
Granulation of Knowledge in Decision Systems:
The Approach Based on Rough Inclusions. The

Method and Its Applications

Lech Polkowski

Polish –Japanese Institute of Information Technology
Koszykowa 86 02008 Warszawa, Poland

polkow@pjwstk.edu.pl

Abstract. Rough set approach to knowledge entails its granulation:
knowledge represented as a collection of classifications by means of in-
discernibility of objects consists of indiscernibility classes that form el-
ementary granules of knowledge. Granules of knowledge that emerge as
unions of elementary granules are also characterized as exact concepts
that are described with certainty. Relaxing of indiscernibility relations
has led to various forms of similarity relations. In this lecture, we dis-
cuss the approach to similarity rooted in mereological theory of concepts,
whose primitive notion is that of a rough inclusion. Rough inclusions are
predicates/relations of a part to a degree. Partial containment is the
basic underlying phenomenon related to uncertainty, therefore rough in-
clusions allow for a formalization of a wide spectrum of contexts in which
reasoning under uncertainty is effected.

Granules are formed by means of rough inclusions as classes of objects
close to a specified center of the granule to a given degree; formally,
they resemble neighborhoods formed with respect to a certain metric.
Classes of objects in turn are defined by the class operator borrowed from
mereology. The usage of mereological techniques based on the notion of
a part is justified by its greater elegance and transparency in comparison
to the naive theory of concepts based on the notion of an element.

At IEEE GrC 2005, 2006 the Author put forth the idea of a granular
information/decision system whose objects are granules formed from the
original information/decision system; the idea was issued along with the
hypothesis that granular systems at sufficiently large radii of granulation,
should preserve information about objects coded in the attribute–value
language to a sufficiently high degree. This idea is here discussed along
with results of some tests that bear it out.

The second application that is reflected in the lecture is about missing
values; the approach discussed here is also based on granulation and the
idea is to absorb objects with missing values into granules of knowledge
in order to replace in a sense the missing value with a defined one decided
by the granule.
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1 The Idea of Computing Via Rough Sets

Classical ideas about representations of uncertainty, expressed respectively by
Gottlob Frege and Max Black, found realization respectively in rough and fuzzy
concept theories. Despite their formal differences and distinct starting points,
both compute with granules of objects: rough sets with indiscernibility classes
of objects, fuzzy sets with inverse images of fuzzy membership functions.

Rough sets represent knowledge by means of information systems, i.e., pairs
of the form (U, A) where U is a set of objects and A is a set of attributes with
each a ∈ A a mapping a : U → Va on U into the value set Va. Objects are coded
by their information sets of the form inf(u) = {(a = a(u)) : a ∈ A}. Objects u, v
with inf(u) = inf(v) are called indiscernible and they are regarded as identical
with respect to the given set A. The B–indiscernibility relation relative to a set
B ⊆ A is ind(B) = {(u, v) : ∀a ∈ B.a(u) = a(v)}. Classes [u]B = {v : (u, v) ∈
ind(B)} are B–elementary granules of knowledge. Their unions are B–granules
of knowledge.

A formula (a = v) is an elementary descriptor; descriptors are formed as
the smallest set containing all elementary descriptors and closed under senten-
tial connectives ∨, ∧, ¬, ⇒. The meaning [a = v] of an elementary descriptor is
defined as the set {u : a(u) = v} and it is recursively extended to meaning of
descriptors [8].

Decision systems are information systems of the form (U, A ∪ {d}) with a
singled out attribute d called the decision that does represent a description of
objects by an external informed source (say, an expert). Description of d in terms
of conditional attributes in the set A is effected by means of decision rules [8] of
the form ∧

a∈B

(a = va) ⇒ (d = v). (1)

The rule (1) is true whenever [
∧

a∈B(a = va)] ⊆ [d = v]; otherwise it is
partially true; see, e.g., [10] for a review of this topic.

2 Granulation of Knowledge

The issue of granulation of knowledge as a problem on its own, has been posed by
L.A.Zadeh [23]. The issue of granulation has been a subject of intensive studies
within rough set community, as witnessed by a number of papers, see, e.g., [17],
[18].

