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Preface

The International Conference on Rough Sets and Emerging Intelligent Systems
Paradigms (RSEISP 2007) was held under the auspices of the Committee of
Computer Science of the Polish Academy of Sciences. The conference was dedi-
cated to the memory of Prof. Zdzis�law Pawlak1. During his lifetime, the research
interests and contributions of Pawlak were rich and varied.2 His research ranged
from his pioneering work on knowledge description systems and rough sets during
the 1970s and 1980s as well as his work on the design of computers, informa-
tion retrieval, modeling conflict analysis and negotiation, genetic grammars and
molecular computing. Added to that was Pawlak’s lifelong interest in painting,
photography and poetry. Pawlak nurtured worldwide interest in approximation,
approximate reasoning and rough set theory and its applications. Evidence of the
influence of Pawlak’s work can be seen in the growth in the rough set literature
that now includes over 4,000 publications, as well, as in the growth and maturity
of the International Rough Set Society3, a number of international conferences
dedicated to research concerning the foundations and applications of rough set
theory, and the publication of seven volumes of the Transactions on Rough Sets
journal since its inception in 20044.

During the past 35 years, since the introduction of knowledge description sys-
tems in the 1970s, the theory and applications of rough sets has grown rapidly.
In particular, RSEISP 2007 focused on various forms of soft and granular com-
puting such as rough and fuzzy sets, knowledge technology and discovery, data
processing and mining, as well as their applications in intelligent information
systems. Rough set theory proposed by Zdzis�law Pawlak in 1981 provides a
model for approximate reasoning. The main idea underlying this approach is to
discover to what extent a given set of objects approximates another set contain-
ing objects of interest. This approach led to the discovery of affinities between

1 Prof. Pawlak passed away on April 7, 2006.
2 See, e.g., E. Or�lowska, J.F. Peters, G. Rozenberg, A. Skowron (Eds.): New Frontiers

in Scientific Discovery. Commemorating the Life and Work of Zdzis�law Pawlak. IOS
Press, Amsterdam, 2007. ISBN: 978-1-58603-717-8
http://www.iospress.nl/loadtop/load.php?isbn=9781586037178

J.F. Peters and A. Skowron: Zdzis�law Pawlak: Life and Work 1926-2006. Transac-
tions on Rough Sets V, LNCS 4100 (2006) 1-24.
Additional commemorative volumes: Transactions on Rough Sets VI and VII, LNCS
4374 (2007) and LNCS 4400 (2007).

3 IRSS:http://roughsets.home.pl/www/
4 See ISSN: 1861-2059 (print version) and ISSN: 1861-2067 (electronic version) avail-

able from Springer at
http://www.springer.com/west/home/computer/lncs?SGWID=4-164-6-99627-0



VI Preface

objects that come to light by considering function values associated with object
features or attributes. In applications, rough set methodology focuses on approx-
imate representation of knowledge derivable from experimental data and domain
knowledge. This led to many significant results in areas such as smart systems,
image processing, pattern recognition, signal processing, data mining, machine
learning, finance, industry, multimedia, medicine, and recently in bioinformatics
and robotics.

The RSEISP 2007 Proceeding continue the tradition begun with other confer-
ences such as Rough Sets and Knowledge Technology (RSKT 20065), Rough Sets,
Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 20056), Rough
Sets and Current Trends in Computing (RSCTC 20067), and the Joint Rough
Set Symposium (JRS 20078). In particular, RSEISP 2007 introduced a number
of new advances in the foundations and applications of rough sets as well as
other intelligent systems paradigms. These advances have profound implications
in a number of research areas such as affine description, approximate reason-
ing, artificial intelligence, brain informatics, bioinformatics, biology, classifica-
tion of complex structured objects, computer engineering (rough set processors),
data mining, data warehousing, decision systems, Dempster–Shafer theory, fea-
ture selection, feature extraction, formal concept analysis, foundations of rough
sets, fuzzy logic, fuzzy sets, generalized constraint language, genetics, granulated
decision systems, granular computing, granular knowledge representation, grey-
rough sets, image recognition, incomplete information (missing values), infor-
mation fusion, information granularity, interval calculus, knowledge consistency,
knowledge discovery, map granules, medical image classification, machine learn-
ing, medicine, mereology, mining association rules, mining numerical data, music
information retrieval, natural language computation, natural language engineer-
ing, neural computing, online dispute resolution, Petri net modeling, quality of
service, radial basis function neural models, pattern recognition, Pawlak flow
graphs, reasoning with incomplete information, reducts, rough argumentation,
rough classifiers, rough inclusion, rough induction, similarity coverage model,
software engineering, spam filtering, support vector machine (SVM) classifiers,
text processing, universal networks, variable precision rough sets model, voice
recognition, Web-based medical support systems, Web information gathering,
Web intelligence, and Zadeh’s calculus of linguistically quantified propositions.

A total of 161 researchers from 20 countries are represented in this volume,
namely, Australia, Canada, India, P.R. China, Egypt, Finland, France, Italy,
Japan, Poland, Spain, Sweden, Thailand, The Netherlands, Romania, Russia,
Slovakia, Thailand, UK and USA.

We would like to dedicate this volume to the father of fuzzy set theory,
Lotfi A. Zadeh, who is continuously inspiring the research of the rough set

5 LNCS 4062 (2006).
6 Part 1: LNCS 3641 (2005) and Part 2: LNCS 3642 (2005).
7 LNCS 4259 (2006).
8 14-16 May 2007, Toronto, Canada. See http://www.infobright.com/jrs07/



Preface VII

community. Let us express our gratitude to Lotfi A. Zadeh, who kindly accepted
our invitation to serve as the Honorary Chair, and to deliver the keynote talk
for the conference.

We also wish to express our thanks to Jiming Liu, Sankar K. Pal and Roman
S�lowiński for accepting to be keynote speakers as well as Jerzy Grzyma�la-Busse,
Victor Marek, Ryszard Michalski, Hung Son Nguyen, Ewa Or�lowska, James F.
Peters, Lech Polkowski, Zbigniew Raś, Jaros�law Stepaniuk, Shusaku Tsumoto,
YiYu Yao, Wojciech Ziarko for accepting to be plenary speakers.

Our special thanks go to members of the Organizing Committee and Pro-
gram Committee of the RSEISP 2007 for their contribution to the scientific
program of the conference. The high quality of the proceedings of the RSEISP
2007 Conference was made possible thanks to the reviewers as well as to the
laudable efforts of many generous persons and organizations. We would also like
to thank all individuals who submitted papers to the conference, and to thank
the conference participants.

The organization of the conference benefitted from contributions by Piotr
Gawrysiak, �Lukasz Skonieczny and Robert Bembenik. We are also grateful to
Bożenna Skalska, whose administrative support and cheery manner were invalu-
able throughout. The editors and authors of this volume also extend an expres-
sion of gratitude to Alfred Hofmann, Ursula Barth, Christine Günther and the
other Lecture Notes in Computer Science staff at Springer for their support in
making this volume possible.

June 2007 Marzena Kryszkiewicz
James F. Peters

Henryk Rybinski
Andrzej Skowron
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Roman S�lowiński (Poznan University of Technology, Poland)
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Anna Gomolińska (Bialystok University, Poland)
Jarek Gryz (York University, Canada)
Jerzy W. Grzymala-Busse (University of Kansas, USA)
Mirsad Hadzikadic (University of North Carolina at Charlotte, USA)
Aboul E. Hassanien (Cairo University, Egypt)
Gerhard Heyer (Leipzig University, Germany)
Ryszard Janicki (McMaster University, Canada)
Janusz Kacprzyk (Systems Research Institute, Polish Academy of Sciences,

Poland)
Mieczys�law A. K�lopotek (Institute of Computer Science, Polish Academy of

Sciences, Poland)
Boena Kostek (Gdansk University of Technology, Poland)
Marzena Kryszkiewicz (Warsaw University of Technology, Poland)
Masahiro Inuiguchi (Osaka University, Japan)
T.Y. Lin (San Jose State University, USA)
Pawan Lingras (Saint Mary’s University, Canada)
Jiming Liu (University of Windsor, Canada)
Tadeusz �Luba (Warsaw University of Technology, Poland)



Organization XI

Witold �Lukaszewicz (University of Computer Science and Economics TWP
Olsztyn, Poland)

Solomon Marcus (Romanian Academy, Romania)
Victor Marek (University of Kentucky, USA)
Stan Matwin (University of Ottawa, Canada)
Ernestina Menasalvas Ruiz (University of Madrid, Spain)
Wojtek Michalowski (University of Ottawa, Canada)
Ryszard Michalski (George Mason University, USA)
Tadeusz Morzy (Poznan University of Technology, Poland)
Mikhail Moshkov (University of Silesia, Poland)
Mieczys�law Muraszkiewicz (Warsaw University of Technology, Poland)
Ewa Or�lowska (National Institute of Telecommunications, Poland)
Andrzej Pacut (Warsaw University of Technology, Poland)
Sankar K. Pal (Indian Statistical Institute, India)
Witold Pedrycz (University of Alberta, Canada)
James F. Peters (University of Manitoba, Canada)
Lech Polkowski (University of Warmia and Mazury in Olsztyn, Poland)
Sheela Ramanna (University of Winnipeg, Canada)
Anna Radzikowska (Warsaw University of Technology, Poland)
Zbyszek Ras (University of North Carolina, at Charlotte, USA)
Kenneth Revett (University of Westminster, UK)
Henryk Rybinski (Warsaw University of Technology, Poland)
Wladyslaw Skarbek (Warsaw University of Technology, Poland)
Andrzej Skowron (Warsaw University, Poland)
Dominik Slezak (Infobright Inc., Canada)
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Andrzej Szalas (Linköping University, Sweden)
Tomasz Szapiro (Warsaw School of Economics, Poland)
Tomasz Szmuc (AGH University of Science and Technology, Poland)
Ryszard Tadeusiewicz (AGH University of Science and Technology, Poland)
Li-Shiang Tsay (Hampton University, USA)
Shusaku Tsumoto (Shimane University, Japan)
Dimiter Vakarelov (Sofia University, Bulgaria)
Alicja Wakulicz-Deja (University of Silesia, Poland)
Krzysztof Walczak (Warsaw University of Technology, Poland)
Guoyin Wang (Institute of Electrical and Electronics Engineers, China)
Anita Wasilewska (Stony Brook State University of NY, USA)
Arkadiusz Wojna (Warsaw University, Poland)
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Extended Abstract

Granulation plays an essential role in human cognition and has a position of cen-
trality in both granular computing and rough set theory. Informally, granulation
involves partitioning of an object into granules, with a granule being a clump of
elements drawn together by indistinguishability, equivalence, similarity, proxim-
ity or functionality. For example, an interval is a granule; so is a fuzzy interval;
so is a gaussian distribution; so is a cluster of points; and so is an equivalence
class in rough set theory. A granular variable is a variable which takes granules
as values. If G is value of X , then G is referred to as a granular value of X . If G
is a singleton, then G is a singular value of X . A linguistic variable is a granular
variable whose values are labeled with words drawn from a natural language.
For example, if X is temperature, then 101.3 is a singular value of temperature,
while “high” is a granular (linguistic) value of temperature.

Basically, granular computing is a mode of computation in which the objects
of computation are granular variables. A granular value, X , may be interpreted
as a representation of the state of imprecise knowledge about the true value of
X . In this sense, granular computing may be viewed as a system of concepts
and techniques for computing with variables whose values are either not known
precisely or need not be known precisely.

A concept which serves to precisiate the concept of a granule is that of a
generalized constraint. The concept of a generalized constraint is the centerpiece
of granular computing.

A generalized constraint is an expression of the form X isr R, where X is the
constrained variable, R is the constraining relation, and r is an indexical variable
which serves to identify the modality of the constraint. The principal modalities
are: possibilistic (r = blank); veristic (r = v); probabilistic (r = p); usuality
(r = u); random set (r = rs); fuzzy graph (r = fg); bimodal (r = bm); and group
(r = g). The primary constraints are possibilistic, veristic and probabilistic. The
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standard constraints are bivalent possibilistic, bivalent veristic and probabilistic.
Standard constraints have a position of centrality in existing scientific theories.

A generalized constraint, GC(X), is open if X is a free variable, and is closed
(grounded) if X is instantiated. A proposition is a closed generalized constraint.
For example, “Lily is young,” is a closed possibilistic constraint in which X =
Age(Lily); r = blank; and R = young is a fuzzy set. Unless indicated to the
contrary, a generalized constraint is assumed to be closed.

A generalized constraint may be generated by combining, projecting, qual-
ifying, propagating and counterpropagating other generalized constraints. The
set of all generalized constraints together with the rules governing combina-
tion, projection, qualification, propagation and counterpropagation constitute
the Generalized Constraint Language (GCL).

In granular computing, computation or equivalently deduction, is viewed as a
sequence of operations involving combination, projection, qualification, propaga-
tion and counterpropagation of generalized constraints. An instance of projection
is deduction of GC(X) from GC(X,Y ); an instance of propagation is deduction
of GC(f(X)) from GC(X), where f is a function or a functional; an instance of
counterpropagation is deduction of GC(X) from GC(f(X)); an instance of com-
bination is deduction of GC(f(X,Y )) from GC(X) and GC(Y ); and an instance
of qualification is computation of X isr R when X is a generalized constraint.
An example of probability qualification is (X is small) is likely. An example of
veristic (truth) qualification is (X is small) is not very true.

The principal deduction rule in granular computing is the possibilistic exten-
sion principle: f(X) is A−→ g(X) is B, where A and B are fuzzy sets, and B
is given by μB(v) = supu(μA(f(u))), subject to v = g(u). μA and μB are the
membership functions of A and B, respectively.

A key idea in granular computing may be expressed as the fundamental thesis:
information is expressible as a generalized constraint. The traditional view that
information is statistical in nature may be viewed as a special, albeit important,
case of the fundamental thesis.

A proposition is a carrier of information. As a consequence of the fundamental
thesis, the meaning of a proposition is expressible as a generalized constraint.
This meaning postulate serves as a bridge between granular computing and
NL-Computation, that is, computation with information described in a natural
language.

The point of departure in NL-Computation is (a) an input dataset which
consists of a collection of propositions described in a natural language; and (b)
a query, q, described in a natural language. To compute an answer to the query,
the given propositions are precisiated through translation into the Generalized
Constraint Language (GCL). The translates which express the meanings of given
propositions are generalized constraints. Once the input dataset is expressed as
a system of generalized constraints, granular computing is employed to compute
the answer to the query.

As a simple illustration assume that the input dataset consists of the propo-
sition “Most Swedes are tall,” and the query is “What is the average height of
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Swedes?” Let h be the height density function, meaning that h(u)du is the frac-
tion of Swedes whose height lies in the interval [u, u+du]. The given proposition
“Most Swedes are tall,” translates into a generalized constraint on h, and so does
the translate of the query “What is the average height of Swedes?” Employing the
extension principle, the generalized constraint on h propagates to a generalized
constraint on the answer to q. Computation of the answer to q reduces to solu-
tion of a variational problem. A concomitant of the close relationship between
granular computing and NL-Computation is a close relationship between gran-
ular computing and the computational theory of perceptions. More specifically,
a natural language may be viewed as a system for describing perceptions. This
observation suggests a way of computing with perceptions by reducing the prob-
lem of computation with perceptions to that of computation with their natural
language descriptions, that is, to NL-Computation. In turn, NL-Computation is
reduced to granular computing through translation/precisiation into the Gener-
alized Constraint Language (GCL).

An interesting application of the relationship between granular computing and
the computational theory of perceptions involves what may be called percep-
tion-based arithmetic. In this arithmetic, the objects of arithmetic operations
are perceptions of numbers rather than numbers themselves. More specifically,
a perception of a number, a, is expressed as usually (∗a), where ∗a denotes
“approximately a.” For concreteness, ∗a is defined as a fuzzy interval centering
on a, and usually is defined as a fuzzy probability. In this setting, a basic question
is: What is the sum of usually (∗a) and usually (∗b)? Granular computing and,
more particularly, granular arithmetic, provide a machinery for dealing with
questions of this type.

Granular computing is based on fuzzy logic. Fuzzy logic has endured many
years of skepticism and derision largely because fuzziness is a word with pejora-
tive connotations. Today, fuzzy logic is used in a wide variety of products and
systems ranging from digital cameras, home appliances and medical instrumen-
tation to automobiles, elevators, subway trains, paper making machinery and
traffic control systems. By this measure, fuzzy logic has achieved success.

There are two basic rationales which underlie the success of fuzzy logic. In-
directly, the same rationales apply to granular computing and rough set theory.
The second rationale is referred to as “The fuzzy logic gambit.” To understand
the rationales it is necessary to differentiate between two meanings of preci-
sion: precision in value, v-precision; and precision in meaning, m-precision. For
example, if X is a real-valued variable, then the proposition X is in the inter-
val [a, b], where a and b are precisely defined numbers, is v-imprecise and m-
precise. Additionally, we have to differentiate between mh-precisiation, that is,
human-oriented m-precisiation, and mm-precisiation, that is, machine-oriented
m-precisiation. For example, a dictionary definition of stability may be viewed as
an instance of mh-precisiation, while Lyapunov’s definition of stability is an in-
stance of mm-precisiation of stability. Furthermore, v-imprecisiation may be im-
perative (forced) or intentional (deliberate). For example, if I do not know Lily’s
age and describe her as young, then v-imprecisiation is imperative (forced). If I
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know her birthday but choose to describe her age as young, then v-imprecisiation
is intentional (deliberate).

Let X be a variable taking values in U . U may be a space of numbers, func-
tions, relations, distributions, etc. Consider two cases.

Case 1: Values of X are not known precisely, i.e., X is v-imprecise, denoted
as ∗X .

Case 2: Values of X are known precisely, i.e., X is v-precise.

In Case l, I have some information, Inf(∗X), about values of ∗X . I mm-
precisiate Inf(∗X) by using an information description language, IDL. IDL may
be the language of bivalent logic and probability theory, BL + PT; or the lan-
guage of fuzzy logic, FL; or a natural language, NL. NL may be mm-precisiated
through translation into FL. FL is a superlanguage of (BL + PT) in the sense
that it has a much higher expressive power than (BL + PT).

In Case 1, the use of FL as the information description language serves to
enhance the accuracy of description of values of ∗X, especially when ∗X takes
values in the space of functions, relations or distributions. This is Rationale 1
for the use of fuzzy logic as an information description language when the values
of ∗X are not known precisely.

Turning to Case 2, we observe that, in general, precision carries a cost. If there
is a tolerance for imprecision, we can exploit it by sacrificing precision through
v-imprecisiation of X . This is what we do when we perform data compression,
summarization and other information-reduction operations. More generally, we
v-imprecisiate X to ∗X to reduce cost. By so doing, we reduce Case 2 to Case 1.
Then we mm-precisiate ∗X through the use of NL as an information description
language. This is the essence of Rationale 2 for the use of fuzzy logic when the
values of a variable are known precisely. In this context, the fuzzy logic gambit
may be stated as:

If there is a tolerance for imprecision, exploit it through v-imprecisiation fol-
lowed by mm-precisiation.

The fuzzy logic gambit is Rationale 2 for the use of fuzzy logic when the values
of a variable are known precisely.

It is of historical interest to note that my 1965 paper “Fuzzy sets” was moti-
vated by Rationale l. My 1973 paper, “Outline of a new approach to the analysis
of complex systems and decision processes,” was motivated by Rationale 2. To-
day, most applications of fuzzy logic employ the concepts of a linguistic variable
and fuzzy if-then rule sets – concepts which were introduced in the 1973 paper.

Imprecision, uncertainty and partiality of truth are pervasive characteristics
of the real world. As we move further into the age of machine intelligence and
automated reasoning, the need for an enhancement of our ability to deal with
imprecision, uncertainty and partiality of truth is certain to grow in visibility
and importance. It is this need that motivated the genesis of granular computing
and rough set theory, and is driving their progress. In coming years, granular
computing, rough set theory and NL-Computation are likely to become a part
of the mainstream of computation and machine intelligence.
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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed by the authors to handle background knowledge about ordinal
evaluations of objects from a universe, and about monotonic relationships
between these evaluations, e.g. “the larger the mass and the smaller the
distance, the larger the gravity” or “the greater the debt of a firm, the
greater its risk of failure”. Such a knowledge is typical for data describ-
ing various phenomena, and for data concerning multiple criteria decision
making or decision under uncertainty. It appears that the Indiscernibility-
based Rough Set Approach (IRSA) proposed by Pawlak involves a
primitive idea of monotonicity related to a scale with only two values:
“presence” and “absence” of a property. This is why IRSA can be consid-
ered as a particular case of DRSA. Monotonicity gains importance when
the binary scale, including only “presence” and “absence” of a property,
becomes finer and permits to express the presence of a property to certain
degree. This observation leads to very natural fuzzy generalization of the
rough set concept via DRSA. It exploits only ordinal properties of mem-
bership degrees and monotonic relationships between them, without using
any fuzzy connective. We show, moreover, that this generalization is a nat-
ural continuation of the ideas given by Leibniz, Frege, Boole, �Lukasiewicz
and Pawlak. Finally, the fuzzy rough approximations taking into account
monotonic relationships between memberships to different sets can be ap-
plied to case-based reasoning. In this perspective, we propose to consider
monotonicity of the type: “the more similar is y to x, the more credible is
that y belongs to the same set as x”.

Keywords: Rough sets, Ordinal data, Dominance-based Rough Set
Approach, Decision support, Granular computing, Fuzzy rough sets,
Case-based reasoning.

1 Sketch of the Presentation

By this presentation, we wish to pay tribute to late Zdzis�law Pawlak who intro-
duced us to his philosophy of reasoning about data, which appeared to have so
great potential in decision support.
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According to Pawlak [21], rough set theory refers to some ideas of Got-
tfried Leibniz (indiscernibility), Gottlob Frege (vague concepts), George Boole
(reasoning methods), Jan �Lukasiewicz (multi-valued logics), and Thomas Bayes
(inductive reasoning).

Referring to these ideas, we represent fundamental concepts of rough set the-
ory in terms of a generalization, called Dominance-based Rough set Approach
(DRSA), that permits to deal with ordinal data. DRSA have been proposed by
the authors (see e.g. [10,12,14,15,16,23]) to take into account ordinal properties
of data related to preferences. We show that DRSA is also relevant in case where
preferences are not considered but a kind of monotonicity relating attribute val-
ues is meaningful for the analysis of data at hand. In general, monotonicity con-
cerns relationship between different aspects of a phenomenon described by data,
e.g.: “the larger the house, the higher its price” or “the more a tomato is red,
the more it is ripe”. The qualifiers, like “large house”, “high price”, “red” and
“ripe”, may be expressed either in terms of some measurement units, or in terms
of degrees of membership to some fuzzy sets. In this perspective, the DRSA gives
a very general framework in which the classical Indiscernibility-based Rough Set
Approach (IRSA) can be considered as a particular case [19].

Looking at DRSA from granular computing perspective, we can say that
DRSA permits to deal with ordered data by considering a specific type of in-
formation granules defined by means of dominance based constraints having a
syntax of the type: “x is at least R” or “x is at most R”, where R is a qualifier
from a properly ordered scale. In evaluation space, such granules are dominance
cones. In this sense, the contribution of DRSA consists in:

– extending the paradigm of granular computing to problems involving ordered
data,

– specifying a proper syntax and modality of information granules (the dom-
inance based constraints which should be adjoined to other modalities of
information constraints, such as possibilistic, veristic and probabilistic [24]),

– defining a methodology dealing properly with this type of information gran-
ules, and resulting in a theory of computing with words and reasoning about
data in case of ordered data.

Let us observe that other modalities of information constraints, such as veris-
tic, possibilistic and probabilistic, have also to deal with ordered values (with
qualifiers relative to grades of truth, possibility and probability). We believe,
therefore, that granular computing with ordered data and DRSA as a proper
way of reasoning about ordered data, are very important in the future develop-
ment of the whole domain of granular computing.

DRSA can be applied straightforward to multiple criteria classification (called
also sorting) problems. The data contain in this case the preference information
in form of a finite set of classification examples provided by the decision maker.
Note that, while multiple criteria classification is based on absolute evaluation
of objects, multiple criteria choice and ranking refer to pairwise comparisons of
objects. These pairwise comparisons are in this case the preference information
provided by the decision maker. The decision rules to be discovered from the
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pairwise comparisons characterize a comprehensive preference relation on the
set of objects. In consequence, the preference model of the decision maker is a
set of decision rules. It may be used to explain the decision policy of the decision
maker and to recommend a good choice or preference ranking with respect to
new objects [5].

In [13] we opened a new avenue for applications of the rough set concept
to analysis of preference-ordered data. We considered the classical problem of
decision under uncertainty extending DRSA by using stochastic dominance. We
considered the case of traditional additive probability distribution over the set
of future states of the world; however, the model is rich enough to handle non-
additive probability distributions and even qualitative ordinal distributions. The
rough set approach gives a representation of DM’s preferences under uncertainty
in terms of “if. . . , then. . .” decision rules induced from rough approximations of
sets of exemplary decisions (preference-ordered classification of acts described in
terms of outcomes in uncertain states of the world). This extension is interesting
with respect to multicriteria decision analysis from two different points of view:

– each decision under uncertainty can be viewed as a multicriteria decision,
where criteria are outcomes in different states of the world;

– DRSA adapted to decision under uncertainty can be applied to deal with
multicriteria decision under uncertainty, i.e. a decision problem where in
each future state of the world the outcomes are expressed in terms of a set
of criteria.

Even if DRSA has been proposed to deal with ordinal properties of data re-
lated to preferences in decision problems, the concept of dominance-based rough
approximation can be used in a much more general context [17]. This is because
the monotonicity, which is crucial for DRSA, is also meaningful for problems
where preferences are not considered. Monotonicity is a property translating in
a formal language a primitive intuition of relationship between different concepts
of our knowledge.

In IRSA, the idea of monotonicity is not evident, although it is also present
there. Because of very coarse representation of considered concepts, monotonicity
is taken into account in the sense of “presence” or “absence” of particular aspects
characterizing the concepts. This is why IRSA can be considered as a particular
case of DRSA.

Monotonicity gains importance when the binary scale, including only “pres-
ence” and “absence” of an aspect, becomes finer and permits to consider the
presence of a property to a certain degree. Due to graduality, the idea of mono-
tonicity can be exploited in the whole range of its potential. Graduality is typical
for fuzzy set philosophy and thus, a joint consideration of rough sets and fuzzy
sets is worthwhile. In fact, rough sets and fuzzy sets capture the two basic com-
plementary aspects of monotonicity: rough sets deal with relationships between
different concepts, and fuzzy sets deal with expression of different dimensions in
which the concepts are considered. For this reason, many approaches have been
proposed to combine fuzzy sets with rough sets (see e.g. [1,2,4,22]).
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The main preoccupation in almost all the studies combining rough sets with
fuzzy sets was related to a fuzzy extension of Pawlak’s definition of lower and
upper approximations using fuzzy connectives (t-norm, t-conorm, fuzzy implica-
tion). DRSA can also be combined with fuzzy sets along this line, obtaining a
rough set model permitting to deal with fuzziness in preference representation
[10,11,7]. Let us remark, however, that in fact there is no rule for the choice of
the “right” fuzzy connective, so this choice is always arbitrary to some extent.
Moreover, there is another drawback for fuzzy extensions of rough sets involving
fuzzy connectives: they are based on cardinal properties of membership degrees.
In consequence, the result of these extensions is sensitive to order preserving
transformation of membership degrees.

The DRSA approach proposed in [8,9] for a fuzzy extension of rough sets
avoids arbitrary choice of fuzzy connectives and not meaningful operations on
membership degrees. It exploits only ordinal character of the membership de-
grees and proposes a methodology of fuzzy rough approximation that infers the
most cautious conclusion from available imprecise information. In particular,
any approximation of knowledge about Y using knowledge about X is based on
positive or negative relationships between premises and conclusions, i.e.:

i) “the more x is X , the more it is Y ” (positive relationship),
ii) “the more x is X , the less it is Y ” (negative relationship).

These relationships have the form of gradual decision rules. Examples of these
decision rules are:

“if a car is speedy with credibility at least 0.8 and it has high fuel consumption
with credibility at most 0.7, then it is a good car with a credibility at least 0.9”,

and

“if a car is speedy with credibility at most 0.5 and it has high fuel consumption
with credibility at least 0.8, then it is a good car with a credibility at most 0.6”.

Remark that the syntax of gradual decision rules is based on monotonic rela-
tionship between degrees of credibility that can also be found in dominance-based
decision rules induced from preference-ordered data. This explains why one can
build a fuzzy rough approximation using DRSA.

Finally, the fuzzy rough approximation taking into account monotonic re-
lationships can be applied to case-based reasoning [18]. Case-based reasoning
regards the inference of some proper conclusions related to a new situation by
the analysis of similar cases from a memory of previous cases. It is based on two
principles :

i) similar problems have similar solutions,
ii) types of encountered problems tend to recur.

Gilboa and Schmeidler [6] observed that the basic idea of case-based reason-
ing can be found in the following sentence of Hume [20]: “From causes which
appear similar we expect similar effects. This is the sum of all our experimental
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conclusions.” Rephrasing Hume, one can say that “the more similar are the
causes, the more similar one expects the effects.”

In this perspective, we propose to consider monotonicity of the type “the
more similar is y to x, the more credible is that y belongs to the same set as
x”. Application of DRSA in this context leads to decision rules similar to the
gradual decision rules:

“the more object z is similar to a referent object x w.r.t. condition attribute s,
the more z is similar to a referent object x w.r.t. decision attribute t”,

or, equivalently, but more technically,

s(z, x) ≥ α⇒ t(z, x) ≥ α

where functions s and t measure the credibility of similarity with respect to
condition attribute and decision attribute, respectively. When there are multiple
condition and decision attributes, functions s and t aggregate similarity with
respect to these attributes.

Measuring similarity is the essential point of all case-based reasoning and,
particularly, of fuzzy set approach to case-based reasoning [3]. This explains the
many problems that measuring similarity generates within case-based reasoning.
Problems of modelling similarity are relative to two levels:

– at the level of similarity with respect to single features: how to define a
meaningful similarity measure with respect to a single feature?

– at the level of similarity with respect to all features: how to properly aggre-
gate the similarity measure with respect to single features in order to obtain
a comprehensive similarity measure?

Our DRSA approach to case-based reasoning tries to be possibly “neutral”
and “objective” with respect to similarity relation. At the level of similarity con-
cerning single features, we consider only ordinal properties of similarity, and at
the level of aggregation, we do not impose any particular functional aggregation
(involving operators, like weighted Lp norms, min, etc.) based on some very spe-
cific axioms (see, for example, [6]), but we consider a set of decision rules based
on the general monotonicity property of comprehensive similarity with respect
to similarity of single features. Moreover, the decision rules we propose permit
to consider different thresholds for degrees of credibility in the premise and in
the conclusion.

Therefore, our approach to case-based reasoning is very little “invasive”, com-
paring to the many other existing approaches.
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10 R. S�lowiński, S. Greco, and B. Matarazzo

3. Dubois, D., Prade, H., Esteva, F., Garcia, P., Godo, L., Lopez de Mantara, R.:
Fuzzy Set Modelling in Case-based Reasoning. International Journal of Intelligent
Systems 13, 345–373 (1998)

4. Dubois, D., Grzymala-Busse, J., Inuiguchi, M., Polkowski, L.: Transactions on
Rough Sets II. LNCS, vol. 3135. Springer, Berlin (2004)
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Abstract. We present an approach to mining numerical data based on
rough set theory using calculus of attribute-value blocks. An algorithm
implementing these ideas, called MLEM2, induces high quality rules in
terms of both simplicity (number of rules and total number of condi-
tions) and accuracy. Additionally, MLEM2 induces rules not only from
complete data sets but also from data with missing attribute values, with
or without numerical attributes.

1 Introduction

For knowledge acquisition (or data mining) from data with numerical attributes
special techniques are applied [13]. Most frequently, an additional step, taken be-
fore the main step of rule induction or decision tree generation and called dis-
cretization is used. In this preliminary step numerical data are converted into
symbolic or, more precisely, a domain of the numerical attribute is partitioned
into intervals. Many discretization techniques, using principles such as equal inter-
val frequency, equal interval width, minimal class entropy, minimum description
length, clustering, etc., were explored, e.g., in [1,2,3,5,6,8,9,10,19,21,22,23,24,27].
Note that discretization used as preprocessing and based on clustering is superior
to other preprocessing techniques of this type [8].

Discretization algorithms which operate on the set of all attributes and which
do not use information about decision (concept membership) are called unsu-
pervised, as opposed to supervised, where the decision is taken into account [9].
Methods processing the entire attribute set are called global, while methods
working on one attribute at a time are called local [8]. In all of these methods
discretization is a preprocessing step and is undertaken before the main process
of knowledge acquisition.

Another possibility is to discretize numerical attributes during the process of
knowledge acquisition. Examples of such methods are MLEM2 [14] and MOD-
LEM [20,29,30] for rule induction and C4.5 [28] and CART [4] for decision tree
generation. These algorithms deal with original, numerical data and the process
of knowledge acquisition and discretization are conducted at the same time. The
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c© Springer-Verlag Berlin Heidelberg 2007



Mining Numerical Data—A Rough Set Approach 13

MLEM2 algorithm produces better rule sets, in terms of both simplicity and
accuracy, than clustering methods [15]. However, discretization is an art rather
than a science, and for a specific data set it is advantageous to use as many
discretization algorithms as possible and then select the best approach.

In this paper we will present the MLEM2 algorithm, one of the most success-
ful approaches to mining numerical data. This algorithm uses rough set theory
and calculus of attribute-value pair blocks. A similar approach is represented
by MODLEM. Both MLEM2 and MODLEM algorithms are outgrowths of the
LEM2 algorithm. However, in MODLEM the most essential part of selecting the
best attribute-value pair is conducted using entropy or Laplacian conditions,
while in MLEM2 this selection uses the most relevance condition, just like in the
original LEM2.

2 MLEM2

The MLEM2 algorithm is a part of the LERS (Learning from Examples based on
Rough Sets) data mining system. Rough set theory was initiated by Z. Pawlak
[25,26]. LERS uses two different approaches to rule induction: one is used in
machine learning, the other in knowledge acquisition. In machine learning, or
more specifically, in learning from examples (cases), the usual task is to learn
the smallest set of minimal rules, describing the concept. To accomplish this
goal, LERS uses two algorithms: LEM1 and LEM2 (LEM1 and LEM2 stand for
Learning from Examples Module, version 1 and 2, respectively) [7,11,12].

The LEM2 algorithm is based on an idea of an attribute-value pair block. For
an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set of all
cases from U such that for attribute a have value v. For a set T of attribute-
value pairs, the intersection of blocks for all t from T will be denoted by [T ].
Let B be a nonempty lower or upper approximation of a concept represented by
a decision-value pair (d, w). Set B depends on a set T of attribute-value pairs
t = (a, v) if and only if

∅ �= [T ] =
⋂

t∈T

[t] ⊆ B.

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T ′ of T exists such that B depends on T ′. Let T be a nonempty collection
of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:

– each member T of T is a minimal complex of B,
–

⋂
t∈T [T ] = B, and

– T is minimal, i.e., T has the smallest possible number of members.

The user may select an option of LEM2 with or without taking into account
attribute priorities. The procedure LEM2 with attribute priorities is presented
below. The option without taking into account priorities differs from the one
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presented below in the selection of a pair t ∈ T (G) in the inner loop WHILE.
When LEM2 is not to take attribute priorities into account, the first criterion is
ignored. In our experiments all attribute priorities were equal to each other.

Procedure LEM2
(input: a set B,
output: a single local covering T of set B);
begin

G := B;
T := ∅;
while G �= ∅

begin
T := ∅;
T (G) := {t|[t] ∩G �= ∅} ;
while T = ∅ or [T ] �⊆ B

begin
select a pair t ∈ T (G) with the highest
attribute priority, if a tie occurs, select a pair
t ∈ T (G) such that |[t] ∩G| is maximum;
if another tie occurs, select a pair t ∈ T (G)
with the smallest cardinality of [t];
if a further tie occurs, select first pair;
T := T ∪ {t} ;
G := [t] ∩G ;
T (G) := {t|[t] ∩G �= ∅};
T (G) := T (G)− T ;
end {while}

for each t ∈ T do
if [T − {t}] ⊆ B then T := T − {t};

T := T ∪ {T };
G := B −

⋃
T∈T [T ];

end {while};
for each T ∈ T do

if
⋃

S∈T −{T}[S] = B then T := T − {T };
end {procedure}.

For a set X , |X | denotes the cardinality of X .
Rules induced from raw, training data are used for classification of unseen,

testing data. The classification system of LERS is a modification of the bucket
brigade algorithm. The decision to which concept a case belongs is made on
the basis of three factors: strength, specificity, and support. They are defined
as follows: Strength is the total number of cases correctly classified by the rule
during training. Specificity is the total number of attribute-value pairs on the
left-hand side of the rule. The matching rules with a larger number of attribute-
value pairs are considered more specific. The third factor, support, is defined as
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the sum of scores of all matching rules from the concept. The concept C for
which the support (i.e., the sum of all products of strength and specificity, for
all rules matching the case, is the largest is a winner and the case is classified as
being a member of C).

MLEM2, a modified version of LEM2, categorizes all attributes into two cat-
egories: numerical attributes and symbolic attributes. For numerical attributes
MLEM2 computes blocks in a different way than for symbolic attributes. First, it
sorts all values of a numerical attribute. Then it computes cutpoints as averages
for any two consecutive values of the sorted list. For each cutpoint x MLEM2
creates two blocks, the first block contains all cases for which values of the nu-
merical attribute are smaller than x, the second block contains remaining cases,
i.e., all cases for which values of the numerical attribute are larger than x. The
search space of MLEM2 is the set of all blocks computed this way, together with
blocks defined by symbolic attributes. Starting from that point, rule induction
in MLEM2 is conducted the same way as in LEM2.

Let us illustrate the MLEM2 algorithm using the following example from
Table 1.

Table 1. An example of the decision table

Attributes Decision

Case Gender Cholesterol Stroke

1 man 180 no

2 man 240 yes

3 man 280 yes

4 woman 240 no

5 woman 280 no

6 woman 320 yes

Rows of the decision table represent cases, while columns are labeled by vari-
ables. The set of all cases will be denoted by U . In Table 1, U = {1, 2, ..., 6}.
Independent variables are called attributes and a dependent variable is called a
decision and is denoted by d. The set of all attributes will be denoted by A.
In Table 1, A = {Gender, Cholesterol}. Any decision table defines a function ρ
that maps the direct product of U and A into the set of all values. For example,
in Table 1, ρ(1, Gender) = man. The decision table from Table 1 is consistent,
i.e., there are no conflicting cases in which all attribute values are identical yet
the decision values are different. Subsets of U with the same decision value are
called concepts. In Table 1 there are two concepts: {1, 4, 5} and {2, 3, 6}.

Table 1 contains one numerical attribute (Cholesterol). The sorted list of val-
ues of Cholesterol is 180, 240, 280, 320. The corresponding cutpoints are: 210,
260, 300.
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Since our decision table is consistent, input sets to be applied to MLEM2 are
concepts. The search space for MLEM2 is the set of all blocks for all possible
attribute-value pairs (a, v) = t. For Table 1, the set of all attribute-value pair
blocks are

[(Gender,man)] = {1, 2, 3},
[(Gender, woman)] = {4, 5, 6},
[(Cholesterol, 180..210)] = {1},
[(Cholesterol, 210..320)] = {2, 3, 4, 5, 6},
[(Cholesterol, 180..260)] = {1, 2, 4},
[(Cholesterol, 260..320)] = {3, 5, 6},
[(Cholesterol, 180..300)] = {1, 2, 3, 4, 5},
[(Cholesterol, 300..320)] = {6}.

Let us start running MLEM2 for the concept {1, 4, 5}. Thus, initially this
concept is equal to B (and to G). The set T (G) is equal to {(Gender, man),
(Gender, woman), (Cholesterol, 180..210), (Cholesterol, 210..320), (Cholesterol,
180..260), (Cholesterol, 260..320), (Cholesterol, 180..300)}.

For the attribute-value pair (Cholesterol, 180..300) from T (G) the following
value |[(attribute, value)] ∩ G| is maximum. Thus we select our first attribute-
value pair t = (Cholesterol, 180..300). Since [(Cholesterol, 180..300)] �⊆ B, we
have to perform the next iteration of the inner WHILE loop. This time T (G) =
{(Gender, man), (Gender, woman), (Cholesterol, 180..210), (Cholesterol,
210..320), (Cholesterol, 180..260), (Cholesterol, 260..320)}. For three attribute-
value pairs from T (G): (Gender, woman), (Cholesterol, 210..320) and (Choles-
terol, 180..260) the value of |[(attribute, value)] ∩G| is maximum (and equal to
two). The second criterion, the smallest cardinality of [(attribute, value)], indi-
cates (Gender, woman) and (Cholesterol, 180..260) (in both cases that cardinal-
ity is equal to three). The last criterion, ”first pair”, selects (Gender, woman).
Moreover, the new T = {(Cholesterol, 180..300), (Gender, woman)} and new G
is equal to {4, 5}. Since [T ] = [(Cholesterol, 180..260] ∩ [(Gender, woman)] =
{4, 5} ⊆ B, the first minimal complex is computed.

Furthermore, we cannot drop any of these two attribute-value pairs, so T =
{T }, and the new G is equal to B − {4, 5} = {1}.

During the second iteration of the outer WHILE loop, the next minimal com-
plex T is identified as {(Cholesterol, 180..210)}, so T = {{(Cholesterol, 180..300),
(Gender, woman)}, {(Cholesterol, 180..210)}} and G = ∅.

The remaining rule set, for the concept {2, 3, 6} is induced in a similar manner.
Eventually, rules in the LERS format (every rule is equipped with three numbers,
the total number of attribute-value pairs on the left-hand side of the rule, the
total number of examples correctly classified by the rule during training, and
the total number of training cases matching the left-hand side of the rule) are:

2, 2, 2
(Gender, woman) & (Cholesterol, 180..300) -> (Stroke, no)
1, 1, 1
(Cholesterol, 180..210) -> (Stroke, no)
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2, 2, 2
(Gender, man) & (Cholesterol, 210..320) -> (Stroke, yes)
1, 1, 1
(Cholesterol, 300..320) -> (Stroke, yes)

3 Numerical and Incomplete Data

Input data for data mining are frequently affected by missing attribute values.
In other words, the corresponding function ρ is incompletely specified (partial).
A decision table with an incompletely specified function ρ will be called incom-
pletely specified, or incomplete.

Though four different interpretations of missing attribute values were studied
[18]; in this paper, for simplicity, we will consider only two: lost values (the values
that were recorded but currently are unavailable) and ”do not care” conditions
(the original values were irrelevant).

For the rest of the paper we will assume that all decision values are specified,
i.e., they are not missing. Also, we will assume that all missing attribute values
are denoted either by ”?” or by ”∗”, lost values will be denoted by ”?”, ”do not
care” conditions will be denoted by ”∗”. Additionally, we will assume that for
each case at least one attribute value is specified.

Incomplete decision tables are described by characteristic relations instead of
indiscernibility relations. Also, elementary blocks are replaced by characteristic
sets, see, e.g., [16,17,18]. An example of an incomplete table is presented in
Table 2.

Table 2. An example of the incomplete decision table

Attributes Decision

Case Gender Cholesterol Stroke

1 ? 180 no

2 man * yes

3 man 280 yes

4 woman 240 no

5 woman ? no

6 woman 320 yes

For incomplete decision tables the definition of a block of an attribute-value
pair must be modified. If for an attribute a there exists a case x such that
ρ(x, a) =?, i.e., the corresponding value is lost, then the case x is not included
in the block [(a, v)] for any value v of attribute a. If for an attribute a there
exists a case x such that the corresponding value is a ”do not care” condition,
i.e., ρ(x, a) = ∗, then the corresponding case x should be included in blocks
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[(a, v)] for all values v of attribute a. This modification of the definition of
the block of attribute-value pair is consistent with the interpretation of missing
attribute values, lost and ”do not care” condition. Numerical attributes should
be treated in a little bit different way as symbolic attributes. First, for computing
characteristic sets, numerical attributes should be considered as symbolic. For
example, for Table 2 the blocks of attribute-value pairs are:

[(Gender,man)] = {2, 3},
[(Gender, woman)] = {4, 5, 6},
[(Cholesterol, 180)] = {1, 2},
[(Cholesterol, 240)] = {2, 4},
[(Cholesterol, 280)] = {2, 3},
[(Cholesterol, 320)] = {2, 6}.

The characteristic set KB(x) is the intersection of blocks of attribute-value
pairs (a, v) for all attributes a from B for which ρ(x, a) is specified and ρ(x, a) =
v. The characteristic sets KB(x) for Table 2 and B = A are:

KA(1) = U ∩ {1, 2} = {1, 2},
KA(2) = {2, 3} ∩ U = {2, 3},
KA(3) = {2, 3} ∩ {2, 3} = {2, 3},
KA(4) = {4, 5, 6} ∩ {2, 4} = {4},
KA(5) = {4, 5, 6} ∩ U = {4, 5, 6},
KA(6) = {4, 5, 6} ∩ {2, 6} = {6}.

For incompletely specified decision tables lower and upper approximations
may be defined in a few different ways [16,17,18]. We will quote only one type of
approximations for incomplete decision tables, called concept approximations.
A concept B-lower approximation of the concept X is defined as follows:

BX = ∪{KB(x)|x ∈ X,KB(x) ⊆ X}.

A concept B-upper approximation of the concept X is defined as follows:

BX = ∪{KB(x)|x ∈ X,KB(x) ∩X �= ∅} = ∪{KB(x)|x ∈ X}.

For Table 2, concept lower and upper approximations are:

A{1, 4, 5} = {4},

A{2, 3, 6} = {2, 3, 6},

A{1, 4, 5} = {1, 2, 4, 5, 6},

A{2, 3, 6} = {2, 3, 6}.

For inducing rules from data with numerical attributes, blocks of attribute-
value pairs are defined differently than in computing characteristic sets. Blocks
of attribute-value pairs for numerical attributes are computed in a similar way as
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for complete data, but for every cutpoint the corresponding blocks are computed
taking into account interpretation of missing attribute values. Thus,

[(Gender,man)] = {1, 2},
[(Gender, woman)] = {4, 5, 6},
[(Cholesterol, 180..210)] = {1, 2},
[(Cholesterol, 210..320)] = {2, 3, 4, 6},
[(Cholesterol, 180..260)] = {1, 2, 4},
[(Cholesterol, 260..320)] = {2, 3, 6},
[(Cholesterol, 180..300)] = {1, 2, 3, 4},
[(Cholesterol, 300..320)] = {2, 6}.

Using the MLEM2 algorithm, the following rules are induced:

certain rule set (induced from the concept lower approximations):

2, 1, 1
(Gender, woman) & (Cholesterol, 180..260) -> (Stroke, no)
1, 3, 3
(Cholesterol, 260..320) -> (Stroke, yes)

possible rule set (induced from the concept upper approximations):

1, 2, 3
(Gender, woman) -> (Stroke, no)
1, 1, 3
(Cholesterol, 180..260) -> (Stroke, no)
1, 3, 3
(Cholesterol, 260..320) -> (Stroke, yes)

4 Conclusions

We demonstrated that both rough set theory and calculus of attribute-value pair
blocks are useful tools for data mining from numerical data. The same idea of an
attribute-value pair block may be used in the process of data mining not only for
computing elementary sets (for complete data sets) but also for rule induction.
The MLEM2 algorithm induces rules from raw data with numerical attributes,
without any prior discretization, and MLEM2 provides the same results as LEM2
for data with all symbolic attributes. Additionally, experimental results show
that rule induction based on MLEM2 is one of the best approaches to data
mining from numerical data [15].
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Abstract. Approximate reasoning is used in a variety of reasoning tasks in
Logic-based Artificial Intelligence. In this abstract we compare a number of such
reasoning schemes and show how they relate and differ from the approach of
Pawlak’s Rough Sets.

1 Introduction

Humans reason more often than not with incomplete information. The effect is that the
conclusions must often be revised, and treated as approximate. Frequently we face the
following situation: some features of objects of interest are firmly established (based
on observations and on domain properties), some other are known to be false. But
there remains a “grey area” of features of objects of interest that are not determined
by the current knowledge. In this note we discuss several schemes that have been pro-
posed in the literature for handling approximate reasoning when available knowledge
may be incomplete. They include rough sets [Paw82], approximation for propositional
satisfiability [KS96], approximation semantics for logic programs including brave and
skeptical answer-set semantics, Kripke-Kleene semantics and well-founded semantics
[Kun87, Fit85], the semantics of repairs in databases [ABC03], knowledge compilation
of propositional theories [KS96], and least- and largest- pair of fixpoints for the opera-
tor associated with a Horn program [Ll87]. For some of these, we will be able to show
that they fit into the rough set paradigm.

2 Approximations and Three-Valued Reasoning Schemes

We discuss here a variety of approximating schemes. They all have a common feature
– they use a three-valued approach to sets of objects.

2.1 Approximations and the Ordering �kn

Given a set (universe) U , an approximation over U is any pair of subsets of U , X1, X2

such that X1 ⊆ X2. An approximation 〈X1, X2〉 provides bounds on every set X such
that X1 ⊆ X ⊆ X2. The Kleene (or knowledge) ordering of approximations [Kl67] is
defined as follows:

〈X1, X2〉 �kn 〈Y1, Y2〉 if X1 ⊆ Y1 and Y2 ⊆ X2.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 22–28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Rough Sets and Approximation Schemes 23

Let AU be the set of all approximations in U . The structure 〈AU ,�kn〉 is a chain-
complete poset. Unless |X | ≤ 1, this poset is not a lattice. It is a complete lower-
semilattice, and the least upper bound exists for any pair of approximations that have an
upper bound. The maximal elements of 〈AU �kn〉 are of the form 〈X,X〉 for X ⊆ U .
They are called exact approximations.

2.2 Rough Sets

Rough sets are special class of approximations. Let O be a finite set of objects (uni-
verse). Every equivalence relation r in U determines its concept of rough set as follows.
For every X ⊆ O, Pawlak’s approximation (or the rough set associated with X) is de-
fined as an approximation 〈X,X〉 where: X is the union of all cosets of r contained in
X , and X is the union of all cosets of r that have a nonempty intersection with X . The
pair 〈X,X〉 is an approximation in O. It is characterized [MT99] as the �kn-largest
approximation 〈L,U〉 so that:

1. 〈L,U〉 approximates X
2. The sets L and U are unions of cosets of r.

As each equivalence relation in O determines its own class of rough sets, the question
arises how these classes are related. The collection of equivalence relations on a set
O (not necessarily finite) determines a complete, but non-distributive lattice, with the
refinement ordering �. Specifically, r1 � r2 if every coset of r1 is the union of cosets
of r2. Let r1 � r2 be two equivalence relations in O. One can show that for every subset
X of O the Pawlak rough sets determined by r1 and r2, say 〈X1, X〉1 and 〈X1, X〉1,
respectively, are related as follows:

〈X1, X1〉 �kn 〈X2, X2〉.

In other words, the ordering � in the lattice of equivalence relations on O induces the
ordering�kn in the corresponding Pawlak approximations.

2.3 Propositional Satisfiability

We consider a fixed set of propositional variables At . A valuation of At is any mapping
of At into {0, 1}. We can identify valuations with the subsets of At as follows. We
identify a valuation v with the set M ⊆ At so that v = χM , that is, M = {p : v(p) =
1}. We write vM for the valuation v that corresponds to M .

Now, let T be a consistent set of formulas of the propositional language LAt . Then
T determines an approximation 〈X1, X2〉 in set At as follows: X1 = {p : T � p},
and X2 = {p : T �� ¬p}. Then X1 ⊆ M ⊆ X2 for every M such that vM � T .
Let us denote this “canonical” approximation of models of T by 〈T , T 〉. Then, we
have the following property of theories T1 ⊆ T2 that are consistent and closed under
consequence:

〈T 1, T 1〉 �kn 〈T 2, T 2〉.
In other words, the canonical approximation of the theory T2 is �kn bigger than that of
T1. The maximal approximations (i.e. Pawlak’s rough sets in this case) are the complete
consistent theories.
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2.4 Knowledge Compilation

Many tasks in knowledge representation and reasoning reduce to the problem of decid-
ing, given a propositional CNF theory T and a propositional clause ϕ, whether T |= ϕ.
This task is coNP-complete. As a way to address this computational difficulty [KS96]
proposed an approach in which T is compiled off-line, possibly in exponential time, into
some other representation, under which the query answering would be efficient. While
there is an initial expense of the compilation, if the query answering task is frequent
that cost will eventually be recuperated.

An approximation to a theory T is a pair of theories (T ′, T ′) such that

T ′ |= T |= T ′′.

If (T ′, T ′′) is an approximation to T , then T |= ϕ if T ′′ |= ϕ, and T �|= ϕ if T ′ �|= ϕ. In
other words,

{ϕ : T ′′ |= ϕ} ⊆ {ϕ : T |= ϕ} ⊆ {ϕ : T ′ |= ϕ}.

Desirable approximations are “tight”, that is, {ϕ : T ′ |= ϕ} \ {ϕ : T ′′ |= ϕ} is
small, and support efficient reasoning. Concerning the latter point, if U is a Horn theory
and ϕ is a clause, then U |= ϕ can be decided in polynomial time. Therefore, we
define approximations to be pairs (T ′, T ′′), where T ′ and T ′′ are Horn theories such
that T ′ |= T ′′.

A key problem is: given a CNF theory T , find the most precise Horn approximation
to T . This problem has been studied in [KS96]. It turns out that there is a unique (up to
logical equivalence) Horn least upper bound. However, there is no greatest Horn upper
bound. The set of Horn lower approximations has, however, maximal elements.

2.5 Approximating Semantics for Logic Programs

Logic Programming studies semantics of logic programs, i.e. sets of program clauses.
In the simplest case those are expressions of the form p ← q1, . . . , qm,¬r1, . . . ,¬rn.
The meaning of such clause is, informally, this: “if q1, . . . , qm have been derived, and
none of r1, . . . , rn has, or ever will be, then derive p” (various different meanings are
also associated with program clauses). It is currently commonly assumed that the cor-
rect semantics of a logic program (i.e. set of program clauses as above) is provided by
means of fixpoints of the Gelfond-Lifschitz operator GLP . Those fixpoints are called
stable models of P [GL88], and more recently also answer sets for P . The operator
GLP is antimonotone, thus existence of fixpoints of GLP is not guaranteed. However
the operator GL2

P is monotone, and thus possesses a least and largest fixpoints.
A number of approximation schemes for stable semantics of logic programs has

been proposed. The earliest proposal is the so-called Kripke-Kleene approximation
([Kun87, Fit85]). In this approach, one defines a three-valued van-Emden-Kowalski
operator TP . That operator is monotone in the ordering�kn, and thus possesses a least
�kn fixpoint. That fixpoint (which can be treated as an approximation) approximates all
stable models of the logic program P . A stronger approximation scheme has been pro-
posed in [VRS91], and is called a well-founded model of the program. Essentially, that
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model is defined by means of the least and largest fixpoint of GL2
P . Like the Kripke-

Kleene fixpoint, the well-founded approximations provides an approximation to all sta-
ble models of the program. Yet another approximation scheme which turns out to be
stricter than the well-founded semantics is the ultimate approximation of [DMT04].

Of course, one can assign to a logic program P the �kn-largest approximation for
the family of all stable models of P . Let us denote by KKP the Kripke-Kleene ap-
proximation, WFP the well-founded approximation, UP , the ultimate approximation
and AP the most precise approximation of all stable models of P . Then, assuming P
possesses a stable model, we have

KKP �kn WFP �kn UP �kn AP

and examples can be given where all the relationships are strict. The complexity of com-
puting each of these approximations is also different, in general. Nevertheless, these
constructions assign, on analogy to rough sets, approximations to programs. Thus, in
case of Logic Programming approximations there exist a classification of approxima-
tions to the family of all stable models of the program.

We note the the Kripke-Kleene approximationKKP approximates not only all stable
models of P but also all supported models of P . In the case when P is a Horn program
the fixpoint KKP is given by the pair (Sl, Su), where Sl is the least and Su is the
greatest supported model of P (which are guaranteed to exist).

2.6 Approximating Possible-World Structures

The language of modal logic with the semantics of autoepistemic expansions and exten-
sions [DMT03] provides a way to describe approximations to possible-world structures.
Let us consider a theory T in a language of propositional modal logic. The theory T
is meant to describe a possible world structure providing the account of what is known
and what is not known given T .

Since T may be incomplete, there may be several possible-world structures one could
associate with T (autoepistemic logic provides a specific characterization of such struc-
tures; other nonmonotonic modal logics could be used, too [MT93]). To reason about
the epistemic content of T one has two choices: to compute all possible-world struc-
tures for T according to the semantics of the autoepistemic logic, or compute an ap-
proximation to the epistemic content of T common to all these structures. The former
is computationally complex, being a Σ2

P -task. Hence, the latter is often the method of
choice.

At least three different approximations can be associated with T , Kripke-Kleene ap-
proximation, the well-founded approximation and the ultimate approximation, listed
here according to the precision, with which they approximate possible-world struc-
tures of T [DMT03, DMT04]. It is worth noting that the computational complexity of
each of these approximations is lower that the complexity of computing even a (single)
possible-world structure for T .

2.7 Minimal Models Reasoning and Repairs in Databases

Approximations play an important role in the theory and practice of databases. In this
paper, we regard a database as a finite structure of some language L of first-order logic
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that does not contain function symbols. Typically, legal databases are subject to integrity
constraints, properties that at any time the database is supposed to have. In general,
integrity constraints can be represented as arbitrary formulas of L.

Databases are frequently modified over their lifetime. Updates create the possibility
of entering erroneous data, especially that in most cases databases are modified by
different users at different locations. Consequently, it does happen that databases do
not satisfy the integrity constraints. Once such a situation occurs, the database needs to
be repaired [ABC03].

Let D be a database and let IC be a set of integrity constraints. A pair R = (R+, R−)
is a repair of D with respect to IC if (D ∪ R+) \ R− |= IC (the repair condition),
and for every (Q+, Q−) such that Q+ ⊆ R+, Q− ⊆ R−, and (D ∪Q+) \Q− |= IC,
we have Q+ = R+ and Q− = R− (the minimality condition). We write R(D) for the
database (D∪R+)\R− resulting from D by applying a repair R. We write Rep(D, IC)
to denote all repairs of D with respect to IC. The minimality condition implies that if
(R+, R−) is a repair, then R+ ∩D = ∅ and R− ⊆ D.

Repairing a database D that violates its integrity constraints IC consists of comput-
ing a repair R ∈ Rep(D, IC) and applying it to D, that is computing R(D). There
are two problems, though. First, computing repairs is computationally complex (even
in some simple settings deciding whether repairs exist is Σ2

P -complete). Second, it of-
ten is the case that multiple repairs exist, which results in the need for some principled
selection strategy.

These problems can be circumvented to some degree by modifying the semantics of
the database. Namely, a database D with integrity constraints IC could be viewed as
an approximation to an actual database D′, not available explicitly but obtainable from
D by means of a repair with respect to IC. The approximation to D′ represented by
(D, IC) is the pair of sets (Dl, Du), where

Dl =
⋂
{R(D) : R ∈ Rep(D, IC)} and Dl =

⋃
{R(D) : R ∈ Rep(D, IC)}.

In other words, expressions (D, IC) define approximations, and query answering algo-
rithms have to be adjusted to provide best possible answers to queries to D′ based on
the knowledge of Dl and Du only.

3 Further Work, and Conclusions

We discussed a number of approximation schemes as they appear in logic, logic pro-
gramming, artificial intelligence, and databases. Doubtless there are other approaches
to approximate reasoning that can be cast as approximations, and in particular rough
sets. One wonders if there is a classification of approximations that allows to capture a
common structure laying behind these, formally different, approaches. In other words,
are there general classification principles for approximations? Are there categories of
approximations that allow to classify approximations qualitatively?

Another fundamental issue is the use of languages that describe approximations.
Pawlak [Paw91] noticed that, in its most abstract form, rough sets are associated with
equivalence relations; each equivalence relation induces its own rough set notion. Such
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abstract approach leads to Universal Algebra considerations that have roots in [JT51]
and have been actively pursued by Orłowska and collaborators [DO01, OS01, SI98].
One can find even more abstract versions within the Category Theory. But usually,
the applications of rough sets and other approximation schemes cannot choose its own
language. For instance, more often than not (and this was the original motivation of
Pawlak) the underlying equivalence relation is given to the application (for instance as
the equivalence induced by an information system [MP76]). Then, and the literature of
rough sets is full of such considerations, one searches for the coarser equivalence re-
lations that are generated by various attribute reduction techniques. To make the point,
these equivalence relations are not arbitrary, but determined by the choice of the lan-
guage used for data description. This linguistic aspect of rough sets and approximations
in general, needs more attention of rough set community.
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Abstract. This paper concerns the development of a new direction in
machine learning, called natural induction, which requires from computer-
generated knowledge not only to have high predictive accuracy, but also to
be in human-oriented forms, such as natural language descriptions and/or
graphical representations. Such forms facilitate understanding and accep-
tance of the learned knowledge, and making mental models that are useful
for decision making. An initial version of the AQ21-NI program for natu-
ral induction and its several novel features are briefly described. The per-
formance of the program is illustrated by an example of deriving medical
diagnostic rules from micro-array data.

1 Introduction

Most of machine learning research has been striving for achieving high predictive
accuracy of knowledge learned from data, but has not paid much attention to the
understandability and interpretability of that knowledge. This is evidenced by
the fact that research papers on different learning methods, including learning
decision trees, random forests, decision rules, ensemblies, neural nets, support
vector machines, etc., typically list only predictive accuracies obtained by the
reported and compared methods (e.g., [1]), but very rarely present actual knowl-
edge learned.

While predictive accuracy of inductively acquired knowledge is obviously im-
portant, for many applications it is imperative that computer-generated knowl-
edge is in the forms facilitating its understanding and making mental models
of it by an expert. Such fields include, for example, medicine, bioinformatics,
agriculture, social sciences, economy, business, archeology, defense, and others.
Although the need for understandability of computer-generated knowledge has
been indicated for a long time (e.g., [7], [13]), research on this topic has been
inadequate. The main reason for this situation may be that understandability
and interpretability of knowledge is subjective and difficult to measure.

This paper concerns the development of a new direction in machine learn-
ing, called natural induction, which strives to achieve high understandability
and interpretability of computer-generated knowledge by learning it and pre-
senting it in the forms resembling those in which people represent knowledge.
Such forms include natural language descriptions and simple graphical repre-
sentations. To serve this objective, we employed attributional calculus [8] as a
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logic and knowledge representation for learning. Attributional calculus combines
selected features of propositional, predicate and multi-valued logics, and intro-
duces several new constructs formalizing relevant features of natural language.
We developed algorithms for learning attributional rules with these constructs,
and also for transforming these rules into simple natural language descriptions.
These algorithms have been implemented in the AQ21-NI program, briefly, NI,
whose selected features are described in this paper.

2 Brief Overview of Natural Induction

The natural induction methodology for learning natural language descriptions
from data involves three stages of processing. The first stage induces formal rules
in attributional calculus. Such rules are more expressive than standard decision
rules in which conditions are limited to ¡attribute relation value¿ forms and
are also closer to equivalent natural language descriptions. The second stage
transforms learned attributional rules into logically equivalent and grammati-
cally correct natural language descriptions. The third stage employs cognitive
constraints and relevant background knowledge to improve the descriptions’ in-
terpretability and to derive additional implications from them that are useful
for decision making. This paper concerns the first two stages. The third stage is
under development.

Let us start by briefly characterizing the general task addressed by the first
stage. The goal of this stage is to take a set of data points (training examples)
that exemplify decision classes C1,...,Ck, and relevant background knowledge,
and induce hypotheses, H1,..., Hk that generally describe these classes and op-
timize a multi-criterion measure of of description quality. In the method imple-
mented in the AQ21-NI program, the generated hypotheses are different forms
of attributional rules. Adopting formalism presented in [8], the basic form of an
attributional rule is:

CONSEQUENT <= PREMISE (1)

where CONSEQUENT and PREMISE are conjunctions of attributional condi-
tions, that are formal equivalents of simple natural language statements. Here is
an example of a basic attributional rule:

[Task_to_do = run_experiments]

<= [Day = weekday] & [#tissue-samples-to-analyze = 2..7] &

[Tests-to-perform: PAP & estradiol_level] &

[available-lab =lab1 v lab3]

The second stage transforms the learned attributional rules into equivalent and
grammatically correct natural language descriptions. For example, the above
rule is translated to the following natural language description:

”The task is to run experiments, if the day is weekday, the number of tissue
samples to analyze is between 2 and 7, the tests to perform are PAP and estradiol
level, and the available lab is lab1 or lab3.”
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As one can notice, the above natural language description closely corresponds
to the attributional rule from which it was derived. The ”weekday” is a program-
abstracted value of the structured attribute ”day” (the domain of a structured at-
tribute is a hierarchy). The attribute ”tests-to-perform” is a compound attribute
whose legal values are internal conjunctions of values of constituent attributes
(an internal conjunction binds atoms rather than statements).

As this example shows, attributional rules significantly extend standard de-
cision rules whose conditions are limited to the form [ATTR REL VAL], where
ATTR is a single attribute, REL is =, ≤ or ≥ and VAL is an attribute value. It
addition to constructs presented in this example, attributional rules may involve
also conditions with count attribute that counts the number of statements that
are true in a given set, or counts the number properties satisfying a given condi-
tion. Expressions with count attributes can be viewed as a special case of state-
ments in the second order predicate calculus (Section 2.4). Attributional rules
may also include exception clause (Section 2.2), and several other forms that re-
semble those used by people in natural language descriptions (e.g., provided-that
clause).

2.1 The Q(w) Criterion of Description Optimality

The first stage integrates the well-known separate and conquer algorithm AQ
for learning consistent and complete rules (e.g., [6] or [7]), with an algorithm
for discovering patterns from data, and with procedures for learning new con-
structs briefly mentioned above. These constructs are described in more detail in
Sections 2.2 to 2.5. The implementation of this stage is based on the AQ21 learn-
ing and pattern discovery system [20] that enhances the basic AQ-type learning
method by a number of new features.

Among the new features is the ability of the program to work in either The-
ory Formation (TF) or Pattern Discovery (PD) mode, which is controlled by
the ”mode” parameter. The TF mode can generate several different types of
optimized complete and consistent descriptions of training examples, such as
attributional rules without or with exception clauses (Section 2.2). The rules
optimize a user-defined multi-criterion measure of rule optimality, LEF (e.g., [6]
or [7]).

The PD mode searches for patterns or approximate descriptions that maxi-
mize a description optimality criterion defined as:

Q(R,w) = covw ∗ config1−w (2)

where cov=p/P and config=((p / (p + n)) - (P /(P + N))) * (P +N) /N are
measures of coverage and confidence gain, respectively, of the rule R, and w
is a user-controlled parameter. Here, p and n are the numbers of positive and
negative examples covered by R, and P and N are the numbers of positive and
negative examples in training dataset, respectively. The confidence gain captures
the increase of confidence in the rule in relation to confidence in decisions made
according to their prior probabilities. As one can see, the criterion Q allows
trading inconsistency (n �= 0) for an increase in rule coverage.
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2.2 Learning Descriptions with Exception Clauses

Exceptions are commonly used by humans when describing rarely occurring
anomalies that are inconsistent with a given rule or a theory. It is not unusual
that an approximate description of observations can be very simple, but a perfect
description, fully consistent with all observations, would be significantly more
complex. In such cases, it may be useful to learn rules with exception clauses, also
called censored rules (e.g., [10], [8], [17]). AQ21-NI can be set to learn censored
rules in the form:

CONSEQUENT <= PREMISE | EXCEPTION (3)

where | is an exception operator, and EXCEPTION is either a conjunctive
attributional description (an exception clause) or a list of examples constituting
exceptions to the basic rule. The rule is read: If PREMISE is true then assert
CONSEQUENT, except when EXCEPTION is true.

In PD mode, where inconsistency is allowed, the program learns basic rules
that maximize Q(R,w), and then adds to them exception clauses. The latter
are generated by re-applying the AQ algorithm to the examples covered by the
rule to describe negative examples covered by this rule. In TF mode, where
consistency has to be guaranteed, learning censored rules first involves creating
basic rules and an exception list for each of them. Such a list contains examples
that would introduce a significant complexity, if the rule was transferred into an
expression consisting of fully consistent rules, and only if the number of examples
on the exception list is significantly smaller than the number of positive examples
the rule covers. If all of the exceptions on a list can be characterized by one
conjunctive statement, then it is used as the EXCEPTION clause; otherwise,
EXCEPTION is an explicit list of exceptions.

To illustrate differences between basic and censored rules, let us consider a
simple problem of learning descriptions for ”friendly” robots from their examples
and counter examples. When asked to produce basic rules, AQ21-NI created two
rules (the premise of each rule is preceded by <=).

[Robot=friendly]

<= [Holding=book: 4,4] &

[Size=small..medium: 6,6]: p=4,n=0

<= [Holding=book v flag: 6,8] &

[~Antennas: 3,9] &

[Size=small..medium: 6,6]: p=3,n=0

The numbers inside conditions, after a ”:”, represent their positive and nega-
tive coverage of the condition, respectively; parameters p and n after each rule
represent the number of positive and negative examples covered by the rule,
respectively.

When asked to produce censored rules, the program generated a single rule
that also covers completely and consistently the training examples:

[Robot=friendly]

<= [Holding=book v flag: 6,8] & [Size=small..medium: 6,6]

|_ [Holding=flag: 2,3] & [Antennas:1,5]: p=6,n=0
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When transformed into an equivalent natural language expression, the above
censored rule becomes:

”A robot is friendly, if it is holding a book or a balloon, and its size is be-
tween small and medium, inclusively, except when it is holding a flag and has
antennas.”

Note that the numbers of positive examples covered by conditions in the EX-
CEPTION clause are significantly smaller than those covered by the PREMISE,
and the numbers of negative examples covered exceed the numbers of negative
examples covered by rule conditions.

2.3 Learning Descriptions with Compound Attributes

One of the novel features of AQ21-NI is that it implements compound attributes
that facilitate learning natural language descriptions of objects, or their compo-
nents that require different attributes to describe them. Consider, for example,
a description of weather in the style of standard propositional logic:

[Windy=yes] & [Cloudy=yes] & [Humid=not]

Using a compound attribute, such a description would be expressed as:

[Weather: windy & cloudy & not humid]

that resembles the equivalent natural language statement: ”Weather is windy,
cloudy and not humid.” In this example, ”weather” is a compound attribute,
and windy, cloudy, and humid are values of its constituent attributes [8]. Learn-
ing expressions with compound attributes is done by learning rules using con-
stituent attributes, and then transforming appropriate groups of attributes into
compound forms.

2.4 Learning Descriptions with Counting Attributes

In some applications, in particular, in medicine, it is not unusual that a medical
decision (e.g., diagnosis) is made on the basis of counting of number features,
(e.g., symptoms), observed in the patient, and comparing it with a threshold.
If the number of symptoms exceeds the threshold, the disease is implicated. To
illustrate such a case by a real world example, consider a problem of classifying
the severity of prostate cancers in terms of three known risk factors:

Factor 1: PSA ≥ 10 ng/ml (”PSA” measures the amount of prostate specific
antigen)
Factor 2: Gleason’s score ≥ 7 (”Gleason’s score” measures the cancer cells’ ab-
normality)
Factor 3: Stage ≥ T2b (”Stage” measures the level of disease development).

Based on these factors, prostate cancer patients are classified into four cate-
gories, representing an increasing severity of their disease:
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Category is 1, if no factors are present; Category is 2, if one factor is present;
Category is 3, if two factors are present; Category is 4, if all three factors are
present.

This classification was obtained from Dr. P. Koutrovalis, Director of URO-
Radiology Prostate Institute in Washington, D.C. Using attributional rules, the
above classification schema can be represented by four attributional rules:

[Category = 1] <= [count(PSA ≥ 10 ng/ml, Gleason’s ≥ 7, Stage ≥ T2b) = 0]
[Category = 2] <= [count(PSA ≥ 10 ng/ml, Gleason’s ≥ 7, Stage ≥ T2b) = 1]
[Category = 3] <= [count(PSA ≥ 10 ng/ml, Gleason’s ≥ 7, Stage ≥ T2b ) = 2]
[Category = 4] <= [count(PSA ≥ 10 ng/ml, Gleason’s ≥ 7, Stage ≥ T2b) = 3]

where count(S1, S2, .., Sn) is a derived attribute that counts the number of
sentences between the parentheses that are true. To express the above classifica-
tion schema by a decision tree or standard decision rules would require a more
complex and more difficult to interpret structure, for example, a decision tree
with eight leaves and seven internal nodes, or eight standard rules.

Expressions with a count attribute are generalizations of the so-called n-of-m
relations (stating that n of m binary attributes are true in a description) [15].
AQ21-NI can learn, however, not only n-of-m special cases, but more general
expressions that involve both count attributes and other conditions, for example:
[DiseaseState=severe] <= [count(C1, C5, C8)≥ 2]&[Abnormality-type=A v C]

As one can see, the attributional rules can express quite elaborate conditions
and are closely related to the equivalent natural language descriptions. The latter
feature makes them easy to translate into such descriptions.

2.5 Learning Optimized Sets of Alternative Classifiers

From any non-trivial set of concept examples, it is usually possible to generate
many alternative inductive generalizations of these examples. Such alternative
hypotheses can be useful in a variety of practical applications. For example,
in medicine, it may be desirable to generate alternative explanations of the
symptoms to protect a doctor from overlooking a rare disease. AQ21-NI seeks a
collection of alternative classifiers that optimizes a user-defined multi-criterion
measure. Here, a classifier is a collection of attributional rulesets, where each
ruleset is associated with one value, e.g., one disease, in the domain of the output
attribute, e.g., diagnosis (for more explanation, consult [8]). The purpose of
optimizing the collection is to include in it, for example, alternative classifiers
that are maximally different from each other.

For example, for the robots problem presented above, one execution of AQ21-
NI generates two alternative rulesets for the class ”friendly” at the first stage of
processing:

Classifier 1:

[robot=friendly]

<= [holding=book] & [size=small..medium] : p=4,n=0

<= [holding=book v flag]&[antenas=no]& [size=small..medium]

: p=3,n=0
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Classifier 2:

[class=friendly]

<= [holding=book] & [size=small..medium] : p=4,n=0

<= [holding=book v flag] & [size=medium] : p=4,n=0

<= [holding=flag] & [size=small] & [hands=yes] : p=1,n=0.

The algorithm for creating optimized collections of alternative classifiers is
described in [9].

3 Generating Natural Language Descriptions

The second stage involves transforming the learned attributional rulesets into
grammatically correct natural language descriptions. This task is done according
to the following hard-coded rules:

1. Attribute names used in the rules are translated onto their natural language
equivalences provided by the user.

2. Symbols ”=” and ”:” in rule conditions used with regular and compound
attributes are translated into the word ”is.” Symbols ”>”, ”<” are translated
into ”greater than”, ”smaller than,” and symbols ”≥” and ”≤” are translated
into ”at least,” and ”at most”.

3. Attribute values connected in a condition by internal disjunction or internal
conjunction are separated by a comma, except for the last value that is
separated by an ”or,” or ”and”, respectively. Range expressions ”val1..val2”
are translated into a statement ”between val1 and val2, inclusively”.

4. Conditions with a count attribute are transformed according to a template. If
the count refers to statements, then the condition is transformed into ”The
number of true statements on the list”, followed by the list of conditions
transformed to natural language, ”is”, and followed by the value indicated
in the count condition. If the count refers to attributes, then the condition is
transformed to a statement: ”The number of attributes on the list L whose
values are Rel is Val”, where L, Rel and Val are indicated in the condition. For
example, [count(x1, x3, x5, x8 > 3) = 2] is transformed into ”The number
of attributes on the list (x1, x3, x5, x8) whose values are greater than 3
is 2.”

5. If there is more than one, but at most three implications ”<=” after the rule
head, that is, the rule consequent (this number is a modifiable parameter),
they are replaced by an ”or.” To reflect the spirit of cognitive aspects of
attributional calculus, if there are more ”<=” than allowed by the parameter,
they are transformed into a sentence: ”The strongest rule implying <head
condition> is <natural language version of the strongest rule>. Other rules
also implying the <head condition> are <natural language representation
of the remaining rules>”. The rules’ strength is determined according to a
user-defined criterion, such as Q(w) (default), coverage, confidence, etc.
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6. Numbers p and n listed at the end of a rule are translated to natural lan-
guage by filling a template: ”The rule is satisfied by p positive and n negative
training examples.” This statement may be followed by lists of these exam-
ples. Similarly, a template is used to translate the weights associated with
each condition in a rule.

To obtain a satisfactory natural language representation of attributional rule-
sets, it is important to appropriately name attributes and their legal values in
preparing the input to the program.

4 An Example of Applications in Medicine

This example describes an application of AQ21-NI to the problem of diagnos-
ing medulloblastoma from patients’ gene micro-arrays (representing degrees of
expressions of patients’ genes). Medulloblastoma is a highly invasive primitive
neuroectodermal tumor of the cerebellum and the most common malignant brain
tumor of childhood. The data for this application were obtained from Gene Ex-
pression Omnibus, available from www.ncbi.nlm.nih.gov/geo. The original gene
micro-array data consists of 46 records, split into two groups: 20 and 26 records,
describing patients with metastatic and non-metastatic tumors, respectively.
Each record registers values of 2059 real-valued attributes (representing gene
expressions). In the experiments we obtained 16 and 12 unique examples of
metastatic and non-metastatic tumors, respectively [11].

From these examples, AQ21-NI at the first stage generated two simple rules for
diagnosing metastatic tumor that require measuring only four gene expressions:

[Cancer = metastatic]

<= [Gene-1611-expression <= 100.9: 18, 8] &

[Gene-1036-expression=-41.76..160.8: 18, 20] &

[Gene-914-expression<=21.5: 20, 15] : p=16,n=0

<= [Gene-1783-expression >= 96.6: 6,0] : p= 6,n=0

An equivalent natural language description is: ”Cancer is metastatic, if gene
1611 expression is at most 100.9, gene 1036 expression is between -41.76 and
160.8, and gene 914 expression is at most 21.5, or gene 1783 expression is at
least 96.6.”

When the experiment was performed using 5-fold cross-validation, the rules
obtained by AQ21-NI had predictive accuracy about 95%. It is noteworthy that
in the experiments that inspired our work in this domain [5], the authors devel-
oped a neural net that requires measuring 80 genes, and its reported predictive
accuracy was about 72%. Thus, their result is not only less accurate than that
obtained by AQ21-NI, but is also a significantly more complex, as it requires
measuring expression of many more genes. Moreover, it is a black box solution
that is very difficult to interpret.
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5 Relation to Other Work

The first phase of AQ21-NI is related to programs learning standard decision
rules. Among such programs are CN2 [2], C4.5 [14], RIPPER [3], programs us-
ing rough-set theory approach, e.g., [12] and [4], programs learning fuzzy rules,
e.g., [19], and those applying evolutionary computation, e.g. [16]. Because stan-
dard decision rules have a relatively low expression power, these programs cannot
learn more expressive attributional rules that are learned by AQ21-NI, and have
fewer capabilities. To the best of author’s knowledge, AQ21-NI is the only pro-
gram currently in existence that has such a large number of different capabilities
integrated in one program.

Also, the authors are not aware of any existing rule learning program that per-
forms the second stage of learning, that is, generates natural language concept
descriptions. Work on this stage concerns generating natural language descrip-
tions from logical-style rules. The task of generating natural language descrip-
tions is usually addressed from two different perspectives, the template-based,
which maps non-linguistic input directly to natural language (without interme-
diate representations), and the standard method, which builds sentences through
a semantic analysis of the text being generated [18].

As was mentioned earlier, attributional calculus facilitates learning of richer
and frequently also simpler generalizations of examples than representations
based standard decision rules. The cost for this advantage is, however, a
significantly higher complexity of the learning algorithm, and, consequently, a
longer time of its execution. Due to the great progress in increasing speed of
modern computers, the second issue is of decreasing importance. In our ex-
periments, AQ21-NI has proven to be quite efficient. An earlier version of AQ
learning program was effectively applied to problems with millions of training
examples.

6 Summary

Natural induction aims at creating knowledge from data that is not only accu-
rate but also easy to understand and interpret. The latter objective is achieved
by first learning expressions in attributional calculus that adds to standard
logic several new constructs, and then transforming the learned descriptions
into equivalent natural language descriptions. A methodology for natural induc-
tion has been implemented in the AQ21-NI rule learning program. The program
seamlessly integrates several new features that include learning in two modes-
theory formation and pattern discovery, learning with compound attributes,
learning censored rules and learning optimized collections of alternative clas-
sifiers. Due to space limitations, the paper includes only very brief descriptions
of these features. More detailed descriptions are in publications downloadable
from http://www.mli.gmu.edu. An application of AQ21-NI to a problem in bioin-
formatics produced a hypothesis that a medical expert evaluated as having an
important medical value, because it suggests adjusting thresholds in the cur-
rently used diagnostic procedure.
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The ability of AQ21-NI to produce natural language descriptions makes
it attractive for application domains in which understandability of computer-
generated knowledge is highly important, such as medicine, bioinformatics, so-
ciology, psychology, economy, business, archeology, civil engineering, and others.
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Abstract. The major applications of rough set theory in data mining
are related to the modeling of concepts using rough classifiers, i.e., the
algorithms classifying unseen objects into lower or upper approxima-
tions of concepts. This paper investigates a class of compound classifiers
called multi-level (or hierarchical) rough classifiers (MLRC). We present
the most recent issues on the construction of such classifiers from data
using concept ontology as an additional domain knowledge. The idea is
based on the bottom-up manner to gradually synthesize the multi-layer
rough classifier for the complex target concept from the simpler classi-
fiers. We illustrate the proposed method by experiments on real-life data.

Keywords: Rough sets, concept approximation, knowledge discovery.

1 Introduction

A great effort of researchers in machine learning and data mining has been
made to develop efficient methods for approximation of concepts from data [1].
In a typical process of concept approximation we assume that there is given
information consisting of values of conditional and decision attributes on objects
from a finite subset (training set, sample) of the object universe and on the basis
of this information one should induce approximations of the concept over the
whole universe. Nevertheless, there exist many problems that are still unsolvable
for existing state of the art methods, because of the high complexity of learning
algorithms or even unlearnability of hypothesis spaces.

Rough set theory [2] [3], has been introduced as a tool for concept approxima-
tion from incomplete information or imperfect data. The essential idea of rough
set approach is to search for two descriptive sets called the lower and upper ap-
proximations containing those objects that certainly, or possibly belong to the
concept, respectively.

Most concept approximation methods realize the inductive learning approach,
which assumes that a partial information about the concept is given by a finite
sample, so called the training sample or training set, consisting of positive and
negative cases. The information from training tables makes the search for pat-
terns describing the given concept possible. Utilization of domain knowledge into
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learning process becomes a big challenge for improving and developing more effi-
cient concept approximation methods. In previous papers [4] [5] we investigated
the domain knowledge given in form of a concept hierarchy which is the sim-
plest form of concept ontology. We have proposed some algorithms for induction
of “multi-layer rough classifier” (MLRC) from data [4] based on the layered
learning [6] and rough set approaches. The main idea is to gradually synthesize
a target concept from simpler ones. The learning process can be imagined as
a treelike structure. At the lowest layer, primitive concepts are approximated
using feature values available from a data set. At the next layers the complex
concepts are synthesized from the primitive ones. This process is repeated for
successive layers until the target concept which is located at the highest layer is
reached, and as the result the multi-layer rough classifier is returned.

This paper summarizes the most recent applications of rough sets in con-
struction of hierarchical classifiers. We present the general framework of rough
set based hierarchical learning algorithm, we will also discuss some related issues
and illustrate our ideas in the corresponding case study problems. In particular,
we investigate several strategies of choosing the appropriate learning algorithm
for first level concepts. We also present the method of learning the intermedi-
ate concepts and some methods of embedding the domain knowledge into the
learning process in order to improve the quality of hierarchical classifiers. We
illustrate the proposed method for the sunspot recognition problem.

2 Preliminaries

Concepts can be understood as definable sets of objects. Formally, any subset
X of a given universe U which can be described by a formula of L is called
the concept in L. The concept approximation problem can be understood as
searching for approximate description – using formulas of a predefined language
L – of concepts that are definable in other language L∗. Inductive learning is the
concept approximation method that searches for description of unknown concept
using finite set U ⊂ U of training examples.

Rough set theory has been introduced by Professor Z. Pawlak [2] as a tool for
approximation of concepts under uncertainty. The theory is featured by operat-
ing on two definable subsets, i.e., a lower approximation and upper approxima-
tion. The first definition, so called the “standard rough sets”, was introduced by
Pawlak in his pioneering book on rough set theory [2].

Given an information system S = (U,A), where U is the set of training objects,
A is the set of attributes and a concept X ⊂ U . Assuming at the moment that
only some attributes from B ⊂ A are accessible, then this problem can be also
described by appropriate decision table S = (U,B∪{decX}), where decX(u) = 1
for u ∈ X , and decX(u) = 0 for u /∈ X .

First one can define called the B-indiscernibility relation IND(B) ⊂ U × U
in such a way that x IND(B) y if and only if x, y are indiscernible by at-
tributes from B, i.e., infB(x) = infB(y). Let [x]IND(B) = {u ∈ U : (x, u) ∈
IND (B)} denote the equivalence class of IND (B) defined by x. The lower and
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upper approximations of X (using attributes from B) are defined by: LB(X) ={
x : [x]IND(B) ⊆ X

}
and UB(X) =

{
x : [x]IND(B) ∩X �= ∅

}
. Let us point out

that there are many extensions of the standard definition of rough sets, e.g., vari-
able rough set model [7] or tolerance approximation space [8]. In these methods,
rough approximations of concepts can be also defined by rough membership func-
tion, i.e., a mapping μX : U → [0, 1] such that LμX = {x ∈ U : μC(x) = 1} and
UμX = {x ∈ U : μX(x) > 0} are lower and upper approximation of a given con-
cept X . In case of the classical rough set theory, the rough membership function

is defined by μB
X(x) = |X∩[x]IND(B)|

|[x]IND(B)| .

The inductive learning approach to rough approximations of concepts we as-
sume that U is a finite sample of objects from a universe U and X = C ∩U is the
representation of a unknown concept C ⊂ U in U . The problem can be under-
stood as searching for an extended rough membership function μC : U → [0, 1]
for C ⊂ U such that the corresponding rough approximations defined by μC are
the good approximations of C.

U - - - - ��� μX : U → [0, 1]
∩ ⇓
U - - - - ��� μC : U→ [0, 1]

The algorithm that calculates the value μC(x) of extended rough membership
function for each new unseen object x ∈ U is called the rough classifier.

In fact, rough classifiers can be constructed from any other classifiers [4] [9].
This process is called the roughyfication, and the general idea is to change the
binary output of the original classifier into a multi-value rough membership
function. By this way, rough classifier can be constructed from any classifier
including decision tree, neural network, SVM classifier, etc. All these methods
will be used as building blocks for construction of compound classifiers.

A classifier that is created by composition of some other classifiers is called the
hierarchical classifier. Formally, let CA,CA1, ...,CAk be classifiers realizing the
computation of concepts F, f1, ..., fk, respectively, then the hierarchical classifier
CA∗ = CA(CA1, ...,CAk) realizes the function F ∗ = F (f1, ..., fk). Let us note
that by this way one can extend the learnability of a the concept approximation
problem, because even if all simple classifiers CA,CA1, ...,CAk realize functions
from a hypothesis space H , then the hierarchical classifiers can compute func-
tions outside of H .

3 Induction of Hierarchical Rough Classifiers

In this section we present general multi layered learning scheme for synthesis
of hierarchical rough classifier. Layered learning is designed for domains that
are too complex for learning a mapping directly from the input to the output
representation. The main principles of the layered learning paradigm [6].

1. Breaking down the problem into several task layers: At each layer,
a concept needs to be acquired and a learning algorithm solves the local
concept-learning task.
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2. Using a bottom-up incremental approach to hierarchical concept
decomposition: Starting with low-level concepts, the process of creating
new sub-concepts continues until the high-level concepts, that deal with the
full domain complexity, are reached.

3. Exploiting data and learning methods to train and/or adapt.
Learning occurs separately at each level: Learning algorithms may
be different for different sub-concepts in the decomposition hierarchy.

4. The output of learning in one layer feeds into the next layer: This
is the key characteristic of hierarchical learning, because each learned layer
directly affects the learning at the next layer.

When using the layered learning paradigm, we assume that the target con-
cept can be decomposed into simpler ones called sub-concepts. A hierarchy of
concepts has a treelike structure. Basic concepts are located at the lowest level
and the target concept at the highest level. Basic concepts are learned directly
from input data when any higher level concept is composed by the concepts
located at lower levels. We assume that a concept decomposition hierarchy is
given by domain knowledge [10]. However, one should observe that concepts and
dependencies among them represented in domain knowledge are expressed often
in natural language. Hence, there is a need to approximate such concepts and
such dependencies as well as the whole reasoning process. This issue is directly
related to the computing with words paradigm [11], [12] and to rough-neural ap-
proach [13], in particular to rough mereological calculi on information granules
(see, e.g., [14], [15], [16], [17], [10]).

Formally, the concept hierarchy is a tuple H = (C,R), where C = A ∪
{C1, ..., Cn} ∪ {dec} is a finite set of concepts including basic concepts (at-
tributes from A), intermediated concepts (C1, ..., Cn) and the target concept
dec; and R ⊂ {C1, ..., Cn, dec} ×R is a directed acyclic graph (DAG) describing
the relationship between concepts and attributes.

Each concept C in the given hierarchy together with all its descendants forms
a subtree H|C . We says that the concept C is in the layer h if and only if
h = height(H|C). In this way, elements of the hierarchy are divided into layers
according to the heights of corresponding subtrees. Thus all input attributes
should be placed in the lowest layer (layer 0), while the decision attribute is on
the highest level. In this paper we assume that a concept hierarchy H is given.
The training set is represented by a decision table SS = (U,A,D), where D is a
set of decision attributes related to concepts. Decision values indicate whether
an objects belong to to a concept in the hierarchy.

3.1 Learning Framework for Hierarchical Rough Classifiers

The main issue in layered learning algorithms is designing a general schema for
learning local concept composition. Our method operates from the lowest level
to the highest one. Assume that each concept Ck in the hierarchy is associated
with a tuple TCk

= (Uk, Ak, Ok, ALGk, hk) where Uk is the set of training objects
used for learning the concept Ck; Ak is the set of attributes relevant for learning
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the concept Ck; Ok is the set of outputs used to define the concept Ck; ALGk is
the algorithm used for learning the function mapping vector values over Ak into
Ok; hk is the hypothesis, which is a result of running the algorithm ALGk on the
training set Uk. Any hypothesis hk of the concept Ck affects on creation of the
tuple TC for its direct ancestor C in the next level of the decomposition hierarchy
in two ways, i.e., hk is used to construct (1) the set of training examples U and
(2) the set of features A for the concept C.

In rough sets, the hypothesis hk is represented by a pair (μCk
(.), μCk

(.)) of
two membership functions. Let us describe in detail some important issues that
should be settled when applying the layered learning idea in the synthesis of
compound concepts.

Usually, primitive concepts are approximated using input features available
from the data set. The choice of the proper algorithm is the most important
in this step. In case of supervised learning, using information available from
a concept hierarchy for each primitive concept Cb, one can create a training
decision system SCb

= (U,ACb
, decCb

), where ACb
⊆ A, and decCb

∈ D. To
approximate the concept Cb one can apply any classical method (e.g., k-NN,
decision tree, or rule-based approach [18], [19]) to the table SCb

(see Section 2).
Let us point out a special case when a concept is a generalization of another

concept. This problem is very intensively investigated in data mining and KDD
[20]. Many methods have been proposed to create a whole concept hierarchy for
one attribute. In case of real value attributes, this process is called the discretiza-
tion. The usual discretization methods define the more general concept by cuts.
The rough set approach to discretization utilizes the idea of “soft cuts” instead
of traditional “crisp cuts” [21] [22].

For compound concepts in the hierarchy, we can use the rough classifiers as
a building blocks to develop a multi-layered classifier. Precisely, let prev(C) =
{C1, ..., Cm} be the set of concepts, which are connected with C in the hierarchy.
Assume that we are given rough membership functions μC1(x), ..., μCm(x). The
rough approximation of the concept C can be determined by performing two
steps: (1) construct a decision table SC = (U,AC , decC) relevant for the concept
C; and (2) induce a rough classifier for C using decision table SC . In [4], the
training table SC = (U,AC , decC) was constructed as follows:

– The set of objects U is common for all concepts in the hierarchy.
– AC = hC1 ∪ hC2 ∪ ... ∪ hCm , where hCi is the output of the hypothetical

classifier for the concept Ci ∈ prev(C). If Ci is an input attribute a ∈ A
then hCi(x) = {a(x)}, otherwise hCi(x) = {μCi(x), μCi

(x)}.

Repeating those steps for each concept through the bottom to the top layer
we obtain a “hybrid classifier” for the target concept, which is a combination of
classifiers of various types. In the second step, the learning algorithm should use
the decision table SC = (U,AC , decC) to “resolve conflicts” between classifiers
of its children. We have proposed in [4] two methods for learning approximation
of compound concept from decision table SC :
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– Naive (simple) method: This method treat SC as a normal decision table
S′ with more attributes. By extracting rules from S′ the rule-based approx-
imations of the concept C are created.

– Stratification method: Instead of using just a value of membership func-
tion or weight we are using linguistic statements such as “the likeliness of
the occurrence of C1 is low”. That yields fuzzy-like layout, or linguistic vari-
ables, of attribute values. One may (and in some cases should) consider also
the case when these subsets overlap.

The presented above supervised method is applicable only for data sets in
which the decision attribute (i.e., Ok) for each concept in the hierarchy is given.
In situation, when our knowledge about the concept Ck is limited to the fact
that it is depended on a set Ak of other concepts in the lower level, we propose
to modify the previous algorithm as follows:

– Granulate the the sample of objects Uk using a clustering algorithm accord-
ing to the available information from Ak;

– Define the decision attribute Ok as the membership function of objects to
clusters.

The proposed ideas are gathered in Algorithm 1.

Algorithm 1. Multi-layered Rough Classifier (MlRC)
Input: Decision system S = (U, A, d), concept hierarchy H ;
Output: Schema for concept composition
1: for l := 0 to max level do
2: for (any concept Ck at the level l in H) do
3: if l = 0 then
4: Uk := U ;
5: Ak := B, where B ⊆ A is a set relevant to define Ck

6: else
7: Uk := U ;
8: Ak =

⋃
Oi - a collection of outputs generated by all sub-concepts Ci of Ck;

9: Generate a rule set determining of the concept Ck approximation;
10: Generate the output vector [μCk (x), μCk

(x)] for any object x ∈ Uk

3.2 Extended Layered Learning Algorithm

Recall that the concept hierarchy represents a set of concepts and a binary re-
lation which connects a ”child” concept with its ”parent”. The most important
relation types are the subsumption relations (written as ”is-a” or ”is-part-of”)
defining which objects (or concepts) are members (or parts) of another con-
cepts in the hierarchy. Besides the ”child-parent” relations, we consider new
kinds of relations associating with concepts in the hierarchy. We call them
domain-specific constraints. We consider two types of constraints: (1) constraints
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describing relationships between a “parent” concept and its ”child” concepts;
and (2) constraints connecting the “sibling” concepts (having the same parent).

Formally, the extended concept hierarchy is a tripleH = (C,R, Constr), where
C = {C1, ..., Cn} is a finite set of concepts including primitive, intermediate and
the target concept; R ⊆ C × C is child-parent relation in the hierarchy; and
Constr is a set of constraints. In this paper, we consider constraints expressed
by association rules of the form P →α Q, where P,Q are boolean formulas
over the set of boolean variables corresponding to concepts from C and their
complements, and α ∈ [0, 1] is the confidence of this rule.

Let us assume that an extended concept hierarchy H = (C,R, Constr) is
given. In the layered learning algorithm for hierarchical rough classifier pre-
sented in Section 3.1, one can observe that, if sibling concepts C1, ..., Cm are
independent, the membership function values of these concepts are “sent” to
the “parent” C, without any correction. Thus the membership value of weak
classifiers may disturb the training table for the parent concept and cause the
misclassification when testing new unseen objects. We have present two tech-
niques that enable the expert to improve the quality of hybrid classifiers by
embedding their domain knowledge into learning process. They were called the
constraint-based refining of weak classifiers and the constraint-based selection of
learning algorithm. The detail description of these methods are presented in [9].

4 Case Study: Sunspot Classification Problem

Sunspots are the subject of interest to many astronomers and solar physicists.
Sunspot observation, analysis and classification form an important part of fur-
thering the knowledge about the Sun. Sunspot classification is a manual and
very labor intensive process that could be automated if successfully learned by a
machine. The main goal of the first attempt to sunspot classification problem is
to classify sunspots into one of the seven classes {A,B,C,D,E, F,H}, which are
defined according to the McIntosh/Zurich Sunspot Classification Scheme. More
detailed description of this problem can be found in [5].

The data was obtained by processing NASA SOHO/MDI satellite images to
extract individual sunspots and their attributes characterizing their visual prop-
erties like size, shape, positions. The data set consists of 2589 observations from
the period of September 2001 to November 2001. The main difficulty in cor-
rectly determining sunspot groups concerns the interpretation of the classifica-
tion scheme itself. There is a wide allowable margin for each class (see Figure 1).
Therefore, classification results may differ between different astronomers doing
the classification.

In [5], we have presented a method for automatic modeling the domain knowl-
edge about sunspots concept hierarchy. The main part of this ontology is pre-
sented in Figure 2. We have shown that rough membership function can be
induced using different classifiers, e.g., k-NN, decision tree or decision rule set.
The problem is to chose the proper type of classifiers for every node of the hier-
archy. In experiments with sunspot data, we applied the rule based approach for
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Fig. 1. Possible visual appearances for each class. There is a wide allowable margin in
the interpretation of the classification rules making automatic classification difficult.

concepts in the lowest level, decision tree based approach for the concepts in the
intermediate levels and the nearest neighbor based approach the target concept.

Figure 3 (left) presents the classification accuracy of ”hybrid classifier” ob-
tained by composition of different types of classifiers and ”homogenous classi-
fier” obtained by composition of one type of classifiers. The first three bars show
qualities of homogenous classifiers obtained by composition of k-NN classifiers,
decision tree classifiers and rule based classifiers, respectively. The fourth bar
(the gray one) of the histogram displays the accuracy of the hybrid classifier.

The use of constraints also give a profit. In our experiment, these constraints
are defined for concepts at the second layer to define the training table for the

�

�

�

�

A → ¬D

A → ¬E

A → ¬F

A → ¬EF

A → ¬DE

A → ¬DF

Fig. 2. The concept hierarchy for sunspot recognition problem
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target concept AllClasses. It is because the noticeable breakdown of accuracy
have been observed during experiments. We use the strategy proposed in Section
3.1 to settle the final rough membership values obtained from its children A-H-
B-C-DEF, D-EF, E-DF, F-DE (see the concept hierarchy in Figure 2). One can
observe that using constraints we can promote good classifiers in a composition
step. A better classifier has higher priority in a conflict situation. The experiment
results are shown in Figure 3. The gray bar of the histogram displays the quality
of the classifier induced without concept constraints and the black bar shows the
quality of the classifier generated using additional constraints.

Fig. 3. Accuracy comparison of different hierarchical learning methods

Another approach to manage with sunspot recognition problem is related
to temporal features. Comparative results are showed in Figure 3 (right). The
first two bars in the graph describe the accuracy of classifiers induced without
temporal features and the last two bars display the accuracy of classifiers induced
with temporal features. One can observe a clear advantage of the last classifiers
over the first ones. The experimental results also show that the approach for
dealing with temporal features and concept constraints considerably improves
approximation quality of the complex groups such as B, D, E and F .

5 Conclusions

We presented a new method for concept synthesis. It is based on the hierarchical
learning approach. Unlike traditional approach, layered learning methods induce
the approximation of concepts not only from accessible data but also from the do-
main knowledge given by experts. The hierarchical learning approach showed to
be promising for the complex concept synthesis. Experimental results with road
traffic simulation are showing advantages of this new approach in comparison to
the standard learning approach. The main advantages of the hierarchical learn-
ing approach include: high precision of concept approximation, high generality
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of concept approximation, simplicity of concept description, high computational
speed, and the possibility of localization sub-concepts difficult to approximate.
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Abstract. We present general principles of establishing a duality be-
tween a class of algebras and a class of relational systems such that
topology is not involved. We show how such a discrete duality contributes
to proving completeness of logical systems and to correspondence theory.
Next, we outline applications of discrete dualities to analysis of data in
information systems with incomplete information in the rough set-style,
and in contexts of formal concept analysis.

1 General Principles of Discrete Duality and Duality Via
Truth

Duality theory emerged from the work by Marshall Stone [Sto36] on Boolean
algebras and distributive lattices in the 1930s. Jónsson and Tarski [JT51] ex-
tended Stone’s results to Boolean algebras with operators. These operators are
now known to be modal possibility operators. Later in the early 1970s Larisa
Maksimova [Mak72, Mak75] and Hilary Priestley [Pri70, Pri72] developed analo-
gous results for Heyting algebras, topological Boolean algebras, and distributive
lattices. The latter has been extended to distributive lattices with operators
by [Gol89, CLP91]. Since then establishing a duality has become an important
methodological problem both in algebra and in logic. All the abovementioned
classical duality results are developed using topological spaces as dual spaces of
algebras.

Discrete duality is a duality where a class of abstract relational systems is
a dual counterpart to a class of algebras. These relational systems are referred
to as frames following the terminology of non-classical logics. A topology is not
involved in the construction of these frames and hence they may be thought of as
having a discrete topology. Establishing discrete duality involves the following
steps. Given a class Alg of algebras (resp. a class Frm of frames) we define a
class Frm of frames (resp. a class Alg of algebras). Next, for an algebra W ∈ Alg
we define its canonical frame X(W ) and for each frame X ∈ Frm we define its
complex algebra C(X). Then we prove that X (W ) ∈ Frm and C(X) ∈ Alg. A
duality between Alg and Frm holds provided that the following representation
theorems are proved:

(D1) Every algebra W ∈ Alg is embeddable into the complex algebra of its
canonical frame i.e., C(X (W )).
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(D2) Every frame X ∈ Frm is isomorphic with a substructure of the canonical
frame of its complex algebra, i.e., X (C(X)).

A distinguishing feature of this framework for establishing a discrete duality is
that the algebraic and the logical notions involved in the proofs are defined in
an autonomous way, we do not mix the algebraic and logical methodologies.

The separation of logical and algebraic constructs enables us to view dual
classes of algebras and frames as two types of semantic structures of a formal
language. As a consequence we easily obtain what we call duality via truth.
Given a formal language Lan, a class of frames Frm which determines a relational
semantics for Lan and a class Alg of algebras which determines its algebraic
semantics, a duality via truth theorem says that these two kinds of semantics
are equivalent in the following sense:

(DvT) A formula φ ∈ Lan is true in every algebra of Alg iff it is true in every
frame of Frm.

In order to prove such a theorem we need to prove the following lemma referred
to as a complex algebra theorem.

(CA) For every frame X ∈ Frm, a formula φ ∈ Lan is true in X iff φ is true in
the complex algebra C(X).

With the theorem (CA) and the representation theorem (D1) we can prove
(DvT) theorem. The right-to-left implication of (DvT) follows from the left-to-
right implication of (CA) and the left-to-right implication of (DvT) follows from
right-to-left implication of (CA) and (D1). In this way the discrete duality con-
tributes to a development of a relational semantics (resp. an algebraic semantics)
once an algebraic semantics (resp. a relational semantics) of a language is known.

2 Application to Completeness and Correspondence
Theorems

Discrete duality contributes also to a completeness result once a deductive system
for the language Lan is given. Assume that an algebraic semantics of Lan is
given in terms of a class Alg of algebras and a relational semantics in terms
of a class Frm of frames such that a discrete duality holds between these two
classes. We assume that the algebras from Alg are based on bounded lattices.
To prove completeness we define a binary relation ≈ in the set of formulas of
Lan in terms of provability of double implication, if it is among the propositional
operations of Lan, or otherwise in terms of provability of a sequent built with
a pair of formulas. Next we show that this relation is an equivalence relation
and a congruence with respect to all the propositional operations admitted in
Lan. Then we form the Lindenbaum algebra A≈ of Lan. Its universe consists
of equivalence classes |φ| (with respect to relation ≈) of formulas. Then we
show that the algebra A≈ belongs to the class Alg of algebras. Now, depending
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on whether we are interested in completeness with respect to the algebraic or
relational semantics we proceed as follows.

To prove completeness of the deduction system with respect to the relational
semantics we consider the canonical frame X (A≈) of the Lindenbaum algebra. Its
universe consists of prime filters of A≈. Then we form a model M≈ based on this
frame. Preservation of operations by the mapping that provides an embedding
of A≈ into C(X (A≈)) guaranteed by theorem (D1) enables us to prove the truth
lemma saying that satisfaction of a formula φ in model M≈ by a filter F is
equivalent to |φ| ∈ F . From this lemma the completeness follows in the usual
way.

To prove completeness of the deduction system with respect to the algebraic
semantics we define a valuation of atomic formulas of Lan in A≈ as v(p) = |p|
and we prove that it extends to all the formulas so that v(φ) = |φ|. Then we
show that provability of a formula φ is equivalent to v(φ) = 1≈, where 1≈ is the
unit element of the lattice reduct of A≈. Then the completeness follows.

Discrete duality is also relevant for the correspondence theory which aims
at finding relationships between truth of formulas in a frame and properties of
relations in the frame. Typically, a correspondence has the following form:

(Cps) A formula φ ∈ Lan is true in a frame X iff the relations of the frame have
a certain property.

Given the classes Alg and Frm for which a discrete duality and duality via truth
theorem with respect to a language Lan hold, we may consider the following
correspondences:

(Cps1) The relations of a frame X ∈ Frm have a certain property iff a formula
φ ∈ Lan is true in the complex algebra C(X).

(Cps2) A formula φ ∈ Lan is true in an algebra W ∈ Alg iff the relations of the
canonical frame X (W ) have a certain property.

It is known that these corespondences are related to the classical correspondence
(Cps). The left-to-right implication of (Cps1) and the right-to-left implication of
(CA) imply the right-to-left implication of (Cps). The right-to-left implication of
(Cps1) and the left-to-right implication of (CA) imply left-to-right implication
of (Cps). Examples of the correspondences of these types can be found in [JO06]

3 Applications to Reasoning with Incomplete Information
and Data Analysis

The general framework of discrete duality and duality via truth outlined above
may be applied to various classes of lattices with operators. In [ORD06] a du-
ality via truth framework is presented and illustrated with four case studies.
The classical dualities for Boolean algebras with a possibility operator and for
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Boolean algebras with a sufficiency operator are formulated in the form of a
discrete duality and duality via truth. Then these results are extended to discrete
dualities and dualities via truth for two classes of information algebras arising
from information systems. The class of weak similarity algebras is an axiomatic
extension of the class of Boolean algebras with a family of possibility operators
and the class of strong right orthogonality (or in other words strong disjointness)
algebras is an axiomatic extension of the class of Boolean algebras with a family
of sufficiency operators. These two classes of information algebras provide a
formal means for reasoning about and computing generalized approximation
operations in the rough set style [Paw91] determined by similarity relations or
their complements.

The framework of discrete duality is also relevant for formal concept analysis
[Wil82, GaW99]. The theory of formal concept analysis provides a means of data
analysis and discovery of concepts from data structures which are referred to as
contexts. Contexts may be identified with information systems whose attributes
are binary, in the sense of being features an object may or may not have. In
[ORe07b] a class of sufficiency algebras derived from contexts is introduced and
referred to as context algebras. A discrete duality and duality via truth for
the class of context algebras is developed. These results provide the tools for
solving various problems that can be specified within the framework of formal
concept analysis e.g., finding extensions (resp. intensions) of concepts once their
intensions (resp. extensions) are given; proving implications of sets of attributes;
proving entailment of implications.

Many other discrete duality and duality via truth results can be found in the
literature. Most of them concern not necessarily distributive lattices with oper-
ators. Various types of modal operators (possibility, necessity, sufficiency, dual
sufficiency) are dealt with in [OV05]. These operators may be seen as generaliza-
tions of rough set style approximation operators. Several kinds of negations on
lattices are treated in [DOvA06a, DOvA06b]. Relation algebra operators on lat-
tices are studied in [DOR06]. Residuated lattices and their axiomatic extensions
corresponding to substructural logics and some fuzzy logics are studied within
the framework of discrete duality in [OR06, OR07]. In the field of distributive
lattices, discrete dualities for Heyting algebras with operators (various types of
modal operators and negations) are presented in [ORe07a].
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Abstract. The problem considered in this paper is how the classifica-
tion of observed behaviour of organisms can be used to influence adaptive
learning, beneficially. The solution to this problem hearkens back to the
pioneering work during the 1980s by Zdzis�law Pawlak and others on clas-
sification of objects and approximation spaces, where elementary sets of
equivalent objects a framework for perceptions concerning observed be-
haviours. The seminal work by Oliver Selfridge and Chris J.C.H. Watkins
on delay rewards and adaptive learning, also during the 1980s, combined
with more recent work on reinforcement learning provide a basis for the
forms of adaptive learning introduced in this article. In addition, recent
work on approximation spaces has led to what is known as approximate
adaptive learning. This article presents two forms of run-and-twiddle
(RT) adaptive learning, each using the Watkins’ stopping time strat-
egy to mark the end of an episode. Twiddling amounts to adjusting
what one does to achieve a better result. This becomes more apparent
in approximate RT adaptive learning introduced in this article, where a
record of observed behaviour patterns during each episode recorded in
an ethogram makes it possible to define a pattern-based learning rate in
the context of approximation spaces. Both forms of adaptive learning are
actor-critic methods. The contribution of this article is the introduction
of two forms of adaptive learning with Watkins’ stopping time strategy
with differential discount on returns in both cases and differential learn-
ing rate for adaptive learning in the context of approximation spaces.

Keywords: Actor-critic, adaptive learning, approximation space, be-
haviour pattern, perception, stopping time.

An approximation space ... serves as a formal

counterpart of perception ability or observation.

– Ewa Or�lowska, March, 1982.

1 Introduction

The problem considered in this paper is how the classification of observed be-
haviour of organisms can be used to influence adaptive learning, beneficially. The
term organism, in general, is understood in Whitehead’s sense as something that
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emerges from (belongs to) the world [43]. The solution to this problem hearkens
back to the pioneering work by Zdzis�law Pawlak and others on classification of
objects and approximation spaces (see, e.g., [4,13,9,15,16,22,33,34,39]), work on
delayed rewards and adaptive learning by Oliver Selfridge and C.J.C.H. Watkins
also during the 1980s (see, e.g., [31,40]), extensive work on reinforcement learn-
ing (see, e.g., [2, 5, 38, 29, 42]), and recent work on reinforcement learning and
intelligent systems in the context of approximation spaces (see,e.g., [24, 25, 23,
17, 18, 20, 21, 33, 34]). This article presents two forms of run-and-twiddle (RT)
adaptive learning, each using the Watkins’ stopping time strategy to mark the
end of an episode. Twiddling amounts to adjusting what one does to achieve a
better result. This becomes more apparent in approximate RT adaptive learning
introduced in this article, where a record of observed behaviour patterns tabu-
lated in an ethogram [24, 26] during each episode makes it possible to consider
a pattern-based learning rate defined in the context of an approximation space.
Both forms of adaptive learning introduced in this article are variant actor-critic
methods, where action discounting as well as learning rate are defined relative
to temporal differences. The contribution of this article is the introduction of
two forms of adaptive learning that construct a semi-martingale with Watkins’
stopping time strategy with differential discount on returns in both cases and
differential learning rate for adaptive learning in the context of approximation
spaces.

This article is organized as follows. An approach to RT adaptive learning is
presented in Sect. 2. A refinement of the generalized approximation space model
is given in Sect. 3. Approximate RT adaptive learning is introduced in Sect. 4.

2 Adaptive Learning

Watson [40] suggests using the value of a state V (s) as the basis for an adaptive
control strategy used by an organism to determine what to do next. This strategy
can be summarized intuitively as follows.

1. Estimate. If things are expected to improve or stay the same, then carry on
with the same action.

2. Twiddle. If things are expected to get worse, then search for a more promis-
ing action.

3. End of Episode. If things are expected to get worse, regardless which possi-
ble action we choose, then that marks the end of an episode. This is analogous
to a situation faced by a gambler who either withdraws from the game be-
cause the expected return is not favorable or bets based on luck and stands
a chance of losing [3]. The form of adaptive learning in this paper implic-
itly constructs a semi-martingale [3], where an episode continues as long as
V (s) ≤ V (s′), i.e., E[Ra] ≤ E[Ra′ ] based on Monte Carlo estimates [7, 30]
of V (s), V (s′) for actions a, a′ in states s, s′, respectively1.

1 V (s) (value of the current state s) is defined in terms of E[Ra], the expected value
of return Ra for an action a. V (s′) denotes the value of next state s′ following s.
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This control strategy was originally suggested by Oliver Selfridge in 1984 [31]
and elaborated in the context of the value of a state and Monte Carlo methods by
Chris J.C.H. Watkins in 1989 [40]. Selfridge called this a run-and-twiddle (RT)
strategy, which he based on observations of the behavior of E. coli bacteria, male
silk moths, and ants.

The notion of a stochastic process and what known as semi-martingales are
important in RT adaptive learning introduced in this article.

Definition 1. Stochastic Process
A stochastic process is any family of random variables {Xt, t ∈ T } [3]. In prac-
tice, Xt is an observation at time t. A random variable (r.v.) Xt is a real-valued
function X : Ω → � defined on (Ω,F), where Ω,F is sample space and family
of events, respectively [8,44].

It can be shown that during each episode of RT adaptive learning, what is known
as a semi-martingale is constructed. Semi-martingales were introduced by Doob
during the early 1950s [3] and elaborated by many others (see, e.g., [8,44]).

Definition 2. Semi-Martingale
A semi-martingale is a stochastic process {Xt, t ∈ T } such that

E[Xt] ≤ E[Xt+1],

where E[|Xt|] <∞.

The form of semi-martingale we have in mind is {Rt, t ∈ T }, E[Rt] ≤ E[Rt+1],
where Rt is the return on a sequence of actions at time t during an episode.

2.1 Toward RT Adaptive Learning

The basic framework for an approach to a run-and-twiddle (RT) form adaptive
learning is shown in Fig. 1, where the conventional framework for actor-critic
learning has been changed. Instead of the usual temporal difference (TD) δ
term [38,41], a TD γ is source of input to a critic in evaluating observed action-
rewards2. The policy structure enforced during adaptive learning is an actor,
since the selection of an action a in each state s is determined by a policy
π(s, a). The estimated value function V (s) serves a critic during adaptive learn-
ing. Twiddling begins at the end of each episode3, where the actions within an
episode are discontinued as a result of some halting condition being satisfied.

An elaborate form of twiddling is possible by recording observed behaviours
during an episode and constructing what is known as a rough ethogram. A rough
ethogram is a decision table that records acceptable as well as unacceptable be-
haviour patterns of organisms [26]. It will become apparent that an ethogram
represents a decision system, where each possible behaviour leading from the
current state to a new state is evaluated relative to an action-selection policy.
2 TD γ denotes the rate of change of action rewards.
3 i.e., an episode is constituted by a sequence of actions that ends in a terminal state.
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Fig. 1. Basic Framework for Adaptive Learning

That is, among all of the possible actions in a state, an action a that has been
selected represents a perceptual judgement accept a based on a perception that
the performance of a conforms to a standard more than the other possible ac-
tions, which is explained in the sequel. By the same token, an ethogram provides
a record of each action b deemed unacceptable and a corresponding perceptual
judgement reject b.

1. Reward signal: Define action a in terms of a reward r(t) as a function
representing a signal observed at time ti, which results from interaction with
the environment as a result of performing some action a at time ti−1

4. Then
associate with each action a(t) a discounted reward r(t) at time t, namely,
γ′(t)r(t), where γ(t) is a discount function and γ′(t) denotes the differential
of r(t). It is important to define a reward function r(t) that reflects the form
of the signal produced by each action.

2. Discount γ: Either choose fixed γ(t), e.g., γ(t) = 1, or put γ(t) = r(t) and
obtain the differential

γ′(t) =
d(r(t))

dt

∣∣∣∣ t← ti
≈ |r(ti)− r(ti−1)|

|ti − ti−1|
.

In other words, let the value of γ vary over time instead of using a fixed value
of γ that diminishes (i.e., monotonically decreases) over time5. The critic in
Fig. 1 is influenced by a Temporal Difference (TD) discount γ, which replaces
the usual TD δ term (see, e.g., [38,42]). The discount factor reflects the rate
of change of the signal r(t) coming from the environment at time t.

3. Return: Let E[Rt], ra, ti denote expected return at time t, reward for action
a, elapsed time at step i during an episode, respectively. Define V (st) =
E[Rt] ≈ 1

n

∑n
i=1 γ′(ti) · ra(ti), where value of state V (s) is estimated over n

time steps for each action a in state s. The assumption made here is that a
reward rt is a r.v. and, as a consequence, return Rt is a r.v. and {Rt, t ∈ T }

4 t can be viewed as the elapsed time since the start of an episode.
5 The form of discount factor introduced in this paper differs from what was originally

suggested by Watkins [40] in estimating return Rt at time t, where Rt = r1 + γr2 +
· · ·+ γt−1rt, γ ∈ [0, 1].
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is a stochastic process, where Rt is the return computed at time t for each
state during an episode and T is a set of episode times. It is also the case that
the Pr(Rt = ω) is unknown for ω ∈ Ω. For this reason, E[Rt] is estimated
using a Monte Carlo method [7, 30] (for a detailed explanation, see [25]).

Theorem 1. Adaptive Learning Semi-martingale.
The RT form of adaptive learning constructs a semi-martingale.

Proof. An episode continues as long as V (s) ≤ V (s′). Let ti denote elapsed
time t at the start of ith state during an episode and let s′ denote the state
immediately following state s. Each time an episode continues after finding that
the condition V (s′) > V (s) is satisfied at time tn, another term is added to a
sequence of estimates of V (s) at time tn, namely, V (s′) ≈ E[Xtn+1], namely,

E[Xt1 ] ≤ E[Xt2 ], . . . ,≤ E[Xtn ] ≤ E[Xtn+1]. ��
An important problem to consider in constructing semi-martingales is a stopping
time, i.e., a time T when a semi-martingale ends. The notion of a stopping time
can be explained in general.

Definition 1. Stopping Time. A stopping time results from a strategy for de-
termining when to stop a sequence based only on the outcomes seen so far [8].

Axiom 1. Discount Rate. During each episode, γ′(t) < ε for any given threshold
ε > 0 and for sufficiently large t. This means that |r(ti+1)− r(ti)| < ε|ti+1 − ti|
for sufficiently large i, e.g., i > nlarge.

Theorem 2. Adaptive Learning Semi-martingale with Stopping Time.
In RT adaptive learning, (1) a semi-martingale constructed during each episode
has a stopping time, and (2) E[Rtn ] > E[Rtn+1 ] occurs at some time tn, (3)
each adaptive learning episode has finite duration and each semi-martingale has
a finite number of terms.

Proof. During adaptive learning, construction of a semi-martingale ends when-
ever Watkins’ condition V (s′) > V (s) is not satisfied. Hence, (1) holds, i.e.,
from Def. 1, Watkins’ condition provides a stopping time strategy. (2) From
Ax. 1, γ′(t) → 0 during each episode. Hence, E[Rtn ] > E[Rtn+1 ] occurs at
some time tn, since the estimated value of E[Rtn+1 ] gets smaller than E[Rtn ] for

lim
i→nlarge

γ′(ti) < ε for sufficiently large i. (3) sunset→ 0 during each episode in

Alg 1 and Alg. 2, which guarantees that each episode has finite duration. Hence,
each semi-martingale constructed during an adaptive learning episode has finite
length. ��

2.2 Adaptive Control Algorithm

The run-and-twiddle control strategy is given a more formal representation by
Watkins [40], p. 67. Let a(xt), s, s′ denote action of object x at time t in state
s, current state and next state, respectively. A representation of the adaptive
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Algorithm 1. RT Adaptive Learning
Input : States s ∈ S, Actions a ∈ A, Objects x ∈ U , V (s).
Output: Semi-martingale, i.e., {Rt, t ∈ T}.
while True do

Begin episode;
Initialize policy π(s, a), s, V (s), sunset← maxT ime, episode← true;
Estimate V (s′) = E[Rt] for every a leading from s to s′;
while V (s) ≤ V (s′) do

V (s) ← V (s′) ;
Perform action a, observe r(t) signal, compute γ′(t);
Update a(xt) ← γ′(t) · r(t);
Choose new a from new s according to policy π(s, a) ;
Estimate new V (s′) = E[Rt];
sunset ← sunset− 1;
if sunset > 1 then

if V (s′) > V (s) then
episode continues ;

end
else

episode← false {publish {Rt, t ∈ T}} ;
end

end
end

learning method suggested by Selfridge is represented by Alg. 1. This algorithm
reflects Selfridge’s run-and-twiddle (RT) adaptive control strategy. In its sim-
plest form, RT is a greedy method that works by steepest ascent hill-climbing,
where an attempt is made to maximize return R over time by choosing the most
promising action in each state. The most promising action a means that action
a has the highest estimated expected return Rt at time t. Alg. 1 looks one step
ahead in each state during an episode and takes the best pick among all possible
actions for the next step.

3 Approximation Spaces

The original generalized approximation space (GAS) model [32] has recently
been extended as a result of recent work on nearness of objects (see, e.g., [6,17,
18,20,21,33, 34]). A nearness approximation space (NAS) is a tuple

NAS = (U,A,Nr, νB),

where U is a universe of objects, A, a set of probe functions, Nr, a family of
neighbourhoods and νB is an overlap function defined by

νB : P(U)× P(U) −→ [0, 1],
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where P(U) is the powerset of U . The overlap function νB maps a pair of sets to
a number in [0, 1] representing the degree of overlap between the sets of objects
with features defined by B ⊆ A and P(U) is the powerset of U [35]. For each
subset B ⊆ A of probe functions, define the binary relation ∼B= {(x, x′) ∈
U × U : ∀f ∈ B, f(x) = f(x′)}. Since each ∼B is, in fact, the usual IndB

(indiscernibility) relation, for B ⊂ F and x ∈ U , let [x]B denote the equivalence
class containing x, i.e.,

[x]B = {x′ ∈ U : ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈ ∼B (also written x ∼B x′), then x and x′ are said to be indiscernible
with respect to all feature probe functions in B, or simply, B-indiscernible. Then
define a family of neighborhoods Nr(A), where

Nr(A) =
⋃

Br⊆Pr(A)

[x]Br ,

where Pr(A) = {B ⊆ A | |B| = r} for any r such that 1 ≤ r ≤ |A|. That is, r
denotes the number of features used to construct families of neighborhoods. For
the sake of clarity, we sometimes write [x]Br to specify that the equivalence class
represents a neighborhood formed using r features from B. Families of neigh-
borhoods are constructed for each combination of probe functions in B using(|B|

r

)
, i.e., |B| probe functions taken r at a time. Information about a sample

X ⊆ U can be approximated from information contained in B by constructing
a Nr(B)-lower approximation

Nr(B)∗X =
⋃

x:[x]Br⊆X

[x]Br ,

and a Nr(B)-upper approximation

Nr(B)∗X =
⋃

x:[x]Br∩X 
=∅
[x]Br .

Then Nr(B)∗X ⊆ Nr(B)∗X and the boundary region BNDNr(B)(X) between
upper and lower approximations of a set X is defined to be the complement of
Nr(B)∗X , i.e.

BNDNr(B)(X) = Nr(B)∗X\Nr(B)∗X = {x ∈ Nr(B)∗X | x /∈ Nr(B)∗X}.

A set X is termed a “near set” relative to a chosen family of neighborhoods
Nr(B) iff |BNDNr(B)(X)| ≥ 0. This means that, relative to B, every rough set
is a near set but not every near set is a rough set. Object recognition and the
problem of the nearness of objects have motivated the introduction of near sets
(see, e.g., [17,20]).
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Fig. 2. Approximate Adaptive Learning Cycle

3.1 Percepts and Perception

The set Nr(B) contains a set of percepts. A percept is a byproduct of perception,
i.e., something that has been observed [10]. For example, a member of Nr(B)
represents what has been perceived about objects belonging to a neighborhood,
i.e., observed objects with matching probe function values. Collectively, Nr(B)
represents a perception, a product of perceiving. Perception is defined as the
extraction and use of information about one’s environment [1]. This basic idea
is represented in the sample objects, probe function measurements, perceptual
neighborhoods and judgemental percepts columns in Fig. 26. In this article, we
focus on the perception of acceptable objects.

3.2 Sensing, Classifying, and Perceptual Judgement

Sensing provides a basis for probe function measurements commonly associ-
ated with features such as colour, contour, shape, arrangement, entropy, and so
on [12,22]. A probe function can be thought of as a model for a sensor. Classifica-
tion combines evaluation of a disposition of sensor measurements with judgement
(apprehending the significance of a vector of probe function measurements for
an observed object). The result is a higher level percept, which has been tradi-
tionally called a decision. In the context of percepts, the term judgement means
a conclusion about an object’s measurements rather than an abstract idea. This
form of judgement is considered perceptual. Perceptual judgements provide a
basis for the formulation of abstract ideas (models of perception, rules) about
a class (type) of objects. Let D denote a feature called decision with a probe
dB : X×B −→ {0, 1}, where X denotes a set of sample objects; B, a set of probe
functions; 0, “reject perceived object” and 1, “accept perceived object”. A set
of objects d with matching perceptual judgements (e.g., dB(x) = 1, x ∈ X for
an acceptable object) is a mathematical model representing the abstract notion
acceptable.

For each possible feature value j of a and x ∈ U , put Bj(x) = [x]B if, and only
if, a(x) = j, and call Bj(x) an action block. Put B = {Bj(x) : a(x) = j, x ∈ U},
6 Subscripts h, i, p denote probe function values for a single feature, i.e., where r = 1.
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Algorithm 2. Approximate Adaptive Learning
Input : States s ∈ S, Actions a ∈ A, Objects x ∈ U .
Output: Ethogram resulting from policy π(s, a).
while True do

Begin episode;
Initialize ν̄a

′(t), policy π(s, a), s, V (s), sunset ← maxT ime, episode← true;
Insert experimental (x, s, a, r, V (s), d(x)) rows in ethogram, then continue ;
Estimate V (s′) ← E[Rt];
while V (s) ≤ V (s′) do

Perform action a based on π(s, a), observe r(t) signal, compute γ′(t);
Update a(xt) ← γ′(t) · r(t);
Choose new a from new s according to policy π(s, a) ;
Estimate V (s′) ← E[Rt];
V (s) ←− V (s) + ν̄a

′(t) · [r + maxa{V (s′)} − V (s)];
sunset ← sunset− 1;
if sunset > 1 then

if V (s′) > V (s) then
Episode continues ;
Add (x, s, a, r, V (s), d(x)) to ethogram ;

end
else

episode← false {publish constructed ethogram} ;
Compute learning rate ν̄a

′(t) using ethogram, (1), & (2);
end

end
end

a set of blocks that “represent” action a(x) = j. Define ν̄a(t) (average rough
coverage)7 with respect to an action a(x) = j at time t in (1).

ν̄a(t) =
1
|B|

∑

Bj(x)∈B
ν (Bj(x), Nr(B)∗D) . (1)

4 Approximate RT Adaptive Learning

Based on the introduction of families of neighbourhoods, there are different forms
of adaptive learning that is influenced by the perceived behaviours recorded in
episode ethograms. A behaviour is defined by the tuple

(s, a, r, V (s)),

where V (s) is the estimated value of expectation E[Rt]. A Monte Carlo method
[7,30] is used to estimate E[Rt], which, in its simplest form, is a running average
of the rewards received up to the current state.
7 ν̄a(t) is computed at the end of each episode using an ethogram that is part of the

adaptive learning cycle shown in Fig. 2.
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The differential ν̄a
′(t) of ν̄a(t)8 takes the place of learning rate α in Q-

learning [40], where ν̄a
′(t) reflects the rate of change of average action accept-

ability across adjacent episodes. Starting with the end of the second episode
during approximate adaptive learning, it is possible to define a learning rate
ν̄a
′(t) shown in (2).

ν̄′(t) =
d(ν̄a(t))

dt

∣∣∣∣ t← ti
≈ |ν̄a(ti)− ν̄a(ti−1)|

|ti − ti−1|
, (2)

where ν̄a(ti), ν̄a(ti−1) is the average action coverage at times ti, ti−1 at the end
of the current and the previous episodes, respectively. In other words, at the
end of each episode, ν̄′(t) is refreshed to reflect a varying learning rate (see
Alg. 2). Other forms of Alg. 2 are possible, if we consider combinations of fea-
tures in addition to the single-feature case, where multiple-feature families of
neighborhoods are used to estimate average coverage. At present, a number
of fairly intensive experiments with approximate adaptive learning in colonies
of organisms (e.g., fish and ants) and in computer vision, are being carried
out [18, 19].

5 Conclusion

This article considers a perception-based approach to adaptive learning. The
early work of Zdzis�law Pawlak and others on classification of objects and ap-
proximation spaces during the 1980s as well as more recent work on approxima-
tion spaces by Andrzej Skowron and Jaros�law Stepaniuk provide a framework
for observing the returns on episodic behaviour during learning. This work has
also benefited from the work on adaptive learning by Oliver Selfridge and Chris
J.C.H. Watkins, also during the 1980. It was Watkins who suggested a stopping
time strategy for episodic behaviour based on the estimated value of state. The
work on semi-martingales by Leo Doob introduced during the 1950s has also been
helpful in the interpretation of what is happening during what is known as run-
and-twiddle (RT) adaptive learning. It has been shown that a semi-martingale is
constructed with a stopping time strategy during each adaptive learning episode.
Future work will include various families of neighborhoods as a basis for defining
a learning rate.
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Abstract. Rough set approach to knowledge entails its granulation:
knowledge represented as a collection of classifications by means of in-
discernibility of objects consists of indiscernibility classes that form el-
ementary granules of knowledge. Granules of knowledge that emerge as
unions of elementary granules are also characterized as exact concepts
that are described with certainty. Relaxing of indiscernibility relations
has led to various forms of similarity relations. In this lecture, we dis-
cuss the approach to similarity rooted in mereological theory of concepts,
whose primitive notion is that of a rough inclusion. Rough inclusions are
predicates/relations of a part to a degree. Partial containment is the
basic underlying phenomenon related to uncertainty, therefore rough in-
clusions allow for a formalization of a wide spectrum of contexts in which
reasoning under uncertainty is effected.

Granules are formed by means of rough inclusions as classes of objects
close to a specified center of the granule to a given degree; formally,
they resemble neighborhoods formed with respect to a certain metric.
Classes of objects in turn are defined by the class operator borrowed from
mereology. The usage of mereological techniques based on the notion of
a part is justified by its greater elegance and transparency in comparison
to the naive theory of concepts based on the notion of an element.

At IEEE GrC 2005, 2006 the Author put forth the idea of a granular
information/decision system whose objects are granules formed from the
original information/decision system; the idea was issued along with the
hypothesis that granular systems at sufficiently large radii of granulation,
should preserve information about objects coded in the attribute–value
language to a sufficiently high degree. This idea is here discussed along
with results of some tests that bear it out.

The second application that is reflected in the lecture is about missing
values; the approach discussed here is also based on granulation and the
idea is to absorb objects with missing values into granules of knowledge
in order to replace in a sense the missing value with a defined one decided
by the granule.

Keywords: granulation of knowledge, rough sets, rough inclusions,
granular decision systems.
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1 The Idea of Computing Via Rough Sets

Classical ideas about representations of uncertainty, expressed respectively by
Gottlob Frege and Max Black, found realization respectively in rough and fuzzy
concept theories. Despite their formal differences and distinct starting points,
both compute with granules of objects: rough sets with indiscernibility classes
of objects, fuzzy sets with inverse images of fuzzy membership functions.

Rough sets represent knowledge by means of information systems, i.e., pairs
of the form (U,A) where U is a set of objects and A is a set of attributes with
each a ∈ A a mapping a : U → Va on U into the value set Va. Objects are coded
by their information sets of the form inf(u) = {(a = a(u)) : a ∈ A}. Objects u, v
with inf(u) = inf(v) are called indiscernible and they are regarded as identical
with respect to the given set A. The B–indiscernibility relation relative to a set
B ⊆ A is ind(B) = {(u, v) : ∀a ∈ B.a(u) = a(v)}. Classes [u]B = {v : (u, v) ∈
ind(B)} are B–elementary granules of knowledge. Their unions are B–granules
of knowledge.

A formula (a = v) is an elementary descriptor; descriptors are formed as
the smallest set containing all elementary descriptors and closed under senten-
tial connectives ∨,∧,¬,⇒. The meaning [a = v] of an elementary descriptor is
defined as the set {u : a(u) = v} and it is recursively extended to meaning of
descriptors [8].

Decision systems are information systems of the form (U,A ∪ {d}) with a
singled out attribute d called the decision that does represent a description of
objects by an external informed source (say, an expert). Description of d in terms
of conditional attributes in the set A is effected by means of decision rules [8] of
the form ∧

a∈B

(a = va)⇒ (d = v). (1)

The rule (1) is true whenever [
∧

a∈B(a = va)] ⊆ [d = v]; otherwise it is
partially true; see, e.g., [10] for a review of this topic.

2 Granulation of Knowledge

The issue of granulation of knowledge as a problem on its own, has been posed by
L.A.Zadeh [23]. The issue of granulation has been a subject of intensive studies
within rough set community, as witnessed by a number of papers, see, e.g., [17],
[18].

Granules defined by indiscernibility and their direct generalizations to various
similarity classes of tolerance, asymmetric similarity relations and general binary
relations were subject to an intensive research, see, e.g. [7], [22]. Granulation of
knowledge by means of rough inclusions was studied in [16].

Granulation of knowledge and applications to knowledge discovery in the
realm of approximation spaces were studied, among others, in [20].

A study of granule systems was also carried out in [11], [12], [13], [14], in order
to find general properties of granules. In proofs of those properties, techniques
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of mereology were applied as more simple and elegant than those of naive set
theory.

2.1 The Technique of Mereology

Fundamental in mereology [6] is the relation of a part, π, that given a universe
U , does satisfy the following conditions ,

1.¬(xπx).2.xπy ∧ yπz ⇒ xπz, (2)

i.e., it is transitive (cond. 2) and irreflexive (cond. 1).
The notion of an element, associated with the part relation π, is expressed

with the help of the notion of an ingredient ingπ, informally an ”improper part”,

x ingπ y ⇔ x π y ∨ x = y. (3)

Mereology is a theory of individual objects, that decompose into parts, and
passing to it from Ontology - theory of distributive concepts, is realized by means
of the set/class operator [6]; given a non–empty collection F of objects, i.e., an
ontological concept F , the individual representing F is given as the class of F ,
ClsπF , subject to the following conditions,

1. u ∈ F ⇒ u ingπ ClsπF.
2. u ingπ ClsπF ⇒ ∀v.[v ingπ u⇒ ∃w, t. w ingπ v, w ingπ t, t ∈ F ]. (4)

In the sequel, the subscript π will be mostly omitted.
In plain words, ClsF consists of those objects whose each part has a part in

common with an object in F ; the reader will easily recognize that the union
⋃

F
of a family F of sets is the class of F with respect to the part relation ⊂.

2.2 Rough Inclusions

A rough inclusion is a generic term introduced in [16] for a class of relations
on the universe U ; any rough inclusion μ is a ternary relation, a subset of the
product U × U × [0, 1]; see [11], [12], [13], [14], for details and discussion along
with the extensive reference list.

A rough inclusion μπ(x, y, r), where x, y are individual objects, r ∈ [0, 1], does
satisfy the following requirements, relative to a given part relation π on a set U
of individual objects,

1. μπ(x, y, 1)⇔ x ingπ y;
2. μπ(x, y, 1)⇒ [μπ(z, x, r)⇒ μπ(z, y, r)];

3. μπ(x, y, r) ∧ s < r ⇒ μπ(x, y, s).
(5)

2.3 Examples of Rough Inclusions

Apart from a general theory, we give here some examples of rough inclusions, cf.
[11], [13], [14].
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1. Rough inclusions from Archimedean t–norms. They are induced from
Archimedean t–norms, see, e.g, [3], [10]. We describe the one we are going
to use in the sequel. The �Lukasiewicz t–norm

L(x, y) = max{0, x + y − 1}, (6)

admits a characterization,

L(x, y) = g(f(x) + f(y)), (7)

with f = 1 − x = g. We define the set, DIS(u, v) = {a ∈ A : a(u) �= a(v)},
and its complement IND(u, v) = U × U \DIS(u, v).

We define the rough inclusion μL,

μL(u, v, r)⇔ g(
|DIS(u, v)|
|A| ) ≥, (8)

i.e.,

μL(u, v, r)⇔ |IND(u, v)|
|A| ≥ r. (9)

The formula (9) witnesses that the reasoning based on the rough inclusion
μL is the probabilistic one. At the same time, we have given a logical proof
for formulas like (9) that are very frequently applied in Data Mining and
Knowledge Discovery.

μL is transitive [11]: μL(u, v, r) and μL(v, w, s) imply that μL(u,w, L(r, s)).
2. Rough inclusions and metrics. For a metric d(u, v) on the set of objects

U , i.e., 1. d(u, u) = 0; 2. d(u, v) = d(v, u); 3. d(u, v) ≤ d(u,w) + d(w, v), we
let μd(u, v, r) ⇔ d(u, v) ≤ 1 − r. Then, μd is a rough inclusion, transitive
with respect to the t–norm L.

Conversely, consider a transitive symmetric rough inclusion μT ; let
dμ(u, v) ≤ r⇔ μ(u, v, 1−r). Then, clearly, dμ(u, u) = 0, dμ(u, v) = dμ(v, u);
concerning triangle inequality 3., if dμ(u, v) ≤ r and dμ(v, w) ≤ s, then by
transitivity of μ, dμ(u,w) ≤ 1 − T (1 − r, 1 − s) = ST (r, s), where ST is
the t–conorm, induced by T , see,e.g., [10]; thus, dμ is a generalized met-
ric. Particular cases encompass: in case of T = min, ST = max, hence
dmin(u,w) ≤ max{dmin(u, v), dmin(v, w)}, i.e., dmin is an Archimedean met-
ric; in case of L, SL(r, s) = min{1, r+s} ≤ r+s, i.e., dL is a metric satisfying
3., restricted by 1.

