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Abstract. In our paper, we offer an efficient Fun algorithm for dis-
covering minimal sets of conditional attributes functionally determining
a given dependent attribute, and in particular, for discovering Rough
Sets certain, generalized decision, and membership distribution reducts.
Fun can operate either on partitions or alternatively on stripped parti-
tions that do not store singleton groups. It is capable of using functional
dependencies occurring among conditional attributes for pruning candi-
date dependencies. The experimental results show that all variants of
Fun have similar performance. They also prove that Fun is much faster
than the Rosetta toolkit’s algorithms computing all reducts and faster
than TANE, which is one of the most efficient algorithms computing all
minimal functional dependencies.

1 Introduction

The determination of minimal functional dependencies is a standard task in
the area of relational databases. TANE [5] or Dep-Miner [11] are example effi-
cient algorithms for discovering minimal functional dependencies from relational
databases. A variant of the task, which consists in discovering minimal sets of
conditional attributes that functionally or approximately determine a given de-
cision attribute, is one of the topics of Artificial Intelligence and Data Mining.
Such sets of conditional attributes can be used, for instance, for building classi-
fiers. In the terms of Rough Sets, such minimal conditional attributes are called
reducts [13]. One can distinguish a number of types of reducts. Generalized de-
cision reducts (or equivalently, possible/approximate reducts [7]), membership
distribution reducts (or equivalently, membership reducts [7]), and certain de-
cision reducts belong to most popular Rough Sets reducts. In general, these
types of reducts do not determine the decision attribute functionally. However,
it was shown in [8] that these types of reducts are minimal sets of conditional
attributes functionally determining appropriate modifications of the decision at-
tribute. Thus, the task of searching such reducts is equivalent to looking for
minimal sets of attributes functionally determining a given attribute. In this
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paper, we focus on finding all such minimal sets of attributes. To this end, one
might consider applying either methods for discovering Rough Sets reducts, or
discovering all minimal functional dependencies and then selecting such that
determine a requested attribute.

A number of methods for discovering reducts have already been proposed in
the literature. e.g. [3-4],[6],[9-10],[12-20]. The most popular methods are based
on discernibility matrices [15]. Unfortunately, the existing methods for discov-
ering all reducts are not scalable. The recently offered algorithms for finding all
minimal functional dependencies are definitely faster. In this paper, we focus
on direct discovery of all minimal functional dependencies with a given depen-
dent attribute, and expect this process to be faster than the discovery of all
minimal functional dependencies. Here, we offer an efficient Fun algorithm for
discovering minimal functional dependencies with a given dependent attribute,
and, in particular, for discovering three above mentioned types of reducts. Fun
can operate either on partitions or alternatively on stripped partitions that do
not store singleton groups. It is capable of using functional dependencies occur-
ring among conditional attributes, which are found as a sideeffect, for pruning
candidate dependencies.

The layout of the paper is as follows: Basic notions of information systems,
functional dependencies, decision tables and reducts are recalled in Section 2. In
Section 3, we offer the Fun algorithm. The experimental results are reported in
Section 4. We conclude our results in Section 5.

2 Basic Notions

2.1 Information Systems

An information system is a pair S = (O, AT ), where O is a non-empty finite set
of objects and AT is a non-empty finite set of attributes of these objects. In the
sequel, a(x), a ∈ AT and x ∈ O, denotes the value of attribute a for object x,
and Va denotes the domain of a. Each subset of attributes A ⊆ AT determines
a binary A-indiscernibility relation IND(A) consisting of pairs of objects indis-
cernible wrt. attributes A; that is, IND(A) = {(x, y) ∈ O×O|∀a∈A a(x) = a(y)}.
IND(A) is an equivalence relation and determines a partition of O, which is de-
noted by πA. The set of objects indiscernible with an object x with respect
to A in S is denoted by IA(x) and is called A-indiscernibility class; that is,
IA(x) = {y ∈ O|(x, y) ∈ IND(A)}. Clearly, πA = {IA(x)|x ∈ O}.

