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Abstract. We present an approach to mining numerical data based on
rough set theory using calculus of attribute-value blocks. An algorithm
implementing these ideas, called MLEM2, induces high quality rules in
terms of both simplicity (number of rules and total number of condi-
tions) and accuracy. Additionally, MLEM2 induces rules not only from
complete data sets but also from data with missing attribute values, with
or without numerical attributes.

1 Introduction

For knowledge acquisition (or data mining) from data with numerical attributes
special techniques are applied [13]. Most frequently, an additional step, taken be-
fore the main step of rule induction or decision tree generation and called dis-
cretization is used. In this preliminary step numerical data are converted into
symbolic or, more precisely, a domain of the numerical attribute is partitioned
into intervals. Many discretization techniques, using principles such as equal inter-
val frequency, equal interval width, minimal class entropy, minimum description
length, clustering, etc., were explored, e.g., in [1,2,3,5,6,8,9,10,19,21,22,23,24,27].
Note that discretization used as preprocessing and based on clustering is superior
to other preprocessing techniques of this type [8].

Discretization algorithms which operate on the set of all attributes and which
do not use information about decision (concept membership) are called unsu-
pervised, as opposed to supervised, where the decision is taken into account [9].
Methods processing the entire attribute set are called global, while methods
working on one attribute at a time are called local [8]. In all of these methods
discretization is a preprocessing step and is undertaken before the main process
of knowledge acquisition.

Another possibility is to discretize numerical attributes during the process of
knowledge acquisition. Examples of such methods are MLEM2 [14] and MOD-
LEM [20,29,30] for rule induction and C4.5 [28] and CART [4] for decision tree
generation. These algorithms deal with original, numerical data and the process
of knowledge acquisition and discretization are conducted at the same time. The
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MLEM2 algorithm produces better rule sets, in terms of both simplicity and
accuracy, than clustering methods [15]. However, discretization is an art rather
than a science, and for a specific data set it is advantageous to use as many
discretization algorithms as possible and then select the best approach.

In this paper we will present the MLEM2 algorithm, one of the most success-
ful approaches to mining numerical data. This algorithm uses rough set theory
and calculus of attribute-value pair blocks. A similar approach is represented
by MODLEM. Both MLEM2 and MODLEM algorithms are outgrowths of the
LEM2 algorithm. However, in MODLEM the most essential part of selecting the
best attribute-value pair is conducted using entropy or Laplacian conditions,
while in MLEM2 this selection uses the most relevance condition, just like in the
original LEM2.

2 MLEM2

The MLEM2 algorithm is a part of the LERS (Learning from Examples based on
Rough Sets) data mining system. Rough set theory was initiated by Z. Pawlak
[25,26]. LERS uses two different approaches to rule induction: one is used in
machine learning, the other in knowledge acquisition. In machine learning, or
more specifically, in learning from examples (cases), the usual task is to learn
the smallest set of minimal rules, describing the concept. To accomplish this
goal, LERS uses two algorithms: LEM1 and LEM2 (LEM1 and LEM2 stand for
Learning from Examples Module, version 1 and 2, respectively) [7,11,12].

The LEM2 algorithm is based on an idea of an attribute-value pair block. For
an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set of all
cases from U such that for attribute a have value v. For a set T of attribute-
value pairs, the intersection of blocks for all t from T will be denoted by [T ].
Let B be a nonempty lower or upper approximation of a concept represented by
a decision-value pair (d, w). Set B depends on a set T of attribute-value pairs
t = (a, v) if and only if

∅ �= [T ] =
⋂

t∈T

[t] ⊆ B.

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T ′ of T exists such that B depends on T ′. Let T be a nonempty collection
of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:

– each member T of T is a minimal complex of B,
–

⋂
t∈T [T ] = B, and

– T is minimal, i.e., T has the smallest possible number of members.

The user may select an option of LEM2 with or without taking into account
attribute priorities. The procedure LEM2 with attribute priorities is presented
below. The option without taking into account priorities differs from the one
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presented below in the selection of a pair t ∈ T (G) in the inner loop WHILE.
When LEM2 is not to take attribute priorities into account, the first criterion is
ignored. In our experiments all attribute priorities were equal to each other.

