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Abstract. In this paper, we introduce the operations of union, intersec-
tion, and complement for preorder-based fuzzy sets. The given operations
are even capable of dealing with fuzzy sets that have membership degrees
coming from different preordered sets. This enables us to handle the dif-
ficult situation in which one has different people giving judgements and
they all like to use their own language and expressions.

1 Fuzzy Sets and L-Fuzzy Sets

Fuzzy sets were introduced in 1965 by Zadeh [9]. For a given universe of discourse
U , a fuzzy set A on U is determined by a membership function μA: U → [0, 1]
associating with each element x ∈ U a real number μA(x) which represents the
grade of membership of x in A.

Zadeh also introduced the set operations of union, intersection, and comple-
mentation for fuzzy sets. These operations are important because if one looks at
the logical aspect of these operations, they represent ‘or’, ‘and’, and ‘not’. The
union of two fuzzy sets A and B is a fuzzy set whose membership function is
μA∪B(x) = max {μA(x), μB(x)}. Further, the intersection of the fuzzy sets A and
B is a fuzzy set with the membership function μA∩B(x) = min {μA(x), μB(x)}.
The complement of the fuzzy set A is defined by μA′(x) = 1−μA(x). The above
operations are often referred to as the standard fuzzy set operations , but in the
literature one can find numerous different ways to define the set operations; see
[7], for example.

The fundamental problem with fuzzy sets is that our perceptions have to be
quantized to the unit interval. In this paper, our aim is to get rid of this semi-
arbitrary choosing of the proper weighting scheme. We try to move towards the
methodology, called computing with words [10], in which the objects of compu-
tation are given by a natural language. Computing with words, in general, is
inspired by the human capability to perform a wide variety of tasks without any
measurements and any quantizations.

Goguen generalized fuzzy sets to L-fuzzy sets in [3]. An L-fuzzy set ϕ on U
is a mapping ϕ: U → L, where L is a ‘transitive partially ordered set’. In this
work, we assume that (L, ≤) is a preordered set. Notice that it is natural to
assume that the relation ≤ is not antisymmetric; if x, y ∈ L are synonyms, that
is, words or expressions that are used with the same meaning, then x ≤ y and
x ≥ y, but still x and y are distinct words.
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Example 1. Suppose that U consists of a group of people. The L-fuzzy set, whose
membership function ϕ is depicted in Fig. 1, describes how well the persons in
U can ski. For instance, there exist people who can ski very well, some ski badly,
and some are moderate skiers.
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Fig. 1.

As noted by Goguen [3], the set of all L-fuzzy sets on a set U can be equipped
whatever operations L has, and these inherited operations obey any law valid
in L which extends pointwise. This implies that if L is, for example, a Boolean
lattice, then also the set all of L-fuzzy sets on U forms a Boolean lattice. Formally,
if ϕ and ψ are L-fuzzy sets on U , then for any x ∈ U ,

(ϕ ∨ ψ)(x) = ϕ(x) ∨ ψ(x)
(ϕ ∧ ψ)(x) = ϕ(x) ∧ ψ(x)

ϕ′(x) = ϕ(x)′ .

In this paper, we show how to define unions, intersections, and complements
of L-fuzzy sets in cases L is just a preordered set, which means that joins, meets,
and complements are not defined in L. The presented approach also handles the
union and the intersection of an L1-fuzzy set ϕ and an L2-fuzzy set ψ on the same
universe U , but not necessarily on the same preordered set. This means that we
can, for example, combine with ‘or’, ‘and’, and ‘not’ judgements of evaluators
all wanting to use their own words and expressions. Our key idea is that the
order determined by membership values is essential, not the values themselves.
It should be noted that some ideas presented in this work appear already in [4,5].

2 Preorders and Alexandrov Topologies

Preorders and Alexandrov topologies have a major role in this paper. Therefore,
we begin with presenting some results concerning them. This section contains
also many lattice-theoretical notions which can be found in [1,2,4], for example.

Let U be any set and let R be a binary relation on U . Then, the relation R is
a preorder , if
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(i) for all x ∈ U , xRx (reflexive)
(ii) for all x, y, z ∈ U , xR y and y R z imply xR z (transitive)

The pair (U, ≤) is called a preordered set . Note that often we say simply that ‘U
is a preordered set’.

We may depict preorders by Hasse diagrams as in case of partially ordered
sets. The only difference is that preorders are not necessarily antisymmetric,
meaning that there may exist elements x �= y such that x ≤ y and x ≥ y.
However, such elements can simply be represented as collections of ≈-equivalent
elements, where the equivalence ≈ is defined by

x ≈ y if and only if x ≤ y and x ≥ y.