2.2 Functional Dependencies

Functional dependencies are of high importance in designing relational databases.
We recall this notion after [2]. Let S = (O, AT ) and A, B ⊆ AT . A → B is
defined a functional dependency (or A is defined to determine B functionally),
if ∀x∈O IA(x) ⊆ IB(x). A functional dependency A → B is called minimal, if
∀C∈A C → B is not functional.
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Table 1. Sample DT extended with dN
AT , ∂AT , μAT

d

oid a b c e f d dN
AT ∂AT μAT

d :< μAT
1 , μAT

2 , μAT
3 >

1 1 0 0 1 1 1 1 {1} < 1, 0, 0 >
2 1 1 1 1 2 1 1 {1} < 1, 0, 0 >
3 0 1 1 0 3 1 N {1, 2} < 1/2, 1/2, 0 >
4 0 1 1 0 3 2 N {1, 2} < 1/2, 1/2, 0 >
5 0 1 1 2 2 2 2 {2} < 0, 1, 0 >
6 1 1 0 2 2 2 N {2, 3} < 0, 1/3, 2/3 >
7 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
8 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
9 1 1 0 3 2 3 3 {3} < 0, 0, 1 >
10 1 0 0 3 2 3 3 {3} < 0, 0, 1 >

Example 2.2.1. Let us consider the information system in Table 1. {ce} → {a}
is a functional dependency, nevertheless, {c} → {a}, {e} → {a}, and ∅ → {a}
are not. Hence, {ce} → {a} is a minimal functional dependency. ��
Property 2.2.1. Let A, B, C ⊆ AT .

a) If A → B is a functional dependency, then ∀C⊃A C → B is functional.
b) If A → B is not a functional dependency, then ∀C⊂A C → B is not a

functional dependency.
c) If A → B is a functional dependency, then ∀C⊃A C → B is not a minimal

functional dependency.
d) If A → B and B → C are functional dependencies, then A → C is functional.
e) If A ⊂ B, A → B is a functional dependency, and B ∩ C = ∅, then B → C

is not a minimal functional dependency.

Functional dependencies can be calculated by means of partitions [5] as follows:
Property 2.2.2. Let A, B ⊆ AT . A → B is a functional dependency iff
πA = πAB iff |πA| = |πAB|.
Example 2.2.2. Let us consider the information system in Table 1. We observe
that π{ce} = π{cea} = {{1}, {2}, {3, 4}, {5}, {6, 7, 8}, {9, 10}}. The equality of
π{ce} and π{cea} (or their cardinalities) is sufficient to conclude that {ce} → {a}
is a functional dependency. ��
The next property recalls a method of calculating a partition with respect to
an attribute set C by intersecting partitions with respect to subsets of C. Let
A, B ⊆ AT . The product of partitions πA and πB , denoted by πA ∩πB , is defined
as πA ∩ πB = {Y ∩ Z|Y ∈ πA and Z ∈ πB}.

Property 2.2.3. Let A, B, C ⊆ AT and C = A ∪ B. Then, πC = πA ∩ πB .

