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Abstract. The problem considered in this paper is how the classifica-
tion of observed behaviour of organisms can be used to influence adaptive
learning, beneficially. The solution to this problem hearkens back to the
pioneering work during the 1980s by Zdzis�law Pawlak and others on clas-
sification of objects and approximation spaces, where elementary sets of
equivalent objects a framework for perceptions concerning observed be-
haviours. The seminal work by Oliver Selfridge and Chris J.C.H. Watkins
on delay rewards and adaptive learning, also during the 1980s, combined
with more recent work on reinforcement learning provide a basis for the
forms of adaptive learning introduced in this article. In addition, recent
work on approximation spaces has led to what is known as approximate
adaptive learning. This article presents two forms of run-and-twiddle
(RT) adaptive learning, each using the Watkins’ stopping time strat-
egy to mark the end of an episode. Twiddling amounts to adjusting
what one does to achieve a better result. This becomes more apparent
in approximate RT adaptive learning introduced in this article, where a
record of observed behaviour patterns during each episode recorded in
an ethogram makes it possible to define a pattern-based learning rate in
the context of approximation spaces. Both forms of adaptive learning are
actor-critic methods. The contribution of this article is the introduction
of two forms of adaptive learning with Watkins’ stopping time strategy
with differential discount on returns in both cases and differential learn-
ing rate for adaptive learning in the context of approximation spaces.

Keywords: Actor-critic, adaptive learning, approximation space, be-
haviour pattern, perception, stopping time.

An approximation space ... serves as a formal
counterpart of perception ability or observation.

– Ewa Or�lowska, March, 1982.

1 Introduction

The problem considered in this paper is how the classification of observed be-
haviour of organisms can be used to influence adaptive learning, beneficially. The
term organism, in general, is understood in Whitehead’s sense as something that
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emerges from (belongs to) the world [43]. The solution to this problem hearkens
back to the pioneering work by Zdzis�law Pawlak and others on classification of
objects and approximation spaces (see, e.g., [4,13,9,15,16,22,33,34,39]), work on
delayed rewards and adaptive learning by Oliver Selfridge and C.J.C.H. Watkins
also during the 1980s (see, e.g., [31,40]), extensive work on reinforcement learn-
ing (see, e.g., [2, 5, 38, 29, 42]), and recent work on reinforcement learning and
intelligent systems in the context of approximation spaces (see,e.g., [24, 25, 23,
17, 18, 20, 21, 33, 34]). This article presents two forms of run-and-twiddle (RT)
adaptive learning, each using the Watkins’ stopping time strategy to mark the
end of an episode. Twiddling amounts to adjusting what one does to achieve a
better result. This becomes more apparent in approximate RT adaptive learning
introduced in this article, where a record of observed behaviour patterns tabu-
lated in an ethogram [24, 26] during each episode makes it possible to consider
a pattern-based learning rate defined in the context of an approximation space.
Both forms of adaptive learning introduced in this article are variant actor-critic
methods, where action discounting as well as learning rate are defined relative
to temporal differences. The contribution of this article is the introduction of
two forms of adaptive learning that construct a semi-martingale with Watkins’
stopping time strategy with differential discount on returns in both cases and
differential learning rate for adaptive learning in the context of approximation
spaces.

This article is organized as follows. An approach to RT adaptive learning is
presented in Sect. 2. A refinement of the generalized approximation space model
is given in Sect. 3. Approximate RT adaptive learning is introduced in Sect. 4.

2 Adaptive Learning

Watson [40] suggests using the value of a state V (s) as the basis for an adaptive
control strategy used by an organism to determine what to do next. This strategy
can be summarized intuitively as follows.

1. Estimate. If things are expected to improve or stay the same, then carry on
with the same action.

2. Twiddle. If things are expected to get worse, then search for a more promis-
ing action.

3. End of Episode. If things are expected to get worse, regardless which possi-
ble action we choose, then that marks the end of an episode. This is analogous
to a situation faced by a gambler who either withdraws from the game be-
cause the expected return is not favorable or bets based on luck and stands
a chance of losing [3]. The form of adaptive learning in this paper implic-
itly constructs a semi-martingale [3], where an episode continues as long as
V (s) ≤ V (s′), i.e., E[Ra] ≤ E[Ra′ ] based on Monte Carlo estimates [7, 30]
of V (s), V (s′) for actions a, a′ in states s, s′, respectively1.

1 V (s) (value of the current state s) is defined in terms of E[Ra], the expected value
of return Ra for an action a. V (s′) denotes the value of next state s′ following s.



