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Abstract. The paper discusses mathematical concept of granular model for data
and knowledge manipulation. In order to overcome the difficulties caused by ex-
tensive data representation a new model based on granular sets and granular
relations is put forward. The key idea is that the notion of set may consist of
basic elements grouped into bigger granules. A granular set is formed from a
universe set and a semi-partition defining granules of its elements. Formal defi-
nition of granular sets and some basic algebraic operations on granular sets are
introduced in the paper. Further, the concept of granular relation is also defined
and some possibilities of application of granular sets and relations to knowledge
representation are put forward.

1 Introduction

Representation of data and knowledge with adaptable granularity of details seems to
be an interesting issue for efficient dealing with large data sets. The paper presents a
relatively new concept of a granular set and granular relation [5], [6]. A granular set
is a structure composed of a set and a number of disjoint subsets embedded in it (the
so-called semi-partition). An algebra of such sets can be constructed. Granular relation
can be defined as a subset of Cartesian product of granular sets. A granular relational
algebra can be defined as a tool for knowledge manipulation. It can be applied for veri-
fication and analysis of tabular knowledge-based systems [7] and for direct knowledge
manipulation.

One reason for using granular representations can be the need for efficient dealing
with large data sets. In such a case numerous detailed data are grouped into a single
granule which can be regarded as more abstract knowledge representation. The num-
ber of detailed data items is drastically reduced and simultaneously some unimportant
characteristics are hidden. In this way knowledge extraction from data can go on.

Another reason for using granular knowledge representation consists in the need for
structuring knowledge into smaller, separate, easily manipulable chunks of knowledge.
Such “knowledge granules” can be easier interpreted and understood, selected and ma-
nipulated, analyzed and verified. Granularity of knowledge seems to be an intrinsic
issue in the domain of knowledge management.

There are a number of conceptual approaches aimed at dealing with impreciseness
and knowledge abstraction. Some most important ones include Fuzzy Sets [13], [3],
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Rough Sets [9], interval algebra, as well as selected basic purely mathematical ap-
proaches such as ones based on equivalence relation and equivalence classes. Each of
these approaches incorporates some philosophical interpretation of impreciseness. The
granular set approach can be considered as an extension of interval algebra towards un-
ordered sets and lattices or type hierarchy trees. Somewhat similar approaches are also
presented in [1] and [12].

The main aim of the paper is to present a concept of granularity in sets and relational
tables. The main ideas, initially presented in [5] and [6], are recapitulated in a slightly
changed framework and the relationship with rough sets is discussed. Introducing gran-
ularity in the sets of data items is aimed at a more general knowledge representation, and
knowledge manipulation is moved to higher abstraction level. The analysis is moved
to a more abstract level of granularity, which improves efficiency – instead of atomic
values of attribute domains one considers now a set or granular values. Algebraic oper-
ations on semi-partitions, granular sets and granular relations are defined. The level of
granularity is adaptable – it changes according to details of knowledge representation
and operations performed.

2 Granular Sets and Their Properties

A granular set is a structure composed of a set and a number of its disjoint subsets. It
allows to consider arbitrary granules of the elements of the base set instead of too nu-
merous and too detailed atomic elements. A granular set with finite number of granules
can be constructed even for continuous infinite sets. Moreover, in contrast to discretiza-
tion methods (where the original set is replaced with a new discrete one), it is still
possible to manipulate the atomic elements or to change the partitioning of the base set.

Let a set V and some subsets V1, V2, . . . Vk of V be given.

Definition 1. The sets V1, V2, . . . Vk form a partition of V , iff:

(1) V1 ∪ V2 ∪ . . . ∪ Vk = V (i.e. partition satisfies the completeness condition),
(2) Vi ∩ Vj = ∅ for any i �= j (i.e. partition satisfies the separation condition).

A partition is usually induced by an equivalence relation defined over V . The sets
V1, V2, . . . , Vk are equivalence classes; here they are called blocks. Note that in prac-
tice, we often do not have the possibility to consider all the subsets necessary to form a
partition. In such a case the completeness condition is not satisfied. The separation con-
dition is also not necessary however we will often expect that a semi-partition satisfies
it.

Definition 2. A semi-partition of V is any collection of its subsets V1, V2, . . . , Vk.
A semi-partition is normalized (in normal form) iff Vi ∩ Vj = ∅ for all i �= j.

