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Abstract. This paper reports results of experiments on mass spectrom-
etry database search results produced by Keller et al. This data set de-
scribes human proteins. Data mining was conducted using the LERS
system. First, the data set was discretized by a cluster analysis algo-
rithm based on agglomerative approach. Then the basic rule set was
induced by the LEM2 algorithm. Finally, the rule set was refined using
changing rule strength methodology and truncation of the rule set. Our
results reach the level of sensitivity and specificity of competing meth-
ods. However, our results are explainable since they are in a form of rules
and, additionally, we can interpret the role of important features.

1 Introduction

With the advance of soft ionization technologies of electrospray (ES) and matrix-
assisted laser desorption ionization (MALDI), tandem mass spectrometry (MS/-
MS) with database search has emerged as the method of choice for the identifica-
tion of proteins in high-throughput proteomics studies. Such an approach usually
starts with protein separation using 2D-gel or other technologies. The isolated
proteins are then digested to peptides using proteases such as trypsin. The result-
ing peptides are fragmented and ionized using either ES or MALDI technology.
The recorded mass spectra are compared to theoretical ones computed from
all possible peptides obtained from a protein sequence database using database
search software such as SEQUEST [16], Mascot [14], ProteinProspector [3] and
X!Tandem [4]. The spectra are then assigned to peptides that best match theo-
retical spectra. Most of these programs use scores to rank the candidate peptides
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that indicate the degree of agreement between spectra and assigned peptides. A
validation procedure is generally required to discriminate false positives in the
assigned peptides due to the imperfect nature of these search algorithms. This
can be done by manual inspection of an expert or by applying empirical filtering
criteria based on database search scores and properties of the assigned peptides,
such as the number of tryptic termini. However, the manual validation is pro-
hibitively time-consuming when the database is large and the filtering criteria
are not reliable and may miss a large number of true positives. We have found
that it is common to miss 30–50% of true positives in the tests as presented in
Table 1.

Table 1. The performance of conventional filtering approaches, where charge denotes
peptide charge

Filtering method Sensitivity Specificity

XCorr ≥ 2, ΔCn ≥ 0.1, SpRank ≤ 50, NTT = 2 0.567 0.99844

XCorr ≥ 2, ΔCn ≥ 0.1, SpRank ≤ 50, NTT ≥ 1 0.732 0.99290

charge = +1, XCorr ≥ 1.5, NTT = 2 OR
charge = +2 OR
charge = +3, XCorr ≥ 2.0, NTT = 2 0.572 0.99796

ΔCn > 0.1 AND
(charge = +1, XCorr ≥ 1.9, NTT = 2 OR
(charge = +2 AND
(XCorr ≥ 3 OR 2.2 ≤ XCorr ≤ 3.0, NTT ≥ 1)) OR
charge = +3: XCorr ≥ 3.75, NTT ≥1) 0.641 0.99514

ΔCn ≥ 0.08 AND
(charge = +1, XCorr ≥ 1.8 OR
charge = +2, XCorr ≥ 2.5 OR
charge = +3, XCorr ≥ 3.5) 0.555 0.99718

ΔCn ≥ 0.1 AND
(charge = +1, XCorr ≥ 1.9, NTT = 2 OR
charge = +2, XCorr ≥ 2.2, NTT = 1 OR
charge = +3, XCorr ≥ 3.75, NTT = 1) 0.567 0.99825

ΔCn ≥ 0.1, SpRank ≤ 50, NTT ≥ 1, AND
(charge = +1 not included OR
charge = +2, XCorr ≥ 2.0 OR
charge = +3, XCorr ≥ 2.5) 0.712 0.99494

