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Abstract. An essential notion in the theory of Rough Sets is a reduct,
which is a minimal set of conditional attributes that preserves a required
classification feature, e.g. respective values of an original or modified de-
cision attribute. Certain decision reducts, generalized decision reducts,
and membership distribution reducts belong to basic types of Rough Sets
reducts. In our paper, we prove that reducts of these types are sets of con-
ditional attributes functionally determining respective modifications of a
decision attribute both in complete and incomplete information systems.
However, we also prove that, unlike in the case of complete systems, the
reducts in incomplete systems are not guaranteed to be minimal sets of
conditional attributes that functionally determine respective modifica-
tions of the decision attribute.

1 Introduction

Rough Sets theory defines reducts in a decision table as minimal sets of condi-
tional attributes preserving the required classification feature [10]. The research
devoted to reducts referred mostly to complete systems in which all attribute
values were known. In this paper, we first revisit the results for certain decision,
generalized decision, and membership distribution reducts, which belong to ba-
sic types of Rough Set reducts. Next, we examine properties of reducts of these
types in incomplete systems in which values of attributes may be missing. As
a result, we prove that reducts of these types are sets of conditional attributes
functionally determining respective modifications of a decision attribute both
in complete and incomplete information systems. However, we also prove that,
unlike in the case of complete systems, the reducts in incomplete systems are
not guaranteed to be minimal sets of conditional attributes that functionally
determine respective modifications of the decision attribute.

The layout of the paper is as follows: In Section 2, we recall basic Rough
Set notions and provide their properties. A notion of a functional dependency
is recalled in Section 3. In Section 4, we systematically revisit the relationship
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between functional dependencies and generalized decision reducts, membership
distribution reducts, and certain decision reducts in complete decision tables.
The main part of our contribution is presented in Section 5, where we examine
this relationship in incomplete decision tables. In Section 6, we conclude our
results.

2 Basic Notions and Properties of Rough Sets

2.1 Information Systems

An information system (IS) is a pair S = (O, AT ), where O is a non-empty finite
set of objects and AT is a non-empty finite set of attributes, such that a : O → Va

for any a ∈ AT , where Va is called domain of the attribute a. Each subset of
attributes A ⊆ AT determines a binary A-indiscernibility relation IND(A),

IND(A) = {(x, y) ∈ O × O | ∀a∈A a(x) = a(y)}.

The relation IND(A), A ⊆ AT , is an equivalence relation and determines a
partition of O, which will be denoted by πA. Objects indiscernible with object x
with regard to attribute set A in the system will be denoted by IA(x) and called
A-indiscernibility class; that is, IA(x) = {y ∈ O | (x, y) ∈ IND(A)}. Clearly,
partition πA = {IA(x) | x ∈ O}.

Property 2.1.1 [10]. Let A, B ⊆ AT and x ∈ O.
a) A ⊆ B ⇒ IB(x) ⊆ IA(x)
b) IA∪B(x) = IA(x) ∩ IB(x)
c) IA(x) =

⋂
a∈A Ia(x)

Proposition 2.1.1. Let A ⊆ B ⊆ AT and x ∈ O. IA(x) =
⋃

y∈IA(x) IB(y).

Example 2.1.1. Table 1 describes a sample information system consisting of
10 objects and described by attributes {a, b, c, e, f, d}. Let A = {a, b} and B =

Table 1. Sample DT

x ∈ O a b c e f d

1 1 0 0 1 1 1
2 1 1 1 1 2 1
3 0 1 1 0 3 1
4 0 1 1 0 3 2
5 0 1 1 2 2 2
6 1 1 0 2 2 2
7 1 1 0 2 2 3
8 1 1 0 2 2 3
9 1 1 0 3 2 3
10 1 0 0 3 2 3

Table 2. DT extended with dN
AT , ∂AT , μAT

d

x ∈ O a b c e f d dN
AT ∂AT μAT

d : < μAT
1 , μAT

2 , μAT
3 >

1 1 0 0 1 1 1 1 {1} < 1, 0, 0 >
2 1 1 1 1 2 1 1 {1} < 1, 0, 0 >
3 0 1 1 0 3 1 N {1, 2} < 1/2, 1/2, 0 >
4 0 1 1 0 3 2 N {1, 2} < 1/2, 1/2, 0 >
5 0 1 1 2 2 2 2 {2} < 0, 1, 0 >
6 1 1 0 2 2 2 N {2, 3} < 0, 1/3, 2/3 >
7 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
8 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
9 1 1 0 3 2 3 3 {3} < 0, 0, 1 >
10 1 0 0 3 2 3 3 {3} < 0, 0, 1 >
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{a, b, c, e, f}. IA(3) = {3, 4, 5}, IB(3) = IB(4) = {3, 4}, IB(5) = {5}. Hence,
IA(3) = {3, 4, 5} = IB(3) ∪ IB(4) ∪ IB(5) (see Proposition 2.1.1). 	

