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Abstract. Granular Computing as a paradigm in Approximate Reason-
ing is concerned with granulation of available knowledge into granules
that consists of entities similar in information content with respect to a
chosen measure and with computing on such granules. Thus, operators
acting on entities in a considered universe should factor through granu-
lar structures giving values similar to values of same operators in non–
granular environment. Within rough set theory, proposed 25 years ago
by Zdzis�law Pawlak and developed thence by many authors, granulation
is also a vital area of research. The first author developed a calculus with
granules as well as a granulation technique based on similarity measures
called rough inclusions along with a hypothesis that granules induced
in data set universe of objects should lead to new objects representing
them, and such granular counterparts should preserve information con-
tent in data. In this work, this hypothesis is tested with missing values
in data and results confirm the hypothesis in this context.

Keywords: rough sets, decision systems, missing values, granules of
knowledge, rough inclusions, granular decision systems.

1 Rough Computing

Rough sets are centered about the notion of indiscernibility[7]: entities with
same description are regarded as identical. In practical terms, when knowledge
is encoded in an information system (U, A) where U is a set of entities and A
is a set of attributes, with each a : U → Va a mapping on U into a value set,
indiscernibility is given as an equivalence ind(a) = {(u, v) : u, v ∈ U, a(u) =
a(v)} for each a ∈ A, with extensions of the form ind(B) =

⋂
a∈B ind(a) for any

B ⊆ A.
Rough computing is usually performed with descriptors of the form (a = v),

v ∈ Va, interpreted as sets [(a = v)] = {u ∈ U : a(u) = v}; descriptors extend
to descriptor formulas that form the smallest set containing all descriptors and
closed on the action of propositional connectives ∨, ∧, ¬, ⇒; descriptor formulas
are interpreted via identities [

∧
i(ai = vi)]=

⋂
i[(ai = vi)], [

∨
i(ai = vi)]=

⋃
i[(ai =
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vi)], [¬(a = v)]=U \ [(a = v)]. Decision systems are information systems of the
form (U, A ∪ {d}), where d, the decision, is an attribute not in A; relations
between the conditional knowledge (U, A) and the world knowledge (U, d) are
expressed by means of decision rules of the form

∧
i(ai = vi) ⇒ (d = v); a set of

decision rules is a classifier; its aim is to recognize decision classes of new entities
on the basis of their conditional values.

2 Missing Values

An information/decision system is incomplete in case some values of conditional
attributes from A are not known; some authors, e.g., Grzymala–Busse [2] make
distinction between values that are lost (denoted ?), i.e., they were not recorded
or were destroyed in spite of their importance for classification, and values that
are missing (denoted ∗) as those values that are not essential for classification.
Here, we regard all lacking values as missing without making any distinction
among them denoting all of them with ∗. Analysis of systems with missing
values requires a decision on how to treat missing values; Grzymala–Busse in his
work [2], analyzes nine such methods known in the literature, among them, 1.
most common attribute value, 2. concept–restricted most common attribute value,
(...), 4. assigning all possible values to the missing location, (...), 9. treating the
unknown value as a new valid value. Results of tests presented in [2] indicate
that methods 4,9 perform very well among all nine methods. For this reason we
adopt these methods in this work for the treatment of missing values and they
are combined in our work with a modified method 1: the missing value is defined
as the most frequent value in the granule closest to the object with the missing
value with respect to a chosen rough inclusion.

Analysis of decision systems with missing data in existing rough set literature
relies on an appropriate treatment of indiscernibility: one has to reflect in this re-
lation the fact that some values acquire a distinct character and must be treated
separately; in case of missing or lost values, the relation of indiscernibility is usu-
ally replaced with a new relation called a characteristic relation. Examples of
such characteristic functions are given in, e.g., Grzymala–Busse [3]: the function
ρ is introduced, with ρ(u, a) = v meaning that the attribute a takes on u the
value v. Semantics of descriptors is changed, viz., the meaning [(a = v)] has as el-
ements all u such that ρ(u, a) = v, in case ρ(u, a) =? the entity u is not included
into [(a = v)], and in case ρ(u, a) = ∗, the entity u is included into [(a = v)]
for all values v 
= ∗, ?. Then the characteristic relation is R(B) = {(u, v) : ∀.a ∈
B.ρ(u, a) =? ⇒ (ρ(u, a) = ρ(v, a) ∨ ρ(u, a) = ∗ ∨ ρ(v, a) = ∗)}, where B ⊆ A.
Classes of the relation R(B) are then used in defining approximations to decision
classes from which certain and possible rules are induced, see [3]. Specializations
of the characteristic relation R(B) were defined in Stefanowski–Tsoukias [18] (in
case of only lost values) and in Kryszkiewicz [4](in case of only don’t care miss-
ing values). An analysis of the problem of missing values along with algorithms
IApriori Certain and IAprioriPossible for certain and possible rule generation
was given in [5].
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3 Granules of Knowledge and Granular
Information/Decision Systems

Granulation of knowledge is a topic studied recently to much extent within
rough set theory, see, e.g., [14],[15]. We describe briefly a method for inducing
granules [10], [11] which consists in selecting a rough inclusion μ (see op.cit.),
and r ∈ [0, 1].

