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Abstract. Detection of natural selection at the molecular level is one of
the crucial problems in contemporary population genetics. There exists
a number of statistical tests designed for it, however, the interpretation
of the outcomes is often obscure, because of the existence of factors like
population growth, migration and recombination. In his earlier work, the
author has proposed the multi-null methodology, and he applied it for
four genes implicated in human familial cancer: ATM, RECQL, WRN
and BLM. Because of high computational effort required for estimat-
ing critical values under nonclassical nulls, mentioned methodology is
not appropriate for selection screening. In the current paper, the author
presents novel, rough set based methodology, helpful in the interpreta-
tion of tests outcomes applied versus only classical nulls. This method
does not require long-lasting simulations and, as it is shown in the paper,
it gives reliable results.

Keywords: rough sets, natural selection, ATM, BLM, RECQL, WRN,
neutrality tests.

1 Introduction

Widely accepted Kimuras neutral model of evolution [1] states that, at the molec-
ular level, the majority of genetic variation is caused by the selectively neutral
forces like silent mutations and a genetic drift. Nevertheless, the model does not
contradict the existence of selection at molecular level, although the role of it is
not so important, as it had been thought before Kimuras work. When this work
was published and, after some discussion, accepted, the majority of the genome
was assumed to be selectively neutral. However, it is obvious that some muta-
tions must be deleterious (and in fact we know many of such mutations causing
serious genetic dysfunctions), some must be selectively positive (at least when
the environment is changing) and some are known to be responsible for a phe-
nomenon called balancing selection. Perhaps the most representative example of
a positive selection is the ASMP locus, which is a major contributor to the brain
size in primates [2,3]. Yet, even if the number of positive selections found grows
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up, the evidence for balancing selection is not so numerous. Therefore, the de-
tection of the signatures for balancing selection operating at the molecular level
remains one of the crucial problems in contemporary population genetics.

There exists a number of statistical non-neutrality tests [4,5,6,7] designed for
the detection of such a selection in a gene under study. However, the interpre-
tation of the outcomes of tests is hard because of the existence of factors like
population growth, migration and recombination, which are not included in clas-
sical null hypothesis [8]. In his earlier work (published in part in [9] and in part
unpublished), the author has proposed the multi-null hypothesis methodology,
and using it, he was able to detect the signatures of a balancing selection in
genes implicated in human familial cancer: in ATM (ataxia-telangiectasia mu-
tated) and in a helicase involved in a repair of the DNA called RECQL. He also
confirmed no evidence of such a selection in two other DNA helicases: WRN
(Werners syndrome, see [10]) and BLM (Blooms syndrome, see [11]).

Because of high computational effort required for computing (by computer
simulations) the critical values of the tests under nonclassical null hypotheses,
the methodology proposed earlier is not appropriate as a screening tool. In a
current paper the author presents rough set based methodology, helpful in the
interpretation of tests outcomes, applied versus only classical nulls. The use of
rough set theory for knowledge processing was dicated by the fact that test
outcomes can be naturally discretized to a few values only, such as statistically
non signinficant, statistically signinficant, or strongly statisctically significant.
Moreover, since the critical values for classical null hypotheses are known, this
method does not require time-consuming computer simulations and, as it is
shown in the paper, it gives relatively reliable results.

2 Materials and Methods

As genetic material for this study, there was taken the single nucleotide polymor-
phisms (SNP) data, taken from the intronic regions of target genes. They form
haplotypes, which can be used as tools to investigate the genetic diversity and
possible disease associations. The first locus analyzed is ataxia-telangiectasia mu-
tated (ATM) [12,13]. The ATM gene product is a member of a family of large
proteins implicated in the regulation of the cell cycle and in the response to
DNA damage. The other three genes include: human helicase RECQL, Blooms
syndrome (BLM) and Werners syndrome (WRN). The products of these three
genes are DNA helicases, enzymes involved in various types of DNA repair, in-
cluding mismatch repair, nucleotide excision repair, and direct repair. A number
of interesting facts about these genes were determined, including the question of
selection signatures, addressed by the author and his co-workers [9].

