
Finding the Reduct Subject to Preference Order
of Attributes

Xiaofeng Zhang, Yongsheng Zhao, and Hailin Zou

School of Computer Science and Technology
Ludong University, Yantai 264025, P.R. China

iamzxf@126.com, jsjzhao@sohu.com, zhl 8655@sina.com

Abstract. In machine learning and knowledge discovery, rough set the-
ory is a useful tool to be employed as a preprocessing step for dimension
reduction. However, for a given system, there may be more than one
reduct to be selected. Different reducts will lead to discovered knowledge,
which may be concise, precise, general, understandable and practically
useful in different levels. It is a crucial issue to select the most suitable
features or properties of the objects in a dataset in the machine learning
process. In this paper, some external information is added to informa-
tion system and may be simply regarded as user preference on attributes.
Consequently, it will guide the procedure of retrieving reducts, which will
give birth to the reduct subject to preference order of attributes.

Keywords: Reduct, rough set theory, preference order of attributes.

1 Description of Problem

Information system is the main object in data mining and knowledge discovery. It
consists of two major parameters of complexity leading to intractable behavior:
the number of attributes in an application domain, namely dimensionality, and
the number of examples in a dataset. The latter is typically applied only to the
training stage of the system and, depending on intended use, may be acceptable.
However, data dimensionality is an obstacle for both the training and runtime
phases of a learning system. Many systems exhibit non-polynomial complexity
with respect to dimensionality, which imposes a ceiling on the applicability. The
curse of dimensionality limits the applicability of learning systems to a great
degree.

Rough set theory, proposed by Pawlak Z. [3], is a formal methodology that can
be employed in data reduction as a preprocessing step. A fundamental notion
supporting this is the concept of reduct, which has been studied extensively by
many researchers. A reduct is a subset of attributes which are jointly sufficient
and individually necessary for preserving the same information under considera-
tion as provided by the entire set of attributes. However, for a given information
system, there may be more than one reduct. The use of different reducts will
lead to different discovered knowledge. Typically, discovered knowledge should
be concise, precise, general, easy to understand and practically useful, which can

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 202–210, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding the Reduct Subject to Preference Order of Attributes 203

be measured according to external information. In this paper, we will consider
such external information simply as user preference, which may be weights of
attributes, ranking of attributes, and etc. Especially, if the preference is formally
a chain, then the reduct subject to preference order of attributes will be unique.

2 Related Research

This section will introduce several proposals associated with ”optimal reduct”.
One is ”optimal reduct” in [2], which is in fact the reduct containing the least
number of attributes, also is the shortest one. This algorithm makes use of heuris-
tic information in discernibility matrix–attribute frequency to retrieve the short-
est reduct, yet they cannot make sure that the reduct they get is affirmatively
the shortest one in any case, but in most cases.

In [6], we propose the concept ”optimal reduct under dictionary order”. We
assume that all attributes are ordered lexically, and therefore, all reducts are
ordered lexically accordingly. Since dictionary order is formally a chain, the
optimal reduct is unique. In this paper, by constructing a special data structure,
called dictionary tree, we design a new algorithm to retrieve this reduct under
dictionary order. As an example, a typical dictionary tree containing 4 attributes
is shown in Figure 1.

Notes: The attribute set serial when accessing the dictionary tree by mid-root mode
is a, ab, abc, abcd, abd, . . . , d, which is ordered under dictionary order.

Fig. 1. A Dictionary Tree Containing 4 attributes

When the tree is accessed in mid-root traversing, the attribute set serial is
a, ab, abc, abcd, abd, . . . , d, which is in the lexical order. Moreover, we prove the
correctness of the algorithm to construct the dictionary tree and algorithm to
retrieve optimal reduct. However, when the algorithm is applied in real environ-
ment, it is hard to be carried out.