A semi-partition will be also called an incomplete partition, or an s-partition for short.
An s-partition of V will be denoted as σ(V ). If not stated explicitly, all the consider-
ations will concern normalized s-partitions. Examples of Fig. 1 show such s-partitions
for a nominal and an ordered set.
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Fig. 1. Two examples of granular sets

If σ(V ) = {V1, V2, . . . , Vk} is an s-partition, then the set of all the elements of V
occurring in the s-partition σ(V ) will be called the support of it and it will be denoted
as [[σ(V )]], and determined as [[σ(V )]] = V1 ∪ V2 ∪ . . . ∪ Vk.

Note that any family of subsets of some set V can be transformed into a normalized s-
partition of V having the same support. Let us consider an arbitrary collection of subsets
of V , say V ′

1 , V ′
2 , . . . , V ′

m (not necessarily disjoint ones). By subsequent replacing any
two sets V ′

i and V ′
j (i �= j) such that V ′

i ∩ V ′
j �= ∅, with three sets: V ′

i \ V ′
j , V ′

j \ V ′
i and

V ′
i ∩ V ′

j one can generate an s-partition σ(V ).
For a given set V a granular set over V is defined as follows.

Definition 3. A granular set G is a pair G = {V, σ(V )}, where σ(V ) is any s-partition
defined on V . If the s-partition σ(V ) is unnormalized, then the granular set is also said
to be an unnormalized one.

The set V is called the domain of the granular set, while the s-partition σ(V ) defines
the so-called signature of granularity.

Consider some two granular sets G = (V, σ(V )) and G′ = (V, σ′(V )), where σ(V ) =
{V1, V2, . . . , Vk} and σ′(V ) = {V ′

1 , V ′
2 , . . . , V ′

m}.

Definition 4. The support of granular set G is bigger (smaller) than the support of
granular set G′ iff [[σ′(V )]] ⊆ [[σ(V )]] ([[σ(V )]] ⊆ [[σ′(V )]]).

Again, compare two granular sets with the same domain but different signatures. A
granular set can provide finer or more rough signature of granularity.

Definition 5. An s-partition σ′(V ) = {V ′
1 , V ′

2 , . . . , V ′
m} is finer than an s-partition

σ(V ) = {V1, V2, . . . , Vk} iff any set Vi ∈ σ(V ) can be expressed as Vi = V ′
i1
∪ V ′

i2
∪

. . . ∪ V ′
in

, where V ′
i1 , V

′
i2 , . . . V

′
in

∈ σ′(V ).

In other words, a finer granular set (or s-partition) is build from smaller blocks and can
be used to re-build the more rough one. In general, it can also contain some additional
blocks not used for reconstructing the ones of the more rough s-partition.
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Now, we will introduce a partial order relation among granular sets and s-partitions.
For intuition, a more general granular set (its signature) covers a less general one iff any
block of the latter is covered by some block of the former one.

Definition 6. A set G is more general than a set G′ (G ≥ G′) iff σ(V ) ≥ σ′(V ), where
the latter condition means that ∀V ′

i ∈ σ′(V ) ∃Vj ∈ σ(V ): V ′
i ⊆ Vj .

In fact Def. 6 introduces the Hoare order. The s-partition σ(V ) will be called more
general as one operating at more abstract level of granularity. As straightforward con-
sequences of Def. 6 we have the following propositions.

Proposition 1. The relation of being more general defined by Def. 6 is an ordering
relation.

Proposition 2. If G ≥ G′ then also [[σ′(V )]] ⊆ [[σ(V )]].

Obviously, the inverse proposition is not true in general case. However, the following
one holds.

Proposition 3. Assume that [[σ′(V )]] ⊆ [[σ(V )]]. Then there exists an s-partition σ0(V )
such that [[σ0(V )]] = [[σ(V )]] and σ0(V ) ≥ σ′(V ). Simultaneously, there exists an
s-partition σ′′(V ) such that [[σ′(V )]] = [[σ′′(V )]] and σ(V ) ≥ σ′′(V ).

The meaning of the above proposition is simple: a bigger s-partition (i.e. one having
bigger support) can always be transformed into one being also more general than the
smaller one, but with the same support (intuitively: by gluing together some of its gran-
ules; this process is also called reduction). Further to that, a smaller s-partition can
always be transformed into one having the same support but also less general one (the
operation is based on split of the granules).