Granules defined by indiscernibility and their direct generalizations to various
similarity classes of tolerance, asymmetric similarity relations and general binary
relations were subject to an intensive research, see, e.g. [7], [22]. Granulation of
knowledge by means of rough inclusions was studied in [16].

Granulation of knowledge and applications to knowledge discovery in the
realm of approximation spaces were studied, among others, in [20].

A study of granule systems was also carried out in [11], [12], [13], [14], in order
to find general properties of granules. In proofs of those properties, techniques
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of mereology were applied as more simple and elegant than those of naive set
theory.

2.1 The Technique of Mereology

Fundamental in mereology [6] is the relation of a part, π, that given a universe
U , does satisfy the following conditions ,

1.¬(xπx).2.xπy ∧ yπz ⇒ xπz, (2)

i.e., it is transitive (cond. 2) and irreflexive (cond. 1).
The notion of an element, associated with the part relation π, is expressed

with the help of the notion of an ingredient ingπ, informally an ”improper part”,

x ingπ y ⇔ x π y ∨ x = y. (3)

Mereology is a theory of individual objects, that decompose into parts, and
passing to it from Ontology - theory of distributive concepts, is realized by means
of the set/class operator [6]; given a non–empty collection F of objects, i.e., an
ontological concept F , the individual representing F is given as the class of F ,
ClsπF , subject to the following conditions,

1. u ∈ F ⇒ u ingπ ClsπF.
2. u ingπ ClsπF ⇒ ∀v.[v ingπ u ⇒ ∃w, t. w ingπ v, w ingπ t, t ∈ F ]. (4)

In the sequel, the subscript π will be mostly omitted.
In plain words, ClsF consists of those objects whose each part has a part in

common with an object in F ; the reader will easily recognize that the union
⋃

F
of a family F of sets is the class of F with respect to the part relation ⊂.

2.2 Rough Inclusions

A rough inclusion is a generic term introduced in [16] for a class of relations
on the universe U ; any rough inclusion μ is a ternary relation, a subset of the
product U × U × [0, 1]; see [11], [12], [13], [14], for details and discussion along
with the extensive reference list.

A rough inclusion μπ(x, y, r), where x, y are individual objects, r ∈ [0, 1], does
satisfy the following requirements, relative to a given part relation π on a set U
of individual objects,

1. μπ(x, y, 1) ⇔ x ingπ y;
2. μπ(x, y, 1) ⇒ [μπ(z, x, r) ⇒ μπ(z, y, r)];

3. μπ(x, y, r) ∧ s < r ⇒ μπ(x, y, s).
(5)

2.3 Examples of Rough Inclusions

Apart from a general theory, we give here some examples of rough inclusions, cf.
[11], [13], [14].
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1. Rough inclusions from Archimedean t–norms. They are induced from
Archimedean t–norms, see, e.g, [3], [10]. We describe the one we are going
to use in the sequel. The �Lukasiewicz t–norm

L(x, y) = max{0, x + y − 1}, (6)

admits a characterization,

L(x, y) = g(f(x) + f(y)), (7)

with f = 1 − x = g. We define the set, DIS(u, v) = {a ∈ A : a(u) = a(v)},
and its complement IND(u, v) = U × U \ DIS(u, v).

We define the rough inclusion μL,

μL(u, v, r) ⇔ g(
|DIS(u, v)|

|A| ) ≥, (8)

i.e.,

μL(u, v, r) ⇔ |IND(u, v)|
|A| ≥ r. (9)

The formula (9) witnesses that the reasoning based on the rough inclusion
μL is the probabilistic one. At the same time, we have given a logical proof
for formulas like (9) that are very frequently applied in Data Mining and
Knowledge Discovery.

μL is transitive [11]: μL(u, v, r) and μL(v, w, s) imply that μL(u, w, L(r, s)).
2. Rough inclusions and metrics. For a metric d(u, v) on the set of objects

U , i.e., 1. d(u, u) = 0; 2. d(u, v) = d(v, u); 3. d(u, v) ≤ d(u, w) + d(w, v), we
let μd(u, v, r) ⇔ d(u, v) ≤ 1 − r. Then, μd is a rough inclusion, transitive
with respect to the t–norm L.