Let X ⊆ O and A ⊆ AT . AX is defined as an A-lower approximation of object
set X , iff AX =

⋃
{Y ∈ πA | Y ⊆ X} (or AX = {x ∈ O | IA(x) ⊆ X}). AX

is defined as an A-upper approximation of X , iff AX =
⋃

{Y ∈ πA | Y ∩ X �=
∅} (or AX = {x ∈ O | IA(x) ∩ X �= ∅}). AX is the set of objects that belong to
X with certainty, while AX is the set of objects that possibly belong to X .

2.2 Decision Tables

A decision table is an information system DT = (O, AT ∪{d}), where d �∈ AT is
a distinguished attribute called the decision, and the elements of AT are called
conditions. A decision class is defined as the set of all objects with the same
decision value. By Xdi we will denote the decision class consisting of objects the
decision value of which equals di, where di ∈ Vd. Clearly, for any object x in O,
Id(x) is a decision class. DT is called consistent if for each IAT (x) ∈ πAT there
is Id(x) ∈ πd such that IAT (x) ⊆ Id(x). Otherwise, DT is called inconsistent.

Proposition 2.2.1. Let A ⊆ AT and x ∈ X ⊆ O. X ⊆ Id(x) iff ∃y∈O X ⊆ Id(y).

Proof. (⇒) Trivial.
(⇐) Let y be an object in O such that X ⊆ Id(y) (∗). Hence, x ∈ X ⊆ Id(y), so
x ∈ Id(y). Thus, d(x) = d(y) (∗∗). By (∗) and (∗∗), X ⊆ Id(y) = Id(x). 	

An A-positive region (denoted by POSA) in DT is defined as the union of the
A-lower approximations of all decision classes, that is:

POSA =
⋃

di∈Vd

AXdi .

For A = AT , A-positive region is denoted briefly by POS.

Proposition 2.2.2. POSA = {x ∈ O | IA(x) ⊆ Id(x)}.

Proof. POSA =
⋃

di∈Vd
AXdi =

⋃
y∈O AId(y) =

⋃
y∈O {x ∈ O | IA(x) ⊆

Id(y)} = /∗ by Proposition 2.2.1 ∗/ =
⋃

y∈O {x ∈ O | IA(x) ⊆ Id(x)} = {x ∈
O | IA(x) ⊆ Id(x)}. 	

One can note that the positive region contains all objects in O about which we
are certain that they belong to the decision classes determined by their decision
values. An A-negative region (NEGA) is defined as the set of all objects in O
that do not belong to POSA. In the sequel, NEGAT will be denoted briefly by
NEG. Clearly, DT is consistent iff NEG = ∅ (or POS = O).

For the sake of later use, we introduce a notion of an A-derivable decision
attribute for an object x ∈ O, which we denote by dN

A(x) and define as follows:
dN

A(x) = d(x) if x ∈ POSA, and dN
A(x) = N otherwise. Clearly, all objects with

value N of dN
AT belong to NEG; all other objects belong to POS.

The notion of the negative region may be too vague in some applications.
Looking at Table 1, one may note that objects 3 and 4, which are indiscernible
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with respect to AT = {a, b, c, e, f}, may belong to the decision classes Xd1 or
Xd2 , but certainly do not belong the decision class Xd3 .

A notion of a generalized decision allows us to specify this knowledge. An A
generalized decision for object x in DT (denoted by ∂A(x)), A ⊆ AT , is defined
as the set of all decision values of all objects indiscernible with x on A; i.e. [13]:

∂A(x) = {d(y) | y ∈ IA(x)}.

Property 2.2.1. Let x ∈ O and A, B ⊆ AT . If A ⊆ B, then ∂B(x) ⊆ ∂A(x).

For A = AT , an A-generalized decision will be also called briefly a generalized
decision. The generalized decision informs on decision classes to which an object
may belong. One may additionally be interested in the degree in which the ob-
jects may belong to these classes. An A-membership function: μA

di
: O → [0, 1],

A ⊆ AT , is defined as follows [15]:

μA
di

(x) =
| IA(x) ∩ Xdi |

| IA(x) | .

An A-membership distribution function: μA
d : O → [0, 1]n, A ⊆ AT, n = | Vd |, is

defined as follows [15]:

μA
d (x) = (μA

d1
(x), . . . , μA

dn
(x)), where {d1, . . . , dn} = Vd.

The values of the derivable decision attribute, generalized decision and member-
ship distribution function for objects in DT from Table 1 are shown in Table 2.

2.3 Certain Decision, Generalized Decision, and Membership
Distribution Reducts

A reduct is an essential notion in the Rough Set theory. In this paper, we will
focus on three types of reducts, namely, on certain decision, generalized decision,
and membership distribution reducts. Below, we recall their definitions:

A set of attributes A ⊆ AT is a certain decision reduct of DT iff A is a minimal
set such that

∀x∈POS IA(x) ⊆ Id(x).

