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Abstract. Cryptography in its present state relies increasingly on com-
plex mathematical theories, e.g., elliptic curves, group theory, etc. We
address in this article the problem of proxy signatures and we set this
problem in the framework of Lie algebras. We show how to use a cho-
sen maximal set of differentiable automorphisms in order to carry out
the task of proxy signing. We also show possible attacks and the way to
protect against them.
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1 Introduction

1.1 Lie Algebras

Definition 1. Let K be a commutative field. We say that a linear space L over
K is a Lie algebra, if there is a bilinear operation

L × L � (a, b) → [a, b] ∈ L,

called the Lie bracket (Lie product), satisfying the conditions:

(a) [a, b] = −[b, a], (anty-symmetry)
(b)

[
a, [b, c]

]
+

[
b, [c, a]

]
+

[
c, [a, b]

]
= 0.

Condition (b) is called the Jacobi identity.

Obviously, condition (a) can be rewritten in an equivalent form: [a, a] = 0.

Fact 1. The set of all endomorphisms End(X), where X is a linear space, is a
Lie algebra with bracket defined as:

[f, g] = fg − gf,

for f, g ∈ End(X).
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Definition 2. Let A be a linear algebra over K, with an operation A × A �
(a, b) → a � b ∈ A. An endomorphism α : A → A is called a differentiation, if
for a, b ∈ A

α(a � b) = α(a) � b + a � α(b).

The set of all differentiations over the algebra A is denoted as Der(A).

Theorem 1. Der(A) is a Lie subalgebra of End(A).

Proof. Proof of this theorem is a simple algebraic computing.

Now, we consider some maximal set of pair-wise commuting differentiations and
we denote it as CDer(A), clearly, such a set is non-unique.
Fact 2. There exists a non-empty set CDer(A).

Proof. Let α ∈ Der(A). Then α is commutative with α. Composite αα ∈
Der(A), but α is commutative with αα too, etc. So that α, αα, . . . , αα . . . α
are pair-wise commuting, and the set {αn : n = 1, 2, . . .} extends to a maximal
set CDer(A).

Fact 1.2 shows that a set CDer(A) exists.

Theorem 2. CDer(A) is an algebra.

Proof. Proof of this theorem is a simple algebraic computing.

1.2 The Diffie-Hellman Problem

Let us recall the definition of discrete logarithm from [2].
Let F

∗
p = (Z/pZ)∗ = {1, 2, · · · , p − 1} be the multiplicative group of integer

numbers modulo a prime number p. Let g ∈ F
∗
p be a fixed element. The discrete

logarithm problem in F
∗
p at the base g is the problem of finding for the fixed

y ∈ F
∗
p of a natural number x, such that y = gx modulo p.

We remind now the Diffie-Hellman key exchange system (see [2]). Assume,
that Alice and Bob want to agree on a secret key in any cryptosystem with
private keys. Keys exchange occurs over an insecure communication channel, so
that an adversary Charlie knows the substance of all communicates, which are
sent between Alice and Bob. Alice and Bob agree at first on a large prime number
p and a base g. Then Alice in secret picks a random natural number kA < p (of
the same order as p) and computes the remainder from division of gkA by p and
the result is sent to Bob. Bob proceeds in a similar manner and sends to Alice
gkB ∈ F

∗
p keeping kB secret. The key agreed upon will be the number gkAkB .

The problem which Charlie is facing, is the Diffie-Hellman problem: having the
data g, gkA , gkB ∈ F

∗
p, compute gkAkB . It is worth to notice, that everyone who

can solve the discrete logarithm problem, can solve the Diffie-Hellman problem,
too.

In [1], the author generalizes the discrete logarithm problem and the Diffie-
Hellman problem to cyclic groups. We define the general discrete logarithm prob-
lem as follows: Let G =< a1, a2, · · · , an > be a cyclic group and f : G → G
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be a non identity automorphism. General discrete logarithm problem is to find
f(b) for any b ∈ G having given f(a) for some a ∈ G. In other words the general
discrete logarithm problem is to find the automorphism f knowing its action on
only one element.

