Decision Tables in Petri Net Models

Marcin Szpyrka and Tomasz Szmuc

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Krakéw, Poland
mszpyrka@agh.edu.pl, tsz@agh.edu.pl

Abstract. Many monitoring and control computer systems contain a rule-based
system as a part of them. Such a rule based system is used to determine which ac-
tions should be taken depending on the data collected from sensors. For both em-
bedded and rule-based systems many different approaches have been proposed,
but it is hardly possible to find a formalism that can cope with both of them.
The paper deals with a problem of including decision tables into colour Petri
net models. A few kinds of decision tables are considered and methods of trans-
formation them into coloured Petri nets form called D-nets are presented. Both
non-hierarchical and hierarchical D-nets are considered in the paper.

1 Introduction

The use of formal methods for embedded system development is motivated by the ex-
pectation that performing appropriate mathematical analyses can contribute to the soft-
ware quality. Formal methods are usually used in the development of safety-critical
systems, i.e. systems that may result in injury, loss of life or serious environmental
damage upon their failure [9]. The high cost of safety-critical systems failure means
that trusted methods and techniques must be used for development. For such systems,
the costs of verification and validation are usually very high (more than 50% of the total
system development cost). Using of formal methods can reduce the amount of testing
and ensure more dependable products [3]].

Multiple embedded systems are control systems that monitor quantities of interest in
an environment. In response to changes in the monitored quantities they perform control
operations or other externally visible actions [1]]. The process of making decision which
actions should be performed may be based on a rule-based system that is incorporated
into such an embedded system. Thus, formal methods are useful for modelling of such
systems only if rule-based systems can be also expressed in the selected formalism.

Rule-based systems can be represented in various forms, e.g. decision tables, deci-
sion trees, extended tabular trees (XTT, [[7]]), Petri nets [4] etc. An interesting compari-
son of different forms of rule-based systems description can be found in [6]. Decision
tables seem to be the most popular form of rule-based systems presentation. They vary
widely in the way the condition and decision entries are represented. The entries can
take the form of simple true/false values, atomic values of different types, non-atomic
values or even fuzzy logic formulas.

A decision table represents a set of decision rules that can be given explicitly by an
expert or generated from analyzed data automatically, e.g. using rough sets approach

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 648-16371 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Decision Tables in Petri Net Models 649

[2]. The paper deals with a problem of including of an already constructed decision
table into a hierarchical colour Petri net model (CP-net [3] or RTCP-net [10]). Both
decision tables with atomic values of attributes [6] and with generalized rules are
considered in the paper.

The paper is organized as follows. Decision tables with atomic values of attributes
are described in section 2l Generalized decision tables are presented in section 3l Hier-
archical D-nets are considered in sectionfd] A more practical example of a decision table
is presented in section 3] Computer software for decision tables called Adder Designer
is described is section[6l The paper is shortly concluded in the final section.

2 Decision Tables with Atomic Values of Attributes

Let’s recall the definition of a decision table presented in [8]]. At first sight a decision
table can be treated as an extension of a knowledge representation system. Such a sys-
tem is a pair L = (U, A), where U is a nonempty, finite set called the universe, and A
is a nonempty, finite set of attributes. Every attribute a € A is a function a: U — V,
where V,, denotes the domain of a.

To transform a knowledge representation system into a decision table, we have to
distinguish two subsets of A called conditional (C) and decision (D) attributes respec-
tively. In case of a decision table the elements of the set U denote not any real objects,
but are identifiers of decision rules. Hence the symbol R will be used instead of U.
Therefore, a decision table is a tuple 7 = (R, A, C, D), where C, D C A.

Such a decision table is often called a table with atomic values of attributes (or
simple decision table, [6]). To construct such a decision table, we draw a column for
each conditional and decision attribute. Then, for every decision rule a row should be
drawn. We fill cells so as to reflect which decisions are generated for each combination
of conditions. An example of a simple decision table is shown in Tab.[Il

Table 1. Example of a simple decision table (77)

a b c d e
R1 1 2 1 1 1
R2 1 2 2 2 2
R3 2 1 1 1 1
R4 2 2 2 2 2
R5 3 1 2 2 1
R6 3 2 2 2 2
R7 4 1 1 2 1
R8 4 2 2 2 1

The table 7; contains three conditional and two decision attributes (C' = {a, b, c},
D = {d, e}). In this case, for each attribute its domain is a subset of natural numbers,
but in general other types are also possible (e.g. real, boolean, enumerated types, etc.)

To include the decision table 77 into a Petri net model (CP-net or RTCP-net), it must
be first transformed into a D-net [[11]]. A D-net is a non-hierarchical coloured Petri net

650 M. Szpyrka and T. Szmuc

that represents a set of decision rules. It contains two places: a conditional place (input
place) for values of conditional attributes and a decision place (output place) for values
of decision attributes. Types for these places are defined as the Cartesian product of
domains of conditional and decision attributes respectively.

