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Abstract. Pawlak showed that knowledge can be captured by data par-
tition and proposed a rough set method where comparison between data
partition gives knowledge about classification. Interestingly, thes approx-
imations correspond to the focusing mechanism of differential medical
diagnosis; upper approximation as selection of candidates and lower ap-
proximation as concluding a final diagnosis. This paper focuses on severl
models of medical reasoning shows that core ideas of rough set theory
can be observed in these diagnostic models.

1 Introduction

Medical reasoning always includes uncertainty[1], which is caused by the limita-
tions of medical knowledge, available data and our recognition, compared with
the complexities of human body. Thus, medical databases also have a certain
degree of uncertainty: rules extracted from databases are also incomplete, which
suggests that rule induction method should deal with uncertain rules.

According to this motivation, rule induction based on rough set theory have
been applied to medical databases empirically[2,3], the results of which shows
that rough-set-based methods are very useful to extract medical diagnostic rules.

This paper presents how medical diagnostic rules are modeled by the concepts
of rough sets[4] in a more theoretical way. The key ideas are variable precision
rough set model, which corresponds to a ordinal positive reasoning, and an upper
approximation of a target concept, which corresponds to a focusing mechanism
in medical reasoning. Acquired models show that the characteristics of medical
reasoning reflect the concepts on approximation of rough sets, which explains
why rough sets work well in medical domains. The paper is organized as fol-
lows: in Section 2, two important measures, accuracy and coverage are defined
and a probabilistic rule is defined. Section 3 to 5 presents description of three
types of medical reasoning: simple differential diagnosis, focusing mechanism and
m−of−n criteria, respectively. Section 6 concludes our paper.

2 Definition of Rules

2.1 Rough Sets

In the following sections, we use the following notations introduced by Grzymala-
Busse and Skowron[5], which are based on rough set theory[4]. These notations
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Table 1. An Example of Dataset

No. age location nature prodrome nausea M1 class
1 50-59 occular persistent no no yes m.c.h.
2 40-49 whole persistent no no yes m.c.h.
3 40-49 lateral throbbing no yes no migra
4 40-49 whole throbbing yes yes no migra
5 40-49 whole radiating no no yes m.c.h.
6 50-59 whole persistent no yes yes psycho

Definitions. M1: tenderness of M1, m.c.h.: muscle
contraction headache, migra: migraine, psycho:
psychological pain.

are illustrated by a small dataset shown in Table 1, which includes symptoms
exhibited by six patients who complained of headache.

Let U denote a nonempty, finite set called the universe and A denote a
nonempty, finite set of attributes, i.e., a : U → Va for a ∈ A, where Va is called
the domain of a, respectively.Then, a decision table is defined as an information
system, A = (U, A ∪ {d}). For example, Table 1 is an information system with
U = {1, 2, 3, 4, 5, 6} and A = {age, location, nature, prodrome, nausea, M1} and
d = class. For location ∈ A, Vlocation is defined as {occular, lateral, whole}.

The atomic formulae over B ⊆ A ∪ {d} and V are expressions of the form
[a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set F (B, V ) of
formulas over B is the least set containing all atomic formulas over B and closed
with respect to disjunction, conjunction and negation. For example, [location =
occular] is a descriptor of B.

For each f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all
objects in U with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

For example, f = [location = whole] and fA = {2, 4, 5, 6}. As an example of a
conjunctive formula, g = [location = whole] ∧ [nausea = no] is a descriptor of
U and fA is equal to glocation,nausea = {2, 5}.

2.2 Classification Accuracy and Coverage

Definition of Accuracy and Coverage. By the use of the framework above,
classification accuracy and coverage, or true positive rate is defined as follows.

Definition 1
Let R and D denote a formula in F (B, V ) and a set of objects which belong to
a decision d. Classification accuracy and coverage(true positive rate) for R → d
is defined as:
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αR(D) =
|RA ∩ D|

|RA| (= P (D|R)), and

κR(D) =
|RA ∩ D|

|D| (= P (R|D)),

where |S|, αR(D), κR(D) and P(S) denote the cardinality of a set S, a classifi-
cation accuracy of R as to classification of D and coverage (a true positive rate
of R to D), and probability of S, respectively.

Figure 1 depicts the Venn diagram of relations between accuracy and coverage.
Accuracy views the overlapped region |RA ∩ D| from the meaning of a relation
R. On the other hand, coverage views the overlapped region from the meaning
of a concept D.