2.4 Granules Induced from Rough Inclusions

The general scheme of our own for inducing granules is as follows. We fix an
information system (U,A), and a rough inclusion μ on U .

For an object u and a real number r ∈ [0, 1], we define the granule gμ(u, r)
about u of the radius r, relative to μ, by letting,

gμ(u, r) is ClsF (u, r), (10)
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where the property F (u, r) is satisfied with an object v if and only if μ(v, u, r)
holds.

It was shown, see [11], Theorem 4, that in case of a transitive μ,

v ing gμ(u, r)⇔ μ(v, u, r). (11)

By (11), the granule gμL(u, r) consists of objects v such that μL(v, u, r), i.e,
|IND(u, v)| ≥ r · |A|;

For a given granulation radius r, and the rough inclusion μL, we form the
collection UG

r,μL
= {gμL(u, r)}.

3 Granular Decision Systems

The idea of a granular decision system was posed in [13]; for a given information
system (U,A), a rough inclusion μ, and r ∈ [0, 1], the new universe UG

r,μ is given.
We apply a strategy G to choose a covering CovG

r,μ of the universe U by granules
from UG

r,μ.
We apply a strategy S in order to assign the value a∗(g) of each attribute

a ∈ A to each granule g ∈ CovG
r,μ: a∗(g) = S({a(u) : u ∈ g}). The granular

counterpart to the information system (U,A) is a tuple (UG
r,μ,G,S, {a∗ : a ∈ A});

analogously, we define granular counterparts to decision systems by adding the
factored decision d∗.

4 Factoring Classifiers Through Granular Systems

As objects in a granule are related one to another by similarity, the granule as
a whole should determine a new object; and a judiciously chosen set of the new
objects should guarantee the satisfactory quality of classification [13]. To test the
validity of this hypothesis, experiments have been carried out with real data sets.
We select here the Primary tumor data set [21] and we test it with exhaustive
algorithm of RSES package [19] and with LEM2 algorithm with the parameter
p=0.5 [2], [19]. We adopt random choice as the strategy G, majority voting with
random resolution of ties as S, and train–and–test at ratio 1:1 as the method
of test performing. Quality of classification is measured by total accuracy being
the ratio of the number of correctly classified cases to the number of recognized
cases, and total coverage, i.e, the ratio of the number of recognized test cases to
the number of test cases. Results are given in Table 1. nil denotes results without
granulation to which granular results are compared.

The procedure has been as follows.

1. the data table (U, A) has been input;
2. classification rules have been found on the training subtable of 50 percent of objects

by means of each of the three algorithms;
3. classification of dataset objects in the test subtable of remaining 50 percent of

objects has been found for each of the three classifications found at point 2;



74 L. Polkowski

4. given the granule radius, granules of that radius have been found on the training
subtable;

5. a granular covering of the training subtable has been chosen;

6. the corresponding granular decision system has been determined;
7. granular classifiers have been induced from the granular system in point 6 by means

of each of algorithms in point 2;

8. classifications of objects in the test subtable have been found by means of each of
classifiers in point 7;

9. classifications from points 3,8 have been compared with respect to adopted global

measures of quality: total accuracy and total covering.

Table 1. Primary tumor dataset:r=granule radius,tst=test sample size,trn=training
sample size,rulex=number of rules with exhaustive algorithm, rullem=number of rules
with LEM2, aex=total accuracy with exhaustive algorithm,cex=total coverage with ex-
haustive algorithm,alem=total accuracy with LEM2, clem=total coverage with LEM2

r tst trn rulex rullem aex cex alem clem

nil 170 169 4186 43 0.253 0.976 0.5 0.259
0.0 170 1 0 0 0.0 0.0 0.0 0.0

0.0588235 170 1 0 0 0.0 0.0 0.0 0.0
0.117647 170 1 0 0 0.0 0.0 0.0 0.0
0.176471 170 1 0 0 0.0 0.0 0.0 0.0
0.235294 170 1 0 0 0.0 0.0 0.0 0.0
0.294118 170 1 0 0 0.0 0.0 0.0 0.08
0.352941 170 1 0 0 0.0 0.0 0.0 0.0
0.411765 170 2 0 1 0.0 0.0 1.0 0.188
0.470588 170 3 0 1 0.0 0.0 1.0 0.188
0.529412 170 5 0 1 0.0 0.0 1.0 0.188
0.588235 170 8 0 1 0.0 0.0 1.0 0.188
0.647059 170 12 11 1 0.547 0.376 0.0 0.0
0.705882 170 17 40 3 0.457 0.476 0.667 0.035
0.764706 170 33 108 4 0.468 0.553 0.769 0.076
0.823529 170 54 1026 11 0.434 0.759 0.586 0.171
0.882353 170 75 3640 17 0.308 0.859 0.579 0.224
0.941176 170 107 4428 24 0.295 0.976 0.466 0.341

Conclusions for Primary tumor. For exhaustive algorithm,accuracy is better
with granular than original training set from the radius of 0.647059 on where
reduction in size of training set is 92.9 percent and reduction in size of rule set
is almost 100 percent (11 versus 4186). Coverage falls within error bound of 22.3
percent from the radius of 0.823529 on, where reduction in training st size is 68.2
percent and reduction in size of rule set is 75.5 percent; it becomes the same as
in non–granular case at r = .941 with reduction in object size of 36.7 percent.

LEM2 exceeds accuracy of classifier trained on original training table with
accuracy of granular classifier from the radius of 0.705882 on where reduction
in training set size is 89.95 percent and reduction in rule set size is 93 percent.
Coverage for granular classifier is better or within error of 13.5 percent from the
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radius of 0.882353 where reduction in size of the training set is 55.6 percent and
reduction in size of rule set is 60.5 percent.

Thus, granular approach provides results on par with those obtained in non–
granular case.

5 A Granular Approach to Missing Values

An information/decision system is incomplete in case some values of conditional
attributes from A are not known. Analysis of systems with missing values re-
quires a decision on how to treat missing values; Grzymala–Busse in his work
[2], analyzes nine such methods, among them, 4. assigning all possible values to
the missing location, 9. treating the unknown value as a new valid value, etc. etc.
Results in [2] indicate that methods 4,9 perform very well among all nine meth-
ods. In this work we consider and adopt two methods, i.e.4, 9. Analysis of this
problem has been given also in Kryszkiewicz [4] and Kryszkiewicz–Rybinski [5].

We will use the symbol ∗ commonly used for denoting the missing value; we
will use two methods 4, 9 for treating ∗, i.e, either ∗ is a don’t care symbol
meaning that any value of the respective attribute can be substituted for ∗, thus
∗ = v for each value v of the attribute, or ∗ is a new value on its own, i.e., if
∗ = v then v can be only ∗.

Table 2. Strategy A. CV–5; Hepatitis; exhaustive algorithm. r=radius,macc=mean
accuracy, mcov=mean coverage, mrul=mean number of rules, mtrn=mean training
granular sample size

r macc mcov mrul mtrn

0.0 0.0 0.0 0.0 1.0
0.0526316 0.0 0.0 0.0 1.0
0.105263 0.0 0.0 0.0 1.0
0.157895 0.0 0.0 0.0 1.0
0.210526 0.0 0.0 0.0 1.0
0.263158 0.0 0.0 0.0 1.4
0.315789 0.0 0.0 0.0 2.0
0.368421 0.0 0.0 0.0 2.4
0.421053 0.0 0.0 0.0 3.8
0.473684 0.2012 0.3548 6.4 3.4
0.526316 0.5934 1.0 29.6 7.4
0.578947 0.4992 0.7872 33.8 7.6
0.631579 0.5694 0.9872 176.2 20.0
0.684211 0.5852 0.9936 167.6 17.8
0.736842 0.6102 0.9936 263.0 22.8
0.789474 0.6130 1.0 911.0 49.4
0.842105 0.6258 1.0 989.6 46.8
0.894737 0.6386 1.0 1899.0 77.0
0.947368 0.6774 1.0 2836.2 105.8

1.0 0.6710 1.0 3286.4 123.4
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Table 3. Strategy B. CV–5; Hepatitis; exhaustive algorithm. r=radius,macc=mean
accuracy, mcov=mean coverage, mrul=mean number of rules, mtrn=mean training
granular sample size

r macc mcov mrul mtrn

0.0 0.0 0.0 0.0 1.0
0.0526316 0.0 0.0 0.0 1.0
0.105263 0.0 0.0 0.0 1.0
0.157895 0.0 0.0 0.0 1.0
0.210526 0.0 0.0 0.0 1.2
0.263158 0.0 0.0 0.0 1.2
0.315789 0.0 0.0 0.0 1.6
0.368421 0.1104 0.1870 1.0 2.6
0.421053 0.0904 0.2000 1.6 3.4
0.473684 0.3938 0.5806 7.2 4.4
0.526316 0.4234 0.7936 26.2 7.6
0.578947 0.6302 0.9936 59.4 10.8
0.631579 0.6708 1.0 126.4 15.4
0.684211 0.6038 0.9742 253.4 24.4
0.736842 0.6292 0.9936 367.6 35.2
0.789474 0.6166 0.9936 947.0 52.2
0.842105 0.6324 1.0 1417.2 71.8
0.894737 0.6386 1.0 1797.0 79.6
0.947368 0.6450 1.0 3081.8 113.4

1.0 0.6646 1.0 3354.2 123.4

Our procedure for treating missing values is based on the granular structure
(UG

r,μ,G,S, {a∗ : a ∈ A}); the strategy S is the majority voting, i.e., for each
attribute a, the value a∗(g) is the most frequent of values in {a(u) : u ∈ g}. The
strategy G consists in random selection of granules for a covering.

For an object u with the value of ∗ at an attribute a, and a granule g =
g(v, r) ∈ UG

r,μ, the question whether u is included in g is resolved according
to the adopted strategy of treating ∗: in case ∗ = don′t care, the value of ∗
is regarded as identical with any value of a hence |IND(u, v)| is automatically
increased by 1, which increases the granule; in case ∗ = ∗, the granule size is
decreased. Assuming that ∗ is sparse in data, majority voting on g would produce
values of a∗ distinct from ∗ in most cases; nevertheless the value of ∗ may appear
in new objects g∗, and then in the process of classification, such value is repaired
by means of the granule closest to g∗ with respect to the rough inclusion μL, in
accordance with the chosen method for treating ∗.

In plain words, objects with missing values are in a sense absorbed by close
to them granules and missing values are replaced with most frequent values in
objects collected in the granule; in this way the method 3 or 4 in [2] is combined
with the idea of a frequent value, in a novel way.

We have thus four possible strategies:

– Strategy A: in building granules ∗=don’t care, in repairing values of ∗,
∗=don’t care;
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– Strategy B: in building granules ∗=don’t care, in repairing values of ∗, ∗ = ∗;
– Strategy C: in building granules ∗ = ∗, in repairing values of ∗, ∗=don’t care;
– Strategy D: in building granules ∗ = ∗, in repairing values of ∗, ∗ = ∗.

5.1 Results of Test with Real Data Set Hepatitis with Missing
Values

We record here results of tests with Hepatitis data set [21] with 155 objects, 20
attributes and 167 missing values. We apply the exhaustive algorithm of RSES
system [19] and 5–fold cross–validation (CV–5). Below we give averaged results
for strategies A, B, C, and D. As before, radius nil indicates non–granulated case.

Now, we record in Tables 2–5 the results of classification for Hepatitis with
exhaustive algorithm and CV–5 cross–validation for strategies A, B, C, D, re-
spectively.

For comparison, we include results of tests with Hepatitis recorded in [1]; the
method was modified LERS algorithm with additional parameters like strength
and specificity of a rule and the approach 9. gave error rate of 0.1935 i.e. accuracy
0.8065. Best result given by strategy C based on the same treatment of ∗ is
accuracy 0.6838. Naive LERS algorithm [1] gave for this data set and method 9
error of 0.3484 i.e. accuracy of 0.6516. Interestingly, granular method gives better
than [1] results for Breast cancer data set, as reported in [15], these Proceedings.

Table 4. Strategy C. CV–5; Hepatitis; exhaustive algorithm. r=radius,macc=mean
accuracy, mcov=mean coverage, mrul=mean number of rules, mtrn=mean training
granular sample size

r macc mcov mrul mtrn

0.0 0.0 0.0 0.0 1.0
0.0526316 0.0 0.0 0.0 1.0
0.105263 0.0 0.0 0.0 1.2
0.157895 0.0 0.0 0.0 1.2
0.210526 0.0 0.0 0.0 1.8
0.263158 0.0 0.0 0.0 2.0
0.315789 0.2560 0.3936 2.4 4.0
0.368421 0.4486 0.6838 7.4 5.6
0.421053 0.4766 0.7870 19.2 7.8
0.473684 0.5806 1.0 58.4 10.6
0.526316 0.6580 1.0 136.6 17.4
0.578947 0.64902 0.9936 332.4 32.0
0.631579 0.6568 0.9936 991.6 47.4
0.684211 0.6646 1.0 1751.6 70.2
0.736842 0.6902 1.0 2648.8 93.2
0.789474 0.6322 1.0 3208.8 112.6
0.842105 0.6776 1.0 3297.8 120.2
0.894737 0.6710 1.0 3297.4 123.4
0.947368 0.6838 1.0 3305.4 124.0

1.0 0.6774 1.0 3327.2 124.0
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Table 5. Strategy D. CV–5; Hepatitis; exhaustive algorithm. r=radius,macc=mean
accuracy, mcov=mean coverage, mrul=mean number of rules, mtrn=mean training
granular sample size

r macc mcov mrul mtrn

0.0 0.0 0.0 0.0 1.0
0.0526316 0.0 0.0 0.0 1.0
0.105263 0.0 0.0 0.0 1.0
0.157895 0.0 0.0 0.0 1.4
0.210526 0.0 0.0 0.0 1.6
0.263158 0.0 0.0 0.0 2.6
0.315789 0.3886 0.5162 6.0 3.8
0.368421 0.5730 0.9032 16.6 4.8
0.421053 0.6328 0.9418 23.8 6.8
0.473684 0.5740 0.9740 60.6 10.6
0.526316 0.6170 0.9936 120.6 16.8
0.578947 0.6888 0.9936 354.0 30.6
0.631579 0.6388 1.0 922.0 47.4
0.684211 0.6646 1.0 1828.6 70.8
0.736842 0.6450 1.0 2648.2 93.4
0.789474 0.6516 1.0 3182.0 112.4
0.842105 0.6710 1.0 3299.2 120.4
0.894737 0.6710 1.0 3333.8 123.4
0.947368 0.6646 1.0 3327.2 124.0

1.0 0.6710 1.0 3338.6 124.0

Conclusions for Hepatitis data set. Results for particular strategies com-
pared radius by radius show that the ranking of strategies is C > D > B > A
with the average number of ranks respectively 1.3, 1.8., 3.1, 3.8; thus, the strategy
C is most effective with D giving slightly worse results. Results by our granular
approach are midway between results for naive and new LERS in [1] showing
the potential of the method as well as the need for further development.

6 Conclusion

The results of tests reported in this work bear out the hypothesis that granulated
data sets preserve information allowing for satisfactory classification. Also the
novel approach to the problem of data with missing values has proved to be very
effective. Further studies will lead to novel algorithms for rule induction based
on granules of knowledge.
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Abstract. With the fast booming of online music repositories, there is
a need for content-based automatic indexing which will help users to
find their favorite music objects in real time. Recently, numerous suc-
cessful approaches on musical data feature extraction and selection have
been proposed for instrument recognition in monophonic sounds. Un-
fortunately, none of these methods can be successfully applied to poly-
phonic sounds. Identification of music instruments in polyphonic sounds
is still difficult and challenging, especially when harmonic partials are
overlapping with each other. This has stimulated the research on music
sound separation and new features development for content-based au-
tomatic music information retrieval. Our goal is to build a cooperative
query answering system (QAS), for a musical database, retrieving from
it all objects satisfying queries like ”find all musical pieces in penta-
tonic scale with a viola and piano where viola is playing for minimum
20 seconds and piano for minimum 10 seconds”. We use the database of
musical sounds, containing almost 4000 sounds taken from the MUMs
(McGill University Master Samples), as a vehicle to construct several
classifiers for automatic instrument recognition. Classifiers showing the
best performance are adopted for automatic indexing of musical pieces
by instruments. Our musical database has an FS-tree (Frame Segment
Tree) structure representation. The cooperativeness of QAS is driven by
several hierarchical structures used for classifying musical instruments.

1 Introduction

Broader research on automatic musical instrument sound classification goes back
to last few years. So far, there is no standard parameterization used as a clas-
sification basis. The sound descriptors used are based on various methods of
analysis of time and spectrum domain, with Fourier Transform amplitude spec-
tra being most common. Also, wavelet analysis gains increasing interest for sound
and especially for musical sound analysis and representation [21], [9]. Diversity
of sound timbres is also used to facilitate data visualization via sonification, in
order to make complex data easier to perceive [1].

Many parameterization and recognition methods, including pitch extraction
techniques, applied in musical research come from speech and speaker recogni-
tion domain [5], [22]. Sound parameters applied in research performed in musi-
cal instrument classification include cepstral coefficients, constant-Q coefficients,
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spectral centroid, autocorrelation coefficients, and moments of the time wave [3],
wavelet analysis [23], [13], root mean square (RMS), amplitude envelope and mul-
tidimensional scaling analysis trajectories [12], and various spectral and temporal
features [14], [17], [23]. The sound sets used differ from experiment to experiment,
with McGill University Master Samples (MUMS) CDs being most common [19],
yet not always used [3], making comparison of results more difficult. Some ex-
periments operate on a very limited set of data, like 4 instruments, or singular
samples for each instrument. Even if the investigations are performed on MUMS
data, every researcher selects different group of instruments, number of classes,
and testing method is also different. Therefore, data sets used in experiments
and the obtained results are not comparable. Additionally, each researcher fol-
lows different parameterization technique(s), which makes comparison yet more
difficult. Audio features in our system [26], [15] are first categorized as MPEG7
descriptors and other/non-MPEG7 descriptors in the acoustical perspective of
view, where both spectrum features and temporal features are included. We
have built a derivative database of those features with single valued data for
KD-based classification. The spectrum features have two different frequency do-
mains: Hz frequency and Mel frequency. Frame size was carefully designed to be
120ms, so that the 0th octave G (the lowest pitch in our audio database) can be
detected. The hop size is 40ms with a overlapping of 80ms. A hamming window
was applied to all STFTs (Short Time Fourier Transforms) to avoid jittering
in the spectrum. By the results from the experiments, it was shown that the
non-MPEG features significantly improve the performance of the classifiers [28].

The classifiers, applied in research on musical instrument sound classification,
represent practically all known methods. The most popular classifier is k-Nearest
Neighbor (k-NN), see for example [12]. This classifier is relatively easy to imple-
ment and quite successful. Other reported results include Bayes decision rules,
Gaussian mixture model [3], artificial neural networks [13], decision trees and
rough set based algorithms [24], discriminant analysis [17] hidden Markov Mod-
els (HMM), support vector machines (SVM) and other. The obtained results
vary depending on the size of the data set, with accuracy reaching even 100%
for 4 classes. However, the results for more than 10 instruments, explored in full
musical scale range, generally are below 80%. Extensive review of parameteriza-
tion and classification methods applied in research on this topic, with obtained
results, is given in [10]. The classifiers investigated in our project include k-NN,
Bayesian Networks, and Decision Tree J-48. We also consider use of neural net-
works, especially time-delayed neural networks (TDNN), since they perform well
in speech recognition applications [18].

Musical instrument sounds can be classified in various ways, depending on the
instrument or articulation classification. In [25], we review a number of possible
generalizations of musical instruments sounds classification which can be used to
construct different hierarchical decision attributes. Each decision attribute leads
to a new classifier and the same to a different system for automatic indexing
of music by instrument sounds and their generalizations. Values of any decision
attribute and their generalizations can be seen as atomic queries of a query
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language built for retrieving musical objects from musical database. When query
fails, the cooperative strategy tries to find its lowest generalization which does
not fail, taking into consideration all available hierarchical attributes. Paper
[25] evaluates two hierarchical attributes (Hornbostel-Sachs classification and
classification by articulation) upon the same dataset which contains 2628 distinct
musical samples of 102 instruments. By cross checking the resulting schemes for
both attributes, it was observed that the timbre estimation of instruments had
higher accuracy than that of instruments from other families by the classification
by articulation. Also, among the musical objects played by different articulations,
the sounds played by lip-vibration tended to be less correctly recognized by
Hornbostel-Sachs classification. This justifies the construction of atomic queries
from values of more than one decision attribute.

2 Sound Data

This paper deals with recordings where for each channel there is only access to
one-dimensional data, i.e. to single sample representing amplitude of the sound.
Any basic information like pitch (or pitches, if there are more sounds), timbre,
beginning and end of the sound must be extracted via digital signal processing.
The audio database consists of stereo musical pieces from the MUMS samples.
These audio data files are treated as mono-channel, where only left channel was
taken into consideration, since successful methods for the left channel will also
be successfully applied to the right channel. In the view of classification, these
audio data can be categorized into two different types: one is monophonic sound
note to generate training feature set; the other is polyphonic sound sequence for
testing.

Our research is driven by the desire to identify the individual instrument
types or instrument family categories of the predominant instruments in a music
object. Timbre is a quality of sound that distinguishes one music instrument
from another, while there are a wide variety of instrument families and individ-
ual categories. It is rather subjective quality, defined by ANSI as the attribute
of auditory sensation, in terms of which a listener can judge that two sounds,
similarly presented and having the same loudness and pitch, are different. Such
definition is subjective and not of much use for automatic sound timbre classifi-
cation. Therefore, musical sounds must be very carefully parameterized to allow
automatic timbre recognition. The real use of timbre-based grouping of music
is discussed in [2]. Evolution of sound features in time is essential for humans,
therefore it should be reflected in sound description as well. The discovered tem-
poral patterns may better express sound features than static features, especially
that classic features can be very similar for sounds representing the same family
or pitch, whereas changeability of features with pitch for the same instrument
makes sounds of one instrument dissimilar.

Based on recent research performed in MIR area, MPEG proposed an MPEG-
7 standard, in which it described a set of low-level sound temporal and spec-
tral features. The low-level descriptors in MPEG-7 are intended to describe the
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time-variant information within an entire audio segment, where most of them
are, like other STFT related acoustic features, in a form of either vector or
matrix of large size, where an audio segment was divided into a set of frames
and each row represents a power spectrum in the frequency domain within each
analysis window. Therefore, these features are not suitable for traditional clas-
sifiers, which require single-value cell of input datasets. Researchers have been
explored different statistical summations in a form of single value to describe sig-
natures of music instruments within vectors or matrices in those features, such
as Tristimulus parameters [20] or Brightness [6]. However, current features fail
to sufficiently describe the audio signatures which vary in time within a whole
sound segment, esp. where multiple audio signatures are overlapping with each
other. It was widely observed that a sound segment of a note, which is played
by a music instrument, has at least three states: onset (transient), quasi-steady
state and offset (transient). Vibration pattern in a transient state is known to
significantly differ from the one in a quasi-steady state. Consequently, the har-
monic features in the transient states behavior significantly different from those
in the quasi-steady state. Also, it has been observed that a human needs to
know the beginning of the music sound in order to discern the type of an instru-
ment. Identifying the boundary of the transient state enables accurate timbre
recognition.

3 Feature Database Construction

Our research involves the construction of two main databases, one is a mono-
phonic sound feature database, which is used for classifiers construction; the
other is a polyphonic audio database, which is used for testing. The latter will
have FS-tree structure driven by automatic indexing of audio files by music in-
struments and their classes. The monophonic sound feature database contains
over 1022 attributes, where 1018 of them were computed from the digital mono-
phonic sound files and four decision hierarchical attributes were manually la-
belled. There are many ways to categorize the audio features. In our research,
computational audio features are first categorized as MPEG7 based descriptors
and other/non-MPEG7 descriptors in the acoustical perspective of view, where
both spectrum features and temporal features are included. Then, a derivative
database of those features with single valued data features, for the purpose of
learning classifiers, is constructed. The manually labelled decision attributes will
be discussed in latter section. Spectrum features have different frequency do-
mains: Hz frequency and Mel frequency. Frame size is chosen as 0.12 second, so
that the 0th octave G (the lowest pitch in our audio database) can be detected,
which is also within the range of estimates for temporal acuity of human ear.
The hop size is 0.04 second with a overlapping of 0.08 second. Since the sampling
frequency of all the music objects is 44,100Hz, there are 5292 sample data per
frame in the waveform.

The list of MPEG7 features includes: Harmonic Upper Limit, Harmonic Ra-
tio, Basis Functions, Log Attack Time, Temporal Centroid, Spectral Centroid,
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Spectrum Centroid/Spread I, Harmonic Parameters, Flatness. The list of ex-
tended MPEG7 features and other features includes: Tristimulus Parameters,
Spectrum Centriod/Spread II, Flux, Roll Off, Zero Crossing, MFCC, Spectrum
Centroid/Spread I, Harmonic Parameters, Flatness, Durations. Intermediate fea-
tures include Harmonic Upper Limit and Projection.

4 Sound Separation

Our system consists of five modules: a quasi-steady state detector, a STFT
converter with hamming window, a pre-dominant fundamental frequency esti-
mator, a sequential pattern matching engine (it will be replaced by a classifier)
with connection to a feature database, a FFT subtraction device [27].

The quasi-steady state detector computes overall fundamental frequency in
each frame by a cross-correlation function, and outputs the beginning and end
positions of the quasi-steady state of the input sound.

The STFT converter divides a digital audio object into a sequence of frames,
applies STFT transform to the mixed sample data of integers from time domain
to frequency domain with a hamming window, and outputs NFFT discrete
points.

The pre-dominant fundamental frequency estimator identifies all the possible
harmonic peaks, computes the likelihood value for each candidate peak, elects

Fig. 1. Sound Separation System
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the frequency with the maximum likelihood value as the fundamental frequency,
and stores its normalized correspondence harmonic sequence.

The sequential-pattern matching engine computes the distance of each pair
wise sequence of first N harmonic peaks, where N is set empirically, then outputs
the sound with the minimum distance value for each frame, and finally estimates
the sound object by the most frequent sound object among all the frames.

The FFT subtraction device subtracts the detected sound source from the
spectrum, computes the imaginary and real part of the FFT point by the power
and phase information, performs IFFT for each frame, and outputs resultant
remaining signals into a new audio data file.

5 Multi-way Hierarchic Classification

Classification of musical instrument sounds can be performed in various ways
[11]. Paper [25] reviews several hierarchical classifications of musical instrument
sounds but concentrates only on two of them: Hornbostel-Sachs classification
of musical instruments and classification of musical instruments by articulation
with 15 different articulation methods (seen as attribute values): blown, bowed,
bowed vibrato, concussive, hammered, lip-vibrated, martele, muted, muted vi-
brato, percussive, picked, pizzicato, rubbed, scraped and shaken. Each hierar-
chical classification represents a unique decision attribute which leads us to a
discovery of a new classifier and the same to a different system for automatic
indexing of music by instruments and their certain generalizations.

The goal of each classification is to find descriptions of musical instruments
or their classes (values of attribute d) in terms of values of attributes from A.
Each classification results in a classifier which can be evaluated using standard
methods like bootstrap or cross-validation.

In [25] authors concentrate on classifiers built by rule-based methods (for in-
stance: LERS, RSES, PNC2) and next on classifiers built by tree-based methods
(for instance: See5, J48 Tree, Assistant, CART, Orange).

Let us assume that S = (X,A ∪ {d}, V ) is a decision system, where d is
a hierarchical attribute. We also assume that d[i1,...,ik] (where 1 ≤ ij ≤ mj ,
j = 1, 2..., k) is a child of d[i1,...,ik−1] for any 1 ≤ ik ≤ mk. Clearly, attribute d
has Σ{m1 ·m2 · ... ·mj : 1 ≤ j ≤ k} values, where m1 ·m2 · ... ·mj shows the upper
bound for the number of values at the level j of d. By p([i1, ..., ik]) we denote a
path (d, d[i1], d[i1,i2], d[i1,i2,i3],..., d[i1,...,ik−1], d[i1,...,ik]) leading from the root of
the hierarchical attribute d to its descendant d[i1,...,ik].

Let us assume that Rj is a set of classification rules extracted from S, repre-
senting a part of a rule-based classifier R =

⋃
{Rj : 1 ≤ j ≤ k}, and describing

all values of d at level j. The quality of a classifier at level j of attribute d can
be checked by calculating Q(Rj) =

∑
{sup(r)·conf(r):r∈Rj}∑

{sup(r:r∈Rj} , where sup(r) is the
support of the rule r in S and conf(r) is its confidence. Then, the quality of the
rule-based classifier R can be checked by calculating Q(

⋃
{Rj : 1 ≤ j ≤ k}) =∑

{Q(Rj):1≤j≤k}
k .
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The quality of a tree-based classifier can be given by calculating its quality
for every node of a hierarchical decision attribute d. Let us take a node d[i1,...,ik]

and the path p([i1, ..., ik]) leading to that node from the root of d. There is a
set of classification rules R[i1,...,im], uniquely defined by the tree-based classifier,
assigned to a node d[i1,...,im] of a path p([i1, ..., ik]), for every 1 ≤ m ≤ k. Now, we

define Q(R[i1,...,im]) as
∑
{sup(r)·conf(r):r∈R[i1,...,im]}∑

{sup(r):r∈R[i1,...,im ]} . Then, the quality of a tree-
based classifier for a node d[i1,...,im] of the decision attribute d can be checked by
calculating Q(d[i1,...,im]) =

∏
{Q(R[i1,...,ij]) : 1 ≤ j ≤ m}. In our experiments,

presented in Section 4 of this paper, we use J48 Tree as the tool to build tree-
based classifiers. Also, their performance on level m of the attribute d is checked
by calculating Q(d[i1,...,im]) for every node d[i1,...,im] at the level m. Finally, the
performance of both classifiers is checked by calculating Q(

⋃
{Rj : 1 ≤ j ≤ k})

(the first method we proposed).
Learning values of a decision attribute at different generalization levels is

extremely important not only for designing and developing an automatic index-
ing system of possibly highest confidence but also for handling failing queries.
Values of a decision attribute and their generalizations are used to construct
atomic queries of a query language built for retrieving musical objects from
MIR Database (see http://www.mir.uncc.edu). When query fails, the coopera-
tive strategy [7], [8] may try to find its lowest generalization which does not fail.
Clearly, by having a variety of different hierarchical structures available for d
we have better chance not only to succeed but succeed with a possibly smallest
generalization of an instrument class.

6 Flexible Query Answering System

Now, we discuss how a Flexible Query Answering System (see Figure 1) associ-
ated with a database D of music files works for a sample query which consists
of two parts: a digital musical file F and an instrument T . The query should be
read as: Find all musical pieces, in the database D, which are played by the same
instruments as the instruments used in F. Also the duration time of all these
instruments has to be the same (threshold value can be provided).

The digital musical file is divided into segments of equal length. Automatic
indexing system operates on each segment piece and outputs a vector of features
describing its content. Then a classifier estimates what instruments are present
in each segment and what is their time duration and then searches the FS-
tree to identify the musical pieces in database D satisfying the query. If query
fails, then an instrument used in F which has the most similar timbre to the
instrument T is identified and it is replaced by T assuming that its time duration
is the same as the time duration of the replaced instrument. Finally, the closest
musical file to the file requested by user is returned as the result of the query.
Alternatively, the classifier of a higher level in the instrument family tree is
assigned for timbre classification on its own level, and repeats the steps until a
desire result is achieved or the root of the instrument family tree is reached. This
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Fig. 2. Flexible Query Answering System based on MIR

approach especially benefits non-musician users who have limited information on
music instrument classification schema.

7 Conclusion and Acknowledgement

The ultimate goal of this research is to build a cooperative system for automatic
indexing of music by instruments or classes of instruments, use this system to
build FS-tree type music database for storing automatically indexed musical
files, and finally design and implement a Cooperative Query Answering System
to handle user requests submitted to music database.
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Abstract. Pawlak showed that knowledge can be captured by data par-
tition and proposed a rough set method where comparison between data
partition gives knowledge about classification. Interestingly, thes approx-
imations correspond to the focusing mechanism of differential medical
diagnosis; upper approximation as selection of candidates and lower ap-
proximation as concluding a final diagnosis. This paper focuses on severl
models of medical reasoning shows that core ideas of rough set theory
can be observed in these diagnostic models.

1 Introduction

Medical reasoning always includes uncertainty[1], which is caused by the limita-
tions of medical knowledge, available data and our recognition, compared with
the complexities of human body. Thus, medical databases also have a certain
degree of uncertainty: rules extracted from databases are also incomplete, which
suggests that rule induction method should deal with uncertain rules.

According to this motivation, rule induction based on rough set theory have
been applied to medical databases empirically[2,3], the results of which shows
that rough-set-based methods are very useful to extract medical diagnostic rules.

This paper presents how medical diagnostic rules are modeled by the concepts
of rough sets[4] in a more theoretical way. The key ideas are variable precision
rough set model, which corresponds to a ordinal positive reasoning, and an upper
approximation of a target concept, which corresponds to a focusing mechanism
in medical reasoning. Acquired models show that the characteristics of medical
reasoning reflect the concepts on approximation of rough sets, which explains
why rough sets work well in medical domains. The paper is organized as fol-
lows: in Section 2, two important measures, accuracy and coverage are defined
and a probabilistic rule is defined. Section 3 to 5 presents description of three
types of medical reasoning: simple differential diagnosis, focusing mechanism and
m−of−n criteria, respectively. Section 6 concludes our paper.

2 Definition of Rules

2.1 Rough Sets

In the following sections, we use the following notations introduced by Grzymala-
Busse and Skowron[5], which are based on rough set theory[4]. These notations

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 90–100, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Table 1. An Example of Dataset

No. age location nature prodrome nausea M1 class

1 50-59 occular persistent no no yes m.c.h.
2 40-49 whole persistent no no yes m.c.h.
3 40-49 lateral throbbing no yes no migra
4 40-49 whole throbbing yes yes no migra
5 40-49 whole radiating no no yes m.c.h.
6 50-59 whole persistent no yes yes psycho

Definitions. M1: tenderness of M1, m.c.h.: muscle
contraction headache, migra: migraine, psycho:
psychological pain.

are illustrated by a small dataset shown in Table 1, which includes symptoms
exhibited by six patients who complained of headache.

Let U denote a nonempty, finite set called the universe and A denote a
nonempty, finite set of attributes, i.e., a : U → Va for a ∈ A, where Va is called
the domain of a, respectively.Then, a decision table is defined as an information
system, A = (U,A ∪ {d}). For example, Table 1 is an information system with
U = {1, 2, 3, 4, 5, 6} and A = {age, location, nature, prodrome, nausea,M1} and
d = class. For location ∈ A, Vlocation is defined as {occular, lateral, whole}.

The atomic formulae over B ⊆ A ∪ {d} and V are expressions of the form
[a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set F (B, V ) of
formulas over B is the least set containing all atomic formulas over B and closed
with respect to disjunction, conjunction and negation. For example, [location =
occular] is a descriptor of B.

For each f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all
objects in U with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

For example, f = [location = whole] and fA = {2, 4, 5, 6}. As an example of a
conjunctive formula, g = [location = whole] ∧ [nausea = no] is a descriptor of
U and fA is equal to glocation,nausea = {2, 5}.

2.2 Classification Accuracy and Coverage

Definition of Accuracy and Coverage. By the use of the framework above,
classification accuracy and coverage, or true positive rate is defined as follows.

Definition 1
Let R and D denote a formula in F (B, V ) and a set of objects which belong to
a decision d. Classification accuracy and coverage(true positive rate) for R→ d
is defined as:
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αR(D) =
|RA ∩D|
|RA|

(= P (D|R)), and

κR(D) =
|RA ∩D|
|D| (= P (R|D)),

where |S|, αR(D), κR(D) and P(S) denote the cardinality of a set S, a classifi-
cation accuracy of R as to classification of D and coverage (a true positive rate
of R to D), and probability of S, respectively.

Figure 1 depicts the Venn diagram of relations between accuracy and coverage.
Accuracy views the overlapped region |RA ∩D| from the meaning of a relation
R. On the other hand, coverage views the overlapped region from the meaning
of a concept D.

RA

D
Relation

Class

Accuracy:
Overlap/ RA

Overlap Coverage:
Overlap/ D

Fig. 1. Venn Diagram of Accuracy and Coverage

In the above example, when R and D are set to [nau = yes] and [class =
migraine], αR(D) = 2/3 = 0.67 and κR(D) = 2/2 = 1.0.

It is notable that αR(D) measures the degree of the sufficiency of a propo-
sition, R → D, and that κR(D) measures the degree of its necessity. For ex-
ample, if αR(D) is equal to 1.0, then R → D is true. On the other hand, if
κR(D) is equal to 1.0, then D → R is true. Thus, if both measures are 1.0,
then R ↔ D. Other characteristics of accuracy and coverage are shown in the
appendix.

2.3 Probabilistic Rules

By the use of accuracy and coverage, a probabilistic rule is defined as:

R
α,κ→ d s.t. R = ∧j [aj = vk], αR(D) ≥ δα and κR(D) ≥ δκ,
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R D s t DR→ >. . ( ) ,α δα κ δκR D( )>R D s t DR→ >. . ( ) ,α δα κ δκR D( )>

RA D

Fig. 2. Venn Diagram for Probabilistic Rules

If the thresholds for accuracy and coverage are set to high values, the meaning
of the conditional part of probabilistic rules corresponds the highly overlapped
region. Figure 2 depicts the Venn diagram of probabilistic rules with highly over-
lapped region. This rule is a kind of probabilistic proposition with two statistical
measures, which is an extension of Ziarko’s variable precision model(VPRS) [6].1

3 Simplest Diagnostic Rules

3.1 Representation of Diagnostic Rules

The simplest probabilistic model is that which only uses classification rules which
have high accuracy and high coverage. Such rules can be defined as:

R
α,κ→ d s.t. R = ∨iRi = ∨ ∧j [aj = vk],

αRi(D) ≥ δα and κRi(D) ≥ δκ,

where δα and δκ denote given thresholds for accuracy and coverage, respectively.
For the above example shown in Table 1, probabilistic rules for m.c.h. are given
as follows (both δα and δκ are set to 0.75):

[prod = 0]→ m.c.h. α = 3/4 = 0.75, κ = 1.0,
[nau = 0] → m.c.h. α = 3/3 = 1.0, κ = 1.0,
[M1 = 1] → m.c.h. α = 3/4 = 0.75, κ = 1.0,

3.2 An Rule Induction Algorithm

An rule induction algorithm is defined as Figure 1, which is discussed precisely
in [8]. It is notable that rule induction of other type rules is derived by simple
modification of this algorithm.
1 This probabilistic rule is also a kind of Rough Modus Ponens[7].
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procedure Induction of Classification Rules;
var

i : integer; M, Li : List;
begin

L1 := Ler; /* Ler: List of Elementary Relations */
i := 1; M := {};
for i := 1 to n do /* n: Total number of attributes */

begin
while ( Li �= {} ) do

begin
Sort Li with respect to the value of coverage;
Select one pair R = ∧[ai = vj ] from Li,
which have the largest value on coverage;
Li := Li − {R};
if (κR(D) ≥ δκ)

then do
if (αR(D) ≥ δα)

then do Sir := Sir + {R}; /* Include R as Classification Rule */
M := M + {R};

end
Li+1 := (A list of the whole combination of the conjunction formulae in M);

end
end {Induction of Classification Rules };

Fig. 3. An Algorithm for Classification Rules

4 Focusing Mechanism

One of the characteristics in medical reasoning is a focusing mechanism, which
is used to select the final diagnosis from many candidates[9,10]. For example,
in differential diagnosis of headache, more than 60 diseases will be checked by
present history, physical examinations and laboratory examinations. In diagnos-
tic procedures, a candidate is excluded if a symptom necessary to diagnose is
not observed.

This style of reasoning consists of the following two kinds of reasoning pro-
cesses: exclusive reasoning and inclusive reasoning. Relations of this diagnostic
model with another diagnostic model are discussed in [2]. The diagnostic pro-
cedure will proceed as follows (Figure 4): first, exclusive reasoning excludes a
disease from candidates when a patient does not have a symptom which is nec-
essary to diagnose that disease. Secondly, inclusive reasoning suspects a disease
in the output of the exclusive process when a patient has symptoms specific to
a disease. These two steps are modelled as usage of two kinds of rules, negative
rules (or exclusive rules) and positive rules, the former of which corresponds to
exclusive reasoning and the latter of which corresponds to inclusive reasoning.
In the next two subsections, these two rules are represented as special kinds of
probabilistic rules.
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Focusing Mechanism
(Selection of Candidates) Characterization

(Negative Rules)

Differential Diagnosis Discrimination
(Positive Rules)

Detection of Complications Complications

Fig. 4. Illustration of Focusing Mechanism

4.1 Positive Rules

A positive rule can be defined as a rule supported by only positive examples,
which means that the classification accuracy of a rule is equal to 1.0. Thus, a
positive rule is represented as:

R→ d s.t. R = ∧j [aj = vk], αR(D) = 1.0

In the above example, one positive rule of “m.c.h.” is:

[nau = 0]→ m.c.h. α = 3/3 = 1.0.

This positive rule is often called deterministic rules. However, in this paper,
we use a term, positive (deterministic) rules, because deterministic rules which
is supported only by negative examples, called negative rules, is introduced as
in the next subsection.

4.2 Negative Rules

Before defining a negative rule, let us first introduce an exclusive rule, the contra-
positive of a negative rule[9]. An exclusive rule can be defined as a rule supported
by all the positive examples, which means that the coverage of a rule is equal to
1.0.2 Thus, an exclusive rule is represented as:

R→ d s.t. R = ∧j [aj = vk], κR(D) = 1.0.

In the above example, exclusive rule of “m.c.h.” is:

[prod = 0] ∧ [nau = 0] ∧ [M1 = 1]→ m.c.h. κ = 1.0,

It is notable that exclusive rule corresponds to an upper approximation of a
target concept. For example, the set which supports the exclusive rule above is
an upper approximation of m.c.h.
2 Exclusive rules represent the necessity condition of a decision.
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From the viewpoint of propositional logic, an exclusive rule should be repre-
sented as:

d→ ∧j [aj = vk],

because the condition of an exclusive rule correspond to the necessity condition
of conclusion d. Thus, it is easy to see that a negative rule is defined as the
contrapositive of an exclusive rule:

∨j¬[aj = vk]→ ¬d,

which means that if a case does not satisfy any attribute value pairs in the
condition of a negative rules, then we can exclude a decision d from candidates.
For example, the negative rule of m.c.h. is:

¬[prod = 0] ∨ ¬[nau = 0] ∨ ¬[M1 = 1]→ ¬m.c.h.

In summary, a negative rule is defined as:

∧j ∨ [aj = vk]→ ¬d s.t. ∀[aj = vk] κ[aj=vk](D) = 1.0,

where D denotes a set of samples which belong to a class d. It can be also called
a deterministic rule, since a measure of negative concept, coverage is equal to
1.0.

In summary, positive and negative rules corresponds to positive and negative
regions defined in rough sets. Figure 5 shows the Venn diagram of those rules.

4.3 Rule Induction Algorithm

An algorithm for induction of positive and negative rules is derived by simple
modification of the algorithm in Figure 1: if the thresholds of accuracy and
coverage is set to 0.0 and 1.0, respectively, the algorithm for negative rules will

Negative Rules

Positive Rules

Fig. 5. Positive and Negative Rules as Overview



Medical Reasoning and Rough Sets 97

be obtained. On the other hand, if the thresholds of accuracy and coverage is set
to 1.0 and 0.0, respectively, the algorithm for negative rules will be obtained.

It is notable that positive and negative rules can be extended to probabilistic
versions, which is discussed precisely in [9].

5 Criteria Tables

5.1 Representation of Rules

Another characteristic reasoning in medicine is m−of−n concepts, or criteria
table, which is discussed in [11]. Criteria table for a disease d is described by n
attributes, which are enough to make its diagnosis. If at least m attributes are
observed in a patient, d should be suspected.

Langley discusses that this m−of−n description can be rewritten as a simple
linear combination of attribute-value pairs. Thus, he implements an induction
of this description as an induction of threshold concepts.

However, a m−of−n rule in medicine is not equivalent to a linear combination
rule, which is a special kind of statistical discriminant functions[12]. Rather, this
type of rule is based on relations between sets as follows.

1. If total n attributes are observed, a disease d is suspected with the highest
accuracy. (The coverage is equal to 1.0).

2. If m attributes are satisfied, a disease d should be suspected with high
accuracy. (The coverage is equal to 1.0).

3. If less than m attributes are satisfied, the probability of d is low. However,
the coverage is equal to 1.0. Thus, m−of−n concept is described as combination
of exclusive rules (below, we call them unit rules) with the constraint that their
accuracies are high:

R→ d s.t. R = ∧i
j=1[aj = vk](m ≤ i ≤ n)

αR(D) ≥ δα, κ[aj=vk](D) = 1.0,

which also satisfies that: if R is represented as ∧i
j=1(i < m), then αR(D) < δα

holds.
For the above example in Table 1, exclusive rule of m.c.h. is:

[prod = 0] ∧ [nau = 0] ∧ [M1 = 1]→ m.c.h. κ = 1.0, α = 1.0

This attains the highest accuracy. If the threshold for accuracy is set to 0.75,
then

[prod = 0]→ m.c.h. κ = 1.0, α = 0.75,
[nau = 0]→ m.c.h. κ = 1.0, α = 0.75, and
[M1 = 1]→ m.c.h. κ = 1.0, α = 1.0.

So, diagnostic rules for m.c.h. can be viewed as 1−of−3 concept. In this way,
combination of accuracy and coverage is also important to represent m−of−n
type rules.
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5.2 Rule Induction Algorithm

An algorithm for induction of unit rules is derived by simple modification of
the algorithm in Figure 1: if the thresholds of accuracy and coverage is set to δ
and 1.0, respectively, then the algorithm for induction of each unit rule will be
obtained. In this model, we should only add integration of unit rules after rule
induction to obtain the total algorithm, which is not shown for the limitation of
the space.

6 Conclusion

In this paper, rough set framework is introduced to model medical diagnostic
rules. Acquired models show that the characteristics of medical reasoning reflect
the concepts on approximation of rough sets, which explains why rough sets
work well in medical domains.
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A Fundamentals of Accuracy and Coverage

A.1 Statistical Dependence

Let P (R) and P (D) be defined as: P (R) = |RA|
|U| and P (D) = |D|

|U| , where U

denotes the total samples. Then, a index for statistical dependence ςc is defined
as:

ςR(D) =
|RA ∩D|
|RA||D|

=
|U |P (R,D)
P (R)P (D)

,

where P (R,D) denotes a joint probability of R and D (P (R,D) = |RA∩D|/|U |).
Since the formula P (R,D) = P (R)P (D) is the definition of statistical indepen-
dence, ςR(D) measures the degree of statistical dependence. That is, If ςR(D) >
1.0, then R and D are dependent, other R and D are independent; especially, if
ςR(D) is equal to 1.0, they are statistically independent.

Theorem 1. Lower approximation and upper approximation gives (strong) sta-
tistical dependent relations.

Proof. Since αR(D) = 1.0 for the lower approximation, ςR(D) = 1
P (D) > 1.0 In

the same way, for the upper approximation, ςR(D) = 1
P (R) > 1.0 ��

Definition 2. Let U be described by n attributes. A conjunctive formula R(i)
is defined as: R(i) =

∧i
k=1[ai = vi], where index i is sorted by a given criteria,

such as the value of accuracy. Then, the sequence of a conjunction is given as:
R(i + 1) = R(i) ∧ [ai+1 = vj+1].

Since R(i + 1)A = R(i)A ∩ [ai+1 = vi+1]A, for this sequence, the following
proposition will hold: R(i+1)A ⊆ R(i)A Thus, the following theorem is obtained.

Theorem 2. When we consider a sequence of conjunctive formula such that the
value of accuracy should be increased, the statistical dependence will increase.
Proof.

ςR(i+1)(D) =
αR(i+1)(D)

P (D)
≥

αR(i)(D)
P (D)

= ςR(i)(D)

A.2 Tradeoff Between Accuracy and Coverage

Theorem 3 (Monotonicity of Coverage). Let a sequence of conjunctive for-
mula R(i) given with n attributes. Then,

κR(i+1)(D) ≤ κR(i)(D).

Then, since accuracy and coverage has the following relation:

κR(D)
αR(D)

=
P (R)
P (D)

. (1)
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Since P (R) will decrease with the sequence of conjunction, the following theorem
is obtained.

Theorem 4. Even if a sequence of conjunction for R is selected such that the
value of accuracy increases monotonically, κR(D) will decrease. That is, the
decrease of κR(D) is larger than the effect of the increase of αR(D). ��
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Abstract. The current research in granular computing is dominated
by set-theoretic models such as rough sets and fuzzy sets. By recasting
the existing studies in a wider context, we propose a unified framework
of granular computing. The new framework extends results obtained in
the set-theoretic setting and extracts high-level common principles from
a wide range of scientific disciplines. The art of granular computing for
problem solving emerges from the resulting common philosophy, method-
ology and information processing paradigm. Granular computing stresses
not only the need for rigor, structure, conciseness and clarity, but also
the importance of conscious effects and wisdom in using powerful strate-
gies and heuristics in stating and solving problems.

Keywords: Granular computing triangle, structured thinking, struc-
tured problem solving, structured information processing.

1 Introduction

The advances of rough set theory have greatly influenced the development of
granular computing [4,5,19,33,34,36,43,46,47,51,52,62,65,66]. Specifically, the
philosophy and methodology of rough sets, centralized on the notions of indis-
cernibility and knowledge granularity, are fundamental to granular computing.
It is fair to say that the plentiful results and applications of the theory of rough
sets motivate many researchers to study granular computing.

An underlying notion of rough set theory is an equivalence relation represent-
ing indiscernibility of objects and the induced partition of a universe [45,46,47].
Suppose a finite universe of objects is described by a finite set of attributes in the
form of an information table. Different equivalence relations can be constructed
based on distinct subsets of attributes [45]. One may interpret a partition as a
simple flat granulated view of the universe with each equivalence class as a gran-
ule. Under this view, rough set analysis deals with approximation and reasoning
with partitions of different levels of granularity [45,66].

The basic ideas of partitioning a universe for problem solving have also been
used in many studies such as the partition model of databases [31], the theory of
granularity [21], and the quotient space theory [74,75]. Each of these studies is
formulated differently to deal with a different type of problems. In spite of their
differences, they all share two common features with the rough set theory. First,
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they all consider different descriptions of the same problem at multiple levels of
granularity. This allows us to focus on solving a problem at the most appropriate
level of granularity by ignoring unimportant and irrelevant details. The second
feature is that multilevel descriptions are linked together to form a hierarchical
structure. In other words, levels with differing granularity are partially ordered.
This allows us to change granularity easily at different stages of problem solving.

These two features are common to problem solving activities across many
branches of science [68,69,70]. Although scientists in different disciplines study
different subject matters and use different formulations, they all employ remark-
ably common structures for describing problems and apply common principles,
strategies, and heuristics for problem solving [7,39]. Our understanding and for-
mulation of granular computing is based on such high-level features [66,67,68,69].
We attempt to extract the common domain-independent principles, strategies
and heuristics that have been applied either explicitly or implicitly in many
disciplines. The results enable us to arrive at a unified framework of granular
computing for problem solving from three perspectives [69].

The main objective of this paper is to explore granular computing as the
creative art of problem solving. We propose and examine a trinity framework of
granular computing.

2 Granular Computing as a New Field of Study

In the past ten years, many researchers have focused their efforts on the de-
velopment of a new research field under the umbrella name of granular com-
puting [4,23,35,43,46,48,51,52,63,64,72,73]. Extensive results and applications
demonstrate the need for and the potential of granular computing. However,
the advance of granular computing suffers from the lack of a conceptual frame-
work that enables us to answer some of the fundamental questions. In order to
justify the existence of granular computing as a new field in its own right, we
need to address these questions.

It is a well-accepted fact that the basic ideas, principles and strategies of
granular computing appear in many branches of science and different fields of
computer science [4,70,72]. This immediately raises the following questions:

• What is new and unique in granular computing?
• What are the contributions of granular computing?
• What are the relations between granular computing and other fields?
• What are the scopes and goals for the study of granular computing?

The answers to these questions show the necessity for the study of granular
computing, provide the context to which granular computing fits, and set the
goals of research on granular computing.

People solve different problems by using some common principles. However,
one can make several important observations regarding their actual usages. First,
these principles are scattered over many places in isolation without being synthe-
sized into an integrated whole. Second, they are normally explained with refer-
ence to domain-specific knowledge and thus are buried deeply in minute details.
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Third, the same principles are discussed in different languages and notations.
Fourth, these principles are typically used either implicitly or subconsciously,
for a formal documentation does not exist. They are not readily accessible for
many people to use. Sometimes, the same principles are reinvented time and
again in the same or different fields. By introducing granular computing as a
new field of study, we attempt to resolve such problems.

To a large extent, the emergence of granular computing is motivated by the
same reasons that led to the introduction of general systems theory several
decades ago [9,29,44,56]. As a new field of research, granular computing is a
study of the art of problem solving. It has two unique tasks. One is to extract
high-level commonalities of different disciplines and to synthesize their results
into an integrated whole by ignoring low-level details. The other is to make ex-
plicit ideas hidden in discipline-specific discussions in order to arrive at a set of
discipline-independent principles.

What makes granular computing new and unique is not its individual princi-
ples, methodologies, and strategies. Each of them has been extensively studied
by authors in many fields. Granular computing contributes by synthesizing, in-
tegrating, and studying them in a uniform way. Through granular computing,
we attempt to achieve the following goals:

• to make implicit principles explicit,
• to make invisible principles visible,
• to make domain-specific principles domain-independent,
• to make subconscious effects conscious.

It is possible to empower more people with effective strategies for problem solving
tasks. One can consciously apply the principles of granular computing in solving
a wide range of problems. It is also possible to prevent a waste of research efforts
rediscovering or reinventing these principles.

Granular computing is a multidisciplinary study that emerged from existing
disciplines and fields of study. For example, in addition to rough sets [45,46,47]
and fuzzy sets [72,73], granular computing can draw results from the following:

• philosophy and philosophy of science [37,49],
• research methods [7,39],
• cognitive science and cognitive psychology [53,58],
• human problem solving [42],
• general systems theory [9,29,56],
• synectics [18],
• hierarchy theory [1,44,55,56,60],
• cluster analysis [2],
• social networks [3,24],
• artificial intelligence [16,20,21,27,74],
• learning [11,50,57],
• computer programming [12,28,30,61],
• information processing [4,26,38],
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Fig. 1. The granular computing triangle

• teaching and instruction [13,54],
• rhetoric and writing [14,22,41,71].

This list is not intended to be exhaustive, but an illustration to show the diversity
of disciplines where the principles of granular computing can be observed.

A theory of granular computing may be established by extracting, sorting,
integrating, synthesizing, and interpreting a set of generally applicable princi-
ples, methods, and strategies for problem solving. In the past few years, many
researchers have made significant progress on concrete models and methods of
granular computing. In the meantime, one can also observe a number of studies
that simply restate existing results using the terminology of granular computing
or reinvent them in a different context. A conceptual study of granular computing
may free us from similar pitfalls.

3 The Granular Computing Triangle

Granular computing can be studied from three perspectives that are unified and
based on the notion of granular structures. The granular computing triangle of
Figure 1 represents this trinity view. In the philosophical perspective, granular
computing deals with structured thinking. It attempts to extract and formalize
human thinking. In the methodological perspective, granular computing con-
cerns structured problem solving. It aims to study methods and techniques for
systematic problem solving. In the computational perspective, granular comput-
ing is a paradigm of structured information processing. It addresses the problems
of information processing in the abstract, in the brain, and in machines. Each
perspective supports the other two perspectives. What integrates them is the
granular structures that represent the real world at multiple levels of granu-
larity. By emphasizing on structures, granular computing leads to structured
solutions to real-world problems.
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3.1 Granular Structures

A primitive notion of granular computing is a granule representing a part of
a whole. Like systems theory, granular computing explores the composition of
parts, their interrelationships, and connections to the whole. A real-world prob-
lem normally consists of a web of interacting and interrelated parts [9]. In order
to have a practical understanding and solution, it is necessary to extract approx-
imate structures that are tractable and easy to analyze. Granular computing ex-
ploits structures in terms of granules, levels, and hierarchies based on multilevel
and multiview representations [69].

A granule plays two distinctive roles. It may be an element of another granule
and is considered to be a part forming the other granule. It may also consist of
a family of granules and is considered to be a whole. Its particular role is deter-
mined by our focal points at different stages of problem solving. This part-whole
relationship suggests a partial ordering of granules. It is possible to derive a hi-
erarchical structure. The term hierarchy is used to denote such a structure that
consists of a family of interacting and interrelated granules, and each of them
can be, in turn, a hierarchical structure. Trees and lattices are typical examples
of hierarchical structures. Another example is the notion of rule complex, intro-
duced and elaborated by Burns and Gomolińska [8,17] within the generalized
game theory. We may view a hierarchy as a structure of (partially) ordered mul-
tiple levels. Each level is made up of a family of granules. Hierarchical structures
not only make a complex problem more easily understandable, but also lead to
efficient, although perhaps approximate, solutions.

In building a hierarchical structure, we need to have a vertical separation
of levels and a horizontal separation of granules at the same hierarchical level.
These separations explore the notion of approximations and a loose coupling of
parts [9,56]. In forming a granule, one may ignore the subtle differences between
its elements as well as their individual connections to others. That is, a group of
elements may be treated approximately as a whole when studying their relations
to others. Each level may be viewed as a representation of a problem at a specific
level of granularity. The relationship between levels can be interpreted in terms
of abstraction, control, complexity, detail, resolution, etc.

A hierarchy represents the results of a study of a problem from one particular
angle or point-of-view. Some useful information may be lost with a hierarchy
instead of a web. For the same problem, many interpretations and descriptions
may co-exist [6,10]. It may be necessary to construct and compare multiple
hierarchies [24]. A comparative study of those hierarchies may provide a complete
understanding of the problem.

In summary, granular computing exploits multilevel and multiview represen-
tations in problem solving. A hierarchy represents one view of a problem with
multiple levels of granularity. Depending on different contexts of applications, we
may have data granulation, information granulation, and knowledge granulation
corresponding to granular data structures, granular information structures, and
granular knowledge structures.
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3.2 Structured Thinking

Granular computing, as structured thinking, integrates two complementary
philosophical views dealing with the complexity of real-world problems, namely,
the traditional reductionist thinking and the more recent systems thinking.
It stresses the importance of conscious effects in thinking with hierarchical
structures.

According to reductionist thinking, a complex system or problem can be di-
vided into simpler and more fundamental parts, and each part can be further
divided. An understanding of the system can be reduced to the understanding of
its parts. In other words, we can deduce fully the properties of the system based
solely on the properties of its parts. In contrast, systems thinking shifts from
parts to the whole, in terms of connectedness, relationships, and context [9,29].
A complex system is viewed as an integrated whole consisting of a web of inter-
connected, interacting, and highly organized parts. The properties of the whole
are not present in any of its parts, but emerge from the interactions and rela-
tionships of the parts.

The reductionist thinking and systems thinking agree on the modeling of a
complex system in terms of the whole and parts, but differ in how to make
inference with the parts. Based on this common hierarchical structure, granular
computing attempts to unify reductionist thinking and systems thinking into
structured thinking.

3.3 Structured Problem Solving

Structured thinking leads to a perception and understanding of a real-world
problem in terms of multilevel and multiview representations. These structures
play a crucial role in problem solving. Granular computing is structured problem
solving guided by structured thinking.

Structured problem solving methods and strategies have been extensively
studied by many authors. A convincing way to show the effectiveness of granular
computing is to present a set of principles and to demonstrate the working of
these principles in real-world applications. We present three such principles:

• the principle of multilevel granularity,
• the principle of focused effort,
• the principle of granularity conversion.

The first principle emphasizes the importance of modeling in terms of hierarchi-
cal structures. Once such structures are obtained, the second principle calls for
attention on the focal point at a particular stage of problem solving. The third
principle links the different stages in this process.

Although principles of granular computing are named differently in differ-
ent disciplines, they are indeed the same at a more abstract level. We briefly
summarize the applications of such ideas and principles in several related areas:
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Concept formulation and learning: A concept represents a basic unit of human
thought and is commonly labeled by a word of a natural language. Hierarchical
structures are commonly used in organizing human knowledge [49,54]. To a large
extent, human learning is a good example to demonstrate the working principles
of granular computing, i.e., attention and changing of attention.

Structured programming: Hierarchical structures are a central notion to struc-
tured programming [12,30]. In this context, a granule may be viewed as a pro-
gram module. The stepwise refinement process explores multilevel development
of a full program, from a brief high-level description to the final complete pro-
gram [61].

Structured proofs: Following the results of structured programming, several au-
thors studied structured methods for developing, teaching and communicating
mathematical proofs [15,32]. In particular, a structured method arranges the
proof in levels and proceeds in a top-down manner. A level consists of short
autonomous modules, each embodying one major idea of the proof to be further
concretized in the subsequent levels. The process continues by supplying more
details of the higher levels until a complete proof is reached.

Structured writing: Writing may be viewed as a problem solving process and
task [14,41,71]. A simple idea is described by a paragraph consisting of several
sentences. A point-of-view is jointly described and supported by several ideas.
A theme emerges from a few different points-of-view. The units of writing are
sometimes referred to as information blocks [22], issues [14], ideas [41], and units
of experience [71]. For effective communication, one needs to organize them into
a hierarchical structure, referred to as an issue tree [14], a pyramid structure
of ideas [41], or a hierarchically structured system of units of experience [71].
Like structured programming, structured writing may be viewed as a stepwise
refinement that produces a full article.

Two important features can be observed from these studies. One is the con-
struction of building blocks (i.e., granules) and the other is the arrangement of
blocks into a hierarchical structure. The ideas, principles, proverbs, maxims, and
strategies from these fields can be easily transferred to each other.

Human concept formation and learning determine, in principle, the ways to
produce easily-understandable solutions to a problem. For example, the chunk-
ing principle underlying human memory [40] suggests a hierarchical structure
used in writing [22,41]. The hierarchical structures of complex systems [56] are
applicable to the process of writing if one considers an article to be a com-
plex system that has evolved through time [71]. On the other hand, the styles
of programming [25,30] are influenced by styles of writing English prose [59].
Structured programming in turn offers solutions to structured mathematical
proofs [15,32]. In summary, these examples provide us convincing evidence
that supports the study of granular computing. Instead of reinventing the same
principles and strategies, one can focus on their applications across many
disciplines.
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3.4 Structured Information Processing

In the information processing paradigm [4], granular computing works with a
pyramid consisting of different-sized information granules. This structured in-
formation processing is a necessary feature of any knowledge-intensive system.

Two notions of structured information processing are representation and pro-
cess [38]. A representation is a formal system that makes explicit certain entities
or types of information and a specification of how the system does it. The result
is called a description of the entity in the representation. A process may simply
be interpreted as actions or procedures for carrying out information processing
tasks. In general, a representation determines the effectiveness of processes.

A representation of granules must capture their essential features and make
explicit a particular aspect of their physical meanings. It needs to be closely
connected to the representations of granular structures with respect to granules,
levels, and hierarchies. Processes of granular computing may be broadly divided
into the two classes: granulation and computation with granules [64,70]. Gran-
ulation processes involve the construction of the building blocks and structures,
namely, granules, levels, and hierarchies. Computation processes systematically
explore the granular structures. This involves two-way communications up and
down in a hierarchy, as well as switching between levels.

Structured information processing is a stepwise refinement process. At a
higher level, one may produce an approximate, a partial, or a schematic so-
lution. The latter is to be made more precise, complete, and detailed at a lower
level. The process stops when a desirable (approximate) solution is obtained.

4 Conclusion

A new understanding of granular computing is presented. Granular computing
draws extensive results from existing disciplines and offers its own insights and
solutions. Its future depends critically on a right balance between the two. We
need to draw results from classical thinking and explore new ways of creative
thinking. The proposed trinity framework casts granular computing into a wider
context. The art of granular computing can be fully appreciated from the philo-
sophical perspective as structured thinking, from the methodological perspective
as structured problem solving, and from the computational perspective as struc-
tured information processing.
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Abstract. The presentation is focused on the introduction and the in-
vestigation of probabilistic dependencies between attribute-defined par-
titions of a universe in hierarchies of probabilistic decision tables learned
from data. The dependencies are expressed through two measures: the
probabilistic generalization of the Pawlak’s measure of the dependency
between attributes and the expected certainty gain measure. The ex-
pected certainty gain measure reflects the subtle grades of probabilistic
dependence of events. The measures are reviewed and it is shown how
they can be extended to dependencies existing in hierarchical structures
of decision tables.

1 Introduction

In applications, the decision tables are typically used for making predictions
about the value of the decision attribute based on combinations of values of
condition attributes, as measured on new, previously unseen objects. However,
the tables often suffer from the following problems related to the fact that they
are computed based on the proper subset of the universe.

Firstly, The decision table may have excessive decision boundary, often due
to poor quality of condition attributes, which may be weakly correlated with
the decision attribute. The excessive decision boundary leads to the excessive
number of incorrect predictions. Secondly, The decision table may be highly in-
complete, i.e. excessively many new measurement vectors of condition attributes
of new objects are not matched by any combination of condition attribute values
present in the decision table. Such a highly incomplete decision table leads to an
excessive number of new unrepresented observations, for which the prediction of
the decision attribute value is not possible.

With weak condition attributes, increasing their number does not rectify the
problem (1). This is due to the fact that increasing the number of attributes
results in the exponential explosion of the complexity of learning of the decision
table, leading to the rapid increase of the degree of the decision table incom-
pleteness [8]. In general, the decision boundary reduction problem is conflicting
with the decision table incompleteness minimization problem. To deal with these
fundamental difficulties, an HDTL approach was proposed [6]. The approach is
focused on learning hierarchical structures of decision tables rather than learning
individual tables, subject to learning complexity constraints . In this approach,
a linear hierarchy of decision tables is formed, in which the parent layer decision

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 113–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



114 W. Ziarko

boundary defines a universe of discourse for the child layer table. The decision ta-
bles on each layer are size-limited by reducing the number of condition attributes,
thus bounding their learning complexity [8]. Each layer contributes a degree of
decision boundary reduction, while providing a shrinking decision boundary to
the next layer. In this way, even in the presence of relatively weak condition at-
tributes, a significant total boundary reduction can be achieved, while preserving
the constraints on the complexity of learning on each level.

Similar to single layer decision table, the hierarchy of decision tables needs to
be evaluated from the point of view of its quality as a potential classifier of new
observations. The primary evaluative measure for decision tables introduced by
Pawlak is the measure of partial functional dependency between attributes [1]
and its probabilistic extension [7]. Another measure is the recently introduced
expected gain measure which captures more subtle probabilistic associations be-
tween attributes [7]. In this paper, these measures are reviewed and generalized
to the hierarchical structures of decision tables. A simple recursive method of
their computation is also discussed. The measures, referred to as γ and λ mea-
sures respectively, provide a tool for non-experimental assessment of decision
table-based classifiers derived from data.

2 Attribute-Based Approximation Spaces

In this section, we briefly review the essential assumptions, definitions and no-
tations of the rough set theory in the context of probability theory. We assume
that all subsets X ⊆ U under consideration are measurable with 0 < P (X) < 1
i.e. they are likely to occur but their occurrence is not certain. We also assume
that observations about objects are expressed through values of attributes, which
are functions a : U → Va, where Va is a finite set of values called the domain.
The attributes represent some properties of the objects in U . The attributes fall
into two disjoint categories: C called condition attributes, and D = {d} called
decision attributes. In many applications, attributes are functions obtained by
discretizing values of real-valued variables representing measurements taken on
objects e ∈ U .

As individual attributes, any non-empty subset of attributes B ⊆ C ∪ D
defines a mapping from the set of objects U into the set of vectors of values of
attributes in B. This leads to the idea of the equivalence relation on U , called
indiscernibility relation INDB = {(e1, e2) ∈ U : B(e1) = B(e2)}. According to
this relation, objects having identical values of attributes in B are equivalent,
that is, indistinguishable in terms of values of attributes in B . The collection
of classes of identical objects will be denoted as U/B and the pair (U,U/B) will
be called an approximation space.

The object sets G ∈ U/C∪D, will be referred to as atoms. The sets E ∈ U/C
will be referred to as elementary sets. The sets X ∈ U/D will be called de-
cision categories. Each elementary set E ∈ U/C and each decision category
X ∈ U/D is a union of some atoms. That is, E = ∪{G ∈ U/C ∪D : G ⊆ E} and
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X = ∪{G ∈ U/C ∪D : G ⊆ F}. Each atom G ∈ U/C ∪ D is assigned a joint
probability P (G), which is normally estimated from collected data.

From our initial assumption and from the basic properties of the probability
measure P , follows that for all atoms G ∈ U/C ∪D, we have 0 < P (G) < 1 and∑

G∈U/C∪D P (G) = 1. Based on the joint probabilities of atoms, probabilities of
elementary sets E and of a decision category X can be calculated by P (E) =∑

G⊆E P (G). The probability P (X) of the decision category X in the universe
U is the prior probability of the category X . It represents the confidence in
the occurrence of the decision category X in the absence of any information
expressed by attribute values. The conditional probability of a decision category
X , P (X |E) = P (X∩E)

P (E) , conditioned on the occurrence of the elementary set E,
represents the degree of confidence in the occurrence of the decision category X,
given information indicating that E occurred. The conditional probability can
be expressed in terms of joint probabilities of atoms by P (X |E) =

∑
G⊆X∩E P (G)∑

G⊆E P (G) .
This allows for simple computation of the conditional probabilities of decision
categories.

3 Variable Precision Rough Set Model

One of the main objectives of rough set theory is the formation and analysis
of approximate definitions of otherwise undefinable sets [1]. The approximate or
rough definitions, in the form of lower approximation and boundary area of a set,
allow for determination of an object’s membership in a set with varying degrees
of certainty. The lower approximation permits for uncertainty-free membership
determination, whereas the boundary defines an area of objects which are not
certain, but possible, members of the set [1]. The variable precision model of
rough sets (VPRSM)[5][7] extends upon these ideas by parametrically defining
the positive region as an area where the certainty degree of an object’s member-
ship in a set is relatively high, the negative region as an area where the certainty
degree of an object’s membership in a set is relatively low, and by defining the
boundary as an area where the certainty of an object’s membership in a set is
deemed neither high nor low.

The defining criteria in the VPRSM are expressed in terms of conditional
probabilities and of the prior probability P (X) of the set X in the universe U .
In the context the attribute-value representation of sets of the universe U , as
described in the previous section, we will assume that the sets of interest are
decision categories X ∈ U/D. Two precision control parameters are used: the
lower limit l, 0 ≤ l < P (X) < 1, representing the highest acceptable degree
of the conditional probability P (X |E) to include the elementary set E in the
negative region of the set X ; and the upper limit u, 0 < P (X) < u ≤ 1, reflecting
the least acceptable degree of the conditional probability P (X |E) to include the
elementary set E in the positive region, or u-lower approximation of the set X .
The l-negative region of the set X, denoted as NEGl(X) is defined by:

NEGl(X) = ∪{E : P (X |E) ≤ l} (1)
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The l-negative region of the set X is a collection of objects for which the proba-
bility of membership in the set X is significantly lower than the prior probability
P (X). The u-positive region of the set X , POSu(X) is defined as

POSu(X) = ∪{E : P (X |E) ≥ u}. (2)

The u-positive region of the set X is a collection of objects for which the probabil-
ity of membership in the set X is significantly higher than the prior probability
P (X). The objects which are not classified as being in the u-positive region
nor in the l-negative region belong to the (l, u)-boundary region of the decision
category X , denoted as

BNRl,u(X) = ∪{E : l < P (X |E) < u}. (3)

The boundary is a specification of objects about which it is known that their
associated probability of belonging, or not belonging to the decision category X ,
is not much different from the prior probability of the decision category P (X).

4 Structures of Decision Tables Acquired from Data

To describe functional or partial functional connections between attributes of
objects of the universe U , Pawlak introduced the idea of decision table acquired
from data [1]. The probabilistic decision tables and their hierarchies extend this
idea into probabilistic domain by forming representations of probabilistic rela-
tions between attributes.

For the given decision category X ∈ U/D and the set values of the VPRSM
lower and upper limit parameters l and u, we define the probabilistic decision
table DTC,D

l,u as a mapping C(U) → {POS,NEG,BND} derived from the
classification table as follows:

The mapping is assigning each tuple of values of condition attribute values
t ∈ C(U) to its unique designation of one of VPRSM approximation regions
POSu(X), NEGl(X) or BNDl,u(X), the corresponding elementary set Et is
included in, along with associated elementary set probabilities P (Et) and con-
ditional probabilities P (X |Et):

DTC,D
l,u (t) =

⎧
⎨

⎩

(P (Et), P (X |Et), POS) ⇔ Et ⊆ POSu(X)
(P (Et), P (X |Et), NEG) ⇔ Et ⊆ NEGl(X)
(P (Et), P (X |Et), BND)⇔ Et ⊆ BNDl,u(X)

(4)

The probabilistic decision table is an approximate representation of the prob-
abilistic relation between condition and decision attributes via a collection of
uniform size probabilistic rules corresponding to rows of the table. An example
probabilistic decision table is shown in Table 1. The probabilistic decision tables
are most useful for decision making or prediction when the relation between con-
dition and decision attributes is largely non-deterministic. However, they suffer
from the inherent contradiction between the accuracy and completeness. In the
presence of boundary region, higher accuracy, i.e. reduction of boundary region,
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Table 1. An example of probabilistic decision table

a b c P (E) P (X|E) Region
1 1 2 0.23 1.00 POS
1 0 1 0.33 0.61 BND
2 2 1 0.11 0.27 BND
2 0 2 0.01 1.00 POS
0 2 1 0.32 0.06 NEG

can be achieved either by adding new condition attributes or by increasing the
precision of existing ones (for instance, by making the discretization procedure
finer). Both solutions lead to the exponential growth in the maximum number of
attribute-value combinations to be stored in the decision table [8]. It practice, it
results in such negative effects as excessive size of the decision table, likely high
degree of table incompleteness (in the sense of missing many combinations), weak
data support for elementary sets represented in the table and, consequently, un-
reliable estimates of probabilities. The use of hierarchies of decision tables rather
than individual tables in the process of classifier learning from data provides a
partial solution to these problems [6].

Since the VPRSM boundary region BNDl,u(X) is a definable subset of the
universe U , it allows to structure the decision tables into hierarchies by treat-
ing the boundary region BNDl,u(X) as sub-universe of U , denoted as U ′ =
BNDl,u(X). The ”child” sub-universe U ′ so defined can be made completely in-
dependent from its ”parent”universe U , by having its own collection of condition
attributes C′ to form a ”child” approximation sub-space (U,U/C′). As on the
parent level, in the approximation space (U,U/C′), the decision table for the
subset X ′ ⊆ X of the target decision category X , X ′ = X ∩ BNDl,u(X) can
be derived by adapting the formula (4). By repeating this step recursively, a lin-
ear hierarchy of probabilistic decision tables can be grown until either boundary
area disappears in one of the child tables, or no attributes can be identified to
produce non-boundary decision table at the final level.

The nesting of approximation spaces obtained as a result of recursive compu-
tation of decision tables, as described above, creates a new approximation space
on U . The resulting hierarchical approximation space (U,R) cannot be expressed
by the indiscernibility relation, as defined in Section 2, in terms of the attributes
used to form the local sub-spaces on individual levels of the hierarchy. This leads
to the question: how to measure the degree of dependency between the hierar-
chical partition R of U and the partition (X,¬X) corresponding to the decision
category X ⊆ U . Some answers to this question are explored in the next section.

5 Dependencies in Decision Table Hierarchies

There are several ways dependencies between attributes can be defined in de-
cision tables. In Pawlak’s early works functional and partial functional depen-
dencies were explored [1]. The probabilistic generalization of the dependencies
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was defined and investigated in the framework of the variable precision rough
set model. All these dependencies represent the relative size of the positive and
negative regions of the target set X . They reflect the quality of approximation of
the target category in terms of the elementary sets of the approximation space.
Following the original Pawlak’s terminology, we will refer to these dependencies
as Γ -dependencies.

Other kind of dependencies, based on the notion of the certainty gain measure,
reflect the average degree of change of the certainty of occurrence of the decision
category X relative to its prior probability P (X) [7] (see also [2] and [4]). We
will refer to these dependencies as Λ-dependencies. The Γ -dependencies and Λ-
dependencies can be extended to hierarchies of probabilistic decision tables, as
described below. Because there is no single collection of attributes defining the
partition of U , the dependencies of interest in this case are dependencies between
the hierarchical partition R generated by the decision table hierarchy, forming
the approximation space (U,R), and the partition (X,¬X), defined by the target
set.

The partial functional dependency between attributes, referred here as γ-
dependency γ(D|C) measure, was introduced by Pawlak [1]. It can be expressed
in terms of the probability of positive region of the partition U/D defining deci-
sion categories:

γ(D|C) = P (POSC,D(U)) (5)

where POSC,D(U) is a positive region of the partition U/D in the approximation
space induced by the partition U/C. In the binary case of two decision categories,
X and ¬X , the γ(D|C)-dependency can be extended to the VPRSM by defining
it as the combined probability of the u-positive and l -negative regions:

γl,u(X |C) = P (POSu(X) ∪NEGl(X). (6)

This dependency measure reflects the proportion of objects in U , which can
be classified with sufficiently high certainty as being members, or non-members
of the set X . In the case of the approximation space obtained by forming it via
hierarchical classification process, the γ-dependency between the hierarchical
partition R and the partition (X,¬X) can be computed directly by analyzing
all classes of the hierarchical partition. However, an easier to implement recursive
computation is also possible. This is done by recursively applying, starting from
the leaf table of the hierarchy and going up to the root table, the following
formula (7) for computing the dependency of the parent table γU

l,u(X |R) in the
hierarchical approximation space (U,R), if the dependency of a child level table
γU ′

l,u(X |R′) in the sub-approximation space (U ′, R′) is given:

γU
l,u(X |R) = γU

l,u(X |C) + P (U ′)γU ′

l,u(X |R′), (7)

where C is collection of attributes inducing the approximation space U and
U ′ = BNDl,u(X). The dependency measure represents the fraction of objects
that can be classified with acceptable certainty into decision categories X or
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¬X by applying the decision tables in the hierarchy. The dependency of the
whole structure of decision tables, that is the last dependency computed by the
recursive application of formula (7), will be called a global γ-dependency.

Based on the probabilistic information contained in data, as given by the
joint probabilities of atoms, it is also possible to evaluate the degree of prob-
abilistic dependency between any elementary set and a decision category. The
dependency measure is called absolute certainty gain [7] (gabs). It represents the
degree of influence the occurrence of an elementary set E has on the likelihood
of occurrence of the decision category X . The occurrence of E can increase,
decrease, or have no effect on the probability of occurrence of X . The probabil-
ity of occurrence of X , in the absence of any other information, is given by its
prior probability P (X). The degree of variation of the probability of X , due to
occurrence of E, is reflected by the absolute certainty gain function:

gabs(X |E) = |P (X |E)− P (X)|, (8)

where | ∗ | denotes absolute value function. The values of the absolute gain
function fall in the range 0 ≤ gabs(X |E) ≤ max(P (¬X), P (X)) < 1. In addition,
if sets X and E are independent in the probabilistic sense, that is if P (X ∩
E) = P (X)P (E), then gabs(X |E) = 0. The definition of the absolute certainty
gain provides a basis for the definition of the probabilistic dependency measure
between attributes. This dependency can be expressed as the average degree of
change of occurrence certainty of the decision category X , or of its complement
¬X , due to occurrence of any elementary set [7], as defined by the expected
certainty gain function:

egabs(X |C) =
∑

E∈U/C

P (E)gabs(X |E), (9)

where X ∈ U/D. The expected certainty gain egabs(X |C) can be computed
directly from joint probabilities of atoms. It can be proven [7] that the expected
gain function falls in the range 0 ≤ egabs(X |C) ≤ 2P (X)(1 − P (X)), where
X ∈ U/D. Because the strongest dependency occurs when the decision category
X is definable, i.e. when the dependency is functional, then the dependency
in this deterministic case can be used as a normalization factor. The following
normalized expected gain function λ(X |C) measures the expected degree of the
probabilistic dependency between elementary sets and the decision categories
belonging to U/D [7]:

λ(X |C) =
egabs(X |C)

2P (X)(1− P (X))
, (10)

where X ∈ U/D. The dependency function reaches its maximum λ(X |C) = 1
only if the dependency is deterministic (functional). The value of the λ(X |C) de-
pendency function can be easily computed from the joint probabilities of atoms.
As opposed to the generalized γ(X |C) dependency, the λ(X |C) dependency has
the monotonicity property [3], that is, λ(X |C) ≤ λ(X |C ∪ {a}), where a is an
extra condition attribute outside the set C. This monotonicity property allows
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for dependency-preserving reduction of attributes leading to the notion of prob-
abilistic λ-reduct of attributes [3].

The λ-dependencies can be computed based on any partitioning of the universe
U . In the case when the approximation space is formed through hierarchical
classification, the λ-dependency between the partition R so created and the
target category X can be computed via a recursive formula derived below. Let

egabsl,u(X |C) =
∑

E∈POSu∪NEGl

P (E)gabs(X |E) (11)

denote the conditional expected gain function, i.e. restricted to the union of
positive and negative regions of the target set X in the approximations space
generated by attributes C. The maximum value of egabsl,u(X |C), achievable
in deterministic case, is 2P (X)(1 − P (X)). Thus, the normalized conditional
λ-dependency function, can be defined as:

λl,u(X |C) =
egabsl,u(X |C)

2P (X)(1− P (X))
. (12)

As γ-dependencies, λ-dependencies between the target partition (X,¬X) and
the hierarchical partition R can be computed recursively. The following formula
(13) describes the relationship between λ-dependency computed in the approx-
imation space (U,R), versus the dependency computed over the approximation
sub-space (U,R′), where R and R′ are hierarchical partitions of universes U
and U ′ = BNDl,u(X), respectively. Let λl,u(X |R) and λl,u(X |R′) denote λ-
dependency measures in the approximation spaces (U,R) and (U ′, R′), respec-
tively. The λ-dependencies in those approximation spaces are related by the
following:

λl,u(X |R) = λl,u(X |C) + P (BNDl,u(X))λl,u(X |R′). (13)

The proof of the formula follows directly from the Bayes’s equation. In practi-
cal terms, the formula (13) provides a practical method for efficient computation
of λ-dependency in a hierarchical arrangement of probabilistic decision tables.
According to this method, to compute λ-dependency for each level of the hier-
archy, it suffices to compute the conditional λ-dependency and to know ”child”
BNDl,u(X)-level λ-dependency.

6 Concluding Remarks

Learning and evaluation of hierarchical structures of probabilistic decision tables
is the main focus of the article. The earlier introduced measures of gamma and
lambda dependency between attributes [7] for learned decision tables are not
directly applicable to approximation spaces corresponding to hierarchical struc-
tures of decision tables. The main contribution of this work is the extension of
the measures to the hierarchies and the derivation of recursive formulas for their
easy computation. The gamma dependency measure allows for the assessment of
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the prospective ability of the classifier based on the hierarchy of decision tables
to correctly predict the values of decision attribute on required level of certainty.
The lambda dependency measure captures the relative degree of probabilistic
correlation between classes of the partitions corresponding to condition and de-
cision attributes, respectively. Jointly, both measures enable the user to evaluate
the progress of learning with the addition of new training data and to assess the
quality of the empirical classifier.
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Abstract. The subject-matter of the consideration touches the prob-
lem of vagueness. The notion of the rough set, originated by Zdzis�law
Pawlak, was constructed under the influence of vague information and
methods of shaping systems of notions leading to conceptualization and
representation of vague knowledge, so also systems of their scopes as
some vague sets. This paper outlines some direction of searching for a
solution to this problem. In the paper, in connection to the notion of the
rough set, the notion of a vague set is introduced. Some operations on
these sets and their properties are discussed. The considerations intend
to take into account a classical approach to reasoning, based on vague
premises, and suggest finding a logic of vague sentences as a non-classical
logic in which all counterparts of tautologies of classical logic are laws.

1 Introduction

Logicians and philosophers have been interested in the problem area of vague
knowledge for a long time, looking for some logical bases of a theory of vague
notions (terms) constituting such knowledge. Recently it has become the sub-
ject of investigations of computer scientists interested in the problems of AI, in
particular, in problems of reasoning on the basis of incomplete or vague infor-
mation and applications of computers to support and represent such reasoning
in the computer memory. Significant results obtained by computer scientists in
the scope of imprecision and vagueness: the Zadeh’s fuzzy set theory [20], the
Shafer’s theory of evidence [17] and the Pawlak’s rough sets theory [14] greatly
contributed to actualization and intensification of research into vagueness.

The present paper proposes a new approach to vagueness and considers the
problem of denotations of vague notions (terms) from the logical and computer
sciences perspective. It yields logical foundations to a theory of vague notions
(terms) and should be an essential contribution to that problem.

The paper consists of four sections. In Section 2, we introduce the notion of
unit information (unit knowledge) and vague information (vague knowledge).
The main notion of the vague set, inspired by the Pawlak’s notion of a rough
set is defined in Section 3. In Section 4 some operations on vague sets and their
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algebraic properties are given. A view on the problem of logic of vague concepts
(terms) is discussed in Section 5. The paper ends with Section 6 including some
final remarks.

2 Knowledge and Vague Knowledge

In the process of cognition of a definite fragment of reality, the cognitive agent
(a man, an expert, a group of men or experts, a robot) attempts to discover
information contained in it, and properly, about its objects. Each fragment of
reality recognized by the agent can be understood as the following relational
structure:

� = 〈U ,R1,R2, . . . ,Rn〉,
where U , the universe of objects of reality �, is a nonempty set, and Ri, for
i = 1, 2, . . . , n, is the set of i-ary relations on U . One-ary relations are regarded
as subsets of U and understood as properties of objects of U , and multi-argument
relations as relationships among its objects. Formally, every k-ary relation of Rk

is a subset of Uk.
We assume that reality � is objective in relation to cognition. The objective

knowledge about it consists of pieces of unit information (knowledge) about
objects of U in relation to all particular relations of Rk (k = 1, 2, . . . , n).

We introduce the notion of knowledge and vague knowledge in accordance
with some conceptions of the second author of this paper ([19]).

Definition 1. Unit information (knowledge) about the object o ∈ U with
respect to the relation R ∈ Rk (k = 1, 2, . . . , n) is the image

−→
R (o) of the object

o with respect to the relation R1.

Discovering unit knowledge about objects of reality � is realized through asking
questions including certain aspects called attributes of the objects of its universe
U . Then, as the universe we usually choose a finite set U ⊆ U and we put
it forward as generalized attribute-value system Σ called also an information
system (cf. Codd [3]; Pawlak [11], [13], [14]; Marek and Pawlak [9]). Its definition
is the following:

Definition 2. Σ is an information system iff it is an ordered system

Σ = 〈U,A1, A2, . . . , An〉,

where U ⊆ U , card(U) < ω and Ak (k = 1, 2, . . . , n) is the set of k-ary attributes
understood as k-ary functions, i.e.

∀a∈Ak
a : Uk → Va,

where Va is the set of all values of the attribute a.

1 −→R (o) =

{
R, if o ∈ R,
∅, otherwise.

for R ∈ R1.

−→
R (o) = {〈x1, . . . , xi−1, xi+1, . . . , xk〉 : 〈x1, . . . , xi−1, o, xi+1, . . . , xk〉 ∈ R} for R ∈
Rk (k = 2, . . . , n).
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Example 1. Let us consider the following information system:

S = 〈S,A1, A2〉,

where S = {s1, s2, . . . , s5} is a set of 5 scientists and A1 = {PUBLICATION AC-
TIVITY (PA), QUOTATIONS (Q)}, A2 = {SCIENTIFIC COLLABORATION
(SC)}. The attribute PA is a function which assigns to every scientist of S a
number of papers published by him. We assume that VPA = {1, 2, . . . , 1000}.
The value of the attribute Q for any scientist of S is the number of quota-
tions of his papers. We assume that VQ = {0, 2, . . . , 2000}. We also assume that
VSC = {0, 1, 2, 3}, where 0 is a value for cases, when arguments of the function
SC are the same, and for any different sn and sm from S, 1 means that they do
not collaborate, 2 means that they collaborate but they have not published any
common paper, 3 means that they collaborate and have at least one common
paper published.

The information system S can be clearly presented in the following tables:

PA Q
s1 203 250
s2 145 245
s3 198 200
s4 105 150
s5 203 245

SC s1 s2 s3 s4 s5

s1 0 1 3 1 3
s2 1 0 2 3 1
s3 3 2 0 2 2
s4 1 3 2 0 1
s5 3 1 2 1 0

Every attribute of the information system Σ and every value of this attribute
explicitly indicate a relation belonging to the so-called relational system de-
termined by Σ. The unit information (knowledge) about an object o ∈ U
should be considered with respect to relations of the system.

Definition 3. �(Σ) is a system determined by the information system Σ
iff

�(Σ) = 〈U, {Ra,W : a ∈ A1, ∅ �= W ⊆ Va}, . . . , {Ra,W : a ∈ An, ∅ �= W ⊆ Va}〉,

where Ra,W = {(o1, o2, . . . , ok) ∈ Uk : a((o1, o2, . . . , ok)) ∈ W} for any k ∈
{1, 2, . . . , n}, a ∈ Ak, ∅ �= W ⊆ Va.

Let us see that
⋃
{Ra,{v} : a ∈ A1, v ∈ Va} = U , i.e. the family {Ra,{v} : a ∈

A1, v ∈ Va} is a covering of U .
It is easy to see that

Fact 1. The system �(Σ) is uniquely determined by the system Σ.

Example 2. Let S is the above given information system. Then the system deter-
mined by this system is �(S) = 〈U,RA1 , RA2〉, where RA1 = {RPA,S}∅
=S⊆VP A

∪
{RQ,S}∅
=S⊆VQ

and RA2 = {RSC,S}∅
=S⊆VSC
.

For any attribute a of system S and any i, j ∈ N we can accept the following
notation:
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Sj
i = {v ∈ Va : i ≤ v ≤ j}, Sj = {v ∈ Va : v ≤ j}, Si = {v ∈ Va : i ≤ v}.

Then, in particular, we can easily state that: RPA,S145
145

= RPA,{145} = {s2},
RPA,S200

145
= {s2, s3}, RPA,S210 = {s1, s2, s3, s4, s5}, RQ,S150 = {s1, s2, s3, s4, s5},

RQ,S200 = {s1, s2, s3, s5}, RQ,S245 = {s1, s2, s5}, RQ,S250 = {s1} and RSC,{2} =
{(s2, s3), (s3, s2), (s3, s4), (s4, s3), (s3, s5), (s5, s3)}, RSC,{0} = {(si, si)}i=1,...,5.

The notion of knowledge about the attributes of the system Σ depends on the
cognitive agent discovering the fragment of reality Σ. According to Skowron’s
understanding a notion, of knowledge determined by any unary attribute (cf.
Pawlak [12], Skowron et all [18], Demri, Orlowska [5] pp.16–17), we can accept
the following definition of the notion of knowledge Ka about any k-ary at-
tribute a :

Definition 4. Let Σ be the information system and a ∈ Ak (k = 1, 2, . . . , n).
Then

(a) Ka = {((o1, o2, . . . , ok), Va,u) : u = (o1, o2, . . . , ok) ∈ Uk},
where Va,u ⊆ P (Va), Va,u is the family of all sets of possible values of the
attribute a for the object u from the point of view of the agent and P (Va) is
the family of all subsets of Va.

(b) The knowledge Ka of the agent about the attribute a and its value for the
object u is
(0) empty if card(Va,u) = 0,
(1) definite if card(Va,u) = 1,

(> 1) imprecise, in particular vague, if card(Va,u) > 1.

Let us observe that the vague knowledge about some attribute of the information
system Σ is connected with assignation of a vague value to the object u.

Example 3. Let us consider again the information system S. The knowledge
KPA,KQ,KSC of the agent about the attributes from the information system
S can be characterized by means of the following tables:

VPA,s VQ,s

s1 {S200
150 , S

220
170 , S

220} {S250, S300, S350, S400}
s2 {S150

100 , S
200
100 , S

180
150} {S250

200 , S
300
250 , S

300
200}

s3 {S160
150 , S

170
160 , S

180
170 , S

190
180 , S

200
190} {S150, S170, S190, S210, S230, S250, S300}

s4 {S105
105} {S200, S

500
250 , S

800
400 , S500}

s5 {S220
180 , S

240
200} {S250

200}

VSC,(s,s′) s1 s2 s3 s4 s5

s1 {{0}} {{1}, {2}} {{3}} {{1}} {{3}}
s2 {{1}, {2}} {{0}} {{2}} {{1, 3}} {{1}}
s3 {{3}} {{2}} {{0}} {{2}} {{1, 3}, {2, 3}}
s4 {{1}} {{1, 3}} {{2}} {{0}} {{1}}
s5 {{3}} {{1}} {{1, 3}, {2, 3}} {{1}} {{0}}
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From Definitions 1 and 3 we get:

Fact 2. Unit information (knowledge) about the object o ∈ U with respect to a
relation R of the system �(Σ) is the image

−→
R (o) of the object o with respect to

the relation R, from the point of view of the agent.

Contrary to the objective unit knowledge
−→
R (o) about the object o of U in the

reality � with regard to its relation R, the subjective unit knowledge about the
object o of U in the reality �(Σ) depends on an attribute of Σ determining the
relation R and its possible values from the point of view of knowledge of the
agent discovering �(Σ). The subjective unit knowledge

−→
R (o) from the point of

view of the agent depends on his ability to solve the following equation:
−→
R (o) = x, (e)

where x is an unknown quantity.
Solutions of (e) for k-ary relation R should be images of the object o with

respect to k-ary relations Ra,W from �(Σ), where ∅ �= W ∈ Va,o. Let us note,
that for unary relation R solutions of (e) are unary relations from �(Σ).

A solution of the equation (e) can be correct (then the agent’s knowledge
about object o is exact). If the knowledge is inexact then at least one solution
of (e) is not the image of the object o with respect to relation R.

Definition 5. Unit knowledge about the object o ∈ U in �(Σ) with respect to
its relation R is

(0) empty iff the equation (e) does not have a solution for the agent (the
agent knows nothing about the value of the function

−→
R for the object o),

(1) definite iff the equation (e) has exactly one solution for the agent (either
the agent’s knowledge is exact – the agent knows the value of the function−→
R for the object o – or he accepts only one, but not necessarily proper,
value of the function),

(> 1) imprecise iff the equation (e) has at least two solutions for the agent (the
agent allows at least two possible values of the function

−→
R for the object o).

From Definitions 4 and 5 it follows that:

Fact 3. The unit knowledge about the object o ∈ U in �(Σ) with respect to its
relation R is

(0) empty if the knowledge Ka of the agent about the attribute a and its value
for the object o is empty,

(1) definite if the knowledge Ka of the agent about the attribute a and its value
for the object o is definite,

(> 1) imprecise if the knowledge Ka of the agent about the attribute a and its
value for the object o is imprecise.

When the unit knowledge of the agent about the object o is imprecise then most
often we replace the unknown quantity x in (e) by a vague value.
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Example 4. If in the system �(S) we consider the relation R = RQ,S200 , i.e. the
set of all scientists of S that have at least 200 quotations of their papers (the
property of possessing at least 200 quotations) then the unit knowledge about
the scientist s3 with respect to R can be the following vague information:

−→
R (s3) = NUMEROUS , (e1)

where NUMEROUS is an unknown, indefinite, vague quantity, and the unit in-
formation about s3 with respect to R, from the point of view of the agent, is
certainly imprecise and vague if (e1) has for him different solutions in differ-
ent situations. Then the agent points to the scientist s3 non-uniquely, possibly
from his point of view different images

−→
R (s3) of the scientist s3 with respect

to the relation R. Then the equation (e1) has usually, for him, at least two
solutions. On the basis of Example 3 a solution of (e1) can be each relation
RQ,S150 , RQ,S170 , RQ,S190 , RQ,S210 , RQ,S230 , RQ,S250 , RQ,S300 . Let us observe that
RQ,S150 = {s1, s2, s3, s4, s5}, RQ,S170 = RQ,S190 = {s1, s2, s3, s5}, RQ,S210 =
RQ,S230 = {s1, s2, s5}, RQ,S250 = {s1}, RQ,S300 = ∅.

3 Vague Sets and Rough Sets

In order to simplify the further considerations, we will limit ourselves to the
unary relation R (property) – a subset of U .

Let �(Σ) be the system determined by the information system Σ, R be its
unary relation and o ∈ U .

Definition 6. The unit knowledge about the object o in �(Σ) with respect to
R is inexact iff the equation (e) has the form:

−→
R (o) = X, (ine)

where X is an unknown quantity from the point of view of the agent, and (ine)
has for him at least one solution and at least one of the solutions is not the image−→
R (o).

The equation (ine) can be called the equation of inexact knowledge of the agent.
All solutions of (ine) are unary relations in the system �(Σ).

Definition 7. The unit knowledge about the object o in �(Σ) with respect to
R is vague iff the equation (ine) has the form:

−→
R (o) = VAGUE, (ve)

where VAGUE is an unknown quantity and (ve) has at least two different solu-
tions for the agent.

The equation (ve) can be called the equation of vague knowledge of the agent.

Fact 4. Vague unit knowledge is a particular case of inexact unit knowledge.
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Definition 8. The family of all solutions (sets) of (ine), respectively (ve), such
that at least one of them includes R, is called the vague set for the object
o approximated by R, respectively the proper vague set for the object o
approximated by R.

Example 5. The family of all solutions of (e1) from Example 4 is a vague set
Vs3 for the scientist s3 approximated by RQ,S200 and Vs3 = {RQ,S150 , RQ,S170 ,
RQ,S190 , RQ,S210 , RQ,S230 , RQ,S250 , RQ,S300}.

Vague sets, so also proper vague sets, determined by a set R are here some
generalizations of sets approximated by representations (see Bonikowski [2]).
They are non-empty families of unary relations from �(Σ) (such that at least
one of them includes R) and subfamilies of the family P (U) of all subsets of
the set U , determined by the set R. They have the greatest lower bound (the
lower limit) and the least upper bound (the upper limit) in P (U) with respect
to inclusion. We will denote the greatest lower bound of any family X by X.
The least upper bound of X will be denoted by X. So, we can note

Fact 5. For each vague set V approximated by the set (property) R

V ⊆ {Y ∈ P (U) : V ⊆ Y ⊆ V}.

The idea of vague sets was conceived upon the idea of Pawlak’s rough sets [14],
who defined them by means of the operations of the lower approximation: , and
the upper approximation: , defined on subsets of U . The lower approximation
of a set is defined as a union of indiscernibility classes of a given relation in
U2, which are included in this set, whereas the upper approximation of a set
is defined as a union of the indiscernibility classes of the relation, which have
non-empty intersection with this set.

Definition 9. A rough set determined by a set R ⊆ U is a family P of all sets
satisfying the following condition:

P = {Y ∈ P (U) : Y = R ∧ Y = R}2.

Let us observe that because R ⊆ R ∈ P, the family P is a non-empty family of
sets such that at least one of them includes R (cf. Definition 8). By analogy to
Fact 5 we have

Fact 6. For each rough set P determined by the set (property) R

P ⊆ {Y ∈ P (U) : R ⊆ Y ⊆ R}.

It is obvious that

Fact 7. If V is a vague set and X = V and X = V for any X ∈ V, then V is
a subset of a rough set determined by any set of V.
2 Some authors define a rough set as a pair of sets (lower approximation, upper ap-

proximation)(cf. e.g. Iwiński [7], Pagliani [10]).
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For every rough set P determined by R we have: P = R and P = R. So we can
consider the following generalization of the notion of the rough set:

Definition 10. A non-empty family G of subsets of U is called a generalized
rough set determined by a set R iff it satisfies the following condition:

G = R and G = R.

It is easily seen that

Fact 8. Every rough set determined by a set R is a generalized rough set deter-
mined by R.

Fact 9. If V is a vague set and there exists a set X ⊆ U such, that X = V and
X = V, then V is a generalized rough set determined by the set X.

4 Operations on Vague Sets

Let us denote by V the family of all vague sets approximated by relations in
system �(Σ). In the family V we can define an operation of negation ¬ on vague
sets, a union operation ⊕ and an intersection operation " on any two vague sets.

Definition 11. Let V1 = {Ri}i∈I and V2 = {Rj}j∈J be vague sets determined
by sets R ⊆ U and S ⊆ U , respectively.

(a) V1 ⊕V2 = {Ri}i∈I ⊕ {Rj}j∈J = {Ri ∪Rj}i∈I,j∈J ,
(b) V1 "V2 = {Ri}i∈I " {Rj}j∈J = {Ri ∩Rj}i∈I,j∈J ,
(c) ¬V1 = ¬{Ri}i∈I = {U \Ri}i∈I .

The family V1⊕V2 is called the union of vague sets V1 and V2 determined by
relation R ∪ S, the family V1 "V2 is called the intersection of vague sets V1

and V2 determined by relation R ∩ S and the family ¬V1 is called the negation
of vague set V1 determined by relation U \R.

Theorem 1. Let V1 = {Ri}i∈I and V2 = {Rj}j∈J be vague sets determined
by sets R and S, respectively.

(a) V1 ⊕V2 = V1 ∪V2 =
⋂
{Ri ∪Rj}i∈I,j∈J and

V1 ⊕V2 = V1 ∪V2 =
⋃
{Ri ∪Rj}i∈I,j∈J ,

(b) V1 "V2 = V1 ∩V2 =
⋂
{Ri ∩Rj}i∈I,j∈J and

V1 "V2 = V1 ∩V2 =
⋃
{Ri ∩Rj}i∈I,j∈J ,

(c) ¬V1 = U \V1 and ¬V1 = U \V1.

Theorem 2. The structure B = (V ,⊕,",¬,0,1) is a Boolean algebra, where
0 = {∅} and 1 = {U}.

We can easily observe that the above-defined operations on vague sets differ
from Zadeh’s operations on fuzzy sets, from standard operations in any field of
sets and, in particular, also from operations on rough sets defined in papers of
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Pomykala [16] and Bonikowski [1]. In the last cases the family of all rough sets
with operations defined in these papers is Stone algebra.

5 On Logic of Vague Terms

How to solve the problem of logic of vague terms, logic of vague sentences (vague
logic) based on the vague sets characterized in the previous sections? An answer
to this question requires describing briefly the problem of language representa-
tion of unit knowledge.

On the basis of our examples let us consider two pieces of unit information
about the scientist s3, with respect to the set R of all scientists that have at
least 200 quotations of their papers:

first, exact unit knowledge

−→
R (s3) = {s1, s2, s3, s5}, (ee)

next, vague unit knowledge:

−→
R (s3) = NUMEROUS . (e1)

Let s3 be the designator of the proper name a, R – denotation (extension) of
the name-predicate P (‘a scientist who has at least 200 quotations of his papers ’)
and the vague name-predicate V (‘a scientist who has numerous quotations of
his papers ’) be a language representation of the vague quantity NUMEROUS.
Then a representation of the first equation (ee) is the logical atomic sentence

a is P (re)
and a representation of the second equation (e1) is the vague sentence

a is V. (re1)
In an equivalent way we can represent, respectively, (ee) and (e1) by means

of a logical atomic sentence:
aP or P (a), (re′)

where P is the predicate (‘has at least 200 quotations of his papers’) and by
means of a vague sentence

aV or V (a), (re′1)
where V is the vague predicate (‘has numerous quotations of his papers’).

The sentence (re1) (res. the sentence (re′1)) is not a logical sentence, but it
can be treated as a sentential form, which represents all logical sentences, in
particular the sentence (re) (respectively sentence (re′)) that arises by replacing
the vague name-predicate (res. vague predicate) V by allowable sharp name-
predicates (res. sharp predicates), whose denotations (extensions) constitute the
vague set Vs3 that is the denotation of V and simultaneously the set of solutions
the equation (e1) from the agent’s point of view.

By analogy we can consider every atomic vague sentence with the form V (a),
where a is an individual term and V — its vague predicate, as a sentential form
with V as a vague variable, run over all denotations of sharp predicates that can
be substituted for V in order to get precise, true or false, logical sentences from
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the form V (a). Then, the scope of the variable V is the vague set Vo determined
by the designator o of the term a.

All the above remarks lead to a ‘conservative’, classical approach in searching
for logic of vague terms or vague sentences, called here vague logic (cf. Fine [6],
Cresswell [4]). It is easy to see that all counterparts of laws of classical logic are
laws of vague logic, even if for the fact that vague sentences have an interpretation
in Boolean algebra B of vague sets (see Theorem 2).

It should be noticed that sentential connectives for vague logic should not
satisfy standard conditions (see Malinowski [8]). For example, an alternative of
two vague sentences V (a) and V (b) can be a ‘true’ vague sentence (sentential
form) despite the fact that its arguments V (a) and V (b) are neither ‘true’ or
‘false’ sentential form, i.e. they represent in certain cases true and in other cases
false sentences. It is not contrary to the statement that all vague sentential forms
which we obtain by suitable substitution of sentential variables (resp. predicate
variables) by vague sentences (resp. vague predicates) in laws of classical logic
always represent true sentences. Thus they are laws of vague logic.

6 Final Remarks

1. The concept of vagueness was defined here as a certain indefinite, vague
quantity or property corresponding to the agent knowledge discovering a
fragment of reality. It was given by means of the equation of inexact knowl-
edge of the agent. A vague set was defined as a set (a family) of all possible
solutions (sets) of this equation and although our considerations were limited
to the case of unary relations, they can easily be generalized to the cases of
any k-ary relations.

2. The idea of vague sets was taken here from the idea of rough sets originating
from Zdzis�law Pawlak, because Pawlak’s theory of rough sets takes a non-
numerical, qualitative approach, to the issue vagueness, as opposed to the
quantitative characteristics of vagueness phenomenon by Lotfi Zadeh.

3. Vague sets, like rough sets, are based on the idea of a set approximation by
two sets called the lower and the upper limits of this set. These two kinds of
sets are families of sets approximated by suitable limits.

4. Pawlak’s approach and the approach discussed in this paper are connected
with a reference to the concept of a cognitive agent’s knowledge about the
objects of the investigated reality (see Pawlak [15]) This knowledge is de-
termined by the system of concepts, that is determined by a system of
their extensions (denotations). When the concept is vague, its denotation,
in Pawlak’s sense, is a rough set, while in the authors’ sense – a vague set
which at some conditions is a subset of the rough set.

5. In language representation the equation of inexact, vague knowledge of the
agent can be expressed by means of vague sentences containing a vague pred-
icate. Its denotation (extension) is a family of all scopes of sharp predicates
which can be substituted for the vague predicate from the point of view of
the agent. The denotation is simultaneously the vague set of all solutions of
the equation of the vague agent’s knowledge.
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6. Because vague sentences can be treated as sentential forms in which variables
are vague predicates, all counterparts of tautologies of classical logic are laws
of vague logic (logic of vague sentences).

7. Vague logic is based on classical logic but it is many-valued logic, because
its sentential connectives are intensional.
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Abstract. A knowledge is considered to be a partition of the Universe
into classes of objects indiscernible with respect to the information avail-
able. So, knowledge of two agents may differ. In this paper a consistency-
measure between knowledges is obtained. It is shown that the comple-
ment of consistency-measure, viz. the inconsistency-measure, is a metric
under certain restrictions. Some initial axioms of a logic of consistency
are proposed.

Keywords: Rough Sets, elementary category, knowledge, dependency
degree, consistency degree.

1 Introduction

In Pawlak’s book ’Rough Sets’ [cf. [7]] there is a chapter entitled ’Dependencies
in Knowledge Base’. He has described dependency of knowledge in the following
manner : a knowledge Q depends on a knowledge P if and only if all the ele-
mentary categories of Q can be defined in terms of some elementary categories
of P i.e the indiscernibility relation generated by P is finer than that of Q, in
other words, the granules or equivalence classes formed by Q are split further
into smaller granules formed by P . Two knowledges are equivalent if they gen-
erate the same granules and are independent if neither P nor Q is dependent
on the other. He took a next step forward - a quite natural one - to define par-
tial dependency of knowledge which is a graded notion and was first defined by
Novotný and Pawlak in [4]. The formal definition of partial dependency in terms
of dependency degree of knowledges is given later in definition [4]. The basic
idea is, however, to give a kind of natural measure(estimate) of one knowledge
being dependent on another when not all the equivalence classes of one could be
obtained as unions of equivalence classes of the other.

Based upon the notion of partial dependency, we, in this paper propose a
concept of partial consistency of knowledges. This is also a graded concept that
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reduces to the concept of ordinary, crisp consistency or inconsistency. By a knowl-
edge we shall not mean a set P of equivalence relations on an Universe U , as
understood by Pawlak but the intersection

⋂
P or IND(P ), the indiscernibility

relation caused by P . This intersection is also an equivalence relation. So, for
our purpose (and also of Pawlak’s) it is enough to call an equivalence relation on
an Universe a knowledge about that Universe - and that reduces to the partition
caused by the relation. The Universe is taken to be finite and finiteness is essen-
tial for the concepts in this paper. If knowledge is ultimately characterized by
equivalence classes / elementary categories / granules caused by it in the universe
of discourse, two knowledges are consistent if and only if both of them generate
the same granules. We shall be justified in calling two such knowledges ‘fully
consistent’ instead of consistent. On the other extreme there are two knowledges
that may be called ‘fully inconsistent’ where no equivalence class due to one is
contained in that due to the other. In other words, for each object ‘x’, not all
objects indiscernible with it with respect to one knowledge are indiscernible with
it with respect to the other. Thus the elementary categories are totally disparate.
In the former situation it is quite justified to say that the consistency degree of
the two knowledges is 1 and in the latter case it is 0. While the former is the
case which according to Pawlak constitute ’equivalent knowledges’, the latter
case is not what Pawlak calls ’independent knowledges’. Being fully inconsistent
is a more demanding concept than what has been said to be ‘independent’ by
him. It is quite expected that some kind of a measure of consistency in the case
of intermediate situations should emerge. It is also natural that this measure
should be composed of the dependency measures proposed by Pawlak since we
have noticed that knowledges P and Q turn out to be fully consistent if and only
if P depends on Q and Q depends on P . In the current context the sentence ‘P
depends on Q’ being a sentence that admits values(truth) other than 0(false)
and 1(true), in order to define consistency, a conjunction operation on the value
set [0,1] is sought for. A natural candidate could be a t-norm [cf. [2]] but we shall
see later that such an operation does not serve the purpose. So another binary
operator C on [0.1] has been proposed. The connection between C and t-norms
shall be discussed in some of the propositions that follow.

It would be appropriate to look into the notions of consistency that have ap-
peared in rough-set literature. In [3] a kind of [0,1]-valued functions assigning val-
ues called ’consistency degrees’ to profiles (i.e finite multi-sets on an universe U)
is defined satisfying certain consistency postulates. This definition presupposes
an underlying ’distance’ function on U . These consistency measuring functions
are utilized to deal with conflict situations. As it appears and stands now, there
is hardly any link with rough set theory and this idea of consistency degree.

On the other hand, in [8] a notion of the consistency of an object x with
another object y in an information system involving condition attributes CON
and decision attributes DEC is defined. x is said to be consistent with y iff
whenever x and y are indiscernible w.r.t all the CON attributes they shall also
be so w.r.t all the DEC attributes. x is called consistent if and only if it is
consistent with every y. This means that either x is not indiscernible with any
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other element by the condition attributes or if there is any such y, the objects x,y
shall be indiscernible by the decision attributes also. In terms of consistent pairs
of elements, the authors have defined a dependency degree viz. deg(CON,DEC)
among attributes of the information system.

2 Dependency of Knowledge

We would accept the basic philosophy that a knowledge of an agent about an
universe is her ability to categorize objects inhabiting it through information
received from various sources or perception in the form of attribute-value data.
For our purpose it is enough to start with the indiscernibility relation caused by
the attribute-value system. So, knowledge is defined as follows.

Definition 1. Knowledge : A knowledge is a pair, < U,P > where U is a non-
empty finite set and P is an equivalence relation on U . P will also denote the
partition generated by the equivalence relation.

Definition 2. Finer and Coarser Knowledge : A knowledge P is said to be finer
than the knowledge Q if every block of the partition P is included in some block
of the partition Q. In such a case Q is said to coarser than P . We shall write it
as P � Q.

We recall a few notions due to Pawlak (and others) e.g P -positive region of Q
and based upon it dependency-degree of knowledges.

Definition 3. Let P and Q be two equivalence relations over U . The P-positive
region of Q, denoted by PosP (Q) is defined by
PosP (Q) =

⋃
X∈U/Q

P
¯
X , where P

¯
X = {

⋃
Y ∈ U/P : Y ⊆ X} called P-lower

approximation of X.

Definition 4. Dependency degree : Knowledge Q depends in a degree k (0 ≤
k ≤ 1) on knowledge P , written as P ⇒k Q, iff k = CardPosP (Q)

CardU where card
denotes cardinality of the set.
If k = 1 , we say that Q totally depends on P and we write P ⇒ Q; and if k =
0 we say that Q is totally independent of P .

Viewing from the angle of multi-valuedness one can say that the sentence ‘The
knowledge Q depends on the knowledge P ’ instead of being only ‘true’(1) or
‘false’(0) may receive other intermediate truth-values, the value k being deter-
mined as above. This approach justifies the term ‘partial dependency’ as well.

In propositions 1,2 and 3, we enlist some elementary, often trivial, properties
of dependency degree some of them being newly exercised but most of which are
present in [4,7]. Some of these properties e.g. proposition 3(v) will constitute the
basis of definitions and results of the next section.

Proposition 1. (i) [x]P1∩P2 = [x]P1 ∩ [x]P2 ,
(ii) P ⇒ Q and P � R, then R⇒ Q,
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(iii)If P ⇒ Q and R � Q then P ⇒ R,
(iv)If P ⇒ Q and Q⇒ R then P ⇒ R,
(v)If P ⇒ R and Q⇒ R then P ∩Q⇒ R,
(vi) If P ⇒ R ∩Q then P ⇒ R and P ⇒ Q,
(vii) If P ⇒ Q and Q ∩R⇒ T then P ∩R⇒ T ,
(viii) If P ⇒ Q and R⇒ T then P ∩R⇒ Q ∩ T .

Proposition 2. (i) If P ′ � P then P ′X ⊇ PX,
(ii) If P ⇒a Q and P ′ � P then P ′ ⇒b Q where b ≥ a,
(iii) P ⇒a Q and P � P ′ then P ′ ⇒b Q where b ≤ a,
(iv) P ⇒a Q and Q′ � Q then ⇒b Q′ where b ≤ a,
(v) P ⇒a Q and Q � Q′ then P ⇒b Q′ where a ≤ b.

Proposition 3. (i) If R ⇒a P and Q ⇒b P then R ∩ Q ⇒c P for some c ≥
Max(a,b),
(ii) If R ∩ P ⇒a Q then R⇒b Q and P ⇒c Q for some b,c ≤ a,
(iii) If R⇒a Q and R⇒b P then R⇒c Q ∩ P for some c ≤ Min(a,b),
(iv) If R⇒a Q ∩ P, then R⇒b Q and R⇒c P , for some b,c ≥ a,
(v) If R⇒a P and P ⇒b Q then R⇒c Q for some c ≥ a+b-1.

3 Consistency of Knowledge

Two knowledges P and Q on U may be considered as fully consistent if and
only if U/P = U/Q, that is P ,Q generate exactly the same granules. This is
equivalent to P ⇒ Q and Q ⇒ P . So, a natural measure of consistency degree
of P and Q might be the truth-value of the non-classical sentence “Q depends
on P ∧ P depends on Q” computed by a suitable conjunction operator applied
on the truth-values of the two component sentences Thus a binary predicate
Cons may be created such that Cons(P,Q) will stand for the above conjunctive
sentence and a triangular norm (or t-norm) used in fuzzy-literature and many-
valued logic scenario is a potential candidate for computing ∧. A t-norm is a
mapping t : [0, 1] → [0, 1] satisfying (i) t(a,1) = a, (ii) b ≤ d implies t(a,b) ≤
t(a,d), (iii) t(a,b) = t(b,a), (iv) t(a,t(b,d)) = t(t(a,b),d). It follows that t(a,0)=0.
Typical examples of t-norm are :
min(a,b) (Gödel),
max(0,a+b-1) (Lukasicwicz),
a× b (Godo,Hajek).
These are conjunction operators used extensively and are in some sense the basic
t-norms [cf. [1]]. With 1−x as negation operator the De-Morgan dual of t-norms
called s-norms are obtained as s(a, b) = 1− t(1− a, 1− b). Values of disjunctive
sentences are computed by s-norms.

There is however a difficulty in using a t-norm in this context. We would like
to have the following assumptions to hold.

Assumption 1. Knowledges P ,Q shall be fully consistent iff they generate the
same partition.
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Assumption 2. Knowledges P ,Q shall be fully inconsistent iff no granule gen-
erated by one is contained in any granule generated by the other.

The translation of the above demands in mathematical terms is that the con-
junction operator C should fulfill the conditions :

C(a, b) = 1 iff a = 1, b = 1
and C(a, b) = 0 iff a = 0, b = 0.

No t-norm satisfies the second. So we define consistency degree as follows:

Definition 5. Let P and Q be two knowledges such that P ⇒a Q and Q⇒b P .
The consistency degree between the two knowledges denoted by Cons(P,Q) is
given by Cons(P,Q) = a+b+nab

n+2 , where n is a non negative integer.

Definition 6. Two knowledges P and Q are said to be fully consistent if
Cons(P,Q) = 1. Two knowledge P and Q are said to be fully inconsistent if
Cons(P,Q) = 0.

Example 1. (i) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and the partitions be taken as P =
{{1, 3, 5}, {2, 4, 6},
{7, 8}} and Q = {{1, 2, 7}, {3, 4, 8}, {5, 6}}. Then P ⇒0 Q and Q ⇒0 P . So,
Cons(P,Q) = 0.
(ii) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and partitions P = {{1, 3, 5}, {2, 4, 6}, {7, 8}}
and Q = {{1, 3, 5}, {2, 4, 6}, {7, 8}}. Then P ⇒1 Q and Q⇒1 P . So, Cons(P,Q)
= 1.
(iii) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and partitions P = {{1, 4, 5}, {2, 8}, {6, 7}, {3}}
and Q = {{1, 3, 5}, {2, 4, 7, 8}, {6}}.Then P ⇒ 3

8
Q and Q⇒ 1

8
P . So, Cons(P,Q)

=
3
8+ 1

8+n 3
8

1
8

n+2 , where n is a non-negative integer.

Although any choice of n satisfies the initial requirements, some special values
for it may be of special significance e.g n = 0, n = Card(U) and n as defined in
proposition 5. We shall make discussions on two of such values latter. ‘n’ shall
be referred to as a ‘consistency constant’ or simply ‘constant’ in the sequel. The
constant is a kind of constraint on consistency measure as shown in the next
proposition.

Proposition 4. For two knowledges P and Q if n1 ≤ n2 then Cons1(P,Q) ≥
Cons2(P,Q) where Consi(P,Q) is the consistency degree when ni is the constant
taken.
Proof : Let P ⇒a Q and Q⇒b P . Since n1 ≤ n2, so, n2−n1 ≥ 0. So Cons1(P,Q)
= a+b+n1ab

n1+2 and Cons2(P,Q) = a+b+n2ab
n2+2 . Now, a+b+n1ab

n1+2 − a+b+n2ab
n2+2 =

(n2−n1)(a+b−2ab)
(n1+2)(n2+2) ≥ 0 iff (n2 − n1)(a + b− 2ab) ≥ 0 iff (a+b-2ab) ≥ 0 iff a+b ≥

2ab. Now, a+b
2 ≥

√
ab ≥ ab. So a+b ≥ 2ab holds. This shows that Cons1(P,Q) ≥

Cons2(P,Q).

Proposition 5. If n = the number of elements a∈ U such that [a]P � [a]Q and
[a]Q � [a]P , then n = Card U - [Card

⋃
X∈U/Q

P
¯
X. + Card

⋃
X∈U/P

Q
¯
X -

Card(
⋃

X∈U/Q
P
¯
X

⋂ ⋃
X∈U/P

Q
¯
X)].
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Proof: Here the number of elements a∈ U such that [a]P ⊆ [a]Q = Card
⋃

X∈U/Q

P
¯
X . . . (i). Now the number of elements a∈ U such that [a]Q ⊆ [a]P = Card⋃
X∈U/P

Q
¯
X . . . (ii). So the number of elements common to (i) and (ii) = Card

(
⋃

X∈U/Q
P
¯
X

⋂ ⋃
X∈U/P

Q
¯
X)] ...(iii) . From (i), (ii) and (iii) the proposition

follows.

One can observe that the definition of a consistent object in [3](cf. Introduction)
may be generalized relative to any pair (P,Q) of partitions of the Universe, not
only restricted to the partitions caused due to the pair (CON,DEC). With this
extension of the notion, n is the count of all those objects a such that a is not
consistent relative to both the pairs (P,Q) and (Q,P ). In the following examples
n is taken to be this number.

Example 2. (i) Let U={1, 2, 3, 4, 5, 6, 7, 8} and partitions P = {{1, 3, 5}, {2, 4, 6},
{7, 8}} and Q = {{1, 2, 7}, {3, 4, 8}, {5, 6}}. Then P ⇒0 Q and Q ⇒0 P . Here
n=8. So, Cons(P,Q) = 0+0+8.0.0

8+2 = 0.
(ii) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and partitions P = {{1, 3, 5}, {2, 4, 6}, {7, 8}}
and Q = {{1, 3, 5}, {2, 4, 6}, {7, 8}}. Then P ⇒1 Q and Q⇒1 P . Here n=0. So,
Cons(P,Q) = 1+1+0.1.1

0+2 = 1.
(iii) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and partitions P = {{1, 4, 5}, {2, 8}, {6, 7}, {3}}
and Q = {{1, 3, 5}, {2, 4, 7, 8}, {6}}. Then P ⇒ 3

8
Q and Q⇒ 1

8
P . Here n=4. So,

Cons(P,Q) =
3
8+ 1

8+4. 3
8 . 1

8
4+2 = 11

96 .

If the t-norm is taken to be max(0,a+b-1), then the corresponding s-norm is
min(1,a+b). For the t-norm min(a,b), the s-norm is max(a,b). There is an order
relation in the t-norms/ s-norms, viz.

any t-norm � min � max � any s-norm.
In particular
max(o,a+b-1) � min(a,b) � max(a,b) � min(1,a+b).
Where does the Cons function situate itself in this chain - might be an inter-

esting and useful query. The following proposition answers this question.

Proposition 6. max(0, a + b − 1) � Cons(P,Q) � max(a, b) if P ⇒a Q and
Q⇒b P .

To compare Cons(P,Q) and min(a, b), we have,

Proposition 7. Let P and Q be two knowledges and P ⇒a Q and Q ⇒b P.
Then (i) a=b=1 iff min(a,b)=Cons(P,Q)=1,
(ii) If either a=1 or b=1 then min(a,b) ≤ Cons(P,Q),
(iii) min(a,b)= a ≤ Cons(P,Q) iff n ≤ a−b

a(b−1) , a �= 0, b �= 1,
(iv) min(a,b)= a ≥ Cons(P,Q) iff n ≥ a−b

a(b−1) , a �= 0, b �= 1,
(v) max(0,a+b-1) ≤ Cons(P,Q) ≤ max(a,b) ≤ s(a,b)=min(1,a+b).

The Cons function seems to be quite similar to a t-norm but not the same. So a
closer look into the function is worthwhile.

We define a function C:[0,1]×[0,1]→[0,1] as follows C(a, b) = a+b+nab
n+2 where

n is a non-negative integer.
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Proposition 8. (i) 0 ≤ C(a, b) ≤ 1,
(ii) If a ≤ b then C(a, b) ≤ C(a, c),
(iii) C(a, b) = C(b, a),
(iv) C(a, C(b, c)) = C(C(a, b), c) iff a=c ;
C(a, C(b, c)) ≤ C(C(a, b), c) iff a ≤ c;
C(a, C(b, c)) ≥ C(C(a, b), c) iff a ≥ c,
(v) C(a,1) ≥ a, equality occurring iff a=1,
(vi) C(a, 0) ≤ a, equality occurring iff a=0,
(vii) C(a, b) = 1 iff a=b=1 and C(a, b) = 0 iff a=b=0,
(viii) C(a, a) = a iff either a=0 or a=1,

Definition 7. We define 1− C(1 − a, 1− b) = D(a, b).

Proposition 9. (i)C(a, b) ≤ 1-C(1 − a, 1− b)= D(a, b)
(ii) 0 ≤ D(a, b) ≤ 1,
(iii) If a ≤ b then D(a, b) ≤ D(a, c),
(iv) D(a, b) = D(b, a),
(v) D(a,D(b, c)) = D(D(a, b), c) iff a=c ,
D(a,D(b, c)) ≤ D(D(a, b), c) iff a ≤ c,
D(a,D(b, c)) ≥ D(D(a, b), c) iff a ≥ c,
(vi) D(a, 1) ≥ a, equality occurring iff a=1,
(vii) D(a, 0) ≤ a, equality occurring iff a=0,
(viii) D(a, b) = 1 iff a=b=1 and D(a, b) = 0 iff a=b=0,
(ix) D(a, a) = a iff either a=0 or a=1,
(x) D(a, b) ≤ min(1,a+b).

One can immediately observe similarity between the function D and Lukasiewicz
s-norm.

The consistency function Cons gives a measure of similarity between two
knowledges. It would be natural to define a measure of inconsistency or dissim-
ilarity now. In [4] a notion of distance is available.

Definition 8. If P ⇒a Q and Q⇒b P then the distance function is denoted by
ρ(P,Q) and defined as ρ(P,Q)= 2−(a+b)

2 .

Proposition 10. The distance function ρ satisfies the conditions :
(i) o ≤ ρ(P,Q) ≤ 1
(ii) ρ(P, P ) = 0
(iii) ρ(P,Q) = ρ(P,Q)
(iv) ρ(P,R) ≤ ρ(P,Q) + ρ(Q,R).
For proof the reader is referred to [4].

Definition 9. We now define a measure of inconsistency by :
InCons(P,Q) = 1-Cons(P,Q)

Proposition 11. (i) o ≤ InCons(P,Q) ≤ 1,
(ii) InCons(P, P ) = 0,
(iii) InCons(P,Q) = InCons(P,Q),
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(iv) InCons(P,R) ≤ InCons(P,Q) + InCons(Q,R) for a fixed constant n.
Proof of (iv): Let P ⇒x R, R ⇒y P , P ⇒a Q, Q ⇒b P , Q ⇒l R, R ⇒m Q
...(i). Now InCons(P,R) = n+2−x−y−nxy

n+2 ≤ InCons(P,Q) + InCons(Q,R) =
n+2−a−b−nab

n+2 + n+2−l−m−nlm
n+2 = 2(n+2)−n(ab+lm)−(a+b+l+m)

n+2
iff n + 2− x− y − nxy ≤ 2(n + 2)− n(ab + lm)− (a + b + l + m)
iff n(ab + lm− xy − 1) ≤ 2 + x + y − (a + b + l + m)...(ii).
From (i) by Proposition 3(v) we have x ≥ (a + m− 1) and y ≥ (b + l − 1).
Hence (ab + lm− xy − 1) ≤ (ab + lm− (a + m− 1)(b + l − 1)− 1)
= (a(1 − l) + b(1−m) + (m− 1) + (l − 1))
≤ (1 − l + 1−m + m− 1 + l − 1)(∵ 0 ≤ a, b ≤ 1) =0. ...(iii)
Now, 2 + x + y − (a + b + l + m) = 2(2−a−b

2 + 2−l−m
2 − 2−x−y

2 )
= 2(ρ(P,Q) + ρ(Q,R)− ρ(P,R)) ≥ 0. ...(iv)[by Proposition 10(iv)]
Thus the left hand side of inequality (ii) is negative and the right hand side of
(ii) is positive. So (iv) i.e triangle inequality is established.

Proposition 11 shows that for any fixed n the inconsistency measure of knowledge
is a metric. It is also a generalization of the distance function ρ in [4]; InCons
reduces to ρ when n = 0. n is again a kind of constraint on the inconsistency
measure - as n increases, the inconsistency increases too.

4 Towards a Logic of Consistency of Knowledge

We are now at the threshold of a logic of consistency (of knowledge). Along
with the usual propositional connectives the language shall contain two binary
predicates, ‘Cons’ and ‘Dep’ for consistency and dependency respectively. At
least the following features of this logic are present.

(i) 0 ≤ Cons(P,Q) ≤ 1,
(ii) Cons(P, P ) = 1,
(iii) Cons(P,Q) = Cons(Q,P ),
(iv) Cons(P,Q) = 0 iff Dep(P,Q) = 0 and Dep(Q,P ) = 0
and Cons(P,Q) = 1 iff Dep(P,Q) = 1 and Dep(Q,P ) = 1
(v) Cons(P,Q) and Cons(Q,R) implies Cons(P,R).

(i) shows that the logic is many-valued; (ii) and (ii i) are natural expecta-
tions; (iv) conforms to assumptions 1 and 2 (section2); (v) shows transitivity
the predicate Cons.

All these may be considered as axioms of a possible logic. That the transitivity
holds is shown below. We want to show that Cons(P,Q) and Cons(Q,R) implies
Cons(P,R) i.e, Cons(P,Q) and Cons(Q,R) ≤ Cons(P,R). We use Lukasiewicz
t-norm to compute ‘and’. Let n be the fixed constant. So,what is needed is
Max(0,Cons(P,Q) + Cons(Q,R) − 1) ≤ Cons(P,R). Clearly, Cons(P,R) ≥ 0
...(i). We shall now show Cons(P,R) ≥ Cons(P,Q)+Cons(Q,R)−1. Let P ⇒x

R, R ⇒y P , P ⇒a Q, Q ⇒b P , Q ⇒l R, R ⇒m Q So x ≥ (a + m − 1)
and y ≥ (b + l − 1) [cf. Proposition 3(v)]...(ii). So, Cons(P,Q)+Cons(Q,R)-1 =
a+b+nab

n+2 + l+m+nlm
n+2 −1 = (a+l−1)+(b+m−1)+n(ab+lm−1)

n+2 ≤ x+y+n(ab+lm−1)
n+2 [using
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(ii)]...(iii). Here, xy ≥ (a + l − 1)(b + m− 1) = ab+lm+(m-1)(a-1)+(b-1)(l-1)-1
≥ ab+lm-1. [as, m-1 ≤ 0 , a-1 ≤ 0 , so (m-1)(a-1) ≥ 0 , and b-1 ≤ 0 , l-1 ≤ 0 ,
(b-1)(l-1) ≥ 0 ] ...(iv) . So (iii) and (iv) imply Cons(P,Q) + Cons(Q,R)− 1 ≤
x+y+nxy

n+2 = Cons(P,R) ... (v).

5 Concluding Remarks

This paper is only the beginning of a research on a logic of consistency of knowl-
edges where knowledge is in the context of incomplete information understood
basically as proposed by Pawlak. We foresee an interesting logic being developed
and significant applications of the concept Cons and the the operator C.
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Abstract. The aim of this article is to explore further the idea leading to
the standard rough inclusion function (standard RIF for short). In fact,
two more RIFs may be derived which are different from the standard
RIF, yet definable by means of it. We examine properties of the three
RIFs and, in particular, the relationships among them.

To the memory of Professor Zdzis�law Pawlak

1 Introduction

Broadly speaking, rough inclusion functions (RIFs) are mappings which measure
the degree of inclusion of sets of objects in sets of objects1. The formal notion
of RIF was worked out within rough mereology, proposed by Polkowski and
Skowron [1,2,3]. Rough mereology extends Leśniewski’s mereology [4], a formal
theory of being-part to the case of being-part-in-degree. The most famous RIF
is the standard one, based on the frequency count in line with �Lukasiewicz’s
idea [5]2. Apart from the standard RIF, there are only several functions of such
sort described in the literature (see, e.g., [3,6,7,8]).

Although the notion of RIF was dispensable when approximating concepts in
the classical Pawlak rough-set model [9], it is of importance for more general
rough-set models and many other issues. First of all, it is a basic component of
Skowron–Stepaniuk’s approximation spaces [10], where it is used to define rough
approximations of concepts. Starting with a RIF, one can derive a family of rough
membership functions what was already observed by Pawlak and Skowron in [11].
Also various mappings measuring similarity between concepts may be defined by
means of RIFs [3,6,12,13]. In [8], a rough-set approach to knowledge reduction,
based on the degree of inclusion, is proposed.

In this paper, we explore further the idea leading to the standard RIF, aiming
at discovery of other RIFs. It is motivated by the fact that although the stan-
dard RIF is undoubtedly well-grounded, useful, and very popular, some of its
� Many thanks to the anonymous referees for interesting and useful comments which

helped improve the paper.
1 A set of objects is often called a concept in the rough-set framework.
2 It is worth mentioning that the very idea underlies the well-known notion of confi-

dence of a rule.
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properties may seem to be too strong (e.g., Proposition 2a,b). Apart from that,
it would be good to have alternative RIFs at our disposal as well. In result, we
have obtained two RIFs more one of which is really new, whereas the remaining
one was mentioned in [7]. We investigate properties of the three RIFs with em-
phasis on the mutual relationships among them. As regards the standard RIF,
some of the properties are already known, other ones are new, at least up to the
author’s knowledge. As it turns out, the RIFs discovered are different from, yet
definable in terms of the standard RIF. Also the latter RIF may be derived from
the new ones.

The rest of the paper is organized as follows. Section 2 is entirely devoted to
the standard RIF. In Sect. 3, the formal notion of rough inclusion, introduced
by Polkowski and Skowron in [1], is presented. In Sect. 4, two alternatives of the
standard RIF are derived and their properties are investigated. The last section
contains final remarks.

2 The Standard Rough Inclusion Function

The idea underlying the notion of standard rough inclusion function3 may be
attributed to Jan �Lukasiewicz, a famous Polish logician who, among other things,
conducted research on probability of truth of propositional formulas [5].

Consider a structure M with a non-empty universe U and a propositional
language L interpretable over M . For any formula α and u ∈ U , u |= α reads as
‘α is satisfied by u’ or ‘u satisfies α’. The extension of α is the set ||α|| def= {u ∈
U | u |= α}. α is satisfiable in M if its extension is non-empty, and unsatisfiable
otherwise. Morever, α is called true in M , |= α, if ||α|| = U . Finally, α entails a
formula β, written α |= β, if and only if every object satisfying α satisfies β as
well, i.e., ||α|| ⊆ ||β||. In classical logic, an implicative formula α→ β is true in
M if and only if α entails β. Clearly, many interesting formulas are not true in
this sense. Since implicative formulas with unsatisfiable predecessors are true, we
limit our considerations to satisfiable α. Then, one can assess the degree of truth
of α→ β by calculating the probability that an object satisfying α, satisfies β as
well. Where U is finite, this probability may be approximated by the fraction of
objects of ||α|| which also satisfy β. That is, the degree of truth of α → β may
be defined as #(||α|| ∩ ||β||)/#||α||, where #||α|| means the cardinality of ||α||.

By a straithforward generalization, we arrive at the well-known notion of
standard RIF, used already in [10]. It owes its popularity within the rough-set
community to clarity of the underlying idea and to easiness of computation by
means of this notion. Given a non-empty finite set of objects U and its power
set ℘U , the standard RIF on U is a mapping κ£ : ℘U × ℘U &→ [0, 1] such that
for any concepts X,Y ⊆ U ,

κ£(X,Y ) def=

{
#(X∩Y )

#X if X �= ∅
1 otherwise.

(1)

3 And similarly for the notion of confidence of a rule.
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To assess the degree of inclusion of a concept X in a concept Y by means of κ£,
one needs to measure the relative overlap of X with Y . The larger the overlap
of two sets, the higher is the degree of inclusion, viz., for any sets of objects
X,Y, Z,

#(X ∩ Y ) ≤ #(X ∩ Z)⇒ κ£(X,Y ) ≤ κ£(X,Z).

The success of the standard RIF also lies in its mathematical properties. Where
X is a family of sets, we write PairX to say that elements of X are pairwise
disjoint, i.e., ∀X,Y ∈ X .(X �= Y ⇒ X ∩ Y = ∅). It is assumed that conjunction
and disjunction will take the precedence to implication and double implication.

Proposition 1. For any X,Y, Z ⊆ U and any non-empty families X ,Y ⊆ ℘U ,
it holds:

(a) κ£(X,Y ) = 1⇔ X ⊆ Y

(b) Y ⊆ Z ⇒ κ£(X,Y ) ≤ κ£(X,Z)

(c) κ£(X,
⋃
Y) ≤

∑

Y ∈Y
κ£(X,Y )

(d) X �= ∅ & PairY ⇒ κ£(X,
⋃
Y) =

∑

Y ∈Y
κ£(X,Y )

(e) κ£(
⋃
X , Y ) ≤

∑

X∈X
κ£(X,Y ) · κ£(

⋃
X , X)

(f) PairX ⇒ κ£(
⋃
X , Y ) =

∑

X∈X
κ£(X,Y ) · κ£(

⋃
X , X)

Proof. We prove (e) only. Consider any concept Y and any non-empty family
of concepts X . First suppose that

⋃
X = ∅, i.e., X = {∅}. The property clearly

holds since κ£(
⋃
X , Y ) = 1 and κ£(

⋃
X , ∅) · κ£(∅, Y ) = 1 · 1 = 1. Now, let

⋃
X

be non-empty. In such a case, κ£(
⋃
X , Y ) = #(

⋃
X ∩Y )/#

⋃
X = #

⋃
{X∩Y |

X ∈ X}/#
⋃
X ≤

∑
{#(X∩Y ) | X ∈ X}/#

⋃
X =

∑
{#(X∩Y )/#

⋃
X | X ∈

X}. Observe that if some element X of X is empty, then #(X ∩ Y )/#
⋃
X = 0

and, on the other hand, κ£(X,Y ) ·κ£(
⋃
X , X) = 1 · (#X/#

⋃
X ) = 1 · 0 = 0 as

well. For every non-empty element X of X , we have #(X∩Y )/#
⋃
X = (#(X∩

Y )/#X) · (#X/#
⋃
X ) = κ£(X,Y ) · κ£(

⋃
X , X) as required. Summarizing,

κ£(
⋃
X , Y ) ≤

∑
X∈X κ£(X,Y ) · κ£(

⋃
X , X). ��

Some comments may be useful here. (a) says that the standard RIF yields 1
if and only if the 1st argument is included in the 2nd one. According to (b),
the degree of inclusion of a concept X in a concept Z is at least as high as the
degree of inclusion of X in any subset of Z. It follows from (c) that for any
covering of a concept, say Z, the sum of the degrees of inclusion of a concept
X in the concepts constituting the covering is at least as high as the degree of
inclusion of X in Z. The non-strict inequality in (c) may be strenghtened to =
for non-empty X and coverings consisting of pairwise disjoint concepts as stated
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by (d). Due to (e), for any covering of a concept, say Z, the degree of inclusion
of Z in a concept Y is not higher than a weighted sum of the degrees of inclusion
of concepts constituting the covering in Y , where the weights are the degrees of
inclusion of Z in the members of the covering of Z. Again, as said in (f), the
inequality may be strenghtened to = if elements of the covering are pairwise
disjoint.