2.3 Decision Tables, Reducts and Functional Dependencies

A decision table is an information system DT = (O, AT ∪{d}), where d /∈ AT is
a distinguished attribute called the decision, and the elements of AT are called
conditions. A decision class is defined as the set of all objects with the same
decision value. By Xdi we will denote the decision class consisting of objects the
decision value of which equals di, where di ∈ Vd. Clearly, for any object x in O,
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Id(x) is a decision class. It is often of interest to find minimal subsets of AT (or
strict reducts) that functionally determine d. It may happen, nevertheless, that
such minimal sets of conditional attributes do not exist.
Example 2.3.1. Table 1 describes a sample decision table DT = (O, AT ∪
{d}), where AT = {a, b, c, e, f}. Partition πAT = {{1}, {2}, {3, 4}, {5}, {6, 7, 8},
{9}, {10}} contains all AT -indiscernibility classes, whereas π{d} = {{1, 2, 3},
{4, 5, 6}, {7, 8, 9, 10}} contains all decision classes. There is no functional de-
pendency between AT and d, since there is no decision class in π{d} containing
AT -indiscernibility class {3, 4} (or {6, 7, 8}). As AT → d is not functional, then
C → d, where C ⊆ AT , is not functional either. ��
Rough Sets theory deals with the problem of non-existence of strict reducts by
means of other types of reducts, which always exist, irrespectively if AT → d is
a functional dependency, or not. We will now recall such three types of reducts,
namely certain decision reducts, generalized decision reducts, and membership
distribution reducts.
Certain decision reducts. Certain decision reducts are defined based on the
notion of a positive region of DT , thus we start with introducing this notion.
A positive region of DT , denoted as POS, is the set-theoretical union of all AT -
indiscernibility classes, each of which is contained in a decision class of DT ; that
is, POS =

⋃
{X ∈ πAT |X ⊆ Y, Y ∈ πd} = {x ∈ O|IAT (x) ⊆ Id(x)}. A set of

attributes A ⊆ AT is called a certain decision reduct of DT , if A is a minimal set,
such that ∀x∈POS IA(x) ⊆ Id(x) [13]. Now, we will introduce a derivable decision
attribute for an object x ∈ O as a modification of the decision attribute d, which
we will denote by dN

AT (x) and define as follows: dN
AT (x) = d(x) if x ∈ POS, and

dN
AT (x) = N, otherwise (see Table 1 for illustration). Clearly, all objects with

values of dN
AT that are different from N belong to POS.

Property 2.3.1 [8]. Let A ⊆ AT . A is a certain decision reduct iff A → {dN
AT }

is a minimal functional dependency.

Generalized decision reducts. Generalized decision reducts are defined based
on a generalized decision. Let us thus start with introducing this notion. An
A-generalized decision for object x in DT (denoted by ∂A(x)), A ⊆ AT , is
defined as the set of all decision values of all objects indiscernible with x wrt.
A; i.e., ∂A(x) = {d(y)|y ∈ IA(x)} [15]. For A = AT , an A-generalized decision
is also called a generalized decision (see Table 1 for illustration). A ⊆ AT is
defined a generalized decision reduct of DT , if A is a minimal set such that ∀x∈O

∂A(x) = ∂AT (x).

Property 2.3.2 [8]. Let A ⊆ AT . Attribute set A is a generalized decision
reduct iff A → {∂AT } is a minimal functional dependency.

μ-Decision Reducts. The generalized decision informs on decision classes to
which an object may belong, but does not inform on the degree of the member-
ship to these classes, which could be also of interest. A membership distribution
function) μA

d : O → [0, 1]n, A ⊆ AT, n = |Vd|, is defined as follows [7],[16-17]:

μA
d (x) = (μA

d1
(x), . . . , μA

dn
(x)), where
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{d1, . . . , dn} = Vd and μA
di

(x) = |IA(x)∩Xdi |
|IA(x)| .

Please, see Table 1 for illustration of μAT
d . A ⊆ AT is a called a μ-decision

reduct (or membership distribution reduct) of DT , if A is a minimal set such
that ∀x∈O μA

d (x) = μAT
d (x).

Property 2.3.3 [8]. Let A ⊆ AT . A is a μ-decision reduct iff A → {μAT
d } is a

minimal functional dependency.

3 Computing Minimal Sets of Attributes Functionally
Determining Given Dependent Attribute with Fun

In this section, we offer the Fun algorithm for computing all minimal subsets
of conditional attributes AT that functionally determine a given dependent at-
tribute ∂. Clearly, Fun shall return certain decision reducts for ∂ = ∂AT , gener-
alized decision for ∂ = dN

AT , and μ-decision reducts for ∂ = μAT
d . For brevity, a

minimal subset of AT that functionally determines a given dependent attribute
∂ will be called a ∂-reduct.