204 X. Zhang, Y. Zhao, and H. Zou

Yao presented a formal model of machine learning by considering user prefer-
ence in [5]. This model combined internal information and external information
seamlessly and could be extended to user preference of attribute sets. In that
paper, Yao discussed many useful properties of user preference and presented
two linear preference order, called left-to-right lexical order and right-to left one.
In addition, two general algorithms are designed to retrieve corresponding opti-
mal reduct under the two linear order from the deletion and addition strategy.
However, the two algorithms were implemented based on two concepts–super
reduct and partial reduct. How to judge whether a feature set is a super reduct
or partial one is still a crucial issue while no reduct is available.

3 Basic Concepts and Theories

3.1 Information System

Definition 1. An information table is a quadruple:

IT = (U, A, {Va|a ∈ A}, {Ia|a ∈ A}) (1)

Where
U is a finite nonempty set of objects,
A is a finite nonempty set of attributes,
Va is a nonempty set of values for a ∈ A,
Ia : A → Va is an information function.

For simplicity, we only consider information tables characterized by two finite
sets: U and A, of which are objects and attributes, formally as (U, A). In general,
an information table contains all available information and knowledge about
objects under consideration, which are only perceived or measured by using
attributes in A.

Given an information system (U, A), for two objects x, y ∈ U and one attribute
a ∈ A, if the value of x on a is equal to that of y on the same attribute, denoted
as x =a y, then we say that the two objects are indiscernible on a. For B ⊆ A,
if for all attributes b ∈ B, x =b y holds, denoted as x =B y, we call that the two
objects are indiscernible on B.

In (U, A), the family of equivalence class with respect to A, denoted as IND(A),
is defined as following.

IND(A) = {[x]A|x ∈ U} (2)

where [x]A = {y|y ∈ U, and , x =A y} is the equivalence class containing x
constructed by A.

IND(A) is the set of equivalence class, and can be seen as the classification
of the given universe. For example, given U = {u1, u2, u3, u4, u5, u6, u7, u8}, if
IND(A) = {{u1, u2, u6, u8}, {u3, u4, u5, u7}}, then we can say that u1, u2, u6 and

Finding the Reduct Subject to Preference Order of Attributes 205

u8 can be seen as the same class by available knowledge in (U, A) and u3, u4, u5
and u7 can be seen as another different class.

Provided an information system (U, A), P, Q ⊆ A, an functional dependency
P → Q holds if equation (3) holds.

∀u, v ∈ U, u =P v ⇒ u =Q v (3)

Generally, an functional dependency P → Q has the following properties 1-
3 [1]:

Property 1. P → Q ⇒ P → q, for all q ∈ Q; (Rinclusion)

Property 2. P → Q ⇒ (P ∪ V) → Q; (Raugment)

Property 3. P → V ∧ V → Q ⇒ P → Q; (Rtrans)

Definition 2. In the given information system (U, A), an attribute a ∈ A is
dispensable, if the following equation holds.

IND(A) = IND(A − {a}) (4)

Lemma 1. a ∈ A is dispensable in (U, A) if and only if A − {a} → a holds.

Definition 3. Given an information system (U, A), P ⊆ A is dependent, if any
attribute p ∈ P is not dispensable. Formally, P is dependent if and only if

∀p ∈ P, IND(P) 	= IND(P − {p}) (5)

3.2 User Preference

In machine learning algorithms, it is implicitly assumed that all attributes are
of the same importance from a user’s point of view. Consequently, attributes
are based solely on their characteristics revealed in an information system. This
results in a simple model, which is easy to analyze. At the same time, with-
out considering the semantic information of attributes, the model is perhaps
unrealistic. A more applicable model can be built by considering attributes as
non-equally important. This type of external information is normally provided by
users in addition to the information system, and is referred to as user judgement
or user preference [5].

Given an information system (U, A), for any p, q ∈ A, if p is preferred to q by
user, we will simply denote it as p
 q.

Also, how to acquire user preference is a crucial issue. In this paper, for clarity,
we simply assume that a user can express preference on the entire attribute set
precisely and completely, and this enable us to investigate the real issues without
the interference of unnecessary constraints. For simplicity, we assume that any
two attributes are preferred in user preference, that is to say, all attributes are
assumed to be ordered in a linear order. Formally, ∀p, q ∈ C, either p
 q
holds, or q
 p holds. Based on user preference on attribute, we can define user
preference on the set of attributes as follows.