Conversely, consider a transitive symmetric rough inclusion μT ; let
dμ(u, v) ≤ r ⇔ μ(u, v, 1−r). Then, clearly, dμ(u, u) = 0, dμ(u, v) = dμ(v, u);
concerning triangle inequality 3., if dμ(u, v) ≤ r and dμ(v, w) ≤ s, then by
transitivity of μ, dμ(u, w) ≤ 1 − T (1 − r, 1 − s) = ST (r, s), where ST is
the t–conorm, induced by T , see,e.g., [10]; thus, dμ is a generalized met-
ric. Particular cases encompass: in case of T = min, ST = max, hence
dmin(u, w) ≤ max{dmin(u, v), dmin(v, w)}, i.e., dmin is an Archimedean met-
ric; in case of L, SL(r, s) = min{1, r+s} ≤ r+s, i.e., dL is a metric satisfying
3., restricted by 1.

2.4 Granules Induced from Rough Inclusions

The general scheme of our own for inducing granules is as follows. We fix an
information system (U, A), and a rough inclusion μ on U .

For an object u and a real number r ∈ [0, 1], we define the granule gμ(u, r)
about u of the radius r, relative to μ, by letting,

gμ(u, r) is ClsF (u, r), (10)
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where the property F (u, r) is satisfied with an object v if and only if μ(v, u, r)
holds.

It was shown, see [11], Theorem 4, that in case of a transitive μ,

v ing gμ(u, r) ⇔ μ(v, u, r). (11)

By (11), the granule gμL(u, r) consists of objects v such that μL(v, u, r), i.e,
|IND(u, v)| ≥ r · |A|;

For a given granulation radius r, and the rough inclusion μL, we form the
collection UG

r,μL
= {gμL(u, r)}.

3 Granular Decision Systems

The idea of a granular decision system was posed in [13]; for a given information
system (U, A), a rough inclusion μ, and r ∈ [0, 1], the new universe UG

r,μ is given.
We apply a strategy G to choose a covering CovG

r,μ of the universe U by granules
from UG

r,μ.
We apply a strategy S in order to assign the value a∗(g) of each attribute

a ∈ A to each granule g ∈ CovG
r,μ: a∗(g) = S({a(u) : u ∈ g}). The granular

counterpart to the information system (U, A) is a tuple (UG
r,μ, G, S, {a∗ : a ∈ A});

analogously, we define granular counterparts to decision systems by adding the
factored decision d∗.

4 Factoring Classifiers Through Granular Systems

As objects in a granule are related one to another by similarity, the granule as
a whole should determine a new object; and a judiciously chosen set of the new
objects should guarantee the satisfactory quality of classification [13]. To test the
validity of this hypothesis, experiments have been carried out with real data sets.
We select here the Primary tumor data set [21] and we test it with exhaustive
algorithm of RSES package [19] and with LEM2 algorithm with the parameter
p=0.5 [2], [19]. We adopt random choice as the strategy G, majority voting with
random resolution of ties as S, and train–and–test at ratio 1:1 as the method
of test performing. Quality of classification is measured by total accuracy being
the ratio of the number of correctly classified cases to the number of recognized
cases, and total coverage, i.e, the ratio of the number of recognized test cases to
the number of test cases. Results are given in Table 1. nil denotes results without
granulation to which granular results are compared.

The procedure has been as follows.

1. the data table (U, A) has been input;
2. classification rules have been found on the training subtable of 50 percent of objects

by means of each of the three algorithms;
3. classification of dataset objects in the test subtable of remaining 50 percent of

objects has been found for each of the three classifications found at point 2;
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4. given the granule radius, granules of that radius have been found on the training
subtable;

5. a granular covering of the training subtable has been chosen;
6. the corresponding granular decision system has been determined;
7. granular classifiers have been induced from the granular system in point 6 by means

of each of algorithms in point 2;
8. classifications of objects in the test subtable have been found by means of each of

classifiers in point 7;
9. classifications from points 3,8 have been compared with respect to adopted global

measures of quality: total accuracy and total covering.