Each decision rule is represented by one transition and its input and output arcs. The
conditional part of a rule is represented by the expression attached to the input arc of the
corresponding transition. Similarly, the decision part is represented by the expression
attached to the output arc.

D-nets are used as the bottom level pages in hierarchical models [10]. The condi-
tional and decision places are input and output ports respectively. The superpage (see
[3]) for such a D-net is used to gather all necessary information for the D-net and to
distribute the results of its activity. In other words, the superpage prepares a token that
represents a sequence of values of conditional attributes and that is next placed on the
conditional place. If at least one transition in the D-net is enabled, the token is removed
from the conditional place and a new token that represents a decision is added to the de-
cision place. Then the superpage removes the token and brings the decision into effect.
The D-net form of the decision table 77 is shown in Fig.[1l

1,2,1)

Fig. 1. D-net for the decision table 7;

The decision table presented in Tab. [[] contains values for all conditional attributes.
Methods based on the rough set theory can be used to reduce such a decision table.
The reduction algorithm consists in the elimination of conditions from a decision table,
which are unnecessary to make decisions specified in the table (see [8]).

Let’s consider the decision tables presented in Tab. 2l Some redundant values of
conditional attributes are omitted in the table. In such a case to transform a decision
table into a D-net variables have to be used. In this case we need two variables for
attributes @ and b. An variable attached to an attribute € C' can take any value that
belongs to the domain of the attribute.

Decision Tables in Petri Net Models 651

Thus before the transformation algorithm can be applied, the table 75 is represented
in the form shown in Tab.[3] For simplicity, the name of an variable is the same as the
name of the corresponding attribute. The D-net form of the decision table 73 is shown
in Fig.

Table 2. Example of a simple decision table (73)

R1
R2
R3
R4
RS
R6
R7 - -
R8 - -

WA R == Q

I =N =

W N = = = = = 0
PR = === Q

Table 3. Decision table 7> with variables

R1
R2
R3
R4
RS
R6
R7
RS

Q2 WA R == Q
ST =N = O
W = mm == o
PR — = = N — Q

Fig. 2. D-net for the decision table 7>

652 M. Szpyrka and T. Szmuc

3 Generalized Decision Tables

Encoding decision tables with the use of atomic values of attributes only is not sufficient
for many real applications. If the domains of attributes contain more than several values
it may be really hard to cope with the number of decision rules. To handle the problem
one can use formulas instead of atomic values of attributes. In such a case, a cell in
a decision table will contain a formula that evaluates to a boolean value for conditional
attributes, and to a single value (that belongs to the corresponding domain) for decision
attributes.

The result of this approach is a decision table with generalised decision rules (or
rules’ patterns). Each generalised decision rule covers a set of decision rules with atomic
values of attributes. Such decision tables will be called generalized decision tables.
An example of a generalized decision table is presented in Tab. Bl Domains for these
attributes are defined as follows:

V, =Vy=1{1,2,3,4,5},
Vo = Ve = {off , on}, (Boolean values)
Ve ={z,y,z}.

Table 4. Example of a generalized decision table

a b c d e
R1 a<4 b=on c=zx a+ 2 on
R2 a b=on c#y 3 off
R3 a=5 b c 2 —b
R4 a>2 b c#zx a—2 on
R5 a=2 b c=x 4 on

A generalized decision table can be also transformed into the D-net form (see Fig.).
Formulas that describe values of conditional attributes are usually attached to the guard
of the corresponding transition. The algorithm of transformation of a generalized deci-
sion table into the D-net form can be found in [LT]].

(a+2,0n)

la<4]

(ot

[c<>yl]

I e ()
D
R4 (a—2,0n)
[(a > 2) andalso (c <> x)]
(4,0n)

Fig. 3. D-net form of the decision table presented in Tab. 4l

Decision Tables in Petri Net Models 653
4 Hierarchical D-Nets

The main problem in the rule-based system design process is that it is difficult to cope
with systems having more than several rules. To simplify the design process a decision
table 7 =(R, A, C, D) can divided into a set of tables 7; = (R, A1,C41, D), -+, 7T, =
(Rn, Apn,Cy, D) such that Ry, -+, R, C R, R, N R; = 0 fori # j, R = U, Ri,
Ay, A, CAC, -, C,CCand C; =CnNA; fori=1,...,n.

