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Abstract. In Granular Computing (GC) we search for granules satis-
fying some criteria. These criteria can be based on the minimal length
principle, can express acceptable risk degrees of granules, or can use some
utility functions. We discuss the role of approximation spaces in modeling
granules satisfying such criteria.

1 Introduction

Information granulation can be viewed as a human way of achieving data com-
pression and it plays a key role in implementing the divide-and-conquer strategy
in human problem-solving [22]. Granules are obtained in the process of informa-
tion granulation. Granular computing (GC) is based on processing of complex
information entities called granules. Generally speaking, granules are collection
of entities, that are arranged together due to their similarity, functional adja-
cency or indistinguishability [22].

One of the main branch of GC is Computing with Words and Perceptions
(CWP). GC“derives from the fact that it opens the door to computation and rea-
soning with information which is perception - rather than measurement-based.
Perceptions play a key role in human cognition, and underlie the remarkable hu-
man capability to perform a wide variety of physical and mental tasks without
any measurements and any computations. Everyday examples of such tasks are
driving a car in city traffic, playing tennis and summarizing a story” [22].

We consider the optimization tasks in which we are searching for optimal so-
lutions satisfying some constraints. These constraints are often vague, imprecise,
and/or specifications of concepts and dependencies between them involved in the
constraints are incomplete. Decision tables [11] are examples of such constraints.
Another example of constraints can be found, e.g., in [4,15] where a specification
is given by a domain knowledge and data sets. Domain knowledge is represented
by ontology of vague concepts and dependencies between them. In a more gen-
eral case, the constraints can be specified in a simplified fragment of a natural
language [22].
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Granules are constructed in computations aiming at solving the mentioned
above optimization tasks. In our approach, we use the general optimization cri-
terion based on the minimal length principle. In searching for (sub-)optimal so-
lutions it is necessary to construct many compound granules using some specific
operations such as generalization, specification or fusion. Granules are labeled
by parameters. By tuning these parameters we optimize the granules relative to
their description size and the quality of data description, i.e., two basic compo-
nents on which the optimization measures are defined.

From this general description of tasks in GC it follows that together with
specification of elementary granules and operation on them it is necessary to
define measures of granule quality (e.g., measures of their inclusion, covering or
closeness) and tools for measuring the size of granules. Very important are also
optimization strategies of already constructed (parameterized) granules.

We discuss the searching process for relevant (for concept approximation)
neighborhoods in approximation spaces based on modeling relevant relational
and syntactical structures build from partial information about objects and con-
cepts.

The importance in GC of risk measures defined on granules is emphasized. The
values of such measures are indicating how properties of granules are changing
when some of their parameters were changed.

We present an example showing how utility functions defined on granules can
be used in GC. In general, utility functions are helping to relax the binary con-
straints by making it possible to work with constraints which should be satisfied
to a degree expressed by utility functions.

This paper is structured as follows. In Section 2 we discuss definitions of
approximation spaces and approximations. In Section 3 we discuss constraints
that must be satisfied during the information granulation process. In Section 4
we present some remarks about risk in construction of granules.

2 Approximation Spaces and Approximations

In this section, we discuss the definition of an approximation space from [13,19].
Approximation spaces can be treated as granules used for concept approxima-
tion. They are some special parameterized relational structures. Tuning of pa-
rameters is making it possible to search for relevant approximation spaces relative
to given concepts.

Definition 1. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where
– U is a non-empty set of objects,
– I# : U → P (U) is an uncertainty function, where P (U) denotes the power

set of U ,
– ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters (the indexes #, $ will be omitted if it does
not lead to misunderstanding).
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The uncertainty function defines for every object x, a set of objects described
similarly to x. The set I(x) is called the neighborhood of x (see, e.g., [11,13]).

The rough inclusion function ν$ : P (U) × P (U) → [0, 1] defines the degree of
inclusion of X in Y , where X, Y ⊆ U .