A ⊆ AT is a generalized decision reduct of DT iff A is a minimal set such that

∀x∈O ∂A(x) = ∂AT (x).

A ⊆ AT is a μ-decision reduct (or membership distribution reduct) of DT iff A
is a minimal set such that

∀x∈O μA
d (x) = μAT

d (x).

In general, for each certain decision reduct A, there is a superset of A which is a
generalized decision reduct, and for each generalized decision reduct B, there is a
superset of B which is a μ-decision reduct [6],[7]. In the Rough Set literature, one
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can also find definitions of other types of reducts. To the most important ones,
we did not introduce, belong possible, approximate and μ-reducts. It has been
proved in [6],[7] that the set of possible reducts as well as the set of approximate
reducts equals the set of generalized decision reducts, and the set of μ-reducts of
DT equals the set of μ-decision reducts. These and other types of reducts were
also discussed e.g. in [1],[8-19].

3 Functional Dependencies

Let A and B be sets of attributes in an information system. A → B is de-
fined a functional dependency (or A is defined to determine B functionally) if
∀x∈O IA(x) ⊆ IB(x). A → B is defined a minimal functional dependency if it is
a functional dependency and ∀C⊂A C → B is not a functional dependency.

Example 3.1. Let us consider the information system in Table 1. {ce} → {a}
is a functional dependency, nevertheless, ∅ → {a}, {c} → {a} and {e} → {a}
are not. Hence, {ce} → {a} is a minimal functional dependency. 	


4 Reducts and Minimal Functional Dependencies

In this section, we prove that generalized decision, membership distribution, and
certain decision reducts are minimal sets of conditional attributes in decision ta-
ble DT which functionally determine the generalized decision ∂AT , membership
distribution μAT

d , and derivable decision attribute dN
AT (x), respectively.

4.1 Generalized Decision Reducts and Minimal Functional
Dependencies

Since generalized decision reducts are based on the notion of a generalized de-
cision, we first examine the relationship between this notion and a functional
dependency.

Lemma 4.1.1. Let A ⊆ AT . The following statements are equivalent:
a) ∀x∈O ∂A(x) = ∂AT (x)
b) ∀x∈O ∀y∈IA(x)∂AT (y) = ∂AT (x)
c) ∀x∈O IA(x) ⊆ I∂AT (x)
d) A → {∂AT } is a functional dependency

Proof. Ad a ⇒ b) (by contradiction). Let ∀z∈O ∂A(z) = ∂AT (z) (∗), x ∈ O,
y ∈ IA(x) (∗∗) and ∂AT (y) �= ∂AT (x). By (∗), ∂A(x) = ∂AT (x), ∂A(y) =
∂AT (y), and by (∗∗), ∂A(x) = ∂A(y). Hence, ∂AT (x) = ∂A(x) = ∂A(y) =
∂AT (y). Thus, we conclude, ∂AT (x) = ∂AT (y), which contradicts the assumption.
Ad a ⇐ b) Let x ∈ O and ∀y∈IA(x) ∂AT (y) = ∂AT (x) (∗). ∂A(x) =

⋃
y∈IA(x){d(y)}

⊆ /∗ d(y) ∈ ∂AT (y) for any object y ∗/
⋃

y∈IA(x) ∂AT (y) = /∗ by (∗) ∗/ =
⋃

y∈IA(x) ∂AT (x) = ∂AT (x). Hence, ∂A(x) ⊆ ∂AT (x) (∗∗). On the other hand,
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by Property 2.1.1, ∂AT (x) ⊆ ∂A(x) (∗∗∗). By (∗∗) and (∗∗∗), we conclude, ∂A(x) =
∂AT (x).
Ad b ⇔ c ⇔ d) Trivial. 	

Proposition 4.1.1. AT → {∂AT } is a functional dependency.

Proof. The formula ∀x∈O ∂AT (x) = ∂AT (x) is trivially true. Hence, and by
Lemma 4.1.1a,d, AT → {∂AT } is a functional dependency. 	

Theorem 4.1.1. Let A ⊆ AT . A is a generalized decision reduct of DT iff
A → {∂AT } is a minimal functional dependency.

Proof. A is a generalized decision reduct of DT iff /∗ by definition of a gener-
alized decision reduct /∗ ∀x∈O ∂A(x) = ∂AT (x) and there is no proper subset
C ⊂ A such that ∀x∈O ∂C(x) = ∂AT (x) iff /∗ by Lemma 4.1.1a,d /∗ A → {∂AT }
is functional and there is no proper subset C ⊂ A such that C → {∂AT } is
functional iff A → {∂AT } is a minimal functional dependency. 	

Theorem 4.1.1 corresponds to the result obtained in [13].