206 X. Zhang, Y. Zhao, and H. Zou

Definition 4. Given two feature set P ={p1, p2, . . . , pm} and Q={q1, q2, . . . , qn}
such that p1
 p2
 . . .
 pm and q1
 q2
 . . .
 qn, where
 is user preference
on attributes. Let t = min{m, n}. We say that P precedes Q, written P
 Q if
and only if either of the following two conditions holds:

(1) there exist a 1 ≤ i ≤ t such that pj = qj for 1 ≤ j ≤ i and pi
 qi

(2) ai = bi for 0 ≤ i ≤ t and m < n.

User preference defined above is in fact left-to-right lexical order in [5] and there
are many applications in practice, such as dictionary order, and etc. If all at-
tributes in (U, A) are linearly ordered in user preference, all reducts of (U, A)
must be ordered in user preference and the reduct which is preferred to any
other reduct is called optimal reduct under user preference. Particularly, if user
preference is a linear order, the optimal reduct under assumed preference must
be unique.

4 Optimal Reduct Under Preference

In this section, first we present two algorithms associated with optimal reduct,
yet both of them have disadvantages. The feature set retrieved by the first algo-
rithm is surely to be one reduct, but not the optimal one. The second algorithm
will retain the better attributes, but cannot give birth to one reduct. After the
two algorithms, we present the algorithm to retrieve optimal reduct in informa-
tion system (U, A) and prove its correctness.

4.1 Algorithm to Retrieve Comparatively Optimal Reduct

First we will give an algorithm to retrieve comparatively optimal reduct. The
reason why we call a comparatively optimal reduct is that the feature set we
retrieve is a reduct but we cannot ensure it is the optimal one under preference.
The algorithm is illustrated in Algorithm 1.

Data: an information system (U, A), while A = {a1, a2, . . . , am} satisfying the
predefined preference such that a1 � a2 � . . . � am.

Result: an reduct red of (U, A).
red = A;
i=m;
while i ≤ 1 do

if red − {ai} → ai then
red = red − {ai};

end
else

i = i − 1;
end

end
Algorithm 1. Algorithm COReductRetrIS(U, A)

Finding the Reduct Subject to Preference Order of Attributes 207

The strategy that Algorithm 1 adopts is deletion strategy, that is to say, the
procedure of implementing the algorithm is to delete dispensable attributes one
by one. However, the reduct retrieved is not sure to be the optimal one under
user preference defined in this paper; this will be illustrated in the following
example.

Example 1. Given an information table (U, A) in Table 1 as follows.

Table 1. An Information Table

U a b c

1 1 2 0
2 1 2 0
3 1 1 1
4 0 0 0
5 0 0 0
6 0 3 1

In the given information system, there are two reducts: {a, c} and {b}. Ac-
cording to Algorithm 1, we will get {b} as the final output, but it is not the
optimal reduct under user preference defined in this paper. However, it is opti-
mal reduct under right-to-left lexical order defined in [5], which will be discussed
in the expanded version of this paper.

4.2 Algorithm to Retrieve Optimal Feature

Since the reduct retrieved by the algorithm in the former section is not the
optimal one, we will extend the algorithm so as to retrieve the optimal feature
set, which may not certainly be the reduct. Based on the measure function α(P)
on P which is increasing monotonously, the algorithm is illustrated in Algorithm
2 as follows, which can be seen as the revised version of algorithm in [7].

Algorithm 2 attempts to retain the important attributes, however, the final
feature set is not sure to be one reduct.

4.3 Algorithm to Retrieve Optimal Reduct

After two attempted algorithms, we will design the algorithm to retrieve the
optimal reduct for the given information system (U, A) as follows.

Now let us prove the correctness of the algorithm.