The following conclusions may be drawn from the facts above.

Proposition 2. For any X,Y, Z,W ⊆ U where X �= ∅, and a family Y of
pairwise disjoint subsets of U such that

⋃
Y = U , we have:

(a)
∑

Y ∈Y
κ£(X,Y ) = 1

(b) κ£(X,Y ) = 0⇔ X ∩ Y = ∅
(c) κ£(X, ∅) = 0
(d) X ∩ Y = ∅ ⇒ κ£(X,Z − Y ) = κ£(X,Z ∪ Y ) = κ£(X,Z)
(e) Z ∩W = ∅ ⇒ κ£(Y ∪ Z,W ) ≤ κ£(Y,W ) ≤ κ£(Y − Z,W )
(f) Z ⊆W ⇒ κ£(Y − Z,W ) ≤ κ£(Y,W ) ≤ κ£(Y ∪ Z,W )

Proof. We show (d) only. To this end, consider any concepts X,Y , where X �= ∅
and X ∩ Y = ∅. Immediately, (d1) κ£(X,Y ) = 0 by (b). Hence, for any concept
Z, κ£(X,Z) = κ£(X, (Z ∩ Y ) ∪ (Z − Y )) = κ£(X,Z ∩ Y ) + κ£(X,Z − Y ) ≤
κ£(X,Y ) + κ£(X,Z − Y ) = κ£(X,Z − Y ) in virtue of Proposition 1b,d. In
the sequel, κ£(X,Z ∪ Y ) ≤ κ£(X,Z) + κ£(X,Y ) = κ£(X,Z) due to (d1) and
Proposition 1c. The remaining inequalities are consequences of Proposition 1b.

��

Let us note a few remarks. Property (a) states that the degrees of inclusion
of a non-empty concept X in pairwise disjoint concepts which, taken together,
cover the universe sum up to 1. In virtue of (b), the degree of inclusion of a
non-empty concept in any concept equals to 0 just in case the both concepts are
disjoint. (b) implies (c), where the latter says that the degree of inclusion of a
non-empty concept in ∅ is equal to 0. Thanks to (d), removing (resp., adding)
objects, not being members of a non-empty concept X , from (to) a concept Z
does not influence the degree of inclusion of X in Z. As follows from (e), adding
(resp., removing) objects, not belonging to a concept W , to (from) a concept Y
does not increase (decrease) the degree of inclusion of Y in W . Finally, by (f),
removing (resp., adding) members of a concept W from (to) a concept Y does
not increase (decrease) the degree of inclusion of Y in W .

Example 1. Given U = {0, . . . , 9}, X = {0, . . . , 3}, Y = {0, . . . , 3, 8}, and Z =
{2, . . . , 6}. Note that X ∩ Z = Y ∩ Z = {2, 3}. Thus, κ£(X,Z) = 1/2 and
κ£(Z,X) = 2/5 which means that the standard RIF is not symmetric. Moreover,
κ£(Y, Z) = 2/5 < 1/2. Thus, X ⊆ Y may not imply κ£(X,Z) ≤ κ£(Y, Z), i.e.,
κ£ is not monotone in the 1st variable.
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3 The Formal Notion of Rough Inclusion

The notion of standard RIF was generalized and formalized by Polkowski and
Skowron within rough mereology, a theory of the notion of being-part-in-degree
[1,2,3]. The starting point is a pair of formal theories, Leśniewski’s mereology and
ontology [4]. Mereology, a theory of the notion of being-part, is based on ontology,
being a theory of names and playing the role of set theory4. In ontology, two basic
semantical categories are distinguished: the category of names and the category
of propositions. We use x, y, z, with subscripts if needed, as name variables. With
every name x, there is associated a distributive class of individuals designated
by the name, |x|. The empty name designates no entity at all. In Leśniewski’s
approach, only non-empty names are typically considered as the empty set is
denied on philosophical grounds. The only primitive notion of ontology is the
copula ‘is’, denoted by ε and characterized by the following axiom:

(L0) xεy ↔ (∃z.zεx∧ ∀y, z.(yεx ∧ zεx→ yεz) ∧ ∀z.(zεx→ zεy))

xεy is read as ‘x is y’. According to the standard interpretation, xεy is true
if and only if x is an individual name, and the only entity designated by x is
designated by y as well. In particular, xεx is true just in case x is an individual
name.

Mereology is built upon ontology and introduces a name-forming functor pt,
where xεpt(y) reads as ‘x is a part of y’, characterized by the following axioms:

(L1) xεpt(y)→ xεx ∧ yεy (x, y have to be individual names)
(L2) xεpt(y) ∧ yεpt(z)→ xεpt(z) (transitivity)
(L3) ¬(xεpt(x)) (irreflexivity)

The reflexive counterpart of being-part is the notion of being-ingredient, ing,
given by

xεing(y) def↔ xεpt(y) ∨ x = y (2)

and such that:

(L1′) xεing(y)→ xεx ∧ yεy (x, y have to be individual names)
(L2′) xεing(y) ∧ yεing(z)→ xεing(z) (transitivity)
(L3′) xεing(x) (reflexivity)
(L4′) xεing(y) ∧ yεing(x)→ x = y (antisymmetry)

One can also start with ing characterized by (L1’)–(L4’) and define pt by

xεpt(y) def↔ xεing(y) ∧ x �= y. (3)

4 Leśniewski’s mereology is also known as a theory of collective sets as opposite to
ontology being a theory of distributive sets.
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In Polkowski–Skowron’s rough mereology which extends Leśniewski’s mere-
ology, a family of name-forming functors ingt, formalizing the notion of being-
ingredient-in-degree and originally denoted by μt, is introduced as follows, for
any names x, y, z and s, t ∈ [0, 1]:

(PS1) ∃t.xεingt(y)→ xεx ∧ yεy (x, y have to be individual names)
(PS2) xεing1(y)↔ xεing(y) (ingredient in degree 1 is ingredient)
(PS3) xεing1(y)→ ∀z.(zεingt(x)→ zεingt(y)) (weak transitivity)
(PS4) x = y ∧ xεingt(z)→ yεingt(z) (= is a congruence)
(PS5) xεingt(y) ∧ s ≤ t→ xεings(y) (ingredienthood in degree at least t)

Then, being a part in degree t may be defined as a special case of being an
ingredient in degree t, viz.,

xεptt(y) def↔ xεingt(y) ∧ x �= y. (4)

(PS1)–(PS5) specify minimal requirements to be fulfilled by rough inclusion
functions, intended as functions measuring the degree of inclusion of concepts
in concepts. Consider a structure M with a non-empty set of objects U as the
universe. Individual names may designate sets of objects of U , and being an
ingredient (resp., part) of a name may be interpreted as being a subset (proper
subset) of the set of objects designated by this name. In our approach, where the
empty set is allowed for convenience, a RIF upon U is defined as any mapping
κ : ℘U × ℘U &→ [0, 1] satisfying rif1 and rif2 below:

rif1(κ) def⇔ ∀X,Y.(κ(X,Y ) = 1⇔ X ⊆ Y )

rif2(κ) def⇔ ∀X,Y, Z.(Y ⊆ Z ⇒ κ(X,Y ) ≤ κ(X,Z))

Thus, according to rif2, RIFs are monotone in the 2nd variable. On the other
hand, as stipulated by rif1, the greatest value 1 is achieved by a RIF only for
such pairs of concepts that the 2nd element of a pair contains the 1st element5.
Observe that ingt(y) may be interpreted in M as the set of all such X ⊆ U that
κ(X,Y ) ≥ t, where |y| = {Y } and κ is a RIF upon U .

Apart from rif1, rif2, RIFs may satisfy other postulates, e.g.:

rif3(κ) def⇔ ∀X �= ∅.κ(X, ∅) = 0

rif4(κ) def⇔ ∀X,Y.(κ(X,Y ) = 0⇒ X ∩ Y = ∅)

rif4∗(κ) def⇔ ∀X �= ∅.∀Y.(X ∩ Y = ∅ ⇒ κ(X,Y ) = 0)

rif5(κ) def⇔ ∀X �= ∅.∀Y.(κ(X,Y ) = 0⇔ X ∩ Y = ∅)

rif6(κ) def⇔ ∀X �= ∅.∀Y.κ(X,Y ) + κ(X,U − Y ) = 1

5 In particular, the characteristic function of ⊆, f⊆ : ℘U × ℘U �→ {0, 1}, given by

f⊆(X, Y ) = 1
def⇔ X ⊆ Y for any X, Y ⊆ U , is a RIF.
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As follows from Propositions 1 and 2, the standard RIF satisfies all the conditions
above. Moreover, it holds for any κ that rif1(κ) and rif6(κ) imply rif5(κ); rif5(κ)
is equivalent to rif4(κ) and rif4∗(κ); and rif4∗(κ) implies rif3(κ).

4 In Search of RIFs Other Than the Standard One

According to rough mereology, rough inclusion is a generalization of the set-
theoretical inclusion of sets. While keeping with this idea, we try to obtain RIFs
different from the standard one. Observe that for any X,Y ⊆ U , where U is a
non-empty finite set of objects as earlier, the following formulas are equivalent:

(i) X ⊆ Y

(ii) X ∩ Y = X

(iii) X ∪ Y = Y

(iv) (U −X) ∪ Y = U (5)

The equivalence of the first two statements gave rise to the standard RIF. Now,
we explore (i)⇔ (iii) and (i)⇔ (iv). In the case of (iii), ‘⊇’ always holds true.
Conversely, ‘⊆’ always takes place in (iv). The remaining inclusions may or may
not hold, so we may introduce degrees of inclusion. Thus, let us define mappings
κ1, κ2 : ℘U × ℘U &→ [0, 1] such that for any concepts X,Y ,

κ1(X,Y ) def=
{ #Y

#(X∪Y ) if X ∪ Y �= ∅
1 otherwise,

κ2(X,Y ) def=
#((U −X) ∪ Y )

#U
. (6)

It is worth noting that κ2 is mentioned in [7]. Now, we show that both κ1, κ2

are RIFs (i.e., they satisfy rif1, rif2) different from the standard RIF and from
each other.

Proposition 3. For i = 1, 2, rif1(κi) and rif2(κi).

Proof. We only prove the property for i = 1. To this end, let X,Y, Z ⊆ U be
any concepts. In the case of rif1, we only examine the non-trivial case, where
X,Y �= ∅. Then, κ1(X,Y ) = 1 if and only if #Y = #(X ∪ Y ) if and only if
Y = X ∪ Y if and only if X ⊆ Y . To show rif2(κ1), assume that (a1) Y ⊆
Z. If X = Y = Z = ∅, then κ1(X,Y ) = κ1(X,Z) = 1 as required. Next,
if X = ∅ and Y �= ∅, then κ1(X,Y ) = #Y/#Y = 1, and similarly for Z.
In this way, X = ∅ implies κ1(X,Y ) = κ1(X,Z) = 1 as needed. Finally, if
X �= ∅, then X ∪ Y,X ∪ Z �= ∅. Moreover, Z = Y ∪ (Z − Y ) and Y ∩ (Z −
Y ) = ∅ by (a1). As a consequence, (a2) #Z = #Y + #(Z − Y ). Additionally,
(a3) #(X ∪ Z) ≤ #(X ∪ Y ) + #(Z − Y ) and (a4) #Y ≤ #(X ∪ Y ). Hence,
κ1(X,Y ) = #Y/#(X ∪ Y ) ≤ (#Y + #(Z − Y ))/(#(X ∪ Y ) + #(Z − Y )) ≤
(#Y + #(Z − Y ))/#(X ∪ Y ∪ (Z − Y )) = #Z/#(X ∪ Z) = κ1(X,Z) by (a2)-
(a4). ��
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Example 2. Consider U = {0, . . . , 9} and its subsets X = {0, . . . , 4}, Y =
{2, . . . , 6}. Notice that X∩Y = {2, 3, 4}, X∪Y = {0, . . . , 6}, and (U−X)∪Y =
{2, . . . , 9}. Hence, κ£(X,Y ) = 3/5, κ1(X,Y ) = 5/7, and κ2(X,Y ) = 4/5, i.e.,
κ£, κ1, κ2 are different RIFs.

Proposition 4. For any concepts X,Y, Z, we have:

(a) X �= ∅ ⇒ (κ1(X,Y ) = 0⇔ Y = ∅)
(b) κ2(X,Y ) = 0⇔ X = U & Y = ∅
(c) rif4(κ1) & rif4(κ2)
(d) κ£(X,Y ) ≤ κ1(X,Y ) ≤ κ2(X,Y )
(e) κ1(X,Y ) = κ£(X ∪ Y, Y )
(f) κ2(X,Y ) = κ£(U, (U −X) ∪ Y ) = κ£(U,U −X) + κ£(U,X ∩ Y )
(g) κ£(X,Y ) = κ£(X,X ∩ Y ) = κ1(X,X ∩ Y ) = κ1(X − Y,X ∩ Y )

Proof. By way of illustration, we show (d). To this end, consider any concepts
X,Y . If X is empty, then (U−X)∪Y = U . Hence, by the definitions of the RIFs,
κ£(X,Y ) = κ1(X,Y ) = κ2(X,Y ) = 1. Now, suppose that X �= ∅. Obviously,
(d1) #(X∩Y ) ≤ #X and (d2) #Y ≤ #(X∪Y ). Since X∪Y = X∪(Y −X) and
X∩(Y −X) = ∅, (d3) #(X∪Y ) = #X+#(Y −X). Similarly, it follows from Y =
(X∩Y )∪(Y −X) and (X∩Y )∩(Y −X) = ∅ that (d4) #Y = #(X∩Y )+#(Y −X).
Observe also that (U −X) ∪ Y = ((U −X)− Y ) ∪ Y = (U − (X ∪ Y )) ∪ Y and
(U − (X ∪ Y )) ∩ Y = ∅. Hence, (d5) #((U −X) ∪ Y ) = #(U − (X ∪ Y )) + #Y .
In the sequel, κ£(X,Y ) = #(X ∩ Y )/#X ≤ (#(X ∩ Y ) + #(Y −X))/(#X +
#(Y −X)) = #Y/#(X ∪ Y ) = κ1(X,Y ) ≤ (#(U − (X ∪ Y )) + #Y )/(#(U −
(X ∪Y )) + #(X ∪ Y )) = #((U −X)∪ Y )/#U = κ2(X,Y ) by (d1)-(d5) and the
definitions of the RIFs. ��

Let us briefly comment on the properties. According to (a), if X �= ∅, then
emptiness of Y is not only sufficient (as claimed by rif3) but also necessary
condition for κ1(X,Y ) = 0. (b) says that κ2 yields 0 solely for (U, ∅). Due to (c),
the both RIFs satisfy rif4. (d) states that the degree of inclusion of a concept
X in a concept Y given by κ2 is at least as high as that one yielded by κ1, and
the latter is not lower than the degree obtained by means of the standard RIF.
Properties (e) and (f) provide us with characterizations of κ1 and κ2 in terms of
κ£, respectively. On the other hand, the standard RIF may be defined by means
of κ1 in virtue of (g).

With every mapping f : ℘U × ℘U &→ [0, 1], we can associate a “complemen-
tary” mapping f̄ : ℘U × ℘U &→ [0, 1] defined by

f̄(X,Y ) def= 1− f(X,Y ), (7)

for any concepts X,Y . Observe that

κ̄£(X,Y ) = κ£(X,U − Y ),
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κ̄1(X,Y ) =

{
#(X−Y )
#(X∪Y ) if X ∪ Y �= ∅
0 otherwise,

κ̄2(X,Y ) =
#(X − Y )

#U
. (8)

Example 3. Let us note that unlike in the standard case, for i = 1, 2, κi(X,U −
Y ) �= κ̄i(X,Y ) in general. Indeed, for non-empty X ∪ (U − Y ), κ1(X,U − Y ) =
#(U − Y )/#(X ∪ (U − Y )). Furthermore, κ2(X,U − Y ) = κ2(X ∩ Y, ∅).

As regarding properties of κ̄, we only show how the standard RIF can be ex-
pressed in terms of κi (i = 1, 2) and their complementary functions.

Proposition 5. For any concepts X,Y where X �= ∅,

κ£(X,Y ) =
κ̄1(X,U − Y )
κ1(U − Y,X)

=
κ̄2(X,U − Y )

κ2(U,X)
.

Proof. Consider any concepts X,Y and assume non-emptiness of X . Hence,
X∪(U−Y ) �= ∅ as well. Moreover, κ1(U−Y,X), κ2(U,X) > 0. Then, κ̄1(X,U−
Y ) = #(X − (U − Y ))/#(X ∪ (U − Y )) = #(X ∩ Y )/#(X ∪ (U − Y )) =
(#(X ∩ Y )/#X) · (#X/#(X ∪ (U − Y ))) = κ£(X,Y ) · κ1(U − Y,X) by the
definitions of κ£, κ1, and κ̄1. Hence, κ£(X,Y ) = κ̄1(X,U −Y )/κ1(U −Y,X) as
required. Similarly, κ̄2(X,U − Y ) = #(X − (U − Y ))/#U = #(X ∩ Y )/#U =
(#(X ∩ Y )/#X) · (#X/#U) = κ£(X,Y ) · κ2(U,X) by the definitions of κ£,
κ2, and κ̄2. Immediately, κ£(X,Y ) = κ̄2(X,U − Y )/κ2(U,X) what ends the
proof. ��

5 Final Remarks

In this article, an attempt was made to discover RIFs different from the standard
one, yet having similar origin. First, we overviewed the notion of the standard
RIF. In the next step, a general framework for discussion of RIFs and their
properties was recalled. As a result, a minimal set of postulates specifying a RIF
was derived. Also, several additional, optional conditions were proposed6. Then,
we defined two RIFs which turned out to be different from the standard one.
One of them was mentioned in [7], the remaining one seems to be completely
new. We examined properties of the two RIFs with a special stress laid on the
relationship to the standard RIF. Apart from that, we introduced functions in
some sense complementary to RIFs what resulted in a new characterization of
the standard RIF in terms of the new ones.

For the time being, our results have a theoretical value. It would be interesting
to apply the two RIFs to some practical issues. Another task is to relate the
results to those reported, e.g., in [8]. One more direction for the future research

6 The list is subject to extension and modification.
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is an extension of the notion of RIF to include such mappings as, e.g., ν :
℘U × ℘U &→ [0, 1] defined by

ν(X,Y ) def= κ(uppX, uppY ), (9)

where X,Y ⊆ U , κ is a RIF, and upp is an upper approximation mapping in
the sense of Pawlak [9]. One can see that in an approximation space (U, �, κ)
based on a similarity relation �, where the upper approximation of a concept X
is defined by uppX = {u | �←{u} ∩X �= ∅}, rif2 is satisfied for ν, yet only one
half of rif1 holds for it. Examples of interesting mappings which may serve the
purpose of measurement of the inclusion of concepts in concepts and show the
same feature can be found in [3,6].
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Stanis�law Leśniewski Collected Works, Kluwer Acad. Publ. Dordrecht, pp. 128–173
(1992)

5. �Lukasiewicz, J.: Die logischen Grundlagen der Wahrscheinlichkeitsrechnung. In:
Borkowski, L. (ed.) Jan �Lukasiewicz – Selected Works, North Holland, pp. 16–63.
Polish Scientific Publ, Amsterdam (1970). First published in Kraków, 1913

6. Stepaniuk, J.: Knowledge discovery by application of rough set models. In:
Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications:
New Developments in Knowledge Discovery in Information Systems, pp. 137–233.
Physica-Verlag, Heidelberg (2001)
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Abstract. In the paper, we draw a perspective of the computer-assisted
theory exploration within rough set theory. We examine two well-known
approaches to the topic, drawing some paradigms for a machine math-
assistant to be feasible tool any researcher can use to verify his own
results. Some features of a Mizar language chosen for the verification
task are also presented.

1 Introduction

This paper is a survey of the development of rough set theory from a machine
proof-assistant viewpoint, and a brief summary of basic results encoded in the
computer-checked repository of mathematical knowledge formalized using the
Mizar system. By formalization we mean the encoding of mathematics in a formal
language sufficiently detailed for a computer program to verify the correctness.
The greatest projects of this kind of a pre-computer age were Whitehead and
Russell’s “Principia Mathematica” and project Bourbaki. “Checking Landau’s
‘Grundlagen’ in the Automath system” by Jutting (1977) was the first significant
step of translating human efforts in a machine-checkable language.

The need of the computer verification of hardware and software emerged
pretty recently. After the bug in the first Pentium processor was discovered in
1994, the Intel company established a special group of people doing research in
the field of the hardware verification. But the issue of the uncertainty of results
appears not only in the industry – also academia can face this problem, espe-
cially when publishing is taken into account. As the referees can be uncertain if
a proof is really correct, the review procedure can take months, but the situation
gets even more frustrating when we take into account the case of Thomas Hales,
who has been waiting for five years to hear whether the mathematical commu-
nity has accepted his 1998 proof of Kepler’s conjecture that the most efficient
way to pack equal-size spheres is to stack them in the usual pyramid. In 2003 a
review panel of world experts appointed by the journal Annals of Mathematics
finally declared that, whereas they had not found any irreparable error in the
proof, they were still not sure that it was correct. The journal finally decided
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to publish Hales’s proof, but the disclaimer saying they were not sure that it
was right, was added. Then Hales started the FlySpeck project to formalize his
proof with the help of a computer and hence a new paradigm of using machine
proof-checker – not as the experimental tool but to solve real-life problems – was
confirmed.

The paper is organized as follows. The next section contains a brief summary
of basic notions of RST formalized in the Mizar language, as well as some high-
lights of the system used for this purpose. Section 3 provides the discussion of
various approaches to rough sets while in the fourth section we deal with the
more general model for I-sets, i.e. interval sets, and then we discuss rough sets
from a lattice-theoretical point of view. In Section 6 we sketch some advantages
of machine support in the process of knowledge exploring. The paper ends with
some conclusions and plans for future work.

2 A Primer of Rough Set Theory, Formal Approach

The previous century has brought many automated theorem proving projects
(and so the work of Pawlak in this direction reflected contemporary trends) and
also a few realizations of the idea of machine-checking proofs for their correctness.
As a first, probably most notable, we can point out the aforementioned work of
Jutting in the de Bruijn’s system Automath. Usually, a researcher which is not
well acquainted with automated theorem proving, gets know only about very
large and successful formalization projects. The most impressive (and/or prob-
ably also best advertised) examples were the solution of the Robbins problem
which was open for over sixty years, solved by automated equational theorem
prover EQP/Otter, Four Color Theorem with the proof done in Coq, the Jordan
Curve Theorem recently completed in HOL and later in Mizar.

Andrzej Trybulec, the designer of the Mizar system, in a private communica-
tion admitted that the person who influenced positively his early researches
on the translation from a natural mathematical vernacular into a machine-
understandable language (so, also the development of the Mizar language), was
Zdzis�law Pawlak. When they met in the seventies of the previous century and
discussed a bit the problems emerging somewhere at the intersection of the
human–computer spheres, Professor Pawlak suggested the application for a grant
at IPI PAN (Polish acronym of the Institute of Computer Science of the Polish
Academy of Sciences, although the name was yet slightly different). Trybulec and
his group followed the advice of the designer of a first Polish digital computer
and the unquestionable authority in the field of the young emerging discipline
of the computer science (exploring topics of the automated reasoning and the
mathematical model of a computer, both reflected in Trybulec’s system), they
did so, succeded and eventually got the financing. It was extremely important,
because as yet it can be remembered, the access to a computing machine, nec-
essary for experiments with automated reasoning, was rather complicated and
highly cost-consuming those days. For sure, the language evolved from its pred-
icative form which was popular some thirty years ago, to somewhat closer to
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its natural original. Also some physical bounds vanished – computer parameters
are better and better, which allows us to face the problems inaccessible a cou-
ple decades ago. Some paradigms about human–computer interaction remained
unchanged, though; we guess that many visionary ideas Zdzis�law Pawlak had in
mind, were influential for lots of people involved in the computer science, treated
in the very general setting.

The Mizar language is a formal language close to the vernacular used in math-
ematical publications. An implemented Mizar verifier is available for checking
correctness of Mizar texts according to Jaśkowski natural deduction. The per-
petual development of the Mizar system (see [17]) has resulted in the Mizar
Mathematical Library (MML) – a centrally maintained library of formalized
mathematics based on Tarski-Grothendieck set theory which is a variant of ZFC.

The MML is organized as a cross-linked collection of the items called Mizar
articles. As of the time of writing, there are 959 articles in the whole library,
occupying 70 MB, containing 43149 theorems and 8185 definitions. It is com-
monly considered the biggest library of computer proof-checked mathematics
(possessing e.g., recent proof of the Jordan Curve Theorem) and as such is also
the subject of the research of data-miners (e.g., TPTP – Thousands of Problems
for Theorem Provers). However not yet based on GNU license, the system is
free, available for most popular platforms: MS Windows, Unixes, and MacOS
on PowerPC. System requirements for installing both binaries and database are
rather modest; about 200 MB of disk space to uncompress the full distribution.

2.1 Towards Formal Approximation Spaces

According to the classical paper of Pawlak [9], rough sets are based on the
equivalence relations. Shortly thereafter, there were considered in the literature
more general approaches, e.g. transitivity of the indiscernibility relation was
dropped (see [7,11,10] for some paths of research, not only without transitivity).

Some of the natural properties are true only for the case of equivalence re-
lations, which may make the theorems heterogeneous in some sense – some of
them will require more complex assumptions under which they remain valid. So
to keep his/her work more unified in style, the author could decide to formulate
all of them in terms of approximation spaces. This approach, although transpar-
ent from the user’s perspective, is hardly acceptable from the viewpoint of the
knowledge reusability. We will write e.g. the upper approximation of the subset
A of a universe U with respect to indiscernibility relation I classically as

uppI(A) = {x ∈ U : [x]I ∩A �= ∅},

but using some hidden arguments (we take into account the space R with deter-
mined universe U and I being not necessarily an equivalence relation).

definition let X be Tolerance_Space, A be Subset of X;

func UAp A -> Subset of A equals :: ROUGHS_1:def 5

{ x where x is Element of X :

Class (the InternalRel of X, x) meets A };

end;
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It should be noticed here that to start with rough sets we formalized the def-
inition of approximation spaces based on tolerance relations whenever possible,
we introduced membership functions with selected basic properties, and also
provided the definition of rough sets. Some lines are devoted to various predi-
cates of rough inclusion and rough equality. This primary development can be
browsed under MML Identifier ROUGHS_1 from the Mizar home page 1.

2.2 The State of the Art

A more or less formally axiomatized view for rough sets is not a novelty: Bry-
niarski [1] or Yao [12] are good representatives, not to enumerate yet classical
[9] and [11]. But if we require the possibility of proof checking by the computer,
the choice is not that wide although the idea of automatic correctness checking
is also known. This approach presents relative uniformity – usually there is a
unique definition because the Library Committee which takes care of the collec-
tion of articles does not allow for duplication of concepts and the library users
report such repetitions. But also heterogeneity is not excluded completely – one
can introduce constructions called redefinitions, which can result in having two
approaches effectively benefitting from their equivalence. A good example is the
definition of the rough equality of sets which is, on the one hand, the simultane-
ous equality of their upper and lower approximations, on the other hand – the
conjunction of two rough inclusions.

The MML is roughly divided in three parts – concrete (based on pure set the-
ory), abstract (where structures, including algebraic ones, as e.g. groups, lattices,
vector and topological spaces are defined), and that devoted to the formalization
of random access Turing machines, i.e. mathematical model of a computer, first
decisions which had to be made were how to define approximations; because it
was pretty clear approximation spaces should have been put in the abstract part
of the library due to its strong algebraic flavour.

The correspondence between the very basic notions of the rough set theory
chosen and their formal translated counterparts is given in Table 1. In the table
the dot sign “.” stands for the application of a membership function, the brack-
ets are used mainly for grouping multiple arguments of Mizar functors (i.e. a
kind of language functions), formulas, etc. During the process of the automatic
translation into the natural language (resulting also in the LATEX source) Mizar
functors are not typeset verbatim, but translated either in a way proposed by
the author, or according to some simple transition rules applied automatically.

3 Two Views for Rough Sets

As widely known, the central notion of a rough set does not have its formal
definition uniquely determined. We mean here two set-oriented views for rough
sets. The first one is classical, due to Pawlak (P-sets). The other one (sometimes
called I-sets in the literature for Iwiński [6]) is based on pairs of definable subsets.
The more thorough discussion about such classification can be found in [12].
1 http://www.mizar.org/

http://www.mizar.org/
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Table 1. The correspondence between natural language and Mizar objects

the notion the Mizar counterpart

[x]R Class(R,x)

the upper approximation of A UAp A

the lower approximation of A LAp A

the boundary region of A BndAp A

the membership function μI
X(x) MemberFunc(X,I).x

approximation space Approximation_Space

tolerance approximation space Tolerance_Space

rough upper inclusion c=^

rough lower inclusion _c=

rough inclusion combined _c=^

I-rough set in the universe U rough Subset of U

I-definable set in the universe U exact Subset of U

P-rough set in the universe U RoughSet of U

3.1 Classical Rough Sets

The notion of P-set is based on the original concept of equivalence relation which
induces a partition on the field of the underlying relation. In the MML it has
no clear representation, even if classes of abstraction are natural mathematical
constructions. Classes of P-sets are identified via predicate of rough equality
which reads as follows:

definition let A be Tolerance_Space, X, Y be Subset of A;

pred X _=^ Y means

LAp X = LAp Y & UAp X = UAp Y;

end;

In fact, the granularity of definitions is even better – we considered feasible
to have distinct predicates for X =∗ Y and X =∗ Y (where X and Y have
resp. their lower and upper approximations equal). Naturally, two sets are equal
in the sense of =∗∗ iff they are equal in both senses – the lower and the upper
equality. Alternatively, we claim that a subset of a tolerance approximation space
is rough, if its boundary approximation, i.e. the set-theoretical difference between
its upper and lower approximation is not equal to the empty set.

definition let A be Tolerance_Space, X be Subset of A;

attr X is rough means

BndAp X <> {};

end;

Otherwise, we claim that the subset is exact, that is it is a set in the ordinary
sense (crisp). It is done via construction of antonyms for adjectives, which allow
the user to divide all subsets formally into two disjoint classes.
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3.2 Pairs of Definable Sets

I-sets can be considered a natural RST-counterpart of the interval sets – with
respect to the same Pawlak approximation space both are uniquely determined
by each other. In the Mizar formalism it can be described just as below:

definition let A be Tolerance_Space, X be Subset of A;

mode RoughSet of X means :: ROUGHS_1:def 8

it = [LAp X, UAp X];

end;

Note however that this does not reduce to the ordinary set even if both ap-
proximations are equal. Because the I-model provides the better mathematical
description, it was chosen by us to define a lattice of rough sets. Even if set-
theoretical operators on the set of all I-sets do not rather have a well-defined
semantics, this interpretation provides a mathematical model which is both ele-
gant and can be a subject to further generalizations.

4 Interval Sets

Let us recall the notion of an interval set [12]:

[A1, A2] = {A ∈ 2U : A1 ⊆ A ⊆ A2} (1)

where U is a finite set called the universe. Usually, the assumption of A1 ⊆ A2

is granted, but we define an interval set also in case when A1 is not a subset
of A2. The set of all interval sets over a universe U , with operations � and
� defined componentwise, forms a lattice. Moreover, it is a distributive and
bounded lattice, where [∅, ∅] is its bottom and [U,U ] – its top. Firstly, an interval
set is defined as a family of subsets with two parameters being its boundaries (we
dropped an assumption of X ⊆ Y since it can be proven otherwise the resulting
interval is empty).2

definition let U be set, X, Y be Subset of U;

func Inter (X,Y) -> Subset-Family of U equals

{ A where A is Subset of U : X c= A & A c= Y };

end;

An interval set of the form [A,A] is equivalent to the set in an ordinary sense
(but of course direct replacement is just erroneous). Furthermore, we gave the
notion needed to characterize the carrier of the interval set algebra; its elements
are all intervals.

definition let U;

mode IntervalSet of U -> Subset-Family of U means

ex A, B be Subset of U st it = Inter (A, B);

end;

2 Due to the lack of space we usually drop proofs; they can be tracked in the full
source.
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The next part of the article is introducing operations on the interval sets:

definition let U be non empty set, A, B be non empty IntervalSet of U;

func A _/\_ B -> IntervalSet of U equals

INTERSECTION (A, B);

end;

(and similarly A _\/_ B, A _\_ B), where INTERSECTION is an ordinary Boolean
operation taken componentwise. Equivalently, it was natural to give characteri-
zation of the aforementioned objects in terms of the operations on their bounds.
Let us cite only the case of the difference of intervals.

theorem

A _\_ B = Inter (A‘‘1 \ B‘‘2, A‘‘2 \ B‘‘1);

where A‘‘1, A‘‘2 denote the boundaries of interval set A.
Although the complementation operator is neither Boolean nor a pseudocom-

plement, it is definitely worth introducing (the symbols “[#]U” and “{}U”are
introduced to add to the set U its proper type, i.e. a subset of itself).

definition let U be non empty set, A be non empty IntervalSet of U;

func A ^ -> non empty IntervalSet of U equals :Def8:

Inter ([#]U,[#]U) _\_ A;

end;

Obviously, an ordinary inclusion cannot be used as the ordering relation in
the lattice of interval sets. Since the types of all objects are extended to the most
general type set, the usual notation of set-theoretical inclusion (“c=”) could not
be used.

definition let U be non empty set, A, B be non empty IntervalSet of U;

pred A _c=_ B means

A‘‘1 c= B‘‘1 & A‘‘2 c= B‘‘2;

end;

It is hardly the same relation, which can be illustrated by the fact that the
identity A \B = ∅ is true for arbitrary sets A,B such that A ⊆ B, but it is not
the case of interval sets. Hence the following statement:

theorem

ex A,B being non empty IntervalSet of U st

A _c=_ B & A _\_ B <> Inter ({}U,{}U);

Of course, in the proof of this fact, the appropriate concrete example of two
sets should have been constructed. After we have defined necessary binary oper-
ations on interval sets, the structure of the lattice of such sets (called InterLatt
in our formalization) can be described – but let us omit the full citation here as
we will provide it in the next section.
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5 Lattices of Rough Sets

As many of the objects occuring in the MML base on the notion of a structure,
the type “Lattice” is also the structure type (with the carrier and two binary
operations). Underlying properties (commutativity, associativity, and absorption
laws) are added to this radix type via six adjectives (attributes). The general
lattice theory in the MML is formalized mainly according to Grätzer’s General
Lattice Theory and this development contains many standard results from this
classical book. Also recent automatically obtained equational characterizations
were translated into Mizar (as the Robbins problem about the alternative ax-
iomatization of Boolean algebras, short single axioms for Boolean algebras based
on the Sheffer stroke, ortholattice bases and so on).

Below we quote the definition of the lattice of rough sets. Its carrier consists
of the set of all rough sets over an arbitrary but fixed tolerance approximation
space X and the lattice operations are defined here elementwise.

definition let X be Tolerance_Space;

func RSLattice X -> strict LattStr means

the carrier of it = RoughSets X &

for A, B being Element of RoughSets X,

A’, B’ being RoughSet of X st A = A’ & B = B’ holds

(the L_join of it).(A,B) = A’ _\/_ B’ &

(the L_meet of it).(A,B) = A’ _/\_ B’;

end;

A similar definition of the interval set algebra InterLatt differs only in the
case of carrier – we decided to have binary operations, although on various
universes, encoded under the same symbols. Furthermore, it can be defined over
an arbitrary non-empty set. We have proved formally that the lattice of rough
sets is distributive and complete, it has also the lower and the upper bound. We
decided for the binary operation approach because in this way the ordering is
defined automatically3 which makes this approach somewhat stronger.

Also, after we have defined

definition let X;

func RoughIso X -> Homomorphism of RSLattice X,

InterLatt the carrier of X means

for x being Element of RSLattice X holds

it.x = [x‘1, x‘2];

correctness;

end;

as the homomorphism (under correctness conditions we had to prove that
RoughIso preserves suprema and infima, the existence and the uniqueness of
such a mapping) between both structures (note that we forget in some sense
about abstract structure connected with the lattices of rough sets, i.e. about the
indiscernibility relation – we are interested only on the subsets of the carrier of
X), usual properties can be proved only for the one of these objects.
3 Recall that a poset to be a lattice should meet some additional requirements.
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6 Learning Rough Sets

Rough sets definitely proved its feasibility and usefulness in various fields of
the engineering (also biology or medicine, here especially systems as RSES and
Rosetta are potentially useful), however they can be successfully used not only in
the industry, but also in purely academic environment. For two consecutive years
now (2005/2006 and 2006/2007), a group of students in University of Bia�lystok
(Poland) trained their ability in the field of reasoning on rough sets based on the
Mizar proof-assistant. The main advantages of the application of this machine
proof-checker seem to be the following:

Automatic verification – the results are checked without teacher’s help, so
very objective (“prove until computer will report no errors, I won’t com-
plain”); once the student knows the language, he/she can write syntactically
correct texts (if not – computer parser points out the errors); once he/she
learned the semantics – he/she tries to formulate the facts and prove them
by him/herself;

Self-study enabled – the exercises are the best way for a student to getting
knowledge (“experience, not only doctrine”);

Human-friendly approach – if the justification is right, the computer also
suggests the possible improvements of a proof, so students can benefit in
various ways;

Logical correctness – while learning rough sets also classical predicate logic is
taught as a side-effect; the logical correctness is crucial, so the student con-
tinuously has to remember about the rules; learning proving tactics (direct
and indirect proof) and basic rules (exemplification, generalization);

Similarity to the natural language – even if readable for the machine, the
language is not that artificial; so it is relatively not much time to get the
syntax right;

Multi-purpose systems – rethinking and showing counterexamples is possi-
ble – e.g., develop concrete example of an approximation space one of the
inclusions is not valid;

Real-life applications – verification of data – we can apply rough set methods
to concrete systems; this is probably most difficult – the analysis of even
small portions of data could be highly time-consuming;

Distance learning approach – the geographical diversity of learners is no
problem any longer.

Note that for obvious reasons in a proof checker illustrative features of figures
(e.g. proof suggestions based on diagrams) are not available.

7 Conclusions and Further Work

A kind of computer certification of mathematical proofs seems to become an
important issue in the contemporary science. We believe that the use of the Mizar
system can be attractive for mathematicians and the development of RST in it is
really feasible, although of rather challenging character due to the broad nature
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of the discipline. We tried to show on selected examples of the development of
the lattice of rough/interval sets that the formalization of this theory can be
continued not paying the high price for raising duplicate notions from scratch,
but via reusing the existing formal apparatus yet available in the MML.

As the future work, we may point out the formalization of [3] we started some
time ago. We are interested in further development of the lattice-theoretical
approach to the notion of RST (as in [8]) which are influential even in the broader
algebraic sense [2] as well as in extending rough set model as [13]. Thanks to the
structure of interval algebras we could obtain some direct correspondence with
the described lattice of rough sets, so the results can easily be exchanged and
proven only in one of both cases. We plan also to provide another axiomatic base
for the MML, more RST-specific [1]. There is no doubt that logical foundations
are harder to change (Mizar is based on the classical logic). On the other hand,
we hope that rough sets techniques can be applied to improve the MML Query
searching engine.
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Abstract. An essential notion in the theory of Rough Sets is a reduct,
which is a minimal set of conditional attributes that preserves a required
classification feature, e.g. respective values of an original or modified de-
cision attribute. Certain decision reducts, generalized decision reducts,
and membership distribution reducts belong to basic types of Rough Sets
reducts. In our paper, we prove that reducts of these types are sets of con-
ditional attributes functionally determining respective modifications of a
decision attribute both in complete and incomplete information systems.
However, we also prove that, unlike in the case of complete systems, the
reducts in incomplete systems are not guaranteed to be minimal sets of
conditional attributes that functionally determine respective modifica-
tions of the decision attribute.

1 Introduction

Rough Sets theory defines reducts in a decision table as minimal sets of condi-
tional attributes preserving the required classification feature [10]. The research
devoted to reducts referred mostly to complete systems in which all attribute
values were known. In this paper, we first revisit the results for certain decision,
generalized decision, and membership distribution reducts, which belong to ba-
sic types of Rough Set reducts. Next, we examine properties of reducts of these
types in incomplete systems in which values of attributes may be missing. As
a result, we prove that reducts of these types are sets of conditional attributes
functionally determining respective modifications of a decision attribute both
in complete and incomplete information systems. However, we also prove that,
unlike in the case of complete systems, the reducts in incomplete systems are
not guaranteed to be minimal sets of conditional attributes that functionally
determine respective modifications of the decision attribute.

The layout of the paper is as follows: In Section 2, we recall basic Rough
Set notions and provide their properties. A notion of a functional dependency
is recalled in Section 3. In Section 4, we systematically revisit the relationship
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between functional dependencies and generalized decision reducts, membership
distribution reducts, and certain decision reducts in complete decision tables.
The main part of our contribution is presented in Section 5, where we examine
this relationship in incomplete decision tables. In Section 6, we conclude our
results.

2 Basic Notions and Properties of Rough Sets

2.1 Information Systems

An information system (IS) is a pair S = (O,AT ), where O is a non-empty finite
set of objects and AT is a non-empty finite set of attributes, such that a : O → Va

for any a ∈ AT , where Va is called domain of the attribute a. Each subset of
attributes A ⊆ AT determines a binary A-indiscernibility relation IND(A),

IND(A) = {(x, y) ∈ O ×O | ∀a∈A a(x) = a(y)}.

The relation IND(A), A ⊆ AT , is an equivalence relation and determines a
partition of O, which will be denoted by πA. Objects indiscernible with object x
with regard to attribute set A in the system will be denoted by IA(x) and called
A-indiscernibility class; that is, IA(x) = {y ∈ O | (x, y) ∈ IND(A)}. Clearly,
partition πA = {IA(x) | x ∈ O}.

Property 2.1.1 [10]. Let A,B ⊆ AT and x ∈ O.
a) A ⊆ B ⇒ IB(x) ⊆ IA(x)
b) IA∪B(x) = IA(x) ∩ IB(x)
c) IA(x) =

⋂
a∈A Ia(x)

Proposition 2.1.1. Let A ⊆ B ⊆ AT and x ∈ O. IA(x) =
⋃

y∈IA(x) IB(y).

Example 2.1.1. Table 1 describes a sample information system consisting of
10 objects and described by attributes {a, b, c, e, f, d}. Let A = {a, b} and B =

Table 1. Sample DT

x ∈ O a b c e f d

1 1 0 0 1 1 1
2 1 1 1 1 2 1
3 0 1 1 0 3 1
4 0 1 1 0 3 2
5 0 1 1 2 2 2
6 1 1 0 2 2 2
7 1 1 0 2 2 3
8 1 1 0 2 2 3
9 1 1 0 3 2 3
10 1 0 0 3 2 3

Table 2. DT extended with dN
AT , ∂AT , μAT

d

x ∈ O a b c e f d dN
AT ∂AT μAT

d : < μAT
1 , μAT

2 , μAT
3 >

1 1 0 0 1 1 1 1 {1} < 1, 0, 0 >
2 1 1 1 1 2 1 1 {1} < 1, 0, 0 >
3 0 1 1 0 3 1 N {1, 2} < 1/2, 1/2, 0 >
4 0 1 1 0 3 2 N {1, 2} < 1/2, 1/2, 0 >
5 0 1 1 2 2 2 2 {2} < 0, 1, 0 >
6 1 1 0 2 2 2 N {2, 3} < 0, 1/3, 2/3 >
7 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
8 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
9 1 1 0 3 2 3 3 {3} < 0, 0, 1 >
10 1 0 0 3 2 3 3 {3} < 0, 0, 1 >
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{a, b, c, e, f}. IA(3) = {3, 4, 5}, IB(3) = IB(4) = {3, 4}, IB(5) = {5}. Hence,
IA(3) = {3, 4, 5} = IB(3) ∪ IB(4) ∪ IB(5) (see Proposition 2.1.1). ��
Let X ⊆ O and A ⊆ AT . AX is defined as an A-lower approximation of object
set X , iff AX =

⋃
{Y ∈ πA | Y ⊆ X} (or AX = {x ∈ O | IA(x) ⊆ X}). AX

is defined as an A-upper approximation of X , iff AX =
⋃
{Y ∈ πA | Y ∩ X �=

∅} (or AX = {x ∈ O | IA(x) ∩X �= ∅}). AX is the set of objects that belong to
X with certainty, while AX is the set of objects that possibly belong to X .

2.2 Decision Tables

A decision table is an information system DT = (O,AT ∪{d}), where d �∈ AT is
a distinguished attribute called the decision, and the elements of AT are called
conditions. A decision class is defined as the set of all objects with the same
decision value. By Xdi we will denote the decision class consisting of objects the
decision value of which equals di, where di ∈ Vd. Clearly, for any object x in O,
Id(x) is a decision class. DT is called consistent if for each IAT (x) ∈ πAT there
is Id(x) ∈ πd such that IAT (x) ⊆ Id(x). Otherwise, DT is called inconsistent.

Proposition 2.2.1. Let A ⊆ AT and x ∈ X ⊆ O. X ⊆ Id(x) iff ∃y∈O X ⊆ Id(y).

Proof. (⇒) Trivial.
(⇐) Let y be an object in O such that X ⊆ Id(y) (∗). Hence, x ∈ X ⊆ Id(y), so
x ∈ Id(y). Thus, d(x) = d(y) (∗∗). By (∗) and (∗∗), X ⊆ Id(y) = Id(x). ��
An A-positive region (denoted by POSA) in DT is defined as the union of the
A-lower approximations of all decision classes, that is:

POSA =
⋃

di∈Vd

AXdi .

For A = AT , A-positive region is denoted briefly by POS.

Proposition 2.2.2. POSA = {x ∈ O | IA(x) ⊆ Id(x)}.
Proof. POSA =

⋃
di∈Vd

AXdi =
⋃

y∈O AId(y) =
⋃

y∈O {x ∈ O | IA(x) ⊆
Id(y)} = /∗ by Proposition 2.2.1 ∗/ =

⋃
y∈O {x ∈ O | IA(x) ⊆ Id(x)} = {x ∈

O | IA(x) ⊆ Id(x)}. ��
One can note that the positive region contains all objects in O about which we
are certain that they belong to the decision classes determined by their decision
values. An A-negative region (NEGA) is defined as the set of all objects in O
that do not belong to POSA. In the sequel, NEGAT will be denoted briefly by
NEG. Clearly, DT is consistent iff NEG = ∅ (or POS = O).

For the sake of later use, we introduce a notion of an A-derivable decision
attribute for an object x ∈ O, which we denote by dN

A(x) and define as follows:
dN

A(x) = d(x) if x ∈ POSA, and dN
A(x) = N otherwise. Clearly, all objects with

value N of dN
AT belong to NEG; all other objects belong to POS.

The notion of the negative region may be too vague in some applications.
Looking at Table 1, one may note that objects 3 and 4, which are indiscernible
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with respect to AT = {a, b, c, e, f}, may belong to the decision classes Xd1 or
Xd2 , but certainly do not belong the decision class Xd3 .

A notion of a generalized decision allows us to specify this knowledge. An A
generalized decision for object x in DT (denoted by ∂A(x)), A ⊆ AT , is defined
as the set of all decision values of all objects indiscernible with x on A; i.e. [13]:

∂A(x) = {d(y) | y ∈ IA(x)}.

Property 2.2.1. Let x ∈ O and A,B ⊆ AT . If A ⊆ B, then ∂B(x) ⊆ ∂A(x).

For A = AT , an A-generalized decision will be also called briefly a generalized
decision. The generalized decision informs on decision classes to which an object
may belong. One may additionally be interested in the degree in which the ob-
jects may belong to these classes. An A-membership function: μA

di
: O → [0, 1],

A ⊆ AT , is defined as follows [15]:

μA
di

(x) =
| IA(x) ∩Xdi |
| IA(x) | .

An A-membership distribution function: μA
d : O → [0, 1]n, A ⊆ AT, n = | Vd |, is

defined as follows [15]:

μA
d (x) = (μA

d1
(x), . . . , μA

dn
(x)),where {d1, . . . , dn} = Vd.

The values of the derivable decision attribute, generalized decision and member-
ship distribution function for objects in DT from Table 1 are shown in Table 2.

2.3 Certain Decision, Generalized Decision, and Membership
Distribution Reducts

A reduct is an essential notion in the Rough Set theory. In this paper, we will
focus on three types of reducts, namely, on certain decision, generalized decision,
and membership distribution reducts. Below, we recall their definitions:

A set of attributes A ⊆ AT is a certain decision reduct of DT iff A is a minimal
set such that

∀x∈POS IA(x) ⊆ Id(x).

A ⊆ AT is a generalized decision reduct of DT iff A is a minimal set such that

∀x∈O ∂A(x) = ∂AT (x).

A ⊆ AT is a μ-decision reduct (or membership distribution reduct) of DT iff A
is a minimal set such that

∀x∈O μA
d (x) = μAT

d (x).

In general, for each certain decision reduct A, there is a superset of A which is a
generalized decision reduct, and for each generalized decision reduct B, there is a
superset of B which is a μ-decision reduct [6],[7]. In the Rough Set literature, one
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can also find definitions of other types of reducts. To the most important ones,
we did not introduce, belong possible, approximate and μ-reducts. It has been
proved in [6],[7] that the set of possible reducts as well as the set of approximate
reducts equals the set of generalized decision reducts, and the set of μ-reducts of
DT equals the set of μ-decision reducts. These and other types of reducts were
also discussed e.g. in [1],[8-19].

3 Functional Dependencies

Let A and B be sets of attributes in an information system. A → B is de-
fined a functional dependency (or A is defined to determine B functionally) if
∀x∈O IA(x) ⊆ IB(x). A→ B is defined a minimal functional dependency if it is
a functional dependency and ∀C⊂A C → B is not a functional dependency.

Example 3.1. Let us consider the information system in Table 1. {ce} → {a}
is a functional dependency, nevertheless, ∅ → {a}, {c} → {a} and {e} → {a}
are not. Hence, {ce} → {a} is a minimal functional dependency. ��

4 Reducts and Minimal Functional Dependencies

In this section, we prove that generalized decision, membership distribution, and
certain decision reducts are minimal sets of conditional attributes in decision ta-
ble DT which functionally determine the generalized decision ∂AT , membership
distribution μAT

d , and derivable decision attribute dN
AT (x), respectively.

4.1 Generalized Decision Reducts and Minimal Functional
Dependencies

Since generalized decision reducts are based on the notion of a generalized de-
cision, we first examine the relationship between this notion and a functional
dependency.

Lemma 4.1.1. Let A ⊆ AT . The following statements are equivalent:
a) ∀x∈O ∂A(x) = ∂AT (x)
b) ∀x∈O ∀y∈IA(x)∂AT (y) = ∂AT (x)
c) ∀x∈O IA(x) ⊆ I∂AT (x)
d) A→ {∂AT } is a functional dependency

Proof. Ad a ⇒ b) (by contradiction). Let ∀z∈O ∂A(z) = ∂AT (z) (∗), x ∈ O,
y ∈ IA(x) (∗∗) and ∂AT (y) �= ∂AT (x). By (∗), ∂A(x) = ∂AT (x), ∂A(y) =
∂AT (y), and by (∗∗), ∂A(x) = ∂A(y). Hence, ∂AT (x) = ∂A(x) = ∂A(y) =
∂AT (y). Thus, we conclude, ∂AT (x) = ∂AT (y), which contradicts the assumption.
Ad a⇐ b) Let x ∈ O and ∀y∈IA(x) ∂AT (y) = ∂AT (x) (∗). ∂A(x) =

⋃
y∈IA(x){d(y)}

⊆ /∗ d(y) ∈ ∂AT (y) for any object y ∗/
⋃

y∈IA(x) ∂AT (y) = /∗ by (∗) ∗/ =⋃
y∈IA(x) ∂AT (x) = ∂AT (x). Hence, ∂A(x) ⊆ ∂AT (x) (∗∗). On the other hand,
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by Property 2.1.1, ∂AT (x) ⊆ ∂A(x) (∗∗∗). By (∗∗) and (∗∗∗), we conclude, ∂A(x) =
∂AT (x).
Ad b ⇔ c ⇔ d) Trivial. ��
Proposition 4.1.1. AT → {∂AT } is a functional dependency.

Proof. The formula ∀x∈O ∂AT (x) = ∂AT (x) is trivially true. Hence, and by
Lemma 4.1.1a,d, AT → {∂AT } is a functional dependency. ��
Theorem 4.1.1. Let A ⊆ AT . A is a generalized decision reduct of DT iff
A→ {∂AT } is a minimal functional dependency.

Proof. A is a generalized decision reduct of DT iff /∗ by definition of a gener-
alized decision reduct /∗ ∀x∈O ∂A(x) = ∂AT (x) and there is no proper subset
C ⊂ A such that ∀x∈O ∂C(x) = ∂AT (x) iff /∗ by Lemma 4.1.1a,d /∗ A→ {∂AT }
is functional and there is no proper subset C ⊂ A such that C → {∂AT} is
functional iff A→ {∂AT } is a minimal functional dependency. ��
Theorem 4.1.1 corresponds to the result obtained in [13].

4.2 μ-Decision Reducts and Minimal Functional Dependencies

As μ-decision reducts are based on the notion of a membership distribution
function, we first examine the relationship between this notion and a functional
dependency.

Lemma 4.2.1. Let A ⊆ AT . The following statements are equivalent:
a) ∀x∈O μA

d (x) = μAT
d (x)

b) ∀x∈O ∀y∈IA(x) μAT
d (y) = μAT

d (x)
c) ∀x∈O IA(x) ⊆ IμAT

d
(x)

d) A→ {μAT
d } is a functional dependency

Proof. Ad a ⇒ b) (by contradiction). Let ∀z∈O μA
d (z) = μAT

d (x) (∗), x ∈ O,
y ∈ IA(x) (∗∗) and μAT

d (y) �= μAT
d (x). By (∗), μA

d (x) = μAT
d (x), μA

d (y) = μAT
d (y),

and by (∗∗), μA
d (x) = μA

d (y). Hence, μAT
d (x) = μA

d (x) = μA
d (y) = μAT

d (y). Thus,
we conclude, μAT

d (x) = μAT
d (y), which contradicts the assumption. Ad a ⇐ b)

Let x ∈ O and ∀y∈IA(x) μAT
d (y) = μAT

d (x) (or equivalently, μAT
di

(y) = μAT
di

(x)
for all di ∈ Vd) (∗). Let di be an arbitrary decision value in Vd, μAT

di
(x) = ε, and

IA(x) = I1 ∪ . . . Il, where I1, . . . , Il are distinct (mutually exclusive) classes in
πAT . Clearly, for each class Ij , j = 1..l, there is an object y ∈ IA(x) such that
Ij = IAT (y) and | Ij ∩Xdi | / | Ij | = | IAT (y) ∩Xdi | / | IAT (y) | = μAT

di
(y) =

/∗ by (∗) ∗/ = μAT
di

(x). Hence, ∀j=1..l | Ij ∩ Xdi | / | Ij | = μAT
di

(x) = ε, so
∀j=1..l | Ij ∩Xdi | = ε × | Ij | (∗∗). Now, μA

di
(x) =| IA(x) ∩Xdi | / | IA(x) |

= | (
⋃

j=1..l Ij)
⋂

Xdi | / |
⋃

j=1..l Ij |= (
∑

j=1..l | Ij ∩Xdi |)/ (
∑

j=1..l | Ij |) =
(
∑

j=1..l ε × | Ij |) /(
∑

j=1..l | Ij |) = ε = μAT
di

(x). Hence, μA
di

(x) = μAT
di

(x) (∗∗).

As di was chosen arbitrarily, we may generalize (∗∗) for all values di in Vd. In
consequence, we conclude, μA

d (x) = μAT
d (x).

Ad b ⇔ c ⇔ d) Trivial. ��
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Proposition 4.2.1. AT → {μAT
d } is a functional dependency.

Proof. Analogical to the proof of Proposition 4.1.1; by Lemma 4.2.1a,d. ��
Theorem 4.2.1. Let A ⊆ AT . A is a μ-decision reduct of DT iff A→ {μAT

d } is
a minimal functional dependency.

Proof. Analogical to the proof of Theorem 4.1.1; follows from the definitions of a
μ-decision reduct and minimal functional dependency, and Lemma 4.2.1a,d. ��
Theorem 4.2.1 corresponds to the result reported in [16].

4.3 Certain Decision Reducts and Minimal Functional Dependencies

Certain decision reducts preserve the positive region. Let us thus start with in-
vestigating the consequences of (non-) belonging to POS.

Property 4.3.1. Let x ∈ O. The following statements are equivalent:
a) x ∈ POS
b) IAT (x) ⊆ Id(x)
c) IAT (x) ⊆ POS

Proof. Ad (a ⇔ b) By Proposition 2.2.2.
Ad (a ⇒ c) Let x ∈ POS. Then by Proposition 2.2.2, IAT (x) ⊆d (x) (∗). Since
∀y∈IAT (x) IAT (y) = IAT (x), then (∗) can be rewritten as ∀y∈IAT (x) IAT (y) ⊆
Id(x). Hence, by Proposition 2.2.1, ∀y∈IAT (x) IAT (y) ⊆ Id(y). Thus, by Proposi-
tion 2.2.2, ∀y∈IAT (x) y ∈ POS, so IAT (x) ⊆ POS.
Ad (a ⇐ c) Trivial. ��
Property 4.3.2. Let x ∈ O. The following statements are equivalent:
a) x �∈ POS
b) IAT (x) �⊆ Id(x)
c) IAT (x) ⊆ O\POS

Proof. Ad (a ⇔ b) Follows from Property 4.3.1.
Ad (b ⇒ c) Let IAT (x) �⊆ Id(x). Then, by Proposition 2.2.1, ¬∃y∈O IAT (x) ⊆
Id(y). Hence, ∀y∈IAT (x) IAT (x) �⊆ Id(y). Since ∀y∈IAT (x) IAT (y) = IAT (x), then
∀y∈IAT (x) IAT (y) �⊆ Id(y). Thus by Property 4.3.1, ∀y∈IAT (x) y ∈ O\POS. There-
fore, IAT (x) ⊆ O\POS.
Ad (b ⇐ c) Let IAT (x) ⊆ O\POS. Hence, IAT (x) �⊆ POS. Then, by Property
4.3.1, IAT (x) �⊆ Id(x). ��
By Property 4.3.1, if object x belongs to POS, then AT-indiscernibility class
of this object is contained in POS, and all objects in this class have the same
decision value as x does. By Property 4.3.2, if x does not belong to POS, then
AT -indiscernibility class of this object is contained in the negative region.

Lemma 4.3.1. Let A ⊆ AT and ∀y∈O IAT (y) ⊆ Id(y)⇒ IA(y) ⊆ Id(y). Then:
a) ∀x∈O IAT (x) ⊆ Id(x)⇒ IA(x) ⊆ POS
b) ∀x∈POS IA(x) ⊆ POS
c) ∀x∈O IAT (x) �⊆ Id(x)⇒ IA(x) ⊆ O\POS
d) ∀x∈O\POS IA(x) ⊆ O\POS
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Proof. Let A ⊆ AT and ∀y∈O IAT (y) ⊆ Id(y)⇒ IA(y) ⊆ Id(y) (∗).
Ad a) Let x be an object such that IAT (x) ⊆ Id(x). By Proposition 2.1.1 and (∗)
we conclude,

⋃
y∈IA(x) IAT (y) = IA(x) ⊆ Id(x). Hence and by Proposition 2.2.1,

∀y∈IA(x) IAT (y) ⊆ Id(y). Thus, by Property 4.3.1, ∀y∈IA(x) IAT (y) ⊆ POS. Hav-
ing this result in mind and taking into account Proposition 2.1.1, we conclude
IA(x) =

⋃
y∈IA(x) IAT (y) ⊆ POS.

Ad b) Follows from Lemma 4.3.1a and Property 4.3.1.
Ad c) (by contradiction). Let x be an object such that IAT (x) �⊆ Id(x) (∗∗)
and IA(x) �⊆ O\POS. By Proposition 2.1.1, we conclude:

⋃
y∈IA(x) IAT (y) �⊆

O\POS. Hence, ∃y∈IA(x) y ∈ POS. Thus, by Property 4.3.1, ∃y∈IA(x) IAT (y) ⊆
Id(y). By (∗) we conclude: ∃y∈IA(x) IA(y) ⊆ Id(y). Since, IA(y) = IA(x) for any
y ∈ IA(x), then we may infer ∃y∈IA(x) IA(x) ⊆ Id(y). Now, by Proposition 2.2.1,
we may derive, IA(x) ⊆ Id(x). Since IAT (x) ⊆ IA(x) (by Property 2.1.1a), we
conclude, IAT (x) ⊆ Id(x). This contradicts the assumption (∗∗).
Ad d) Follows from Lemma 4.3.1c and Property 4.3.2. ��
Lemma 4.3.2. Let A ⊆ AT . The following statements are equivalent:
a) ∀x∈POS IA(x) ⊆ Id(x)
b) ∀x∈O IA(x) ⊆ IdN

AT
(x)

c) A→ {dN
AT } is a functional dependency

Proof. Ad a ⇒ b) Let ∀x∈POS IA(x) ⊆ Id(x)(∗). Hence, by Property 4.3.1,
∀x∈O IAT (x) ⊆ Id(x)⇒ IA(x) ⊆ Id(x). Thus, by Lemma 4.3.1d, ∀x∈O\POS IA(x)
⊆ O\POS (∗∗). Since dN

AT (x) = N for all and only x ∈ O\POS, then ∀x∈O\POS

IdN
AT

(x) = O\POS. Hence, (∗∗) can be rewritten as ∀x∈O\POS IA(x) ⊆ IdN
AT

(x)
(∗∗∗). In addition, since dN

AT (x) = d(x) for x ∈ POS, then (∗) can be rewritten as
∀x∈POS IA(x) ⊆ IdN

AT
(x)(∗∗∗∗). Thus, by (∗∗∗) and (∗∗∗∗), ∀x∈O IA(x) ⊆ IdN

AT
(x).

Ad a⇐ b) Let ∀x∈O IA(x) ⊆ IdN
AT

(x). Then, by definition of dN
AT , ∀x∈POS IA(x)

⊆ IdN
AT

(x) = IdAT (x).
Ad b ⇔ c) Trivial. ��
Having in mind properties of the positive region (Proposition 2.2.2), definition
of a certain decision reduct and Lemma 4.3.2, we offer Proposition 4.3.1 and
Theorem 4.3.1, in which we express the relationship between certain decision
reducts and functional dependencies.

Proposition 4.3.1. AT → {dN
AT } is a functional dependency.

Proof. By Proposition 2.2.2, ∀x∈POS IAT (x) ⊆ Id(x). Hence and by Lemma
4.3.2a,c, AT → {dN

AT } is a functional dependency. ��
Theorem 4.3.1. Let A ⊆ AT A is a certain decision reduct of DT iff A→ {dN

AT }
is a minimal functional dependency.

Proof. Analogical to the proof of Theorem 4.1.1; follows from the definition
of a certain decision reduct, definition of a minimal functional dependency and
Lemma 4.3.2a,c. ��
Theorem 4.3.1 corresponds to the result presented in [14].
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5 Reducts and Functional Dependencies Under
Incompleteness

It may happen that some of attribute values for an object are missing in an infor-
mation system. The system in which values of all attributes for all objects from
O are known is called complete, otherwise it is called incomplete. Further on, we
will denote missing value by ∗. We will also assume that an object x ∈ O pos-
sesses exactly one value for each attribute in AT , in reality. Thus, if the value of
an attribute a is missing, then we conclude that the real value is one from the set
Va\{∗}. Hence, an object with a(x) = ∗ is likely to be {a}-indiscernible in real-
ity with all other objects in O. The indiscernibility relation, nevertheless, would
treat this object as indiscernible only with objects for which the value of attribute
a is unknown, which seems incorrect. In [2-5], we have introduced and discussed
a notion of a similarity relation in order to deal with the incompleteness. In this
section, we examine the dependency between similarity-based certain decision,
generalized decision, and μ-decision reducts and respective modification of the
decision attribute.

5.1 Basic Notions Under Incompleteness

In Section 5, we consider an incomplete decision table IDT = (O,AT ∪ {d})
that admits unknown values only for attributes in AT . A similarity relation wrt.
A ⊆ AT is denoted by SIM(A), and is defined as follows:

SIM(A) = {(x, y) ∈ O ×O | ∀a∈A a(x) = a(y) or a(x) = ∗ or a(y) = ∗}.

The similarity relation is reflexive and symmetric, but may not be transitive. The
set of objects similar with object x wrt. attribute set A in IDT is denoted by
SA(x) and called A-similarity class; that is, SA(x) = {y ∈ O | (x, y) ∈ SIM(A)}.
Example 5.1.1. Table 3 presents a sample incomplete decision table IDT =
(O,AT ∪ {d}), where AT = {a, b}. The similarity classes of objects 1 and 5
wrt. AT , {b}, and ∅ are as follows: SAT (1) = {1}, S{b}(1) = {1, 5}, S∅(1) =
{1, 2, 3, 4, 5, 6, 7, 8}, SAT (5) = {5, 6}, S{b}(5) = S∅(5) = {1, 2, 3, 4, 5, 6, 7, 8}. ��

Table 3. IDT = (O, AT ∪ {d}), where AT = {a, b}, extended with modified decisions

x ∈ O a b d dN
AT dN

{b} dN
∅ ∂AT ∂{b} ∂∅ μAT

d μ
{b}
d μ∅

d

1 1 1 1 1 N N {1} {1, 3} {1, 2, 3} < 1, 0, 0 > < 1/2, 0, 1/2 > < 1/8, 2/8, 5/8 >
2 2 3 2 N N N {2, 3} {2, 3} {1, 2, 3} < 0, 2/3, 1/3 > < 0, 2/4, 2/4 > < 1/8, 2/8, 5/8 >
3 2 3 2 N N N {2, 3} {2, 3} {1, 2, 3} < 0, 2/3, 1/3 > < 0, 2/4, 2/4 > < 1/8, 2/8, 5/8 >
4 2 3 3 N N N {2, 3} {2, 3} {1, 2, 3} < 0, 2/3, 1/3 > < 0, 2/4, 2/4 > < 1/8, 2/8, 5/8 >
5 3 ∗ 3 3 N N {3} {1, 2, 3} {1, 2, 3} < 0, 0, 1 > < 1/8, 2/8, 5/8 > < 1/8, 2/8, 5/8 >
6 3 4 3 3 3 N {3} {3} {1, 2, 3} < 0, 0, 1 > < 0, 0, 1 > < 1/8, 2/8, 5/8 >
7 4 5 3 3 3 N {3} {3} {1, 2, 3} < 0, 0, 1 > < 0, 0, 1 > < 1/8, 2/8, 5/8 >
8 5 6 3 3 3 N {3} {3} {1, 2, 3} < 0, 0, 1 > < 0, 0, 1 > < 1/8, 2/8, 5/8 >
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Property 5.1.1. Let A,B ⊆ AT and x ∈ O.
a) IA(x) ⊆ SA(x)
b) ∀y∈IA(x) SA(y) = SA(x)
c) A ⊆ B ⇒ SB(x) ⊆ SA(x)

In Table 4, we provide definitions of similarity-based Rough Sets notions, we
use throughout this section. Table 3 illustrates dN

A, ∂A, and μA
d , where A ⊆ AT .

Let A ⊆ AT . A is a certain decision reduct of IDT iff A is a minimal set such
that ∀x∈POS SA(x) ⊆ Id(x). A is a generalized decision reduct of IDT iff A is a
minimal set such that ∀x∈O ∂A(x) = ∂AT (x). A is a μ-decision reduct of IDT iff
A is a minimal set such that ∀x∈O μA

d (x) = μAT
d (x).

The definition of a (minimal) functional dependency in an incomplete system
remains the same as in the case of a complete system (see Section 3).

Table 4. Similarity based Rough Sets notions

notion definition notion definition

AX {x ∈ O | SA(x) ⊆ X}; dN
A(x) d(x) if x ∈ POSA, and N otherwise;

AX {x ∈ O | SA(x) ∩X �= ∅}; ∂A(x) {d(y) | y ∈ SA(x)};
POSA AXd1 ∪ . . . ∪AXdn ; μdi

A(x) | SA(x) ∩Xdi | / | SA(x) |;
POS POSAT ; μA

d (x) (μA
d1(x), . . . , μA

dn
(x)).

5.2 Generalized Decision Reducts and Functional Dependencies
Under Incompleteness

Lemma 5.2.1. Let A ⊆ AT and x ∈ O. ∀y∈IA(x) ∂A(y) = ∂A(x).

Proof. Let y ∈ IA(x). By definition, ∂A(y) = {d(z) | z ∈ SA(y)} = /∗ by
Property 5.1.1b ∗/ = {d(z) | z ∈ SA(x)} = ∂A(x). ��
Proposition 5.2.1. Let A ⊆ AT . A→ {∂A} is functional in IDT .

Proof. Follows immediately from Lemma 5.2.1. ��
Proposition 5.2.2. Let A ⊆ AT . If A is a generalized decision reduct of IDT ,
then A→ {∂AT } is a functional dependency in IDT .

Proof. Let A be a generalized decision reduct of IDT . Then ∀x∈O ∂A(x) =
∂AT (x) and, by Proposition 5.2.1, A → {∂A} is a functional dependency in
IDT . Hence, A→ {∂AT } is a functional dependency in IDT . ��
According to Proposition 5.2.2, we observe in IDT from Table 3 that AT →
{∂AT } and {b} → {∂{b}} are functional dependencies. In addition, we observe
that {b} → {∂AT } is a minimal functional dependency in IDT . Nevertheless,
there are objects in IDT for which the values of ∂{b} and ∂AT differ; for example,
∂AT (1) �= ∂{b}(1). Thus, the minimal functional dependency {b} → {∂AT } does
not imply that {b} is a generalized decision reduct.
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Theorem 5.2.1. Let A → AT . The existence of a minimal functional depen-
dency A→ {∂AT} in IDT does not imply that A is a generalized decision reduct
of IDT .

Corollary 5.2.1. Let A ⊆ AT . If A is a generalized decision reduct of IDT ,
then A→ {∂AT } is a functional dependency, but not necessarily minimal.

Proof. By Proposition 5.2.2 and Theorem 5.2.1. ��

5.3 μ-Decision Reducts and Functional Dependencies Under
Incompleteness

Lemma 5.3.1. Let A ⊆ AT and x ∈ O. ∀y∈IA(x) μA
d (y) = μA

d (x).

Proof. Analogous to Proof of Lemma 5.2.1; follows from Property 5.1.1b. ��
Proposition 5.3.1. Let A ⊆ AT . A→ {μA

d } is functional in IDT .

Proof. Follows immediately from Lemma 5.3.1. ��
Proposition 5.3.2. Let A ⊆ AT . If A is a μ-decision reduct of IDT , then
A→ {μAT

d } is a functional dependency in IDT .

Proof. Analogous to the proof of Proposition 5.2.2; follows from the definition
of a μ-decision reduct and Proposition 5.3.1. ��
Now, we note that {b} → {μAT

d } is a minimal functional dependency in IDT

from Table 3 and μAT
d (1) �= μ

{b}
d (1). Thus, the minimal functional dependency

{b} → {μAT
d } does not imply that {b} is a μ-decision reduct. Thus, we conclude:

Theorem 5.3.1. Let A ⊆ AT . The existence of a minimal functional depen-
dency A→ {μAT

d } in IDT does not imply that A is a μ-decision reduct of IDT .

Corollary 5.3.1. Let A ⊆ AT . If A is a μ-decision reduct of IDT , then
A → {μAT

d } is a functional dependency, but not necessarily minimal.

Proof. By Proposition 5.3.2 and Theorem 5.3.1. ��

5.4 Certain Decision Reducts and Functional Dependencies Under
Incompleteness

Lemma 5.4.1. POSA = {x ∈ O | SA(x) ⊆ Id(x)}.
Proof. POSA =

⋃
di∈Vd

AXdi =
⋃

y∈O AId(y) =
⋃

y∈O {x ∈ O | SA(x) ⊆
Id(y)} = /∗ by Proposition 2.2.1 ∗/ =

⋃
y∈O {x ∈ O | SA(x) ⊆ Id(x)} = {x ∈

O | SA(x) ⊆ Id(x)}. ��
Lemma 5.4.2. Let A ⊆ AT and x ∈ O. ∀y∈IA(x) dN

A(y) = dN
A(x).

Proof. We shall consider two cases: 1) x ∈ POSA, and 2) x �∈ POSA.

Case 1: By definition, dN
A(x) = d(x) (∗). By Lemma 5.4.1, SA(x) ⊆ Id(x). Hence,

and by Property 5.1.1a,b, ∀y∈IA(x) IA(y) ⊆ SA(y) ⊆ Id(x), so, ∀y∈IA(x) Id(y) =
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Id(x) (∗∗). Thus, ∀y∈IA(x) SA(y) ⊆ Id(y). Hence, and by Lemma 5.4.1, ∀y∈IA(x)

y ∈ POSA (∗∗∗). By (∗), (∗∗) and (∗∗), ∀y∈IA(x) dN
A(y) = d(y) = d(x) = dN

A(x).

Case 2: By definition, dN
A(x) = N (∗), and by Lemma 5.4.1, SA(x) �⊆ Id(x). Thus,

by Proposition 2.2.1, ¬(∃z∈O SA(x) ⊆ Id(z)). Hence, and by Property 5.1.1b,
∀y∈IA(x)¬(∃z∈O SA(y) ⊆ Id(z)). So, by Proposition 2.2.1, ∀y∈IA(x) SA(y) �⊆
Id(y). Therefore, ∀y∈IA(x) y �∈ POSA. Hence, ∀y∈IA(x) dN

A(y) = N = /∗ by
(∗) ∗/ = dN

A(x). ��
Proposition 5.4.1. Let A ⊆ AT . A→ {dN

A} is a functional dependency in IDT .

Proof. Follows immediately from Lemma 5.4.2. ��

Proposition 5.4.2. Let A ⊆ AT . If A is a certain decision reduct of IDT , then
A→ {dN

AT } is a functional dependency in IDT .

Proof. Let A be a certain decision reduct. By the definitions of a certain deci-
sion reduct and dN

AT , ∀x∈POS SA(x) ⊆ Id(x) and dN
AT (x) = d(x). Thus, by Prop-

erty 5.1.1a, ∀x∈POS IA(x) ⊆ IdN
AT

(x) (∗). By Lemma 5.4.1, ∀x 
∈POS SAT (x) �⊆
Id(x). Hence, and by Property 5.1.1c, ∀x 
∈POS SA(x) �⊆ Id(x). Thus, by Lemma
5.4.1, ∀x 
∈POS x �∈ POSA. Therefore and by the definitions of dN

AT and dN
A,

∀x 
∈POS dN
AT (x) = N = dN

A(x). Hence, and by Lemma 5.4.2, ∀x 
∈POS ∀y∈IA(x)

dN
A(y) = dN

A(x) = N = dN
AT (x). Thus, ∀x 
∈POS IA(x) ⊆ IdN

AT
(x) (∗∗). By (∗) and

(∗∗), ∀x∈O IA(x) ⊆ IdN
AT

(x). Hence, A→ {dN
AT } is a functional dependency. ��

Eventually, we note that {b} → {dN
AT } is a minimal functional dependency and

dN
AT (1) �= dN

{b}(1). Hence, the minimal functional dependency {b} → {dN
AT } does

not imply that {b} is a certain decision reduct. Thus we conclude:

Theorem 5.4.1. Let A ⊆ AT . The existence of a minimal functional dependency
A→ {dN

AT } in IDT does not imply that A is a certain decision reduct of IDT .

Corollary 5.4.1. Let A ⊆ AT . If A is a certain decision reduct of IDT , then
A→ {dN

AT } is a functional dependency, but not necessarily minimal.

Proof. By Proposition 5.4.2 and Theorem 5.4.1. ��

6 Conclusions

Certain decision reducts, generalized decision reducts, and membership distri-
bution reducts are provable to be sets of conditional attributes that functionally
determine respective modifications of a decision attribute both in complete and
incomplete information systems. We have also proved, however, that, unlike in
the case of complete systems, the reducts in incomplete systems are not guar-
anteed to be minimal sets of conditional attributes that functionally determine
respective modifications of the decision attribute.
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Abstract. For any fixed natural k, there exists a polynomial in time
algorithm which for a given decision table T and given k conditional at-
tributes recognizes if there exist a decision reduct of T containing these
k attributes.

Keywords: rough sets, decision tables, decision reducts.

1 Introduction

The set of all decision reducts of a decision table T [4] contains rich informa-
tion about the table T . Unfortunately, there are no polynomial algorithms for
construction of the set of all reducts.

In this paper, we show that there are polynomial (in time) algorithms for
obtaining of indirect but useful information about this set.

We show that for any fixed natural k, there exists a polynomial (in time)
algorithm Ak checking, for a given decision table T and given k conditional
attributes, if there exist a reduct for T covering these k attributes.

The information obtained on the basis of algorithms A1 and A2 can be rep-
resented in a simple graphical form. One can construct a graph with the set of
vertices equal to the set of attributes covered by at least one reduct, and the set
of edges coincides with the set of pairs of attributes which do not belong to any
reduct. The degree of an attribute in this graph (the number of edges incident
to this attribute) characterizes attribute importance. The changes of this graph
after adding of a new object to the decision table allow us to evaluate the degree
of influence of this new object on a structure of the reduct set of decision table.
In the paper, we construct such graphs for two real-life decision tables. Some
properties of such graphs are studied in [2].

Note that there exist close analogies between results of this paper and results
obtained in [1], where the following problem was considered: for a given positive
Boolean function f and given subset of its variables it is required to recognize
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if there exists a prime implicant of dual Boolean function fd containing these
variables.

Another way for efficient extracting from a given decision table T of indirect
information about the set of all reducts and its graphical representation was
considered in [7]. It was shown that there exists a polynomial algorithm for con-
structing the so-called pairwise core graph for a given decision table T . The set
of vertices of this graph is equal to the set of conditional attributes of T , and
the set of edges coincides with the two element sets of attributes disjoint with
the core of T (i.e., the intersection of all reducts of T ) and having non-empty
intersection with any reduct of T . This example is a step toward a realization of
a program suggested in early 90s by Andrzej Skowron in his lectures at Warsaw
University to study geometry of reducts for developing tools for investigating
geometrical properties of reducts in the space of all reducts of a given informa-
tion system. For example, the core of a given information system can be empty
but in the reduct space can exist only few families of reducts with non-empty
intersection.

2 On Covering of k Attribute Sets by Reducts

A decision table T is a finite table in which each column is labeled by a conditional
attribute. Rows of the table T are interpreted as tuples of values of conditional
attributes on some objects. Each row is labeled by a decision which is interpreted
as the value of the decision attribute1.

Let A be the set of conditional attributes (the set of names of conditional
attributes) of T . We will say that a conditional attribute a ∈ A separates two
rows if these rows have different values at the intersection with the column
labeled by a. We will say that two rows are different if at least one attribute
a ∈ A separates these rows. Denote by P (T ) the set of unordered pairs of different
rows from T which are labeled by different decisions.

A subset R of the set A is called a test for T if for each pair of rows from
P (T ) there exists an attribute from R which separates rows in this pair. A
test R for T is called a reduct for T if each proper subset of R is not a test
for T . In the sequel, we deal with decision reducts but we will omit the word
“decision”.

Let us fix a natural number k. We consider the following covering problem
for k attributes by a reduct : for a given decision table T with the set of condi-
tional attributes A, a subset B of the set A, and k pairwise different attributes
a1, . . . , ak ∈ B it is required to recognize if there exist a reduct R for T such that
R ⊆ B and a1, . . . , ak ∈ R, and if the answer is “yes” it is required to construct
such a reduct. We describe a polynomial in time algorithm Ak for the covering
problem.

1 We consider uniformly both consistent and inconsistent decision tables. However,
in the case of inconsistent decision table, one can use also the so called generalized
decision instead of the original decision [4,5,6].
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For a ∈ A, we denote by PT (a) the set of pairs of rows from P (T ) separated
by a. For a1, . . . , ak ∈ A and aj ∈ {a1, . . . , ak} let

PT (aj |a1, . . . , ak) = PT (aj) \
⋃

i∈{1,...,k}\{j}
PT (ai).

For a1, . . . , ak ∈ A, let

PT (a1, . . . , ak) = PT (a1|a1, . . . , ak)× . . .× PT (ak|a1, . . . , ak).

Assuming that (π1, . . . , πk) ∈ PT (a1, . . . , ak), we denote by

DT (B, a1, . . . , ak, π1, . . . , πk)

the set of attributes a from B \ {a1, . . . , ak} such that a separates rows in at
least one pair of rows from the set {π1, . . . , πk}. Note that

DT (B, a1, . . . , ak, π1, . . . , πk) =
k⋃

j=1

DT (B, aj , πj).

Using algorithm Ak first the set PT (a1, . . . , ak) is constructed. Next, for each
tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) the set

DT (B, a1, . . . , ak, π1, . . . , πk)

is constructed and it is verified if the set B \ DT (B, a1, . . . , ak, π1, . . . , πk) is a
test for T . It is clear that |PT (a1, . . . , ak)| ≤ n2k, where n is the number of rows

Algorithm 1. Algorithm Ak for solving of the covering problem for k at-
tributes by a reduct
Input: Decision table T with the set of conditional attributes A, B ⊆ A, and

a1, . . . , ak ∈ B.
Output: If there exists a reduct R for T such that R ⊆ B and a1, . . . , ak ∈ R,

then the output is one of such reducts; otherwise, the output is “no”.
construct the set PT (a1, . . . , ak);
for any tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) do

R ←− B \DT (B,a1, . . . , ak, π1, . . . , πk)
if R is a test for T then

while R is not a reduct for T do
select a ∈ R such that R \ {a} is a test for T ;
R := R \ {a}

end
return R;
stop

end
end
return “no” (in particular, if PT (a1, . . . , ak) = ∅, then the output is “no”)
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in T . Using this inequality and the fact that k is fixed natural number, one can
prove that the algorithm Ak has polynomial time complexity. Unfortunately,
algorithm Ak has relatively high time complexity.

The considered algorithm is based on the following proposition:

Proposition 1. Let T be a decision table with the set of conditional attributes
A, B ⊆ A, and a1, . . . , ak ∈ B. Then the following statements hold:

1. A reduct R for T such that R ⊆ B and a1, . . . , ak ∈ R exists if and only if
there exists a tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) such that

B \DT (B, a1, . . . , ak, π1, . . . , πk)

is a test for T .
2. If the set S = B \ DT (B, a1, . . . , ak, π1, . . . , πk) is a test for T then each

reduct Q for T , obtained from S by removing from S of some attributes, has
the following properties: a1, . . . , ak ∈ Q and Q ⊆ B.

Proof. Let R be a reduct for T such that a1, . . . , ak ∈ R and R ⊆ B. It is clear
that for each aj ∈ {a1, . . . , ak} there exists a pair of rows πj from P (T ) such
that aj is the only attribute aj from the set R separating this pair. It is clear
that (π1, . . . , πk) ∈ PT (a1, . . . , ak) and R ⊆ B \ DT (B, a1, . . . , ak, π1, . . . , πk).
Since R is a reduct for T , we conclude that B \DT (B, a1, . . . , ak, π1, . . . , πk) is
a test for T .

Let us assume that there exists a tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) such that
the set S = B \DT (B, a1, . . . , ak, π1, . . . , πk) is a test for T . Let Q be a reduct
for T obtained by removing some attributes from S. It is also clear that Q ⊆ B.
Let j ∈ {1, . . . , k}. Since aj is the only attribute from the test S separating rows
from πj , we have aj ∈ Q. Thus, a1, . . . , ak ∈ Q. ��

3 Graphical Representation of Information About the
Set of Reducts

Let T be a decision table with the set of conditional attributes A. Let B ⊆ A.
Using polynomial algorithms A1 and A2 one can construct a graph G(T,B).
The set of vertices of this graph coincides with the set of attributes a ∈ B for
each of which there exists a reduct R for T such that R ⊆ B and a ∈ R. Two
different vertices a1 and a2 of G(T,B) are linked by an edge if and only if there
is no a reduct R for T such that R ⊆ B and a1, a2 ∈ R. Let us denote by G(T )
the graph G(T,A).

Now, we present the results of two experiments with real-life decision tables
from [3].

Example 1. Let us denote by TL the decision table “Lymphography” [3] with
18 conditional attributes a1, . . . , a18 and 148 rows. Each of the considered at-
tributes is a vertex of the graph G(TL). The graph G(TL) is depicted in Fig. 1.
In particular, one can observe from G(TL) that any reduct of TL containing a4

is disjoint with {a2, a3, a5, a7, a8, a9, a10, a12}.
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Fig. 1. Graph G(TL) for the decision table TL (“Lymphography”)
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Fig. 2. Graph G(TS) for the decision table TS (“Soybean-small”)

Example 2. Let us denote by TS the decision table “Soybean-small” [3] with 35
conditional attributes a1, . . . , a35 and 47 rows. Only attributes a1, . . . , a10, a12

and a20, . . . , a28, a35 are vertices of the graph G(TS). The graph G(TS) is depicted
in Fig. 2.
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Some properties of graphs G(T ) are studied in [2]. In particular, it is shown
that there exists a correlation between the degree of an attribute in G(T ) and the
number of reducts of T which cover this attribute (last parameter is considered
often as attribute importance).

4 Conclusions

In the paper, for each natural k a polynomial algorithm Ak is studied which for a
given decision table and given k conditional attributes recognizes if there exist a
decision reduct covering these k attributes. Results of two computer experiments
with algorithms A1 and A2 are reported.

In our further study we would like to check if there exist efficient randomized
algorithms for solution of the considered in the paper problem.
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Abstract. Rough sets are applied to data tables containing missing
values. Discernibility and indiscernibility between a missing value and
another value are considered simultaneously. A family of possible equiv-
alence classes is obtained, in which each equivalence class has the pos-
sibility that it is an actual one. By using the family of possible equiv-
alence classes, we can derive lower and upper approximations, even if
the approximations are not obtained by previous methods. Furthermore,
the lower and upper approximations coincide with those obtained from
methods of possible worlds.

Keywords: Rough sets, Missing values, Possible equivalence classes,
Lower and upper approximations.

1 Introduction

Rough sets proposed by Pawlak [22] play a significant role in the field of knowl-
edge discovery and data mining. The framework of rough sets has the premise
that data tables consisting of precise information are obtained. However, there
ubiquitously exists imperfect information containing imprecision and uncertainty
in the real world [21]. Under these circumstances, it has been investigated to
apply rough sets to data tables containing imprecise values represented by a
missing value, an or-set, a possibility distribution, a probability distribution, etc
[3,5,6,11,12,14,15,16,17,18,23,24,25,26,28].

The methods are broadly separated into three ways. The first method is one
based on possible worlds, which is called a method of possible worlds [20,23,24,25].
In the method, possible tables that consist of precise values are obtained from a
data table. Each possible table is dealt with by the conventional method of
rough sets and then the results from possible tables are aggregated. There is no
doubt for correctness of the treatment, because the conventional method that is
already established is applied to each possible table. The second method is to
use assumptions on indiscernibility of missing values [3,6,10,11,12,28]. Under the

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 181–191, 2007.
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assumptions, we can obtain a binary relation for indiscernibility between objects.
To the binary relation the methods of rough sets are applied using a class of ob-
jects; for example, an indiscernible class, which is not an equivalence class. The
third method directly deals with imprecise values, without any assumption for
their indiscernibility with other values. In the method, imprecise values are han-
dled probabilistically or possibilistically and the conventional method is extended
probabilistically or possibilistically [14,15,16,17,18,28]. A degree for indiscernibil-
ity between any objects is calculated.

A missing value is handled by various ways [7]. When a missing value in an
attribute is considered as every value in the domain of the attribute being a pos-
sible value, which is called ”do not care” conditions [5], every method mentioned
above can deal with the missing value. Thus, these three methods should give the
same results under the condition that every missing value means ”do not care.”
Recently, Nakata and Sakai have established a third method that gives the same
results as the first method, which is called a method of weighted equivalence
classes [18,19]. So, we focus on whether or not the second method gives the same
result as the first under ”do not care” conditions.

For the second method, the assumption under ”do not care” conditions is
that a missing value and every value are indiscernible with each other, which is
extensively studied by Kryszkiewicz [10,11]. However, a missing value has two
possibilities. One is that it is equal to a value. The other is that it is not equal
to the value. In other words, a missing value is regarded as indiscernible and dis-
cernible with another value. Our objective is to establish a second method giving
the same results as the first method under considering not only indiscernibility
but also discernibility of missing values, which is called a method of possible
equivalence classes. Our approach corresponds to using the following correctness
criterion [14,15,16]:

Correctness criterion
Suppose that operator rep creates set rep(T ) of possible tables derived from data
table T containing missing values. Let q′ be the conventional method applied to
rep(T ), where q′ corresponds to a second method q applied to data table T . The
two results is the same; namely, q(t) = q′(rep(T )).

This criterion is schematized in Figure 1.

T
rep

rep(T )

q′q

q(t) = q′(rep(T ))

�

�

�
�

�
�

�
�

���

Fig. 1. Correctness criterion of second method q
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When this criterion is valid, second method q gives correct results at the level of
possible values. This kind of criterion is commonly applied to query expressions
in the field of databases handling imprecise information [1,2,9,29].

In Section 2, we briefly address the conventional method of applying rough
sets to a data table consisting of precise values. In Section 3, methods of possible
worlds are mentioned. This is the preparation for checking whether the method
of possible equivalence classes creates the same results as the methods of possible
worlds. In Section 4, the method of possible equivalence classes is applied to a
data table containing missing values. Section 5 presents conclusions.

2 Rough Sets Under Precise Information

A data set is represented as a table, called an information table, where each row
represents an object and each column represents an attribute. The information
table is pair A = (U,AT ), where U is a non-empty finite set of objects called
the universe and AT is a non-empty finite set of attributes such that ∀a ∈ AT :
U → Va. Set Va is called the domain of attribute a. In information table T
consisting of set AT of attributes, binary relation IND(ΨA) for indiscernibility
of objects in subset Ψ ⊆ U on subset A ⊆ AT of attributes is:

IND(ΨA) = {(o, o′) ∈ Ψ × Ψ | ∀a ∈ A a(o) = a(o′)}. (1)

This relation is called an indiscernibility relation. Obviously, IND(ΨA) is an
equivalence relation. From the indiscernibility relation, equivalence class E(ΨA)o

(= {o′ | (o, o′) ∈ IND(ΨA)}) containing object o is obtained. This is also the
set of objects that is indiscernible with object o, called the indiscernible class
for object o. Finally, family Ψ/IND(ΨA) (= {E(ΨA)o | o ∈ Ψ}) of equivalence
classes is derived from the indiscernibility relation.

Using equivalence classes, lower approximation Apr(ΦB, ΨA) and upper ap-
proximation Apr(ΦB , ΨA) of Φ/IND(ΦB) by Ψ/IND(ΨA)1 are:

Apr(ΦB , ΨA) = {E(ΨA) | ∃E(ΦB) E(ΨA) ⊆ E(ΦB)}, (2)

Apr(ΦB , ΨA) = {E(ΨA) | ∃E(ΦB) E(ΨA) ∩ E(ΦB) �= ∅}. (3)

where E(ΨA) ∈ Ψ/IND(ΨA) and E(ΦB) ∈ Φ/IND(ΦB) are equivalence classes
for sets Ψ and Φ of objects on sets A and B of attributes, respectively.

3 Methods of Possible Worlds

In methods of possible worlds, the established ways addressed in the previous
section are applied to each possible table, and then the results from the possible
tables are aggregated. It is a possible table that every missing value is replaced

1 UA and UB are used in place of ΨA and ΦB when Ψ and Φ are equal to U , respectively.
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by an element comprising the corresponding domain. When missing values are
contained in information table T , set rep(T ) of possible tables is:

rep(T ) = {pt1, . . . , ptn}, (4)

where each possible table pti has an equal possibility that it is the actual one, n
is equal to Πi=1,mli, the number of missing values is m, and each of them is a
value of an attribute whose domain has li(i = 1,m)) elements.

All possible tables consist of precise values. Family U/IND(UA)pti of equiv-
alence classes is obtained from each possible table pti on set A of attributes. An
equivalence class in U/IND(UA)pti is a possible one, because it has the possi-
bility that it is an actual equivalence class. The whole family U/IND(UA) of
equivalence classes is the union of U/IND(UA)pti :

U/IND(UA) = ∪iU/IND(UA)pti . (5)

To obtain lower and upper approximations, the conventional methods ad-
dressed in the previous section are applied to possible tables. Let Apr(UB, UA)pti

and Apr(UB, UA)pti denote lower and upper approximations of U/IND(UB)pti

by U/IND(UA)pti in possible table pti. Lower and Upper approximations
Apr (UB, UA) and Apr(UB, UA) in information table T are the union of
Apr(UB, UA)pti and Apr(UB, UA)pti , respectively.

Apr(UB, UA) = ∪iApr(UB, UA)pti , Apr(UB, UA) = ∪iApr(UB, UA)pti . (6)

When lower and upper approximations are expressed in terms of a set of
objects,

apr(UB, UA) = {o | o ∈ E(A) ∧ E(A) ∈ Apr(UB, UA)}, (7)

apr(UB, UA) = {o | o ∈ E(A) ∧ E(A) ∈ Apr(UB, UA)}. (8)

Example 1
We suppose that information table T containing missing values is given as fol-
lows:

T
O a1 a2 a3

1 x 1 a
2 y 2 b
3 ∗ 2 b
4 ∗ 3 c

pt1
O a1 a2 a3

1 x 1 a
2 y 2 b
3 x 2 b
4 x 3 c

pt2
O a1 a2 a3

1 x 1 a
2 y 2 b
3 x 2 b
4 y 3 c

pt3
O a1 a2 a3

1 x 1 a
2 y 2 b
3 y 2 b
4 x 3 c

pt4
O a1 a2 a3

1 x 1 a
2 y 2 b
3 y 2 b
4 y 3 c

The mark O denotes the object identity. Suppose that domains Va1 , Va2 , and Va3

of attributes a1, a2, and a3 are {x, y}, {1, 2, 3} and {a, b}, respectively. It is a
possible table obtained from information table T that every missing value ∗ is re-
placed by an element comprising the corresponding domain. Four possible tables
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are derived. For possible table pt1, families U/IND(Ua1)pt1 and U/IND(Ua3)pt1

of equivalence classes for attributes a1 and a2 are:

U/IND(Ua1)pt1 = {{o2}, {o1, o3, o4}}. U/IND(Ua3)pt1 = {{o1}, {o4}, {o2, o3}}.

Because of {o2} ⊆ {o2, o3}, {o1, o3, o4} �⊆ {o1}, {o1, o3, o4} �⊆ {o4} and {o1, o3, o4}
�⊆ {o2, o3},

Aqr(Ua3 , Ua1)pt1 = {o2}.

Because of {o1, o3, o4} ∩ {o1} �= ∅,

Aqr(Ua3 , Ua1)pt1 = {{o2}, {o1, o3, o4}}.

Similarly,

Aqr(Ua3 , Ua1)pt2 = ∅, Aqr(Ua3 , Ua1)pt3 = {{o2, o3}}, Aqr(Ua3 , Ua1)pt4 = {{o1}}.

Finally,

Aqr(Ua3 , Ua1) = ∪iAqr(Ua3 , Ua1)pti = {{o1}, {o2}, {o2, o3}}.

For the upper approximation,

Aqr(Ua3 , Ua1)pt2 = {{o1, o3}, {o2, o4}}, Aqr(Ua3 , Ua1)pt3 = {{o1, o4}, {o2, o3}},
Aqr(Ua3 , Ua1)pt4 = {{o1}, {o2, o3, o4}},

Aqr(Ua3 , Ua1) = ∪iAqr(Ua3 , Ua1)pti

= {{o1}, {o2}, {o1, o3}, {o1, o4}, {o2, o3}, {o2, o4}, {o1, o3, o4}, {o2, o3, o4}}.

For expressions by a set of objects,

aqr(Ua3 , Ua1) = {o1, o2, o3}, aqr(Ua3 , Ua1) = {o1, o2, o3, o4},

4 Rough Sets Under Missing Values

When missing values are contained in information table T , Kryszkiewicz de-
fines binary relation IND(UA) for indiscernibility between objects on set A of
attributes as follows [10,11]:

IND(UA) = {(o, o′) ∈ U × U | ∀a ∈ A a(o) = a(o′) ∨ a(o) = ∗ ∨ a(o′) = ∗}. (9)

This relation for indiscernibility is called a similarity relation. When an object
has a missing value as an attribute value, the object may have the same prop-
erties as another object on the attribute. Then, the similarity relation treats
two objects as similar. This corresponds to ”do not care” conditions of missing
values addressed by Grzymala-Busse [5,6], where missing values are replaced by
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all domain elements of the attribute [4]. From the above definition, we obtain
that an object where all values on set A of attributes are missing is indiscernible
with any object.

From the binary relation, the indiscernible class of object o is derived.

S(UA)o = {o′ | (o, o′) ∈ IND(UA)}.

The indiscernible class is not an equivalence class. By using indiscernible classes
obtained from IND(UA), Kryszkiewicz expresses lower and upper approxima-
tions:

apr(Φ,UA) = {o ∈ U | S(UA)o ⊆ Φ}, (10)
apr(Φ,UA) = {o ∈ U | S(UA)o ∩ Φ �= ∅}, (11)

where Φ is a set of objects.
The method has crucial drawbacks2 as is shown in the following example.

Example 2
We suppose that information table T is obtained for the sake of clarifying the
drawbacks and the essentials.

T
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 ∗ 2 b

pt1
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 x 2 b

pt2
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 y 2 b

In information table T , U = {o1, o2, o3, o4, o5}. We suppose that domains Va1 ,
Va2 and Va3 of attributes a1, a2 and a3 are {x, y}, {1, 2} and {a, b}, respectively.
For indiscernible classes of each objects on attribute a1,

S(Ua1)o1 = S(Ua1)o2 = S(Ua1)o3 = S(Ua1)o4 = S(Ua1)o5 = {o1, o2, o3, o4, o5}.

We suppose that Φ = {o1, o2, o3, o4} for simplicity. We focus on lower approxima-
tion apr(Φ,Ua1), because the upper approximation is trivial in this case. Using
formula (10), because of {o1, o2, o3, o4, o5} �⊆ {o1, o2, o3, o4},

apr(Φ,Ua1) = ∅

This shows that we do not obtain any information for the lower approximation.
This is true for different expressions [6,8,13] proposed by several authors, where
equivalence classes are not used. On the other hand, the method of possible
2 Stefanowski and Tsoukiàs points out that the method of Kryszkiewicz using ”do

not care” conditions creates quite poor results [27]. To handle the problem, other
assumptions for indiscernibility of missing values are proposed [3,27].
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worlds creates different results. We obtain two possible tables pt1 and pt2 from
T , because missing value ∗ on attribute a1 of object o5 is replaced by x or y,
which are a domain element of attribute a1. Families of equivalence classes on
attribute a1 in possible tables pt1 and pt2 are:

U/IND(Ua1) = {o1, o2, o3, o4, o5}, U/IND(Ua1) = {{o1, o2, o3, o4}, {o5}}.

From {o1, o2, o3, o4, o5} �⊆ Φ, pt1 has apr(Φ,Ua1) = ∅. From {o1, o2, o3, o4} ⊆ Φ,
pt2 has apr(Φ,Ua1) = {o1, o2, o3, o4}.

In the above example, possible table pt1 corresponds to the case where object
o5 is indiscernible with the other objects whereas possible tables pt2 does to
the case where object o5 is discernible with the other objects. The reason why
the method of Kryszkiewicz creates the empty set for the lower approximation
is due to that discernibility of a missing value with other values is not consid-
ered, although indiscernibility of a missing value with other values is considered.
From this consideration, we take into account not only indiscernibility but also
discernibility of a missing value with other values.

To handle indiscernibility and discernibility for missing values, we divide uni-
verse U into two sets Ua=∗ and Ua
=∗. Ua=∗ and Ua
=∗ consists of objects whose
value of attribute a ∈ A is missing value ∗ and is not, respectively. For set Ua
=∗,
we obtain family Ua
=∗/IND(Ua
=∗) of equivalence classes on attribute a by us-
ing the conventional method addressed in Section 2. Family Poss(U/IND(Ua))
of possible equivalence classes on attribute a is:

Poss(U/IND(Ua)) = {e ∪ e′ | e ∈ Ua
=∗/IND(Ua
=∗) ∧ e′ ∈ PUa=∗}, (12)

where PUa=∗ is the power set of Ua=∗. Family Poss(U/IND(UA)) of possible
equivalence classes on set A of attributes is:

Poss(U/IND(UA)) = {∩a∈AE(Ua) | E(Ua) ∈ Poss(U/IND(Ua))}\{∅}.(13)

Element E(UA) ∈ Poss(U/IND(UA)) satisfies the following formula:

∧o∈E(UA) and o′∈E(UA) and a∈A (a(o) = a(o′) ∨ a(o) = ∗ ∨ a(o′) = ∗)
∧o∈E(UA) and o′ 
∈E(UA)anda∈A(a(o) �= a(o′) ∨ a(o) = ∗ ∨ a(o′) = ∗), (14)

where o �= o′. The first and second terms deal with indiscernibility and discerni-
bility, respectively.

Proposition 1
When E(UA) is an element of Poss(U/IND(UA)) in an information table, there
exists possible table pti where U/IND(UA)pti contains E(UA).

Proposition 2
Poss(U/IND(UA)) in an information table is equal to the union of the families
of equivalence classes, where each family of equivalence classes is obtained from
a possible table created from the information table.
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Using families of possible equivalence classes, we obtain lower and upper ap-
proximations Apr(UB, UA) and Apr(UB, UA) of Poss(U/IND(UB)) by Poss
(U/IND(UA)). For the lower approximation,

Apr(UB, UA) = {E(UA) | E(UA) ⊆ E(UB) ∧
E(UA) ∈ Poss(U/IND(UA)) ∧ E(UB) ∈ Poss(U/IND(UB))}. (15)

Proposition 3
If E(UA) in an information table is an element of Apr(UB , UA), there exists pos-
sible table pti where Apr(UB, UA)pti contains E(UA).

For the upper approximation,

Apr(UB, UA) = {E(UA) | E(UA) ∩ E(UB) �= ∅ ∧
E(UA) ∈ Poss(U/IND(UA)) ∧ E(UB) ∈ Poss(U/IND(UB))}. (16)

Proposition 4
If E(UA) in an information table is an element of Apr(UB , UA), there exists pos-
sible table pti where Apr(UB, UA)pti contains E(UA).

For expressions in terms of a set of objects, the same expressions as in Sec-
tion 3 are used.

Proposition 5
The lower and upper approximations that are obtained by the method of possible
equivalence classes coincide with ones obtained by the method of possible worlds.

Example 3
For attribute a1 in the information table of Example 1, Ua1=∗ and Ua1 
=∗ that
consists of objects whose value of attribute a1 is missing value ∗ and is not,
respectively, are:

Ua1=∗ = {o3, o4}, Ua1 
=∗ = {o1, o2}.

Power set PUa1=∗ of Ua1=∗ is {∅, {o3}, {o4}, {o3, o4}}. By using formula (12),
the family of possible equivalence classes on attribute a1 is:

Poss(U/IND(Ua1)) = {{o1}, {o2}, {o1, o3}, {o1, o4}, {o2, o3},
{o2, o4}, {o1, o3, o4}, {o2, o3, o4}}.

The family of equivalence classes on attribute a3 is:

U/IND(Ua3) = {{o1}, {o4}, {o2, o3}}.

Using the families of possible equivalence classes, we derive the lower and upper
approximations of U/IND(Ua3) by U/IND(Ua1). Equivalence classes contain-
ing or equal to equivalence classes in U/IND(Ua3) are {o1}, {o2}, and {o2, o3}
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in U/IND(Ua1). Equivalence classes having non-empty intersection with equiva-
lence classes in U/IND(Ua3) are {o1}, {o2}, {o1, o3}, {o1, o4}, {o2, o3}, {o2, o4},
{o1, o3, o4}, {o2, o3, o4} in U/IND(Ua1). Thus, for lower and upper approxima-
tions,

Apr(Ua3 , Ua1) = {{o1}, {o2}, {o2, o3}},
Apr(Ua3 , Ua1) = {{o1}, {o2}, {o1, o3}, {o1, o4}, {o2, o3}, {o2, o4}, {o1, o3, o4},

{o2, o3, o4}}.

For expressions by a set of objects,

apr(Ua3 , Ua1) = {o1, o2, o3}. apr(Ua3 , Ua1) = {o1, o2, o3, o4}.

Indeed, the lower and upper approximations coincide with ones obtained from
the method of possible worlds in Example 1.

For computational complexity of lower and upper approximations expressed
by formulae (15) and (16), the most crucial factor is the number of possible
equivalence classes contained in Poss(U/IND(UB)). This number is O(m ×
2n) where m is maxi mi and n is mini ni when mi and ni are the number of
equivalence classes in Uai 
=∗ and the number of missing values on attribute ai ∈
B. When any values of attributes contained in set B of decision attributes are
not missing, this exponential factor does not appear. In this case, the method of
possible equivalence classes would be practically available to large data sets.

5 Conclusions

We have proposed a method, where possible equivalence classes are used, to deal
with missing values. The method takes into account not only indiscernibility
but also discernibility of a missing value with another value. The lower and
upper approximations by the method of possible equivalence classes coincide
with ones by the method of possible worlds. In other words, this method satisfies
the correctness criterion that is used in the field of incomplete databases. This
is justification of the method of possible equivalence classes.
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28. Stefanowski, J., Tsoukiàs, A.: Incomplete Information Tables and Rough Classifi-
cation. Computational Intelligence 17(3), 545–566 (2001)
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Abstract. The present paper is concerned with Rough Set Theory (RST) and
Similarity Coverage Model (SCM) of category-based induction. It redefines ba-
sic concepts of RST in the light of SCM, and explains how RST may be seen
as an elegant formal model of inductive reasoning. Furthermore, following SCM,
we enrich RST by the concept of an ontology defined as a subset of the family of
all definable sets. The paper also presents a model of inductive reasoning which
is driven by recent works on RST and nearness-type structures. We show how ap-
proximation spaces can be characterised in terms of non-Archimedean nearness
spaces.

1 Introduction

Rough Set Theory [7,8] – RST for short – is a mathematical theory of how to deal with
uncertainty which stems from the limited amount of available information. Indeed, it
provides formal tools to approximate new concepts which are undefinable in terms of
gathered knowledge. The present paper aims to show that RST provides also an elegant
formal representation of category-based induction. This type of inductive reasoning is
based on the structure of (folk biological) taxonomies which support predictions and in-
ferences by which people generalise from a particular category (e.g. bobcats) to another
one (e.g. all mammals). Actually, there are a number of formal models of category-
based reasoning [1,5,6,11]. We consider one such model, namely Similarity Coverage
Model (SCM) [1,6]. Basically, SCM deals with similar issues as RST: how – despite
lack of knowledge – to reason about a given category on the basis of better known
categories. Thus, there should be no surprise that, although each theory has a different
emphasis and formal methods, both theories may enrich one another. We shall show
that RST provides a very well-established formal model for category-based reasoning,
while SCM gives some new interpretations of mathematical structures underlying RST.

The basic concept of RST is an approximations space defined as a pair (X,E), where
X is a set of objects and E ⊆ X×X is an equivalence relation, called an indiscernabil-
ity, which represents the collected pieces of knowledge about X . This knowledge allows
us to specify concepts (i.e. subsets of X), called definable concepts; the other concepts
may only be approximated. Generally speaking, RST is concerned with such approxi-
mations. Hereafter several attempts were made to generalise the concept of an approxi-
mation space; in the present paper we shall focus on a generalised approximation space
introduced by A. Skowron and J. Stepaniuk [10]. Basically, a generalised approxima-
tion space is a triple (X,R, v), where R is an uncertainty function R : X → 2X (a

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 192–201, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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binary reflexive relation) giving objects y similarly described to x, i.e. y ∈ R(x), and v
is a rough inclusion function telling us to which extent a given set is included in another
one. In the light of SCM both types of approximation spaces encode different types of
knowledge. An approximation space (X,E), as was stated by Z. Pawlak, represents our
knowledge about the universe of objects X . The special role is played by definable con-
cepts of X with respect to E. However, not all definable concepts will be meaningful
but only some of them. The set of these distinguished definable concepts will be called
an ontology. On the other hand, a generalised approximation space (X,R, v) (compat-
ible with the approximation space (X,E)) will support inductive inferences based on
the ontology. Thus we do not regard a generalised approximation space, at it has been
so far, as a generalisation of an approximation space in the sense of Pawlak, but we
view it as an inference engine allowing one to make inductive generalisations from one
to another category induced by the approximation space.

The pair of equivalence relations {E,R} can be generalised to a non-Archimedean
structure which gives rise to a non-Archimedean nearness space (X, ν) – a mathe-
matical model for our investigations. Nearness-type structures and RST have been re-
cently studied in, e.g., [9,12]. Here, starting from considerations about SCM, we add a
new characterisation of Pawlak’s approximation spaces in terms of non-Archimedean
spaces.

2 Similarity Coverage Model

Ethnobiology or folk biology is a branch of cognitive science which studies the ways
in which people categorise the local fauna and flora, and project their knowledge about
a certain category to another ones [1,5,6,11]. For example, given that bobcats secrete
uric acid crystals and cows secrete uric acid crystals, subjects, on the basis that all
mammals may have this property, infer that foxes secrete uric acid crystals. There are
different accounts of such category-based induction; in the paper we focus on the very
influential Similarity Coverage Model (SCM) introduced by Osherson et al [6].

According to SCM, the subject calculates the similarity of the premise categories
(i.e. bobcats, cows) to the conclusion category (i.e. foxes). Then the subject calculates
the average similarity (coverage) of the premise categories to the superordinate category
including both the premise and conclusion categories (i.e. mammals). Let us consider
the following example:

Horses have an ileal vein,
Donkeys have an ileal vein.
Gophers have an ileal vein.

This argument is weaker than:

Horses have an ileal vein,
Gophers have an ileal vein.

Cows have an ileal vein.

Of course, the similarity of horses to cows is much higher than the similarity of horses
or donkeys to gophers. Thus the ”strongness” of inductive inferences depends on the
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maximal similarity of the conclusion category to some of the premise categories. Now
let us shed some light on the coverage principle:

Horses have an ileal vein,
Cows have an ileal vein.

All mammals have an ileal vein.

According to SCM this argument is weaker than the following one:

Horses have an ileal vein,
Gophers have an ileal vein.

All mammals have an ileal vein.

The reason is that the average similarity of horses to other mammals is almost the same
as that of cows. Thus the second premise does not bring us nothing in terms of coverage
(both horses and cows share the same set of similar animals). By contrast, gophers are
similar to other mammals than horses and thus this premise makes the coverage higher.
Observe also that the following inductive inference

Horses have an ileal vein,
All mammals have an ileal vein.

is stronger, than

Bats have an ileal vein,
All mammals have an ileal vein.

The range of mammals similar to cows is much wider than the rage of mammals similar
to bats. Thus, cows are more typical examples of mammals than bats or gophers.

Now, let us summarise the above examples in a more formal way. Firstly, there is
given a set of categories we reason about C. This set is provided with a binary “kind
of” relation K , which is acyclic and thus irreflexive and asymmetric.

Definition 1. An acyclic relation K is called taxonomic over C iff K is transitive and
for any a, b, c ∈ C such that aKb and aKc, either b = c or bKc or cKb.

For example, collie is a kind of dog and dog is a kind of mammal. Items x ∈ C, such that
there is no t satisfying yKx constitute basic categories. An example of non-taxonomic
relation is as follows: chair is a kind of furniture but not a kind of vehicle; further-
more, wheelchair is a kind of chair and a kind of vehicle. Now, wheelchairKchair and
wheelchairKvehicle, but neither chair = vehicle nor chairKvehicle nor vehicleKchair.

Subjects reasoning about (C,K) are additionally provided with similarity relation
R defined on basic categories. Actually, this is R what allows one to reason about
categories under incomplete knowledge: given that elements of A have a property p, a
subject may infer that elements of B also satisfy p when ARB and A is a “substantial”
subset of B. Thus, (C,K) represents gathered information, while R is an inductive
“engine” making inferences about unknown features of objects belonging to C. In the
next section we shall represent SCM in terms of structures taken from RST.
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3 Rough Set Theory

In this section we recall notions of an approximation space and a generalised approx-
imation space. They are fundamental concepts of RST [10,7,8] which, traditionally
viewed, represent given knowledge about some universe of objects X . Here we show
how the basic notions related to rough sets may be applied to inductive reasoning based
on a categorisation of objects.

Definition 2. A pair (X,E), where X is a nonempty set (of objects) and E ⊆ X ×X
is an equivalence relation, is called an approximation space.

A subset A ⊆ X is called definable if A =
⋃
B for some B ⊆ X/E, where X/E is the

family of equivalence classes of E. The chief idea underlying RST is to approximate
an undefinable set A by means of two definable sets:

Definition 3. Let (X,E) be an approximation space and [x]E the equivalence class
containing x ∈ X . With each A ⊆ X , we can associate its E-lower and E-upper
approximations, A and A, respectively, defined as follows:

A = {x ∈ X : [x]E ⊆ A},

A = {a ∈ X : [x]E ∩A �= ∅}.

The lower approximation A consists of points which necessarily belong to A while the
upper approximation A consists of points which possibly belong to A. Actually, A is
the greatest definable set included in A, while A is the smallest definable superset of A.
Thus RST employs all definable subsets of X .

Definition 4. A generalised approximation space is a triple(X,R, v), where

– X is a set of objects,
– R : X → P(X) is an uncertainty function, where P(X) is the powerset of X ,
– v : P(X)× P(X)→ [0, 1] is a rough inclusion function.

The uncertainty function R defines for every object x ∈ X a set of objects similar to x.
The standard inclusion function vs defined on a finite universe X is given by:

vs(A,B) =

{
card(A∩B)

card(A) if A �= ∅
1 if A = ∅

Typically, generalised approximation spaces are viewed as a generalisation of approx-
imation spaces in the sens of Pawlak’s definition. Here we would like to change this
perspective and interpret these structures from the standpoint of SCM. All categories
are viewed extensionally, i.e. as subsets of some universe X . Thus, each category is a
sum of some basic categories. For a given approximation space (X,E) basic categories
are given by the equivalence classes [x]E of E. Furthermore, we can define different
ontologies on (X,E). The richest ontology is given by the set of all definable subsets
of (X,E) denoted byD. It is worth emphasising that actuallyD is the ontology implic-
itly assumed in RST. Thus, an approximation space may be represented by (X,E,D).
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From the perspective of SCM this ontology is generally too rich; therefore we shall
call any O ⊆ D an ontology over (X,E,D). The triple (X,E,O) will be called O-
approximation space. For every ontology O we define its “kind of” relation K by:
AKB iff A �= B and A ⊆ B. The ontology is called taxonomic iff K is a taxonomic
relation overO. Obviously,D is an example of non-taxonomic ontology.

The main difference between RST and SCM is that is RST we often reason about
unknown concepts, i.e. some undefinable subsets of X , while in SCM we are always
concerned with known concepts forming our ontology; yet this knowledge is often in-
complete. That is why in RST the “kind of relation” K comes second after indiscern-
ability relation E. Although E is often regarded as similarity, in terms of induction over
categories (i.e. definable sets) it brings us nothing: given that x has a property p, we can
reason that y also satisfies p when xEy, but then they necessary share the same category
[x]E = [y]E . To reason we need another structure, which allows one to reason about
categories.

Let us consider a generalised approximation space (X,R, v). Now, we show how it
models an inductive reasoning in the sense of SCM. Firstly, the space shares the same
set of objects X as its correspondingO-approximation space (X,E,O). Additionally,
we assume that R, representing similarity among objects, is an extension of E in the
sense that R is an equivalence relation and R(x) ∈ D, for all x ∈ X . The last ele-
ment of generalised approximation space, namely v, allows us to model the coverage
rule of SCM. The average similarity (coverage) of A to B, where A,B ∈ O, is de-
fined by asim(A,B) = v(B,A). Now we can model a process of induction over an
O-approximation space (X,E,O). Let us consider the following scenario: a child has
knowledge about animals represented by E. This relation allows she to distinguish the
following basic categories (i.e. equivalence classes of E): lions, tigers, elephants, ze-
bras, skunks, jaguars, foxes, giraffes, and weasels. The child has only two “supreme”
categories: cats consisting of lions, tigers, and jaguars; and non-cats. Thus,

O = {lions, tigers, elephants, zebras, skunks, jaguars, foxes, giraffes,

weasels, cats, non− cats}
Additionally, she perceives that – according to R – lions are similar to tigers, jaguars
and foxes; and skunks goes with weasels. As uncertainty function we take vs. Now,
given that tigers are dangerous and skunks stink, she may infer that:

Tigers are dangerous.
Cats are dangerous.

or

Skunks stink.
Weasels stink.

Moreover, the following argument

Tigers are dangerous.
All animals in Zoo are dangerous.

is stronger than
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Skunks stink.
Non-cats stink.

since asim(T igers, Zoo) = 4/9 is greater than asim(Skunks,Non− cats) = 2/6.
Of course, the first argument above is much stronger than the last two; it is easy to calcu-
late that asim(T igers, Cats) = 1. By the same reason, arguments based on elephants
or zebras are very weak.

As far, we have described a very simple device for inductive reasoning based on
RST. An approximation space in the sense of Pawlak’s definition provides gathered
knowledge about some universe X . It also induces basic categories and an ontologyO.
A parameterised approximation space provides means to reason about these categories.
In the next section we shall try to find a better representation for such type of induction.

4 Rough Induction

Recently a number of attempts have been made to connect RST with nearness type
structures, e.g. [9,12]. Firstly we start with a few simple observations concerning ap-
proximation spaces and category-based induction. Then we shall build a mathematical
structure which generalises these observations and prove how it is related to nearness
spaces.

The knowledge about a given universe is encoded by an equivalence relation E. Fur-
thermore, to reason about concepts we need a similarity relation R which is compatible
with E. Since both E and R are equivalence relations we may regard them as partitions
of X : PE and PR, respectively.

Definition 5. Let A,B ⊆ 2X; then a refinement relation � is defined by:

A � B def⇔ ∀A ∈ A ∃B ∈ B(A ⊆ B).

Let us observe that the pair β = {PE,PR} fullfills the following condition:

PE � PR

The simple mathematical structure which generalise this observation is called a non-
Archimedean structure [2].

Definition 6. A non-Archimedean structure μ on a set X is a set of partitions of X
satisfying:
(i) if A � B andA ∈ μ, then B ∈ μ.
The couple (X,μ) is called a non-Archimedean space.

Please observe that we use here a more general concept of non-Archimedean structure
[2] instead of a more popular notion of non-Archimedean uniformity.

Definition 7. stack�μ = {B ⊆ 2X : ∃A ∈ μ(A � B)}.

It is easy to observe that:
stack�β = stack�{PE}.

The stack operation allows us to connect E with nearness type structures.
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Definition 8. Let X be a set and ν be a non-empty set of coverings of X such that:
(i) if A refines B andA ∈ ν, then B ∈ ν.
Then (X, ν) is called a pre-nearness space

Thus stack�{PE} is a pre-nearness space. Let (X, ν) be a pre-nearness space and let

Eν = {P ∈ ν : P is a partition of X}

When stack�Eν = ν, then (X, ν) is called a non-Archimedean pre-nearness space
and Eν is its base. Thus a non-Archimedean structure μ on X is a base of the non-
Archimedean pre-nearness space (X, stack�μ). Now we answer the following ques-
tion: given a non-Archimedean structure μ induced by an equivalence relation E, what
is (X, stack�μ)?

Definition 9. Let X, ν be a pre-nearness space such that:
(i) if A ∈ ν and B ∈ ν, then {A ∩B : A ∈ A and B ∈ B} ∈ ν.
Then (X, ν) is called a merotopic space.

Definition 10. A merotopic space (X, ν) which satisfies
(i) if A ∈ ν, then {Intν(A) : A ∈ A} ∈ ν, where Intν(A) = {x ∈ X : {A,X \
{x}} ∈ ν}, is called a nearness space.

Proposition 1. Let μ a non-Archimedean structure on X induced by an equivalence
relation E. If μ satisfies the condition (i) of Definition 9 then (X, stack�μ) is a non-
Archimedean nearness space.

Proof. In order not to overload the paper with definitions, we shall give just a hint how
to prove this theorem. Every partition star-refines itself and therefore (X, stack�μ) is
a uniform pre-nearness space. Furthermore, any uniform pre-nearness space satisfies (i)
of Definition 10. See also [3].

Proposition 2. There is one-to-one correspondence between finite approximation
spaces (X,E) and finite non-Archimedean nearness spaces.

Proof. For the same reason as above we also give a sketch of proof. Every finite non-
Archimedean nearness space (X, ν) is induced by a partition P and, as a result, by
some equivalence relation E. Since P is a minimal open basis for the topology induced
by Intν it follows that (X, ν) is a topological nearness space. But there is one-to-
one correspondence between equivalence relations and topological nearness spaces. See
also [12].

Proposition 3. Let (X,E) be an approximation space,PE the partition corresponding
to E, and (X,μ) the non-Archimedean space induced by PE , i.e. μ is a set of partitions
refined by PE; then

⋃
μ = D.

Proof. Firstly, by the refinement condition every B ∈ B ∈ μ is a sum of basic cate-
gories, i.e. equivalence classes of E. Thus, B ∈ D. Secondly, each definable set A ∈ D
induces a partition of X , namely {A} ∪ D \ {[x]E : x ∈ A} which is refined by PE .
Thus, this partition belongs to μ.
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Thus, a non-Archimedean structure μ gives us a representation for D – the richest on-
tology of (X,E). Therefore, one can represent an O-approximation space (X,E,D)
as (X,E, μ). However, we would like to restrict the ontology D to a smaller structure.
Moreover, a non-Archimedean nearness space (X, stack�μ) seems to be more inter-
esting than (X,μ).

Definition 11. Let (X,E) be an approximation space and (X, ν) its non-Archimedean
nearness space. By an ontology Oν over (X, ν) we mean a finite chain of partitions
A1 � A2 � Ak, where Ai �= Aj for i �= j, andAi ∈ ν for every i.

It is easy to observe that:

Proposition 4. An ontologyOν over a non-Archimedean nearness space (X, ν) is tax-
onomic iff every Ai ∈ Eν .

Proof. The obvious “kind of” relation K is as follows: AKB iff A ⊆ B and there exist
Bi,Bj ∈ O such that A ∈ Bi, B ∈ Bj and i < j. Now, K is transitive and no A can
stand in relation K to two distinct elements B,C of Bj , since every Bj is a partition
of X . Thus, K is taxonomic. On the other hand, when Oν is taxonomic then for each
cover Ai ∈ Oν we have that for every A,B ∈ Ai, A ∩ B = ∅. Thus, every Ai is a
partition and belongs to Eν .

Thus, for finite spaces X we can regard (X,E) as a non-Archimedean nearness space
(X, stack�{PE}). Now we would like to enrich this space by an ontology O to ob-
tain a nearness-type O-approximation space. A structure (X, ν,Oν), where (X, ν) is
a non-Archimedean nearness space and Oν an ontology over ν, will be called an Oν-
approximation space. Please observe that the non-Archimedean structure induced by
PE , which represents the family D of all definable sets, is not an ontology. Generally
we are interestend in taxonomic ontologies.

Now, let us consider how anOν-approximation space (X, ν,Oν), whereOν is taxo-
nomic, may be applied to SCM. It is worth emphasising that here we measure similarity
among categories by means of the ontologyOν alone. Suppose we are given a standard
taxonomy in terms of genus, family, suborder, subclass and class. Suppose also that a
skunk and a bear share a biological property. Michigan students are reported to con-
clude that it is more likely that all mammals have this property than if it were shared
by a skunk and an opossum [1]. Students actually made a false assumption that skunks
are taxonomically further from bears than from opossum. To model their reasoning, let
Oμ denote an ontology representing this taxonomy. By Bi we shall denote the first i
such that skunks, bears ∈ B for some B ∈ Bi ∈ Oμ. Similarly, Bj we shall denote
the first j such that skunks, opossums ∈ B for some B ∈ Bj ∈ Oμ. The students
actually assumed that i ≤ j. It shows that the higher diversity of premises strengthens
the argument. Let us recall that recently A. Gomolińska has studied extensions of ap-
proximation spaces by an additional relation understood as a relation of dissimilarity of
objects [4]. Here, dissimilarity is just the inverse of similarity.

Now, let us consider a similarity relation R which is assumed to be an equivalence
relation compatible with E; thusPR belongs to the non-Archimedean space induced by
E. One might also wish the similarily relation to encode to what an extent two objects
are similar. It all can be done by means of another taxonomic ontology. To be more



200 M. Wolski

precise, let (X,E) be an approximation space, (X, ν) its non-Archimedean nearness
space, Oν and O′ν taxonomic ontologies over (X, ν). The former ontology encodes
our knowledge and thus PE = A1. The latter ontology represents similarity among
objects: two objects x, y are similar in a degree i, when there is A ∈ Ai ∈ O′ν such
that x, y ∈ A. It is worth emphasising that the smaller i the more similar objects. Thus,
similarity encoded inO′ν shows how near the objects are. Summing up, we need a non-
Archimedean nearness space (X, ν), and two taxonomic ontologiesOν ,O′ν , whereOν

is generated by PE such that stack�{PE} = ν, and a rough inclusion function v. Of
course, these two ontologies may by easily generalised to a set of ontologiesO.

Consider the following scenario. Children often believe that whales and bats are
mammals, despite the lack of knowledge about anatomical facts that make these identi-
fications possible. Thus, ontologies often represent given apriori scientific knowledge.
On the other hand children also have aposteriori knowledge about the surrounding
world. Therefore, let O′μ represent their real-life experience. For example, one could
observe that bats are very similar to mouses (e.g. {bats,mouses, rats} ∈ B ∈ B1),
while wales goes alone. On this basis the following argument

Bats suffer from A.
Mammals suffer from A.

is stronger than

Whales suffer from A.
Mammals suffer from A.

One could also observe that, e.g., {bats,mouses, rats, cats, dogs} ∈ B ∈ B2. Then

Bats suffer from A.
Dogs suffer from A.

is weaker than

Bats suffer from A.
Rats suffer from A.

The above examples show that inductive reasoning may be seen as a kind of interplay
between apriori and aposteriori knowledge. Suppose, that students try to reason over
their false taxonomy. Since O′ν must be in accordance with a false taxonomy Oν , stu-
dents eventually fail to find O′ν giving sufficiently good predictions. Then they will be
forced to abandon the false ontology Oν . Thus, to some extent we can model also the
process of learning.

To sum up, the most general structure coming from the above examples is a non-
Archimedean nearness space (X, ν) equipped with a set O of ontologies over ν and a
rough inclusion function v, that is (X, ν,O, v).

5 Final Remarks

The article presents account of preliminary results concerning Rough Set Theory (RST)
and Similarity Coverage Model of category-based induction (SCM). We have showed
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how RST can model this type of inductive reasoning employing both approximation
spaces: approximation spaces in the sense of Pawlak’s definition and generalised ap-
proximation spaces. The former spaces provide knowledge about a given universe of
objects; especially it allows to define the set of basic categories and an ontology. The
former space provides an “inductive engine” allowing us to make inferences – despite
of incomplete knowledge – about some categories on the basis of better known ones.
Furthermore, following recent papers about nearness type structures and RST, we have
shown how non-Archimedean structures and non-Archimedean nearness spaces allow
us to represent approximation spaces and to model the SCM-based inductive reasoning.
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Abstract. In machine learning and knowledge discovery, rough set the-
ory is a useful tool to be employed as a preprocessing step for dimension
reduction. However, for a given system, there may be more than one
reduct to be selected. Different reducts will lead to discovered knowledge,
which may be concise, precise, general, understandable and practically
useful in different levels. It is a crucial issue to select the most suitable
features or properties of the objects in a dataset in the machine learning
process. In this paper, some external information is added to informa-
tion system and may be simply regarded as user preference on attributes.
Consequently, it will guide the procedure of retrieving reducts, which will
give birth to the reduct subject to preference order of attributes.

Keywords: Reduct, rough set theory, preference order of attributes.

1 Description of Problem

Information system is the main object in data mining and knowledge discovery. It
consists of two major parameters of complexity leading to intractable behavior:
the number of attributes in an application domain, namely dimensionality, and
the number of examples in a dataset. The latter is typically applied only to the
training stage of the system and, depending on intended use, may be acceptable.
However, data dimensionality is an obstacle for both the training and runtime
phases of a learning system. Many systems exhibit non-polynomial complexity
with respect to dimensionality, which imposes a ceiling on the applicability. The
curse of dimensionality limits the applicability of learning systems to a great
degree.

Rough set theory, proposed by Pawlak Z. [3], is a formal methodology that can
be employed in data reduction as a preprocessing step. A fundamental notion
supporting this is the concept of reduct, which has been studied extensively by
many researchers. A reduct is a subset of attributes which are jointly sufficient
and individually necessary for preserving the same information under considera-
tion as provided by the entire set of attributes. However, for a given information
system, there may be more than one reduct. The use of different reducts will
lead to different discovered knowledge. Typically, discovered knowledge should
be concise, precise, general, easy to understand and practically useful, which can
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be measured according to external information. In this paper, we will consider
such external information simply as user preference, which may be weights of
attributes, ranking of attributes, and etc. Especially, if the preference is formally
a chain, then the reduct subject to preference order of attributes will be unique.

2 Related Research

This section will introduce several proposals associated with ”optimal reduct”.
One is ”optimal reduct” in [2], which is in fact the reduct containing the least
number of attributes, also is the shortest one. This algorithm makes use of heuris-
tic information in discernibility matrix–attribute frequency to retrieve the short-
est reduct, yet they cannot make sure that the reduct they get is affirmatively
the shortest one in any case, but in most cases.

In [6], we propose the concept ”optimal reduct under dictionary order”. We
assume that all attributes are ordered lexically, and therefore, all reducts are
ordered lexically accordingly. Since dictionary order is formally a chain, the
optimal reduct is unique. In this paper, by constructing a special data structure,
called dictionary tree, we design a new algorithm to retrieve this reduct under
dictionary order. As an example, a typical dictionary tree containing 4 attributes
is shown in Figure 1.

Notes: The attribute set serial when accessing the dictionary tree by mid-root mode
is a, ab, abc, abcd, abd, . . . , d, which is ordered under dictionary order.

Fig. 1. A Dictionary Tree Containing 4 attributes

When the tree is accessed in mid-root traversing, the attribute set serial is
a, ab, abc, abcd, abd, . . . , d, which is in the lexical order. Moreover, we prove the
correctness of the algorithm to construct the dictionary tree and algorithm to
retrieve optimal reduct. However, when the algorithm is applied in real environ-
ment, it is hard to be carried out.
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Yao presented a formal model of machine learning by considering user prefer-
ence in [5]. This model combined internal information and external information
seamlessly and could be extended to user preference of attribute sets. In that
paper, Yao discussed many useful properties of user preference and presented
two linear preference order, called left-to-right lexical order and right-to left one.
In addition, two general algorithms are designed to retrieve corresponding opti-
mal reduct under the two linear order from the deletion and addition strategy.
However, the two algorithms were implemented based on two concepts–super
reduct and partial reduct. How to judge whether a feature set is a super reduct
or partial one is still a crucial issue while no reduct is available.

3 Basic Concepts and Theories

3.1 Information System

Definition 1. An information table is a quadruple:

IT = (U,A, {Va|a ∈ A}, {Ia|a ∈ A}) (1)

Where
U is a finite nonempty set of objects,
A is a finite nonempty set of attributes,
Va is a nonempty set of values for a ∈ A,
Ia : A→ Va is an information function.

For simplicity, we only consider information tables characterized by two finite
sets: U and A, of which are objects and attributes, formally as (U,A). In general,
an information table contains all available information and knowledge about
objects under consideration, which are only perceived or measured by using
attributes in A.

Given an information system (U,A), for two objects x, y ∈ U and one attribute
a ∈ A, if the value of x on a is equal to that of y on the same attribute, denoted
as x =a y, then we say that the two objects are indiscernible on a. For B ⊆ A,
if for all attributes b ∈ B, x =b y holds, denoted as x =B y, we call that the two
objects are indiscernible on B.

In (U,A), the family of equivalence class with respect to A, denoted as IND(A),
is defined as following.

IND(A) = {[x]A|x ∈ U} (2)

where [x]A = {y|y ∈ U, and , x =A y} is the equivalence class containing x
constructed by A.

IND(A) is the set of equivalence class, and can be seen as the classification
of the given universe. For example, given U = {u1, u2, u3, u4, u5, u6, u7, u8}, if
IND(A) = {{u1, u2, u6, u8}, {u3, u4, u5, u7}}, then we can say that u1, u2, u6 and
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u8 can be seen as the same class by available knowledge in (U,A) and u3, u4, u5

and u7 can be seen as another different class.
Provided an information system (U,A), P,Q ⊆ A, an functional dependency

P → Q holds if equation (3) holds.

∀u, v ∈ U, u =P v ⇒ u =Q v (3)

Generally, an functional dependency P → Q has the following properties 1-
3 [1]:

Property 1. P → Q⇒ P → q, for all q ∈ Q; (Rinclusion)

Property 2. P → Q⇒ (P ∪ V )→ Q; (Raugment)

Property 3. P → V ∧ V → Q⇒ P → Q; (Rtrans)

Definition 2. In the given information system (U,A), an attribute a ∈ A is
dispensable, if the following equation holds.

IND(A) = IND(A− {a}) (4)

Lemma 1. a ∈ A is dispensable in (U,A) if and only if A− {a} → a holds.

Definition 3. Given an information system (U,A), P ⊆ A is dependent, if any
attribute p ∈ P is not dispensable. Formally, P is dependent if and only if

∀p ∈ P, IND(P ) �= IND(P − {p}) (5)

3.2 User Preference

In machine learning algorithms, it is implicitly assumed that all attributes are
of the same importance from a user’s point of view. Consequently, attributes
are based solely on their characteristics revealed in an information system. This
results in a simple model, which is easy to analyze. At the same time, with-
out considering the semantic information of attributes, the model is perhaps
unrealistic. A more applicable model can be built by considering attributes as
non-equally important. This type of external information is normally provided by
users in addition to the information system, and is referred to as user judgement
or user preference [5].

Given an information system (U,A), for any p, q ∈ A, if p is preferred to q by
user, we will simply denote it as p ( q.

Also, how to acquire user preference is a crucial issue. In this paper, for clarity,
we simply assume that a user can express preference on the entire attribute set
precisely and completely, and this enable us to investigate the real issues without
the interference of unnecessary constraints. For simplicity, we assume that any
two attributes are preferred in user preference, that is to say, all attributes are
assumed to be ordered in a linear order. Formally, ∀p, q ∈ C, either p ( q
holds, or q ( p holds. Based on user preference on attribute, we can define user
preference on the set of attributes as follows.
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Definition 4. Given two feature set P ={p1, p2, . . . , pm} and Q={q1, q2, . . . , qn}
such that p1 ( p2 ( . . . ( pm and q1 ( q2 ( . . . ( qn, where ( is user preference
on attributes. Let t = min{m,n}. We say that P precedes Q, written P ( Q if
and only if either of the following two conditions holds:

(1) there exist a 1 ≤ i ≤ t such that pj = qj for 1 ≤ j ≤ i and pi ( qi

(2) ai = bi for 0 ≤ i ≤ t and m < n.

User preference defined above is in fact left-to-right lexical order in [5] and there
are many applications in practice, such as dictionary order, and etc. If all at-
tributes in (U,A) are linearly ordered in user preference, all reducts of (U,A)
must be ordered in user preference and the reduct which is preferred to any
other reduct is called optimal reduct under user preference. Particularly, if user
preference is a linear order, the optimal reduct under assumed preference must
be unique.

4 Optimal Reduct Under Preference

In this section, first we present two algorithms associated with optimal reduct,
yet both of them have disadvantages. The feature set retrieved by the first algo-
rithm is surely to be one reduct, but not the optimal one. The second algorithm
will retain the better attributes, but cannot give birth to one reduct. After the
two algorithms, we present the algorithm to retrieve optimal reduct in informa-
tion system (U,A) and prove its correctness.

4.1 Algorithm to Retrieve Comparatively Optimal Reduct

First we will give an algorithm to retrieve comparatively optimal reduct. The
reason why we call a comparatively optimal reduct is that the feature set we
retrieve is a reduct but we cannot ensure it is the optimal one under preference.
The algorithm is illustrated in Algorithm 1.

Data: an information system (U, A), while A = {a1, a2, . . . , am} satisfying the
predefined preference such that a1 � a2 � . . . � am.

Result: an reduct red of (U, A).
red = A;
i=m;
while i ≤ 1 do

if red− {ai} → ai then
red = red− {ai};

end
else

i = i− 1;
end

end
Algorithm 1. Algorithm COReductRetrIS(U,A)
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The strategy that Algorithm 1 adopts is deletion strategy, that is to say, the
procedure of implementing the algorithm is to delete dispensable attributes one
by one. However, the reduct retrieved is not sure to be the optimal one under
user preference defined in this paper; this will be illustrated in the following
example.

Example 1. Given an information table (U,A) in Table 1 as follows.

Table 1. An Information Table

U a b c

1 1 2 0
2 1 2 0
3 1 1 1
4 0 0 0
5 0 0 0
6 0 3 1

In the given information system, there are two reducts: {a, c} and {b}. Ac-
cording to Algorithm 1, we will get {b} as the final output, but it is not the
optimal reduct under user preference defined in this paper. However, it is opti-
mal reduct under right-to-left lexical order defined in [5], which will be discussed
in the expanded version of this paper.

4.2 Algorithm to Retrieve Optimal Feature

Since the reduct retrieved by the algorithm in the former section is not the
optimal one, we will extend the algorithm so as to retrieve the optimal feature
set, which may not certainly be the reduct. Based on the measure function α(P )
on P which is increasing monotonously, the algorithm is illustrated in Algorithm
2 as follows, which can be seen as the revised version of algorithm in [7].