In the simplest case it can be defined by (see, e.g., [13,11]):

νSRI (X, Y ) =

{
card(X∩Y )

card(X) if X �= ∅
1 if X = ∅.

The lower and the upper approximations of subsets of U are defined as follows.

Definition 2. For any approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U , the lower and upper approximations are defined by

LOW
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) > 0}, respectively.

The lower approximation of a set X wit respect to the approximation space
AS#,$ is the set of all objects, which can be classified with certainty as objects
of X with respect to AS#,$. The upper approximation of a set X with respect
to the approximation space AS#,$ is the set of all objects which can be possibly
classified as objects of X with respect to AS#,$.

Several known approaches to concept approximations can be covered using
the discussed here approximation spaces, e.g., (see, e.g., references in [13]).

One can use yet another approach to approximation based on a fusion of in-
clusion degree of neighborhoods in concepts and their complements in definition
of approximations. Let f : [0, 1] −→ [0, 1] denote such a fusion function. For any
subset X ⊆ U , the lower and upper approximations are defined by

LOW (AS#,$, X) = {x ∈ U : f({ν$(I#(y), X) : x ∈ I#(y)}) = {1}},

UPP (AS#,$, X) = {x ∈ U : f({ν$(I#(y), X) : x ∈ I#(y)}) �= {0}}.

The classification methods for concept approximation developed in machine
learning and pattern recognition make it possible to decide for a given object if it
belongs to the approximated concept or not. The classification methods yield the
decisions using only partial information about approximated concepts. This fact
is reflected in the rough set approach by assumption that concept approximations
should be defined using only partial information about approximation spaces. To
decide if a given object belongs to the (lower or upper) approximation of a given
concept the rough inclusion function values are needed. In the next section, we
show how such values necessary for classification making are estimated on the
basis of available partial information about approximation spaces.

3 Quality of Approximation Space

A key task in granular computing is the information granulation process, which
is responsible in the formation of information aggregates (patterns) from a set
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of available data. A methodological and algorithmic issue is the formation of
transparent (understandable) information granules, meaning that they should
provide a clear and understandable description of patterns held in data. Such
fundamental property can be formalized by a set of constraints that must be sat-
isfied during the information granulation process. Usefulness of these constraints
is measured by quality of approximation space:

Quality1 : Set AS × P (U) → [0, 1]

where U is a non-empty set of objects and Set AS is a set of possible approxi-
mation spaces with the universe U.

Example 1. If UPP (AS, X)) �= ∅ for AS ∈ Set AS and X ⊆ U then

Quality1(AS, X) = νSRI(UPP (AS, X), LOW (AS, X)) =
card(LOW (AS, X))
card(UPP (AS, X))

The value 1 − Quality1(AS, X) expresses the degree of completeness of our
knowledge about X , given the approximation space AS.

Example 2. In applications we usually use another quality measures based on the
minimal length principle [12,21] where also the description length of approxima-
tion is included. Let us denote by description(AS, X) the description length of
approximation of X in AS. the description length may be measured, e.g., by the
sum of description lengths of algorithms testing membership for neighborhoods
used in construction of the lower approximation, the upper approximation, and
the boundary region of the set X . Then the quality Quality2(AS, X) can be
defined by

Quality2(AS, X) = g(Quality1(AS, X), description(AS, X))

where g is a relevant function used for fusion of values Quality1(AS, X) and
description(AS, X).

One can consider different optimization problems relative to a given class Set AS
of approximation spaces. For example, for given X ⊆ U and a threshold t ∈
[0, 1] one can search for an approximation space AS satisfying the constraint
Quality(AS, X) ≥ t. Another example can be related to searching for an ap-
proximation space satisfying additionally the constraint Cost(AS) < c where
Cost(AS) denotes the cost of approximation space AS (e.g. measured by the
number of attributes used to define neighborhoods in AS) and c is a given
threshold.