4.2 μ-Decision Reducts and Minimal Functional Dependencies

As μ-decision reducts are based on the notion of a membership distribution
function, we first examine the relationship between this notion and a functional
dependency.

Lemma 4.2.1. Let A ⊆ AT . The following statements are equivalent:
a) ∀x∈O μA

d (x) = μAT
d (x)

b) ∀x∈O ∀y∈IA(x) μAT
d (y) = μAT

d (x)
c) ∀x∈O IA(x) ⊆ IμAT

d
(x)

d) A → {μAT
d } is a functional dependency

Proof. Ad a ⇒ b) (by contradiction). Let ∀z∈O μA
d (z) = μAT

d (x) (∗), x ∈ O,
y ∈ IA(x) (∗∗) and μAT

d (y) �= μAT
d (x). By (∗), μA

d (x) = μAT
d (x), μA

d (y) = μAT
d (y),

and by (∗∗), μA
d (x) = μA

d (y). Hence, μAT
d (x) = μA

d (x) = μA
d (y) = μAT

d (y). Thus,
we conclude, μAT

d (x) = μAT
d (y), which contradicts the assumption. Ad a ⇐ b)

Let x ∈ O and ∀y∈IA(x) μAT
d (y) = μAT

d (x) (or equivalently, μAT
di

(y) = μAT
di

(x)
for all di ∈ Vd) (∗). Let di be an arbitrary decision value in Vd, μAT

di
(x) = ε, and

IA(x) = I1 ∪ . . . Il, where I1, . . . , Il are distinct (mutually exclusive) classes in
πAT . Clearly, for each class Ij , j = 1..l, there is an object y ∈ IA(x) such that
Ij = IAT (y) and | Ij ∩ Xdi | / | Ij | = | IAT (y) ∩ Xdi | / | IAT (y) | = μAT

di
(y) =

/∗ by (∗) ∗/ = μAT
di

(x). Hence, ∀j=1..l | Ij ∩ Xdi | / | Ij | = μAT
di

(x) = ε, so
∀j=1..l | Ij ∩ Xdi | = ε × | Ij | (∗∗). Now, μA

di
(x) =| IA(x) ∩ Xdi | / | IA(x) |

= | (
⋃

j=1..l Ij)
⋂

Xdi | / |
⋃

j=1..l Ij |= (
∑

j=1..l | Ij ∩ Xdi |)/ (
∑

j=1..l | Ij |) =
(
∑

j=1..l ε × | Ij |) /(
∑

j=1..l | Ij |) = ε = μAT
di

(x). Hence, μA
di

(x) = μAT
di

(x) (∗∗).

As di was chosen arbitrarily, we may generalize (∗∗) for all values di in Vd. In
consequence, we conclude, μA

d (x) = μAT
d (x).

Ad b ⇔ c ⇔ d) Trivial. 	
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Proposition 4.2.1. AT → {μAT
d } is a functional dependency.

Proof. Analogical to the proof of Proposition 4.1.1; by Lemma 4.2.1a,d. 	

Theorem 4.2.1. Let A ⊆ AT . A is a μ-decision reduct of DT iff A → {μAT

d } is
a minimal functional dependency.

Proof. Analogical to the proof of Theorem 4.1.1; follows from the definitions of a
μ-decision reduct and minimal functional dependency, and Lemma 4.2.1a,d. 	

Theorem 4.2.1 corresponds to the result reported in [16].

4.3 Certain Decision Reducts and Minimal Functional Dependencies

Certain decision reducts preserve the positive region. Let us thus start with in-
vestigating the consequences of (non-) belonging to POS.

Property 4.3.1. Let x ∈ O. The following statements are equivalent:
a) x ∈ POS
b) IAT (x) ⊆ Id(x)
c) IAT (x) ⊆ POS

Proof. Ad (a ⇔ b) By Proposition 2.2.2.
Ad (a ⇒ c) Let x ∈ POS. Then by Proposition 2.2.2, IAT (x) ⊆d (x) (∗). Since
∀y∈IAT (x) IAT (y) = IAT (x), then (∗) can be rewritten as ∀y∈IAT (x) IAT (y) ⊆
Id(x). Hence, by Proposition 2.2.1, ∀y∈IAT (x) IAT (y) ⊆ Id(y). Thus, by Proposi-
tion 2.2.2, ∀y∈IAT (x) y ∈ POS, so IAT (x) ⊆ POS.
Ad (a ⇐ c) Trivial. 	