Algorithm 2 attempts to retain the important attributes, however, the final
feature set is not sure to be one reduct.

4.3 Algorithm to Retrieve Optimal Reduct

After two attempted algorithms, we will design the algorithm to retrieve the
optimal reduct for the given information system (U,A) as follows.

Now let us prove the correctness of the algorithm.

Proof. In order to prove the correctness of the designed algorithm, there are
three problems to be explained:

(1) IND(redr) = IND(A);
(2) redr is dependent;
(3) There is no other reduct redr′ ⊆ A such that redr′ ( redr.

Now we will prove the above three sub-problems one by one.
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Data: An decision information table (U, A),while A = a0, a1, . . . , an.
Result: A feature set GloBalFea.
GlobalFea = Φ;
L1:
for (i = 1 to n do ) do

TempGlobalFea = {Sq |α(Sq) = max{α(Sp), p = 1..n}}
if (TempGlobalFea = GlobalFea) then

Return GlobalFea;
End Algorithm;
else

GlobalFea = TempGlobalFea
for (j = 1..n) do

Sj = Sj
⋃

GlobalFea
end
Goto L1;

end
end

end
return GlobalFea;

Algorithm 2. Algorithm for optimal features

Data: an information system (U, A), while A = {a1, a2, . . . , am} satisfying the
predefined preference such that a1 � a2 � . . . � am.

Result: an reduct red ⊆ A.
i=1;
while i ≤ m do

redr = {ai};
j = i + 1;
while j ≤ m do

if redr �→ aj then
if ∀ap ∈ redr, such that (red− {ap}) ∪ {aj} �→ ap then

redr = redr ∪ {aj};
if IND(redr) = IND(A) then

return redr, algorithm end.
end

end
end
j = j + 1;

end
i = i + 1;

end
Algorithm 3. Algorithm for optimal reduct

(1) According to the step which can end the algorithm in the algorithm, the
first formula is apparent;

(2) In the algorithm, the final reduct redr is produced by adding attributes
one by one. Therefore, we can prove that it is dependent in the following two
steps.
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a.) In the initial step, since redr = {ai}, and there is only one
attribute, obviously it is dependent;

b.) Suppose that in the qth step, redr = {ak1 , ak2 , . . . , akq} satisfies
the dependent property, that is to say, any attribute ap in redr satis-
fies IND(redr) �= IND(redr − {ap}). According to the algorithm, if one
attribute aj is added to redr, it must satisfy the following two properties:
• redr �→ aj , which ensures that aj is not dispensable at the (q+1)th

step based on the result of Lemma 1 ;
• ∀au ∈ redr, (redr − {au}) ∪ aj �→ au, which ensures that all at-

tributes in current attribute set redr are not dispensable in the new
attribute set redr ∪ {aj} retrieved in (q + 1)th step based on the result
of Lemma 1 .

Therefore, the attribute set redr ∪ aj retrieved in (q + 1)th step is
dependent.

(3) Suppose the reduct retrieved by applying the designed algorithm is redr =
{ak1 , ak2 , . . . , aku}. If it is not the optimal one, there must be another reduct
redr′ = {al1 , al2 , . . . , alv} such that redr ( redr′.

According to Definition 4, redr ( redr′ holds must satisfy either of the fol-
lowing two conditions, from which we will prove the sub-theorem.

a.) lv ≤ ku and ∀q ≤ lv, akq = alq .
According to the designed algorithm, this case will not occur in

the designed algorithm. For if redr′ = {al1 , al2 , . . . , alv} and redr =
{ak1 , ak2 , . . . , aku} are two reducts, according to description in this case,
∀q ≤ lv, akq = alq and lv < ku, which is to say, redr′ ⊂ redr, which is
contradict to the definition of reduct.
b.) ∃w, such that ∀q ≤ w, akq = alq , and alq+1 ( akq+1 .

Supposing that in some step of the implement of the algorithm, we
retrieve the attribute set is redr = {ak1 , ak2 , . . . , akq}, if we can explain
that redr′ will be the reduct we retrieved in the algorithm, then we can
prove the sub-question.

First we can get the conclusion that current attribute set redr is
not a reduct, otherwise the algorithm will stop. Then according to the
hypothesis alq+1 ( akq+1 , the two attributes must in the same order in
given preference. In the procedure of the algorithm, any attribute aj

between alq and alq+1 will not be added to redr, either redr → aj holds,
or there exists better attribute aq ∈ redr, such that (redr − {aq}) ∪
{aj} → aq holds.

Since attributes are added one by one in the order of given
preference, alq+1 will be faced ahead of akq+1 . Furthermore, for cur-
rent attribute set redr is not the reduct and there exists a reduct
{al1 , al2 , . . . , alv} containing alq+1 according to the hypothesis, therefore,
the following equation IND(redr) �= IND(redr∪{alq+1}) holds. From this
Step , alq+1 will not be added in redr if and only if � ∃P ⊆ {alq+2 , . . . , am},
such that IND(redr∪P ∪{alq+1}) �= IND(A), of course this is impossible,
for there exists a reduct redr′.
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From the above three aspects, we can illustrate that the reduct retrieved in
the algorithm is the one subject to preference order of attributes.

4.4 Complexity Analysis

Suppose |A| = m and |U | = n. The worst case is that the reduct is the last
attribute. In such case, when i = 1, we will add all other attributes one by one.
We will judge all functional dependencies in 2-attribute set, 3-attributes, . . . , m-
attribute set. When judging in 2-attribute set, we will test whether two functional
dependencies only containing one attribute in the right hold, the complexity
of each is 2 ∗ n2, so finding all functional dependencies in 2-attribute set is
(2n)2. Also, finding all functional dependencies in 3-attribute set, 4-attribute
set, . . . , m-attribute set are of (3n)2, (4n)2, . . . , (mn)2 complexity. Therefore,
the complexity to judge whether the first attribute is included in the reduct is
(2n)2 + (3n)2 + . . . + (mn)2.

In the same mode, judging whether the second attribute is included in the
reduct is of the following complexity: (2n)2+(3n)2+. . .+((m−1)n)2,. . . , judging
the (m− 1)th attribute is of (2n)2 complexity.

Therefore, the total complexity of this algorithm is
(2n)2 + . . . + (mn)2 + (2n)2 + . . . + ((m− 1)n)2 + . . . + (2n)2 = O(n2m4)

5 Conclusions

This paper investigates how to retrieve the reduct subject to preference order of
attributes in the information system. However, how good is the reduct subject to
preference order of attributes for both knowledge representation and prediction?
Algorithms should take into account not only the length and the preference order
of attributes, but also the intended application of the obtained reduct.
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Abstract. Fuzzy modeling of dynamical systems can be viewed as an
interpolation of a collection of linear models where the interpolation
coefficients depend on set membership functions. The fuzzy interference
applies only when the membership functions intersect otherwise only one
model is valid. The approach presented in this paper models the inter-
sections with an uncertainty measure reducing the overall fuzzy model
to Piecewise Affine (PWA) description, over-approximating the original
fuzzy model. Once such an approximation is calculated, existing algo-
rithms can be applied which yield controllers guaranteeing closed-loop
stability. Since the PWA model over-approximates a given fuzzy model,
if such a controller is calculated, it guarantees stability of the original
fuzzy model as well.

Keywords: Takagi-Sugeno models, Piecewise Affine models, Model Pre-
dictive Control.

1 Introduction

It is well known that fuzzy modelling can approximate any process with pre-
scribed accuracy and therefore it can be classified as an universal approximation
[10]. Although the particular issues of fuzzy modeling are not addressed in this
paper some valuable references can be found for example in [1]. Instead, we fo-
cus on application of fuzzy models as prediction patterns in Model Predictive
Control (MPC). MPC is an optimization-based control policy widely adopted
by the industry due to its ability to provide optimal performance together with
constraint satisfaction [14]. In the MPC framework, the prior knowledge of the
process behavior, represented by the prediction model, is used to design a se-
quence of control inputs such that certain performance criterion is optimized.
Contrary to classical proportional-integral-derivative (PID) controllers, the de-
cisions are done with respect to process properties and constraints.

Depending on the model used, slightly different approaches were developed.
Supposedly the first approach was made by impulse response models, pioneered
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by [5,15], denoted as Dynamic Matrix Control (DMC). Revolutionary contri-
bution was brought by [4] where the step responses serve for predictions, often
abbreviated as Generalized Predictive Control (GPC). The use of state-space
models is associated to the original term MPC as well as the use of Piecewise
Affine (PWA) models. The growing need for tighter controlling demands mo-
tivated use of nonlinear models. This novel approach is nowadays referred as
Nonlinear Model Predictive Control (NMPC) [2,11]. Recently, many predictive
strategies which employ fuzzy models emerged and this class of control problems
is referred to as Fuzzy Model Predictive Control (FMPC).

An excellent comparative study [6] provides a deeper view into four recently
developed predictive strategies. Each strategy uses the GPC approach but the
control action is calculated differently. Either a linear combination of all lo-
cally designed controllers is considered or a global controller based on linear
time-varying models (LTV) is used. A hierarchical structure of multiple Takagi-
Sugeno models, proposed by [8,13], deploys the GPC approach where the con-
troller is obtained by weighted aggregation over governing local rules. All of the
aforementioned approaches, however, do not address the issues of closed-loop
stability. Stability concerns have been partially resolved in [12,19,9] using Linear
Matrix Inequalities (LMI). These techniques are, however, overly conservative,
since they assume that all possible local dynamical models are all active at the
same time.

Motivated by the lack of rigorous results in the field of synthesis of stabiliz-
ing MPC controllers based on fuzzy Takagi-Sugeno (TS) models [18] we pro-
pose a different way of assuring closed-loop stability and feasibility. Considering
the recent advances in the field of hybrid systems [3], we propose to convert a
given Takagi-Sugeno fuzzy model into a PWA model, for which efficient control
strategies ensuring closed-loop stability and infinite-time feasibility exist [16,7].
Unlike TS fuzzy models, the PWA description requires that the regions, over
which individual dynamical modes are defined, to be non-overlapping. Therefore
we propose to over-approximate the overlaps naturally present in TS models
by means of an unknown, but bounded additive uncertainty. The main contri-
bution of the paper, described in Section 3, is represented by a constructive
procedure to derive a PWA model from a Takagi-Sugeno fuzzy model. Beside
controller synthesis, the resulting PWA model can be used, for instance, to per-
form reachability analysis tasks and hence to verify safety and liveness properties
of the underlying systems. Since the PWA model over-approximates the original
Takagi-Sugeno model, all results hold for this original formulation as well.

2 Takagi-Sugeno Fuzzy Model Representation

The class of Takagi-Sugeno (TS) models can be generally described by fuzzy “IF
. . . THEN” rules where the fuzzy sets stay on the antendecent side while the
consequence is given by a linear dynamics. Generally, the ith TS rule can be
expressed as

IF x1,k is μi1 and . . . xn,k is μin THEN xk+1 = Aixk + Biuk (1)
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where xk ∈ Rn×1 is the state vector, uk ∈ Rm×1 denotes the vector of ma-
nipulated variables, μij are input fuzzy sets for i = 1, . . . , r rules. Ai ∈ Rn×n,
Bi ∈ Rn×m are matrices representing the system dynamics. The process dy-
namics is assumed to be discretized with k denoting one sampling instant. The
aggregated system output is modelled using the max-product inference, i.e.

xk+1 =
∑r

i=1 wi(xk)(Aixk + Biuk)∑r
i=1 wi(xk)

(2)

with

wi(xk) =
n∏

j=1

μij(xj,k) (3)

where the membership function μij measures the activation of the fuzzy set j in
the rule i. Using the notation

αi(xk) =
wi(xk)∑r
i=1 wi(xk)

, αi(xk) > 0,
r∑

i=1

αi(xk) = 1 (4)

the overall system model can be described as

xk+1 =
r∑

i=1

αi(xk)(Aixk + Biuk). (5)

A simple TS model is illustrated in Fig. 1 using three rules with linear fuzzy
membership functions. It can be seen that each dynamics contributes to the
overall model with its corresponding membership function and moreover, if the
state belongs to a region where more than one dynamics become active, then
the weighted contribution of overlapping nodes is considered.

3 The Transformation Procedure

In this section the main result of the paper will be presented. Consider the TS
model (1) with linear fuzzy membership functions. The fuzzy input sets μij can
be decomposed in the following manner:

IF xk ∈ Pi THEN xk+1 = Aixk + Biuk (6)

where the region Pi in which the corresponding rule is active can be described
by a polyhedral set

Pi := {Hixk ≤ Ki}. (7)

The aim is to transform the TS model into a Piecewise Affine model of the
following form:

xk+1 = fPWA(xk, uk, wk) (8)
= Aixk + Biuk + fi + wk if xk ∈ Di



214 M. Herceg, M. Kvasnica, and M. Fikar

Fig. 1. Illustration of linear membership functions for three rules in the Takagi-Sugeno
modelling approach

with Ai ∈ Rn×n, Bi ∈ Rm×n, and fi ∈ Rn×1. Here, {Di}nd

i=1 ∈ Rn denotes a
polyhedral partition satisfying D =

⋃nd

i=1Di. The measured state is denoted by
xk, manipulated inputs correspond to uk, and wk denotes an unknown additive
disturbance. The system states x, control inputs u as well as the disturbance w
of the system (8) are subject to the constraints

xk ∈ X ⊆ Rn, uk ∈ U ⊆ Rm, wk ∈ W ⊆ Rn, ∀k ∈ {0, . . . , N} (9)

where X , U , and W are polyhedral sets containing the origin in their respective
interiors.

To obtain the strictly separated regions Di, the overlaps in the membership
functions of the TS model have to be removed first. This can be done in a
straightforward manner by defining new regions for each intersection of the
neighboring fuzzy sets, i.e.

Dj = Pi ∩ Pi+1 j = 1, . . . , ni (10)

which is also a polyhedral set. If the set Dj is a subset of the next set (e.g. when
more than 2 fuzzy sets intersect) then the statement

Dj ⊂ Dj+1 ⇒ Dj = ∅ (11)

implies that the redundant sets will be removed. Fig. 2 depicts the decomposi-
tion of the fuzzy sets to a crisp sets by introducing additional regions D2 and
D4, respectively. Because the regions Pi are represented by convex polytopes as
in (7), the overall calculation of intersections can be performed using standard
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Fig. 2. Intersections of fuzzy sets are replaced by new regions with crisp boundaries

algebraic manipulation techniques. The remaining regions can be obtained by a
set-difference operation

Dj =
⋃

i

Pi�
ni⋃

i=1

Di :=

{
xk ∈ Rn | xk ∈

⋃

i

Pi, xk �∈
ni⋃

i=1

Di

}
j = ni, . . . , nd

(12)
Secondly, it is important to determine the mean PWA description for each

region with bounded additive uncertainty, i.e. to express the transition from
(2) to (8). To do so, the worst case perturbations of the mean model have to
be considered. Obviously, these values will be located at the boundary of each
region, as indicated by black dots in Fig. 2. Thus, the mean model for regionDj is
given by arithmetic mean of neighboring models corresponding to the boundary
of a given region, i.e.

Âj =
1
nn

∑

i

Ai, B̂j =
1
nn

∑

i

Bi (13)

with i ∈ Ij where Ij stands for the index set of dynamics active in the region
Dj and nn denotes the number of overlapping models.

The next step is to determine the affine term fj and the maximal allowed
uncertainty wj in each region Dj . For this purpose the maximum allowed reach-
able set of the uncertain system is explored. Let Aj ,Bj denote the families of
possible realizations of matrices Âj , B̂j . An over-approximation of the maximum
reachable set for the region Dj is given by

Tj := {xk+1 | xk+1 ≤ xk+1 ≤ xk+1} (14)

where the update xk+1 of the state is driven by the TS model (5) and xk+1 and
xk+1 denote, respectively, the lower and upper limits of all possible realizations
of xk+1. The key idea is to use an approximation of the form
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xk+1
∼= x̂k+1

r∑

i=1

αi(x)(Aixk + Biuk) ∼= Âjxk + B̂juk if xk ∈ Dj ⊂ X (15)

s.t. uk ∈ U , Âj ∈ Aj , B̂j ∈ Bj

j = 1, . . . , nd

and to transform the model (15) into a PWA system with bounded additive
disturbances (8). Note that the PWA model (8) actually over-approximates the
behavior of the original problem (5) because even if the linearization for the
particular regions Dj is determined, the conservatism appears in the unknown
signal w where the maximum allowed disturbance is considered. Obviously, the
transformation will be applied to regions where multiple membership functions
overlap. In the remaining regions only a single dynamical model will be active.

Obtaining the maximum reachable set Tj for the sector Dj via solving (15)
can be viewed as a collection of polytope operations. Define the partial reachable
set for the model i in the region Dj by

Qji = {xk+1 | xk+1 = Aixk + Biuk, xk ∈ Dj , uk ∈ U} . (16)

Consequently, the maximum reachable set for the region Dj can be found as the
bounding box of the union of the partial sets, i.e.

Tj = Bbox

(
nn⋃

i=1

Qji

)
(17)

where the operator Bbox is defined as follows:

Definition 1. [17] A bounding box Bbox(P ) of a set P is the smallest hyper-
rectangle which contains the set P . If P is defined as a (possibly) non-convex
union of convex polytopes Pi, i.e. P =

⋃
i Pi, then the bounding box can be

computed by solving 2n linear programs per each element of the set P . Here, n
denotes the dimension of P .

The maximum estimated reachable set T̂j can be computed similarly as a bound-
ing box of the reachable sets for the mean model (8):

T̂j = Bbox
(
Q̂j

)
(18)

with
Q̂j =

{
xk+1 | xk+1 = Âjxk + B̂juk, xk ∈ Dj , uk ∈ U

}
. (19)

The affine terms fj of (8) can now be computed as a difference between the
analytic centers of the reachable sets for the “true” and for the “approximated”
system:

fj = ce(Tj)− ce(T̂j) (20)
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where the operator ce is given by

ce(T ) = x− x− x

2
. (21)

Graphically are these sets depicted in Fig. 3a. It can be seen in Fig. 3b that the
transformation procedure shifts these sets to one common analytic center. The
allowable disturbance is then selected as the maximum distance over the edges
of the sets in the sector Dj , i.e.

wj =

{
max

(
Tj −

(
T̂j + fj

))
if Tj ≥ T̂j + fj

0 otherwise.
(22)

In other words, if the approximated reachable set T̂j , shifted by the offset fj ,
is smaller than the original reachable set Tj , then the difference is modeled by
an unknown, but bounded disturbance wj , whose element-wise bounds are given
by (22). By applying the same procedure to each sector Dj the original fuzzy

(a) (b)

Fig. 3. The transformation procedure shifts the reachable sets to one common centre

model (2) can be converted to a PWA description (8). In the next section the
pattern will be demonstrated on an illustrative example.

4 Example

Consider a TS model (1) described by two linear dynamics

A1 =
(

0.3216 0.0114
0.0864 −0.8143

)
, B1 =

(
−0.5867
0.5451

)

A2 =
(

0.5331 −0.7570
−0.0404 −0.2694

)
, B2 =

(
−0.2836
0.6453

)

associated with the following membership functions



218 M. Herceg, M. Kvasnica, and M. Fikar

μ1(x1) =

{
μ1(x1) = 0 if |x1| ≥ 1.5
μ1(x1) = 1− 2

3 |x1| otherwise

μ2(x1) =

{
μ2(x1) = 0 if |x1| ≤ 1.0
μ2(x1) = − 1

2 + 1
2 |x1| otherwise

The functions are depicted in Fig. 4. Constraints imposed for this example are
the closed intervals

u ∈ [−5, 5], x ∈ [−3, 3]× [−2, 2]. (23)

Fig. 4. Membership functions

To convert a given TS model into the PWA form (8), the feasible region (23)
is first decomposed into 5 intervals given by following polytopes:

D1 :=
(
−1 0
1 0

)
x ≤

(
3
−1.5

)
, D2 :=

(
−1 0
1 0

)
x ≤

(
1.5
−1

)
, (24)

D3 :=
(
−1 0
1 0

)
x ≤

(
1
1

)
, D4 :=

(
−1 0
1 0

)
x ≤

(
−1
1.5

)
,

D5 :=
(
−1 0
1 0

)
x ≤

(
−1.5

3

)
.

The polytopes (24) have been selected following the procedure illustrated in
Fig. 2. The PWA model takes the affine form
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xk+1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A2xk + B2uk + w if x ∈ D1

(0.5A2 + 0.5A1)xk + (0.5B2 + 0.5B1)uk + f2 + w if x ∈ D2

A1xk + B1uk + w if x ∈ D3

(0.5A1 + 0.5A2)xk + (0.5B1 + 0.5B2)uk + f4 + w if x ∈ D4

A2xk + B2uk + w if x ∈ D5

(25)

Important to notice is that modes 2 and 4 (which are active in sectors D2 and
D4) are averaged due to overlapping membership functions. Using reachability
analysis and computing Tj as per (17) we got

T2 =
[
−3.7317, 2.6347
−4.4838, 4.2677

]
, T4 =

[
−2.6347, 3.7317
−4.2677, 4.4838

]
. (26)

The maximum approximated reachable sets T̂j can be computed using (18) and
are given by following axis-aligned intervals:

T̂2 =
[
−3.5624, 2.4940
−4.0942, 4.0367

]
, T̂4 =

[
−2.4949, 3.5624
−4.0367, 4.0942

]
. (27)

The affine terms fj in (25), and the range for the maximum allowable disturbance
w have been computed according to (20) and (22), respectively, as

f2 =
(
−0.0142
−0.0792

)
, f4 =

(
0.0142
0.0792

)
,

(
−0.1551
−0.3102

)
≤ w ≤

(
0.1551
0.3102

)
. (28)

The final PWA model of the form (8) is then composed of (25) and (28), where
the regions Di over which each dynamics is active is given by (24).

5 Conclusion

In this paper a methodology of transforming fuzzy Takagi-Sugeno models into a
Piecewise Affine representation has been presented. The approximation is based
on deinterlacing the regions in which several membership functions overlap and
subsequently approximating the effect of such overlaps by an unknown, but
bounded disturbance. Computation of the bounds of the unknown disturbance
is performed using reachability analysis. The resulting PWA model can then be
used as a prediction model to derive MPC feedback laws with stability and feasi-
bility guarantees. Since the PWA representation over-approximates the behavior
of a given fuzzy Takagi-Sugeno model, the stability guarantees naturally extend
to this class of models as well.

Acknowledgment. The authors are pleased to acknowledge the financial sup-
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Abstract. In this paper, we introduce the operations of union, intersec-
tion, and complement for preorder-based fuzzy sets. The given operations
are even capable of dealing with fuzzy sets that have membership degrees
coming from different preordered sets. This enables us to handle the dif-
ficult situation in which one has different people giving judgements and
they all like to use their own language and expressions.

1 Fuzzy Sets and L-Fuzzy Sets

Fuzzy sets were introduced in 1965 by Zadeh [9]. For a given universe of discourse
U , a fuzzy set A on U is determined by a membership function μA:U → [0, 1]
associating with each element x ∈ U a real number μA(x) which represents the
grade of membership of x in A.

Zadeh also introduced the set operations of union, intersection, and comple-
mentation for fuzzy sets. These operations are important because if one looks at
the logical aspect of these operations, they represent ‘or’, ‘and’, and ‘not’. The
union of two fuzzy sets A and B is a fuzzy set whose membership function is
μA∪B(x) = max {μA(x), μB(x)}. Further, the intersection of the fuzzy sets A and
B is a fuzzy set with the membership function μA∩B(x) = min {μA(x), μB(x)}.
The complement of the fuzzy set A is defined by μA′(x) = 1−μA(x). The above
operations are often referred to as the standard fuzzy set operations , but in the
literature one can find numerous different ways to define the set operations; see
[7], for example.

The fundamental problem with fuzzy sets is that our perceptions have to be
quantized to the unit interval. In this paper, our aim is to get rid of this semi-
arbitrary choosing of the proper weighting scheme. We try to move towards the
methodology, called computing with words [10], in which the objects of compu-
tation are given by a natural language. Computing with words, in general, is
inspired by the human capability to perform a wide variety of tasks without any
measurements and any quantizations.

Goguen generalized fuzzy sets to L-fuzzy sets in [3]. An L-fuzzy set ϕ on U
is a mapping ϕ:U → L, where L is a ‘transitive partially ordered set’. In this
work, we assume that (L,≤) is a preordered set. Notice that it is natural to
assume that the relation ≤ is not antisymmetric; if x, y ∈ L are synonyms, that
is, words or expressions that are used with the same meaning, then x ≤ y and
x ≥ y, but still x and y are distinct words.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 221–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Example 1. Suppose that U consists of a group of people. The L-fuzzy set, whose
membership function ϕ is depicted in Fig. 1, describes how well the persons in
U can ski. For instance, there exist people who can ski very well, some ski badly,
and some are moderate skiers.
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rather well

weakly

moderately

badly

very well

ϕ

LU

Fig. 1.

As noted by Goguen [3], the set of all L-fuzzy sets on a set U can be equipped
whatever operations L has, and these inherited operations obey any law valid
in L which extends pointwise. This implies that if L is, for example, a Boolean
lattice, then also the set all of L-fuzzy sets on U forms a Boolean lattice. Formally,
if ϕ and ψ are L-fuzzy sets on U , then for any x ∈ U ,

(ϕ ∨ ψ)(x) = ϕ(x) ∨ ψ(x)
(ϕ ∧ ψ)(x) = ϕ(x) ∧ ψ(x)

ϕ′(x) = ϕ(x)′ .

In this paper, we show how to define unions, intersections, and complements
of L-fuzzy sets in cases L is just a preordered set, which means that joins, meets,
and complements are not defined in L. The presented approach also handles the
union and the intersection of an L1-fuzzy set ϕ and an L2-fuzzy set ψ on the same
universe U , but not necessarily on the same preordered set. This means that we
can, for example, combine with ‘or’, ‘and’, and ‘not’ judgements of evaluators
all wanting to use their own words and expressions. Our key idea is that the
order determined by membership values is essential, not the values themselves.
It should be noted that some ideas presented in this work appear already in [4,5].

2 Preorders and Alexandrov Topologies

Preorders and Alexandrov topologies have a major role in this paper. Therefore,
we begin with presenting some results concerning them. This section contains
also many lattice-theoretical notions which can be found in [1,2,4], for example.

Let U be any set and let R be a binary relation on U . Then, the relation R is
a preorder , if
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(i) for all x ∈ U , xRx (reflexive)
(ii) for all x, y, z ∈ U , xR y and y R z imply xR z (transitive)

The pair (U,≤) is called a preordered set . Note that often we say simply that ‘U
is a preordered set’.

We may depict preorders by Hasse diagrams as in case of partially ordered
sets. The only difference is that preorders are not necessarily antisymmetric,
meaning that there may exist elements x �= y such that x ≤ y and x ≥ y.
However, such elements can simply be represented as collections of ≈-equivalent
elements, where the equivalence ≈ is defined by

x ≈ y if and only if x ≤ y and x ≥ y.

This means that ‘synonymous’ elements are represented by a same point in a
Hasse diagram, but still they all preserve their identities.

Let us denote by Pre(U) the set of all preorders on the set U . The set Pre(U)
can be ordered with the usual set-inclusion relation, because relations are just
sets of ordered pairs. First we recall the following well-known lemma that is clear
since the intersection of any subset of Pre(U) is a preorder. Note that generally
the union of preorders is not a preorder.

Lemma 2. For any set U , Pre(U) is a complete lattice with respect to the set-
inclusion relation.

Since Pre(U) is a closure system, that is, a family of sets closed under arbitrary
intersections, we have that for any H ⊆ Pre(U), the meet

∧
H is the intersection⋂

H and the join
∨
H is the intersection of all preorders including

⋃
H. We will

present another description of joins later in this section. Furthermore, the ‘all
relation’∇ = {(x, y) | x, y ∈ U} is the greatest element and the ‘identity relation’
Δ = {(x, x) | x ∈ U} is the least element of Pre(U).

A topological space is a pair (U, T ), where U is a set and T is a collection of
subsets of U such that

(i) ∅, U ∈ T ;
(ii) for all H ⊆ T ,

⋃
H ∈ T ;

(iii) for all X,Y ∈ T , X ∩ Y ∈ T .

The collection T is called a topology.
An Alexandrov topology is a topology T that contains also all arbitrary inter-

sections of its members. This means that for Alexandrov topologies, condition
(iii) is replaced by condition

(iii)◦ for all H ⊆ T ,
⋂
H ∈ T .

The pair (U, T ) is referred to as an Alexandrov space.
Every Alexandrov topology T has the property that each point x ∈ U has a

smallest neighbourhood NT (x) =
⋂
{X ∈ T | x ∈ X}. This means that NT (x) is

the smallest set in the topology T containing the point x.
Let us denote by Alex(U) the set of all Alexandrov topologies. Obviously, also

Alex(U) can be ordered by the set-inclusion relation. Because the intersection of
Alexandrov topologies is an Alexandrov topology, we may write the next lemma.
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Lemma 3. For any set U , Alex(U) is a complete lattice with respect to the
set-inclusion relation.

Clearly, Alex(U) is a closure system and hence for anyH ⊆ Alex(U),
∧
H is equal

to the intersection
⋂
H and

∨
H is the intersection of all Alexandrov topologies

including
⋃
H. In addition, the ‘discrete topology’ TΔ = {X | X ⊆ U} is the

greatest element and the ‘trivial topology’ T∇ = {∅, U} is the smallest element
of Alex(U).

There is a close connection between preorders and Alexandrov topologies. Let
≤ be a preorder on a set U . We may now define an Alexandrov topology T≤ on
U consisting of all upward-closed subsets of U with respect to the relation ≤,
that is,

T≤ = {X ⊆ U | (∀x, y ∈ U) x ∈ X & x ≤ y =⇒ y ∈ X} .

Let us denote for any x ∈ U , the principal filter of x by ↑x = {y ∈ U | x ≤ y}.
Now we can give the following lemma.

Lemma 4. If ≤ is a preorder on U , then the following assertions hold for all
X ⊆ U and x ∈ U :

(i) X ∈ T≤ if and only if X =
⋃
{↑x | x ∈ X};

(ii) ↑x is the smallest neighbourhood of x in the Alexandrov topology T≤.

Proof. (i) Assume that X ∈ T≤. If x ∈ X , then x ≤ x gives x ∈ ↑x. Thus,
X ⊆

⋃
{↑x | x ∈ X}. On the other hand, if y ∈

⋃
{↑x | x ∈ X}, then there

exists x ∈ X such that x ≤ y. Since X ∈ T≤, we obtain y ∈ X . Hence, also⋃
{↑x | x ∈ X} ⊆ X .
Conversely, suppose X =

⋃
{↑x | x ∈ X}, x ∈ X , and x ≤ y. Then y ∈ ↑x

and so y ∈ X . Therefore, X is upward closed and X ∈ T≤.
(ii) It is clear that x ∈ ↑x ∈ T≤ and if x ∈ X ∈ T≤, then ↑x ⊆ X by (i). ��

By the above lemma, ↑x is the smallest neighbourhood of the point x in the
Alexandrov topology T≤ and clearly y ∈ ↑x if and only if x ≤ y. This hints
how we may also define preorders by means of Alexandrov topologies. If T is an
Alexandrov topology on U , then we define a preorder ≤T on U by setting

x ≤T y ⇐⇒ y ∈ NT (x).

The following theorem by Steiner [8] is essential for our studies.

Theorem 5. For any set U , the complete lattice Pre(U) of all preorders on U
is dually isomorphic to Alex(U), the complete lattice of all Alexandrov topologies
on U ; in symbols (Pre(U),⊆) ∼= (Alex(U),⊇).

A nice property of set unions and intersections is that they distribute over each
other. Therefore, it is a natural question to ask whether joins and meets defined in
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a particular lattice have analogous properties. Formally, a lattice L is distributive
if it satisfies either (and therefore both) of the distributive laws:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Furthermore, L is modular if

x ≤ z =⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Trivially, each distributive lattice is modular.
Steiner noted that Pre(U) and Alex(U) are distributive if U has fewer than

three elements. If U has three or more elements, Pre(U) and Alex(U) are not
even modular.

Next we present a simpler way to determine the joins in Pre(U) and Alex(U).
Recall that in (Alex(U),⊆), the meet is the intersection of Alexandrov topolo-
gies. Thus, the join in its dual (Alex(U),⊇) is the intersection of Alexandrov
topologies, that is,

T1 ∨ T2 = T1 ∩ T2.
By Theorem 5, (Pre(U),⊆) ∼= (Alex(U),⊇), which implies that in (Pre(U),⊆),

≤1 ∨ ≤2 = ≤(T1∩T2),

where T1 and T2 are the Alexandrov topologies determined by ≤1 and ≤2. Sim-
ilarly, in (Alex(U),⊆),

T1 ∨ T2 = T(�1∩�2),

where �1 and �2 are the preorders of T1 and T2.
Next we study complementation in these isomorphic lattices. A lattice-

complement of a preorder R is a preorder R′ such that R ∨ R′ = ∇ and
R ∧ R′ = Δ. The next important theorem is also proved by Steiner [8].

Theorem 6. The lattice Pre(U) is complemented.

It is trivial that the set-theoretical complement Rc of a preorder R cannot serve
as the lattice-theoretical complement, because Rc is not a preorder and R∧Rc =
∅ �= Δ. Next we describe the lattice-theoretical complement R′ of R in Pre(U).
Let RE be the smallest equivalence including R. Further, let {Xi | i ∈ I} be the
set of equivalence classes of RE . By the Axiom of Choice we may pick an element
from each equivalence class. Let us denote the representative of the class Xi by
xi. Next we derive two new relations R1 and R2 from R by setting

R1 = {(y, x) | xR y & (y, x) /∈ R} ∪Δ

and
R2 = {(xi, xj) | i, j ∈ I} ∪Δ.

It is easy to see that R1 and R2 are preorders. The lattice-theoretical complement
R′ of R is defined by

R′ = R1 ∨R2.
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It is known that if a lattice is distributive, the complements – if they exist –
are unique. We have already mentioned that Pre(U) is not distributive when
|U | ≥ 3. This implies that the complements are not necessarily unique. Namely,
if R is a preorder such that RE has at least two equivalence classes of which
at least one is non-singleton, then the complement of R depends on the choice
function U/RE → U . On the other hand, if RE has only one equivalence class
U , then R2 = Δ and the complement of R is R1 which clearly is unique. In such
a case, the Hasse diagram of R′ is just the Hasse diagram of R turned upside
down with its equivalent elements being separated. Note also that RE has only
one equivalence class if and only if R is connected , that is, for any x, y ∈ U ,
there exists a sequence a0, a1, . . . , an of elements of U such that a0 = x, an = y,
and ai Rai+1 or ai+1 Rai for i = 0, . . . , n− 1.

We end this section by noting that Theorem 6 has the following obvious
corollary.

Corollary 7. The lattice Alex(U) is complemented.

3 L-Fuzzy Sets and Their Operations

In this section our aim is to define set operations for L-fuzzy sets.
Let U be a set and let L be an arbitrary preordered set. Any L-fuzzy set ϕ

on U determines naturally a preorder on U , as suggested by Kortelainen in [6].
A preorder �ϕ is defined by setting for all x, y ∈ U ,

x �ϕ y ⇐⇒ ϕ(x) ≤ ϕ(y).

By Theorem 5 there is one-to-one correspondence between preorders and Alexan-
drov topologies on U . This implies directly that each L-fuzzy set induces also
an Alexandrov topology Tϕ consisting of upward-closed subsets of �ϕ. Let us
denote the principal filter ↑x of x with respect to the preorder �ϕ by Nϕ(x),
that is, Nϕ(x) = {y | ϕ(x) ≤ ϕ(y)}. By Lemma 4, it is clear that

X ∈ Tϕ ⇐⇒ X =
⋃
{Nϕ(x) | x ∈ U}

and Nϕ(x) is the smallest neighbourhood of x in the Alexandrov topology Tϕ.
Next we show how Alexandrov topologies determine fuzzy sets. Let T be an

Alexandrov topology on a set U . Let us denote by T op the ordered set (T ,⊇).
Now the mapping

ϕT :U → T op, x &→ NT (x)

is a T op-fuzzy set. It is also easy to observe that if ϕ is an L-fuzzy set on U ,
then ϕ∗:U → Tϕ

op, x &→ Nϕ(x) is a fuzzy set such that the preorder �ϕ of ϕ is
equal to the preorder �ϕ∗ determined by ϕ∗. Furthermore, ϕ∗∗ = ϕ∗. Thus, ϕ∗

can be identified as a canonical representation of ϕ, as is done in [5].
Let us denote by Fuzzy(U) the class of all fuzzy sets on U , that is, the collec-

tion of all such mappings ϕ:U → L that L is any arbitrary preordered set. We
noted in the previous section that (Pre(U),⊆) is a complemented lattice. Because
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each element in Fuzzy(U) determines a unique preorder, we may now define the
union, the intersection, and the complement for any elements ϕ:U → L1 and
ψ:U → L2 of Fuzzy(U) as follows:

ϕ ∪ ψ := �ϕ ∨ �ψ (1)
ϕ ∩ ψ := �ϕ ∧ �ψ (2)

ϕc := �ϕ
′ . (3)

Note that there always exists a fuzzy set in Fuzzy(U) corresponding to the
results of these operations. For example, let us consider the union ϕ ∪ ψ. As we
have shown, the Alexandrov topology Tϕ∪ψ determines a fuzzy set

(ϕ ∪ ψ)∗:U → Tϕ∪ψ
op, x &→ N(ϕ∪ψ)(x).

Using preorders as results of set operations is useful also because in applications
we are often interested in the order of elements with respect to aggregation of
some criteria.

Example 8. Assume that U = {x, y, z, w} consists of four applicants of a cer-
tain academic position and that ϕ:U → L1 and ψ:U → L2 represent how two
experts evaluate the suitability of the applicants by using some expressions and
attributes L1 and L2 of their own languages. The fuzzy sets ϕ and ψ are given
in Fig. 2 of page 228. The induced preorders are

�ϕ = {(y, x), (z, x), (w, x), (w, y), (w, z)} ∪Δ

and

�ψ = {(w, x), (z, x), (z, y)} ∪Δ.

These preorders and the canonical representations ϕ∗:U → T op
ϕ and ψ∗:U →

T op
ψ are also depicted in Fig. 2. We define the union, the intersection, and the

complements as described in (1)–(3). The results of these operations can be
found in Fig. 2 as well.

Now ϕ ∩ ψ can be viewed as an order that takes into account the opinions
of both the experts. The applicants x and y must be considered as suitable for
the open position, but z and w should not be selected, since the both experts
have the opinion that they are weaker than x. Let us consider the applicants in
the view of the union ϕ ∪ ψ. According to it, the applicant x should be chosen,
because there exists one expert evaluating x as the best candidate, and this is
not true for the others. The complements ϕc and ψc can be considered as orders
totally opposite to the opinions of the expert.

Notice also that the De Morgan laws do not hold, because

ϕc ∩ ψc �= (ϕ ∪ ψ)c and ϕc ∪ ψc �= (ϕ ∩ ψ)c.
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Some Concluding Remarks and Acknowledgements

In this paper we have introduced unions, intersections and complements for
preorder-based fuzzy sets on a given universe U . Our work was based on the
observation that each preorder-based fuzzy set determines a preorder and an
Alexandrov topology on U . We have described how the results of these set op-
erations can be easily formed. Importantly, the presented approach can handle
the union and the intersection of an L1-fuzzy set ϕ and an L2-fuzzy set ψ of the
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universe U also in the case L1 and L2 are different preordered sets. This enables
us to cope with the common situation in which one has different people giving
judgements and they all like to use their own language and expressions.

The author thanks the anonymous referees for their comments and suggestions
that helped to improve the paper.
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Abstract. We consider an extension to a new approach to the linguistic
summarization of time series data proposed in our previous papers. We
summarize trends identified here with straight segments of a piecewise
linear approximation of time series. Then we employ, as a set of features,
the duration, dynamics of change and variability, and assume different,
human consistent granulations of their values. The problem boils down
to a linguistic quantifier driven aggregation of partial trends that is done
via the classic Zadeh’s calculus of linguistically quantified propositions
but with different t-norms. We show an application to linguistic summa-
rization of time series data on daily quotations of an investment fund
over an eight year period.

1 Introduction

A linguistic data (base) summary, meant as a concise, human-consistent descrip-
tion of a (numerical) data set, was introduced by Yager [18] and then further
developed by Kacprzyk and Yager [11], and Kacprzyk, Yager and Zadrożny [12].
The contents of a database is summarized via a natural language like expression
semantics provided in the framework of Zadeh’s calculus of linguistically quan-
tified propositions [21]. Since data sets are usually large, it is very difficult for
a human being to capture and understand their contents. As natural language
is the only fully natural means of articulation and communication for a human
being, such linguistic descriptions are the most human consistent.

In this paper we consider a specific type of data, namely time series. In this
context it might be good to obtain a brief, natural language like description of
trends present in the data on, e.g., stock exchange quotations, sales, etc. over a
certain period of time.

Though statistical methods are widely used, we wish to derive (quasi)natural
language descriptions to be considered to be an additional form of data descrip-
tion of a remarkably high human consistency. Hence, our approach is not meant
to replace the classical statistical analyses but to add a new quality.

The summaries of time series we propose refer in fact to the summaries of
trends identified here with straight line segments of a piece-wise linear approxi-
mation of time series. Thus, the first step is the construction of such an approx-
imation. For this purpose we use a modified version of the simple, easy to use
Sklansky and Gonzalez algorithm presented in [16].

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 230–240, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Then we employ a set of features (attributes) to characterize the trends such
as the slope of the line, the fairness of approximation of the original data points
by line segments and the length of a period of time comprising the trend.

Basically the summaries proposed by Yager are interpreted in terms of the
number or proportion of elements possessing a certain property. In the frame-
work considered here a summary might look like: “Most of the trends are short”
or in a more sophisticated form: “Most long trends are increasing”. Such expres-
sions are easily interpreted using Zadeh’s calculus of linguistically quantified
propositions. The most important element of this interpretation is a linguistic
quantifier exemplified by “most”. In Zadeh’s [21] approach it is interpreted in
terms of a proportion of elements possessing a certain property (e.g., a length of
a trend) among all the elements considered (e.g., all trends).

In Kacprzyk, Wilbik and Zadrożny [6] we proposed to use Yager’s linguistic
summaries, interpreted in the framework of Zadeh’s calculus of linguistically
quantified propositions, for the summarization of time series. In our further
papers (cf. Kacprzyk, Wilbik and Zadrożny [8,9,10]) we extended this idea by
proposing other types of summaries and the use of other mathods, notably the
Choquet and Sugeno integrals. All these approaches have been proposed using
a unified perspective given by Kacprzyk and Zadrożny [13] that is based on
Zadeh’s [22] protoforms.

In this paper we employ the classic Zadeh’s calculus of linguistically quantified
propositions. However, we will extend the idea proposed in our source paper
(Kacprzyk, Wilbik and Zadrożny [6]) by using various t-norms and show results
of an application to data on daily quotations of a mutual (investment) fund over
an eight year period.

The paper is in line with some modern approaches to a human consistent sum-
marization of time series – cf. Batyrshin and his collaborators [1,2], or Chiang,
Chow and Wang [4] but we use a different approach.

One should mention an interesting project coordinated by the University of
Aberdeen, UK, SumTime, an EPSRC Funded Project for Generating Summaries
of Time Series Data1. Its goal is also to develop a technology for producing
English summary descriptions of a time-series data set using an integration of
time-series and natural language generation technology. Linguistic summaries
obtained related to wind direction and speed are, cf. Sripada et al. [17]:

– WSW (West of South West) at 10-15 knots increasing to 17-22 knots early
morning, then gradually easing to 9-14 knots by midnight,

– During this period, spikes simultaneously occur around 00:29, 00:54, 01:08,
01:21, and 02:11 (o’clock) in these channels.

They do provide a higher human consistency as natural language is used but
they capture imprecision of natural language to a very limited extent. In our
approach this will be overcome to a considerable extent.

1 www.csd.abdn.ac.uk/research/sumtime/
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2 Temporal Data and Trend Analysis

We identify trends as linearly increasing, stable or decreasing functions, and
therefore represent given time series data as piecewise linear functions of some
slope (intensity of an increase and decrease). These are partial trends as a global
trend concerns the entire time span. There also may be trends that concern more
than a window taken into account while extracting partial trends by using the
Sklansky and Gonzalez [16] algorithm.

We use the concept of a uniform partially linear approximation of a time
series. Function f is a uniform ε-approximation of a set of points {(xi, yi)}, if
for a given, context dependent ε > 0, there holds

∀i : |f(xi)− yi| ≤ ε (1)

and if f is linear, then such an approximation is a linear uniform ε-approximation.
We use a modification of the well known Sklansky and Gonzalez [16] algorithm

that finds a linear uniform ε-approximation for subsets of points of a time series.
The algorithm constructs the intersection of cones starting from point pi of the
time series and including a circle of radius ε around the subsequent points pi+j ,
j = 1, 2, . . . , until the intersection of all cones starting at pi is empty. If for
pi+k the intersection is empty, then we construct a new cone starting at pi+k−1.
Figures 1(a) and 1(b) present the idea of the algorithm. The family of possible
solutions is indicated as a gray area. For other algorithms, see,e.g., [15].

(a) the intersection of the cones is indi-
cated by the dark grey area

(b) a new cone starts in point p2

Fig. 1. An illustration of the algorithm for the uniform ε-approximation

First, denote:p_0 – a point starting the current cone, p_1 – the last point
checked in the current cone, p_2 – the next point to be checked, Alpha_01 –
a pair of angles (γ1, β1), meant as an interval, that defines the current cone
as in Fig. 1(a), Alpha_02 – a pair of angles of the cone starting at p_0 and
inscribing the circle of radius ε around p_2 (cf. (γ2, β2) in Fig. 1(a)), function
read_point() reads a next point of data series, function find() finds a pair of
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read_point(p_0);
read_point(p_1);
while(1)
{

p_2=p_1;
Alpha_02=find();
Alpha_01=Alpha_02;
do
{

Alpha_01 = Alpha_01 ∩ Alpha_02;

p_1=p_2;
read_point(p_2);
Alpha_02=find();

} while(Alpha_01 ∩ Alpha_02 
= ∅);

save_found_trend();
p_0=p_1;
p_1=p_2;

}

Fig. 2. Pseudocode of the modified Sklansky
and Gonzalez [16] algorithm for extracting
trends

Fig. 3. A visual representation of
angle granules defining the dynam-
ics of change

angles of the cone starting at p_0 and inscribing the circle of radius ε around
p_2. Then, a pseudocode of the algorithm that extracts trends is given in Fig. 2.

The bounding values of Alpha_02 (γ2, β2), computed by function find()
correspond to the slopes of two lines tangent to the circle of radius ε around
p2 = (x2, y2) and starting at p0 = (x0, y0). Thus, if Δx = x0−x2 and Δy = y0−y2

then:

γ2 = arctg

[(
Δx ·Δy ± ε

√
(Δx)2 + (Δy)2 − ε2

)
/
(

(Δx)2 − ε2
)]

The resulting linear ε-approximation of a group of points p_0, . . . ,p_1 is
either a single segment, chosen as, e.g., a bisector of the cone, or one that mini-
mizes the distance (e.g., the sum of squared errors, SSE) from the approximated
points, or the whole family of possible solutions, i.e., the rays of the cone.

3 Dynamic Characteristics of Trends

While summarizing trends in time series data, we consider the following three
aspects: (1) dynamics of change, (2) duration, and (3) variability, and by trends
we mean here global trends, concerning the entire time series (or some, probably
a large, part of it), not partial trends concerning in the (partial) trend extraction
phase via the Sklansky and Gonzales [16] algorithm. In what follows we will
briefly discuss these factors.
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Dynamics of change
By dynamics of change we understand the speed of changes. It can be described
by the slope of a line representing the trend, (cf. any angle η from the interval
〈γ, β〉 in Fig. 1(a)). Thus, to quantify dynamics of change we may use the interval
of possible angles η ∈ 〈−90; 90〉.

For practical reasons, we use a fuzzy granulation via a scale of linguistic
terms as, e.g.: quickly decreasing, decreasing, slowly decreasing, constant, slowly
increasing, increasing, quickly increasing, as illustrated in Fig. 3. Batyrshin et
al. [1,2] give some methods for constructing such a fuzzy granulation.

We map a single value α (or the interval of angles corresponding to the gray
area in Fig. 1(b)) characterizing the dynamics of change into a fuzzy set (lin-
guistic label) best matching a given angle, and we can say that a given trend is,
e.g., “decreasing to a degree 0.8”.

Duration
Duration describes the length of a single trend, meant as a linguistic variable
and exemplified by a “long trend” defined as a fuzzy set.

Variability
Variability refers to how “spread out” (in the sense of values) a group of data
is. Traditionally, the following five statistical measures of variability are widely
used:

– The range (maximum – minimum).
– The interquartile range (IQR) calculated as the third quartile (the 75th per-

centile) minus the first quartile (the 25th percentile) that may be interpreted
as representing the middle 50% of the data.

– The variance is calculated as
∑

i(xi − x̄)2/n, where x̄ is the mean value.
– The standard deviation – a square root of the variance.
– The mean absolute deviation (MAD), calculated as

∑
i |xi − x̄|/n.

We measure the variability of a trend as the distance of the data points from its
linear uniform ε-approximation (cf. Section 2). We propose to employ a distance
between a point and a family of possible solutions, indicated as a gray cone in
Fig. 1(a). Equation (1) assures that the distance is definitely smaller than ε. The
normalized distance equals 0 if the point lays in the gray area and otherwise is
equal to the distance to the nearest point belonging to the cone, divided by ε.

Then, we find for a given value of variability obtained a best matching fuzzy
set (linguistic label).

4 Linguistic Data Summaries

A linguistic summary is meant as a (short) natural language like sentence(s) that
subsumes the very essence of a (numeric, usually large) set of data (cf. Kacprzyk
and Zadrożny [13], [14]). In Yager’s approach (cf. Yager [18], Kacprzyk and
Yager [11], and Kacprzyk, Yager and Zadrożny [12]) the following perspective
for linguistic data summaries is assumed:
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– Y = {y1, . . . , yn} is a set of objects in a database, e.g., the set of workers;
– A = {A1, . . . , Am} is a set of attributes characterizing objects from Y , e.g.,

salary, and Aj(yi) is a value of attribute Aj for object yi.

A linguistic summary of a data set consists of:

– a summarizer P , i.e. an attribute together with a linguistic value (fuzzy
predicate) defined on the domain of attribute Aj (e.g. “low” for attribute
“salary”);

– a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);
– truth (validity) T of the summary, i.e. a number from the interval [0, 1] as-

sessing the truth (validity) of the summary (e.g. 0.7); usually, only summaries
with a high value of T are interesting;

– optionally, a qualifier R, i.e. another attribute together with a linguistic value
(fuzzy predicate) defined on the domain of attribute Ak determining a (fuzzy
subset) of Y (e.g. “young” for attribute “age”).

Thus, a linguistic summary may be exemplified by

T (most of employees earn low salary) = 0.7 (2)

or, in a richer (extended) form, including a qualifier (e.g. young), by

T (most of young employees earn low salary) = 0.9 (3)

Thus, basically, the core of a linguistic summary is a linguistically quantified
proposition in the sense of Zadeh [21] which, for (2) and (3), respectively, may
be written as

Qy’s are P QRy’s are P (4)

Then, T directly corresponds to the truth value of (4) that may be calculated
by Zadeh’s calculus of linguistically quantified propositions (cf. [21] or the next
section), or other interpretations of linguistic quantifiers (cf. [7]).

5 Protoforms of Linguistic Trend Summaries

As shown by Kacprzyk and Zadrożny [13], Zadeh’s [22] concept of a protoform
is convenient for dealing with linguistic summaries. A protoform is defined as a
more or less abstract prototype (template) of a linguistically quantified propo-
sition. Then, the summaries mentioned above may be represented by two types
of the protoforms:

– a protoform of a short form of linguistic summaries:

Q trends are P (5)

and exemplified by: Most of trends are of a large variability
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– a protoform of an extended form of linguistic summaries:

QR trends are P (6)

and exemplified by: Most of slowly decreasing trends are of a large variability

Their truth values will be found using the classic Zadehs calculus of linguisti-
cally quantified propositions as it is effective and efficient, and provides the best
conceptual framework for a linguistic quantifier driven aggregation of partial
trends.

6 The Use of Zadeh’s Calculus

Using Zadeh’s [21] fuzzy logic based calculus of linguistically quantified propo-
sitions, a (proportional, nondecreasing) linguistic quantifier Q is assumed to be
a fuzzy set defined, i.e. μQ : [0, 1] −→ [0, 1], μQ(x) ∈ [0, 1]. We consider regular
non-decreasing monotone quantifiers, as e.g. “most” given by (8):

μ(0) = 0; μ(1) = 1; x1 ≤ x2 ⇒ μQ(x1) ≤ μQ(x2) (7)

μQ(x) =

⎧
⎨

⎩

1 for x> 0.8
2x− 0.6 for 0.3 < x < 0.8
0 for x< 0.3

(8)

The truth values (from [0,1]) of (5) and (6) are calculated, respectively, as

T (Qy’s are P ) = μQ

(
1
n

n∑

i=1

μP (yi)

)
(9)

T (QRy’s are P ) = μQ

(∑n
i=1(μR(yi) ∧ μP (yi))∑n

i=1 μR(yi)

)
(10)

where ∧ is the minimum (more generally, e.g., a t-norm).
Both the fuzzy predicates P and R are assumed of a simplified, atomic form

referring to one attribute, but can be extended to cover some confluences of
various, multiple attribute values.

A t-norm is a t : [0, 1]× [0, 1] −→ [0, 1], such that, for each a, b, c ∈ [0, 1]:

1. it has 1 as the unit element, i.e. t(a, 1) = a,
2. it is monotone, i.e. a ≤ b =⇒ t(a, c) ≤ t(b, c),
3. it is commutative, i.e. t(a, b) = t(b, a),
4. it is associative, i.e. t[a, t(b, c)] = t[t(a, b), c].

Some more relevant examples of t-norms are: (1) the minimum t(a, b) = a∧b =
min(a, b) which is the most widely used, also here, (2) the algebraic product
t(a, b) = a · b, (3) the �Lukasiewicz t-norm t(a, b) = max(0, a+ b− 1), and (4) the

drastic t-norm t(a, b) =

⎧
⎨

⎩

b a = 1
a b = 1
0 otherwise

.

These operations can be in principle used in Zadeh’s calculus but, clearly, their
use may result in different results of the linguistic quantifier driven aggregation.
Some examples will be shown in the next section.
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7 Numerical Experiments

The method was tested on real data of daily quotations, from April 1998 to
December 2006, of an investment fund that invests at most 50% of assets in
shares, cf. Fig. 4, with the starting value of one share equal to PLN 10.00 and
the final one equal to PLN 45.10 (PLN stands for the Polish Zloty); the minimum
was PLN 6.88 while the maximum was PLN 45.15, and the biggest daily increase
was PLN 0.91, while the biggest daily decrease was PLN 2.41.

For ε = 0.25 (PLN 0.25), we obtained 255 extracted trends, ranging from 2
to 71 time units (days). The histogram of duration is in Fig. 5.
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Fig. 4. A view of the original data
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Figure 6 shows the histogram of angles (dynamics of change) and the his-
togram of variability of trends (in %) is in Fig. 7.
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Some interesting summaries obtained, for different granulations of the dynam-
ics of change, duration and variability, are:

– for 7 labels for the dynamics of change (quickly increasing, increasing, slowly
increasing, constant, slowly decreasing, decreasing and quickly decreasing),
5 labels for the duration (very long, long, medium, short, very short) and 5
labels the variability (very high, high, medium, low, very low):
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• Most trends are very short, T = 0.78
• for different t-norms are shown in Table 1.

– 5 labels for the dynamics of change (increasing, slowly increasing, constant,
slowly decreasing, decreasing), 3 labels for the duration (short, medium, long)
and 5 labels for the variability (very high, high, medium, low, very low):
• Most trends are of medium length, T = 0.431
• for different t-norms are shown in Table 2.

Table 1. Truth values for extended form summaries with different t-norms for the first
granulation

Summary minimum product �Lukasiewicz drastic
Most trends with a low variability are constant 0.974 0.944 0.911 0.85
Most slowly decreasing trends are of a very
low variability 0.636 0.631 0.63 0.589
Almost all short trends are constant 1 1 1 1

Table 2. Truth values for extended form summaries with different t-norms for the
second granulation

Summary minimum product �Lukasiewicz drastic
Almost all decreasing trends are short 1 1 1 1
Almost all increasing trends are short 0.58 0.514 0.448 0.448
At least a half of medium length trends are constant 0.891 0.877 0.863 0.863
Most of slowly increasing trends are of a medium length 0.798 0.773 0.748 0.748
Most of trends with a low variability are constant 0.567 0.517 0.466 0.466
Most of trends with a very low variability are short 0.909 0.9 0.891 0.891
Most trends with a high variability are of a medium length 0.801 0.754 0.707 0.707
None of trends with a very high variability is long 1 1 1 1
None of decreasing trends is long 1 1 1 1
None of increasing trends is long 1 1 1 1

The particular linguistic summaries obtained, and their associated truth val-
ues, are intuitively appealing. In addition, these summaries were found inter-
esting by domain experts though a detailed analysis from the point of view of
financial analyses is beyond the scope of this paper. The results obtained for
different t-norms are similar and, of course, the truth value for the case of the
minimum is the highest.

8 Concluding Remarks

We proposed new types of lingustic summaries of time series. The derivation of a
linguistic summary of a time series was related to a liguistic quantifier driven ag-
gregation of trends, and we employed the classic Zadeh’s calculus of linguistically
quantified propositions with different t-norms, not only the classic minimum. We
showed an application to the analysis of time series data on daily quotations of
an investment fund over an eight year period, present some interesting lingustic
sumaries obtained, and showed results for different t-norms. They suggest that
varous t-norms exhibit slightly different behavior and they choice may be crucial
for a particular application. The results are very promising.
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Abstract. The paper introduces an improved method of intelligent
summarization of large datasets. Previously, the author’s solution for
automated generating of textual news and comments, based on the stan-
dard Yager’s method and ordinary fuzzy sets, has been published in [1].
In this paper, a type-2-fuzzy-set-based extension of the concept can be
now introduced. Type-2 membership functions are originally applied to
build new summarization methods. The approach generalizes the previ-
ous methods which are based on traditional fuzzy sets. Moreover, new
quality measures of summaries are proposed and used in selecting the
optimal and the most specific summaries as the components of textual
news. Finally, the method is implemented and evaluated.

1 Motivation and Problem Study

The problem of distilling useful and ready-to-use knowledge from huge amounts
of unstructured and dispersed data, is very present now. The original concept
of a linguistic summary of a database introduced by R. R. Yager in 1982 [2]
appeared a simple and effective methods. Linguistic summaries are natural lan-
guage sentences that approximately but clearly describe properties of objects,
e.g. About 100 of my students are excellent programmers, where students is the
subject of summary, and about 100 and excellent programmers are pronounce-
ments of amount and property, respectively, both handled by fuzzy logic [3,4].

The gist of the paper is to enhance the Yager method with the use of Type-2
Fuzzy Sets [5]. They extend the Zadeh idea, and enable representing imprecise
information via type-2 membership functions which are fuzzy-valued functions.
Since traditional membership functions may appear inconsistent as they rep-
resent imperfect information via precise and crisp numbers, the use of type-2
membership functions as models of vague quantities and features needs to be
discussed. Some research on type-2 fuzzy sets in linguistic data summarization
have already been made by the author in [6,7,8,9].

The main motivation to generalize the Yager approach is that membership
degrees of properties or phenomena under many circumstances may be inex-
pressible in terms of crisp values. Type-1 membership functions are frequently
constructed based on preferences of one expert. However, it may look arbitrary,
since it seems more natural when two or more opinions are given to illustrate
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e.g. a linguistic term, to model it as objectively as possible. Traditional fuzzy
sets dispose no methods of handling these, usually different, opinions. The aver-
age or median of several membership degrees keep no information about those
natural differences. For instance, the question What is the compatibility level of
the 36.5◦C with ”temperature of a healthy human body”? can be answered 0.5,
1.0, 1.0 by three doctors, respectively, but the average, 0.866, does not show that
one of them remains unconvinced.

Extending real (type-1) membership levels to fuzzy-valued (type-2) provides
additional computational tools – secondary membership degrees. They may be
interpreted as possibility levels that primary degrees describe memberships ap-
propriately, but from the point of view of the linguistic summarization, inter-
preting them as weights [5] is practicable. Thanks to it, different expert opinions
on a membership degree may be described by ”confidence levels” which ex-
press e.g. expert’s experience. See the example on the temperature (above): the
proposed compatibility values may be presented as (0.5, 0.2), (1.0, 1.0), (1.0, 0.9)
which says that the first expert is much less experienced than the others and
this information is stored in the resulting fuzzy set. This set may be – but need
not to be – defuzzified or averaged. The goal is to use different types of fuzzy
sets when generating summaries, and to maintain the understandable semantics
of results (real degrees of truth and other quality measures) proposed by Yager.
Thus, we present a general method of summarization in which many types of
fuzzy sets may be applied, and the differences among them are hidden for an
end-user.

2 Information Representation Via Type-2 Fuzzy Sets

2.1 Basic Definitions

The idea of a type-2 fuzzy set extends an ordinary membership function to a
type-2 membership function. This is a family of type-1 sets in [0, 1] assigned
to elements of a universe of discourse. A type-2 fuzzy set Ã in X is defined
Ã =

∫
X μÃ(x)/x and μÃ:X → F([0, 1]) is the type-2 membership function,

such that μÃ(x) =
∫

u∈Jx
μx(u)/u, Jx ⊆ [0, 1]. Each u has its own membership

degree assigned. Moreover, many u’s can be assigned to a given x, and each
has its separated secondary membership degree μx(u). For a fixed x′, μx′ is the
membership function for the type-1 set which expresses the membership of x′ to
Ã, i.e. for the μÃ(x′) value. Secondary degrees may be viewed as weights or as
possibility levels, cf. [5].

The set-theoretical operations on type-2 sets are extensions of the analogous
ones in other fuzzy set theories. Let Ã, B̃ be type-2 sets in X . Let t1, t2 be
t-norms. The intersection of Ã and B̃ is the type-2 set Ã ∩ B̃, the membership
function of which is defined in terms of the meet operation:

μÃ∩B̃(x) = μÃ(x) � μB̃(x) =
∫

uÃ

∫

uB̃

(μx(uÃ) t1 μx(uB̃))/(uÃ t2 uB̃) (1)
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where uÃ, uB̃ – primary membership degrees of x in Ã, B̃, respectively; μx(uÃ),
μx(uB̃) – secondary degrees of x in Ã, B̃, respectively. Eq. (1) is applied as a
model for the and connective that combines single summarizers, see Sec. 3.

The concept of embedded fuzzy set appears useful in defining other concepts.
an embedded type-1 set Aλ for a type-2 fuzzy set Ã in X , is defined. Let ∀x∈X λx ∈
Jx ⊆ [0, 1]. The membership function for Aλ is given as μAλ

(x) = λx,

2.2 Cardinality, Support, and Degree of Imprecision of Type-2 Sets

Cardinality of a crisp set A′ in X is the sum of the ξA′ characteristic function
values card(A′) =

∑
x∈X ξA′(x). The cardinality of a type-1 set A in X [10]

card(A) =
∑

x∈X
μA(x) (2)

The cardinality of a type-2 set, non-fuzzy sigma count, assumes that membership
of x in Ã in X is a fuzzy number. Hence nfσ-count(Ã) is defined:

nfσ-count(Ã) =
∑

x∈X
max{u ∈ Jx:μx(u) = 1} (3)

The given definition is a generalization of the analogous definition for an ordinary
fuzzy set, given by de Luca and Termini [10].

The support of a type-1 set is defined as

supp(A) =df {x ∈ X :μA(x) > 0} (4)

and is applied to measure the goodness of summaries. We propose to extend it
to the fuzzy support – a set of type-1 associated with a given type-2 set.

Definition 1. Let Ã be a type-2 set in X . The fuzzy support of Ã is the type-1
set supp(Ã) =df {〈x, μsupp( �A)〉:x ∈ X} where

μsupp( �A)(x) = sup
u∈Jx\{0}

μx(u) (5)

Proposition 1. For each type-1 fuzzy set A, μsupp(A)(x) = ξA0(x)

Proof. Let A be a type-1 fuzzy set in X . Hence, each its element has only one
primary membership value assigned, u(x), and ∀x∈X μx(u) = 1, so the supremum
in (5) can be omitted. Thus, supp(A) – the zero-cut of A, is a crisp set.

Definition 2. Let Ã be a type-2 set in X . The degree of fuzziness of Ã is defined:

in(Ã) =df card(supp(Ã))/card(X ) (6)

The definition extends the concept for type-1 sets, and is applied to determine
quality indices of type-2 summaries in Sec. 3.3.
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2.3 Type-1 Fuzzy Quantification of Type-2 Fuzzy Propositions

The canonical forms of linguistically quantified propositions are defined in [4].
We originally generalize them with type-2 sets as models of S1, S2

Definition 3. Let S̃1, S̃2 be type-2 sets representing linguistic propositions, and
Q – a type-1 fuzzy quantifier. The formulae

Q x’s are S̃1 (7)

Q x’s being S̃2 are S̃1 (8)

are the first (QI) and the second canonical form (QII) of the linguistically quan-
tified proposition. Degrees of truth of (7) and (8) are assessed as

T ( Q x’s are S̃1 ) = μQ(card(S̃1)/M) (9)

where card(S̃1) is a real number, see (3), M = card(X ) if Q is relative, or
M = 1 if Q is absolute, and

T ( Q x’s being S̃2 are S̃1) = μQ(card(S̃1 ∩ S̃2)/card(S̃2)) (10)

where S̃1 ∩ S̃2 is given in (1).

Examples for QI , QII , are Many students are intelligent and Many of young
students are intelligent, respectively, in which Many=Q, intelligent=S1, and
young=S2. Similarly to the propositions represented by type-1 sets, only relative
quantification is possible in (8).

3 Type-2 Linguistic Summaries of Data

The section introduces the linguistic data summarization algorithms innovated
by the use of type-2 fuzzy logic. In particular, we are interested in the Q P
are/have S̃ [T ], form of summary, in which S̃ is a summarizer represented by a
type-2 fuzzy set, and Q, P , T are interpreted as in type-1 summaries.

3.1 Type-2 Summaries in the First Canonical Form

We introduce the type-2 summaries based on QI , see (7). The goal is to find a
quality index for a given summary in the form of Q P are/have S̃. We assume
here, that Q is represented by a type-1 fuzzy set and the cardinality of S̃ is
computed via (3). The degree of truth of such a summary is a real number

T
(
Q P are/have S̃

)
= μQ(nfσ-count(S̃)/M) (11)

where M = 1 if Q is absolute, or M = m = card(D) if Q is relative. Assume
that n fuzzy sets S̃1,. . .,S̃n are chosen and at least one of them is of type-2. They



Type-2 Fuzzy Summarization of Data: An Improved News Generating 245

represent linguistically expressed properties of objects y1, ..., ym described by
records d1,. . .,dm. The membership function of the type-2 composite summarizer
S̃ = S̃1 and S̃2 and . . . and S̃n is computed as

μ
�S(di) = μ

�S1∩�S2∩...∩�Sn
(di) (12)

where the intersection is given by (1). Notice that (12) describes the extension
of the George and Srikanth approach [11], and, in consequence, for n = 1, also
the Yager method of summarization.

3.2 Summaries Based on the Second Canonical Form

Linguistic summaries based on QII , see (8), are in the form of

Q P being w̃g are/have S̃ [T ] (13)

in which w̃g is represented by a type-2 fuzzy set, and S̃ is a type-2 or type-1,
composite or single summarizer. Similarly to the method presented in [12], the
use of the additional fuzzy set enables producing much more interesting sum-
maries. Hence, according to (10), the μ

�S(di) is intersected with the membership
to the w̃g query:

μ
�wg∩�S(di) = μ

�wg
(di) ∩ μ

�S1
(di) ∩ . . . ∩ μ

�Sn
(di)

︸ ︷︷ ︸
μ
�S

(14)

Step 1. For each i = 1, ...,m compute μ
�wg

(di) ∈ F([0, 1])
Step 2. Construct the base D ⊇ D′ = {di:μ�wg

(di) �= ∅}, m′ = card(D′) ≤ m
Hence, the degree of truth of the (13) summary is a real number

T = μQ(nfσ-count(w̃g ∩ S̃)/nfσ-count(w̃g)) (15)

Thanks to Steps 1, 2, the computational cost is reduced from m · (n + 1) to at
most m′ · n + m membership assessments.

3.3 Quality Measures for Type-2 Summaries

This section introduces the original extensions of five measures for type-1 sum-
maries [12]. The next five indices, T6 − T10, are new and specific for type-2
summaries (although their versions for type-1 summaries may also be consid-
ered).

1. Degree of Truth – see (11), (15).
2. Degree of Imprecision. The degree of imprecision of a linguistic summary

with a type-2 fuzzy summarizer is determined as

T2 = 1−
(∏n

j=1
in(S̃j)

)1/n

(16)

The closer to 1 is T2, the more precise the summary.
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3. Degree of Covering. The degree of covering is possible to be computed if
a summary is based on the second canonical form, see (8).

T3 = card(supp(w̃g ∩ S̃))/card(supp(w̃g)) (17)

The meaning of the index is the (relative) number of objects corresponding
to the query and covered by the summary.

4. Degree of Appropriateness – we decompose a summarizer into a number
of fuzzy sets S̃1, . . . , S̃n, and for each the rj index is computed via (11). The
degree of appropriateness is based on gi,j

gi,j = μsupp(�Sj)(di) (18)

which is depends on the support of the S̃j type-2 fuzzy set representing the
j-th summarizer. Hence

T4 =
∣∣∣∣
∏n

j=1

∑m
i=1 gi,j

m
− T3

∣∣∣∣ (19)

5. Length of a Type-2 Summary – depends on b = card({S̃1, . . . , S̃b}) –
the number of sets that represent a summarizer, b ≤ n. The more sets, the
less precise the summarizer:

T5 = 2 · (0.5)b (20)

6. Type-2 Quantification Imprecision – is analogous to T2

T6 = 1− in(Q) (21)

7. Type-2 Quantification Cardinality

T7 = 1− card(Q)/N (22)

where N = 1 if Q is relative, or N = card(D(Q)) if Q is absolute.
8. Type-2 Summarizer Cardinality– because of possible several fuzzy sets

S̃1, . . ., S̃n representing the summarizer, the form of T8 is:

T8 = 1−
(∏n

j=1
nfσ-count(S̃j)/card(Xj)

)1/n

(23)

9. Imprecision of The Type-2 Query T9 is determined by the degree of
imprecision of the query in a summary based on the second canonical form:

T9 = 1− in(w̃g) (24)

10. Cardinality of The Type-2 Query

T10 = nfσ-count(w̃g)/card(D(w̃g)) (25)
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4 An Improved News Generating

4.1 The Algorithm

The general assumptions of the system which produces compact textual mes-
sages from large sets of numerical data, are given in [1]. Below, we present the
improved version of the algorithm that generates news with the use of type-2
fuzzy summarizers S̃1, ..., S̃n. The measures described in Section 3.3 are applied
to select the summaries of the highest goodness (i.e. the most informative).

// generating summaries in the form of QI

1. for each non-empty Ŝ ⊆ {�S1, ...,�Sz}
1.1. determine μŜ(di) via (12)

1.2. for each quantifier Qh, h = 1, ..., k
compute T1,h, T6,h, and T7,h via (11), (21), and (22), respectively

1.3. compute Thmax = max
h∈{1,...,k}

{t: t = w1T1,h + w6T6,h + w7T7,h}, remember hmax

1.4. compute T2, see (16)

// T3, T9, T10 are not assessed, because of no �wg queries in QI

1.5. compute T4, via (18), (19), for T3 = 0
1.6. compute T5 via (20)

1.7. compute T8 via (23)

1.8. T = Thmax + w2 · T2 + w4 · T4 + w5 · T5 + w8 · T8

1.9. generate the summary Qhmax P are/have Ŝ [T]

// generating summaries in the form of QII

2. for each non-empty query �Sw � {�S1, ...,�Sz}
and for each non-empty summarizer Ŝ ⊆ {�S1, ...,�Sz} \ �Sw

2.1. determine μ�Sw
(di) via (14)

2.2. determine D ⊇ Dw = {di ∈ D: μ�Sw
(di) �= ∅}

2.3. for each di ∈ Dw determine μŜ(di)
2.4. for each relative quantifier Qh: h ∈ {1, ..., k}

compute T1,h, T6,h, and T7,h via (15), (21), and (22), respectively

2.5. compute Thmax analogously to 1.3., remember hmax

2.6. compute T2 analogously to 1.4.

2.7. compute T3 according to (17)

2.8. compute T4 =
�����Sj∈Ŝ

�
di∈Dw

gi,j

card(Dw)
− T3

���, via (18)-(19)

2.9. compute T5 analogously to 1.6.

2.10. compute T8 analogously to 1.7.

2.11. compute T9 and T10 via (24), (25), resp.

2.12. T = Thmax +
�5

i=2 wi · Ti +
�10

i=8 wi · Ti

2.13. generate summary Qhmax P being Sw are/have Ŝ [T]

Ad. 1. In this step, finding all non-empty subsets of {S̃1, ..., S̃z} is required; the
number of such subsets is exactly 2z − 1. In the implementation, the problem
is resolved via generating binary forms of all natural numbers between 0 and
2z − 1. The forms are taken as characteristic vectors of the sought subsets.
Ad. 1.3. and 1.8. w1 + w2 + w4 + w5 + w6 + w7 + w8 = 1.
Ad. 2.10. w1 + . . . + w10 = 1.
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4.2 Implementation and Results

The algorithm has been implemented on .NET platform in the C# language.
The database (in MS SQL Server (*.mdf) and MS Access (*.mdb) formats,
has consisted of ca 10,000 records on workers of a company. The view contain-
ing tuples in the form of 〈Age, Education, Salary〉 has been generated. The
summarizers have been determined as values of linguistic variables L1 = Age,
L2 = Education, L3 = Salary, e.g. H(Age) = {young, middle-aged, experi-
enced, about 40, about 30}. Each label of L1, L3 have been represented by a
type-2 fuzzy set, and of L2 – by crisp sets. Sample results for S1=about 30,
S2=high school, and S3=about 4000 is presented:

About half of workers are ab. 30 [0.47]. Much more than 2000 workers

graduated from high school [0.74]. About half of workers earn ab.

4000 [0.54]. Many workers graduated from high schools and earn ab.

4000 [0.37]. Many workers graduated from high schools and are ab. 30

[0.38]. Many workers earn ab. 4000 and are ab. 30 [0.37]. Ab. half of

workers graduated from high schools are ab. 30 [0.46].

Finally, we notice the results obtained are at least of the same quality that
similar given by type-1 summarization methods, see Sec. 5.

5 Evaluating the Success of the Type-2 Summarization

The introduced type-2 linguistic summarization is a generalization of the existing
methods based on type-1 fuzzy sets, i.e. summarizers, quantifiers, and queries,
are now represented by type-2 membership functions, the values of which are
fuzzy numbers. Since a real number is a specific case of fuzzy, type-1 methods
can be applied together, because the new approach includes them as specific
cases.

However, type-2 membership functions are more complicated than type-1.
They are families of at least several type-1 functions that represent given data,
e.g. preferences of experts. Unfortunately, they are more time-consuming be-
cause more membership values, primary and secondary, must be assessed, see
e.g. the definitions of cardinalities for type-1, cf. [10] and type-2 sets, cf. (3).

Hence, although type-2 summaries are more time consuming, we expect that
they allow to produce the results that cover also type-1 summaries, in particu-
lar, summaries at least as informative as the obtained through type-1 methods,
according to the measures of informativeness presented in Sec. 3.3.

Assumptions for comparing type-1 and type-2 summaries. We compare
type-1 and type-2 summaries under the following assumptions:

(A1) The same set of records described by attributes V1, . . ., Vn is summarized
both under type-1 and type-2 methods.

(A2) The X1, . . ., Xn sets are the domains of V1, . . ., Vn, respectively, and
∀i=1,...,n, Xi ⊆ R
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(A3) If a type-1 set A and a type-2 Ã in Xi, i ≤ n, represent the same linguistic
term, then A is considered as an embedded type-1 fuzzy set in Ã1.

Comparing type-1 and type-2 quality measures. The quality indices for
summaries are based on cardinality and support, (2), (4) for type-1, and (3), (5)
for type-2. From these equations, and from the concept of embedded type-1 set:

Proposition 2. For each type-1 A embedded in type-2 Ã in X

card(A) ≤ card(Ã) (26)

Proof. Let x ∈ X , uA = μA(x). A is of type-1, hence, μx(uA) = 1. Furthermore,
uA ∈ {u �A:μx(u

�A) = 1}. Thus, uA ≤ max{u
�A:μx(u

�A) = 1}, and from (2), (3),
we have

∑
x∈X uA ≤

∑
x∈X max{u

�A ∈ Jx:μx(u
�A) = 1}.

Proposition 3. For each type-1 A embedded in type-2 Ã in X

supp(A) = supp(Ã) ∧ card(supp(A)) = card(supp(Ã)) (27)

Proof. Let x ∈ X , uA = μA(x), uA > 0. Hence ξsupp(A)(x) = 1. Since A is of
type-1, μx(uA) = 1. Hence, from (5), we have μsupp( �A) = supu∈Jx\{0} μx(u) = 1.
Thus, ∀x∈X ξsupp(A)(x) = μsupp( �A)(x).

Proposition 4. Let (A1)–(A3) are fulfilled. Let type-1 S1, ..., Sn, wg in X1, ...,

Xn+1 be embedded in type-2 S̃1, ..., S̃n, w̃g in X1, ...,Xn+1. Let Q ba a fuzzy quanti-
fier. Let us denote by Ti(Q,S1, ..., Sn, wg), and Ti(Q, S̃1, ..., S̃n, w̃g), i = 1 . . . 10,
the measures described in Sec 3.3, for Q, S1,...,Sn, wg and for Q, S̃1,...,S̃n, w̃g.

T1(Q,S1, ..., Sn, wg) ≤ T1(Q, S̃1, ..., S̃n, w̃g) from (26), (11), (15) (28)

T7(Q,S1, ..., Sn, wg) ≤ T7(Q, S̃1, ..., S̃n, w̃g) from (26), (22) (29)

T8(Q,S1, ..., Sn, wg) ≤ T8(Q, S̃1, ..., S̃n, w̃g) from (26), (23) (30)

T10(Q,S1, ..., Sn, wg) ≤ T10(Q, S̃1, ..., S̃n, w̃g) from (26), (25) (31)

Besides, for i = 2÷ 6, 9, Ti(Q,S1, ..., Sn, wg) = Ti(Q, S̃1, ..., S̃n, w̃g), see (27).

We conclude from Prop. 4 that the measures based on cardinalities, T1, T7, T8,
T10 take values greater or equal for type-2 than for type-1 summaries, while
measures based on supports, T2, T3, T4, T6, T9, take the same values for type-
1 and type-2 summaries. Thus, the proposed type-2 summarization allows to
achieve the results which are at least as informative as type-1 methods.

1 It represents a proposed type-1 membership function ”bridged” with other expert
proposals, and, finally, a term is described by a type-2 membership function.
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6 Conclusions

The contribution to the domain of data intelligent summarization, presented in
this paper, can be, nomen omen, s u m m a r i z e d in the following points:

– The original method of linguistic data summarization handled by type-2
fuzzy logic, has been presented.

– The method is an extension of the existing methods based on type-1 fuzzy
logic; it covers the previous as a specific case.

– The known quality measures for type-1 summaries have been enhanced to
their type-2 versions, and new quality measures of type-2 summaries have
been proposed, also applying to type-1 summaries.

– The improved algorithm for finding optimal and the most specific type-2
summaries, has been presented. It is applied to the task and schema pre-
sented in [1], and generalizes it.

– The new method produces summaries that are based on more experts pref-
erences. Hence, the results are more informative.
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Abstract. The paper discusses mathematical concept of granular model for data
and knowledge manipulation. In order to overcome the difficulties caused by ex-
tensive data representation a new model based on granular sets and granular
relations is put forward. The key idea is that the notion of set may consist of
basic elements grouped into bigger granules. A granular set is formed from a
universe set and a semi-partition defining granules of its elements. Formal defi-
nition of granular sets and some basic algebraic operations on granular sets are
introduced in the paper. Further, the concept of granular relation is also defined
and some possibilities of application of granular sets and relations to knowledge
representation are put forward.

1 Introduction

Representation of data and knowledge with adaptable granularity of details seems to
be an interesting issue for efficient dealing with large data sets. The paper presents a
relatively new concept of a granular set and granular relation [5], [6]. A granular set
is a structure composed of a set and a number of disjoint subsets embedded in it (the
so-called semi-partition). An algebra of such sets can be constructed. Granular relation
can be defined as a subset of Cartesian product of granular sets. A granular relational
algebra can be defined as a tool for knowledge manipulation. It can be applied for veri-
fication and analysis of tabular knowledge-based systems [7] and for direct knowledge
manipulation.

One reason for using granular representations can be the need for efficient dealing
with large data sets. In such a case numerous detailed data are grouped into a single
granule which can be regarded as more abstract knowledge representation. The num-
ber of detailed data items is drastically reduced and simultaneously some unimportant
characteristics are hidden. In this way knowledge extraction from data can go on.

Another reason for using granular knowledge representation consists in the need for
structuring knowledge into smaller, separate, easily manipulable chunks of knowledge.
Such “knowledge granules” can be easier interpreted and understood, selected and ma-
nipulated, analyzed and verified. Granularity of knowledge seems to be an intrinsic
issue in the domain of knowledge management.

There are a number of conceptual approaches aimed at dealing with impreciseness
and knowledge abstraction. Some most important ones include Fuzzy Sets [13], [3],

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 251–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Rough Sets [9], interval algebra, as well as selected basic purely mathematical ap-
proaches such as ones based on equivalence relation and equivalence classes. Each of
these approaches incorporates some philosophical interpretation of impreciseness. The
granular set approach can be considered as an extension of interval algebra towards un-
ordered sets and lattices or type hierarchy trees. Somewhat similar approaches are also
presented in [1] and [12].

The main aim of the paper is to present a concept of granularity in sets and relational
tables. The main ideas, initially presented in [5] and [6], are recapitulated in a slightly
changed framework and the relationship with rough sets is discussed. Introducing gran-
ularity in the sets of data items is aimed at a more general knowledge representation, and
knowledge manipulation is moved to higher abstraction level. The analysis is moved
to a more abstract level of granularity, which improves efficiency – instead of atomic
values of attribute domains one considers now a set or granular values. Algebraic oper-
ations on semi-partitions, granular sets and granular relations are defined. The level of
granularity is adaptable – it changes according to details of knowledge representation
and operations performed.

2 Granular Sets and Their Properties

A granular set is a structure composed of a set and a number of its disjoint subsets. It
allows to consider arbitrary granules of the elements of the base set instead of too nu-
merous and too detailed atomic elements. A granular set with finite number of granules
can be constructed even for continuous infinite sets. Moreover, in contrast to discretiza-
tion methods (where the original set is replaced with a new discrete one), it is still
possible to manipulate the atomic elements or to change the partitioning of the base set.

Let a set V and some subsets V1, V2, . . . Vk of V be given.

Definition 1. The sets V1, V2, . . . Vk form a partition of V , iff:

(1) V1 ∪ V2 ∪ . . . ∪ Vk = V (i.e. partition satisfies the completeness condition),
(2) Vi ∩ Vj = ∅ for any i �= j (i.e. partition satisfies the separation condition).

A partition is usually induced by an equivalence relation defined over V . The sets
V1, V2, . . . , Vk are equivalence classes; here they are called blocks. Note that in prac-
tice, we often do not have the possibility to consider all the subsets necessary to form a
partition. In such a case the completeness condition is not satisfied. The separation con-
dition is also not necessary however we will often expect that a semi-partition satisfies
it.

Definition 2. A semi-partition of V is any collection of its subsets V1, V2, . . . , Vk.
A semi-partition is normalized (in normal form) iff Vi ∩ Vj = ∅ for all i �= j.

A semi-partition will be also called an incomplete partition, or an s-partition for short.
An s-partition of V will be denoted as σ(V ). If not stated explicitly, all the consider-
ations will concern normalized s-partitions. Examples of Fig. 1 show such s-partitions
for a nominal and an ordered set.
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T4
T5
T6
T7
T8

T

Fig. 1. Two examples of granular sets

If σ(V ) = {V1, V2, . . . , Vk} is an s-partition, then the set of all the elements of V
occurring in the s-partition σ(V ) will be called the support of it and it will be denoted
as [[σ(V )]], and determined as [[σ(V )]] = V1 ∪ V2 ∪ . . . ∪ Vk.

Note that any family of subsets of some set V can be transformed into a normalized s-
partition of V having the same support. Let us consider an arbitrary collection of subsets
of V , say V ′1 , V ′2 , . . . , V ′m (not necessarily disjoint ones). By subsequent replacing any
two sets V ′i and V ′j (i �= j) such that V ′i ∩ V ′j �= ∅, with three sets: V ′i \ V ′j , V ′j \ V ′i and
V ′i ∩ V ′j one can generate an s-partition σ(V ).

For a given set V a granular set over V is defined as follows.

Definition 3. A granular set G is a pair G = {V, σ(V )}, where σ(V ) is any s-partition
defined on V . If the s-partition σ(V ) is unnormalized, then the granular set is also said
to be an unnormalized one.

The set V is called the domain of the granular set, while the s-partition σ(V ) defines
the so-called signature of granularity.

Consider some two granular sets G = (V, σ(V )) and G′ = (V, σ′(V )), where σ(V ) =
{V1, V2, . . . , Vk} and σ′(V ) = {V ′1 , V ′2 , . . . , V ′m}.

Definition 4. The support of granular set G is bigger (smaller) than the support of
granular set G′ iff [[σ′(V )]] ⊆ [[σ(V )]] ([[σ(V )]] ⊆ [[σ′(V )]]).

Again, compare two granular sets with the same domain but different signatures. A
granular set can provide finer or more rough signature of granularity.

Definition 5. An s-partition σ′(V ) = {V ′1 , V ′2 , . . . , V ′m} is finer than an s-partition
σ(V ) = {V1, V2, . . . , Vk} iff any set Vi ∈ σ(V ) can be expressed as Vi = V ′i1 ∪ V ′i2 ∪
. . . ∪ V ′in

, where V ′i1 , V
′
i2 , . . . V

′
in
∈ σ′(V ).

In other words, a finer granular set (or s-partition) is build from smaller blocks and can
be used to re-build the more rough one. In general, it can also contain some additional
blocks not used for reconstructing the ones of the more rough s-partition.
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Now, we will introduce a partial order relation among granular sets and s-partitions.
For intuition, a more general granular set (its signature) covers a less general one iff any
block of the latter is covered by some block of the former one.

Definition 6. A set G is more general than a set G′ (G ≥ G′) iff σ(V ) ≥ σ′(V ), where
the latter condition means that ∀V ′i ∈ σ′(V ) ∃Vj ∈ σ(V ): V ′i ⊆ Vj .

In fact Def. 6 introduces the Hoare order. The s-partition σ(V ) will be called more
general as one operating at more abstract level of granularity. As straightforward con-
sequences of Def. 6 we have the following propositions.

Proposition 1. The relation of being more general defined by Def. 6 is an ordering
relation.

Proposition 2. If G ≥ G′ then also [[σ′(V )]] ⊆ [[σ(V )]].

Obviously, the inverse proposition is not true in general case. However, the following
one holds.

Proposition 3. Assume that [[σ′(V )]] ⊆ [[σ(V )]]. Then there exists an s-partition σ0(V )
such that [[σ0(V )]] = [[σ(V )]] and σ0(V ) ≥ σ′(V ). Simultaneously, there exists an
s-partition σ′′(V ) such that [[σ′(V )]] = [[σ′′(V )]] and σ(V ) ≥ σ′′(V ).

The meaning of the above proposition is simple: a bigger s-partition (i.e. one having
bigger support) can always be transformed into one being also more general than the
smaller one, but with the same support (intuitively: by gluing together some of its gran-
ules; this process is also called reduction). Further to that, a smaller s-partition can
always be transformed into one having the same support but also less general one (the
operation is based on split of the granules).

For granular sets (s-partitions) we can define typical algebraic operations. The prod-
uct of such two s-partitions σ(V ), σ′(V ) is defined as:

σ(V ) · σ′(V ) = {Vij : Vij = Vi ∩ Vj ∧ Vi ∈ σ(V ) ∧ Vj ∈ σ′(V ) ∧ Vij �= ∅}. (1)

Obviously, the product of two s-partitions is an s-partition. Roughly speaking, the
product of two s-partitions is the s-partition composed of all nonempty intersections
of their blocks. The product of two s-partitions is less general than any of them, i.e.
σ(V ) · σ′(V ) ≤ σ(V ) and σ(V ) · σ′(V ) ≤ σ′(V ).

In a similar way a composition of s-partitions can be defined. Let a semi-partition
σ(V ) = {V1, V2, . . . , Vk} be given. For any two sets Vi, Vj ∈ σ(V ) we define the
following partition generation operation as Vi � Vj = {Vi \ Vj , Vj \ Vi, Vi ∩ Vj}. The
operation can be extended to the whole semi-partition. The semi partition

�
(σ(V )) is

evaluated as follows:

1.
�

(σ(V ))0 = σ(V )
2. If there exist sets Vi, Vj ∈

�
(σ(V ))n such that Vi ∩ Vj �= ∅ then

�
(σ(V ))n+1 =�

(σ(V ))n − {Vi, Vj} ∪ Vi � Vj , else
�

(σ(V ))n+1 =
�

(σ(V ))n.
3. If

�
(σ(V ))n+1 =

�
(σ(V ))n then

�
(σ(V )) =

�
(σ(V ))n.
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The semi-partition
�

(σ(V )) is a normalized one and the result is independent on the
order of applying of the � operator. Let x ∈ [[σ(V )]] and let Vx ∈

�
(σ(V )) denote the

set containing x. The semi-partition can be divided into two disjoint subsets: σx(V ) =
{Vi ∈ σ(V ): x ∈ Vi} and σx̄(V ) = σ(V ) − σx(V ). Hence, the following equality
holds:

Vx =
⋂

σx(V )−
⋃

σx̄(V ). (2)

The composition of s-partitions σ(V ) and σ(V ) is defined as follows:

σ(V ) ◦ σ′(V ) =
�

(σ(V ) ∪ σ′(V )). (3)

For any two s-partitions σ(V ) and σ′(V ) we define also a cover of them, i.e. an s-
partition covering all the elements of V belonging to some component set of at least one
of them. For a semi-partition σ(V ) = {V1, V2, . . . , Vk} the following sum operation is
introduced:

1.
⊔

(σ(V ))0 = σ(V )
2. If there exist sets Vi, Vj ∈

⊔
(σ(V ))n such that Vi ∩ Vj �= ∅ then

⊔
(σ(V ))n+1 =⊔

(σ(V ))n − {Vi, Vj} ∪ {Vi ∪ Vj}, else
⊔

(σ(V ))n+1 =
⊔

(σ(V ))n.
3. If

⊔
(σ(V ))n+1 =

⊔
(σ(V ))n then

⊔
(σ(V )) =

⊔
(σ(V ))n.

The semi-partition
⊔

(σ(V )) is a normalized one and the result is independent on the
order of applying of the � operator. Let x ∈ [[σ(V )]] and let Vx ∈

⊔
(σ(V )) denotes the

set containing x. Let the set σx(V ) be defined as follows:

1. σx(V )0 = {Vi}, where Vi ∈ σ(V ) and x ∈ Vi.
2. σx(V )n+1 = σx(V )n ∪ {Vi ∈ σ(V )− σx(V )n: Vi ∩ (

⋃
σx(V )n) �= ∅}.

3. If σx(V )n+1 = σx(V )n then σx(V ) = σx(V )n.

Hence, Vx =
⋃

σx(V ).
The cover of s-partitions σ(V ) and σ′(V ) is defined as follows:

σ(V ) + σ′(V ) =
⊔

(σ(V ) ∪ σ′(V )). (4)

For intuition, both s-partitioning and generating a cover are kinds of operations pre-
serving covering of the same elements of V which are covered by the initial family of
subsets (the support). However, in case of s-partitioning one preserves also the defini-
tion of initial signatures (structuring) (e.g. the boundaries of intervals of characteristic
subsets of V ), while in the case of cover generation a kind of maximal reduction of the
subsets is performed. There is also σ(V )+σ′(V ) ≥ σ(V ) and σ(V )+σ′(V ) ≥ σ′(V ).

Consider a reduction operation of transforming an s-partition into another, more gen-
eral one, by gluing some of its elements (non-overlapping ones). The reduction of an
s-partition consists in replacing several blocks with an equivalent single block. The gen-
erated output is aimed to be a normalized s-partition, so in the case of intervals, gluing
is allowed only for intervals which meet or the so-called non-convex intervals must be
admitted. The generated s-partition is equivalent with regard to the elements covered,
but simultaneously it is more general than the input one.
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Finally, consider the so-called split operation. The operation consists in replacing
each element Vi of the initial s-partition with a family of its subsets such that the sum
of them is equal to Vi. The result of the split operation is less general than the initial
s-partition. In general, the split operation gives no unique result. For this reason, it may
be useful to define the so-called induced split, where the result depends on another
s-partition which is compared with the one under interest.

3 Granular Sets and Rough Sets

Granular sets as introduced in Section 2 may constitute a tool for defining rough sets.
However, since the assumptions of the presented approach are weaker than in case of
a partition induced by an equivalence relation, it is not always possible to define the
upper approximation.

Consider a set V and an s-partition σ(V ) = {V1, V2, . . . , Vn}. Let X denote some
subset of V , i.e. X ⊆ V . The lower approximation of X with s-partition σ(V ) is defined
as

RX = {Vi ∈ σ(V ): Vi ⊆ X}.

The lower approximation of X always exists; in some cases it can be the empty set.
Also RX ⊆ X in the sense [[RX ]] ⊆ X .

Contrary to classical rough set theory, the upper approximation defined with a par-
ticular s-partition may not exist, i.e. it may be empty. We define an approximation of
set X in the following way:

RX = {Vi ∈ σ(V ): Vi ∩X �= ∅}.

Note that contrary to the case of partitions based on equivalence relation, it can be
the empty set. Further, in some cases the basic property that X ⊆ RX (in the sense that
X ⊆ [[RX ]] ) may be violated.

For practical reasons, to obtain the upper approximation covering X (e.g. when ver-
ifying completeness of systems) it may be of interest to look for the uncovered cases,
i.e. the completion of an approximation to an upper approximation – such that all el-
ements of X will be covered. In order to do that we first define the completion of an
approximation as

RX = X \RX.

The upper approximation can be defined now as

RX = RX ∪RX.

4 Granular Relations

Using the presented idea of granular set, a granular relation can be defined in a straight-
forward way. Consider some collection of sets D1, D2, . . . , Dn. Let there be defined
some granular sets on them, i.e. G1 = (D1, σ1(D1)), G2 = (D2, σ2(D2)), . . . , Gn =
(Dn, σn(Dn)).
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Definition 7. A granular relation R(G1, G2, . . . , Gn) is any set RG ⊆ UG where

UG = σ1(D1)× σ2(D2)× . . .× σn(Dn). (5)

The set UG will be referred to as granular universe or granular space. If at least one of
the granular sets was unnormalized, the relation is also said to be unnormalized one.

The elements (rows) of a granular relation will be called boxes. Note that in fact a
granular relation defines a kind of meta-relation, i.e. one based on sets instead of single
elements. In fact, if R is a relation defined as R ⊆ D1×D2× . . .×Dn, then any tuple
of R is like a thread in comparison to elements of RG which are like a cord or a pipe.

Consider an example concerned with time-table development for a university or a
school. First, there is certainly a finite set of students, say S. Instead of specifying for
each student his personal schedule, the university authorities consider ”granules” of
them, i.e. years, groups, etc. If S1, S2, and S3 are the groups of the first year, then a
granular structure G(S) = (S, {S1, S2, S3}) can be considered useful when assigning
classes to the students of the first year. Further, time is also considered granular – instead
of precise exact time one would rather consider traditional intervals, such as lessons
(e.g. 45 or 55 minutes each) or periods of the length 1h30min which form a frame
for constructing the schedule. Let T be the discrete set of time values from 7:00 to
21:00, and let T1=[8:00,9:30], T2=[9:30,11:00], T3=[11:00,12:30], T4=[12:30,14:00],
T5=[14:00,15:30], T6=[15:30,17:00], T7=[17:00,18:30] and T8=[18:30,20:00]. Some
other sets, such as the set of professors P , the set B of rooms or the set of classes
(subjects) C are considered here at the level of single items. For simplicity, we focus on
the schedule for some specific day, so the problem is to assign each group a professor,
room and subject for any legal time interval. If P = {p1, p2, p3} is the set of professors,
B = {b1, b2} is the set of rooms and C = {c1, c2, c3} is the set of subjects, the relation
representing the schedule can be as shown in Fig. 2.

T1
T2
T3
T4
T5
T6
T7
T8

S1

S2

S3

p1

p2

p3

b2

b1

c2

c1

c3

T

S

Fig. 2. Example of a granular relation
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The relation shown in Fig. 2 is defined by the following tuples: {(S1, T2, p1, b1, c1),
(S2, T6, p2, b2, c2), (S3, T8, p3, b2, c3)}. In the tuples of this relation only the first two
elements of each tuple are granules; the other three are basic items.

5 Granular Knowledge Representation Systems

Granular sets and granular relations can be applied to develop granular knowledge
representation systems (also called extended tabular systems) [7]. In comparison with
knowledge representation systems considered in [9], nonatomic values of attributes are
admissible. In similar way granular decision tables can be introduced.

Table 1. Optician Decision Table

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y m y n h
2 y h y n h
3 p m y n h
4 q m y n h

5 y m n n s
6 y h n n s
7 p m n n s
8 p h n n s
9 q h n n s

10 y m n r n
11 y m y r n
12 y h n r n
13 y h y r n
14 p m n r n
15 p m y r n
16 p h n r n
17 p h y r n
18 p h y n n
19 q m n r n
20 q m n n n
21 q m y r n
22 q h n r n
23 q h y r n
24 q h y n n

After Pawlak [9] let us consider the following decision table (see Tab. 1). The at-
tributes and their domains are as follows:

– A1 := age; D1 = {y, p, q}, where: y – young, p – pre-presbyotic, q – presbyotic,
– A2 := spectacle; D2 = {m, h}, where: m – myope, h – hypermyope,
– A3 := astigmatic; D3 = {n, y}, where: n – no, y – yes,
– A4 := tear production rate; D4 = {r, n}, where: r – reduced, n – normal,
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– D := type of contact lenses (decision attribute); DD = {h, s, n}, where: h – hard
contact lenses, s – soft contact lenses, n – no contact lenses.

The considered table is complete and deterministic. Methods based on the rough set
theory can be used to reduce such a decision table. The reduction algorithm consists
in the elimination of conditions from a decision table, which are unnecessary to make
decisions specified in the table. Finally, a table with only nine decision rules can be
received (see Tab.2).

Table 2. The reduced form of the Optician Decision Table (using rough set approach)

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y – y n h
2 – m y n h

3 y – n n s
4 p – n n s
5 – h n n s

6 – – – r n
7 p h y – n
8 q h y – n
9 q m n – n

If granular sets and relations are considered further reduction is possible. The most
reduced form of the considered decision table is presented in Tab. 3. The third and sixth
row contains non-atomic values of the attribute Age.

Table 3. The reduced form of the Optician Decision Table

Number Age Spectacle Astigmatic Tear p.r. Decision

1 y – y n h
2 – m y n h

3 {y, p} – n n s
4 – h n n s

5 – – – r n
6 {p, q} h y – n
7 q m n – n

Row 3 of table 3 is the result of gluing rows 3 and 4 of table 2. Similarly, row 6 of
table 3 is the result of gluing rows 7 and 8 of table 2.

6 Summary

The paper presents a concept of granular knowledge representation and manipulation.
The key notions discussed here are the one of granular set and granular relation, both
of them base on the idea of s-partition of a set. It has been shown that granular sets and
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relations can be applied to develop granular knowledge representation systems, which
enable to represent knowledge in more condense form.

The granular approach presented in the paper can be used for efficient knowledge
representation in rule-based systems [7]. Some directions of possible future works in-
clude development of efficient algorithms for verification of theoretical properties, such
as subsumption among rules, completeness of sets of rules, possibility of reduction, etc.
Moreover, further extensions of granular attributive logic are also explored [8].
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Abstract. Flow graph (FG) is a new mathematical model which can be
used for representing, analyzing, and discovering knowledge in databases.
Due to its well-structured characteristics of network, FG is naturally con-
sistent with granular computing (GrC). Meanwhile, GrC provides us with
both structured thinking at the philosophical level and structured prob-
lem solving at the practical level. In this paper, the relationship between
FG and GrC will be discussed from three aspects under GrC at first,
and then inference and reformation in FG can be easily implemented in
virtue of decomposition and composition of granules, respectively. As a
result of inference and reformation, the reformed FG is a reduction of
the original one.

Keywords: Flow Graphs, Granular Computing, Reduction.

1 Introduction

Recently, Pawlak introduced flow graphs(shortly, FG), which is a new graphical
model for representing knowledge and reasoning data, in his initiated paper [7].
After then, series of related papers, such as [8,9,10,11,12,13], continuously have
been put forward to place emphasis upon its importance in data analysis. In
these literatures, Pawlak have discussed the relationships among FG, rough sets,
decision systems, Bayes’ theorem, data mining and decision tree in theory aspects
and these works pave the way for application of FG in many fields [13]. For
instance, FG was linked up with decision systems in [9,11] and [8], and tied up
with rough sets in his recent paper [12].

Instead of optimal flow, FG is in pursuit of information flow distribution
study in quantified view. It is also a graph representation of decision algorithm
in some ways. In FG, each node denotes one element set and branch describes
flow distribution between nodes. In addition, every path from the root to a
leaf is a decision rule, and a FG is the set of decision rules. Each branch or
path associates with three coefficients, i.e., the strength, certainty and coverage
factors. Moreover, these information flow distributions in FG are governed by
Bayes’ formula and abide by flow conservation equations [12].

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 261–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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As a mathematical model of finding and mining knowledge, FG has some
advantages, such as intuitional representation, straightforward computation, ex-
plicit relations and parallel processing. Owing to these, FG has been received
much considers by researchers after it was proposed. For example, Butz et al.
argued that a FG can be transformed into a Bayesian network in polynomial
times [1]. In addition, they figured out that flow graph inference algorithm has
exponential complexity and then presented a polynomial time complexity algo-
rithm for inference in FG [2]. While Kostek and Czyzewski successfully applied
FG in musical metadata retrieval, in order to improve its efficiency [3,4].

Although quantification measures play important roles in data mining, how-
ever, qualitative analysis is also necessary. The main reason is that it can depict
accurately the complex problems using less information and make a reason-
ing from data efficiently. Based on this fact, Sun et al. proposed an extended
FG(shortly, EFG) in [16], which can exactly describe the relationships among
nodes in network. This extension of FG not only has the capability of FG in
the quantification aspect, but also can be interpreted by information systems
or granular computing(GrC) from qualitative view. Motivated by the practical
needs for simplification, clarity, low cost, approximation, and tolerance of un-
certainty, GrC is more about a philosophical way of thinking and a practical
methodology of problem solving deeply rooted in human mind. By effectively
using levels of granularity, GrC provides a systematic, natural way to analyze,
understand, represent, and solve real world problems [21].

Due to its well-structural network, EFG is consistent with granular comput-
ing(GrC) in natural way [17]. In this paper, we will firstly investigate to the
relationship between EFG and GrC from three aspects in GrC, namely, granula-
tion of the universe, relationships of granules and computing with granules [22].
As we know, reasoning from data is very vital in data mining and it determines
whether the model is practicable and acceptable by users or not. However, it is
more preferable if FG can employ less data and compact structure to reasoning
data without loss of its power. There is no exception to our cases. We will discuss
some issues of inference and reformation in FG in details under the framework
of GrC later, and corresponding algorithms will also be given. After performed
decoding and encoding of nodes one after the other, a new EFG, which is a
reduction of the original one, can be achieved.

The structure of the rest is organized as follows. Section 2 briefly recalls
some concepts of flow graph and its extension. In Section 3, the relationship
between EFG and GrC will be discussed. Section 4 presents the inference and
reformation procedures in EFG according to decomposition and composition
on granules, respectively. Moreover, the corresponding algorithms will be given.
Finally, some concluding remarks are shown in Section 5.

2 Flow Graphs and Its Extension

In this section, some concepts of flow graph and its extension will be recalled
briefly. More notations can be consulted [10] and [16].
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A flow graph (FG) is a directed, acyclic, finite graph G = (N,B, ϕ), where N
is a set of nodes, B ⊆ N ×N is a set of directed branches, ϕ : B → R+ is a flow
function and R+ is the set of non-negative reals [10].

If (n, n′)∈B then n is an input of n′ and n′ is an output of n. ϕ(n, n′) is the
throughflow from n to n′. I(n) and O(n) are the sets of all inputs or outputs of
n, respectively, that is, I(n)={n′∈N |(n′, n)∈B} and O(n)={n′∈N |(n, n′)∈B}.
For each node n in FG, its inflow and outflow are ϕ+(n)=

∑
n′∈I(n) ϕ(n′, n) and

ϕ−(n)=
∑

n′∈O(n) ϕ(n, n′), respectively.
From these definitions, we have the fact that FG is a quantification graph, that

is, it represents simply relations among nodes using information flow distribu-
tion. Although some valuable results can be achieved using quantitative factors,
however, it is not sufficient to depict concretely and exactly relationships among
nodes. In addition, qualitative factors, as well as quantitative ones, play very
important roles in data mining for they can bring more reasonable outcomes to
data analysis. Therefore, an extension of FG has been proposed in [16] according
to the information or objects flowing in the network.

An extension of flow graph (EFG) is a directed, acyclic, finite graph G=(E,N,
B, ϕ, α, β), where E and N are the set of objects and nodes respectively. B⊆N×N
is directed branches set, ϕ:B→2E is the set of objects which flow through branches
and α, β : B→[0, 1] are thresholds of certainty and decision, respectively.

Node n is input(father) of n′, if (n, n′) ∈ B. Likewise, n′ is output(child) of
n. The sets of fathers and children of node n denote respectively as I(n) and
O(n) as defined in FG. A node n is called a root if I(n) = ∅ holds and n is a
leaf if O(n) = ∅. n is a internal node if n is neither a root nor a leaf. The inflow
and outflow of node n are respectively defined as ϕ+(n) =

⋃
n′∈I(n) ϕ(n′, n)

and ϕ−(n) =
⋃

n′∈O(n) ϕ(n, n′). In addition, we assume that for any internal
node n, ϕ(n) = ϕ+(n) = ϕ−(n) in EFG. Similarly, Input and output of G are
I(G) = {n ∈ N |I(n) = ∅} and O(G) = {n ∈ N |O(n) = ∅}, respectively.

In an EFG G, each branch (n, n′) ∈ B is also associate with three factors,
i.e., strength, certainty and coverage. A directed path from n to n′, denoted by
[n...n′], is a sequence of nodes n, ..., n′, where (ni, ni+1) ∈ B for 1 ≤ i ≤ m− 1,
n1 = n, nm = n′ and

⋂m
i=1 ϕ(ni, ni+1) �= ∅. What’s more, the support of the

path [n1...nm] is ϕ(n1...nm) =
⋂m

i=1 ϕ(ni, ni+1). Interested readers can consult
Ref. [16] to get more about EFG.

The related definitions about EFG tell us that if we only cast our lights on
quantity of objects flowing through branches in G rather than concrete objects,
i.e. |ϕ(ni, nj)|/|E|, and α = 0, β = 0, then the EFG can be degraded into FG,
where |X | is the cardinality of X . That is, an EFG has the capability of FG.

For convenience, in this paper, we assume that an EFG is organized as several
layers. In the same layer, there does not exist any branch among nodes and one
object only belongs to one node, that is, branch only exists between nodes in
different layers. In addition, if (n, n′) ∈ B in EFG, then ϕ(ni, nj) �= ∅.

Example 1. Six patients have been arranged into four groups(five layers) accord-
ing to different symptoms, such as temperature, headache, muscle pain and flu, in
testing whether a patient has catched flu or not, and its corresponding EFG G =
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Fig. 1. An EFG G

(E,N,B, ϕ, α, β) is presented in Fig. 1, where E = {p1, p2, p3, p4, p5, p6}, N =
{n01, n11, n12, n13, n21, n22, n31, n32} ∪ {n41, n42}, α = 0, β = 0.

In this EFG, the root of G is n01 and leaves are n41 and n42. The input and
output of node n21 are I(n21) = {n11, n12} and O(n21) = {n31, n32}, respectively.
With branch (n11, n21) ∈ B, its throughflow, ϕ(n11, n21) = {p2, p5}, denotes
the temperature of patients p2 and p5 is high and they have headache. For
node n21, its inflow is ϕ+(n21) = ϕ(n11, n21) ∪ ϕ(n12, n21) = {p2, p3, p5} and
outflow is ϕ−(n21) = ϕ(n21, n31) ∪ ϕ(n21, n32) = {p2, p3, p5}, i.e., ϕ(n21) =
ϕ+(n21) = ϕ−(n21). In addition, the sequence of n01, n12, n21, n32 is a path
and its degrees of certainty and coverage are cer(n01, n12, n21, n32) = 1 and
cov(n01, n12, n21, n32) = 1/4, respectively. ��

3 Relationship Between EFG and GrC

As a tool of data analysis in data mining, FG has been interpreted by deci-
sion algorithms, probability and rough sets [12]. Since EFG has some excellent
formal features in describing information flow and shares some common with
GrC in structural way, however, the relationship between EFG and GrC will be
investigated in this section.

3.1 Granulation

With respect to a layer l ∈ L in EFG G, two objects x, y ∈ E may flow through
the same node n, i.e., x, y ∈ ϕ(n). In this case, one can not distinguish x and y
according to n ∈ l. This means that x, y can be grouped into a granule.

Definition 1. Let G = (E,N,B, ϕ, α, β) be an EFG, if x, y ∈ E flow through
n ∈ N , i.e., x, y ∈ ϕ(n), then we will say x, y belong to the same granule g(n),
denoted as a pair (n,m(n)), where n and m(n) are the descriptor and meanings
of the granule, respectively, and x, y ∈ m(n).

In other words, the meanings of the granule g(n) consist of all objects flowing
through node n, i.e., the equation m(n) = ϕ(n) holds for ∀n ∈ N in EFG.
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Definition 2. Let G = (E,N,B, ϕ, α, β) be an EFG, a granule g(n) will be
called an element granule if n is an single node, i.e., n ∈ N .

As we know, each object x ∈ E only flows through one node in layer l in EFG.
Therefore, the family of granules F ({l}) = {g(n)|m(n) �= ∅, ∀n ∈ l} forms a
partition over E, denoted by E/l, and its corresponding equivalence relation Rl

on E is xRly ⇔ x ∈ m(n) ∧ y ∈ m(n) ∧ n ∈ l. In addition, the equivalence class
of x with reference to Rl is [x]Rl

= {y ∈ E|xRly} and each [x]Rl
is a granule,

i.e., g(n) = (n, [x]Rl
), where n ∈ Rl.

Definition 3. Let g(n), g(n′) be two granules, the combined granule g(n∧n′) of
the granules is g(n ∧ n′) = g(n ∧ n′,m(n) ∩m(n′)).

In EFG G, each node is an element granule. Thus, the combined granule of two
element granules, e.g. n and n′, is the branch (n, n′) and its meanings is the
flowthrough ϕ(n, n′). In other words, every node or branch in EFG is a granule.
Furthermore, each path is also considered as a granule by combining the nodes
and branches and its flowthrough is the meanings of the granule. For example,
let [n...n′, n′′] be a path, then ϕ(n...n′, n′′) = ϕ(n...n′)∩ϕ(n′′) holds. This means
that the granule g(n ∧ ... ∧ n′ ∧ n′′) consists of the granules g(n ∧ ... ∧ n′) and
g(n′′) and its meanings m(n ∧ ... ∧ n′ ∧ n′′) = ϕ(n...n′, n′′).

In EFG G, l, l′ ∈ L are different layers. Since m(n ∧ n′) = ϕ(n) ∩ ϕ(n′) holds
for any n ∈ l, n′ ∈ l′, the family of granules F ({l, l′}) = {g(n, n′)|m(n, n′) �=
∅, ∀n ∈ l ∧ ∀n′ ∈ l′} also forms a partition E/{l, l′} over E.

Definition 4. A granule g(n) is finer than granule g(n′), denoted as g(n) ⊆
g(n′), if m(n) ⊆ m(n′). A family of granules F (L) is finer that another F (L′),
denoted as F (L) ⊆ F (L′), if there exists a granule g(n′) in F (L′) for granule
∀g(n) ∈ F (L), such that g(n) ⊆ g(n′).

Obviously, F (L) ⊆ F (L′), if L′ ⊆ L. In the light of Def. 3, we have the fact that
the longer the path is, the less of the flowthrough and the finer the corresponding
granule is. What’s more, the all paths, which start at the root in EFG, with the
same length compose a partition on E.

Example 2. (cont.) In Fig.1, temperature(l1), headache(l2), muscle pain(l3) and
flu(l4) form four partitions over E and its granules are shown below:
l1 : g(n11)=(n11, {p1, p2, p5}), g(n12)=(n12, {p4}), g(n13) = (n12, {p3, p6});
l2 : g(n21) = (n21, {p2, p3, p5}), g(n22) = (n22, {p1, p4, p6});
l3 : g(n31) = (n31, {p2, p5}), g(n32) = (n32, {p1, p3, p4, p6});
l4 : g(n41) = (n41, {p1, p2, p3, p6}), g(n42) = (n42, {p4, p5});
The meanings of granules with respect to L′ = {l1, l2} and L′′ = {l1, l2, l3} are
L′ : m(n11 ∧ n21) = {p2, p5}, m(n11 ∧ n22) = {p1}, m(n12 ∧ n22) = {p4},

m(n13 ∧ n21) = {p3}, m(n13 ∧ n22) = {p6}
L′′ : m(n11 ∧ n21 ∧ n31) = {p2, p5}, m(n11 ∧ n22 ∧ n32) = {p1},

m(n12∧n22∧n32)={p4}, m(n13∧n21∧n32)={p3}, m(n13∧n22∧n32)={p6}.
Obviously, the granules in g(L′′) are finer than those in g(L′). ��
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3.2 Decomposition and Composition of Granules

Decomposition and composition in problem-solving are necessary capabilities for
granules, because these operations can carry the point to traverse views among
different levels of granularity. In GrC, Granule decomposition deals with the
change from a coarse granule to finer ones in order to provide more details for
data analysis, whereas composition deals with the shift from several fine granules
to a coarser one to make distinct granules no longer differentiable by discarding
some details [21]. However, there is no exception in EFG.

According to the analysis in subsection 3.1, we know that the granule model
of EFG is a partition one [20] and the switch from one to another can be easily
achieved under the framework of quotient space theory [23]. When a granule is
decomposing into several ones, more details or extra information are needed. As
a result, the new granules are usually finer than their father. In addition, infor-
mation is represented as layers in EFG and each layer divides E into a partition
according to Def.2. Hence, granule decomposition is in fact that granules in one
partition are broken down into finer ones by using those granules in another
partition, and the finer granules in EFG are, the more layers are required.

Definition 5. In GrC model of EFG, granules decomposition function is a map-
ping Dec : F×F→F , where F is the family of granules which compose a partition
over E, that is,

⋃
g(n)∈F m(n)=E and m(n)∩m(n′)=∅ for ∀g(n), g(n′)∈F .

Example 3. (cont.) Assume that partitions F ({l1, l2}) and F ({l3}) are known.
Since F ({l1, l2}) is too coarse, we can use F ({l3}) to divide it into finer one,
F (L′′), as shown in Example 2. ��

On the contrary, granule composition is the procedure that extracts the common
information from granules regardless of distinct ones for the purpose of gener-
alization from specificity. In EFG, the common information means that the de-
scriptors of granules contain in one same layer, that is, the corresponding paths
have the same sub-path. For example, one granule g(n11) is the composition of
granules g(n11 ∧ n21) and g(n11 ∧ n32) for they share the common information
temperature, where n11 ∈ l1 is a node in temperature layer in Example 2.

Definition 6. In GrC model of EFG, granules composition function is a map-
ping Com : F→F×F , where F is the family of granules which compose a parti-
tion over E, that is,

⋃
g(n)∈F m(n)=E and m(n)∩m(n′)=∅ for ∀g(n), g(n′)∈F .

In EFG, the size of a partition F (L∪L′) on E denotes how much the knowledge
we have. So the function Com gets the shared knowledge F (L) from all granules
in F (L ∪ L′) and changes the former knowledge into a coarser one F (L′) at
the same time. Since Dec and Com work under a partition of granule model,
they are the special cases of binary neighborhood relations [5]. Usually, g(n) ∈
Dec(Com(g(n))) and g(n) = Com(Dec(g(n))) hold for granule g(n).
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4 Inference and Reformation in EFG

In GrC model of EFG, a directed path represents a granule and the longer the
path, the finer the granule. Thus a nested granulations hierarchy is constituted
by all granules corresponding to paths starting from the root. Hereafter, granules
denote those paths stemming from the root in this paper and leaves are arranged
in decision layer DL and others in condition layers CL. An EFG is the graph
model of rules in some way. Each path from the root to a leaf is a decision
rule, where the leaf is the decision part and others belong to the condition part.
Inference in EFG in fact is a procedure of granule decomposition. According to
Def. 3, Def. 4 and Def. 5, we can immediately obtain the following proposition.

Proposition 1. In GrC model of EFG, F (L ∪ {l})=Dec(F (L), F ({l})), where
L⊆CL, l∈CL and F (L), F ({l}) are families of granules generated by L and {l},
respectively.

In the granules hierarchy, the granules in the same layer form a partition over
E and the granules in the i-th layer are finer than those in j-th layer if i > j.
Moreover, a granule in high levels can be split into several disjoint finer granules
in the next levels by granule decomposition, that is, the inference can be easily
achieved by employing granule decomposition. Meanwhile, more details about
the granule can be obtained. Based on this fact, granules decomposition (or
composition) can be implemented in top-down (or bottom-up) method.

The main idea of the inference is that E has been parted by the root firstly,
and then the partition F (L) is divided by layer {l}∈CL, step by step, into a
new one F ({l}∪L). If a granule g(n)∈F ({l}∪L) is finer than a decision granule
g(n′)⊆F (DL), then g(n) will be removed from F ({l}∪L), otherwise it would be
divided farther. The algorithm will be terminated when all granules are classified
or all layers in CL are used out. More details about inference are given in Alg. 1.

In contrast, the common knowledge F ({l}) can also be drawn from the spec-
ified knowledge F (L∪ {l}) by granule composition. Similarly, the following fact
holds in the light of Def. 3, Def. 4 and Def. 6.

Proposition 2. In GrC model of EFG, Com(F (L∪{l}))=(F (L), F ({l})),
where L⊆CL, l∈CL and F ({l}) is the family of coarse granules(i.e., common
knowledge) generated {l} and F (L) is the knowledge without common knowledge
with respect to l.

According to this proposition, a hierarchy graph can be constructed by continu-
ously granule composition, where each layer means the common knowledge and
different knowledge lies in different layers. In the process of composition, coarser
granules can be created and put into a higher abstract level regardless of some
inessential information from several ones in the same layer. However, this is also
the thought of reformation of EFG(Alg. 2). The Alg. 2 begins from the finest
granules F (L ∪ {l})), and then extracts continuously their common knowledge
F ({l}) which forms a new layer l in EFG. The algorithm will be ended if there
is no different knowledge in F (L), i.e., |L| = 1.
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Algorithm 1. Inference algorithm in EFG
Input : An EFG G = (E, N, B, ϕ, α, β).
Output: A new EFG G′ = (E, N ′, B′, ϕ, α, β).
F (L) = {E}; F (DL) = {g(n)|n ∈ N is a leaf}; B′ = ∅; N ′ = {n|n ∈ N is a leaf};
while F (L) �= ∅ and CL �= ∅ do

F (L) = F (L ∪ {l}); CL = CL− {l}; //Select l from CL to part F (L) ;
for ∀g(n) ∈ F (L) do

If ∃g(n′) ∈ F (DL) and g(n) ⊆ g(n′) then
F (L) = F (L)− {g(n)}; N ′ = N ′ ∪ {n}; B′ = B′ ∪ {(n, n′)};

end
end
if F (L) �= ∅ and CL = ∅ then

//In this case, there exists inconsistent path in EFG ;
for ∀g(n) ∈ F (L) do

If ∃g(n′) ∈ F (DL) and g(n) ∩ g(n′) �= ∅ then B′ = B′ ∪ {(n, n′)};
N ′ = N ′ ∪ {n}; F (L) = F (L)− {g(n)};

end
end

Algorithm 2. Reformation algorithm in EFG
Input : An EFG G = (E, N, B, ϕ, α, β).
Output: A reformed EFG G′ = (E,N ′, B′, ϕ, α, β).
B′ = B; N ′ = N ; F (CL) = {g(n)|n ∈ CL} ;
while |CL| �= 1 do

l = first(CL); CL = CL− {l}; // i.e., CL = {l} ∪ L;
for ∀g(n ∧ n′) ∈ F (CL) do

if n ∈ l then
F (CL) = F (CL)− {g(n ∧ n′)}; F (CL) = F (CL) ∪ {g(n)} ∪ {g(n′)} ;
N ′ = N ′ ∪ {n}; B′ = B′ ∪ {(n, n′)} ;
for ∀(n′′, n ∧ n′) ∈ B′ do B′ = B′ ∪ {(n′′, n)} ;

end
end

end

Since the number of granules in each layer is at most |E|, the cost of granule
decomposition is |E|2, and Alg. 1 takes less |CL| times iteration before it stops.
Thus, the time complexity of Alg. 1 is O(|E|2|CL|). Likewise, the complexity of
Alg. 2 is O(|E|2|CL|).

If the Alg. 1 firstly is performed on an EFG, and then the Alg. 2 is employed, a
new EFG can be obtained. Meanwhile, the new EFG is a reduction of the original
one, because some redundant information(i.e., node) will not be considered in
the Alg. 1(If statement). However, if more strict constraints are imposed on
statement ‘F (L)=F (L∪l)’, the minimal reduct of the EFG could be achieved.



Inference and Reformation in Flow Graphs Using Granular Computing 269

Example 4. (cont.) Let G be an EFG in Fig. 1, the inferred EFG is given in
the left of Fig. 2 after the Alg. 1 is performed. As a result of Alg. 2 being carried
out on the left EFG, the right is one of the reducts of the original EFG. ��

Fig. 2. A inferred EFG(left) and a reduct of the EFG(right)

5 Conclusion

An EFG is a graph model of decision algorithm, in which each path from the root
to a leaf represents a rule. In virtue of its well-structured representation, EFG has
a close relationship with GrC. As one of purposes of this paper, a interpretation
of EFG using GrC is given. In GrC model of EFG, each node, branch or path
represents a granule, and the meaning of the granule is the flowthrough of its
corresponding path. Moreover, the granules, whose corresponding path starts
from the root of EFG, form a hierarchy. In this hierarchy, the granules with
respect to the same length path are arranged in the same layer and are getting
finer along with the depth of the hierarchy.

Thanks to the GrC model of EFG, which is a partition one, the transformation
among granules in different layers can be freely achieved by granule composition
and decomposition without loss of any knowledge. As a result of the granule
composition and decomposition, inference and reformation in EFG, which is
another objective of this paper, can be easily implemented and the corresponding
algorithms are also presented. Furthermore, if the inference and reformation
operations are successionally performed on an EFG, one of the reductions of the
original one can be yielded.
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Abstract. Granular Computing as a paradigm in Approximate Reason-
ing is concerned with granulation of available knowledge into granules
that consists of entities similar in information content with respect to a
chosen measure and with computing on such granules. Thus, operators
acting on entities in a considered universe should factor through granu-
lar structures giving values similar to values of same operators in non–
granular environment. Within rough set theory, proposed 25 years ago
by Zdzis�law Pawlak and developed thence by many authors, granulation
is also a vital area of research. The first author developed a calculus with
granules as well as a granulation technique based on similarity measures
called rough inclusions along with a hypothesis that granules induced
in data set universe of objects should lead to new objects representing
them, and such granular counterparts should preserve information con-
tent in data. In this work, this hypothesis is tested with missing values
in data and results confirm the hypothesis in this context.

Keywords: rough sets, decision systems, missing values, granules of
knowledge, rough inclusions, granular decision systems.

1 Rough Computing

Rough sets are centered about the notion of indiscernibility[7]: entities with
same description are regarded as identical. In practical terms, when knowledge
is encoded in an information system (U,A) where U is a set of entities and A
is a set of attributes, with each a : U → Va a mapping on U into a value set,
indiscernibility is given as an equivalence ind(a) = {(u, v) : u, v ∈ U, a(u) =
a(v)} for each a ∈ A, with extensions of the form ind(B) =

⋂
a∈B ind(a) for any

B ⊆ A.
Rough computing is usually performed with descriptors of the form (a = v),

v ∈ Va, interpreted as sets [(a = v)] = {u ∈ U : a(u) = v}; descriptors extend
to descriptor formulas that form the smallest set containing all descriptors and
closed on the action of propositional connectives ∨,∧,¬,⇒; descriptor formulas
are interpreted via identities [

∧
i(ai = vi)]=

⋂
i[(ai = vi)], [

∨
i(ai = vi)]=

⋃
i[(ai =

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 271–279, 2007.
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vi)], [¬(a = v)]=U \ [(a = v)]. Decision systems are information systems of the
form (U,A ∪ {d}), where d, the decision, is an attribute not in A; relations
between the conditional knowledge (U,A) and the world knowledge (U, d) are
expressed by means of decision rules of the form

∧
i(ai = vi)⇒ (d = v); a set of

decision rules is a classifier; its aim is to recognize decision classes of new entities
on the basis of their conditional values.

2 Missing Values

An information/decision system is incomplete in case some values of conditional
attributes from A are not known; some authors, e.g., Grzymala–Busse [2] make
distinction between values that are lost (denoted ?), i.e., they were not recorded
or were destroyed in spite of their importance for classification, and values that
are missing (denoted ∗) as those values that are not essential for classification.
Here, we regard all lacking values as missing without making any distinction
among them denoting all of them with ∗. Analysis of systems with missing
values requires a decision on how to treat missing values; Grzymala–Busse in his
work [2], analyzes nine such methods known in the literature, among them, 1.
most common attribute value, 2. concept–restricted most common attribute value,
(...), 4. assigning all possible values to the missing location, (...), 9. treating the
unknown value as a new valid value. Results of tests presented in [2] indicate
that methods 4,9 perform very well among all nine methods. For this reason we
adopt these methods in this work for the treatment of missing values and they
are combined in our work with a modified method 1: the missing value is defined
as the most frequent value in the granule closest to the object with the missing
value with respect to a chosen rough inclusion.

Analysis of decision systems with missing data in existing rough set literature
relies on an appropriate treatment of indiscernibility: one has to reflect in this re-
lation the fact that some values acquire a distinct character and must be treated
separately; in case of missing or lost values, the relation of indiscernibility is usu-
ally replaced with a new relation called a characteristic relation. Examples of
such characteristic functions are given in, e.g., Grzymala–Busse [3]: the function
ρ is introduced, with ρ(u, a) = v meaning that the attribute a takes on u the
value v. Semantics of descriptors is changed, viz., the meaning [(a = v)] has as el-
ements all u such that ρ(u, a) = v, in case ρ(u, a) =? the entity u is not included
into [(a = v)], and in case ρ(u, a) = ∗, the entity u is included into [(a = v)]
for all values v �= ∗, ?. Then the characteristic relation is R(B) = {(u, v) : ∀.a ∈
B.ρ(u, a) =? ⇒ (ρ(u, a) = ρ(v, a) ∨ ρ(u, a) = ∗ ∨ ρ(v, a) = ∗)}, where B ⊆ A.
Classes of the relation R(B) are then used in defining approximations to decision
classes from which certain and possible rules are induced, see [3]. Specializations
of the characteristic relation R(B) were defined in Stefanowski–Tsoukias [18] (in
case of only lost values) and in Kryszkiewicz [4](in case of only don’t care miss-
ing values). An analysis of the problem of missing values along with algorithms
IApriori Certain and IAprioriPossible for certain and possible rule generation
was given in [5].
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3 Granules of Knowledge and Granular
Information/Decision Systems

Granulation of knowledge is a topic studied recently to much extent within
rough set theory, see, e.g., [14],[15]. We describe briefly a method for inducing
granules [10], [11] which consists in selecting a rough inclusion μ (see op.cit.),
and r ∈ [0, 1].

3.1 Rough Inclusions

Generally they are predicates of the form μ(u, v, r), where u, v ∈ U satisfying
conditions, 1. μ(u, u, 1);2. if μ(u, v, 1) then for each w ∈ U , from μ(w, u, r) it
follows μ(w, v, r); 3. if μ(u, v, r) and s < r then μ(u, v, s). For an analysis of
various methods for inducing rough inclusions see, e.g., [10], [11]. In this work
we will use exclusively the rough inclusion μL(u, v, r) satisfied if and only if
|IND(u,v)|

|A| ≥ r, where IND(u, v) = {a ∈ A : a(u) = a(v)}, induced by the
�Lukasiewicz implication (see, e.g., [10],[11]).

3.2 On Granule Formation

For a rough inclusion μ, u ∈ U , and r ∈ [0, 1], the granule gμ(u, r) is defined as
the class Cls{v : μ(v, u, r)}, where Cls is the class forming functor of mereology,
see, e.g., [10],[11]; for the purpose of this work, one may assume that gμ(u, r) is
the list or the set of all v such that μ(v, u, r). In this work, granules are formed
only by means of μL. In plain words, the granule gμL(u, r) consists of all v ∈ U
with the property that |IND(v, u)| ≥ r · |A|, i.e., v, u have identical values of at
least r · 100 percent of attributes in A.

3.3 Granular Information/Decision Systems

The idea of a granular decision system was posed in [10]; for a given information
system (U,A), a rough inclusion μ, and r ∈ [0, 1], the new universe UG

r,μ is given,
whose elements are granules of the radius r about objects u ∈ U . We apply a
strategy G to choose a covering CovG

r,μ of the universe U by granules from UG
r,μ.

We apply a strategy S in order to assign the value a∗(g) of each attribute
a ∈ A to each granule g ∈ CovG

r,μ: a∗(g) = S({a(u) : u ∈ g}). The granular
counterpart to the information system (U,A) is a tuple (UG

r,μ,G,S, {a∗ : a ∈ A});
analogously, we define granular counterparts to decision systems by adding the
factored decision d∗. The heuristic principle that objects, similar with respect
to conditional attributes in the set A, should also reveal similar (i.e., close)
decision values, and therefore, granular counterparts to decision systems should
lead to classifiers satisfactorily close in quality to those induced from original
decision systems, was stated in [10], and borne out by simple hand examples. The
hypothesis has been confirmed in [12] and in this work we apply this hypothesis
to the problem of missing values.
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4 An Approach to Missing Values in This Work

We will use the symbol ∗ commonly used for denoting the missing value; we will
use two methods 4, 9 for treating ∗, i.e, either ∗ is a don’t care symbol meaning
that any value of the respective attribute can be substituted for ∗,thus ∗ = v for
each value v of the attribute, or ∗ is a new value on its own, i.e., if ∗ = v then v
can be only ∗.

Our procedure for treating missing values is based on the granular structure
(UG

r,μ,G,S, {a∗ : a ∈ A}); the strategy S is the majority voting, i.e., for each
attribute a, the value a∗(g) is the most frequent of values in {a(u) : u ∈ g}, with
ties broken randomly. The strategy G consists in random selection of granules
for a covering.

For an object u with the value of ∗ at an attribute a, and a granule g =
g(v, r) ∈ UG

r,μ, the question whether u is included in g is resolved according
to the adopted strategy of treating ∗: in case ∗ = don′t care, the value of ∗
is regarded as identical with any value of a hence |IND(u, v)| is automatically
increased by 1, which increases the granule; in case ∗ = ∗, the granule size is
decreased. Assuming that ∗ is sparse in data, majority voting on g would produce
values of a∗ distinct from ∗ in most cases; nevertheless the value of ∗ may appear
in new objects g∗, and then in the process of classification, such value is repaired
by means of the granule closest to g∗ with respect to the rough inclusion μL, in
accordance with the chosen method for treating ∗.

In plain words, objects with missing values are in a sense absorbed by close
to them granules and missing values are replaced with most frequent values in
objects collected in the granule; in this way the method 4 or 9 in [3] is combined
with the idea of the most frequent value 1, in a novel way.

We have thus four possible strategies:

– Strategy A: in building granules ∗=don’t care, in repairing values of ∗,
∗=don’t care;

– Strategy B: in building granules ∗=don’t care, in repairing values of ∗, ∗ = ∗;
– Strategy C: in building granules ∗ = ∗, in repairing values of ∗, ∗=don’t care;
– Strategy D: in building granules ∗ = ∗, in repairing values of ∗, ∗ = ∗.

As data set used in experiments, Pima Indians diabetes data set [19] has been
used. We first show results for this data set in granular and non–granular cases
without missing values in Table 1, see [12] for a discussion of this method in
more detail; then a randomly chosen collection of 10 percent of attribute val-
ues in the data set are replaced with ∗ values. Results of granular treatment in
case of Strategies A,B,C,D are reported in Tables 2,3,4,5. As algorithm for rule
induction, the exhaustive algorithm of the RSES system [16] has been selected,
see, e.g., [1], [17], where the ideas implemented in the RSES package are dis-
cussed. 10–fold cross validation (CV–10) has been used to validate results of the
experiment.
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Table 1. 10-fold CV; Pima; exhaustive algorithm. r=radius,macc=mean accu-
racy,mcov=mean coverage,mrules=mean rule number, mtrn=mean size of granular
training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.0618 0.0895 5.9 22.5
0.250 0.6627 0.9948 450.1 120.6
0.375 0.6536 0.9987 3593.6 358.7
0.500 0.6645 1.0 6517.7 579.4
0.625 0.6877 0.9987 7583.6 683.1
0.750 0.6864 0.9987 7629.2 692
0.875 0.6864 0.9987 7629.2 692.0

Table 2. Strategy A for missing values. 10-fold CV; Pima; exhaustive algorithm.
r=radius, macc=mean accuracy, mcov=mean coverage, mrules=mean rule number,
mtrn=mean size of granular training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.0 0.0 0.0 1.7
0.250 0.0 0.0 0.0 4.7
0.375 0.0 0.0 0.0 21.5
0.500 0.3179 0.4777 115.8 64.7
0.625 0.6692 0.9987 1654.7 220.2
0.750 0.6697 1.0 5519.3 527.0
0.875 0.6678 0.9987 7078.8 663.8

Table 3. Strategy B for missing values. 10-fold CV; Pima; exhaustive algorithm.
r=radius,macc=mean accuracy, mcov=mean coverage, mrules=mean rule number,
mtrn=mean size of granular training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.0 0.0 0.0 1.9
0.250 0.0 0.0 0.0 6.1
0.375 0.0 0.0 0.0 13.7
0.500 0.5772 0.8883 210.7 68.1
0.625 0.6467 0.9987 1785.8 229.4
0.750 0.6587 0.9987 5350.4 508.5
0.875 0.6547 0.9987 6982.7 663.4
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Table 4. Strategy C for missing values. 10-fold CV; Pima; exhaustive algorithm.
r=radius,macc=mean accuracy, mcov=mean coverage, mrules=mean rule number,
mtrn=mean size of granular training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.0 0.0 0.0 21.2
0.250 0.6297 0.9948 388.9 116.9
0.375 0.6556 0.9974 3328.5 356.5
0.500 0.6433 1.0 6396.7 587.2
0.625 0.6621 1.0 7213.2 681.9
0.750 0.6640 0.9987 7306.3 691.9
0.875 0.6615 0.9987 7232.1 692.0

Table 5. Strategy D for missing values. 10-fold CV; Pima; exhaustive algorithm.
r=radius, macc=mean accuracy, mcov=mean coverage, mrules=mean rule number,
mtrn=mean size of granular training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629.2 692.0
0.0 0.0 0.0 0.0 1.0

0.125 0.1471 0.1750 12.0 17.3
0.250 0.6572 0.9974 382.1 114.9
0.375 0.6491 0.9974 3400.3 355.0
0.500 0.6370 0.9974 6300.2 588.7
0.625 0.6747 0.9987 7181.2 682.3
0.750 0.6724 1.0 7231.3 691.9
0.875 0.6618 1.0 7253.6 692.0

5 Case of Real Data with Missing Values

We include results of tests with Breast cancer data set [19] that contains missing
values. We show in Tables 6, 7, 8, 9 results for intermediate values of radii of
granulation for strategies A,B,C,D and exhaustive algorithm of RSES [16]. For
comparison, results on error in classification by the endowed system LERS from
[2] for approaches similar to our strategies A and D (methods 4 and 9, resp., in
Tables 2 and 3 in [2]) in which ∗ is either always ∗ (method 9) or ∗ is always
don’t care (method 4) are recalled in Tables 6 and 9. We have applied here the
1-train–and–9 test, i.e., the data set is split randomly into 10 equal parts and
training set is one part whereas the rules are tested on each of remaining 9 parts
separately and results are averaged.

