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Abstract. With the fast booming of online music repositories, there is
a need for content-based automatic indexing which will help users to
find their favorite music objects in real time. Recently, numerous suc-
cessful approaches on musical data feature extraction and selection have
been proposed for instrument recognition in monophonic sounds. Un-
fortunately, none of these methods can be successfully applied to poly-
phonic sounds. Identification of music instruments in polyphonic sounds
is still difficult and challenging, especially when harmonic partials are
overlapping with each other. This has stimulated the research on music
sound separation and new features development for content-based au-
tomatic music information retrieval. Our goal is to build a cooperative
query answering system (QAS), for a musical database, retrieving from
it all objects satisfying queries like ”"find all musical pieces in penta-
tonic scale with a viola and piano where viola is playing for minimum
20 seconds and piano for minimum 10 seconds”. We use the database of
musical sounds, containing almost 4000 sounds taken from the MUMs
(McGill University Master Samples), as a vehicle to construct several
classifiers for automatic instrument recognition. Classifiers showing the
best performance are adopted for automatic indexing of musical pieces
by instruments. Our musical database has an FS-tree (Frame Segment
Tree) structure representation. The cooperativeness of QAS is driven by
several hierarchical structures used for classifying musical instruments.

1 Introduction

Broader research on automatic musical instrument sound classification goes back
to last few years. So far, there is no standard parameterization used as a clas-
sification basis. The sound descriptors used are based on various methods of
analysis of time and spectrum domain, with Fourier Transform amplitude spec-
tra being most common. Also, wavelet analysis gains increasing interest for sound
and especially for musical sound analysis and representation [21], [9]. Diversity
of sound timbres is also used to facilitate data visualization via sonification, in
order to make complex data easier to perceive [1].

Many parameterization and recognition methods, including pitch extraction
techniques, applied in musical research come from speech and speaker recogni-
tion domain [B], [22]. Sound parameters applied in research performed in musi-
cal instrument classification include cepstral coefficients, constant-Q coefficients,
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spectral centroid, autocorrelation coefficients, and moments of the time wave [3],
wavelet analysis [23], [13], root mean square (RMS), amplitude envelope and mul-
tidimensional scaling analysis trajectories [12], and various spectral and temporal
features [14], [T7], [23]. The sound sets used differ from experiment to experiment,
with McGill University Master Samples (MUMS) CDs being most common [19],
yet not always used [3], making comparison of results more difficult. Some ex-
periments operate on a very limited set of data, like 4 instruments, or singular
samples for each instrument. Even if the investigations are performed on MUMS
data, every researcher selects different group of instruments, number of classes,
and testing method is also different. Therefore, data sets used in experiments
and the obtained results are not comparable. Additionally, each researcher fol-
lows different parameterization technique(s), which makes comparison yet more
difficult. Audio features in our system [26], [15] are first categorized as MPEGT
descriptors and other/non-MPEGT descriptors in the acoustical perspective of
view, where both spectrum features and temporal features are included. We
have built a derivative database of those features with single valued data for
KD-based classification. The spectrum features have two different frequency do-
mains: Hz frequency and Mel frequency. Frame size was carefully designed to be
120ms, so that the Oth octave G (the lowest pitch in our audio database) can be
detected. The hop size is 40ms with a overlapping of 80ms. A hamming window
was applied to all STFTs (Short Time Fourier Transforms) to avoid jittering
in the spectrum. By the results from the experiments, it was shown that the
non-MPEG features significantly improve the performance of the classifiers [2§].

The classifiers, applied in research on musical instrument sound classification,
represent practically all known methods. The most popular classifier is k-Nearest
Neighbor (k-NN), see for example [12]. This classifier is relatively easy to imple-
ment and quite successful. Other reported results include Bayes decision rules,
Gaussian mixture model [3], artificial neural networks [I3], decision trees and
rough set based algorithms [24], discriminant analysis [I7] hidden Markov Mod-
els (HMM), support vector machines (SVM) and other. The obtained results
vary depending on the size of the data set, with accuracy reaching even 100%
for 4 classes. However, the results for more than 10 instruments, explored in full
musical scale range, generally are below 80%. Extensive review of parameteriza-
tion and classification methods applied in research on this topic, with obtained
results, is given in [I0]. The classifiers investigated in our project include k-NN,
Bayesian Networks, and Decision Tree J-48. We also consider use of neural net-
works, especially time-delayed neural networks (TDNN), since they perform well
in speech recognition applications [18].

Musical instrument sounds can be classified in various ways, depending on the
instrument or articulation classification. In [25], we review a number of possible
generalizations of musical instruments sounds classification which can be used to
construct different hierarchical decision attributes. Each decision attribute leads
to a new classifier and the same to a different system for automatic indexing
of music by instrument sounds and their generalizations. Values of any decision
attribute and their generalizations can be seen as atomic queries of a query
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language built for retrieving musical objects from musical database. When query
fails, the cooperative strategy tries to find its lowest generalization which does
not fail, taking into consideration all available hierarchical attributes. Paper
[25] evaluates two hierarchical attributes (Hornbostel-Sachs classification and
classification by articulation) upon the same dataset which contains 2628 distinct
musical samples of 102 instruments. By cross checking the resulting schemes for
both attributes, it was observed that the timbre estimation of instruments had
higher accuracy than that of instruments from other families by the classification
by articulation. Also, among the musical objects played by different articulations,
the sounds played by lip-vibration tended to be less correctly recognized by
Hornbostel-Sachs classification. This justifies the construction of atomic queries
from values of more than one decision attribute.

2 Sound Data

This paper deals with recordings where for each channel there is only access to
one-dimensional data, i.e. to single sample representing amplitude of the sound.
Any basic information like pitch (or pitches, if there are more sounds), timbre,
beginning and end of the sound must be extracted via digital signal processing.
The audio database consists of stereo musical pieces from the MUMS samples.
These audio data files are treated as mono-channel, where only left channel was
taken into consideration, since successful methods for the left channel will also
be successfully applied to the right channel. In the view of classification, these
audio data can be categorized into two different types: one is monophonic sound
note to generate training feature set; the other is polyphonic sound sequence for
testing.

Our research is driven by the desire to identify the individual instrument
types or instrument family categories of the predominant instruments in a music
object. Timbre is a quality of sound that distinguishes one music instrument
from another, while there are a wide variety of instrument families and individ-
ual categories. It is rather subjective quality, defined by ANSI as the attribute
of auditory sensation, in terms of which a listener can judge that two sounds,
similarly presented and having the same loudness and pitch, are different. Such
definition is subjective and not of much use for automatic sound timbre classifi-
cation. Therefore, musical sounds must be very carefully parameterized to allow
automatic timbre recognition. The real use of timbre-based grouping of music
is discussed in [2]. Evolution of sound features in time is essential for humans,
therefore it should be reflected in sound description as well. The discovered tem-
poral patterns may better express sound features than static features, especially
that classic features can be very similar for sounds representing the same family
or pitch, whereas changeability of features with pitch for the same instrument
makes sounds of one instrument dissimilar.

Based on recent research performed in MIR area, MPEG proposed an MPEG-
7 standard, in which it described a set of low-level sound temporal and spec-
tral features. The low-level descriptors in MPEG-7 are intended to describe the
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time-variant information within an entire audio segment, where most of them
are, like other STFT related acoustic features, in a form of either vector or
matrix of large size, where an audio segment was divided into a set of frames
and each row represents a power spectrum in the frequency domain within each
analysis window. Therefore, these features are not suitable for traditional clas-
sifiers, which require single-value cell of input datasets. Researchers have been
explored different statistical summations in a form of single value to describe sig-
natures of music instruments within vectors or matrices in those features, such
as Tristimulus parameters [20] or Brightness [6]. However, current features fail
to sufficiently describe the audio signatures which vary in time within a whole
sound segment, esp. where multiple audio signatures are overlapping with each
other. It was widely observed that a sound segment of a note, which is played
by a music instrument, has at least three states: onset (transient), quasi-steady
state and offset (transient). Vibration pattern in a transient state is known to
significantly differ from the one in a quasi-steady state. Consequently, the har-
monic features in the transient states behavior significantly different from those
in the quasi-steady state. Also, it has been observed that a human needs to
know the beginning of the music sound in order to discern the type of an instru-
ment. Identifying the boundary of the transient state enables accurate timbre
recognition.

3 Feature Database Construction

Our research involves the construction of two main databases, one is a mono-
phonic sound feature database, which is used for classifiers construction; the
other is a polyphonic audio database, which is used for testing. The latter will
have FS-tree structure driven by automatic indexing of audio files by music in-
struments and their classes. The monophonic sound feature database contains
over 1022 attributes, where 1018 of them were computed from the digital mono-
phonic sound files and four decision hierarchical attributes were manually la-
belled. There are many ways to categorize the audio features. In our research,
computational audio features are first categorized as MPEGT based descriptors
and other/non-MPEG?7 descriptors in the acoustical perspective of view, where
both spectrum features and temporal features are included. Then, a derivative
database of those features with single valued data features, for the purpose of
learning classifiers, is constructed. The manually labelled decision attributes will
be discussed in latter section. Spectrum features have different frequency do-
mains: Hz frequency and Mel frequency. Frame size is chosen as 0.12 second, so
that the 0th octave G (the lowest pitch in our audio database) can be detected,
which is also within the range of estimates for temporal acuity of human ear.
The hop size is 0.04 second with a overlapping of 0.08 second. Since the sampling
frequency of all the music objects is 44,100Hz, there are 5292 sample data per
frame in the waveform.

The list of MPEGT features includes: Harmonic Upper Limit, Harmonic Ra-
tio, Basis Functions, Log Attack Time, Temporal Centroid, Spectral Centroid,
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Spectrum Centroid/Spread I, Harmonic Parameters, Flatness. The list of ex-
tended MPEGT features and other features includes: Tristimulus Parameters,
Spectrum Centriod/Spread II, Flux, Roll Off, Zero Crossing, MFCC, Spectrum
Centroid/Spread I, Harmonic Parameters, Flatness, Durations. Intermediate fea-
tures include Harmonic Upper Limit and Projection.

4 Sound Separation

Our system consists of five modules: a quasi-steady state detector, a STFT
converter with hamming window, a pre-dominant fundamental frequency esti-
mator, a sequential pattern matching engine (it will be replaced by a classifier)
with connection to a feature database, a F'F'T subtraction device [27].

The quasi-steady state detector computes overall fundamental frequency in
each frame by a cross-correlation function, and outputs the beginning and end
positions of the quasi-steady state of the input sound.

The STFT converter divides a digital audio object into a sequence of frames,
applies STFT transform to the mixed sample data of integers from time domain
to frequency domain with a hamming window, and outputs NFFT discrete
points.

The pre-dominant fundamental frequency estimator identifies all the possible
harmonic peaks, computes the likelihood value for each candidate peak, elects
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Fig. 1. Sound Separation System
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the frequency with the maximum likelihood value as the fundamental frequency,
and stores its normalized correspondence harmonic sequence.

The sequential-pattern matching engine computes the distance of each pair
wise sequence of first N harmonic peaks, where N is set empirically, then outputs
the sound with the minimum distance value for each frame, and finally estimates
the sound object by the most frequent sound object among all the frames.

The FFT subtraction device subtracts the detected sound source from the
spectrum, computes the imaginary and real part of the F'F'T point by the power
and phase information, performs IFFT for each frame, and outputs resultant
remaining signals into a new audio data file.

5 Multi-way Hierarchic Classification

Classification of musical instrument sounds can be performed in various ways
[11]. Paper [25] reviews several hierarchical classifications of musical instrument
sounds but concentrates only on two of them: Hornbostel-Sachs classification
of musical instruments and classification of musical instruments by articulation
with 15 different articulation methods (seen as attribute values): blown, bowed,
bowed vibrato, concussive, hammered, lip-vibrated, martele, muted, muted vi-
brato, percussive, picked, pizzicato, rubbed, scraped and shaken. Each hierar-
chical classification represents a unique decision attribute which leads us to a
discovery of a new classifier and the same to a different system for automatic
indexing of music by instruments and their certain generalizations.

The goal of each classification is to find descriptions of musical instruments
or their classes (values of attribute d) in terms of values of attributes from A.
Each classification results in a classifier which can be evaluated using standard
methods like bootstrap or cross-validation.

In [25] authors concentrate on classifiers built by rule-based methods (for in-
stance: LERS, RSES, PNC2) and next on classifiers built by tree-based methods
(for instance: Seed, J48 Tree, Assistant, CART, Orange).

Let us assume that S = (X, A U {d},V) is a decision system, where d is
a hierarchical attribute. We also assume that d;, .. ;) (where 1 < i; < my,
Jj =1,2...,k) is a child of dj;, . ;, . for any 1 < i} < my. Clearly, attribute d
has X{mi-msy-...-m; : 1 < j < k} values, where my-ms-...-m; shows the upper
bound for the number of values at the level j of d. By p([i1,...,ix]) we denote a
path (d, d[i1]7 d[i1,i2]7 d[i1,i2,i3]7"'7 d[ihm,ik_l]’ d[h,,lk]) leading from the root of
the hierarchical attribute d to its descendant dp;, . -

Let us assume that R; is a set of classification rules extracted from S, repre-
senting a part of a rule-based classifier R = (J{R; : 1 < j < k}, and describing
all values of d at level j. The quality of a classifier at level j of attribute d can

be checked by calculating Q(R;) = Z{Sgglg?ﬁ g}{;ij b where sup(r) is the

support of the rule  in S and conf(r) is its confidence. Then, the quality of the
rule-based classifier R can be checked by calculating Q(U{R; : 1 < j < k}) =
SAQUR, SISk},
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The quality of a tree-based classifier can be given by calculating its quality
for every node of a hierarchical decision attribute d. Let us take a node dj;, . 4,
and the path p([i1, ..., %)) leading to that node from the root of d. There is a
set of classification rules Rj;, . ;. .1, uniquely defined by the tree-based classifier,
assigned to a node dj;, . ;1 of a path p([iy, ..., ix]), for every 1 <m < k. Now, we

sup(r)-conf(r):r€R[ .. im .
define Q(Ry;, . ;,.]) as 24 Zp{(sip(r):fr(ei%[il,..F,;n]}'» o8 Then, the quality of a tree-

based classifier for a node dy;, ... ;.1 of the decision attribute d can be checked by
calculating Q(dj;,.....i,.1) = [INQ(Rp,,...5;)) : 1 < j < m}. In our experiments,
presented in Section 4 of this paper, we use J/8 Tree as the tool to build tree-
based classifiers. Also, their performance on level m of the attribute d is checked
by calculating Q(d[;, ... ;,.)) for every node dj;, . ;. at the level m. Finally, the
performance of both classifiers is checked by calculating Q(IU{R; : 1 < j < k})
(the first method we proposed).

Learning values of a decision attribute at different generalization levels is
extremely important not only for designing and developing an automatic index-
ing system of possibly highest confidence but also for handling failing queries.
Values of a decision attribute and their generalizations are used to construct
atomic queries of a query language built for retrieving musical objects from
M IR Database (see http://www.mir.uncc.edu). When query fails, the coopera-
tive strategy [7], [§] may try to find its lowest generalization which does not fail.
Clearly, by having a variety of different hierarchical structures available for d
we have better chance not only to succeed but succeed with a possibly smallest
generalization of an instrument class.

6 Flexible Query Answering System

Now, we discuss how a Flexible Query Answering System (see Figure 1) associ-
ated with a database D of music files works for a sample query which consists
of two parts: a digital musical file F' and an instrument 7'. The query should be
read as: Find all musical pieces, in the database D, which are played by the same
instruments as the instruments used in F. Also the duration time of all these
instruments has to be the same (threshold value can be provided).

The digital musical file is divided into segments of equal length. Automatic
indexing system operates on each segment piece and outputs a vector of features
describing its content. Then a classifier estimates what instruments are present
in each segment and what is their time duration and then searches the FS-
tree to identify the musical pieces in database D satisfying the query. If query
fails, then an instrument used in F' which has the most similar timbre to the
instrument 7 is identified and it is replaced by T assuming that its time duration
is the same as the time duration of the replaced instrument. Finally, the closest
musical file to the file requested by user is returned as the result of the query.
Alternatively, the classifier of a higher level in the instrument family tree is
assigned for timbre classification on its own level, and repeats the steps until a
desire result is achieved or the root of the instrument family tree is reached. This
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Fig. 2. Flexible Query Answering System based on MIR

approach especially benefits non-musician users who have limited information on
music instrument classification schema.

7 Conclusion and Acknowledgement

The ultimate goal of this research is to build a cooperative system for automatic
indexing of music by instruments or classes of instruments, use this system to
build FS-tree type music database for storing automatically indexed musical
files, and finally design and implement a Cooperative Query Answering System
to handle user requests submitted to music database.

This research was supported by the National Science Foundation under grant
11S-0414815.
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