networks by integrating three approaches, namely, rule-based
techniques, Dempster-Shafer theory and Bayesian learning. The Dempster’s rule
is applied to combine multiple evidences from the rule-based component for
computing suspicion score of each call. The suspicion scores are updated by
means of Bayesian learning using history database of both genuine subscribers as
well as fraudsters. In this work, we have built fraud model from profiles of generic
fraud. Any other validated fraud model may also be suitably used. Stochastic
models were used to generate synthetic calls for analyzing the performance of
our proposed FDS. The simulation yielded up to 96% TP and less than 10%
FP. Based on the results, we conclude that fusion of multiple evidences and
learning are the appropriate approaches for addressing this type of real world
problems where the patterns of behavior are complex and there may be little or
no knowledge about the semantics of the application domain.



Use of Dempster-Shafer Theory and Bayesian Inferencing 459

Acknowledgments. This work is partially supported by a research grant from
the Department of Information Technology, Ministry of Communication and
Information Technology, Government of India, under Grant No. 12(34)/04-IRSD
dated 07/12/2004.

References

1. Fraud Analytics for Telecom (February 2007) http://www.fairisaac.com/
Fairisaac/Solutions/Product+Index/Fraud+Analytics +for+Telecom/

2. Barson, P., Field, S., Davey, N., McAskie, G., Frank, R.: The Detection of Fraud
in Mobile Phone Networks, Neural Network World, pp. 477–484 (1996)

3. Hoath, P.: Telecoms Fraud, The Gory Details, Computer Fraud & Security, pp.
10–14 (January 1998)

4. Moreau, Y., Preneel, B., Burge, P., Shawe-Taylor, J., Stoermann, C., Cook, C.:
Novel Techniques for Fraud Detection in Mobile Telecommunication Networks. In:
ACTS Mobile Summit (1997)

5. Moreau, Y., Vandewalle, J.: Detection of Mobile Phone Fraud using Supervised
Neural Networks: A First Prototype. In: Proceedings of the International Confer-
ence on Artificial Neural Networks (1997)

6. Burge, P., Shawe-Taylor, J.: Detecting Cellular Fraud Using Adaptive Prototypes.
In: Proceedings of the Workshop on AI Approaches to Fraud Detection and Risk
Management, pp. 9–13 (1997)

7. Taniguchi, M., Haft, M., Hollmen, J., Tresp, V.: Fraud Detection in Communication
Networks using Neural and Probabilistic methods. In: Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, Pages, pp.
1241–1244 (May 1998)

8. Fawcett, T., Provost, F.: Combining Data Mining and Machine Learning for Ef-
fective User Profiling. In: Proceedings of the Conference on Knowledge Discovery
and Data Mining (1996)

9. Murad, U., Pinkas, G.: Unsupervised Profiling for Identifying Superimposed Fraud.
In: Proceedings of the 3rd European Conference on Principles of Data Mining and
Knowledge Discovery, pp. 251–261 (1999)

10. Rosset, S., Murad, U., Neumann, E., Idan, Y., Pinkas, G.: Discovery of Fraud
Rules for Telecommunications - Challenges and Solutions. In: Proceedings of the
Conference on Knowledge Discovery and Data Mining, pp. 409–413 (1999)

11. Burge, P., Shawe-Taylor, J.: An Unsupervised Neural Network Approach to Pro-
filing the Behavior of Mobile Phone Users for Use in Fraud Detection. Journal of
Parallel and Distributed Computing 915–925 (2001)

12. Grosser, H., Britos, P., Garcia-Martinez, R.: Detecting Fraud in Mobile Telephony
Using Neural Networks. In: Proceedings of the 18th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Sys-
tems, pp. 613–615 (2005)

13. Britos, P., Grosser, H., Sierra, E., Garcia-Martinez, R.: Unusual Changes of Con-
sumption Detection in Mobile Phone Users. Special Issue in Neural Networks and
Associative Memories Research in Computing Science, pp. 195–204 (2006)

14. Kou, Y., Lu, C.T., Sirwonqattana, S., Huanq, Y.P.: Survey of Fraud Detection
Techniques. In: Proceedings of the IEEE International Conference on Networking,
Sensing and Control, pp. 749–754 (2004)

http://www.fairisaac.com/Fairisaac/Solutions/Product+Index/Fraud+Analytics +for+Telecom/
http://www.fairisaac.com/Fairisaac/Solutions/Product+Index/Fraud+Analytics+for+Telecom/


460 S. Panigrahi et al.

15. Bolton, R.J., Hand, D.J.: Statistical Fraud Detection: A Review. Journal of Sta-
tistical Science 235–255 (2002)

16. Bolton, R.J., Hand, D.J.: Unsupervised Profiling Methods for Fraud Detection. In:
Proceedings of the Conference on Credit Scoring and Credit Control (September
2001)

17. Wang, Y., Yang, H., Wang, X., Zhang, R.: Distributed Intrusion Detection System
Based on Data Fusion Method. In: Proceedings of the 5th World Congress on
Intelligent Control and Automation, pp. 4331–4334 (June 2004)

18. Chen, T.M., Venkataramanan, V.: Dempster-Shafer Theory for Intrusion Detection
in Ad Hoc Networks. In: Proceedings of the IEEE Internet Computing, pp. 35–41
(December 2005)



On Proactive Perfectly Secure Message

Transmission

Kannan Srinathan1, Prasad Raghavendra2,
and Pandu Rangan Chandrasekaran3

1 International Institute of Information Technology
Gachibowli, Hyderabad - 500032

srinathan@iiit.ac.in
2 University of Washington

Seattle, WA
prasad@cs.washington.edu

3 Indian Institute of Technology, Madras,
Chennai-600036, India

rangan@cs.iitm.ernet.in

Abstract. This paper studies the interplay of network connectivity and
perfectly secure message transmission under the corrupting influence of
a Byzantine mobile adversary that may move from player to player but
can corrupt no more than t players at any given time. It is known that, in
the stationary adversary model where the adversary corrupts the same
set of t players throughout the protocol, perfectly secure communica-
tion among any pair of players is possible if and only if the underlying
synchronous network is (2t + 1)-connected. Surprisingly, we show that
(2t + 1)-connectivity is sufficient (and of course, necessary) even in the
proactive (mobile) setting where the adversary is allowed to corrupt dif-
ferent sets of t players in different rounds of the protocol. In other words,
adversarial mobility has no effect on the possibility of secure communica-
tion. Towards this, we use the notion of a Communication Graph, which
is useful in modelling scenarios with adversarial mobility. We also show
that protocols for reliable and secure communication proposed in [15] can
be modified to tolerate the mobile adversary. Further these protocols are
round-optimal if the underlying network is a collection of disjoint paths
from the sender S to receiver R.

Keywords: Proactive security, Perfectly Secure Communication.

1 Introduction

Consider two players, a sender S and a receiver R, who want to “talk” to each
other via an underlying communication network that they do not trust. Note
that if S and R are connected directly via a private and authenticated link
(like in the generic solutions for secure multiparty computation [2,4]), secure
communication is trivially guaranteed. However, in reality, it is not economical
to directly connect every two players in the network.