3.1 Main Algorithm

The Fun algorithm takes two arguments: a set of conditional attributes AT and
a functionally dependent attribute ∂. As a result, it returns all ∂-reducts. Fun
starts with creating singleton candidates C1 for ∂-reducts from each attribute in
AT . Then, the partitions (π) and their cardinalities (groupNo) wrt. ∂ and all
attributes in C1 are determined.

Notation for Fun
• Ck candidate k attribute sets (potential ∂-reducts);
• Rk k attribute ∂-reducts;
• C.π the representation of the partition πC of the candidate attribute set C; it is stored

as the list of groups of objects identifiers (oids);
• C.groupNo the number of groups in the partion of the candidate attribute set C; that is, |πC |;
• ∂.T an array representation of π∂ ;

Algorithm Fun(attribute set AT , dependent attribute ∂);
C1 = {{a}|a ∈ AT}; // create singleton candidates from conditional attributes in AT
forall C in C1 ∪ {∂} do begin

C.π = πC ;
C.groupNo = |πC |

endfor;
/* calculate an array representation of π∂ for later multiple use in the Holds function */
∂.T = PartitionArrayRepresentation(∂);
for (k = 1; Ck �= ∅; k + +) do begin // Main loop

Rk = {};
forall candidates C ∈ Ck do begin

if Holds(C → {∂}) then // Is C → {∂} a functional dependency?
remove C from Ck to Rk; // store C as a k attribute ∂-reduct

endif
endfor;
/* create (k + 1) attribute candidates for ∂-reducts from k attribute non-∂-reducts */
Ck+1 = FunGen(Ck);

endfor;
return

⋃
k Rk;



Fast Discovery of Minimal Sets 325

Next, the PartitionArrayRepresentation function (see Section 3.3) is called to
create an array representation of π∂ . This representation shall be used multiple
times in the Holds function, called later in the algorithm, for efficient checking
whether candidate attribute sets determine ∂ functionally. Now, the main loop
starts. In each k-th iteration, the following is performed:

– The Holds function (see Section 3.3) is called to check if k attribute candi-
dates Ck determine ∂ functionally. The candidates that do are removed from
the set of k attribute candidates to the set of ∂-reducts Rk.

– The FunGen function (see Section 3.2) is called to create (k + 1) attribute
candidates Ck+1 from the k attribute candidates that remained in Ck.

The algorithm stops when the set of candidates becomes empty.

3.2 Generating Candidates for ∂-Reducts

The FunGen function creates (k + 1) attribute candidates Ck+1 by merging
k attribute candidates Ck, which are not ∂-reducts. The algorithm adopts the
manner of creating and pruning of candidates introduced in [1] (here: candidate
sets of attributes instead of candidates for frequent itemsets). There are merged
only those pairs of k attribute candidates Ck that differ merely on their last at-
tributes (see [1] for justification that this method is lossless and non-redundant).
For each new candidate C, πC is calculated as the product of the partitions wrt.
the merged k attribute sets (see Section 3.3 for the Product function). The cardi-
nality (groupNo) of πC is also calculated. Now, it is checked for each new (k+1)
attribute candidate C, if there is its k attribute subset A not present in Ck. If

function FunGen(Ck);
/* Merging */
forall A, B ∈ Ck do

if A[1] = B[1] ∧ . . . ∧ A[k − 1] = A[k − 1] ∧ A[k] < B[k] then begin
C = A[1] · A[2] · . . . · A[k] · B[k];
/* compute partition C.π as a product of A.π and B.π, and the number of groups in C.π */
C.groupNo = Product(A.π,B.π, C.π);
add C to Ck+1

endif ;
endfor;
/* Pruning */
forall C ∈ Ck+1 do

forall k attribute set A, such that A ⊂ C do
if A /∈ Ck then

/* A ⊂ C and ∃B ⊆ A such that B → {∂} holds, so C → ∂ holds, but is not minimal */
begin delete C from Ck+1; break
end

elseif A.groupNo = C.groupNo then // optional pruning step
/* A → C holds, so C → {∂} is not a minimal functional dependency */
begin delete C from Ck+1; break
end

endif
endfor

endfor;
return Ck+1;
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∂-reduct, and hence C is deleted from the set Ck+1. Optionally, for each tested
k attribute subset A that is present in Ck, it is checked, if |πA| equals |πC |. If
so, then A → C holds (by Property 2.2.2). Hence, A → {∂} is not a minimal
functional dependency (by Property 2.2.1e), and thus C is deleted from Ck+1.