In the process of searching for (sub-)optimal approximation spaces different
strategies are used. Let us consider one illustrative example. Let DT = (U, A, d)
be a decision system (a given sample of data) where U is a set of objects, A is a
set of attributes and d is a decision. We assume that for any object x is accessible
only a partial information equal to the A-signature of x (object signature, for
short), i.e., InfA(x) = {(a, a(x)) : a ∈ A} and analogously for any concept there
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is only given a partial information about this concept by a sample of objects,
e.g., in the form of decision table. One can use object signatures as new objects
in a new relational structure R. In this relational structure R are also mod-
eled some relations between object signatures, e.g., defined by the similarities
of these object signatures. Discovery of relevant relations on object signatures
is an important step in the searching process for relevant approximation spaces.
In the next step, we select a language L of formulas expressing properties over
the defined relational structure R and we search for relevant formulas in L. The
semantics of formulas (e.g., with one free variable) from L are subsets of ob-
ject signatures. Observe that each object signature defines a neighborhood of
objects from a given sample (e.g., decision table DT ) and another set on the
whole universe of objects being an extension of U . In this way, each formula
from L defines a family of sets of objects over the sample and also another fam-
ily of sets over the universe of all objects. Such families can be used to define
new neighborhoods of a new approximation space, e.g., by taking unions of the
described above families. In the searching process for relevant neighborhoods,
we use information encoded in the given sample. More relevant neighborhoods
are making it possible to define relevant approximation spaces (from the point
of view of the optimization criterion). It is worth to mention that often this
searching process is even more compound. For example, one can discover sev-
eral relational structures (not only one, e.g., R as it was presented before) and
formulas over such structures defining different families of neighborhoods from
the original approximation space and next fuse them for obtaining one family of
neighborhoods or one neighborhood in a new approximation space. Such kind of
modeling is typical for hierarchical modeling [4], e.g., when we search for relevant
approximation space for objects composed from parts for which some relevant
approximation spaces have been already found.

Let us consider some illustrative examples of granule modeling (see Fig-
ure 1). Any object x ∈ U , in a given information system IS1 = (U, A), is
perceived by means of its signature InfA(x) = {(a, a(x)) : a ∈ A}. On the
first level, we consider objects with signatures represented by the information
system IS1 = (U, A). Objects with the same signature are indiscernible. On the
next level of modeling we consider as objects some relational structures over sig-
natures of objects from the first level. For example, for any signature u one can
consider as a relational structure a neighborhood defined by a similarity relation
τ between signatures of objects from the first level (see Figure 1). Attributes of
objects on the second level describe properties of relational structures. Hence, in-
discernibility classes defined by such attributes are sets of relational structures; in
our example sets of neighborhoods. We can continue this process of hierarchical
modeling by considering as objects on the third level signatures of objects from
the second level. In our example, the third level of modeling represents modeling
of clusters of neighborhoods defined by the similarity relation τ . Observe that
it is possible to link objects from a higher level with objects from a lower level.
In our example, any object from the second level is a neighborhood or τ . Any
element u′ of this neighborhood defines on the first level an elementary gran-
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ule (indiscernibility class) {x ∈ U : InfA(x) = u′}. Hence, any neighborhood
τ(u) defines on the first level a family of elementary granules corresponding to
signatures from the neighborhood. Now, one can consider as a quality measure
for the similarity τ a function assigning to τ a degree to which the union of the
elementary granules mentioned above is included into a given concept.

