
Attribute Core Computation Based on Divide
and Conquer Method�

Feng Hu1,2, Guoyin Wang1,2, and Ying Xia1,2

1 School of Information Science and Technology,
Southwest Jiaotong University,
Chengdu 600031, P.R. China

2 Institute of Computer Science and Technology,
Chongqing University of Posts and Telecommunications,

Chongqing 400065, P.R. China
{hufeng, wanggy, xiaying}@cqupt.edu.cn

Abstract. The idea of divide and conquer method is used in developing
algorithms of rough set theory. In this paper, according to the partitions
of equivalence relations on attributes of decision tables, two novel algo-
rithms for computing attribute core based on divide and conquer method
are proposed. Firstly, a new algorithm for computing the positive region
of a decision table is proposed, and its time complexity is O(|U | × |C|),
where, |U | is the size of the set of objects and C is the size of the set of
attributes. Secondly, a new algorithm for computing the attribute core
of a decision table is developed, and its time complexity is O(|U |× |C|2).
Both these two algorithms are linear with |U |. Simulation experiment
results show that the algorithm of computing attribute core is not only
efficient, but also adapt to huge data sets.

Keywords: Rough set, divide and conquer, positive region, attribute
core.

1 Introduction

Rough set (RS) is a valid mathematical theory to deal with imprecise, uncertain,
and vague information [1]. It has been applied in many fields such as machine
learning, data mining, intelligent data analyzing and control algorithm acquiring
successfully since it was proposed by Pawlak in 1982 [2].

In divide and conquer method, a problem which is hard to be solved directly
is divided into many sub-problems and conquered respectively. The structures
of the sub-problems are similar to the one of the original problem except their
sizes are smaller. The divide and conquer method divide a problem into simpler
� This paper is partially supported by National Natural Science Foundation of China

under Grants No.60373111 and No.60573068, Program for New Century Excellent
Talents in University (NCET), Natural Science Foundation of Chongqing under
Grant No.2005BA2003, Science & Technology Research Program of Chongqing Ed-
ucation Commission under Grant No.KJ060517.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 310–319, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Attribute Core Computation Based on Divide and Conquer Method 311

sub-problems iteratively in this way and the sizes of the sub-problems will be
reduced to be easy enough to be processed directly [3,4].

In the study of rough set theory, the computation of positive region and
attribute core are two basic operations, and their efficiencies will affect the ef-
ficiencies of further attribute reduction and value reduction. Many attribute
reduction algorithms have already been proposed [5-16]. However, few of them
can deal with huge data sets well. Combining the idea of divide and conquer
method and partition of equivalence relation in a decision table, a huge data set
can be divided into many small ones that can be processed directly easily. In
addition, the complexity of the original problem could be reduced. According
to the above analysis, a new algorithm for computing positive region based on
divide and conquer method is proposed, and its time complexity is O(|U |× |C|).
Furthermore, a new algorithm for computing attribute core based on divide and
conquer is also proposed, and its time complexity is O(|U | × |C|2).

The rest of this paper is organized as follows. In section 2, some basic notions
about rough set theory are introduced. A new algorithm for computing positive
region is proposed in section 3. In section 4, a novel algorithm for computing
attribute core based on divide and conquer is proposed. In section 5, some ex-
periment results are discussed. We draw some conclusions in section 6.

2 Basic Notions of Rough Set Theory

For the convenience of illustration, some basic notions of rough set theory are
introduced here at first.

Def. 1 (decision table [2]) A decision table is defined as S =< U, A, V, f >,
where U is a non-empty finite set of objects, called universe, R is a non-empty
finite set of attributes, A = C ∪D, where C is the set of condition attributes and
D is the set of decision attributes, D �= Ø. V =

⋃

p∈R

Vp , and Vp is the domain

of the attribute p. f : U × A → V is a total function such that f(xi, A) ∈ Vp for
every p ∈ A, xi ∈ U .

Def. 2 (indiscernibility relation [2]) Given a decision table S =< U, A = C ∪
D, V, f >, each subset B ⊆ C of attribute determines an indiscernibility relation
IND(B) as follows: IND(B) = {(x, y)|(x, y) ∈ U × U, ∀b ∈ B(b(x) = b(y))}.