J. Pieprzyk, H. Ghodosi, and E. Dawson (Eds.): ACISP 2007, LNCS 4586, pp. 461–473, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



462 K. Srinathan, P. Raghavendra, and P.R. Chandrasekaran

The sender’s distrust in the underlying communication network is usually
modeled by a virtual entity called the adversary that can corrupt some of the
players (nodes) in the network. There have been a variety of adversary models
used in the literature, each one catering to a different real-life setting. Dolev et al
[7], who introduced and studied the problem of perfectly secure communication
assume that the adversary can corrupt up to any t players in the network and
that the adversary is non-mobile, that is, a player once corrupted remains so
subsequently. More recent efforts using the same (non-mobile) adversarial model
for the problem of perfectly secure communication include [10,9,6].

However, as first noticed in [14], the non-mobile model implicitly assumes that
the number of dishonest players in the network is independent of the protocol’s
execution time. This is usually not true in practice. Furthermore, since a cor-
rupted player could be corrected given sufficient time, [14] proposed the mobile
adversary model wherein the adversary could move around the network whilst
still corrupting up to t players at any given instant. Subsequently, extensive
research efforts on tolerating mobile adversaries have resulted in what is now
well-known as proactive security[12,11,8,1].

1.1 Contributions

We completely characterize the set of (mobile) adversaries that can be tolerated
over a given communication network. Specifically, let G be a communication
network under the influence of a mobile adversary who is capable of corrupting
up to t nodes in any round. We prove that the necessary and sufficient condition
for the existence of a perfectly secure communication protocol between every
pair of players is that the underlying network must be (2t+1)-connected. When
viewed conjointly with the extant results in the literature, we conclude:

Perfectly secure message transmission tolerating a mobile adversary is
possible

if and only if
Perfectly reliable message transmission tolerating a static adversary is

possible.

In other words, neither the additional requirement of secrecy nor the extra
adversarial power of mobility affects the set of tolerable adversaries! We show
that the secure message transmision protocol proposed in [15] can be used to
obtain a protocol tolerating a mobile adversary. Further, if the network is a
collection of disjoint paths from the sender to the receiver, then we show that
our protocol is round-optimal.

2 Model

Consider a synchronous network N (P , E) represented by an undirected graph
G where P = {P1, P2, . . . , PN} ∪ {S,R} denotes the set of players (nodes) in
the network that are connected by 2-way communication links as defined by
E ⊂ P × P . The players S and R do not trust the network connecting them.



On Proactive Perfectly Secure Message Transmission 463

Nevertheless, the sender S wishes to securely send a message to the receiver R
through the network. Security here means that R should receive exactly what
S sent to him while other players should have no information about it, even
if up to t of the players (excluding S and R) collude and behave maliciously.
This problem, known as perfectly secure message transmission (PSMT), was
first proposed and solved by Dolev et al.[7]. In the problem of perfectly reliable
message transmission, the sender S wants to send a message to R such that
receiver receives the message sent irrespective of the actions of the adversary.
However the condition of secrecy of the message is removed.

Any protocol execution is assumed to take place in a sequence of rounds. At
the beginning of each round the players send messages to their neighbors. The
messages sent by a player in round k reaches the neighbor at the beginning of
round k + 1.

The distrust in the network is modeled by a mobile Byzantine adversary A
who can corrupt t players in each round. The adversary can change the set of
corrupted parties once every ρ rounds. In this paper, we assume the worst case
that of ρ = 1,1 which means the adversary can change his set of corrupted parties
every round. More formally before the beginning of a round k, the adversary can
corrupt any subset Pcorrupt consisting of t players. Then the adversary has access
to the messages sent to the players in Pcorrupt in round k − 1 and can alter the
behavior of the players in Pcorrupt arbitrarily in the round k. However note that
on corrupting a player P in a round k the adversary does not obtain information
about the messages to and from the player P in all the previous rounds.

3 Communication Graph

Graphs have been used as a very powerful abstraction of the network by modeling
the physical link between two players as an edge between the corresponding
vertices of the graph. However in this kind of modeling of the network, the
edges of the graph only indicate the link between two spatial locations. It does
not contain any temporal information. Hence we propose a representation that
contains both spatial and temporal information.

Specifically we use a communication graph Gd to study the execution of a
protocol that has run d rounds. In the communication graph Gd, each player P
is represented by a set of nodes {P 0, P 1, P 2 . . . P d}. The node P r corresponds
to the player P at round r. For any two neighboring players P and Q and any
1 ≤ r ≤ d, a message sent by P to Q in round r − 1 is available to Q only at
round r. Hence there is an edge in Gd connecting the node P r−1 to the node Qr

for all 1 ≤ r ≤ d.
Note that the connection graph is a directed graph, because of the directed

nature of time. So the edges between the nodes at consecutive time steps are
always oriented towards increasing time.
1 Without loss of generality, one can assume that ρ is a positive constant greater than

or equal to one since otherwise, there exists another adversary A′ with t′ = t
ρ

that
simulates the same scenario.



464 K. Srinathan, P. Raghavendra, and P.R. Chandrasekaran

Definition 1. Given a graph G = (V, E) and a positive integer d, the Commu-
nication Graph Gd is a directed graph defined as follows

– Nodes of Gd belong to V × {0 . . . d}. Let us denote the node (P, r) ∈ V ×
{0 . . . d} by P r.

– The edge set of Gd is Ed = E1 ∪ E2 where, E1 = {(P r−1
a , P r

b ) |(Pa, Pb) ∈
E and 1 ≤ r ≤ d} and E2 = {(P r−1

a , P r
a )|Pa ∈ V and 1 ≤ r ≤ d}

Notions similar to the Communication graph have appeared in [5,3]
Let Pr denote the set of nodes corresponding to players at round r, Pr =

{P r
a |Pa ∈ V }.
Let Amobile be a threshold mobile adversary acting on a network G that can

corrupt any t players in a single round. Consider an execution Γ of a d-round
protocol on G. Suppose Amobile corrupts a set of nodes Ar = {a1, a2, . . . at} in
round r in G, then the same effect is obtained by corrupting the nodes Ar =
{ar

1, a
r
2, . . . a

r
t } in the communication graph Gd. Hence the effect of Amobile on

execution Γ can be simulated by a static general adversary who corrupts
d−1⋃

r=0
Ar

on Gd. Stating the above result formally we have,

Lemma 1. Mobile threshold adversary Amobile acting on the original network
graph G can be simulated by a static general adversary given by the adversary
structure Ad

static = {A1 ∪A2 ∪A3 . . .∪Ad|Ar ∈ Πt(P r), 1 ≤ r ≤ d} on the Com-
munication graph Gd, where Πt(Pr) denotes the set of all subsets of cardinality
t of the set Pr.

4 Characterization of Proactive Perfectly Reliable
Communication

In this section we characterize graphs on which perfectly reliable communication
is possible tolerating a mobile adversary who can corrupt up to t players in each
round.

Theorem 1. Perfectly reliable communication between any two players in the
network G tolerating a mobile adversary that can corrupt at most t players in
any round, is possible if and only if G is (2t + 1)-connected.

It has been shown in [7], that with a static adversary perfectly secure commu-
nication is possible if and only if the graph G is 2t + 1 connected. Hence clearly
Perfectly reliable message transmission with mobile adversary is possible only if
G is 2t+1-connected. In order to prove the sufficiency of 2t+1 connectivity, we
modify the communication graph for the problem of reliable communication.