In the second example, we assume that the information system on the first
level has a bit more general structure. Namely, on any attribute value set Va

there is defined a relational structure Ra and a language La of formulas for
expressing properties over Va. For example, one can consider an attribute time
with values in the set N of natural numbers, i.e., Va ⊆ N . The value time(x)
is interpreted as a time at which the object x was perceived. The relational
structure Rtime is defined by (Va, S), where S is the successor relation in N ,
i.e., xSy if and only if y = x + 1. Then relational structures on the second
layer can correspond to windows of a given length T , i.e., structures of the
form ({u1, . . . , uT }, S) where for some x1, . . . , xT we have ui = InfA(xi) and
time(xi+1) = time(xi) + 1 for i = 1, . . . , T . Hence, the attributes on the second
layer of modeling correspond to properties of windows while attributes on the
third level could correspond to clusters of windows. Again in looking for relevant
clusters we should consider links of the higher levels with lower levels. Another
possibility will be to consider some relational structures on the attributes values
sets on the second layer. They could allow us to model relations between windows
such as overlapping, earlier than. Then, attributes on this level could describe
properties of sequences of windows. Such attributes can correspond to some
models of processes. Yet another possibility is to use additionally some spatial
relations (e.g., nearness) between the successive elements of windows.

For structural objects, it is often used a decomposition method for modeling
relational structures on the second level. The object signatures are decomposed
into parts and some relations between such parts are considered which are de-
fined over relational structures with the universe ×a∈AVa. One of the methods is
based on searching for (i) a decomposition of the object signatures; (ii) tolerance
relations defined on parts of object signatures received by decomposition; and
(iii) relations over tolerance classes of such tolerance relations (e.g., expressing
closeness of classes of parts corresponding to tolerance classes). This method
aims to discover relational structures such that it is possible to define over such
structures relevant clusters (granules, patterns) of objects for the considered task
(e.g., approximation of concepts). The relations over tolerance classes are used
for filtering relevant compositions of parts of object signatures defined by toler-
ance classes. This approach is closely related to constrained sums of information
systems [16]. For example, any object of the constrained sum +R(IS1, IS2) of
information systems IS1, IS2 consists of pairs (x1, x2) of objects from IS1 and
IS2 satisfying some constraints described by R ⊆ U1×U2, i.e., U = R∩(U1×U2).
The attributes of +(IS1, IS2) consist of the attributes of IS1 and IS2, except
that if there are any attributes in common, then we make their distinct copies,
to avoid confusion.
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It is worthwhile mentioning that in searching under uncertainty for relevant
granules it is also necessary to use methods for estimation if the discovered
patterns on (training) samples of objects are relevant on the whole universe of
objects.

( ) uxInf
A

=  

x  

)(uτ  

Fig. 1. Modeling of granules

The above examples are typical for granular computing where for a given
task it is necessary to search for granules in a given granular system which
are satisfying some optimization criteria. The discussed methods are used in
spatio-temporal reasoning (see, e.g, [17]), in behavioral pattern identification and
planning (see, e.g., [4,3]). There are some other basic concepts which should be
considered in granular computing. One of them is related to risk. In the following
section we present some remarks about risk in construction of granules.

4 Risk and Utility Functions in Construction of Granules

There is a large literature on relationships between decision making and risk. In
this section, we discuss some problems related to risk in granular computing. An
example of risk analysis (based on rough sets) for medical data the reader can
find in [5].

First we recall the definition of granule system. Any such system GS consists
of a set of granules G. Moreover, a family of relations with the intended meaning
to be a part to a degree between granules is distinguished. The degree structure
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is described by a relation to be an exact part. More formally, a granule system is
any tuple

GS = (G, H, <, {νp}p∈H , size) (1)

where G is a non-empty set of granules. H is a non-empty set of granule inclusion
degrees with a binary relation < (usually a strict partial order) which defines on
H a structure used to compare the degrees. νp ⊆ G × G is a binary relation to
be a part to a degree at least p between granules from G, called rough inclusion.
size : G −→ R+ is the granule size function, where R+ is the set of nonnegative
reals.

In constructing of granule systems it is necessary to give a constructive defi-
nition of all their components. In particular, one should specify how more com-
pound granules are defined from already defined granules or given elementary
granules. Usually, the set of granules is defined as the least set generated from
distinguished elementary granules (e.g., defined by indiscernibility classes) by
some operations on the granules. These operations are making it possible to
fuse elementary granules for obtaining new granules relevant for the task to be
solved. In the literature many different operations on granules are reported (see,
e.g., [15]) from those defined by boolean combination of descriptors to compound
classifiers or networks of classifiers.