3.3 Using Partitions in Fun

Computing Array Representation of Partition. The PartitionArrayRep-
resentation function returns an array T of the length equal to the number of
objects O in DT . For a given attribute C, each element of T is assigned the
index of the group in C.π to which the index of the element belongs. As a result,
j-th element of T informs to which group in C.π j-th object in DT belongs,
j = 1.. |O|.

function PartitionArrayRepresentation(attribute set C);
/* assert: T is an array[1 . . . |O|] */
i = 1;
for i-th group G in partition C.π do begin

for each oid G do T [oid] = i endfor;
i = i + 1

endfor
return T ;

Verifying Candidate Dependency. The Holds function checks, if there is a
functional dependency between the set of attributes C and an attribute ∂. It
is checked for successive groups G in C.π, if there is an oid in G that belongs
to a group in ∂.π different from the group in ∂.π to which the first oid in G
belongs (for the purpose of efficiency, the pre-calculated ∂.T representation of
the partition for ∂ is applied instead of ∂.π). If so, this means that G is not
contained in one group of ∂.π and thus C → {∂} is not a functional dependency.
In such a case, the function stops returning false as a result. Otherwise, if no
such group G is found, the function returns true, which means that C → {∂}
is a functional dependency.

function Holds(C → {∂});
/* assert: ∂.T is an array representation of ∂.π */
for each group G in partition C.π do begin

oid = first element in group G;
∂-firstGroup = ∂.T [oid]; // the identifier of the group in ∂.π to which oid belongs
for each next element oid ∈ G do begin

∂-nextGroup = ∂.T [oid];
if ∂-firstGroup �= ∂-nextGroup then

/* there are oids in G that identify objects indiscernible wrt. C, but discernible wrt. ∂ */
return false // hence, C → {∂} does not hold

endif
endfor;

endfor;
return true; // C → {∂} holds

Computing Product of Partitions. The Product function computes the par-
tition wrt. the attribute set C and its cardinality from the partitions wrt. the at-
tribute sets A and B. The function examines successive groups wrt. the partition
for B. The objects in a given group G in B.π are split into maximal subgroups in
such a way that the objects in each resultant subgroup are contained in a same
group in A.π. The obtained set of subgroups equals {G ∩ Y |Y ∈ A.π}. Product
C.π is calculated as the set of all subgroups obtained from all groups in B.π; i.e.,
C.π =

⋃
G∈B.π{G∩ Y |Y ∈ A.π} = {G∩ Y |Y ∈ A.π and G ∈ B.π} = B.π ∩ A.π.



Fast Discovery of Minimal Sets 327

In order to calculate the product of the partitions efficiently (with time complex-
ity linear wrt. the number of objects in DT ), we follow the idea presented in [5],
and use two static arrays T and S: T is used to store an array representation of
the partition wrt. A; S is used to store subgroups obtained from a given group
G in B.π.

function Product(A.π, B.π; var C.π);
/* assert: T [1..|O|] is a static array */
/* assert: S[1..|O|] is a static array with all elements initially equal to ∅ */
C.π = {}; groupNo = 0;
/* calculate an array representation of A.π for later multiple use in the Product function */
T = PartitionArrayRepresentation(A); i = 1;
for i-th group G in partition B.π do begin

A-GroupIds = ∅;
for each element oid ∈ G do begin

j = T [oid]; // the identifier of the group in A.π to which oid belongs
insert oid into S[j]; insert j into A-GroupIds

endfor;
for each j ∈ A-GroupIds do begin

insert S[j] into C.π;
groupNo = groupNo + 1; S[j] = ∅

endfor;
i = i + 1

endfor;
return groupNo;