3.1 Rough Inclusions

Generally they are predicates of the form μ(u, v, r), where u, v ∈ U satisfying
conditions, 1. μ(u, u, 1);2. if μ(u, v, 1) then for each w ∈ U , from μ(w, u, r) it
follows μ(w, v, r); 3. if μ(u, v, r) and s < r then μ(u, v, s). For an analysis of
various methods for inducing rough inclusions see, e.g., [10], [11]. In this work
we will use exclusively the rough inclusion μL(u, v, r) satisfied if and only if
|IND(u,v)|

|A| ≥ r, where IND(u, v) = {a ∈ A : a(u) = a(v)}, induced by the
�Lukasiewicz implication (see, e.g., [10],[11]).

3.2 On Granule Formation

For a rough inclusion μ, u ∈ U , and r ∈ [0, 1], the granule gμ(u, r) is defined as
the class Cls{v : μ(v, u, r)}, where Cls is the class forming functor of mereology,
see, e.g., [10],[11]; for the purpose of this work, one may assume that gμ(u, r) is
the list or the set of all v such that μ(v, u, r). In this work, granules are formed
only by means of μL. In plain words, the granule gμL(u, r) consists of all v ∈ U
with the property that |IND(v, u)| ≥ r · |A|, i.e., v, u have identical values of at
least r · 100 percent of attributes in A.

3.3 Granular Information/Decision Systems

The idea of a granular decision system was posed in [10]; for a given information
system (U, A), a rough inclusion μ, and r ∈ [0, 1], the new universe UG

r,μ is given,
whose elements are granules of the radius r about objects u ∈ U . We apply a
strategy G to choose a covering CovG

r,μ of the universe U by granules from UG
r,μ.

We apply a strategy S in order to assign the value a∗(g) of each attribute
a ∈ A to each granule g ∈ CovG

r,μ: a∗(g) = S({a(u) : u ∈ g}). The granular
counterpart to the information system (U, A) is a tuple (UG

r,μ, G, S, {a∗ : a ∈ A});
analogously, we define granular counterparts to decision systems by adding the
factored decision d∗. The heuristic principle that objects, similar with respect
to conditional attributes in the set A, should also reveal similar (i.e., close)
decision values, and therefore, granular counterparts to decision systems should
lead to classifiers satisfactorily close in quality to those induced from original
decision systems, was stated in [10], and borne out by simple hand examples. The
hypothesis has been confirmed in [12] and in this work we apply this hypothesis
to the problem of missing values.
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4 An Approach to Missing Values in This Work

We will use the symbol ∗ commonly used for denoting the missing value; we will
use two methods 4, 9 for treating ∗, i.e, either ∗ is a don’t care symbol meaning
that any value of the respective attribute can be substituted for ∗,thus ∗ = v for
each value v of the attribute, or ∗ is a new value on its own, i.e., if ∗ = v then v
can be only ∗.

Our procedure for treating missing values is based on the granular structure
(UG

r,μ, G, S, {a∗ : a ∈ A}); the strategy S is the majority voting, i.e., for each
attribute a, the value a∗(g) is the most frequent of values in {a(u) : u ∈ g}, with
ties broken randomly. The strategy G consists in random selection of granules
for a covering.

For an object u with the value of ∗ at an attribute a, and a granule g =
g(v, r) ∈ UG

r,μ, the question whether u is included in g is resolved according
to the adopted strategy of treating ∗: in case ∗ = don′t care, the value of ∗
is regarded as identical with any value of a hence |IND(u, v)| is automatically
increased by 1, which increases the granule; in case ∗ = ∗, the granule size is
decreased. Assuming that ∗ is sparse in data, majority voting on g would produce
values of a∗ distinct from ∗ in most cases; nevertheless the value of ∗ may appear
in new objects g∗, and then in the process of classification, such value is repaired
by means of the granule closest to g∗ with respect to the rough inclusion μL, in
accordance with the chosen method for treating ∗.