Table 1. Primary tumor dataset:r=granule radius,tst=test sample size,trn=training
sample size,rulex=number of rules with exhaustive algorithm, rullem=number of rules
with LEM2, aex=total accuracy with exhaustive algorithm,cex=total coverage with ex-
haustive algorithm,alem=total accuracy with LEM2, clem=total coverage with LEM2

r tst trn rulex rullem aex cex alem clem

nil 170 169 4186 43 0.253 0.976 0.5 0.259
0.0 170 1 0 0 0.0 0.0 0.0 0.0

0.0588235 170 1 0 0 0.0 0.0 0.0 0.0
0.117647 170 1 0 0 0.0 0.0 0.0 0.0
0.176471 170 1 0 0 0.0 0.0 0.0 0.0
0.235294 170 1 0 0 0.0 0.0 0.0 0.0
0.294118 170 1 0 0 0.0 0.0 0.0 0.08
0.352941 170 1 0 0 0.0 0.0 0.0 0.0
0.411765 170 2 0 1 0.0 0.0 1.0 0.188
0.470588 170 3 0 1 0.0 0.0 1.0 0.188
0.529412 170 5 0 1 0.0 0.0 1.0 0.188
0.588235 170 8 0 1 0.0 0.0 1.0 0.188
0.647059 170 12 11 1 0.547 0.376 0.0 0.0
0.705882 170 17 40 3 0.457 0.476 0.667 0.035
0.764706 170 33 108 4 0.468 0.553 0.769 0.076
0.823529 170 54 1026 11 0.434 0.759 0.586 0.171
0.882353 170 75 3640 17 0.308 0.859 0.579 0.224
0.941176 170 107 4428 24 0.295 0.976 0.466 0.341

Conclusions for Primary tumor. For exhaustive algorithm,accuracy is better
with granular than original training set from the radius of 0.647059 on where
reduction in size of training set is 92.9 percent and reduction in size of rule set
is almost 100 percent (11 versus 4186). Coverage falls within error bound of 22.3
percent from the radius of 0.823529 on, where reduction in training st size is 68.2
percent and reduction in size of rule set is 75.5 percent; it becomes the same as
in non–granular case at r = .941 with reduction in object size of 36.7 percent.

LEM2 exceeds accuracy of classifier trained on original training table with
accuracy of granular classifier from the radius of 0.705882 on where reduction
in training set size is 89.95 percent and reduction in rule set size is 93 percent.
Coverage for granular classifier is better or within error of 13.5 percent from the
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radius of 0.882353 where reduction in size of the training set is 55.6 percent and
reduction in size of rule set is 60.5 percent.

Thus, granular approach provides results on par with those obtained in non–
granular case.

5 A Granular Approach to Missing Values

An information/decision system is incomplete in case some values of conditional
attributes from A are not known. Analysis of systems with missing values re-
quires a decision on how to treat missing values; Grzymala–Busse in his work
[2], analyzes nine such methods, among them, 4. assigning all possible values to
the missing location, 9. treating the unknown value as a new valid value, etc. etc.
Results in [2] indicate that methods 4,9 perform very well among all nine meth-
ods. In this work we consider and adopt two methods, i.e.4, 9. Analysis of this
problem has been given also in Kryszkiewicz [4] and Kryszkiewicz–Rybinski [5].

We will use the symbol ∗ commonly used for denoting the missing value; we
will use two methods 4, 9 for treating ∗, i.e, either ∗ is a don’t care symbol
meaning that any value of the respective attribute can be substituted for ∗, thus
∗ = v for each value v of the attribute, or ∗ is a new value on its own, i.e., if
∗ = v then v can be only ∗.