This means that ‘synonymous’ elements are represented by a same point in a
Hasse diagram, but still they all preserve their identities.

Let us denote by Pre(U) the set of all preorders on the set U . The set Pre(U)
can be ordered with the usual set-inclusion relation, because relations are just
sets of ordered pairs. First we recall the following well-known lemma that is clear
since the intersection of any subset of Pre(U) is a preorder. Note that generally
the union of preorders is not a preorder.

Lemma 2. For any set U , Pre(U) is a complete lattice with respect to the set-
inclusion relation.

Since Pre(U) is a closure system, that is, a family of sets closed under arbitrary
intersections, we have that for any H ⊆ Pre(U), the meet

∧
H is the intersection⋂

H and the join
∨

H is the intersection of all preorders including
⋃

H. We will
present another description of joins later in this section. Furthermore, the ‘all
relation’ ∇ = {(x, y) | x, y ∈ U} is the greatest element and the ‘identity relation’
Δ = {(x, x) | x ∈ U} is the least element of Pre(U).

A topological space is a pair (U, T ), where U is a set and T is a collection of
subsets of U such that

(i) ∅, U ∈ T ;
(ii) for all H ⊆ T ,

⋃
H ∈ T ;

(iii) for all X, Y ∈ T , X ∩ Y ∈ T .

The collection T is called a topology.
An Alexandrov topology is a topology T that contains also all arbitrary inter-

sections of its members. This means that for Alexandrov topologies, condition
(iii) is replaced by condition

(iii)◦ for all H ⊆ T ,
⋂

H ∈ T .

The pair (U, T ) is referred to as an Alexandrov space.
Every Alexandrov topology T has the property that each point x ∈ U has a

smallest neighbourhood NT (x) =
⋂

{X ∈ T | x ∈ X}. This means that NT (x) is
the smallest set in the topology T containing the point x.

Let us denote by Alex(U) the set of all Alexandrov topologies. Obviously, also
Alex(U) can be ordered by the set-inclusion relation. Because the intersection of
Alexandrov topologies is an Alexandrov topology, we may write the next lemma.
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Lemma 3. For any set U , Alex(U) is a complete lattice with respect to the
set-inclusion relation.

Clearly, Alex(U) is a closure system and hence for any H ⊆ Alex(U),
∧

H is equal
to the intersection

⋂
H and

∨
H is the intersection of all Alexandrov topologies

including
⋃

H. In addition, the ‘discrete topology’ TΔ = {X | X ⊆ U} is the
greatest element and the ‘trivial topology’ T∇ = {∅, U} is the smallest element
of Alex(U).

There is a close connection between preorders and Alexandrov topologies. Let
≤ be a preorder on a set U . We may now define an Alexandrov topology T≤ on
U consisting of all upward-closed subsets of U with respect to the relation ≤,
that is,

T≤ = {X ⊆ U | (∀x, y ∈ U) x ∈ X & x ≤ y =⇒ y ∈ X} .

Let us denote for any x ∈ U , the principal filter of x by ↑x = {y ∈ U | x ≤ y}.
Now we can give the following lemma.

Lemma 4. If ≤ is a preorder on U , then the following assertions hold for all
X ⊆ U and x ∈ U :

(i) X ∈ T≤ if and only if X =
⋃

{↑x | x ∈ X};
(ii) ↑x is the smallest neighbourhood of x in the Alexandrov topology T≤.

Proof. (i) Assume that X ∈ T≤. If x ∈ X , then x ≤ x gives x ∈ ↑x. Thus,
X ⊆

⋃
{↑x | x ∈ X}. On the other hand, if y ∈

⋃
{↑x | x ∈ X}, then there

exists x ∈ X such that x ≤ y. Since X ∈ T≤, we obtain y ∈ X . Hence, also⋃
{↑x | x ∈ X} ⊆ X .
Conversely, suppose X =

⋃
{↑x | x ∈ X}, x ∈ X , and x ≤ y. Then y ∈ ↑x

and so y ∈ X . Therefore, X is upward closed and X ∈ T≤.
(ii) It is clear that x ∈ ↑x ∈ T≤ and if x ∈ X ∈ T≤, then ↑x ⊆ X by (i). ��

By the above lemma, ↑x is the smallest neighbourhood of the point x in the
Alexandrov topology T≤ and clearly y ∈ ↑x if and only if x ≤ y. This hints
how we may also define preorders by means of Alexandrov topologies. If T is an
Alexandrov topology on U , then we define a preorder ≤T on U by setting

x ≤T y ⇐⇒ y ∈ NT (x).