Def. 3 (lower-approximation, upper-approximation and border region [2])
Given a decision table S =< U, C∪D, V, f >, for any subset X ⊆ Uand the indis-
cernibility relation IND(B), the B lower-approximation, upper-approximation
and border region of X are defined as: B (X) =

⋃

Yi∈U/IND(B)∧Yi⊆X

Yi, B−(X) =
⋃

Yi∈U/IND(B)∧Yi∩X �=Φ

Yi, BN(X) = B−(X) − B−(X).

Def. 4 (positive region [2]) Given a decision table S =< U, A, V, f >. P ⊆ A
and Q ⊆ A, the P positive region of Q is defined as: PosP (Q) =

⋃

X∈U/Q

P (X).

Def. 5 (relative core [2]) Given a decision table S =< U, A, V, f >, P ⊆ A,
Q ⊆ A, and r ∈ P . r is unnecessary in P with reference to Q if and only if

312 F. Hu, G. Wang, and Y. Xia

PosP (Q) = PosP−{r}(Q), otherwise r is unnecessary in P with reference to Q.
The core of P with reference to Q is defined as: COREQ(P) = {r|r ∈ P , r is
necessary in P with reference to Q}. Attribute r is necessary in P with reference
to Q can be written as r is relative necessary, too.

Def. 6 [2] Given a decision table S =< U, A, V, f >, P ⊆ A, Q ⊆ A. ∀r ∈ P ,
if r is necessary in P with reference to Q, we call P is independent with reference
to Q.

Def. 7 (relative reduction [2]) Given a decision table S =< U, A, V, f >,
P ⊆ A, Q ⊆ A. Red ⊂ P , if Red is independent with reference to Q and
PosRed(Q) = PosP (Q), we call Red is a reduction of P with reference to Q.

In this paper, f(x, c)(x ∈ U ∧ c ∈ C) is noted as c(x), and f(x, d)(x ∈ U ∧ D =
{d}) is noted as d(x).

3 Algorithm for Computing Positive Region Based on
Divide and Conquer Method

In [17], a method for computing positive region is proposed by partitioning the
universe of a decision table. In this paper, by reducing condition attributes and
partitioning the universe of a decision table, the original decision table could
be divided into many new decision tables with different attribute spaces. The
method is as follows.

Theorem 1. Given a decision table S =< U, A = C ∪ D, V, f >. ∀c(c ∈ C),
U/{c} is a partition of S, that is, S is divided into k(k = |IND(U/{c})|) sub-
decision tables S1, S2,..., Sk, where, Sk =< Uk, (C−{c})∪D, Vk, fk >, satisfying
∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤ i ≤ k) and ∀x∈Ui∀z∈Uj c(x) �= c(z)(1 ≤ i < j ≤ k).
Let R = C − {c}, Posi

R(D)(1 ≤ i ≤ k) be the positive region of a sub decision
table Si, PosC(D) be the positive region of the original decision table S. Then,
PosC(D)=

⋃

1≤i≤k

Posi
R(D).

Proof: firstly, prove PosC(D)⊆
⋃

1≤i≤k

Posi
R(D).

∀x ∈ PosC(D), suppose x is assigned to sub-decision table Sk, that is, x ∈ Uk.
Now, we need to prove x ∈ Posi

R(D). Prove to the reverse.
Suppose x /∈ Posi

R(D), then ∃y ∈ Uj(∀a∈C−{c}(a(x) = a(y))∧(d(x) �= d(y))).
Since c(x) = c(y), so (∀a∈C(a(x) = a(y))∧(d(x) �= d(y))), that is, x /∈ PosC(D),
which is conflict with the premise x ∈ PosC(D). Therefore, x ∈ Posi

R(D), then
PosC(D)⊆

⋃

1≤i≤k

Posi
R(D). That’s to say, PosC(D)⊆

⋃

1≤i≤k

Posi
R(D).

Then, prove
⋃

1≤i≤k

Posi
R(D) ⊆ PosC(D).

∀x ∈ Posi
C−{c}(D)(1 ≤ i ≤ k), ∀y ∈ U , if y /∈ Ui, there is c(x) �= c(y). So,

x ∈ PosC(D). That’s to say,
⋃

1≤i≤k

Posi
R(D) ⊆ PosC(D).

Therefore, PosC(D)=
⋃

1≤i≤k

Posi
R(D). Theorem 1 holds.