For granular sets (s-partitions) we can define typical algebraic operations. The prod-
uct of such two s-partitions σ(V ), σ′(V ) is defined as:

σ(V ) · σ′(V ) = {Vij : Vij = Vi ∩ Vj ∧ Vi ∈ σ(V ) ∧ Vj ∈ σ′(V ) ∧ Vij �= ∅}. (1)

Obviously, the product of two s-partitions is an s-partition. Roughly speaking, the
product of two s-partitions is the s-partition composed of all nonempty intersections
of their blocks. The product of two s-partitions is less general than any of them, i.e.
σ(V ) · σ′(V ) ≤ σ(V ) and σ(V ) · σ′(V ) ≤ σ′(V ).

In a similar way a composition of s-partitions can be defined. Let a semi-partition
σ(V ) = {V1, V2, . . . , Vk} be given. For any two sets Vi, Vj ∈ σ(V ) we define the
following partition generation operation as Vi  Vj = {Vi \ Vj , Vj \ Vi, Vi ∩ Vj}. The
operation can be extended to the whole semi-partition. The semi partition

�
(σ(V )) is

evaluated as follows:

1.
�

(σ(V ))0 = σ(V )
2. If there exist sets Vi, Vj ∈ �

(σ(V ))n such that Vi ∩ Vj �= ∅ then
�

(σ(V ))n+1 =�
(σ(V ))n − {Vi, Vj} ∪ Vi  Vj , else

�
(σ(V ))n+1 =

�
(σ(V ))n.

3. If
�

(σ(V ))n+1 =
�

(σ(V ))n then
�

(σ(V )) =
�

(σ(V ))n.
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The semi-partition
�

(σ(V )) is a normalized one and the result is independent on the
order of applying of the  operator. Let x ∈ [[σ(V )]] and let Vx ∈ �

(σ(V )) denote the
set containing x. The semi-partition can be divided into two disjoint subsets: σx(V ) =
{Vi ∈ σ(V ): x ∈ Vi} and σx̄(V ) = σ(V ) − σx(V ). Hence, the following equality
holds:

Vx =
⋂

σx(V ) −
⋃

σx̄(V ). (2)

The composition of s-partitions σ(V ) and σ(V ) is defined as follows:

σ(V ) ◦ σ′(V ) =
�

(σ(V ) ∪ σ′(V )). (3)

For any two s-partitions σ(V ) and σ′(V ) we define also a cover of them, i.e. an s-
partition covering all the elements of V belonging to some component set of at least one
of them. For a semi-partition σ(V ) = {V1, V2, . . . , Vk} the following sum operation is
introduced:

1.
⊔

(σ(V ))0 = σ(V )
2. If there exist sets Vi, Vj ∈ ⊔

(σ(V ))n such that Vi ∩ Vj �= ∅ then
⊔

(σ(V ))n+1 =⊔
(σ(V ))n − {Vi, Vj} ∪ {Vi ∪ Vj}, else

⊔
(σ(V ))n+1 =

⊔
(σ(V ))n.

3. If
⊔

(σ(V ))n+1 =
⊔

(σ(V ))n then
⊔

(σ(V )) =
⊔

(σ(V ))n.

The semi-partition
⊔

(σ(V )) is a normalized one and the result is independent on the
order of applying of the � operator. Let x ∈ [[σ(V )]] and let Vx ∈ ⊔

(σ(V )) denotes the
set containing x. Let the set σx(V ) be defined as follows:

1. σx(V )0 = {Vi}, where Vi ∈ σ(V ) and x ∈ Vi.
2. σx(V )n+1 = σx(V )n ∪ {Vi ∈ σ(V ) − σx(V )n: Vi ∩ (

⋃
σx(V )n) �= ∅}.

3. If σx(V )n+1 = σx(V )n then σx(V ) = σx(V )n.

Hence, Vx =
⋃

σx(V ).
The cover of s-partitions σ(V ) and σ′(V ) is defined as follows:

σ(V ) + σ′(V ) =
⊔

(σ(V ) ∪ σ′(V )). (4)

For intuition, both s-partitioning and generating a cover are kinds of operations pre-
serving covering of the same elements of V which are covered by the initial family of
subsets (the support). However, in case of s-partitioning one preserves also the defini-
tion of initial signatures (structuring) (e.g. the boundaries of intervals of characteristic
subsets of V ), while in the case of cover generation a kind of maximal reduction of the
subsets is performed. There is also σ(V )+σ′(V ) ≥ σ(V ) and σ(V )+σ′(V ) ≥ σ′(V ).