Suppose now, that we have two non identity automorphisms ϕ, ψ : G → G
and that we know a, ϕ(a) i ψ(a). Then, the general Diffie-Hellman problem is
to find ϕ(ψ(a)).

2 Diffie-Hellman Problem in Lie Algebras

2.1 Key Exchange System

Alice and Bob want to agree on a private key for exchange of information over an
insecure channel. They agree on a Lie algebra L, a set CDer(A), and an element
g ∈ L. Alice picks randomly a differentiation α ∈ CDer(L), and an element
a ∈ L. She sends Bob the value α([g, a]). Bob picks at random a differentiation
β ∈ CDer(L), and he sends to Alice the value β(α([g, a])). Alice determines α−1

and computes β([g, a]) :

α−1(β(α([g, a]))) = α−1(α(β([g, a]))) = α−1α(β([g, a])) = β([g, a])

Now, Alice randomly chooses a next differentiation γ ∈ CDer(L), and computes
γ(β([g, a])) and then the result is sent to Bob. Alice can compute γ([g, a]) too,
and Bob, knowing the differentiation β, computes β−1 and finds γ([g, a]), (in
analogy to Alice’s computation). The value γ([g, a]) is their fixed key.

2.2 System Analysis

Notice, that Alice doesn’t show a, so the adversary Charlie knows L, g, α([g, a]),
β(α([g, a])) and γ(β([g, a])). To find γ([g, a]) is a problem which incorporates the
general discrete logarithm problem with the general Diffie-Hellman problem de-
scribed in [2]. We can restrict the problem to finding a differentiation β (exactly
β−1) having as information L, g, α([g, a]), β(α([g, a])) and γ(β([g, a])). The task
of finding β, can be reduced to computation α. Finally, the problem of finding
the key can be reduced to computing of the differentiation α knowing only the
action of α on one element [g, a]. An additional impediment for Charlie is the
fact, that he doesn’t know the element a, which Alice doesn’t show.

2.3 Sending Information

For simplifying of notation, we mark the earlier fixed key as x = γ([g, a]). Sup-
pose, that Alice wants to send to Bob an information m already converted to
an element from the Lie algebra L. Alice sends to Bob the element y = [m, x].
Bob knows the Lie algebra L, so he knows the Lie bracket and key x and he
can compute the value m. The difficulty of this computation will depend on
the specified Lie bracket and the internal multiplication in the algebra. For an
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example, for Lie algebra with the standard commutator and anti-commutative
internal multiplication, we have:

[m, x] = y

mx − xm = y

2mx = y

m = 2−1yx−1.

Adversary Charlie doesn’t know the key x, so he can’t decode the information
m. Further, if Alice computes the information hash H(m), and she sends to
Bob the algebra element z = [H(m), x], too, then Bob will be able to verify,
whether he gets the information in an unspoiled form. Analogically, to decipher
the information m, Bob will decifer the hashed message H(m), and he compares
whether what he has got is the same as the element H(m), which he got from
Alice. So, for increased security, Alice sends to Bob the pair (y, z).

3 Information Signature

In our algorithm, we can use the signature scheme with proxy signers, analogical
to scheme described in [4].

3.1 Notation

We mark original signer as P0 and proxy signers as {P1, P2, · · · , Pm}. We suppose,
that all signers Pi have private keys ai and the corresponding public keys Ai =
[ai, g], where g is Lie algebra’s element, certified by the central authority for
i = 0, · · · , m. Let w be a message created by the original signer P0. Moreover, we
will assume that H i H1 are some suitably chosen collision -free hash functions.

3.2 Group Secret Key Generation

P0 prepares the information w, and chooses randomly an algebra element r and
computes R = [r, g]. Next, he determines the value H = H(w, R) of the collision-
free hash function H. Having this data, P0 computes the group secret key,

d = [ao, H ] + r.