Table 2. Strategy A. CV–5; Hepatitis; exhaustive algorithm. r=radius,macc=mean
accuracy, mcov=mean coverage, mrul=mean number of rules, mtrn=mean training
granular sample size

r macc mcov mrul mtrn

0.0 0.0 0.0 0.0 1.0
0.0526316 0.0 0.0 0.0 1.0
0.105263 0.0 0.0 0.0 1.0
0.157895 0.0 0.0 0.0 1.0
0.210526 0.0 0.0 0.0 1.0
0.263158 0.0 0.0 0.0 1.4
0.315789 0.0 0.0 0.0 2.0
0.368421 0.0 0.0 0.0 2.4
0.421053 0.0 0.0 0.0 3.8
0.473684 0.2012 0.3548 6.4 3.4
0.526316 0.5934 1.0 29.6 7.4
0.578947 0.4992 0.7872 33.8 7.6
0.631579 0.5694 0.9872 176.2 20.0
0.684211 0.5852 0.9936 167.6 17.8
0.736842 0.6102 0.9936 263.0 22.8
0.789474 0.6130 1.0 911.0 49.4
0.842105 0.6258 1.0 989.6 46.8
0.894737 0.6386 1.0 1899.0 77.0
0.947368 0.6774 1.0 2836.2 105.8

1.0 0.6710 1.0 3286.4 123.4
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Table 3. Strategy B. CV–5; Hepatitis; exhaustive algorithm. r=radius,macc=mean
accuracy, mcov=mean coverage, mrul=mean number of rules, mtrn=mean training
granular sample size

r macc mcov mrul mtrn

0.0 0.0 0.0 0.0 1.0
0.0526316 0.0 0.0 0.0 1.0
0.105263 0.0 0.0 0.0 1.0
0.157895 0.0 0.0 0.0 1.0
0.210526 0.0 0.0 0.0 1.2
0.263158 0.0 0.0 0.0 1.2
0.315789 0.0 0.0 0.0 1.6
0.368421 0.1104 0.1870 1.0 2.6
0.421053 0.0904 0.2000 1.6 3.4
0.473684 0.3938 0.5806 7.2 4.4
0.526316 0.4234 0.7936 26.2 7.6
0.578947 0.6302 0.9936 59.4 10.8
0.631579 0.6708 1.0 126.4 15.4
0.684211 0.6038 0.9742 253.4 24.4
0.736842 0.6292 0.9936 367.6 35.2
0.789474 0.6166 0.9936 947.0 52.2
0.842105 0.6324 1.0 1417.2 71.8
0.894737 0.6386 1.0 1797.0 79.6
0.947368 0.6450 1.0 3081.8 113.4

1.0 0.6646 1.0 3354.2 123.4

Our procedure for treating missing values is based on the granular structure
(UG

r,μ, G, S, {a∗ : a ∈ A}); the strategy S is the majority voting, i.e., for each
attribute a, the value a∗(g) is the most frequent of values in {a(u) : u ∈ g}. The
strategy G consists in random selection of granules for a covering.

For an object u with the value of ∗ at an attribute a, and a granule g =
g(v, r) ∈ UG

r,μ, the question whether u is included in g is resolved according
to the adopted strategy of treating ∗: in case ∗ = don′t care, the value of ∗
is regarded as identical with any value of a hence |IND(u, v)| is automatically
increased by 1, which increases the granule; in case ∗ = ∗, the granule size is
decreased. Assuming that ∗ is sparse in data, majority voting on g would produce
values of a∗ distinct from ∗ in most cases; nevertheless the value of ∗ may appear
in new objects g∗, and then in the process of classification, such value is repaired
by means of the granule closest to g∗ with respect to the rough inclusion μL, in
accordance with the chosen method for treating ∗.

In plain words, objects with missing values are in a sense absorbed by close
to them granules and missing values are replaced with most frequent values in
objects collected in the granule; in this way the method 3 or 4 in [2] is combined
with the idea of a frequent value, in a novel way.

We have thus four possible strategies:

– Strategy A: in building granules ∗=don’t care, in repairing values of ∗,
∗=don’t care;
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– Strategy B: in building granules ∗=don’t care, in repairing values of ∗, ∗ = ∗;
– Strategy C: in building granules ∗ = ∗, in repairing values of ∗, ∗=don’t care;
– Strategy D: in building granules ∗ = ∗, in repairing values of ∗, ∗ = ∗.

5.1 Results of Test with Real Data Set Hepatitis with Missing
Values

We record here results of tests with Hepatitis data set [21] with 155 objects, 20
attributes and 167 missing values. We apply the exhaustive algorithm of RSES
system [19] and 5–fold cross–validation (CV–5). Below we give averaged results
for strategies A, B, C, and D. As before, radius nil indicates non–granulated case.