Procedure LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G �= ∅

begin
T := ∅;
T (G) := {t|[t] ∩ G �= ∅} ;
while T = ∅ or [T ] �⊆ B

begin
select a pair t ∈ T (G) with the highest
attribute priority, if a tie occurs, select a pair
t ∈ T (G) such that |[t] ∩ G| is maximum;
if another tie occurs, select a pair t ∈ T (G)
with the smallest cardinality of [t];
if a further tie occurs, select first pair;
T := T ∪ {t} ;
G := [t] ∩ G ;
T (G) := {t|[t] ∩ G �= ∅};
T (G) := T (G) − T ;
end {while}

for each t ∈ T do
if [T − {t}] ⊆ B then T := T − {t};

T := T ∪ {T };
G := B −

⋃
T∈T [T ];

end {while};
for each T ∈ T do

if
⋃

S∈T −{T}[S] = B then T := T − {T };
end {procedure}.

For a set X , |X | denotes the cardinality of X .
Rules induced from raw, training data are used for classification of unseen,

testing data. The classification system of LERS is a modification of the bucket
brigade algorithm. The decision to which concept a case belongs is made on
the basis of three factors: strength, specificity, and support. They are defined
as follows: Strength is the total number of cases correctly classified by the rule
during training. Specificity is the total number of attribute-value pairs on the
left-hand side of the rule. The matching rules with a larger number of attribute-
value pairs are considered more specific. The third factor, support, is defined as
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the sum of scores of all matching rules from the concept. The concept C for
which the support (i.e., the sum of all products of strength and specificity, for
all rules matching the case, is the largest is a winner and the case is classified as
being a member of C).

MLEM2, a modified version of LEM2, categorizes all attributes into two cat-
egories: numerical attributes and symbolic attributes. For numerical attributes
MLEM2 computes blocks in a different way than for symbolic attributes. First, it
sorts all values of a numerical attribute. Then it computes cutpoints as averages
for any two consecutive values of the sorted list. For each cutpoint x MLEM2
creates two blocks, the first block contains all cases for which values of the nu-
merical attribute are smaller than x, the second block contains remaining cases,
i.e., all cases for which values of the numerical attribute are larger than x. The
search space of MLEM2 is the set of all blocks computed this way, together with
blocks defined by symbolic attributes. Starting from that point, rule induction
in MLEM2 is conducted the same way as in LEM2.

Let us illustrate the MLEM2 algorithm using the following example from
Table 1.

Table 1. An example of the decision table

Attributes Decision

Case Gender Cholesterol Stroke

1 man 180 no
2 man 240 yes
3 man 280 yes
4 woman 240 no
5 woman 280 no
6 woman 320 yes

Rows of the decision table represent cases, while columns are labeled by vari-
ables. The set of all cases will be denoted by U . In Table 1, U = {1, 2, ..., 6}.
Independent variables are called attributes and a dependent variable is called a
decision and is denoted by d. The set of all attributes will be denoted by A.
In Table 1, A = {Gender, Cholesterol}. Any decision table defines a function ρ
that maps the direct product of U and A into the set of all values. For example,
in Table 1, ρ(1, Gender) = man. The decision table from Table 1 is consistent,
i.e., there are no conflicting cases in which all attribute values are identical yet
the decision values are different. Subsets of U with the same decision value are
called concepts. In Table 1 there are two concepts: {1, 4, 5} and {2, 3, 6}.

Table 1 contains one numerical attribute (Cholesterol). The sorted list of val-
ues of Cholesterol is 180, 240, 280, 320. The corresponding cutpoints are: 210,
260, 300.
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Since our decision table is consistent, input sets to be applied to MLEM2 are
concepts. The search space for MLEM2 is the set of all blocks for all possible
attribute-value pairs (a, v) = t. For Table 1, the set of all attribute-value pair
blocks are

[(Gender, man)] = {1, 2, 3},
[(Gender, woman)] = {4, 5, 6},
[(Cholesterol, 180..210)] = {1},
[(Cholesterol, 210..320)] = {2, 3, 4, 5, 6},
[(Cholesterol, 180..260)] = {1, 2, 4},
[(Cholesterol, 260..320)] = {3, 5, 6},
[(Cholesterol, 180..300)] = {1, 2, 3, 4, 5},
[(Cholesterol, 300..320)] = {6}.