Property 4.3.2. Let x ∈ O. The following statements are equivalent:
a) x �∈ POS
b) IAT (x) �⊆ Id(x)
c) IAT (x) ⊆ O\POS

Proof. Ad (a ⇔ b) Follows from Property 4.3.1.
Ad (b ⇒ c) Let IAT (x) �⊆ Id(x). Then, by Proposition 2.2.1, ¬∃y∈O IAT (x) ⊆
Id(y). Hence, ∀y∈IAT (x) IAT (x) �⊆ Id(y). Since ∀y∈IAT (x) IAT (y) = IAT (x), then
∀y∈IAT (x) IAT (y) �⊆ Id(y). Thus by Property 4.3.1, ∀y∈IAT (x) y ∈ O\POS. There-
fore, IAT (x) ⊆ O\POS.
Ad (b ⇐ c) Let IAT (x) ⊆ O\POS. Hence, IAT (x) �⊆ POS. Then, by Property
4.3.1, IAT (x) �⊆ Id(x). 	

By Property 4.3.1, if object x belongs to POS, then AT-indiscernibility class
of this object is contained in POS, and all objects in this class have the same
decision value as x does. By Property 4.3.2, if x does not belong to POS, then
AT -indiscernibility class of this object is contained in the negative region.

Lemma 4.3.1. Let A ⊆ AT and ∀y∈O IAT (y) ⊆ Id(y) ⇒ IA(y) ⊆ Id(y). Then:
a) ∀x∈O IAT (x) ⊆ Id(x) ⇒ IA(x) ⊆ POS
b) ∀x∈POS IA(x) ⊆ POS
c) ∀x∈O IAT (x) �⊆ Id(x) ⇒ IA(x) ⊆ O\POS
d) ∀x∈O\POS IA(x) ⊆ O\POS
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Proof. Let A ⊆ AT and ∀y∈O IAT (y) ⊆ Id(y) ⇒ IA(y) ⊆ Id(y) (∗).
Ad a) Let x be an object such that IAT (x) ⊆ Id(x). By Proposition 2.1.1 and (∗)
we conclude,

⋃
y∈IA(x) IAT (y) = IA(x) ⊆ Id(x). Hence and by Proposition 2.2.1,

∀y∈IA(x) IAT (y) ⊆ Id(y). Thus, by Property 4.3.1, ∀y∈IA(x) IAT (y) ⊆ POS. Hav-
ing this result in mind and taking into account Proposition 2.1.1, we conclude
IA(x) =

⋃
y∈IA(x) IAT (y) ⊆ POS.

Ad b) Follows from Lemma 4.3.1a and Property 4.3.1.
Ad c) (by contradiction). Let x be an object such that IAT (x) �⊆ Id(x) (∗∗)
and IA(x) �⊆ O\POS. By Proposition 2.1.1, we conclude:

⋃
y∈IA(x) IAT (y) �⊆

O\POS. Hence, ∃y∈IA(x) y ∈ POS. Thus, by Property 4.3.1, ∃y∈IA(x) IAT (y) ⊆
Id(y). By (∗) we conclude: ∃y∈IA(x) IA(y) ⊆ Id(y). Since, IA(y) = IA(x) for any
y ∈ IA(x), then we may infer ∃y∈IA(x) IA(x) ⊆ Id(y). Now, by Proposition 2.2.1,
we may derive, IA(x) ⊆ Id(x). Since IAT (x) ⊆ IA(x) (by Property 2.1.1a), we
conclude, IAT (x) ⊆ Id(x). This contradicts the assumption (∗∗).
Ad d) Follows from Lemma 4.3.1c and Property 4.3.2. 	

Lemma 4.3.2. Let A ⊆ AT . The following statements are equivalent:
a) ∀x∈POS IA(x) ⊆ Id(x)
b) ∀x∈O IA(x) ⊆ IdN

AT
(x)

c) A → {dN
AT } is a functional dependency

Proof. Ad a ⇒ b) Let ∀x∈POS IA(x) ⊆ Id(x)(∗). Hence, by Property 4.3.1,
∀x∈O IAT (x) ⊆ Id(x) ⇒ IA(x) ⊆ Id(x). Thus, by Lemma 4.3.1d, ∀x∈O\POS IA(x)
⊆ O\POS (∗∗). Since dN

AT (x) = N for all and only x ∈ O\POS, then ∀x∈O\POS

IdN
AT

(x) = O\POS. Hence, (∗∗) can be rewritten as ∀x∈O\POS IA(x) ⊆ IdN
AT

(x)
(∗∗∗). In addition, since dN

AT (x) = d(x) for x ∈ POS, then (∗) can be rewritten as
∀x∈POS IA(x) ⊆ IdN

AT
(x)(∗∗∗∗). Thus, by (∗∗∗) and (∗∗∗∗), ∀x∈O IA(x) ⊆ IdN

AT
(x).

Ad a ⇐ b) Let ∀x∈O IA(x) ⊆ IdN
AT

(x). Then, by definition of dN
AT , ∀x∈POS IA(x)

⊆ IdN
AT

(x) = IdAT (x).
Ad b ⇔ c) Trivial. 	