RA

D
Relation

Class

Accuracy:
Overlap/ RA

Overlap Coverage:
Overlap/ D

Fig. 1. Venn Diagram of Accuracy and Coverage

In the above example, when R and D are set to [nau = yes] and [class =
migraine], αR(D) = 2/3 = 0.67 and κR(D) = 2/2 = 1.0.

It is notable that αR(D) measures the degree of the sufficiency of a propo-
sition, R → D, and that κR(D) measures the degree of its necessity. For ex-
ample, if αR(D) is equal to 1.0, then R → D is true. On the other hand, if
κR(D) is equal to 1.0, then D → R is true. Thus, if both measures are 1.0,
then R ↔ D. Other characteristics of accuracy and coverage are shown in the
appendix.

2.3 Probabilistic Rules

By the use of accuracy and coverage, a probabilistic rule is defined as:

R
α,κ→ d s.t. R = ∧j [aj = vk], αR(D) ≥ δα and κR(D) ≥ δκ,
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R D s t DR→ >. . ( ) ,α δα κ δκR D( )>R D s t DR→ >. . ( ) ,α δα κ δκR D( )>

RA D

Fig. 2. Venn Diagram for Probabilistic Rules

If the thresholds for accuracy and coverage are set to high values, the meaning
of the conditional part of probabilistic rules corresponds the highly overlapped
region. Figure 2 depicts the Venn diagram of probabilistic rules with highly over-
lapped region. This rule is a kind of probabilistic proposition with two statistical
measures, which is an extension of Ziarko’s variable precision model(VPRS) [6].1

3 Simplest Diagnostic Rules

3.1 Representation of Diagnostic Rules

The simplest probabilistic model is that which only uses classification rules which
have high accuracy and high coverage. Such rules can be defined as:

R
α,κ→ d s.t. R = ∨iRi = ∨ ∧j [aj = vk],

αRi(D) ≥ δα and κRi(D) ≥ δκ,

where δα and δκ denote given thresholds for accuracy and coverage, respectively.
For the above example shown in Table 1, probabilistic rules for m.c.h. are given
as follows (both δα and δκ are set to 0.75):

[prod = 0] → m.c.h. α = 3/4 = 0.75, κ = 1.0,
[nau = 0] → m.c.h. α = 3/3 = 1.0, κ = 1.0,
[M1 = 1] → m.c.h. α = 3/4 = 0.75, κ = 1.0,

3.2 An Rule Induction Algorithm

An rule induction algorithm is defined as Figure 1, which is discussed precisely
in [8]. It is notable that rule induction of other type rules is derived by simple
modification of this algorithm.
1 This probabilistic rule is also a kind of Rough Modus Ponens[7].
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procedure Induction of Classification Rules;
var

i : integer; M, Li : List;
begin

L1 := Ler; /* Ler: List of Elementary Relations */
i := 1; M := {};
for i := 1 to n do /* n: Total number of attributes */

begin
while ( Li �= {} ) do

begin
Sort Li with respect to the value of coverage;
Select one pair R = ∧[ai = vj ] from Li,
which have the largest value on coverage;
Li := Li − {R};
if (κR(D) ≥ δκ)

then do
if (αR(D) ≥ δα)

then do Sir := Sir + {R}; /* Include R as Classification Rule */
M := M + {R};

end
Li+1 := (A list of the whole combination of the conjunction formulae in M);

end
end {Induction of Classification Rules };

Fig. 3. An Algorithm for Classification Rules

4 Focusing Mechanism

One of the characteristics in medical reasoning is a focusing mechanism, which
is used to select the final diagnosis from many candidates[9,10]. For example,
in differential diagnosis of headache, more than 60 diseases will be checked by
present history, physical examinations and laboratory examinations. In diagnos-
tic procedures, a candidate is excluded if a symptom necessary to diagnose is
not observed.

