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Abstract. In this paper a method of creating layers of feed-forward
neural network that does not need to be learned is presented. Described
approach is based on algorithms used in synthesis of logic circuits. Ex-
perimental results presented in the paper prove that this method may
significantly decrease the time of learning process, increase generaliza-
tion ability and decrease a probability of sticking in a local minimum.
Further work and goals to achieve are also discussed.
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1 Introduction

Feed-forward neural network is a widely used tool in the area of artificial in-
telligence. It is mainly used in various applications of pattern recognition and
prediction. However, feed-forward neural network has to be learned before it
is used, and the learning process seems to be the most important step during
the development of the network. There are few essential problems which can be
met during the learning process. Most of algorithms use optimization methods
to adjust weights of neurons - the network acts a parameterized function. The
function used in the optimization process - most often based on mean square
error – has a large number of local minimums and regions with very low slope.
Therefore the algorithms can stuck in such local minima, and the learning pro-
cess has to be restarted. Moreover, the larger the network is, the more neurons
it contains, and with each single neuron n weights are associated, where n is the
number of neurons in the previous layer. So, the number of weights grows much
faster than the number of neurons and the learning algorithm has to perform
significantly more calculations. On the other hand the structure of the neural
network is also very important, because if there are too many neurons in the
layer, the generalization abilities may decrease.

Since the neural network may also act as a logic circuit, functional decompo-
sition based methods can be used to solve the problems mentioned above. The
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methods similar to those used in logic synthesis have already been used in knowl-
edge discovery [1]. The first attempts in application of functional decomposition
to neural networks were presented in [2,3] and then in [4]. In this approach the
serial decomposition was used to shatter a large neural network into a couple
of small networks connected with each other. The parallel decomposition and
argument reduction were used to decrease the initial number of inputs. In [4] it
has been shown that this approach has some major disadvantages – the gener-
alization ability may be lower, or may decrease faster with the increase of noise
in data. Another disadvantage is that this method can be used if the neural
network is created for the binary or just quantized input and output data. It is
useless for data that consists of real numbers.

In [4], another application of functional decomposition in feed-forward neural
networks has been mentioned, but it was neither explored, nor experimentally
verified. In this paper we attempt to fill this gap. In the presented approach,
actually the created neurons are already learned, and the parallel decomposition
or argument reduction is used to reduce number of them to the necessary mini-
mum. The experimental results show very interesting capabilities of the method,
in particular the learning time has been reduced for up to 30 times, without loss
of the generalization abilities.

In Section 2 we present some basic notions. Then in Section 3 the considered
approach is described. Section 4 presents experimental results. Finally conclu-
sions are presented in Section 5.

2 Basic Notions

2.1 Feed-Forward Neural Network

A typical feed-forward neural network consists of few layers. Each layer contains
a number of neurons which are not connected to any other neuron in the same
layer, but each one is connected to all neurons in the previous and next layers.
The input connector has a parameter, called weight, which is multiplied by an
input signal value and the result is passed to the neuron. The neuron sums up
all the signals and passes the result to an activation function (linear, binary,
sigmoid or other). Fig. 1 shows the structure of a feed-forward neural network
[5,6,7].

For example, the output signal for the neuron j in the layer b can be calculated
as follows:

f(n(jb)) = f

(
Bjb +

ka∑
i=1

Wia−jb · f(n(ia))

)
(1)

where Wx−y is the weight assigned to a connection between neurons x and y, ka

is the number of neurons in the layer a, B is the parameter called bias (sometimes
it is treated as a weight connected to the virtual fixed input signal equal to 1),
and f(x) is an activation function.
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Fig. 1. A sample feed-forward neural network with 3 layers

In this paper the binary and sigmoid activation functions will be used.

fbinary(x)
{

0, x < 0
1, x ≥ 0 (2)

fsigmoid(x) =
1

1 + e−ax
(3)

Let us note that formula (1) represents a hyper-plane that splits the hyper-
space of the input signals into two parts. Especially when the binary activation
function is used, the output value will be equal to 0 for the data points of the
first part, and it will be equal to 1 for the data points of the other part. So, the
aim of learning is to find such hyper-planes that can split the data points, for
which the output signal is different. Fig. 2 shows a sample set of the data points
for which the output signal is 0 (the black points) and 1 (the white points). The
lines n1 - n7 show the partitions made by the corresponding neurons.