We notice, that d = d(R) and d = d(a0), where a0 is a private key of P0, thus only
P0 can compute d, moreover, the private key a0 of signer P0 is well protected by
randomly behaving hash function H. The public verification that the signature
is true is not difficult, too, because we have publicly known R and A0 :

d = [a0, H ] + r −→ [d, g] = [[a0, H ], g] + [r, g] = [A0, H ] + R

[d, g] = [[a0, H ] + r, g] = [a0H − Ha0, g] + [r, g] = [a0H, g] − [Ha0, g] + R
= [a0, g]H − H [a0, g] + R = [[a0, g], H ] + R = [A0, H ] + R.
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3.3 Group Secret Key Share

The original signer P0 selects a polynomial

f0(x) = c0(t−1)x
(t−1) + · · · + c01x + d,

where each ci for i = 1, · · · , t − 1 is a random algebra element. We see, that Lie
multiplication of any element by itself results in 0, so we specify power as internal
multiplication in algebra. Next, P0 computes C0i = [c0i, g] for i = 1, · · · , t − 1,
and he sends it to proxy signers Pi.

T ransfer : ({C0i = [c0i, g] : i = 1, · · · , t − 1}),

so that,
f0(x) = c0(t−1)x

(t−1+ · · · + c01x+ d
↓ ↓ ↓= a0H + r
C0(t−1) C01 HA0 + R

Let xi be the public identity of Pi. Now, P0 distributes the secret key d0 = f0(0)
distributing the values yi0 = f0(xi) for each Pi ∈ P, and he sends them by secret
channels.

P0 �−→ f0(x) =
t−1∑
i=1

c0ix
i + d d = a0H + r.

Each proxy signer can verify yi0 by the equation

[yi0, g] = A0H + R︸ ︷︷ ︸ +
t−1∑
j=1

xj
iC0j .

[d, g]

3.4 The Proxy Signature Generation

Now, each proxy signer Pi selects a secret polynomial

fi(x) = ci(t−1)x
t−1 + · · · + ci1x + ci0 + ai,

where cik for k = 1, · · · , t−1 is a random Lie algebra’s element and ai is a secret
key of Pi. Next, Pi computes and broadcasts Cik = [cik, g], for k = 0, · · · , t − 1.

T ransfer : (Cik : {k = 0, · · · , t − 1}, Ai)

Pi computes the value of the hash function H1 = H1(w, R, M, B) too, where M
is a message, which Pi wants to sign on behalf of the original signer P0 and B
is any subset of t (or more) proxy signers, and he computes the value fi(xj) for
i �= j and sends to Pj by the secret channel his part

yji := H1fi(xj), j = 1, · · · t

Pi : yji = H1fi(xj) −→ Pj ∀j �= i, Pj ∈ B.
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Next, each signer Pj verifies the received values fi(xj) from other t − 1 proxy
signers by the equation

[yji, g] = H1(Ai +
t−1∑
k=0

xk
j Cik), ∀j �= i, Pi ∈ B.

If all of the above equation hold, then each Pj computes his partial proxy sig-

nature from the received values as sj =
t∑

i=1
yji.

P1 : s1 =
t∑

i=1

y1i =
t∑

i=1

H1fi(x1)=H1f1(x1)+H1f2(x1)+. . .+H1ft(x1)=H1f(x1)

P2 : s2 =
t∑

i=1

y2i =
t∑

i=1

H1fi(x2)=H1f1(x2)+H1f2(x2)+. . .+H1ft(x2)=H1f(x2)

...

Pt : st =
t∑

i=1

yti =
t∑

i=1

H1fi(xt)=H1f1(xt) + H1f2(xt) + . . . + H1ft(xt)=H1f(xt)

This share has a value H1f(xj), where f(x) is the virtual polynomial

f(x) = xt−1(
t∑

i=1
ci(t−1))+ · · · + (

t∑
i=1

ci0)+ (
t∑

i=0
ai0)

↓ ↓ ↓ ↓

F (x) = xt−1 (
t∑

i=1

Ci(t−1))

︸ ︷︷ ︸
+ · · · + (

t∑
i=1

Ci0)

︸ ︷︷ ︸
+ (

t∑
i=1

)Ai

︸ ︷︷ ︸
:= C′

t−1 := C′
0 := A′

The public obligations of signers group B are

Transfer : ({C′
k : k = 0, 1, · · · , t − 1}, A′)

Next, each proxy signer Pj computes the threshold proxy signature on M as
follows:

σj = σj(M, B, w, R) = yj0 +
t∑

i=1

yji = yj0 + sj .