3.4 Using Stripped Partitions in Fun

The representation of partitions that requires storing objects identifiers (oids)
of all objects in DT may be too memory consuming. In order to alleviate this
problem, it was proposed in [5] to store oids only for objects belonging to non-
singleton groups in a partition representation. Such a representation of a parti-
tion is called a stripped one. Clearly, the stripped representation is lossless.

function StrippedHolds(C → {∂});
i = 1;
for i-th group G in partition C.π do begin

oid = first element in group G;
∂-firstGroup = ∂.T [oid]; // the identifier of the group in ∂.π to which oid belongs
if ∂-firstGroup = null then return false endif ;

/* ∂.T [oid] = null indicates that oid constitutes a singleton group in the partition for ∂. */

/* Hence, no next object in G belongs to this group in ∂.π , so C → {∂} does not hold. */
for each next element oid ∈ G do begin

∂-nextGroup = ∂.T [oid];
if ∂-firstGroup �= ∂-nextGroup then

/* there are oids in G that identify objects indiscernible wrt. C, but discernible wrt. ∂ */
return false // hence, C → {∂} does not hold

endif
endfor;
i = i + 1

endfor;
return true; // C → {∂} holds

Example 3.4.1. In Table 1, the partition wrt. {ce} equals {{1}, {2}, {3, 4}, {5},
{6, 7, 8}, {9, 10}}, whereas the stripped partition wrt. {ce} equals {{3, 4}, {6, 7,
8}, {9, 10}}. ��
When applying stripped partitions in our Fun algorithm instead of usual par-
titions, one should call the StrippedHolds function instead of Holds, and the
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StrippedProduct function instead of Product. The modified parts of the functions
have been shadowed in the code below. We note, however, that the groupNo field
still stores the number of groups in an unstripped partition (singleton groups
are not stored, but are counted!).

function StrippedProduct(A.π, B.π; var C.π);
C.π = {}; groupNo = B.groupNo;
T = PartitionArrayRepresentation(A); i = 1;
for i-th group G in partition B.π do begin

A − GroupIds = ∅;
for each element oid ∈ G do begin

j = T [oid]; // the identifier of the group in A.π to which oid belongs

if j = null then groupNo = groupNo + 1; // respect singleton subgroups

else begin insert oid into S[j]; insert j into A-GroupIds endif
endfor;
for each j ∈ A − GroupIds do begin

if |S[j]| > 1 then

insert S[j] into C.π // store only non-singleton groups

endif ;

groupNo = groupNo + 1; S[j] = ∅ // but count all groups, including singleton ones
endfor;
groupNo = groupNo − 1;

i = i + 1
endfor;
/* Clearing of array T for later use */

for i-th group G in partition A.π do

for each element oid ∈ G do T [oid] = null endfor

endfor;
return groupNo;

4 Experimental Results

We have performed a number of experiments on a few data sets available in UCI
Repository datasets (http://www.ics.uci.edu/˜mlearn/MLRepository.html) and
other used by the Rough Sets community. We have reported the times of discov-
ering reducts by four variants of Fun, as well as, the TANE, SAVGeneticReducer
and RSESExhaustiveReducer algorithms. We used the implementation of TANE
provided by its authors. SAVGeneticReducer and RSESExhaustiveReducer, used
for experiments, come from the Rosetta toolkit. Because of Rosetta limitations,
we did not perform experiments with RSESExhaustiveReducer on datasets larger
than 500 records.