The ATM gene, located in human chromosomal region 11q22-q23, spans 184
kb of genomic DNA. The intron-exon structure of the WRN locus spanning 186
kb at 8p12-p11.2 includes 35 exons, with the coding sequence beginning in the
second exon. RECQL is composed of 15 exons, located at 12p12-p11 and spans
180 kb, whereas BLM, mapped to 15q26.1, has 22 exons and spans 154 kb. Blood
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samples for this study were collected from the residents of Houston, TX, from
four major ethnic groups: Caucasians, Asians, Hispanics, and African-Americans.

To detect departures from the neutral model, the following statistics were
used: Tajimas (1989) T (for uniformity, we follow here the nomenclature of Fu
[5] and Wall [7]), Fu and Lis (1993) F ∗ and D∗, Kellys (1997) ZnS and Walls
(1999) Q and B, as well as Strobecks S test. The definitions of these statistics
can be found in original works of the inventors, as well as, in a brief form, in
Cyran et. al. (2004) pilot study [9].

In this study the rough set based method is used to simplify the process of
determining whether the given gene is exhibiting the signatures of balancing se-
lection or not. Such a selection (if present) is reflected by statistically significant
departures from the null of the Tajimas and Fus tests towards positive values.
However, not all such departures are indeed caused by a balancing selection
[8], since such factors like population change in time, migration between sub-
populations and a recombination can be reflected by similar outcomes of these
tests. Therefore, a wide range of tests was included and the problem with the
interpretation of their combinations occurred.

In order to apply a rough set based methodology, the decision table was built
with tests outcomes treated as conditional attributes and a decision about the
balancing selection treated as the only decision attribute. Fortunately, basing on
previous studies, using multi-null methodology and heavy computer simulations,
the author was able to determine the value of this decision attribute for given
combination of conditional attributes. The purpose of this work was to propose
and verify that the automatic and reliable interpretation of the battery of tests
outcomes (perhaps without using all of them) can be done without application
of the time consuming multi-null strategy. Therefore, to find the required set
of tests, which is informative about the problem, there was applied the notion
of a relative reduct with respect to decision attribute. Also, in order to obtain
as simple decision rules as possible, the relative value reducts were used for
particular elements of the Universe. To study the generalization properties and
to estimate the decision error, the jack-knife crossvalidation technique was used.

3 Results and Discussion

The haplotypes for particular loci were inferred and their frequencies were es-
timated by using the Expectation-Maximization algorithm [14]. The results of
tests T , D∗, F ∗, S, Q, B and ZnS , together with the decision concerning the
evidence of balancing selection based on multi-null methodology, are given in
Table 1.

The rough set based analysis of the Decision Table 1 reveals that there exist
two relative reducts: RED1 = {D∗, T, ZnS} and RED2 = {D∗, T, F ∗}. It is
clearly visible that the core set is composed of tests D∗ and T , whereas tests
ZnS and F ∗ can be chosen arbitrarily, according to the automatic data analysis.
However, since it is known that both Fus tests F ∗ and D∗ are examples of tests
belonging to the same family, and therefore their outcomes are rather strongly
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correlated, it is advantageous to choose Kellys ZnS instead of F ∗ test. It is
so, because ZnS outcomes are theoretically less correlated with outcomes of
test D∗, belonging, as it was stated above, to the core and therefore required
in any reduct. Generally, the same rule should be applicable also to the cases
when the number of reducts is larger than two. However, the actual choice of
the appropriate reduct in such a case can be more difficult, and the advise of
a genetician should be of great relevance. The Decision Table 1 with set of
conditional attributes reduced to the set RED1 is presented in Table 2.

Table 1. The outcomes of the statistical tests for the classical null hypothesis. The
table includes: Fus D∗ test Walls B test, Walls Q test, Tajimas T test (known also
as Tajimas D), Strobecks S test, Kellys ZnS test, and Fus F ∗ test. The values of the
test are: Non significant (NS) when p > 0.05, significant (*) if 0.01 < p < 0.05, and
strongly significant (**) when p < 0.01. The last column indicates the evidence or no
evidence of balancing selection, based on the detailed analysis according to multi-null
methodology.