There are several learning algorithms that are based on calculating derivative
of some error function in respect to all parameters. Usually, the most frequently
used error function is the mean square error (MSE), calculated for the output of

Fig. 2. A sample set of the data points
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the neural network. Such algorithms require that the activation function is dif-
ferentiable, therefore the usage of the binary functions for this case is impossible,
and instead the sigmoid function is used [5,6,7]. In the presented approach we
create few leading layers that contain neurons which have their weights already
set, thus we do not need to apply the learning algorithm to them. Thus, in these
layers we use the binary activation function. However end layers constitute a
normal neural network, which has to be learned in a typical way, so we use the
sigmoid activation function there.

2.2 Parallel Decomposition and Argument Reduction

In order to reduce a complexity of neural networks we create a number of lead-
ing layers with an extra number of neurons. Then we have to reduce them to
the necessary minimum. To do this, a parallel decomposition and an argument
reduction are used. These methods are commonly used in the logic synthesis of
Boolean functions and we briefly present them below [8,9,10].

A problem occurs, when we want to implement a large Boolean function using
components with a limited number of outputs. Note that such a parallel decom-
position can also alleviate the problem of an excessive number of inputs of the
function. This is because for typical functions most outputs do not depend on
all input variables.

As an example let us consider a multiple-output function F (Table 1). Assume
that F has to be decomposed into two components, G and H , with disjoint sets
YG and YH of the output variables. Let us note that the set XG of the input
variables, on which the output variables from YG depend, may be smaller than
X . Similarly, for the set XH of input variables on which the outputs from YH

depend, may be smaller than X . As a result, the components G and H have
not only less outputs, but also less inputs than F . The exact formulation of
the parallel decomposition problem depends on the constraints imposed by the
implementation style. One possibility is to find the sets YG and YH , such that

Table 1. Function F

x1 x2 x3 x4 x5 x6 x7 x8 x9 y1 y2 y3 y4 y5 y6

1 0 0 0 1 1 1 0 0 0 0 0 0 0 − 0
2 1 0 1 0 0 0 0 0 0 0 0 − 1 0 1
3 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1
4 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0
5 1 0 1 0 1 0 0 0 0 0 0 0 − 0 1
6 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0
7 1 1 1 0 0 0 0 0 0 1 0 − 0 1 0
8 1 0 1 1 0 1 0 0 0 1 1 0 0 − 1
9 1 0 1 1 0 1 1 0 0 − 1 0 1 − 1
10 1 1 1 0 0 0 0 1 0 1 0 1 0 1 −
11 0 0 0 1 1 1 0 0 1 0 0 1 0 − 1
12 0 0 0 1 1 0 0 0 1 − − 1 0 0 0
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card(XG + card(XH is minimal. Partitioning the set of outputs into only two
disjoint subsets is not important here, because the procedure can be applied
iteratively for the resulting components G and H .

The minimal sets of input variables, on which each output of F depends, are:

y1 : {x1, x2, x6}
y2 : {x3, x4}
y3 : {x1, x2, x4, x5, x9}, {x1, x2, x4, x6, x9}
y4 : {x1, x2, x3, x4, x7}
y5 : {x1, x2, x4}
y6 : {x1, x2, x6, x9}

An optimal two-block decomposition, minimizing card(XG)+card(XH ), is YG =
{y2, y4, y5} and YH = {y1, y3, y6}, with XG = {x1, x2, x3, x4, x7} and XH =
{x1, x2, x4, x6, x9}. The truth tables for the components G and Hare shown in
the tables 2 and 3.