Having in mind properties of the positive region (Proposition 2.2.2), definition
of a certain decision reduct and Lemma 4.3.2, we offer Proposition 4.3.1 and
Theorem 4.3.1, in which we express the relationship between certain decision
reducts and functional dependencies.

Proposition 4.3.1. AT → {dN
AT } is a functional dependency.

Proof. By Proposition 2.2.2, ∀x∈POS IAT (x) ⊆ Id(x). Hence and by Lemma
4.3.2a,c, AT → {dN

AT } is a functional dependency. 	

Theorem 4.3.1. Let A ⊆ AT A is a certain decision reduct of DT iff A → {dN

AT }
is a minimal functional dependency.

Proof. Analogical to the proof of Theorem 4.1.1; follows from the definition
of a certain decision reduct, definition of a minimal functional dependency and
Lemma 4.3.2a,c. 	

Theorem 4.3.1 corresponds to the result presented in [14].
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5 Reducts and Functional Dependencies Under
Incompleteness

It may happen that some of attribute values for an object are missing in an infor-
mation system. The system in which values of all attributes for all objects from
O are known is called complete, otherwise it is called incomplete. Further on, we
will denote missing value by ∗. We will also assume that an object x ∈ O pos-
sesses exactly one value for each attribute in AT , in reality. Thus, if the value of
an attribute a is missing, then we conclude that the real value is one from the set
Va\{∗}. Hence, an object with a(x) = ∗ is likely to be {a}-indiscernible in real-
ity with all other objects in O. The indiscernibility relation, nevertheless, would
treat this object as indiscernible only with objects for which the value of attribute
a is unknown, which seems incorrect. In [2-5], we have introduced and discussed
a notion of a similarity relation in order to deal with the incompleteness. In this
section, we examine the dependency between similarity-based certain decision,
generalized decision, and μ-decision reducts and respective modification of the
decision attribute.

5.1 Basic Notions Under Incompleteness

In Section 5, we consider an incomplete decision table IDT = (O, AT ∪ {d})
that admits unknown values only for attributes in AT . A similarity relation wrt.
A ⊆ AT is denoted by SIM(A), and is defined as follows:

SIM(A) = {(x, y) ∈ O × O | ∀a∈A a(x) = a(y) or a(x) = ∗ or a(y) = ∗}.

The similarity relation is reflexive and symmetric, but may not be transitive. The
set of objects similar with object x wrt. attribute set A in IDT is denoted by
SA(x) and called A-similarity class; that is, SA(x) = {y ∈ O | (x, y) ∈ SIM(A)}.

Example 5.1.1. Table 3 presents a sample incomplete decision table IDT =
(O, AT ∪ {d}), where AT = {a, b}. The similarity classes of objects 1 and 5
wrt. AT , {b}, and ∅ are as follows: SAT (1) = {1}, S{b}(1) = {1, 5}, S∅(1) =
{1, 2, 3, 4, 5, 6, 7, 8}, SAT (5) = {5, 6}, S{b}(5) = S∅(5) = {1, 2, 3, 4, 5, 6, 7, 8}. 	


Table 3. IDT = (O, AT ∪ {d}), where AT = {a, b}, extended with modified decisions

x ∈ O a b d dN
AT dN

{b} dN
∅ ∂AT ∂{b} ∂∅ μAT

d μ
{b}
d μ∅

d

1 1 1 1 1 N N {1} {1, 3} {1, 2, 3} < 1, 0, 0 > < 1/2, 0, 1/2 > < 1/8, 2/8, 5/8 >
2 2 3 2 N N N {2, 3} {2, 3} {1, 2, 3} < 0, 2/3, 1/3 > < 0, 2/4, 2/4 > < 1/8, 2/8, 5/8 >
3 2 3 2 N N N {2, 3} {2, 3} {1, 2, 3} < 0, 2/3, 1/3 > < 0, 2/4, 2/4 > < 1/8, 2/8, 5/8 >
4 2 3 3 N N N {2, 3} {2, 3} {1, 2, 3} < 0, 2/3, 1/3 > < 0, 2/4, 2/4 > < 1/8, 2/8, 5/8 >
5 3 ∗ 3 3 N N {3} {1, 2, 3} {1, 2, 3} < 0, 0, 1 > < 1/8, 2/8, 5/8 > < 1/8, 2/8, 5/8 >
6 3 4 3 3 3 N {3} {3} {1, 2, 3} < 0, 0, 1 > < 0, 0, 1 > < 1/8, 2/8, 5/8 >
7 4 5 3 3 3 N {3} {3} {1, 2, 3} < 0, 0, 1 > < 0, 0, 1 > < 1/8, 2/8, 5/8 >
8 5 6 3 3 3 N {3} {3} {1, 2, 3} < 0, 0, 1 > < 0, 0, 1 > < 1/8, 2/8, 5/8 >
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Property 5.1.1. Let A, B ⊆ AT and x ∈ O.
a) IA(x) ⊆ SA(x)
b) ∀y∈IA(x) SA(y) = SA(x)
c) A ⊆ B ⇒ SB(x) ⊆ SA(x)

In Table 4, we provide definitions of similarity-based Rough Sets notions, we
use throughout this section. Table 3 illustrates dN

A, ∂A, and μA
d , where A ⊆ AT .