Toward Approximate Adaptive Learning 59

This control strategy was originally suggested by Oliver Selfridge in 1984 [31]
and elaborated in the context of the value of a state and Monte Carlo methods by
Chris J.C.H. Watkins in 1989 [40]. Selfridge called this a run-and-twiddle (RT)
strategy, which he based on observations of the behavior of E. coli bacteria, male
silk moths, and ants.

The notion of a stochastic process and what known as semi-martingales are
important in RT adaptive learning introduced in this article.

Definition 1. Stochastic Process
A stochastic process is any family of random variables {Xt, t ∈ T } [3]. In prac-
tice, Xt is an observation at time t. A random variable (r.v.) Xt is a real-valued
function X : Ω → � defined on (Ω, F), where Ω, F is sample space and family
of events, respectively [8,44].

It can be shown that during each episode of RT adaptive learning, what is known
as a semi-martingale is constructed. Semi-martingales were introduced by Doob
during the early 1950s [3] and elaborated by many others (see, e.g., [8, 44]).

Definition 2. Semi-Martingale
A semi-martingale is a stochastic process {Xt, t ∈ T } such that

E[Xt] ≤ E[Xt+1],

where E[|Xt|] < ∞.

The form of semi-martingale we have in mind is {Rt, t ∈ T }, E[Rt] ≤ E[Rt+1],
where Rt is the return on a sequence of actions at time t during an episode.

2.1 Toward RT Adaptive Learning

The basic framework for an approach to a run-and-twiddle (RT) form adaptive
learning is shown in Fig. 1, where the conventional framework for actor-critic
learning has been changed. Instead of the usual temporal difference (TD) δ
term [38,41], a TD γ is source of input to a critic in evaluating observed action-
rewards2. The policy structure enforced during adaptive learning is an actor,
since the selection of an action a in each state s is determined by a policy
π(s, a). The estimated value function V (s) serves a critic during adaptive learn-
ing. Twiddling begins at the end of each episode3, where the actions within an
episode are discontinued as a result of some halting condition being satisfied.

An elaborate form of twiddling is possible by recording observed behaviours
during an episode and constructing what is known as a rough ethogram. A rough
ethogram is a decision table that records acceptable as well as unacceptable be-
haviour patterns of organisms [26]. It will become apparent that an ethogram
represents a decision system, where each possible behaviour leading from the
current state to a new state is evaluated relative to an action-selection policy.
2 TD γ denotes the rate of change of action rewards.
3 i.e., an episode is constituted by a sequence of actions that ends in a terminal state.
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Fig. 1. Basic Framework for Adaptive Learning

That is, among all of the possible actions in a state, an action a that has been
selected represents a perceptual judgement accept a based on a perception that
the performance of a conforms to a standard more than the other possible ac-
tions, which is explained in the sequel. By the same token, an ethogram provides
a record of each action b deemed unacceptable and a corresponding perceptual
judgement reject b.

1. Reward signal: Define action a in terms of a reward r(t) as a function
representing a signal observed at time ti, which results from interaction with
the environment as a result of performing some action a at time ti−1

4. Then
associate with each action a(t) a discounted reward r(t) at time t, namely,
γ′(t)r(t), where γ(t) is a discount function and γ′(t) denotes the differential
of r(t). It is important to define a reward function r(t) that reflects the form
of the signal produced by each action.

2. Discount γ: Either choose fixed γ(t), e.g., γ(t) = 1, or put γ(t) = r(t) and
obtain the differential

γ′(t) =
d(r(t))

dt

∣
∣
∣
∣ t ← ti

≈ |r(ti) − r(ti−1)|
|ti − ti−1|

.

In other words, let the value of γ vary over time instead of using a fixed value
of γ that diminishes (i.e., monotonically decreases) over time5. The critic in
Fig. 1 is influenced by a Temporal Difference (TD) discount γ, which replaces
the usual TD δ term (see, e.g., [38,42]). The discount factor reflects the rate
of change of the signal r(t) coming from the environment at time t.