D∗ B Q T S ZnS F ∗ Balancing selection

AfAm * NS NS * NS NS * Yes
ATM Cauc * NS NS ** ** * ** Yes

Asian NS NS NS * NS * NS Yes
Hispanic * NS NS ** NS * * Yes

AfAm NS NS NS ** NS NS NS Yes
RECQL Cauc * NS NS ** NS NS ** Yes

Asian NS * * * NS * NS Yes
Hispanic * NS NS ** NS NS * Yes

AfAm NS NS NS NS NS NS NS No
WRN Cauc * NS NS NS NS NS NS No

Asian * NS NS NS NS NS NS No
Hispanic NS NS NS NS NS NS NS No

AfAm NS NS NS NS NS NS NS No
BLM Cauc NS NS NS * NS NS * No

Asian NS NS NS NS NS NS NS No
Hispanic NS NS NS NS NS NS NS No

After a reduction of the set of informative tests to set RED1 = {D∗, T, ZnS},
there was considered the problem of coverage of the discrete space generated by
these statistics, by the examples included in the training set. The results are
given in Table 3, and they reveal that in such a space the fraction of points,
which are included in training data, is only 30%. The next step was to apply the
notion of the relative value reducts to particular decision rules in the Decision
Table 2. The resulting new Decision Table is presented in Table 4. Basing on
this table, the Decision Algorithm 1 was obtained. Note that this algorithm
is simplified as compared to the algorithm that corresponds to the Decision
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Table 2. The Decision Table, in which the set of tests is reduced to relative reduct
RED1 composed of tests: D∗, T , and ZnS

D∗ T ZnS Balancing selection

AfAm * * NS Yes
ATM Cauc * ** * Yes

Asian NS * * Yes
Hispanic * ** * Yes

AfAm NS ** NS Yes
RECQL Cauc * ** NS Yes

Asian NS * * Yes
Hispanic * ** NS Yes

AfAm NS NS NS No
WRN Cauc * NS NS No

Asian * NS NS No
Hispanic NS NS NS No

AfAm NS NS NS No
BLM Cauc NS * NS No

Asian NS NS NS No
Hispanic NS NS NS No

Table 2. At the same time, it is more general, which can be observed in Table 5,
presenting the information analogous to Table 3. In Table 5, the coverage of
points is based on the number of points which are classified with the use of the
simplified Algorithm 1. One should notice that the fraction of points covered
by algorithm is 74%, however, since 11% is classified as both with and without
the evidence of balancing selection, therefore only 63% of the points could be
treated as really covered.

Algorithm 1

BALANCING_SELECTION If: T = ** or (T = * and D* = *) or ZnS = *
NO_SELECTION If: T = NS or (T = * and D* = NS and ZnS = NS)

Purely automatic knowledge processing technique resulting in Algorithm 1,
can be further improved by supplying it with the additional information, con-
cerning the domain under study. It is clearly true that, if a balancing selection
is determined by the statistical significance of the given test, then such a selec-
tion is even more probable when the outcome of this test is strongly statistically
significant.

Therefore, instead of equalities in Algorithm 1, there are proposed inequalities
in the generalized version referred to as Algorithm 2. Such inequality means that
the given test is at least of the value of statistical significance shown to the right
of the inequality sign, but it can obviously be also more significant. In other
words, the main difference between Algorithm 2, as compared to the Algorithm
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Table 3. The discrete space of three tests: D∗, T and ZnS . The domain of each test
outcome (coordinate) is composed of three values: ** (strong statistical significance
p < 0.01), * (statistical significance 0.01 < p < 0.05), and NS (no significance p > 0.05).
The given point in a space is assigned to: S (the evidence of balancing selection), N (no
evidence of balancing selection) or empty cell (point not covered by the training data).
The assignment is done basing on raw training data with conditional part reduced
to the relative reduct RED1 . Note that the fraction of points covered by training
examples is only 30%.

T
∗∗ ∗∗ NS

ZnS ZnS ZnS

∗∗ ∗ NS ∗∗ ∗ NS ∗∗ ∗ NS

∗∗
D∗ ∗ S S S N

NS S S N N

Table 4. The set of tests is reduced to reflect the relative reduct composed of tests:
D∗, T , and ZnS , and additionally the notion of relative value reduct is used to further
reduce the complexity of separate rows in a decision table

D∗ T ZnS Balancing selection

AfAm * * Yes
ATM Cauc ** Yes

Asian * Yes
Hispanic ** Yes

AfAm ** Yes
RECQL Cauc ** Yes

Asian * Yes
Hispanic ** Yes

AfAm NS No
WRN Cauc NS No

Asian NS No
Hispanic NS No

AfAm NS No
BLM Cauc NS * NS No

Asian NS No
Hispanic NS No

1, is that instead of formulas of the type testoutcome = ∗ it uses formulas of the
type testoutcome >= ∗, meaning that the test outcome is at least significant
(and perhaps strongly significant).

Algorithm 2 deals also with the problem of contradiction, and in such a case, it
generates no decision about the evidence of balancing selection in a gene under
study. The problem of covering points in a discrete space generated by three
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Table 5. The discrete space of three tests: D∗, T and ZnS , forming a relative reduct.
The domain of each test outcome (coordinate) is composed of three values: ** (strong
statistical significance p < 0.01), * (statistical significance 0.01 < p < 0.05), and NS
(no significance p > 0.05). The given point in a space is assigned to S and N (with the
meaning identical to that given in the caption of Table 3), or ”-” having the meaning of
contradiction between evidence and no evidence of the balancing selection. The space
is filled basing on the simplified Decision Algorithm 1, which uses the relative value
reducts varying among different training examples. Note that the fraction of points
covered is now 74%, but it includes 11% denoting the contradicting decisions, and such
a case should be treated as the lack of decision. Therefore, the real fraction of points
assigned with some decision is now 63%.

T
∗∗ ∗∗ NS

ZnS ZnS ZnS

∗∗ ∗ NS ∗∗ ∗ NS ∗∗ ∗ NS

∗∗ S S S - N
D∗ ∗ S S S S S S - N

NS S S S S N - N

tests in Algorithm 2 is presented in Table 6. This table shows that all points are
covered by Algorithm 2, yet since 22% are designated as contradictions, therefore
78% points in a space are really recognizable by this algorithm.

Moreover, the remainding fraction of 22% of points with no decision assigned
to them, are such points which denote situations that are extremely rare from
genetics point of view. Namely, these are the situations where the outcome of the
Tajima test T is non significant and, at the same time, the outcome of the Kelly
ZnS test is significant or even strongly significant. Such a situation has never
happened for any gene, for any population and for any of the null hypothesis,
considered in the detailed multi-null study. Therefore, even if one cannot totally
exclude such situations from theoretical point of view, in practice one meets
them very rarely.

Algorithm 2

BALANCING_SELECTION := False; NO_DECISION := False;
If T >= ** or (T >= * and D* >= *) or ZnS >= * then

BALANCING_SELECTION := True;
If T = NS or (T = * and D* = NS and ZnS = NS) then

If BALANCING_SELECTION then
NO_DECISION := True

else
BALANCING_SELECTION := False;

The comparison of Table 3 with Tables 5 and 6 shows the degree of generaliza-
tion (into unknown combinations of the tests outcomes). It was increased by the
application of rough set theory (Table 5) and by additional genetic knowledge
(Table 6). Both these strategies, when applied together, resulted in a relatively
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Table 6. The discrete space of three tests: D∗, T and ZnS , forming a relative reduct.
The domain of each test outcome (coordinate) is composed of three values: ** (strong
statistical significance p < 0.01), * (statistical significance 0.01 < p < 0.05), and NS (no
significance p > 0.05). The given point in a space is assigned to S, N or ”-” (with the
meaning identical to that given in captions of Tables 3 and ??). If any character is in
parentheses, it means, that the point is assigned to the given value not automatically.
Rather, the simple reasoning is used. It states that the selection is even more probable
for given test showing strong significance (**), when automatic knowledge acquisition
indicated such selection for this test being just significant (*) with the values of other
tests unchanged. The assignment in Table 6 is done basing on the Decision Algorithm 2,
which, similarly to Algorithm 1, uses the relative value reducts varying among different
training examples. Note that the fraction of points covered by the algorithm is now
100%, but 22% denotes the contradiction in the decision, and such a case should be
treated as the lack of decision. Therefore, the fraction of points really assigned with
the decision is now 78%.

T
∗∗ ∗∗ NS

ZnS ZnS ZnS

∗∗ ∗ NS ∗∗ ∗ NS ∗∗ ∗ NS

∗∗ S S S (S) (S) (S) (-) - N
D∗ ∗ S S S S S S (-) - N

NS S S S (S) S N (-) - N

high increase of covering of the space generated by test outcomes (from 30%
covered by the training examples, to 78% covered by the Algorithm 2).

However, here the question could be raised, what is the probability of correct
generalization into unknown situations. To study this problem, there was applied
automatic knowledge extraction procedure presented above, in the so-called jack-
knife cross-validation, which is known to be unbiased in estimating the decision
error of any classifier. Classical jack-knife strategy assumes that the training is
performed basing on all-but-one training examples, and that the testing is done
for the excluded example. After iterating this procedure N times (where N is the
number of training facts), the average of decision errors in separate iterations is
an unbiased estimate of the decision error. However, in case considered such a
strategy could give too optimistic results, because training facts describing one
gene in four different populations are not independent, and even after excluding
one of them some knowledge about it is passed to the classifier. That is why, to be
rigorous about the conclusions, the author decided to exclude from the iterations
all four examples concerning one particular gene, and perform training basing
on examples concerning three remaining genes.

The detailed presentation of results of cross-validation is beyond the scope of
this paper. Here, the author would only like to point out that relatively large
decrease of the number of training examples, which was the result of the assumed
strategy, could produce pessimistic estimates of the decision error. However, it
proved that even such pessimistic estimate as can be seen in Table 7, is small
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enough (12.5% with a variation between iterations equal to 0.0156) to claim that
the proposed methodology could be utilized as useful tool in looking for candi-
dates for more detailed analysis with computationally more requiring strategy,
like the multi-null methodology. The last statement is based on the fact that
as much as 87.5% correct recognitions of balancing selection for unknown genes
were done when the proposed rough set based methodology was applied, with
completely no need for performing long-lasting computer simulations for calcu-
lation of critical values of tests under non-classical null hypotheses (as required
by multi-null methodology). The results of cross-validation procedure are also
summarized in a form of confusion matrix in Table 8.

Table 7. The results of the cross-validation in a modified jack-knife strategy

Iteration Errors in populations Percentage of Decision
without gene African-American Caucasian Asian Hispanic correct decisions Error

ATM Y N N N 75% 25%
RECQL N N N N 100% 0%
WRN N N N N 100% 0%
BLM N Y N N 75% 25%
Average: 87.5% 12.5%

Table 8. The confussion matrix of the cross-validation test

Prediction

Lack of balancing selection Balancing selection

Actual Lack of balancing selection 7 1

value Balancing selection 1 7

4 Conclusion

Since the time of Kimura’s book [1] the search for the signatures of natural
selection at molecular level has become one of important directions in genetics.
However, many non-neutrality tests generate similar patterns for such depatures
from neutral model like population growth or substructure of population. Since
these factors influence different tests in a different way, the battery of tests can
be more informative than any separate one. The problem of interpretation of
a battery of such tests was considered in a paper. It proved that the rough
set based decision making system can correctly (i.e with the concordance with
time consuming mulit-null methodology) recognize 87.5% of cases of balancing
selection for genes not used in a training.
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