Pj sends by the secret channel the calculated σj for each Pi ∈ B. Now, each Pj

does the test of the received shares:

[σj , g] = [yj0 + sj , g] = [yj0 +
t∑

i=1

yji, g] = [yj0, g] + [
t∑

i=1

yji, g]

= HA0 + R +
t−1∑
k=1

xk
j C0k +

t∑
j=1

H1(Aj +
t−1∑
k=0

xk
j Cjk).

Finally, if all was correct, then the threshold proxy signature is the following:
(M, C′

0, A
′, σ, w, B), where σ = d + H1f(0).
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3.5 Verification of the Proxy Signature

Addressee of the message in the first step does verify correctness of the threshold
(M, C′

0, A
′, w, B) by the verifying equation:

[σ, g] = [d + H1f(0), g] = [d, g] + [H1f(0), g] = [f0(0), g] + [H1f(0), g].

If this equation is true, then the addressee infers, that the proxy signature
(M, C′

0, A
′, σ, w, B) is the proper proxy signature obtained from the delegation

key of the original signer and that the set B consists of the actual proxy signers.
Next, the addressee computes:

f0(0) = d = a0H + r,

[f0(0), g] = [d, g] = A0H + R,

and

[H1f(0), g] = [H1(w, R, M, B)f(0), g] = [H1(
t∑

i=1

fi)(0), g]

= [H1

t∑
i=1

ci0, g] = H1

t∑
i=1

[ci0, g] = H1

t∑
i=1

Ci0 = H1F (0).

4 The Analysis of the Insider Attack

Suppose, that one from the pair proxy signer - insider attacker (without the loss
of the generality, we agree that this is P1) wants to get a threshold proxy signa-
ture on message M. While generating the proxy signature, P1 does not broadcast
his data C1k, but he waits until will receives from remaining proxy signers their
data Ci1. Now, P1 computes the hash function H1 = H1(w, R, M, B) and as-
sign f1(xj) for i �= j. P1 can compute yj1 = H1f1(xj), but he can’t compute
s1 which is indispensable to falsify the threshold proxy signature, because he
does not know all yji. So, this attack isn’t practical, let us suppose that proxy
signers don’t continue the broadcast of the data until they receive earlier obli-
gations from all signers. Let’s see now, what happens,when the insider attacks
on the later transfer of the data, i.e. just during sending yji. Then the scheme
generating the proxy signature would look as follows:

Each proxy signer Pi selects the secret polynomial fi(x) = ci(t−1)x
t−1 + · · · +

ci1x+ci0 +ai, and they compute and broadcast Cik = [cik, g] for k = 0, · · · , t−1.
Later Pi computes the value of the hash function H1 = H1(w, R, M, B) and
determines fi(xj) for i �= j. At this moment, P1 attacks and he doesn’t broadcast
his value yji but waits for values from remaining signers. In this way P1 receives
all values y1i for i �= 1 and he computes y11. In this situation, after the verification
of the data, P1 can compute his part of the threshold proxy signature

s1 =
t∑

i=1

y1i.
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So now P1 computed his part of the threshold proxy signature s1, but he has
not broadcasted his data to remaining signers. Theoretically P1 can privately
compute y′

1 and for this value the likely value s′1, so the threshold proxy signature
is correct for y′

1, however the counterfeited value y′
1 will not pass verification

conducts by remaining signers, because P1 can not alter the sent earlier C1k.
Finally, we see, that the scheme of the proxy signature is resistant to the

attack by any insider signer if we suppose that proxy signers will not send data,
until they not receive earlier obligations.

5 Conclusion

We have presented an approach to the Diffie-Hellman problem in Lie algebras,
by exploiting sets of commutative differentiations. Our results generalize in a
sense the approach in [1].
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