Consider a reduction operation of transforming an s-partition into another, more gen-
eral one, by gluing some of its elements (non-overlapping ones). The reduction of an
s-partition consists in replacing several blocks with an equivalent single block. The gen-
erated output is aimed to be a normalized s-partition, so in the case of intervals, gluing
is allowed only for intervals which meet or the so-called non-convex intervals must be
admitted. The generated s-partition is equivalent with regard to the elements covered,
but simultaneously it is more general than the input one.
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Finally, consider the so-called split operation. The operation consists in replacing
each element Vi of the initial s-partition with a family of its subsets such that the sum
of them is equal to Vi. The result of the split operation is less general than the initial
s-partition. In general, the split operation gives no unique result. For this reason, it may
be useful to define the so-called induced split, where the result depends on another
s-partition which is compared with the one under interest.

3 Granular Sets and Rough Sets

Granular sets as introduced in Section 2 may constitute a tool for defining rough sets.
However, since the assumptions of the presented approach are weaker than in case of
a partition induced by an equivalence relation, it is not always possible to define the
upper approximation.

Consider a set V and an s-partition σ(V ) = {V1, V2, . . . , Vn}. Let X denote some
subset of V , i.e. X ⊆ V . The lower approximation of X with s-partition σ(V ) is defined
as

RX = {Vi ∈ σ(V ): Vi ⊆ X}.
The lower approximation of X always exists; in some cases it can be the empty set.

Also RX ⊆ X in the sense [[RX ]] ⊆ X .
Contrary to classical rough set theory, the upper approximation defined with a par-

ticular s-partition may not exist, i.e. it may be empty. We define an approximation of
set X in the following way:

RX = {Vi ∈ σ(V ): Vi ∩ X �= ∅}.
Note that contrary to the case of partitions based on equivalence relation, it can be

the empty set. Further, in some cases the basic property that X ⊆ RX (in the sense that
X ⊆ [[RX ]] ) may be violated.

For practical reasons, to obtain the upper approximation covering X (e.g. when ver-
ifying completeness of systems) it may be of interest to look for the uncovered cases,
i.e. the completion of an approximation to an upper approximation – such that all el-
ements of X will be covered. In order to do that we first define the completion of an
approximation as

RX = X \ RX.

The upper approximation can be defined now as

RX = RX ∪ RX.

4 Granular Relations

Using the presented idea of granular set, a granular relation can be defined in a straight-
forward way. Consider some collection of sets D1, D2, . . . , Dn. Let there be defined
some granular sets on them, i.e. G1 = (D1, σ1(D1)), G2 = (D2, σ2(D2)), . . . , Gn =
(Dn, σn(Dn)).



A Note on Granular Sets and Their Relation to Rough Sets 257

Definition 7. A granular relation R(G1, G2, . . . , Gn) is any set RG ⊆ UG where

UG = σ1(D1) × σ2(D2) × . . . × σn(Dn). (5)

The set UG will be referred to as granular universe or granular space. If at least one of
the granular sets was unnormalized, the relation is also said to be unnormalized one.

The elements (rows) of a granular relation will be called boxes. Note that in fact a
granular relation defines a kind of meta-relation, i.e. one based on sets instead of single
elements. In fact, if R is a relation defined as R ⊆ D1 ×D2 × . . .×Dn, then any tuple
of R is like a thread in comparison to elements of RG which are like a cord or a pipe.

Consider an example concerned with time-table development for a university or a
school. First, there is certainly a finite set of students, say S. Instead of specifying for
each student his personal schedule, the university authorities consider ”granules” of
them, i.e. years, groups, etc. If S1, S2, and S3 are the groups of the first year, then a
granular structure G(S) = (S, {S1, S2, S3}) can be considered useful when assigning
classes to the students of the first year. Further, time is also considered granular – instead
of precise exact time one would rather consider traditional intervals, such as lessons
(e.g. 45 or 55 minutes each) or periods of the length 1h30min which form a frame
for constructing the schedule. Let T be the discrete set of time values from 7:00 to
21:00, and let T1=[8:00,9:30], T2=[9:30,11:00], T3=[11:00,12:30], T4=[12:30,14:00],
T5=[14:00,15:30], T6=[15:30,17:00], T7=[17:00,18:30] and T8=[18:30,20:00]. Some
other sets, such as the set of professors P , the set B of rooms or the set of classes
(subjects) C are considered here at the level of single items. For simplicity, we focus on
the schedule for some specific day, so the problem is to assign each group a professor,
room and subject for any legal time interval. If P = {p1, p2, p3} is the set of professors,
B = {b1, b2} is the set of rooms and C = {c1, c2, c3} is the set of subjects, the relation
representing the schedule can be as shown in Fig. 2.