Such decomposition for the rule-based system presented in Tab. [Blis shown in Tab.[3l

Table 5. Table 7> split into parts

a b c d
RI 1 1 1 1 a ¢ d c
R2 1 2 1 2 RS 2 1 1 R7 2
R3 4 1 1 2 R6 3 1 1 RS 3 2
R& 4 2 1 1

For each of the three decision tables a D-net (called sub-D-net) can be constructed as
it was shown in section2] Next such sub-D-nets are combine into one hierarchical struc-
ture. In order to design a hierarchical D-net, a superpage with a substitution transition
for each sub-D-net is constructed. The superpage for the consider rule-based system is
presented in Fig. Fl

al comat)
ol Cona) (Deciion)
D

Fig. 4. Superpage for the hierarchical D-net

The superpage together with three sub-D-nets constitute a hierarchical D-net. In this
case the superpage contains three different conditional places because we have three
different sets of conditional attributes. In general the set of rules can be divided into
subsets such that some of them share the same set of conditional attributes. In such
a case the number of conditional places in the corresponding superpage is less than the
number of sub-D-nets. In particular only one conditional place can be used.

On the other hand, the one conditional place is used if we define its colour as a union
[5]]. For the considered example the conditional place colour should be defined as C' =
C1U C2U C3. However, using of a few conditional places seems to be more practical.
The general scheme of a hierarchical D-net is shown in Fig.

654 M. Szpyrka and T. Szmuc

D-net (superpage)

Sub—D-net1

Sub—D—net2

Sub—D-netn

Fig. 5. General structure of a hierarchical D-net

5 Example

Let’s consider an example of computer network design, presented in Fig. [l [7]. It is
a typical configuration for many security-aware small office, or company networks.
The network is composed of three subnetworks: LAN (local area network), DMZ (the
so-called demilitarized zone), and INET (Internet connection). The subnetworks are
separated by a firewall having three network interfaces.

Cower)
|
Hl g lI

Fig. 6. Network firewall configuration

The firewall controlls the input and output and decides whether the request should be
accepted or rejected. Decision table for such a firewall system contains three conditional
(service, source address, destination address) and one decision attribute (routing). The
attribute Service stands for a type of the net service, attributes Srcaddr and Destaddr

Decision Tables in Petri Net Models 655

are connected with source and destination IP addresses respectively, and the attribute
Routing stands for the final routing decision. Domains for these attributes are defined
as follows:

Dservice = {ssh, smtp, hitp, imap},
Dsreadir = Dpestadar = {in(ft, dmz, lan};
DRouting = {aCCEPt, reject}.

A complete decision table for the firewall system (presented in Tab. [6)) contains
eleven positive and four negatives rules. The negative rules (without values of deci-
sion attributes) are used to state in an explicit way that the particular combinations of
input values (values of conditional attributes) are impossible or not allowed. The nega-
tive rules are used to check whether the table is complete and are usually omitted when
the corresponding D-net is generated.

D-net generated for the considered decision table is shown in Fig.[7l

Table 6. Decision table for the firewall system

Service Srcaddr Destaddr Routing
Service = hitp Srcaddr = inet Destaddr = dmz accept
Service = http Srcaddr = inet Destaddr = lan reject
Service = http Srcaddr = lan Destaddr accept
Service = smtp Srcaddr Destaddr = lan reject
Service = smtp Srcaddr Destaddr = dmz accept
Service = smitp Srcaddr = lan Destaddr = inet reject
Service = imap Srcaddr = lan Destaddr = dmz accept
Service = imap Srecaddr # lan Destaddr reject
Service = ssh Srcaddr = inet Destaddr reject

Service = ssh Srcaddr = lan Destaddr accept
Service = ssh Srcaddr = dmz Destaddr accept
Service = http Srcaddr = dmz Destaddr

Service = hitp
Service = imap
Service = smitp

Srcaddr = inet
Srcaddr = lan
Srcaddr # lan

Destaddr = inet
Destaddr # dmz
Destaddr = inet

6 Adder Designer

Manual analysis of a decision table can be time-consuming even for very small sets of
decision rules. Adder Designer supports design and analysis of both simple and genera-
lized decision tables. The tool is equipped with a decision table editor and verification
procedures.

Adder Designer is a free software covered by the GNU Library General Public Li-
cense. It is being implemented in the GNU/Linux environment by the use of the Qt
Open Source Edition. The Qt library is freely available for the development of Open
Source software for Linux, Unix, Mac OS X and Windows under the GPL license.
Code written for either environment compiles and runs with the other ones. Adder Tools
home page, hosting information about the current status of the project, is located at

656 M. Szpyrka and T. Szmuc

(http,inet,dmz) _ accept

(http,inet,lan)

(http,lan,Destaddr)

(smtp,Srcaddr,lan)

(smtp,Srcaddr,dmz)

(smtp,lan,inet) _ El—reject—>

(imap,lan,dmz) accept

>

(imap,Srcaddr,Destaddr)

[Srcaddr <> lan]

(ssh,inet,Destaddr) reject

(ssh,lan,Destaddr)

(ssh,dmz,Destaddr)