3. Return: Let E[Rt], ra, ti denote expected return at time t, reward for action
a, elapsed time at step i during an episode, respectively. Define V (st) =
E[Rt] ≈ 1

n

∑n
i=1 γ′(ti) · ra(ti), where value of state V (s) is estimated over n

time steps for each action a in state s. The assumption made here is that a
reward rt is a r.v. and, as a consequence, return Rt is a r.v. and {Rt, t ∈ T }

4 t can be viewed as the elapsed time since the start of an episode.
5 The form of discount factor introduced in this paper differs from what was originally

suggested by Watkins [40] in estimating return Rt at time t, where Rt = r1 + γr2 +
· · · + γt−1rt, γ ∈ [0, 1].
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is a stochastic process, where Rt is the return computed at time t for each
state during an episode and T is a set of episode times. It is also the case that
the Pr(Rt = ω) is unknown for ω ∈ Ω. For this reason, E[Rt] is estimated
using a Monte Carlo method [7, 30] (for a detailed explanation, see [25]).

Theorem 1. Adaptive Learning Semi-martingale.
The RT form of adaptive learning constructs a semi-martingale.

Proof. An episode continues as long as V (s) ≤ V (s′). Let ti denote elapsed
time t at the start of ith state during an episode and let s′ denote the state
immediately following state s. Each time an episode continues after finding that
the condition V (s′) > V (s) is satisfied at time tn, another term is added to a
sequence of estimates of V (s) at time tn, namely, V (s′) ≈ E[Xtn+1], namely,

E[Xt1 ] ≤ E[Xt2 ], . . . , ≤ E[Xtn ] ≤ E[Xtn+1]. 	

An important problem to consider in constructing semi-martingales is a stopping
time, i.e., a time T when a semi-martingale ends. The notion of a stopping time
can be explained in general.

Definition 1. Stopping Time. A stopping time results from a strategy for de-
termining when to stop a sequence based only on the outcomes seen so far [8].

Axiom 1. Discount Rate. During each episode, γ′(t) < ε for any given threshold
ε > 0 and for sufficiently large t. This means that |r(ti+1) − r(ti)| < ε|ti+1 − ti|
for sufficiently large i, e.g., i > nlarge.

Theorem 2. Adaptive Learning Semi-martingale with Stopping Time.
In RT adaptive learning, (1) a semi-martingale constructed during each episode
has a stopping time, and (2) E[Rtn ] > E[Rtn+1 ] occurs at some time tn, (3)
each adaptive learning episode has finite duration and each semi-martingale has
a finite number of terms.

Proof. During adaptive learning, construction of a semi-martingale ends when-
ever Watkins’ condition V (s′) > V (s) is not satisfied. Hence, (1) holds, i.e.,
from Def. 1, Watkins’ condition provides a stopping time strategy. (2) From
Ax. 1, γ′(t) → 0 during each episode. Hence, E[Rtn ] > E[Rtn+1 ] occurs at
some time tn, since the estimated value of E[Rtn+1 ] gets smaller than E[Rtn ] for

lim
i→nlarge

γ′(ti) < ε for sufficiently large i. (3) sunset → 0 during each episode in

Alg 1 and Alg. 2, which guarantees that each episode has finite duration. Hence,
each semi-martingale constructed during an adaptive learning episode has finite
length. 	


2.2 Adaptive Control Algorithm

The run-and-twiddle control strategy is given a more formal representation by
Watkins [40], p. 67. Let a(xt), s, s′ denote action of object x at time t in state
s, current state and next state, respectively. A representation of the adaptive
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Algorithm 1. RT Adaptive Learning
Input : States s ∈ S, Actions a ∈ A, Objects x ∈ U , V (s).
Output: Semi-martingale, i.e., {Rt, t ∈ T}.
while True do

Begin episode;
Initialize policy π(s, a), s, V (s), sunset ← maxT ime, episode ← true;
Estimate V (s′) = E[Rt] for every a leading from s to s′;
while V (s) ≤ V (s′) do

V (s) ← V (s′) ;
Perform action a, observe r(t) signal, compute γ′(t);
Update a(xt) ← γ′(t) · r(t);
Choose new a from new s according to policy π(s, a) ;
Estimate new V (s′) = E[Rt];
sunset ← sunset − 1;
if sunset > 1 then

if V (s′) > V (s) then
episode continues ;

end
else

episode ← false {publish {Rt, t ∈ T}} ;
end

end
end

learning method suggested by Selfridge is represented by Alg. 1. This algorithm
reflects Selfridge’s run-and-twiddle (RT) adaptive control strategy. In its sim-
plest form, RT is a greedy method that works by steepest ascent hill-climbing,
where an attempt is made to maximize return R over time by choosing the most
promising action in each state. The most promising action a means that action
a has the highest estimated expected return Rt at time t. Alg. 1 looks one step
ahead in each state during an episode and takes the best pick among all possible
actions for the next step.