T1
T2
T3
T4
T5
T6
T7
T8

S1

S2

S3

p1

p2

p3

b2

b1

c2

c1

c3

T

S

Fig. 2. Example of a granular relation
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The relation shown in Fig. 2 is defined by the following tuples: {(S1, T2, p1, b1, c1),
(S2, T6, p2, b2, c2), (S3, T8, p3, b2, c3)}. In the tuples of this relation only the first two
elements of each tuple are granules; the other three are basic items.

5 Granular Knowledge Representation Systems

Granular sets and granular relations can be applied to develop granular knowledge
representation systems (also called extended tabular systems) [7]. In comparison with
knowledge representation systems considered in [9], nonatomic values of attributes are
admissible. In similar way granular decision tables can be introduced.

Table 1. Optician Decision Table

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y m y n h
2 y h y n h
3 p m y n h
4 q m y n h

5 y m n n s
6 y h n n s
7 p m n n s
8 p h n n s
9 q h n n s

10 y m n r n
11 y m y r n
12 y h n r n
13 y h y r n
14 p m n r n
15 p m y r n
16 p h n r n
17 p h y r n
18 p h y n n
19 q m n r n
20 q m n n n
21 q m y r n
22 q h n r n
23 q h y r n
24 q h y n n

After Pawlak [9] let us consider the following decision table (see Tab. 1). The at-
tributes and their domains are as follows:

– A1 := age; D1 = {y, p, q}, where: y – young, p – pre-presbyotic, q – presbyotic,
– A2 := spectacle; D2 = {m, h}, where: m – myope, h – hypermyope,
– A3 := astigmatic; D3 = {n, y}, where: n – no, y – yes,
– A4 := tear production rate; D4 = {r, n}, where: r – reduced, n – normal,
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– D := type of contact lenses (decision attribute); DD = {h, s, n}, where: h – hard
contact lenses, s – soft contact lenses, n – no contact lenses.

The considered table is complete and deterministic. Methods based on the rough set
theory can be used to reduce such a decision table. The reduction algorithm consists
in the elimination of conditions from a decision table, which are unnecessary to make
decisions specified in the table. Finally, a table with only nine decision rules can be
received (see Tab.2).

Table 2. The reduced form of the Optician Decision Table (using rough set approach)

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y – y n h
2 – m y n h

3 y – n n s
4 p – n n s
5 – h n n s

6 – – – r n
7 p h y – n
8 q h y – n
9 q m n – n

If granular sets and relations are considered further reduction is possible. The most
reduced form of the considered decision table is presented in Tab. 3. The third and sixth
row contains non-atomic values of the attribute Age.

Table 3. The reduced form of the Optician Decision Table

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y – y n h
2 – m y n h

3 {y, p} – n n s
4 – h n n s

5 – – – r n
6 {p, q} h y – n
7 q m n – n

Row 3 of table 3 is the result of gluing rows 3 and 4 of table 2. Similarly, row 6 of
table 3 is the result of gluing rows 7 and 8 of table 2.

6 Summary

The paper presents a concept of granular knowledge representation and manipulation.
The key notions discussed here are the one of granular set and granular relation, both
of them base on the idea of s-partition of a set. It has been shown that granular sets and
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relations can be applied to develop granular knowledge representation systems, which
enable to represent knowledge in more condense form.

The granular approach presented in the paper can be used for efficient knowledge
representation in rule-based systems [7]. Some directions of possible future works in-
clude development of efficient algorithms for verification of theoretical properties, such
as subsumption among rules, completeness of sets of rules, possibility of reduction, etc.
Moreover, further extensions of granular attributive logic are also explored [8].
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8. Ligȩza, A., Nalepa, G.J.: Knowledge Representation with Granular Attributive Logic for
XTT-based Expert Systems. In: Prof. of the 20th International FLAIRS Conference, Key
West, Florida (to appear)

9. Pawlak, Z.: Rough Sets. In: Theoretical Aspects of Reasoning about Data, Kluwer Academic
Publishers, Dordrecht, The Netherlands (1991)
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