Definition 2. Given a graph G with nodes S and R, and a positive integer d
the modified Communication Graph Gd is the graph Gd along with two additional
nodes S, R. S is connected to all Sr,0 ≤ r ≤ d and R is connected to all Rr,
0 ≤ r ≤ d. Further the edges between (Sr−1, Sr) and (Rr−1, Rr) for 1 ≤ r ≤ d
are removed.



On Proactive Perfectly Secure Message Transmission 465

Definition 3. Two paths Γ1 and Γ2 between the nodes S and R in the Modified
Communication graph Gd are said to be securely disjoint if the only common
nodes between the two paths are Sa and Rb for various values of a and b. That
is,

Γ1 ∩ Γ2 ⊂ {S0, S1, S2 . . . Sd} ∪ {R0, R1, R2 . . . Rd}
Definition 4. Given a path Γ = {S, P1, P2 . . . Pm−1, R} from S to R in the
underlying graph G, the space-time path Γ i in graph Gd is defined as

Γ i = {S, Si, P i+1
1 , P i+2

2 , . . . P i+m−1
m−1 , Ri+m, R} 0 ≤ i ≤ d − m

Lemma 2. For any path Γ of length m from S to R in G, the paths Γ i, 0 ≤ i ≤
d − m are pairwise securely disjoint. Further, for any two vertex disjoint paths
Γ1, Γ2 and for any i, j the paths Γ i

1 and Γ j
2 are securely disjoint.

Proof: Suppose for a path Γ and 0 ≤ a < b ≤ d − m, the two paths Γ a and Γ b

are not disjoint. Let Pi be the vertex of Γ corresponding to a common vertex
between Γ a and Γ b. Further let Pi be the kth vertex of Γ . Then by definition,
Γ a passes through P a+k

i and Γ b passes through P b+k
i . Since the paths intersect

at Pi we get a = b. A contradiction.
The other part of the claim is trivially true, since if Γ i

1 and Γ i
2 have a common

vertex P b
a then the vertex Pa is common between Γ1 and Γ2. ��

Lemma 3. Let n be the number of vertices in G. For all d > (2t+1)n there are
at least 2td + 1 securely disjoint paths from S to R in Gd of which the adversary
can corrupt at most td.

Proof: Since the underlying graph G is 2t+1 connected, there are 2t+1 vertex
disjoint paths {Γ1, Γ2, . . . Γ2t+1} in G. Then consider the set of paths {Γ j

i |1 ≤
i ≤ 2t + 1, 0 ≤ j ≤ d − n} in Gd. All these (2t + 1)(d − n) paths in this set
are secure disjoint by claim 2. Further since the adversary can corrupt at most
td nodes in Gd, at most td of these secure disjoint paths can be corrupted. As
d > (2t + 1)n, we have (2t + 1)(d − n) > 2td and thus the result follows. ��
To finish the proof of Theorem 1, observe that from lemma 3 the single phase
protocols for reliable communication proposed in [7] can be executed on Gd for
d > (2t + 1)n. Further since any protocol on Gd can be simulated on G in d
rounds, we obtain d round protocols for reliable communication.

5 Round Optimal Proactive Reliable Communication

We first prove a graph-theoretic result that is useful in the design of round-
optimal protocols tolerating a mobile adversary. In order to state the result we
make the following definition.

Definition 5. The reliable-diameter D of a 2t + 1 connected graph G is the
smallest positive integer such that GD satisfies the condition that removal of any
two sets of vertices in AD

static does not disconnect S and R.



466 K. Srinathan, P. Raghavendra, and P.R. Chandrasekaran

Recall that AD
static denotes the static adversary structure on GD that can sim-

ulate the mobile adversary A. Henceforth we use AD to denote the adversary
AD

static on GD.
From lemma 3 we know that the reliable diameter of a graph G is bounded

by D ≤ (2t + 1)n + 1.

Theorem 2. Given a graph G that is a collection of disjoint paths between S
and R, if D is the reliable-diameter of the graph G, then the graph GD contains
2t(D − 1) + 1 secure disjoint paths from S to R such that the adversary can
corrupt at most t(D − 1) of the paths.

The proof of the theorem is deferred to the appendix A.1.

Theorem 3. Let D be the reliable diameter of a network G, then D is the op-
timal round complexity for a reliable communication protocol on the network G.

Suppose there exists a protocol Π that runs in d < D rounds and realizes
perfectly reliable communication tolerating a mobile adversary. Then consider a
network that is identical to Gd with the static adversary Ad acting on it. The
players in Gd can simulate the execution of protocol Π as follows.

– The player P j
i in Gd emulates the execution of player Pi in round j of the

protocol Π .
– The messages sent by Pi to Pl in round j in protocol Π are sent by P j

i to
P j+1

l .
– In addition to the protocol messages, P j

i sends to P j+1
i the state information

of player Pi at the end of the jth round. This information is necessary for
the player P j+1

i to emulate the behavior of Pi in the j + 1st round.

The protocol Π is a perfectly reliable communication protocol over G and any
behavior of the static adversary Ad can be simulated by the mobile adversary on
G. Therefore the above emulation is a perfectly reliable communication protocol
on Gd. But since d < D there are two sets in Ad the removal of which disconnects
S and R. This is a contradiction to the well known theorem [13] which states
that reliable communication on a graph is possible if and only if the network is
not disconnected by the removal of any two adversarial sets.

By definition of reliable diameter, the adversary structure AD satisfies the
condition that the removal of any two adversarial sets does not disconnect GD.
Thus the protocol for reliable communication in [13] can be executed on GD.
Further since any protocol on GD can be simulated on the real network in D
rounds, we obtain a protocol on G that runs in D rounds. Although this protocol
is round-optimal, it could have exponential communication complexity in the
worst case.

In order to obtain an efficient protocol, we use the result of theorem 2. Given
a graph G that is 2t+1 connected, there are 2t+1 disjoint paths from S to R in
G. Let H be the subgraph of G consisting of only the 2t+1 disjoint paths from S
to R. On applying theorem 2 on H , we obtain D such that there are 2t(D−1)+1



On Proactive Perfectly Secure Message Transmission 467

disjoint paths in HD of which the adversary can corrupt at most t(D − 1). Let
us denote the 2t(D − 1) + 1 paths by Γ1, Γ2, . . . , Γ2q+1, where q = t(D − 1). We
describe the protocol on the graph HD and show how it can be executed on the
real network G.

Protocol REL: Round-Optimal Reliable Message transmission of m .

– The sender S sends the message m along all the paths Γi, 1 ≤ i ≤ 2q+1.
– All players P b

a along a path Γi just forward the message to the next player
along Γi.

– The receiver on receiving the values along all the paths and takes the
majority value as the message m.

In order to emulate the above protocol on the graph G, if a player P b
1 and

P b+1
2 are consecutive nodes in HD along some path Γi, then P1 on receiving the

message m along a path Γi at the beginning of round b sends it to the player P2
at the end of round b.

The protocol has a communication complexity of O((2tD2|m|) bits and this is
polynomial in n since D ≤ (2t+1)n+1. Further if the underlying graph G itself
is a collection of disjoint paths from S to R, then the protocol is round-optimal.