3 Approximation Spaces

The original generalized approximation space (GAS) model [32] has recently
been extended as a result of recent work on nearness of objects (see, e.g., [6,17,
18, 20, 21, 33, 34]). A nearness approximation space (NAS) is a tuple

NAS = (U, A, Nr, νB),

where U is a universe of objects, A, a set of probe functions, Nr, a family of
neighbourhoods and νB is an overlap function defined by

νB : P(U) × P(U) −→ [0, 1],
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where P(U) is the powerset of U . The overlap function νB maps a pair of sets to
a number in [0, 1] representing the degree of overlap between the sets of objects
with features defined by B ⊆ A and P(U) is the powerset of U [35]. For each
subset B ⊆ A of probe functions, define the binary relation ∼B= {(x, x′) ∈
U × U : ∀f ∈ B, f(x) = f(x′)}. Since each ∼B is, in fact, the usual IndB

(indiscernibility) relation, for B ⊂ F and x ∈ U , let [x]B denote the equivalence
class containing x, i.e.,

[x]B = {x′ ∈ U : ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈ ∼B (also written x ∼B x′), then x and x′ are said to be indiscernible
with respect to all feature probe functions in B, or simply, B-indiscernible. Then
define a family of neighborhoods Nr(A), where

Nr(A) =
⋃

Br⊆Pr(A)

[x]Br ,

where Pr(A) = {B ⊆ A | |B| = r} for any r such that 1 ≤ r ≤ |A|. That is, r
denotes the number of features used to construct families of neighborhoods. For
the sake of clarity, we sometimes write [x]Br to specify that the equivalence class
represents a neighborhood formed using r features from B. Families of neigh-
borhoods are constructed for each combination of probe functions in B using
(|B|

r

)

, i.e., |B| probe functions taken r at a time. Information about a sample
X ⊆ U can be approximated from information contained in B by constructing
a Nr(B)-lower approximation

Nr(B)∗X =
⋃

x:[x]Br⊆X

[x]Br ,

and a Nr(B)-upper approximation

Nr(B)∗X =
⋃

x:[x]Br∩X �=∅
[x]Br .

Then Nr(B)∗X ⊆ Nr(B)∗X and the boundary region BNDNr(B)(X) between
upper and lower approximations of a set X is defined to be the complement of
Nr(B)∗X , i.e.

BNDNr(B)(X) = Nr(B)∗X\Nr(B)∗X = {x ∈ Nr(B)∗X | x /∈ Nr(B)∗X}.

A set X is termed a “near set” relative to a chosen family of neighborhoods
Nr(B) iff |BNDNr(B)(X)| ≥ 0. This means that, relative to B, every rough set
is a near set but not every near set is a rough set. Object recognition and the
problem of the nearness of objects have motivated the introduction of near sets
(see, e.g., [17, 20]).
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Fig. 2. Approximate Adaptive Learning Cycle

3.1 Percepts and Perception

The set Nr(B) contains a set of percepts. A percept is a byproduct of perception,
i.e., something that has been observed [10]. For example, a member of Nr(B)
represents what has been perceived about objects belonging to a neighborhood,
i.e., observed objects with matching probe function values. Collectively, Nr(B)
represents a perception, a product of perceiving. Perception is defined as the
extraction and use of information about one’s environment [1]. This basic idea
is represented in the sample objects, probe function measurements, perceptual
neighborhoods and judgemental percepts columns in Fig. 26. In this article, we
focus on the perception of acceptable objects.

3.2 Sensing, Classifying, and Perceptual Judgement

Sensing provides a basis for probe function measurements commonly associ-
ated with features such as colour, contour, shape, arrangement, entropy, and so
on [12,22]. A probe function can be thought of as a model for a sensor. Classifica-
tion combines evaluation of a disposition of sensor measurements with judgement
(apprehending the significance of a vector of probe function measurements for
an observed object). The result is a higher level percept, which has been tradi-
tionally called a decision. In the context of percepts, the term judgement means
a conclusion about an object’s measurements rather than an abstract idea. This
form of judgement is considered perceptual. Perceptual judgements provide a
basis for the formulation of abstract ideas (models of perception, rules) about
a class (type) of objects. Let D denote a feature called decision with a probe
dB : X×B −→ {0, 1}, where X denotes a set of sample objects; B, a set of probe
functions; 0, “reject perceived object” and 1, “accept perceived object”. A set
of objects d with matching perceptual judgements (e.g., dB(x) = 1, x ∈ X for
an acceptable object) is a mathematical model representing the abstract notion
acceptable.