Let us start running MLEM2 for the concept {1, 4, 5}. Thus, initially this
concept is equal to B (and to G). The set T (G) is equal to {(Gender, man),
(Gender, woman), (Cholesterol, 180..210), (Cholesterol, 210..320), (Cholesterol,
180..260), (Cholesterol, 260..320), (Cholesterol, 180..300)}.

For the attribute-value pair (Cholesterol, 180..300) from T (G) the following
value |[(attribute, value)] ∩ G| is maximum. Thus we select our first attribute-
value pair t = (Cholesterol, 180..300). Since [(Cholesterol, 180..300)] �⊆ B, we
have to perform the next iteration of the inner WHILE loop. This time T (G) =
{(Gender, man), (Gender, woman), (Cholesterol, 180..210), (Cholesterol,
210..320), (Cholesterol, 180..260), (Cholesterol, 260..320)}. For three attribute-
value pairs from T (G): (Gender, woman), (Cholesterol, 210..320) and (Choles-
terol, 180..260) the value of |[(attribute, value)] ∩ G| is maximum (and equal to
two). The second criterion, the smallest cardinality of [(attribute, value)], indi-
cates (Gender, woman) and (Cholesterol, 180..260) (in both cases that cardinal-
ity is equal to three). The last criterion, ”first pair”, selects (Gender, woman).
Moreover, the new T = {(Cholesterol, 180..300), (Gender, woman)} and new G
is equal to {4, 5}. Since [T ] = [(Cholesterol, 180..260] ∩ [(Gender, woman)] =
{4, 5} ⊆ B, the first minimal complex is computed.

Furthermore, we cannot drop any of these two attribute-value pairs, so T =
{T }, and the new G is equal to B − {4, 5} = {1}.

During the second iteration of the outer WHILE loop, the next minimal com-
plex T is identified as {(Cholesterol, 180..210)}, so T = {{(Cholesterol, 180..300),
(Gender, woman)}, {(Cholesterol, 180..210)}} and G = ∅.

The remaining rule set, for the concept {2, 3, 6} is induced in a similar manner.
Eventually, rules in the LERS format (every rule is equipped with three numbers,
the total number of attribute-value pairs on the left-hand side of the rule, the
total number of examples correctly classified by the rule during training, and
the total number of training cases matching the left-hand side of the rule) are:

2, 2, 2
(Gender, woman) & (Cholesterol, 180..300) -> (Stroke, no)
1, 1, 1
(Cholesterol, 180..210) -> (Stroke, no)
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2, 2, 2
(Gender, man) & (Cholesterol, 210..320) -> (Stroke, yes)
1, 1, 1
(Cholesterol, 300..320) -> (Stroke, yes)

3 Numerical and Incomplete Data

Input data for data mining are frequently affected by missing attribute values.
In other words, the corresponding function ρ is incompletely specified (partial).
A decision table with an incompletely specified function ρ will be called incom-
pletely specified, or incomplete.

Though four different interpretations of missing attribute values were studied
[18]; in this paper, for simplicity, we will consider only two: lost values (the values
that were recorded but currently are unavailable) and ”do not care” conditions
(the original values were irrelevant).

For the rest of the paper we will assume that all decision values are specified,
i.e., they are not missing. Also, we will assume that all missing attribute values
are denoted either by ”?” or by ”∗”, lost values will be denoted by ”?”, ”do not
care” conditions will be denoted by ”∗”. Additionally, we will assume that for
each case at least one attribute value is specified.

Incomplete decision tables are described by characteristic relations instead of
indiscernibility relations. Also, elementary blocks are replaced by characteristic
sets, see, e.g., [16,17,18]. An example of an incomplete table is presented in
Table 2.