Let us consider, a task of searching in the set of granules of a granule system
GS for a granule g satisfying a given constraint to a satisfactory degree, e.g.,
νtr(g, g0), where ν : G × G −→ [0, 1] is the inclusion function, νtr(g, g0) means
that ν(g, g0) ≥ tr, g0 is a given granule and tr is a given threshold. Let g∗ be a
solution, i.e., g∗ satisfies the condition

ν(g∗, g0) > tr. (2)

Risk analysis is a well established notion in decision theory [6]. We would like
illustrate the importance of risk analysis in GC.

A typical risk analysis task in GC can be described as follows. For a granule
g∗ is constructed a granule N(g∗), i.e. representing a cluster of granules defined
by g∗ received by changing some parameters of g∗ such as attribute values used
in the g∗ description. We would like to estimate how this changes influence the
condition (2).

First, let us assume that ν(g∗, g0) = νSRI(‖g∗‖, ‖g0‖), where ‖ · ‖ denotes the
semantic of granule, i.e., a function ‖ · ‖ : G −→ P (U) for a given universe of
objects U and νSRI is the standard rough inclusion function. Then, one can take
δ∗ = argminδ∈[0,tr](ν(N(g∗), g0) ≥ tr − δ). The value δ∗ can be treated as a risk
degree of changing the inclusion degree in g0 when the granule g∗ is substituted
by N(g∗).

One can consider a hierarchy of granules over g∗ defined by an ascending
sequence N1(g∗), . . . , Nk(g∗), i.e., ‖N1(g∗)‖ ⊆ . . . ⊆ ‖Nk(g∗)‖ and corresponding
risk degrees δ∗1 ≤ . . . δ∗k. For example, if δ∗1 is sufficiently small than g∗ is called
robust with respect to deviations caused by taking N1(g∗) instead of g∗. However,
when i is increasing then taking Ni(g∗) instead of g∗ gradually increases the
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risk degree. The above example illustrates importance of risk analysis in GC.
Information maps introduced in [18] can be used for risk analysis.

Let us now move to the concept of utility function over granules. The con-
cept of utility function has been intensively studied in decision theory or game
theory [8,7]. We would like to present an illustrative example showing that such
functions are important for granule systems.

We assume two granule systems GS and GS0 with granule sets G and G0
are given. We consider two properties of granules in this systems, i.e., P ⊆ G
and P0 ⊆ G0 Moreover, we assume that checking the membersip for P is much
simpler than for P0 (e.g., because granules from G0 are much simpler than gran-
ules from G). This means that there are given algorithms A, A0 for checking
the membership in P and P0, respectively, and the complexity of A0 is much
lower than the complexity of the algorithm A. Under the above assumptions it
is useful to search for a utility function Utility : G −→ G0 reducing the mem-
bership problem for P to the membership problem for P0, i.e., a function with
the following property: g ∈ P if and only if Utility(g) ∈ P0. Construction of
the utility function satisfying the above condition may be not feasible. However,
it becomes often feasible when we relax the binary membership relation ∈ to the
membership at least to a given degree (see, e.g., [20]). This example illustrates,
the important property of utility functions. Usually, G0 is a set of scalar values
or it is assumed that some preference relation over G0 is given.

Finally, we would like to add that in GC it is necessary to develop methods
searching for approximation of risk degrees and utility function from data and do-
main knowledge analogously to approximation of complex concepts (see, e.g., [4]).

5 Conclusions

We have discussed the role of approximation spaces in construction of granules
satisfying criteria expressed by the minimal length principle. The role of risk
measures and utility functions in GC was illustrated. In our system searching
for adaptive approximation of complex concepts, we plan to implement strategies
based on the minimal length principle in GC, risk measures in GC, and utility
functions in GC. This will also require developing methods for approximation of
risk measures and utility functions.
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