Attribute Core Computation Based on Divide and Conquer Method 313

With Theorem 1, we could develop an algorithm for computing positive region
based on divide and conquer.

Algorithm 1. Computing Positive Region Based on Divide and Conquer Method
Input: A decision table S =< U, C ∪ D, V, f >
Output: Positive region PosC(D)
Step1: (Initiative) PosC(D) = φ;
Step2: (Compute positive region by invoking recursive function)

Get Positive(U, 1);
Step3: (Return) return PosC(D)
Recursive Function Get Positive(Set OSet, int k)

if (k < 1) or (|OSet| < 1) then return; end if
if (|OSet| = 1) then

PosC(D) = PosC(D) ∪ OSet; return;
end if
if (k > |C|) then

if ∀x∈OSet∀y∈OSetd(x) = d(y) then PosC(D) = PosC(D) ∪ OSet; end if
return;

end if
Let c = ck, V c = φ;
for i = 1 to |OSet| do

V c = V c ∪ f(xi, c);
end for
for i = 1 to |V c| do

OSetcj = φ;
end for
construct a mapping function f

′
: V c → N(N = 1, 2, ..., |V c|), satisfying:

∀x∈V c∀y∈V c (f
′
(x) = f

′
(y)) ⇔ (x = y).

for i = 1 to |OSet| do
let j = f

′
(f(xi, c)); OSetcj = OSetcj ∪ {xi};

end for
for j = 1 to |V c| do

recursive invoking: Get Positive(OSetcj, k + 1)
end for

End Function

Let’s analyze the time complexity and space complexity of Algorithm 1 now.
Suppose n = |U |, m = |C|, p = max(|Vi|)(1 ≤ i ≤ |C|). Because calculating

all values of k-th attribute in the set of objects OSet can be performed in the
time O(n), the time complexity of Algorithm 1 could be approximated by the
following recursive equation:

T (n, m)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1. (n = 1)
n. (m = 0)
2n + p1 + T (n1, m − 1) + T (n2, m − 1) + ... + T (nk, m − 1).

(n1 + n2 + ... + nk = n, n > 1, m > 0, p1 ≤ min(p, n))
0. (else)

(1)

314 F. Hu, G. Wang, and Y. Xia

According to the iterative method and solution of recursive equation [3], we
can find:

T (n, m) ≤ (2n + n) + T (n1, m − 1) + T (n2, m − 1) + ... + T (nk, m − 1)
≤ 3n + T (n1, m − 1) + T (n2, m − 1) + ... + T (nk, m − 1)
≤ 3n+ (3n1 + T (n1

1, m − 2) + T (12, m − 2) + ... + T (1t1 , m − 2))
+(3n2 + T (n2

1, m − 2) + T (22, m − 2) + ... + T (2t2 , m − 2))
+...
+(3nk + T (nk

1 , m − 2) + T (k
2 , m − 2) + ... + T (k

tk
, m − 2))

≤ 3n+3n1+3n2+...+3nk+ (T (n1
1, m−2)+T (12, m−2)+...+T (1t1, m−2))

+(T (n2
1, m − 2) + T (22, m − 2) + ... + T (2t2 , m − 2))

+...
+(T (nk

1 , m − 2) + T (k
2 , m − 2) + ... + T (k

tk
, m − 2))

≤ 3n + 3n+ (T (n1
1, m − 2) + T (12, m − 2) + ... + T (1t1 , m − 2))

+(T (n2
1, m − 2) + T (22, m − 2) + ... + T (2t2 , m − 2))

+...
+(T (nk

1 , m − 2) + T (k
2 , m − 2) + ... + T (k

tk
, m − 2))

≤ 3n + 3n + ... + 3n + n
≤ 3 × m × n + n

That is, T (n, m) = O(n × m).

Suppose n = |U |, m = |C|, p = max(|Vi|)(1 ≤ i ≤ |C|). Then, the space
complexity of Algorithm 1 is: O(n + p × m).