6 An Efficient Secure Protocol

Let H be the subgraph of the network G consisting of 2t + 1 disjoint paths from
S to R. On applying theorem 2, we know that there exists a D such that in the
modified Communication graph HD, there are at least 2t(D−1)+1 vertex disjoint
paths from the sender to the receiver (and by symmetry, from the receiver to the
sender) of which the adversary AD can corrupt at most t(D−1) paths. However
note that it is not possible to abstract out these paths as wires between S and
R since unlike wires each of these paths can be used at most once. Therefore
most secure communication protocols tolerating a static adversary, cannot be
modified to protocols tolerating a mobile adversary.

In this section, we show that the protocol for perfectly secure message trans-
mission proposed in [15] can be modified to tolerate mobile adversaries. The
protocol runs in just two phases, and since no single phase protocol can exist
[7], the modified protocol is phase optimal.

We now present the 2-phase protocol. We show the protocol execution on H2D.
This can be easily converted to a protocol on G in a straightforward manner as
was done for the case of reliable communication.

In a single round, a player can send messages to his neighbors and in one
phase that consists of D rounds the sender S can send a message to the receiver
R or vice-versa.

Let us assume that the message m is an element of a sufficiently large field
F. In the graph H2D, the first phase is executed in the first D rounds and the
second phase using the next D rounds. We refer to the nodes corresponding to



468 K. Srinathan, P. Raghavendra, and P.R. Chandrasekaran

the first D rounds as the first half, and the nodes corresponding to the last D
rounds as the second half. For purposes of presentation let q = t(D − 1). Let
Γ

(1)
i , 1 ≤ i ≤ 2q + 1 be 2q + 1 disjoint paths from R to S in the first half. Let

Γ
(2)
i , 1 ≤ i ≤ 2q+1 be 2q+1 disjoint paths from S to R in the second half of H2D.

Code for the Receiver: Phase I

1. The receiver selects at random 2q + 1 polynomials pi, 1 ≤ i ≤ 2q + 1 over a finite
field F, each of degree q. He sends through each of the 2q+1 securely disjoint paths,
say Γ

(1)
i , 1 ≤ i ≤ 2q + 1, the polynomial pi and the set {rij = pj(i)}1≤j≤2q+1.

Code for the Sender: Phase II
The sender receives a polynomial p′

i and 2q + 1 values r′
ij along each path Γ

(1)
i .

1. The sender creates the contradiction graph on 2q +1 nodes as follows: he adds the
edge (i, j) if p′

j(i) �= r′
ij or p′

i(j) �= r′
ji.

2. The sender creates a 2q + 1 degree polynomial Q(·) with the constant term as his
message m and the coefficient of xi being p′

i(0).

3. The sender perfectly reliably sends using Γ
(2)
i the following to the receiver using

the reliable communication protocol discussed earlier on the second half of H2D:
(a) For each edge in the contradiction graph, the values (p′

j(i), r
′
ij , p

′
i(j),r

′
ji).

(b) For a = 1 to q + 1, the value q(a).

Message Recovery by the Receiver
The receiver finds all the faults that occurred in Phase I using the values p′

j(i), r
′
ij , p

′
i(j)

and r′
ji received from the sender and the values pj(i), pi(j). There can be at most

q faults in Phase I. From the q + 1 equations, he can solve for these ≤ q possibly
modified coefficients along with the message m.

Lemma 4. The receiver R can recover the message sent by sender S.

Proof: Firstly note that the receiver R can detect all corruptions that occurred
during Phase I. Each of the polynomials pi are of degree q. If the adversary
changes the polynomial pi to p′i, then for at least one of the honest wires Γ

(1)
j

there will be a contradiction p′i(j) 	= rij . Thus the sender will broadcast the 4-
tuple (p′j(i), r

′
ij , p

′
i(j), r

′
ji) and the receiver will detect that pi has been corrupted

in Phase I. The receiver can thus determine the set of paths Γ
(1)
i for which

pi = p′i. As there are at least q + 1 such paths the receiver knows at least q + 1
coefficients of the polynomial Q. Thus from the q + 1 values along polynomial
Q, R can solve for the modified coefficients and also the message m. ��

Theorem 4. The adversary gains no information about the message.

Proof: First we note that at the end of the first phase, the adversary has no
information about pi(0) for each honest path Γ

(1)
i . This is because pi is a random

polynomial of degree q and the adversary has seen only q points on it (one
corresponding to each faulty wire). Furthermore, the adversary gains no new
information in Phase II. This can be seen as follows: phase II involves broadcast



On Proactive Perfectly Secure Message Transmission 469

of the 4-tuple (p′j(i), r
′
ij , p

′
i(j), r

′
ji). Since either path Γ

(1)
i or path Γ

(1)
j is faulty,

this information is already known to the adversary. Further the adversary knows
at most q coefficients of the polynomial Q, and hence obtains no information
about the message. ��

7 Conclusion

We have shown that adversarial mobility does not affect the feasibility of per-
fectly secure communication. However, tolerating a mobile adversary does not
seem to be free of cost. Though we have presented efficient protocols for reliable
and secure communication for every tolerable adversary, we are able to show that
the round optimal protocols are efficient only for a special class of networks. It is
an interesting open problem to design (or prove the non-existence of) an efficient
round optimal protocol for secure communication for all possible networks.

References

1. Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission in asyn-
chronous networks. In: PODC ’03: Proceedings of the twenty-second annual sym-
posium on Principles of distributed computing, pp. 223–232. ACM Press, New York
(2003)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
cryptographic Fault-tolerant Distributed Computation. In: Proceedings of the 20th
Symposium on Theory of Computing (STOC), pp. 1–10. ACM Press, New York
(1988)

3. Brandes, U., Corman, S.R.: Visual unrolling of network evolution and the analy-
sis of dynamic discourse. In: INFOVIS ’02: Proceedings of the IEEE Symposium
on Information Visualization (InfoVis’02), Washington, DC, USA, p. 145. IEEE
Computer Society, Los Alamitos (2002)

4. Chaum, D., Crepeau, C., Damgard, I.: Multi-party Unconditionally Secure Proto-
cols. In: Proceedings of 20th Symposium on Theory of Computing (STOC), pp.
11–19. ACM Press, New York (1988)

5. Collberg, C., Kobourov, S., Nagra, J., Pitts, J., Wampler, K.: A system for graph-
based visualization of the evolution of software. In: SoftVis ’03: Proceedings of the
2003 ACM symposium on Software visualization, p. 77. ACM Press, New York
(2003)

6. Desmedt, Y., Wang, Y.: Perfectly Secure Message Transmission Revisited. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer,
Heidelberg (2002)

7. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
Journal of the Association for Computing Machinery (JACM) 40(1), 17–47 (1993)

8. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Proactive RSA. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–452. Springer, Heidelberg
(1997)

9. Franklin, M., Wright, R.N.: Secure Communication in Minimal Connectivity Mod-
els. Journal of Cryptology 13(1), 9–30 (2000)

10. Franklin, M., Yung, M.: Secure Hypergraphs: Privacy from Partial Broadcast. In:
Proceedings of 27th Symposium on Theory of Computing (STOC), pp. 36–44.
ACM Press, New York (1995)



470 K. Srinathan, P. Raghavendra, and P.R. Chandrasekaran

11. Herzberg, A., Jakobson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Pub-
lic Key and Signature Systems. In: Proceedings of 4th Conference on Computer
and Communications Security, Zurich, Switzerland, April 1997, pp. 100–110. ACM
Press, New York (1997)

12. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive Secret Sharing, or:
How to Cope with Perpetual Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

13. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Pandu Rangan, C.: On perfectly
secure communication over arbitrary networks. In: Proceedings of the 21st Sympo-
sium on Principles of Distributed Computing (PODC), Monterey, California, USA,
July 2002, pp. 193–202. ACM Press, New York (2002)

14. Ostrovsky, R., Yung, M.: How to Withstand Mobile Virus Attacks. In: Proceedings
of the 10th Symposium on Principles of Distributed Computing (PODC), pp. 51–
61. ACM Press, New York (1991)

15. Sayeed, H.M., Abu-Amara, H.: Efficient perfectly secure message transmission in
synchronous networks. Inf. Comput. 126(1), 53–61 (1996)

A Proof of Theorem 2

A.1 Results on Paths

We need some definitions and results on paths in the proof of theorem 2. We
derive those results in this section.