Table 2. Function G of parallel de-
composition

X1 x2 x3 x4 x7 y2 y4 y5

1 0 0 0 1 0 0 1 0
2 1 0 1 0 0 0 1 0
3 1 0 1 1 0 1 0 1
4 1 1 1 1 0 1 1 1
5 0 0 1 1 0 1 1 0
6 1 1 1 0 0 0 0 1
7 1 0 1 1 1 1 1 −

Table 3. Function H of parallel de-
composition

x1 x2 x4 x6 x9 y1 y3 y6

1 0 0 1 1 0 0 0 0
2 1 0 0 0 0 0 0 1
3 1 0 1 0 0 0 1 1
4 1 1 1 1 0 0 1 0
5 0 0 1 0 0 1 0 0
6 1 1 0 0 0 1 1 0
7 1 0 1 1 0 1 0 1
8 0 0 1 1 1 0 1 1
9 0 0 1 0 1 - 1 0

The algorithm itself is general in the sense that the function to be parallel
decomposed can be specified in a compact cube notation. The calculation of
the minimal sets of input variables for each individual output can be a complex
task. Thus in the practical implementations, heuristic algorithms are used which
support calculations with the help of the so called indiscernible variables. But the
simplest way to obtain the quasi-minimal set of input variables for an output
of a Boolean function is just trying to eliminate an input variable and then
checking the consistency of the function - if the function is still consistent, the
input variable can be safely removed.

3 Application of the Decomposition to Reduce the
Neural Network

The idea is based on the fact that each neuron represents a hyper-plane. We
can manually create neuron by neuron, so that each represents a hyper-plane
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splitting the data space. However it is very difficult to decide how to split the
space, as there is unlimited number of solutions, the more that we decide it
only for the training set without knowing the whole space. On the other hand
we should build the network with possibly least number of neurons in order to
achieve the network with the sufficient abilities to generalize. To this end, our
algorithm should create a surplus set of hyper-planes and then to reduce it using
a parallel decomposition and an argument reduction. In that way we create a
layer with the reduced set of neurons. This step is repeated till the cardinality of
the unique output signals of the layer is lower than of the previous layer. Finally,
for the last layer we create a typical neural network to process the output data
of the last but one layer. The steps are described in the following subsections in
more details.

3.1 Creating Initial Set of Neurons

As stated above, at the beginning we devise an initial set of neurons, which may
be superfluous. Let us assume that there are k data points in some n dimensional
hyper-space. Each point has to be mapped to one of m possible output signals.
The hyper-planes have to split the training data points that are mapped to the
different output signals. A naive approach would be based on calculating the
centroid of the data points for which the output signal is the same. Then a
hyper-plane would be created between two randomly selected centroids, and the
set of data points is shattered into two parts. The algorithm is repeated for each
part till there is only a single centroid in each set. We have tested this approach,
but it turned out to be inefficient and in some cases inconsistent.

 

Fig. 3. Steps of the algorithm that creates hyper-planes

We base our approach on the observation that by splitting the closest dis-
tinguishable points we achieve the network with higher ability to distinct input
data. Therefore we select such data points from varying groups that are closest
to one other and create a hyper-plane between them. We repeat the process till
the groups are homogenous. The algorithm is illustrated on Fig. 3.

3.2 Reducing the Set of Neurons

Each hyper-plane splits a hyper-space into two parts. Let us assume that for
each data point, the value 0 is assigned if the data point is located in the first
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Table 4. A layer of neurons presented as the truth table

Point number Assignments for each hyper-plane Output signal
neuron 1 neuron 2 neuron 3 ... neuron n

1 1 1 1 ... 0 0 ...
2 0 0 1 ... 0 0 ...
3 0 0 1 ... 1 0 ...
... ... ... ... ... ... ...
k 0 1 0 ... 1 1 ...

part of the hyper-space and the value 1 if one is located in the other part. This
corresponds to assigning the value of the binary activation function (Table 4).

A logic function (similar to the one shown in Table 1) is created, so an argu-
ment reduction can be applied to it. The argument reduction removes unneces-
sary input arguments so the corresponding hyper-planes can be safely removed.
Thus we will have a quasi-minimal set of neurons in a layer. We can also use
a parallel decomposition and create the set with the minimum number of neu-
rons for each output. Then we may group these sets to get the best results. We
have performed a number of experiments, which have shown that the argument
reduction used for the hyper-planes created by the algorithm sketched in p. 3.1
reduces the number of the neurons dozens times.