4 Algorithm for Computing Attribute Core Based on
Divide and Conquer Method

Lemma 1. Given a decision table S =< U, A = C ∪ D, V, f >. ∀c(c ∈ C),
U/{c} is a partition of S, that is, S is divided into k(k = |IND(U/{c})|) sub-
decision tables S1, S2,..., Sk. Where, Sk =< Uk, (C−{c})∪D, Vk, fk >, satisfying
∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤ i ≤ k) and ∀x∈Ui∀z∈Uj c(x) �= c(z)(1 ≤ i < j ≤ k).
Suppose Corei(1 ≤ i ≤ k) be the attribute core of the sub-decision table Si, and
Core be the attribute core of the decision table S. Then, ∀a∈Corei a ∈ Core.

Lemma 2. Given a decision table S =< U, A = C ∪D, V, f >. ∀c(c ∈ C), which
is unnecessary in C with reference to D, that is, PosC−{c}(D) = PosC(D).
U/{c} is a partition of S, that is, S is divided into k(k = |IND(U/{c})|) sub-
decision tables S1, S2,..., Sk. Where, Sk =< Uk, (C−{c})∪D, Vk, fk >, satisfying
∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤ i ≤ k) and ∀x∈Ui∀z∈Uj c(x) �= c(z)(1 ≤ i < j ≤ k).
Suppose Corei(1 ≤ i ≤ k) be the attribute core of the sub-decision table Si, and
Core be the attribute core of the decision table S. Suppose redi(1 ≤ i ≤ k) be
an attribute reduction of the sub-decision table Si. Let R =

⋃

1≤i≤k

redi. Then,

there are two conclusions:

(1) Core =
⋃

1≤i≤k

Corei. (2)In the decision table S, PosR(D) = PosC(D).

Attribute Core Computation Based on Divide and Conquer Method 315

Lemma 3. Given a decision table S =< U, A = C∪D, V, f >. Let Core(Core �=
φ) be the attribute core of S. ∀c(c ∈ Core), which is a core attribute (necessary
attribute) of S, that is, PosC−{c}(D) �= PosC(D). U/{c} is a partition of S,
that is, S is divided into k(k = |IND(U/{c})|) sub decision tables S1, S2,..., Sk.
Where, Sk =< Uk, (C − {c})∪ D, Vk, fk >, satisfying ∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤
i ≤ k) and ∀x∈Ui∀z∈Uj c(x) �= c(z)(1 ≤ i < j ≤ k). Suppose Corei(1 ≤ i ≤ k)
be the attribute core of the sub-decision table Si, and redi(1 ≤ i ≤ k) be an
attribute reduction of the sub-decision table Si. Let R = {c}∪

⋃

1≤i≤k

redi. Then,

there are two conclusions:

(1) Core = {c} ∪
⋃

1≤i≤k

Corei. (2)In the decision table S, PosR(D) = PosC(D).

Theorem 2. Given a decision table S =< U, A = C ∪ D, V, f >. ∀c(c ∈
C), according to U/{c}, S is divided into k(k = |IND(U/{c})|) sub-decision
tables S1, S2,..., Sk. Where, Sk =< Uk, (C − {c}) ∪ D, Vk, fk >, satisfying
∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤ i ≤ k) and ∀x∈Ui∀z∈Uj c(x) �= c(z)(1 ≤ i < j ≤ k).
Suppose Corei(1 ≤ i ≤ k) be the attribute core of the sub decision table Si, and
Core be the attribute core of the decision table S. Then,

⋃

1≤i≤k

Corei ⊆ Core ⊆

{c} ∪
⋃

1≤i≤k

Corei.

Proof: Obviously, Lemma 1, Lemma 2, Lemma 3 and Theorem 2 could be proved
using basic concerts of rough set theory. We omit their proofs here due to page
limits.

According to Theorem 2, an algorithm for computing attribute core based on
divide and conquer could be developed.

Algorithm 2. Computing Attribute Core Based on Divide and Conquer Method
Input: A decision table S =< U, C ∪ D, V, f >
Output: Attribute Core (Core) of S
Step1: (Initiative) Core = φ;
Step2: (Compute Attribute Core using recursive function)

Get Core(U, 1);
Step3: (Return) return Core
Recursive Function Get Core(Set OSet, int k)

if (k < 1) or (|OSet| < 1) then return; end if
if (ck ∈ Core) then return;
else

Suppose Ck = ck ∪ ck+1 ∪ ... ∪ c|C|;
For decision table S′ =< OSet, Ck∪ D, V k, fk >, compute positive
region PosCk−{ck}(D) using Algorithm 1;
PosCk(D) = φ;

end if
Let c = ck, V c = φ;
for i = 1 to |OSet| do

316 F. Hu, G. Wang, and Y. Xia

V c = V c ∪ f(xi, c);
end for
for i = 1 to |V c| do

OSetcj = φ;
end for
construct a mapping function f

′
: V c → N(N = 1, 2, ..., |V c|), satisfying:

∀x∈V c∀y∈V c (f
′
(x) = f

′
(y)) ⇔ (x = y).

for i = 1 to |OSet| do
let j = f

′
(f(xi, c)); OSetcj = OSetcj ∪ {xi};

end for
for j = 1 to |V c| do

PosCk(D) = PosCk(D)∪ Get Positive(OSetcj, k + 1);
Get Core(OSetcj , k + 1);

end for
if (PosCk−{c}(D) < PosCk(D)) then Core = Core ∪ {c}; end if

End Function
Now, let’s analyze the time complexity and space complexity of Algorithm 2.
Suppose n = |U |, m = |C|. Then, the time complexity of Algorithm 2 could

be approximated by the following recursive equation:

T (n, m) =

⎧
⎨

⎩

O(n × m) + T (n1, m − 1) + T (n2, m − 1) + ... + T (nk, m − 1).
(n1 + n2 + ... + nk = n, n > 1, m > 0)

0. (else)
(2)

According to the iterative method and solution of recursive equation [3], we
can have: T (n, m) = O(n × m) × m = O(n × m2).

Suppose n = |U |, m = |C|, p = max(|Vi|)(1 ≤ i ≤ |C|). Then, the space
complexity of Algorithm 2 is: O(n + p × m).

5 Experiment Results

Firstly, some data sets from UCI database are used to test Algorithms 2. Sec-
ondly, data sets KDDCUP99 are used to test the efficiency of Algorithm 2(Data
sets KDDCUP99 can be downloaded at http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html).

5.1 Experiment Results in UCI Database

Data sets Heart c ls, P ima India, rx bq ls, Liver disorder and Abalone from
UCI database (These data sets can be downloaded at http://www.ics.uci.edu)
are used as test data sets. In order to compare our algorithms with existed
algorithms, the algorithm in [5,7,18] and the algorithm in [19] are chosen, called
Algorithm a and Algorithm b respectively. The experiment results are shown
in Table 1. Where, T is running time(in second) of algorithms, and N is the
cardinality of core attribute. The configuration of the PC here is P4 2.60G CPU,
256M RAM, Windows XP.

We can find from Table 1 that results of Algorithm a, Algorithm b and Algo-
rithm 2 are valid. However, the Algorithm 2 could save some time.

Attribute Core Computation Based on Divide and Conquer Method 317

Table 1. Experiment results on UCI database

Number Number Algorithm a Algorithm b Algorithm 2
Data Sets of Attribute of Records T N T N T N

Glass 9 214 0.016 9 0.003 9 0.001 9
Heart c ls 13 303 0.047 9 0.006 9 0.003 9

Australian Credit 14 660 0.141 8 0.023 8 0.005 8
Pima India 8 738 0.156 5 0.025 5 0.003 5

Liver disorder 6 1260 0.063 5 0.009 5 0.005 5
Abalone 8 4177 8.031 6 1.147 6 0.041 6

5.2 Experiment Results on Data Sets KDDCUP99

In order to test the efficiency of Algorithm 2 on really huge data sets, 20 KD-
DCUP99 data sets are downloaded. The number of records of these data sets
are 1 × 105, 2 × 105, 3 × 105,..., 20 × 105 respectively. The number of condition
attributes is 41. The experiment results are shown in Fig.1. The configuration
of the PC here is also P4 2.60G CPU, 256M RAM, windows XP.

We can find from Fig.1 that the efficiency of Algorithm 2 is very high on
huge data sets. Besides, the time cost of our algorithm is almost linear with the
number of objects. In the meantime, we test the minimum data set of Fig.1 with
Algorithm a and Algorithm b, their running time are both more than 1 hour.