Proof. In order to prove the correctness of the designed algorithm, there are
three problems to be explained:

(1) IND(redr) = IND(A);
(2) redr is dependent;
(3) There is no other reduct redr′ ⊆ A such that redr′
 redr.

Now we will prove the above three sub-problems one by one.

208 X. Zhang, Y. Zhao, and H. Zou

Data: An decision information table (U, A),while A = a0, a1, . . . , an.
Result: A feature set GloBalFea.
GlobalFea = Φ;
L1:
for (i = 1 to n do) do

TempGlobalFea = {Sq |α(Sq) = max{α(Sp), p = 1..n}}
if (TempGlobalFea = GlobalFea) then

Return GlobalFea;
End Algorithm;
else

GlobalFea = TempGlobalFea
for (j = 1..n) do

Sj = Sj
⋃

GlobalFea
end
Goto L1;

end
end

end
return GlobalFea;

Algorithm 2. Algorithm for optimal features

Data: an information system (U, A), while A = {a1, a2, . . . , am} satisfying the
predefined preference such that a1 � a2 � . . . � am.

Result: an reduct red ⊆ A.
i=1;
while i ≤ m do

redr = {ai};
j = i + 1;
while j ≤ m do

if redr
�
→ aj then

if ∀ap ∈ redr, such that (red − {ap}) ∪ {aj}
�
→ ap then

redr = redr ∪ {aj};
if IND(redr) = IND(A) then

return redr, algorithm end.
end

end
end
j = j + 1;

end
i = i + 1;

end
Algorithm 3. Algorithm for optimal reduct

(1) According to the step which can end the algorithm in the algorithm, the
first formula is apparent;

(2) In the algorithm, the final reduct redr is produced by adding attributes
one by one. Therefore, we can prove that it is dependent in the following two
steps.

Finding the Reduct Subject to Preference Order of Attributes 209

a.) In the initial step, since redr = {ai}, and there is only one
attribute, obviously it is dependent;

b.) Suppose that in the qth step, redr = {ak1 , ak2 , . . . , akq } satisfies
the dependent property, that is to say, any attribute ap in redr satis-
fies IND(redr) 	= IND(redr − {ap}). According to the algorithm, if one
attribute aj is added to redr, it must satisfy the following two properties:

• redr 	→ aj , which ensures that aj is not dispensable at the (q+1)th

step based on the result of Lemma 1 ;
• ∀au ∈ redr, (redr − {au}) ∪ aj 	→ au, which ensures that all at-

tributes in current attribute set redr are not dispensable in the new
attribute set redr ∪ {aj} retrieved in (q + 1)th step based on the result
of Lemma 1 .

Therefore, the attribute set redr ∪ aj retrieved in (q + 1)th step is
dependent.

(3) Suppose the reduct retrieved by applying the designed algorithm is redr =
{ak1 , ak2 , . . . , aku}. If it is not the optimal one, there must be another reduct
redr′ = {al1 , al2 , . . . , alv} such that redr
 redr′.

According to Definition 4, redr
 redr′ holds must satisfy either of the fol-
lowing two conditions, from which we will prove the sub-theorem.

a.) lv ≤ ku and ∀q ≤ lv, akq = alq .
According to the designed algorithm, this case will not occur in

the designed algorithm. For if redr′ = {al1 , al2 , . . . , alv} and redr =
{ak1 , ak2 , . . . , aku} are two reducts, according to description in this case,
∀q ≤ lv, akq = alq and lv < ku, which is to say, redr′ ⊂ redr, which is
contradict to the definition of reduct.
b.) ∃w, such that ∀q ≤ w, akq = alq , and alq+1
 akq+1 .

Supposing that in some step of the implement of the algorithm, we
retrieve the attribute set is redr = {ak1 , ak2 , . . . , akq}, if we can explain
that redr′ will be the reduct we retrieved in the algorithm, then we can
prove the sub-question.