Let A ⊆ AT . A is a certain decision reduct of IDT iff A is a minimal set such
that ∀x∈POS SA(x) ⊆ Id(x). A is a generalized decision reduct of IDT iff A is a
minimal set such that ∀x∈O ∂A(x) = ∂AT (x). A is a μ-decision reduct of IDT iff
A is a minimal set such that ∀x∈O μA

d (x) = μAT
d (x).

The definition of a (minimal) functional dependency in an incomplete system
remains the same as in the case of a complete system (see Section 3).

Table 4. Similarity based Rough Sets notions

notion definition notion definition
AX {x ∈ O | SA(x) ⊆ X}; dN

A(x) d(x) if x ∈ POSA, and N otherwise;
AX {x ∈ O | SA(x) ∩ X �= ∅}; ∂A(x) {d(y) | y ∈ SA(x)};
POSA AXd1 ∪ . . . ∪ AXdn ; μdi

A(x) | SA(x) ∩ Xdi | / | SA(x) |;
POS POSAT ; μA

d (x) (μA
d1(x), . . . , μA

dn
(x)).

5.2 Generalized Decision Reducts and Functional Dependencies
Under Incompleteness

Lemma 5.2.1. Let A ⊆ AT and x ∈ O. ∀y∈IA(x) ∂A(y) = ∂A(x).

Proof. Let y ∈ IA(x). By definition, ∂A(y) = {d(z) | z ∈ SA(y)} = /∗ by
Property 5.1.1b ∗/ = {d(z) | z ∈ SA(x)} = ∂A(x). 	

Proposition 5.2.1. Let A ⊆ AT . A → {∂A} is functional in IDT .

Proof. Follows immediately from Lemma 5.2.1. 	

Proposition 5.2.2. Let A ⊆ AT . If A is a generalized decision reduct of IDT ,
then A → {∂AT } is a functional dependency in IDT .

Proof. Let A be a generalized decision reduct of IDT . Then ∀x∈O ∂A(x) =
∂AT (x) and, by Proposition 5.2.1, A → {∂A} is a functional dependency in
IDT . Hence, A → {∂AT } is a functional dependency in IDT . 	

According to Proposition 5.2.2, we observe in IDT from Table 3 that AT →
{∂AT } and {b} → {∂{b}} are functional dependencies. In addition, we observe
that {b} → {∂AT } is a minimal functional dependency in IDT . Nevertheless,
there are objects in IDT for which the values of ∂{b} and ∂AT differ; for example,
∂AT (1) �= ∂{b}(1). Thus, the minimal functional dependency {b} → {∂AT } does
not imply that {b} is a generalized decision reduct.
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Theorem 5.2.1. Let A → AT . The existence of a minimal functional depen-
dency A → {∂AT } in IDT does not imply that A is a generalized decision reduct
of IDT .

Corollary 5.2.1. Let A ⊆ AT . If A is a generalized decision reduct of IDT ,
then A → {∂AT } is a functional dependency, but not necessarily minimal.

Proof. By Proposition 5.2.2 and Theorem 5.2.1. 	


5.3 μ-Decision Reducts and Functional Dependencies Under
Incompleteness

Lemma 5.3.1. Let A ⊆ AT and x ∈ O. ∀y∈IA(x) μA
d (y) = μA

d (x).

Proof. Analogous to Proof of Lemma 5.2.1; follows from Property 5.1.1b. 	

Proposition 5.3.1. Let A ⊆ AT . A → {μA

d } is functional in IDT .

Proof. Follows immediately from Lemma 5.3.1. 	

Proposition 5.3.2. Let A ⊆ AT . If A is a μ-decision reduct of IDT , then
A → {μAT

d } is a functional dependency in IDT .

Proof. Analogous to the proof of Proposition 5.2.2; follows from the definition
of a μ-decision reduct and Proposition 5.3.1. 	

Now, we note that {b} → {μAT

d } is a minimal functional dependency in IDT

from Table 3 and μAT
d (1) �= μ

{b}
d (1). Thus, the minimal functional dependency

{b} → {μAT
d } does not imply that {b} is a μ-decision reduct. Thus, we conclude:

Theorem 5.3.1. Let A ⊆ AT . The existence of a minimal functional depen-
dency A → {μAT

d } in IDT does not imply that A is a μ-decision reduct of IDT .

Corollary 5.3.1. Let A ⊆ AT . If A is a μ-decision reduct of IDT , then
A → {μAT

d } is a functional dependency, but not necessarily minimal.