Let Γ be a path of length L from S to R in G. Let F denote the graph consist-
ing of just the path Γ from S to R. Let Fd denote the modified communication
graph for F for d rounds.

For each of the Sr, 0 ≤ r ≤ d there is a copy of the path Γ starting at Sr. If
r is less than d − L then the copy of Γ starting at Sr is completely contained in
Fd else it is truncated. Let us call these paths as straight paths. In fact for every
node v in Fd there is a unique straight path that passes through v. Let T (v) for
a vertex v in Fd denote the round to which v corresponds.

Definition 6. Let k < d be an integer, then a k-straight cut is a set of vertices
C of Fd that satisfy the following properties

– For each Γ (Sr) such that 0 ≤ r < k and Γ (Sr) is not truncated in Fd, there
is exactly one vertex Cr of C present on Γ (Sr). The path Γ (Sr) is said to
be cut at Cr.

– Paths are cut in increasing order of time, more formally T (Cr) ≥ T (Cr−1),
1 ≤ r < k.

– All vertices in C are contained in the first k rounds of Fd,i.e T (v) ≤ k, ∀v ∈
C.

Definition 7. Let us denote the straight path passing through a vertex v as Γ (v).
Further given a k-straight cut C, let TC(v) denote the round corresponding to
the vertex at which Γ (v) is cut by C. Formally TC(v) = T (Cr) where Cr is the
vertex of Γ (v) present in C.



On Proactive Perfectly Secure Message Transmission 471

Definition 8. For a straight cut C, a path in Fd that does not contain any
vertex of C is said to be C-disjoint.

Lemma 5. If C is a k-straight cut, and v is a vertex such that T (v) ≤ k and
there is a C-disjoint path Γ ′ from Sr, 0 ≤ r < k to v then TC(v) > T (v).

Proof: We prove by induction on the length of the path |Γ ′|. For a path Γ ′ of
length 0, the vertex v is Sr for some 0 ≤ r < k. Since the path Γ (Sr) starts
at Sr and C does not contain Sr, it immediately follows that TC(Sr) > T (Sr).
Now suppose the result is true for all |Γ ′| = l.

Let v be a vertex such that Γ ′ is a path of length |Γ ′| = l+1. Let u denote the
vertex just before v on Γ ′. By induction hypothesis we know that TC(u) > T (u).
Further we know T (v) = T (u) + 1 since there is an edge from u to v. Now there
are two cases

– Case 1: Both u and v correspond to the same node in F but at consecutive
rounds. Suppose u lies on Γ (Sr), then v lies on Γ (Sr+1). Thus from the
definition of k-straight cut, we know TC(v) ≥ TC(u). But as TC(u) > T (u)
we get TC(v) ≥ T (u) + 1 = T (v). Further since Γ ′ is C-disjoint v does not
lie on C, i.e TC(v) is not equal to T (v). Hence TC(v) > T (v).

– Case 2: u and v correspond to consecutive vertices on the path Γ in F .
In this case, u and v lie on the same straight path, i.e Γ (u) = Γ (v). From
TC(u) > T (u) we know that Γ (u) is cut after u. Further since Γ ′ is C-
disjoint neither u nor v belongs to C. Hence Γ (v) is cut after v which implies
TC(v) > T (v). ��

Lemma 6. If C is a k-straight cut, then in Fd, there is no C-disjoint path from
any of the vertices in {Sr|0 ≤ r ≤ k − 1} to any of the vertices {Rj |0 ≤ j ≤ d}.
Proof: Suppose there existed a C-disjoint path from Sr, 0 ≤ r ≤ k − 1 to
Rj , 0 ≤ j ≤ k then by claim 5 we have that TC(Rj) > j. This is a contradiction
since the path Γ (Rj) terminates at Rj , and there cannot be a vertex on Γ (Rj)
after Rj .

Suppose there is a C-disjoint path Γ ′ from Sr, r < k to vertex Rj , j > k then
there will exist a vertex u on Γ ′ at round k. This because the path Γ ′ starts before
round k and ends after round k. By claim 5 we know that TC(u) > T (u) = k.
This implies that the path Γ (u) is not cut by C before round k. But this is a
contradiction since C is a k-straight cut. ��

A.2 Main Proof

Theorem 5. Given a graph G that is a collection of disjoint paths between S
and R, if D is the reliable-diameter of the graph G, then the graph GD contains
2t(D − 1) + 1 secure disjoint paths from S to R such that the adversary can
corrupt at most t(D − 1) of the paths.

Proof : By definition of reliable diameter we know that the reliable diameter D
satisfies the condition that the removal of union of any two sets in AD does not



472 K. Srinathan, P. Raghavendra, and P.R. Chandrasekaran

disconnect S and R in GD. Further any subset V ′ of nodes of GD that contains
at most 2t nodes corresponding to each round, can be expressed as the union
of two sets in AD. We shall show that if GD contains less than 2t(D − 1) + 1
disjoint paths then there exists a subset V ′ of vertices, such that it contains at
most 2t vertices at any round, and disconnects S and R. A contradiction.

In order to prove the existence of such a V ′, we give an algorithm that produces
V ′ from GD. But before that we need to define some notation.

Let {Γ1, Γ2, . . . Γk} be the disjoint paths between S and R in G. Thus k ≥ 2t+1
and the graph G is the union of all the {Γi, 1 ≤ i ≤ k}. Let li be the length of
the path Γi. Let Πi denote the following set of paths in GD,

Πi = {Γ j
i |0 ≤ j ≤ D − li}

Further let Π denote the union of Πi for all 1 ≤ i ≤ k. Since all the Γi are
disjoint in G, from lemma 2 we know that all paths in Π are secure disjoint.
Let Fi denote the subgraph of G containing the path Γi, 1 ≤ i ≤ k. Further FD

i

denote the modified communication graph of D rounds for the graph Fi. It is
clear that the graph GD can be expressed as GD =

⋃k
i=1 FD.

Definition 9. A path Γ j
i in Π is said to be active in round r if and only if

j < r < j + li i.e there exists a node other than S and R through which Γ j
i

passes at round r.

Let Π ′ be a sorted list of paths in Π in increasing order of round at which they
reach R, or in other words in increasing order of the round at which the paths
terminate. In the following algorithm Π ′ at any iteration contains all the paths
Π ′ that are not yet cut in the previous rounds and C contains the set of cut
vertices chosen till that instant.