3.3 Normal Neural Network as the Output

The presented algorithms are not perfect. Although they significantly reduce the
number of dimensions in the hyper-space for the layers, there is rather a slim
chance that the cardinality of different output signals is equal to the cardinality
of unique output signals of the system. To this end, we can (1) map the output
signals of the last layer to the desired output signals or (2) create a simple neural
network which can process them. We have selected the second solution for our
experiments.

Fig. 4. A model of reduced neural network
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4 Experimental Results

The experiments have been performed with the RPROP [6] learning algorithm
for two cases: (1) a normal neural network and (2) a reduced neural network. The
learning process was stopped when the error measure had fallen behind 0.01. If
the algorithm had stuck in a local minimum, the learning process was started
again, and a time was reset. In the experiments the neural network simulator and
the decomposition tool created by authors were used. The measured variables
were:

- a total learning time, i.e. the time of creating the hyper-planes and reducing
the neural network (in case of testing the reduced network) + a time of
learning),

- a learning result (a part of learning vectors that were correctly classified),
- a test result (a part of testing vectors that were correctly classified) and
- a number of local minima (an average number of events that the learning

algorithm got stuck in a local minimum).
Each test was repeated for 5 times and an average value was calculated for each
variable.

4.1 Comparison of Learning Time, Generalization Ability

In the first experiment 10 inputs and 4 outputs neural network was used. It an-
alyzed the input vector, translating it to a code. The number of learning vectors
was 492. We have divided the initial network into 4 parts for both normal and
reduced neural network tests, so that each output was evaluated independently
(one part per single output).

The second experiment was performed for the pattern classifier. Input data
were matrices of 36 characters, each character in 3 variants – so the total number
of learning vectors was equal to 108. There were 360 inputs and 36 outputs –
each output is activated for the single character.

Table 5. The results of learning and testing the ones counter

Neural Total learning Learning Test Number of
network time result result local minimums
Normal 38.6 0.9455 0.5779 3.6
Reduced 23.7 0.9565 0.6335 1.0

Table 6. The results of learning and testing the pattern classifier

Neural Total learning Learning Test Number of
network time result result local minimums
Normal 33,9 0.9889 0.7630 0.0
Reduced 0,9 1.0000 0.7778 0.0
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The results mentioned above show that the learning time was significantly
shortened and the generalization abilities were slightly increased for the reduced
network. Moreover, Table 5 shows that for the normal neural network the learn-
ing process stuck in the local minimum some 3 times more than for the reduced
one.

4.2 Comparison of Abilities to Generalize for Different Noise Level
in the Test Data

In the third experiment an input data were matrices of 93 characters, each
character in 3 variants – so the total number of learning vectors was 279. The
size of the input matrix was 1200. 7 outputs were binary representation of the
character code. The tests were performed for 4 sets of the test vectors with a
different noise level. The initial neural network was divided into 7 networks -
each network for the single output.

Table 7 shows that the learning time was over 30 times shorter in the case of
the reduced neural network. Furthermore the generalization abilities were better

Table 7. The learning time comparison

Neural network Total learning time
Normal 345.5
Reduced 10.4

Table 8. The generalization ability for the different noise levels

Neural network Test result - Generalization ability
Noise 25 Noise 50 Noise 100 Noise 200

Normal 0.515 0.389 0.278 0.121
Reduced 0.722 0.647 0.449 0.371
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for each examined noise level (Table 8). Fig. 5 depicts that they decrease slower
for the reduced neural network than for the normal one.

5 Conclusions

The presented method allows simplifying a learning process of a feed-forward
neural network. It is useful especially to solve various pattern recognition prob-
lems. The experimental results presented in the paper prove the effectiveness and
efficiency of the proposed method. The time of learning, as well as, the prob-
ability of sticking in a local minimum were significantly reduced. The method
allows also increasing the generalization abilities. The technique we put forward
can be improved in the future works. The goal is to develop an algorithm for
creating hyper-planes such that it would eliminate the need of using a normal
neural network in the last layer.
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