In the past several years there have been several attempts to develop soft-
ware tools using statistical and machine learning algorithms to validate database
search hits and consequently improve the results [1,11,15]. Keller et al. were
among the first to use these approaches to classify the results of SEQUEST
searches [11]. They formulated a new metric based on SEQUEST scores that
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takes into consideration the length of peptide and penalizes lower ranker and
poor mass accuracy. Anderson et al. used Support Vector Machine (SVM), a
powerful machine learning algorithm, to classify SEQUEST peptide assignment
as correct and incorrect, also based on SEQUEST scores [1]. They found that
SVM yielded fewer false positives and false negatives comparing to conventional
cutoff approaches. Very recently, Ulintz et al. used SVM, boosting and Ran-
dom Forest (RF) to classify MS/MS database search results using SEQUEST
and Spectrum Mill, a search engine based on ProteinProspector algorithms [15].
All three algorithms improved sensitivity and specificity considerably over con-
ventional cutoff approaches. While all these approaches delivered better perfor-
mance than conventional filtering approaches, they failed to provide details how
the improvements were achieved, as all methods used in previous studies belong
to ”black-box” approaches. In this study, we sought to develop interpretable
classifiers based on rough set theory. The classifiers resulted in rules that can be
readily examined by biomedical researchers to further improve database search
engines.

2 Data Set

The original experimental dataset was generated by Keller et al. as described
in [11]. This dataset was also used by Ulintz et al. in their data validation
studies [15]. In brief, these data were generated in a ThermoFinnigan ion trap
mass spectrometer from twenty-two different LC/MS/MS runs on mixtures of
eighteen proteins mixed in varying concentrations. Overall 37044 spectra were
generated in the experiments. These spectra were then searched by SEQUEST
against a protein database that was composed from human protein database with
eighteen additional known proteins. Only top-scoring peptides were retained
in the database search. Peptides matching the known eighteen proteins were
considered as true positives and the remaining top hits were negatives. For direct
comparison, we retained the same division of the dataset into training and test
datasets as in [15]. We also used the fifteen descriptive features as in [15], see
Table 2.

Usually, in the medical field, the problem is to diagnose a specific disease,
where all cases affected by the disease are defined as elements of the primary
class. Any subset of the set of all cases, defined by the same value of the decision
is called a class (or concept). All remaining cases are defined as elements of a
secondary class (healthy patients). Diagnosis is characterized by sensitivity (the
conditional probability of the set of correctly diagnosed cases from the primary
class given the primary class) and by specificity (the conditional probability of
the set of correctly diagnosed cases from the secondary class given the secondary
class). Thus the sensitivity is the ratio of the number of true positives to the sum
of the numbers of true positives and false negatives, while specificity is the ratio
of the number of true negatives to the sum of the numbers of true negatives and
false positives.
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Table 2. Descriptive features used in the study

Feature name Description

Delta Parent ion mass error
Charge Parent ion charge
Intensity Normalized intensity of the peaks
Length Length of the peptide
Matching peptide The number of peptides matching

the parent ion mass within the mass tolerance
Sp Preliminary score
SpRank Rank based on Sp
ΔCn Difference in normalized correlation

scores between next-best and best hits
XCorr Cross-correlation score
ratio Fraction of experimental ions

matched with the theoretical ions
N pro Number of prolines
N arg Number of arginines
C term C-terminal residue
NTT Number of tryptic termini
PMF Proton mobility factor

Our training data set contained 25931 cases, with 1930 cases being the primary
class and remaining 24001 cases being the secondary class. The testing data set
contained 11113 cases, distributed into 827 cases from the primary class and
10286 cases from the secondary class.

3 Discretization, Rule Induction and Classification

All numerical attributes were discretized before rule induction, i.e., numerical
values of these attributes were converted into symbolic. For our experiments we
selected a discretization based on cluster analysis. First clusters were formed,
using bottom-up (agglomerative) approach. The process was continued until
each elementary set, defined by all attributes, was contained in some concept or
all attributes defined the same indiscernibility relation as for the original data
set. Both ideas, of the elementary set and indiscernibility relation, are taken
from rough set theory [12, 13]. Then the clusters were projected on numerical
attributes and initial intervals were created. Finally, these intervals were merged
together using the same criterion to stop as in the process of forming clusters.