Table 2. An example of the incomplete decision table

Attributes Decision

Case Gender Cholesterol Stroke

1 ? 180 no
2 man * yes
3 man 280 yes
4 woman 240 no
5 woman ? no
6 woman 320 yes

For incomplete decision tables the definition of a block of an attribute-value
pair must be modified. If for an attribute a there exists a case x such that
ρ(x, a) =?, i.e., the corresponding value is lost, then the case x is not included
in the block [(a, v)] for any value v of attribute a. If for an attribute a there
exists a case x such that the corresponding value is a ”do not care” condition,
i.e., ρ(x, a) = ∗, then the corresponding case x should be included in blocks
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[(a, v)] for all values v of attribute a. This modification of the definition of
the block of attribute-value pair is consistent with the interpretation of missing
attribute values, lost and ”do not care” condition. Numerical attributes should
be treated in a little bit different way as symbolic attributes. First, for computing
characteristic sets, numerical attributes should be considered as symbolic. For
example, for Table 2 the blocks of attribute-value pairs are:

[(Gender, man)] = {2, 3},
[(Gender, woman)] = {4, 5, 6},
[(Cholesterol, 180)] = {1, 2},
[(Cholesterol, 240)] = {2, 4},
[(Cholesterol, 280)] = {2, 3},
[(Cholesterol, 320)] = {2, 6}.

The characteristic set KB(x) is the intersection of blocks of attribute-value
pairs (a, v) for all attributes a from B for which ρ(x, a) is specified and ρ(x, a) =
v. The characteristic sets KB(x) for Table 2 and B = A are:

KA(1) = U ∩ {1, 2} = {1, 2},
KA(2) = {2, 3} ∩ U = {2, 3},
KA(3) = {2, 3} ∩ {2, 3} = {2, 3},
KA(4) = {4, 5, 6} ∩ {2, 4} = {4},
KA(5) = {4, 5, 6} ∩ U = {4, 5, 6},
KA(6) = {4, 5, 6} ∩ {2, 6} = {6}.

For incompletely specified decision tables lower and upper approximations
may be defined in a few different ways [16,17,18]. We will quote only one type of
approximations for incomplete decision tables, called concept approximations.
A concept B-lower approximation of the concept X is defined as follows:

BX = ∪{KB(x)|x ∈ X, KB(x) ⊆ X}.

A concept B-upper approximation of the concept X is defined as follows:

BX = ∪{KB(x)|x ∈ X, KB(x) ∩ X �= ∅} = ∪{KB(x)|x ∈ X}.

For Table 2, concept lower and upper approximations are:

A{1, 4, 5} = {4},

A{2, 3, 6} = {2, 3, 6},

A{1, 4, 5} = {1, 2, 4, 5, 6},

A{2, 3, 6} = {2, 3, 6}.

For inducing rules from data with numerical attributes, blocks of attribute-
value pairs are defined differently than in computing characteristic sets. Blocks
of attribute-value pairs for numerical attributes are computed in a similar way as
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for complete data, but for every cutpoint the corresponding blocks are computed
taking into account interpretation of missing attribute values. Thus,

[(Gender, man)] = {1, 2},
[(Gender, woman)] = {4, 5, 6},
[(Cholesterol, 180..210)] = {1, 2},
[(Cholesterol, 210..320)] = {2, 3, 4, 6},
[(Cholesterol, 180..260)] = {1, 2, 4},
[(Cholesterol, 260..320)] = {2, 3, 6},
[(Cholesterol, 180..300)] = {1, 2, 3, 4},
[(Cholesterol, 300..320)] = {2, 6}.

Using the MLEM2 algorithm, the following rules are induced:

certain rule set (induced from the concept lower approximations):

2, 1, 1
(Gender, woman) & (Cholesterol, 180..260) -> (Stroke, no)
1, 3, 3
(Cholesterol, 260..320) -> (Stroke, yes)

possible rule set (induced from the concept upper approximations):

1, 2, 3
(Gender, woman) -> (Stroke, no)
1, 1, 3
(Cholesterol, 180..260) -> (Stroke, no)
1, 3, 3
(Cholesterol, 260..320) -> (Stroke, yes)

4 Conclusions

We demonstrated that both rough set theory and calculus of attribute-value pair
blocks are useful tools for data mining from numerical data. The same idea of an
attribute-value pair block may be used in the process of data mining not only for
computing elementary sets (for complete data sets) but also for rule induction.
The MLEM2 algorithm induces rules from raw data with numerical attributes,
without any prior discretization, and MLEM2 provides the same results as LEM2
for data with all symbolic attributes. Additionally, experimental results show
that rule induction based on MLEM2 is one of the best approaches to data
mining from numerical data [15].
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