Now, we record in Tables 2–5 the results of classification for Hepatitis with
exhaustive algorithm and CV–5 cross–validation for strategies A, B, C, D, re-
spectively.

For comparison, we include results of tests with Hepatitis recorded in [1]; the
method was modified LERS algorithm with additional parameters like strength
and specificity of a rule and the approach 9. gave error rate of 0.1935 i.e. accuracy
0.8065. Best result given by strategy C based on the same treatment of ∗ is
accuracy 0.6838. Naive LERS algorithm [1] gave for this data set and method 9
error of 0.3484 i.e. accuracy of 0.6516. Interestingly, granular method gives better
than [1] results for Breast cancer data set, as reported in [15], these Proceedings.

Table 4. Strategy C. CV–5; Hepatitis; exhaustive algorithm. r=radius,macc=mean
accuracy, mcov=mean coverage, mrul=mean number of rules, mtrn=mean training
granular sample size

r macc mcov mrul mtrn

0.0 0.0 0.0 0.0 1.0
0.0526316 0.0 0.0 0.0 1.0
0.105263 0.0 0.0 0.0 1.2
0.157895 0.0 0.0 0.0 1.2
0.210526 0.0 0.0 0.0 1.8
0.263158 0.0 0.0 0.0 2.0
0.315789 0.2560 0.3936 2.4 4.0
0.368421 0.4486 0.6838 7.4 5.6
0.421053 0.4766 0.7870 19.2 7.8
0.473684 0.5806 1.0 58.4 10.6
0.526316 0.6580 1.0 136.6 17.4
0.578947 0.64902 0.9936 332.4 32.0
0.631579 0.6568 0.9936 991.6 47.4
0.684211 0.6646 1.0 1751.6 70.2
0.736842 0.6902 1.0 2648.8 93.2
0.789474 0.6322 1.0 3208.8 112.6
0.842105 0.6776 1.0 3297.8 120.2
0.894737 0.6710 1.0 3297.4 123.4
0.947368 0.6838 1.0 3305.4 124.0

1.0 0.6774 1.0 3327.2 124.0
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Table 5. Strategy D. CV–5; Hepatitis; exhaustive algorithm. r=radius,macc=mean
accuracy, mcov=mean coverage, mrul=mean number of rules, mtrn=mean training
granular sample size

r macc mcov mrul mtrn

0.0 0.0 0.0 0.0 1.0
0.0526316 0.0 0.0 0.0 1.0
0.105263 0.0 0.0 0.0 1.0
0.157895 0.0 0.0 0.0 1.4
0.210526 0.0 0.0 0.0 1.6
0.263158 0.0 0.0 0.0 2.6
0.315789 0.3886 0.5162 6.0 3.8
0.368421 0.5730 0.9032 16.6 4.8
0.421053 0.6328 0.9418 23.8 6.8
0.473684 0.5740 0.9740 60.6 10.6
0.526316 0.6170 0.9936 120.6 16.8
0.578947 0.6888 0.9936 354.0 30.6
0.631579 0.6388 1.0 922.0 47.4
0.684211 0.6646 1.0 1828.6 70.8
0.736842 0.6450 1.0 2648.2 93.4
0.789474 0.6516 1.0 3182.0 112.4
0.842105 0.6710 1.0 3299.2 120.4
0.894737 0.6710 1.0 3333.8 123.4
0.947368 0.6646 1.0 3327.2 124.0

1.0 0.6710 1.0 3338.6 124.0

Conclusions for Hepatitis data set. Results for particular strategies com-
pared radius by radius show that the ranking of strategies is C > D > B > A
with the average number of ranks respectively 1.3, 1.8., 3.1, 3.8; thus, the strategy
C is most effective with D giving slightly worse results. Results by our granular
approach are midway between results for naive and new LERS in [1] showing
the potential of the method as well as the need for further development.

6 Conclusion

The results of tests reported in this work bear out the hypothesis that granulated
data sets preserve information allowing for satisfactory classification. Also the
novel approach to the problem of data with missing values has proved to be very
effective. Further studies will lead to novel algorithms for rule induction based
on granules of knowledge.
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