For rule induction, classification, and validation we used the data mining
system LERS (Learning from Examples based on Rough Sets) [5, 6]. After dis-
cretization, in the next step of processing the input data file, LERS checks if
the input data file is consistent. If the input data file is inconsistent, LERS com-
putes lower and upper approximations of all classes. The ideas of lower and
upper approximations are fundamental for rough set theory [12,13].
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In general, LERS uses two different approaches to rule induction: one is used
in machine learning, the other in knowledge acquisition. In machine learning, or
more specifically, in learning from cases (examples), the usual task is to learn the
smallest set of minimal rules, describing the class. To accomplish this goal LERS
uses two algorithms: LEM1 and LEM2 (LEM1 and LEM2 stand for Learning
from Examples Module, version 1 and 2, respectively). In our experiments we
used only LEM2 algorithm since, in general, LEM2 induces simpler and more
accurate rule sets.

The classification system of LERS is a modification of the bucket brigade
algorithm [2,10]. The decision to which concept a case belongs is made on the
basis of two factors: strength and support. They are defined as follows: strength
is the total number of cases correctly classified by the rule during training.
The second factor, support, is defined as the sum of strengths for all matching
rules from the concept. The concept C for which the support, i.e., the following
expression

∑

matching rules R describing C

Strength(R)

is the largest is the winner and the case is classified as being a member of C.
In the classification system of LERS, if complete matching is impossible, all

partially matching rules are identified. These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case. For any
partially matching rule R, the additional factor, called Matching factor (R), is
computed. Matching factor (R) is defined as the ratio of the number of matched
attribute-value pairs of R with a case to the total number of attribute-value
pairs of R. In partial matching, the concept C for which the following expression
is the largest

∑

partially matching
rules R describing C

Matching factor(R) ∗ Strength(R)

is the winner and the case is classified as being a member of C.
Every rule induced by LERS is preceded by three numbers: the total number

of attribute-value pairs on the left-hand side of the rule, strength, and the rule
domain size, i.e., the total number of training cases matching the left-hand side
of the rule.

4 Postprocessing of Rules

Once rule sets were induced we used two different postprocessing techniques
applied to these rule sets. The first technique was called increasing rule strengths
[7, 8]. This technique is used for imbalanced data sets, that is, data sets with
different class sizes. Our data set was imbalanced, the total size of primary class
was much smaller than the total size of secondary class. In such data, during
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classification of unseen cases, rules matching a case and voting for the primary
classes are outvoted by rules voting for the bigger, secondary classes. Thus the
diagnosis of a primary classes is poor and the resulting classification system
would be rejected by diagnosticians.

Therefore it is necessary to decrease the error rates for the primary class.
Since the data set is imbalanced, the simplest idea is to add cases to the pri-
mary class in the data set, e.g., by adding duplicates of the available cases. The
total number of training cases will increase, hence the total running time of the
rule induction system will also increase. Adding duplicates will not change the
knowledge hidden in the original data set, but it may create a balanced data set
so that the average rule set strength for both classes will be approximately equal.
The same effect may be accomplished by increasing the average rule strength
for the primary class. In our research we selected the optimal rule set by mul-
tiplying the rule strength for all rules describing the primary class by the same
real number called a rule strength multiplier. In general, the error rates for the
primary classes decrease with the increase of the rule strength multiplier. At the
same time, the error rates for the secondary classes increase.

The second mechanism to increase the conditional probabilities for primary
class was rule truncation, a method of reducing the rule set by deleting weak
rules, describing a few training cases, by removing rules with strengths not ex-
ceeding some cutoff. The truncation algorithm was already used for diagnosis
of melanoma, see, e.g., [8]. By removing weak rules the total number of rules
describing the class is reduced. This may result in rules that may not match
the cases completely as they would have before the truncation process. How-
ever, the LERS classification system is equipped with partial matching. A case
may still be very closely related to the correct class and thus may be correctly
recognized.

5 Experiments

Our experiments were performed on the training data set (with 25931 cases)
discretized by the agglomerative cluster analysis algorithm. A basic rule set was
induced from the discretized data set by the LEM2 algorithm. Then we incremen-
tally increased the rule strength multiplier for all rules describing the primary
classes, see Table 3. Sensitivity and specificity presented in Table 3 were com-
puted using the testing data set (with 11113 cases). During these experiments
the truncation cutoff was not used (all rules participated in classification). Then,
with the rule strength multipler equal to 1000, we gradually increased the trun-
cation cutoff, up to 100, for the rule set describing the secondary class. The size
of the rule set describing the secondary class decreased from 282 (the original
rule set) to 141 (the rule set corresponding to the truncation cutoff equal to 100).
During all of our experiments the size of the rule set describing the primary class
was always equal to 244. The ROC (Receiver Operating Characteristic) graph,
illustrating our experiments, is presented in Figure 1.
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Table 3. Performance of rough set models

Strength Truncation Sensitivity Specificity
multiplier cutoff

1 0 0.8440 0.99543
20 0 0.8839 0.99217
100 0 0.9117 0.98493
500 0 0.9178 0.98260
1000 0 0.9190 0.98085
1000 5 0.9202 0.97968
1000 20 0.9287 0.97832
1000 50 0.9323 0.97579
1000 100 0.9383 0.96850

Fig. 1. ROC graph

6 Results and Comparison with Other Approaches

The dataset that was the subject of our experiments was previously analyzed
in other studies using various machine learning algorithms [11,15]. For example,
Ulintz et al. reported that approaches using boosting and random forest achieved
a sensitivity of 0.99, PeptideProphet and SVM delivered 97 – 98% sensitivity at
a false positive rate of roughly 0.05 [15]. Thus the performance of our approaches
is comparable to Ulintz’s results as we achieved better false positive rates but
poorer sensitivities. Keller et al. reported a sensitivity of 89% with an error of
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2.5% [11]. Although a direct comparison to this study is not applicable because
Keller et al. used different division of training and test datasets, it appears that
our model is competitive.

7 Interpretation of the Decision Rules

An advantage of white-box approaches such as rough set theory over ”black-box”
methods is that the detailed knowledge of the classification process is available
for better understanding the problem under study. In the present study, the
classification rules discovered by our classifiers reveal several important obser-
vations leading to better understanding the chemistry underlying the molecule
fragmentation and ionization. For example, the mobile proton factor (MPF) was
discovered as a very useful indicator. A single rule involving only two features
can eliminate approximately 40% of true negatives without error:

(PMF, 0.699..5.5) & (C term, others) –> (label, -1)

The PMF is calculated as:

R + 0.8 ∗ K + 0.5 ∗ H

charge

where R is the number of arginine, K is the number of lysine, and H stands for the
number of histidine. Charge means the charge on the parent peptide. Although
it was known that a smaller value of PMF indicates higher protein mobility [15],
it was unclear the degree that PMF would affect the peptide detection using
MS/MS technologies. From our results, it seems that PMF is particularly useful
to eliminate peptides with a terminal residue other than arginine and lysine. It
is worth to note that the rule does not use any SEQUEST score.

NTT (the number of tryptic terminals) is important since the peptides are the
products from tryptic digestions. It measures whether the peptide is fully tryptic
(NTT = 2), partially tryptic (NTT = 1), or non-tryptic (NTT = 0). However,
the NTT of a fully tryptic terminal peptide can be equal to one. NTT was
found as the most important attribute in Ulintz’s study [15]. A higher NTT is a
strong indication of a true positive; however, the NTT of a small portion of true
positives is either 0 or 1. For example, this type of peptides accounts for about
one quarter of the true positives in our dataset. Thus improvement in this type
of peptide identification will significantly increase the sensitivity and specificity.
We found that the following single rule correctly classifies approximately 40% of
these partially tryptic and non-tryptic peptides. Thus peptides with lower NTT
but higher XCorr and ΔCn are likely true positives.

(XCorr, 3.4218..7.2792) & (ΔCn, 0.2362..0.5565) & (NTT, 0..1.5) –> (label, 1)

Most of the rules discovered in our study involve one or more features that are
not SEQUEST scores. These features are either peptide physicochemical proper-
ties (e.g., MPF, Length, etc.) or protein sequence environment (e.g., NTT). The
results further confirm the conclusion in our recent study that these properties
can be used to improve data validation models [5].
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8 Conclusions

We have proposed a rough set based approach to validate MS/MS database
search results. The performance of our approach is comparable to competing
methods. However, some important rules discovered in this study may lead to
better understanding of the chemistry underlying the molecule fragmenttion and
ionization. In addition, these rules may be used in the development of novel mass
spectrometry database search engines.
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