First we can get the conclusion that current attribute set redr is
not a reduct, otherwise the algorithm will stop. Then according to the
hypothesis alq+1
 akq+1 , the two attributes must in the same order in
given preference. In the procedure of the algorithm, any attribute aj

between alq and alq+1 will not be added to redr, either redr → aj holds,
or there exists better attribute aq ∈ redr, such that (redr − {aq}) ∪
{aj} → aq holds.

Since attributes are added one by one in the order of given
preference, alq+1 will be faced ahead of akq+1 . Furthermore, for cur-
rent attribute set redr is not the reduct and there exists a reduct
{al1 , al2 , . . . , alv} containing alq+1 according to the hypothesis, therefore,
the following equation IND(redr) 	= IND(redr∪{alq+1}) holds. From this
Step , alq+1 will not be added in redr if and only if 	 ∃P ⊆ {alq+2 , . . . , am},
such that IND(redr∪P ∪{alq+1}) 	= IND(A), of course this is impossible,
for there exists a reduct redr′.

210 X. Zhang, Y. Zhao, and H. Zou

From the above three aspects, we can illustrate that the reduct retrieved in
the algorithm is the one subject to preference order of attributes.

4.4 Complexity Analysis

Suppose |A| = m and |U | = n. The worst case is that the reduct is the last
attribute. In such case, when i = 1, we will add all other attributes one by one.
We will judge all functional dependencies in 2-attribute set, 3-attributes, . . . , m-
attribute set. When judging in 2-attribute set, we will test whether two functional
dependencies only containing one attribute in the right hold, the complexity
of each is 2 ∗ n2, so finding all functional dependencies in 2-attribute set is
(2n)2. Also, finding all functional dependencies in 3-attribute set, 4-attribute
set, . . . , m-attribute set are of (3n)2, (4n)2, . . . , (mn)2 complexity. Therefore,
the complexity to judge whether the first attribute is included in the reduct is
(2n)2 + (3n)2 + . . . + (mn)2.

In the same mode, judging whether the second attribute is included in the
reduct is of the following complexity: (2n)2+(3n)2+. . .+((m−1)n)2,. . . , judging
the (m − 1)th attribute is of (2n)2 complexity.

Therefore, the total complexity of this algorithm is
(2n)2 + . . . + (mn)2 + (2n)2 + . . . + ((m − 1)n)2 + . . . + (2n)2 = O(n2m4)

5 Conclusions

This paper investigates how to retrieve the reduct subject to preference order of
attributes in the information system. However, how good is the reduct subject to
preference order of attributes for both knowledge representation and prediction?
Algorithms should take into account not only the length and the preference order
of attributes, but also the intended application of the obtained reduct.

References

1. Dan, Simovici, A.: Relational Database System. Academic Press, San Diego (2002)
2. Hu,K., Diao,L., Lu,Y., Shi,C.: Sampling for approximate reduct in very large

databases. URL: //citeseer.ist.psu.edu/587308.html
3. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-

ences 11(5), 341–356 (1982)
4. Yao, Y., Zhao, Y., Wang, J.: On reduct construction algorithms. In: Wang, G.-Y.,

Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp.
297–304. Springer, Heidelberg (2006)

5. Yao,Y., Zhao,Y., Wang,J., Han,S.: A model of Machine Learning Baed on User
Preference of Attributes (to be published)

6. Zhang, X., Zhang, F., Li, M., Wang, N.: Research of Optimal reduct under prefer-
ence. Computer Engineering and Design 26, 2103–2106 (2005)

7. Zhao, Y., Zhang, X., Jia, S., Zhang, F.: Applying PSO in finding useful features. In:
Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI),
vol. 4062, pp. 580–585. Springer, Heidelberg (2006)

//citeseer.ist.psu.edu/587308.html

	Description of Problem
	Related Research
	Basic Concepts and Theories
	Information System
	User Preference

	Optimal Reduct Under Preference
	Algorithm to Retrieve Comparatively Optimal Reduct
	Algorithm to Retrieve Optimal Feature
	Algorithm to Retrieve Optimal Reduct
	Complexity Analysis

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