In plain words, objects with missing values are in a sense absorbed by close
to them granules and missing values are replaced with most frequent values in
objects collected in the granule; in this way the method 4 or 9 in [3] is combined
with the idea of the most frequent value 1, in a novel way.

We have thus four possible strategies:

– Strategy A: in building granules ∗=don’t care, in repairing values of ∗,
∗=don’t care;

– Strategy B: in building granules ∗=don’t care, in repairing values of ∗, ∗ = ∗;
– Strategy C: in building granules ∗ = ∗, in repairing values of ∗, ∗=don’t care;
– Strategy D: in building granules ∗ = ∗, in repairing values of ∗, ∗ = ∗.

As data set used in experiments, Pima Indians diabetes data set [19] has been
used. We first show results for this data set in granular and non–granular cases
without missing values in Table 1, see [12] for a discussion of this method in
more detail; then a randomly chosen collection of 10 percent of attribute val-
ues in the data set are replaced with ∗ values. Results of granular treatment in
case of Strategies A,B,C,D are reported in Tables 2,3,4,5. As algorithm for rule
induction, the exhaustive algorithm of the RSES system [16] has been selected,
see, e.g., [1], [17], where the ideas implemented in the RSES package are dis-
cussed. 10–fold cross validation (CV–10) has been used to validate results of the
experiment.
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Table 1. 10-fold CV; Pima; exhaustive algorithm. r=radius,macc=mean accu-
racy,mcov=mean coverage,mrules=mean rule number, mtrn=mean size of granular
training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.0618 0.0895 5.9 22.5
0.250 0.6627 0.9948 450.1 120.6
0.375 0.6536 0.9987 3593.6 358.7
0.500 0.6645 1.0 6517.7 579.4
0.625 0.6877 0.9987 7583.6 683.1
0.750 0.6864 0.9987 7629.2 692
0.875 0.6864 0.9987 7629.2 692.0

Table 2. Strategy A for missing values. 10-fold CV; Pima; exhaustive algorithm.
r=radius, macc=mean accuracy, mcov=mean coverage, mrules=mean rule number,
mtrn=mean size of granular training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.0 0.0 0.0 1.7
0.250 0.0 0.0 0.0 4.7
0.375 0.0 0.0 0.0 21.5
0.500 0.3179 0.4777 115.8 64.7
0.625 0.6692 0.9987 1654.7 220.2
0.750 0.6697 1.0 5519.3 527.0
0.875 0.6678 0.9987 7078.8 663.8

Table 3. Strategy B for missing values. 10-fold CV; Pima; exhaustive algorithm.
r=radius,macc=mean accuracy, mcov=mean coverage, mrules=mean rule number,
mtrn=mean size of granular training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.0 0.0 0.0 1.9
0.250 0.0 0.0 0.0 6.1
0.375 0.0 0.0 0.0 13.7
0.500 0.5772 0.8883 210.7 68.1
0.625 0.6467 0.9987 1785.8 229.4
0.750 0.6587 0.9987 5350.4 508.5
0.875 0.6547 0.9987 6982.7 663.4
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Table 4. Strategy C for missing values. 10-fold CV; Pima; exhaustive algorithm.
r=radius,macc=mean accuracy, mcov=mean coverage, mrules=mean rule number,
mtrn=mean size of granular training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.0 0.0 0.0 21.2
0.250 0.6297 0.9948 388.9 116.9
0.375 0.6556 0.9974 3328.5 356.5
0.500 0.6433 1.0 6396.7 587.2
0.625 0.6621 1.0 7213.2 681.9
0.750 0.6640 0.9987 7306.3 691.9
0.875 0.6615 0.9987 7232.1 692.0

Table 5. Strategy D for missing values. 10-fold CV; Pima; exhaustive algorithm.
r=radius, macc=mean accuracy, mcov=mean coverage, mrules=mean rule number,
mtrn=mean size of granular training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.1471 0.1750 12.0 17.3
0.250 0.6572 0.9974 382.1 114.9
0.375 0.6491 0.9974 3400.3 355.0
0.500 0.6370 0.9974 6300.2 588.7
0.625 0.6747 0.9987 7181.2 682.3
0.750 0.6724 1.0 7231.3 691.9
0.875 0.6618 1.0 7253.6 692.0

5 Case of Real Data with Missing Values

We include results of tests with Breast cancer data set [19] that contains missing
values. We show in Tables 6, 7, 8, 9 results for intermediate values of radii of
granulation for strategies A,B,C,D and exhaustive algorithm of RSES [16]. For
comparison, results on error in classification by the endowed system LERS from
[2] for approaches similar to our strategies A and D (methods 4 and 9, resp., in
Tables 2 and 3 in [2]) in which ∗ is either always ∗ (method 9) or ∗ is always
don’t care (method 4) are recalled in Tables 6 and 9. We have applied here the
1-train–and–9 test, i.e., the data set is split randomly into 10 equal parts and
training set is one part whereas the rules are tested on each of remaining 9 parts
separately and results are averaged.