Proof. By Proposition 5.3.2 and Theorem 5.3.1. 	


5.4 Certain Decision Reducts and Functional Dependencies Under
Incompleteness

Lemma 5.4.1. POSA = {x ∈ O | SA(x) ⊆ Id(x)}.

Proof. POSA =
⋃

di∈Vd
AXdi =

⋃
y∈O AId(y) =

⋃
y∈O {x ∈ O | SA(x) ⊆

Id(y)} = /∗ by Proposition 2.2.1 ∗/ =
⋃

y∈O {x ∈ O | SA(x) ⊆ Id(x)} = {x ∈
O | SA(x) ⊆ Id(x)}. 	

Lemma 5.4.2. Let A ⊆ AT and x ∈ O. ∀y∈IA(x) dN

A(y) = dN
A(x).

Proof. We shall consider two cases: 1) x ∈ POSA, and 2) x �∈ POSA.

Case 1: By definition, dN
A(x) = d(x) (∗). By Lemma 5.4.1, SA(x) ⊆ Id(x). Hence,

and by Property 5.1.1a,b, ∀y∈IA(x) IA(y) ⊆ SA(y) ⊆ Id(x), so, ∀y∈IA(x) Id(y) =
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Id(x) (∗∗). Thus, ∀y∈IA(x) SA(y) ⊆ Id(y). Hence, and by Lemma 5.4.1, ∀y∈IA(x)
y ∈ POSA (∗∗∗). By (∗), (∗∗) and (∗∗), ∀y∈IA(x) dN

A(y) = d(y) = d(x) = dN
A(x).

Case 2: By definition, dN
A(x) = N (∗), and by Lemma 5.4.1, SA(x) �⊆ Id(x). Thus,

by Proposition 2.2.1, ¬(∃z∈O SA(x) ⊆ Id(z)). Hence, and by Property 5.1.1b,
∀y∈IA(x)¬(∃z∈O SA(y) ⊆ Id(z)). So, by Proposition 2.2.1, ∀y∈IA(x) SA(y) �⊆
Id(y). Therefore, ∀y∈IA(x) y �∈ POSA. Hence, ∀y∈IA(x) dN

A(y) = N = /∗ by
(∗) ∗/ = dN

A(x). 	

Proposition 5.4.1. Let A ⊆ AT . A → {dN

A} is a functional dependency in IDT .

Proof. Follows immediately from Lemma 5.4.2. 	


Proposition 5.4.2. Let A ⊆ AT . If A is a certain decision reduct of IDT , then
A → {dN

AT } is a functional dependency in IDT .

Proof. Let A be a certain decision reduct. By the definitions of a certain deci-
sion reduct and dN

AT , ∀x∈POS SA(x) ⊆ Id(x) and dN
AT (x) = d(x). Thus, by Prop-

erty 5.1.1a, ∀x∈POS IA(x) ⊆ IdN
AT

(x) (∗). By Lemma 5.4.1, ∀x �∈POS SAT (x) �⊆
Id(x). Hence, and by Property 5.1.1c, ∀x �∈POS SA(x) �⊆ Id(x). Thus, by Lemma
5.4.1, ∀x �∈POS x �∈ POSA. Therefore and by the definitions of dN

AT and dN
A,

∀x �∈POS dN
AT (x) = N = dN

A(x). Hence, and by Lemma 5.4.2, ∀x �∈POS ∀y∈IA(x)
dN

A(y) = dN
A(x) = N = dN

AT (x). Thus, ∀x �∈POS IA(x) ⊆ IdN
AT

(x) (∗∗). By (∗) and
(∗∗), ∀x∈O IA(x) ⊆ IdN

AT
(x). Hence, A → {dN

AT } is a functional dependency. 	


Eventually, we note that {b} → {dN
AT } is a minimal functional dependency and

dN
AT (1) �= dN

{b}(1). Hence, the minimal functional dependency {b} → {dN
AT } does

not imply that {b} is a certain decision reduct. Thus we conclude:

Theorem 5.4.1. Let A ⊆ AT . The existence of a minimal functional dependency
A → {dN

AT } in IDT does not imply that A is a certain decision reduct of IDT .

Corollary 5.4.1. Let A ⊆ AT . If A is a certain decision reduct of IDT , then
A → {dN

AT } is a functional dependency, but not necessarily minimal.

Proof. By Proposition 5.4.2 and Theorem 5.4.1. 	


6 Conclusions

Certain decision reducts, generalized decision reducts, and membership distri-
bution reducts are provable to be sets of conditional attributes that functionally
determine respective modifications of a decision attribute both in complete and
incomplete information systems. We have also proved, however, that, unlike in
the case of complete systems, the reducts in incomplete systems are not guar-
anteed to be minimal sets of conditional attributes that functionally determine
respective modifications of the decision attribute.
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