The following theorem by Steiner [8] is essential for our studies.

Theorem 5. For any set U , the complete lattice Pre(U) of all preorders on U
is dually isomorphic to Alex(U), the complete lattice of all Alexandrov topologies
on U ; in symbols (Pre(U), ⊆) ∼= (Alex(U), ⊇).

A nice property of set unions and intersections is that they distribute over each
other. Therefore, it is a natural question to ask whether joins and meets defined in
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a particular lattice have analogous properties. Formally, a lattice L is distributive
if it satisfies either (and therefore both) of the distributive laws:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Furthermore, L is modular if

x ≤ z =⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Trivially, each distributive lattice is modular.
Steiner noted that Pre(U) and Alex(U) are distributive if U has fewer than

three elements. If U has three or more elements, Pre(U) and Alex(U) are not
even modular.

Next we present a simpler way to determine the joins in Pre(U) and Alex(U).
Recall that in (Alex(U), ⊆), the meet is the intersection of Alexandrov topolo-
gies. Thus, the join in its dual (Alex(U), ⊇) is the intersection of Alexandrov
topologies, that is,

T1 ∨ T2 = T1 ∩ T2.

By Theorem 5, (Pre(U), ⊆) ∼= (Alex(U), ⊇), which implies that in (Pre(U), ⊆),

≤1 ∨ ≤2 = ≤(T1∩T2),

where T1 and T2 are the Alexandrov topologies determined by ≤1 and ≤2. Sim-
ilarly, in (Alex(U), ⊆),

T1 ∨ T2 = T(	1∩	2),

where �1 and �2 are the preorders of T1 and T2.
Next we study complementation in these isomorphic lattices. A lattice-

complement of a preorder R is a preorder R′ such that R ∨ R′ = ∇ and
R ∧ R′ = Δ. The next important theorem is also proved by Steiner [8].

Theorem 6. The lattice Pre(U) is complemented.

It is trivial that the set-theoretical complement Rc of a preorder R cannot serve
as the lattice-theoretical complement, because Rc is not a preorder and R∧Rc =
∅ �= Δ. Next we describe the lattice-theoretical complement R′ of R in Pre(U).
Let RE be the smallest equivalence including R. Further, let {Xi | i ∈ I} be the
set of equivalence classes of RE . By the Axiom of Choice we may pick an element
from each equivalence class. Let us denote the representative of the class Xi by
xi. Next we derive two new relations R1 and R2 from R by setting

R1 = {(y, x) | xR y & (y, x) /∈ R} ∪ Δ

and
R2 = {(xi, xj) | i, j ∈ I} ∪ Δ.

It is easy to see that R1 and R2 are preorders. The lattice-theoretical complement
R′ of R is defined by

R′ = R1 ∨ R2.
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It is known that if a lattice is distributive, the complements – if they exist –
are unique. We have already mentioned that Pre(U) is not distributive when
|U | ≥ 3. This implies that the complements are not necessarily unique. Namely,
if R is a preorder such that RE has at least two equivalence classes of which
at least one is non-singleton, then the complement of R depends on the choice
function U/RE → U . On the other hand, if RE has only one equivalence class
U , then R2 = Δ and the complement of R is R1 which clearly is unique. In such
a case, the Hasse diagram of R′ is just the Hasse diagram of R turned upside
down with its equivalent elements being separated. Note also that RE has only
one equivalence class if and only if R is connected , that is, for any x, y ∈ U ,
there exists a sequence a0, a1, . . . , an of elements of U such that a0 = x, an = y,
and ai R ai+1 or ai+1 R ai for i = 0, . . . , n − 1.

We end this section by noting that Theorem 6 has the following obvious
corollary.

Corollary 7. The lattice Alex(U) is complemented.

3 L-Fuzzy Sets and Their Operations

In this section our aim is to define set operations for L-fuzzy sets.
Let U be a set and let L be an arbitrary preordered set. Any L-fuzzy set ϕ

on U determines naturally a preorder on U , as suggested by Kortelainen in [6].
A preorder �ϕ is defined by setting for all x, y ∈ U ,

x �ϕ y ⇐⇒ ϕ(x) ≤ ϕ(y).