Greedy Algorithm-GA

For each round r from 1 to D do

– If there is a path in Π ′ that terminates at Rr then terminate.
– If there are ≥ 2t active paths in Π ′ remove the first 2t active paths from Π ′, and

cut all those paths in the current round. Update the cut-set C.
– If there are less than 2t active paths in Π ′, then remove all the active paths from

Π ′ and cut all of them in the current round. Update the cut-set C.

Lemma 7. For any two paths Γ a
i and Γ b

i in Π with a < b the algorithm cuts
Γ a

i before Γ b
i .

Proof : The result is trivially true since the paths are cut in the order in which
they are found in the list Γ ′ which is sorted according to termination times of
paths. ��
Lemma 8. The algorithm GA cuts exactly 2t paths at each round until it
terminates.



On Proactive Perfectly Secure Message Transmission 473

Proof : Suppose the algorithm GA cuts less than 2t paths in a round r, then
it implies that the number active paths in Π ′ at round r was less than 2t. Since
the algorithm has not terminated till round r, it implies that there has not been
a path that started earlier than round r and has terminated without being cut
by the algorithm. As there are less than 2t active paths at round r, it implies
that the algorithm cuts all the paths that started before round r by the end of
round r. So consider any FD

i for some 1 ≤ i ≤ k. Consider the set of vertices
C′ = C ∩ FD

i . For each Γ a
i 0 ≤ a ≤ r − 1 there is exactly one vertex of Γ a

i in
C′. This along with lemma 7 imply that C′ is a r-straight cut for FD

i . Hence by
lemma 6 there is no C′ disjoint path from an Sa, a < r to any Rb, 0 ≤ b ≤ D in
FD

i .
Thus on removal of set C, there is no path from Sa, a < r to Rb, 0 ≤ b ≤ D.

In other words, removal of vertices of C completely disconnects the sender’s
action corresponding to first r − 1 rounds. Also note that C does not contain
any vertex of a round greater than r. But if such a C existed, then for any integer
m, in Gmr by repeatedly removing C we can disconnect all sender vertices from
receiver vertices. A contradiction to the fact that D is finite. ��
Lemma 9. The algorithm GA does not terminate before round D − 1

Proof: If the algorithm terminated at a round r < D − 1 then it means that
there exists a path Γ in GD which terminated at the rth round without being cut
before. From lemma 8 we know that C is of size 2t(r − 1) at this round. Hence
the algorithm has cut 2t(r − 1) paths all of which are disjoint from each other.
Further since Γ terminates by round r and the algorithm cuts paths in increasing
order of termination time, all the paths that are cut terminate before round r.
So including Γ and all the paths that were cut, there are at least 2t(r − 1) + 1
disjoint paths that terminate in the first r rounds. Note that the adversary can
corrupt at most t(r−1) of these paths. This implies that Gr satisfies the property
that the union of any two sets in the adversary does not disconnect S and R. A
contradiction to minimality of D. ��
Proof of theorem 2: If all paths in Π are cut by the end of the algorithm,
then following the same argument as in proof of lemma 8 we can show that C is
a D-straight cut for each FD

i 1 ≤ i ≤ k. Thus the removal of C would disconnect
all the sender vertices Sa from the receiver vertices Rb. Note that C contains
at most 2t vertices at any round, and hence can be expressed as the union of
two sets of the adversary A. A contradiction to the fact that D is the reliable
diameter. Hence there exists a path in Π that is not cut by C. From lemma 8
we know that the algorithm cut exactly 2t paths in Π in every round. So clearly
there are at least 2t(D − 1) + 1 paths in Π . ��



Author Index

Al-Hinai, Sultan Zayid 11
Aono, Hiroshi 259
Araki, Toshinori 122, 133
Au, Man Ho 431
Aumasson, Jean-Philippe 184

Babbage, Steve 1
Baltatu, Madalina 107
Bao, Feng 171
Bhattacharya, Debojyoti 29
Billet, Olivier 82
Birkett, James 274
Brands, Stefan 400
Bringer, Julien 96

Chabanne, Hervé 96
Chang, Donghoon 59
Chu, Cheng-Kang 323
Cid, Carlos 1

Dahmen, Erik 245
Damg̊ard, Ivan 416
Dawson, Ed 11
De Decker, Bart 400
Demuynck, Liesje 400
Deng, Robert H. 171
Dent, Alexander W. 274
Ding, Jintai 158

Finiasz, Matthieu 184

Geisler, Martin 416
Golić, Jovan Dj. 107

Hayashi, Ryotaro 200
Henricksen, Matt 11
Hong, Seokhie 59, 143
Hongo, Sadayuki 259
Hu, Lei 158
Huang, Qiong 215
Huang, Xinyi 308

Ishihara, Takeru 259
Iwasaki, Terutoshi 45
Izabachène, Malika 96

Jeong, Kitae 143
Ji, Wen 158

Krøigaard, Mikkel 416
Kundu, Amlan 446
Kunihiro, Noboru 45
Kurokawa, Takashi 370

Lamberger, Mario 68
Lee, Changhoon 143
Lee, Sangjin 59
Lim, Jongin 143
Liu, Fen 158
Lv, Shuwang 158

Majumdar, A.K. 446
Meier, Willi 184
Mu, Yi 308, 431
Mukhopadhyay, Debdeep 29

Naito, Yusuke 45
Nakazato, Junji 370
Neven, Gregory 274

Obana, Satoshi 122
Ohta, Kazuo 45
Okeya, Katsuyuki 230, 245

Panigrahi, Suvasini 446
Pasini, Sylvain 338
Peyrin, Thomas 82
Pointcheval, David 96
Pramstaller, Norbert 1, 68
Pyshkin, Andrei 158

Raddum, H̊avard 1
Raghavendra, Prasad 461
Rangan Chandrasekaran, Pandu 461
Reyhanitabar, Mohammad Reza 385
Rijmen, Vincent 68
Robshaw, Matt J.B. 82
RoyChowdhury, D. 29

Safavi-Naini, Reihaneh 385
Saha, Dhiman 29
Sasaki, Yu 45
Schepers, Daniel 245
Schuldt, Jacob C.N. 274
Shikata, Junji 259



476 Author Index

Shimoyama, Takeshi 45
Simpson, Leonie 11
Srinathan, Kannan 461

Sung, Jaechul 59, 143
Sural, Shamik 446
Susilo, Willy 308, 431

Tanaka, Keisuke 200
Tang, Qiang 96
Tartary, Christophe 293
Tzeng, Wen-Guey 323

Vaudenay, Serge 184, 338
Vuillaume, Camille 230

Wang, Huaxiong 293
Wang, Shuhong 385
Weinmann, Ralf-Philipp 158
Wong, Duncan S. 215, 308
Wu, Wei 308
Wu, Yongdong 171

Yajima, Jun 45
Yamamura, Akihiro 370
Yasuda, Kan 355
Yoshino, Masayuki 230
Yung, Moti 59

Zimmer, Sébastien 96


	Title
	Preface
	Organization
	Table of Contents
	An Analysis of the Hermes8 Stream Ciphers
	Introduction
	Description of Hermes8F
	Alternative Description of Hermes8F

	Cryptanalysis of Hermes8F
	Analysis of Hermes8

	Equivalent Keys in Hermes8
	Algebraic Structure
	Algebraic Structure of a Variant of Hermes8