This style of reasoning consists of the following two kinds of reasoning pro-
cesses: exclusive reasoning and inclusive reasoning. Relations of this diagnostic
model with another diagnostic model are discussed in [2]. The diagnostic pro-
cedure will proceed as follows (Figure 4): first, exclusive reasoning excludes a
disease from candidates when a patient does not have a symptom which is nec-
essary to diagnose that disease. Secondly, inclusive reasoning suspects a disease
in the output of the exclusive process when a patient has symptoms specific to
a disease. These two steps are modelled as usage of two kinds of rules, negative
rules (or exclusive rules) and positive rules, the former of which corresponds to
exclusive reasoning and the latter of which corresponds to inclusive reasoning.
In the next two subsections, these two rules are represented as special kinds of
probabilistic rules.
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Focusing Mechanism
(Selection of Candidates) Characterization

(Negative Rules)

Differential Diagnosis Discrimination
(Positive Rules)

Detection of Complications Complications

Fig. 4. Illustration of Focusing Mechanism

4.1 Positive Rules

A positive rule can be defined as a rule supported by only positive examples,
which means that the classification accuracy of a rule is equal to 1.0. Thus, a
positive rule is represented as:

R → d s.t. R = ∧j [aj = vk], αR(D) = 1.0

In the above example, one positive rule of “m.c.h.” is:

[nau = 0] → m.c.h. α = 3/3 = 1.0.

This positive rule is often called deterministic rules. However, in this paper,
we use a term, positive (deterministic) rules, because deterministic rules which
is supported only by negative examples, called negative rules, is introduced as
in the next subsection.

4.2 Negative Rules

Before defining a negative rule, let us first introduce an exclusive rule, the contra-
positive of a negative rule[9]. An exclusive rule can be defined as a rule supported
by all the positive examples, which means that the coverage of a rule is equal to
1.0.2 Thus, an exclusive rule is represented as:

R → d s.t. R = ∧j [aj = vk], κR(D) = 1.0.

In the above example, exclusive rule of “m.c.h.” is:

[prod = 0] ∧ [nau = 0] ∧ [M1 = 1] → m.c.h. κ = 1.0,

It is notable that exclusive rule corresponds to an upper approximation of a
target concept. For example, the set which supports the exclusive rule above is
an upper approximation of m.c.h.
2 Exclusive rules represent the necessity condition of a decision.
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From the viewpoint of propositional logic, an exclusive rule should be repre-
sented as:

d → ∧j [aj = vk],

because the condition of an exclusive rule correspond to the necessity condition
of conclusion d. Thus, it is easy to see that a negative rule is defined as the
contrapositive of an exclusive rule:

∨j¬[aj = vk] → ¬d,

which means that if a case does not satisfy any attribute value pairs in the
condition of a negative rules, then we can exclude a decision d from candidates.
For example, the negative rule of m.c.h. is:

¬[prod = 0] ∨ ¬[nau = 0] ∨ ¬[M1 = 1] → ¬m.c.h.

In summary, a negative rule is defined as:

∧j ∨ [aj = vk] → ¬d s.t. ∀[aj = vk] κ[aj=vk](D) = 1.0,

where D denotes a set of samples which belong to a class d. It can be also called
a deterministic rule, since a measure of negative concept, coverage is equal to
1.0.

In summary, positive and negative rules corresponds to positive and negative
regions defined in rough sets. Figure 5 shows the Venn diagram of those rules.

4.3 Rule Induction Algorithm

An algorithm for induction of positive and negative rules is derived by simple
modification of the algorithm in Figure 1: if the thresholds of accuracy and
coverage is set to 0.0 and 1.0, respectively, the algorithm for negative rules will

Negative Rules

Positive Rules

Fig. 5. Positive and Negative Rules as Overview
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be obtained. On the other hand, if the thresholds of accuracy and coverage is set
to 1.0 and 0.0, respectively, the algorithm for negative rules will be obtained.

It is notable that positive and negative rules can be extended to probabilistic
versions, which is discussed precisely in [9].

5 Criteria Tables

5.1 Representation of Rules

Another characteristic reasoning in medicine is m−of−n concepts, or criteria
table, which is discussed in [11]. Criteria table for a disease d is described by n
attributes, which are enough to make its diagnosis. If at least m attributes are
observed in a patient, d should be suspected.

Langley discusses that this m−of−n description can be rewritten as a simple
linear combination of attribute-value pairs. Thus, he implements an induction
of this description as an induction of threshold concepts.

However, a m−of−n rule in medicine is not equivalent to a linear combination
rule, which is a special kind of statistical discriminant functions[12]. Rather, this
type of rule is based on relations between sets as follows.

1. If total n attributes are observed, a disease d is suspected with the highest
accuracy. (The coverage is equal to 1.0).

