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Extended Abstract

Granulation plays an essential role in human cognition and has a position of cen-
trality in both granular computing and rough set theory. Informally, granulation
involves partitioning of an object into granules, with a granule being a clump of
elements drawn together by indistinguishability, equivalence, similarity, proxim-
ity or functionality. For example, an interval is a granule; so is a fuzzy interval;
so is a gaussian distribution; so is a cluster of points; and so is an equivalence
class in rough set theory. A granular variable is a variable which takes granules
as values. If G is value of X , then G is referred to as a granular value of X . If G
is a singleton, then G is a singular value of X . A linguistic variable is a granular
variable whose values are labeled with words drawn from a natural language.
For example, if X is temperature, then 101.3 is a singular value of temperature,
while “high” is a granular (linguistic) value of temperature.

Basically, granular computing is a mode of computation in which the objects
of computation are granular variables. A granular value, X , may be interpreted
as a representation of the state of imprecise knowledge about the true value of
X . In this sense, granular computing may be viewed as a system of concepts
and techniques for computing with variables whose values are either not known
precisely or need not be known precisely.

A concept which serves to precisiate the concept of a granule is that of a
generalized constraint. The concept of a generalized constraint is the centerpiece
of granular computing.

A generalized constraint is an expression of the form X isr R, where X is the
constrained variable, R is the constraining relation, and r is an indexical variable
which serves to identify the modality of the constraint. The principal modalities
are: possibilistic (r = blank); veristic (r = v); probabilistic (r = p); usuality
(r = u); random set (r = rs); fuzzy graph (r = fg); bimodal (r = bm); and group
(r = g). The primary constraints are possibilistic, veristic and probabilistic. The

� Research supported in part by ONR N00014-02-1-0294, BT Grant CT1080028046,
Omron Grant, Tekes Grant, Chevron Texaco Grant and the BISC Program of UC
Berkeley.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 1–4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 L.A. Zadeh

standard constraints are bivalent possibilistic, bivalent veristic and probabilistic.
Standard constraints have a position of centrality in existing scientific theories.

A generalized constraint, GC(X), is open if X is a free variable, and is closed
(grounded) if X is instantiated. A proposition is a closed generalized constraint.
For example, “Lily is young,” is a closed possibilistic constraint in which X =
Age(Lily); r = blank; and R = young is a fuzzy set. Unless indicated to the
contrary, a generalized constraint is assumed to be closed.

A generalized constraint may be generated by combining, projecting, qual-
ifying, propagating and counterpropagating other generalized constraints. The
set of all generalized constraints together with the rules governing combina-
tion, projection, qualification, propagation and counterpropagation constitute
the Generalized Constraint Language (GCL).

In granular computing, computation or equivalently deduction, is viewed as a
sequence of operations involving combination, projection, qualification, propaga-
tion and counterpropagation of generalized constraints. An instance of projection
is deduction of GC(X) from GC(X, Y ); an instance of propagation is deduction
of GC(f(X)) from GC(X), where f is a function or a functional; an instance of
counterpropagation is deduction of GC(X) from GC(f(X)); an instance of com-
bination is deduction of GC(f(X, Y )) from GC(X) and GC(Y ); and an instance
of qualification is computation of X isr R when X is a generalized constraint.
An example of probability qualification is (X is small) is likely. An example of
veristic (truth) qualification is (X is small) is not very true.

The principal deduction rule in granular computing is the possibilistic exten-
sion principle: f(X) is A−→ g(X) is B, where A and B are fuzzy sets, and B
is given by μB(v) = supu(μA(f(u))), subject to v = g(u). μA and μB are the
membership functions of A and B, respectively.

A key idea in granular computing may be expressed as the fundamental thesis:
information is expressible as a generalized constraint. The traditional view that
information is statistical in nature may be viewed as a special, albeit important,
case of the fundamental thesis.

A proposition is a carrier of information. As a consequence of the fundamental
thesis, the meaning of a proposition is expressible as a generalized constraint.
This meaning postulate serves as a bridge between granular computing and
NL-Computation, that is, computation with information described in a natural
language.

The point of departure in NL-Computation is (a) an input dataset which
consists of a collection of propositions described in a natural language; and (b)
a query, q, described in a natural language. To compute an answer to the query,
the given propositions are precisiated through translation into the Generalized
Constraint Language (GCL). The translates which express the meanings of given
propositions are generalized constraints. Once the input dataset is expressed as
a system of generalized constraints, granular computing is employed to compute
the answer to the query.

As a simple illustration assume that the input dataset consists of the propo-
sition “Most Swedes are tall,” and the query is “What is the average height of
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Swedes?” Let h be the height density function, meaning that h(u)du is the frac-
tion of Swedes whose height lies in the interval [u, u+du]. The given proposition
“Most Swedes are tall,” translates into a generalized constraint on h, and so does
the translate of the query “What is the average height of Swedes?” Employing the
extension principle, the generalized constraint on h propagates to a generalized
constraint on the answer to q. Computation of the answer to q reduces to solu-
tion of a variational problem. A concomitant of the close relationship between
granular computing and NL-Computation is a close relationship between gran-
ular computing and the computational theory of perceptions. More specifically,
a natural language may be viewed as a system for describing perceptions. This
observation suggests a way of computing with perceptions by reducing the prob-
lem of computation with perceptions to that of computation with their natural
language descriptions, that is, to NL-Computation. In turn, NL-Computation is
reduced to granular computing through translation/precisiation into the Gener-
alized Constraint Language (GCL).

An interesting application of the relationship between granular computing and
the computational theory of perceptions involves what may be called percep-
tion-based arithmetic. In this arithmetic, the objects of arithmetic operations
are perceptions of numbers rather than numbers themselves. More specifically,
a perception of a number, a, is expressed as usually (∗a), where ∗a denotes
“approximately a.” For concreteness, ∗a is defined as a fuzzy interval centering
on a, and usually is defined as a fuzzy probability. In this setting, a basic question
is: What is the sum of usually (∗a) and usually (∗b)? Granular computing and,
more particularly, granular arithmetic, provide a machinery for dealing with
questions of this type.

Granular computing is based on fuzzy logic. Fuzzy logic has endured many
years of skepticism and derision largely because fuzziness is a word with pejora-
tive connotations. Today, fuzzy logic is used in a wide variety of products and
systems ranging from digital cameras, home appliances and medical instrumen-
tation to automobiles, elevators, subway trains, paper making machinery and
traffic control systems. By this measure, fuzzy logic has achieved success.

There are two basic rationales which underlie the success of fuzzy logic. In-
directly, the same rationales apply to granular computing and rough set theory.
The second rationale is referred to as “The fuzzy logic gambit.” To understand
the rationales it is necessary to differentiate between two meanings of preci-
sion: precision in value, v-precision; and precision in meaning, m-precision. For
example, if X is a real-valued variable, then the proposition X is in the inter-
val [a, b], where a and b are precisely defined numbers, is v-imprecise and m-
precise. Additionally, we have to differentiate between mh-precisiation, that is,
human-oriented m-precisiation, and mm-precisiation, that is, machine-oriented
m-precisiation. For example, a dictionary definition of stability may be viewed as
an instance of mh-precisiation, while Lyapunov’s definition of stability is an in-
stance of mm-precisiation of stability. Furthermore, v-imprecisiation may be im-
perative (forced) or intentional (deliberate). For example, if I do not know Lily’s
age and describe her as young, then v-imprecisiation is imperative (forced). If I
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know her birthday but choose to describe her age as young, then v-imprecisiation
is intentional (deliberate).

Let X be a variable taking values in U . U may be a space of numbers, func-
tions, relations, distributions, etc. Consider two cases.

Case 1: Values of X are not known precisely, i.e., X is v-imprecise, denoted
as ∗X .

Case 2: Values of X are known precisely, i.e., X is v-precise.

In Case l, I have some information, Inf(∗X), about values of ∗X . I mm-
precisiate Inf(∗X) by using an information description language, IDL. IDL may
be the language of bivalent logic and probability theory, BL + PT; or the lan-
guage of fuzzy logic, FL; or a natural language, NL. NL may be mm-precisiated
through translation into FL. FL is a superlanguage of (BL + PT) in the sense
that it has a much higher expressive power than (BL + PT).

In Case 1, the use of FL as the information description language serves to
enhance the accuracy of description of values of ∗X, especially when ∗X takes
values in the space of functions, relations or distributions. This is Rationale 1
for the use of fuzzy logic as an information description language when the values
of ∗X are not known precisely.

Turning to Case 2, we observe that, in general, precision carries a cost. If there
is a tolerance for imprecision, we can exploit it by sacrificing precision through
v-imprecisiation of X . This is what we do when we perform data compression,
summarization and other information-reduction operations. More generally, we
v-imprecisiate X to ∗X to reduce cost. By so doing, we reduce Case 2 to Case 1.
Then we mm-precisiate ∗X through the use of NL as an information description
language. This is the essence of Rationale 2 for the use of fuzzy logic when the
values of a variable are known precisely. In this context, the fuzzy logic gambit
may be stated as:

If there is a tolerance for imprecision, exploit it through v-imprecisiation fol-
lowed by mm-precisiation.

The fuzzy logic gambit is Rationale 2 for the use of fuzzy logic when the values
of a variable are known precisely.

It is of historical interest to note that my 1965 paper “Fuzzy sets” was moti-
vated by Rationale l. My 1973 paper, “Outline of a new approach to the analysis
of complex systems and decision processes,” was motivated by Rationale 2. To-
day, most applications of fuzzy logic employ the concepts of a linguistic variable
and fuzzy if-then rule sets – concepts which were introduced in the 1973 paper.

Imprecision, uncertainty and partiality of truth are pervasive characteristics
of the real world. As we move further into the age of machine intelligence and
automated reasoning, the need for an enhancement of our ability to deal with
imprecision, uncertainty and partiality of truth is certain to grow in visibility
and importance. It is this need that motivated the genesis of granular computing
and rough set theory, and is driving their progress. In coming years, granular
computing, rough set theory and NL-Computation are likely to become a part
of the mainstream of computation and machine intelligence.
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