5.1 Conclusions on Test Results

In case of perturbed Pima Indians diabetes data set, Strategy A attains accuracy
value better than 97 percent and coverage value greater or equal to values in
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Table 6. Breast cancer data set with missing values. Strategy A: r=granule radius,
mtrn= mean granular training sample size, macc=mean accuracy, mcov=mean cover-
ing, gb=LERS method 4,[2]

r mtrn macc mcov gb

0.555556 9 0.7640 1.0 0.7148
0.666667 14 0.7637 1.0
0.777778 17 0.7129 1.0
0.888889 25 0.7484 1.0

Table 7. Breast cancer data set with missing values. Strategy B: r=granule radius,
mtrn= mean granular training sample size, macc=mean accuracy, mcov=mean covering

r mtrn macc mcov

0.555556 7 0.0 0.0
0.666667 13 0.7290 1.0
0.777778 16 0.7366 1.0
0.888889 25 0.7520 1.0

Table 8. Breast cancer data set with missing values. Strategy C: r=granule radius,
mtrn= mean granular training sample size, macc=mean accuracy, mcov=mean covering

r mtrn macc mcov

0.555556 8 0.7132 1.0
0.666667 14 0.6247 1.0
0.777778 17 0.7328 1.0
0.888889 25 0.7484 1.0

Table 9. Breast cancer data set with missing values. Strategy D: r=granule radius,
mtrn= mean granular training sample size, macc=mean accuracy, mcov=mean cover-
ing, gb=LERS method 9,[2]

r mtrn macc mcov gb

0.555556 9 0.7057 1.0 0.6748
0.666667 16 0.7640 1.0
0.777778 17 0.6824 1.0
0.888889 25 0.7520 1.0

non–perturbed case from the radius of .625 on. With Strategy B, accuracy is
within 94 percent and coverage not smaller than values in non–perturbed case
from the radius of .625 on. Strategy C yields accuracy within 96.3 percent of
accuracy in non–perturbed case from the radius of .625, and within 95 percent
from the radius of .250; coverage is within 99.79 percent from the radius of .250.
Strategy D gives results slightly better than C with the same radii. Results for
C and D are better than results for A or B.
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Table 10. Average number of ∗ values in granular systems. 10-fold CV; Pima; exhaus-
tive algorithm. r=radius,mA=mean value for A, mB=mean value for B , mC=mean
value for C, mD=mean value for D

r mA mB mC mD

0.375 0.0 0.0 135 132
0.500 0.0 0.0 412 412
0.625 3 4 538 539
0.750 167 167 554 554
0.875 435 435 554 554

We conclude that essential for results of classification is the strategy of treating
the missing value of ∗ as ∗ = ∗ in both strategies C and D; the repairing strategy
has almost no effect: C and D differ with respect to this strategy but results for
accuracy and coverage in cases C and D differ very slightly.

Let us notice that strategies C and D cope with a larger number of ∗ values
to be repaired. Table 10 shows this.

In experiments with Breast cancer data set with missing values, best results
are obtained with ”pure” strategies A and D; strategy A gives accuracy of .7637
at r = .(6) and strategy D gives accuracy of .7640 at r = .(6), ”mixed” strategies
give best results at higher value of radius of .(7): .7474 in case of C and .7520 in
case of B.

6 Conclusions

The method proposed in this work for treatment of missing values that combines
either of two approaches, viz., ∗don’t care or ∗ = ∗ with the idea of absorbing
objects with missing values into granules consisting of objects close to them to a
degree specified by radii of granules, followed by the idea of replacing the missing
value with the most frequent value over the granule, has proved very effective in
the classification problem of data with missing values.

In the stage of repairing the missing value, strategies C and D proved most
effective. Essential for results of classification is the strategy of treating the
missing value of ∗ as ∗ = ∗ in building granules as witnessed by cases of strategies
C and D; strategies A and B give comparable results between them, implying
that when the strategy ∗=don’t care is used in building granules, then the choice
of a repairing strategy has no practical impact.

Further research will be focused on more refined ways of granule selection,
development of a granular algorithm for rule induction, and analysis of large
real data with missing values.
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