	Conclusion

	On the Security of the LILI Family of Stream Ciphers Against Algebraic Attacks
	Introduction
	Description
	LILI-128 Keystream Generator
	LILI-II Keystream Generator

	Algebraic Analysis of the LILI Family of Stream Ciphers
	Finding Low Degree Multiples of f_d
	Attack 1 : Guessing the Controlling Register
	Attack 2 : Keystream Decimation
	Fast Algebraic Attacks

	Algebraic Analysis of the LILI-II Stream Cipher
	Algebraic Representation for the LILI Family of Stream Ciphers
	Algebraic Attacks on LILI-II
	Fast Algebraic Attacks on LILI-II

	Initialization and Algebraic Attacks 
	Direct Recovery of Key Bits
	Recovering the Key Bits Given the Internal State Bits

	Conclusion
	Algebraic Normal Form of LILI-II Boolean Function

	Strengthening NLS Against Crossword Puzzle Attack
	Introduction
	Preliminaries
	Proposed Boolean Operator: Slash
	Performance of {\em Slash} Against Linear Cryptanalysis
	Brief Description of NLS Stream Cipher
	Suggested Modification

	Brief Description of Crossword Puzzle (CP) Attack
	Analysis of NFSR and NLF
	Linear Approximation of $\alpha_{t,(0)}$  and NFSR
	Linear Approximation of Modular Addition [3]
	Linear Approximation of Modular Slash
	Linear Approximation for NLF

	Complexity Comparison of CP Attack on the Original and Modified NLS
	Case for $Konst = 0$
	Case for $Konst \neq 0$
	Multiple Distinguisher

	Hardware and Time Complexity
	Conclusions

	A New Strategy for Finding a Differential Path of SHA-1
	Introduction
	Description of SHA-[1][1]
	Notations

	The Outline of Wang's Attack
	Proposed Strategy for Finding Differential Path
	Strategy
	Proposed Algorithm

	Implementation and Experiment
	Implementation of Sub-Searches
	Experiment

	Conclusion

	Preimage Attack on the Parallel FFT-Hashing Function
	Introduction
	The Parallel FFT-Hashing Function
	Attack Strategy and Several Properties
	Preimage Attack on the Parallel FFT-Hashing Function
	Conclusion

	Second Preimages for Iterated Hash Functions and Their Implications on MACs
	Introduction
	The Notion of $b$-Block Bypass
	The Double Block-Length Hash Proposal DBLH
	Block Ciphers Following the FX Construction
	DBLH with FX
	Second Preimages for DX Based on a $b$-Block Bypass

	The Hash Function Design Strategy SMASH
	Implications of a $b$-Block Bypass for NMAC and HMAC
	Conclusion
	Proof of Theorem 2
	Proof of Theorem 3

	On Building Hash Functions from Multivariate Quadratic Equations
	Introduction
	Hash Functions and Quadratic Equations
	About Collision Resistance

	Construction of $MQ-HASH$
	Preliminaries
	The Compression Function of $MQ-HASH$

	The Security of $MQ-HASH$
	Preliminaries to the Study of Pre-image Resistance
	Pre-image Resistance of $MQ-HASH$
	Collision and Second Pre-image Resistance of $MQ-HASH$

	Establishing Parameters for $MQ-HASH$
	On the Injectivity of $f$
	On the Hardness of Inverting $f$
	Performance Considerations
	Deploying Random Systems
	Alternative Approaches

	Conclusions

	An Application of the Goldwasser-Micali Cryptosystem to Biometric Authentication
	Introduction
	Related Works
	Our Contributions
	Organization of This Work

	A New Security Model
	A New Biometric-Based Authentication Protocol
	Review of the Goldwasser-Micali Scheme
	Enrollment Phase
	Verification Phase

	Security Analysis of the Protocol
	Fulfillment of Our Requirements
	Advantages of the Protocol

	Conclusion

	Soft Generation of Secure Biometric Keys
	Introduction
	Code-Offset Construction for Hamming Metric
	Code-Offset Construction for Euclidean Metric
	Security Aspects
	Security of Euclidean Metric Construction
	Code-Offset Euclidean Metric Construction with Wrap-Round Arithmetic
	Soft Two-Level Construction
	Conclusions

	Flaws in Some Secret Sharing Schemes Against Cheating
	Introduction
	Preliminaries
	Secret Sharing Schemes
	Secret Sharing Schemes Secure Against Cheating

	An Attack Against a Scheme in [7]
	An Attack Against a Scheme in [10]
	Fixing the Flaw in [10]
	Conclusion

	Efficient $(k, n)$ Threshold Secret SharingSchemes Secure Against Cheating from n − 1Cheaters
	Introduction
	Preliminaries
	$(k,n)$ Threshold Scheme
	Secret Sharing Schemes Secure Against Cheating
	Previous Work

	New Model of Secret Sharing Schemes Secure Against Cheating
	The Tompa and Woll Scheme [11]

	Proposed Scheme
	Validity Check of Reconstruction Result
	Modified Proposed Scheme

	Conclusion

	Related-Key Amplified Boomerang Attacks on the Full-Round Eagle-64 and Eagle-128
	Introduction
	Preliminaries
	DDO-Boxes
	The Related-Key Amplified Boomerang Attack

	Eagle-64 and Eagle-128
	Description of Eagle-64
	Description of Eagle-128
	Properties of Eagle-64 and Eagle-128

	Related-Key Amplified Boomerang Attack on Eagle-64
	A Full-Round Related-Key Amplified Boomerang Distinguisher of Eagle-64
	Key Recovery Attack on the Full-Round Eagle-64

	Related-Key Amplified Boomerang Attack on Eagle-128
	A Full-Round Related-Key Amplified Boomerang Distinguisher of Eagle-128
	Key Recovery Attack on the Full-Round Eagle-128

	Conclusion
	DDO-boxes

	Analysis of the SMS4 Block Cipher
	Introduction
	Notation

	Description of the SMS4 Block Cipher
	Algebraic Structure of SMS4
	The SMS4 S-Box
	Embedding SMS4

	A Reduced-Round Attack Using Integrals
	Weak Keys for Modified Round Key Constants
	Conclusions

	Forgery Attack to an Asymptotically OptimalTraitor Tracing Scheme
	Introduction
	Our Contribution

	Preliminaries
	Marking Assumption
	Feasible Set
	Collusion-Secure Code
	Traitor Tracing System

	The Upgraded CPP Scheme
	Two-User System
	Multi-user System
	Multi-user Traitor Tracing

	Forgery Attack and Countermeasure
	Forging Decryption Key
	Evading Tracing
	Countermeasure

	Discussion
	Structured Messages
	Stateless Assumption
	Codeword Length

	Conclusion

	TCHo: A Hardware-Oriented Trapdoor Cipher
	Introduction
	Preliminaries
	Notations
	Computational Problem

	Description of the TCHo Scheme
	Presentation
	Reliability
	Selecting the Parameters

	Security
	Construction of an IND-CCA Secure Scheme
	Implementation of TCHo
	Choice of Parameters
	Chosen Algorithms
	Software Implementation Results
	Hardware Implementation

	Comparison with Other Cryptosystems
	Conclusion
	On the Choice of the Code

	Anonymity on Paillier’s Trap-Door Permutation
	Introduction
	Background
	Our Contribution

	Preliminaries
	A Family of Paillier's Trap-Door Permutations and That with a Common Domain
	Paillier's Bijective Functions
	A Family of Paillier's Trap-Door Permutations
	A Family of Paillier's Trap-Door Permutations with a Common Domain