By Theorem 5 there is one-to-one correspondence between preorders and Alexan-
drov topologies on U . This implies directly that each L-fuzzy set induces also
an Alexandrov topology Tϕ consisting of upward-closed subsets of �ϕ. Let us
denote the principal filter ↑x of x with respect to the preorder �ϕ by Nϕ(x),
that is, Nϕ(x) = {y | ϕ(x) ≤ ϕ(y)}. By Lemma 4, it is clear that

X ∈ Tϕ ⇐⇒ X =
⋃

{Nϕ(x) | x ∈ U}

and Nϕ(x) is the smallest neighbourhood of x in the Alexandrov topology Tϕ.
Next we show how Alexandrov topologies determine fuzzy sets. Let T be an

Alexandrov topology on a set U . Let us denote by T op the ordered set (T , ⊇).
Now the mapping

ϕT : U → T op, x �→ NT (x)

is a T op-fuzzy set. It is also easy to observe that if ϕ is an L-fuzzy set on U ,
then ϕ∗: U → Tϕ

op, x �→ Nϕ(x) is a fuzzy set such that the preorder �ϕ of ϕ is
equal to the preorder �ϕ∗ determined by ϕ∗. Furthermore, ϕ∗∗ = ϕ∗. Thus, ϕ∗

can be identified as a canonical representation of ϕ, as is done in [5].
Let us denote by Fuzzy(U) the class of all fuzzy sets on U , that is, the collec-

tion of all such mappings ϕ: U → L that L is any arbitrary preordered set. We
noted in the previous section that (Pre(U), ⊆) is a complemented lattice. Because
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each element in Fuzzy(U) determines a unique preorder, we may now define the
union, the intersection, and the complement for any elements ϕ: U → L1 and
ψ: U → L2 of Fuzzy(U) as follows:

ϕ ∪ ψ := �ϕ ∨ �ψ (1)
ϕ ∩ ψ := �ϕ ∧ �ψ (2)

ϕc := �ϕ
′ . (3)

Note that there always exists a fuzzy set in Fuzzy(U) corresponding to the
results of these operations. For example, let us consider the union ϕ ∪ ψ. As we
have shown, the Alexandrov topology Tϕ∪ψ determines a fuzzy set

(ϕ ∪ ψ)∗: U → Tϕ∪ψ
op, x �→ N(ϕ∪ψ)(x).

Using preorders as results of set operations is useful also because in applications
we are often interested in the order of elements with respect to aggregation of
some criteria.

Example 8. Assume that U = {x, y, z, w} consists of four applicants of a cer-
tain academic position and that ϕ: U → L1 and ψ: U → L2 represent how two
experts evaluate the suitability of the applicants by using some expressions and
attributes L1 and L2 of their own languages. The fuzzy sets ϕ and ψ are given
in Fig. 2 of page 228. The induced preorders are

�ϕ = {(y, x), (z, x), (w, x), (w, y), (w, z)} ∪ Δ

and

�ψ = {(w, x), (z, x), (z, y)} ∪ Δ.

These preorders and the canonical representations ϕ∗: U → T op
ϕ and ψ∗: U →

T op
ψ are also depicted in Fig. 2. We define the union, the intersection, and the

complements as described in (1)–(3). The results of these operations can be
found in Fig. 2 as well.

Now ϕ ∩ ψ can be viewed as an order that takes into account the opinions
of both the experts. The applicants x and y must be considered as suitable for
the open position, but z and w should not be selected, since the both experts
have the opinion that they are weaker than x. Let us consider the applicants in
the view of the union ϕ ∪ ψ. According to it, the applicant x should be chosen,
because there exists one expert evaluating x as the best candidate, and this is
not true for the others. The complements ϕc and ψc can be considered as orders
totally opposite to the opinions of the expert.

Notice also that the De Morgan laws do not hold, because

ϕc ∩ ψc �= (ϕ ∪ ψ)c and ϕc ∪ ψc �= (ϕ ∩ ψ)c.
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Some Concluding Remarks and Acknowledgements

In this paper we have introduced unions, intersections and complements for
preorder-based fuzzy sets on a given universe U . Our work was based on the
observation that each preorder-based fuzzy set determines a preorder and an
Alexandrov topology on U . We have described how the results of these set op-
erations can be easily formed. Importantly, the presented approach can handle
the union and the intersection of an L1-fuzzy set ϕ and an L2-fuzzy set ψ of the
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universe U also in the case L1 and L2 are different preordered sets. This enables
us to cope with the common situation in which one has different people giving
judgements and they all like to use their own language and expressions.

The author thanks the anonymous referees for their comments and suggestions
that helped to improve the paper.
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