5.1 Conclusions on Test Results

In case of perturbed Pima Indians diabetes data set, Strategy A attains accuracy
value better than 97 percent and coverage value greater or equal to values in
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Table 6. Breast cancer data set with missing values. Strategy A: r=granule radius,
mtrn= mean granular training sample size, macc=mean accuracy, mcov=mean cover-
ing, gb=LERS method 4,[2]

r mtrn macc mcov gb

0.555556 9 0.7640 1.0 0.7148
0.666667 14 0.7637 1.0
0.777778 17 0.7129 1.0
0.888889 25 0.7484 1.0

Table 7. Breast cancer data set with missing values. Strategy B: r=granule radius,
mtrn= mean granular training sample size, macc=mean accuracy, mcov=mean covering

r mtrn macc mcov

0.555556 7 0.0 0.0
0.666667 13 0.7290 1.0
0.777778 16 0.7366 1.0
0.888889 25 0.7520 1.0

Table 8. Breast cancer data set with missing values. Strategy C: r=granule radius,
mtrn= mean granular training sample size, macc=mean accuracy, mcov=mean covering

r mtrn macc mcov

0.555556 8 0.7132 1.0
0.666667 14 0.6247 1.0
0.777778 17 0.7328 1.0
0.888889 25 0.7484 1.0

Table 9. Breast cancer data set with missing values. Strategy D: r=granule radius,
mtrn= mean granular training sample size, macc=mean accuracy, mcov=mean cover-
ing, gb=LERS method 9,[2]

r mtrn macc mcov gb

0.555556 9 0.7057 1.0 0.6748
0.666667 16 0.7640 1.0
0.777778 17 0.6824 1.0
0.888889 25 0.7520 1.0

non–perturbed case from the radius of .625 on. With Strategy B, accuracy is
within 94 percent and coverage not smaller than values in non–perturbed case
from the radius of .625 on. Strategy C yields accuracy within 96.3 percent of
accuracy in non–perturbed case from the radius of .625, and within 95 percent
from the radius of .250; coverage is within 99.79 percent from the radius of .250.
Strategy D gives results slightly better than C with the same radii. Results for
C and D are better than results for A or B.
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Table 10. Average number of ∗ values in granular systems. 10-fold CV; Pima; exhaus-
tive algorithm. r=radius,mA=mean value for A, mB=mean value for B , mC=mean
value for C, mD=mean value for D

r mA mB mC mD

0.375 0.0 0.0 135 132
0.500 0.0 0.0 412 412
0.625 3 4 538 539
0.750 167 167 554 554
0.875 435 435 554 554

We conclude that essential for results of classification is the strategy of treating
the missing value of ∗ as ∗ = ∗ in both strategies C and D; the repairing strategy
has almost no effect: C and D differ with respect to this strategy but results for
accuracy and coverage in cases C and D differ very slightly.

Let us notice that strategies C and D cope with a larger number of ∗ values
to be repaired. Table 10 shows this.

In experiments with Breast cancer data set with missing values, best results
are obtained with ”pure” strategies A and D; strategy A gives accuracy of .7637
at r = .(6) and strategy D gives accuracy of .7640 at r = .(6), ”mixed” strategies
give best results at higher value of radius of .(7): .7474 in case of C and .7520 in
case of B.

6 Conclusions

The method proposed in this work for treatment of missing values that combines
either of two approaches, viz., ∗don’t care or ∗ = ∗ with the idea of absorbing
objects with missing values into granules consisting of objects close to them to a
degree specified by radii of granules, followed by the idea of replacing the missing
value with the most frequent value over the granule, has proved very effective in
the classification problem of data with missing values.

In the stage of repairing the missing value, strategies C and D proved most
effective. Essential for results of classification is the strategy of treating the
missing value of ∗ as ∗ = ∗ in building granules as witnessed by cases of strategies
C and D; strategies A and B give comparable results between them, implying
that when the strategy ∗=don’t care is used in building granules, then the choice
of a repairing strategy has no practical impact.

Further research will be focused on more refined ways of granule selection,
development of a granular algorithm for rule induction, and analysis of large
real data with missing values.
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Abstract. The paradigm of Granular Computing has quite recently
emerged as an area of research on its own; in particular, it is pursued
within rough set theory initiated by Zdzis�law Pawlak. Granules of knowl-
edge consist of entities with a similar in a sense information content. An
idea of a granular counterpart to a decision/information system has been
put forth, along with its consequence in the form of the hypothesis that
various operators, aimed at dealing with information, should factorize
sufficiently faithfully through granular structures [7], [8]. Most important
such operators are algorithms for inducing classifiers. We show results of
testing few well-known algorithms for classifier induction on well–used
data sets from Irvine Repository in order to verify the hypothesis. The
results confirm the hypothesis in case of selected representative algo-
rithms and open a new prospective area of research.

Keywords: rough inclusion, similarity, granulation of knowledge, gran-
ular systems and classifiers.

1 Rough Computing

Knowledge is represented as a pair (U,A), called an information system [4],
where U is a set of objects, and A is a collection of attributes, each a ∈ A
construed as a mapping a : U → Va from U into the value set Va. The collection
IND = {ind(a) : a ∈ A} of a–indiscernibility relations, where ind(a) = {(u, v) :
u, v ∈ U, a(u) = a(v)} for a ∈ A, can be restricted to any set B ⊆ A, yielding the
B–indiscernibility relation ind(B) =

⋂
a∈B ind(a) . A concept is any subset of the

set U . By a proper rough entity, we mean any entity e constructed from objects
in U and relations in R such that its action e ·u on each object u ∈ U satisfies the
condition: if (u, v) ∈ r then e ·u = e ·v for each r ∈ R; in particular, proper rough
concepts are called exact, improper rough concepts are called rough. A particular
case of an information system is a decision system, i.e., a pair (U,A ∪ {d}) in
which d is a singled out attribute called the decision.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 280–289, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Basic primitives in any reasoning based on rough set theory, are descriptors,
see, e.g., [4], of the form (a = v), with semantics of the form [(a = v)] = {u ∈
U : a(u) = v}, extended to the set of formulae by means of sentential connec-
tives, with appropriately extended semantics. In order to relate the conditional
knowledge (U, IND) to the world knowledge (U, {ind(d)}), decision rules are in
use; a decision rule is an implication of the form,

∧

a∈A

(a = va)⇒ (d = w). (1)

A classifier is a set of decision rules.

2 Rough Mereology: Rough Inclusions

We outline it here as a basis for discussion of granules in the wake of [7], [8].
Rough Mereology is concerned with the theory of the predicate of Rough Inclu-
sion.

2.1 Rough Inclusions

A rough inclusion μπ(x, y, r), where x, y are individual objects, r ∈ [0, 1], does
satisfy the following requirements, relative to a given part relation π on a set U
of individual objects,see [6], [7], [8], [9],

1. μπ(x, y, 1)⇔ x ingπ y;
2. μπ(x, y, 1)⇒ [μπ(z, x, r)⇒ μπ(z, y, r)];

3. μπ(x, y, r) ∧ s < r ⇒ μπ(x, y, s).
(2)

Those requirements seem to be intuitively clear: 1. demands that the predicate
μπ is an extension to the relation ingπ of the underlying system of Mereology;
2. does express monotonicity of μπ, and 3. assures the reading: ”to degree at
least r”. We use here only one rough inclusion, albeit a fundamental one, viz.,
see [6],[7] for its derivation,

μL(u, v, r)⇔ |IND(u, v)|
|A| ≥ r, (3)

where IND(u, v) = {a ∈ A : a(u) = a(v)}.

3 Granules

A granule gμ(u, r) about u ∈ U of the radius r, relative to μ, is defined by letting,

gμ(u, r) is ClsF (u, r), (4)

where the property F (u, r) is satisfied with an object v if and only if μ(v, u, r)
holds, and Cls is the class operator, see, e.g., [6]. Practically, in case of μL, the
granule g(u, r) collects all v ∈ U such that |IND(v, u)| ≥ r · |A|.

For a given granulation radius r, we form the collection UG
r,μ = {gμ(u, r)}.
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3.1 Granular Decision Systems

The idea of a granular decision system was posed in [7]; for a given information
system (U,A), a rough inclusion μ, and r ∈ [0, 1], the new universe UG

r,μ is given.
We apply a strategy G to choose a covering CovG

r,μ of the universe U by granules
from UG

r,μ.
We apply a strategy S in order to assign the value a∗(g) of each attribute

a ∈ A to each granule g ∈ CovG
r,μ: a∗(g) = S({a(u) : u ∈ g}). The granular

counterpart to the information system (U,A) is a tuple (UG
r,μ,G,S, {a∗ : a ∈ A});

analogously, we define granular counterparts to decision systems by adding the
factored decision d∗. The heuristic principle that objects, similar with respect to
conditional attributes in the set A, should also reveal similar (i.e., close) decision
values, and therefore, granular counterparts to decision systems should lead to
classifiers satisfactorily close in quality to those induced from original decision
systems, was stated in [7], and borne out by simple hand examples. In this work
we verify this hypothesis with real data sets.

4 Classifiers: Rough Set Methods

Classifiers are evaluated by error which is the ratio of the number of correctly
classified objects to the number of recognized test objects (called also total ac-
curacy) and total coverage, rec

test , where rec is the number of recognized test cases
and test is the number of test cases.

We test LEM2 algorithm due to Grzymala–Busse, see, e.g., [2] and covering
as well as exhaustive algorithm in RSES package [12], see [1], [13], [16],[17].

4.1 On the Approach in This Work

For g(u, r) with r fixed and attribute a ∈ A ∪ {d}, the factored value a∗(g) is
defined as S({a(u) : u ∈ g}) for a strategy S, each granule g does produce a
new object g∗, with attribute values a(g∗) = a∗(g) for a ∈ A, possibly not in the
data set universe U .

From the set UG
r,μ, see sect.3.1, of all granules of the form gμ(u, r), by means

of a strategy G, we choose a covering CovG
r,μ of the universe U . Thus, a decision

system D∗={g∗ : g ∈ CovG
r,μ}, A∗ ∪ {d∗}) is formed, called the granular coun-

terpart relative to strategies G,S to the decision system D = (U,A ∪ {d}); this
new system is substantially smaller in size for intermediate values of r, hence,
classifiers induced from it have correspondingly smaller number of rules.

As stated above, the hypothesis is that the granular counterpart D∗ at suf-
ficiently large granulation radii r preserves knowledge encoded in the decision
system D to a satisfactory degree so given an algorithm A for rule induction,
classifiers obtained from the training set D(trn) and its granular counterpart
D∗(trn) should agree with a small error on the test set D(tst).
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5 Experiments

In experiments with real data sets, we accept total accuracy and total coverage
coefficients as quality measures in comparison of classifiers given in this work.

We make use of some well–known real life data sets often used in testing of
classifiers. Due to shortage of space, we include only a very few results.

The following data sets have been used: Credit card application approval data
set (Australian credit), see [14]; Pima Indians diabetes data set [14].

As representative and well–established algorithms for rule induction in public
domain,we have selected

– the RSES exhaustive algorithm, see [12];
– the covering algorithm of RSES with p=.1[12];
– LEM2 algorithm, with p=.5, see [2], [12].

Table 1 shows a comparison of these algorithms on the data set Australian
credit split into the training and test sets with the ratio 1:1.

Table 1. Comparison of algorithms on Australian credit data. 345 training objects,
345 test objects

algorithm accuracy coverage rule number

covering(p = .1) 0.670 0.783 589
covering(p = .5) 0.670 0.783 589
covering(p = 1.0) 0.670 0.783 589

exhaustive 0.835 1.0 5149
LEM2(p = .1) 0.810 0.061 6
LEM2(p = .5) 0.906 0.368 39
LEM2(p = 1.0) 0.869 0.643 126

In rough set literature there are results of tests with other algorithms on
Australian credit data set; we recall some best of them in Table 2 and we include
also best granular cases from this work.

For any granule g and any attribute b in the set A∪d of attributes, the reduced
attribute’s b value at the granule g has been estimated by means of the majority
voting strategy and ties have been resolved at random; majority voting is one
of most popular strategies and was frequently applied within rough set theory,
see, e.g., [13], [16].

We also use the simplest strategy for covering finding, i.e., we select coverings
by ordering objects in the set U and choosing sequentially granules about them
in order to obtain an irreducible covering; a random choice of granules is applied
in sections in which this is specifically mentioned.

The only enhancement of the simple granulation is discussed in sect. 6 where
the concept–dependent granules are considered; this approach yields even better
classification results.
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Table 2. Best results for Australian credit by some rough set based algorithms; in case
∗, reduction in object size is 40.6 percent, reduction in rule number is 43.6 percent; in
case ∗∗, resp. 10.5, 5.9; in case ∗ ∗ ∗, resp., 3.6, 1.9

source method accuracy coverage

Bazan[1] SNAPM(0.9) error = 0.130 −
S.H.Nguyen[13] simple.templates 0.929 0.623
S.H.Nguyen[13] general.templates 0.886 0.905
S.H.Nguyen[13] closest.simple.templates 0.821 .1.0
S.H.Nguyen[13] closest.gen.templates 0.855 1.0
S.H.Nguyen[13] tolerance.simple.templ. 0.842 1.0
S.H.Nguyen[13] tolerance.gen.templ. 0.875 1.0
J.Wroblewski[17] adaptive.classifier 0.863 −

this.work granular∗.r = 0.642857 0.867 1.0
this.work granular∗∗.r = 0.714826 0.875 1.0
this.work granular∗∗∗.concept.dependent.r = 0.785714 0.9970 0.9995

5.1 Train–and–Test at 1:1 Ratio for Australian Credit

We include here results for Australian credit. Table 3 shows size of training and
test sets in non–granular and granular cases as well as results of classification
versus radii of granulation. Table 4 shows absolute differences between non–
granular case (r=nil) and granular cases as well as fraction of training and rule
sets in granular cases against those in non–granular case.

With covering algorithm, accuracy is better or within error of 1 percent for all
radii, coverage is better or within error of 4.5 percent from the radius of 0.214860
on where training set size reduction is 99 percent and reduction in rule set size
is 98 percent.

With exhaustive algorithm, accuracy is within error of 10 percent from the
radius of 0.285714 on, and it is better or within error of 4 percent from the
radius of 0.5 where reduction in training set size is 85 percent and reduction in
rule set size is 95 percent. The result of .875 at r = .714 is among the best at all
(see Table 2). Coverage is better from r = .214 in the granular case, reduction
in objects is 99 percent, reduction in rule size is almost 100 percent.

LEM2 gives accuracy better or within 2.6 percent error from the radius of
0.5 where training set size reduction is 85 percent and rule set size reduction is
96 percent. Coverage is better or within error of 7.3 percent from the radius of
.571429 on where reduction in training set size is 69.6 percent and rule set size
is reduced by 96 percent.

5.2 CV-10 with Pima

We have experimented with Pima Indians diabetes data set using 10–fold cross–
validation and random choice of a covering for exhaustive and LEM2 algorithms.
Results are in Tables 5, 6.

For exhaustive algorithm, accuracy in granular case is 95.4 percent of accuracy
in non–granular case, from the radius of .25 with reduction in size of the training
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Table 3. Australian credit dataset:r=granule radius,tst=test sample size,trn=training
sample size,rulcov=number of rules with covering algorithm,rulex=number of rules
with exhaustive algorithm, rullem=number of rules with LEM2,acov=total accu-
racy with covering algorithm,ccov=total coverage with covering algorithm,aex=total
accuracy with exhaustive algorithm,cex=total coverage with exhaustive algo-
rithm,alem=total accuracy with LEM2, clem=total coverage with LEM2

r tst trn rulcov rulex rullem acov ccov aex clex alem clem

nil 345 345 571 5597 49 0.634 0.791 0.872 0.994 0.943 0.354
0.0 345 1 14 0 0 1.0 0.557 0.0 0.0 0.0 0.0

0.0714286 345 1 14 0 0 1.0 0.557 0.0 0.0 0.0 0.0
0.142857 345 2 16 0 1 1.0 0.557 0.0 0.0 1.0 0.383
0.214286 345 3 7 7 1 0.641 1.0 0.641 1.0 0.600 0.014
0.285714 345 4 10 10 1 0.812 1.0 0.812 1.0 0.0 0.0
0.357143 345 8 18 23 2 0.820 1.0 0.786 1.0 0.805 0.252
0.428571 345 20 29 96 2 0.779 0.826 0.791 1.0 0.913 0.301

0.5 345 51 88 293 2 0.825 0.843 0.838 1.0 0.719 0.093
0.571429 345 105 230 933 2 0.835 0.930 0.855 1.0 0.918 0.777
0.642857 345 205 427 3157 20 0.686 0.757 0.867 1.0 0.929 0.449
0.714286 345 309 536 5271 45 0.629 0.774 0.875 1.0 0.938 0.328
0.785714 345 340 569 5563 48 0.629 0.797 0.870 1.0 0.951 0.357
0.857143 345 340 570 5574 48 0.626 0.791 0.864 1.0 0.951 0.357
0.928571 345 342 570 5595 48 0.628 0.794 0.867 1.0 0.951 0.357

1.0 345 345 571 5597 49 0.634 0.791 0.872 0.994 0.943 0.354

Table 4. Australian credit dataset:comparison; r=granule radius,acerr= abs.total ac-
curacy error with covering algorithm,ccerr= abs.total coverage error with covering
algorithm,aexerr=abs.total accuracy error with exhaustive algorithm,cexerr=abs.total
coverage error with exhaustive algorithm,alemerr=abs.total accuracy error with LEM2,
clemerr=abs.total coverage error with LEM2, sper=training sample size as fraction of
the original size,rper= max rule set size as fraction of the original size

r acerr ccerr aexerr cexerr alemerr clemerr sper rper

nil 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.0 0.366+ 0.234 0.872 0.994 0.943 0.354 0.003 0.024

0.0714286 0.366+ 0.234 0.872 0.994 0.943 0.354 0.003 0.024
0.142857 0.366+ 0.234 0.872 0.994 0.057+ 0.029+ 0.0058 0.028
0.214286 0.007+ 0.209+ 0.231 0.006+ 0.343 0.340 0.009 0.02
0.285714 0.178+ 0.209+ 0.06 0.006+ 0.943 0.354 0.012 0.02
0.357143 0.186+ 0.209+ 0.086 0.006+ 0.138 0.102 0.023 0.04
0.428571 0.145+ 0.035+ 0.081 0.006+ 0.03 0.053 0.058 0.05

0.5 0.191+ 0.052+ 0.034 0.006+ 0.224 0.261 0.148 0.154
0.571429 0.201+ 0.139+ 0.017 0.006+ 0.025 0.423+ 0.304 0.403
0.642857 0.052+ 0.034 0.005 0.006+ 0.014 0.095+ 0.594 0.748
0.714286 0.005 0.017 0.003+ 0.006+ 0.005 0.026 0.896 0.942
0.785714 0.005 0.006+ 0.002 0.006+ 0.008+ 0.003+ 0.985 0.994
0.857143 0.008 0.0 0.008 0.006+ 0.008+ 0.003+ 0.985 0.998
0.928571 0.006 0.003+ 0.005 0.006+ 0.008+ 0.003+ 0.991 0.999

1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
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Table 5. 10-fold CV; Pima; exhaustive algorithm. r=radius,macc=mean accu-
racy,mcov=mean coverage,mrules=mean rule number, mtrn=mean size of training set

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629 692
0.125 0.0618 0.0895 5.9 22.5
0.250 0.6627 0.9948 450.1 120.6
0.375 0.6536 0.9987 3593.6 358.7
0.500 0.6645 1.0 6517.6 579.4
0.625 0.6877 0.9987 7583.6 683.1
0.750 0.6864 0.9987 7629.2 692
0.875 0.6864 0.9987 7629.2 692

Table 6. 10-fold CV; Pima; LEM2 algorithm. r=radius,macc=mean accu-
racy,mcov=mean coverage,mrules=mean rule number, mtrn=mean size of training set

r macc mcov mrules mtrn

nil 0.7054 0.1644 227.0 692
0.125 0.900 0.2172 1.0 22.5
0.250 0.7001 0.1250 12.0 120.6
0.375 0.6884 0.2935 74.7 358.7
0.500 0.7334 0.1856 176.1 579.4
0.625 0.7093 0.1711 223.1 683.1
0.750 0.7071 0.1671 225.9 692
0.875 0.7213 0.1712 227.8 692

set of 82.5 percent, and from the radius of .5 on, the difference is less than 3
percent with reduction in size of the training set of about 16.3 percent. The
difference in coverage is less than .4 percent from r = .25 on, where reduction
in training set size is 82.5 percent.

For LEM2, accuracy in both cases differs by less than 1 percent from r = .25
on, and it is better in granular case from r = .5 on with reduction in size of the
training set of 16.3 percent; coverage is better in granular case from r = .375 on
with the training set size reduced by 48.2 percent.

5.3 A Validation by a Statistical Test

We have also carried out the test with Pima Indian Diabetes dataset [14], and
random choice of coverings, taking a sample of 30 granular classifiers at the
radius of .5 with train-and-test at the ratio 1:1 against the matched sample of
classification results without granulation, with the covering algorithm for p=.1.
The Wilcoxon [15] signed rank test for matched pairs in this case has given the
p–value of .14 in case of coverage,so the null hypothesis of identical means should
not be rejected, whereas for accuracy, the hypothesis that the mean in granular
case is equal to .99 of the mean in non–granular case may be rejected (the p–value
is .009), and the hypothesis that the mean in granular case is greater than .98
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of the mean in non–granular case is accepted (the p–value is .035) at confidence
level of .03.

6 Concept–Dependent Granulation

A modification of the approach presented in results shown above is the concept
dependent granulation; a concept in the narrow sense is a decision/classification
class, cf., e.g., [2]. Granulation in this sense consists in computing granules for
objects in the universe U and for all distinct granulation radii as previously, with
the only restriction that given any object u ∈ U and r ∈ [0, 1], the new concept
dependent granule gcd(u, r) is computed with taking into account only objects
v ∈ U with d(v) = d(u), i.e., gcd(u, r) =g(u, r) ∩ {v ∈ U : d(v) = d(u)}. This
method increases the number of granules in coverings but it is also expected to
increase quality of classification, as expressed by accuracy and coverage.

We show that this is the case indeed, by including results of the test in which
exhaustive algorithm and random choice of coverings were applied tenfold to
Australian credit data set, once with the ”standard” by now granular approach
and then with the concept dependent approach. The averaged results are shown
in Table 7.

Conclusions for concept dependent granulation Concept dependent granula-
tion, as expected, involves a greater number of granules in a covering, hence, a
greater number of rules, which is perceptible clearly up to the radius of .714286
and for greater radii the difference is negligible. Accuracy in case of concept

Table 7. Standard and concept dependent granular systems for Australian credit data
set; exhaustive RSES algorithm:r=granule radius, macc=mean accuracy, mcov=mean
coverage, mrules=mean number of rules, mtrn=mean training sample size; in each
column first value is for standard, second for concept dependent

r macc mcov mrules mtrn

nil 1.0; 1.0 1.0; 1.0 12025; 12025 690; 690
0.0 0.0; 0.8068 0.0; 1.0 0; 8 1; 2

0.0714286 0.0; 0.7959 0.0; 1.0 0; 8.2 1.2; 2.4
0.142857 0.0; 0.8067 0.0; 1.0 0; 8.9 2.4; 3.6
0.214286 0.1409; 0.8151 0.2; 1.0 1.3; 11.4 2.6; 5.8
0.285714 0.7049; 0.8353 0.9; 1.0 8.1; 14.8 5.2; 9.6
0.357143 0.7872; 0.8297 1.0; 0.9848 22.6; 32.9 10.1; 17
0.428571 0.8099; 0.8512 1.0; 0.9986 79.6; 134 22.9; 35.4

0.5 0.8319; 0.8466 1.0; 0.9984 407.6; 598.7 59.7; 77.1
0.571429 0.8607; 0.8865 0.9999; 0.9997 1541.6; 2024.4 149.8; 175.5
0.642857 0.8988; 0.9466 1.0; 0.9998 5462.5; 6255.2 345.7; 374.9
0.714286 0.9641; 0.9880 1.0; 0.9988 9956.4; 10344.0 554.1; 572.5
0.785714 0.9900; 0.9970 1.0; 0.9995 11755.5; 11802.7 662.7; 665.7
0.857143 0.9940; 0.9970 1.0; 0.9985 11992.7; 11990.2 682; 683
0.928571 0.9970; 1.0 1.0; 0.9993 12023.5; 12002.4 684; 685

1.0 1.0; 1.0 1.0; 1.0 12025.0; 12025.0 690; 690
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dependent granulation is always better than in the standard case, the difference
becomes negligible at the radius of .857143 when granules become almost single
indiscernibility classes. Coverage in concept dependent case is almost the same
as in the standard case, the difference between the two not greater than .15
percent from the radius of .428571, where the average number of granules in
coverings is 5 percent of the number of objects. Accuracy at that radius is better
by .04 i.e. by about 5 percent in the concept dependent case.

It follows that concept dependent granulation yields better accuracy whereas
coverage is the same as in the standard case.

7 Conclusions

The results shown in this work confirm the hypothesis put forth in [7], [8] that
granular counterparts to data sets preserve the encoded information to a very
high degree. The search for theoretical explanation for this as well as work aimed
at developing original algorithms for rule induction based on the discovered
phenomenon are in progress to be reported.
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Abstract. Data in an information system are usually represented and
stored in a flat and unconnected structure as in a table. Underlying the
data structure, there is a domain concept that is an understandable de-
scription for humans and supports other machine learning techniques. In
this work, Map Granule (MG) construction is introduced. A MG com-
prises of multilevel granules with their hierarchy relations. We propose a
rough set based granular computing to induce approximation of a domain
concept hierarchy of an information system. An algorithm is proposed to
select a sequence of attribute subsets which is necessary to partition a
granularity hierarchically. In each level of granulation, reducts and core
are applied to retain the specific concepts of a granule whereas common
attributes are applied to exclude the common knowledge and generate a
more general concept. The information granule relations are represented
by a tree structure in which the relation strengths are defined by a rough
ratio of specificness/coarseness.

Keywords: Map Granules, Information Granules, Concept Hierarchy,
Rough Set Theory.

1 Introduction

An Information System (IS) in a rough set paradigm [1] is a basic knowledge
representation method in an attribute-value system. An IS is represented in a
table that a row keeps an object and each column keeps the value of the corre-
sponding attribute. The tabular representation simplifies recording the objects
into an IS, especially, in realtime transactions by capturing a transaction sepa-
rately and using single global representation for every record in every situation.
However, an occurrence of a transaction may be related to other transactions in
the problem space. Representation in this fashion is seen as flat and unconnected
structure which hides the meaningfully relations in the pile of data. In this work,
we introduce a hierarchical granulation to construct a map of granules called a
Map Granule (MG) for an IS.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 290–299, 2007.
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MG is a hierarchy knowledge representation of a domain which provides a
multilevel of granularity. The hierarchy can be conveniently represented by a
tree structure. A tree comprises of a root node, nonroot nodes, and the relations.
A node in a tree can be seen as a granule in which instances in the node hold
similar properties to a certain degree and they are part of their parent. Thus,
a parent holds the common properties of its children and the siblings have a
certain degree of similarity to each other by the common properties.

An MG is defined under formal concept analysis (FCA) which is a theory for
identifying conceptual structures among data sets. A concept can be defined by
a concept’s intention and extension [2]. From an intension, one can describe a
concept by means of logical descriptors from ,e.g. , a set of concept’s attributes
and the attributes’ values, terms of a concept, and metadata of a concept. The
extension of a concept is an illustration by a possibly empty set of objects that
belong to the concept. The formal concept approach provides two dimensions for
indexing a granule in an MG. Thus, a granule is accessible either by an attribute
subset or its membership functions. In this work, we describe a granule by a
concept’s intension using a predicate description of common properties, internal
inclusion and relations to other granules, and extensions.

This paper presents a rough set based approach to construct a MG. An algo-
rithm is proposed to select a sequence of attribute subsets which is necessary to
partition a granularity hierarchically. Then rough set approach is used for gran-
ules formation. In other words, reducts and core are applied to retain the specific
concepts of a granule whereas common attributes (the subset of attributes that
all instances in a granule have in common) are applied to exclude the common
knowledge and generate a more general concept.

The paper is organized as follows: In the next section we explore the related
works in hierarchical information granulation. Section 3 gives the preliminaries
of rough set theory and our approach is described in section 4. Section 5 re-
ports our evaluation and results. Finally, section 6 presents some conclusions
and discussions of possible extensions.

2 Related Works

In this section, we describe the previous works that use a rough set theory
approach to extract hierarchical granules. Hoa and Son [5] introduced a complex
concept approximation approach based on a layered learning method together
with rough set theory. They used taxonomy as the domain knowledge and feature
values in the dataset to guide composing attributes into intermediate concepts
until obtaining the target concept. The target concepts are the concepts in the
decision attribute. However, the domain taxonomies are usually unavailable to
guide the layer learning.

Yao and Yao presented a granularity-based formal concept definition in [4].
They define a formal concept by a pair of its intension and extension (φ,m(φ)),
where φ is a logical rule of a subset of attributes with the attributes’ values
and m(φ) is a granule obtained by partitioning the universe of objects using
the attribute subset φ. Moreover, Yao [3] presented an approach to hierarchical
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granulation based on rough sets called stratified rough approximation. The strat-
ified rough set approximation is a simple multi-level granulation based on nesting
of one-level granulation (e.g., granulation by the equivalence relation). Yao [3]
presented three methods to multi-layered granulation which are:
– nested rough set approximations induced by a nested sequence of equivalence

relations,
– stratified rough set approximations induced by hierarchies, and
– stratified rough set approximations induced by neighborhood systems.

In the nested granulation approach, the granulation starts by indiscernibility re-
lations on the set of attributes. Then the subsequent indiscernibility relations are
defined by successively removing attributes from the set of remaining attributes.
Sequencing of attribute subsets for partitioning is determined by dependencies
between condition attributes. The sequence of attribute subset affects a granules’
content and the hierarchy structure. Moreover, the order of attributes subset for
partitioning is very important in the sense of the closeness between instances
in the same granule. However, some ISs have no attributes’ dependency. We in-
troduce attribute subset sequencing method in section 4.1. Our method is able
to partition any IS hierarchically. In the stratified rough set approximations in-
duced by hierarchies, levels of hierarchies provides the sequence of granulation.
As mentioned above, the hierarchy of a domain may be unavailable for an IS. Yao
[3] also described using neighborhood systems [8] to induce hierarchial partition-
ing. He recommended that the stratified approximation can be used to search
for an appropriate level of accuracy for an application. We see the hierarchy
from a communication amongst granules [7] point of view. An MG provides rich
information about domain structure. An application can uses an MG at task
level as well as at application levels that shares the MG amongst applications.

In the next section, an algorithm to select attribute subset for partitioning an
IS and an MG construction using rough sets are described.

3 Rough Set Preliminaries

In an information system IS = (U,A,D, V ), let U be the universe of the IS
containing a finite and non-empty set of instances. Let x be an instance of the
universe and X be a subset of U . A is the set of condition attributes of the
elements which are the features of instances and D is the decision attribute.
A finite and nonempty set V is the set of all attribute values {v1, . . . , vn}. An
information granule X ⊆ U can be categorized by a pair of lower and upper
approximations as follows:

LOWER(X) =
⋃
{[x]B|x ∈ U, [x]B ⊆ X}

UPPER(X) =
⋃
{[x]B |x ∈ U, [x]B ∩X �= ∅}

where [x]B =
⋃
{[(a, v)]|a ∈ B,B ⊆ A}, f(x, a) = v. The boundary region of

rough set is defined as:

BND(X) = UPPER(X)− LOWER(X).
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To partition the set U into disjoint subsets of granules, we use indiscernibility
relation IND(B) which is a relation on U defined for x, y ∈ U as follows:

(x, y) ∈ IND(B) ⇐⇒ f(x, a) = f(y, a), ∀a ∈ B.

The partitions of the universe is called the quotient set induced by B and is
denoted by {B}∗.

The presence of an element x in a concept X (determined by a subset at-
tributes B) is defined as the following function:

μB,X(x) = |[x]B∩X|
|[x]B|

which is called rough membership function. The |X | denotes the cardinality of
a set X . For the empty set , we define μ(∅) = 1. It is obvious that μB,X(x) = 1
when x ∈ LOWER(X). The accuracy of rough approximation is given by:

α(X) = LOWER(X)
UPPER(X)

The approximation accuracy is in the range of 0 ≥ α(X) ≥ 1, and α(∅) = 1.
In an information system, if there is a subset of attributes that are sufficient to

describe the decision attributes, the subset of attributes is called reduct (RED).

RED ⊆ A|[x]RED = [x]A
[x]RED′ = [x]A where ∀RED′ ⊂ RED

The equivalence classes induced by RED is the same as the equivalence class
induced by full attribute set A. Intersection of all the reducts is called core.

CORE =
⋂
{∀RED}

The core attributes are common to all reducts; therefore, they cannot be removed
from an IS without effects on the equivalence class structure.

4 Map Granule Construction

A map granule (MG) is comprised of a root, a set of nodes, and three relations
between nodes. A node holds a nonempty set of instances. A node itself can be
either an individual node or a MG. The three relation between nodes are parent-
child, child-parent, and sibling. Parent-child relation indicates that the parent
node holds common features amongst its children, whereas the nodes that have
the same parent have a sibling relation to each other. In this section we introduce
MG construction framework, an algorithm to select attribute subset for partition-
ing, description of a granule, and the measurement of internal granule and a MG.

4.1 Algorithms for Map Granule Construction

The MG construction is a recursive granulation in depth-first manner. Specifi-
cally, the recursive MG construction is given in algorithm 1.
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Algorithm 1. MG Construction
Input: an information system {U,A,D, V }
Output: a map granule

set g = U = root
set tempIS = {g,A,D, V }, C ⊆ A and set C = ∅
FUNCTION MGconstruct(g)

IF g is discernible THEN
1. find C|f(x, c ∈ C) = vi, ∀x ∈ TempIS, ∀c ∈ C

(C is a subset of common attributes)
2. IF C �= ∅ THEN

set tempIS = {g,A,D, V } where A = A− C
3. generate a granule description (see section 4.2)
4. select the most dominant attribute subset B of tempIS

(see algorithm 2.)
5. partition the tempIS by B, {B}∗ = g1, g2, . . . , gn

6. generate parent-child, child-parent and sibling relations
7. calculate rough measurement (see section 4.3 and 4.4)
8. mark g as granulated
9. set g = g1 (move to the next level of granularity)
10. set tempIS = {g,A,D, V }

ELSE make a leaf granule
FOR i = 1 to #g nongranulated siblings of g

MGconstruct(gi)

From the algorithm, we obtain a MG from a recursive tree construction. The
process begins with finding common attribute subset. Then, a temporary IS is
derived from the current IS by removing the common attributes. The derived
IS is not necessary if there is no common attribute. The attribute sequencing
is accomplished through local attributes subset selection in the recursive parti-
tioning. We select the most dominant attribute subset based on the attributes’
values available in the information system. We determine the domination using
algorithm 2. The selected attributes subset is then used to partition the tempo-
rary IS and assign relationships between the obtained granules (children) and the
original granule (parent). If a granule cannot be partitioned by indiscernibility
relation, a leaf node is generated.

Algorithm 2 describes the most dominant attribute subset selection. The
rough set exploration system (RSES version 2.2) [6] is used to calculate reducts
of the universe. Then CORE can be derived from intersection of all reducts.
Given an IS(temporary), we find the N most dominant attributes toward the
decision class. CORE is used to preserve the specific feature(s) of instances in
the granule by retaining CORE until the latest granulations. N can be tuned up
to the number of condition attributes to compose a concept. In other words, our
algorithm allows a flexible number of attributes in a subset for partitioning. We
use co-occurrence counting of attributes’ values and decision classes to determine
the domination degree. Once the most N dominant attributes are obtained, we
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determine the co-occurrences with each other to find if any combination of them
can be used to approximate a concept by threshold ε. A count of co-occurrence
amongst condition attributes’ values implies the degree of which these attribute
values can be used to compose a common concept. We tune the ε by the number
of instances in working IS. The subset of attributes that are greater than the
threshold is selected to partition the IS. If no combination of them meets the
threshold ε, the single most dominant attribute is selected.

Algorithm 2. The Most Dominant Attribute Subset Selection
Input: an information system, CORE of U , parameter N and ε (described be-
low)
Output: the most dominant attribute subset

set MostDA = null (the most dominant attribute)
set TopDA = null (top dominant attribute subset)
FOR all attributes

FOR all attribute’s values
count number of co-occurrences with each decision class
set AD (attribute’s domination) = maximum count

set MostDA = the attribute that has maximum AD
set TopDA = a set of attributes in top N most dominant attribute

Set BD = MostDA
FOR all B ⊆ TopDA, |B| > 1

count number of co-occurrences of attributes’ values in B
IF count > ε THEN Set BD = B

IF BD − CORE �= ∅ THEN set BD = BD − CORE
RETURN BD

4.2 Description of a Granule

A granule can be described by a logical language such as [2][4]. In this work, a
description for a granule is defined by the common features amongst instances
in the granule.

DES = {C(vi)} ⇐⇒ f(x, c) = vi, ∀x ∈ g and ∀c ∈ C

where a description of a granule DES is defined by a set of predicates. A pred-
icate C is labeled by an attribute name and vi is the predicate’s argument. All
instances in the granule g have the attribute’s value vi in common. If there is no
such vi, DES = ∅.

4.3 Granule’s Internal Measurement

G is a set of granules from partitioning {B}∗. Given an information granule
g ∈ G, g contains finite elements x1, . . . , xn. An accuracy of approximation to
a specific decision class is determined by α(g). For the closeness of elements in
a granule, Spearman’s footrule distance measurement is applied. The foot rule
distance is given by:
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dij =
∑n

k=1 |xik − xjk|,

where n is the number of condition attributes. Thus, the average distance can
represent the degree of closeness of elements in a granule.

Cls(g) =
∑N

i=1 di

N ,
N is the number of element pairs.

4.4 Distance Measurement in a Map Granule

For every g ∈ G, the rough distance between a pair of granules is determined as
follows:

d(g1, g2) = 1− |g1∩g2|
|g1∪g2| , g1 �= g2

IF 0 < d(g1, g2) < 1, g1 ⊃ g2 THEN g1is ancestor of g2,
IF d(g1, g2) = 1 THEN g1, g2 are independent.

The rough relation strength between a parent and a child defined on a target
class can be calculated by a ratio of coarseness and specificness (γ) by:

γ = α(g2)
α(g1)

,

where g1 is the parent of g2. One can say that g1 is γ times coarser than g2 or
g2 is γ times more specific than g1.

4.5 An Example of Map Granule Construction

This section illustrates an example of hierarchical granulation to obtain a MG.
The example IS is a flu diagnosis domain provided in table 1.

Table 1. Flu diagnosis

Cases Temperature Headache Nausea Cough Decisions(Flu)

1 high yes no yes yes
2 very high yes yes no yes
3 high no no no no
4 high yes yes yes yes
5 normal yes no no no
6 normal no yes yes no

We will describe how the algorithm works step by step. The granulation starts
by partitioning the universe (given IS). In this example, the equivalence relation
is used. The size of attribute subset to partition is one since there are small num-
ber of attribute. The IS is discernible by an equivalence relation. Thus, we find
reducts for the IS which are, {Temperature, Headache, Nausea}, {Temperature,
Nausea, Cough}, and {Headache, Nausea, Cough}, and core is {Nausea}. There
is no common attribute value in this granule. We select the first attribute subset
by determining the degree of attribute dominations. The first attribute subset
to partition is {Headache} and g1 = {1, 2, 4, 5} and g2 = {3, 6} are obtained.
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Then we continue granulate g1 selecting the most dominant attributes for g1.
Temperature, Nausea and Cough attributes have the same degree of domination.
Nausea is the core; thus, it is retained at this granulation. We can select Tem-
perature or Cough to partition g1. If we apply Temperature, we obtain granule
g3 = {1, 4}, g4 = {5}, g5 = {2} which are children of g1. The granule g4 and
g5 are indiscernible so they are leaf granule. We then granulate g3 by finding
common attribute subset which is {Cough}. The Cough attribute can be now
removed. The remaining attribute {Nausea} is then used to partition g3 to ob-
tain g6 = {2}, g7 = {3}. Since all siblings are now leaf nodes we can return to the
higher levels. We continue granulate g2. Note that the temporary table can be
generated as the Headache attribute is removed. Like partitioning g1, Nausea is
retained. If we partition g2 by Temperature, the indiscernible granule g8 = {3}
and g9 = {6} are obtained. Fig. 1 shows the MG for the Flu diagnosis domain.

Fig. 1. A map granule for the Flu case base

5 Evaluation and Results

We evaluate our approach using the Zoo dataset which is available in the UCI
machine learning data repository. This database contains 16 boolean-valued at-
tributes, 1 numerical attribute, and a Type attribute as the class attribute. The
class attribute contains 7 classes. There is no missing value in this dataset. We
construct an MG for the Zoo dataset as shown in figure 1. The attribute Name
is removed since it is the index of animals. Parameter N = 3 and ε = 0.5 are set.
In the figure, indentation is used to show the hierarchy structure. A granule is
named by G with a list of number attached. The length of a granule name indi-
cates the level in the hierarchy starting from 1 at the root. CORE is {Aquatic,
Legs}. The attribute subset used in first partitioning is {Feathers, Milk, Back-
bone}* and granule G1, G2, G3, and G4 are obtained. Then G1 is granulated
and children G11, G12, and G13 of G1 are formed by the second granulation
and so on.

The intermediate granules in the MG represent a cluster of animal that have
some degree of similarity to other animals in the same granule. For example,
G22={chicken, dove, parakeet} these animals have common features which are:
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G1: {squirrel, fruitbat, vampire, hare, vole, mole, opossum, cavy, hamster, seal, gorilla, aardvark, bear, dolphin,  porpoise,  wallaby, sealion, platypus, antelope, 
buffalo, deer, elephant, giraffe, oryx, boar, cheetah, leopard, lion, lynx, mongoose, polecat, puma, raccoon, wolf, mink, girl, calf, goat, pony, reindeer, pussycat} 

G11: {fruitbat, vampire} 
G12: {platypus} 
G13: {squirrel, hare, vole, mole, opossum,  cavy, hamster seal, gorilla, aardvark, bear, wallaby, sealion, antelope, buffalo, deer elephant ,giraffe, oryx ,  
boar ,cheetah ,leopard ,lion ,lynx ,mongoose, polecat, puma ,raccoon, wolf, mink, girl, dolphin, porpoise, calf, goat, pony, reindeer}

G131: {dolphin, porpoise} 
G132: {squirrel, hare, vole, mole, opossum, cavy, hamster, seal, gorilla, aardvark, bear, wallaby, sealion, antelope, buffalo, deer, elephant, 
giraffe, oryx, boar, cheetah, leopard, lion, lynx, mongoose, polecat, puma, raccoon, wolf, mink, girl calf, goat, pony, reindeer}

G1321: {squirrel, gorilla, wallaby, girl, hare, vole, cavy, hamster, antelope, buffalo, deer, elephant, giraffe, oryx, calf, goat, pony, 
reindeer, mole, opossum, aardvark, bear, boar, cheetah, leopard, lion, lynx, mongoose polecat, puma, raccoon, wolf, pussycat} 

    G13211: {hare, vole, antelope, buffalo, deer, elephant, giraffe, oryx, mole, opossum 
aardvark, bear, boar, cheetah, leopard, lion, lynx, mongoose, polecat, puma, raccoon, wolf}  

G132111: {mole, opossum, boar, cheetah, leopard, lion, lynx, mongoose, polecat, puma, raccoon, wolf} 
G132112: {aardvark, bear} 
G132113:{hare, vole, antelope, buffalo, deer, elephant, giraffe, oryx} 

G13212: {squirrel, gorilla, wallaby} 
G13213: {girl} 
G13214: {cavy, hamster, calf, goat, pony, reindeer, pussycat} 

     G1321411: {cavy} 
G1321412: {hamster calf goat pony reindeer}  
G1321413:  {pussycat} 

G1322: {seal, sealion} 
G1323: {mink} 

G2: {chicken, dove, duck, lark, parakeet, pheasant, sparrow, wren, kiwi, crow, gull, hawk, skimmer, skua, ostrich, flamingo, swan, penguin, rhea, vulture} 
G21: {lark, pheasant, sparrow, wren, duck, kiwi, crow, hawk, gull, skimmer, skua} 

G211: {kiwi} 
G212: {lark, pheasant, sparrow, wren, duck, crow, hawk, gull, skimmer, skua} 

G2121: {lark, pheasant, sparrow, wren, crow, hawk} 
G21211: {lark, pheasant, sparrow, wren} 
G21212: {crow, hawk} 

G2122: {duck, gull, skimmer, skua} 
    G21221: {duck} 

G21222: {gull, skimmer, skua} 
G22: {chicken, dove, parakeet} 
G23: {ostrich, flamingo, swan, rhea, vulture, penguin} 

G231: {ostrich, flamingo, rhea, vulture} 
G2311: {ostrich, rhea} 

G23111: {ostrich} 
G23112: {rhea} 

G2312: {flamingo, vulture} 
G23121: {flamingo} 
G23122: {vulture} 

G232: {swan penguin} 
G2321: {swan} 
G2322: {penguin} 

G3: {pitviper, seasnake, slowworm, tortoise, tuatara, carp, haddock, seahorse, sole, bass, catfish, chub, dogfish, herring, pike, piranha, stingray, tuna, frog, 
 frog, newt, toad} 

G31: {bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse, sole, stingray, tuna} 
G311: {carp, haddock, seahorse, sole} 
G312: {bass, catfish, chub, herring, piranha, dogfish, pike, tuna} 

G3121: {bass, catfish, chub, herring, piranha} 
G3122: {dogfish, pike, tuna} 

G313: {stingray} 
G32: {pitviper, slowworm, tortoise, tuatara} 
G33: {seasnake} 
G34: {frog, frog, newt, toad} 

G341: {frog, newt} 
 G3411: {frog} 
 G3412: {newt} 
G342:  {frog} 
G343:  {toad} 

G4:  {flea, termite, gnat, honeybee, housefly, ladybird, moth, wasp, clam, scorpion, slug, worm, crab, crayfish, lobster, octopus, seawasp, starfish}  
G41: {clam, scorpion, slug, worm, crab, crayfish, lobster, octopus, seawasp, starfish, flea, termite} 

G411: {seawasp, starfish, flea, termite, slug, worm, crab, crayfish, lobster, clam} 
G4111: {flea, termite, slug, worm} 

G41111: {flea, termite}  
G41112: {slug worm} 

G4112: {seawasp}  
G4113: {starfish, crab, crayfish, lobster, clam} 

G41131: {clam} 
G41132: {starfish, crab, crayfish, lobster} 

G411321: {crab} 
G411322: {starfish} 
G411321: {crayfish, lobster} 

G412: {scorpion} 
G413: {octopus} 

G42: {gnat, ladybird} 
G421: {gnat} 
G422: {ladybird|} 

G43: {housefly, moth, wasp} 
  G431: {housefly, moth} 

G432: {wasp}  
G44: {honeybee} 

Fig. 2. A map granule for the Zoo database
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chicken 0 1 1 0 1 0 0 0 1 1 0 0 2 1 1 0 2
dove 0 1 1 0 1 0 0 0 1 1 0 0 2 1 1 0 2

parakeet 0 1 1 0 1 0 0 0 1 1 0 0 2 1 1 0 2

These three animals have the same features and can be only continually parti-
tioned by Name attribute. They are in the same class and the approximation
accuracy toward the class is 1. The closeness measurement for this granule is
0 which means that the average distance between instances in G22 is 0. The
intension of granule G22 is: DESG22 = {hair(0), feathers(1), eggs(1), milk(0),
airborne(1), aquatic(0), predator(0), toothed(0), backbone(0), fins(0), legs(2),
tail(1), breathes(1), venomous(1), domestic(1), catsize(0)}.

6 Concluding Remarks

An approach to automatically construct a map granule from an information
system is presented. A map granule represents knowledge in different level of
specificness/coarseness. We demonstrated that the granules obtained from our
approach have meaningful inclusion degrees by mean of sequencing attribute sub-
sets for granulation hierarchically. We presented three dimensions to describe a
granule: a predicate description of common properties, internal inclusion and re-
lations to other granules, and granule’s extensions. With these rich information,
we believe that an MG can be used to support other machine learning methods.
The possible extensions of this work include construction of the concept hierar-
chy from the more challenging original knowledge representation such as time
dependence problems and user modeling.
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Abstract. In Granular Computing (GC) we search for granules satis-
fying some criteria. These criteria can be based on the minimal length
principle, can express acceptable risk degrees of granules, or can use some
utility functions. We discuss the role of approximation spaces in modeling
granules satisfying such criteria.

1 Introduction

Information granulation can be viewed as a human way of achieving data com-
pression and it plays a key role in implementing the divide-and-conquer strategy
in human problem-solving [22]. Granules are obtained in the process of informa-
tion granulation. Granular computing (GC) is based on processing of complex
information entities called granules. Generally speaking, granules are collection
of entities, that are arranged together due to their similarity, functional adja-
cency or indistinguishability [22].

One of the main branch of GC is Computing with Words and Perceptions
(CWP). GC“derives from the fact that it opens the door to computation and rea-
soning with information which is perception - rather than measurement-based.
Perceptions play a key role in human cognition, and underlie the remarkable hu-
man capability to perform a wide variety of physical and mental tasks without
any measurements and any computations. Everyday examples of such tasks are
driving a car in city traffic, playing tennis and summarizing a story” [22].

We consider the optimization tasks in which we are searching for optimal so-
lutions satisfying some constraints. These constraints are often vague, imprecise,
and/or specifications of concepts and dependencies between them involved in the
constraints are incomplete. Decision tables [11] are examples of such constraints.
Another example of constraints can be found, e.g., in [4,15] where a specification
is given by a domain knowledge and data sets. Domain knowledge is represented
by ontology of vague concepts and dependencies between them. In a more gen-
eral case, the constraints can be specified in a simplified fragment of a natural
language [22].

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 300–309, 2007.
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Granules are constructed in computations aiming at solving the mentioned
above optimization tasks. In our approach, we use the general optimization cri-
terion based on the minimal length principle. In searching for (sub-)optimal so-
lutions it is necessary to construct many compound granules using some specific
operations such as generalization, specification or fusion. Granules are labeled
by parameters. By tuning these parameters we optimize the granules relative to
their description size and the quality of data description, i.e., two basic compo-
nents on which the optimization measures are defined.

From this general description of tasks in GC it follows that together with
specification of elementary granules and operation on them it is necessary to
define measures of granule quality (e.g., measures of their inclusion, covering or
closeness) and tools for measuring the size of granules. Very important are also
optimization strategies of already constructed (parameterized) granules.

We discuss the searching process for relevant (for concept approximation)
neighborhoods in approximation spaces based on modeling relevant relational
and syntactical structures build from partial information about objects and con-
cepts.

The importance in GC of risk measures defined on granules is emphasized. The
values of such measures are indicating how properties of granules are changing
when some of their parameters were changed.

We present an example showing how utility functions defined on granules can
be used in GC. In general, utility functions are helping to relax the binary con-
straints by making it possible to work with constraints which should be satisfied
to a degree expressed by utility functions.

This paper is structured as follows. In Section 2 we discuss definitions of
approximation spaces and approximations. In Section 3 we discuss constraints
that must be satisfied during the information granulation process. In Section 4
we present some remarks about risk in construction of granules.

2 Approximation Spaces and Approximations

In this section, we discuss the definition of an approximation space from [13,19].
Approximation spaces can be treated as granules used for concept approxima-
tion. They are some special parameterized relational structures. Tuning of pa-
rameters is making it possible to search for relevant approximation spaces relative
to given concepts.

Definition 1. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where
– U is a non-empty set of objects,
– I# : U → P (U) is an uncertainty function, where P (U) denotes the power

set of U ,
– ν$ : P (U)× P (U)→ [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters (the indexes #, $ will be omitted if it does
not lead to misunderstanding).
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The uncertainty function defines for every object x, a set of objects described
similarly to x. The set I(x) is called the neighborhood of x (see, e.g., [11,13]).

The rough inclusion function ν$ : P (U)×P (U)→ [0, 1] defines the degree of
inclusion of X in Y , where X,Y ⊆ U .

In the simplest case it can be defined by (see, e.g., [13,11]):

νSRI (X,Y ) =

{
card(X∩Y )

card(X) if X �= ∅
1 if X = ∅.

The lower and the upper approximations of subsets of U are defined as follows.

Definition 2. For any approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U , the lower and upper approximations are defined by

LOW
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) > 0}, respectively.

The lower approximation of a set X wit respect to the approximation space
AS#,$ is the set of all objects, which can be classified with certainty as objects
of X with respect to AS#,$. The upper approximation of a set X with respect
to the approximation space AS#,$ is the set of all objects which can be possibly
classified as objects of X with respect to AS#,$.

Several known approaches to concept approximations can be covered using
the discussed here approximation spaces, e.g., (see, e.g., references in [13]).

One can use yet another approach to approximation based on a fusion of in-
clusion degree of neighborhoods in concepts and their complements in definition
of approximations. Let f : [0, 1] −→ [0, 1] denote such a fusion function. For any
subset X ⊆ U , the lower and upper approximations are defined by

LOW (AS#,$, X) = {x ∈ U : f({ν$(I#(y), X) : x ∈ I#(y)}) = {1}},

UPP (AS#,$, X) = {x ∈ U : f({ν$(I#(y), X) : x ∈ I#(y)}) �= {0}}.
The classification methods for concept approximation developed in machine

learning and pattern recognition make it possible to decide for a given object if it
belongs to the approximated concept or not. The classification methods yield the
decisions using only partial information about approximated concepts. This fact
is reflected in the rough set approach by assumption that concept approximations
should be defined using only partial information about approximation spaces. To
decide if a given object belongs to the (lower or upper) approximation of a given
concept the rough inclusion function values are needed. In the next section, we
show how such values necessary for classification making are estimated on the
basis of available partial information about approximation spaces.

3 Quality of Approximation Space

A key task in granular computing is the information granulation process, which
is responsible in the formation of information aggregates (patterns) from a set
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of available data. A methodological and algorithmic issue is the formation of
transparent (understandable) information granules, meaning that they should
provide a clear and understandable description of patterns held in data. Such
fundamental property can be formalized by a set of constraints that must be sat-
isfied during the information granulation process. Usefulness of these constraints
is measured by quality of approximation space:

Quality1 : Set AS × P (U)→ [0, 1]

where U is a non-empty set of objects and Set AS is a set of possible approxi-
mation spaces with the universe U.

Example 1. If UPP (AS,X)) �= ∅ for AS ∈ Set AS and X ⊆ U then

Quality1(AS,X) = νSRI(UPP (AS,X), LOW (AS,X)) =
card(LOW (AS,X))
card(UPP (AS,X))

The value 1 − Quality1(AS,X) expresses the degree of completeness of our
knowledge about X , given the approximation space AS.

Example 2. In applications we usually use another quality measures based on the
minimal length principle [12,21] where also the description length of approxima-
tion is included. Let us denote by description(AS,X) the description length of
approximation of X in AS. the description length may be measured, e.g., by the
sum of description lengths of algorithms testing membership for neighborhoods
used in construction of the lower approximation, the upper approximation, and
the boundary region of the set X . Then the quality Quality2(AS,X) can be
defined by

Quality2(AS,X) = g(Quality1(AS,X), description(AS,X))

where g is a relevant function used for fusion of values Quality1(AS,X) and
description(AS,X).

One can consider different optimization problems relative to a given class Set AS
of approximation spaces. For example, for given X ⊆ U and a threshold t ∈
[0, 1] one can search for an approximation space AS satisfying the constraint
Quality(AS,X) ≥ t. Another example can be related to searching for an ap-
proximation space satisfying additionally the constraint Cost(AS) < c where
Cost(AS) denotes the cost of approximation space AS (e.g. measured by the
number of attributes used to define neighborhoods in AS) and c is a given
threshold.

In the process of searching for (sub-)optimal approximation spaces different
strategies are used. Let us consider one illustrative example. Let DT = (U,A, d)
be a decision system (a given sample of data) where U is a set of objects, A is a
set of attributes and d is a decision. We assume that for any object x is accessible
only a partial information equal to the A-signature of x (object signature, for
short), i.e., InfA(x) = {(a, a(x)) : a ∈ A} and analogously for any concept there
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is only given a partial information about this concept by a sample of objects,
e.g., in the form of decision table. One can use object signatures as new objects
in a new relational structure R. In this relational structure R are also mod-
eled some relations between object signatures, e.g., defined by the similarities
of these object signatures. Discovery of relevant relations on object signatures
is an important step in the searching process for relevant approximation spaces.
In the next step, we select a language L of formulas expressing properties over
the defined relational structure R and we search for relevant formulas in L. The
semantics of formulas (e.g., with one free variable) from L are subsets of ob-
ject signatures. Observe that each object signature defines a neighborhood of
objects from a given sample (e.g., decision table DT ) and another set on the
whole universe of objects being an extension of U . In this way, each formula
from L defines a family of sets of objects over the sample and also another fam-
ily of sets over the universe of all objects. Such families can be used to define
new neighborhoods of a new approximation space, e.g., by taking unions of the
described above families. In the searching process for relevant neighborhoods,
we use information encoded in the given sample. More relevant neighborhoods
are making it possible to define relevant approximation spaces (from the point
of view of the optimization criterion). It is worth to mention that often this
searching process is even more compound. For example, one can discover sev-
eral relational structures (not only one, e.g., R as it was presented before) and
formulas over such structures defining different families of neighborhoods from
the original approximation space and next fuse them for obtaining one family of
neighborhoods or one neighborhood in a new approximation space. Such kind of
modeling is typical for hierarchical modeling [4], e.g., when we search for relevant
approximation space for objects composed from parts for which some relevant
approximation spaces have been already found.

Let us consider some illustrative examples of granule modeling (see Fig-
ure 1). Any object x ∈ U , in a given information system IS1 = (U,A), is
perceived by means of its signature InfA(x) = {(a, a(x)) : a ∈ A}. On the
first level, we consider objects with signatures represented by the information
system IS1 = (U,A). Objects with the same signature are indiscernible. On the
next level of modeling we consider as objects some relational structures over sig-
natures of objects from the first level. For example, for any signature u one can
consider as a relational structure a neighborhood defined by a similarity relation
τ between signatures of objects from the first level (see Figure 1). Attributes of
objects on the second level describe properties of relational structures. Hence, in-
discernibility classes defined by such attributes are sets of relational structures; in
our example sets of neighborhoods. We can continue this process of hierarchical
modeling by considering as objects on the third level signatures of objects from
the second level. In our example, the third level of modeling represents modeling
of clusters of neighborhoods defined by the similarity relation τ . Observe that
it is possible to link objects from a higher level with objects from a lower level.
In our example, any object from the second level is a neighborhood or τ . Any
element u′ of this neighborhood defines on the first level an elementary gran-
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ule (indiscernibility class) {x ∈ U : InfA(x) = u′}. Hence, any neighborhood
τ(u) defines on the first level a family of elementary granules corresponding to
signatures from the neighborhood. Now, one can consider as a quality measure
for the similarity τ a function assigning to τ a degree to which the union of the
elementary granules mentioned above is included into a given concept.

In the second example, we assume that the information system on the first
level has a bit more general structure. Namely, on any attribute value set Va

there is defined a relational structure Ra and a language La of formulas for
expressing properties over Va. For example, one can consider an attribute time
with values in the set N of natural numbers, i.e., Va ⊆ N . The value time(x)
is interpreted as a time at which the object x was perceived. The relational
structure Rtime is defined by (Va, S), where S is the successor relation in N ,
i.e., xSy if and only if y = x + 1. Then relational structures on the second
layer can correspond to windows of a given length T , i.e., structures of the
form ({u1, . . . , uT }, S) where for some x1, . . . , xT we have ui = InfA(xi) and
time(xi+1) = time(xi) + 1 for i = 1, . . . , T . Hence, the attributes on the second
layer of modeling correspond to properties of windows while attributes on the
third level could correspond to clusters of windows. Again in looking for relevant
clusters we should consider links of the higher levels with lower levels. Another
possibility will be to consider some relational structures on the attributes values
sets on the second layer. They could allow us to model relations between windows
such as overlapping, earlier than. Then, attributes on this level could describe
properties of sequences of windows. Such attributes can correspond to some
models of processes. Yet another possibility is to use additionally some spatial
relations (e.g., nearness) between the successive elements of windows.

For structural objects, it is often used a decomposition method for modeling
relational structures on the second level. The object signatures are decomposed
into parts and some relations between such parts are considered which are de-
fined over relational structures with the universe ×a∈AVa. One of the methods is
based on searching for (i) a decomposition of the object signatures; (ii) tolerance
relations defined on parts of object signatures received by decomposition; and
(iii) relations over tolerance classes of such tolerance relations (e.g., expressing
closeness of classes of parts corresponding to tolerance classes). This method
aims to discover relational structures such that it is possible to define over such
structures relevant clusters (granules, patterns) of objects for the considered task
(e.g., approximation of concepts). The relations over tolerance classes are used
for filtering relevant compositions of parts of object signatures defined by toler-
ance classes. This approach is closely related to constrained sums of information
systems [16]. For example, any object of the constrained sum +R(IS1, IS2) of
information systems IS1, IS2 consists of pairs (x1, x2) of objects from IS1 and
IS2 satisfying some constraints described by R ⊆ U1×U2, i.e., U = R∩(U1×U2).
The attributes of +(IS1, IS2) consist of the attributes of IS1 and IS2, except
that if there are any attributes in common, then we make their distinct copies,
to avoid confusion.
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It is worthwhile mentioning that in searching under uncertainty for relevant
granules it is also necessary to use methods for estimation if the discovered
patterns on (training) samples of objects are relevant on the whole universe of
objects.

( ) uxInf
A

=  

x  

)(uτ  

Fig. 1. Modeling of granules

The above examples are typical for granular computing where for a given
task it is necessary to search for granules in a given granular system which
are satisfying some optimization criteria. The discussed methods are used in
spatio-temporal reasoning (see, e.g, [17]), in behavioral pattern identification and
planning (see, e.g., [4,3]). There are some other basic concepts which should be
considered in granular computing. One of them is related to risk. In the following
section we present some remarks about risk in construction of granules.

4 Risk and Utility Functions in Construction of Granules

There is a large literature on relationships between decision making and risk. In
this section, we discuss some problems related to risk in granular computing. An
example of risk analysis (based on rough sets) for medical data the reader can
find in [5].

First we recall the definition of granule system. Any such system GS consists
of a set of granules G. Moreover, a family of relations with the intended meaning
to be a part to a degree between granules is distinguished. The degree structure
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is described by a relation to be an exact part. More formally, a granule system is
any tuple

GS = (G,H,<, {νp}p∈H , size) (1)

where G is a non-empty set of granules. H is a non-empty set of granule inclusion
degrees with a binary relation < (usually a strict partial order) which defines on
H a structure used to compare the degrees. νp ⊆ G ×G is a binary relation to
be a part to a degree at least p between granules from G, called rough inclusion.
size : G −→ R+ is the granule size function, where R+ is the set of nonnegative
reals.

In constructing of granule systems it is necessary to give a constructive defi-
nition of all their components. In particular, one should specify how more com-
pound granules are defined from already defined granules or given elementary
granules. Usually, the set of granules is defined as the least set generated from
distinguished elementary granules (e.g., defined by indiscernibility classes) by
some operations on the granules. These operations are making it possible to
fuse elementary granules for obtaining new granules relevant for the task to be
solved. In the literature many different operations on granules are reported (see,
e.g., [15]) from those defined by boolean combination of descriptors to compound
classifiers or networks of classifiers.

Let us consider, a task of searching in the set of granules of a granule system
GS for a granule g satisfying a given constraint to a satisfactory degree, e.g.,
νtr(g, g0), where ν : G × G −→ [0, 1] is the inclusion function, νtr(g, g0) means
that ν(g, g0) ≥ tr, g0 is a given granule and tr is a given threshold. Let g∗ be a
solution, i.e., g∗ satisfies the condition

ν(g∗, g0) > tr. (2)

Risk analysis is a well established notion in decision theory [6]. We would like
illustrate the importance of risk analysis in GC.

A typical risk analysis task in GC can be described as follows. For a granule
g∗ is constructed a granule N(g∗), i.e. representing a cluster of granules defined
by g∗ received by changing some parameters of g∗ such as attribute values used
in the g∗ description. We would like to estimate how this changes influence the
condition (2).

First, let us assume that ν(g∗, g0) = νSRI(‖g∗‖, ‖g0‖), where ‖ · ‖ denotes the
semantic of granule, i.e., a function ‖ · ‖ : G −→ P (U) for a given universe of
objects U and νSRI is the standard rough inclusion function. Then, one can take
δ∗ = arg minδ∈[0,tr](ν(N(g∗), g0) ≥ tr− δ). The value δ∗ can be treated as a risk
degree of changing the inclusion degree in g0 when the granule g∗ is substituted
by N(g∗).

One can consider a hierarchy of granules over g∗ defined by an ascending
sequence N1(g∗), . . . , Nk(g∗), i.e., ‖N1(g∗)‖ ⊆ . . . ⊆ ‖Nk(g∗)‖ and corresponding
risk degrees δ∗1 ≤ . . . δ∗k. For example, if δ∗1 is sufficiently small than g∗ is called
robust with respect to deviations caused by taking N1(g∗) instead of g∗. However,
when i is increasing then taking Ni(g∗) instead of g∗ gradually increases the
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risk degree. The above example illustrates importance of risk analysis in GC.
Information maps introduced in [18] can be used for risk analysis.

Let us now move to the concept of utility function over granules. The con-
cept of utility function has been intensively studied in decision theory or game
theory [8,7]. We would like to present an illustrative example showing that such
functions are important for granule systems.

We assume two granule systems GS and GS0 with granule sets G and G0

are given. We consider two properties of granules in this systems, i.e., P ⊆ G
and P0 ⊆ G0 Moreover, we assume that checking the membersip for P is much
simpler than for P0 (e.g., because granules from G0 are much simpler than gran-
ules from G). This means that there are given algorithms A, A0 for checking
the membership in P and P0, respectively, and the complexity of A0 is much
lower than the complexity of the algorithm A. Under the above assumptions it
is useful to search for a utility function Utility : G −→ G0 reducing the mem-
bership problem for P to the membership problem for P0, i.e., a function with
the following property: g ∈ P if and only if Utility(g) ∈ P0. Construction of
the utility function satisfying the above condition may be not feasible. However,
it becomes often feasible when we relax the binary membership relation ∈ to the
membership at least to a given degree (see, e.g., [20]). This example illustrates,
the important property of utility functions. Usually, G0 is a set of scalar values
or it is assumed that some preference relation over G0 is given.

Finally, we would like to add that in GC it is necessary to develop methods
searching for approximation of risk degrees and utility function from data and do-
main knowledge analogously to approximation of complex concepts (see, e.g., [4]).

5 Conclusions

We have discussed the role of approximation spaces in construction of granules
satisfying criteria expressed by the minimal length principle. The role of risk
measures and utility functions in GC was illustrated. In our system searching
for adaptive approximation of complex concepts, we plan to implement strategies
based on the minimal length principle in GC, risk measures in GC, and utility
functions in GC. This will also require developing methods for approximation of
risk measures and utility functions.
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Abstract. The idea of divide and conquer method is used in developing
algorithms of rough set theory. In this paper, according to the partitions
of equivalence relations on attributes of decision tables, two novel algo-
rithms for computing attribute core based on divide and conquer method
are proposed. Firstly, a new algorithm for computing the positive region
of a decision table is proposed, and its time complexity is O(|U | × |C|),
where, |U | is the size of the set of objects and C is the size of the set of
attributes. Secondly, a new algorithm for computing the attribute core
of a decision table is developed, and its time complexity is O(|U |× |C|2).
Both these two algorithms are linear with |U |. Simulation experiment
results show that the algorithm of computing attribute core is not only
efficient, but also adapt to huge data sets.
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1 Introduction

Rough set (RS) is a valid mathematical theory to deal with imprecise, uncertain,
and vague information [1]. It has been applied in many fields such as machine
learning, data mining, intelligent data analyzing and control algorithm acquiring
successfully since it was proposed by Pawlak in 1982 [2].

In divide and conquer method, a problem which is hard to be solved directly
is divided into many sub-problems and conquered respectively. The structures
of the sub-problems are similar to the one of the original problem except their
sizes are smaller. The divide and conquer method divide a problem into simpler
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sub-problems iteratively in this way and the sizes of the sub-problems will be
reduced to be easy enough to be processed directly [3,4].

In the study of rough set theory, the computation of positive region and
attribute core are two basic operations, and their efficiencies will affect the ef-
ficiencies of further attribute reduction and value reduction. Many attribute
reduction algorithms have already been proposed [5-16]. However, few of them
can deal with huge data sets well. Combining the idea of divide and conquer
method and partition of equivalence relation in a decision table, a huge data set
can be divided into many small ones that can be processed directly easily. In
addition, the complexity of the original problem could be reduced. According
to the above analysis, a new algorithm for computing positive region based on
divide and conquer method is proposed, and its time complexity is O(|U |× |C|).
Furthermore, a new algorithm for computing attribute core based on divide and
conquer is also proposed, and its time complexity is O(|U | × |C|2).

The rest of this paper is organized as follows. In section 2, some basic notions
about rough set theory are introduced. A new algorithm for computing positive
region is proposed in section 3. In section 4, a novel algorithm for computing
attribute core based on divide and conquer is proposed. In section 5, some ex-
periment results are discussed. We draw some conclusions in section 6.

2 Basic Notions of Rough Set Theory

For the convenience of illustration, some basic notions of rough set theory are
introduced here at first.

Def. 1 (decision table [2]) A decision table is defined as S =< U,A, V, f >,
where U is a non-empty finite set of objects, called universe, R is a non-empty
finite set of attributes, A = C∪D, where C is the set of condition attributes and
D is the set of decision attributes, D �= Ø. V =

⋃
p∈R

Vp , and Vp is the domain

of the attribute p. f : U ×A→ V is a total function such that f(xi, A) ∈ Vp for
every p ∈ A, xi ∈ U .

Def. 2 (indiscernibility relation [2]) Given a decision table S =< U,A = C ∪
D,V, f >, each subset B ⊆ C of attribute determines an indiscernibility relation
IND(B) as follows: IND(B) = {(x, y)|(x, y) ∈ U×U, ∀b ∈ B(b(x) = b(y))}.

Def. 3 (lower-approximation, upper-approximation and border region [2])
Given a decision table S =< U,C∪D,V, f >, for any subset X ⊆ Uand the indis-
cernibility relation IND(B), the B lower-approximation, upper-approximation
and border region of X are defined as: B (X) =

⋃
Yi∈U/IND(B)∧Yi⊆X

Yi, B−(X) =
⋃

Yi∈U/IND(B)∧Yi∩X 
=Φ

Yi, BN(X) = B−(X)−B−(X).

Def. 4 (positive region [2]) Given a decision table S =< U,A, V, f >. P ⊆ A
and Q ⊆ A, the P positive region of Q is defined as: PosP (Q) =

⋃
X∈U/Q

P (X).

Def. 5 (relative core [2]) Given a decision table S =< U,A, V, f >, P ⊆ A,
Q ⊆ A, and r ∈ P . r is unnecessary in P with reference to Q if and only if
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PosP (Q) = PosP−{r}(Q), otherwise r is unnecessary in P with reference to Q.
The core of P with reference to Q is defined as: COREQ(P ) = {r|r ∈ P , r is
necessary in P with reference to Q}. Attribute r is necessary in P with reference
to Q can be written as r is relative necessary, too.

Def. 6 [2] Given a decision table S =< U,A, V, f >, P ⊆ A, Q ⊆ A. ∀r ∈ P ,
if r is necessary in P with reference to Q, we call P is independent with reference
to Q.

Def. 7 (relative reduction [2]) Given a decision table S =< U,A, V, f >,
P ⊆ A, Q ⊆ A. Red ⊂ P , if Red is independent with reference to Q and
PosRed(Q) = PosP (Q), we call Red is a reduction of P with reference to Q.

In this paper, f(x, c)(x ∈ U ∧ c ∈ C) is noted as c(x), and f(x, d)(x ∈ U ∧D =
{d}) is noted as d(x).

3 Algorithm for Computing Positive Region Based on
Divide and Conquer Method

In [17], a method for computing positive region is proposed by partitioning the
universe of a decision table. In this paper, by reducing condition attributes and
partitioning the universe of a decision table, the original decision table could
be divided into many new decision tables with different attribute spaces. The
method is as follows.

Theorem 1. Given a decision table S =< U,A = C ∪ D,V, f >. ∀c(c ∈ C),
U/{c} is a partition of S, that is, S is divided into k(k = |IND(U/{c})|) sub-
decision tables S1, S2,..., Sk, where, Sk =< Uk, (C−{c})∪D,Vk, fk >, satisfying
∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤ i ≤ k) and ∀x∈Ui∀z∈Ujc(x) �= c(z)(1 ≤ i < j ≤ k).
Let R = C − {c}, Posi

R(D)(1 ≤ i ≤ k) be the positive region of a sub decision
table Si, PosC(D) be the positive region of the original decision table S. Then,
PosC(D)=

⋃
1≤i≤k

Posi
R(D).

Proof: firstly, prove PosC(D)⊆
⋃

1≤i≤k

Posi
R(D).

∀x ∈ PosC(D), suppose x is assigned to sub-decision table Sk, that is, x ∈ Uk.
Now, we need to prove x ∈ Posi

R(D). Prove to the reverse.
Suppose x /∈ Posi

R(D), then ∃y ∈ Uj(∀a∈C−{c}(a(x) = a(y))∧(d(x) �= d(y))).
Since c(x) = c(y), so (∀a∈C(a(x) = a(y))∧(d(x) �= d(y))), that is, x /∈ PosC(D),
which is conflict with the premise x ∈ PosC(D). Therefore, x ∈ Posi

R(D), then
PosC(D)⊆

⋃
1≤i≤k

Posi
R(D). That’s to say, PosC(D)⊆

⋃
1≤i≤k

Posi
R(D).

Then, prove
⋃

1≤i≤k

Posi
R(D) ⊆ PosC(D).

∀x ∈ Posi
C−{c}(D)(1 ≤ i ≤ k), ∀y ∈ U , if y /∈ Ui, there is c(x) �= c(y). So,

x ∈ PosC(D). That’s to say,
⋃

1≤i≤k

Posi
R(D) ⊆ PosC(D).

Therefore, PosC(D)=
⋃

1≤i≤k

Posi
R(D). Theorem 1 holds.
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With Theorem 1, we could develop an algorithm for computing positive region
based on divide and conquer.

Algorithm 1. Computing Positive Region Based on Divide and Conquer Method
Input: A decision table S =< U,C ∪D,V, f >
Output: Positive region PosC(D)
Step1: (Initiative) PosC(D) = φ;
Step2: (Compute positive region by invoking recursive function)

Get Positive(U, 1);
Step3: (Return) return PosC(D)
Recursive Function Get Positive(Set OSet, int k)

if (k < 1) or (|OSet| < 1) then return; end if
if (|OSet| = 1) then

PosC(D) = PosC(D) ∪OSet; return;
end if
if (k > |C|) then

if ∀x∈OSet∀y∈OSetd(x) = d(y) then PosC(D) = PosC(D) ∪OSet; end if
return;

end if
Let c = ck, V c = φ;
for i = 1 to |OSet| do

V c = V c ∪ f(xi, c);
end for
for i = 1 to |V c| do

OSetcj = φ;
end for
construct a mapping function f

′
: V c → N(N = 1, 2, ..., |V c|), satisfying:

∀x∈V c∀y∈V c (f
′
(x) = f

′
(y))⇔ (x = y).

for i = 1 to |OSet| do
let j = f

′
(f(xi, c)); OSetcj = OSetcj ∪ {xi};

end for
for j = 1 to |V c| do

recursive invoking: Get Positive(OSetcj, k + 1)
end for

End Function

Let’s analyze the time complexity and space complexity of Algorithm 1 now.
Suppose n = |U |, m = |C|, p = max(|Vi|)(1 ≤ i ≤ |C|). Because calculating

all values of k-th attribute in the set of objects OSet can be performed in the
time O(n), the time complexity of Algorithm 1 could be approximated by the
following recursive equation:

T (n,m)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1. (n = 1)
n. (m = 0)
2n + p1 + T (n1,m− 1) + T (n2,m− 1) + ... + T (nk,m− 1).

(n1 + n2 + ... + nk = n, n > 1,m > 0, p1 ≤ min(p, n))
0. (else)

(1)



314 F. Hu, G. Wang, and Y. Xia

According to the iterative method and solution of recursive equation [3], we
can find:

T (n,m) ≤ (2n + n) + T (n1,m− 1) + T (n2,m− 1) + ... + T (nk,m− 1)
≤ 3n + T (n1,m− 1) + T (n2,m− 1) + ... + T (nk,m− 1)
≤ 3n+ (3n1 + T (n1

1,m− 2) + T (12,m− 2) + ... + T (1t1 ,m− 2))
+(3n2 + T (n2

1,m− 2) + T (22,m− 2) + ... + T (2t2 ,m− 2))
+...
+(3nk + T (nk

1 ,m− 2) + T (k
2 ,m− 2) + ... + T (k

tk
,m− 2))

≤ 3n+3n1+3n2+...+3nk+ (T (n1
1,m−2)+T (12,m−2)+...+T (1t1,m−2))

+(T (n2
1,m− 2) + T (22,m− 2) + ... + T (2t2 ,m− 2))

+...
+(T (nk

1 ,m− 2) + T (k
2 ,m− 2) + ... + T (k

tk
,m− 2))

≤ 3n + 3n+ (T (n1
1,m− 2) + T (12,m− 2) + ... + T (1t1 ,m− 2))

+(T (n2
1,m− 2) + T (22,m− 2) + ... + T (2t2 ,m− 2))

+...
+(T (nk

1 ,m− 2) + T (k
2 ,m− 2) + ... + T (k

tk
,m− 2))

≤ 3n + 3n + ... + 3n + n
≤ 3×m× n + n

That is, T (n,m) = O(n×m).

Suppose n = |U |, m = |C|, p = max(|Vi|)(1 ≤ i ≤ |C|). Then, the space
complexity of Algorithm 1 is: O(n + p×m).

4 Algorithm for Computing Attribute Core Based on
Divide and Conquer Method

Lemma 1. Given a decision table S =< U,A = C ∪ D,V, f >. ∀c(c ∈ C),
U/{c} is a partition of S, that is, S is divided into k(k = |IND(U/{c})|) sub-
decision tables S1, S2,..., Sk. Where, Sk =< Uk, (C−{c})∪D,Vk, fk >, satisfying
∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤ i ≤ k) and ∀x∈Ui∀z∈Ujc(x) �= c(z)(1 ≤ i < j ≤ k).
Suppose Corei(1 ≤ i ≤ k) be the attribute core of the sub-decision table Si, and
Core be the attribute core of the decision table S. Then, ∀a∈Corei a ∈ Core.

Lemma 2. Given a decision table S =< U,A = C ∪D,V, f >. ∀c(c ∈ C), which
is unnecessary in C with reference to D, that is, PosC−{c}(D) = PosC(D).
U/{c} is a partition of S, that is, S is divided into k(k = |IND(U/{c})|) sub-
decision tables S1, S2,..., Sk. Where, Sk =< Uk, (C−{c})∪D,Vk, fk >, satisfying
∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤ i ≤ k) and ∀x∈Ui∀z∈Ujc(x) �= c(z)(1 ≤ i < j ≤ k).
Suppose Corei(1 ≤ i ≤ k) be the attribute core of the sub-decision table Si, and
Core be the attribute core of the decision table S. Suppose redi(1 ≤ i ≤ k) be
an attribute reduction of the sub-decision table Si. Let R =

⋃
1≤i≤k

redi. Then,

there are two conclusions:

(1) Core =
⋃

1≤i≤k

Corei. (2)In the decision table S, PosR(D) = PosC(D).
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Lemma 3. Given a decision table S =< U,A = C∪D,V, f >. Let Core(Core �=
φ) be the attribute core of S. ∀c(c ∈ Core), which is a core attribute (necessary
attribute) of S, that is, PosC−{c}(D) �= PosC(D). U/{c} is a partition of S,
that is, S is divided into k(k = |IND(U/{c})|) sub decision tables S1, S2,..., Sk.
Where, Sk =< Uk, (C −{c})∪D,Vk, fk >, satisfying ∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤
i ≤ k) and ∀x∈Ui∀z∈Ujc(x) �= c(z)(1 ≤ i < j ≤ k). Suppose Corei(1 ≤ i ≤ k)
be the attribute core of the sub-decision table Si, and redi(1 ≤ i ≤ k) be an
attribute reduction of the sub-decision table Si. Let R = {c}∪

⋃
1≤i≤k

redi. Then,

there are two conclusions:

(1) Core = {c} ∪
⋃

1≤i≤k

Corei. (2)In the decision table S, PosR(D) = PosC(D).

Theorem 2. Given a decision table S =< U,A = C ∪ D,V, f >. ∀c(c ∈
C), according to U/{c}, S is divided into k(k = |IND(U/{c})|) sub-decision
tables S1, S2,..., Sk. Where, Sk =< Uk, (C − {c}) ∪ D,Vk, fk >, satisfying
∀x∈Ui∀y∈Uic(x) = c(y)(1 ≤ i ≤ k) and ∀x∈Ui∀z∈Ujc(x) �= c(z)(1 ≤ i < j ≤ k).
Suppose Corei(1 ≤ i ≤ k) be the attribute core of the sub decision table Si, and
Core be the attribute core of the decision table S. Then,

⋃
1≤i≤k

Corei ⊆ Core ⊆

{c} ∪
⋃

1≤i≤k

Corei.

Proof: Obviously, Lemma 1, Lemma 2, Lemma 3 and Theorem 2 could be proved
using basic concerts of rough set theory. We omit their proofs here due to page
limits.

According to Theorem 2, an algorithm for computing attribute core based on
divide and conquer could be developed.

Algorithm 2. Computing Attribute Core Based on Divide and Conquer Method
Input: A decision table S =< U,C ∪D,V, f >
Output: Attribute Core (Core) of S
Step1: (Initiative) Core = φ;
Step2: (Compute Attribute Core using recursive function)

Get Core(U, 1);
Step3: (Return) return Core
Recursive Function Get Core(Set OSet, int k)

if (k < 1) or (|OSet| < 1) then return; end if
if (ck ∈ Core) then return;
else

Suppose Ck = ck ∪ ck+1 ∪ ... ∪ c|C|;
For decision table S′ =< OSet, Ck∪ D,V k, fk >, compute positive
region PosCk−{ck}(D) using Algorithm 1;
PosCk(D) = φ;

end if
Let c = ck, V c = φ;
for i = 1 to |OSet| do
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V c = V c ∪ f(xi, c);
end for
for i = 1 to |V c| do

OSetcj = φ;
end for
construct a mapping function f

′
: V c → N(N = 1, 2, ..., |V c|), satisfying:

∀x∈V c∀y∈V c (f
′
(x) = f

′
(y))⇔ (x = y).

for i = 1 to |OSet| do
let j = f

′
(f(xi, c)); OSetcj = OSetcj ∪ {xi};

end for
for j = 1 to |V c| do

PosCk(D) = PosCk(D)∪ Get Positive(OSetcj, k + 1);
Get Core(OSetcj , k + 1);

end for
if (PosCk−{c}(D) < PosCk(D)) then Core = Core ∪ {c}; end if

End Function
Now, let’s analyze the time complexity and space complexity of Algorithm 2.
Suppose n = |U |, m = |C|. Then, the time complexity of Algorithm 2 could

be approximated by the following recursive equation:

T (n,m) =

⎧
⎨

⎩

O(n×m) + T (n1,m− 1) + T (n2,m− 1) + ... + T (nk,m− 1).
(n1 + n2 + ... + nk = n, n > 1,m > 0)

0. (else)
(2)

According to the iterative method and solution of recursive equation [3], we
can have: T (n,m) = O(n ×m)×m = O(n×m2).

Suppose n = |U |, m = |C|, p = max(|Vi|)(1 ≤ i ≤ |C|). Then, the space
complexity of Algorithm 2 is: O(n + p×m).

5 Experiment Results

Firstly, some data sets from UCI database are used to test Algorithms 2. Sec-
ondly, data sets KDDCUP99 are used to test the efficiency of Algorithm 2(Data
sets KDDCUP99 can be downloaded at http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html).

5.1 Experiment Results in UCI Database

Data sets Heart c ls, P ima India, rx bq ls, Liver disorder and Abalone from
UCI database (These data sets can be downloaded at http://www.ics.uci.edu)
are used as test data sets. In order to compare our algorithms with existed
algorithms, the algorithm in [5,7,18] and the algorithm in [19] are chosen, called
Algorithm a and Algorithm b respectively. The experiment results are shown
in Table 1. Where, T is running time(in second) of algorithms, and N is the
cardinality of core attribute. The configuration of the PC here is P4 2.60G CPU,
256M RAM, Windows XP.

We can find from Table 1 that results of Algorithm a, Algorithm b and Algo-
rithm 2 are valid. However, the Algorithm 2 could save some time.



Attribute Core Computation Based on Divide and Conquer Method 317

Table 1. Experiment results on UCI database

Number Number Algorithm a Algorithm b Algorithm 2
Data Sets of Attribute of Records T N T N T N

Glass 9 214 0.016 9 0.003 9 0.001 9

Heart c ls 13 303 0.047 9 0.006 9 0.003 9

Australian Credit 14 660 0.141 8 0.023 8 0.005 8

Pima India 8 738 0.156 5 0.025 5 0.003 5

Liver disorder 6 1260 0.063 5 0.009 5 0.005 5

Abalone 8 4177 8.031 6 1.147 6 0.041 6

5.2 Experiment Results on Data Sets KDDCUP99

In order to test the efficiency of Algorithm 2 on really huge data sets, 20 KD-
DCUP99 data sets are downloaded. The number of records of these data sets
are 1× 105, 2× 105, 3× 105,..., 20× 105 respectively. The number of condition
attributes is 41. The experiment results are shown in Fig.1. The configuration
of the PC here is also P4 2.60G CPU, 256M RAM, windows XP.

We can find from Fig.1 that the efficiency of Algorithm 2 is very high on
huge data sets. Besides, the time cost of our algorithm is almost linear with the
number of objects. In the meantime, we test the minimum data set of Fig.1 with
Algorithm a and Algorithm b, their running time are both more than 1 hour.

Fig. 1. Experiment results on KDD data sets

6 Conclusion

Though rough set theory is becoming more and more mature, its application
in industry is still limited. An important reason is that the efficiency of many
algorithms of rough set theory is too low to meet to the need of industry in huge
data set environments. In this paper, the idea of divide and conquer method is
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used in the rough set theory, and an algorithm for computing positive region and
an algorithm for computing attribute core are proposed. Experiment results show
that the proposed algorithms are not only efficient, but also can deal with huge
data sets. Studying on algorithms of attribute reduction and value reduction
based on divide and conquer method will be our further work.
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Abstract. In our paper, we offer an efficient Fun algorithm for dis-
covering minimal sets of conditional attributes functionally determining
a given dependent attribute, and in particular, for discovering Rough
Sets certain, generalized decision, and membership distribution reducts.
Fun can operate either on partitions or alternatively on stripped parti-
tions that do not store singleton groups. It is capable of using functional
dependencies occurring among conditional attributes for pruning candi-
date dependencies. The experimental results show that all variants of
Fun have similar performance. They also prove that Fun is much faster
than the Rosetta toolkit’s algorithms computing all reducts and faster
than TANE, which is one of the most efficient algorithms computing all
minimal functional dependencies.

1 Introduction

The determination of minimal functional dependencies is a standard task in
the area of relational databases. TANE [5] or Dep-Miner [11] are example effi-
cient algorithms for discovering minimal functional dependencies from relational
databases. A variant of the task, which consists in discovering minimal sets of
conditional attributes that functionally or approximately determine a given de-
cision attribute, is one of the topics of Artificial Intelligence and Data Mining.
Such sets of conditional attributes can be used, for instance, for building classi-
fiers. In the terms of Rough Sets, such minimal conditional attributes are called
reducts [13]. One can distinguish a number of types of reducts. Generalized de-
cision reducts (or equivalently, possible/approximate reducts [7]), membership
distribution reducts (or equivalently, membership reducts [7]), and certain de-
cision reducts belong to most popular Rough Sets reducts. In general, these
types of reducts do not determine the decision attribute functionally. However,
it was shown in [8] that these types of reducts are minimal sets of conditional
attributes functionally determining appropriate modifications of the decision at-
tribute. Thus, the task of searching such reducts is equivalent to looking for
minimal sets of attributes functionally determining a given attribute. In this
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paper, we focus on finding all such minimal sets of attributes. To this end, one
might consider applying either methods for discovering Rough Sets reducts, or
discovering all minimal functional dependencies and then selecting such that
determine a requested attribute.

A number of methods for discovering reducts have already been proposed in
the literature. e.g. [3-4],[6],[9-10],[12-20]. The most popular methods are based
on discernibility matrices [15]. Unfortunately, the existing methods for discov-
ering all reducts are not scalable. The recently offered algorithms for finding all
minimal functional dependencies are definitely faster. In this paper, we focus
on direct discovery of all minimal functional dependencies with a given depen-
dent attribute, and expect this process to be faster than the discovery of all
minimal functional dependencies. Here, we offer an efficient Fun algorithm for
discovering minimal functional dependencies with a given dependent attribute,
and, in particular, for discovering three above mentioned types of reducts. Fun
can operate either on partitions or alternatively on stripped partitions that do
not store singleton groups. It is capable of using functional dependencies occur-
ring among conditional attributes, which are found as a sideeffect, for pruning
candidate dependencies.

The layout of the paper is as follows: Basic notions of information systems,
functional dependencies, decision tables and reducts are recalled in Section 2. In
Section 3, we offer the Fun algorithm. The experimental results are reported in
Section 4. We conclude our results in Section 5.

2 Basic Notions

2.1 Information Systems

An information system is a pair S = (O,AT ), where O is a non-empty finite set
of objects and AT is a non-empty finite set of attributes of these objects. In the
sequel, a(x), a ∈ AT and x ∈ O, denotes the value of attribute a for object x,
and Va denotes the domain of a. Each subset of attributes A ⊆ AT determines
a binary A-indiscernibility relation IND(A) consisting of pairs of objects indis-
cernible wrt. attributes A; that is, IND(A) = {(x, y) ∈ O×O|∀a∈A a(x) = a(y)}.
IND(A) is an equivalence relation and determines a partition of O, which is de-
noted by πA. The set of objects indiscernible with an object x with respect
to A in S is denoted by IA(x) and is called A-indiscernibility class; that is,
IA(x) = {y ∈ O|(x, y) ∈ IND(A)}. Clearly, πA = {IA(x)|x ∈ O}.

2.2 Functional Dependencies

Functional dependencies are of high importance in designing relational databases.
We recall this notion after [2]. Let S = (O,AT ) and A,B ⊆ AT . A → B is
defined a functional dependency (or A is defined to determine B functionally),
if ∀x∈O IA(x) ⊆ IB(x). A functional dependency A → B is called minimal, if
∀C∈A C → B is not functional.
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Table 1. Sample DT extended with dN
AT , ∂AT , μAT

d

oid a b c e f d dN
AT ∂AT μAT

d :< μAT
1 , μAT

2 , μAT
3 >

1 1 0 0 1 1 1 1 {1} < 1, 0, 0 >
2 1 1 1 1 2 1 1 {1} < 1, 0, 0 >
3 0 1 1 0 3 1 N {1, 2} < 1/2, 1/2, 0 >
4 0 1 1 0 3 2 N {1, 2} < 1/2, 1/2, 0 >
5 0 1 1 2 2 2 2 {2} < 0, 1, 0 >
6 1 1 0 2 2 2 N {2, 3} < 0, 1/3, 2/3 >
7 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
8 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
9 1 1 0 3 2 3 3 {3} < 0, 0, 1 >
10 1 0 0 3 2 3 3 {3} < 0, 0, 1 >

Example 2.2.1. Let us consider the information system in Table 1. {ce} → {a}
is a functional dependency, nevertheless, {c} → {a}, {e} → {a}, and ∅ → {a}
are not. Hence, {ce} → {a} is a minimal functional dependency. ��
Property 2.2.1. Let A,B,C ⊆ AT .

a) If A→ B is a functional dependency, then ∀C⊃A C → B is functional.
b) If A → B is not a functional dependency, then ∀C⊂A C → B is not a

functional dependency.
c) If A → B is a functional dependency, then ∀C⊃A C → B is not a minimal

functional dependency.
d) If A→ B and B → C are functional dependencies, then A→ C is functional.
e) If A ⊂ B, A → B is a functional dependency, and B ∩ C = ∅, then B → C

is not a minimal functional dependency.

Functional dependencies can be calculated by means of partitions [5] as follows:
Property 2.2.2. Let A,B ⊆ AT . A → B is a functional dependency iff
πA = πAB iff |πA| = |πAB|.
Example 2.2.2. Let us consider the information system in Table 1. We observe
that π{ce} = π{cea} = {{1}, {2}, {3, 4}, {5}, {6, 7, 8}, {9, 10}}. The equality of
π{ce} and π{cea} (or their cardinalities) is sufficient to conclude that {ce} → {a}
is a functional dependency. ��
The next property recalls a method of calculating a partition with respect to
an attribute set C by intersecting partitions with respect to subsets of C. Let
A,B ⊆ AT . The product of partitions πA and πB , denoted by πA∩πB , is defined
as πA ∩ πB = {Y ∩ Z|Y ∈ πA and Z ∈ πB}.
Property 2.2.3. Let A,B,C ⊆ AT and C = A ∪B. Then, πC = πA ∩ πB .

2.3 Decision Tables, Reducts and Functional Dependencies

A decision table is an information system DT = (O,AT ∪{d}), where d /∈ AT is
a distinguished attribute called the decision, and the elements of AT are called
conditions. A decision class is defined as the set of all objects with the same
decision value. By Xdi we will denote the decision class consisting of objects the
decision value of which equals di, where di ∈ Vd. Clearly, for any object x in O,
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Id(x) is a decision class. It is often of interest to find minimal subsets of AT (or
strict reducts) that functionally determine d. It may happen, nevertheless, that
such minimal sets of conditional attributes do not exist.
Example 2.3.1. Table 1 describes a sample decision table DT = (O,AT ∪
{d}), where AT = {a, b, c, e, f}. Partition πAT = {{1}, {2}, {3, 4}, {5}, {6, 7, 8},
{9}, {10}} contains all AT -indiscernibility classes, whereas π{d} = {{1, 2, 3},
{4, 5, 6}, {7, 8, 9, 10}} contains all decision classes. There is no functional de-
pendency between AT and d, since there is no decision class in π{d} containing
AT -indiscernibility class {3, 4} (or {6, 7, 8}). As AT → d is not functional, then
C → d, where C ⊆ AT , is not functional either. ��
Rough Sets theory deals with the problem of non-existence of strict reducts by
means of other types of reducts, which always exist, irrespectively if AT → d is
a functional dependency, or not. We will now recall such three types of reducts,
namely certain decision reducts, generalized decision reducts, and membership
distribution reducts.
Certain decision reducts. Certain decision reducts are defined based on the
notion of a positive region of DT , thus we start with introducing this notion.
A positive region of DT , denoted as POS, is the set-theoretical union of all AT -
indiscernibility classes, each of which is contained in a decision class of DT ; that
is, POS =

⋃
{X ∈ πAT |X ⊆ Y, Y ∈ πd} = {x ∈ O|IAT (x) ⊆ Id(x)}. A set of

attributes A ⊆ AT is called a certain decision reduct of DT , if A is a minimal set,
such that ∀x∈POS IA(x) ⊆ Id(x) [13]. Now, we will introduce a derivable decision
attribute for an object x ∈ O as a modification of the decision attribute d, which
we will denote by dN

AT (x) and define as follows: dN
AT (x) = d(x) if x ∈ POS, and

dN
AT (x) = N, otherwise (see Table 1 for illustration). Clearly, all objects with

values of dN
AT that are different from N belong to POS.

Property 2.3.1 [8]. Let A ⊆ AT . A is a certain decision reduct iff A→ {dN
AT }

is a minimal functional dependency.

Generalized decision reducts. Generalized decision reducts are defined based
on a generalized decision. Let us thus start with introducing this notion. An
A-generalized decision for object x in DT (denoted by ∂A(x)), A ⊆ AT , is
defined as the set of all decision values of all objects indiscernible with x wrt.
A; i.e., ∂A(x) = {d(y)|y ∈ IA(x)} [15]. For A = AT , an A-generalized decision
is also called a generalized decision (see Table 1 for illustration). A ⊆ AT is
defined a generalized decision reduct of DT , if A is a minimal set such that ∀x∈O

∂A(x) = ∂AT (x).

Property 2.3.2 [8]. Let A ⊆ AT . Attribute set A is a generalized decision
reduct iff A→ {∂AT } is a minimal functional dependency.

μ-Decision Reducts. The generalized decision informs on decision classes to
which an object may belong, but does not inform on the degree of the member-
ship to these classes, which could be also of interest. A membership distribution
function) μA

d : O→ [0, 1]n, A ⊆ AT, n = |Vd|, is defined as follows [7],[16-17]:

μA
d (x) = (μA

d1
(x), . . . , μA

dn
(x)), where
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{d1, . . . , dn} = Vd and μA
di

(x) = |IA(x)∩Xdi |
|IA(x)| .

Please, see Table 1 for illustration of μAT
d . A ⊆ AT is a called a μ-decision

reduct (or membership distribution reduct) of DT , if A is a minimal set such
that ∀x∈O μA

d (x) = μAT
d (x).

Property 2.3.3 [8]. Let A ⊆ AT . A is a μ-decision reduct iff A → {μAT
d } is a

minimal functional dependency.

3 Computing Minimal Sets of Attributes Functionally
Determining Given Dependent Attribute with Fun

In this section, we offer the Fun algorithm for computing all minimal subsets
of conditional attributes AT that functionally determine a given dependent at-
tribute ∂. Clearly, Fun shall return certain decision reducts for ∂ = ∂AT , gener-
alized decision for ∂ = dN

AT , and μ-decision reducts for ∂ = μAT
d . For brevity, a

minimal subset of AT that functionally determines a given dependent attribute
∂ will be called a ∂-reduct.

3.1 Main Algorithm

The Fun algorithm takes two arguments: a set of conditional attributes AT and
a functionally dependent attribute ∂. As a result, it returns all ∂-reducts. Fun
starts with creating singleton candidates C1 for ∂-reducts from each attribute in
AT . Then, the partitions (π) and their cardinalities (groupNo) wrt. ∂ and all
attributes in C1 are determined.

Notation for Fun
• Ck candidate k attribute sets (potential ∂-reducts);
• Rk k attribute ∂-reducts;
• C.π the representation of the partition πC of the candidate attribute set C; it is stored

as the list of groups of objects identifiers (oids);
• C.groupNo the number of groups in the partion of the candidate attribute set C; that is, |πC |;
• ∂.T an array representation of π∂ ;

Algorithm Fun(attribute set AT , dependent attribute ∂);
C1 = {{a}|a ∈ AT}; // create singleton candidates from conditional attributes in AT
forall C in C1 ∪ {∂} do begin

C.π = πC ;
C.groupNo = |πC |

endfor;
/* calculate an array representation of π∂ for later multiple use in the Holds function */
∂.T = PartitionArrayRepresentation(∂);
for (k = 1; Ck 
= ∅; k + +) do begin // Main loop
Rk = {};
forall candidates C ∈ Ck do begin

if Holds(C → {∂}) then // Is C → {∂} a functional dependency?
remove C from Ck to Rk; // store C as a k attribute ∂-reduct

endif
endfor;
/* create (k + 1) attribute candidates for ∂-reducts from k attribute non-∂-reducts */
Ck+1 = FunGen(Ck);

endfor;
return

⋃
kRk;
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Next, the PartitionArrayRepresentation function (see Section 3.3) is called to
create an array representation of π∂ . This representation shall be used multiple
times in the Holds function, called later in the algorithm, for efficient checking
whether candidate attribute sets determine ∂ functionally. Now, the main loop
starts. In each k-th iteration, the following is performed:

– The Holds function (see Section 3.3) is called to check if k attribute candi-
dates Ck determine ∂ functionally. The candidates that do are removed from
the set of k attribute candidates to the set of ∂-reducts Rk.

– The FunGen function (see Section 3.2) is called to create (k + 1) attribute
candidates Ck+1 from the k attribute candidates that remained in Ck.

The algorithm stops when the set of candidates becomes empty.

3.2 Generating Candidates for ∂-Reducts

The FunGen function creates (k + 1) attribute candidates Ck+1 by merging
k attribute candidates Ck, which are not ∂-reducts. The algorithm adopts the
manner of creating and pruning of candidates introduced in [1] (here: candidate
sets of attributes instead of candidates for frequent itemsets). There are merged
only those pairs of k attribute candidates Ck that differ merely on their last at-
tributes (see [1] for justification that this method is lossless and non-redundant).
For each new candidate C, πC is calculated as the product of the partitions wrt.
the merged k attribute sets (see Section 3.3 for the Product function). The cardi-
nality (groupNo) of πC is also calculated. Now, it is checked for each new (k+1)
attribute candidate C, if there is its k attribute subset A not present in Ck. If

function FunGen(Ck);
/* Merging */
forall A, B ∈ Ck do

if A[1] = B[1] ∧ . . . ∧A[k − 1] = A[k − 1] ∧ A[k] < B[k] then begin
C = A[1] · A[2] · . . . ·A[k] · B[k];
/* compute partition C.π as a product of A.π and B.π, and the number of groups in C.π */
C.groupNo = Product(A.π,B.π, C.π);
add C to Ck+1

endif ;
endfor;
/* Pruning */
forall C ∈ Ck+1 do

forall k attribute set A, such that A ⊂ C do
if A /∈ Ck then

/* A ⊂ C and ∃B ⊆ A such that B → {∂} holds, so C → ∂ holds, but is not minimal */
begin delete C from Ck+1; break
end

elseif A.groupNo = C.groupNo then // optional pruning step
/* A→ C holds, so C → {∂} is not a minimal functional dependency */
begin delete C from Ck+1; break
end

endif
endfor

endfor;
return Ck+1;
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∂-reduct, and hence C is deleted from the set Ck+1. Optionally, for each tested
k attribute subset A that is present in Ck, it is checked, if |πA| equals |πC |. If
so, then A → C holds (by Property 2.2.2). Hence, A → {∂} is not a minimal
functional dependency (by Property 2.2.1e), and thus C is deleted from Ck+1.

3.3 Using Partitions in Fun

Computing Array Representation of Partition. The PartitionArrayRep-
resentation function returns an array T of the length equal to the number of
objects O in DT . For a given attribute C, each element of T is assigned the
index of the group in C.π to which the index of the element belongs. As a result,
j-th element of T informs to which group in C.π j-th object in DT belongs,
j = 1.. |O|.

function PartitionArrayRepresentation(attribute set C);
/* assert: T is an array[1 . . . |O|] */
i = 1;
for i-th group G in partition C.π do begin

for each oid G do T [oid] = i endfor;
i = i + 1

endfor
return T ;

Verifying Candidate Dependency. The Holds function checks, if there is a
functional dependency between the set of attributes C and an attribute ∂. It
is checked for successive groups G in C.π, if there is an oid in G that belongs
to a group in ∂.π different from the group in ∂.π to which the first oid in G
belongs (for the purpose of efficiency, the pre-calculated ∂.T representation of
the partition for ∂ is applied instead of ∂.π). If so, this means that G is not
contained in one group of ∂.π and thus C → {∂} is not a functional dependency.
In such a case, the function stops returning false as a result. Otherwise, if no
such group G is found, the function returns true, which means that C → {∂}
is a functional dependency.

function Holds(C → {∂});
/* assert: ∂.T is an array representation of ∂.π */
for each group G in partition C.π do begin

oid = first element in group G;
∂-firstGroup = ∂.T [oid]; // the identifier of the group in ∂.π to which oid belongs
for each next element oid ∈ G do begin

∂-nextGroup = ∂.T [oid];
if ∂-firstGroup 
= ∂-nextGroup then

/* there are oids in G that identify objects indiscernible wrt. C, but discernible wrt. ∂ */
return false // hence, C → {∂} does not hold

endif
endfor;

endfor;
return true; // C → {∂} holds

Computing Product of Partitions. The Product function computes the par-
tition wrt. the attribute set C and its cardinality from the partitions wrt. the at-
tribute sets A and B. The function examines successive groups wrt. the partition
for B. The objects in a given group G in B.π are split into maximal subgroups in
such a way that the objects in each resultant subgroup are contained in a same
group in A.π. The obtained set of subgroups equals {G ∩ Y |Y ∈ A.π}. Product
C.π is calculated as the set of all subgroups obtained from all groups in B.π; i.e.,
C.π =

⋃
G∈B.π{G∩ Y |Y ∈ A.π} = {G∩ Y |Y ∈ A.π and G ∈ B.π} = B.π ∩A.π.



Fast Discovery of Minimal Sets 327

In order to calculate the product of the partitions efficiently (with time complex-
ity linear wrt. the number of objects in DT ), we follow the idea presented in [5],
and use two static arrays T and S: T is used to store an array representation of
the partition wrt. A; S is used to store subgroups obtained from a given group
G in B.π.

function Product(A.π, B.π; var C.π);
/* assert: T [1..|O|] is a static array */
/* assert: S[1..|O|] is a static array with all elements initially equal to ∅ */
C.π = {}; groupNo = 0;
/* calculate an array representation of A.π for later multiple use in the Product function */
T = PartitionArrayRepresentation(A); i = 1;
for i-th group G in partition B.π do begin

A-GroupIds = ∅;
for each element oid ∈ G do begin

j = T [oid]; // the identifier of the group in A.π to which oid belongs
insert oid into S[j]; insert j into A-GroupIds

endfor;
for each j ∈ A-GroupIds do begin

insert S[j] into C.π;
groupNo = groupNo + 1; S[j] = ∅

endfor;
i = i + 1

endfor;
return groupNo;

3.4 Using Stripped Partitions in Fun

The representation of partitions that requires storing objects identifiers (oids)
of all objects in DT may be too memory consuming. In order to alleviate this
problem, it was proposed in [5] to store oids only for objects belonging to non-
singleton groups in a partition representation. Such a representation of a parti-
tion is called a stripped one. Clearly, the stripped representation is lossless.

function StrippedHolds(C → {∂});
i = 1;
for i-th group G in partition C.π do begin

oid = first element in group G;
∂-firstGroup = ∂.T [oid]; // the identifier of the group in ∂.π to which oid belongs

if ∂-firstGroup = null then return false endif ;

/* ∂.T [oid] = null indicates that oid constitutes a singleton group in the partition for ∂. */

/* Hence, no next object in G belongs to this group in ∂.π , so C → {∂} does not hold. */

for each next element oid ∈ G do begin
∂-nextGroup = ∂.T [oid];
if ∂-firstGroup 
= ∂-nextGroup then

/* there are oids in G that identify objects indiscernible wrt. C, but discernible wrt. ∂ */
return false // hence, C → {∂} does not hold

endif
endfor;
i = i + 1

endfor;
return true; // C → {∂} holds

Example 3.4.1. In Table 1, the partition wrt. {ce} equals {{1}, {2}, {3, 4}, {5},
{6, 7, 8}, {9, 10}}, whereas the stripped partition wrt. {ce} equals {{3, 4}, {6, 7,
8}, {9, 10}}. ��
When applying stripped partitions in our Fun algorithm instead of usual par-
titions, one should call the StrippedHolds function instead of Holds, and the



328 M. Kryszkiewicz and P. Lasek

StrippedProduct function instead of Product. The modified parts of the functions
have been shadowed in the code below. We note, however, that the groupNo field
still stores the number of groups in an unstripped partition (singleton groups
are not stored, but are counted!).

function StrippedProduct(A.π, B.π; var C.π);

C.π = {}; groupNo = B.groupNo;

T = PartitionArrayRepresentation(A); i = 1;
for i-th group G in partition B.π do begin

A−GroupIds = ∅;
for each element oid ∈ G do begin

j = T [oid]; // the identifier of the group in A.π to which oid belongs

if j = null then groupNo = groupNo + 1; // respect singleton subgroups

else begin insert oid into S[j]; insert j into A-GroupIds endif

endfor;
for each j ∈ A−GroupIds do begin

if |S[j]| > 1 then

insert S[j] into C.π // store only non-singleton groups

endif ;

groupNo = groupNo + 1; S[j] = ∅ // but count all groups, including singleton ones

endfor;

groupNo = groupNo− 1;

i = i + 1
endfor;

/* Clearing of array T for later use */

for i-th group G in partition A.π do

for each element oid ∈ G do T [oid] = null endfor

endfor;

return groupNo;

4 Experimental Results

We have performed a number of experiments on a few data sets available in UCI
Repository datasets (http://www.ics.uci.edu/˜mlearn/MLRepository.html) and
other used by the Rough Sets community. We have reported the times of discov-
ering reducts by four variants of Fun, as well as, the TANE, SAVGeneticReducer
and RSESExhaustiveReducer algorithms. We used the implementation of TANE
provided by its authors. SAVGeneticReducer and RSESExhaustiveReducer, used
for experiments, come from the Rosetta toolkit. Because of Rosetta limitations,
we did not perform experiments with RSESExhaustiveReducer on datasets larger
than 500 records.

As follows from Table 2, Fun is faster than TANE and much faster than
the both algorithms from Rosetta. The performance of the four variants of Fun
is similar. In Figure 1, we plotted times of the performance of Fun, TANE and
SAVGeneticReducer for the nursery dataset in a logarithmic scale. The time per-
formance of Fun and TANE is linear wrt. the number of objects in the dataset.
The time performance of SAVGeneticReducer is 2 to 3 orders of magnitude
greater and is non-linear wrt. the number of objects. In Figures 2-4, we pre-
sented the time performance of Fun and TANE in a linear scale for the nursery,



Fast Discovery of Minimal Sets 329

Table 2. Comparison of Fun, TANE, SAVGeneticReducer and RSESExhaustive-
Reducer. Time is given in milliseconds (+ - originally, time measured in seconds); ∗

- a data set does not contain an object id; F - # of min. functional dependencies; P -
applied optional pruning step in FunGen; S - applied stripped partitions

Data set DT = (O, AT ∪ {d}) Fun Fun Fun Fun TANE SAV Genetic RSES Exhaustive
Name |O| |AT | - P S PS S Reducer Reducer F
diabetic.33 33 12 10 10 10 10 30 <500 (or 0 sec)+ <500 (or 0 sec)+ 2
diabetic.33∗ 33 11 20 10 10 10 20 <500 (or 0 sec)+ <500 (or 0 sec)+ 10
diabetic 107 12 50 30 30 30 40 <500 (or 0 sec)+ <500 (or 0 sec)+ 9
diabetic∗ 107 11 40 40 20 20 30 <500 (or 0 sec)+ <500 (or 0 sec)+ 14
nursery.500 500 9 20 10 10 10 10 <500 (or 0 sec)+ 18000 (or 18 sec)+ 8
nursery.500∗ 500 8 20 10 10 10 10 <500 (or 0 sec)+ 17000 (or 17 sec)+ 2
nursery 12960 9 451 539 471 481 681 274000 (or 274 sec)+ not available+ 1
nursery∗ 12960 8 441 450 451 481 701 247000 (or 247 sec)+ not available+ 2
krkopt 8056 6 250 251 260 250 420 1296000(or 1296 sec)+ not available+ 1

Fig. 1. nursery - logarithmic scale Fig. 2. nursery - linear scale

Fig. 3. diabetic - linear scale Fig. 4. krkopt - linear scale

diabetic and krkopt datasets, respectively. On average, TANE is approximately
by 60%, 80%, and 60% slower than Fun for the respective datasets.

5 Conclusions and Future Work

We have proposed the Fun algorithm for discovering minimal sets of condi-
tional attributes functionally determining a decision attribute, and in particular
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for computing certain, generalized decision, and μ-distribution reducts. Fun is
consistently faster than TANE, which computes all minimal functional depen-
dencies, and is orders of magnitude faster than SAVGeneticReducer and RSES-
ExhaustiveReducer from Rosetta. The four variants of Fun, we have implemented
and tested, show similar performance. We are going to continue testing their per-
formance on a diverse large datasets. We intend to specify categories of datasets
and appropriate (fastest) variants of Fun for them.
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Abstract. Indiscernibility relation and attribute reduction criteria are
the important concepts in rough sets, also are the important base for
further researching on attribute reduction. By analyzing the set theory
background of indiscernibility and the reduction theory, it can be seen
that an information system has the similar characteristics relative to a
relation database table and can be analyzed using its data table struc-
ture. Combining the structure information of the system with the rough
sets reduction theory, a simple reduction analysis can be completed and
get useful reduction information. Such as whether a system has redun-
dant attributes or not and how many attributes are need by the system
to maintaining its classes, etc. The analysis is realized by a simple al-
gorithm: PARA, the algorithm together with an effective heuristics al-
gorithm can decide an area of the minimum reduct. It greatly reduces
the searching area of finding minimum reduct and can play some role in
high-dimensionality reduction. A given example shows the algorithm.

Keywords: rough sets, attribute reduction, set theory, data table struc-
ture, algorithm.

1 Introduction

Attribute reduction, also called dimensionality reduction or feature selection,
has important meaning in data mining, pattern recognition, machine learning,
artificial intelligence, and so on. It is one of key techniques in data pre-processing
and data compression. Its research has going on for thirty years and obtained
plentiful results. Rough sets, proposed by Poland mathematic professor Zdzislaw
Pawlak[1,2] in 1982, is one of the most important results.

Rough sets has been very famous in dealing with imprecise or fuzzy data, and
also famous in attribute reduction as a new mathematic tool. It sets up reduction
theory and reduction criteria which can be applied to general structured data.
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The theory changes the attribute reduction situation and is widely used to many
practical fields. Today, rough sets is attracting great attention from the all world.

Rough sets puts forward the reduction theory of holding classified characteris-
tics of a datable. Because always there are several subsets meet the criteria, peo-
ple seek the way of getting the attribute subsets as possible as quickly, correctly
and smallest. Among the subsets, the minimum reduct, with least attributes,
has the most research value. Although experts had proved that to get the min-
imum reduct is still a NP-hard problem[3] to high-dimensionality datasets by
rough sets (the hugeness of attribute subset amount makes the load to find the
optimum subset cannot be accepted.), but by virtue of rough sets, the further
research is going on and entering a new phase.

This paper discusses the set theory background of rough sets reduction theory
and information system structure features. Comparing with relation database
table, a reduction analysis of an information system and the algorithm PARA
are gained. The algorithm gives the lower limit to search the minimum reduct,
if it’s together with an efficient heuristic algorithm, a certain area to find the
minimum reduct can be decided, which is greatly reduced relative to search in
the all subsets.

The paper is arranged as below: in the second part is rough sets reduction
theory, the third part is its set theory meaning on partition; the fourth part is the
discussion of relation datable and information system structure characteristics
including the application in reduction analysis; the fifth part is the algorithm
and examples. The last part gives conclusion.

2 Rough Sets Reduction Theory

A data table is called an information system[1] in rough sets when it is pro-
cessed discretely and is described as: S = {U,A, V, f}. U -the universal, U =
{x1, x2, ..., xn}; A-the set of all attributes; V -the set of all values of attributes;
f -the map function, f : U × A → V . Generally, A = C ∪ D, C is condition
attribute set and D is decision attribute set.

The attribute reduction of rough sets is set up on objects’ classification.
For any P � A, the ∩P gives an equivalence relation, denoted with ind(P ),

called indiscernibility relation:
ind(P ) = {(x, y) ∈ U2|a ∈ P, a(x) = a(y)}
Ind(P ) generates a partition on U , or a group of equivalent classes. They

are denoted by U/ind(P ). Set X ⊆ Uand a R ∈ A, rough sets defines lower
approximation of X in R is:

R (X) = ∪{Y ∈ U/R|Y ⊆ X}
And upper approximation of X in R is:
R−(X) = ∪{Y ∈ U/R|Y ∩X �= Ø}
The lower approximation is also expressed by posR(U,X), posR(U,X) =

R (X), called positive region. If U/ind(D) = {Y1, Y2, ..., Yk} is a equivalent re-
lation given by decision attributes, P ⊆ C, then the positive region of P in C
with respect to D is:
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posind(P )(D) =
k⋃

i=1

posind(p)(Yi) (1)

If c ∈ C, and
posind(C−c)(D) = posind(C)(D) (2)

then c is dispensable (can be reduced or reducted) with respect to D; else c is
necessary. Rough sets reduction is defined as: P � Cif every c in P is necessary
with respect to D, then P is considered independent with respect to D. If P is
independent about D, and

posind(P )(D) = posind(C)(D) (3)

then call P is a reduct in C with respect to D denoted by redD(C). Generally,
there are several reducts meet (3) in an information system, the intersection of
all these reducts is called core, denoted by coreD(C) = ∩ redD(C).

Form (3) shows that: some redundant attributes can be reduced from datable,
only the information system S maintains the positive region unchanged.

3 Set Theory and Partition

Every indiscernibility relation on U , such as ind(C), ind(P ), ind(D) or R, is an
equivalence relation, and gives a partition on U . A reduction analysis can be
developed on set theory partition.

Define3.1 Presume: π1 = {A1, A2, ..., An}, π2 = {B1, B2, ..., Bm} are two par-
titions of set U , if every Ai is a subset of some Bj , then π1 is considered as a
refinement of π2. It is denoted by: π1 	 π2. If one of Ai is a proper subset of
some Bj at least, then π1 is considered as a proper refinement of π2. It is denoted
by: π1 ≺ π2.

Define3.2 Presume π1 and π2 are two partitions of set U , call {Ai∩Bj |Ai∩Bj �=
Ø, i = 1, 2, ..., n; j = 1, 2, ...,m} as product of partitions of π1 and π2, denoted
by: π1·π2.

Bellow lemmas can be proved easily.

Lemma3.1[5] If π1 and π2 are two partitions of set U , R1 and R2 are the equiv-
alence relations of π1 and π2 correspondingly, then product of partitions: π1·π2

is the corresponding partition of equivalence relation R1 ∩R2.

Lemma3.2 If π1 and π2 are two partitions of set U , then the product of partitions
π(π1·π2) meets: π 	 π1. π 	 π2. If π1 �= π2, the product of partitions π will be
a proper refinement of one of the two partitions of π1 and π2 at least.

It can be proved as bellow.

Prove : Suppose π1 and π2 are two partitions of set U , and π = {Ai∩Bj |Ai∩Bj �=
Ø, i = 1, 2, ..., n; j = 1, 2, ...,m}. ∵ Ai ∩ Bj � Ai, Ai ∩ Bj � Bj by define 3.1,
∴ π 	 π1, π 	 π2 .

Suppose: π = {C1, C2, ..., Cl}, π1 �= π2, ∃i, j, that: Ai �= Bj and Ai ∩Bj �= Ø.
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There are three kinds of situations:

(1) Bj ⊂ Ai, then Ai ∩Bj = {Ck} = Bj , ∵ Ck ⊂ Ai,∴ π ≺ π1;
(2) Ai ⊂ Bj , then Ai ∩Bj = {Ck} = Ai,∵ Ck ∩Bj ,∴ π ≺ π2;
(3) Ai � Bj, Bj � Ai, Ai ∩Bj �= Ø, If Ai ∩Bj = {Ck} (Ck−1 + Ck = Ai and

Ck + Ck+1 = Bj , ∵ Ck ⊂ Ai and Ck ⊂ Bj , by define 3.1, ∴ π ≺ π1 and π ≺ π2.

So, when two partitions are unequal, their product of partitions is a proper
refinement of one of them at least. End

Among all the partitions, there are two extraordinary partitions, which are:
πS and πG.

πS = {U} is called minimum partition, the cardinality of its equivalence
relation RS (the number of equivalence class) is 1.

πG = {{x1}, {x2}, ..., {xn}} is called maximum partition, the cardinality of
its equivalence relation RG is n.

For any equivalence relation R on U , its partition: πR=U/R={X1, X2, ..., XR}.
Its cardinality: card(R) = |U/R| always meets: 1 � card(R) � n.

For two equivalence relations R1 and R2, their indiscernibility relation R =
R1 ∩ R2, the cardinality of R, by lemma 3.2, always meets: card(R)�card(R1),
card(R)�card(R2).

So, when increasing equivalence relation to a set of equivalence relations, the
cardinality of the new equivalence relation will be increased, or does not decrease,
the new partition will be finer.

An information system S, P ⊆ C, when new condition attribute is added
to P , the indiscernibility relation ind(P ) will be more and finer then before,
c ∈ C − P , the cardinality of ind(P ) meets: card(P ∩ c)� card(P ).

In the S, there are |C| condition attributes, P ⊆ C, it will be always true
that: card(C)� card(P ).

4 Data Table Structure and Its Characteristics

Information system is a kind of relation database tables. To a relation data table,
its number of attributes and the number of every attribute values decide how
many different objects can be described by them. The attributes and their values
decide the structure of the table.

According to the definition of rough sets, P ⊆ C, the indiscernibility relation
ind(P ):

ind(P ) = {(x, y) ∈ U2|∀c ∈ P, c(x) = c(y)}.
If|U/ind(C)| �= n, it means there are some objects in the same equivalence

class of U/ind(C), they can not be identified by ind(C), they are the same objects
in it. These objects are considered having the same classical knowledge, they are
repeated objects.

The numbers of same objects can support the rules expression in reasoning
analysis, but no more meaning in reduction analysis; they can be reduced and
does not affect the attribute reduction analysis. After reducing the redundant
objects, the partition of ind(C) always arrives maximum partition πG.
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For simplifying the discussion, suppose ind(C) always gives the maximum
partition on U(Every data table can realize it). It means that between any two
objects at least there is one attribute, in which the two objects have different
values:

If U = {x1, x2, ..., xn}, and C = {c1, c2, ..., cm}, ∃k (at least one) makes it
true:

ck(xi) �= ck(xj), i �= j, k ∈ [1, 2, ...,m].
The structure of a database table can decide the number of different objects.

Similar to database table, the structure of an information system also can de-
cide the number of different objects. Vice versa, if the structure and the object
number have been known, whether the attributes are redundant or not can be
understudied.

According to the number of attributes and the number of the attribute’s
values, how many different objects are described by them can be computed.
And if the result is greatly greater than the objects in the system, that says
the attributes of the system are enough or redundant to needed to describe the
objects differences, so the reduction is possible and efficient. If the result is not
greater greatly than the objects in system, the reduction may not be efficient.

The detail computing and analysis can be carried out as following:
An information system S, if there are m condition attributes, and among

them, m1 attributes have t1 different values, m2 attributes have t2 different val-
ues, m3 attributes have t3 different values,...,and mr attributes have tr different
values, then the system can describe nN different objects:

nN =
r∏

i=1

tmi

i , 2 � ti � |U |,
r∑

i=1

mi = m. (4)

|U | = n, if nN >> n, the system has enough or redundant attributes.
∀c, c ∈ C, |U/c| = s, arraying the s from big to small:s1 � s2 � s3 � ... � sm,

multiplying them one by one, then ∃p0, p0 ∈ I, I = {1, 2, 3, ...,m}, makes the
two formulas to be true:

p0−1∏

i=1

si � n,

p0∏

i=1

si � n (5)

The formulas show: at least p0 attributes are needed to describe the differ-
ent objects in the system. If less than p0, the system certainly does not arrive
maximum partition πG.

Based on rough set reduction theory, if the partition is πG by ind(P ), P ⊆ C,
then to any decision attribute ind(D), always has: posind(P )(D) = {U}, of course
has: posind(C)(D) = {U}.

Because a reduct must meet (3), so the attribute number in a reduct generally
has: |redD(C)| ≈ p0, or |redD(C)| � p0.

The result displays the lowest limit-p0 to search minimum reducts, it is the
least attributes to maintain the system classes.
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5 Algorithm and Examples

The nN of a system can be get by (4), if nN / n, it shows the datable has enough
or redundant attributes, else the system may not have redundant attribute. The
p0 of the system can be get by (5), |C| − p0 is the maximal attribute number
which may be reduced from the system.

An unchanged positive region posind(C)(D) = posind(P )(D) of a system is
a criterion of attribute can be reduced in it. And only when posind(P )(D) =
posind(C)(D) = {U}, the attribute subset P is a reduct by (3).

Following is the algorithm of reduction analysis PARAPre-Analysis of at-
tribute Reduction Algorithm to an information system S

1©. Deciding ti,mi of C, computing nN using formula (4);

2©. List si of every ci, compute p0 using (5);
3©. IF |C| − p0 = 0 THEN stop and exit, ELSE;
4©. Computing ind(C) of the system;
5©. Computing posind(C)(D) of the system;
6©. ∀c ∈ CIF posind(C−c)(D) �= posind(C)(D) THEN core(C)= core(C)∪ {c};
7©. C′ = C−core(C)
8©. Output nN , n, p0, |C| − p0, core(C), p0 − |core(C)|, C′.

This is a classical CTR(Car Test Result) table [6], and is classified, as in
Table 1, by the reduction analysis PARA, as follows:

1©. Deciding t1 = 2,m1 = 7; t2 = 3,m2 = 2; by formula(4):nN = 1152;
2©. The si list: 3,3,2,2,2,2,2,2,2, use formula (5): p0 = 4;
3©. |C| − p0 = 5, turn 4©;
4©. U/ind(C) = {{1}, {2}, {3}, {4}, ..., {21}} (maximum partition);
5©. posind(C)(D) = {1, 2, 3, 4, ..., 21} = {U};
6©. posind(C−d)(D) �= {U} and posind(C−i)(D) �= {U}, so coreD(C) = {d, i};
7©. C′ = C−coreD(C) = {a, b, c, e, f, g, h};
8©. Output: nN = 1152, n = 21, p0 = 4, |C| − p0 = 5,coreD(C) = {d, i},
p0 − |core(C)| = 2, |C| − |coreD(C)| = 7.

Because nN >> n(1152 >> 21), so the system has enough condition at-
tributesand may half of them are redundant. Because p0 = 4, so four attribute
could become a reduct. As the core has two attributes, other two attributes are
needed to realize a reduct. Now, the area to find a reduct among all subsets of
7 attributes is reduced to the subsets which only has 2 attributes, the number
of attribute subsets is reduced from 511 to C2

7 = 21. A minimum reduct is:
redD(C) = {d, i, a, e}.

The other example is from reference [7]. Its dataset comes from records of
medical treatment. There are 20 inspective attributes, and 568 cases. Five ex-
ports divided the cases to 5 classes. By use of the reduction analysis algorithm
PARA, the out put is: nN ≈ 8.0 × 1014, that says nN >> n, and p0 = 4, so
the system, from its structure, can at most be reduced 16 attributes, and only
4 attributes can describe the difference between every two objectors to the 568
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Table 1. Classified CTR Dataset

U a b c d e f g h i D

1 0 1 1 1 1 1 1 1 0 1
2 0 1 0 1 1 0 1 0 0 1
3 0 1 0 1 1 1 1 0 0 1
4 0 0 1 1 1 1 1 0 1 2
5 0 1 0 1 1 0 0 0 0 1
6 0 1 0 0 1 0 0 1 2 0
7 0 1 0 1 1 0 1 0 2 0
8 1 0 0 0 0 1 2 0 1 2
9 0 0 0 0 0 1 2 0 0 1
10 0 0 0 0 0 1 0 1 0 1
11 1 0 0 1 0 1 2 0 1 2
12 1 0 0 1 1 0 0 0 0 2
13 0 0 0 0 1 0 0 0 0 1
14 1 0 1 1 0 1 1 0 0 2
15 1 0 0 0 0 0 2 0 0 2
16 0 0 1 1 1 0 1 0 0 1
17 0 1 0 1 1 0 1 1 0 1
18 0 0 0 1 1 0 1 1 0 1
19 1 0 0 1 0 1 0 0 0 2
20 0 0 0 1 0 1 0 0 0 2
21 0 0 0 0 0 1 0 0 0 1

cases. There is one attribute in its core; the area of finding minimum reducts can
only check attribute subsets, not 20! attribute subsets. The two numbers show
that the searching area is reduced greatly.

6 Conclusion

Attribute reduction, especially in high-dimensionality, has many important mean-
ings. This article discusses a reduct analysis algorithm from indiscernibility rela-
tion and the set characteristics. After combining with dataset structure, a
reduction pre-analysis gives much information and determined the lower limit for
searching reducts. The examples show the algorithm is efficient and easy to un-
derstand and use. It provides a useful analysis before dimensionality reduction.
It could play some role in heuristic reduction and finding minimum reducts. The
research tries to give a new and reference way on dimensionality reduction.
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Abstract. This paper reports results of experiments on mass spectrom-
etry database search results produced by Keller et al. This data set de-
scribes human proteins. Data mining was conducted using the LERS
system. First, the data set was discretized by a cluster analysis algo-
rithm based on agglomerative approach. Then the basic rule set was
induced by the LEM2 algorithm. Finally, the rule set was refined using
changing rule strength methodology and truncation of the rule set. Our
results reach the level of sensitivity and specificity of competing meth-
ods. However, our results are explainable since they are in a form of rules
and, additionally, we can interpret the role of important features.

1 Introduction

With the advance of soft ionization technologies of electrospray (ES) and matrix-
assisted laser desorption ionization (MALDI), tandem mass spectrometry (MS/-
MS) with database search has emerged as the method of choice for the identifica-
tion of proteins in high-throughput proteomics studies. Such an approach usually
starts with protein separation using 2D-gel or other technologies. The isolated
proteins are then digested to peptides using proteases such as trypsin. The result-
ing peptides are fragmented and ionized using either ES or MALDI technology.
The recorded mass spectra are compared to theoretical ones computed from
all possible peptides obtained from a protein sequence database using database
search software such as SEQUEST [16], Mascot [14], ProteinProspector [3] and
X!Tandem [4]. The spectra are then assigned to peptides that best match theo-
retical spectra. Most of these programs use scores to rank the candidate peptides
� This research has been partially supported by the K-INBRE Bioinformatics Core,
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that indicate the degree of agreement between spectra and assigned peptides. A
validation procedure is generally required to discriminate false positives in the
assigned peptides due to the imperfect nature of these search algorithms. This
can be done by manual inspection of an expert or by applying empirical filtering
criteria based on database search scores and properties of the assigned peptides,
such as the number of tryptic termini. However, the manual validation is pro-
hibitively time-consuming when the database is large and the filtering criteria
are not reliable and may miss a large number of true positives. We have found
that it is common to miss 30–50% of true positives in the tests as presented in
Table 1.

Table 1. The performance of conventional filtering approaches, where charge denotes
peptide charge

Filtering method Sensitivity Specificity

XCorr ≥ 2, ΔCn ≥ 0.1, SpRank ≤ 50, NTT = 2 0.567 0.99844

XCorr ≥ 2, ΔCn ≥ 0.1, SpRank ≤ 50, NTT ≥ 1 0.732 0.99290

charge = +1, XCorr ≥ 1.5, NTT = 2 OR
charge = +2 OR
charge = +3, XCorr ≥ 2.0, NTT = 2 0.572 0.99796

ΔCn > 0.1 AND
(charge = +1, XCorr ≥ 1.9, NTT = 2 OR
(charge = +2 AND
(XCorr ≥ 3 OR 2.2 ≤ XCorr ≤ 3.0, NTT ≥ 1)) OR
charge = +3: XCorr ≥ 3.75, NTT ≥1) 0.641 0.99514

ΔCn ≥ 0.08 AND
(charge = +1, XCorr ≥ 1.8 OR
charge = +2, XCorr ≥ 2.5 OR
charge = +3, XCorr ≥ 3.5) 0.555 0.99718

ΔCn ≥ 0.1 AND
(charge = +1, XCorr ≥ 1.9, NTT = 2 OR
charge = +2, XCorr ≥ 2.2, NTT = 1 OR
charge = +3, XCorr ≥ 3.75, NTT = 1) 0.567 0.99825

ΔCn ≥ 0.1, SpRank ≤ 50, NTT ≥ 1, AND
(charge = +1 not included OR
charge = +2, XCorr ≥ 2.0 OR
charge = +3, XCorr ≥ 2.5) 0.712 0.99494

In the past several years there have been several attempts to develop soft-
ware tools using statistical and machine learning algorithms to validate database
search hits and consequently improve the results [1,11,15]. Keller et al. were
among the first to use these approaches to classify the results of SEQUEST
searches [11]. They formulated a new metric based on SEQUEST scores that
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takes into consideration the length of peptide and penalizes lower ranker and
poor mass accuracy. Anderson et al. used Support Vector Machine (SVM), a
powerful machine learning algorithm, to classify SEQUEST peptide assignment
as correct and incorrect, also based on SEQUEST scores [1]. They found that
SVM yielded fewer false positives and false negatives comparing to conventional
cutoff approaches. Very recently, Ulintz et al. used SVM, boosting and Ran-
dom Forest (RF) to classify MS/MS database search results using SEQUEST
and Spectrum Mill, a search engine based on ProteinProspector algorithms [15].
All three algorithms improved sensitivity and specificity considerably over con-
ventional cutoff approaches. While all these approaches delivered better perfor-
mance than conventional filtering approaches, they failed to provide details how
the improvements were achieved, as all methods used in previous studies belong
to ”black-box” approaches. In this study, we sought to develop interpretable
classifiers based on rough set theory. The classifiers resulted in rules that can be
readily examined by biomedical researchers to further improve database search
engines.

2 Data Set

The original experimental dataset was generated by Keller et al. as described
in [11]. This dataset was also used by Ulintz et al. in their data validation
studies [15]. In brief, these data were generated in a ThermoFinnigan ion trap
mass spectrometer from twenty-two different LC/MS/MS runs on mixtures of
eighteen proteins mixed in varying concentrations. Overall 37044 spectra were
generated in the experiments. These spectra were then searched by SEQUEST
against a protein database that was composed from human protein database with
eighteen additional known proteins. Only top-scoring peptides were retained
in the database search. Peptides matching the known eighteen proteins were
considered as true positives and the remaining top hits were negatives. For direct
comparison, we retained the same division of the dataset into training and test
datasets as in [15]. We also used the fifteen descriptive features as in [15], see
Table 2.

Usually, in the medical field, the problem is to diagnose a specific disease,
where all cases affected by the disease are defined as elements of the primary
class. Any subset of the set of all cases, defined by the same value of the decision
is called a class (or concept). All remaining cases are defined as elements of a
secondary class (healthy patients). Diagnosis is characterized by sensitivity (the
conditional probability of the set of correctly diagnosed cases from the primary
class given the primary class) and by specificity (the conditional probability of
the set of correctly diagnosed cases from the secondary class given the secondary
class). Thus the sensitivity is the ratio of the number of true positives to the sum
of the numbers of true positives and false negatives, while specificity is the ratio
of the number of true negatives to the sum of the numbers of true negatives and
false positives.
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Table 2. Descriptive features used in the study

Feature name Description

Delta Parent ion mass error
Charge Parent ion charge
Intensity Normalized intensity of the peaks
Length Length of the peptide
Matching peptide The number of peptides matching

the parent ion mass within the mass tolerance
Sp Preliminary score
SpRank Rank based on Sp
ΔCn Difference in normalized correlation

scores between next-best and best hits
XCorr Cross-correlation score
ratio Fraction of experimental ions

matched with the theoretical ions
N pro Number of prolines
N arg Number of arginines
C term C-terminal residue
NTT Number of tryptic termini
PMF Proton mobility factor

Our training data set contained 25931 cases, with 1930 cases being the primary
class and remaining 24001 cases being the secondary class. The testing data set
contained 11113 cases, distributed into 827 cases from the primary class and
10286 cases from the secondary class.

3 Discretization, Rule Induction and Classification

All numerical attributes were discretized before rule induction, i.e., numerical
values of these attributes were converted into symbolic. For our experiments we
selected a discretization based on cluster analysis. First clusters were formed,
using bottom-up (agglomerative) approach. The process was continued until
each elementary set, defined by all attributes, was contained in some concept or
all attributes defined the same indiscernibility relation as for the original data
set. Both ideas, of the elementary set and indiscernibility relation, are taken
from rough set theory [12, 13]. Then the clusters were projected on numerical
attributes and initial intervals were created. Finally, these intervals were merged
together using the same criterion to stop as in the process of forming clusters.

For rule induction, classification, and validation we used the data mining
system LERS (Learning from Examples based on Rough Sets) [5, 6]. After dis-
cretization, in the next step of processing the input data file, LERS checks if
the input data file is consistent. If the input data file is inconsistent, LERS com-
putes lower and upper approximations of all classes. The ideas of lower and
upper approximations are fundamental for rough set theory [12,13].
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In general, LERS uses two different approaches to rule induction: one is used
in machine learning, the other in knowledge acquisition. In machine learning, or
more specifically, in learning from cases (examples), the usual task is to learn the
smallest set of minimal rules, describing the class. To accomplish this goal LERS
uses two algorithms: LEM1 and LEM2 (LEM1 and LEM2 stand for Learning
from Examples Module, version 1 and 2, respectively). In our experiments we
used only LEM2 algorithm since, in general, LEM2 induces simpler and more
accurate rule sets.

The classification system of LERS is a modification of the bucket brigade
algorithm [2,10]. The decision to which concept a case belongs is made on the
basis of two factors: strength and support. They are defined as follows: strength
is the total number of cases correctly classified by the rule during training.
The second factor, support, is defined as the sum of strengths for all matching
rules from the concept. The concept C for which the support, i.e., the following
expression

∑

matching rules R describing C

Strength(R)

is the largest is the winner and the case is classified as being a member of C.
In the classification system of LERS, if complete matching is impossible, all

partially matching rules are identified. These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case. For any
partially matching rule R, the additional factor, called Matching factor (R), is
computed. Matching factor (R) is defined as the ratio of the number of matched
attribute-value pairs of R with a case to the total number of attribute-value
pairs of R. In partial matching, the concept C for which the following expression
is the largest

∑

partially matching
rules R describing C

Matching factor(R) ∗ Strength(R)

is the winner and the case is classified as being a member of C.
Every rule induced by LERS is preceded by three numbers: the total number

of attribute-value pairs on the left-hand side of the rule, strength, and the rule
domain size, i.e., the total number of training cases matching the left-hand side
of the rule.

4 Postprocessing of Rules

Once rule sets were induced we used two different postprocessing techniques
applied to these rule sets. The first technique was called increasing rule strengths
[7, 8]. This technique is used for imbalanced data sets, that is, data sets with
different class sizes. Our data set was imbalanced, the total size of primary class
was much smaller than the total size of secondary class. In such data, during
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classification of unseen cases, rules matching a case and voting for the primary
classes are outvoted by rules voting for the bigger, secondary classes. Thus the
diagnosis of a primary classes is poor and the resulting classification system
would be rejected by diagnosticians.

Therefore it is necessary to decrease the error rates for the primary class.
Since the data set is imbalanced, the simplest idea is to add cases to the pri-
mary class in the data set, e.g., by adding duplicates of the available cases. The
total number of training cases will increase, hence the total running time of the
rule induction system will also increase. Adding duplicates will not change the
knowledge hidden in the original data set, but it may create a balanced data set
so that the average rule set strength for both classes will be approximately equal.
The same effect may be accomplished by increasing the average rule strength
for the primary class. In our research we selected the optimal rule set by mul-
tiplying the rule strength for all rules describing the primary class by the same
real number called a rule strength multiplier. In general, the error rates for the
primary classes decrease with the increase of the rule strength multiplier. At the
same time, the error rates for the secondary classes increase.

The second mechanism to increase the conditional probabilities for primary
class was rule truncation, a method of reducing the rule set by deleting weak
rules, describing a few training cases, by removing rules with strengths not ex-
ceeding some cutoff. The truncation algorithm was already used for diagnosis
of melanoma, see, e.g., [8]. By removing weak rules the total number of rules
describing the class is reduced. This may result in rules that may not match
the cases completely as they would have before the truncation process. How-
ever, the LERS classification system is equipped with partial matching. A case
may still be very closely related to the correct class and thus may be correctly
recognized.