	Applications to Public-Key Encryption with Anonymity
	Anonymity for Public-Key Encryption
	Our Proposed Schemes
	Security


	Generic Certificateless Key Encapsulation Mechanism
	Introduction
	Definition and Adversarial Model
	Certificateless KEM
	Message Authentication Code
	Key Derivation Function (KDF)
	A Generic Construction of CL-KEM

	Hybrid Certificateless Encryption
	Our Certificateless Tag-KEM (CL-TKEM)
	Our Hybrid Certificateless Encryption

	Conclusion

	Double-Size Bipartite Modular Multiplication
	Introduction
	Modular Multiplications
	Bipartite Modular Multiplication

	Double-Size Techniques
	Previous Double-Size Modular Multiplications
	Double-Size Bipartite Modular Multiplication

	New Double-Size Techniques
	Bipartite Modular Multiplication Units
	Quotients of Bipartite Modular Multiplication
	$2n$-Bit Integer Representations
	Double-Size Bipartite Modular Multiplications

	How to Compute Quotients of Bipartite Multiplications
	Software Approach
	Hardware Approach

	Remarkable Features
	Conclusion
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2

	Affine Precomputation with Sole Inversion in Elliptic Curve Cryptography
	Introduction
	Scalar Multiplications in Elliptic Curve Cryptography
	Precomputing the Required Points
	Proposed Scheme
	Analysis
	Conclusion
	Pseudocode of the Proposed Scheme
	Proof of Theorem 1

	Construction of Threshold (Hybrid) Encryption in the Random Oracle Model: How to Construct Secure Threshold Tag-KEM from Weakly Secure Threshold KEM
	Introduction
	Background
	Related Works and Motivation
	Our Contributions

	Preliminaries
	Threshold Encryption
	Threshold (Tag-)KEM
	Signature Scheme with Tight Security Reduction

	Construction of Secure Threshold Tag-KEM
	Instantiations

	Efficient Chosen-Ciphertext Secure Identity-Based Encryption with Wildcards
	Introduction
	Definitions
	Notation
	Syntax of WIBE Schemes, WIB-KEMs and DEMs
	Security Notions

	Security of the Hybrid Construction
	A Generic Construction in the Random Oracle Model
	A Direct Construction without Random Oracles
	The Kiltz-Galindo HIB-KEM
	The Kiltz-Galindo WIB-KEM

	Conclusion
	Proof of security for Kiltz-Galindo WIB-KEM

	Combining Prediction Hashing and MDS Codes for Efficient Multicast Stream Authentication
	Introduction
	Preliminaries
	Our Construction
	Security and Recovery Analysis
	Comparison of Authentication Protocols
	Conclusion

	Certificateless Signature Revisited
	Introduction
	Certificateless Signature
	Outline of the Certificateless Signature Schemes
	Adversaries and Oracles

	Security Models
	Security Against a Normal Type I Adversary
	Security Against a Strong Type I Adversary
	Security Against a Super Type I Adversary
	Type II Adversaries
	Malicious but Passive KGC Attack

	Our Proposed Schemes
	Bilinear Groups and Security Assumptions
	Scheme I
	Scheme II

	Comparison
	Conclusion

	Identity-Committable Signatures and Their Extension to Group-Oriented Ring Signatures
	Introduction
	Definition of ICS
	Components
	Security Definition

	Definition of GRS
	Components
	Security Definition

	Concrete Constructions
	Generic ICS Construction
	The ICS Scheme Based on Pairings
	Group-Oriented Ring Signatures

	Conclusions
	Security Proofs of The ICS Scheme Based on Pairings

	Hash-and-Sign with Weak Hashing Made Secure
	Introduction
	Preliminaries
	Digital Signature Schemes
	Hash Functions

	Domain Extension
	Deterministic Hash-and-Sign
	Randomized Hash-and-Sign

	Strong Signature Schemes with Weak Hashing
	The Entropy Recycling Technique
	Application to DSA
	Conclusion
	Probability of Collisions

	“Sandwich” Is Indeed Secure:How to Authenticate a Messagewith Just One Hashing
	Introduction
	Performance Comparison to HMAC
	Hash Function Basics
	Our Contribution
	Security Comparison to HMAC
	Security Definitions
	Security Proof of the Basic Construction
	Variant A: Reducing the First Filling $0^p$
	Variant B: Improving the Second Filling $10^\nu$
	Variant C: Handling the Last Padding $\pi(\lambda)$
	Concluding Remarks

	Threshold Anonymous Group Identification and Zero-Knowledge Proof
	Introduction
	$t$-Out-of-$m$ Scheme of De Santis, Di Crescenzo and Persiano
	Description of the Scheme
	Flaw in the Scheme and How to Repair
	Small Counterexample

	Proposed $t$-Out-of-$m$ Anonymous Group Identification
	Proposed Scheme
	Algorithms

	Properties of the Proposed Scheme
	Correctness
	Soundness
	Anonymity

	Communication Complexity
	Issues on Public Keys

	Discussion

	Non-interactive Manual Channel Message Authentication Based on eTCR Hash Functions
	Introduction
	Communication and Security Model
	Hash Functions and Security Notions
	Definitions for eSPR, eTCR and HCR Notions
	Relations Among eSPR, eTCR and HCR Notions

	A NIMAP Based on eTCR Hash Function Families
	Protocol Description and Security Reduction
	Comparison with Previous Schemes

	Conclusion

	A Practical System for Globally Revoking the Unlinkable Pseudonyms of Unknown Users
	Introduction
	Digital Credentials
	Backgrounder of Brands' Digital Credentials
	Comparison to Other Credential Systems

	The New System
	System Setup
	Pseudonym Retrieval
	Pseudonym Registration with the Service Provider
	Accessing a Service

	Efficiency Analysis
	Extensions and Variations

	Efficient and Secure Comparison for On-Line Auctions
	Introduction
	Our Contribution
	Related Work

	Homomorphic Encryption
	The Protocol
	Security
	Correctness
	Privacy

	Extensions
	Both Inputs Are Private
	Both Inputs Are Shared, Shared Output
	Active Security

	Complexity and Performance
	Setup and Parameters
	Implementation
	Benchmark Results

	Conclusion
	References

	Practical Compact E-Cash
	Introduction
	Preliminaries
	Notations
	Mathematical Assumptions
	Building Blocks

	Security Model
	Syntax
	Security Notions

	Our Constructions
	Generic Construction
	Scheme 1 (Instantiation Using BBS+ Signature and DY VRF)
	Scheme 2 (Instantiation Using CL+ Signature and DY VRF)
	Extensions
	Security Analysis

	Concluding Remarks

	Use of Dempster-Shafer Theory and Bayesian Inferencing for Fraud Detection in Mobile Communication Networks
	Introduction
	Related Work
	Proposed Approach
	FDS Components
	Methodology

	Simulation and Results
	Conclusions

	On Proactive Perfectly Secure Message Transmission
	Introduction
	Contributions

	Model
	Communication Graph
	Characterization of Proactive Perfectly Reliable Communication
	Round Optimal Proactive Reliable Communication
	An Efficient Secure Protocol
	Conclusion
	Proof of Theorem 2
	Results on Paths
	Main Proof


	Author Index