Fig. 1. Experiment results on KDD data sets

6 Conclusion

Though rough set theory is becoming more and more mature, its application
in industry is still limited. An important reason is that the efficiency of many
algorithms of rough set theory is too low to meet to the need of industry in huge
data set environments. In this paper, the idea of divide and conquer method is

318 F. Hu, G. Wang, and Y. Xia

used in the rough set theory, and an algorithm for computing positive region and
an algorithm for computing attribute core are proposed. Experiment results show
that the proposed algorithms are not only efficient, but also can deal with huge
data sets. Studying on algorithms of attribute reduction and value reduction
based on divide and conquer method will be our further work.

References

1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-
ences 11, 341–356 (1982)

2. Wang, G.Y.: Rough set theory and knowledge acquisition (in Chinese). Xi’an Jiao-
tong University Press, Xi’an (2001)

3. Fu, Q.X, Wang, X.D.: Algorithms and data structure (in Chinese). Publishing
House of Electronics Industry, Beijing (2003)

4. Yu, X.X, Cui, G.H, Zhou, H.M.: Fundmental of Computer Algorithms (in Chinese).
Huazhong University Press, Wuhan (2001)

5. Skowron, A., Rauszer, C.: The discernibility functions matrics and functions in
information systems. In: Slowinski, R. (ed.) Intelligent Decision Support - Hand-
book of Applications and Advances of the Rough Sets Theory, pp. 331–362. Kluwer
Academic Publisher, Dordrecht (1992)

6. Bazan, J., Skowron, A., Synak, P.: Dynamic reductions as tool for exacting laws
for decision table. Lecture Note in Artificial Intelligence, vol. 869, pp. 346–355.
Springer, Berlin (1994)

7. Hu, X.H., Cercone, N.: Learning in relational database: A rough set approach.
International Journal of Computional Intelligence 11(2), 323–338 (1995)

8. Jelonek, J., et al.: Rough set reduction of attributes and their domains for neural
networks. Computional Intelligence 11(2), 338–347 (1995)

9. Ziarko, W., Shan, N.: Data-based acquisition and incremental modification class-
fication rules. Computational Intelligence 11(2), 357–370 (1995)

10. Nguyen, H.S, Nguyen, S.H.: Some efficient algorithms for rough set methods. In:
Proceedings of the Sixth International Conference, Information Procesing and
Management of Uncertainty in Knowledge-Based Systems(IPMU”96), July 1-5,
Granada, Spain, vol. 2, pp. 1451–1456 (1996)

11. Susmaga, R.: Experiments in incremental computation of reducts. In: Skowron, A.,
Olkowski, A. (eds.) Rough Sets in Data Mining and Knowledge Discovery, Springer,
Berlin (1998)

12. Bazan, B.J H.S., Nguyen, S.H., Nguyen, P.: Rough set algorithms in classification
problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and
Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)

13. Ye, D.Y., et al.: An improvement to Jelonek’s attribute reduction algorithm (in
Chinese). Acta. Electronica Sinica 28(12), 81–82 (2000)

14. Wang, J., Wang, J.: Reduction algorithms based on discernibility matrix: the or-
dered attributed method. Journal of Computer Science and Technology 11(6), 489–
504 (2001)

15. Liu, S.H., Sheng, Q.J., Wu, B., et al.: Research on efficient algorithms for Rough
set methods (in Chinese). Chinese Journal of Computers 30(7), 1086–1088 (2002)

16. Wang, G.Y., Yu, H., Yang, D.C.: Decision table reduction based on conditional
information entropy. Chinese Journal of computer (in Chinese) 25(7), 759–766
(2002)

Attribute Core Computation Based on Divide and Conquer Method 319

17. Liu, S.H., Cheng, Q.J., Shi, Z.Z.: A new method for fast computing positve re-
gion. Journal of Computer Research and Development (in Chinese) 40(5), 637–642
(2003)

18. Ye, D.Y., Chen, Z.J.: A new discernibility matrix and the computation of a core.
Acta. Electronica Sinica (in Chinese) 30(7), 1086–1088 (2002)

19. Wang, G.Y.: The computation method of core attribute in decision table. Chinese
Journal of Computer (in Chinese) 26(5), 611–615 (2003)

	Introduction
	Basic Notions of Rough Set Theory
	Algorithm for Computing Positive Region Based on Divide and Conquer Method
	Algorithm for Computing Attribute Core Based on Divide and Conquer Method
	Experiment Results
	Experiment Results in UCI Database
	Experiment Results on Data Sets KDDCUP99

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