5 Experiments

Our experiments were performed on the training data set (with 25931 cases)
discretized by the agglomerative cluster analysis algorithm. A basic rule set was
induced from the discretized data set by the LEM2 algorithm. Then we incremen-
tally increased the rule strength multiplier for all rules describing the primary
classes, see Table 3. Sensitivity and specificity presented in Table 3 were com-
puted using the testing data set (with 11113 cases). During these experiments
the truncation cutoff was not used (all rules participated in classification). Then,
with the rule strength multipler equal to 1000, we gradually increased the trun-
cation cutoff, up to 100, for the rule set describing the secondary class. The size
of the rule set describing the secondary class decreased from 282 (the original
rule set) to 141 (the rule set corresponding to the truncation cutoff equal to 100).
During all of our experiments the size of the rule set describing the primary class
was always equal to 244. The ROC (Receiver Operating Characteristic) graph,
illustrating our experiments, is presented in Figure 1.
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Table 3. Performance of rough set models

Strength Truncation Sensitivity Specificity
multiplier cutoff

1 0 0.8440 0.99543
20 0 0.8839 0.99217
100 0 0.9117 0.98493
500 0 0.9178 0.98260
1000 0 0.9190 0.98085
1000 5 0.9202 0.97968
1000 20 0.9287 0.97832
1000 50 0.9323 0.97579
1000 100 0.9383 0.96850

Fig. 1. ROC graph

6 Results and Comparison with Other Approaches

The dataset that was the subject of our experiments was previously analyzed
in other studies using various machine learning algorithms [11,15]. For example,
Ulintz et al. reported that approaches using boosting and random forest achieved
a sensitivity of 0.99, PeptideProphet and SVM delivered 97 – 98% sensitivity at
a false positive rate of roughly 0.05 [15]. Thus the performance of our approaches
is comparable to Ulintz’s results as we achieved better false positive rates but
poorer sensitivities. Keller et al. reported a sensitivity of 89% with an error of
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2.5% [11]. Although a direct comparison to this study is not applicable because
Keller et al. used different division of training and test datasets, it appears that
our model is competitive.

7 Interpretation of the Decision Rules

An advantage of white-box approaches such as rough set theory over ”black-box”
methods is that the detailed knowledge of the classification process is available
for better understanding the problem under study. In the present study, the
classification rules discovered by our classifiers reveal several important obser-
vations leading to better understanding the chemistry underlying the molecule
fragmentation and ionization. For example, the mobile proton factor (MPF) was
discovered as a very useful indicator. A single rule involving only two features
can eliminate approximately 40% of true negatives without error:

(PMF, 0.699..5.5) & (C term, others) –> (label, -1)

The PMF is calculated as:

R + 0.8 ∗K + 0.5 ∗H
charge

where R is the number of arginine, K is the number of lysine, and H stands for the
number of histidine. Charge means the charge on the parent peptide. Although
it was known that a smaller value of PMF indicates higher protein mobility [15],
it was unclear the degree that PMF would affect the peptide detection using
MS/MS technologies. From our results, it seems that PMF is particularly useful
to eliminate peptides with a terminal residue other than arginine and lysine. It
is worth to note that the rule does not use any SEQUEST score.

NTT (the number of tryptic terminals) is important since the peptides are the
products from tryptic digestions. It measures whether the peptide is fully tryptic
(NTT = 2), partially tryptic (NTT = 1), or non-tryptic (NTT = 0). However,
the NTT of a fully tryptic terminal peptide can be equal to one. NTT was
found as the most important attribute in Ulintz’s study [15]. A higher NTT is a
strong indication of a true positive; however, the NTT of a small portion of true
positives is either 0 or 1. For example, this type of peptides accounts for about
one quarter of the true positives in our dataset. Thus improvement in this type
of peptide identification will significantly increase the sensitivity and specificity.
We found that the following single rule correctly classifies approximately 40% of
these partially tryptic and non-tryptic peptides. Thus peptides with lower NTT
but higher XCorr and ΔCn are likely true positives.

(XCorr, 3.4218..7.2792) & (ΔCn, 0.2362..0.5565) & (NTT, 0..1.5) –> (label, 1)

Most of the rules discovered in our study involve one or more features that are
not SEQUEST scores. These features are either peptide physicochemical proper-
ties (e.g., MPF, Length, etc.) or protein sequence environment (e.g., NTT). The
results further confirm the conclusion in our recent study that these properties
can be used to improve data validation models [5].
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8 Conclusions

We have proposed a rough set based approach to validate MS/MS database
search results. The performance of our approach is comparable to competing
methods. However, some important rules discovered in this study may lead to
better understanding of the chemistry underlying the molecule fragmenttion and
ionization. In addition, these rules may be used in the development of novel mass
spectrometry database search engines.
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Abstract. This article presents an elementary overview of techniques
employed for spam detection via probabilistic decision table-based pre-
dictive data modelling. The focus here is to present a solution that com-
bines simple algorithms together with some heuristics to construct gen-
eralized rough approximations of spam and legitimate e-mails using the
variable precision rough set (VPRSM) approach. Experiments were con-
ducted to explore the application of VPRSM for designing an intelligent
agent for spam filtering.

1 Introduction

Spamming is the abuse of electronic messaging systems to send unsolicited, un-
desired bulk messages. A person engaged in spamming is known as a spammer.
E-mail spam is the most common form of spam - a term which is applicable to
similar abuses in other media: instant messaging spam, mobile phone messaging
spam, web search engine spam,etc.

E-mail spam, otherwise known as unsolicited bulk (or commercial) e-mail or
junk mail may be defined as one or more nearly identical messages sent out
to a large group of recipients who have not requested it and have no use of
the information being relayed in the message. E-mail spam targets individual
users with direct mail messages. Because of the very low cost associated with
sending e-mails, spammers are able to send millions of e-mails daily over the
internet. E-mail addresses on spam lists are often created by scanning Usenet
postings, stealing Internet mailing lists, dictionary attacks or searching the web
for addresses, amongst others.

Spam filtering is an automatic analysis and classification of incoming e-mail
messages, to allow the disqualification of spam from inclusion in a group of legit-
imate messages for a particular user. Generations of spam filters have emerged
over the years to deal with the spam issue. Most of these filters succeeded to some
point in discriminating between spam and legitimate e-mails, however they re-
quire manual intervention. For example content based methods require human
efforts to build lists of characteristics and their scores. Over the last five years,
statistical filters have gained more attention as they are able to tweak themselves;
getting better and better with less manual intervention. The most popular sta-
tistical approach is the Bayesian filter, which assigns probability estimates to
e-mails. Even such filters have their limitations as spammers still manage to
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evade them by using various exploiting techniques [2]. Consequently, novel ap-
proaches are desired to deal with ever-increasing flood of spam and the persistent
attempts by spammers to break the existing anti-spam barriers.

In this article, we report our research and experiments on the application
of a Rough Set-based analysis in conjunction with the probabilistic framework
of the variable precision rough set model (VPRSM) [3] [6] [9] for personalized
adaptive spam filtering. In our approach, the learned spam detection rules are
structured into hierarchies of probabilistic decision tables [8], which offer the
advantage of uniform rule size and the ability to control the progress of learning.
This decision table-based approach has the potential to lead to more powerful
application technology for a solution to the spam problem by broadening content-
based filtering with a system that has the real advantage to combine personalized
and robust spam combating heuristics and the ability to learn. Other advantages
include taking the whole message into account in the rule derivation, as generated
from corpora of categorized messages rather than involving direct human effort
in rule development and tuning.

We discuss our experiences with a system based on findings from research and
experiments into ways of using VPRSM for detecting spam. In what follows, we
present the rough set fundamentals of the system’s operation and the results of
our experiments with system’s application to spam detection.

2 Information Representation

We assume that observations about objects of interest (e.g. e-mail messages in
our case) are expressed through values of functions, referred to as attributes,
belonging to the union of two disjoint sets C ∪ D. The functions belonging to
the set C are called condition attributes, whereas functions in D are referred to
as decision attributes. In the context of our application, the condition attributes
are predefined e-mail properties which contribute to spam detection. We will
assume that there is only one binary-valued decision attribute, that is D =
{d} representing the classification of a message as spam or legitimate e-mail.
Technically, each attribute a belonging to C ∪ D is a mapping a : U → Va,
where Va is a finite set of values called the domain of the attribute a. In our
case, the domains of condition attributes are also binary, reflecting the presence
or absence of a property. Some binary condition attributes are obtained through
a discretization process, in which the range of numeric measurements is divided
into a number of subranges by suitably selected cut points. The cut points are
then used as two valued attributes representing the ranges of values below or
above the cut.

Each subset of attributes B ⊆ C ∪ D also defines a mapping, denoted as
B : U → B(U) ⊆ ⊗a∈BVa, where ⊗ denotes Cartesian product operator of all
domains of attributes in B. For a tuple z ∈ C ∪D(U) and a subset of attributes
B ⊆ C∪D, the projection z.B corresponds to a set of objects B−1(z) = {e ∈ U :
B(e) = z} whose values of attributes in B match z.B. The family of sets B−1(z)
(for different tuples z) forms a partition of the universe U . The partition will be
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denoted as U/B and its classes will be called B-elementary sets. In particular, the
C ∪D-elementary sets, denoted as G ∈ U/C ∪D, will be referred to as atoms.
The pair (U,U/C) will be called an approximation space. The C -elementary
sets E ∈ U/C will be referred to as elementary sets and the D -elementary sets
F ∈ U/D will be called decision categories. In the application discussed in this
article, there are only two decision categories corresponding to the target set X
of spam e-mails, and its complement ¬X of legitimate e-mails.

3 Variable Precision Rough Sets

We assume here that the universe of interest U (the collection of all possible
e-mail messages) can be partitioned into finite collection of atoms in terms of
condition and decision attributes. In addition, it is assumed that all subsets X ⊆
U under consideration are measurable with a probability measure 0 < P (X) < 1.
This prior probability of a set X , P (X) can be estimated from data by calculating
its frequency in a sample in the standard way. We also assume the existence of
conditional probabilities P (X |E) representing the likelihood of occurrence of
decision category X , or ¬X , relative to the occurrence of an elementary set E.

The VPRSM extends upon original rough set ideas introduced by Pawlak
[5] by allowing parametric definitions of rough approximation regions (i.e. posi-
tive, negative and boundary regions of a decision category X of interest in the
probabilistic framework.

Informally, the VPRSM defines the positive region of a set X as an area
where the certainty degree of an object’s membership in the decision category X
is relatively high, the negative region as an area where the certainty is relatively
low, and the boundary area where the certainty of an object’s membership in the
target set is not sufficiently high and not sufficiently low. The defining criteria
in the VPRSM are expressed in terms of conditional probabilities P (X |E) and
of the prior probability P (X) of the decision category X . The precision control
parameters define the approximation regions as follows.

The lower limit l parameter, satisfying the constraint 0 ≤ l < P (X) < 1,
represents the highest acceptable degree of the conditional probability P (X |E)
to include the elementary set E in the negative region of the set X . That is, the
l-negative region of the set X, denoted as NEGl(X) is defined by NEGl(X) =
∪{E : P (X |E) ≤ l}.

The second parameter, referred to as the upper limit u, satisfying the con-
straint 0 < P (X) < u ≤ 1, defines the u-positive region of the set X. The upper
limit reflects the least acceptable degree of the conditional probability P (X |E)
to include the elementary set E in the positive region, or u-lower approxima-
tion of the set X . The u-positive region of the set X , POSu(X) is defined as
POSu(X) = ∪{E : P (X |E) ≥ u}.

The objects which are not classified as being in the u-positive region nor in the
l-negative region belong to the (l, u)-boundary region of the decision category
X , denoted as BNRl,u(X) = ∪{E : l < P (X |E) < u}.
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The boundary is a specification of objects about which it is known that their
associated probability of belonging, or not belonging to the decision category X ,
is not significantly different from the prior probability of the decision category
P (X).

4 Probabilistic Decision Table Hierarchies

The probabilistic decision tables approximately represent probabilistic relations
between condition and decision attributes [8]. They arise from the idea of deci-
sion table acquired from data introduced by [5]. For the given decision category
X ∈ U/D and the given lower and upper limit parameters l and u, we define the
probabilistic decision table DTC,D

l,u as a mapping C(U) → {POS,NEG,BND}.
The mapping is assigning each tuple of values of condition attributes t ∈ C(U) its
unique designation of one of VPRSM approximation regionsPOSu(X),NEGl(X)
or BNDl,u(X), the corresponding elementary set Et is included in, the elementary
set Et probability P (Et) and conditional probability P (X |Et):

DTC,D
U (t) =

⎧
⎨

⎩

(P (Et), P (X |Et), POS) ⇔ Et ⊆ POSu(X)
(P (Et), P (X |Et), NEG) ⇔ Et ⊆ NEGl(X)
(P (Et), P (X |Et), BND)⇔ Et ⊆ BNDl,u(X)

(1)

An example probabilistic decision table is shown in Table 1, given l = 0.1 and
u = 0.8.

Table 1. Partial Probabilistic Decision Table

C1 C2 C3 C4

flag flag longest No. No. No. No. P (X|E) VPRSM
E spam reply word recip- e-mails spam legit P (Et) X=spam Region

exploits exists length ients

E1 0 1 1 1 24 16 8 0.3 0.67 BND
E2 0 0 0 1 24 1 23 0.3 0.04 NEG
E3 1 0 1 0 32 29 3 0.4 0.9 POS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To represent the degree of relative coverage of the universe by lower approxi-
mations of decision categories, Pawlak introduced the notion of attribute depen-
dency, referred here as γ-dependency [4][5]. The γ(D|C)-dependency provides a
useful measure for evaluating the quality of decision tables learned from data.
The γ(D|C)-dependency can be extended to the variable precision model of
rough sets and used to represent the relative size of the boundary area of a de-
cision table. In the extended version it is defined as the combined probability of
the u-positive and l -negative regions:

γl,u(X |C) = P (POSu(X) ∪NEGl(X)). (2)
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The probabilistic decision tables can be structured into hierarchies by treat-
ing the boundary region BNDl,u(X) of a decision table as a sub-universe of
U , denoted as U ′ = BNDl,u(X), based on which another decision table can
be constructed using some condition attributes C′, disjoint from C. As in the
universe U , in the approximation space (U ′, U ′/C′), the decision table for the
subset X ′ ⊆ X (the target decision category in U ′), X ′ = X ∩ BNDl,u(X) can
be constructed according to the formula (1). By repeating this step recursively, a
linear hierarchy of probabilistic decision tables can be grown until either bound-
ary area disappears in one of the constructed decision tables, or no attributes
can be identified to produce non-boundary decision table at the final step. The
algorithmic details of the decision table hierarchy construction for the spam
detection application are described in Section 6.

The hierarchy of decision tables can be used as an approximate classifier, or
predictor, classifying a new object as a member, or non-member of the decision
category X (i.e. as spam or legitimate message in our application). For objects
falling into positive or negative regions of the decision category, the classifica-
tions produced by the properly constructed and validated hierarchy of decision
tables will result in significantly higher decision certainty, or significantly lower
misclassification rate as compared to decisions guided only by prior probabilities
P (X) and ¬P (X).

5 Spam Detection System Development

The spam detection system operation is divided into two phases: a training
phase and a classification phase. In the training phase, rough set-based machine
learning is used on the collected sets of pre-classified e-mails (hypertext source
codes) for decision table hierarchy-based model construction. In the classification
phase, learnt decision table hierarchy is used to predict the decision category of
incoming e-mails.

We considered e-mails collected from hotmail accounts to train and test the
decision model. The process involves manual retrieval and categorical labelling
of hypertext documents as a complete representation of actual e-mails. Each
training corpus contained at least 4200 e-mails consisting of approximately 30%
of legitimate and 70% of spam messages to reflect actual inflow of e-mail. Spam e-
mails were collected from multi-user inboxes however, for better results and also
to reduce impacts of misclassification. Legitimate e-mails were gathered from a
single highly active user account. The training corpora were collected over a 2
year period (2004/2005).

Prior to VPRSM-based modelling we formalized an extraction protocol for
governing the standard representation of e-mails. Data objects (e-mails) were
presented as feature vectors for training and testing. Queries were implemented
as functions for the extraction of interesting information features from the mes-
sages to construct condition attributes[2,1]. We identified a total of 58 features
to be extracted from each e-mail. These were used to construct feature vectors,
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representing the universe of collected e-mails. Tools used to facilitate represen-
tation were SQL, Visual Basic and Perl.

In the process of feature extraction, we scanned all messages to breakdown
e-mails according to predefined areas, creating representational views for mes-
sage header and body analysis. To capture the structure of an e-mail we divided
it into small components called tokens to be further analyzed. Database tables
were deployed to hold individual tokens for thorough token and global struc-
tural analysis. Some common tokens included punctuation symbols, sequences
of characters, spaces, tabs, carriage returns, line feeds, and entities such as e-mail
addresses, images, symbols, html tags, attachments and URLs. For each token,
several varying characteristic attributes were collected such as it’s position, size,
length, case (upper, lower, mixed or proper) for word tokens, character (alpha,
numeric or alphanumeric)and alphabetical composition (vowels/consonants) for
sentence tokens, and more.

Next, we performed analysis on each identified area to gather useful informa-
tion obtained by posing queries about some defined concepts (corresponding to
condition attributes). We employed heuristics to analyze both exploits by spam-
mers and indicators of spam or non-spam. The analysis performed at this stage
included:

• Identification of possible characteristic attributes of individual tokens or to-
ken groups, to be used to develop queries that provide a summary or de-
scriptive view of some defined concepts.
• Investigation of structure, meaning, positioning, and proportional relations

between categories of certain token types given by definitions from a formal
grammar. For example we performed a ratio analysis of distinct cases (upper,
lower, mixed or proper) as presented by alpha word tokens for a globalized
conceptual view on casing.
• Feature aggregation was employed for simpler concept description to en-

hance the discriminative power of rules generated. This process attempted
to present more useful features by constructing compound features using
constructive operators on multi elementary features. For example, consider
two common exploits in spam: URL encoding (queries will look for hexadec-
imal URL, hiding target URL with an @ sign, etc.) and character encoding
(&#109;ortgage renders into Mortgage), as features. Although both elemen-
tary features are investigated separately using distinct feature queries, we
may perform an OR operation on the boolean output of both queries to
generate a new compound feature, represented as the conditional attribute.

No feature ranking was employed at this stage since the hierarchy structure using
VPRSM picks the best attributes per hierarchy level. A few examples of some
queries used to defined feature concepts are provided below:

• Spammy
Investigate if e-mail contains spam words, phrases, or the like e.g dear friend,
click here, debt financing, viagra, etc.
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• Exploits in Spam
Check body of e-mail for exploits such as URL obscuring, word obscuring,
domain spoofing, white-out, token breaking, etc.
• String Analysis (subject and body)

Length of field, length of longest word in a field, number of words in field,
number of sentences in field, number of images in body, etc.

• Header Analysis
Does top-level domain (eg .ca) of e-mail addresses exist in the full list of
identified Internet top-level domains? Do usernames or hostnames of e-mail
addresses conform to that only permissible when creating an e-mail account?
Is sender the same as recipient? Attachments with no extension, e.g. file1? Is
recipients username found in other fields? Does Reply-to field exist? Is there
a subject? Does subject contains defined illegal symbols?
• Counts & Attachments

Count number of e-mails addresses in To/From fields, number of comma
separated values in cc and bcc fields, number of attachments, total size of all
attachments, number of distinct filenames, number of distinct file extensions.
• Ratio Analysis

Check case category (proper , mixed, lower, upper, or any combinations)
ratios for all word tokens. Calculate character category (alpha, numeric,
symbolic, or any combinations) ratio for all characters in a given string.
Calculate vowel-consonant ratio for all alphabets in a given string.

Lastly, we applied a functional mapping to convert derived quantitative at-
tributes to qualitative binary attributes for decision table construction. In this
process, the range of each numeric attributes was divided into a predefined num-
ber of intervals according to required representation resolution level (e.g. 100 in-
tervals) using evenly spaced cut points. Subsequently, each cut point was treated
as an attribute by itself to provide a pool of binary attributes to be used to grow
the hierarchy of decision tables. In addition, we used some qualitative binary
attributes, such as the presence or absence of images in the e-mail, which sup-
plemented the converted quantitative attributes.

6 Learning Hierarchy of Probabilistic Decision Tables

Given a training data set, we used the VPRSM-based hierarchy structured deci-
sion tables to represent probabilistic knowledge learned from data. This derived
knowledge was applied to construct generalized rough approximations of the
target set, the spam. Elementary sets represent general patterns that are au-
tomatically discovered from hierarchies of probabilistic decision tables and are
used to formulate rules for predicting new incoming mail. The objective here
was to classify e-mail objects as spam or legitimate. The major stages of the
algorithm [8] adapted for the generation of the hierarchy of decision tables are
presented below.
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Algorithm HDTL

1. U ←− U, C ←− C, D ←− D

2. Define root layer decision table DT
C,D)
U

3. Compute γ-dependency of current layer γ(DT
C,D)
U

)
4. Repeat
{

5. If (γ(DT
C,D)
U

) = 0 Then
{
Output current layer decision table DT C,D

U

Stop
}

6. Output current layer region decision table DT C,D
U

7. Select new condition attributes on the boundary area C ←− select(BNDC,D(U))

8. If (C = φ) Then Stop
9. Define new universe, initiate new layer, U ←− BNDC,D(U)

10. Define current layer decision table DT
C,D)
U

}

At each layer of the hierarchy, new binary condition attributes are added from
the pre-computed pool of cut-based attributes. The number of the attributes
added on each level is limited by a user-set parameter to avoid the exponential
growth of the decision tables, and also to avoid the classical problem of ”over-
fitting” the training data. The selection of the attributes is controlled by a hill-
climbing heuristic algorithm attempting to maximize the degree of probabilistic
dependency, referred to as normalized λ-dependency λ(D|C) [9] between the
selected attributes and the decision attribute:

λ(X |C) =

∑
E∈U/C P (E)|P (X |E)− P (X)|

2P (X)(1− P (X))
(3)

where P (X) is prior probability of the target set X in the universe U . In practice,
the prior probability represents the frequency of spam among e-mail messages.

7 System Evaluation

Data analysis was based on validation and interpretation of the mined rules gen-
erated from VPRSM hierarchical modelling. Testing corpora were collected over
different time periods preceding training data collection (2005 - 2007). Evaluation
of the computational model was measured using accuracy and error indicators
defined as follows:

accuracy =
B + D

A + B + C + D
(4)

error =
A + C

A + B + C + D
(5)
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where A denotes the number of objects incorrectly rejected from category X
(False Negatives); B is the number of objects correctly rejected from category X
(True Negatives); C is the number of objects incorrectly assigned to category X
(False Positives); and D is the number of objects correctly assigned to category
X (True Positives).

Given different parameter settings for system learning, we present sample eval-
uations of the proposed system in the table below. In Table 2, n is the number
of attributes added on each hierarchy level while constructing the structure of
decision tables, and l and u are the VPRSM precision control parameters. Un-
classified cases are objects (e-mails) whose attribute value combinations are not
matched by any learned rules, using the trained hierarchical model.

Table 2. Results using Test Corpus A of 905 objects as input vector

Unclassified Classified Accuracy Error
n l u cases cases A B C D (%) (%)
8 0.1 0.9 0 905 17 188 20 680 95.91 4.09
8 0.2 0.8 0 905 6 176 32 691 95.80 4.20
8 0.3 0.7 17 888 14 174 17 683 96.51 3.49
10 0.4 0.6 98 807 9 132 8 658 97.89 2.11
8 0.4 0.8 5 900 6 171 32 691 95.77 4.23
8 0 1 0 905 9 175 33 688 95.36 4.64

Overall, the results were encouraging as accuracy measured across the dif-
ferent testing data sets was relatively high (over 95% ) and can be considered
acceptable. For almost all tests, we observed low rates of unclassifiable cases,
relative to total observations to be classified. The only exception was when the
number of attributes per table level was increased to 10. This lead to the in-
crease of unclassified cases to about 10%, which was expected due to related
exponential increase in the complexity of learning [7], or the upper bound on the
maximum size of the learned decision tables. Experiments show that with con-
sistent retraining and better choice of attributes, higher system accuracy would
be attained.

The extraction of rules obtained from boundary regions had the overall impact
of increased false classifications. Various tests were performed with or without
retraining the model, and with varying precision control parameter settings,
different cut points, different elementary set size threshold values and the number
of attributes per hierarchy level. The normalized λ-dependency measure for the
whole hierarchy structure of decision tables [10] was used to a priori evaluate the
resulting classifiers. It was observed that the λ-dependency is the lowest when u
= 0 and l = 1, regardless of other parameter settings. This choice of certainty
control parameters also generates the most number of hierarchy levels during the
modelling stage. However, the optimization of parameters to provide the highest
improvement in prediction remains a topic for further research.
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8 Conclusion

We have performed experimental analysis of feasibility of using the hierarchy
of VPSRM probabilistic decision tables at heart of a spam detection filter.
The investigation involved content analysis of e-mails to construct appropri-
ate attribute-value representation and experimentation with different hierarchy
decision table-based e-mail classifiers. The results indicate that the proposed
system has a good potential as a spam detection tool due to its demonstrated
relatively high accuracy, the ability to learn and efficiency. The future work will
involve more experimental evaluation and comparison with existing approaches.
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ported by a research grant awarded to the second author by the Natural Sciences
and Engineering Research Council of Canada.
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Abstract. Rough sets have been applied to many areas where multi-
attribute data is needed to be analyzed to acquire knowledge for decision
making. Web-based Support Systems (WSS) are a new research area that
aims to support human activities and extend human physical limitations
of information processing with Web technologies. The applications of
rough set analysis for WSS is looked at in this article. In particular,
our focus will be on Web-Based Medical Support Systems (WMSS). A
WMSS is a support system that integrates medicine practices (diagnosis
and surveillance) with computer science and Web technologies. We will
explore some of the challenges of using rough sets in a WMSS and detail
some of the applications of rough sets in analyzing medical data.

1 Introduction

Web-based Support Systems (WSS) are a completely new frontier for computer-
ized support systems [16]. It can be understood as extensions of existing research
in two dimensions. It can also be viewed as natural extensions of decision support
systems with the use of the Web to support more activities. In the technology
dimension, WSS use the Web as a new platform for the delivery of support with
new advances in technology can lead to further innovations in support systems.
Along the application dimension, the lessons and experiences from DSS can be
easily applied to other domains.

Research on information retrieval support systems [17], research support sys-
tems [4,13], decision support systems [5,11], and medical support systems [1,12]
are just some of the recent investigations for moving support systems to the Web
platform [14,15].

Rough set theory is a way of representing and reasoning imprecision and
uncertain information in data [9]. It deals with the approximation of sets con-
structed from descriptive data elements. This is most helpful when trying to
discover decision rules, important features, and minimization of conditional at-
tributes. The beauty of rough sets is how it creates three regions, namely, the
positive, negative and boundary regions. The boundary regions are useful for a
undeterminable cases.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 360–370, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Researchers have used rough sets for diagnosing cancer [8], brain disorders [3],
lung disease [7], and others. These applications of rough sets to data analysis
may be included in a Web-based Medical Support System (WMSS).

This paper will focus on the issues of migrating the rough set model for use
in Web-based support systems. The organization of this paper is as follows.
Section 2 will discuss rough set theory and an extended probabilistic model
that incorporates risk. Section 3 will provide WSS applications with rough sets
and introduce Web-based medical support systems with rough set functionality.
Finally, we conclude this paper in Section 4.

2 Rough Set Models

2.1 Algebraic Rough Set Model

Approximation is used to characterize a set A ⊆ U [9], where U is a finite, non-
empty universe. It may be impossible to precisely describe A given a set relation
B. Equivalence classes are simply objects in U in which we have information.
Definitions of lower and upper approximations follow:

apr(A) = {x ∈ U |[x] ⊆ A},
apr(A) = {x ∈ U |[x] ∩A �= ∅}. (1)

The lower approximation of a set A, denoted apr(A), is the union of all ele-
mentary sets that are included (fully contained) in X . The upper approximation
of a set A, denoted apr(A), is the union of all elementary sets that have a non-
empty intersection with A. This allows us to approximate unknown sets with
known objects. We can now define notions of positive, negative, and boundary
regions [9] of A:

POS(A) = apr(A),
NEG(A) = U − apr(A),
BND(A) = apr(A)− apr(A). (2)

2.2 Probabilistic Rough Set Model

The algebraic method has very little flexibility for determining the classification
regions. It may not be useful or applicable when majority cases are undeter-
minable. More flexible models include some probabilistic approaches, namely,
variable precision rough sets [20] and decision-theoretic rough sets [18,19].

The decision-theoretic approach may lend itself to a more Web-friendly appli-
cation for two reasons. First, it calculates approximation parameters by obtain-
ing easily understandable notions of risk or loss from the user [19]. This allows
for simpler user involvement instead of having parameters being arbitrarily pro-
vided. This is important when users are not qualified to set the parameters and
just wish to perform analysis. Second, many types of WSS could make use of
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cost or risk annotations. We present a slightly reformulated decision-theoretic
rough set model in this section, as reported in [18,19].

The Bayesian decision procedure allows for minimum risk decision making
based on observed evidence. Let A = {a1, . . . , am} be a finite set of m possible
actions and let Ω = {w1, . . . , ws} be a finite set of s states. Let P (wj |x) be
the conditional probability of an object x being in state wj given the object
description x. Let λ(ai|wj) denote the loss, or cost, for performing action ai

when the state is wj .
Object classification with approximation operators can be fitted into this

framework. The set of actions is given by A = {aP , aN , aB}, where aP , aN ,
and aB represent the three actions to classify an object into POS(A), NEG(A),
and BND(A) respectively. Let λ(a�|A) denote the loss incurred for taking action
a� when an object belongs to A, and let λ(a�|Ac) denote the loss incurred by
taking the same action when the object belongs to Ac. This can be given as loss
functions λ�1 = λ(a�|A), λ�2 = λ(a�|Ac), and 2 = P , N , or B.

If we consider the loss function inequalities λP1 ≤ λB1 < λN1 ,that is, the
loss incurred by λN1 (false-negative) is more than the losses incurred by both
a correct classification (λP1) and an indeterminant classification (λB1) we can
formulate decision rules based on this division of the universe. The corresponding
inequalities λN2 ≤ λB2 < λP2, that is, a false-positive (λP2) has a greater cost
than a correct classification (λN2) and an indeterminant classification (λB2),
can further tell us how the universe is divided. We can formulate the following
decision rules (P)-(B) [18] based on the set of inequalities above:

(P) If P (A|[x]) ≥ γ and P (A|[x]) ≥ α, decide POS(A),
(N) If P (A|[x]) ≤ β and P (A|[x]) ≤ γ, decide NEG(A),
(B) If β ≤ P (A|[x]) ≤ α, decide BND(A),

where,

α =
λP2 − λB2

(λB1 − λB2)− (λP1 − λP2)
,

γ =
λP2 − λN2

(λN1 − λN2)− (λP1 − λP2)
,

β =
λB2 − λN2

(λN1 − λN2)− (λB1 − λB2)
. (3)

The α, β, and γ parameters define our regions, giving us an associated risk
for classifying an object. The α parameter can be considered the division point
between the POS region and BND region. Likewise, the β parameter is the
division point between the BND region and the NEG region. When α > β, we
get α > γ > β and can simplify the rules (P-B) into (P1-B1):

(P1) If P (A|[x]) ≥ α, decide POS(A);
(N1) If P (A|[x]) ≤ β, decide NEG(A);
(B1) If β < P (A|[x]) < α, decide BND(A).
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When α = β = γ, we can simplify the rules (P-B) into (P2-B2) [18]:

(P2) If P (A|[x]) > α, decide POS(A);
(N2) If P (A|[x]) < α, decide NEG(A);
(B2) If P (A|[x]) = α, decide BND(A).

These minimum-risk decision rules offer us a basic foundation in which to
build a rough set risk analysis component for a WSS. They give us the ability
to not only collect decision rules from data, but also the calculated risk that is
involved when discovering (or acting upon) those rules.

3 Web-Based Support Systems with a Rough Set
Component

For our future purposes of using rough sets for a WSS, we will look at a par-
ticular probabilistic approach that allows us to calculate associated risk for a
partitioning of the object universe. The decision-theoretic rough set model [19]
allows us to enhance the traditional data mining component of a WSS by adding
a risk element to the decision process. Using this risk element, users of a WSS can
make more informed decisions based on the rule-based knowledge base. Based
on the three regions (POS, BND, and NEG), there are two types of decisions
or support that the rough set component can offer the user:

1. Immediate Decisions (Unambiguous) - These types of decisions are based
upon classification within the POS and NEG regions. The user can interpret
the findings as:
(a) Classification in the POS region is a definitive “yes” answer, for instance,

the symptoms or test results indicate a patient suffers breast cancer.
(b) Classification in the NEG region is a definitive “no” answer, for instance,

the symptoms indicate that a patient does not suffer breast cancer.
2. Delayed Decisions (Ambiguous) - These types of decisions is based upon

classification within the BND region. Since there is some element of uncer-
tainty in this region, the user of the WSS should proceed with a “wait-and-
see” agenda. Rough set theory may be meaningless when the “wait-and-see”
cases are too large and unambiguous rules are scarce. Two approaches may
be applied to decrease ambiguity:
(a) Obtain more information [9]. More lab tests will be conducted in order

to diagnose whether a patient suffers a disease, i.e., introduce more at-
tributes of the information table. Conduct further studies to gain knowl-
edge in order to make an immediate decision from the limited data sets.

(b) A decreased tolerance for acceptable loss [18,19,20]. The probabilistic
aspects of the rough set component allows the user to modify the (ac-
ceptable) loss functions in order to increase certainty. However, this may
also increase the risk of “false-positives” and “false-negatives”. For in-
stance, a doctor may diagnose a patient with a lung infection with a
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simple cough symptom and prescribe an antibiotic for treatment. The
risk to both patient and doctor of the wrong diagnosis is relatively low
compared to a conclusion of lung cancer and treated with chemotherapy.
The decision-theoretic rough set model is adapted to consider the risk
factor and calculate the tolerance level for a WSS.

These types of decisions could greatly influence the effectiveness of the knowl-
edge base derived from the rough set component. The risk element provided
by the decision-theoretic rough set model provides the user with the ability to
customize the knowledge base to suit their priorities.

3.1 Binding Rough Sets with Web-Based Support Systems

Both algebraic and probabilistic rough sets provide the user with methods to
derive rules. These rules can then be used to support decision making. There are
many types of WSS that support some form of decision making, including but
not limited to Web-based decision support systems. Therefore, it follows that an
important extension of rough sets should be the migration to the Web.

Looking at rough sets from a data mining perspective, it is one of many
knowledge discovery methods that are available to the users. Given a depository
of data, rough sets can be used to perform analysis of this data. The end result
being a set of decision rules that can be used to describe, extend, or predict the
domain in which the data was derived [10]. For example, a time-series data set
describing stock index prices can be analyzed with rough sets in order to obtain
decision rules that aid in forecasting the market [2].

The WSS framework utilizing rough sets would be connected to the compo-
nents knowledge base, database, interface, as well as the other components [16].
This is shown in Fig. 1. Taking on the duties of the data mining component,
rough sets would perform analysis on the data within the database component.
It would derive decision rules based on this data. These rules would be captured
by the knowledge management component, which would index it into the domain
specific knowledge base.

Some derivations of WSS could make use of the cost or loss annotations pro-
vided by the decision-theoretic rough set models. This may include Web-based
decision support systems where a decision made in conjunction with a decision
rule could have some perceived implications portrayed by the loss functions.
These λP2 and λN1 errors, or “false positive” and “false negative” errors respec-
tively can be provided to the decision maker so that he or she can be better
informed on which decision to make. Fig. 1 can be modified so that the domain
specific knowledge base contains information regarding the λ�1 and λ�2 values
corresponding to the decision rules used by the user.

The use of the decision-theoretic rough set model in WSS distances itself
from the uses of the traditional rough sets. Rough set analysis is transformed
into decision-theoretic rough analysis. Rules that are normally formed through
rough set analysis are transformed into a “risk analysis” pair (decision rules
with their respective costs). The decision making performed with the traditional
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Fig. 1. Sub-architecture with Rough Set Analysis as a data mining component

rule set can now be thought of a decision making with minimum cost tasks. For
example, a set of rules governing the diagnosis of cancer would also have a set
of risks that indicate the potential loss for a false positive or false negative.

3.2 Web-Based Medical Support Systems

In this section, we will describe a Web-based medical support system. A WMSS
contains many components whose duties range from scheduling of appointments
to maintaining a knowledge base of symptoms and diseases [12]. We focus on
the decision support aspect [6] of a WMSS. This system will use rough sets to
perform analysis on compatible medical data. A WMSS has a primary goal of
supporting decisions of an expert (doctor, primary or secondary diagnostician).

For our purposes of using rough sets for a WMSS, we will look at a proba-
bilistic approach that allows us to calculate associated risk for a partitioning of
the object universe. The decision-theoretic rough set model allows us to enhance
the traditional data mining component of a WSS by adding a risk element to the
decision process. The architecture is shown in Fig 2. The individual components
are described as follows:

Patient Database. The patient database contains data pertaining to patient
symptoms. This is gathered by the users of the system by a number of questions
and trials performed on the patients. The rough set component and information
retrieval component access this database regularly.

Database Management System. The DBMS is a major component in any
modern system. This is middleware that provides access to the patient database.
The rough set component communicates with the DBMS for tuple data.
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Fig. 2. A Partial Architecture of a Web-based Medical Support System

Knowledge Management. The knowledge management middleware compo-
nent manages the knowledge base and provides access to the rule database and
associated risk database. It acquires the risk analysis pairs from the rough set
analysis component and indexes them accordingly.

Rough Set Component. The rough set component in this particular system
makes use of the decision-theoretic rough set model to acquire knowledge (rules)
and the associated risks of using that knowledge. It provides the users of the
system with timely information to support their decision making.

Information Retrieval. The information retrieval component provides search
and indexing functionality. Rough sets can play a role here [21]. This compo-
nent is directly interfaced and has primary communication with the interface /
presentation layer. Users of the system will access this component to retrieve
patient data, information from knowledge base and other tasks.

Other Control Facilities. Other control facilities include a robust security
and permission component. Since patient data is very sensitive and with the
Web functionality of the entire system, security is a major concern.

Knowledge Base. The knowledge base component contains two major sub-
components: the rule database and associated risk database. The rule database
is an index of the knowledge derived from the rough set analysis component. The
associated risk database contains risk values for accepting a decision implied by
the rule database.
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Interface/Presentation. This component is an entire layer of user interfaces
and server-side form request handlers. This layer presents the users of the system
with a clean and efficient web interface for entering patient data, searching, and
obtaining decision support.

Users. The users of the system include general practitioners, primary doctors,
secondary diagnosticians, etc. The users access the WMSS via Interface / Pre-
sentation layer through the Internet.

The users may take the information provided and make an unambiguous de-
cision. This represents a definitive “yes” or “no” diagnosis for a particular set
of symptoms. This corresponds to those patients classified in either the POS
or NEG regions. For those cases in the BND region, a “wait-and-see” decision
is used. The support system would suggest that the users either decrease their
tolerance (loss functions) or acquire additional data on the subject.

3.3 Web-Based Medical Support Systems with Risk Analysis

To see how a decision-theoretic rough set analysis component effects decisions
in a WMSS, let us consider two diagnosis scenarios. The risk or cost is defined
as consequences of the wrong diagnosis. Based on our common sense, the cost
of wrong diagnosis of a flu is lower than that of a wrong diagnosis of cancer.
The cancer diagnosis tolerance levels of either a false-negative or false-positive
are very low. Patients may sacrifice their lives when a false-negative level is high
as they may miss the best treatment time. They may suffer consequences of
chemotherapy for non-existent cancer when a false-positive is high.

Using Table 1, let us form two hypothetical scenarios of patient diagnoses.
First, a diagnosis of low severity with a low cost for a wrong diagnosis. This
could be testing for a patient’s minor allergies. An allergy test would be looking
for positive indicators for symptoms S = {S1, S2, S3} and the diagnosis decision
D = {Decision}. Below is a typical sample of loss functions for this situation:

λP2 = λN1 = 1u, λP1 = λN2 = λB1 = λB2 = 0, (4)

where u is a unit cost determined by the individual administration. In this
scenario, the administration has deemed that a false-positive (λP2) and false-
negative (λN1) diagnosis has some form of cost whereas indeterminant diagnoses
(λB1, λB2) and correct diagnoses (λP1, λN2) have no cost.

A diagnosis of high severity could have a high cost for a wrong diagnosis. This
could be testing for whether a patient has a form of cancer. In Table 1, the cancer
test would be looking for positive indicators for symptoms S = {S1, S4, S5} and
the diagnosis decision D = {Decision}. Patient o3 having symptoms s3,1, s3,2,
and s3,3 would give a decision d3,1 for allergy tests. Below is a typical sample of
loss functions for this situation:

λP2 = λN1 = 2u, λB1 = λB2 = 1u, λP1 = λN2 = 0, (5)
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Table 1. An Information Table

Patient S1 S2 S3 S4 S5 Decision

o1 s1,1 s1,2 s1,3 s1,4 s1,5 d1

o2 s2,1 s2,2 s2,3 s2,4 s2,5 d2

o3 s3,1 s3,2 s3,3 s3,4 s3,5 d3

o4 s4,1 s4,2 s4,3 s4,4 s4,5 d4

o5 s5,1 s5,2 s5,3 s5,4 s5,5 d5

o6 s6,1 s6,2 s6,3 s6,4 s6,5 d6

where u is a unit cost determined by the individual administration. In this
scenario, the administration has deemed that a false-positive (λP2) and false-
negative (λN1) diagnoses is twice as costly as indeterminant diagnoses (λB1 and
λB2). Correct diagnoses (λP1 and λN2) have no cost.

Using the loss functions in (4) and calculating the parameters using the for-
mulas in (3), we obtain α = 1, γ = 0.5, and β = 0. When α > β, we get
α > γ > β. We use the the simplified decision rules (P1-B1) to obtain our lower
and upper approximations:

apr
(1,0)

(A) = {x ∈ U |P (A|[x]) = 1},
apr(1,0)(A) = {x ∈ U |P (A|[x]) > 0}. (6)

Using the loss functions in (5) and calculating the parameters using the for-
mulas in (3), we obtain α = β = γ = 0.5. When α = β = γ, we use the simplified
decision rules (P2-B2) to can obtain our new lower and upper approximations:

apr
(0.5,0.5)

(A) = {x ∈ U |P (A|[x]) > 0.5},
apr(0.5,0.5)(A) = {x ∈ U |P (A|[x]) ≥ 0.5}. (7)

The approximations in (6) mean that we can definitely class patient x into
diagnosis class A if all similar patients are in diagnosis class A. The low loss
functions (4) have indicated that users of the system can have high certainty
when dealing with this class of patient. The approximations in (7) mean that we
can definitely class patient x into diagnosis class A if strictly more than half of
similar patients are in diagnosis class A. These examples use the loss functions to
determine how high the level of certainty regarding a patient’s symptoms needs
to be in order to minimize cost.

4 Conclusion

We further explain the importance of Web-based support systems. A decision-
theoretic rough set model can be used as the data mining component for a WSS.
This extended model allows the component to provide additional decision sup-
port to the users. The two types of decision the users can make, immediate and
delayed, are now fully supported by the rough set component. We reiterate this
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by detailing a Web-based medical support system framework that incorporates
risk analysis through loss functions. The rough set component builds and main-
tains a risk database to assist the users in assessing the knowledge provided by
the rule database.
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Abstract. The main objective of this paper is to provide a granular computing
based interpretation of rules representing two levels of knowledge. This is done
by adopting and adapting the decision logic language for granular computing. The
language provides a formal method for describing and interpreting conditions in
rules as granules and rules as relationships between granules. An information
table is used to construct a concrete granular computing model. Two types of
granules are constructed from an information table. They lead to two types of
rules called low order and high order rules. As examples, we examine rules in the
standard rough set analysis and dominance-based rough set analysis.

Keywords: Low order rules, high order rules, granular computing, dominance-
based rough set analysis.

1 Introduction

Rules are a commonly used form for representing knowledge. Two levels of knowledge
may be expressed in terms of low and high order rules, respectively [16]. A low order
rule expresses connections between attribute values of the same object. Classification
rules are a typical example of low order rules. For example, a classification rule may
state that “if the Hair color is blond and Eye color is blue, then the Class is +.” A
high order rule expresses connections of different objects in terms of their attribute
values. Functional dependencies are a typical example of high order rules. For example,
a functional dependency rule may state that “if two persons have the same Hair color,
then they will have the same Eye color.” The notion of a high order rule is also related
to relational learning, in which a k-ary predicate is used to define a relation between k
objects [10]. For simplicity, in this paper we only consider binary relations.

In rough set analysis [6,7,8], a decision logic language DL is used to build condi-
tions in low order rules and to interpret these conditions as subsets (i.e., granules) of
objects. This language is referred to as L0 [16]. In order to describe high order rules,
an extended language L1 is introduced [16]. In L1, conditions are interpreted in terms
of a set of object pairs. The two languages share the same syntactic rules, with two se-
mantic interpretations. That is, their main differences lie in the different interpretations
of atomic formulas. It is therefore possible to introduce a common language.

In this paper, we propose a decision logic languageL for granular computing. Instead
of expressing the atomic formulas by a particular concrete type of conditions, we treat
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them as primitive notions that can be interpreted differently. This flexibility enables us
to describe different types of rules. The language is interpreted in the Tarski’s style
through the notion of a model and satisfiability. The model is a non-empty domain
consisting of a set of individuals. An individual satisfies a formula if the individual has
the properties as specified by the formula. A concept is therefore jointly defined by
a pair consisting of the intension of the concept, a formula of the language, and the
extension of the concept, a subset of the model.

As illustrative examples to show the usefulness of the proposed language, we an-
alyze rules in the standard rough set analysis [6,7,8] and dominance-based rough set
analysis [2,3,4,11,15].

2 A Decision Logic Language for Granular Computing

By extracting the high-level similarities of the decision logic languages DL, L0, and
L1, we propose a logic language L for granular computing.

The language L is constructed from a finite set of atomic formulas, denoted by A =
{p, q, ...}. Each atomic formula may be interpreted as representing one piece of basic
knowledge. The physical meaning of atomic formulas becomes clearer in a particular
application. In general, an atomic formula corresponds to one particular property of an
individual under discussion. The construction of atomic formulas is an essential step of
knowledge representation. The set of atomic formulas provides a basis on which more
complex knowledge can be represented. Compound formulas can be built recursively
from atomic formulas by using logic connectives. If φ and ψ are formulas, then so are
(¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), and (φ↔ ψ).

The semantics of the language L can be defined in the Tarski’s style through the
notion of a model and satisfiability. The model is a nonempty domain consisting of
a set of individuals, denoted by M = {x, y, ...}. The meaning of formulas can be
given recursively. For an atomic formula p, we assume that an individual x ∈M either
satisfies p or does not satisfy p, but not both. For an individual x ∈M , if it satisfies an
atomic formula p, we write x |= p, otherwise, we write x � p. The satisfiability of an
atomic formula by individuals of M is viewed to be the basic knowledge describable by
the language L. An individual satisfies a formula if the individual has the properties as
specified by the formula. Let φ and ψ be two formulas, the satisfiability of compound
formulas is defined as follows:

(1). x |= ¬φ iff x � φ,

(2). x |= φ ∧ ψ iff x |= φ and x |= ψ,

(3). x |= φ ∨ ψ iff x |= φ or x |= ψ,

(4). x |= φ→ ψ iff x |= ¬φ ∨ ψ,

(5). x |= φ↔ ψ iff x |= φ→ ψ and x |= ψ → φ.

In order to emphases the roles played by the set of atomic formulas A and the set of
individuals M , we also rewrite the language L as L(A,M).

The construction of the set of atomic formulas and the model M depends on a par-
ticular application. For modeling different problems, we may choose different sets of
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atomic formulas and models. The language L therefore is flexible and enables us to
describe a variety of problems.

With the notion of satisfiability, one can introduce a set-theoretic interpretation of
formulas of the language L. If φ is a formula, the meaning of φ in the model M is the
set of individuals defined by [7]:

m(φ) = {x ∈M | x |= φ}. (1)

That is, m(φ) is the set of individuals satisfying a formula φ. This enables us to establish
a correspondence between logic connectives and set-theoretic operators. Specifically,
the following properties hold:

(C1). m(¬φ) = −m(φ),
(C2). m(φ ∧ ψ) = m(φ) ∩m(ψ),
(C3). m(φ ∨ ψ) = m(φ) ∪m(ψ),
(C4). m(φ→ ψ) = −m(φ) ∪m(ψ),
(C5). m(φ↔ ψ) = (m(φ) ∩m(ψ)) ∪ (−m(φ) ∩ −m(ψ)),

where−m(φ) = M −m(φ) denotes the set complement of m(φ).
In the study of concepts, many interpretations have been proposed and examined.

The classical view regards a concept as a unit of thought consisting of two parts, i.e.,
the intension and extension of the concept [1,13]. By using the language L, we obtain
a simple and precise representation of a concept in terms of its intension and extension.
That is, a concept is defined by a pair (m(φ), φ). The formula φ is the description of
properties shared by individuals in m(φ), and m(φ) is the set of individuals satisfying φ.
A concept is thus described jointly by its intension and extension. This formulation en-
ables us to study concepts in a logic setting in terms of intensions and in a set-theoretic
setting in terms of extensions.

The language L provides a formal method for describing granules. Elements of a
granule may be interpreted as instances of a concept, i.e., the extension of the concept.
The formula is a formal description of the granule. In this way, the language L only
enables us to define certain subsets of M . For an arbitrary subset of M , we may not
be able to construct a formula for it. In other words, depending on the set of atomic
formulas, the language L can only describe a restricted family of subsets of M .

3 Interpretation of Low and High Order Rules Using the
Language L

We interpret different types of rules of an information table as concrete applications to
show the usefulness of the language L.

3.1 Information Table

An information table provides a convenient way to describe a finite set of objects by a
finite set of attributes [7]. Formally, an information table can be expressed as:

S = (U,At, {Va | a ∈ At}, {{Ra} | a ∈ At}, {Ia | a ∈ At}),
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where

U is a finite nonempty set of objects called universe,
At is a finite nonempty set of attributes,
Va is a nonempty set of values for a ∈ At,

{Ra} is a family of binary relations on Va,

Ia : U → Va is an information function.

Each information function Ia maps an object in U to a value of Va for an attribute
a ∈ At.

Our definition of an information table considers more knowledge and information
about relationships between values of attributes. Each relation Ra can represent simi-
larity, dissimilarity, or ordering of values in Va [1]. The equality relation = is only a
special case of Ra. The rough set theory and the DL language use the trivial equality
relation on attribute values [7].

Pawlak and Skowron [8] consider a more generalized notion of an information table.
For each attribute a ∈ At, a relational structure �a over Va is introduced. Furthermore,
a language can be defined based on the relational structures. A binary relation is a
special case of relational structures. Thus, the discussion of this paper may be viewed
as a special case of Pawlak and Skowron’s formulation.

3.2 Low Order Rules

For interpreting low order rules, we construct a language by using U as the model M .
That is, individuals of M are objects in the universe U . The set of atomic formulas
are constructed as follows. With respect to an attribute a ∈ At and an attribute value
v ∈ Va, an atomic formula of the languageL is denoted by (a,Ra, v). An object x ∈ U
satisfies an atomic formula (a,Ra, v) if the value of x on attribute a is Ra-related to the
value v, that is Ia(x) Ra v, we write:

x |= (a,Ra, v) iff Ia(x) Ra v.

We denote the language for interpreting low order rules as L({(a,Ra, v)}, U). The
granule corresponding to the atomic formula (a,Ra, v), namely, its meaning set, is
defined as:

m(a,Ra, v) = {x ∈ U | Ia(x)Rav}.

Granules corresponding to compound formulas are defined by Equation (1).
A low order rule can be derived according to the relationships between these gran-

ules. We can express rules in the form φ ⇒ ψ by using formulas of the language L.
For easy understanding, we reexpress the formula (a,Ra, v) in another form based on
the definition of satisfiability of the atomic formulas. An example of a low order rule is
given as:

Low Order rule:
n∧

i=1

(Iai(x) Rai vai)⇒
m∧

j=1

(Idj (x) Rdj vdj ),
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where x ∈ U , vai ∈ Vai , vdj ∈ Vdj , ai ∈ At, and dj ∈ At. For simplicity, we only use
conjunction ∧ in the rule.

3.3 High Order Rules

For interpreting high order rules, we construct a language by using U ×U as the model
M . That is, individuals of M are object pairs in U × U . The set of atomic formulas are
constructed as follows. With respect to an attribute a ∈ At, an atomic formula of the
language L is denoted by (a,Ra). A pair of objects (x, y) ∈ U × U satisfies an atomic
formula (a,Ra) if the value of x is Ra-related to the value of y on the attribute a, that
is, Ia(x) Ra Ia(y). We write:

(x, y) |= (a,Ra) iff Ia(x) Ra Ia(y).

For clarity, we denote the language as L({(a,Ra)}, U×U). The granule corresponding
to the atomic formula (a,Ra), i.e., the meaning set, is defined as:

m(a,Ra) = {(x, y) ∈ U × U | Ia(x)RaIa(y)}.

Granules corresponding to the compound formulas are defined by Equation (1).
A high order rule expresses the relationships between these granules. An example of

a high order rule is given as:

High Order rule:
n∧

i=1

(Iai(x) Rai Iai(y))⇒
m∧

j=1

(Idj (x) Rdj Idj (y)),

where (x, y) ∈ U × U , ai ∈ At, dj ∈ At.

3.4 Quantitative Measures of Rules

The meanings and interpretations of a rule φ⇒ ψ can be further clarified by using the
extensions m(φ) and m(ψ) of the two concepts. More specifically, we can define quan-
titative measures indicating the strength of a rule. A systematic analysis of probabilistic
quantitative measures can be found in [14]. Two examples of probabilistic quantitative
measures are [12]:

accuracy(φ⇒ ψ) =
| m(φ ∧ ψ) |
| m(φ) | , coverage(φ⇒ ψ) =

| m(φ ∧ ψ) |
| m(ψ) | , (2)

where | · | denotes the cardinality of a set. The two measures are applicable to both low
and high order rules. This demonstrates the flexibility and power of the language L.

While the accuracy reflects the correctness of the rule, the coverage reflects the ap-
plicability of the rule. If accuracy(φ⇒ ψ) = 1, we have a strong association between
φ and ψ. A smaller value of accuracy indicates a weak association. A higher coverage
suggests that the relationships of more individuals can be derived from the rule. The
accuracy and coverage are not independent of each other, one may observe a trade-off
between accuracy and coverage. A rule with higher coverage may have a lower accu-
racy, while a rule with higher accuracy may have a lower coverage.
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4 Rough Set Approaches on Rules

In this section, we use two rough set approaches [2,3,4,6,7,8,11,15] as examples to
illustrate the usefulness of the languageL. The basic results are summarized in Table 1.
For comparison, we also include the results of generalized rough set analysis based on
an arbitrary binary relation Ra on attribute values.

Table 1. Rough Set Approaches for Studying Low and High Order Rules

Relation Low Order Rule High Order Rule Method
Generalized

R Ia(x)Rava ⇒ Id(x)Rdvd Ia(x)RaIa(y) ⇒ Id(x)RdId(y) Rough Set Analysis
Standard

= Ia(x) = va ⇒ Id(x) = vd Ia(x) = Ia(y) ⇒ Id(x) = Id(y) Rough Set Analysis
Dominance-based

� Ia(x) �a va ⇒ Id(x) �d vd Ia(x) �a Ia(y) ⇒ Id(x) �d Id(y) Rough Set Analysis

4.1 Standard Rough Set Analysis

The standard rough set analysis is based on the trivial equality relation on attribute
values [6,7,8]. It is used for the extraction of rules for classification and attribute de-
pendency analysis. By using the language L, the standard rough set approach can be
formulated as follows.

For low order rules, the language is given byL({(a,=, v)}, U) with atomic formulas
of the form of (a,=, v). An object x ∈ U satisfies an atomic formula (a,=, v) if the
value of x on attribute a is v, that is, Ia(x) = v. We write:

x |= (a,=, v) iff Ia(x) = v.

The granule corresponding to the atomic formula (a,=, v) is:

m(a,=, v) = {x ∈ U | Ia(x) = v}.

The granule m(a,=, v) is also referred to as the block defined by the attribute-value
pair (a, v) [5]. Blocks correspond to the atomic formulas and are used to construct
rules. Low order rules can be expressed based on the equality relation =. An example
of a low order rule is:

n∧

i=1

(Iai(x) = vai)⇒
m∧

j=1

(Idj (x) = vdj ),

where x ∈ U , vai ∈ Vai , vdj ∈ Vdj , ai ∈ At, and dj ∈ At.
For high order rules, the language is given by L({(a,=)}, U × U) with atomic for-

mulas of the form of (a,=). A pair of objects (x, y) ∈ U×U satisfies an atomic formula
(a,=) if the value of x equals to the value of y on attribute a, that is, Ia(x) = Ia(y).
We write:

(x, y) |= (a,=) iff Ia(x) = Ia(y).
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Table 2. An Information Table

Object Height Hair Eyes Class
o1 short blond blue +
o2 short blond brown -
o3 tall red blue +
o4 tall dark blue -
o5 tall dark blue -
o6 tall blond blue +
o7 tall dark brown -
o8 short blond brown -

The granule corresponding to the atomic formula (a,=) is:

m(a,=) = {(x, y) ∈ U × U | Ia(x) = Ia(y)}.

High order rules can be expressed by using the equality relation =. An example of a
high order rule is:

n∧

i=1

(Iai(x) = Iai(y))⇒
m∧

j=1

(Idj (x) = Idj (y)),

where (x, y) ∈ U × U , ai ∈ At, dj ∈ At.

Example 1. Table 2 is an information table taken from [9]. Each object is described by
four attributes. The column labeled by “Class” denotes an expert’s classification of the
objects.

An example of a low order rule in this information table is:

LR1 : (IHair(x) = blond) ∧ (IEyes(x) = blue)⇒ (IClass(x) = +).

That is, if an object has blond hair and blue eyes, then it belongs to class +. An example
of a high order rule is:

HR1 : (IHeight(x) = IHeight(y)) ∧ (IEyes(x) = IEyes(y))⇒ (IClass(x) = IClass(y)).

That is, if two objects have the same height and the same eye color, then they belong to
the same class. By using the probabilistic quantitative measures, we have:

accuracy(LR1) = 1, coverage(LR1) = 2/3.

The association between (Hair,=, blond)∧ (Eyes,=, blue) and (Class,=,+) reaches
the maximum value 1, and the applicability of the rule is also high. For rule HR1, we
have:

accuracy(HR1) = 7/11, coverage(HR1) = 7/17.

In this case, (Height,=) ∧ (Eyes,=) does not tell us too much information about the
overall objects classification in terms of both accuracy and coverage.
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4.2 Dominance-Based Rough Set Analysis

The dominance-based rough set analysis proposed by Greco, Matarazzo and Slowin-
ski [2,3,4] is based on preference relations on attribute values. It is used for the extrac-
tion of rules for ranking and attribute dependency analysis. Several different types of
rules are introduced in dominance-based rough set analysis. In what follows, we inter-
pret two types of such rules by using the language L, as demonstrated in [11,15,16].

For low order rules, the language is given by L({(a,3a, v)}, U). The granule corre-
sponding to the atomic formula (a,3a, v) is defined as:

m(a,3a, v) = {x ∈ U | Ia(x) 3a v}.

Low order rules can be expressed by using preference relations. An example of a low
order rule is:

n∧

i=1

(Iai(x) 3ai vai)⇒
m∧

j=1

(Idj (x) 3dj vdj ),

where x ∈ U , vai ∈ Vai , vdj ∈ Vdj , ai ∈ At, and dj ∈ At.
For high order rules, the language is given by L({(a,3a)}, U × U). The granule

corresponding to the atomic formula (a,3a) is defined as:

m(a,3a) = {(x, y) ∈ U × U | Ia(x) 3a Ia(y)}.

High order rules can also be expressed by using the preference relations. An example
of a high order rule is:

n∧

i=1

(Iai (x) 3ai Iai(y))⇒
m∧

j=1

(Idj (x) 3dj Idj (y)).

where (x, y) ∈ U × U , ai ∈ At, dj ∈ At.

Example 2. Table 3, taken from [11], is an information table with preference relations
on attribute values. It is a group of five products by five manufactures, each product is
described by four attributes. The final ranking labeled by Overall may be determined
by their market share of the products. The preference relations induce the following
orderings:

(Size: small (Size middle (Size large,
(Warranty: 3 years (Warranty 2 years,
(Price: $200 (Price $250 (Price $300,
(Weight: very light (Weight light (Weight heavy (Weight very heavy,
(Overall: 1 (Overall 2 (Overall 3.

An example of a low order rule in this information table is:

LR2 : (ISize(x) 3 middle) ∧ (IWarranty(x) 3 3 years)⇒ IOverall(x) 3 2.
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Table 3. An Information Table with Preference Relations

Objects Size Warranty Price Weight Overall
p1 middle 3 years $200 heavy 1
p2 large 3 years $300 very heavy 3
p3 small 3 years $300 light 3
p4 small 3 years $250 very light 2
p5 small 2 years $200 very light 3

That is, if a product’s size is greater than or equal to middle and warranty is greater
than or equal to 3 years, then its overall ranking will be greater than or equal to 2. An
example of a high order rule is:

HR2 : (ISize(x) 3 ISize(y)) ∧ (IPrice(x) 3 IPrice(y))⇒ IOverall(x) 3 IOverall(y).

That is, if one product’s size is smaller than or the same as another product and the
price is not higher, then this product’s overall ranking will be greater than or equal to
the other product. By using the quantitative measures, we have:

accuracy(LR2) = 2/3, coverage(LR2) = 1.

There exists a strong association between the two concepts, and applicability of the rule
reaches the highest level. Similarly, for rule HR2, we have:

accuracy(HR2) = 11/13, coverage(HR2) = 11/18.

The concept (Size,3) ∧ (Price,3) reflects the overall objects ranking positively in
terms of both accuracy and coverage.

5 Conclusion

A granular computing based interpretation is presented in this paper. By extracting the
high-level similarity from existing decision logic languages [7,16], we introduce a more
general language L for granular computing. Two basic features of the language L are
the set of atomic formulas A and a model M consisting of individuals. For each for-
mula, the collection of all individuals satisfying the formula form a granule, called the
meaning of the formula. A rule is therefore expressed as connection between two for-
mulas and interpreted based on the corresponding granules of the two formulas.

Depending on particular applications, we can construct concrete languages by us-
ing different types of atomic formulas and the associated models. This flexibility of the
languageL is demonstrated by considering two rough set approaches, namely, the stan-
dard rough set analysis and dominance-based rough set analysis. The main differences
of the two approaches are their respective treatments of atomic formulas and models. An
information table is used to construct a concrete granular computing model. For stan-
dard rough set analysis, two types of granules are constructed based on two families of
atomic formulas. One consists of a set of objects that share the same attribute value.
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The other consists of object pairs that cannot be distinguished based on the values of an
attribute. Low and high order rules are defined to describe relationships between these
two types of granules. For dominance-based rough set analysis, similar interpretations
can be obtained by using two different families of atomic formulas.

The results of the paper suggest that one may study rule mining at a more abstract
level. Algorithms and evaluation measures can indeed be designed uniformly for both
low and high order rules.
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Abstract. In T−fuzzy rough sets a fuzzy T−similarity relation is em-
ployed to describe the similar degree between two objects and to con-
struct lower and upper approximations for arbitrary fuzzy sets. The exist-
ing researches on T−fuzzy rough sets mainly concentrate on constructive
and axiomatic approaches of lower and upper approximation operators.
In this paper we define attribute reduction based on T−fuzzy rough sets.
The structure of proposed attribute reduction is investigated in detail by
the approach of discernibility matrix. At last an example is proposed to
illustrate our idea in this paper.

Keywords: Rough sets, fuzzy rough sets, attribute reduction, discerni-
bility matrix.

1 Introduction

Fuzzy rough sets mainly deal with databases with fuzzy nature such as attributes
with real values[8], and the traditional rough set approaches[1-4] will have dif-
ficulty to handle this kind of databases. Due to its wide applied background,
fuzzy rough set has drown more and more attentions from both theoretical and
practical fields [5,6,8-16].

There are mainly two topics in fuzzy rough sets theory, one is approximations
of arbitrary fuzzy set; the other is attribute reduction with fuzzy rough sets,
including reasonable definition of reduction and algorithm to compute reducts.
Research on fuzzy rough sets is begun by construction of approximations of ar-
bitrary fuzzy set. Instead of the equivalence relation in crisp rough sets, a fuzzy
similarity relation is employed to describe the similar degree between two objects
and to construct lower and upper approximations for arbitrary fuzzy sets. Dubois
and Prade [9, 10] was one of the first researchers to propose the concept of fuzzy
rough sets, they constructed a pair of upper and lower approximation operators
of fuzzy sets with respect to a fuzzy similarity relation by using the t−norm Min
and its dual conorm Max, these two approximation operators were studied in
detail from constructive and axiomatic approaches in [11, 12]. Noticed that Min
and Max are special t−norm and t−conorm, Radzikowska and Kerre[15] pre-
sented a more general framework to the fuzzification of rough sets. Specifically,
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they defined a broad family of fuzzy rough sets with respect to a fuzzy similarity
relation, each one of which is determined by an implicator and a t−norm. Moris
and Yakout[13] studied a set of axioms on fuzzy rough sets, their works were
restricted to T−fuzzy rough set defined by fuzzy T−similarity relations. It is
claimed in [13] that the upper and lower approximation operators are not dual
with each other. Another upper approximation operator was proposed in [14]
to obtain the dual upper approximation operator of the lower approximation
operator in [13]. These researches on fuzzy rough set have been concluded and
studied completely from constructive, axiomatic, lattice and fuzzy topological
viewpoints in [6].

The second topic in existing research of fuzzy rough sets is attribute reduc-
tion with fuzzy rough sets. Since fuzzy rough set can deal with more complex
practical problems than traditional rough sets, it is clearly that development of
attribute reduction with fuzzy rough sets is meaningful from both theoretical
and practical viewpoints. Comparing with research on approximations of fuzzy
sets, less effort has been put on attribute reduction with fuzzy rough sets. In [5] a
dependency function was proposed to design algorithm to compute reduct with
fuzzy rough sets in [9,10], and this algorithm had been discussed in [16] from
the viewpoint of computability and has been pointed out not to converge in
many real datasets due to its poorly designed termination criteria. The concept
of fuzzy rough sets is put forward on a compact computational domain in [16],
which is then utilized to improve the computational efficiency in [5]. However,
both [5] and [16] had not proposed a clearly definition of attribute reduction with
fuzzy rough sets and the structure of reduct is not clear; many interesting and
important topics were not discussed. For example, the core of reduct which plays
an important role when considering attribute reduction in traditional rough set
theory has not been considered in both [5] and [16]. All of attribute reductions
in [5] and [16] employ the fuzzy rough sets in [9,10], and this fuzzy rough sets is
defined by a Min−fuzzy similarity relation, i.e., the transitivity of fuzzy similar-
ity relation is characterized by the triangular norm Min. As argued in [8,21,22],
the triangular norm Min may not always be the best selection to characterize
the transitivity. This statement motivates our idea in this paper to consider an
arbitrary triangular norm T instead of the triangular norm Min. It is pointed
in [6] that there are two lower approximation operators and two upper approx-
imation operators in the existing fuzzy rough sets, we only consider the lower
and upper approximation operators in [13] and call them T−fuzzy rough sets in
the rest of this paper.

In this paper we mainly focus on attribute reduction based on T−fuzzy rough
sets. We define attribute reduction based on T−fuzzy rough sets and its relative
concepts such as core of reduction. The structure of reduct is completely studied
and an algorithm using discernibility matrix to compute all the attribute reducts
is developed. Thus a solid mathematical foundation is set up for attribute re-
duction based on T−fuzzy rough sets for its further application. An example is
also employed to illustrate our idea in this paper.
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This paper isstructured as following. In Section 2 we mainly review basic con-
tent about T−fuzzy rough sets In Section 3 we study the structure of attribute
reduction based on T−fuzzy rough sets by the approach of discernibility matrix.
In Section 4 an illustrated example is proposed.

2 On T−Fuzzy Rough Sets

In this section we only review the basic contents of T−fuzzy rough sets found in
[13] and attributes reduction with Min−fuzzy rough sets, a detail review of the
existing fuzzy rough sets can be found in [6], we omit discussion on this topic
and refer the readers to [6] for the length of this paper.

A triangular norm, or shortly t−norm, is an increasing, associative and com-
mutative mapping T : [0, 1]× [0, 1]→ [0, 1] that satisfies the boundary condition
(∀x ∈ [0, 1], T (x, 1) = x). The most popular continuous t−norms are:
• the standard min operator TM (x, y) = min{x, y}(the largest t−norm),
• the algebraic product TP (x, y) = x · y,
• the bold intersection(also called the Lukasiewicz t−norm)

TL(x, y) = max{0, x + y − 1}.
Given a triangular norm T , ϑT (α, γ) = sup{θ ∈ I : T (α, θ) ≤ γ},α, γ ∈ [0, 1]

is called a R−implicator based on T . If T is lower semi-continuous, then ϑT is
called the residuation implication of T , or the T−residuated implication. The
properties of T−residuated implication ϑT are listed in[13].

Suppose U is a nonempty universe. A T−fuzzy similarity relation R is a fuzzy
relation on U which is reflexive(R(x, x) = 1), symmetric(R(x, y) = R(y, x))
and T−transitive (R(x, y) ≥ T (R(x, z), R(z, y)), for every x, y, z ∈ U . If ϑ is
the T -residuated implication of a lower semi-continuous t−norm T , then the
lower and upper approximation operators were defined as for every A ∈ F (U),
RϑA(x) = infu∈U ϑ(R(u, x), A(u)), RTA(x) = supu∈U T (R(u, x), A(u))

In [6,13] these two operators were studied in detail from constructive and ax-
iomatic approaches, we only list their properties as following.

Theorem 1[6,13,17]. Suppose R is a fuzzy T−similarity relation. The following
statements hold:

1)Rϑ(RϑA) = RϑA,RT (RTA) = RTA;
2) Both of Rϑ and RT are monotone;
3)RT (RϑA) = RϑA,Rϑ(RTA) = RTA;
4)RTA = A⇔ RϑA = A;
5)RϑA = ∪{RTxλ : RTxλ ⊆ A}, RTA = ∪{RTxλ : xλ ⊆ A}, here xλ is a

fuzzy set defined as xλ(y) =
{

λ, y = x
0, y �= x

.

Theorem 2[6]. For two T−similarity relations R1 and R2, the following state-
ments are equivalent:

1)R1 ⊆ R2; 2)R1ϑA ⊇ R2ϑA; 3)R1TA ⊆ R2TA.
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In [5] an algorithm of computing relative reduct was proposed for fuzzy
rough sets. This algorithm employs the idea in relative reduction of rough
sets to keep the dependence function invariant. Keeping this idea in mind, a
QUICKREDUCT algorithm is designed to compute the reduct. However, this
algorithm can obtain only one reduct. Thus it is unclear which attribute in the
reduct is indispensable, i.e., the core of reduct is unknown. On the other hand,
this algorithm lacks mathematical foundation and theoretical analysis, and many
interesting topics relative to reduction are not discussed.

The algorithm in [5] has been discussed in [16] from the viewpoint of com-
putability and has been pointed out not to converge in many real datasets due to
its poorly designed termination criteria. In [16] they first improve the definition
of lower approximation operator in [10] on a compact computational domain.
Based on this idea, they design an algorithm with a shorter running time than
the algorithm in [5] on some datasets they proposed.

It should be pointed out that a clear definition of attributes reduction with
fuzzy rough sets and its relative concepts such as core cannot be found in both
[5] and [16]. So the structure of reduction is not clear, this may influence the
further application of attribute reduction with fuzzy rough sets. As well known,
in traditional rough sets theory, approach of discernibility matrix is employed to
investigate structure of reduction and an algorithm can be designed to compute
all the reductions by the discernibility matrix [7]. And to our knowledge this
method has not been employed to study the structure of reduct with fuzzy
rough sets.

In the definition of a fuzzy T−similarity relation, the triangular norm T con-
trols the selection of similarity, and different triangular norm T identify different
kind of similarity. And a reasonable selection of similarity, i.e., selection of trian-
gular norm T , will capture the connections among data sufficiently. However, it
is pointed in [8] that the triangular Min may not always be a reasonable selec-
tion, thus we consider an arbitrary triangular norm instead of Min to develop
attribute reduction so that different selections are available.

3 On Attribute Reduction Based on Fuzzy Rough Sets

In this section we will define attribute reduction based on T−fuzzy rough sets
for fuzzy decision system and propose some equivalence conditions to describe
the structure of attribute reduction. We also develop an algorithm using dis-
cernibility matrix to compute all the attribute reducts.

Following the attributes with real values will be called fuzzy attributes. For
every fuzzy attribute, a fuzzy T−similarity relation can be employed to measure
the similar degree between every pair of objects [8]. If we substitute every fuzzy
attribute by its corresponding fuzzy T−similarity relation and substitute the de-
cision attribute by its corresponding equivalence relation, we can get a T−fuzzy
decision system consisting of three parts, a finite universe of discourse, a family
of conditional fuzzy attributes and a symbolic decision attribute. Thus every
dataset with real value conditional attributes and symbolic decision attribute
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can be expressed as a T−fuzzy decision system so that it is convenient to deal
with by techniques of T−fuzzy rough sets.

Two key problems must be solved before we define attribute reduction based
on T−fuzzy rough sets. One is what should be invariant after reduction. We em-
ploy the idea in traditional rough sets of keeping the positive region of decision
attribute invariant to define relative reduction with T−fuzzy rough sets; here
the positive region of decision attribute will be defined as the union of lower
approximations of decision classes. Another problem is the selection of aggrega-
tion operator for several T−fuzzy similarity relations. By Theorem 2, a smaller
fuzzy T−similarity relation can provide more precise lower approximations, thus
triangular Min is a reasonable selection of aggregation operator for several fuzzy
T−similarity relations. We can define attribute reduction for T−fuzzy decision
system based on T−fuzzy rough sets with these discussions.

Suppose U is a finite universe of discourse, R is a finite set of fuzzy T−similarity
relations called conditional attributes set, D is an equivalence relation called
decision attribute with symbolic values, then (U,R ∪ D) is called a T−fuzzy
decision system. Denote Sim(R) = ∩{R : R ∈ R}, then Sim(R) is also a
fuzzy T−similarity relation. Suppose [x]D is the equivalence class with respect
to D for x ∈ U , then the positive region of D relative to Sim(R) is defined as
PosSim(R)D = ∪x∈USim(R)ϑ([x]D). We will say that R is dispensable relative
to D in R if PosSim(R)D = PosSim(R−{R})D, otherwise we will say R is indis-
pensable relative to D in R. The family R is independent relative to D if each
R ∈ R is indispensable relative to D in R; otherwise R is dependent relative to
D. P ⊂ R is an attributes reduct of relative to D if P is independent relative to D
and PosSim(R)D = PosSim(P)D, for short we call P a relative reduct of R. The
collection of all the indispensable elements relative to D in R is called the core of
R relative to D, denoted as CoreD(R). Similar to the result in traditional rough
sets we have CoreD(R) = ∩RedD(R), RedD(R) is the collection of all relative
reducts of R. Following we study under what conditions that P ⊂ R could be a
relative reduct of R.

By (5) of Theorem 1 we know that {RTxλ : x ∈ U, λ ∈ (0, 1]} could be the ba-
sic granular set to construct lower and upper approximations of fuzzy sets since
every lower or upper approximation is just the union of fuzzy sets with the form
as RTxλ. Thus the structure of lower approximation of every [x]D is clear by
Rϑ([x]D) = ∪{RT (yλ) : RT (yλ) ⊆ [x]D}. For y /∈ [x]D, clearly Rϑ([x]D)(y) = 0
holds. For y ∈ [x]D, the following theorem develops a sufficient and necessary
condition forRT (yλ) ∈ Rϑ([x]D).

Theorem 3. Suppose y ∈ [x]D, RT (yλ) ⊆ Rϑ([x]D), if and only if RT (yλ)(z) = 0
for z /∈ [x]D.

Proof. If RT (yλ) ⊆ Rϑ([x]D), then RT (yλ)(z) = 0 for z /∈ [x]D is clear.
Conversely, supposeRT (yλ)(z) = 0 for z /∈ [x]D. We have RT (yλ) ⊆ [x]D by
[x]D(u) = 1 for every u ∈ [x]D, this implies RT (yλ) ⊆ Rϑ([x]D) hold. According
to Theorem 3, yλ ⊆ Rϑ([x]D) if and only if RT (yλ)(z) = 0 for z /∈ [x]D. This
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statement is the key point to develop sufficient and necessary condition for rel-
ative reduction with T−fuzzy rough sets.

Theorem 4. Suppose P ⊂ R,PosSim(R)D = PosSim(P)D if and only if
Sim(P)T (xλ(x)) ⊆ [x]D for every x ∈ U , here λ(x) = Sim(R)ϑ([x]D)(x).

Proof. Since every two different decision classes have empty overlap, we know
to keep PosSim(R)D = PosSim(P)D is equivalent to keep Sim(R)ϑ([x]D) =
Sim(P)ϑ([x]D) for every x ∈ U , and the latter statement is equivalent to
Sim(P)T (yλ(y)) ⊆ [x]D for y ∈ [x]D, and it is equivalent to Sim(P)T (xλ(x)) ⊆
[x]D for every x ∈ U since y ∈ [x]D implies [x]D = [y]D.

Thus we have the following theorem to characterize the relative reduction by
Theorem 3 and Theorem 4.

Theorem 5. Suppose P ⊂ R, then P contains a relative reduction of R if
and only if Sim(P)T (xλ(x))(z) = 0 for every x, z ∈ U and z /∈ [x]D, here
λ(x) = Sim(R)ϑ([x]D)(x).

Theorem 6. Suppose P ⊂ R , then P contains a relative reduction of R if and
only if there exists p ∈ P such that T (P (x, z), λ(x)) = 0 for every x, z ∈ U and
x /∈ [x]D.

Proof. For z /∈ [x]D, Sim(P)T (xλ(x))(z) = supy∈U T (Sim(P)(z, y), xλ(x)(y)) =
T (Sim(P)(x, z), λ(x)) = min{T (P (x, z), λ(x)) : P ∈ P}, thus we finish the
proof.

Clearly P is a relative reduction of R if and only if P is the minimal subset of R
satisfying conditions in Theorem 5 and Theorem 6. And condition in Theorem
6 is can be employed to design algorithm to compute reducts.

With above discussion, we can design an algorithm to compute all the relative
reductions. Suppose U = {x1, x2, ..., xn}, R = {R1, R2, ..., Rm}. By MD(U,R)
we denote a n× n matrix (cij), called the discernibility matrix of (U,R

⋃
D) ,

such that

1) cij = {R ∈ R : T (R(xi, xj), λ(xi)) = 0} if xj /∈ [xi]D;
2) cij = ∅, otherwise.

MD(U,R) may not be symmetric and clearly cii = ∅. R ∈ cij implies
RT ((xi)λ(xi))(xj) = 0, thus cij is the collection of conditional attributes to en-
sure RT ((xi)λ(xi))(xj) = 0 for xj /∈ [xi]D.

A discernibility function fD(U,R) for (U,R
⋃

D) is a Boolean function of
m Boolean variables R1, R2, ..., Rm corresponding to the fuzzy attributes
R1, R2, ..., Rm respectively, and defined as follows fD(U,R)(R1, R2, ..., Rm) =
∧{∨(cij) : cij �= 0}, where ∨(cij) is the disjunction of all variables R such that
R ∈ cij . In the sequel we shall write Ri instead of Ri when no confusion can arise.
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We have the following theorem for the relative core.

Theorem 7. CoreD(R) = {R : cij = {R}} for some 1 ≤ i, j ≤ n.

Proof. R ∈ CoreD(R) ⇔ PosSim(R)D �= PosSim(R−{R})D ⇔ there exists
xi ∈ U such that R ∈ CoreD(R) ⇔ PosSim(R)D �= PosSim(R−{R})D ⇔ there
exists xj ∈ U such that T (R(xi, xj), λ(xi)) = 0, and T (R′(xi, xj), λ(xi)) > 0
holds for any other R′ ∈ R⇔ cij = {R}. The statement cij = {R} implies that
R is the unique attribute to maintain T (R(xi, xj), λ(xi)) = 0.

Theorem 8. Suppose P ⊂ R, then P contains a relative reduction of R if and
only if P

⋂
cij �= ∅ for every cij �= ∅.

The proof is straightforward by Theorem 6 and definition of cij .

Theorem 9. Suppose P ⊂ R, then P contains a relative reduction of R if and
only if R is the minimal set satisfying P

⋂
cij �= ∅ for every cij �= ∅.

Let gD(U,R) be the reduced disjunctive form of fD(U,R) obtained from fD(U,R)
by applying the multiplication and absorption laws as many times as possible.
Then there exist l and Rk ⊆ R for k = 1, 2, ..., l such that gD(U,R) = (∧R1) ∨
... ∨ (∧Rl) where every element in Rk only appears one time.

We have the following theorem.

Theorem 10. RedD(R) = {R1, ...,Rl}

Proof. For every k = 1, 2, ..., l and cij �= ∅, we have ∧Rk ≤ ∨cij by ∨l
k=1(∧Rk) =

∧{∨cij : cij �= φ}, so Rk ∩ cij �= φ for every cij �= ∅. Let R ∈ Rk and R′k =

Rk − {R}, then gD(U,R) <
k−1
∨

r=1
(∧Rr) ∨ (∧R′k) ∨ (

l
∨

r=k+1
(∧Rr)). If for every

cij �= ∅, we have R′k ∩ cij �= ∅, then ∧R′k ≤ ∨cij for every cij �= ∅. This implies

gD(U,R) ≥
k−1
∨

r=1
(∧Rr) ∨ (∧R′k) ∨ (

l
∨

r=k+1
(∧Rr)) which is a contradiction. Hence

there exists ci0j0 �= ∅ such that R′k ∩ ci0j0 = ∅ which implies Rk is a relative
reduction of R.

For every X ∈ RedD(R), we have X
⋂

cij �= ∅ for every cij �= ∅, this implies
∧X ≤ gD(U,R). Suppose for every k = 1, 2, ..., l we have Xk − X �= ∅ , then
for every k = 1, 2, ..., l one can find Rk ∈ Xk − X. By rewriting gD(U,R) =
(∨l

k=1Rk) ∧ ∅, we have ∧X ≤ ∨l
k=1Rk. So there is Rk0such that ∧X ≤ Rk0 ,

this implies Rk0 ∈ X which is a contradiction. So there exists k′ such that
Rk′ −X = ∅, which implies Rk′ ⊆ X. Since both Xk′ and X are relative reduc-
tions, we have Rk′ = X. Hence we have RedD(R) = {R1, ...,Rl}.

Remark. If every T−fuzzy similarity relation in R is a crisp equivalence relation,
then the lower approximation is just the crisp one in traditional rough sets, and



388 D. Chen, X. Wang, and S. Zhao

our method in this section coincides with the crisp one found in [7]. Thus our
idea and method are really the generalization of the crisp one found in [7] for
fuzzy case.

4 An Illustrated Example

To keep the length of this paper, we will not discuss computational complexity
of the proposed algorithm in this paper; this will be our future work. Following
we employ an example to illustrate our idea in this paper.

Example 4.1. Let us consider an evaluation problem of credit card appli-
cants. Suppose U = {x1, x2, ..., x9} is a set of nine applicants, every applicant
is described by six fuzzy attributes: C1=best education, C2=better education,
C3=good education, C4=high salary, C5= middle salary and C6=low salary. The
membership degrees of every applicant are given in the following table.

Table 1. Samples of credit card evaluation problem

c1 c2 c3 c4 c5 c6

x1 0.8 0.1 0.1 0.5 0.2 0.3
x2 0.3 0.5 0.2 0.8 0.1 0.1
x3 0.2 0.2 0.6 0.7 0.3 0.2
x4 0.6 0.3 0.1 0.2 0.5 0.3
x5 0.3 0.4 0.3 0.3 0.6 0.1
x6 0.2 0.3 0.5 0.3 0.5 0.2
x7 0.3 0.3 0.4 0.2 0.6 0.2
x8 0.3 0.4 0.3 0.1 0.4 0.5
x9 0.3 0.2 0.5 0.4 0.4 0.2

Every fuzzy attribute Ck can define a TL−fuzzy similarity relation Rk as
Rk(xi, xj) = 1− |Ck(xi)− Ck(xj)|, Sim(R) is computed as follows

(Sim(R)(xi, xj)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 0.4 0.7 0.7 0.4 0.5 0.5 0.5
1 0.6 0.4 0.5 0.5 0.4 0.3 0.6

1 0.5 0.6 0.6 0.5 0.4 0.7
1 0.7 0.6 0.7 0.7 0.6

1 0.8 0.9 0.6 0.8
1 0.9 0.7 0.9

1 0.7 0.8
1 0.7

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Suppose a decision partition is A = {x1, x2, x4, x7}, B = {x3, x5, x6, x8, x9}
then
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Sim(R)∗(A)(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.3, x = x1

0.4, x = x2

0.3, x = x4

0.1, x = x7

0, otherwise

, Sim(R)∗(B)(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.4, x = x3

0.1, x = x5

0.1, x = x6

0.3, x = x8

0.2, x = x9

0, otherwise

,

and the discernibility matrix of (cij) is as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ φ {1,2,4} φ {1,2,5} {1,3,5} φ {1,2,4} {1,3}

φ φ {3} φ {4,5} {4,5} φ {4,6} {4}

{1,3} {3} φ {1,3,4} φ φ {4} φ φ

φ φ {1,3,4} φ {1} {1,3} φ {1} {1,3}

{1,2,3,4,5,6} {2,3,4,5} φ {1,2,3,4,5,6} φ φ {2,3,4,6} φ φ

{1,2,3,4,5,6}{1,2,3,4,5,6} φ {1,3,4,6} φ φ {1,3,4,5} φ φ

φ φ {1,2,3,4,5} φ {2,3,4,6}{1,3,4,5} φ {2,3,4,5,6}{2,3,4,5}

{1,2,4} {4,5,6} φ {1} φ φ {6} φ φ

{1,3,5} {2,3,4,5} φ {1,3,4} φ φ {4,5} φ φ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Where i ∈ cij means Ri ∈ cij , (i = 1, ..., 6). We can get that {1, 3, 4, 6} is the
only reduction of R .
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Abstract. Non-standard logics departs from traditional logic mostly in extended
views, on one hand syntactically related to logical operators, and on the other
hand semantically related to truth values. Typical for these approaches is the re-
maining traditional view on ’sets and relations’ and on terms based on signatures.
Thus the cornerstones of the languages remain standard, and so does mostly the
view on knowledge representation and reasoning using traditional substitution
theories and unification styles. In previous papers we have dealt with particular
problems such as generalizing terms and substitution, extending our views on sets
and relations, and demonstrated the use of these non-standard language elements
in various applications such as for fuzzy logic, generalized convergence spaces,
rough sets and Kleene algebras. In this paper we provide an overview and sum-
marized picture of what indeed happens when we drop the requirement for using
traditional sets with relations and terms with equational settings.

1 Introduction

The use of single points and unstructured set is very rooted in syntactic and semantic as-
pects of logic, and indeed logic based programming in general. Language constructions
are based on point, such as substitution where variables are substituted with single point
objects in form of constants or terms. Mathematically one may argue that a complicated
term is far from just a singleton, but nevertheless the set of terms over a signature is han-
dled as a set of points, and terms are handled as unambiguous points.

The alternative is to allow variables being substituted with sets of points, or, for that
matter, any more or less complicated object build upon points into sets and sets of sets
of various kind.

Fuzzy sets are traditionally viewed as mappings from a ground set (or a universe)
X to a lattice, frequently assumed at least to be completely distributive. Thus fuzzy
sets are represented as f : X → L without further reflexions on their structural origin.
Category theory is an excellent machinery for providing these structural origins and
furthermore for representing entities like fuzzy sets in a perspective where fuzzy sets
become the tool rather than the target. Arithmetics provides some basic illuminations
of this point. With fuzzy sets as targets we are doing ‘arithmetics with fuzzy’ rather
than ‘fuzzy arithmetics’. The former means defining extended arithmetic operators that
act in some algebraic fashion, and then obviously fuzzy sets are the targets of these

� Partially supported by Spanish projects TIC2003-09001-C02-01 and TIN2006-15455-C03-01.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 391–399, 2007.
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operators. Doing fuzzy arithmetic in the right sense of these words means using fuzzy
sets as tools to identify fuzzy values related to results of algebraic operations. We need
to provide a strict categorical formalization to explain this intuitive distinction between
fuzzy sets as tools and targets.

Semantically, the situation is equally poor. Semantic domains and even ‘universes’
are mostly sets and even without any structure. Again, work on semantic domains
should invite possibilities for more elaborate use of more complicated sets, in the sense
of aiming at modelling real world situations. The situation for logic semantics is, how-
ever, not all that light-weighted. Take e.g. generalizing logic with tools for jumping
from one logic to the other [24]. Managing strictly all the machineries in one theory in-
cluding logic operators, entailment, logic consequences, and even logic calculi, is hard
enough with conventional themes such as predicate and equational logic. Generalizing
from there to a useful and application-oriented involvement of non-classical logic is
future work for decades to come.

Keeping logic out of the picture for a while, the obvious mathematical tools for man-
aging ’sets of sets’ in a strict formal framework is category theory, and indeed functo-
rial and monadic approaches to sets. The last decade has shown much development in
these fields, theoretical applications having been driven by areas of algebra and topol-
ogy [16]. Recent years show developments also in computer science where a beginning
understanding of substitution theories has seen daylight [10].

The purpose of this paper is to present the formal framework underlying the discus-
sion above. The paper is partly a survey of applications developed for sets, topologies
and algebras, partly includes new results and also views on future work and trends for
these research directions. Section 2 presents the categorical picture of and framework
for fuzzy and rough sets. In Section 3 we discuss also other applications apart from
fuzzy and rough sets. In Section 4 we discuss the inverses and negation as they appear
in our generalized setting. Section 5 describes similarity relations and their use within
unifications. Finally, Section 6 concludes the paper.

2 From Sets and Relations Even Beyond Fuzzy and Rough

We will introduce ’complicated sets’ by viewing the situation within standard substitu-
tion theory. Let TΩX be the set of terms with variables from a set X over the operator
domain Ω. Categorically, a substitution σ is a mapping, σ:X → TΩY from the set of
variables X to the set of terms TΩY with variables in the set Y .

Applying σ to a term t (in logic programming usually written as tσ) means replacing
each variable x in t by σ(x). With this notation, a unifier of two terms s, t is a substitu-
tion σ such that sσ = tσ. The main idea of considering a most general unifier (mgu) is
to consider the substitution (if it exists) that does ‘as little as possible’. A substitution
σ is more general than τ if τ = στ̄ for some τ̄ and a unifier of s and t is a mgu if it is
more general than all other unifiers.

Substitutions may be composed by replacing variables in terms by terms. Given the
substitutions σ1:X → TΩY and σ2:Y → TΩZ , a remark here is that their composi-
tion cannot be the usual mapping composition, but there is indeed a ‘standard’ way of
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composing them. Naturality properties associated to the term functor make it possible
to define the composition of substitution as the following sequence of mappings:

X
σ1→ TΩY

TΩσ2→ TΩTΩZ
μZ→ TΩZ

In this case the ‘flattening’ operator μZ is a natural transformation and, since the term
functor is idempotent, the transformation is the identity. This corresponds with the clas-
sical definition ‘terms over terms are terms’, i.e. TΩTΩ = TΩ.

Generalizing terms now means departing from singleton terms to various types of
sets of terms. This essentially means composing the corresponding set functor, e.g. the
powerset functor to take a simple example, with the term functor. The be a bit more strict
we need say that these set functors must be extendable to monads1 (over the category
of sets).

An interesting example from fuzzy and rough set point of view is the consideration of
generalized substitutions that replace variables by many-valued set of terms, i.e, θ:X →
LidTΩY , where Lid denotes the fuzzy powerset functor2.

Fuzzy sets are traditionally viewed as mappings from a ground set (or a universe) X
to a lattice, frequently assumed at least to be completely distributive. Thus fuzzy sets
are represented as f : X → L without further reflections on their structural origin.

Monads where the underlying endofunctor is equipped with an order structure gives
further possibilities for applications within management of sets and algebras. A strict
definition of partially ordered monads (ϕ,≤, η, μ) is given in [16]. For the purpose of
our paper it is enough to observe that imposing order means having a partial order in
(ϕX,≤). The classical example of a partially ordered monad is the power set partially
ordered monad (P,≤, η, μ), where PX is the ordinary power set of X and ≤ is set
inclusion ⊆ making PX,≤ a partially ordered set. The unit η : X → PX is given by
η(x) = {x} and the multiplication μ : PPX → PX by μ(B) = ∪B.

1 A monad (ϕ, η, μ) over a category C consists of a covariant functor ϕ : C → C, together with
natural transformations η : id → ϕ and μ : ϕ◦ϕ→ ϕ fulfilling the conditions μ◦ϕμ = μ◦μϕ
and μ ◦ ϕη = μ ◦ ηϕ = idϕ.

2 The many-valued extension of P to Lid is as follows. Let L be a completely distributive lattice.
The functor Lid is obtained by LidX = LX , i.e. the set of mappings A : X → L. The partial
order ≤ on LidX is given pointwise. Morphism f : X → Y in Set are mapped according to

Lidf(A)(y) =
∨

f(x)=y

A(x).

Finally ηX : X → LidX is given by

ηX(x)(x′) =

{
1 if x′ ≤ x
0 otherwise

and μX : LidX ◦ LidX → LidX by

μX(M)(x) =
∨

A∈LidX

A(x)∧M(A).
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Partially ordered monads provide the appropriate categorical formalization for mod-
elling rough sets. To this let R be a relation on X , i.e. R ⊆ X × X . Equivalently, the
relation is a mapping ρX : X → PX , where ρX(x) = {y ∈ X |xRy} and the inverse
relation R−1 is represented as ρ−1

X (x) = {y ∈ X |xR−1y}.
Rough sets can then be described categorically [12]. In the crisp situation, the lower

approximation of A ⊆ X is obtained by

A↓ =
∨

ρX (x)≤A

ηX(x)

and the upper approximation by

A↑ =
∨

ρX (x)∧A>0

ηX(x) = μX ◦ Pρ−1
X (A).

The corresponding R-weakened and R-substantiated sets of a subset A of X are given
by

A⇓ =
∨

ρ−1
X (x)≤A

ηX(x)

and
A⇑ = μX ◦ PρX(A).

In a general situation, rough monads are defined by means of the Φ-ρ-upper and Φ-
ρ-lower approximations, and further the Φ-ρ-weakened and Φ-ρ-substantiated sets. The
following condition (valid for both P and Lid) is required for any f :X → ϕX :

ϕf(
∨

i

ai) =
∨

i

ϕf(ai).

Let ρX : X → ϕX be a Φ-relation and let a ∈ ϕX . The inverse must be specified
for the given set functor ϕ. Rough monads are given by:

⇑X (a) = μX ◦ ϕρX(a)

↓X (a) =
∨

ρX (x)≤a

ηX(x)

↑X (a) = μX ◦ ϕρ−1
X (a)

⇓X (a) =
∨

ρ−1
X (x)≤a

ηX(x)

Note that in this generalization equivalence relations might need to be softened when
moving beyond the ordinary powerset functor.

3 Partially Ordered Monads in Applications

Partially ordered monads are powerful tools for working with topologies and conver-
gence spaces [16,18], Kleene algebras [28,21,7] and rough sets [12].
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One can say that the development of partially ordered monads has its origin within
the area of topology and convergence structures, originally involving filters [22]. Based
on filters, Cauchy structures were initiated in [20]. A general structure theory was pre-
sented in [13], where more general set functors for convergence were used. The use
of monads makes convergence more powerful [14] and the provision of examples like
the fuzzy filter monad as well as techniques for compactification constructions for filter
based limit spaces, can be found in [5,6]. The introduction of partially ordered monads
and its use within extension structures is due to [16,17], with a follow-up on considera-
tions for compcatifications in [18].

Partially ordered monads are useful also in other areas. They contribute to providing
a generalized notion of powerset Kleene algebras. This generalization builds upon a
more general powerset functor setting far beyond just strings [21] and relational algebra
[28]. Kleene algebras are widely used e.g. in formal languages [27] and analysis of
algorithms [1].

Further, these monads contain sufficient structure for modelling rough sets [25] in
a generalized setting with set functors. Even for the ordinary relations, the adaptations
through partially ordered monads increases the understanding of rough sets in a basic
many-valued logic [19] setting.

4 The Role of Boolean Algebras

Classical rough sets and computing with rough sets make use of the fact that PX with
its set operations is a Boolean algebra. Further the inverse relation is specific for P and
its generalisation is far from obvious. Negation and inverses in the general case, i.e.
based on partially ordered monads, thus are not straightforward to define.

Concerning inverses we at least have that
∨

ρX (x)∧A>0

ηX(x) = μX ◦ Pρ−1
X (A)

if and only if
ρ−1(x) =

⋃

x∈ρ(y)

η(y).

This observation provides the means to define inverse relations.
The generalization from the ordinary power set monad to involving a wide range of

set functors and their corresponding partially ordered monads now requires a appropri-
ate management of relational inverses and complement. Logic comes to rescue where
complement as negation can be represented as a residual.

Note also that, in the case of the ordinary power set monad,

ρ−1(x) =
⋃

x∈ρ(y)

η(y).

Let Φ = (ϕ,≤, η, μ) be a partially ordered monad. We say that ρX : X → ϕX is
a Φ-relation on X , and by ρ−1

X : X → ϕX we denote its inverse. The inverse must
specified for the given set functor ϕ.
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Example 1. In the case of ϕ = P we have

ρ−1
X (x) =

∨

x∈ρX (y)

ηX(y),

and in the case of ϕ = Lid we define

ρ−1
X (x)(x′) =

∨

y∈X

ρX(x′)(x) ∧ ηX(y)(x′),

and thus ρ−1
X (x)(x′) = ρX(x′)(x).

We can define a general implication −→: ϕX × ϕX → ϕX by

a −→ b =
∨

a∧x≤b

x

and the negation operator ¬X : ϕX → ϕX is then logically given by

¬X(a) = (a −→ 0).

In case of ϕ = P , negation is the complement of sets.
The implication −→: ϕX × ϕX → ϕX fulfills

(i) If x ≤ a and y ≤ (a −→ b), then x ∧ y ≤ b
(ii) a ∧ x ≤ b if and only if x ≤ (a −→ b)

and it easily seen that the following properties hold:

(i) a ≤ b if and only if (a −→ b) = 1
(ii) (1 −→ a) = a

Proposition 1. (i) a ≤ ¬X¬Xa
(ii) a ≤ b implies ¬Xa ≥ ¬Xb

(iii) ¬X(a ∨ b) = ¬Xa ∧ ¬Xb

Proof. To show (i) by the definition of ¬X¬Xa =
∨
¬Xa∧t≤0 t and the condition ful-

filled by the definition of ¬Xa, i.e. a∧¬Xa ≤ 0, we immediately obtain: a ≤ ¬X¬Xa.
Property (ii) follows immediately from the definition of the negation and (i). For (iii)
we have:

¬X(a ∨ b) =
∨

(a∨b)∧z≤0

z

In particular we have:

(a ∨ b) ∧ ¬X(a ∨ b) = (a ∧ ¬X(a ∨ b)) ∨ (b ∧ ¬X(a ∨ b)) ≤ 0

which implies (a∧¬X(a∨ b)) ≤ 0 and (b∧¬X(a∨ b)) ≤ 0. Now by definition of the
negation of a and negation of b we obtain that ¬X(a ∨ b) ≤ ¬Xa, ¬X(a ∨ b) ≤ ¬Xb
and therefore

¬X(a ∨ b) ≤ ¬Xa ∧ ¬Xb

Similarly considering z = ¬Xa ∧ ¬Xb we obtain

¬Xa ∧ ¬Xb ≤ ¬X(a ∨ b)
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Proposition 2. The implication−→: ϕX×ϕX → ϕX fulfills the following properties:

(i) a −→ (b −→ a) = 1
(ii)

(
a −→ (b −→ c)

)
−→

(
(a −→ b) −→ (a −→ c)

)
= 1

Proof. For (i), we need to see if a ≤ (b −→ a). This is equivalent to b ∧ a ≤ a that
always hold. To show condition (ii) we can equivalently show the inequality:

x̄ = (a −→ (b −→ c))

≤ ((a −→ b) −→ (a −→ c)) =
∨

(a−→b)∧y≤(a−→c)

y

Let us see that x̄ is one of the y, i.e. x̄ fulfills the condition:

(a −→ b) ∧ x̄ ≤ (a −→ c)

By the definition of x̄ we have, a ∧ x̄ ≤ b −→ c. Now, applying some properties of the
implication (a ∧ b = a ∧ (a −→ b)) to the condition for x̄, we obtain:

a ∧ x̄ ∧ b = a ∧ (a −→ b) ∧ x̄ ≤ c

This can now be rewritten into the condition we were searching for.

Proposition 3. (i) If a ≤ b then a = b ∧ (b −→ a)
(ii) We can always write a ∧ b = a ∧ (a −→ b)

Proof. For (i), note that by definition we have

b ∧ (b −→ a) = b ∧
∨

b∧x≤a

x =
∨

b∧x≤a

b ∧ x ≤ a

On the other hand by Proposition 2 we know that a −→ (b −→ a) = 1 which immedi-
ately, using properties of the implication, bring us to a ≤ (b −→ a). By hypothesis we
have that a ≤ b and therefore

a ≤ b ∧ (b −→ a)

Finally putting together both inequalities we end the proof. To see condition (ii) we will
consider two cases. In the case a ≤ b, this is equivalent to a −→ b = 1 and therefore
a ∧ (a −→ b) = a In the case a > b the result is immediate from (i).

5 Similarities

In previous work we have developed some interesting tools in the abstract language of
category theory with the aim of providing a ground foundation to the development of
a general framework for unification, working with powersets of terms. At this point,
the concept of monad arises as a fundamental one, and managing to provide/construct
examples of useful monads turns out to be essential. Suitable composition of monads are
shown to provide a concept for generalised term and Kleisli categories are a response
for generalised substitutions.
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Considering powersets of terms, in [11], similarity relations were presented and some
suggestions on extending the concept of unifiers were proposed.

The concept of unifiers can be extended by considering powersets of terms. Gen-
eralised terms, as given by powersets of terms, can be handled in equational settings
involving substitutions and unifiers. Similarity relations, denoted by E, are particular
fuzzy relations between two objects. In the crisp case i.e. L = P , similarity relations
are equivalence relations: two elements x, y can be either fully similar (E(x, y) = 1)
or fully dissimilar (E(x, y) = 0).

The classical rough set method is based on crisp sets. Going beyond the crisp situ-
ation, approximation of sets can be achieved by using fuzzy similarities relations. We,
therefore can consider rough approximations between powerset of terms based on sim-
ilarities relations on L ◦ T .

In [9] we presented an extension of the generalized powerset monad to the context of
partially ordered monads over acSLAT, the category of almost complete semi-lattices.
Nevertheless the existence of a partially ordered extension of the term monad remains
still as an open question.

6 Future Work

The categorical structure of fuzzy and rough sets opens up for many investigations
on generalized views of these sets. There utility in logic and logic programming is
underway, and some cornerstone results are already establish.

Future work needs to improve views and properties of logic operators derived from
these generalized relational structures. Further, negation and inverse needs to better
understood also from application point of view. In general, applications need to be de-
veloped, both small and large.

Composing partially ordered monads will play an important role for semantic con-
siderations of programming languages and decision support models involving formal
logic and uncertainties. For many-valued extensions, the open question concerning T
and further, L ◦ T being extendable to a partially ordered monad over acSLAT is an
important one.
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19. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)
20. Keller, H.H.: Die Limesuniformisierbarkeit der Limesräume. Math. Ann. 176, 334–341
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Abstract. Reduction in rough set theory is useful to compact given
attributes of large-scale decision tables in data mining. In this paper a
new method called grey-rough reduction is proposed for decision tables
containing non-interval data and interval data complexly called grey-
decision tables. First of all, a grey-rough approximation is introduced
after summarized grey numbers, their operations and functions. Two
sorts of reduction based on grey-rough sets, a basic approach and ad-
vanced approach are proposed with several illustrative examples. Three
experiments, compatibility with the classical model, an application of the
basic approach to decision-making and influence of the parameter in the
advanced approach are shown. The advantages of the proposal are (1)
it is compatible with the classical reduction model for non-interval data,
(2) it is useful for complex decision tables and (3) it provides a possible
reduction of attributes with a parameter by the advanced approach.

1 Introduction

Current database systems become more and more complex and, more and more
massive data are stored in them, therefore, finding valuable information from
such databases becomes a hard work. In the real applications, many measured
values, for example, blood pressure, current, height, mass, power, temperature,
time, voltage and weight are often described in interval data to be compacted.
Discovering valuable information is an important paradigm in data mining. Re-
cently, a clustering model for interval data is suggested by a number of re-
searchers in terms of Symbolic Data Analysis (SDA) [1]. SDA is a new approach
in knowledge discovery, in which data of units called symbolic are dealt with ac-
cording to Ref. [1]. Clustering methods, decision trees [2, 3] and Principle Com-
ponent Analysis (PCA) for interval data are reported in SDA. Clustering is a
useful method to compact records (tuples or objects) in databases, for example,
de Souza and de Carvalho [4,5] suggest two clustering methods for interval data,
one of which is based on city-block distances and another is based on Cheby-
shev distances. Asharaf [6] also suggests a clustering method based on rough
approximations.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 400–410, 2007.
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Rough reduction [7, 8, 9] is also powerful to compact columns (attributes)
in databases, because the result of a reduction provides information on useful
attributes of a given data set. For example, a reduction for set-valued decision
systems are suggested [10, 11], in which set-valued objects are given in decision
tables called incomplete information systems or non-deterministic information
systems. Given data in such systems, however, are integers. Interval data are
usually given as real numbers; thus the reduction approach is needed to be
expanded for interval data.

With the above-mentioned motivation, a new reduction approach for interval
data based on grey system theory [12, 13,14, 15] is proposed in this paper. Grey
system theory covers grey classification, grey control, grey decision-making, grey
prediction, grey structural modeling, grey relational analysis as well as grey-
rough sets [16]. One of the main concepts in grey system theory is how systems
should be controlled under incomplete or lack of information situation. Grey
number denoting an uncertain value is described in interval from this concept.
The grey-rough set approach is suitable for interval data reduction of attributes.

2 Grey System Theory

2.1 Grey Numbers and Grey Lattice Operation

First of all, grey numbers and their operations for grey-rough sets are introduced.
Let U be the universal set, x be an element of U(x ∈ U), R be the set of real

numbers and X ⊆ R be the set of value range that x may hold. Let G be a grey
set of U defined by two mappings of the upper membership function μG(x) and
the lower membership function μ

G
(x) as follows:

μG(x) : U→ [0, 1]
μ

G
(x) : U→ [0, 1]

}
(1)

where μ
G

(x) ≤ μG(x) and x ∈ U. When μ
G

(x) = μG(x), the grey set becomes a
fuzzy set, which means that grey system theory deals with fuzzy situation more
flexibly.

When two values x, x(x = inf X,x = supX) are given in x, then x using a
form ⊗x = x|μμ is called as follows:

1. If x→ −∞ and x→ +∞, then ⊗x is called a black number
2. If x = x, ⊗x is called a white number or a whitened value denoted by ⊗̃x
3. Otherwise ⊗x  [x, x] is called a grey number

where a symbol ‘’ denotes that the left-hand side interval equals to the right-
hand side called the grey lattice coincidence relation. Grey numbers indicate
interval data. White numbers usually indicate real numbers; those data are called
non-interval data in this paper.

In grey system theory, the grey arithmetic operation [15, 17, 18] and the grey
lattice operation [19,16] are introduced for grey numbers. In this paper, the grey
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lattice operation is used for Boolean reasoning of grey-rough sets. The operators,
Join (∨), Meet (∧), Complement (⊗xc) and Exclusive Join (⊕) are given for two
grey numbers ⊗x  [x, x] and ⊗y  [y, y] as follows:

⊗x ∨ ⊗y  [min(x, y),max(x, y)] (2)

⊗̃x ∨ ⊗̃y  [min(⊗̃x, ⊗̃y),max(⊗̃x, ⊗̃y)] (3)

⊗x ∧ ⊗y 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[x, x] if ⊗ x→ ⊗y
[y, y] if ⊗ y → ⊗x
[x, y] if x→ ⊗y and y → ⊗x
[y, x] if y → ⊗x and x→ ⊗y

∅ otherwise

(4)

⊗̃x ∧ ⊗̃y 
{
⊗̃x if ⊗̃x = ⊗̃y
∅ else (5)

⊗xc = {x ∈ Xc|x < x, x < x} (6)

⊗x⊕⊗y 
{

(⊗xc ∧⊗yc)c if ⊗ x ∧ ⊗y  ∅
(⊗x ∨ ⊗y) ∧ (⊗x ∧ ⊗y)c if ⊗ x ∧ ⊗y � ∅

(7)

where ‘⊗x → ⊗y’ denotes y ≤ x and x ≤ y called the grey lattice inclusion
relation.

Whitening functions [17, 16] which compute a whitened value from a grey
number are given as follows:

Midpoint mid(⊗x) = (x + x)/2 Size size(⊗x) = (|x|+ |x|)/2
Diameter dia(⊗x) = x− x Radius rad(⊗x) = (x− x)/2
Magnitude mag(⊗x) = max(|x|, |x|) Mignitude mig(⊗x) = min(|x|, |x|)

Sign sign(⊗x)=

⎧
⎨

⎩

1 if 0 < x
0 if 0→ ⊗x
−1 if x < 0

Heaviside hv(⊗x)=

⎧
⎨

⎩

1 if 0 ≤ x
0 if x < 0

Unknown if 0→ ⊗x
Absolute abs(⊗x) = mag(⊗x) −mig(⊗x)
Pivot piv(⊗x) =

√
mag(⊗x) ·mig(⊗x)

Overlap ov(⊗x,⊗y) = dia(⊗x∧⊗y)
dia(⊗x∨⊗y)

where ⊗x ∧⊗y  ∅⇔ ov(⊗x,⊗y) = 0; ⊗x  ⊗y ⇔ ov(⊗x,⊗y) = 1

Especially the meet operation, the diameter and the overlap are mainly used to
make a discernibility matrix of grey-rough reduction in this paper.

Example 1. For grey numbers⊗x1  [0.1, 0.4],⊗x2  [0.7, 1.1],⊗x3  [1.2, 1.7]
and ⊗x4  [0.5, 1.3] corresponding to objects x1, x2, x3 and x4, we have

a b a ∨ b a ∧ b dia(a ∨ b) dia(a ∧ b) ov(a, b)
⊗x1 ⊗x2 [0.1, 1.1] ∅ 1.0 0 0
⊗x1 ⊗x3 [0.1, 1.7] ∅ 1.6 0 0
⊗x1 ⊗x4 [0.1, 1.3] ∅ 1.2 0 0
⊗x2 ⊗x3 [0.7, 1.7] ∅ 1.0 0 0
⊗x2 ⊗x4 [0.5, 1.3] [0.7, 1.1] 0.8 0.4 0.5
⊗x3 ⊗x4 [0.5, 1.7] [1.2, 1.3] 1.2 0.1 0.0833
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2.2 Grey-Rough Approximation

Let IS = (U,A, V, f⊗) denote an information system called a grey information
system [18], where

– U : a set of objects called the universe
– A: a set of attributes (conditional attributes)
– V : a set of values, V ⊆ R in this paper
– f⊗: the information function as f⊗ : U ×A −→ V

A grey-rough approximation [16] for a grey information system IS is based on
the meet operation and the grey lattice inclusion (→). Let x be an object of U , a
be an attribute of A and f⊗(x, a)  [f⊗(x, a), f⊗(x, a)] be a value which x holds
on the attribute a, where an ordered pair (x, a) ∈ U ×A, f⊗(x, a) = inf Va and
f⊗(x, a) = supVa. Let f⊗(s, a)  [f⊗(s, a), f⊗(s, a)] be a value on a called an
objective of approximation; the upper approximation GL∗(f⊗(s, a)) and lower
approximation GL∗(f⊗(s, a)) are given as follows:

GL∗(f⊗(s, a)) = {x ∈ U |f⊗(x, a) ∧ f⊗(s, a) � ∅} (8)
GL∗(f⊗(s, a)) = {x ∈ U |f⊗(x, a)→ f⊗(s, a)} (9)

GL(f⊗(s, a)) is a single-attribute approximation on an attribute a of A.
A multi-attribute approximation is also given. Let A = {a1, a2, · · · , an} be a

set of n attributes, S = {f⊗(s, a1), f⊗(s, a2), · · · , f⊗(s, an)} be a set of n values
on attributes of A denoting an objective. The upper approximation GW ∗(S)
and lower approximation GW∗(S) are given as follows:

GW ∗(S)  [GW ∗(S), GW
∗
(S)] (10)

GW∗(S)  [GW ∗(S), GW ∗(S)] (11)
GW ∗(S) =

⋂n
k=1 GL∗(f⊗(s, ak)) (12)

GW
∗
(S) =

⋃n
k=1 GL∗(f⊗(s, ak)) (13)

GW ∗(S) =
⋂n

k=1 GL∗(f⊗(s, ak)) (14)
GW ∗(S) =

⋃n
k=1 GL∗(f⊗(s, ak)) (15)

A pair of interval sets 〈GW ∗(S), GW∗(S)〉 is a multi-attribute grey-rough set.
The multi-attribute approximation is mainly used in approximation [16]. In this
paper, the single-attribute approximation is mainly used for reduction.

In the classical model, the positive region POS(X) = R∗(X), the upper
region UPP (X) = R∗(X), the negative region NEG(X) = U −R∗(X) and the
boundary region BND(X) = R∗(X)−R∗(X) are given. It has been shown that
the grey-rough approximation is compatible with Pawlak’s classical rough set
model [16]. These regions for grey-rough sets are newly definable.

Definition 1. The positive region POS, the upper region UPP , the negative
region NEG and the boundary region BND of GL(f⊗(s, a)) are given as follows:



404 D. Yamaguchi, G.-D. Li, and M. Nagai

0 ⊗x1 ⊗x2 ⊗x3

⊗s

NEG(⊗s) NEG(⊗s)POS(⊗s) BND(⊗s)

UPP (⊗s)

⊗s⊕⊗x3 ⊗s⊕⊗x3

Fig. 1. A grey-rough approximation: an illustration of Example 2

POS(f⊗(s, a)) = GL∗(f⊗(s, a)) (16)
UPP (f⊗(s, a)) = GL∗(f⊗(s, a)) (17)
NEG(f⊗(s, a)) = U −GL∗(f⊗(s, a)) (18)
BND(f⊗(s, a)) = GL∗(f⊗(s, a))−GL∗(f⊗(s, a)) (19)

Example 2. For the data of Example 1, redefine ⊗x4 a grey number ⊗s 
[0.5, 1.3] corresponding to the objective s. In this example, U = {x1, x2, x3, s}
is given. In this grey information system, GL∗(⊗s) = {x2, s} and GL∗(⊗s) =
{x2, x3, s} are given by the grey-rough approximation of s. Therefore, POS(⊗s)=
{x2, s}, UPP (⊗s) = {x2, x3, s}, NEG(⊗s) = {x1} and BND(⊗s) = {x3} are
given. This example is illustrated in Fig. 1.

3 Grey-Rough Reduction

3.1 Principle

Let IS = (U,A ∪D,V, f⊗) be a decision table called a grey decision table [18],
where D is a set of decision (class) attributes. Decision is often given one at-
tribute d ∈ D; f⊗(x, d) ∈ Vd given for an ordered pair (x, d) ∈ U×D is a decision
(class) value.

The classical reduction approach is based on an indiscernibility relation
xI(B)y (an equivalence relation [9]), if and only if a(x) = a(y) for all at-
tributes a ∈ B ⊆ A, where a(x) is the value for object x on a. The pro-
posal reduction is also based on a discernibility matrix. An indiscernibility
relation is expanded for interval data that is based on the equivalence class
[x]GR = {y ∈ U |f⊗(x, a)  f⊗(y, a), ∀a ∈ B ⊆ A} in grey-rough sets [16]. Ac-
cording to Example 2, it is shown that the object x1 of NEG is discernible to
the objective s. The object x3 of BND is conditionally discernible each other:
s and x3 are discernible with the exclusive-joined region ⊗s⊕ ⊗x3 as shown in
Fig. 1. The object x2 of POS is also conditionally discernible, however, almost
indiscernible, because ⊗x2 is included by ⊗s. A basic reduction approach is pro-
posed for NEG and an advanced approach is also proposed for UPP (BND
and POS) with a parameter.
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3.2 Basic Reduction Approach

Definition 2. Let xIGR(B)y be an indiscernibility relation in grey rough sets,
if and only if f⊗(x, a) ∧ f⊗(y, a) � ∅, ∀a ∈ B ⊆ A.

Definition 3. A discernibility matrix for interval data is given as follows:

δij = {a ∈ A|f⊗(xi, a) ∧ f⊗(xj , a)  ∅; f⊗(xi, d) �= f⊗(xj , d)} (20)

where both xi and xj ∈ U ; 1 ≤ i, j ≤ card(U).

Definition 4. A discernibility function FIS is given as follows:

FIS(A∗) =
∧

∃δij(δij 
=∅)

⎛

⎝
∨

∀a∈δij

a

⎞

⎠ (21)

where A∗ =
⋃
∀i,j δij is a set of conditional attributes given as A∗ ⊆ A.

The indiscernibility relation xIGR(B)y denotes that the grey number interval
f⊗(x, a) overlaps another grey number interval f⊗(y, a), which is expanded from
a(x) �= a(y) of the classical model. The function shown in Eq. (21) is a Boolean
function written a conjunctive form; the reduction procedure transforms this
function into a disjunctive form. The attributes of A∗ are candidates for a reduct,
the result of reduction. The core [8], the intersection of all terms denoting a set of
key attributes of a reduct, follow the classical approach in this paper. When the
transformation is run on the computers, the elements δij (1 ≤ i < j ≤ card(U))
are used for fast computation.

Example 3. Assume that each object {x1, x2, x3, x4} ∈ U of Example 1 holds a
unique class in one attribute. According to Eq. (20), the ordered pairs except
(x2, x4) and (x3, x4) are discernible each other (see the column ‘a∧b’ of the table
in Example 1).

3.3 Advanced Reduction Approach

The proposed discernibility matrix can be expanded with a parameter.

Definition 5. The discernibility matrix with a parameter for interval data in a
grey decision table is given as follows:

δij =

⎧
⎪⎪⎨

⎪⎪⎩

{a ∈ A|f⊗(xi, a) ∧ f⊗(xj , a)  ∅; f⊗(xi, d) �= f⊗(xj , d)}
if f⊗(xi, a) or f⊗(xj , a) is ⊗̃

{a ∈ A|ov(f⊗(xi, a), f⊗(xj , a)) ≤ p; f⊗(xi, d) �= f⊗(xj , d)}
if and only if both f⊗(xi, a) and f⊗(xj , a) are ⊗

(22)

where 0 ≤ p ≤ 1 is a real parameter to adjust the elements of the matrix.
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The first form of Eq. (22) is applied two objects for at least one object holds
a non-interval value; for example, 3.0 ∧ 3.0 � ∅ indiscernible, 3.0 ∧ 2.8  ∅
discernible, 2.8 ∧ [2.3, 3.4]  [2.8, 2.8] indiscernible and 3.7 ∧ [2.3, 3.4]  ∅
discernible.

The second form is applied two objects both holding an interval value. The
advanced approach implies possible discernment; the parameter p is introduced
to adjust its possibility. The overlap function measures the degree of possibility
of discernment between two objects. If p = 0 is given, the advanced approach
becomes almost the basic approach but not equal and if p = 1 is given, the con-
dition is unlimited. Compared with the overlap function, the standard inclusion
relation vSRI(X,Y ) in the classical approach [20] is

vSRI(X,Y ) =

{
card(X∩Y )

card(X) if X �= ∅
1 otherwise

(23)

which is based on the cardinal of two sets, not of two objects.

Example 4. Assume that each object {x1, x2, x3, x4} ∈ U of Example 1 holds a
unique class in one attribute. According to Eq. (22), the ordered pairs except
(x2, x4) and (x3, x4) are discernible each other for 0 ≤ p < 0.0833. Only the pair
(x2, x4) is indiscernible for 0.0833 ≤ p < 0.5 and all pairs become discernible for
0.5 ≤ p < 1 (see the column ‘ov(a, b)’ of the table in Example 1).

4 Experiments

4.1 Compatibility with the Classical Approach

It has been already shown in Ref. [16] that the grey-rough approximation is
compatible with Pawlak’s classical rough approximation to replace given values,
for example, ‘yes ⇔ 1  [1, 1]’ and ‘no ⇔ 2  [2, 2]’. This paper reports that
the proposal reduction is also compatible with the classical reduction approach
for non-interval data sets as shown in Table 1: 11 data sets including no missing
values have been picked from UCI repository [21]. In this research, Rough Set
Exploration System (RSES1) [22] has been used to confirm compatibility2. Both
RSES and the proposal have provided the same results for each data set.

4.2 Practical Example of the Basic Approach for Interval Data

Table 2 [18] shows a grey decision table for suppliers selection problem, one of the
decision-making problems. Decision makers are often unable to determine their
judgment exactly, and then estimated judgment data include uncertainty. In this
example, the grey decision table IS is given as follows: U = {xi; i = 1, 2, · · · , 7}
a set of objects called alternatives, A = {ak; k = 1, 2, · · · , 4} a set of conditional

1 RSES Version 2.2.2, Exhaustive algorithm, Full discernibly with Modulo decision.
2 The grey-rough reduction program is supported by MATLAB 7.1.
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Table 1. Reduction results of the two models for non-interval data sets

Nr of Nr of condition Nr of Nr of reducts Nr of reducts
Data set name objects attributes classes by RSES by the proposal

Australian 690 14 2 44 44
Balance-Scale 625 4 3 1 1
Balloons 16 4 2 1 1
Flare 323 12 6 1 1
German 1000 20 2 846 846
Heart-disease 270 13 2 109 109
Lenses 24 4 3 1 1
Lymphography 148 18 4 424 424
Pima-Indian-diabetes 768 8 2 28 28
Tic-Tac-Toe 958 9 2 9 9
Zoo 101 17 7 34 34

Table 2. A grey decision table for suppliers selection problem

a1 a2 a3 a4 d

x1 [0.697,1.000] [0.733,1.000] [0.667,0.909] [0.656,0.955] yes
x2 [0.606,0.788] [0.733,1.000] [0.697,1.000] [0.724,1.000] yes
x3 [0.576,0.758] [0.433,0.600] [0.636,0.879] [0.553,0.700] yes or no
x4 [0.545,0.667] [0.267,0.467] [0.667,0.909] [0.636,0.913] yes
x5 [0.545,0.667] [0.333,0.500] [0.545,0.545] [0.778,1.000] yes or no
x6 [0.636,0.818] [0.267,0.467] [0.515,0.636] [0.553,0.700] no
x7 [0.545,0.667] [0.267,0.467] [0.667,0.909] [0.636,0.913] yes or no

Li et al. A grey-based rough set approach to suppliers selection problem.
Proc. RSCTC2006, LNAI4259 (2006) pp.487–496.

attributes, product quality (a1), service quality (a2), delivery time (a3) and price
(a4). A value f⊗(xi, ak) becomes an estimated judgment given as an interval:
the best evaluation in each upper endpoint and worst evaluation in each lower
endpoint, respectively. The decision f⊗(xi, d) denotes the total judgment, where
Vd = {yes, no, yes or no}. The grey-rough reduction investigates which attribute
is effective to select the best ideal supplier.

The discernibility matrix of the basic approach is given as follows:

x1 x2 x3 x4 x5 x6 x7

x1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
x2 # ∗ ∗ ∗ ∗ ∗ ∗
x3 {a2} {a2, a4} ∗ ∗ ∗ ∗ ∗
x4 # # ∅ ∗ ∗ ∗ ∗
x5 {a1, a2, a3} {a2, a3} # {a3} ∗ ∗ ∗
x6 {a2, a3} {a2, a3, a4} ∅ {a3} {a4} ∗ ∗
x7 {a1, a2} {a2} # ∅ # {a3} ∗
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Table 3. Reduction of the grey decision table by the advanced approach

p Nr of reducts Reduct(s)

0, 0.1 1 a2a3a4

0.2 2 a1a2a3 and a2a3a4, core: a2a3

0.3 3 a1a2a3, a1a3a4 and a2a3a4, core: a3

0.4, 0.5 3 a2a4, a1a2a3 and a1a3a4

0.6, 0.7, 0.8 5 a1a2, a1a3, a1a4, a2a3 and a2a4

0.9 6 a1a2, a1a3, a1a4, a2a3, a2a4 and a3a4

1.0 1 a1a2a4

where a symbol ‘∗’ is an omitted element for fast reduction computation and a
symbol ‘#’ is also an omitted element since f⊗(xi, d) = f⊗(xj , d). According to
the matrix, the discernibility function FIS and its reduct are given as follows:

FIS ≡ a2 · a3 · a4 · (a1 ∨ a2) · (a2 ∨ a3) · (a2 ∨ a4) · (a1 ∨ a2 ∨ a3) · (a2 ∨ a3 ∨ a4)
⇔ a2 · a3 · a4

therefore, service quality, delivery time and price are important to select the best
supplier, in other words, only product quality is not so important in this grey
decision table. Thus the basic approach is available for interval data reduction.

4.3 Property on the Advanced Approach

The aim of this example is to investigate influence of the parameter p in the
advanced approach. Table 3 shows the result of the advanced approach for the
same grey decision table of Table 2, where the parameter 0 ≤ p ≤ 1.0 in units
of 0.1. The equal reduct has been given both in the basic approach and the
advanced approach at p = 0 and p = 0.1. A number of reducts has increased as
the parameter increases, which implies the advanced approach has done possible
reduction. At p = 1.0, only a3 has been out of the reduct though the condition
is unlimited, because the value f⊗(x5, a3) = 0.545 is a non-interval value and
then the first form of Eq. (22) has been applied to a3 only in this example.
When p = 0.2 and p = 0.3 the cores a2 · a3 and a3 have been given, respectively.
According to these results, a3 (delivery time) seems to be a key attribute in that
grey decision table. Thus the advanced approach is available for interval data
reduction under complex decision tables in data mining.

5 Conclusion

A new grey-rough reduction of attributes for interval data was proposed in this
paper. Two sorts of grey-rough reduction model, a basic approach and advanced
approach were proposed with several illustrative examples. Conclude this paper
with advantages of the proposal as follows:

– The grey-rough reduction is compatible with the classical reduction ap-
proaches for data sets of non-interval data.
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– The grey-rough reduction is useful for decision tables containing both non-
interval and interval data complexly.

– The advanced approach carries out a possible reduction with a parameter,
in which an attribute containing both non-interval values and interval values
is distinguished in the practical example.

The proposal is needed to investigate more effectiveness, for example, comparison
with related models such as Dembczynski’ model [23].
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Abstract. In this paper the dependences between the Dempster-Shafer
theory and rough set theory have been used to find a minimal template in
a given decision table. The Dempster-Shafer theory [5] is called a math-
ematical theory of evidence. This theory is based on belief functions and
plausible reasoning is used to combine separate pieces of information (ev-
idence) to calculate the probability of an event. Rough set theory was
proposed by Pawlak in 1982 [3] as a mathematical tool for describing the
uncertain knowledge. In 1987 [1] and 1991 [6] the basic functions of the
evidence theory were defined, based on the notation from rough set the-
ory. These definitions allow finding interesting dependences in decision
tables.

1 Introduction

1.1 Preliminaries of Rough Set Theory

In rough set theory knowledge is based on possibility (capability) for classify-
ing objects. The objects can be for instance real objects, statements, abstract
concepts or processes. Let us recall some basic definitions of rough set theory [4].

A pair A = (U,A) will be called an information system, where U – is a
non-empty, finite set called the universe and A – is a non-empty, finite set of
attributes. Each attribute a ∈ A is a function a : U → Va, where Va – is called
the value set of a.

Let A be an information system and let A = C∪D where C,D are non-empty,
disjoint subsets of A. The set C is called the set of condition attributes and the
set D is called the set of decision attributes. The triple A = (U,A,C,D) is
referred to as a decision table. A simplified version of a decision table has a form
A = (U,A ∪ {d}), where d /∈ A. Now, the set of decision attributes D is limited
to one decision attribute only. The decision d creates a partition of the universe
U into decision classes X1, . . . , Xr(d), where r(d) = |{k : ∃x∈U : d(x) = k}| is
the number of different values of the decision attribute called the rank of the
decision d.

1.2 Belief and Plausibility Functions in Rough Sets

In 1987 [1] and 1991 [6] Grzyma�la–Busse and Skowron suggested a clear way to
connect rough sets theory and the evidence theory. They defined basic functions

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 411–416, 2007.
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of the evidence theory based on the concepts of rough set theory. In this section
we recall some basic definitions that are indispensable for further considerations.

Let ΘA = {1, 2, ..., r(d)} be the frame of discernment defined by the decision
d in the decision table A.

For any θ ∈ ΘA the following equality holds:

BelA(θ) =

∣∣∣∣A
⋃
i∈θ

Xi

∣∣∣∣

|U | . (1)

The equality above defines the relationship between the belief function BelA(θ)
and the lower approximation of a set from rough set theory. The belief function
is the ratio of the number of objects in U that can be certainly classified to the
union

⋃
i∈θ

Xi to the number of all objects in U .

Also for any θ ∈ ΘA the following equality holds:

PlA(θ) =

∣∣∣∣A
⋃
i∈θ

Xi

∣∣∣∣

|U | . (2)

The equality above defines relationship between the plausibility function PlA(θ)
and the upper approximation of a set from rough set theory. The plausibility
function is the ratio of the number of objects that can be probably classified to
the union

⋃
i∈θ

Xi to the number of all objects in U .

1.3 Templates in a Decision Table

A template T [2] in a decision table is any sequence v1, . . . , vn, where vi ∈
Vai ∪ {∗}.
The symbol ′∗′ appearing in a given template means that the value of the marked
attribute is not restricted by the template. Alternatively, a template can be
defined as the conjunction of a certain number of the descriptors e.g.

T = (c = 0) ∧ (e = 1) ∧ (f = 1).
A given object matches a given template if ai(x) = vi, for each i such that

vi �=′ ∗′.
For a given template T the following notions are defined:
– length(T ) := |vi ∈ T : vi �=′ ∗′|;
– support(T ) := |x ∈ U : ∀vi∈T,vi 
=′∗′x(ai) = vi|.

2 Minimal Templates Problem

Let A be a decision table. By AT = (UT , A∪d) we denote the restriction of A to
a template T , i.e. UT = {x ∈ U : x(ai) = vi, vi �=′ ∗′} for all i ∈ {1, . . . , n} and
A(T ) = {ai ∈ A : vi �=′ ∗′ ∈ T } is the set of attributes of A restricted to UT .
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We consider the following problem:

Minimal Templates Problem

Input :
A decision table A; thresholds ε1, ε2 ∈ (0, 1) and a natural number 1 ≤ k < r(d).

Output :
Minimal (with respect to the length) templates T for which there exists a set
θ ⊆ ΘAT with at most k elements (|θ| ≤ k) satisfying the following conditions:

|PlAT (θ) −BelAT (θ)| < ε1 for ε1 ∈ (0, 1); θ ⊆ ΘAT ; (3)

|PlAT (θ)| > 1− ε1 for ε1 ∈ (0, 1); θ ⊆ ΘAT ; (4)

|UT |
|U | > ε2 for ε2 ∈ (0, 1). (5)

Based on the conditions that direct the searching process of the minimal
templates the following rule is obtained:

T ⇒ θ.

The conditional part of this rule is a template and the decision part is a set
θ. Such rules can be interesting in the case where there are no strong rules (with
the right hand side described by a single decision value) in a given decision table
that have satisfactory support. Then we search for rules that have a sufficiently
large support with respect to the minimal set θ of decision values.

3 Problem Solution

Since the problem of the construction of templates that satisfy conditions (3–5)
is NP-hard we use a genetic algorithm.

The starting point is a set of decision reducts. Each reduct is a set of the
attributes. Among these attributes we are looking for the templates that are
solution of the problem.

begin

Decision reduct generation - R

forall r in R do

SGA(r); - Genetic algorithm

endfor

end;

Genetic algorithm starts from a random population of objects. Every object
has the same length as the reduct. Each object defines the set of the templates.
We reject templates that do not satisfy condition (5). For each template we
calculate corresponding θ.
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Procedure SGA(r);

begin

nr:=0; - population number

Generation(Pop(nr));

RuleGeneration(Pop(nr));

Fitt(Pop(nr));

while (not STOP) do

nr := nr + 1;

Selection Pop(nr) from Pop(nr-1);

Mutation Pop(nr);

RuleGeneration(Pop(nr));

Fitt(Pop(nr));

endwhile;

Solution is the best result for the last population

end;

where

Procedure RuleGeneration(Pop(i));

begin

forall t in Pop(i) do

TemplatesGeneration(t);

forall T in TemplatesGeneration(t)

ThetaAlg(T);

endfor;

endfor;

end;

In the genetic algorithm, for each template a heuristic is used to find θ ∈ ΘT .
θ must satisfy both conditions (3) and (4).

The fitness function in the genetic algorithm must take into account the aim
which is to find the minimal templates. So this function must reward the objects
that have the smallest number of attributes. On the other hand the shortest
template must satisfy condition (3), (4) and (5). We consider the following fitness
function:

Fitt(x) =
a

Templ Lg
+

b

Av Gl
+ c ∗ Av Supp

|U | + Const

where Templ Lg is the length of the template, Av Gl is the average number of
decision class gluing, Av Supp is the average of the template support for the
population, and a, b, c are non-negative real numbers such that:

a + b + c = 1

If it is impossible to find templates together with θ, the fitness function is
defined in the following way:

Fitt(x) = 0 + const.
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4 Results

For example, Wisconsin Breast Cancer Database was taken. This database
has 699 objects, 9 condition attributes and 1 decision reduct. The presented
algorithm for solving the minimal template problem generates the specific output
file. For parameters ε1 = 0.1 and ε2 = 0.1 the following results were obtained:

4 1 8 13
0
4 130 5 1 3
8 108 3 1 3 7 4 8 2
3 80 4 1
6 145 1 1 2 7 8

line 1: 4 is the number of templates, 1 is the number of descriptors, 8 is
the length of objects in the population, 13 is the average number of
different values of the decision attribute in a template,

line 2: 0 is the number of the attribute,
line 3: 4 is the number of values that appear in this line, 130 is the support

of the template, 5 is the value of attribute with the number from line 2,
1 and 3 are the numbers of decision class which are glued.

It means that the following rules were received:
– (a0 = 5)⇒ (d = 1 ∨ d = 3) with support = 130;
– (a0 = 3)⇒ (d = 1 ∨ d = 2 ∨ d = 3 ∨ d = 4 ∨ d = 7 ∨ d = 8) with support =

108;
– (a0 = 4)⇒ (d = 1) with support = 80;
– (a0 = 1)⇒ (d = 1 ∨ d = 2 ∨ d = 7 ∨ d = 8) with support = 145.

For parameters ε1 = 0.1 and ε2 = 0.05 the following results were obtained:

7 1 8 25
0
4 130 5 1 3
8 108 3 1 3 7 4 8 2
3 80 4 1
6 145 1 1 2 7 8
7 46 8 1 2 8 4 7
4 50 2 1 5
7 69 10 1 2 3 10 8

The following rules were received:
– (a0 = 5)⇒ (d = 1 ∨ d = 3) with support = 130;
– (a0 = 3)⇒ (d = 1 ∨ d = 2 ∨ d = 3 ∨ d = 4 ∨ d = 7 ∨ d = 8) with support =

108;
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– (a0 = 4)⇒ (d = 1) with support = 80;
– (a0 = 1)⇒ (d = 1 ∨ d = 2 ∨ d = 7 ∨ d = 8) with support = 145;
– (a0 = 8)⇒ (d = 1 ∨ d = 2 ∨ d = 4 ∨ d = 7 ∨ d = 8) with support = 46;
– (a0 = 2)⇒ (d = 1 ∨ d = 5) with support = 50;
– (a0 = 10)⇒ (d = 1 ∨ d = 2 ∨ d = 3 ∨ d = 8 ∨ d = 10) with support = 69.

From the example it results that the algorithm generates rules with the large
support. Besides the user decides what support of rules is sufficient. The user
can also decide about the maximum number of decision classes, which are glued.

5 Summary

The paper demonstrates that the relationships between rough set theory and the
evidence theory can be used to find the minimal templates for a given decision
table.

Extracting the templates from data is a problem that consists in finding the set
of attributes with a minimal number of attributes, which warrants, among others,
the sufficiently small difference between the belief and plausibility functions.
Moreover, the minimal templates problem gives the hint which decision values
can be glued. Finally we get decision rules with the sufficiently large support.

Other heuristics for searching θ could possible bring better results. Therefore,
they should be analyzed in further research.
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Abstract. In the paper, some generalizations of the notions of reduct
and test (superreduct) are considered. The accuracy of greedy algorithm
for construction of partial test is investigated. A lower bound on the
minimal cardinality of partial reducts based on an information on greedy
algorithm work is studied. Results of an experiment with greedy algo-
rithm are described.

Keywords: partial test, partial reduct, greedy algorithm.

1 Introduction

The attribute reduction problem (it is required to find a reduct with minimal
or close to minimal cardinality) is one of the main problems of rough set theory
[12,14,19]. There are different variants of the notion of reduct: reducts for infor-
mation systems [12], usual decision and local reducts for decision tables [12,18],
decision and local reducts which are based on the generalized decision [18], etc.
Interesting discussion of various kinds of reducts can be found in [14], page 12.

In this paper, we consider an “universal” definition of reduct which covers at
least part of possible variants. We use an approach considered in test theory [27].
Let T be a decision table and P be a subset of pairs of discernible rows (objects)
of T . Then a reduct for T relative to P is a minimal (relative to inclusion) subset
of conditional attributes which separate all pairs from P . All mentioned above
kinds of reducts can be represented in such a form.