2. If m attributes are satisfied, a disease d should be suspected with high
accuracy. (The coverage is equal to 1.0).

3. If less than m attributes are satisfied, the probability of d is low. However,
the coverage is equal to 1.0. Thus, m−of−n concept is described as combination
of exclusive rules (below, we call them unit rules) with the constraint that their
accuracies are high:

R → d s.t. R = ∧i
j=1[aj = vk](m ≤ i ≤ n)

αR(D) ≥ δα, κ[aj=vk](D) = 1.0,

which also satisfies that: if R is represented as ∧i
j=1(i < m), then αR(D) < δα

holds.
For the above example in Table 1, exclusive rule of m.c.h. is:

[prod = 0] ∧ [nau = 0] ∧ [M1 = 1] → m.c.h. κ = 1.0, α = 1.0

This attains the highest accuracy. If the threshold for accuracy is set to 0.75,
then

[prod = 0] → m.c.h. κ = 1.0, α = 0.75,

[nau = 0] → m.c.h. κ = 1.0, α = 0.75, and

[M1 = 1] → m.c.h. κ = 1.0, α = 1.0.

So, diagnostic rules for m.c.h. can be viewed as 1−of−3 concept. In this way,
combination of accuracy and coverage is also important to represent m−of−n
type rules.
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5.2 Rule Induction Algorithm

An algorithm for induction of unit rules is derived by simple modification of
the algorithm in Figure 1: if the thresholds of accuracy and coverage is set to δ
and 1.0, respectively, then the algorithm for induction of each unit rule will be
obtained. In this model, we should only add integration of unit rules after rule
induction to obtain the total algorithm, which is not shown for the limitation of
the space.

6 Conclusion

In this paper, rough set framework is introduced to model medical diagnostic
rules. Acquired models show that the characteristics of medical reasoning reflect
the concepts on approximation of rough sets, which explains why rough sets
work well in medical domains.
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A Fundamentals of Accuracy and Coverage

A.1 Statistical Dependence

Let P (R) and P (D) be defined as: P (R) = |RA|
|U| and P (D) = |D|

|U| , where U

denotes the total samples. Then, a index for statistical dependence ςc is defined
as:

ςR(D) =
|RA ∩ D|
|RA||D| =

|U |P (R, D)
P (R)P (D)

,

where P (R, D) denotes a joint probability of R and D (P (R, D) = |RA∩D|/|U |).
Since the formula P (R, D) = P (R)P (D) is the definition of statistical indepen-
dence, ςR(D) measures the degree of statistical dependence. That is, If ςR(D) >
1.0, then R and D are dependent, other R and D are independent; especially, if
ςR(D) is equal to 1.0, they are statistically independent.

Theorem 1. Lower approximation and upper approximation gives (strong) sta-
tistical dependent relations.

Proof. Since αR(D) = 1.0 for the lower approximation, ςR(D) = 1
P (D) > 1.0 In

the same way, for the upper approximation, ςR(D) = 1
P (R) > 1.0 �

Definition 2. Let U be described by n attributes. A conjunctive formula R(i)
is defined as: R(i) =

∧i
k=1[ai = vi], where index i is sorted by a given criteria,

such as the value of accuracy. Then, the sequence of a conjunction is given as:
R(i + 1) = R(i) ∧ [ai+1 = vj+1].

Since R(i + 1)A = R(i)A ∩ [ai+1 = vi+1]A, for this sequence, the following
proposition will hold: R(i+1)A ⊆ R(i)A Thus, the following theorem is obtained.

Theorem 2. When we consider a sequence of conjunctive formula such that the
value of accuracy should be increased, the statistical dependence will increase.
Proof.

ςR(i+1)(D) =
αR(i+1)(D)

P (D)
≥

αR(i)(D)
P (D)

= ςR(i)(D)

A.2 Tradeoff Between Accuracy and Coverage

Theorem 3 (Monotonicity of Coverage). Let a sequence of conjunctive for-
mula R(i) given with n attributes. Then,

κR(i+1)(D) ≤ κR(i)(D).

Then, since accuracy and coverage has the following relation:

κR(D)
αR(D)

=
P (R)
P (D)

. (1)
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Since P (R) will decrease with the sequence of conjunction, the following theorem
is obtained.

Theorem 4. Even if a sequence of conjunction for R is selected such that the
value of accuracy increases monotonically, κR(D) will decrease. That is, the
decrease of κR(D) is larger than the effect of the increase of αR(D). �
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