Fig. 7. D-net for the network firewall system

L adder -- fhome/marcin/adder/designer/examples/furnace.xml

Eile Edit Table Experimental Help

FEE oo XhEEEYESE

|Al:tribuhe| Domain ‘ £ Mode ‘ & ReqTemp| & Temp |@ Fumes |@ Mode |@ Devices
iMode iwith normal | antifreeze | error 1 |Mode = error ReqTemp Temp Fumes erron off
RegTemp int with 0..90 |2 |Mode = normal ReqTemp Temp < ReqTemp | Fumes = on normal on
Temp ReqTemp '3 |Mode = normal ReqTemp Temp == ReqTemp Fumes = on |normal off
Fumes bool with (off, on) |4 |Mode <=> error ReqTemp Temp Fumes = off erron off
Devices Fumes 5 |Mode = antifreeze ReqTemp Temp < 10 Fumes = on antifreeze on

6 |Mode = antifreeze ReqTemp | Temp == 10 Fumes = on antifreeze |off

7|

Table 1 J

*** Not covered states: **

Mot found.

Table is complete.

*** Not consistent sets of rules: *#
Not found.

Table is consistent.

Fig. 8. Example of Adder Designer session

http://adder.ia.agh.edu.pl. An example of Adder Designer session is shown in Fig. 8]
The figure contains a decision table for a home heating system with a boiler fueled by
natural gas and results of completeness and consistency (determinism) analysis.

Using of Adder Designer for design of decision tables consists of a few steps. It is
first necessary to define attributes selected to describe important features of the system
under consideration. There are possible three types of domains: integer, boolean and
enumerated data type. Moreover, a new domain may be defined as an alias for already

Decision Tables in Petri Net Models 657

defined one. Secondly, it is necessary to choose conditional and decision attributes.
Each attribute can be used twice. Finally, the set of decision rules should be defined.

The verification stage is included into design process. At any time, during the design
stage, users can check whether a decision table is complete, consistent (deterministic)
or it contains some dependent rules. Moreover, the tool enables users to pack a simple
decision table to a generalized one and vice versa.

The tool and the presented approach have been successfully used for developing
a few practical examples of rule-based systems, e.g. for a railway traffic management
system (22 attributes, 123 decision rules).

7 Summary

Methods of transformation of decision tables into a coloured Petri net form called D-net
were presented in the paper. The presented approach can be used to transform into
D-nets both simple and generalized decision tables. Moreover, it is also possible to
construct hierarchical D-nets that can be treated as a structural form of presentation of
rule based systems with many decision rules. The presented approach is supported with
computer tools for design and verification of decision tables.

References

1. Adamski, M., Karatkevich, A., Wegrzyn, M. (eds.): Design of Embedded Control Systems.
Springer Science+Business Media. Springer, Heidelberg (2005)

2. Bazan, J., Nguyen, S., Nguyen, T., Skowron, A., Stepaniuk, J.: Decision rules synthesis for
object classification. In: Ortowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp.
23-57. Physica-Verlag, Heidelberg (1998)

3. Cheng, A.M.K.: Real-time Systems. Scheduling, Analysis, and Verification. Wiley Inter-
science, New Jersey (2002)

4. Fryc, B., Pancerz, K., Suraj, Z.: Approximate Petri nets for rule-based decision making. In:
Tsumoto, S., Stowiniski, R., Komorowski, J., Grzymata-Busse, J.W. (eds.) Rough Sets and
Current Trends in Computing. LNCS (LNAI), vol. 3066, pp. 733-742. Springer, Heidelberg
(2004)

5. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, vol. 1—
3. Springer, Heidelberg (1992-1997)

6. Ligeza, A.: Logical foundations of rule-based systems. Studies in Computational Intelli-
gence, vol. 11. Springer, Heidelberg (2006)

7. Nalepa, G.J., Ligeza, A.: Designing reliable web security systems using rule-based systems
approach. In: Menasalvas, E., Segovia, J., Szczepaniak, P.S. (eds.) Advances in Web Intelli-
gence. LNCS (LNAI), vol. 2663, pp. 124-133. Springer, Heidelberg (2003)

8. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic
Publishers, Dordrecht (1991)

9. Sommerville, I.: Software Engineering. Pearson Education Limited, London (2004)

10. Szpyrka, M., Szmuc, T.: Integrated approach to modelling and analysis using RTCP-nets.
IFIP International Federation for Information Processing 227, 115-120 (2006)

11. Szpyrka, M., Szmuc, T.: D-nets — Petri net form of rule-based systems. Foundations of Com-
puting and Decision Sciences 31, 157-167 (2006)

	Introduction
	Decision Tables with Atomic Values of Attributes
	Generalized Decision Tables
	Hierarchical D-Nets
	Example
	Adder Designer
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