As follows from Table 2, Fun is faster than TANE and much faster than
the both algorithms from Rosetta. The performance of the four variants of Fun
is similar. In Figure 1, we plotted times of the performance of Fun, TANE and
SAVGeneticReducer for the nursery dataset in a logarithmic scale. The time per-
formance of Fun and TANE is linear wrt. the number of objects in the dataset.
The time performance of SAVGeneticReducer is 2 to 3 orders of magnitude
greater and is non-linear wrt. the number of objects. In Figures 2-4, we pre-
sented the time performance of Fun and TANE in a linear scale for the nursery,
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Table 2. Comparison of Fun, TANE, SAVGeneticReducer and RSESExhaustive-
Reducer. Time is given in milliseconds (+ - originally, time measured in seconds); ∗

- a data set does not contain an object id; F - # of min. functional dependencies; P -
applied optional pruning step in FunGen; S - applied stripped partitions

Data set DT = (O, AT ∪ {d}) Fun Fun Fun Fun TANE SAV Genetic RSES Exhaustive
Name |O| |AT | - P S PS S Reducer Reducer F
diabetic.33 33 12 10 10 10 10 30 <500 (or 0 sec)+ <500 (or 0 sec)+ 2
diabetic.33∗ 33 11 20 10 10 10 20 <500 (or 0 sec)+ <500 (or 0 sec)+ 10
diabetic 107 12 50 30 30 30 40 <500 (or 0 sec)+ <500 (or 0 sec)+ 9
diabetic∗ 107 11 40 40 20 20 30 <500 (or 0 sec)+ <500 (or 0 sec)+ 14
nursery.500 500 9 20 10 10 10 10 <500 (or 0 sec)+ 18000 (or 18 sec)+ 8
nursery.500∗ 500 8 20 10 10 10 10 <500 (or 0 sec)+ 17000 (or 17 sec)+ 2
nursery 12960 9 451 539 471 481 681 274000 (or 274 sec)+ not available+ 1
nursery∗ 12960 8 441 450 451 481 701 247000 (or 247 sec)+ not available+ 2
krkopt 8056 6 250 251 260 250 420 1296000(or 1296 sec)+ not available+ 1

Fig. 1. nursery - logarithmic scale Fig. 2. nursery - linear scale

Fig. 3. diabetic - linear scale Fig. 4. krkopt - linear scale

diabetic and krkopt datasets, respectively. On average, TANE is approximately
by 60%, 80%, and 60% slower than Fun for the respective datasets.

5 Conclusions and Future Work

We have proposed the Fun algorithm for discovering minimal sets of condi-
tional attributes functionally determining a decision attribute, and in particular
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for computing certain, generalized decision, and μ-distribution reducts. Fun is
consistently faster than TANE, which computes all minimal functional depen-
dencies, and is orders of magnitude faster than SAVGeneticReducer and RSES-
ExhaustiveReducer from Rosetta. The four variants of Fun, we have implemented
and tested, show similar performance. We are going to continue testing their per-
formance on a diverse large datasets. We intend to specify categories of datasets
and appropriate (fastest) variants of Fun for them.
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Laws from Decision Tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994.
LNCS, vol. 869, pp. 346–355. Springer, Heidelberg (1994)

[4] Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewski, J.: Rough Set
Algorithms in Classification Problem. In: Rough Set Methods and Applications,
pp. 49–88. Physica- Verlag, Heidelberg (2000)

[5] Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: TANE: An Efficient Algo-
rithm for Discovering Functional and Approximate Dependencies. The. Computer
Journal 42(2), 100–111 (1999)

[6] Jelonek, J., Krawiec, K., Stefanowski, J.: Comparative study of feature subset
selection techniques for machine learning tasks. In: Proc. of IIS, Malbork, Poland,
pp. 68–77 (1998)

[7] Kryszkiewicz, M.: Comparative Study of Alternative Types of Knowledge Reduc-
tion in Inconsistent Systems. Intl. Journal of Intelligent Systems 16(1), 105–120
(2001)

[8] Kryszkiewicz, M.: Certain, Generalized Decision, and Membership Distribution
Reducts versus Functional Dependencies in Incomplete Systems. RSEISP, LNAI
(2007)

[9] Kryszkiewicz, M., Cichon, K.: Towards Scalable Algorithms for Discovering Rough
Set Reducts. In: Peters, J.F., Skowron, A., Grzyma�la-Busse, J.W., Kostek, B..,
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