For each possible feature value j of a and x ∈ U , put Bj(x) = [x]B if, and only
if, a(x) = j, and call Bj(x) an action block. Put B = {Bj(x) : a(x) = j, x ∈ U},
6 Subscripts h, i, p denote probe function values for a single feature, i.e., where r = 1.
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Algorithm 2. Approximate Adaptive Learning
Input : States s ∈ S, Actions a ∈ A, Objects x ∈ U .
Output: Ethogram resulting from policy π(s, a).
while True do

Begin episode;
Initialize ν̄a

′(t), policy π(s, a), s, V (s), sunset ← maxT ime, episode ← true;
Insert experimental (x, s, a, r, V (s), d(x)) rows in ethogram, then continue ;
Estimate V (s′) ← E[Rt];
while V (s) ≤ V (s′) do

Perform action a based on π(s, a), observe r(t) signal, compute γ′(t);
Update a(xt) ← γ′(t) · r(t);
Choose new a from new s according to policy π(s, a) ;
Estimate V (s′) ← E[Rt];
V (s) ←− V (s) + ν̄a

′(t) · [r + maxa{V (s′)} − V (s)];
sunset ← sunset − 1;
if sunset > 1 then

if V (s′) > V (s) then
Episode continues ;
Add (x, s, a, r, V (s), d(x)) to ethogram ;

end
else

episode ← false {publish constructed ethogram} ;
Compute learning rate ν̄a

′(t) using ethogram, (1), & (2);
end

end
end

a set of blocks that “represent” action a(x) = j. Define ν̄a(t) (average rough
coverage)7 with respect to an action a(x) = j at time t in (1).

ν̄a(t) =
1

|B|
∑

Bj(x)∈B
ν (Bj(x), Nr(B)∗D) . (1)

4 Approximate RT Adaptive Learning

Based on the introduction of families of neighbourhoods, there are different forms
of adaptive learning that is influenced by the perceived behaviours recorded in
episode ethograms. A behaviour is defined by the tuple

(s, a, r, V (s)),

where V (s) is the estimated value of expectation E[Rt]. A Monte Carlo method
[7,30] is used to estimate E[Rt], which, in its simplest form, is a running average
of the rewards received up to the current state.
7 ν̄a(t) is computed at the end of each episode using an ethogram that is part of the

adaptive learning cycle shown in Fig. 2.
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The differential ν̄a
′(t) of ν̄a(t)8 takes the place of learning rate α in Q-

learning [40], where ν̄a
′(t) reflects the rate of change of average action accept-

ability across adjacent episodes. Starting with the end of the second episode
during approximate adaptive learning, it is possible to define a learning rate
ν̄a

′(t) shown in (2).

ν̄′(t) =
d(ν̄a(t))

dt

∣
∣
∣
∣ t ← ti

≈ |ν̄a(ti) − ν̄a(ti−1)|
|ti − ti−1|

, (2)

where ν̄a(ti), ν̄a(ti−1) is the average action coverage at times ti, ti−1 at the end
of the current and the previous episodes, respectively. In other words, at the
end of each episode, ν̄′(t) is refreshed to reflect a varying learning rate (see
Alg. 2). Other forms of Alg. 2 are possible, if we consider combinations of fea-
tures in addition to the single-feature case, where multiple-feature families of
neighborhoods are used to estimate average coverage. At present, a number
of fairly intensive experiments with approximate adaptive learning in colonies
of organisms (e.g., fish and ants) and in computer vision, are being carried
out [18, 19].

5 Conclusion

This article considers a perception-based approach to adaptive learning. The
early work of Zdzis�law Pawlak and others on classification of objects and ap-
proximation spaces during the 1980s as well as more recent work on approxima-
tion spaces by Andrzej Skowron and Jaros�law Stepaniuk provide a framework
for observing the returns on episodic behaviour during learning. This work has
also benefited from the work on adaptive learning by Oliver Selfridge and Chris
J.C.H. Watkins, also during the 1980. It was Watkins who suggested a stopping
time strategy for episodic behaviour based on the estimated value of state. The
work on semi-martingales by Leo Doob introduced during the 1950s has also been
helpful in the interpretation of what is happening during what is known as run-
and-twiddle (RT) adaptive learning. It has been shown that a semi-martingale is
constructed with a stopping time strategy during each adaptive learning episode.
Future work will include various families of neighborhoods as a basis for defining
a learning rate.
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