In this paper, we consider not only exact but also approximate (partial)
reducts which are useful in inducing data models. Rough set theory often deals
with decision tables containing noisy data. In this case exact reducts can be
“over-learned”, i.e., depend essentially on the noise. If we view constructed
reducts as a way of knowledge representation [18], then instead of large exact
reducts it is more appropriate to work with relatively small partial ones. In [13]
Zdzis�law Pawlak wrote that “the idea of an approximate reduct can be useful in
cases when a smaller number of condition attributes is preferred over accuracy
of classification”.
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Last years in rough set theory approximate reducts are studied intensively
[6,7,8,9,10,15,22,23,24,25,26,29]. Approximate reducts are investigated also in
extensions of rough set model such as VPRS (variable precision rough sets) [28]
and α-RST (alpha rough set theory) [16].

We begin our consideration from a data table in which columns are labeled
by discrete and continuous variables, and rows are tuples of values of variables
on some objects. It is possible that this data table contains missing values [2,4].
We consider the following classification problem: for a discrete variable we must
find its value using values of all other variables. We do not use variables directly
but create some attributes with relatively small number of values based on the
considered variables. As a result, we obtain a decision table with missing values
in the general case. We define the universal attribute reduction problem for this
table and consider a number of examples of known attribute reduction problems
which can be represented as the universal one.

Based on results from [8], we obtain bounds on precision of greedy algorithm
for partial test (superreduct) construction. This algorithm is a simple general-
ization of greedy algorithm for set cover problem [3,5,11,20,21]. We prove that
under some natural assumptions on the class NP the greedy algorithm is close
to the best (from the point of view of precision) polynomial approximate algo-
rithms for minimization of cardinality of partial tests. We show that based on
an information received during greedy algorithm work it is possible to obtain
a nontrivial lower bound on minimal cardinality of partial reduct. We obtain
also a bound on precision of greedy algorithm which does not depend on the
cardinality of the set P .

Results of experiments with randomly generated decision tables [8] and real-
life decision tables from UCI repository show that using greedy algorithm we can
construct short partial tests with relatively high accuracy. Results of one of such
experiments are described in this paper. In particular, these results illustrate
the use of the lower bound on minimal cardinality of partial reducts based on
an information received during greedy algorithm work (see Theorem 7). This
bound can be useful in experiments connected with the construction of various
kinds of reducts by greedy algorithm.

The paper consists of five sections. In Sect. 2 a transformation of a data table
into a decision table is considered. In Sect. 3 the notion of the universal attribute
reduction problem is discussed. In Sect. 4 greedy algorithm for construction of
partial tests (partial superreducts) is studied. In Sect. 5 results of an experiment
with the decision table “kr-vs-kp” from UCI repository are described.

2 From Data Table to Decision Table

The data table D is a finite table with k columns labeled by variables x1, . . . , xk

and N rows which are interpreted as tuples of values of variables x1, . . . , xk on
N objects u1, . . . , uN . It is possible that D contains missing values which are
denoted by “− ”.
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As usual, we assume that each of variables xi is either discrete (with values
from some finite unordered set V (xi)) or continuous (with values from a set
V (xi) ⊂ IR). We will assume that “− ” does not belong to V (xi).

Let us choose a variable xr ∈ {x1, . . . , xk} and consider the problem of pre-
diction of the value of xr on a given object using only values of variables from
the set X = {x1, . . . , xk} \ {xr} on the considered object. If xr is a discrete
variable, then the problem of prediction is called the classification problem. If
xr is a continuous variable, then the considered problem is called the problem
of regression. We only consider the classification problem. So xr is a discrete
variable.

We only consider two kinds of missing values: (i) missing value of xi as an
additional value of variable xi, which does not belong to V (xi), and (ii) missing
value as an undefined value. In the last case, based on the value of xi it is
impossible to discern an object ul from another object ut if the value xi(ul) is
missed (undefined).

We now transform the data table D into a data table D∗. For each variable
xi ∈ {x1, . . . , xk}, according to the nature of xi we choose either the first or the
second way for the work with missing values. In the first case, we add to V (xi)
a new value which is not equal to “ − ”, and write this new value instead of
each missing value of xi. In the second case, we leave all missing values of xi

untouched.
To solve the considered classification problem, we do not use variables from

X directly. Instead of this we use attributes constructed on the basis of these
variables. Let us consider some examples.

Let xi ∈ X be a discrete variable. Let us divide the set V (xi) into relatively
small number of nonempty disjoint subsets V1, . . . , Vs. Then the value of the
considered attribute on an object u is equal to the value j ∈ {1, . . . , s} for which
xi(u) ∈ Vj . The value of this attribute on u is missing if and only if the value of
xi on u is missing.

Let xi ∈ X be a continuous variable and c ∈ IR. Then the value of the
considered attribute on an object u is equal to 0 if xi(u) < c, and is equal to 1
otherwise. The value of this attribute on u is missing if and only if the value of
xi on u is missing.

Let xi1 , . . . , xit ∈ X be continuous variables and f be a function from IRt to
IR. Then the value of the considered attribute on an object u is equal to 0 if
f(xi1(u), . . . , xit(u)) < 0, and is equal to 1 otherwise. The value of this attribute
on u is missing if and only if the value of at least one variable from {xi1 , . . . , xit}
on u is missing.

We now assume that the attributes a1, . . . , am are chose. Let, for the defi-
niteness, u1, . . . , un be all objects from {u1, . . . , uN} such that the value of the
variable xr on the considered object is definite (is not missing).

We now describe a decision table T . This table contains m columns labeled
by attributes a1, . . . , am, and n rows corresponding to objects u1, . . . , un respec-
tively. For j = 1, . . . , n the j-th row is labeled by the value xr(uj), which will be
considered later as the value of the decision attribute d. For any i ∈ {1, . . . ,m}
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and j ∈ {1, . . . , n} the value ai(uj) is at the intersection of the j-th row and
the i-th column. If the value ai(uj) is missing then the symbol “ − ” is at the
intersection of the j-th row and the i-th column.

3 Problem of Attribute Reduction

3.1 Definition of Problem

Let T be a decision table with m columns labeled by attributes a1, . . . , am and n
rows which are identified with objects u1, . . . , un. It is possible that T contains
missing values denoted by “ − ”. Each row is labeled by a decision which is
interpreted as the value of the decision attribute d. Let A = {a1, . . . , am} and
U = {u1, . . . , un}.

We now define the indiscernibility relation IND(T ) ⊆ U ×U . Let ul, ut ∈ U .
Then (ul, ut) ∈ IND(T ) if and only if ai(ul) = ai(ut) for any ai ∈ A such that
the values ai(ul) and ai(ut) are definite (are not missing). Since T can contain
missing values, the relation IND(T ) is not an equivalence relation in the general
case, but it is a tolerance relation.

By DIS(T ) we denote the set of unordered pairs of objects ul and ut from
U such that (ul, ut) /∈ IND(T ). Let (ul, ut) ∈ DIS(T ) and ai ∈ A. We will say
that the attribute ai separates the pair (ul, ut) if the values ai(ul) and ai(ut) are
definite and ai(ul) �= ai(ut). For any ai ∈ A we denote by DIS(T, ai) the set of
pairs from DIS(T ) which the attribute ai separates.

Let P be a subset of DIS(T ). Let Q be a subset of A and α be a real number
such that 0 ≤ α < 1. We will say that Q is an α-test for T relative to P (an
(α,P)-test for T ) if attributes from Q separate at least (1−α)|P| pairs from P .
An (α,P)-test for T is called an α-reduct for T relative to P (an (α,P)-reduct
for T ) if each proper subset of this (α,P)-test is not an (α,P)-test for T . If
P = ∅, then any subset Q of A is an (α,P)-test for T , but only the empty set
of attributes is an (α,P)-reduct for T . Note that each (α,P)-test contains an
(α,P)-reduct as a subset. The parameter α can be interpreted as inaccuracy. If
α = 0, then we obtain the notion of exact test for T relative to P and the notion
of exact reduct for T relative to P .

The problem of attribute reduction is the following: for given decision table
T , subset P of the set DIS(T ) and real α, 0 ≤ α < 1, it is required to find
an (α,P)-reduct for T (an (α,P)-test for T ) with minimal cardinality. Let us
denote by Rmin(α) = Rmin(α,P , T ) the minimal cardinality of an (α,P)-reduct
for T . Of course, it is possible to use another measures of reduct quality.

The considered problem can be easily reformulated as a set cover problem:
we must cover the set P using minimal number of subsets from the family {P ∩
DIS(T, a1), . . . ,P ∩ DIS(T, am)}. Therefore, we can use results, obtained for
the set cover problem, for analysis of the attribute reduction problem.

3.2 Examples

We now consider examples of sets P corresponding to different kinds of reducts.
It was impossible for us to find definitions of some kinds of reducts which are
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applicable to decision tables with missing values. In such cases we have extended
existing definitions (if it was possible) trying to preserve their spirit.

For an arbitrary ul ∈ U , let [ul]T = {ut : ut ∈ U, (ul, ut) ∈ IND(T )} and
∂T (ul) = {d(ut) : ut ∈ [ul]T }. The set ∂T (ul) is called the generalized decision
for ul. The positive region POS(T ) for T is the set of objects ul ∈ U such that
|∂T (ul)| = 1. The set BN(T ) = U \POS(T ) is called the boundary region for T .

1. Reducts for the information system, obtained from T by removing the de-
cision attribute d. The set P is equal to DIS(T ) (we must preserve the
indiscernibility relation).

2. Usual decision reducts for T . The set P is equal to the set of all pairs
(ul, ut) ∈ DIS(T ) such that d(ul) �= d(ut) and at least one object from the
pair belongs to POS(T ) (we must preserve the positive region).

3. Decision reducts for T based on the generalized decision. Let us assume T is
without missing values. The set P is equal to the set of all pairs (ul, ut) ∈
DIS(T ) such that ∂T (ul) �= ∂T (ut).

4. Maximally discerning decision reducts for T . The set P is equal to the set
of all pairs (ul, ut) ∈ DIS(T ) such that d(ul) �= d(ut).

5. Usual local reducts for T and object ul ∈ POS(T ). The set P is equal to the
set of all pairs (ul, ut) ∈ DIS(T ) such that d(ul) �= d(ut).

6. Local reducts for T and object ul ∈ U based on the generalized decision. Let
us assume T is without missing values. The set P is equal to the set of all
pairs (ul, ut) ∈ DIS(T ) such that ∂T (ul) �= ∂T (ut).

7. Maximally discerning local reducts for T and object ul ∈ U . The set P is
equal to the set of all pairs (ul, ut) ∈ DIS(T ) such that d(ul) �= d(ut).

3.3 On Maximally Discerning Reducts

The notions of maximally discerning decision and local reducts (but without
the use of the term “maximally discerning”) were investigated by the authors in
[6,7,8,15,29]. Maximally discerning decision reducts can give us additional infor-
mation on the value of the decision attribute (for example, by the separation of
groups of equal rows with the same generalized decision but with different proba-
bility distributions of decision values). The consideration of maximally discerning
local reducts for objects from the boundary region can lead to construction of a
decision rule system which is applicable to more wide class of new objects. We
now consider two examples.

Example 1. Let us consider the decision table T1 (see Figure 1). For this table,
there is exactly one usual decision reduct (which is equal to the empty set),
exactly one decision reduct based on the generalized decision (which is equal to
the empty set too) and exactly one maximally discerning decision reduct (which
is equal to {a2}). Based on reducts of the first two kinds it is impossible to
separate the rows (0, 0) from the rows (0, 1). However, for the considered two
types of rows we have different probability distributions of decision values. The
third kind of reducts allows us to separate these two types of rows.
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T1

a1 a2

0 0 1
0 0 2
0 1 1
0 1 2
0 1 2

T2

a1 a2

0 0 1
0 0 2
0 1 2
1 0 1

S1

a2 = 1 → 2

a1 = 1 → 1

S2

a1 = 0 ∧ a2 = 0 → {1, 2}
a2 = 1 → {2}
a1 = 1 → {1}

S3

a2 = 0 → 1

a1 = 0 → 2

a2 = 1 → 2

a1 = 1 → 1

Fig. 1. Illustrations to Examples 1 and 2

Example 2. Let us consider the decision table T2 and three systems of decision
rules S1, S2 and S3 obtained on the basis of usual local reducts, local reducts
based on the generalized decision and maximally discerning local reducts (see
Figure 1). Let us consider two new objects (0, 2) and (2, 0). Systems S1 and S2

have no rules which are realizable on the new objects. However, the system S3

has rules which are realizable on these new objects and, moreover, correspond
to these objects different decisions.

4 Greedy Algorithm

We now describe the greedy algorithm which for given α, 0 ≤ α < 1, decision
table T and set of pairs P ⊆ DIS(T ), P �= ∅, constructs an (α,P)-test for T .
Let T have m columns labeled by attributes a1, . . . , am.

Let us choose an attribute ai1 with minimal number i1 which separates maxi-
mal number of pairs from P . Add ai1 to the constructed (α,P)-test. If ai1 sepa-
rates at least (1−α)|P| pairs from P , then stop. Otherwise, choose an attribute
ai2 with minimal number i2 which separates maximal number of unseparated
pairs from the set P . Add ai2 to the constructed (α,P)-test, etc.

By Rgreedy(α) = Rgreedy(α,P , T ) we denote the cardinality of the constructed
(α,P)-test for T .

4.1 On Precision of Greedy Algorithm

The following three theorems are simple corollaries of results from [20,21,8].

Theorem 1. Let 0 ≤ α < 1 and 7(1− α)|P|8 ≥ 2. Then Rgreedy(α) < Rmin(α) ·
(ln 7(1− α)|P|8 − ln ln 7(1− α)|P|8+ 0.78).

Theorem 2. Let 0 ≤ α < 1. Then for any natural t ≥ 2 there exists a deci-
sion table T and a subset P of the set DIS(T ) such that 7(1− α)|P|8 = t and
Rgreedy(α) > Rmin(α)(ln 7(1− α)|P|8 − ln ln 7(1− α)|P|8 − 0.31).

Theorem 3. Let 0 ≤ α < 1. Then

Rgreedy(α) ≤ Rmin(α)(1 + ln( max
j∈{1,...,m}

|P ∩DIS(T, aj)|)) .
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4.2 On Polynomial Approximate Algorithms

Immediately from results obtained in [10,25] the next theorem follows.

Theorem 4. Let 0 ≤ α < 1. Then the problem of construction, for given T and
P ⊆ DIS(T ), an (α,P)-reduct for T with minimal cardinality is NP -hard.

From statements obtained in [8] (based on results from [1,17,23,25]) the next
two theorems follow.

Theorem 5. Let α ∈ IR and 0 ≤ α < 1. If NP �⊆ DTIME(nO(log log n)), then
for any ε, 0 < ε < 1, there is no polynomial algorithm that, for given decision
table T with DIS(T ) �= ∅ and nonempty subset P ⊆ DIS(T ), constructs an
(α,P)-test for T which cardinality is at most (1− ε)Rmin(α,P , T ) ln |P|.

From Theorem 3 it follows that Rgreedy(α) ≤ Rmin(α)(1 + ln |P|). From this
inequality and from Theorem 5 it follows that under the assumption NP �⊆
DTIME(nO(log log n)) the greedy algorithm is close to the best polynomial ap-
proximate algorithms for partial test cardinality minimization.

Theorem 6. Let α be a real number such that 0 ≤ α < 1. If P �= NP , then there
exists ρ > 0 such that there is no polynomial algorithm that, for given decision
table T with DIS(T ) �= ∅ and nonempty subset P ⊆ DIS(T ), constructs an
(α,P)-test for T which cardinality is at most ρRmin(α,P , T ) ln |P|.

From Theorems 3 and 6 it follows that under the assumption P �= NP the
greedy algorithm is not far from the best polynomial approximate algorithms
for partial test cardinality minimization.

4.3 Lower Bound on Rmin(α)

In this subsection, we fix some information about greedy algorithm work and
find a lower bound on Rmin(α) depending on this information.

Let us apply the greedy algorithm to α, T and P . Let during the construc-
tion of (α,P)-test for T the greedy algorithm choose consequently attributes
aj1 , . . . , ajt . Let us denote by δ1 the number of pairs from P separated by the
attribute aj1 . For i = 2, . . . , t we denote by δi the number of pairs from P which
are not separated by attributes aj1 , . . . , aji−1 but are separated by the attribute
aji . Let Δ(α,P , T ) = (δ1, . . . , δt). As information on the greedy algorithm work
we will use the tuple Δ(α,P , T ) and numbers |P| and α.

We now define the parameter l(α) = l(α, |P|, Δ(α,P , T )). Let δ0 = 0. Then

l(α) = max
{⌈
7(1− α)|P|8 − (δ0 + . . . + δi)

δi+1

⌉
: i = 0, . . . , t− 1

}
.

Next two theorems follow immediately from results obtained in [8].

Theorem 7. Let T be a decision table, P ⊆ DIS(T ), P �= ∅, and α be a real
number such that 0 ≤ α < 1. Then Rmin(α,P , T ) ≥ l(α, |P|, Δ(α,P , T )).
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The value l(α) = l(α, |P|, Δ(α,P , T )) can be used for the obtaining of upper
bounds on cardinality of partial tests constructed by the greedy algorithm.

Theorem 8. Let α and β be real numbers such that 0 < β ≤ α < 1. Then
Rgreedy(α) < l(α− β) ln

(
1−α+β

β

)
+ 1.

From Theorem 8 it follows that the lower bound Rmin(α) ≥ l(α) is nontrivial.

4.4 Upper Bound on Rgreedy(α)

In this subsection, we obtain an upper bound on Rgreedy(α) = Rgreedy(α,P , T )
which does not depend on |P|. The next statement follows immediately from
Theorems 7 and 8.

Theorem 9. Let α and β be real numbers such that 0 < β ≤ α < 1. Then
Rgreedy(α) < Rmin(α − β) ln

(
1−α+β

β

)
+ 1.

5 Example of Greedy Algorithm Work

In this section, we consider results of an experiment with the decision table T
“kr-vs-kp” from UCI repository. This table contains 36 conditional attributes
and 3196 rows. In the capacity of the set P we consider the set of all pairs
(ul, ut) ∈ DIS(T ) such that d(ul) �= d(ut) (so we study maximally discerning
decision reducts). We apply to the decision table T , the set P and α = 0 the
greedy algorithm. Results of this experiment can be found in Table 1. The column

Table 1. Results of the experiment with the decision table “kr-vs-kp”

# % α l(α) attr.

1 53.86 0.461391687916226 1.0 wknck

2 55.80 0.203919051411864 2.0 bxqsq

3 55.01 0.091742516013002 2.0 wkpos

4 59.55 0.037112982420434 2.0 rimmx

5 54.48 0.016895013806505 2.0 bkxbq

6 55.69 0.007487020319340 2.0 katri

7 49.28 0.003797718550816 2.0 simpl

8 45.27 0.002078314490862 2.0 r2ar8

9 45.12 0.001140528893855 2.0 blxwp

10 39.91 0.000685334966761 2.0 dwipd

11 37.98 0.000425056409995 2.0 bkspr

12 40.70 0.000252059233920 3.0 cntxt

13 31.37 0.000172997176076 3.0 skewr

14 21.72 0.000135423128783 3.0 rxmsq

15 23.70 0.000103328630054 3.0 wkovl

# % α l(α) attr.

16 22.73 0.000079844850496 3.0 bkblk

17 26.47 0.000058709448894 4.0 wtoeg

18 24.00 0.000044619181160 4.0 mulch

19 24.56 0.000033660084033 4.0 thrsk

20 29.07 0.000023875175884 4.0 reskr

21 29.51 0.000016830042016 5.0 qxmsq

22 37.21 0.000010567700801 5.0 bkxcr

23 29.63 0.000007436530193 5.0 skrxp

24 31.58 0.000005088152238 5.0 bkona

25 38.46 0.000003131170608 5.0 skach

26 37.50 0.000001956981630 5.0 wkcti

27 40.00 0.000001174188978 5.0 bkon8

28 66.67 0.000000391396326 5.0 dsopp

29 100.0 0.000000000000000 5.0 spcop
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“#” contains the number i of step of greedy algorithm, the column “attr.”
contains the name of attribute chosen during the i-th step, the column “α”
contains the inaccuracy of partial test constructed during the first i steps, the
column “%” contains the percentage of unseparated during first i−1 steps pairs
which are separated during the i-th step, and the column “l(α)” contains the
lower bound on minimal cardinality of (α,P)-test for the table T .

From the obtained results it follows that Rgreedy(0.1) = 3, Rgreedy(0.01) = 6,
Rgreedy(0.001) = 10, and Rgreedy(0) = 29.

In such situation instead of long exact test (29 attributes) it is better, some-
times, to work with short partial test (6 attributes) which separates more than
99% pairs of rows.
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Abstract. The work contains an example of applying the rough set the-
ory to application of support decision making - diagnose Mitochondrial
Encephalomyopathies (MEM) in a child. The resulting decision support
system maximally limits the indications for invasive diagnostic methods
that finally decide about diagnosis. Moreover, it shortens the time nec-
essary for making diagnosis. System has arisen using induction (machine
learning from examples) – one of the methods artificial intelligence.

1 Introduction

Our work presents an example of solving a diagnose problem in the complex sys-
tems of decision making. It is related to the diagnosing system in the children
neurology, concerning diagnosing the patients suspected of suffering from Mi-
tochondrial Encephalomyopathies (MEM). In this case unquestionable decision
can be made only after performing some invasive tests.

At present, the disease is widely spread among children and its prognosis is
bad [1], [7], [9], [10], [11].

It is not only essential to diagnose MEM early but to limit as well the number
of patients subjected to invasive and health threatening tests to a minimum.

2 Medical Problem

Progressive encephalopathy (PE) is the group of illnesses occurring in neurology.
It is a progressive loss of psychomotor and neuromuscular functions occurring in
the infancy or in older children. Essential reasons for PE are metabolic diseases.

In the work we have paid attention to Mitochondrial Encephalomyopathies
in which respiratory enzymes of the cell located in mitochondria’s are impaired.
MEM occur with elevated levels of lactic and pyruvic acid in the blood serum
and the cerebrospinal fluid (CSF) [4].

Diagnosing MEM takes place on the basis of many parameters. The prelim-
inary diagnosis of inbred diseases is mainly based on the clinical symptoms.
The most essential feature of their majority is a progressive character pointing
generally to degenerative genetic disease.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 427–435, 2007.
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However, clinical symptoms do not decide about the final diagnosis of the dis-
ease. For that reason another group of tests used in diagnosing MEM are invasive
tests. It includes sampling blood and cerebrospinal fluid in order to measure lev-
els of appropriate parameters. One is interested in concentration levels of lactic
and pyruvic acids in these media. Results of these measurements are the basis
for further diagnosis. In spite of the fact that hyperlactemy, namely elevated
levels of lactic or pyruvic acids in the blood or CSF, is a MEM discriminant, it
is not the final confirmation of the diagnosis [6].

Sampling muscles and nerves belongs to a yet another group of invasive tests.
Different types of tests: biochemical, morphological, genetic, are carried out on
these samples. Results – particularly the measurement of the level of enzymes –
determine (or exclude) a specific disease entity from the MEM group. It is the
final confirmation (or negation) of the preliminary diagnosis. As it results from
the diagnostic process description, it is complex and time- consuming. The final
diagnosis is obtained as a result of the performed invasive tests. It is essential to
lower the number of patients subjected to them.

The MEM etiology is not clear for all disease entities. In majority of cases,
it has the genetic background, confirmed by discovery of a gene causing that
disease. An early diagnosis is very essential for all metabolic and degenerative
diseases, because in some of them a specific therapy is possible and additionally
the genetic counseling depends on the proper diagnosis. In connection with this,
it is equally important to shorten time of making the final diagnosis.

3 Selection of an Information Method for Supporting
Diagnosis

A detailed analysis of the considered medical problem results in creating a three-
stage diagnostic process, which allows classifying children as those suffering from
MEM and those suffering from other diseases [12]:

1. The first stage requires diagnosis on the basis of clinical data.
2. The second stage requires a spinal puncture, sampling the cerebrospinal fluid

(an invasive test) and performing biochemical tests.
3. The third stage requires biopsy of muscles and nerves (which is particularly

dangerous for a patient.

Designing and developing a system supporting the MEM diagnosing process
enables to shorten time necessary to make the final diagnosis and to perform the
optimal classification at the first and second of the above stages, i.e. it enables
to minimize the number of children subjected to invasive tests.

The main aim – shortening time necessary to make the final diagnosis – is
related to data (attributes) reduction, finding relationships between attributes
and the proper classification of data.

Additionally developing a supporting decision system in diagnosing MEM
was connected with reducing of knowledge, generating decision rules and with a
suitable classification of new information.
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An analysis of the problems presented here leads to a natural application of
the Rough Set Theory (RST) [8] in the conducted decision making process.

RST was used both in diagnostic processes and during creating the decision
making system. The proposed system is a multistage decision making system
reflecting the multistage medical diagnosis.

4 The Project of the Application of Support Decision
Making

To speed up the MEM diagnosing process we need a support system. The system
should consider the stage character of the diagnosis. The selection of the appro-
priate set of attributes taken into account during the classification at each stage
is required and it is necessary to determine the values, which those attributes
can obtain.

Next the knowledge base should be created – a set of rules – which would
describe the MEM diagnosing process at each of the stages in the most com-
plete way. The knowledge base formation is possible with use of the knowledge
induction so called machine learning [2].

4.1 Machine Learning

In most cases the rule sets, induced from machine learning system from training
data, are used for classification of new example, unseen before by the learning
system. Because input data (training, unseen) are - in general - imperfect, a data
preprocessing is required.

For the MEM diagnosis support the training set consisted of patients sus-
pected of MEM. New data (unseen set), subjected to classification on the basis
of the knowledge base obtained from the training set, are new patients suspected
of MEM, which require diagnosing.

In the literature there are a lot of applications generating knowledge bases
on the basis of examples. In view of medical application and using the rough
set theory to create the knowledge base, the LERS system was chosen to select
decision rules at each stage of diagnosing.

LERS (Learning from Examples based on Rough Sets) [5] is a program gen-
erating rules on the basis of the knowledge base (decision tables). In the LERS
system there are two algorithms for the rules generating – LEM1 and LEM2.

4.2 Classification of New Cases

There are many schemes for classification of new objects.
While classifying new object we can say about complete and partial matching.

In complete matching all attribute-value pairs of a rule must match all values of
the corresponding attributes for the example. In partial matching some attribute-
value pairs of a rule match the values of the corresponding attributes.

LERS first attempts complete matching. Every rule is equipped with a stre-
ngth and specificity. Strength is a number of correctly classified examples during
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training, specificity is the total number of attribute–value pairs of the rule. Sup-
port of a decision class C is defined as follows:

Support(X) =
∑

R:R describes X

Strength(R) ∗ Specifity(R)

The decision class with the highest support wins the contest. When complete
matching is impossible, partial matching is considered. In this case, the matching
factor (M factor) for a rule R is computed as the ratio of the number of matched
attribute-value pairs of R to their total number. Then the support of X takes
the form of

Support(X) =
∑

R:R describes X

Strength(R) ∗ Specifity(R) ∗M factor(R)

Further, we refer to that way of choosing the decision as to the ”concept support”
method.

We also used the ”rule strength” classification method, applicable both to the
set of completely matched, as well as partially matched rules. In this approach,
we classify each new example using a rule with the largest strength. In case of
partially matched rules, we choose the rules with the largest value of the product
of strength by the matching factor.

4.3 The Selection of the Set of Attributes

In order to created the system it is necessary to determine the set of appropriate
attributes and its values on each stage of diagnosis MEM.

Stage I. Classification based on the clinical symptoms. In the first stage
diagnostics of children suspected of mitochondrial encephalomyopathies is based
on clinical symptoms.

On the basis of the data obtained from II Clinic Department of Pediatrics
of the Silesian Academy of Medicine it has been established that in diagnosing
MEM at the first stage 27 features – attributes should be used.

After further analysis, a number of attributes were reduced by combining fea-
tures describing similar symptoms. There were 12 so called ”grouped” attributes
created. Majority of the new grouped attributes have been formed by combining
original attributes describing similar features.

The way of creating new attributes and the way of enumerating the value of
new attributes was described in [14].

Table 1 presents the description of the created grouped attributes.

Stage II. Classification on the basis of biochemical data. Initially, four
parameters were used to classify patients in the second stage. They described
levels of lactic and formic acids in the blood serum and cerebrospinal fluid.
However, there were cases (patients) where levels of those four attributes were
normal but the proportions between those acids lost balance. Therefore, two new
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Table 1. Attribute in the first stage of diagnosing MEM

# attribute

1 – retardation and/or regress
2 – hypotony
3 – spasticity
4 – epileptic seizures
5 – ophthalmologic changes
6 – episodic vomitus
7 – brain system dysfunction
8 – circulatory system disturbance
9 – liver dysfunction
10 – disturbed dynamics of heat circumference
11 – ataxia
12 – acute hemiplegia

Table 2. Attribute in the second stage of diagnosing MEM

Number attribute

1 – lactate level in blood;
2 – pyruvate level in blood;
3 – ratio of lactate to pyruvate level in blood;
4 – lactate level in CSF;
5 – pyruvate level in CSF;
6 – ratio of lactate to pyruvate level in blood;

7 – changes in the lactate and/or pyruvate level
in blood and CSF.

attributes were introduced. The resulting set of attributes included 7 parameters
described in Table 2.

Attributes used in the second stage of diagnosing determined levels of acids
and ratios of those acids in the blood serum and cerebrospinal fluid. Thus, values
of those attributes are real numbers (continuous values). For such attributes
discretization of values should be made [3].

In the work [13] we check quality of classification rules, which were obtained
using different discretization methods of the attributes obtained in the second
stage of diagnosing MEM. Results obtained in this work suggest explicitly that
the method based on evaluation of norms on basis of a control group leads to
the best results (smallest error rate).

The limit values obtained in this method are presented in Table 3. For at-
tributes describing levels of lactic acid in blood and cerebrospinal fluid, yet
another boundary value – pathology – was added. It has been added in order
to maintain compliance with norms used by the physicians from the Clinic of
Pediatrics.
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Table 3. Norms for real attributes

A (attribute)

1 2 3 4 5 6

norm pathology norm norm norm pathology norm norm

1,96 2,5 0,43 33,1 2,47 3,0 0,3 24,1

Using the calculated boundary values of norms for acids discretization of data
was made. Because some patients had some attributes measured several times
and values of the same attributes were different in successive tests, another
attribute was added which were to reflect changes in levels of acids (Table 2 -
attribute #7).

With such treatment of the attribute value in the second stage of diagnosing
and introducing a new attribute, the fact that tests of measurement of the level
of acids were repeated for the same patient. On the basis of the modified set of
attributes rules classifying patients for the third stage were made.

Stage III. Level of enzymes – the final diagnosis. In the third stage,
segments of muscles or nerves are sampled to evaluate enzymatic activity. The
segment of the skeletal muscle is most often taken, rarely a segment of nerves [6].
For these specimens different types of tests – biochemical, morphological and
genetic – are made. The results of the above investigations – particularly the
measurement of level of enzymes – give the final diagnosis.

All these tests were made outside the Clinic of Pediatrics, so we did not
have access to these results. Thus, the third stage of diagnose isn’t taking into
consideration in the decision support system.

5 Quality of System Classification

The evaluation of the classifier can be performed using the machine learning
method based on splitting data in the training and the testing samples, or the
10-fold validation test.

5.1 Results of the First Stage of Diagnosing

Quality of classification is presented in Table 4.
The results obtained by use of two different methods of quality evaluation of

rules do not differ significantly.
The lowest classification error – 11 cases out of 186 (5.91%) – was obtained

in the 10-fold cross validation of rules, with the LEM1 algorithm, classification:
strength of rules or concept support. It should be noticed that for both methods
it was enough to use the complete match of objects with the rules.

The lowest classification error both in machine learning and 10-fold cross
validation of rules occurred for the LEM1 algorithm and classification based
on strength of rules. Therefore in the MEM diagnosis support program in the
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Table 4. Error rates in first stage of diagnosis

Classification scheme rule strength concept support

matching complete partial complete partial

algorithm LEM1 LEM2 LEM1 LEM2 LEM1 LEM2 LEM1 LEM2

Machine learning

Training set: 114 cases

Unseen set: 72 cases

Correctly classified 68 66 68 66 68 66 68 66

Incorrectly classified 4 6 4 6 4 6 4 6

Unclassified 0 0 0 0 0 0 0 0

error rate 0.06 0.08 0.06 0.08 0.06 0.08 0.06 0.08

10-fold cross validation

Training set: 186 cases

correctly classified 175 174 175 174 175 173 175 173

incorrectly classified 11 12 11 12 11 13 11 13

Unclassified 0 0 0 0 0 0 0 0

error rate 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07

first stage of diagnosis, the LEM1 algorithm was used to generate rules, whereas
during classification strength of rules was used while selecting rules.

5.2 Results of the Second Stage of Diagnosing

Table 5 present the classification quality for various combinations of the classifier
parameters, while using the train & test (114 training and 92 testing cases) and
10-fold cross-validation (206 cases) methods.

Comparing the results obtained in the 10-fold cross validation of rules with
ones obtained in the machine learning, great difference in the classification errors
can be noticed. There was also a great difference in the number of non-classified
cases for those two methods. Such great differences result from incomplete data
(missing values of attributes). In the machine learning from examples method
patients with incomplete data were only in the testing set. In the 10-fold val-
idation of rules the patients with incomplete data were mixed (they were in
learning and testing set). While using the partial match in the machine learning
non-classified patients were correctly classified (all cases).

The lowest classification error was for the machine learning method with the
partial match of an object with a rule, with the classification on the basis of
strength of rules, for rules generated by the LEM1 algorithm and it was 6.52%
(6 cases out of 92). For the 10-fold cross validation of rules at the partial match
of an object with a rule, with the classification based on strength of rules, for
rules generated by the LEM1 algorithm, it was 8.27% (17 out of 206).

For that reason in the second stage of diagnosis, in the MEM diagnosis support
program, the LEM1 algorithm was used to generate rules, and during classifica-
tion of new cases a scheme based on the partial match of an object with a rule
on the basis of strength of a rule.
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Table 5. Error rates in second stage of diagnosis

Classification scheme rule strength concept support

matching complete partial complete partial

algorithm LEM1 LEM2 LEM1 LEM2 LEM1 LEM2 LEM1 LEM2

Machine learning

Training set: 114 cases

Unseen set: 92 cases

correctly classified 57 57 86 86 55 56 84 85

incorrectly classified 6 6 6 6 8 7 8 7

unclassified 29 29 0 0 29 29 0 0

error rate 0.38 0.38 0.07 0.07 0.40 0.39 0.09 0.08

10-fold cross validation

Training set: 206 cases

Correctly classified 188 186 189 187 185 187 186 188

Incorrectly classified 17 19 17 19 20 18 20 18

Unclassified 1 1 0 0 1 1 0 0

error rate 0.09 0.10 0.08 0.09 0.10 0.09 0.10 0.09

6 Conclusion

The work contains an example of application of Rough Set Theory to decision
making – diagnosing Mitochondrial Encephalomyopathies for children. The work
presents a project and implementation of the support diagnostic process.

The proposed system consists of two stages of medical diagnosis. The resulting
decision support system maximally limits the indications for invasive diagnostic
methods (puncture, muscle and/or nerve specimens) that finally decide about
diagnosis. Moreover, it shortens the time necessary for making diagnosis.

The solved problems have clearly applied aspects after verification on the real
data, obtained from the Clinic of Pediatrics.
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Abstract. Expert systems are problem solvers for specialized domains of
competence in which effective problem solving normally requires human
expertise. Rough set theory is intelligent technique used in the discovery
of data dependencies; it evaluates the importance of attributes, reduces
all redundant objects and attributes. Moreover, it is being used for the ex-
traction of rules from databases. Expert systems are often implemented
using knowledge discovered in data bases, for example, using rough set
based rule generation method. When we try to analyze large, possibly hi-
erarchical rule sets, we often seek useful graphical representation.

A proposition of such graphical representation decision networks we
can find in [4]. The main aim of this work is to present own graph-
based rule base representation method and its utilization for verification
task. The paper firstly presents the decision units conception needed to
establish our verification approach. Next we present the usage of decision
units net in global verification and modeling issues, and some remarks
on decision units and data mining. The last chapter draws the main
conclusions.

1 Introduction

In recent years, knowledge based systems technology has proven itself to be a
valuable tool for solving hitherto intractable problems in domains such a telecom-
munication, aerospace, medicine and the computer industry itself. Some expert
system are deemed successful if they make or save large sums of money, while
other succeed because they help their users to understand better their own knowl-
edge. The goals of expert system are often more ambitious than of conventional
programs. They frequently perform not only as problem solvers but also as in-
telligent assistant and training aids.

Rough set theory [2][3] was developed by Z. Pawlak in Poland, in the early
1980s, and concerns itself with the classifcatory analysis of imprecise, uncertain
or incomplete information expressed in terms of data acquired from experience.
Rough set theory is intelligent technique used in the discovery of data dependen-
cies; it evaluates the importance of attributes, reduces all redundant objects and
attributes. Moreover, it is being used for the extraction of rules from databases.

Expert systems are often implemented using knowledge discovered in data
bases, for example, using rough set based rule generation method. Rule based

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 436–444, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Graph-Based Knowledge Representations for Decision Support Systems 437

knowledge representations are perhaps the most popular ones. Expert system
behavior arises from cooperative interaction of rules in knowledge base inter-
preted by inference engine. For knowledge bases with hundreds or thousands of
the rules number of possible inference paths is very high. In such cases knowledge
engineer can not be totally aware that all possible rules interactions are legal and
provide expected results [7]. When we try to analyze large, possibly hierarchical
rule sets, we often seek useful graphical representation. A proposition of such
graphical representation decision networks we can find in [4].

The main aim of this work is to present own graph-based rule base represen-
tation method and its utilization for verification task. The paper firstly presents
the decision units conception needed to establish our verification approach. Then
we present briefly the decision unit as the tool for local rule base verification [1]
[5] [6] and modeling [12]. Next we present the usage of decision units net in
global verification and modeling issues, and some remarks on decision units and
data mining. The last chapter draws the main conclusions.

2 Conception of Decision Units

We assume, that decision units are the main tool for our rule base verification
method. Let us present decision units conception using the following example.
We consider the following rule base, containing five rules. For simplification of
presentation, we assume that the propositional level of logic is used.

r1 : p ∧ q → s
r2 : s ∧ t→ u
r3 : p ∧ q ∧ t→ u
r4 : s ∧ f → p
r5 : t ∧ s→ u

We can present an example knowledge base as a directed graph. The first way
of graph oriented presentation of knowledge base shows the following Fig. 1:

r
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r
2

r
3

r
4

r
5

Fig. 1. First form of graphic representation — rule relationship diagram

The rule relationship diagram contains nodes and arcs. Rules with common
literals in their antecedents and consequents might be naturally related. Each
node corresponds to one rule. The arcs between the nodes define the relation
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between the conditions and conclusions of the rules. The dependences between
rules might cause a cycles. Let suppose that our goal is s. A backward chaining
inference engine might choose rule r1 as relevant to this goal. Two subgoals are
created from antecedent of r1. The first rule relevant to subgoal p is rule r4.
Unfortunately, the antecedent of r4 requires to confirm s, which is the initial
goal and inference engine enters into a cycle. Using rule relationship diagram we
can easily identify the circle between the rule r1 and r4.

Rule relationship diagram can not provide more information useful for verifi-
cation. The second way of graph oriented presentation of knowledge base shows
the following Fig. 2.

p

q

s

t

u

f

Fig. 2. Second form of graphic representation — literal relationship diagram

The literal relationship diagram provides a graphical display of dependences
between literals used to reach an inference. Using the diagram of this kind we
can detect circle p→ s→ p, but this form of presentation is not clear especially
if the knowledge base contains, for example, a hundred rules. The graph oriented
representation of rule base from Fig. 1 and Fig. 2 might be mixed together. Fig. 3
shows the result join representation.

The rule structure diagram is a directed graph which links literals and rules.
On the right side we will find the start literal relevant to the main goal, with
arcs to the rule in which the goal literal appears in the consequent. Further arcs
will link to rule nodes in which these literals appear the antecedent of the rule.
Thus, the diagram shows inference paths starting from goal literal. The rule
structure diagram can be used to locate some kinds of anomalies in knowledge
base. We can identify the circle between the rule r1 and r4, redundancy - rules
r2 and r5 are the same. Also other kind of redundancy can be detected. Rule
r3 is a logical consequence of rules r1 and r2. Literal u can be inferred from
rules r1 and r2. The rule structure diagram seems to be a very useful tool for
verification of rule knowledge bases. Unfortunately, in the real word knowledge
bases contains hundreds or thousands rules. There is no way to display real word
rule bases on present computerdevices — this is the first disadvantage of rule
structure diagrams. It is not theoretically hard to develop algorithms to check
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Fig. 3. The join graphic representation — rule structure diagram
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Fig. 4. Decision units net for an example knowledge base

for particular set of anomalies, but the existing algorithms in practice take too
much time — this is the second disadvantage of rule structure diagrams.

We can show our example knowledge base in different way. All rules with
the same concluding literal we can group together, this rule group we will call
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decision unit. Decision unit contains the set of rules with his same literal in
the decision part (conclusion) of each rule. All literals which appear in the con-
ditional part of each rule we will call input entry of decision unit. All literals
appearing in the decision part of each rule we will call output entry of decision
unit. Our example knowledge base contains three sets of rules with the same lit-
eral in the conclusion. Therefore we can show an example knowledge base using
three decision units like on the following Fig. 4.

In next chapters we present more precise description of the decision units and
their properties useful for knowledge base modeling and verification.

3 Description of Decision Units

In the real word rule knowledge bases literals are often coded using attribute
value pairs. Now we introduce conception of decision units for literals as attribute
value pairs. The paper [11] contains an example rule base with attribute value
pairs. All rules with the same concluding literal we can group together, this rule
group we will call decision unit. Decision unit U contains the set of rules R with
this same literal in the decision part (conclusion) of each rule r ∈ R. All literals
which appear in the conditional part of each r rule we will call input entry I
of decision unit U . All literals appearing in the decision part of each r rule we
will call output entry O of decision unit U . Fig. 5 presents the structure of the
decision unit U .
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Fig. 5. The structure of the decision unit
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4 The Usage of Decision Units for Modeling and
Verification

Basing on considered example we can briefly describe how decision units may
be used in verification and validation issues. Decision unit may be considered as
a model of elementary decision produced by the knowledge base. Each decision
unit allows to confirm set of goals described by the output entries O. Knowledge
engineer can work with a decision unit like a programmer works with a procedure
or function. Therefore decision unit separately considered is a tool for modeling
on local level — the level of elementary decision. Decision unit can be consid-
ered as a tool for verification on the local level too. Verification may be done
using back box or glass box testing method (Fig. 6). We can also apply static
verification (classical anomaly detection) or dynamic techniques (using forward
and backward chaining inferences).
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Fig. 6. The structure of the decision unit

The net of the decision units may be considered as a global model of decisions
produced by the system [9] [10]. Expert systems often confirm global goal using
subgoals — we assume that the each subgoal is modeled by the appropriate
decision unit. Therefore knowledge engineer may check if the current content
of rule base is consistent with intended global decision model. It is specially
useful in real-word problems if the particular knowledge representation language
doesn’t provide a solution for knowledge base partitioning.

The decision unit net allows us to formulate the global verification method
similarly to local verification on the level of decision unit. Fig. 7 presents a con-
ception of global verification. Unchained output entries represent main goals of
rule base (like u on Fig. 7), chained output entries represent subgoals (like s).
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Unchained input entries represent the input data (facts) necessary to produce
proper inference results (like q, t ). Booth chained and unchained entry may be
a sign of anomaly presence (like p). We can apply static and dynamic verifica-
tion on the global level using black box and glass box techniques. For example
knowledge engineer can observe the current inference path on the global level
for selected goal. An example on Fig. 7 contains circular relationship beetween
units 1 and 2. In the case of improper system behavior, knowledge engineer can
apply selected verification method for detection the sources of anomalies.
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q

s

t
u
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?

?

Output data

Intermediate

goals
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Fig. 7. The structure of the decision unit

5 Decision Units and Data Mining

The main problem in data mining consists of discovering knowledge hidden in
data sets. This knowledge may be expressed by one distinguished attribute called
decision attribute. The decision attribute may take several values though binary
outcomes are rather frequent. Our goal is to discover the explicit knowledge —
this knowledge is usually expressed in the form of decision rules. Decision rules
typically contain one (this same) decision attribute in the conclusion part of the
rule. Therefore rules generated from decision table we may consider as decision
unit. Usually, if we consider decision system with one decision attribute, we will
obtain one decision unit as a result of rule generation process. Thus decision
units aren’t very useful tool for rules generated from single data source.
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But when we consider decision tables with more than one decision attributes,
decision units allow us to divide rules set into the subsets. Decision units concep-
tion may be also useful for experiments with large, multidimensional data sets,
when we try to discover partial knowledge from subtables, possibly hierarchically
organized. Verification issues considered with decision units are typically useless
when we generate rules from data. The methods of data exploration — rough
sets method for example — take care of generated rules quality and anomaly
extermination. Therefore decision units may be considered as a tool for clear
and user friendly visualization.

6 Concluding Remarks

In our opinion the decision units conception allows us to consider different verifi-
cation and validation issues together. Thanks to properties of the decision units
we can perform different verification and validation actions during knowledge
base development and realization. We can divide anomalies into the two levels
— local and global anomalies and perform verification on those levels. Decision
unit is a simple decision model, useful and efficient for knowledge base modeling
and verification. The net of the decision units is a simple tool for modeling large
real world knowledge bases.

Decision unit net allows us to perform global verification — i.e. circularity
detection, dead end rules, auxiliary rules. Graphical representation of knowledge
base in the form of the decision units net is user friendly and is an efficient and
useful way of presentation of current knowledge base contents. The methods of
data mining — rough sets method for example — take care of generated rules
quality and anomaly extermination. Thus decision units aren’t very useful tool
for rules generated from single data source — decision units may be considered
as a tool for clear and user friendly visualization.
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8. Simiński, R., Wakulicz-Deja, A.: Principles and Practice in Knowledge Bases Ver-
ification. In: Proceedings of the IIS VII, Intelligent Information Systems, IIS’98,
15–19.6.1998, Malbork, Poland (1998)
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Abstract. This paper shows attempts of the rough set theory applica-
tion to the oligonucleotide microarrays data analysis.

1 Background and Motivation

In natural sciences there is a lot of ways to gain data. High performance and
throughput instruments give scientists possibility to make experiments in a more
efficient way. But, unfortunately it does not significantly speeds up progress in
researches. Unfortunately, in some scientific fields it reduces data usability - be-
cause of their quantity. Such kind of field are inter alia life sciences, biomedical
sciences and some fields of bioinformatics. Today we are able to collect and
manage data without problems. Database systems and engines are of pretty well
development stage and quite good performance and quality - so any simple data
manipulation process (eg. adding record, sorting, searching data under different
criterion, deleting etc.) are rather a standard and not troublesome processes. To
find useful information and relationships within data collected in databases is a
more complicated and difficult task. But in the most cases, there are no simple
methods for data manipulation and processing - this kind of analysis needs a
more advanced methods and algorithms than basic statistical, searching, sorting
and filtering algorithms for example algorithms usually classified as knowledge
discovery from data, data mining, machine learning methods, computational or
artificial intelligence. This paper shows an attempt of rough set utilization to
gene expression analysis, which belongs to relatively new research field - bioin-
formatics.

2 Gene Expression

Living, growing, organization and working of all plants and animals on earth
depends on hereditary information encoded in DNA strands. There are many
attempts to decode this information, some of them are found, but most remains
to be discovered. Gene is [2] a basic hereditary information, which is responsible
for conveying features to the progeny and for susceptibility to diseases or, dur-
ing lifetime of an organism, straightforward for disease or dysfunction appearing.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 445–453, 2007.
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Genome is a complete, enclosed in the genetic cell information, including genes
and other DNA sequences. Because genes responsible for every cell behavior,
and all functions influences the cell activity of all living systems, it is important
to find out impact and dependencies of cell functions in dependency of certain
gene activity, or to recognize impact of drugs to the gene(s) behavior. One of
gene function is coding of proteins. The higher ,,active” the gene, the more en-
coded protein products in the cell effects their properties. On the other hand,
gene activity reduction causes decreased certain protein production - and has
an impact on cell functions. Moreover - more proteins of one kind may cause
increasing or decreasing production of proteins in an other gene - and so on - we
have a kind of cascade of different reactions and processes. Thus the important
question is what happens with certain genes - or its groups when their activity
increased or decreased. All processes from reading encoded in gene information
to production of proteins or different forms of RNA are referred to gene expres-
sion [3,4]. Sometimes, as a kind of mental shortcut, when gene activity can be
measured in numbers, as in the case of microarray analysis they referred to gene
expression [3,4]. Sometimes, as a kind of mental shortcut, when gene activity can
be measured in numbers, as in the case of microarray analysis the term ”gene
expression” reflects the ”activity” of genes which is directly proportional to gene
number in the probe, and consequently to the amount of its products (for exam-
ple - proteins). There are a few other methods to measure the gene expression,
but most frequently used and relatively fast in utilization are the oligonucleotide
microarrays. In one turn, from one genechip we are able to obtain information
about 20 000 genes (in newest genechip - more than 40 000 genes).

3 Oligonucleotide Microarrays and Data Acquisition

Term ”microarray analysis” is a some kind of simplification or mental shortcut,
because it is composed from a few steps (see fig 1) form biological sample to
data about gene expressions. These steps (not described in details) are:

1. Preparing a biologic tissue,
2. Preparation of the isolated and prepared sample on a genechip,
3. Reading information from the genechip by the use if a special scanner and

transferring them to the computer,
4. Data processing and analysis for obtaining useful information.

The microarray method is not a single set of equipment. It is rather a set of
special devices which makes possible conducting a microarray experiment. One
component is a part named a gene- or genomechip. It consist of a one-strand
DNA species placed on solid surface (glass, plastic etc), each of this species are
placed in specific position on the surface - making some kind of array (see fig 2).
Each probe - ”point” on surface suits certain gene. Each microarray experiment
always requires the use of two genechips, where one is an experimental chip, the
second is a control chip.

After preparation, sample with labeled strands (genes) is drifting on the
genechip. Complementary strands connects to probesets on genechip. After that,
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Fig. 1. Steps in microarray experiment

Fig. 2. DNA species on genechip

intensity of fluorescence (markups) is measured by the use of special scanner. So,
we may have data in two possible formats: as a picture with spots of different
intensity, or as a table with numbers reflected the intensity. For more informa-
tion see [5]. For processing with rough sets, the second form is more suitable.
Exemplary dataset from genechip is shown in table 1.

In fact, having only one fluorescence level reading from one microchip, the
only thing we can do is to group together coexpressed genes. In most cases, in
that way it is possible to separate only high- and low expressed genes. Genes
for which one can looking for, are ,,inside” and ,,outside” of a ring - if one can
decide to treat a number of reflected gene expressions as a radius, or above and
below a belt if the final decision is to treat a number of reflected gene expression
as a height of a bar (see fig 3 a, b). Coexpressed genes will be then either on
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Table 1. Exemplary dataset (a few records from more than 20 000) from one genechip

Probeset ID expression

1487 at 7,079

1494 f at 4,845

177 at 4,013

179 at 7,544

Fig. 3. Areas of high and low expressed genes in the case of one microarray experiment

the circumference of a circle with a given radius, or on one given level when
expressions will be visualized as bars. However, the problem with setting up an
appropriate ”level” or boundary for high- and low expressed genes is still open.

As shown above, in the case of one microarray experiment there is not a lot of
information to be obtained from the collected data. The power of gene analysis
(and, at the same time - problems with that) becomes visible in comparative
analysis of many microarray experiments data available. Almost always some
(one or more) microarray experiments data are treated as a reference pattern
(specimen - healthy cell(s)), and others, as samples from tissues with some dys-
function. The key is to find out genes which expression differs (higher or lower
expression) form each other: in ”healthy” samples and in ”ill” samples. Here,
because of some kind of uncertainty (caused for example by image processing,
some kind of noise, diversity of biological specimens etc.) we can try to use rough
sets [19,20,21,22] to catch genes with different expression in different probes from
microarray readings, for feature selection [25], and, maybe in future research for
process mining [16,17,23,24,26] from data1. The very first attempt,briefly pre-
sented below is an attempt of using some of the rough set theory to find out
significantly differential expressed gene or group of genes, where the gene ex-
pression reflects the response of the genes ,,activity” in the human cancer cell
lines to cytotoxic compounds [15]. The quantity of genes for future examination
should be as small as possible for future processing (to avoid processing of all

1 It is worth to remark, that nevertheless a [17] is very often cosidered as the first
work about this problems, the paper of professor Z. Pawlak [23] appears earlier - in
1992.
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genes - leaving only those with significance) - so, to achieve this result the idea
of using equivalence classes, and next - core and reducts appears.

4 Rough Sets and Its Application in Gene Expression
Analysis

First of all, we have to describe obtained data in any form suitable for machine
processing. For that, we need to represent our data in form of triple (O,A,V) -
object, attribute, attribute value. Because of a noise and diversity of biological
specimens it is almost inevitable that we will have different gene expression
for different Probeset ID and for different microarray experiments data. Such
dataset has a form similar to presented in Table 2

Table 2. Raw dataset from microarray experiments

Probeset ID Specimen Sample1 Sample2 Sample3

1007 s at 5,511 5,494 5,185 4,945

1053 at 6,758 6,796 7,345 5,061

117 at 3,715 3,715 3,892 3,885

121 at 3,717 6,769 6,856 6,437

Thus, first of all, a data discretization has been done to reduce quantity of
data. The problem here is - how to set the ”boundary” in discretization. For
example, if certain gene expression for different samples are: 4,363; 5,458; 5,689;
6,142 - should we make two sets with numbers in range from 4 to 5,5 and from 5,5
to 6,5 or three: from 4,3 to 5,3; from 5,31 to 5,6 and from 5,61 and more? This is
a known problem concerning clustering - how many clusters will be appropriate
to get the best solution? Which criterion will be optimal to divide the whole
dataset? In this paper a primitive method for discretization has been used: all
numbers from range 3,5 to 4,499 has been indicated as ”Range 4”, from 4,5 to
5,499 as ”Range 5”, from 5,5 to 6,499 as ,,Range 6”, from 6,5 to 7,499 as ”Range
7”, and all ranges are of equal length. it seems that choice of appropriate method
for gene expression discretization will require at least several attempts in different
dataset dividing. After each division, the rest of calculations should be made -
and results should be next verified and interpreted by biosciences researchers
in context to its usefulness in real. After such discretization we have a dataset,
which is similar to the presented in Table 3. Together with discretization, a
transposition of the initial table has been made.

So, now we have a: names of the samples as a set of objects (rows) U =
{Specimen, Sample1, Sample2, Sample3}, Probeset IDs (geneID, columns) as
attributes Universum A = {1007 s at, 1053 at, 117 at, 121 at}, and ranges of
gene expression as attribute values. First that we can see after discretization
process, is that all attribute values becomes the same for Sample 1 and Sample
2. Therefore we do not need to take into account both samples. One of them
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Table 3. Dataset from microarray experiment after discretization and transposition

Probeset ID 1007 s at 1053 at 117 at 121 at

Specimen Range 6 Range 7 Range 4 Range 4

Sample1 Range 5 Range 7 Range 4 Range 7

Sample2 Range 5 Range 7 Range 4 Range 7

Sample3 Range 5 Range 5 Range 4 Range 6

Table 4. Dataset from microarray experiment after deletion of duplicated object

Probeset ID 1007 s at 1053 at 117 at 121 at

Specimen Range 6 Range 7 Range 4 Range 4

Sample1 Range 5 Range 7 Range 4 Range 7

Sample3 Range 5 Range 5 Range 4 Range 6

can be removed as a duplicated object (here, Sample 2 has been removed). After
that operation, our dataset will have a similar form to the presented in Table 4.

Now we can define a indiscernibilty relation between objects. Next, we can
find out equivalence classes and, after that, we can compute core and reducts.
They can be regarded as a kind of a ”tip” in restriction of data taken into account
in future processing. In this case (Table 4):

U |IND(A) = U |IND(A−{1007 s at}) = U |IND(A−{1053 at}) = U |IND(A−{117 at}) =
U |IND(A−{121 at}) = {{Specimen}{Sample1}{Sample3}}}

As shown above, every one from the set of attributes can be removed without
causing collapse of the equivalence class structure, therefore in that system Core
is en empty set:

Core(A) = ∅,

In next step the reduct(s) - an sufficient set of attributes for representing the
category structure has been searched. Because

{{Specimen}, {Sample1}, {Sample3}}= U |IND(A) = U |IND{121 at} �=
U |IND{1007 s at} �= U |IND{1053 at} �= U |IND{117 at}}

and {121 at} is minimal therefore

Red(A) = {121 at}.

It means, that after such discretization and reduct computing, only one attribute
- 121 at is sufficient to differentiate the species. With this information we can
state, that the expression of the gene with ID=121 at for all samples (including
reference pattern) is different. In that way we can find out all genes which dif-
fers from each other. Making selection as ,,reverse selection” we can obtain all
undifferentiated genes. Taking into account the quantity of data (this exemplary
discussion is about a few samples), similar procedure, with repetitive decreasing
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length division during discretization process can effects in obtaining a granular
division of coexpressed genes into disjunctive sets. Additionally, just after a few
first steps of preparing data (in Table 3, after discretization), we can see, that
for this set of samples, fluorescence level for Probeset Id=117 at is the same
in all species - so it is not a carrier of useful for us information. Attempts of
application of the rest of the rough set theory in oligonucleotide microarray data
analysis will be a goal in the future examination.

5 Future Tasks and Problems

For now, many different approaches are used in gene expression analysis - the
most common are statistical methods, but one can find out useful some dimen-
siality reduction methods such as Principal Component Analysis or Projection
Pursuit Regression. The other methods are from artificial intelligence field, for
example - artificial neural networks (MLP for prediction or self-organizing maps)
or genetic algorithms [6,7,9,12]. In this paper is presented an idea to group to-
gether coexpressed genes and then, may be after adding other biological infor-
mation about tissues - make appropriate selection. Presented above exemplary
computation of reduct does not reflect complexity of problems in gene expression
analysis. Here, in this exemplary fragment from complete microarray reading,
only one reduct, with one element appears. Example is not representative for all
task - it is rather casual and unprecedented example - in real, the problem will
be with a relatively large set of reducts. It may be necessary to make choice of
,,better” and ,,worse” reducts, or - to take into considerations sets of reducts.
Problem which reducts it should be - is a separate task. So, yet in the very
first step of data processing we have at least three possible and very important
sources of errors: the first is image analysis during image processing, the second
is error rising form discretization process, and the third - from necessity of se-
lecting a subset (or subsets) of all computed attributes. Next difficulties appears
when taking into consideration that gene expression process is a dynamic (ex-
pression is changeable during the time)[6], moreover - expression of a one certain
gene may be depended on the other gene or other conditions [14,15,18]. Taking
into account all mentioned above remarks, solving that problem may require to
take into consideration not only rough set theory (to find out the most/least
expressed genes or coexpressed genes), but also the data and processes mining
[13,16,17,23] (see for remark in footnote at the page with the end of Section 3
of this paper) of oligonucleotide microarray data, in conjunction with biological
processes and dysfunction or illness [8,10,11,14,15] for more complete and useful
analysis.

However, no matters if results are correct from the point of view of computer
scientist, all results of applying rough set theory in oligonucleotide microarray
data analysis have to be verified and interpreted in cooperation with life- an
biosciences researchers.
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6 Conclusions

Initially, rough sets looks to be the helpful tool for some kind of microarray data
analysis.

1. We can try to use rough sets theory to reduct quantity of dimensions in
microarray data (equivalence classes or reducts for coexpressed genes instead
of every one gene)

2. Discretization should rather be done taking into account quantity and flu-
orescence level of coexpressed genes than setting ,,a priori” boundary of
partitioning. Cooperation with bioexperts in this step will be an invaluable
help.

3. The problem of quantity, or apropriate choice of computed reducts should
be solved (it is possible that decision should be based on groups of reducts).

4. Coexpressed genes, or differentially expressed genes can be found using the
rough set theory, but all the time there will be a problem with quantity of
data.

5. One can not exclude the noise in data acquisition and diversity of biological
tissues (reference patterns and samples), so there can be a problem with
boundary width of rough set (it is unchangeable).

6. In fact, gene expression is a dynamic, changeable in time process so it may
be necessary to broaden rough sets methods to data and process mining
methods.

7. All computed results ought to be verified and interpreted with help of life-
an biosciences researchers, this is the only way for verifying usefulness of the
method.
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Abstract. In the paper we present the definition of Pawlak’s model
of an information system. The model covers information systems with
history, systems with the decomposition of objects or attributes and dy-
namical information systems. Information systems are closely related to
rough set theory and decision support systems. The paper demonstrates
how the results of Pawlak’s research can be applied in the artificial in-
telligence domain.

1 Introduction

The notion of an information system formulated by Pawlak and developed with
his co-workers, is now a well developed branch of data analysis formalisms. It
is strongly related to (but different from) the relational database theory on the
one hand and to fuzzy set theory on the other. In this paper we consider the
connection between the theory of information and information retrieval systems
with rough set theory and decision support systems. It is obvious that model
of a system created by Pawlak makes data description and analysis simple and
very reliable.

2 Information System

An information system consists of a set of objects and attributes defined on
this set. In information systems with a finite number of attributes, there are
classes created by these attributes (for each class, the values of the attributes
are constant on elements from the class). Any collection of data, specified as
a structure S = 〈X, A,V, q〉 such that X is a non-empty set of objects, A is a
non-empty set of attributes, V is a non-empty set of values: V =

⋃
a∈A Va and

q is an information function of X × A → V, is referred to as an information
system. The set {q(x, a) : a ∈ A} is called information about the object x or, in
short, a record of x or a row determined by x. Each attribute a is viewed as a
mapping a : X → Va which assigns a value a(x) ∈ Va to every object x. A pair
(a, v), where a ∈ A, and v ∈ Va, is called a descriptor. In information systems, the
descriptor language is a formal language commonly used to express and describe
properties of objects and concepts. More formally, an information system is a pair

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 454–464, 2007.
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A = (U, A) where U is a non-empty finite set of objects called the universe and A
is a non-empty finite set of attributes such that a : U → Va for every a ∈ A. The
set Va is called the value set of a. Now we will discuss which sets of objects can be
expressed (defined) by formulas constructed by using attributes and their values.
The simplest formulas d, called descriptors, have the form (a, v) where a ∈ A and
v ∈ Va. In each information system S the information language LS = 〈AL,G〉 is
defined, where AL is the alphabet and G is the grammar part of that language.
AL is simply a set of all symbols which can be used to describe the information
in such a system, e.g.: {0, 1} (constant symbols), A - the set of all attributes, V
- a set of all the values of the attributes, symbols of logical operations like ˜,
+ and ∗, and naturally brackets, which are required to represent more complex
information. G - the grammar part of the language LS defines syntax with TS as
the set of all possible forms of terms (a term is a unit of information in S ) and
its meaning (semantics). A simple descriptor (a, v) ∈ TS (a ∈ A where v ∈ Va). If
we denote such a descriptor (a, v) as the term t, then following term formations
will be also possible: ¬t, t + t

′
, t ∗ t

′
, where t, t

′ ∈ TS . The meaning is defined as
a function σ which maps the set of terms in a system S in a set of objects X,
σ : TS → P(x), where P(x) is the set of the subsets of X. The value of σ for a given
descriptor (a, v) is defined as following: σ(a, v) = {x ∈ X, qx(a) = v}, σ(¬t) = X \σ(t),
σ(t + t

′
) = σ(t)

⋃
σ(t

′
) and σ(t ∗ t

′
) = σ(t)

⋂
σ(t

′
) [18].

2.1 Information Table

Information systems are often represented in a form of tables with the first
column containing objects and the remaining columns, separated by vertical
lines, containing values of attributes. Such tables are called information tables
(an example is presented in Table 1). The definition of this system is as follows:

Table 1. An information system - an information table

student a b c

x1 a1 b1 c1

x2 a1 b1 c2

x3 a2 b1 c3

x4 a2 b1 c4

x5 a1 b2 c1

x6 a1 b2 c2

x7 a2 b2 c3

x8 a2 b2 c4

S = 〈X, A,V, q〉, where X = {x1, . . . , x8}, A = {a, b, c}, V = Va ∪Vb ∪Vc, Va = {a1, a2},
Vb = {b1, b2}, Vc = {c1, c2, c3, c4} and q : X × A → V. For instance, q(x1, a) = a1

and q(x3, b) = b1. Before we start considering the properties of an information
system, it is necessary to explain what the information in such a system means.
The information in the system S is a function ρ with the arguments on the
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attributes set A and its values, which belong to the set V (ρ(a) ∈ Va). As long
as the sets of the objects, attributes and their values are finite, we know exactly
how many (different) pieces of information in a given system S comprises, and
the number is equal to

�
a∈A card(Va). The information ρ assigns a set of the

objects Xρ that Xρ = {x ∈ X : qx = ρ}. We call them indiscernible, because they
have the same description. If we assume that B ⊆ A then each subset B of A
determines a binary relation INDA(B), called an indiscernibility relation. By the
indiscernibility relation determined by B, denoted by INDA(B), we understand
the equivalence relation INDA(B) = {〈x, x′ 〉 ∈ X × X : ∀a∈B[a(x) = a(x

′
)]}.

For a given information system it is possible to define the comparison of the
objects, attributes and even the whole systems. We can find some dependent
and independent attributes in data, we can check whether the attributes or
even objects are equivalent. An important issue in data analysis is to discover
dependencies between attributes. Intuitively, a set of attributes D depends totally
on a set of attributes C if the values of attributes from C uniquely determine
the values of the attributes from D. If D depends totally on C then INDA(C) ⊆
INDA(D). This means that the partition generated by C is finer than the partition
generated by D.

Assume that a and b are attributes from the set A in a system S . We say
that b depends on a (a→ b), if the indiscernibility relation on a contains in the
indiscernibility relation on b: ã ⊆ b̃. If ã = b̃ then the attributes are equivalent.
The attributes are dependent if any of the conditions: ã ⊆ b̃ or b̃ ⊆ ã is satisfied.
Two objects x, y ∈ X are indiscernible in a system S relatively to the attribute
a ∈ A (xãy) if and only if qx(a) = qy(a). In the presented example, the objects x1

and x2 are indiscernible relatively to the attributes a and b. The objects x, y ∈ X
are indiscernible in a system S relatively to all of the attributes a ∈ A (xS̃ y) if and
only if qx = qy. In the example there are no indiscernible objects in the system
S . Each information system determines unequivocally a partition of the set of
objects, which is some kind of classification. Finding the dependence between
attributes let us to reduce the amount of the information which is crucial in
systems with a huge numbers of attributes. Defining a system as a set of objects,
attributes and their values is necessary to define the algorithm for searching the
system and updating the data consisted in it. Moreover, all information retrieval
systems are also required to be implemented in this way. The ability to discern
between perceived objects is also important for constructing various entities not
only to form reducts, but also decision rules and decision algorithms.

2.2 An Application in Information Retrieval Area

The information retrieval issue is the main area of the employment of information
systems. An information retrieval system, in which the objects are described by
their features (properties), we can define as follows: Let us have a set of objects
X and a set of attributes A. These objects can be books, magazines, people, etc.
The attributes are used to define the properties of the objects. For the system
of books, the attributes can be author, year, number of sheets. An information
system which is used for information retrieval should allow to find the answer for
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a query. There are different methods of retrieving information. Professor Pawlak
proposed the atomic components method [2,18]. Its mathematical foundation was
defined in [5] and [6]. This method bases on the assumption that each question
can be presented in the normal form, which is the sum of the products with
one descriptor of each attribute only. To make the system capable of retrieving
information it is required to create the information language (query language).
This language should permit describing objects and forming user’s queries. Nat-
urally enough, such a language has to be universal for both the natural and
system language. Owing to this, all steps are done on the language level rather
than on the database level. The advantages of information languages are not
limited to the aforementioned features. There are a lot of systems that need to
divide the information, which is called the decomposition of the system. It al-
lows improving the time efficiency and make the updating process easy, but also
enables the organization of the information in the systems. Information systems
allow collecting data in a long term. It means that some information changes in
time, and because of that, the system has a special property, which is called the
dynamics of the system. Matching unstructured, natural-language queries and
documents is difficult because both queries and documents (objects) must be
represented in a suitable way. Most often, it is a set of terms, where aterm is a
unit of a semantic expression, e.g. a word or a phrase. Before a retrieval process
can start, sentences are preprocessed with stemming and removing too frequent
words (stopwords).

2.3 System with Decomposition

When the system consists of huge set of data it is very difficult in given time
to analyse those data. Instead of that, it is better to analyze the smaller pieces
(subsets) of data, and at the end of the analysing, connect them to one major
system. There are two main method of decomposition: with attributes or objects.
A lot of systems are implemented with such type of decomposition.

System with object’s decomposition. If it is possible to decompose the
system S = 〈X, A,V, q〉 in a way that we gain subsystems with smaller number of
objects, it means that S =

⋃n
i=1 S i, where S i = 〈Xi, A,V, qi〉, Xi ⊆ X and

⋃
i Xi = X,

qi : Xi × A→ V, qi = q|Xi .

System with attributes’s decomposition. When in system S there are often
the same types of queries, about the same group of attributes, it means that
such system should be divided to subsystems S i in a way that: S =

⋃
i S i, where

S i = 〈X, Ai,Vi, qi〉, Ai ⊆ A and
⋃

i Ai = A, Vi ⊆ V, qi : X × Ai → Vi, qi = q|X×Ai .
Decomposition lets for optimization of the retrieval information process in the
system S . The choice between those two kind of decomposition depends only on
the type and main goal of such system.

2.4 Dynamic Information System and System with the History

In the literature information systems are classified according to their purposes:
documentational, medical or management information systems. We propose dif-
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ferent classification: those with respect to dynamics of systems. Such a classifi-
cation gives possibility to:

1. Perform a joint analysis of systems belonging to the same class,
2. Distinguish basic mechanisms occuring in each class of systems,
3. Unify design techniques for all systems of a given class,
4. Simplify the teaching of system operation and system design principles.

Analysing the performance of information systems, it is easy to see that the data
stored in those systems are subject to changes. Those changes occur in definite
moments of time. For example: in a system which contains personal data: age,
address, education, the values of these attributes may be changed. Thus time is
a parameter determining the state of the system, although it does not appear in
the system in an explicit way. There are systems in which data do not change in
time, at least during a given period of time. But there are also systems in which
changes occur permanently in a determined or quite accidental way.

In order to describe the classification, which we are going to propose, we
introduce the notion of a dynamic information system, being an extension of the
notion of an information system presented by Pawlak.

Definition 1. A dynamic information system is a family of ordered quadruples:

S = {〈Xt, At,Vt, qt〉}t∈T
where:

– T - is the discrete set of time moments, denoted by numbers 0, 1, . . . ,N,
– Xt - is the set of objects at the moment t ∈ T ,
– At - is the set of attributes at the moment t ∈ T ,
– Vt(a) - is the set of values of the attribute a ∈ At,
– Vt :=

⋃
a∈At

Vt(a) - is the set of attribute values at the moment t ∈ T ,
– qt - is a function which assigns to each pair 〈x, a〉, x ∈ Xt, a ∈ At, an element

of the set Vt, i.e. qt : Xt × At → Vt.

An ordered pair 〈a, v〉, a ∈ At, v ∈ Vt(a) is denoted as a descriptor of the attribute
a. We will denote by qt,x a map defined as follows:

qt,x : At → Vt,

∀a∈At∀x∈Xt∀t∈T qt,x(a) := qt(a, x)

Definition 2. In f (S ) = {VAt
t }t∈T is a set of all functions from At to Vt for all

t ∈ T . Functions belonging to In f (S ) will be called informations at instant t,
similarly, the functions qt,x will be called the information about object x at instant
t in information system S . Therefore, an information about an object x at instant
t is nothing else, but a description of object x, in instant t, obtained by means of
descriptors.
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Any dynamic system belongs to one of two classes of systems: time-invariant
and time-varying system.

Any of systems like librarian e.g., where operations such as removing some
books, or add the new one, are time-invariant. The example of the time-varying
system is the system with informations about students, where some informa-
tions about them (some attributes) depend on another one, and change the
value in some case. In the most situations of practice this model is more conve-
nient then the classical (relational) model. It is due to the fact that in Pawlak’s
model, information about an object are given by functions, while in the classical
model informations are determined by relations. This simplifies a description
of systems and their analysis, which is important not only for system design-
ing but also for teaching of system operation. The model of information sys-
tem created by Pawlak is very useful to built and analysis in different types
of retrieval information systems. The document information systems are very
specific type of information systems and Pawlak ’s model is very good to define
the informations in it.

3 Decision Support Systems

When data mining first appeared, several disciplines related to data analysis, like
statistics or artificial intelligence were combined towards a new topic: extracting
significant patterns from data. The original data sources were small datasets
and, therefore, traditional machine learning techniques were the most common
tools for this tasks. As the volume of data grows these traditional methods were
reviewed and extended with the knowledge from experts working on the field
of data management and databases. Because of that, information systems with
some data-mining methods start to be the decision support systems. Decision
support system is a kind of information system, which classifies each object to
some class denoted by one of the attributes, called decision attribute. While the
information system is simply a pair of the form U and A, the decision support
system is also a pair A = (U, A ∪ {d}) with distinguished attribute d. In case
of decision table the attributes belonging to A are called conditional attributes
or simply conditions while d is called decision. We will further assume that
the set of decision values is finite. The i-th decision class is a set of objects
Ci = {x ∈ U : d(x) = di}, where di is the i-th decision value taken from decision
value set Vd = {d1, . . . , d|Vd|} . Let us consider the decision table presented at Table
2. Having indiscernibility relation we may define the notion of reduct. In case
of decision tables decision reduct is a set B ⊂ A of attributes, which cannot be
further reduced and IND(B) ⊆ IND(d). Decision rule is a formula of the form
(ai1 = v1) ∧ . . . ∧ (aik = vk) ⇒ (d = vd), where 1 ≤ i1 < . . . < ik ≤ m, v j ∈ Vai j.
We can simply interpret such formula similar to natural language with if and
then elements. In given decision table the decision rule for object x1 is given as:
if (a = a1) and (b = b1) and (c = c1) then (d = T ), the same as (a = a1) ∧ (b =
b1) ∧ (c = c1) → (d = T ). Atomic subformulas (ai1 = v1) are called conditions,
premises. We say that rule r is applicable to object, or alternatively, the object
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Table 2. Decision table

student a b c d

x1 a1 b1 c1 T

x2 a1 b1 c2 T

x3 a2 b1 c3 T

x4 a2 b1 c4 N

x5 a1 b2 c1 N

x6 a1 b2 c2 T

x7 a2 b2 c3 T

x8 a2 b2 c4 N

matches rule, if its attribute values satisfy the premise of the rule. Each object
x in a decision table determines a decision rule, ∀a∈C(a = a(x)) ⇒ (d = d(x))),
where C is set of conditional attributes and d is decision attribute. Decision rules
corresponding to some objects can have the same condition parts but different
decision parts. We use decision rules to classify given information. When the
information is uncertain or just incomplete there is need to use some additional
techniques for information systems. Numerous methods based on the rough set
approach combined with Boolean reasoning techniques have been developed for
decision rule generation.

4 Rough Sets

Rough Set theory has been applied in such fields as machine learning, data
mining, etc., successfully since Professor Pawlak developed it in 1982. Reduction
of decision table is one of the key problem of rough set theory. The methodology
is concerned with the classificatory analysis of imprecise, uncertain or incomplete
information or knowledge expressed in terms of data acquired from experience.
The primary notions of the theory of rough sets are the approximation space
and lower and upper approximations of a set. The approximation space is a
classification of the domain of interest into disjoint categories. The membership
status with respect to an arbitrary subset of the domain may not always be
clearly definable. This fact leads to the definition of a set in terms of lower and
upper approximations [8,9,10].

4.1 Lower/Upper Approximation

The lower approximation is a description of the domain objects which are known
with certainty to belong to the subset of interest, whereas the upper approxima-
tion is a description of the objects which possibly belong to the subset. Any
subset defined through its lower and upper approximations is called a rough
set. It must be emphasized that the concept of rough set should not be con-
fused with the idea of fuzzy set as they are fundamentally different, although
in some sense complementary, notions. Rough set approach allows to precisely
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define the notion of concept approximation. It is based on the indiscernibil-
ity relation between objects defining a partition of the universe U of objects.
The indiscernibility of objects follows from the fact that they are perceived by
means of values of available attributes. Hence some objects having the same (or
similar) values of attributes are indiscernible. Let A = (U, A) be an information
system, then with any B ⊆ A there is associated an equivalence relation INDA(B),
called the B-indiscernibility relation, its classes are denoted by [x]B. For B ⊆ A
and X ⊆ U, we can approximate X using only the information contained in B
by constructing the B-lower(BX) and B-upper approximations of X (BX), where
BX = {x : [x]B ⊆ X} and BX = {x : [x]B

⋂
X � ∅}. The B-lower approximation of

X is the set of all objects which can be certainly classified to X using attributes
from B. In the Rough set area there is also a very important problem with finding
(select) relevant features (attributes), which source is denoted as so called core of
the information system A. Reduct is a minimal set of attributes B ⊆ A such that
INDA(B) = INDA(A), which means that it is a minimal set of attributes from A
that preserves the original classification defined by the set A of attributes.The
intersection of all reducts is the so-called core. In the example both the core and
the reduct consist of attributes b and c ( CORE(C) = {b, c}, RED(C) = {b, c}).

4.2 Rule Induction

Rough set based rule induction methods have been applied to knowledge dis-
covery in databases, whose empirical results obtained show that they are very
powerful and that some important knowledge has been extracted from databases.
For rule induction, lower/upper approximations and reducts play important roles
and the approximations can be extended to variable precision model, using ac-
curacy and coverage for rule induction have never been discussed. We can use
the indiscernibility function fA, that form a minimal decision rule for given de-
cision table [1]. For an information system A = (U, A ∪ {d}) with n objects, the
discernibility matrix of A is a symmetric n × n matrix with entries ci j defined
as ci j = {a ∈ A|a(xi) � a(x j)} for i, j = 1, 2, . . . , n where d(xi) � d(x j)). Each entry
consists of the set of attributes upon which objects xi and x j differ. A discernibil-
ity function fA for an information system A is a boolean function of m boolean
variables a∗1, . . . , a

∗
m (corresponding to the attributes a1, . . . , am) defined by:

fA =
∧{∨

c∗i j|1 ≤ j ≤ i ≤ n, ci j � ∅
}

where c∗i j = {a∗|a ∈ ci j}. For given decision table we formed following set of rules:

– rule nr 1: if a = a1 and b = b1then d = T
– rule nr 2: if b = b1 and c = c1then d = T
– rule nr 3: if b = b1 and c = c2then d = T
– rule nr 4: if c = c3 then d = T
– rule nr 5: if c = c4 then d = N
– rule nr 6: if b = b2 and c = c1then d = N
– rule nr 7: if c = c2 then d = T
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4.3 Rough Set Theory and Decision Systems in Practise

The main specific problems addressed by the theory of rough sets are not only
representation of uncertain or imprecise knowledge, or knowledge acquisition
from experience, but also the analysis of conflicts, the identification and eval-
uation of data dependencies and the reduction of the amount of information.
A number of practical applications employing this approach have been devel-
oped in recent years in areas such as medicine, drug research, process control
and other. The recent publication of a monograph on the theory and a hand-
book on applications facilitate the development of new applications. One of the
primary applications of rough sets in AI is knowledge analysis and data mining
[11,12,15,16]. >From two expert systems implemented at the Silesian University,
MEM is the one with the decision table in the form of the knowledge base. It is a
diagnosis support system used in child neurology and it is a notable example of
a complex multistage diagnosis process. It permits the reduction of attributes,
which allows improving the rules acquired by the system. MEM was developed
on the basis of real data provided by the Second Clinic of the Department of
Paediatrics of the Silesian Academy of Medicine. The system is employed there
to support the classification of children having mitochondrial encephalopathies
and considerably reduces the number of children directed for further invasive
testing in the consecutive stages of the diagnosis process [17,19]. The first stages
of research on decision support systems concentrated on: methods to represent
the knowledge in a given system and the methods of the verification and vali-
dation of a knowledge base [13]. Recent works, however, deal with the following
problems: a huge number of rules in a knowledge base with numerous premises
in each rule, a large set of attributes, many of which are dependent, complex
inference processes and the problem of the proper interpretation of the decision
rules by users. Fortunately, the cluster analysis brings very useful techniques for
the smart organisation of the rules, one of which is a hierarchical structure. It is
based on the assumption that rules that are similar can be placed in one group.
Consequently, in each inference process we can find the most similar group and
obtain the forward chaining procedure on this, significantly smaller, group only.
The method reduces the time consumption of all processes and explores only the
new facts that are actually necessary rather then all facts that can be retrieved
from a given knowledge base. In our opinion, clustering rules for inference pro-
cesses in decision support systems could prove useful to improve the efficiency
of those systems[3,4]. Rough sets theory enables solving the problem of a huge
number of attributes and dependent attributes removal. The accuracy of clas-
sification can be increased by selecting subsets of strong attributes, which is
performed by using several classification learners. The processed data are clas-
sified by diverse learning schemes and the generation of rules is supervised by
domain experts. The implementation of this method in automated decision sup-
port software can improve the accuracy and reduce the time consumption as
compared to full syntax analysis[20,21].
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5 Summary

Information systems and decision support systems are strongly related. The pa-
per shows that we can treat a decision system as an information system of some
objects, for which we have the information about their classification. When the
information is not complete, or the system has some uncertain data - we can
use rough set theory to separate the uncertain part from that, what we are sure
about. By defining the reduct for a decision table, we can optimize the system
and then, using the methods for minimal rules generation, we can easily classify
new objects. We see, therefore, that Prof. Pawlak’s contribution to the domain
of information and decision support systems is invaluable.
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Abstract. As a result of advances in technology, large amounts of data
can be collected and stored automatically. Significant development of
the Internet and easier access to it have contributed to collecting large
amounts of information about users’ characteristics. Along with these
changes, concerns about privacy of data have emerged. Several methods
of preserving privacy for association rules mining have been proposed
in literature: MASK scheme and its optimizations. This paper provides
new solutions concerning efficiency for this scheme and considers different
methods of distorting data using randomization techniques. Effectiveness
of these solutions has been tested and presented in this paper.

1 Introduction

Concerns about privacy of information provided by users and collected to dis-
cover hidden knowledge lead to inaccuracy of this data. Users are afraid of re-
vealing sensitive data. The cause to provide wrong data may be the worry that
the provided data can be misused.

Considering these concerns several methods of preserving privacy for asso-
ciation rules mining have been proposed. The goal of preserving privacy is to
encourage people to provide true information, even about sensitive values.

People have different concerns about different items (attributes). This regu-
larity can be used to obtain higher accuracy. Thus, several solutions have been
proposed to take the advantage of it.

Incorporating privacy in association rule mining in MASK (Mining Associa-
tions with Secrecy Konstraints1) [8] scheme results in time cost. Several opti-
mizations of MASK were proposed, but no optimization could have broken the
exponential complexity of reconstructing the original support of a set based on
the distorted database in general case.

In this paper, we present a new optimization, called MMASK (Modified
MASK), which breaks the exponential complexity and achieves better results
for higher values of privacy.

Effectiveness and accuracy of MMASK have been tested on synthetic and real
data sets and compared to Apriori and original MASK scheme.
� Research has been supported by grant No 3 T11C 002 29 received from Polish

Ministry of Education and Science.
1 Authors use Konstraints instead of Constraints to achieve abbreviation: MASK.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 465–474, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



466 P. Andruszkiewicz

1.1 Related Work

Privacy Preserving Data Mining in association rules mining has been widely
discussed recently [8] [15] [3] [4] [9] [12] [6] [5].

Proposals presented in [15] [3] [4] [9] show how to prevent the sensitive rules
from discovering by the miner. The solution is to falsify some tuples or replace
original values with unknowns. It is complementary to our work, because it
preserves privacy on aggregate level, whereas our solution preserves privacy for
individual values. Second difference is that this issue requires completely materi-
alized true database as the starting point whereas our problem does not require
collecting of the original data in the centralized database.

Privacy preserving for individual values in distributed data is considered in
[12] [6]. In these works databases are distributed across a number of sites and
each site only willing to share mining process results, but does not want to reveal
the source data. Techniques for distributed database require a corresponding part
of the true database at each site. Our approach collects only modified tuples,
which are distorted at the client machine.

A framework for mining association rules from centralized distorted database
was proposed in [8]. A scheme called MASK attempts to simultaneously provide
a high degree of privacy to the user and retain a high degree of accuracy in
the mining results. To address efficiency several optimizations for MASK were
originally proposed in [8]. The main optimization, which reduces the number of
counters to linear, requires randomization factors (i.e., probability of flipping)
to be constant for all items. This is the most important disadvantage of this
optimization, because it does not allow using different randomization factors for
different items what helps to achieve higher accuracy [14].

Another optimization, called EMASK, was proposed in [2]. It is a powerful
optimization by which the entire extra overhead of counting all the combinations
generated by the distortion can be eliminated. It can be used in MMASK scheme.
In general case EMASK does not break exponential complexity of reconstructing
the original support.

In [14] a general framework for privacy preserving association rule mining
was proposed. It allows attributes to be randomized using different randomiza-
tion factors, based on their privacy levels. It was theoretically proven that the
use of non-uniform randomization factors can lead to more accurate mining re-
sults than the use of one unique conservative randomization factor. Empirical
experiment results also verified this claim. An efficient algorithm RE (Recursive
Estimation) to mine frequent itemsets under this framework was developed also.
RE algorithm uses different randomization factors, but it does not break the
exponential complexity in estimating the support.

1.2 Contributions of This Paper

The new optimization proposed in this paper breaks 2n complexity in estimating
n-itemset support, which was not achieved by any other presented optimization
for MASK scheme which allows every attribute to have his own randomization
factors for 0’s and 1’s.
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1.3 Organization of This Paper

The remainder of this paper is organized as follows: In Section 2, we present
basic information about MASK scheme and in Section 3, we describe methods
of distorting the data. Then, in Section 4, we present our new optimization of
MASK algorithm for mining the distorted database. The experimental results
are highlighted in Sect. 5. Finally, in Section 6, we summarize the conclusions
of our study and outline future avenues to explore.

2 Basic Revision of MASK Scheme

In this Section we present basic information about the MASK algorithm for
Privacy Preserving Data Mining [8].

2.1 Original Distortion Procedure in MASK Scheme

Here we present a basic randomization method for distorting the transactional
data, which was used in original MASK scheme. For information about other
modification methods used in Privacy Preserving Data Mining see [13].

Given a tuple which contains 0’s and 1’s, each item is kept with probability p
or flipped with probability 1−p [2]. All tuples are distorted in the same manner.
Distorted tuples which create a new database are supplied to the miner. Only in-
formation the miner gets is the distorted database and the value of probability p.

The randomization operator used in the scheme presented above is item-
invariant - the distortion process is applied to each item in the transaction
independently. Presented randomization is also a per-transaction randomization
- the distortion process for transaction Ti does not use any information about
transaction Tj, where i �= j. Both definitions of item-invariant operator as well
as per-transaction randomization can be found in [5].

Having a per-transaction randomization is a huge advantage, because it makes
possible to distort true data (a tuple which is a customer’s answer) on the client
side. Collecting all the true data (all customers’ tuples) is not necessary. An
application on the client side distorts a tuple and sends only distorted values to
the central collector. Second advantage is that additional distorted tuples can be
added to the central database at any time and the data mining process repeated
over the whole collected data.

2.2 Estimating n-itemset Support

Let T refer to the True matrix - true dataset2. We denote the Distorted database,
obtained accordingly to the distortion procedure presented in Sect. 2.1, as D.

CT
k , respectively CD

k , is the number of tuples in T , respectively D, database
that have binary form of k (in n digits) for the given itemset. For a 2-itemset
CT

0 refers to the number of 00’s and CT
2 to the number of 10’s.

2 In real applications the true database is not stored. Only distorted tuples are
collected.



468 P. Andruszkiewicz

CD =

⎡

⎢⎢⎢⎣

CD
2n−1
...

CD
1

CD
0

⎤

⎥⎥⎥⎦ , CT =

⎡

⎢⎢⎢⎣

CT
2n−1
...

CT
1

CT
0

⎤

⎥⎥⎥⎦

The matrix M is defined as follows:
mi,j - the probability that a tuple of form CT

j in matrix T goes to a tuple of
form CD

i in D.

M =

⎡

⎢⎢⎢⎣

m0,0 m0,1 m0,2 . . . m0,2n−1

m1,0 m1,1 m1,2 . . . m1,2n−1

...
. . .

...
m2n−1,0 m2n−1,1 m2n−1,2 . . . m2n−1,2n−1

⎤

⎥⎥⎥⎦

The support of the item in the true database T based upon the support of
this item in D can be estimated using the following equation:

CT = M−1CD (1)

In general (without any assumptions about values of p, that is the value of p is
the same for all items), MASK scheme needs an exponential number of counters
(2n counters for an n-itemset) and makes the process infeasible in practice [2].

3 Distorting the Data

Distorting method discussed in Sect. 2.1 is the one of the simplest randomization
methods. It assumes the same value of p for all attributes.

In the more general scenario we assume that each item has a different proba-
bility which is used to decide whether to change the value (0 or 1) or not while
conducting the distortion process. Then we have p1, p2, ..., pk parameters, where
k is the number of different items in the database. Let denote these parameters
as vector P = Pi, such that Pi = pi.

Randomization factors in range 0.7 - 0.9 make the number of 1’s to increase
in the database. As a result of this growth the time of performing a data mining
process increases [2].

As the distortion is a culprit, a method with different randomization factors
for 0’s and 1’s can be used to avoid the growth of processing time.

Let pi denote for a given attribute the randomization factor for 0’s and qi for
1’s. Having pi and qi as the parameters of the distortion process, Mi matrix has
following elements:

Mi =
[

pi 1− qi

1− pi qi

]
.

The last method is more general. The two prior methods are special cases of
the last one. Note that in this framework the first method can be viewed as a
special case of the third wherein pi = qi = p. The second method is a special
case of the third when pi = qi.
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4 New Optimization Proposal

Now we describe the optimization for MASK scheme which eliminates expo-
nential complexity in estimating support of frequent sets. Instead of the O(2n)
complexity we have O(2rThreshold), where rThreshold is a constant.

4.1 Reducing Number of Items in Estimating n-itemsets Support

The reduction of a number of items in estimating n-itemset support can be
obtained by choosing for each candidate a subset of distorted transactions for
further calculations.

Let reductionT reshold (rThreshold) denotes the maximal number of items
used in estimating the support of n-itemset.

The reconstruction algorithm performs the mining process like the algorithm
presented in Sect. 2.2 until the length of the candidate is greater than rThreshold.
Then subset DA of transactions from the distorted database is chosen and used to
estimate the support. We choose those transactions which are supposed to sup-
port (in the true database) proper frequent set with length equal to rThreshold.
The reconstruction process is performed in the same way until the length of re-
constructing itemset exceeds rThreshold. Then subset DB is chosen from sub-
set DA. The reduction is done for the second time in the same way as presented
earlier.

Here is an example of the above algorithm. Let rThreshold = 3. We would
like to estimate the support of the candidate ”abcd”. This candidate was gener-
ated from the frequent sets ”abc” and ”abd”. We can use either ”abc” or ”abd”
as a condition to reduce the transaction set. Now we assume that we choose the
literally first set - ”abc”3. Then we choose the distorted transactions which are
supposed to support this set. We use an algorithm described in the next Section
to achieve this goal. Having subset DA of transactions chosen, we can estimate
the support of candidate ”abcd” the same way as we count the support for sin-
gletone ”d”, because all transactions used to estimate this support are supposed
to support ”abc” frequent set. We compute the support for supersets of ”abc” in
the same manner until the 7-itemsets candidates, for example ”abcdefg”, appear.

Having subset DA we can choose the transactions which are supposed to
support ”def” set. Thus, we obtain the DB subset, which contains distorted
transactions. Those transactions are supposed to support ”abcdef” set in the
true database. Now we estimate the support of ”abcdefg” set like we compute
the singletone ”g” support.

The subset DA is chosen (for each candidate) only in those passes when can-
didates have length k · rT reshold + 1, k = 1, 2... In other passes we use DA’s
from the latest pass in which DA’s were chosen. So, the number of DA’s is less
or equal to the number of candidates in the current pass.

3 We plan to investigate which subset should be chosen to achieve the best accuracy.
See Sect. 6.
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4.2 Choosing Transactions Subset Algorithm

Having vector CD and estimated vector CT , we know what is the estimated
support of candidate C (for example candidate ”abc”) - CT

2n−1. Thus, CT
2n−1

transactions should be chosen to the subset DA
4. Randomization factors in the

range < 0.7; 0.9 > let us infer that it is probable that transactions which support
proper set in the distorted database also support this set in the true database.
Thus, we want to keep them in our subset. There are two possible cases:

– CT
2n−1 ≤ CD

2n−1 − we choose the first CT
2n−1 transactions which support

proper set (for example ”abc”)5.
– CT

2n−1 > CD
2n−1 − CD

2n−1 transactions which support the proper set in the
distorted database are kept in subset CA. Then we choose i (0 ≤ i ≤ 2n− 2)
for which there is the highest probability6 that the true tuple which supports
for example set ”abc” was distorted to value i and CD

i is greater than zero.

5 Experiments

In our experiments we evaluate two kinds of mining errors presented in [8] (Sup-
port Error, Identity Error) and one additional metric (Accuracy of Identity):

– Support Error (ρ): This metric reflects the average relative error in the re-
constructed support values for those itemsets that are correctly identified to
be frequent. Denoting the reconstructed support by rec sup and the actual
support by act sup, the support error is computed over all frequent itemsets
as follows:

ρ =
1
|F |Σf∈F

|rec supf − act supf |
act supf

∗ 100 [%]

We compute this metric individually for each level of itemsets, that is, for
1-itemsets, 2-itemsets, etc.

– Identity Error (σ): This metric reflects the percentage error in identifying
frequent itemsets and has two components: σ+, indicating the percentage of
false positives, and σ− indicating the percentage of false negatives. Denoting
the reconstructed set of frequent itemsets with R and the correct set of
frequent itemsets with F , these metrics are computed as follows:

σ+ =
|R− F |
|F | ∗ 100 [%], σ− =

|F −R|
|F | ∗ 100 [%]

4 We focus only on the CT
2n−1 and CD

2n−1 values because we are interested in the
support of set ”abc”, but not its subsets.

5 We plan to determine the best way to choose CT
2n−1 transactions. See Sect. 6.

6 We use M matrix to compute this probability.
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– Accuracy of Identity (f): This metric reflects the accuracy in identifying
frequent itemsets and shows how many sets are correctly identified to be
frequent.

f = |F ∩R|
Our experiments were carried out on two databases:

– A real database, Led-24 [7], which contains information about Light Emitting
Diode. There are about 3,200 tuples with 25 attributes, 24 of them are binary.

– A synthetic database generated from the IBM Almaden generator [1]. The
data set was created with parameters T10I8D100kN100 (detailed naming
convention can be found in [1]). It contains about 100,000 tuples with each
customer purchasing about ten items on average.

5.1 Accuracy vs Privacy

Experiments were conducted on the synthetic database with distortion param-
eters p = 0.5 and q1 = 0.97, q2 = 0.87, q3 = 0.77 and no relaxation. Only the
results of the experiment with p = 0.5 and q2 = 0.87 are shown in Table 1.
The level indicates the length of the frequent itemset, |F0| indicates the num-
ber of frequent itemsets at this level, |Fr| (|Frm|) shows the number of mined
frequent sets from the distorted database using MASK (modified MASK). The
other columns are the metrics defined in this Section.

For p = 0.5, q = 0.97 MMASK has lower support error and positive error and
higher negative error. As a result of these evaluations fr is higher than frm.

Decreasing value of q (p is constant and equal to 0.5) results in increasing
privacy. For q = 0.97, 0.87 and 0.77 Basic Privacy7 is equal to 63.8%, 81% and
86.1%, respectively. Thus, 10% drop of q (from 0.97 to 0.87) causes Basic Privacy
to increase by more than 17%.

As stated in [8], MASK performs much more worse with lower probabilities
(for p = q). Conducted experiments confirmed this property of MASK (constant
p and variable q).

MMASK performs significantly better for lower probabilities. The support
error for MASK is as high as 100-300 for levels 5-6, when for MMASK does not
exceed 17% for levels 4-6 with q = 0.87 (see Table 1).

To sum up, MMASK is significantly better with higher privacy (lower prob-
ability q). The accuracy error is always better for MMASK (for levels greater
than rThreshold).

The results of the experiments with p = q are quite similar. The modified
algorithm accomplishes better results than MASK for p = 0.8 and p = 0.7.

The experiments on the real database (either with p = q or different p and q)
lead to the same conclusions (results of these experiments are not shown in this
paper).
7 Basic Privacy represents the probability that the original entry of a given random

customer for itemset i can be accurately reconstructed from the distorted database
(before the mining process). For details see [8] and [2].
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Table 1. Set T10I8D100kN100, p = 0.5, q = 0.87, rThreshold = 3, minSup = 0.005

Level |Fo| |Fr| ρr σ−r σ+r fr |Frm| ρrm σ−rm σ+rm frm fr − frm

1 98 98 5.4 1.0 1.0 97 98 5.4 1.0 1.0 97 0
2 2522 2704 20.4 10.8 18.0 2250 2704 20.4 10.8 18.0 2250 0
3 10930 16780 37.5 25.9 79.5 8094 16780 37.5 25.9 79.5 8094 0
4 10185 22411 62.4 40.1 160.2 6098 7787 16.4 36.3 12.7 6490 -392
5 2021 5810 115.9 57.9 245.4 851 1129 16.6 57.3 13.2 862 -11
6 24 200 318.5 79.2 812.5 5 28 6.8 70.8 87.5 7 -2

Different Randomization Factors for Items. We also conducted the ex-
periments with different randomization factors for different items for real and
synthetic databases. Half of the items was distorted with parameters p = 0.4,
q = 0.88 and the rest with parameters p = 0.5, q = 0.87.

The results once again show that modified algorithm is better for low prob-
abilities. In the experiment f metric is higher for the modified algorithm (for
levels greater than rThreshold).

5.2 Efficiency

Figure 1 shows the running time of the original algorithm based on Apriori and
the modified algorithm, as compared to Apriori itself, for various settings of the
minimum support parameter for real and synthetic database. Experiments with
the original algorithm and MMASK were conducted on the distorted database
and Apriori was used with the original database.

The figure shows that there are huge differences in running times between
MASK and Apriori algorithm. Overheads between those two algorithms are
larger for lower minimum support. Optimization presented in Sect. 4 makes
the time of the mining process almost as fast as Apriori. This is the main advan-
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tage, which makes modified MASK viable in practice (EMASK does not break
exponential complexity in reconstructing the original support). The reduction
in time cost could be also related to lower number of frequent items discovered
by MMASK than MASK.

6 Conclusions and Future Work

We investigated the problem of efficiency in the privacy preserving MASK method
and described the new optimization, which is different from those presented in lit-
erature. The main advantage of this optimization is that it breaks the exponen-
tial complexity and makes discovering association rules with preserving privacy
viable in practice. Next advantage is that the proposed optimization can be used
with different randomization factors for 0’s and 1’s. Moreover, it allows different
items to have different randomization factors. Furthermore, for higher privacy it
achieves significantly better results than original MASK algorithm.

Effectiveness of the new solution has been tested on synthetic and real
databases and presented in this paper.

In future works, we plan to investigate the possibility of extension of our
results to quantitative [11] and generalized [10] association rules.

We also plan to investigate which subset from the two possible should be cho-
sen as a condition to reduce the transaction set to achieve the best accuracy when
the candidate length exceeds reductionThreshold parameter. Another possible
solution is to combine the results obtained from those two sets.

We plan to determine the best way to choose CT
2n−1 transactions while choos-

ing distorted transactions which are supposed to support proper set in the true
database. Now the first CT

2n−1 transactions are chosen.
The best value for reductionThreshold parameter is also an open problem to

be investigated.
The false negative error component can be reduced using the relaxation tech-

nique presented in [8]. Modified relaxation, which is applied every time the re-
duction is performed, could also be used. Moreover, these two relaxations could
be combined.

Other optimizations presented in literature can be simultaneously applied to
achieve improvements in performance.
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Abstract. Abstract. Currently used data-mining algorithms treat data
globally. Nevertheless, with such methods, potentially useful knowledge
that relates to local phenomena may be undetected. In this paper, we
introduce new patterns in a form of local frequent events and epochs,
boundaries of which correspond to discovered changes in a data stream.
A local frequent event is an event which occurs in some period of time
frequently, but not necessarily in the whole data stream. Such an event
will be called a frequent event in a data stream. An epoch is understood
as a sufficiently large group of frequent events that occur in a similar
part of the data stream. The epochs are defined in such a way that
they do not overlap are separated by so called change periods. In the
paper, we discuss some potential applications of the proposed knowledge.
Preliminary experiments are described as well.

1 Introduction

Nowadays, many organizations store huge amount of data. In many cases, the
stored data is time ordered, and can be considered as a data stream. The char-
acteristics of this data may change during time. A manual analysis of this data
is time consuming; sometimes it might be infeasible to carry out. However, the
data analysis may be supported by the usage of efficient data mining techniques.
The most common data mining techniques treat data globally. Patterns are dis-
covered regardless of their distribution in a data stream. It may happen that
patterns occurring frequently in some parts of the data stream, but not suffi-
ciently frequently in the whole data stream, are not discovered with techniques
treating data globally. Three sample data sets are presented in Figure 1. One
may note that event a occurs the same number of times in each data set. As-
suming that an event is considered as frequent if it occurs at least 5 times in the
whole data set, a will be found frequent in each sample data set. For threshold
6, nevertheless, a will be found frequent in none data set, even though it occurs
frequently in the beginning of the first data set and at the end of the third. The
approach presented in this paper enables discovering patterns that are frequent
locally, although may be infrequent globally.

� Research has been supported by grant No 3 T11C 002 29 received from Polish
Ministry of Education and Science.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 475–484, 2007.
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Based on locally frequent events, we introduce a notion of an epoch. By an
epoch we understood a sufficiently large group of frequent events that occur in
a similar part of the data stream. The epochs are defined in such a way that
they do not overlap are separated by so called change periods. In the paper,
we discuss some potential applications of the proposed knowledge. Preliminary
experiments are described as well.

The layout of the paper is as follows: The related work is described in Section
2. In Section 3, we propose new patterns - frequent events and epoch in data
stream Sample applications of the new approach are presented in Section 4.
Section 5, presents preliminary experimental results. Our work is concluded in
Section 6.
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Fig. 1. Sample datasets, with various distribution of element ”a” (darkened in the
figure)

2 Related Work

The author of this paper introduces two new patterns, namely frequent events
and epochs in data stream. Those new patterns could be treated as a kind of
generalization of frequent events, as introduced by Agrawal in [1]. An item set
is the subset of items in an analyzed data base. It is called frequent, if it is
supported by data more times than a threshold expressed by minSup. The set is
frequent regardless its distribution in the analyzed data. The pattern introduced
in this paper, in contrast, holds information about time, in which it is frequent.
The discovered frequent set in data stream carries not only events identifier but
also the range in which it appears, and its support is above a designated level.
With the proposed approach we additionally gain information how events appear
within a given period.

The most common approach to data stream analysis consists in discovering
event sequences. The sequence is an ordered set of events, which appears in a data
stream in a predefined time range. There are many algorithms for discovering this
kind of information, in particular AprioriAll [2], GSP [4], PrefixSpan [5]. Another
approach to data stream analysis has been described inter alia by Mannila,
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Toivonen and Klemettinen in [6,7]. The patterns introduced by them, episodes
and episode rules, hold some information about time ranges. An episode is a
collection of events which appear in a partially ordered set, in a given time
window. An episode rule ascertains that if an episode appears in the data stream
in a predetermined time with a probability, another event would appear later. All
recalled patterns hold some information about their distribution in the analyzed
data stream. This information can be useful in many situations. We try to go
further and introduce new patterns in this paper.

A most similar approach to the presented one appears in [3]. The emerging
pattern is an item set which supports growth between two analyzed data sets.
The emerging pattern carries information that some item set appears rarely in
one data set and frequently in another one. The major disadvantage of this
method is that the sequencies (patterns) could be discovered only by analyzing
two data sets. We introduce in this paper new patterns in the data stream,,
namely frequent events and epoch. Discovering them does not have the disad-
vantage mentioned above. Below we describe then in more detail.

3 Definitions

Denote E0 as a set of events identifiers. Event is a pair (e, t), where ei ∈ E0

and t is a time where this event occurred. Data stream is an ordered triple
< tDS

b , tDS
e ,S >, where tDS

b and tDS
e are integer numbers, greater than 0, which

represents, beginning and ending moments of this data stream. S is an ordered
sequence of events

S =< (e1, t1), (e2, t2), . . . (en, tn) > and for all pairs tDS
b ≤ ti ≤ tDS

e and ti ≤ ti+1.

Example 1. Consider sample data stream, presented in Figure 2. For this data
stream, events identifier set consist of events A, B, C and D, E0 = {A,B,C,D}.
The data stream has the form <3, 32, S>, where some starting elements from S
are presented below:

(A, 3), (B, 3), (B, 4), (C, 4), (A, 5) . . . .

This data stream will be used in next examples. ��

As a window in a data stream, we define an ordered triple W =< tWb , tWe ,WS >,
where tWb and tWe are integer numbers representing the begin and the end time
of the given window, if the conditions tDS

b ≤ tWb and tWe ≤ tDS
e are fulfiled The

subsequence WS contains the all pairs (ei, ti) ∈ S, for which tWb ≤ ti ≤ tWe . We
define the window length Wl(W) as integer calculated as a difference between
the end and the begin window time, i.e. Wl(W ) = tWe − tWb . For a given event e
in window W, we define its support (and denote by eSup(W, e)) as the number
of pairs (ei, ti) in the stream, where ei = e. We say that event e is frequent in
window W, when its support is eSup in given windows is greater than assumed
parameter minESup, eSup(W, e)>minESup.
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Fig. 2. Sample data stream used during all examples in this paper

Example 2. Lets consider window W=< 20, 28,<(A, 20), (D, 22), (D, 23), (D, 24),
(D, 27), (D, 28)/ and parameter minESup set by user to value 3. In this window
event D appears 5 times, which means that using this data we could say that D
is a frequent event in this window. ��

Interval denoted < tIb, t
I
e >, is a set which contains all integers t which fulfill

equation tIb≤t≤tIe, Time tIb is called the begin of interval and the time tIe is
respectively called end of interval. In the following text intervals are denoted
with small letters.

Event e is frequent in interval p =< tPb , t
P
e >, where for each t ∈ P, exists

window W, in which e is frequent and where tWb ≤t≤tWe . Numbers tPb and tPe are
called begin and end time of event frequency in this interval.

Exact interval for event e is interval, in which e is frequent and pairs (e, tPb )
and (e, tPe ) are in S.

Interval p is called maximal exact interval for event e when p is exact interval
for e and there is no interval q, in which e is frequent and p is subset of q.

Example 3. Assume parameters Wl = 8 and minESup = 2. Using those param-
eters we find frequent intervals in the data stream presented in Figure 2. Using
those constraints we can say that D is frequent in interval p1 =< 26, 34 > because
there is a window W =< 24, 32, {(D, 24), (D, 27), (D, 28), (D, 30), (D, 32)} > in
which D is frequent and each t ∈ p1 encloses in this window.

p1 is not an exact interval, because in analyzed data stream there is no pairs
(D, 26) and (D, 34) which meets the case of event at begin and end time of
interval. As an example of an exact interval where D is frequent we can show
interval p2 =< 27, 32 >.

p2 is not a maximal exact interval for event D, because we could show other
interval p3 =< 22, 32 >, which includep2 . This interval is maximal, because in
the presented data stream we could not show other, larger interval which begins
and ends with event D. ��

Frequent event in data stream is such e ∈ E0, which in given parameters window
length (Wl) and minimal support (minESup) is frequent at least in one window.
Existence of such a window implies one interval in which e is frequent.

For given parameters Wl and minESup, set of all frequent sets in analyzed
data stream is called FES (Frequent Events Set).

For given parameters Wl and minESup, set of all intervals in which events
are frequent is called FIS (Frequent Intervals Set).

For purpose of not loosing some important information mapping of frequent
events in data stream and corresponding intervals are introduced. Event map-
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ping, denoted as EM, is a set of pairs (e, i) where e ∈ FES and i ∈ FIS. The pair
(e, i) is added to EM when event e is frequent in interval i.

Example 4. In this example we once again back to data stream presented in
Figure 2. For this example we assumed that parameters have set values Wl =
8 and minESup = 2. Below are presented discovered frequent events in data
stream, corresponding intervals when they are frequent and mapping set.

FES = {A,B,C,D}
FIS = {< 3, 20 >,< 3, 15 >,< 4, 19 >,< 22, 32 >

EM = {< A, < 3, 20/, < B, < 3, 15 >>,< C, < 4, 19/, < D, < 22, 32/}

��

In the following part of this paper we consider only frequent events in data
stream. For all next definitions we assumed that parameters Wl and minESup
are set by user, who performs analysis. Earlier defined sets FES, FIS and EM
are used for new definitions, too.

Define sequence of event frequency change, called CS (Change Sequence), as
a sequence of integers representing time moments when maximal exact interval
for given event start or stopped.

CS =< t1, t2, . . . , tn > where ti≤ti+1 and for each ti exist such p ∈ FIS, that
ti = tpb or ti = tpe .

Example 5. For prior presented set FIS which consist of intervals < 3, 20 >,
< 3, 15 >, < 4, 19 >, < 22, 32 > a CS sequence carries values < 3, 3, 4, 15, 19, 20,
22, 32 >. ��

The change period is an interval in which many maximal exact intervals begin or
stop. In such a moment, changes are no more than cwl (change window length)
time units far one from other. In case of defining change period, auxiliary se-
quence of changes sets CPS (Change Period Sequence) is used.

Sequence CPS contains change period elements CPE,

CPS =< CPE1,CPE2 . . .CPEn >

where each CPEn set is described by one of followed equality:

CPE1 = {ti∈CS : ∃m∈N∀l∈N,l<mtl+1 − tl ≤ cwl} (1)
CPEn = {ti∈CS : ∃k∈N∀l∈N,k<l<mtm+1 − tm ≤ cwl ∧ tm > max(CPEn−1)}.

Where function max returns the maximal value stored in set.

Using CPS sequence, the change period is defined as an interval cp =<
tcpb , tcpe >, where < tcpb = min(CPEi) and < tcpe = max(CPEi). Functions min
and max return rightly minimal and maximal element from input set.
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Example 6. For described sample data stream and earlier discovered maximal
exact interval CPS =< (3, 3, 4), (15), (19, 20, 22), (32) > discovered are change
periods < 3, 4 >,< 15, 15 >,< 19, 22 >,< 32, 32 >.

The Epoch is an interval E =< tEb , t
E
e >, where tEb , tEe > are integers which rep-

resent the begin and the end time of epoch, under conditions that tDS
b ≤tEb≤tDS

e

and tDS
b ≤tEe ≤tDS

e . Using CPS sequence endings of E interval could be found.
If we assume that epochs are numbered from 1, then for epoch number n
tEb = max(CPEn) a tEe = min(CPEn+1). Epochs and change periods in ana-
lyzed data stream contact one to other subsequently.

For each epoch associated is a set called epoch description, later called ED.
ED is the subset of FES satisfying following equality

ED = {e ∈ FES : ∃<ev,P>∈EM∀t∈<tE
b ,tE

e > Ptb ≥ t ∧ Pte ≤ t ∧ ev = e}. (2)

��

Example 7. For given parameters cwl = 2, Wl = 8 and minESup = 2 the sample
data stream presented in Figure 2 have the change periods < 3, 4 >, < 15, 15 >,
< 19, 22 >, < 32, 32 > and epochs with a corresponding to them epoch descrip-
tions < 4, 15 > and {A,B,C}, < 15, 19 > and {A,C}, < 22, 32 > and {D}. ��

Using pattern introduced before could lead to a situation, where to many pat-
terns are discovered and presented to the person who analyzes data. For the
purpose of delivery more aggregated and useful pattern generalized epochs and
change periods are introduced. In described prior patterns even one change in
frequent event’s maximal exact interval generates a new change period (compare
example 6 and 7, and time event 15). In generalized approach the new parameter
appears - cpSup (change period support). Now, as generalized change periods
are considered only those change periods in which at least cpSup changes are
discovered. When the change period contains less than cpSup changes, it is not
generated and is contained in corresponding epoch. To define new generalized
change periods auxiliary generalized change period sequence, denoted GCPS is
introduced. GCPS contains change period elements GCPE from CPS, which sat-
isfy condition that | CPEn |≥ cpSup.

Using those assumptions, generalized epoch is an interval GE =< tGE
b , tGE

e , >,
where the beginning and the ending time tGE

b and tGE
e , are defined for epoch

number n as tGE
b = max(GCPEn) and tGE

e = min(GCPEn+1).
The epoch description for generalized epoch is a subset of FES, which contains

elements satisfying equality:

ED = {e ∈ FES :<ev,P>∈EM ∃t∈<tE
b ,tE

e >P.tb ≥ t ∧ P.te ≤ t ∧ ev = e} (3)

Example 8. For the data stream presented In Figure 2, using parameters cwl =
2 and cpSup = 2, generalized epochs are discovered with corresponding epoch
description sets < 4, 19 > and {A,B,C}, < 22, 32 > and {D}. ��
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4 Application

In previous sections the idea of new knowledge discovery methods has been
introduced; frequent events and epochs in data stream. These patterns could
be used everywhere where knowledge about changes in data manner is needed.
There are many possibilities; however, in this paragraph only the most promising
ideas are described.

Today e-mails are widely used. People use it for work, official cases, and
entertainment. Analyzing these e-mails could give us very valuable knowledge
about the way in which an organization works or even about the person. For
instance, by analyzing mails which were sent to an office, we could discover
people who in some time periods send many letters. This information could be
valuable for office managers, and could mean few things. It might be a signal
that this person has some problems, and sends so many letters, because office
workers could not solve them. It might be also a proof that this is a very annoying
person, and his letters should be serviced in other way. Using introduced before
patterns, such information could be delivered to manager rapidly, without time
consuming analysis of all mails. This approach could be used for analyzing mails
during an investigation. Officers who use those methods could easily find people
with whom this person contacts.

Our mails could not be delivered without computer networks. Nonetheless,
today more and more often this infrastructure is attacked.. Each element of this
infrastructure produces high volume of logs information. Suspicious activity or
other changes in manner leaves some signs in this data. Analyzing those data by
introduced data-mining algorithms could easily discover changes. Those changes
could be sign of some attack or other misconfiguration or change in user activity,
which maybe need more detailed investigation.

When time parameter is slightly changed the new application appears for
introduced methods. One of the most promising is connected with text analysis.
In this case, time represents the position of a given word in the text. Using
epochs an automatic section and a keyword discovery could be done.

5 Preliminary Experiments

During preliminary experiments three types of data is analyzed, using previously
introduced techniques. As a first data set, headlines of security news from polish
CERT team [9] are used. This data set was analyzed using frequent events in
data stream. As a second data set electronic mails are used. On the second
experiment official mails are analyzed. In this case subjects of mails are used,
and epochs are used as well. The latest experiments are connected with text
analysis. During the experiment a discovered epoch represents a section in the
original text. The epoch description could be treated as a keyword. Experiments
are carried out on NASA text which describes the new space ship Orion.
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5.1 Security News Headlines

In first experiments security news headlines are analyzed. As an input set, head-
lines from polish CERT news [9], are used. For each article one line input was gen-
erated. At the begging of line was date when article was added, and then whole
title appeared. During analysis 770 headlines, from August 2001 to September
2006 are used. Before the main algorithm steps some data preparation is done.
Each word from headlines was treated as an event. The stop-list was used for
deleting words which do not carry useful information (like preposition etc ...).
This preprocessed data is then analyzed using few sets of parameters values.
The window length parameter has set values from one week to two weeks. The
support during experiments is set to value 2 and 3.

After analysis of this data some useful knowledge are discovered. All famous
internet worms names are discovered as frequent events in data stream (for
example Netsky, Beagle, Code Red, and Slammer etc...). Interval when those
events are frequent coincides with time when those worms attack computer word.
What are more important, and useful in many cases near to those worms names,
names of affected software appear, for example, worms Netsky and Beagle at-
tacks Microsoft Windows and Slammer attacks SQL server. This experiment, in
our opinion, proves that presented method could be used for analyzing headlines
or short descriptions. Analyst using introduced methods could easily find inter-
esting words, and periods when those words appear. This approach could speed
up time used for analyzing some stored texts in case of discovering what was
often mentioned probably important in some time range.

5.2 Official Mail

In this experiment frequent events and epochs are discovered. In this case sub-
jects of official mails are used, and treated similar to headlines described in
prior section. Analyzed mails represent correspondence with students during 4
semesters (from winter semester 2004 to summer semester 2006). In this period
more than nine and a half hundred of mails are received. As in before described
experiments few parameters sets are used in the first phase to tune algorithms to
those data set. In effect best for this data, and used for all analysis parameters
are: window length two weeks, support set to value 3 and used during epoch
discovery change window length set to 3 days and change period support set to
4. During analysis are discovered epochs, which describes subjects which author
taught. For example in epoch 25 events SKM2 (classes name) and WiFi (classes
topic) are revealed. During further analysis of this data many other similar to
before described epochs are discovered. All subjects which owner of this mailbox
taught are discovered. Sometimes even more precise information, for example
about additional term, are explored. Using those parameters even such informa-
tion that in this week is exercise of given number are discovered. But, sometimes
other more mysterious epoch are discovered. For example epoch at the end of
February with no events. At first sight this is some program error. More detailed
analysis shows that this is winter holidays. And in this period no letters from
students and other teachers are received.
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5.3 Text Analysis

Introduced techniques could be used for text analysis. In this case the time pa-
rameter has slightly different meaning. In this experiment an event represents
a word, and the time its position in the text calculated as number of currently
analyzed sentence. The experiment is carried out the document which describes
the new NASA space ship – CEV (Crew Exploration Vehicle) [8]. During anal-
ysis only first 750 sentences are used – which in the original document describe
the main characteristic and mechanisms of the space ship. Data is preprocessed
before epochs discovery is carried out. The simple preprocessing using a stop-list
was conducted. All words which do not carry any information (like a, an, the,
is, was etc ..) are removed from the text. After this preliminary work, the main
analysis begins. All presented results are gain when algorithm parameters are
set to corresponding values eSup = 5, windowLength = 20, cwl = 1, cpSup =
1. In this case 17 epochs, which represents a section in the text, are discovered.
The average epoch length is 41 sentences; change periods between epochs have
the average length of 2 sentences. A description of epoch in this case could be
consider as the set of keywords, which describes what subject is discussed in the
fragment The crucial thing is that sections that appear as a result of the anal-
ysis are similar to main paragraphs of this document For example, the original
document starts with the description of the space ship and its mission profile.
In this section we could find information that it could be used for the lunar mis-
sion and resupply ship for ISS (International Space Station). In the first epoch
description we could find words: crew, exploration, vehicle, lunar, ISS, mission.
When we look at the next epoch’s description, the main subject of it could be
rapidly derived. For example, in the 7th epoch words: RCS (Reaction Control
System) control, trim, attitude, tanks are discovered. The corresponding section
in original text is devoted to the description of the system which controls space
ship moments in Space. Next discovered epochs are characterized by sections
about the power distribution system, environment, thermal control, and landing
system. Each above mentioned section appears in analyzed the original text.
Using introduced in this paper patterns, automatic section and keyword genera-
tion could be easily done. An analyst using this technique could rapidly discover
what the content of unknown document is.

6 Summary

In this paper new knowledge discovery patterns are introduced. Frequent events
and epochs are patterns which could discover potentially useful knowledge that
relates to local phenomena in data stream. Experiments proofed, that this method
could be used for discovering useful information. Using proposed patterns infor-
mation for example about some people behavior or subjects which are interesting
for them, rapidly could be extracted from their mailbox. This allow analyst to
work only on potentially interesting data without wasting time on working with
all data. When time parameter meaning is slightly changed introduced patterns,
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could be used for automatic section and keyword generation from text, which pre-
liminary experiments show. There are other applications in which this kind of
patterns may be useful.
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Abstract. In the paper we present an improved version of multistage
hashing based algorithm, used to find frequent items in a stream. Our
algorithm uses low-pass filters instead of simple counters, so it concen-
trates more on recent items and ignores the old ones. Such behaviour
is similar to sliding window based algorithms, but requires less memory
and is suitable for real-time applications. The algorithm continuously
gives estimates of frequencies of the most frequent items. It was tested
with streams having various frequency distributions and proved to work
correctly.

1 Introduction

Identifying frequent items in a stream is an important task in various fields of
computing, e.g. network traffic, database workload or search engine workload
analysis. The problem is complex, because it is usually not possible to store even
a small fraction of the data from the stream in the memory for later offline anal-
ysis. There is usually too much data per a unit of time. It is also difficult or even
not possible to attach a counter to each item category. For example if we had
to analyze network flows described as a pair of IPv4 addresses each, we would
have 264 potential flows to monitor. Even though we would never see most of
them, the number of those seen would still reach several hundred thousands [1].

Fortunately, the number of interesting frequent item categories is usually rel-
atively small compared to the number of all item categories. They are called
heavy-hitters. In most applications, only the heavy-hitters are taken into consid-
eration. For instance, a database administrator would like to know the queries
having the largest impact on the system’s load, i.e. the most frequent and the
longest ones. These queries should be optimized first and, if further optimization
is not possible, then probably they are good candidate for caching. The same
applies to tuning a web query engine. In network traffic monitoring it is also
required to know the largest packet flows in order to prevent denial of service
attacks (DOS).

Apart from that we observe a need for not only finding frequent items in the
whole stream, but just in the most recent part of it. This is due to the fact,
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that frequencies of the items may significantly change over time. This is the case
of a sudden DoS attack or when a new version of software using a database is
installed. In the abovementioned applications we are usually more interested in
the statistics from the last 10 minutes than from before 3 months.

2 Problem Definition

Consider a stream of items where each item belongs to one of N categories.
The N can usually range from hundreds to several millions. Each item category
can appear more than once. The number of items is unlimited and not known
in advance. Each item can be read only once – it is not possible to rewind or
restart the stream. The algorithm must answer queries about the k most frequent
categories that were recently seen. It should also estimate the frequencies of these
items. The queries can be sumbitted and must be immediately answered at any
time. By the recently seen items we understand the items that appeared within
a time window beginning at tq − τw and ending at tq, where tq is the time of
submission of the query and τw is a constant window size.

An ideal algorithm would give all and only k categories with their correspond-
ing frequencies. If some frequent item is missing from the result set, it is called a
false negative. If some non-frequent item is reported, it is called a false positive.
Usually it is sufficient to have an algorithm that reports no false negatives and
only a few false positives. False positives can be detected and removed, but this
usually requires additional memory.

3 Prior Work

The problem of finding frequent items in a stream of n items has been studied
for over past two decades. The earliest algorithm [2] guaranteed to find the item
that occurred more often than for half of the time. This was further generalized
by Misra and Gries to k items with frequencies higher than 1/(k + 1) by using
k counters [3]. These algorithms required additional second pass to estimate the
exact frequencies of found items and to prune the infrequent items that could
be also found in the output. This second pass could be omitted in case false
positives were tolerable and no estimation of item frequencies were required. The
time complexity of the Misra-Gries algorithm was further improved by usage of
more sophisticated data structures [4], but the other properties of the algorithm
remained the same.

Manku and Motwani presented a one-pass algorithm [5] that give guarantees
on the minimal frequencies of found items while still having low space require-
ments O(k log (n/k)). Their algorithm uses similar approach to that of Misra-
Gries – it associates a counter with each observed item and prune the counter
list according to some special algorithm. Similar results have been also achieved
by sketch-based algorithm proposed by Charikar et al. [6]. Their algorithm
doesn’t store the individual counters, but uses a complex data structure that can
estimate frequencies of the infrequent items. The infrequent items are added
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to the frequent items set whenever their estimated frequency exceeds some
threshold.

Estan et al. [7] proposed a hash-based algorithm called a multistage filter.
The basic idea is that the frequency counters are associated with item hashes,
not the items themselves. Many items may hash to the same value, thus hav-
ing a common counter. By using multiple, independent hashing functions, the
algorithm assures the risk of false positives is very low, especially for real-world
frequency distributions.

None of the abovementioned algorithms directly addresses the problem of data
aging, that is the fact that the older items are not as important as the recent
items. The data aging can be handled by periodically reseting the counters of
a frequent item mining algorithm, so that it ”forgets” the old aggregated data.
This unfortunately disallows continuous monitoring, as the results should be
retrieved only just before the counters are reset. Besides, the same algorithm
applied to two identical streams, but having non-zero time offset between each
other can produce different frequent item sets. The solution to this problem is
using a sliding-window based algorithms like the one in [8]. However, for large
windows, their high memory requirements are a huge disadvantage.

The problem of dynamic tracking of frequent items in streams has been re-
cently studied by Cormode and Muthukrishnan [9]. Their work focuses on han-
dling database inserts and deletes, while our approach addresses more general
problem of changing frequency distribution.

4 Algorithm

Our algorithm uses low-pass filters to measure frequencies of events and a sketch
based method, similar to that presented in [7], to filter out the infrequent items
within a limited memory.

4.1 Low-Pass Filters

A low-pass filter can be used to estimate a frequency of some events. This simple
idea has been borrowed from the signal theory. For each item in the stream, the
filter is given a Dirac-delta-shaped impulse on the input. It can be shown that
the value of the output signal of such filter is nearly proportional to the frequency
of the input signal, if only the signal frequency is high enough [10]. The time
constant τ of the filter controls how fast can the output signal value follow the
input frequency and how accurate is the estimation. The greater the τ is, the
more time is required for the filter to react to frequency changes, but the more
accurate the measurement of lower frequencies is. The filter state consists of a
single precision counter c that stores the output signal value and a variable tl
storing the time, when the filter’s state was last updated. Whenever the input
impulse of value v comes to the filter, the state is updated according to the
equation:

c′ = ce
tl−t

τ + v, (1)
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where t is the current time. If only the frequency of events is measured, v should
always be set to 1. Setting v to e.g. the size of a network packet would cause
the filter to estimate the size of a data flow, and setting it to the duration of
a database query execution would estimate the average database load. In the
further part of the paper we are always referring to the frequency measurement
but all the described methods are equally valid for the data flow or workload
estimation.

The output value can be calculated at any time from the equation:

c′ = ce
tl−t

τ (2)

Such a filter has different properties than a simple event counter. A simple
event counter can be used to measure the frequency of events in some period of
time, but the exact result is known only at the end of the period. If a continuous
monitoring is required, then the counter must be periodically restarted. The state
of the counter reflects only the number of events seen since the time the counter
was restarted, so the frequency cannot be estimated with the same accuracy each
time. On the contrary, the low-pass filter can estimate average event frequency
at any time with the same accuracy. This enables to trace frequency changes
with higher time resolution, so that new frequent events can be discovered much
earlier. This is illustrated in the figure 1. Note that the waveform of the simple
counter is much different after the occurrence of the second impulse than the first
one, while both the sliding window (moving average) and the low-pass filter give
stable results. Both impulses are of same value and length. The restart period
of the counter, the size of the sliding window and the time constant of the filter
were set to 1.0 in this experiment.

Fig. 1. Various techniques of average frequency measurement

The low-pass filter does not solve the stated problem exactly. The ”time-
window” is somehow ”fuzzy”. The most recent items are indeed more important
than the previous ones, but the shape of the window is not rectangular but
exponential. However, as seen in the figure 1, this would not be a large problem
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in practical applications. The results obtained by using a rectangular and an
exponential windows are quite similar.

4.2 What Is Frequent and What Is Not

The simplest idea would be to associate an exactly one low-pass filter with a
one item category and choose only the k categories with the highest frequency.
Unfortunately this cannot be done, because the number of the categories N may
be huge and the frequency meters would take up too much memory. Thus only
the most frequent categories are associated with filters, one category with one
filter. The only problem is how to tell which categories should be in this set.
There must be some rules for adding new frequent categories to this set and
removing the infrequent ones. Somehow the frequencies of the infrequent items
should be estimated, too. Note that this estimation need not to be very accurate,
as we only want to decide if the item is worth being in the frequent set or not.
This estimation is done thanks to filter sharing implemented by hashing.

Consider m filters numbered from 1 to m. Each item category is hashed to
a one filter from this set. We will call this data structure a sketch. Because
M 9 N , more categories can hash to the same filter. Each filter in the sketch
will measure a sum of the frequencies of categories that are hashed to it. By
the frequency threshold fthr we will understand the frequency above which a
category is considered frequent and by the maximum frequency level fmax we
will understand the frequency that could be reached by the category if no other
categories were present in the stream. In certain applications fmax can denote
a network connection capacity or a maximum system throughput. We will call
a filter that reports frequency above the fthr a hot filter. A cold filter is any
filter that is not a hot filter. If M ≥ k and fthr ≥ fmax/k, only k reported
frequencies will have a chance to reach the high frequency level fthr, for any
frequency distribution. Event frequency distributions usually follow a Zipf-like
distribution in real world applications. In these cases the number of categories
exceeding fthr will be even smaller or the fthr can be set much lower.

The categories that hash to a cold filter cannot be frequent, so they are not
added to the frequent set. If they were frequent, they would make the filter
hot after some time. Thus false negatives are not possible. Unfortunately false
positives are possible because still an infrequent event can hash accidentally to
a hot filter and pass to the frequent set. To lower the risk of false positives, the
number of cold filters should be high. This can be achieved by setting the total
number of filters in the sketch to a value far greater than k. The only problem
is, that this solution does not scale well with the increasing number of categories
- the m must be proportional to the number of categories N .

The scaling problem has been solved by the parallel multistage filtering, an
idea introduced in [7]. Note that the word filter in that article does not have
anything to do with our low-pass filters. We will call it multistage hashing to
avoid the name clash. Instead of hashing only once and updating the state of
only one filter in the sketch, the hashing process is performed in M stages by
using M independent hashing functions. States of M filters in the sketch are
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updated for each item in the stream. The event is considered to be frequent only
if all frequencies reported by each of the M filters are greater than fthr. This
significantly lowers the probability for an infrequent event to be classified as a
frequent one. If the probability of event hitting a hot filter in each stage is p,
then the probability of hitting a hot filter M times and passing to the frequent
set is pM . Of course the size of the sketch must be now M times higher to make
this probability remain on the same level as in the one-stage version. Using m
only one or two orders of magnitude higher than s ∗ k an having only a few
stages can yield very low false positives rates. A thorough theoretical analysis of
multistage filters can be found in the original paper [7].

4.3 Managing the Frequent Set

Each entry in the frequent set consists of an item category and its corresponding
low-pass filter. The low-pass filter is updated for each occurrence of the item of
that category in the input stream. A category is added to the frequent set if any
item belonging to that category hashes to hot filters at all stages. A category is
removed from the frequent set if its filter becomes cold and so does at least one
of the filters being hashed to in the sketch. Otherwise removing such category
would be followed by an immediate readding. Because it would be too expensive
to update all sketch filters in each iteration, the process of purging the infrequent
categories is executed only before adding a new frequent category that would
make the frequent set larger than the maximum past size of the frequent set or
whenever the user asks for the results.

4.4 Algorithm Improvements

Estan et al. proposed many improvements to the original algorithm. Some of
them can be also applied to our modified version of the algorithm.

Serial Filtering. In serial filtering the event passes to the next stage only if the
values of counters at all previous stages were high enough. The event is blocked
by the first low counter and the remaining counters are not checked and not
modified. This keeps more counters in a low state (cold). Serial filtering has one
disadvantage that makes it less usable for continuous measurements than the
parallel filtering: it requires to see M times more items of the same category to
detect a new frequent item. This is due to the fact that all the counters/filters
in all stages must achieve enough high values and they must do it serially.

Preserving Entries. Preserving entries is a technique introduced to improve
the accuracy of measurement of frequent items (called large flows in the orig-
inal paper). Because the original algorithm uses simple, periodically restarted
counters, clearing the frequent set after each measurement period caused that
frequent items were not counted for some time at the beginning of each pe-
riod. The optimisation was to leave the frequent items entries in the frequent
set and clear only the counters. The problem does not exists in our algorithm
as the filters are never restarted and the measurement is continuous. Thus the
improvement does not apply.
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Shielding. The shielding is an improvement consisting in not performing the
sketch update on each item that is found in the frequent set. This can be easily
applied in our version of the algorithm. The shielding is turned on for all items
that have a hot filter in the frequent set. The main purpose of the optimisation
is to make some hot filters in the sketch cold and reduce the probability of false
positives. The side-effect is that if the frequent item becomes infrequent for some
time, it will have to wait longer for being included in the frequent set again, as
its filters in the sketch might already become cold.

Conservative Update of Counters. Instead of increasing the counters at all
the stages about the full amount, only the smallest one is increased about the full
amount and the rest is set to the maximum of the old value and the new value
of the smallest counter. This prevents counters to increase too fast and reduces
the probability of false positives even further. The technique is applicable to the
low-pass filters. The value v in (1) is set appropriately at each stage just in the
same way as it would be with simple counters.

5 Experiments

To check correctness of the algorithm, we have implemented a simple random
item generator that could generate a sequence of random items with a custom
defined frequency distribution. Generated sequences of items were given to the
input of our frequent event mining algorithm implementation. The process lasted
until several millions of items were analysed and at the end the frequent category
set was printed out. We also measured the maximum size rmax of the frequent
set during the program execution and calculated statistics of filter state values
in the sketch.

At first we checked if the algorithm was properly implemented and if it really
detected frequent categories. The Zipf distribution with exponents s ∈ {1, 2}
were used. The categories were given a rank so that the most frequent had
the rank 1, and the last had the rank N . The program printed out only the
first few categories from the set, so we concluded it worked. By setting various
parameters, we observed how the sizes of the frequent set changed. For some
settings, we could notice some false positives - the categories with very high
ranks, which could not become frequent by accident. Some results are shown in
Table 1. Every repetition of the program run with same settings did not provide
same results every time. Though the first items were always the same, various
categories were reported as the categories with the lowest frequencies. This was
due to the random character of the test. Because the most recent history of the
stream has a high importance in our solution, a generally infrequent item could
cross the threshold only for some time near the end of the experiment and be
reported as a frequent one. This was proved by reporting the times, when the
categories were added to the frequent set. The least frequent reported items were
usually added just near the end of the experiment, while the most frequent ones
– just after the beginning.
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Table 1. Sample results of the test program, n = 5× 106, N = 106, fmax = 1000 Hz,
τ = 100 s

s fthr[Hz] m M rmax result

1 10.0 1000 5 7 (1, 2, 3, 4, 5, 6, 7)
1 5.0 1000 5 15 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
1 2.0 1000 5 37 (1, 2, 3, . . . , 24, 26, 25, 27, 28, 30, 29, 32, 31, 33)

1 5.0 250 2 57 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
1 5.0 500 3 14 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)
1 5.0 1500 5 15 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

2 2.0 200 2 19 (1, 2, 3, . . . , 9, 10, 11, 12, 13, 14, 15, 16, 17)
2 1.0 200 2 26 (1, 2, 3, . . . , 17, 18, 19, 20, 21, 22, 23, 25

(a) s = 1

(b) s = 2

Fig. 2. Probability distribution of false positives obtained for a Zipf distribution of
categories, for different sizes of the sketch, n = 5 × 106, N = 106, M = 5, fmax =
1000 Hz, fthr = 1 Hz, τ = 100 s

We have also investigated, how the values of certain parameters affect the
results. Probabilities of false positives were estimated basing on the final state
of the sketch (Fig. 2). As presumed, the probability of adding an infrequent
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category with a frequency only a little lower than the threshold is very high, but
below some level drops very quickly. Thus the algorithm is especially well suited
for distributions, where the number of items with very low frequencies can be
huge. The more memory is available for the sketch, the less false positives can
slip into the result. We observed a very interesting behaviour when changing
the number of stages for the fixed sketch size (Fig. 3). The number of stages
set too low may cause that, for the large values of N , the expected value of the
number of reported infrequent categories may be high. The probability may not
fall enough quickly to compensate the increasing number of categories with low
frequencies. On the other hand, setting this number too high may cause that
the real frequency threshold may be located far below the original, intended by
the user. Note that though the probability is very high above this threshold, in
general there is no guarantee it will be equal to 1.
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Fig. 3. Probability distribution of false positives obtained for a Zipf distribution of
categories, for different number of stages, s = 1, n = 5 × 106, N = 106, m = 5000,
fmax = 1000 Hz, fthr = 1 Hz, τ = 100 s

In the end we checked how the result set adapts to the frequency distribution
changes over time. The test program significantly lowered the probability of
items of one of the frequent categories after a half of iterations. It caused that
category to become infrequent. The program correctly removed that category
from the frequent set after some time, usually slightly exceeding τ . The same
experiment was made with adding a new frequent item. In this case a new item
was detected faster.

6 Conclusions

The experiments proved our improved version of the multistage filtering
algorithm to work correctly. The algorithm gained ability to give stable re-
sults at any time while still using very little memory just as in the original
algorithm described by Estan et al. [7]. Though it does not implement a standard,
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sharp-edged sliding window behaviour, the fuzzy, exponential window seems to
be useful wherever there is a need to continuously monitor the frequent item set.

We think the modified algorithm is capable of being implemented in hardware,
with small static associative memory, and can be employed to analyze network
traffic at very high data rates, without a need for data packet sampling [11].
The exponential function in the low-pass filter would not be a problem, while
good fast hardware implementations exists [12]. Unfortunately, we did not have a
possibility to implement our ideas in hardware, so this remains an open research
problem.
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Abstract. Outliers, defined as data samples markedly different from the
rest of their kind, play an important role in modern pattern recognition
and data analysis systems. Outlier treatment usually invokes reasoning
about the unknown (irregular) using concepts and features pertaining to
the known (regular) samples, naturally requires tools for handling un-
certainty or ambiguity, incorporates multi-layered approximate reasoning
structures, and often relies on an external background knowledge source.
Granular Computing and Rough Set theories provide excellent methods
and frameworks for such tasks. In this article, we discuss methods for the
detection and evaluation of outliers, as well as how to elicit background
domain knowledge from outliers using multi-level approximate reasoning
schemes.

Keywords: Outlier, granular computing, rough set, approximate rea-
soning, concept approximation.

1 Introduction

Conceptually, outliers/exceptions are kind of atypical samples that stand out
from the rest of their group or behave very differently from the norm [1]. These
samples previously would usually be treated as bias or noisy input data and
were frequently discarded or suppressed in subsequent analyses. However, the
rapid development of Data Mining, which aims to extract from data as much
knowledge as possible, has made outlier identification and analysis one of its
principal branches. Dealing with outliers is crucial to many important fields
in real life such as fraud detection in electronic commerce, intrusion detection,
network management, or even space exploration.

Most popular measures to detect outliers [4] are based on either probabilistic
density analysis [2] or distance evaluation [8]. Knorr made an attempt to elicit
intensional knowledge from outliers through the analysis of the dynamicity of
outliers’ set against changes in attribute subsets [7]. However, no thorough model
or scheme for the discovery of intensional knowledge from identified outliers has
been established. In particular, there is almost no known attempt to develop
methods for outlier analysis amongst structured objects, i.e. objects that display
strong inner dependencies between theirs own features or components. Perhaps
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the reason for this is the fact that while many elaborated computation models
for the detection of outliers have been proposed, their effective use in eliciting
additional domain knowledge, as well as the elicitation of intensional knowledge
within outliers, is believed difficult without support of a human expert.

In this paper, we propose a framework for outlier detection and analysis based
on the Granular Computing paradigm, using tools and methods originated from
Rough Set and Rough Mereology theories. The process of outlier detection is
refined by the evaluation of classifiers constructed employing intensional knowl-
edge elicited from suspicious samples. We show the role of an external domain
knowledge source by human experts in outlier analysis, and present methods for
the successful assimilation of such knowledge.

2 Ontology Matching and Knowledge Elicitation

A typical machine learning system attempts to build a data model that fits
a provided training sample collection. This model constructing process can be
facilitated with additional domain knowledge, most typically provided by an
external human expert, about the samples. The knowledge on training samples
that comes from an expert obviously reflects his perception about the samples.
The language used to describe this knowledge is a component of the expert’s
ontology which is an integral part of his perception. In a broad view, an ontology
consists of a vocabulary, a set of concepts organized in some kind of structures,
and a set of binding relations amongst those concepts [3]. We assume that the
expert’s ontology when reasoning about complex structured samples will have
the form of a multi-layered hierarchy, or a lattice, of concepts. A concept on
a higher level will be synthesized from its children concepts and their binding
relations. The reasoning thus proceeds from the most primitive notions at the
lowest levels and work bottom-up towards more complex concepts at higher
levels.

2.1 External Knowledge Transfer

The knowledge elicitation process assumes that samples, for which the learn-
ing system deems it needs additional explanations, are submitted to the expert,
which returns not only their correct class identity, but also an explanation on
why, and perhaps more importantly, how he arrived at his decision. This expla-
nation is passed in the form of a rule:

[CLASS(u) = k] ≡ :(EFeature1(u), ..., EFeaturen(u))

where EFeaturei represents the expert’s perception of some characteristics of
the sample u, while synthesis operator : represents his perception of some re-
lations between these characteristics. In a broader view, : constitutes of a rela-
tional structure that encompasses the hierarchy of experts’ concepts expressed
by EFeaturei.
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The ontology matching aims to translate the components of the expert’s on-
tology, such as EFeaturei and binding relations embedded in the : structure,
expressed in the foreign language Lf , into the patterns (or classifiers) expressed
in a language familiar to the learning system, e.g:

– [FaceType(Ed) = ‘Square′] ≡(Ed.Face().Width - Ed.Face().Height) ≤ 2cm
– [Eclipse(p)=‘True′]≡(s=p.Sun())∧(m=p.Moon())∧(s∩m.Area≥ s.Area·0.6)

As the human perception is inherently prone to variation and deviation, the
concepts and relations in a human expert’s ontology are approximate by design.
To use the terms of granular computing, they are information granules that
encapsulate the autonomous yet interdependent aspects of human perception.
The matching process, while seeking to accommodate various degrees of variation
and tolerance in approximating those concepts and relations, will follow the same
hierarchical structure of the expert’s reasoning. This allows parent concepts to be
approximated using the approximations of children concepts, essentially building
a layered approximate reasoning scheme. Its hierarchical structure provides a
natural realization of the concept of granularity, where nodes represent clusters of
samples/classifiers that are similar within a degree of resemblance/functionality,
while layers form different levels of abstraction/perspectives on selected aspects
of the sample domain.

On the other hand, with a such established multi-layered reasoning archi-
tecture, we can take advantages of the results obtained within the Granular
Computing paradigm, which provides frameworks and tools for the fusion and
analysis of compound information granules from previously established ones, in
a straightforward manner. The intermediate concepts used by external experts
to explain their perception are vague and ambiguous, which makes them natural
subjects to granular calculi.

The translation must

– allow for a flexible matching of a variations of similar domestic patterns to
a foreign concept, i.e. the translation result should not be a single patterns,
but rather a collection or cluster of patterns.

– find approximations for the foreign concepts and relations, while preserv-
ing their hierarchical structure. In other words, inherent structure of the
provided knowledge should be intact.

– ensure robustness, which means independence from noisy input data and
incidental underperformance of approximation on lower levels, and stability,
which guarantees that any input pattern matching concepts on a lower level
to a satisfactory degree will result in a satisfactory target pattern on the
next level.

We assume an architecture that allows a learning system to consult a human
expert for advices on how to analyze a particular sample or a set of samples.
Typically this is done in an iterative process, with the system subsequently
incorporating knowledge elicited on samples that could not be properly classified
in previous attempts.
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Fig. 1. Expert’s knowledge elicitation

2.2 Approximation of Concepts

A foreign concept C is approximated by a domestic pattern (or a set of patterns)
p in term of a rough inclusion measure Match(p, C) ∈ [0, 1]. Such measures take
root in the theory of rough mereology [14], and are designed to deal with the
notion of inclusion to a degree. An example of concept inclusion measures would
be:

Match(p, C) =
|{u ∈ T : Found(p, u) ∧ Fit(C, u)}|

|{u ∈ T : Fit(C, u)}|

where T is a common set of samples used by both the system and the expert to
communicate with each other on the nature of expert’s concepts, Found(p, u)
means a pattern p is present in u and Fit(C, u) means u is regarded by the
expert as fit to his concept C.

Our principal goal is, for each expert’s explanation, find sets of patterns Pat,
Pat1,...,Patn and a relation :d so as to satisfy the following quality requirement :

if (∀i : Match(Pati, EFeaturei) ≥ pi) ∧ (Pat = :d(Pat1, ..., Patn))
then Quality(Pat) > α

where pi : i ∈ {1, .., n} and α are certain cutoff thresholds, while the Quality
measure, intended to verify if the target pattern Pat fits into the expert’s concept
of sample class k, can be any, or combination, of popular quality criteria such
as support, coverage, or confidence [15].

In other words, we seek to translate the expert’s knowledge into the domes-
tic language so that to generalize the expert’s reasoning to the largest possible
number of training samples. More refined versions of the inclusion measures
would involve additional coefficients attached to e.g. Found and Fit test func-
tion. Adjustment of these coefficients based on feedback from actual data may
help optimize the approximation quality.
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For example, let’s consider a handwritten digit recognition task:

When explaining his perception of a particular digit image sample, the expert
may employ concepts such as ‘Circle’, ‘Vertical Strokes’ or ‘West Open Belly’.
The expert will explain what he means when he says, e.g. ‘Circle’, by providing
a decision table (U, d) with reference samples, where d is the expert decision to
which degree he considers that ‘Circle’ appears in samples u∈U . The samples in
U may be provided by the expert, or may be picked up by him among samples
explicitly submitted by the system, e.g. those that had been misclassified in
previous attempts.

The use of rough inclusion measures allows for a very flexible approximation
of foreign concept. A stroke at 85 degree to the horizontal in a sample image can
still be regarded as a vertical stroke, though obviously not a ‘pure’ one. Instead
of just answering in a ‘Y es/No’ fashion, the expert may express his degrees of
belief using such natural language terms as ‘Strong’, ‘Fair’, or ‘Weak’.

Fig. 2. Tolerant matching by expert

Table 1. Perceived features

Circle

u1 Strong
u2 Weak
... ...
un Fair

Table 2. Translated features

DPat Circle

u1 252 Strong
u2 4 Weak
... ... ...
un 90 Fair

The expert’s feedback will come in the form of a decision table (See Table 1.):
The translation process attempts to find domestic feature(s)/pattern(s) that

approximate these degrees of belief. Domestic patterns satisfying the defined
quality requirement can be quickly found, taking into account that sample ta-
bles submitted to experts are usually not very large. Since this is essentially a
rather simple learning task that involves feature selection, many strategies can
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be employed. In [11], genetic algorithms equipped with some greedy heuristics
are reported successful for a similar problem. Neural networks also prove suitable
for effective implementation.

Having approximated the expert’s features EFeaturei, we can try to trans-
late his relation : into our :d by asking the expert to go through U and provide
us with the additional attributes of how strongly he considers the presence of
EFeaturei and to what degree he believes the relation : holds. Again, lets con-
sider the handwritten recognition case.(See Tab. 3).

Table 3. Perceived relations

V Stroke WBelly Above

u1 Strong Strong Strong
u2 Fair Weak Weak
... ... ... ...
un Fair Fair Weak

Table 4. Translated relations

#V S #NES Sy < By Above

u1 0.8 0.9 (Strong,1.0) (Strong, 0.9)
u2 0.9 1.0 (Weak, 0.1) (Weak, 0.1)
... ... ... ... ...
un 0.9 0.6 (Fair, 0.3) (Weak, 0.2)

We then replace the attributes corresponding to EFeaturei with the rough
inclusion measures of the domestic feature sets that approximate those concepts
(computed in the previous step). In the next stage, we try to add other features,
possibly induced from original domestic primitives, in order to approximate the
decision d. Such a feature may be expressed by Sy < By, which tells whether
the median center of the stroke is placed closer to the upper edge of the image
than the median center of the belly. (See Tab. 4)

The expert’s perception ”A ‘6’ is something that has a ‘vertical stroke’ ‘above’
a ’belly open to the west’” is eventually approximated by a classifier in the form
of a rule:

if S(#BL SL > 23) AND B(#NESW > 12%) AND Sy < By then CL=‘6’,

where S and B are designations of pixel collections, #BL SL and #NESW are
numbers of pixels with particular topological feature codes, and Sy < By reasons
about centers of gravity of the two collections.

Approximate reasoning schemes embody the concept of information granular-
ity by introducing a hierarchical structure of abstraction levels for the external
knowledge that come in the form of a human expert’s perception. The granular-
ity helps to reduce the cost of the knowledge transfer process, taking advantage
of the expert’s hints. At the same time, the hierarchical structure ensures to
preserve approximation quality criteria that would be hard to obtain in a flat,
single-level learning process.

3 Outlier Identification

As mentioned in Section 1, most existing outlier identification methods employ
either probabilistic density analysis, or distance measures evaluation. Probabilis-
tic approach typically run a series of statistical discordancy tests on a sample to
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determine whether it can be qualified as an outlier. Sometimes this procedure is
enhanced by a dynamic learning process. Their main weakness is the assumption
of an underlying distribution of samples, which is not always available in many
real life applications. Difficulties with their scalability in numbers of samples
and dimensions are also a setback of primary concern. Another approach to out-
lier detection relies on certain distance measures established between samples.
Known methods are data clustering and neighborhood analysis. While this ap-
proach can be applied to data without any assumed a priori distribution, they
usually entails significant computation costs.

Let Ck be a cluster of samples for class k and dk be the distance function
established for that class. For a given cut-off coefficient α ∈ (0, 1], a sample u∗

of class k is considered “difficult”, “hard” or “outlier” if, e.g:

dk(u∗, Ck) ≥ α ·max{dk(v, CK) : CLASS(v) = k}

which means u∗ is far from the “norm” in term of its distance to the cluster
center, or

|{v : v ∈ Ck ∧ dk(u∗, v) ≤ dk(v, Ck)}| ≤ α · |Ck|

which means u∗ is amongst the most outreaching samples of the cluster.

Another popular definition of outlier is:

|{v : v ∈ Ck ∧ dk(u∗, v) ≥ D}| ≤ α · |Ck|

which means at least a fraction α of objects in Ck lies in a greater distance than
D from u∗.

It can be observed that both approaches pay little attention to the problem of
eliciting intensional knowledge from outliers, meaning no elaborated information
that may help explain the reasons why a sample is considered outlier. This kind
of knowledge is important for the validity evaluation of identified outliers, and
certainly is useful in improving the overall understanding of the data. Knorr and
Ng made an attempt to address this issue by introducing the notion strength of
outliers, derived from an analysis of dynamicity of outlier sets against changes in
the features’ subsets [7]. Such analyses belong to the very well established appli-
cation domain of Rough Sets, and indeed a formalization of a similar approach
within the framework of Rough Sets has been proposed by [5].

Our approach to outlier detection and analysis will assume a somewhat dif-
ferent perspective. It focuses on two main issues:

1. Elicitation of intensional knowledge from outliers by approximating the
perception of external human experts.

2. Evaluation of suspicious samples by verification the performance of classi-
fiers constructed using knowledge elicited from these samples.
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Fig. 3. Outlier analysis scheme

Having established a mechanism for eliciting expert’s knowledge as described
in previous sections, we can develop outlier detection tests that are completely
independent from the existing similarity measures within the learning system as
follows:

For a given training sample u∗,
Step 1. We ask the expert for his explanation on u∗.
Step 2. The expert provides a foreign knowledge structure :(u∗).
Step 3. We approximate :(u∗) under restrictive matching degrees to ensure
only the immediate neighborhood of u∗ is investigated. Let’s say the result of
such an approximation is a pattern (or set of patterns) p∗u.
Step 4. It is now sufficient to check Coverage(p∗u). If this coverage is high, it
signifies that u∗ may bear significant information that is also found in many
other samples. The sample u∗ therefore cannot be regarded as an outlier despite
the fact that there may not be many other samples in its vicinity in terms of
existing domestic distance measures of the learning system.

This test shows that distance-based outlier analysis and expert’s elicited
knowledge are complementary to each other.

In our architecture, outliers may be detected as samples that defied previous
classification efforts, or samples that pass the above described outlier test, but
may also be selected by the expert himself. In this way, we can benefit from the
best of both sources of knowledge.

4 Experiments

In order to illustrate the developed methods, we conducted a series of experi-
ments on the NIST Handwritten Segmented Character Special Database 3. We
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compared the performances gained by a standard learning approach with and
without the aid of the domain knowledge. The additional knowledge, passed by
a human expert on popular classes as well as some atypical samples allowed to
reduce the time needed by the learning phase from 205 minutes to 168 minutes,
which means an improvement of about 22 percent without loss in classification
quality. In case of screening classifiers, i.e. those that decide a sample does not
belong to given classes, the improvement is around 60 percent. The represen-
tational samples found are also slightly simpler than those computed without
using the background knowledge.

Table 5. Comparison of performances

No domain knowledge With domain knowledge Gain

Total learning time 205s 168s 22%
Negative classifier learning time 3.7s 2.2s 40%
Positive classifier learning time 28.2s 19.4s 31%

Skeleton graph size 3-5 nodes 2-5 nodes

5 Conclusion

We presented in details an approach to the problem of outlier detection and
analysis in data from a machine learning perspective. We focus on the elici-
tation of intensional knowledge from outliers using additional background in-
formation provided by an external human expert. We described an interactive
scheme for the knowledge transfer between the expert and the learning system,
using methodologies and tools originated from Granular Computing paradigm,
Rough Set and Rough Mereology theories, as well as techniques pertaining to the
approximate reasoning schemes. Proposed approach proves capable to yield ef-
fective implementations and offers a complementary perspective compared with
other existing approaches in the field of outlier detection and analysis.
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Abstract. The identification of appropriate text tokens (words or se-
quences of words representing concepts) is one of the most important
tasks of text preprocessing and may have great influence on the final
results of text analysis. In our paper, we introduce a new approach to
discovering compound nouns, including proper compound nouns. Our
approach combines the data mining methods with shallow lexical anal-
ysis. We propose a simple pattern language for specifying grammatical
patterns to be satisfied by extracted compound nouns. Our method re-
quires annotating the words with part of speech tags, thus to this extent,
it is language-dependent. Based on the data mining GSP algorithm, we
propose T-GSP as its modification for extracting frequent text patterns,
and in particular, frequent word sequences that satisfy given grammatical
rules. The obtained sequences are regarded as candidates for compound
nouns. The experiments have proven very high quality of the method.

Keywords: multiword terms, compound nouns, proper nouns, frequent
word sequences, frequent text patterns, text mining.

1 Introduction

Multiword units are sequences of two or more words which occur together in
text and form syntactic or lexical expression. Multiword units consist of words
that may appear in sentences successively without any gaps, or may be sepa-
rated by one or more words. Several groups of multiword expressions may be
distinguished, namely [11]:

• compound nouns, which represent notions, e.g. “information retrieval”. This
group also includes proper nouns, e.g. “Warsaw University of Technology”.
The expressions belonging to this category have a rigid syntactic structure.

• idioms – expressions, the meaning of which almost never can be derived from
the meaning of the words constituting them. In the case of idioms there is a
little possibility of modifying the syntax.
• collocations – this class consists of associated words, i.e. words that fre-

quently co-occur in text. Usually, it is impossible to replace a term used in
a collocation by its synonym without changing the meaning.
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In many text mining tasks, the proper identification and extraction of text units
may significantly influence the quality or/and usefulness of the final results of the
analysis, where particularly nouns play an essential role. Having only nouns ap-
pearing in a text, one can guess a topic discussed in the text. In the classification
or clustering tasks, a single proper noun could be even a better attribute than
a group of several words belonging to other parts of speech. Hence, proper and
compound nouns are important in building semantic dictionaries or ontologies.

In our paper, we introduce a new approach to discovering compound nouns,
including proper compound nouns. Our approach combines the data mining
methods with shallow lexical analysis. We propose a simple pattern language for
specifying grammatical patterns to be satisfied by extracted compound nouns.
Clearly, the method requires annotating the words with part of speech tags
(POS), thus to this extent, it is language-dependent. Based on the data mining
GSP algorithm [16], we propose T-GSP as its modification for extracting frequent
word sequences that satisfy given grammatical rules. The obtained sequences are
regarded as candidates for compound nouns. The experiments have proven very
high quality of the method.

In Section 2 we overview briefly related work. Our method of discovering
compound nouns is presented in Section 3. The experiments are reported in
Section 4. Section 5 concludes the obtained results.

2 Related Work

The methods for automatic or semi-automatic multiword unit extraction can be
divided into four following categories: syntactical, statistical, syntactic-statistical
and, recently developed, text-mining approaches.

The first category includes methods in which deep morphological analysis of
texts is performed. In order to find multiword expressions, the specific syntactic
structures as noun phrases are identified and investigated. The methods allow
obtaining good results [3, 8], but require highly specialized linguistic procedures,
which makes them strongly language dependent, very time-consuming, and very
difficult for development.

The second category methods are based on purely statistical analysis. The
methods extract multiword terms from text corpora based on regularities dis-
covered from investigated documents. Here, the preprocessing of text documents
is limited merely to the extraction of single terms and splitting text into windows
– text units consisting of a given number of terms and/or sentences. It makes
statistical methods flexible and independent from the domain or language. In
those methods, the sequences of n terms (or n-grams) are generated. Often the
length of n-grams should be restricted, because of (1) the danger of combinato-
rial explosion of sequences, and (2) the evidence that most of the lexical relations
relate words separated by at most 5 other words [15]. For the evaluation of the
found collocations, in addition to the frequency threshold, various additional
measures are applied. In [5], a point-wise mutual information measure was pro-
posed. In [14], the entropy of the nearest context was used for pruning multiword
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units. The method of using synonyms for evaluating the strength of collocations
was introduced in [9]. The ”strength” of a collocation was evaluated based on
a difference between the frequency of the collocation with given word and the
frequency of the collocation in which the word was replaced by its synonyms. In
[15], the two-phase method was presented. In the first stage, the bi-grams are
selected by analyzing the distribution of the frequency of the word collocates
within the 5-words neighborhood in the sentences (appearing both, before, and
after the word). For pruning, the z-score measure was applied. The measure is
computed based on the average frequency and standard deviation of the frequen-
cies. In the second phase, bi-grams found in the phase 1 are expanded to n-grams
by analyzing frequencies of other words in the sentences, in which given bi-gram
appears. The comparison of different approach and measures was presented in
[10, 12].

The third category includes methods in which both, lexical and statistical
analysis are used. The approach in which deep syntax analysis of sentences
and statistical tests are combined is presented in [13]. In the method, the bi-
grams are extracted, based on the robust syntactic parser and then n-grams
are incrementally generated from already obtained n-grams. The elimination of
non-interesting collocations is performed based on the statistical test of log-
likelihood ratios. In [7], the system that combines the shallow lexical analysis
(part of speech tagging) and statistical methods is described. In the method, the
positional n-grams are extracted from the 7 word size window context. Both,
word n-grams and part-of-speech tagged n-grams are generated. The combina-
tion of mutual expectation measures concerning the word n-grams and tagged n
grams are used for pruning insufficiently cohesive collocations.

The methods belonging to the fourth category involve data and text mining
techniques. In [3], the problem of extracting compound nouns was investigated.
The authors described a structure of company names in the form of a regular
expression, then extracted three categories of elements creating such names,
and prepared rules allowing the classification of a term to a proper category.
The rules were annotated by the following tags: capital or lower case, and the
category. The extraction of names were performed in two phases: (1) learning
from the annotated terms, (2) using a pattern and extracted terms for generating
names of companies. In [1, 2], methods for discovering frequent sequences have
been adapted to discovering frequent word sequences. The authors described the
representation of text documents to be used by the method, and provided the
algorithms for discovering maximal frequent word sequences.

In our paper, we propose a new approach for extracting compound and proper
compound nouns, which is also based on the data mining approach. However,
we have attempted to make it with a simpler and more efficient approach, by
combining efficient data mining algorithms with a shallow lexical analysis. We
have adopted the GSP algorithm, which seemed to be appropriate for many text
mining tasks. The main goal was to adopt GSP to extract compound (proper)
nouns. We prove in the paper that it allows obtaining results of very high quality
in a reasonable amount of time.
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3 Proposed Approach

We start the presentation by recalling basic notions of discovering generalized
sequential patterns from data sequences [16]. Each data sequence is an ordered
list of transactions. Originally, any transaction consists of a set of items, and a
transaction time (or index). A sequence is a list of sets of items. We say that
a data sequence D supports a sequence S, if S occurs in D. If sequence S is
supported by more data sequences than a predefined threshold, it is called fre-
quent. In [16], it is alternatively called a sequential pattern. In [16], the authors
generalize this notion by introducing time constraints and taxonomies.

3.1 Frequent Text Patterns

One can view a text as a special source of sequential patterns, from which fre-
quent patterns of interest could be extracted. We expect that such frequent pat-
terns could be a base for discovering compound and proper compound nouns.
In the sequel, we present our framework for discovering such nouns by means of
frequent text patterns.

Let W = {w1, . . . , wm} be a set of words (or tokens) w1, . . . , wm, and TW be
a set of taxonomies defined over W . A word sequence s =< v1, . . . , vk >, where
vi ∈W , is a list of words v1, . . . , vk. A given word may occur more than once in
a word sequence. A text pattern tp =< s1, . . . , sl > is a list of word sequences
s1, s2, . . . , sl. In our paper, we treat a sentence as a word sequence, and text
repository, as a set of sentences.

Given a word sequence, one can calculate a distance between words in the
sequence. The distance between two words w1 and w2 in sequence s, denoted as
dists(w1, w2), is defined as the number of words between w1 and w2 in s.

Example 1. Let us consider a sequence <It is very interesting problem>, re-
ceived from a text by removing articles and punctuation marks. The distance
between the words “It” and “interesting” is equal to 2, and the distance between
“is” and “very” equals 0.

A word v precedes w, denoted by v ≥ w, if the words are the same or v is an
ancestor of w in the taxonomy TW . Complementary, w is preceded by v, denoted
by w ≤ v, if the words are the same or w is a successor of v in the taxonomy
TW . We say that a word sequence s1 =< w1, . . . , wm > contains a word sequence
s2 =< v1, . . . , vn >, denoted as s1 ⊆ s2, if there are integers i1 < . . . < in such
that w1 ≤ vi1, . . . , wn ≤ vin. A text pattern tp1 =< s1

1, . . . , s
1
m > contains a

text pattern tp2 =< s2
1, . . . , s

2
n > (without constraints), if there are integers

i1 < . . . < in, such that s2
1 ⊆ s1

i1
, . . . , s2

n ⊆ s1
in

.
We say that a document d supports a text pattern tp, if d contains tp. If tp is

supported by more documents than a predefined threshold, it is called frequent.
Table 1 summarizes equivalence between the basic notions of data patterns as
defined in [16] and text patterns.

Now, we introduce time constraints for a frequent text pattern, namely window
size, min-gap, max-gap and maxWord-gap. The meaning of these parameters is
presented in Table 2.
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Table 1. Frequent data patterns versus frequent text patterns

Frequent data pattern Frequent text pattern

item word
transaction – set of items sentence – list of words
data sequence – list of transactions document (or paragraph) – list of sentences
data set – set of data sequences text repository – set of documents

Let us note that maxWord-gap was not used in [16]. Formally, maxWord-gap
constraint can be expressed as follows: the sentence snt =< w1, w2, . . . , wm >
contains a word sequence s =< v1, v2, . . . , vn >, if there are integers i1 < . . . < in
such that w1 ≤ vi1 , . . . , wn ≤ vin , and distsnt(wi, wi+1) ≤ maxWord − gap,
1 ≤ i ≤ n− 1.

Example 2. Let us consider a sentence snt =<It is very interesting problem>.
Let maxWord-gap be set to 1, and s=<is problem>. As distsnt(is, problem) = 2,
which is greater than maxWord-gap, so snt does not contain s.

In the generalized framework, we say that a document d =< snt1, . . . , sntm >
supports a text pattern tp =< s1, . . . , sn >, if the constraints imposed on
window-size, max-gap, min-gap, maxWord-gap for d and tp are fulfilled.

In the sequel, we focus on discovering compound nouns, including proper
compound nouns. As candidates for such nouns we consider each frequent text
pattern consisting of exactly one word sequence.

Table 2. Time constraints for frequent text patterns, wrt document d

Name of parameter Description

window-size It indicates the maximum number of sentences in d in which a
given word sequence, being a part of a frequent pattern, should
be present.

max-gap This constraint is posed on every two consecutive word se-
quences s1 and s2 of a frequent text pattern. It is satisfied for
s1 and s2 in d, if maximal number of sentences in d between
sentences containing s1 and s2, respectively, does not exceed
max-gap.

min-gap This constraint is also posed on every two consecutive word se-
quences s1 and s2 of a frequent text pattern. It is satisfied for
s1 and s2 in d, if minimal number of sentences in d between
sentences containing s1 and s2, respectively, exceeds min-gap.

maxWord-gap It defines a maximal gap between two consecutive words in a
word sequence s being a part of a frequent text pattern. A sen-
tence snt in d contains s, if snt includes all the words from s,
and the number of words between any two consecutive words in
s within snt is less than maxWord-gap.
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3.2 Grammatical Patterns

A large number of frequent text patterns may be of little or no interest to users. In
this section, we propose particular templates for specifying required properties
of word sequences in the text patterns of interest. The templates we propose
have a form of grammatical patterns specifying allowed parts of speech of words
at each position of word sequences. We call a grammatical pattern a sequence
gp =< POS1, . . . , POSn >, where POSi = {posi1, . . . , posik} is a non-empty
set of parts of speech posi1, . . . , posik.

A word sequence s meets a grammatical pattern gp, if for each word wi in s,
the part of speech of pos(wi) ∈ POSi.

Example 3. Let us consider the grammatical pattern < {noun}, {preposition},
{noun} >. The word sequence: <element of car> supports the specified pattern,
whereas the word sequence: <house has roof> does not, because ”has” is not a
preposition.

We say that a sentence snt =< w1, w2, . . . , wm > supports the grammatical
pattern gp =< POS1, POS2, . . . , POSn >, if there is at least one word sequence
contained in snt that meets gp.

Grammatical patterns are useful for finding compound (proper) nouns. Many
compound (proper) nouns consist of only nouns and a preposition, e.g. phrases:
“Warsaw University of Technology” and “Warsaw School of Economics” meet
the pattern: < {noun}, {noun}, {preposition}, {noun} >. The usage of gram-
matical patterns, not only limits the number of discovered text patterns to those
of interest, but also makes the process of finding interesting word sequences much
more efficient in terms of time and quality of discovered compound (proper)
nouns.

In general, the word sequences constituting compound (proper) nouns occur
one by one in texts. Usually, there are no other words (gaps) between them, or
there is at most one word. Let us consider the sentence snt = “In Warsaw, in
the buildings belonging to University there are auditoria with audio-visual equip-
ment of advanced technology”, the grammatical pattern gp =< {noun}, {noun},
{preposition}, {noun} >, and the proper noun pn = “Warsaw University of
Technology”. Clearly, pn is a word sequence that is contained in snt and meets
gp. This means that snt supports pn, although pn does not follow from snt
logically. The reason of the incorrect reasoning was lack of a restriction on the
distance between consecutive words in pn.

In order to avoid such situations, we extend grammatical patterns with a
constraint specifying maximal gaps that are allowed between two words in a
sentence, and incorporate this modification into the definition of a support. The
modified definitions of a grammatical pattern and support are as follows:

We call a grammatical pattern a pair [P,G], where P =< POS1, POS2, . . . ,
POSn >, where POSi is a non-empty set of allowed parts of speech, and G =
{max gap1,max gap2, . . . ,max gapn−1}, where max gapi is a number greater
than or equal to 0, i = 1..n− 1.
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A sentence snt =< w1, w2, . . . , wm > supports the grammatical pattern gp =
[P,G], where P =< POS1, POS2, . . . , POSn >, G={max gap1,max gap2, . . . ,
max gapn−1}, if there are integers i1 < i2 < . . . < in, such that pos(wi1) ∈
POS1, . . . , pos(win) ∈ POSn, where wij ∈ snt, pos(wij) is the part of speech of
wij , and distsnt(wij , wij+1) ≤ max gapij , 1 ≤ j ≤ n− 1.

3.3 Algorithm

In order to discover frequent text patterns, the word sequences of which satisfy
the imposed grammatical patterns, we devised and implemented a T-GSP algo-
rithm (Text Generalized Sequential Patterns algorithm). T-GSP is based on the
widely known GSP algorithm. The basic idea is the same in both algorithms:
the sequences consisting of n-elements are generated from previously found se-
quences of n−1 elements. However, the adaptation to dealing with text resulted
in the incorporation of the following novel patterns constraints:

• the maxWord-gap parameter,
• grammatical patterns.

The application of grammatical patterns causes that the frequency of word
sequences is not monotonic unlike the frequency of sets of items. For instance,
the word sequence <University, Technology> may be infrequent (due to non-
fulfillment of the grammatical restrictions), but the sequence <University, of,
Technology> may be frequent. Hence, the pruning of candidate patterns in T-
GSP is not based anymore on frequency, but is based on part of speech tags
included in grammatical patterns. In general, T-GSP enables discovering of a
general text structure in the form of frequent text patterns, composed of many
word sequences. However, in this work, we concentrate on applying T-GSP for
discovering compound (proper) nouns, as one word sequence frequent text pat-
terns. For this purpose a special processing mode is available in our implemen-
tation of T-GSP.

4 Experiments

The main objective of the performed experiments was to verify the proposed data
mining framework of discovering frequent text patterns from the point of view
of automatic acquisition of compound (proper) nouns. In the tests performed,
we looked for word sequences satisfying grammatical patterns which occur in
single sentences of documents, i.e. window-size was set to 1. As an input data,
we used documents from the Reuters repository, as well as, the scientific pa-
pers documents devoted to text mining and ontologies. The granularity for the
experiments was set to the paragraph, i.e. any paragraph was considered as a
document. The rationale behind using such a granularity for both repositories
was as follows:

• Usually, compound (proper) nouns appear in few documents, but even if
they appear in one document, they may appear in several paragraphs.



512 G. Protaziuk et al.

• In the case of scientific papers, we encountered the following problems: for
low values of the minimal support, almost each sequence consisting of fre-
quent words is frequent; for high values, few frequent sequences are discov-
ered. Using paragraphs alleviated the problem.

4.1 Applied Grammatical Patterns

In the experiments, we looked for compound (proper) nouns by means of gram-
matical rules comprising only nouns and nouns with one preposition. In partic-
ular, we have applied the following grammatical patterns:

A. Including only nouns:
• gp1 = [< {noun}, {noun} >,< 0 >] – searching for two consecutive nouns

e.g. “Newcastle United”,
• gp2 = [< {noun}, {noun}, {noun}>,< 0, 0 >] – searching for 3 consecutive

nouns, e.g. ”information extraction system”.

B. Including nouns and a preposition:
1. searching for phrases such as: “Institute of Research” with three various

specifications of gaps between the preposition and noun.
• gp3 = [< {noun}, {preposition}, {noun}>,< 0, 0 >],
• gp4 = [< {noun}, {preposition}, {noun}>,< 0, 1 >],
• gp5 = [< {noun}, {preposition}, {noun}>,< 0, 2 >].
2. searching for phrases such as: ”Warsaw University of Research” with two

various specifications of gaps between the words.
- gp6 = [< {noun}, {noun}, {preposition}, {noun}>,< 1, 0, 1 >],
- gp7 = [< {noun}, {noun}, {preposition}, {noun}>,< 2, 0, 2 >].

4.2 Results

In the first group of experiments, we applied the grammatical patterns gp1
and gp2. As a result, we obtained valuable compound proper nouns, inter alia
“President Bill Clinton”, “Eastern Europe”, “Columbia Pictures”, as well as,
compound nouns, e.g. “carbon dioxide”, “credit card”, or “information retrieval
system”. We also obtained, unfortunately, sequences, which are rather not good
candidate of a compound noun, e.g. “http www” or “colonial rule”. However, the
precision factor was very high, reaching 90%.

In the second group of tests, we have used grammatical patterns gp3, gp4, and
gp5. In the Reuters repository, we discovered the proper nouns, such as “Bank of
Japan”, “Union of Kurdistan”, “Republic of China”, as well as, common phrases,
such as “thousands of people”, “end of year”, or a bit more specialized notions,
like “barrels of oil”, or “rate of percent”. In the case of the scientific papers repos-
itory, we found many proper nouns (or parts of them) e.g. “Workshop on Log-
ics”, “University of Maryland”, “Conference on Artificial”, as well as, multiword
terms, sometimes very specific, e.g.: “structures of ontologies”, “specification of
conceptualization”, or “understanding of domain”.
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In the last group of the experiments, we applied the grammatical patterns
gp6 and gp7. The application of those patterns for investigating the Reuters
documents resulted mainly in finding the proper nouns, e.g. “Daiwa Institute of
Research”, or “Patriotic Union of Kurdystan”. Also some multiword terms were
found, e.g. “box office during Friday”.

The outcome of the experiment on the scientific papers repository mainly
consisted of parts of names of: (1) conferences e.g.: “International Conference
on Learning”, “National Conference on Artificial”, (2) publications e.g.: “Pro-
ceedings Workshop on Ontology”, “Lecture Notes in Computer”, (3) titles of the
papers or some text units within the papers, like “Formal Ontology in Systems”,
“Taxonomic Relations from Web”. This results from a standard form of the pa-
pers, as they all include lists of references, and many positions are common for
several lists. However, apart from finding such obvious examples, quite a number
of good candidates for compound nouns were also indicated, e.g.: “acquisition hy-
ponyms from text”, “core system for german”. The numbers of compound nouns
found for applied grammatical patterns are shown in Table 3.

Table 3. Quantitative description of the experiments

Experiment Input Minimal Grammatical No. of discovered compound
data support patterns (proper) nouns

Exp1.1 RPar 7 gp1, gp2 563

Exp1.2 RDoc 5 gp1, gp2 744

Exp1.3 PPar 4 gp1, gp2 1406

Exp2.1 RPar 7 gp3 37
gp4 67
gp5 77

Exp2.2 RDoc 5 gp3 61
gp4 99
gp5 137

Exp2.3 PPar 4 gp3 158
gp4 402
gp5 529

Exp3.1 RPoc 7 gp6 13
gp7 21

Exp3.2 RDoc 5 gp6 20
gp7 33

Exp3.3 PPar 4 gp6 57
gp7 101

RPar – paragraphs extracted from the Reuters documents, RDoc – the Reuters
documents, PPar - paragraphs extracted from the scientific papers.

5 Conclusions

We presented a new approach to extracting compound (proper) nouns. In our
method, we combined a shallow lexical analysis with the data mining methods,
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which allowed us to discover frequent text patterns. We have introduced a sim-
ple, yet flexible, way of specifying requirements on word sequences in the form
of grammatical patterns. With templates defining allowed parts of speech, we
were able to extract good candidates for compound (proper) nouns in a very
effective, and efficient, manner with our T-GSP algorithm. The presented exper-
imental results related to the discovery of compound (proper) nouns, however,
by means of other grammatical rules, and/or the other algorithm parameters,
the method enables discovering of other categories of collocations and the doc-
ument structure. The usefulness of the proposed framework will be subject to
further research investigations of the team.
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Abstract. Synonymy has been of high importance in information re-
trieval and automatic indexing. Recently, in the view of special needs for
domain ontology building and maintenance, the problem returns with a
higher demand. In the presented paper, we present a novel text mining
approach to discovering synonyms or close meaning terms. The offered
measures of closeness of terms (or their contexts) are expressed by means
of data mining notions; namely, frequent termsets and association rules.
The measures can be calculated by using data mining techniques, such as
the well known Apriori algorithm. The approach is domain-independent
and large-scale. It is, however, restricted to the recognition of parts of
speech. In that sense the approach is language dependent, up to the
language dependency of the parts of speech tagging process. The exper-
imental results obtained with the approach are presented.
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1 Introduction

One can distinguish two main approaches in extracting semantic information
from text corpora – knowledge-rich and knowledge-poor ones, according to the
amount of knowledge they presuppose [6]. Knowledge-rich approaches require
some sort of previously built semantic information, domain-dependent knowl-
edge structures, semantic tagged training copora, or semantic dictionaries, the-
sauri, ontologies, etc. (see e.g. [9], [17]). This requirement is the main limitation
in using these approaches. There is therefore a need for finding a knowledge-
poor methodology that would give satisfactory results, especially for the cases
of limited lexical resources.

In this context, the role of using text mining techniques for discovering se-
mantic information from text corpora has been widely recognized (see e.g. [13],
[2], [16], [8], [4]). One of the important fields of applications is to use the TM
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methodology (text mining methodology) for building and maintaining ontologies
([13], [2], [16]).

In the paper, we continue research in this direction. We concentrate on veri-
fying and proving usefulness of text mining approach for discovering synonyms.
The work presented here is a part of an industrial project for France Telecom.
The goal is to develop a text mining platform supporting domain specialist in
building and maintaining ontologies. In particular, a dedicated platform has
been built in order to verify novel TM algorithms in discovering synonyms, and
homonyms, taxonomy relationship, compound term, and association relation-
ships between terms.

For high importance of synonymy in information retrieval and automatic in-
dexing, the problem of automatic discovering synonyms was a subject of research
already in sixties of the last century ([3], [14], [10]). Recently, in the view of spe-
cial needs for domain ontology building and maintenance, the problem returns
with a higher demand.

In the presented paper, we present a novel text mining approach to discovering
close meaning terms. The approach is domain-independent and large-scale. It
uses basic notions of data mining techniques, such as finding frequent termsets,
based on the well known Apriori algorithm [1]. The approach can be classified
as knowledge-poor, though we use shallow text analysis. It is restricted to the
recognition of parts of speech (POS). In that sense the approach is language
dependent, up to the language dependency of the POS tagging process.

The rest of the paper is organized in the following manner. Section 2 briefly
presents the main idea of the approach. In Section 3, the discovering procedure
is described in details. Then, in Section 4, we discuss the results obtained with
the approach. Section 5 concludes the paper.

2 Basic Idea and Concepts

The idea of discovering synonyms from text corpora presented in early papers
(e.g. [14], [10]) was based on viewing language as a statistical phenomenon, and
the aim was to define quantitatively measures of associations between words
(alternatively, between the searching terms) using some function of the frequency
with which words occur or co-occur within a document collection. To an extent,
similar assumptions lie behind the text mining approach. As the results reported
in [10] were satisfactory, we have decided to analyse how we can improve the
approach using nowadays text mining methods.

In [10], the authors dealt with the derivation of a statistical measure of a
relationship expressing the meanings “equivalent” or “contrary”, thus enabling
them to build pairs of the terms being synonyms, antonyms, but also related
by means of the relationships “broader-narrower”. The statistical measures of
synonymy described in [10] are based on the following hypothesis:

Hypothesis 1: If two terms are synonymous, then they very infrequently, or
never, co-occur in the same sentence, but they tend to have similar contexts in
their separate occurrences.
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This general and intuitive rule will be also applied in our approach. The
main difference though is in defining the notion of context of two terms, and the
measures of their similarities. Another essential difference, nota bene resulting
from the notion of context, is in using the well known Apriori algorithm [1].

Now let us introduce basic definitions that will show how the approach relates
to the standard data mining task. We see a text corpus as a set T of information
units. An information unit is a set of terms. The more definitive notion of the
information unit depends on the granularity level of the text mining process.
In the implemented platform such a unit can be a set of terms extracted from
a sentence or a set of terms extracted from a paragraph or else a set of terms
extracted from a document. For the process of synonymy discovering, we accept
sentence as the granularity level. Depending on the context, in the sequel the
notion of a sentence will be used either as a set of terms, as extracted from a
grammatical sentence or just as a grammatical sentence.

Let dictionary D = {t1, t2, . . . , tm} be a set of distinct literals, called terms.
In general, any set of terms is called a termset. A termset consisting of k terms
will be called k-termset. So, the set T is a set of sentences, where each sentence
s is a set of terms such that s ⊆ D. An association rule is an expression of the
form:

X → Y, where ∅ �= X,Y ⊂ D and X ∩ Y = ∅.
Statistical significance of a termset X is called support and is denoted by sup(X).
sup(X) is defined as the percentage of sentences in T that contain X . Statistical
significance (support) of a rule X → Y is denoted by sup(X → Y ) and is defined
as follows:

sup(X → Y ) = sup(X ∪ Y ).

Additionally, an association rule is characterized by confidence, which expresses
its strength. The confidence of an association rule X→Y is denoted by conf(X→
Y ) and is defined as follows:

conf(X → Y ) = sup(X → Y )/sup(X).

We postulate that only those two terms (compound or single words) X and Y are
likely to be synonyms if they are frequent in T , but do not co-occur frequently
together; that is

sup(X) > minSup1, sup(Y ) > minSup1 and sup(XY ) ≤ minSup2,

where minSup1 is used to define meaningful terms, whereas minSup2 is used to
define infrequent pairs of terms as candidates for synonymy checking. The pos-
tulate above can be considered as a particular interpretation of Hypothesis 1.

Moreover, by Hypothesis 1 we expect that similar terms should occur in sim-
ilar contexts. We introduce the definition of a context of the termset X , denoted
by context(X), by means of all frequent termsets being proper supersets of X
as follows:

context(X) = {Z\X | X ⊂ Z ∧ sup(Z) > minSup1}.
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In our approach, the necessary condition for similarity of two terms is non-
emptiness of the intersection of their contexts. In the sequel, we denote the
common context of X and Y by CC(X,Y ), i.e.:

CC(X,Y ) = context(X) ∩ context(Y ).

We define context similarity measure for two termsets X and Y , denoted by
CSIM(X,Y ) as follows:

If context(X) ∩ context(Y ) = ∅, then CSIM(X,Y ) = 0, otherwise

CSIM(X,Y ) =
| CC(X,Y ) |

| context(X) ∪ context(Y ) | .

CSIM(X,Y ) can be understood as a normalized measure of the intersection of
the contexts of X and Y .

Let us look closer at the notions above by considering an example. Given
terms student, capital, rector, lecturer, professor we find out frequent termsets
and receive the following contexts:

Contex(student) = {{warsaw}, {university}, {warsaw, university}, {exams}, {passed},
{passed, exams}}
Contex(capital) = {{warsaw}, {university}}
Contex(rector) = {{warsaw}, {university}, {warsaw, university}}
Contex(lecturer)= {{warsaw},{university},{warsaw,university},{exams},{performed},
{performed, exams}}
Contex(professor)={{warsaw},{university},{warsaw,university},{exams},{performed},
{performed, exams}}

As one can see, the definition of the context by means of frequent termsets
influences the similarity measure, as we take into account not only single terms,
but also termsets (n-grams), which results in essential differentiating contexts of
some pairs, see e.g. the pairs ({rector}, {capital}) or ({professor}, {student}).
One can note that the context definition in [10] is based on frequent co occur-
rences of pairs, instead of frequent termsets.

The measure CSIM expresses not only synonymy, because the similarity of
two contexts may occur also for such relationships like broader-narrower or
category-instance. In particular, if X and Y are related by the relationship
broader-narrower or category instance, we will probably have context(X) ⊂
context(Y ), which still gives CSIM = 1.

If, on the other hand, a term (termset) X is a homonym, but one of its mean-
ings is close to the meaning of the term (termset) Y , we may have CC(X,Y ) �= ∅,
and CSIM 9 1. Even more complicated may be a case when X and Y are
both homonyms. For this case, we may still expect that if CC(X,Y ) �= ∅, it
is that part of the contexts where the meanings of X and Y could be similar,
whereas context(X)\CC(X,Y ) and context(Y )\CC(X,Y ) refer to other mean-
ings. Therefore, we additionally check, if the confidences of the rules X → Z
and Y → Z, Z ∈ CC(X,Y ), are similar. If so, presumably X and Y are inter-
changeable within their common context CC(X,Y ). To this end, we introduce a
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measure which reflects association similarity of X and Y relative to the common
context.

Association similarity measure: If there is no Z ∈ CC(X,Y ) such that
|Z| > 1, then ASIM(X,Y ) = 0, otherwise

ASIM(X,Y ) =

∑
Z∈CC(X,Y )

(SConf(X → Z, Y → Z))

∑
Z∈CC(X,Y )

| Z |

where

SConf(X → Z, Y → Z) = min
(
conf(X → Z)
conf(Y → Z)

,
conf(Y → Z)
conf(X → Z)

)
.

As one can notice, if there many rules X → Z and Y → Z, Z ∈ CC(X,Y ), with
similar confidences, the measure ASIM(X,Y ) tends to 1.

The usefulness of the introduced measures has been verified experimentally.
All the experiments have been performed on the text mining platform TOM
that has been implemented within the project. The platform uses a variety of
open source software. In the next section, we describe the particular processing
phases in more detail.

3 Discovering Procedure

Text preprocessing phase
The TOM platform provides options to define the granularity of the text mining
process. In particular, TOM allows viewing the whole corpus as a set of docu-
ments, paragraphs or sentences. For the experiments of discovering synonyms,
we set the granularity at the sentence level. Thus, the first step was to generate
a set of sentences from all the documents in the repository. It means that the
context of particular terms is restricted to the sentences.

Then we have used the Hepple tagger [7] for part-of-speech tagging of the
words in the sentences. In TOM, the tagger is a wrapped code of the Gate part
of speech processing resource [5]. As we seek for close terms within the same
part of speech classes (verbs with verbs, nouns with nouns, etc.), we carry out
the POS tagging step. Additionally, special filters can be used to filter out some
parts of speech from all the sentences. For the synonymy discovering, we remove
only stop words (adverbs, articles, prepositions).

Conversion into “transactional database”
The next step is to convert the text corpora into “transactional database” (in
terms of [1]). This conversion makes it possible to use the classical Apriori based
data mining algorithms. So, every unit of text (i.e. every sentence) is converted
into a set of terms identifiers. This leads to speeding up all the data mining
operations. Further on, the identifiers of all terms that do not have required
minimum support are deleted from all the transactions.
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Finding frequent termsets
Having transactional representation, we find frequent termsets with an Apriori-
like algorithm which has been adopted for text mining. Once all frequent termsets
are mined, we store them in the Lucene index [15] in order to provide means for
fast viewing the contexts.

Identification of the close meaning pairs
Having the frequent termsets, we identify non-frequent pairs of terms belonging
to the same POS class (our experiments have been performed for the pairs (noun,
noun)). Then for all non-frequent pairs, we calculate common contexts and the
similarity measures, as proposed in Section 2.

4 Experiments

We have performed a number of experiments in order to verify how the proposed
method works. In particular, we wanted to check if it is possible to find synonyms
by analyzing frequent termsets. We also wanted to check how different values of
minimum support may influence the results.

It was expected that the method would yield a list of words that are very likely
to be synonyms. Obviously, we were aware of the fact that comparing contexts
of words may lead to the pairs of words that are not synonyms.

The experiments were performed on the repository that was built of a collec-
tion of about 120 scientific papers concerning text mining and ontology issues.
This repository was quite difficult to process (the texts were in various forms,
mainly PDF, sometimes Word). In addition, it is expected to be rather difficult
for finding synonyms, as the language of the scientific papers is more restrictive
and, as a rule, the authors try to be consistent and strict as much as possi-
ble in using the scientific terminology. The experiment was run for the pairs
(noun, noun). The support threshold was set to Supo = 0.08%. For this value,
6449 non-frequent pairs (noun,noun) were detected, which then were subject to
consecutive steps (we have included gerund to the class noun).

0,00

0,20

0,40

0,60

0,80

1,00

0,2 0,4 0,6 0,8 1

CSIM

Precision

Recall

 
(a) (b) 

0 

0,2 

0,4 

0,6 

0,8 

1 

0,4 0,5 0,6 0,7 0,8 0,9 1 
ASIM 

Precision 
Recall 

Fig. 1. Recall and Precision for (a) CSIM and (b) ASIM



522 H. Rybinski et al.

0

0,2

0,4

0,6

0,8

1

0,4 0,6 0,8 1

ASIM

Precision CSIM>0

Recall CSIM>0

Precision CSIM>0,2  

Recall CSIM>0,2

Precision CSIM>0,3

Recall CSIM>0,3

Fig. 2. Recall and precision for ASIM with varying CSIM

Within all the pairs we found 109 pairs of terms having close meaning, includ-
ing similarity between singular and plural forms. With the parameter CSIM ≥
0.8 we receive 31 pairs of which 2 are very close (like {building, construction},
{methodology, study}), whereas the remaining 29 pairs are irrelevant. If addi-
tionally we restrict the pairs to ASIM ≥ 0.7, we receive the same close meaning
pairs within 12 pairs. As many terms have various meanings, it turns out that
even with CSIM close to 0.2 some close meanings can be found. On Fig. 1, we
can see how the recall and precision depend on the applied measures CSIM and
ASIM . As one can see, even for CSIM ≥ 0.2 still interesting pairs may happen.

Table 1. ASIM and CSIM for found candidates for synonyms

Term 1 Term 2 ASIM CSIM Term 1 Term 2 ASIM CSIM

algorithm component 0,74 0,667 relationship hierarchy 0,845 0,333
application framework 0,87 0,455 relationship link 0,834 0,667
application task 0,828 0,5 representation structure 0,766 0,3
approach study 0,95 0,4 research approach 0,872 0,333
building construction 0,853 1 research method 0,745 0,333
building design 0,836 0,6 research analysis 0,744 0,308
design modeling 0,864 0,667 sources texts 0,707 0,667
design construction 0,792 0,6 structures texts 0,905 0,5
mappings methods 0,72 0,4 structures languages 0,834 0,333
methodology study 0,932 1 structures algorithms 0,792 0,333
methodology approach 0,886 0,4 table list 0,709 0,4
methodology methods 0,851 0,4 taxonomy Wordnet 0,852 0,333
models modeling 0,736 0,667 taxonomy hierarchy 0,836 0,333
name value 0,895 0,5 taxonomy relation 0,797 0,4
Paper documents 0,808 0,444 technique tool 0,913 0,286
Paper texts 0,714 0,444 term word 0,711 0,3
Query search 0,975 0,333 tools methods 0,634 0,5
relation similarity 0,861 0,333 type types 0,795 0,417
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In the case of using the ASIM measure, most of the interesting pairs are cov-
ered by ASIM ≥ 0.6. Still though, using only one parameter (either CSIM or
ASIM) give rise to a large number of pairs, which have to be checked manually.
It results from the fact that most of the terms, even those domain-specific, have
various meanings, depending of the context. Examples of such terms are “ac-
cess”, ”analysis”, “application”, “approach”. We, therefore, have experimented
with using the two measures for filtering the relevant pairs. In this experiment
with the thresholds CSIM ≥ 0.2 and ASIM ≥ 0.7 we receive 508 pairs, 10% of
which are interesting (and cover 50% of all the interesting pairs). Some of the
pairs are not trivial, and it would be rather difficult to find them out manually
(see Table 1).

5 Conclusions and Future Works

The experiments have proven that the Apriori approach combined with the
CSIM and ASIM measures is very useful for finding similar meaning terms
in text corpora. With the use of CSIM , some very strong synonyms can be
detected, like (building, construction). However, as it has been also shown, by
applying only the measure CSIM many interesting relations are lost. With the
use of ASIM , we were able to find also pairs of terms, which are synonyms
in a restricted context but may have other various, more specific, meanings.
Here, good examples are the “synonyms” (taxonomy, hierarchy) or (relation-
ship, link), which could not be found with CSIM , whereas having ASIM=0.836,
can be properly classified. By combining the two parameters we can filter
out a reasonable set of irrelevant pairs, reaching 10% of precision, and 90% of
completeness.

We have performed experiments with various minimum support parameters.
They show that the lower the minimum support is, the better the results are. The
results show that the discovered relationships reflect not only the synonymy, but
also other close-meaning relationships. Namely, if any two terms do not co-occur,
but have a very similar context, the following cases may hold:

1. the terms are very close synonyms (i.e. having close meaning in most of
their contexts), e.g. (building, construction), or are much more dependent
on a particular context, e.g. (paper, text);

2. the terms are related by the broader-narrower relation (previously observed
in [10]), e.g. (machine, tool);

3. one of the term is a name of a category, whereas another one is an instance
of that category, e.g. (relationship, taxonomy) or (relationship, similarity)
(language, rdf);

4. two terms are instances of the same category e.g. (rdf, oil) or (rdf, daml);
5. the terms that are related by an ontology association relationship, e.g. (de-

scription, schema), (implementation, task), (conceptualization, entity).

The proposed approach finds instances of all the types of such close meaning
terms. Unfortunately, the number of irrelevant pairs discovered as candidates
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for synonyms is still too high. This problem we are going to address in our
future work. We anticipate that removing “noisy” termsets from the contexts
should help considerably. We intend to examine the usefulness of applying con-
cise representations of termsets [11, 12]. Additionally, we plan to elaborate an
interactive effective method, as a post processing step, for selecting appropriate
close meaning terms.
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Abstract. The semantic relations among cells in data cube are more important
for efficient query and OLAP. Normally the size of a data cube is very huge and
relations among cells are very complicated so the semantic data cube is difficult
to be realized. Based on quotient cube, Semantic Data Cube (SDC) structure is
put forward in this paper. In SDC the lattice of cells is expressed as tree-hierarchy
structure and each cell in lattice is replaced with its upper bound. The SDC de-
picts the lattice of cells concisely and preserves all the semantic relations among
cells. Applying semantics to query answering and maintaining incrementally in
SDC, the time of response and the cost of updating can be reduced greatly. Algo-
rithms of constructing SDC, answering a query and maintaining incrementally in
SDC are given. The experimental results show that the SDC is effective.

Keywords: data cube; semantic; incremental maintenance.

1 Introduction

The data cube[1] is an import operator for OLAP. Researchers have brought forward
various methods to obtain data cubes which have different memory sizes and query
answering time. The technology of computing data cubes is studied by [2,3,4,5], the
technology of materializing and material selecting in data cube are worked by [6,7],
literature [8] researches on compressed technique in data cube. In recent years, workers
study how to discover and preserve the semantic relations among cells in data cube.
[9,10,11] are representative literatures. They proposed some compact data structures
which can preserve partial semantics in data cube.

Given the basic relation R(A1� A2� � � � � An� M), Ai means ith attribute with n dimen-
sion attributes and M is the measure attribute. The data cube based R contains 2n views
through group-by operator. Each group-by is a view corresponding to one kind of gran-
ularity of data. Each view contains a set of cells. All views of data cube form a lattice
which contains some partial orders and expresses basic semantic relations.

Two basic semantic relations of a data cube are the drill-down relation and the roll-
up relation. Figure 1(b) is the lattice cell educed from the base table showed in Figure
1(a). The symbol ’*’ express the special value ’All’ in [1], and the aggregation function
is sum. It expresses the relations of drill-down and roll-up among concrete cells in data
cube. For example, cell (0**) can be rolled up to (***), (0**) can be drilled down to
(00*), (01*), (000), (010).
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Fig. 1. Lattice of cells educed from base table which has 3 tuples

In practice, the relations among cells are more important and more detailed for query
and OLAP. Applying semantic relations to query, incremental maintenance and data
analysis, the correlative operation can be simplified and directed.

Conventional techniques can only find and store the semantic relations among views
but not among cells. In those approaches cells in same views are put into same files. The
semantic relations among cells can’t be preserved and roll-up and drill-down operators
among cells can’t be done. The naive idea to obtain fully semantics among cells is to
store entirely the lattice of cells. But the lattice cell is very big normally and the relations
among cells are very complicated. So the semantic data cube is difficult to be realized.

On the whole for semantic data cube there are some crucial technologies to be studied
such as how to discover latent and pivotal semantics, how to select which kinds of
semantics to be stored, how to store semantics and how to apply semantic relations for
query, incremental maintenance and OLAP.

Dwarf[9] and Quotient cube[10,11] are data cubes that can keep semantics of cells.
Dwarf takes the technologies of prefix sharing and suffix coalescing. In the process of

searching same prefixes and suffixes, the semantic relations among cells can be detected
and then be preserved. Dwarf store data cube with complicated graph structure and
semantic relations are not clear.

Quotient cube takes an elegant technique and partitions cells into several equivalent
classes. Each cell in same class covers same tuple set in base table. So aggregations
of these cells in one class are same. In Quotient cube, the lattice cell is expressed by
relations of classes. But Quotient cube and QC-Tree structure have several problems.
Firstly roll-up operator can not be done. So it is not fully semantic data cube. Secondly
the semantic relations are not clear in quotient structure. In addition, QC-Tree is realized
through complicated graph structure so it is difficult to be implemented.

According to above analysis, we proposed Semantic Data Cube (SDC) structure
based on quotient cube. The SDC is a fully semantic cube and preserves all seman-
tics among cells. And it can express semantic relations compactly and clearly.

2 SDC: Semantic Data Cube

Given the basic relation R(A1� A2� � � � � An� M). We let C be the data cube derived from R
and ci is one cell in C. Let � be the partial order in cube lattice.
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Definition 1.(cover and base table set) A cell c covers another cell t whenever there
exists a roll-up path from t to c, i.e., c � t in the cube lattice. The base table set of c
called BTS concisely is the set of tuples in the base table covered by c.

For example, the BTS of cell (0**) is {(000), (010)}.
Definition 2.(upper bound of cell) ci � C, B is the base table set of ci, if cell ub
(a1� a2� � � � � an) satisfies the following conditions, we call ub is the upper bound of ci.

1. If all the tuples in B have same value v in dimension Ai, then ai � v;
2. otherwise, ai � �.

At the same time we assume the lower bound of ci is the cell itself.
For example, the BTS of (0**) is {(000), (010)}, and all the tuples in this set have

the same value in A1 and A3. So the upper bound of (0**) is (0*0) and its lower bound
is itself (0**).

Lemma 1. The aggregation of cell is equal to the aggregation of its upper bound.

From definition 2, we can see that the cell and its upper bound have a same BTS. So
their aggregations are same.

Lemma 2. The upper bound of cell is unique and the lower bound of cell covers the
upper bound.

From definition 2 we can obtain that.

2.1 The Structure of SDC

From above definitions and lemmas we can see that the cell and its upper bound have
same BTS and have same aggregation. On second thoughts the upper bound of cell
contains not only all the information of cell but also has more detailed information. In
fact, the upper bound of cell is the most detail granularity in cover set of this cell. So we
try to substitute cell’s upper bound for cell itself in lattice cell. Thus some cells in lattice
can be omitted and the relations are reduced accordingly. Then the lattice of cell can
be simplified. But in this way the relations among cell may be jumbled and the partial
order may be confused. So we record not only the upper bound but also the lower bound
of cell. And we must record the partial order where exit order of �.

The SDC structure has the following properties:

1. For each cell in SDC there are 5 pieces of information should be recorded: the upper
bound, the lower bound, aggregation of cell, cellID and childID. The cellID record
the id of cell. The childID record the relations among cells. Suppose c and d are
cells, if c directly drills down to d in SDC, the childID of d is the cellID of c. We
called that c is child of d.

2. In SDC the lattice of cells is expressed as tree-hierarchy structure. There is only
root whose upper and lower bound are fixed (�� �� � � � � �), called 0th level. There are
at most n levels, where n is the number of dimensions.

3. Started from 1th level, every cell in original lattice is replaced with its upper bound.
Thus some cells may be cut down as well as their upper cells.
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4. If there are same upper bounds in same level, the only one cell is reserved to save
space. For the sake of avoiding losing semantics, the lower bound of these cells
must be recorded entirely and be stored into one lower bound.

Figure 2 shows the SDC structure deduced from base table in Figure 1(a). Each
bound can be represented as a string w.r.t. a given dimension order. Figure 2(a) is actual
storage in memory and cells in SDC are sorted according to childID. In SDC one lower
bound may contain several cells. For example, (1**) and (**1) are all in 1th level and
their upper bound is all (101). So we record only one cell (101) in SDC. At the same
time we combine two lower bounds into one lower bound with (1*1).

Fig. 2. SDC Tree-hierarchy

Figure 2(b) shows tree-hierarchy corresponding to Figure 2(a). The branches show
the order � between cells. The roll-up and drill-down relations can be done through
those branches. For example, from the cell whose cellID is 1, i.e. root (***), through
searching such cells whose childID is 1, we can drill down from (***) to cells (*0*),
(0**), (**0), (*1*), (1**) and (**1) which their lower bound are (*0*), (0*0), (*1*)
and (1*1) respectively. On the other hand, the childID of cell (0**) is 1, i.e. its child is
(***), so from (0**) we can roll up to (***).

2.2 Construction of SDC

The algorithm of constructing SDC is given below. It is similar to BUC[5] and takes
searching strategy of Depth-First. The input is the base table B and cell (*,*,. . . ,*). B is
partitioned on dimension and the value of ’*’ in input is assigned with concrete value.
When we get a new cell, we calculate its aggregation and compute its upper bound.
Then we let the upper bound act as the input into the next Depth-First process. Lastly
we sort cells according to childID.

Algorithm: [Construct SDC]
Input: base table B;
Output: SDC;
1. b � (�� � � � � �);
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2. call DFS (b� B� 0� 0� 1);
3. Sort the cells according to childID and when childID is same, ’*’ precedes other

values;
4. Return;
Function DFS (c� Bc� k� chdID� clsID)
1. if (chdID �� 0)

upper bound d � (�� � � � � �);//root’s ub be (�� � � � � �);
else compute the upper bound d of the cell c;

2. if there exits cell s in SDC s.t. s�childID �� chdID and s�upperbound �� d
combine lower bound of s with c’s value in kth dim;

Return;
3. Compute aggregation of cell c;
4. Record cell in SDC: lower bound c, upper bound d , aggregation of c, childID

with chdID, cellID with clsID, then let chdID be clsID, clsID be clsID++;
5 for each d[ j] ��

�
� do

for each value x in dimension j of base table
let d[ j] � x;
if partition Bd is not empty, call DFS (d�Bd� � j� chdID� clsID) ;

6. Return;

Theorem 1. SDC can contain all the semantic relations of lattice cell.

Theorem 1 shows that the SDC is full semantic data cube. From defines and lemmas
above we can see that the upper and lower bound of cells contain all information of
data cube. In addition we record all the partial orders between cells in SDC. Thus all
the relations in original lattice of cells are expressed directly or indirectly in SDC. Then
we can preserve the all relations among cells.

Compared with QC-Tree of quotient cube, SDC occupies more memory size and has
some duplicate cells. But SDC cuts down more the size of memory compared with the
full cubes proposed previously. Further more, SDC can express the lattice cell clearly
and the operators of drill-down and roll-up can all be done between any cells.

3 Point Query

Query in data cube can be classified into point query, range query and iceberg query.
We propose efficient algorithm to answer point queries in SDC. The key idea for

query answering efficiently in SDC comes from the fact that the SDC keep the semantics
of cells, thereby query answering can be done according to the semantics.

A point query is that given a cell q, find its aggregate value(s). Query answering in
SDC only visits the upper bound of cells.

Suppose that the upper bound of cell is ub(x1� � � � � xn), the cell to be queried is
q(y1� � � � � yn), let ub � q � (z1� � � � � zn), define as zi � xi, if xi � yi, otherwise zi ��

�
�

� (1 � i � n).
We start at root c in 0th level and carry out the operation c�ub � q, following several

situations may happen.
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Case 1: c�ub � q � q. It indicates that the aggregation of q has been found, and the
aggregation of q is the aggregation of c, the query is end.

Case 2: c�ub�q � c�ub. It indicates that cell c covers q and we need drill down to c’s
parent cell and continue to above operate in upper level.

Case 3: c�ub � q � c�ub � q. It indicates that we don’t find q and c does not cover q,
we need search other c’s sibing cells and continue to above operate.

After searching in same level if we can’t fit case 1 and case 2, it indicate that the data
cube does not contain q, then search is over and we return that q is not found.

In SDC, from cell in ith level the most times of operator c�ub � q is (n � i � 1)d
(in there n is the dimension number, d is the cardinality of each dimension). In fact
when we construct SDC we replace the cell with cell’s upper bound, so the num-
ber of cells in ith level must be smaller than (n � i � 1)d. So query in SDC is more
effective.

4 Incremental Maintenance of SDC

When the base table changed, fast maintenance of SDC is important. In this section, we
discuss the methods of insertion and deletion of single tuple.

4.1 Insertion

When a new tuple is inserted into base table, some upper bound of cells in original
lattice may change. Then we must update SDC along with this change. we only seek
and update such cells whose upper bound change.

Let T be the SDC and t be one cell in T and s be new tuple to be inserted. Let ub
be the upper bound and lb be the lower bound of cell t. We compare s with cell’s lower
bound. Firstly we expand the lower bound of cell in SDC so that each lower bound
denotes only one cell. When inserting new tuple the aggregation of root cell (�� � � � � �)
must be changed and we add the value of s on it. Then the operation of insertion can be
done from 1th level. Several situations may appear as follows:

Case 1: s � t�lb � t�lb. It indicates that t covers s, two more situations may appear:
a) s � t�ub � t�ub. Firstly we add the aggregation of t with the value of s and then

there are may be two more situations:
a.1) If the upper bound of t has two or more value of ’*’, then we drill down to t’s

child cell and recursion above operations;
a.2) If the upper bound of t has only one value of ’*’, we insert s and let its childID

be cellID of t;
b) s � t�ub � t�ub. We insert s � t�ub as the new upper bound of t, then we gather all

the cells whose childID is t’ cellID and s as set of data Bc and we process SDC’s DFS
algorithm. Then we obtain several new cells and we insert them in SDC;

After finishing operation in one level if each dimension of s is dealt with, then the
insertion operation is finished, otherwise we need insert s into this level, its upper bound
is s itself and its low bound need be obtained through calculation.
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4.2 Deletion

When a tuple is deleted from base table the upper bound of cells may change too.
Let s be the tuple to be deleted. Compare with s with t’s upper bound from 0th level.

Many situations may happen:
Case 1: s � t�ub � t�ub � s. It indicate that cell t covers s and we need update the

aggregation of t, then we drill down to its parent cell in upper level;
Case 2: s� t�ub � s. We delete s. If this level and the lower levels have only one cell,

we must merge cell;
Case 3: s � t�ub � t�ub � s. We continue to search next sibing cells in this level.
Compared with algorithms proposed before, in which one or more search must be

done from end to end in incremental maintenance processing, SDC needn’t scan all
cells. When we insert or delete a tuple we compare it with the lower and upper bound in
SDC. Only cells which cover cell are processed, otherwise we skip these cells as well
as all those parent cells in upper level. From the processes of insertion and deletion we
can discover that the cost of incremental maintenance in SDC is low.

5 Experimental Result and Analysis

In this section, we use synthetic and real-world data sets to evaluate SDC.
We compare SDC in memory size and constructing time with BUC[5] and DFS in

QC-Tree[11] using synthetic data. Those three algorithms of constructing data cube
all use sequential access to store data cube. BUC ends the recursive course when the
number of tuples in data set is one. DFS only create temporary table in which record

Fig. 3. Storage Size and Running Time on synthetic data

Fig. 4. Query performance
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cell’s lower and upper bound. Results are shown in Figure 3. DFS take the optimized
method when recursion process (but only be able to preserve partial semantics). The
speed of constructing SDC is slower than the DFS but is faster than the BUC. The
memory size of SDC is larger than DFS’s but is smaller then BUC’s.

The synthetic and real-world data sets are used to examine the capability of query of
SDC. The real dataset of weather conditions on land for September 1985[12] contains
1,015,367 tuples and 9 dimensions. We generate 5 datasets with 2 to 6 dimensions by
projecting the weather dataset on the first k dimensions(1 � k � 9). Results are shown
in Figure 4. It shows that although the speed of query of SDC is slower than QC-Tree
in big sets but is fairish closed to QC-Tree.

6 Conclusions

Based on quotient cube, Semantic Data Cube(SDC) structure is put forward in this
paper. We discuss the methods of constructing, answering a query and incrementally
maintaining in SDC. The contribution of this paper is that SDC can express the lattice
cell concisely and can preserve all semantic relations of lattice cell. We can apply se-
mantic relations for query answering and incrementally maintaining. The time of query
answering and the cost of updating are low. The experiments show that although mem-
ory size of SDC may be large but SDC can query and update efficiently.
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Abstract. Evaluating the interestingness of rules or trees is a challeng-
ing problem of knowledge discovery and data mining. In recent studies,
the use of two interestingness measures at the same time was prevailing.
Mining of Pareto-optimal borders according to support and confidence,
or support and anti-support are examples of that approach. Here,
we consider induction of “if..., then...” association rules with a fixed
conclusion. We investigate ways to limit the set of rules non–dominated
wrt support and confidence or support and anti-support, to a subset of
truly interesting rules. Analytically, and through experiments, we show
that both of the considered sets can be easily reduced by using the
valuable semantics of confirmation measures.

Keywords: Association rules, Induction, Support, Anti–support, Con-
firmation, Confidence, Pareto–optimal border.

1 Introduction

In data mining and knowledge discovery, the discovered knowledge patterns are
often expressed in a form of “if..., then...” rules. They are consequence relations
representing correlation, association, causation etc. between independent and
dependent attributes. In order to increase the relevance and utility of selected
rules and, thus, also limit the size of the resulting rule set, quantitative measures,
also known as interestingness measures, have been proposed and studied (e.g.
confidence, support, gain, conviction, lift). Among widely studied interestingness
measures, there is, moreover, a group of Bayesian confirmation measures, which
quantify the degree to which a piece of evidence built of the independent at-
tributes provides “evidence for or against” the hypothesis built of the dependent
attributes [4]. Another approach to evaluation of generated rules concentrates on
the use of two different interestingness measures. In this paper, we show a way
to limit the set of rules generated with respect to pairs of measures: support–
confidence and support–anti–support, by filtering out the rules for which the
premise does not confirm the conclusion. This proposition is based on imposing
the confirmation perspective on the analyzed two–dimensional evaluations.
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The paper is organized as follows. In section 2, there are preliminaries on
rules and their quantitative description. In section 3, we investigate the idea and
advantages of mining only rules with positive confirmation from Pareto–optimal
border with respect to support and confidence. Section 4 concentrates on the
proposal of limiting the set of rules generated with respect to support and anti–
support. Theoretical considerations are supported by experimental results. The
paper ends with conclusions.

2 Preliminaries

Since discovering rules from data is the domain of inductive reasoning, its starting
point is a sample of larger reality often given in a form of a data table. Formally,
a data table is a pair S = (U,A), where U is a nonempty finite set of objects
called universe, and A is a nonempty finite set of attributes such that a : U → Va

for every a ∈ A. The set Va is a domain of a. A rule induced from S is denoted
by φ → ψ (read as “if φ, then ψ”). It consists of antecedent φ and consequent
ψ, called premise and conclusion, respectively. In this paper, similarly to [2], we
consider evaluation of rules with the same conclusion.

2.1 Partial Preorder on Rules in Terms of Two Measures

Let us denote by �qt a partial preorder given by a dominance relation on a set
X of rules in terms of any two different interestingness measures q and t, i.e. for
all r1, r2 ∈ Xr1 �qt r2 if r1 �q r2 and r1 �t r2. Recall that a partial preorder on
a set X is a binary relation R on X that is reflexive and transitive. The partial
preorder �qt can be decomposed into its asymmetric part ≺qt and its symmetric
part ∼gt in the following manner: given a set of rules X and two rules r1, r2 ∈
X, r1 ≺qt r2 if and only if q(r1) ≤ q(r2)∧ t(r1) < t(r2), or q(r1) ≤ q(r2) ∧ t(r1) <
t(r2), moreover, r1 ∼qt r2 if and only if q(r1) = q(r2)∧ t(r1) = t(r2). If for a
rule r ∈ X there does not exist any rule r′ ∈ X , such that r ≺qt r′ then r is
said to be non–dominated (i.e. Pareto–optimal) wrt interestingness measures q
and t. A set of all non–dominated rules wrt q and t is also referred to as an q–t
Pareto–optimal border.

2.2 Monotonicity of a Function in Its Argument

Let x be an element of a set of rules X and let g(x) be a real function associated
with this set, such that g : X → R. Assuming an ordering relation ( in X ,
function g is said to be monotone (resp. anti–monotone) in x, if for any x, y ∈ X,
relation x ( y implies that g(x) ≥ g(y) (resp. g(x) ≤ g(y)).

2.3 Support, Confidence and Anti–support Measures of Rules

Among measures very commonly associated with rules induced from information
table S, there are support and confidence. The support of condition φ, denoted
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as sup(φ), is equal to the number of objects in U having property φ. The support
of rule φ → ψ, denoted as sup(φ → ψ), is the number of objects in U having
property φ and ψ.

The confidence of a rule (also called certainty), denoted as conf(φ → ψ), is
defined as: conf(φ→ ψ) = sup(φ→ψ)

sup(φ) , sup(φ) > 0.
Anti–support of a rule, denoted as anti− sup(φ→ ψ), is equal to the number

of objects in U having the property φ but not having the property ψ. Thus, anti–
support is the number of counter–examples, i.e. objects for which the premise
φ evaluates to true but which fall into a class different than ψ. Note that anti–
support can also be regarded as sup(φ→ ¬ψ).

2.4 Bayesian Confirmation Measures

Bayesian confirmation measures constitute a group of interestingness measures
that quantify the degree to which a premise φ provides “support for or against”
a conclusion ψ [4]. Under the “closed world assumption” adopted in inductive
reasoning, and because U is a finite set, a confirmation measure denoted by
c(φ→ ψ) is required to satisfy the following definition:

c(φ → ψ) =

⎧
⎨

⎩

> 0 if conf(ψ → φ) > sup(ψ)/|U |,
= 0 if conf(ψ → φ) = sup(ψ)/|U |,
< 0 if conf(ψ → φ) < sup(ψ)/|U |.

(1)

For the confirmation measures a desired property of monotonicity (M) was
proposed in [5]. This monotonicity property says that, given an information
system S, a confirmation measure is a function non–decreasing wrt sup(φ→ ψ)
and sup(¬φ → ¬ψ), and non–increasing wrt sup(¬φ → ψ) and sup(φ → ¬ψ).
Among confirmation measures that have property (M) there is e.g. confirmation
measure f [4] defined as:
f(φ→ ψ) = conf(ψ→φ)−conf(¬ψ→φ)

conf(ψ→φ)+conf(¬ψ→φ) .

2.5 A Brief Description of a Dataset and Experiments

For the purpose of these experiments we used a dataset adult [7]. The number of
analyzed instances reached 32 561. They were described by 9 nominal attributes
differing in domain sizes. Missing values were substituted by the most frequently
appearing one. Two experiments were conducted: one generating rules wrt sup-
port and confidence, and the second one generating rules according to support
and anti-support. Both of them proceeded in a two step Apriori-like framework:

– firstly, all conjunctions of elementary conditions (i.e. itemsets) that exceeded
the minimum rule support threshold (i.e. frequent itemsets) were found;

– secondly, those frequent itemsets were used to generate association rules
having either confidence or anti-support not smaller than the user’s defined
threshold.
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The detailed description as well as the efficiency comparison of the applied
algorithms (based on [1,6]) can be found in [9]. Throughout the experiment,
the value of support was expressed as a relative value between 0 and 1. During
the frequent itemset generation phase, only itemsets that exceeded 0.15 support
threshold were approved. No confidence nor anti-support thresholds were applied
in order to show the complete Pareto-optimal border exceeding the support
threshold.

3 Support–Confidence Pareto–Optimal Border

Bayardo and Agrawal [2] proposed evaluation of the set of rules in terms of two
popular interestingness measures being rule support and confidence. They have
proved that for a class of rules with fixed conclusion, the support–confidence
Pareto–optimal border includes optimal rules according to several different in-
terestingness measures, such as gain, lift, conviction, etc. Thus, by solving an
optimized rule mining problem wrt rule support and confidence one can identify
a set of rules containing most interesting (optimal) rules according to several in-
terestingness measures. However, despite those valuable features of the support–
confidence Pareto–optimal border, one cannot, in general, claim that the set of
dominated rules is without interest. It can be e.g. due to the fact that in order
to cover the analyzed concept (decision class) one has to use both dominated
and non–dominated rules. Of course, a user can set some thresholds both on rule
support and confidence, but still taking under the consideration both dominated
and non–dominated rules can result in a large, difficult to analyze set of rules.
Hence, we propose a way to limit the set of the analyzed rules by using the
valuable semantic of confirmation measures.

3.1 The Confirmation Perspective on the Support–Confidence
Evaluations

The advantages of semantic utility of confirmation measures in general over
confidence have been widely studied in [3,5]. Thus, we find it valuable to impose
the confirmation perspective on the analyzed support–confidence evaluations and
limit in this way the set of rules to be analyzed. It has been analytically proved
in [3] that for a fixed value of rule support, confidence is monotone wrt any
confirmation measure having the desired property of monotonicity (M) proposed
in [5].

Let us observe that according to definition (1) of c(φ→ ψ) , we have:

c(φ → ψ) > 0 ⇔ conf(φ → ψ) > sup(ψ)
|U| (2)

Since, we limit our consideration to rules with the same conclusion, then |U |
and sup(ψ) should be regarded as constant values. Thus, (2) shows that rules
laying under a constant, expressing what percentage of the whole dataset is taken
by the considered class ψ, are characterized by negative values of confirmation



538 R. S�lowiński et al.

Fig. 1. An example of a constant line representing c(φ → ψ) = 0 in a support–
confidence space. Rules laying under it should be discarded from further analysis.

(see Fig. 1). For those rules ψ is satisfied less frequently when φ is satisfied rather
than generically.

It is also interesting to investigate a more general condition c(φ → ψ) ≥
k, k ≥ 0, for some specific confirmation measures. In the following, we consider
confirmation measure f(φ→ ψ).

Theorem 1. (See proof in [8])

f(φ → ψ) ≥ k ⇔ conf(φ → ψ) ≥ sup(ψ)(k+1)
|U|−k(|U|−2sup(ψ))

(3)

3.2 Experiments with Rule Induction with Respect to Support and
Confidence

On Fig. 2 we show association rules generated, according to mentioned thresholds
for the conclusion: workclass=’Private’. This class contains information about
people working in a private sector. Rules are presented in a support–confidence
space.

This experiment makes it evident that in practice even rules with high value
of confidence (exceeding even 0.7) can be found useless as their premise dis-
confirms the conclusion (those rules are marked by solid circles). It is therefore
clear, that the semantic scale of the confidence measure is not enough and that
confirmation measures are very much needed. Sometimes even rules from the
Pareto–optimal border need to be discarded from further analysis as their value
of confirmation is non–positive. On Fig. 2 a constant line was placed separating
the rules with positive confirmation (situated above the line) from those with
non–positive confirmation (situated below the line). Fig. 2 visualizes result (2)
and says how big (in comparison to the whole dataset) is the considered class
of rules for the analyzed conclusion workclass=’Private’. Illustrations for other
classes can be found in [8,9]. By imposing the confirmation perspective, the num-
ber of rules to be analyzed by the domain expert can be significantly reduced. For
the conclusion being worklass=’Private’, 41 out of 84 rules had to be discarded
for disconfirming the conclusion. Tab. 1 shows results for other conclusions that
we have considered.
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Fig. 2. Rules generated for a conclusion workclass=’Private’ with positive (empty
circles) and non–positive confirmation measure value (solid circles) in a support–
confidence space. Fig. a – all generated rules, Fig. b – the Pareto-optimal border only.

Table 1. Information about the percentage of rules with non-positive confirmation in
the set of all generated rules for different conclusions

Considered No. of all rules No. of all rules with Reduction
conclusion non–positive confirm. percentage

workclass=’Private’ 84 41 49%

sex=Male 85 24 28%

income<=50kUSD 87 43 49%

Table 2. Information about the percentage of rules with non-positive confirmation
laying on the support–confidence Pareto–optimal border for different conclusions

Considered No. of all rules No. of all rules with Reduction
conclusion on Pareto border non–positive confirm. percentage

workclass=’Private’ 6 2 33%

sex=Male 6 1 17%

income<=50kUSD 5 1 20%

Tab. 2 shows how many rules with non–positive confirmation laid on the
support–confidence Pareto–optimal border for different considered conclusions.
Even Pareto–optimal borders, i.e. objectively the best sets of rules, contain rules
that are misleading. In some cases, the support–confidence Pareto–optimal bor-
der could be reduced by even 33%, like for the conclusion workclass=’Private’.

4 Support–Anti–support Pareto–Optimal Border

Presentation of association rules in dimensions of rule support and anti–support
was proposed in [3]. The idea of combining those two dimensions came from
a critical remark towards support–confidence Pareto–optimal border. In [3], it
was proved that a rule maximizing a confirmation measure satisfying the prop-
erty (M) is on the support–confidence Pareto–optimal border only if a specific
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condition is satisfied. Thus, in general, not all rules maximizing such a measure
are on the support–confidence Pareto–optimal border. However, due to valuable
semantics of confirmation measures, mining all rules that maximize confirmation
measures with (M), became an interesting problem. The solution is support–anti–
support Pareto–optimal border. It was proved in [3] that the best rule according
to any of confirmation measures with (M) must reside on the support–anti–
support Pareto–optimal border. Moreover, it was pointed out in [3] that the
Pareto–optimal border of support–anti–support contains the support–confidence
Pareto–optimal border. Despite all good characteristics of the support–anti–
support Pareto–optimal border, one can still remain interested in the set of
dominated rules. Thus, analyzing whether one can limit the set of rules, by
imposing a confirmation perspective on the spport–anti–support evaluations, is
interesting.

4.1 The Confirmation Perspective on the Support–Anti–support
Evaluations

It has been analytically proved in [3] that for a fixed value of rule support, any
confirmation measure c(φ→ ψ) having the desired property of monotonicity (M)
is anti–monotone (i.e. non–decreasing) wrt anti–support. Let us observe that a
simple transformation of definition (1) leads to the following result:

c(φ → ψ) ≥ 0 ⇔ anti− sup(φ→ ψ) ≤ sup(φ→ ψ)
[

|U|
sup(ψ)

− 1
]

(4)

Having limited our consideration to rules with the same conclusion, |U |and
sup(ψ) should be regarded as constant values. Thus, the result (4) shows that a
simple linear function bounds rules that are characterized by positive values of
confirmation from those with non–positive confirmation values (see Fig. 3).

It is also interesting to investigate a more general condition c(φ→ ψ) ≥ k, k ≥ 0.
Let us consider again f(φ→ ψ).

Fig. 3. Three examples of linear functions representing c(φ → ψ) = 0 in a support–
anti–support space. Lines were drawn according to a set of rules for conclusions different
in cardinality. Rules laying above them should be discarded from further analysis.
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Theorem 2. (See proof in [8])

f(φ → ψ) ≥ k ⇔ anti− sup(φ→ ψ) ≤ sup(φ → ψ)(U − sup(ψ)) 1−k
(1+k)sup(ψ)

(5)

4.2 Experiments with Rule Induction with Respect to Support and
Anti–support

On Fig. 4, we show association rules generated, according to mentioned thresh-
old, for the conclusion: workclass=’Private’.

Fig. 4. Rules generated for a conclusion workclass=’Private’ with positive (empty cir-
cles) and non–positive (solid circles) confirmation measure value in a support–anti–
support space. Fig. a – all generated rules, Fig. b – the Pareto-optimal border only.

Table 3. Information about the percentage of rules with non-positive confirmation
laying on the support–anti–support Pareto–optimal border for different conclusions

Considered No. of all rules No. of all rules with Reduction
conclusion on Pareto border non–positive confirm. percentage

workclass=’Private’ 18 4 22%

sex=Male 8 3 38%

income<=50kUSD 15 4 27%

This experiment makes it clear, that despite the valuable properties of
support–anti–support Pareto–optimal border, it is necessary to take under con-
sideration also the information brought by the sign of the confirmation measures.
Within the Pareto-optimal set presented on Fig. 4, 22% of rules need to be dis-
carded as their value of confirmation is non–positive. On Fig. 4, a linear function
was placed separating the rules with positive confirmation (situated under the
line) from those with non–positive confirmation. Fig. 4 visualizes result (4). Tab.
3 presents the percentage of rules to be discarded from the support-anti-support
Pareto-optimal border. In the conducted experiment the set of rules to be ana-
lyzed could be reduced by e.g. about 22% (workclass=’Private’).
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5 Conclusions

In this paper, we investigated rules induced for a fixed conclusion and evaluated
in spaces of support–confidence and support–anti–support. The Pareto–optimal
borders of those spaces have some valuable features. However, these worthy fea-
tures, do not assure that the number of induced rules would not exceed the
human user capabilities to analyze them. Inspired by the strength of the seman-
tics of confirmation measures, we show that it is reasonable to limit the set of
rules by eliminating those that are characterized by non–positive or small values
of confirmation. We have shown analytically that a simple constant line imposed
on the support–confidence space bounds the rules with positive values of con-
firmation measure from those with non–positive confirmation values. This is a
very practical result allowing to limit the set of analyzed rules only to those with
positive confirmation values, without actually calculating the value of a partic-
ular confirmation measure for each of the induced rules. Analogous analysis has
been conducted for rules in support–anti–support space. We have shown that a
simple linear function separates the rules with positive and non–positive values
of confirmation. Again, this is an easy approach to limit the set of analyzed rules.
Experimental results show how big the reduction can be.
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Abstract. The paper deals with the problem of creating a specialized
data warehouse for collecting and analyzing experimental results, which
relate to system dependability evaluation using fault injections into run-
ning programs. The developed data warehouse with embedded data min-
ing capabilities facilitates to identify factors influencing fault susceptibil-
ity of analyzed applications. The paper presents the developed system,
and illustrates its usefulness with a sample of experimental results.

1 Introduction

System robustness (correct operation in the presence of faults) and fail-safe
operation (avoiding wrong results or output signals) are becoming common re-
quirements to modern civilisation. Hence, an important issue is the evaluation of
system dependability and the analysis of the system behaviour in the presence
of faults. For this purpose various fault injection techniques have been proposed.
In the literature two approaches to fault injection are presented: applied to the
existing systems or to their models. The first approach bases on pin-level fault
injection, heavy-ion irradiation, electrical disturbances, laser fault injection and
software implemented fault injection [1,2,8,9]. Fault injection applied to the sys-
tem models can be targeted at specific levels of the system or the circuit e.g.
electrical or high-level description (RTL, VHDL models [1,2]). This approach is
especially useful to characterize fault propagation from physical to higher levels.
Software implemented fault injection (SWIFI) assures checking fault suscepti-
bility of the applications in the real system environment e.g. [2,5,9].

We have developed several flexible SWIFI tools [8,9], which were used in many
experiments to analyse fault susceptibility of program applications as well as to
verify the effectiveness of various fault detection and tolerance mechanisms. We
have observed a large dispersion of experimental results. The main goal of the
presented study was identification of factors influencing test results. For this
purpose we have developed a specialised data warehouse with data exploration
capabilities. We are pioneers in using this approach for dependability analysis.
Basing on our experience with fault injection techniques (section 2) we selected
appropriate attributes (types and value ranges), and defined an original data
model for the created data warehouse (section 3). The usefulness of this approach
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has been illustrated (section 4) with data exploration results, which show various
aspects related to fault susceptibility of the analysed applications.

2 Main Features of Fault Injectors

The software implemented fault injector (SWIFI) simulates faults in the system
environment by disturbing the states of processor registers or RAM locations
(storing program code and data). The fault type (bit flip, bit setting, reset-
ting and bridging), the fault duration, triggering moments and location can be
specified explicitly or generated pseudorandomly according to the experiment
configuration.

SWIFI compares the results of the analysed application disturbed by a fault
with those found during the golden (referential) run. It registers the exit code, re-
sults and all generated events and exceptions in a test. In general, we distinguish
5 classes of test results: C - correct result, INC - incorrect result, S - fault detected
by the system, T - time-out, U user messages (generated by the program if an
error is detected). Detailed qualification of test results is also possible. System
exceptions (S) are mostly generated by special hardware mechanisms embedded
in contemporary COTS (commercial off-the-shelve) systems. Microprocessors
signal such exceptions as: access violation (within RAM), in page error, array
bounds exceeded, data type misalignment (wrong word boundaries), illegal in-
struction, etc. [9]. SWIFI delivers also various statistics on distribution of fault
injections, system resource activity etc.

In fault injection experiments, it is important to specify test scenarios, which
cover fault distribution in time and space (fault localization and triggering),
fault types, input data profiles etc. The performed experiments were targeted at
transient faults (bit flips) injected into registers (specified CPU or FPU registers,
or all of them), the code or data area of the memory. By concentrating on
specified system resources (or code segments) we can perform deeper analysis
and tune appropriate fault handling mechanisms. For each application, we choose
a representative set of input data to assure high coverage of the code, decisions
etc. This selection is based on the analysis of some coverage measures [9]. The
number of injected faults is sufficiently large (typically 104÷106 faults) to assure
statistical significance of the obtained results.

We have improved application robustness using various fault-handling mech-
anisms targeted at fault detection and fault correction or masking. Fault detec-
tion techniques are based on duplication of variables, duplication of calculations,
checking various assertions and checking the program control flow. Techniques
tolerating faults are based on software redundancy, error detection and fault
recovery. They range from duplication to triplication of the code and data (in-
cluding various diversities). We also handle exceptions generated by the system.
We use software-implemented schemes proposed in the literature and our own
improved approaches [5,9]. Results of fault injection experiments related to stan-
dard (basic) applications as well as applications with software implemented fault
detection (FD) and fault tolerance (FT) are given in tab. 1. Here we can observe
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Table 1. Fault injection result distribution (%)

Faults injected into data, Faults injected into CPU registers

code and registers (basic applications)

Basic FD FT eax ebx esp ebp esi eip

C 2-76 14-63 30-100 5-50 0-84 0-9 0-72 0-75 1-6
S 0-66 0-57 0-64 0-52 0-54 57-100 4-97 2-61 4-94
T 0-12 0-0.5 0-7 0-3 0-1 0-1 0-1 0-1 0-0.3

INC 4-97 1-40 0-36 36-95 14-65 0-34 3-94 22-68 5-90

various levels of fault leakage (INC results) and correct results (C). In particu-
lar this depends upon the applied dependability improvement technique. Some
detailed results are given in [5,6].

Each column of tab. 1 gives ranges of test results over many applications
(pseudorandom distribution of faults). The big dispersion of results is caused
by application specificities, different fault susceptibility of code, data area and
registers, different activity of used computer resources, etc. Fault hardened appli-
cations (FD and FT) showed also in some cases excessive percentage of incorrect
results (INC) due to some inefficiency of used mechanisms. Hence a systematic
analysis of factors influencing application susceptibility to faults is needed.

Fault injection experiments are performed for a specified application and input
data set. Each experiment comprises many tests, a single test relates to one
injected fault. Results of the experiment tests are stored in a file. Test result
qualification (C, INC, T, S) is performed by comparison with the result of the
golden run (the execution of non disturbed application). The golden run log
comprises dynamic image of the program execution (e.g. mnemonics of executed
instructions, register states, exit code). Experiment files comprise also details on
injected faults. The golden run logs as well as the experiment files are used to
fill the developed data warehouse. The data model for this data warehouse is
based on the attributes, which specify various aspects of the executed tests and
application properties. We have defined 6 classes of attributes:

– specification of the tested program: program name, program version, input
data set, name of the main module,

– fault localization in space: resource area or group, resource item,
– fault specification: type (stuck-at-0 or 1, coupling, bit-flip), fault mask (spec-

ification of disturbed bits), number of disturbed bits, range of disturbed bits,
specification of disturbed bytes,

– disturbed instruction (DIC): mnemonic and code of the result of code cor-
ruption,

– fault triggering instruction (FTI): static address of the instruction during
which the fault is injected, program module, FTI appearance (i.e. its execu-
tion number or loop iteration - it defines dynamic address), FTI code and
mnemonic, FTI code group, FTI length in bytes,

– test result : correct (C), incorrect (INC), system exception (S), time-out (T).
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This list can be extended with parameters specifying application profiles and
resource activity (percentage of execution time for which the resource holds some
data for the later use [6]). The specified attributes facilitate data exploration in
the data warehouse to find critical dependability issues, identify fault suscepti-
bility correlations with various test or application features, etc.

3 Structure of the Developed Data Warehouse

The developed data warehouse (DWS) integrates the following functions: collect-
ing the source data from the experiments (with fault injectors), data transfor-
mation and loading the main database (DBS), data aggregation and exploration
processes, result presentation. The whole system has been realized using stan-
dard data warehouse framework (MS SQL platform) and adapting it to the con-
sidered problem by specifying appropriate metadata and data models. The user
can interact with the data warehouse by means of standard dimension browser,
OLAP, data exploration and visualization tools.

The most important is the definition of the data model, which comprises facts
and dimensions. The collected data from the experiments is grouped in topics,
which create different hierarchies. These groups are defined by the so-called di-
mensions, which relate to the attributes listed in section 2. The structure of the
main database is correlated with the dimensional data model. In particular the
database tables correspond to model entities. Table columns relate to attributes.
Each table row corresponds to a data record comprising fields consistent with
attribute columns. We distinguish the fact table and dimensional tables. Each
record of the fact table represents a single test. Dimensional tables store informa-
tion on test attributes and their hierarchies. The fact table comprises columns
related to the so-called summarizing attributes i.e. describing test results (C,
INC, S, T). For the specified test only one column related to the summarizing
attributes can hold value 1 (denoting the class of the test result), the remaining
hold value 0. These columns allow us to find summarizing reports e.g. related
to the percentage of tests of a specified result class etc. Moreover, appropriate
relations combine the fact table with dimensional tables. Hence each test in the
fact table has also specified attribute values. Relations between table entries are
specified by additional columns comprising so-called primary (PK) and foreign
keys (FK). The attributes correspond to fault localization, specification, fault
triggering instruction (FTI) in the golden run table GRI, its appearance (section
2) etc. The GRI table comprises the specification of instructions executed dur-
ing the golden run (program, data, address, number of executions, the pointer
to FTI attributes etc.).

The list of dimensional tables is defined by the analytical model. This model
may comprise some hierarchies of attributes. The hierarchy allows us to define
different detail levels of a considered dimension. For example the dimensions
corresponding to the fault triggering moment (FTI) has three levels: instruction
mnemonic, instruction group and instruction class. Each of these levels is an
attribute of tests. Instruction mnemonics relate to a single assembler level in-
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struction mnemonics (e.g. mov ax bx ). Instruction groups relate to instructions
of similar functionality e.g. mov (all move instructions), arithm (all arithmetic
instructions), branch, logic operations etc. We have defined 11 instruction groups
for CPU and 6 for Floating Point Unit. We define 3 instruction classes (CPU
instructions, FPU instructions and System instructions). Higher hierarchy levels
comprise fewer details. Another example of natural hierarchy is fault localization
e.g. CPU registers, their groups (segment, arithmetic and control) and explicitly
specified individual registers within these groups. Similarly, we define hierarchy
for FPU registers. Within memory space we distinguish data, stack and code
subareas. These subareas can be further partitioned. In the case of attributes
with no natural hierarchy and a large set of possible values it is useful to in-
troduce an artificial hierarchy levels. Hence, for the purpose of the analysis we
define address ranges (specified relatively or explicitly).

The list of dimensional tables and relations between them can be prepared on
the basis of the analytical model by assigning for each dimension hierarchy level
an entity (table) in the database. This solution introduces many joints, so it is
not effective during processing. Hence we have decided to use tables covering the
whole dimension hierarchy e.g. a single localization table combining the whole
hierarchy. This table comprises records with three columns (attributes): resource
localization, subarea and area localization. In a similar way we can also combine
tables of different hierarchies e.g. hierarchies of some similarity such as FTI
and DIC instruction hierarchy. In practice it is reasonable to create dimensional
tables of no more than several hundred thousands of records [11].

4 Statistical and Data Mining Results

We can generate various reports on collected results using standard OLAP tools
(e.g. Cube Browser - CuB). These reports are presented in the form of tables.
Creating a table we select attributes corresponding to table rows and columns.
Table entries comprise numbers related to the selected measures. The measure
can be any summarizing attribute e.g. the number of the executed tests, the
number (or percentage) of test results within the specified class (C, INC, S,
T) compare section 2. To make the reports more readable we can use slicing
which narrows the analysis to a specified subset of tests defined by appropriate
conditions (expressed in function of various attribute values). Various statistics
over individual applications or specified classes of applications can be easily
generated from the data warehouse.

For an illustration we give a statistic of test terminated by timeouts (T) in
relevance to fault triggering instructions (over many applications):

flag - 8.4%, fcom 8.0%, fcterl 7.6%, lpgic 6%, farithm 3.7%, misc 2.6%, branch
1.9%, arithm 1%, for the remaining instructions T < 1%.

The main database (DBS) is used in data mining to find some rules facilitating to
understand fault susceptibility in function of various application features, fault
location etc. Due to the large number of attributes we uses data mining based
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on decision trees. The decision tree comprises one root node, internal nodes and
leaves. Each internal node and the root are related to a specified conditional
attribute. Leaves relate to the decision attributes. Each branch coming out from
a node relates to a specified value of its attribute. In our system each node re-
lates to a set of tests, which fulfill the condition on the path from the root to
the considered node. The leaf, in addition, comprises values of the decision at-
tributes i.e. the category of test result (C, INC, S, T). In the ideal classification
the leaf should comprise tests with results belonging to one class. In the case of
fault injection experiments it is better to deal with rough tree fitting in which
a leave may comprise a set of tests corresponding to various result classes. The
class with maximal cardinality (or percentage) is called dominating. In such trees
we identify rules with the confidence level below 100%. The trees are generated
according to the algorithm, which uses Buntine measure to find optimal node
partitioning [11]. The algorithm used in SQL Server has two parameters, which
has to be defined by the user: the number of minimum test cases in the leaf and
the tree complexity penalty (fraction in the range [0,1]). Moreover, we have to
select the attributes and specify their types. We use nominal and ordered types.
The nominal type is used if the set of the values assumed by the attribute is
finite. The algorithm applies only operator = and �= to define comparison on
the tree branches. Repeating attributes in a path we can perform more com-
plex comparisons. We use nominal type for attributes of fault localization and
mnemonic of instruction FTI. The ordered attribute type relates to the set of
ordered values (e.g. instruction execution number - integer value) and here we
can define value intervals using relations <,>,≥,≤.

The data mining process involves generation of various decision trees and find-
ing rules on fault susceptibility. The most interesting are the rules with the high
confidence level. We create separate decision trees for test results of 4 classes: C
(correct), INC (incorrect), S (system exceptions) and T (time-outs) by selecting
appropriate binary decision attribute. In this case the tree leaves relate to the
considered result class or its complement (the one which is dominant). It is also
possible to generate the decision tree related to all result classes (multi-valued
decision attribute), where different leaves may comprise different dominating
result classes. While analyzing the trees we trace paths leading to leaves with
dominating tests or leaves comprising a small number of tests for the considered
result class. For example, nodes with dominating C category indicate fault tol-
erance capabilities and those with a small number of C category results indicate
fault tolerance problems. An important issue is the selection of conditional at-
tributes, their types and ranges of values. For an illustration in tab. 2 we give
possible partitions of a node in a tree (over many applications). Partition b for
attribute FTI (section 2) instruction length is less interesting than partition a
because it gives results closer to the root node. Partition a gives leaves with
dominant tests for C and S results. Partition c (for the attribute specifying the
number of injected faults in test) is also interesting due to dominant classes C
and INC in the leaves.
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Table 2. A sample of decision tree partitions

parent node, (C, INC, S, T) = (60, 25, 15, 0) in percents

FTI instruction length attribute L (bytes) Number of faults N

Partition a Partition b Partition c

L<4 L≥4 L<5 L≥5 N=1 N=2
(70, 28, 2, 0) (30, 15, 55, 0) (65, 27, 8, 0) (45, 19, 36, 0) (65, 15, 20, 0) (45, 55, 0, 0)

Table 3. Test result distribution according to fault localization attribute

Test Fault localization

results alu regs seg fregs fst code data stack

C 92% 26% 32% 82% 59% 33% 45% 74%
INC 4% 5% 0% 15% 41% 30% 34% 7%

S 4% 69% 68% 3% 0% 32% 21% 19%
T 0% 0% 0% 0% 0% 5% 0% 0%

Data mining was successfully used in identifying factors influencing fault sus-
ceptibility, error detection effectiveness (e.g. related to exceptions), finding the
most critical points in fault hardened applications, etc. In the sequel we illus-
trate this with a sample of results. The first example relates to the analysis of
fault injection results of 3 programs: P1 (Taylor series), P2 (bublesort) and P3
(LZW compression). The decision tree with decision attribute S was generated
by DMMB program. Test result distribution for the root node was: (C, INC, S,
T) = (48%, 22%, 28%,2%). The first conditional attribute was fault localization.
The distribution of test results in the nodes related to this attribute is given in
tab. 3. It confirms the significance of the selected attribute. The embedded fault
detection mechanisms generating system exceptions (S) are most effective for
fault disturbing specialized (regs) and segment (seg) registers (about 70% de-
tected faults). Time-outs (T) practically appear for faults injected into program
code. The next conditional attribute in the tree just after the node with fault
localization related to code was program. It generated two child nodes related to
program P3 and the remaining programs. For P3 we have got S=5% and other
test results 95%; for the remaining programs it was 40% and 60%, respectively.
It is interesting to note that for P3 correct results (C) contributed 90% (faults
injected into code), which confirms its relatively high fault tolerance.

The generated decision trees we analyze in a systematic way to identify in-
teresting conditions. We do this in some heuristic and recursive way by tracing
paths, starting from the root we select subsequent node if the percentage of the
considered test class is higher than in the parent node. Finding conditions lead-
ing to interesting behaviors e.g. dominating INC class we face the problem of
selecting conditions with appropriate generality. This problem we illustrate for
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a tree generated for time-out results (T) of programs P1-P3 (193 100 tests in
the root n1 node). Systematic tracing of the tree paths leads to the path with
high time-out percentage, shown in tab. 4.

Table 4. Example of a selected path in time-out decision tree (programs P1−P3)

Node n1-root n2 n3 n4 n5 n7

attribute - code P1 [247,250] msb≤ 11 msb �= 5

T 2% 5% 10% 25% 34% 38%

The presented path relates to the following attributes (and their values):
fault localization (code), program (P1), relative address range of disturbed code
([247,250]), disturbed bits in the code (any bits from 0 to 11-for node n5 and
any bits except bit number 5 for node n6). This path related to the highest per-
centage of time-outs (T). In fact the specified condition (including 5 attributes)
is too detailed. Practicality, we can skip the last attribute (msb�= 5), which in
fact improves slightly result classification from 34% (2600 tests) to 38% (2400
tests). Here it is worth noting that timeouts occur rarely, so the classification
levels over 30% can be considered as satisfactory. Much higher level of classifi-
cation confidence can be achieved for other test results e.g. correct results (C).
The decision tree generated for C results of programs P1-P3 shows the following
path with good classification: root (C=45%), fault localization: the main module
of program P1 (C = 54%) and fault localization universal register (C = 92%).

An interesting issue is finding critical code areas in the application. For a
matrix multiplication program with embedded row and column checksums (to
detect and correct faults) the generated tree identified code subareas of different
fault leakage (INC). The tree showed 5 subsequent code subareas (specified in
brackets, which give the number of comprised bytes B) with the following dis-
tribution of INC results:

(507 B): 0%, (151 B); 11%, (23 B): 27%, (2937 B): 3%, (8 B): 0%

Hence, we identified code bytes 507-680 (constituting less than 5% of the code)
as most sensitive to faults (11% ≤ INC ≤ 27%). This code can be improved.
For a bubble sort application the MS Analysis Server generated a partition of
4 code ranges (specified by relative addresses) with the following percentage of
time-outs (T):

[0,26]: 6%, [27,65]: 0%, [66,82]: 25%, [83,182]: 6%

For the whole application we obtained on average T < 5%, and a small code
area [66-82] is much more susceptible to timeouts (27%). The relative ranges can
be mapped into real addresses (748 bytes of the whole code), so the considered
area [66-82] comprises 86 bytes (11% of the application code). The decision tree
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generated with CuB browser is a little bit different - shown in tab. 5. From this
table we can find that faults injected closer to the end of the program gener-
ate the lowest percentage of incorrect results (INC) and more correct results.
The percentage of correct results is significantly higher for the second half of
the program, generated system exceptions practically are not correlated with
the address ranges. Some address areas are more susceptible to time-outs. For
comparison we give result distribution for the whole program: (C, INC, S, T) =
(15%, 29%, 51%, 5%).

In this way we have analyzed many applications taking into account various
aspects related to fault susceptibility, application specificity, configuration of
fault injection experiments etc. The available standard tools, allow us to drill
out sources of identified anomalies in application behavior.

Table 5. Address partitioning for Bubblesort program provided by CuB browser

Test Address ranges of FTI instructions

results [0,31] [32,48] [49,65] [66,86] [87,112] [113,145] [146,182]

C 5% 13% 14% 13% 36% 36% 35%
INC 38% 37% 39% 15% 4% 5% 7%

S 52% 50% 47% 51% 60% 53% 47%
T 5% 0% 0% 21% 0% 6% 11%

5 Conclusion

Developing data warehouse the most important issue is the definition of the data
model. This allows the user to generate the required system basing on standard
data base and data mining platforms. This system has to be supported with
appropriate data loading, and transformation procedures. The developed sys-
tem was targeted at the analysis of fault simulation results generated in many
experiments by various tools. In the data mining processes we based on decision
trees and found them useful in identifying some critical points in the analyzed
applications. The results were not trivial (difficult to find in a manual analysis.).
Here it is worth noting that the data exploration process is not fully automated.
Practically the user is provided with appropriate tools and should act in an inter-
active way to find interesting rules, relations etc. To facilitate data exploration
we have proposed an original scheme of tracing decision trees.

As far as new experiments with different applications are performed the data
warehouse is filled systematically with new data and the exploration process
covers larger spectrum of dependability features. This may result in a useful
knowledge database for this domain. Recently, we have initiated a new research,
which takes into account other data mining techniques. Rough set approach will
be considered also.
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Abstract. In the paper, we propose an algorithm for classification of
complex structured objects. The objects, expressed in a first-order logic
(FOL) language, are positive and negative examples of a target relation.
In the process of searching for a classification pattern, a similarity mea-
sure and some notions of rough set theory are applied. We search for the
pattern being a similarity degree of examples and satisfying two condi-
tions: the number of positive examples similar at least to the degree to
other positive examples is highest and the number of negative examples
similar at least to the degree to positive examples is lowest. The obtained
set of similar examples corresponds to the lower or to the upper approx-
imation of a set of all positive examples. The found similarity degree
is applied in classification of new examples. An example is classified as
positive if it belongs to the approximation computed with respect to the
degree, and it is classified as negative, otherwise.

Keywords: first-order logic, rough sets, similarity measures.

1 Introduction

In a lot of applications aimed at classification of complex structured objects ex-
pressed in a FOL language, an inductive logic programming (ILP)[2,4] approach
has been used. In ILP, there are given a set E+ of positive and a set E− of
negative examples of a target relation, and a background knowledge B usually
consisting of Horn clauses. The task is to find a hypothesis H (Horn clauses)
such that H covers all positive examples and does not cover any negative exam-
ple. Our approach is related to the task described above, but it is not within an
ILP framework. We consider sets E+, E− and B consisting of literals without
variables. In construction of a classification algorithm, we apply some similarity
measure and notions of rough set theory [5,6,7,8]. In our approach, the classifi-
cation pattern is a similarity degree of examples. In order to find the degree, we
consider a set of candidates being real numbers in the range of 0 to 1. For each
of them, we check how many positive and negative examples are similar to other
positive examples. We select a degree for which the number of similar positive
(negative) examples is highest (lowest). The obtained set of similar examples
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corresponds to the lower or to the upper approximation of set E+. The type of
approximation can be fixed by a user. New examples are classified on the base
of the degree found over a training dataset. An example is classified as positive
if it belongs to the approximation computed with respect to the degree, and it
is classified as negative, otherwise.

The rest of the paper is organized as follows: in Sect. 2, we present a general
way of defining of similarity of examples. Section 3 presents some notions of
rough set theory applied in our approach. In Sect. 4, an algorithm computing
a similarity degree and classifying new examples is proposed. Results of experi-
ments, performed by applying the approach proposed in the paper, are presented
in Sect. 5.

2 Similarity Degree of Examples

We apply some similarity measure to target examples in order to compare them.
As a result, we obtain a similarity degree of examples that is a real number in
the range of 0 to 1. The examples can be then said to be similar to each other
at least to the degree. If the degree is:

– 0, then examples are not similar (i.e., they are dissimilar);
– 1, then examples are totally similar.

Similarity of examples is defined by using supporting sets. Let term (l) denote
the set of terms of a literal l.

Definition 1. An example e is supported by a literal l if and only if

term (e) ∩ term (l) �= ∅.

We assume target examples to be as similar as background literals supporting
the target examples. When comparing two examples, we first compute their sup-
porting sets (i.e., a set of literals supporting the example). Let supp (e) denote
the set of literals supporting an example e. In our approach, relations among
unstructured objects (represented by terms) are more important than their con-
crete real or symbolic values. In order to capture these relations, we generalize
literals of supporting sets by replacing constants with variables. In the process
of generalization, we obtain the set suppgen (e) of literals, where each term is a
variable. The generalization can be carried out according to the algorithm pre-
sented below. Let term (e) = {t1, t2, ..., tn}, for any example e.

suppgen (e)
begin

T := term (e) ;n := card (T ) ;m := n;S := ∅;
for i := 1 to n do associate a variable vi with a term ti;
for each literal l ∈ supp (e) do
begin

for each t ∈ term (l) do
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begin
if t �∈ T then
begin

m := m + 1; tm := t;T := T ∪ {tm};
associate a variable vm with a term tm;

end;
replace t in l with v associated with t;

end;
S := S ∪ {l};

end;
return S;

end;

Finally, by computing similarity of examples, we compare literals of the gen-
eralized supporting sets. For example, we can compute a similarity degree of
examples e, e′ by applying the following function.

Definition 2. A similarity degree e sim (e, e′) of examples e, e′ is defined by

e sim (e, e′) =

{
card(S∩S′)
card(S∪S′) if S ∩ S′ �= ∅

0 otherwise

where S = suppgen (e) and S′ = suppgen (e′) .

One can consider more advanced similarity measures, for example by applying
distance measures to literals.

3 Similarity Degree in Construction of Approximation
Space

In this section, we recall the general definition of an approximation space [7], [8]
and also propose a way of application of approximations in our approach. Let
P (U) denote the set of all subsets of a non-empty set U.

Definition 3. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where

– U is a non-empty set of objects,
– I# : U → P (U) is an uncertainty function,
– ν$ : P (U)× P (U)→ [0, 1] is a rough inclusion function.

For every object, the uncertainty function defines a set of similarly described
objects. A set X ⊆ U is definable in AS#,$ if and only if it is a union of some
values of the uncertainty function.

The rough inclusion function defines the degree of inclusion of a set X in a set
Y , where X,Y ⊆ U . We consider two rough inclusion functions in our approach,
namely the standard rough inclusion and the rough inclusion of the variable
precision rough set model (VPRSM)[10].
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Definition 4. The standard rough inclusion νSRI (X,Y ) of a set X in a set Y
is defined by

νSRI (X,Y ) =

{
card(X∩Y )

card(X) if X �= ∅
1 if X = ∅

Definition 5. The rough inclusion νl,u (X,Y ) of a set X in a set Y is defined
by

νl,u (X,Y ) = fl,u (νSRI (X,Y )) ,

where fl,u (t) =

⎧
⎨

⎩

0 if 0 ≤ t ≤ l
t−l
u−l if l < t < u

1 if t ≥ u

and 0 ≤ l < u ≤ 1.

Note that if l = 0 and u = 1, then the rough inclusion νl,u is equivalent to the
standard rough inclusion νSRI .

The lower and the upper approximations of subsets of U are defined as follows.

Definition 6. For an approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U , the lower and the upper approximations are defined by

LOW
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) > 0}, respectively.

Approximations of concepts (sets) are constructed on the base of background
knowledge. Symbols #, $ denote vectors of parameters which can be tuned in
the process of concept approximation.

We adapt the lower and the upper approximations for subsets of the set of
target examples. Let U = E+ ∪ E−.

Proposition 1. For a similarity measure e sim of examples, a degree d and
any example x ∈ U , the uncertainty function is defined by

Ie sim
d (x) = {y ∈ U : e sim (x, y) ≥ d} .

Proposition 2. For an approximation space ASd =
(
U, Ie sim

d , νl,u

)
and any

subset X ⊆ U , the lower and the upper approximations are defined by

LOW (ASd, X) =
{
x ∈ U : νl,u

(
Ie sim
d (x) , X

)
= 1

}
,

UPP (ASd, X) =
{
x ∈ U : νl,u

(
Ie sim
d (x) , X

)
> 0

}
, respectively.

4 Similarity Degree as Classifier

In this section, we present an algorithm for classification of examples on the
base of a similarity degree. The degree is found over a training dataset. In our
approach, we consider the lower (or the upper) approximation of set E+. The
type of approximation can be fixed by a user. Belonging of an example to the
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approximation depends on a degree under consideration. The idea is to find a
degree for which the number of positive (negative) examples belonging to the
approximation is highest (lowest). Each example of the approximation is then
treated as positive. For practical reasons, we consider the set Ie sim

d (e) \ {e}
instead of the set Ie sim

d (e). In order to increase the lower approximation and to
decrease the upper one, we apply the rough inclusion of the VPRSM. Therefore,
we consider two parameters l and u, called precision control parameters.

Let X = (E,B) be a pair representing a dataset, where E = E+ ∪ E− and
B is a background knowledge. The function computing the lower and the upper
approximations with respect to a degree d is defined in the following way.

Compute App (X,X ′, e sim, d, l, u)
begin

LOW := ∅;UPP := ∅;
if X ′ �= ∅ then E := X ′.E; else E := X.E;
for each e ∈ E do
begin

t := νSRI

(
Ie sim
d (e) \ {e} , X.E+

)
;

if t > l then UPP := UPP ∪ {e};
if t ≥ u then LOW := LOW ∪ {e};

end;
return (LOW,UPP );

end;

The function can be applied to a training dataset and also to the test one.
In both cases, X is a training dataset. If we compute approximations for the
training dataset, then X ′ is the empty one. By computing approximations for a
test dataset, X ′ is the test one. In case of the training dataset, (LOW,UPP ) is a
pair of the lower (i.e., LOW ) and the upper (i.e., UPP ) approximations of E+.
In case of the test dataset, set LOW (UPP ) consists of test examples similar
with respect to parameter u (l) to examples of E+.

We propose the following method generating a classifier (i.e., a similarity de-
gree) by applying function Compute App.

Generate Classifier (X, e sim,C, l, u, app)
begin

v′ := 0;C′ := ∅;
for each c ∈ C do
begin

APP := Compute App (X, ∅, e sim, c, l, u);
if app = lower then A := APP.LOW ; else A := APP.UPP ;
pos := νSRI (X.E+, A) ;neg := νSRI (X.E−, A) ;
v := pos + (1− neg);
if v = v′ then C′ := C′ ∪ {c} ;
else if v > v′ then begin C′ := {c} ; v′ := v; end;
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end;

return
min(C′)+max(C′)

2 ;
end;

Here X is a training dataset, and C is a fixed set of candidates to be the clas-
sifier. One can fix which examples are treated as positive, namely the examples
belonging to the lower approximation (i.e., app = lower) or to the upper one
(i.e., app = upper). Here function νSRI is applied to compute the degree of
inclusion of the set of positive (negative) examples in the approximation.

We illustrate the notions presented above by means of an example.

Example 1. Given a dataset:

E+ = {e1, e2, e3, e4} , E− = {e5, e6, e7, e8},
where e1 = father (6, 5) , e2 = father (8, 1) , e3 = father (1, 3) ,
e4 = father (2, 4) , e5 = father (6, 7) , e6 = father (4, 1) ,
e7 = father (8, 2) , e8 = father (7, 6) ;
B = {male (1) ,male (2) ,male (3) ,male (5) ,male (6) ,male (8) ,male (9) ,

parent (1, 3) , parent (2, 4) , parent (4, 8) , parent (6, 5) , parent (7, 3) ,
parent (8, 1) , parent (9, 7)}.

We compute the supporting sets of the examples. For examples e1 and e7, we
obtain:

supp (e1) = {male (5) ,male (6) , parent (6, 5)} ,
supp (e7) = {male (2) ,male (8) , parent (2, 4) , parent (4, 8) , parent (8, 1)}.
Replacing constants with variables, we obtain:
suppgen

(
e1(v1,v2)

)
= {male (v1) ,male (v2) , parent (v1, v2)},

suppgen

(
e7(v1,v2)

)
= {male (v2) ,male (v1) , parent (v2, v3) , parent (v3, v1) ,
parent (v1, v3)},

where (v1, . . . , vn) in e(v1,...,vn) is a tuple of variables associated with terms of
an example e.

We obtain the following similarities for all examples:

e sim (e, e′) e1 e2 e3 e4 e5 e6 e7 e8

e1 1 0.6 0.6 0.5 0.17 0.14 0.34 0.17
e2 0.6 1 0.67 0.6 0.29 0.43 0.67 0.5
e3 0.6 0.67 1 0.34 0.29 0.43 0.43 0.29
e4 0.5 0.6 0.34 1 0.4 0.14 0.34 0.17
e5 0.17 0.29 0.29 0.4 1 0.5 0.5 0.34
e6 0.14 0.43 0.43 0.14 0.5 1 0.67 0.8
e7 0.34 0.67 0.43 0.34 0.5 0.67 1 0.8
e8 0.17 0.5 0.29 0.17 0.34 0.8 0.8 1

Let l = 0.3, u = 0.7 and C = {0.5, 0.6}. We compare the qualities of candidates
c1 = 0.5 and c2 = 0.6. For c1, we obtain:

Ie sim
c1

(e1) = E+, Ie sim
c1

(e2) = E+ ∪ {e7, e8} , Ie sim
c1

(e3) = {e1, e2, e3} ,
Ie sim
c1

(e4) = {e1, e2, e4} , Ie sim
c1

(e5) = {e5, e6, e7} , Ie sim
c1

(e6) = {e5, e6, e7, e8} ,
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Ie sim
c1

(e7) = {e2, e5, e6, e7, e8} , Ie sim
c1

(e8) = {e2, e6, e7, e8} .
For examples e1, e7, we obtain νl,u

(
Ie sim
c1

(e1) \ {e1} , E+
)

= 1 > u,
νl,u

(
Ie sim
c1

(e7) \ {e7} , E+
)

= 0.25 < l. Hence, e1 ∈ LOW and e7 �∈ UPP.

By considering the lower approximation (i.e., app = lower), we obtain:

LOW = {e1, e3, e4} , pos1 = card(LOW )
card(E+) = 0.75, neg1 = card(LOW )

card(E−) = 0.
Hence, v1 = pos1 + (1− neg1) = 1.75.
In case of the upper approximation (i.e., app = upper), we obtain:
UPP = E+ ∪ {e8} , pos′1 = card(UPP )

card(E+) = 1, neg′1 = card(UPP )
card(E−) = 0.25.

Hence, v′1 = pos′1 + (1− neg′1) = 1.75.
For c2, we obtain:

Ie sim
c2

(e1) = {e1, e2, e3} , Ie sim
c2

(e2) = E+ ∪ {e7} , Ie sim
c2

(e3) = {e1, e2, e3} ,
Ie sim
c2

(e4) = {e2, e4} , Ie sim
c2

(e5) = {e5} , Ie sim
c2

(e6) = {e6, e7, e8} ,
Ie sim
c2

(e7) = {e2, e6, e7, e8} , Ie sim
c2

(e8) = {e6, e7, e8} .
For examples e1, e7, we obtain νl,u

(
Ie sim
c2

(e1) \ {e1} , E+
)

= 1 > u,
νl,u

(
Ie sim
c2

(e7) \ {e7} , E+
)

= 0.34 > l. Hence, e1 ∈ LOW and e7 ∈ UPP.

By considering the lower approximation, we obtain:

LOW = {e1, e2, e3, e4} , pos2 = card(LOW )
card(E+) = 1, neg2 = card(LOW )

card(E−) = 0.
Hence, v2 = pos2 + (1− neg2) = 2.

In case of the upper approximation, we obtain:

UPP = E+ ∪ {e7} , pos′2 = card(UPP )
card(E+) = 1, neg′2 = card(UPP )

card(E−) = 0.25.
Hence v′2 = pos′2 + (1− neg′2) = 1.75.

For the lower approximation, we obtain that v1 = 1.75 < v2 = 2. Therefore,
c2 is a better candidate for the classifier than c1. For the upper approximation,
we obtain that v′1 = v′2 = 1.75. Therefore, we take c3 = c1+c2

2 = 0.55 as the
classifier.

New examples (i.e., test examples) are classified on the base of the classifier
found over the training set. An example is classified as positive if it belongs to
the approximation (computed with respect to the classifier) of set E+ and it is
classified as negative, otherwise. We classify new examples on the base of the
following algorithm.

Classify Examples (X,X ′, e sim,C, l, u, app)
begin

c := Generate Classifier (X, e sim,C, l, u, app);
APP := Compute App (X,X ′, e sim, c, l, u);
if app = lower then
begin POS := APP.LOW ;NEG := X ′.E − POS; end;
else begin POS := APP.UPP ;NEG := X ′.E − POS; end;
return (POS,NEG);

end;
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Here X is a training dataset and X ′ is the test one. The algorithm returns a pair
of sets POS and NEG consisting of examples classified as positive and negative,
respectively.

Example 2. Consider the training dataset given in Example 1, the same param-
eters l = 0.3, u = 0.7 and generated classifiers, namely c2 = 0.6 for the lower
approximation and c3 = 0.55 for the upper one. We classify examples of the
following test dataset:

E′ = {e9, e10} , B′ = B, where e9 = father (5, 2) , e10 = father (9, 7).

We obtain:

supp (e9) = {male (2) ,male (5) , parent (2, 4) , parent (6, 5)} ,
supp (e10) = {male (9) , parent (7, 3) , parent (9, 7)} .

Hence:
suppgen

(
e9(v1,v2)

)
= {male (v2) ,male (v1) , parent (v2, v3) , parent (v3, v1)} ,

supp
(
e10(v1,v2)

)
= {male (v1) , parent (v2, v3) , parent (v1, v2)}.

We obtain the following similarities for examples e9, e10:

e sim (e, e′) e1 e2 e3 e4 e5 e6 e7 e8

e9 0.4 0.8 0.5 0.4 0.34 0.5 0.8 0.6
e10 0.5 0.6 0.34 1 0.4 0.14 0.34 0.17

If app = lower, then we use classifier c2 and obtain:

Ie sim
c2

(e9) = {e2, e7, e8, e9} and Ie sim
c2

(e10) = {e2, e4, e10}.
We have: νl,u

(
Ie sim
c2

(e9) \ {e9} , E+
)

= 0.34 < u,
and νl,u

(
Ie sim
c2

(e10) \ {e10} , E+
)

= 1 > u. Hence, e9 �∈ LOW
and e10 ∈ LOW. Therefore POS = {e10} and NEG = {e9}.
If app = upper, then we use classifier c3 and obtain:

Ie sim
c3

(e9) = {e2, e7, e8, e9} and Ie sim
c3

(e10) = {e2, e4, e10}.
We have: νl,u

(
Ie sim
c3

(e9) \ {e9} , E+
)

= 0.34 > l,
and νl,u

(
Ie sim
c3

(e10) \ {e10} , E+
)

= 1 > l. Hence e9, e10 ∈ UPP. Therefore
POS = {e9, e10} and NEG = ∅.

5 Experiments

In this section, we present results of some experiments performed by our algo-
rithm. It is implemented in C++ language and executed on a PC with CPU 1.84
GHz and 256 MB RAM. We use two datasets in our experiments. The first one is
related to the document understanding (DocUnd) [3] and describes components
of single page documents. Target predicates (i.e., target relations) are related
to the following components: sender, receiver, date, logo and references. Back-
ground predicates describe properties of the components and relationships with
other components. Since there is more than one target predicate, we consider
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in each step literals of one predicate as positive examples and literals of other
predicates as the negative ones.

The second dataset is related to the family relations and it is created on the
base of the Family dataset provided with the FORTE system [1]. We consider the
following target predicates: wife, husband, mother, father, daughter, son, sister
and brother. Background predicates describe other relations between persons. In
case of this dataset, each target predicate has positive and negative examples.

In experiments, we apply two pair of precision control parameters, namely
u = 1, l = 1 − u = 0 and u = 0.7, l = 1 − u = 0.3. In both cases, we take
the lower and next the upper approximation as the set of positive examples.
Table 1 presents the results of experiments, total time of execution of the algo-
rithm (i.e., time of generation of pattern and time of classification of objects),
as well as valuations of classification. The first valuation is related to parameter
and approximation, namely val1 = p+(100−n)

2 , where p (n) is the percentage of
positive (negative) examples classified as positive. The second one is related to
approximation, namely val2 = val11+val0.7

1
2 , where valu1 is val1 for parameter u.

As experiments show, the results depend on both the factors i.e., parameter and
approximation. In general, if the parameter u is lower, then the result (i.e., val1)
is better or the same. This difference is more visible in case of the lower approx-
imation. The general result (i.e., val2) of the approximation is insignificantly
better in the case of the upper one.

Table 1. Percentage of positive and negative examples classified as positive

dataset DocUnd Family

app LOW UPP LOW UPP

parameter u=1 u=0.7 u=1 u=0.7 u=1 u=0.7 u=1 u=0.7

positive 84.29 96.31 92.07 93.77 76.54 93.24 95.75 95.75

negative 0 2.79 03.26 04.31 1.53 6.50 7.01 7.01

time(sec.) 0.88 0.88 0.89 0.88 0.42 0.44 0.44 0.43

val1 92.14 96.76 94.41 94.73 87.50 93.37 94.37 94.37

val2 94.45 94.57 90.44 94.37

6 Conclusions and Future Research

In the paper, we propose an algorithm for classification of complex structured
objects understood as target examples. Notions of rough set theory are adapted
in construction of the algorithm. A similarity degree, computed by the algo-
rithm over a training dataset, is treated as a classifier in case of the test one.
The algorithm is designed for datasets characterized by the following features:
consideration of values of literal terms is not essential; background knowledge,
restricted to literals of supporting sets, is sufficient to distinguish positive exam-
ples from the negative ones.



562 P. Hońko

An essential advantage of the approach is the size of the generated pattern.
Regardless of a dataset, the pattern is one real number in the range of 0 to
1. While classifying test objects, referring to a training dataset may be some
inconvenience. On the base of the results of experiments, one can observe that
effectiveness of our approach depends on selection of the precision control param-
eters and the type of approximation. A measure, applied to compute a similarity
degree, may has a significant influence on the results of experiments. More ad-
vanced similarity measures will be considered in future research. The second
subject of future research is another way of partition of a set of considered
objects. In the approach presented in the paper, we treat complex structured
objects as examples of a target relation. If a dataset includes more than one tar-
get relation, we divide a set of examples into two sets in the following way. The
first set consists of positive examples of the considered target relation, while the
second one consists of positive examples of other relations (i.e., negative exam-
ples of the target relation). One can apply another partition of the set of objects.
Namely, each relation, understood as a set of objects belonging to the relation, is
considered separately. Therefore, we compute a classifier for each relation. New
objects are classified to the most similar relation.
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Abstract. In this paper a method of creating layers of feed-forward
neural network that does not need to be learned is presented. Described
approach is based on algorithms used in synthesis of logic circuits. Ex-
perimental results presented in the paper prove that this method may
significantly decrease the time of learning process, increase generaliza-
tion ability and decrease a probability of sticking in a local minimum.
Further work and goals to achieve are also discussed.

Keywords: feed-forward neural network, logical circuit, parallel decom-
position, argument reduction, pattern recognition, learning algorithm.

1 Introduction

Feed-forward neural network is a widely used tool in the area of artificial in-
telligence. It is mainly used in various applications of pattern recognition and
prediction. However, feed-forward neural network has to be learned before it
is used, and the learning process seems to be the most important step during
the development of the network. There are few essential problems which can be
met during the learning process. Most of algorithms use optimization methods
to adjust weights of neurons - the network acts a parameterized function. The
function used in the optimization process - most often based on mean square
error – has a large number of local minimums and regions with very low slope.
Therefore the algorithms can stuck in such local minima, and the learning pro-
cess has to be restarted. Moreover, the larger the network is, the more neurons
it contains, and with each single neuron n weights are associated, where n is the
number of neurons in the previous layer. So, the number of weights grows much
faster than the number of neurons and the learning algorithm has to perform
significantly more calculations. On the other hand the structure of the neural
network is also very important, because if there are too many neurons in the
layer, the generalization abilities may decrease.

Since the neural network may also act as a logic circuit, functional decompo-
sition based methods can be used to solve the problems mentioned above. The
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c© Springer-Verlag Berlin Heidelberg 2007



Application of Parallel Decomposition 565

methods similar to those used in logic synthesis have already been used in knowl-
edge discovery [1]. The first attempts in application of functional decomposition
to neural networks were presented in [2,3] and then in [4]. In this approach the
serial decomposition was used to shatter a large neural network into a couple
of small networks connected with each other. The parallel decomposition and
argument reduction were used to decrease the initial number of inputs. In [4] it
has been shown that this approach has some major disadvantages – the gener-
alization ability may be lower, or may decrease faster with the increase of noise
in data. Another disadvantage is that this method can be used if the neural
network is created for the binary or just quantized input and output data. It is
useless for data that consists of real numbers.

In [4], another application of functional decomposition in feed-forward neural
networks has been mentioned, but it was neither explored, nor experimentally
verified. In this paper we attempt to fill this gap. In the presented approach,
actually the created neurons are already learned, and the parallel decomposition
or argument reduction is used to reduce number of them to the necessary mini-
mum. The experimental results show very interesting capabilities of the method,
in particular the learning time has been reduced for up to 30 times, without loss
of the generalization abilities.

In Section 2 we present some basic notions. Then in Section 3 the considered
approach is described. Section 4 presents experimental results. Finally conclu-
sions are presented in Section 5.

2 Basic Notions

2.1 Feed-Forward Neural Network

A typical feed-forward neural network consists of few layers. Each layer contains
a number of neurons which are not connected to any other neuron in the same
layer, but each one is connected to all neurons in the previous and next layers.
The input connector has a parameter, called weight, which is multiplied by an
input signal value and the result is passed to the neuron. The neuron sums up
all the signals and passes the result to an activation function (linear, binary,
sigmoid or other). Fig. 1 shows the structure of a feed-forward neural network
[5,6,7].

For example, the output signal for the neuron j in the layer b can be calculated
as follows:

f(n(jb)) = f

(
Bjb +

ka∑

i=1

Wia−jb · f(n(ia))

)
(1)

where Wx−y is the weight assigned to a connection between neurons x and y, ka

is the number of neurons in the layer a, B is the parameter called bias (sometimes
it is treated as a weight connected to the virtual fixed input signal equal to 1),
and f(x) is an activation function.
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Fig. 1. A sample feed-forward neural network with 3 layers

In this paper the binary and sigmoid activation functions will be used.

fbinary(x)
{

0, x < 0
1, x ≥ 0 (2)

fsigmoid(x) =
1

1 + e−ax
(3)

Let us note that formula (1) represents a hyper-plane that splits the hyper-
space of the input signals into two parts. Especially when the binary activation
function is used, the output value will be equal to 0 for the data points of the
first part, and it will be equal to 1 for the data points of the other part. So, the
aim of learning is to find such hyper-planes that can split the data points, for
which the output signal is different. Fig. 2 shows a sample set of the data points
for which the output signal is 0 (the black points) and 1 (the white points). The
lines n1 - n7 show the partitions made by the corresponding neurons.

There are several learning algorithms that are based on calculating derivative
of some error function in respect to all parameters. Usually, the most frequently
used error function is the mean square error (MSE), calculated for the output of

Fig. 2. A sample set of the data points
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the neural network. Such algorithms require that the activation function is dif-
ferentiable, therefore the usage of the binary functions for this case is impossible,
and instead the sigmoid function is used [5,6,7]. In the presented approach we
create few leading layers that contain neurons which have their weights already
set, thus we do not need to apply the learning algorithm to them. Thus, in these
layers we use the binary activation function. However end layers constitute a
normal neural network, which has to be learned in a typical way, so we use the
sigmoid activation function there.

2.2 Parallel Decomposition and Argument Reduction

In order to reduce a complexity of neural networks we create a number of lead-
ing layers with an extra number of neurons. Then we have to reduce them to
the necessary minimum. To do this, a parallel decomposition and an argument
reduction are used. These methods are commonly used in the logic synthesis of
Boolean functions and we briefly present them below [8,9,10].

A problem occurs, when we want to implement a large Boolean function using
components with a limited number of outputs. Note that such a parallel decom-
position can also alleviate the problem of an excessive number of inputs of the
function. This is because for typical functions most outputs do not depend on
all input variables.

As an example let us consider a multiple-output function F (Table 1). Assume
that F has to be decomposed into two components, G and H , with disjoint sets
YG and YH of the output variables. Let us note that the set XG of the input
variables, on which the output variables from YG depend, may be smaller than
X . Similarly, for the set XH of input variables on which the outputs from YH

depend, may be smaller than X . As a result, the components G and H have
not only less outputs, but also less inputs than F . The exact formulation of
the parallel decomposition problem depends on the constraints imposed by the
implementation style. One possibility is to find the sets YG and YH , such that

Table 1. Function F

x1 x2 x3 x4 x5 x6 x7 x8 x9 y1 y2 y3 y4 y5 y6

1 0 0 0 1 1 1 0 0 0 0 0 0 0 − 0
2 1 0 1 0 0 0 0 0 0 0 0 − 1 0 1
3 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1
4 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0
5 1 0 1 0 1 0 0 0 0 0 0 0 − 0 1
6 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0
7 1 1 1 0 0 0 0 0 0 1 0 − 0 1 0
8 1 0 1 1 0 1 0 0 0 1 1 0 0 − 1
9 1 0 1 1 0 1 1 0 0 − 1 0 1 − 1
10 1 1 1 0 0 0 0 1 0 1 0 1 0 1 −
11 0 0 0 1 1 1 0 0 1 0 0 1 0 − 1
12 0 0 0 1 1 0 0 0 1 − − 1 0 0 0
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card(XG + card(XH is minimal. Partitioning the set of outputs into only two
disjoint subsets is not important here, because the procedure can be applied
iteratively for the resulting components G and H .

The minimal sets of input variables, on which each output of F depends, are:

y1 : {x1, x2, x6}
y2 : {x3, x4}
y3 : {x1, x2, x4, x5, x9}, {x1, x2, x4, x6, x9}
y4 : {x1, x2, x3, x4, x7}
y5 : {x1, x2, x4}
y6 : {x1, x2, x6, x9}

An optimal two-block decomposition, minimizing card(XG)+card(XH ), is YG =
{y2, y4, y5} and YH = {y1, y3, y6}, with XG = {x1, x2, x3, x4, x7} and XH =
{x1, x2, x4, x6, x9}. The truth tables for the components G and Hare shown in
the tables 2 and 3.

Table 2. Function G of parallel de-
composition

X1 x2 x3 x4 x7 y2 y4 y5

1 0 0 0 1 0 0 1 0
2 1 0 1 0 0 0 1 0
3 1 0 1 1 0 1 0 1
4 1 1 1 1 0 1 1 1
5 0 0 1 1 0 1 1 0
6 1 1 1 0 0 0 0 1
7 1 0 1 1 1 1 1 −

Table 3. Function H of parallel de-
composition

x1 x2 x4 x6 x9 y1 y3 y6

1 0 0 1 1 0 0 0 0
2 1 0 0 0 0 0 0 1
3 1 0 1 0 0 0 1 1
4 1 1 1 1 0 0 1 0
5 0 0 1 0 0 1 0 0
6 1 1 0 0 0 1 1 0
7 1 0 1 1 0 1 0 1
8 0 0 1 1 1 0 1 1
9 0 0 1 0 1 - 1 0

The algorithm itself is general in the sense that the function to be parallel
decomposed can be specified in a compact cube notation. The calculation of
the minimal sets of input variables for each individual output can be a complex
task. Thus in the practical implementations, heuristic algorithms are used which
support calculations with the help of the so called indiscernible variables. But the
simplest way to obtain the quasi-minimal set of input variables for an output
of a Boolean function is just trying to eliminate an input variable and then
checking the consistency of the function - if the function is still consistent, the
input variable can be safely removed.

3 Application of the Decomposition to Reduce the
Neural Network

The idea is based on the fact that each neuron represents a hyper-plane. We
can manually create neuron by neuron, so that each represents a hyper-plane
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splitting the data space. However it is very difficult to decide how to split the
space, as there is unlimited number of solutions, the more that we decide it
only for the training set without knowing the whole space. On the other hand
we should build the network with possibly least number of neurons in order to
achieve the network with the sufficient abilities to generalize. To this end, our
algorithm should create a surplus set of hyper-planes and then to reduce it using
a parallel decomposition and an argument reduction. In that way we create a
layer with the reduced set of neurons. This step is repeated till the cardinality of
the unique output signals of the layer is lower than of the previous layer. Finally,
for the last layer we create a typical neural network to process the output data
of the last but one layer. The steps are described in the following subsections in
more details.

3.1 Creating Initial Set of Neurons

As stated above, at the beginning we devise an initial set of neurons, which may
be superfluous. