
Towards Agent-Based Evolutionary Planning
in Transportation Systems�
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Abstract. In this paper problems of planning in transportation systems based
on Pickup and Delivery Problem with Time Windows (PDPTW) are discussed.
The results of two variants of evolutionary algorithms illustrate the pros and cons
of using different approaches, and their cooperation in hybrid island model in-
dicates how they can help each other in achieving better solutions. This leads
to the general idea of an agent-based cooperative system, in which many differ-
ent techniques may be used simultaneously, exchanging the obtained solutions.
Experimental study of such a system that uses evolutionary algorithms and tabu
search concludes the work.
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1 Introduction

It is rather obvious that effective organisation of transportation systems allows compa-
nies to highly limit sustained costs and be more competitive on the market. This could
hardly be achieved without adequate tools, which should support transport planning on
the basis of acquired knowledge on available resources, incoming requests and road
network structure. Critical situations analysis seems to be of vast importance for such
planning. Yet, even though there is a wide selection of planning techniques, most of
them assume a complete description of both resources and requests available a priori.
Thus it is very difficult (or even impossible) to apply them to dynamic problems, and
even more difficult, with unsure and incomplete knowledge.

The goal of the research partially reported in this paper is to create concepts and
tools, that should manage planning in dynamic environments of multi-agent systems in
the face of crisis, considering transportation systems as a particular case. Based on a
general scheme of crises management in MAS, as well as preliminary results obtained
in the field of transportation systems [7], several possible variants of planning-support
techniques were already considered [2]. In this paper special attention is paid to evolu-
tionary techniques as a tool for solving static transportation problems, moving to coop-
erative systems, which should be flexible enough to be used in dynamic environments.
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Still the paper does not touch dynamic problems, but rather shows how different tech-
niques or different configurations of similar techniques can help one another, attaining
better results than when used alone.

Section 2 introduces a particular transportation problem considered in the paper, that
is Pickup and Delivery Problem with Time Windows (PDPTW). In section 3 there is
a discussion of evolutionary algorithms dedicated to solving transportation problems,
with special attention to the advantages and shortcomings of different approaches. Se-
lected experimental results that illustrate the described algorithms are presented in the
next section. Section 5 introduces the idea of a cooperative system that allows for ex-
changing of solutions between different algorithms solving transportation problems,
and finally section 6 provides an experimental study of the system at work.

2 Research on Transportation Problems

Typical transportation problems are based on a set of requests being realised by a set
of available vehicles. Vehicles are characterised by their capacity and speed, and re-
quests by the required capacity of vehicles and a time period (known as time window)
within which the pickup and delivery operations have to take place. In a more widely
researched Vehicle Routing Problem with Time Windows (VRPTW) with each transport
request only one location point (either pickup or delivery) is associated, but in Pickup
and Delivery Problem with Time Windows (PDPTW) each request is characterised by
both a pickup and delivery location. The quality of a solution depends on the number
of vehicles used and the total distance travelled. Sometimes, to express the quality of
a solution, a total travel time of vehicles and a total waiting time of vehicles before
the start of any time window is also considered. In problems with hard time windows,
it is absolutely necessary that pickup and delivery operations start in the given time
window. In problems with soft time windows, pickup and delivery operations may start
after the end of this time period, but in estimating the quality of a solution, a penalty
for the delay may be taken into account (higher delay may result in higher penalties).
The problems have numerous practical applications — for example in planning sea and
air transport, different kinds of cargo services and transport services on demand (for
example transport of handicapped for treatment) or taxi-share services.

A set of benchmark tests for VRPTW was proposed by Solomon and extended by
Gehring and Homberger. Li and Lim proposed a similar set of benchmark problems
to verify the quality of the algorithms for PDPTW [9]. Benchmarks are divided into
different groups depending on the number of requests to be served and locations to
be visited (about 100, 200, 400 locations etc.). For each group six classes of tests are
distinguished: on one hand due to the characteristics of time windows (problems with
small time windows and a short scheduling horizon — LR1, LC1, LRC1, as well as with
large time windows and a long planning horizon — LC2, LR2, LRC2), on the other due
to the spatial distribution of requests (request locations may be grouped into clusters
— LC1, LC2, evenly distributed — LR1, LR2, and there are also mixed problems with
some request locations in clusters and some randomly distributed — LRC1, LRC2).

Due to the complexity of the described transportation problems (mainly on account
of many constraints) nowadays the most promising approximate solutions provide
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heuristic approaches (accurate solutions are not attainable because of NP-hardness of
the problem). The majority of algorithms are based on the generation of an initial solu-
tion using some simple heuristics (like insertion heuristic, sweep heuristic or partition
heuristic), which is optimised afterwards using some metaheuristics. The proposed al-
gorithms for VRPTW are numerous and it would be difficult to list them here. However
it is worth mentioning that when comparing different VRPTW solving algorithms [1],
hybrid evolutionary approaches achieve the best results. The approach based on the
tabu search and simulated annealing [5] provided the best solutions obtained so far for
PDPTW. Many other interesting approaches to PDPTW are also based on tabu search,
e.g. [6,4].

3 Evolutionary Approach to Transportation Problems

Evolutionary algorithms are based on iterative transformation of the population of in-
dividuals potential solutions of the given problem. Evolution consists on generating
consecutive generations, using so called genetic operators (or variation operators) and
the selection mechanism.

Most evolutionary algorithms for transportation problems use direct representation
of solutions [1] – each individual consists of consecutive locations assigned to partic-
ular routes. Such representation assumes no coding, which results in genetic operators
operating directly on solutions. This guarantees the generation of acceptable solutions,
which is easily achieved introducing genetic operators based on existing optimisation
algorithms dedicated to transportation problems (e.g. pointed out in the previous sec-
tion). Also the initial population is not generated randomly, as for typical evolutionary
algorithms, but by using some existing construction heuristics. Several criteria consid-
ered for transportation problems are often aggregated (e.g. as a weighted sum) into a
single value, which may be used as the fitness of individuals.

The discussed approach [3] is based on GENEROUS algorithm, which uses direct
representation as described above. Two recombination operators: based on sequence
(SBX) and route exchange (RBX), allow an improvement of the total distance, yet can
hardly reduce the number of vehicles. Thus two mutation operators: one level (1M) and
two level (2M) exchange, aim at emptying (the shortest) routes. Third mutation operator
works as a local optimiser based on or-opt technique. If the solution cannot be repaired
(there are unserved locations), it is rejected and the whole process is repeated [8].

This algorithm was adapted for the PDPTW problem, leaving the same representa-
tion, as well as slightly modified SBX recombination and 1M mutation operators. Also,
additional recombination operator for exchanging best routes and mutation operators
based on the concept of ghost routes were introduced. The initial population is gener-
ated using a clustering technique in the first phase and a modified sweep heuristic [5] to
fill in the population up to the assumed size in the second phase. Tournament selection
was used with individual comparison based on three criteria: the number of routes, a
total distance, and a total waiting time, considered one by one in the given order.

In general the process of evolution should tend to generate better individuals and
finally to find the needed (usually approximate) problem solution, which quality de-
pends on the operators used and the parameters of the algorithm. Yet, evolutionary
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computation often suffers from the loss of population diversity, which practically hin-
ders further search. This means that the algorithm locates the basin of attraction of some
local optimum instead of a global one. This is especially important considering trans-
portation problems with direct representation, because of introduced constraints, which
often eliminate many new individuals from the population.

That is why a second considered variant of evolutionary algorithm utilized a par-
tial representation of the solution, which consisted of only pickup locations. For such
representation genetic operators for travelling salesman problem might be used. Also
the initial population could be generated randomly. An insertion heuristics [5] allowed
for transformation of every individual into a feasible complete solution. It was chosen
because of its low computational complexity (it must be used for every individual in
every generation), yet unfortunately permitted different individuals to be transformed
into the same, often weak solution. Selection and fitness evaluation was realised in the
same way as for the previous algorithm.

4 Experimental Comparative Study of the Evolutionary
Approaches

Various experimental studies were conducted in order to compare the performance of
the above-described algorithms [3]. Below, only selected results allowing for drawing
preliminary conclusions are presented. The results were obtained for 100-location prob-
lems with even distribution of request locations, with small (LR1) and large (LR2) time
windows. Tables 1 and 2 show the benchmark results [9] and the best individual ob-
tained averaged over 3 independent runs of each algorithm, with the population of 125
individuals evolving for 125 generations.

Table 1. Results obtained for problems with small time windows (LR1)

benchmark GEN1 GEN2 GEN1+GEN2
problem routes distance routes distance routes distance routes distance
lr101 19 1650.8 19 1744.5 19 1650.8 19 1650.8
lr102 17 1487.6 17 1580.9 17 1575.1 17 1523.9
lr103 13 1292.7 14 1550.1 13 1421.2 13 1369.8
lr104 9 1013.4 10.7 1149.9 11 1244.7 9.5 1037.2
TOTAL 58 5444.4 60.7 6025.4 60 5891.7 58.5 5581.8

For problems with small time windows (table 1) the results were quite good – both
algorithms could find solutions very close to the benchmark ones (but one must re-
member that one vehicle more in the obtained solution gives a considerable relative
difference to the benchmark value). The situation was slightly different for large time
windows (table 2) – even though the number of vehicles obtained by both algorithms
was still comparable to the benchmark result, the total distance was worse for the algo-
rithm with direct representation (GEN1), and much worse for the algorithm with partial
representation (GEN2).
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Table 2. Results obtained for problems with large time windows (LR2)

benchmark GEN1 GEN2 GEN1+GEN2
problem routes distance routes distance routes distance routes distance
lr201 4 1253.2 4 1419.1 4 1923.5 4 1328.4
lr202 3 1197.7 4 1398.9 4 1734.9 4 1341.2
lr203 3 949.4 3 1224.4 3 1849.6 3 1115.3
lr204 2 849.1 3 1099.7 3 1494.1 3 1110.9
TOTAL 12 4249.4 14 5142.1 14 7002.1 14 4895.9

The reasons for the weak results obtained seem to be different for the algorithms
discussed. As already suggested and illustrated by figures 1, the first algorithm suf-
fered from the lack of diversity in the evolving population, which inhibited its search
capabilities from ca. 40-50 generation. One may notice that the second algorithm main-
tained the diversity for the whole run. The reason for weak results in this case was the
heuristics used to generate complete solutions, as suggested in the previous section.
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Fig. 1. The number of different solutions (a) and the similarity of solutions (b) in algorithms
GEN1 and GEN2

The obvious conclusion drawn from these experiments was to use both algorithms
simultaneously, allowing to exchange the solutions during the search. This meets the
idea of the hybrid island model of parallel evolutionary algorithm, assuming that mi-
gration operator is responsible for conversion of the solutions between representations
used by both algorithms. The results presented in the third part of tables 1 and 2 are
quite promising and initially confirm the correctness of the approach.

5 Solution at a Cooperative Level

As it was illustrated in the previous section different algorithms applied to transporta-
tion problems have different strengths and weaknesses, e.g. some may be better suited
to solving problems with small time windows and other for problems with large time
windows. This is also confirmed by benchmark results – the best known solutions
for a given test case are often obtained by different algorithms [9]. Preliminary re-
sults obtained for the discussed dual-population evolutionary algorithm indicated that
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cooperation of different approaches should allow to achieve more flexibility and pro-
duce better results for a variety of test cases.

That is why the environment was developed that facilitates the cooperation of differ-
ent algorithms solving PDPTW (with both hard and soft time windows), by means of
exchanging solutions or even parts of solutions (routes, requests served in the routes).
The system model and architecture is based on a multi-agent approach and consist of
several embedded sub-environments which contain computational agents [3]. There are
two kinds of agent groups:

– standard groups – applying the algorithms proposed by [5] based on tabu search
and simulated annealing,

– evolutionary groups - take advantage of algorithms presented above.

Of course the optimisation is performed simultaneously by different agents using dif-
ferent algorithms.

The quality function used has the following form:

f = αN + β D+ γCD+ δWT + εP (1)

where: NV – the number of vehicles, TD – total distance, SD – total service realisation
time, WT – total waiting time, P – total lateness, α – weighing factor of the number
of vehicles (in tests equals 5000000), β – weighing factor of the total distance (in tests
equals 1000), γ – weighing factor of total service realisation time (in tests equals 1),
δ – weighing factor of total waiting time (in tests equals 0.001), ε –weighing factor of
penalty caused by lateness (in tests equals 100). The quality of the solution decreases
with the increase of the value of the f function.

The important characteristic feature of the presented approach is a cooperative as-
pect of the computation process. Agents which represent different algorithms find the
routes and requests having the worst influence on the quality of solution (have the high-
est impact on the quality function). Each agent is then informed by other agents about
similar routes to their worst ones (identified by the central point calculated as the aver-
age of respective coordinates of request/delivery locations present in the given route),
and about the routes, where the other agents placed the most costly requests that were
analysed. On the basis of the obtained suggestions, the agent may modify its route or
even construct a new one, selecting the request from the route being replaced or from
other accessible routes and moving the other requests from the route being removed to
other feasible positions in other routes.

6 Results of the Cooperative Approach

The goal of the tests performed was to compare the quality of solutions offered by
the discussed cooperative algorithm with the quality offered by the considered meta-
heuristics used alone, as well as the quality of the best known solutions. Numerous
tests were performed for different sets of Li-Lim benchmarks, but as the space in this
paper is somewhat limited, only the most interesting results concerning the number of
vehicles and total travel distance are presented.
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To search a wide part of the solution space, different quality functions were applied
in the particular agents. These differences are consequences of different weights (some-
times randomly generated) of particular elements of the quality function. Thanks to this
approach, it was possible to take into consideration different kinds of solutions, for ex-
ample the ones that attached greater significance to the number of vehicles used, a total
distance or the arrival on time at service points. The difference between the results may
also be influenced by the fact that the cooperative approach used soft time windows and
thus allowed solutions with vehicles arriving late at service points, but their lateness
was penalised by an important factor.
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Fig. 2. Results for 100 locations: vehicles (a) and total distance (b) for LC1/LC2, vehicles (c) and
total distance (d) for LR1/LR2 and vehicles (e) and total distance (f) for LRC1/LCR2; dark bars
– results of our cooperative algorithm, fair bars – the best known solutions

The computational environment was composed of two groups of three agents of dif-
ferent types (tabu and evolutionary). If the basic algorithms were able to find the best
known solution, the meta-algorithms were unable to find a better one, unless it accepted
some lateness and penalty factor associated with it. In the situations when basic algo-
rithms were not able to find the best known solutions, the meta-algorithm sometimes
guaranteed an increase of solution quality. The best benefits of the introduced approach
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appeared in the problems with small time windows in the LR type problems. One can
also notice that the worst results were obtained for LRC problems and for long time
windows.

Figures 2 and 3 show the results obtained by the cooperative algorithm in comparison
to the best known solutions for benchmark problems with 100 and 200 request locations.
The figures include the results for cases with clusters, with even spatial distribution and
mixed clusters/distributed. For each figure, the results for small and large time windows
are presented. The number of used vehicles and a total travel distance for each group of
tests are presented in separate figures.
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Fig. 3. Results for 200 locations: vehicles (a) and total distance (b) for LC1/LC2, vehicles (c) and
total distance (d) for LR1/LR2 and vehicles (e) and total distance (f) for LRC1/LCR2; dark bars
– results of the cooperative algorithm, fair bars – the best known solutions

In table 3 the results obtained for cooperative algorithm are compared with the re-
sults obtained using only evolutionary island model based on algorithms presented in
the previous section and the multi-agent systems which uses only tabu-search heuris-
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tics. In the columns concerning the distances ”+” (”-”) means that cooperative algo-
rithm obtained better (worse) results with respect the total travel distance in the given
percentage of tests of the considered test class. In the columns concerning the number
of routes additional information is provided. It concerns a difference between the num-
ber of routes used by the cooperative solution and basic solutions (”+” – less routes, ”-”
– more routes).

Note that in the case of island model of evolutionary algorithm and multi-agent sys-
tem consisting of tabu agents sometimes not all benchmark problems in the given class
were solved. The table shows that mixing the solutions obtained from evolutionary and
tabu algorithms using the cooperative algorithm in general gives better results.

Table 3. Results obtained for cooperative approach in comparison to evolutionary algorithm and
agent-based tabu search

cooperative/evolutionary cooperative/agent-based tabu
problem routes distance routes distance
100 LC1 (25%,-1) (25%+),(25%-) (11%+)
100 LC2 (50%+) (25%+),(25%-)
100 LR1 (25%,+1) (75%+),(25%-) (10%,+1) (60%+)
100 LR2 (25%,+1) (100%+)
100 LRC1 (25%,+1) (100%+) (12.5%,+1) (75%+)
100 LRC2 (25%,+1) (75%+), (25%-) (37.5%+)
200 LC1 (25%,+1) (75%+), (25%-) (12.5,%+1) (50%+), (12.5%-)
200 LC2 (50%+), (25%-) (50%+) (37.5%+), (12.5%-)
200 LR1 (25%,+2),(25%,+1) (75%+) (50%,+2) (75%+), (25%-)
200 LR2 (25%,+1) (50%+), (50%-) — —
200 LRC1 (25%,+2),(25%,+1) (50%+),(50%-) — —
200 LRC2 (75%, +1) (25%+),(75%-) — —

The final total results are as follows:

– 33% was equal to the best known solutions,
– 22% was better than the best known solution, after the application of soft-time

windows and calculation of penalties,
– 14% was worse than the best know solutions obtained so far, considering the num-

ber of vehicles,
– 36% of results were worse then the best known solutions considering the total travel

distance.

7 Concluding Remarks

In this paper two different approaches of growing complexity for solving transportation
problems were presented. The results obtained using both systems do not differ sig-
nificantly from the best known solutions for the existing set of benchmark problems.
The cooperative approach not only allows to get slightly better results but also proves
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much more flexible. This is due to the use of soft time windows, because often it is
not possible to strictly predict times of the particular activities (like travel time, pickup
time, delivery time) or the definition of changes in the problem (due to breaking down
of the cars or withdrawing of requests). In relation to this, considering the possibility
of development of plans based on different definitions of quality function may make it
possible to find solutions which are more resistant to critical situations. It also makes it
possible to develop a set of plans which afterwards may be adapted to the current condi-
tions with respect to new or unpredicted events arising. Additionally, it may constitute a
basis for the development of solutions for dynamic problems (when new requests arrive
simultaneously while the vehicles are serving the previously accepted requests), which
will be the subject of further research.
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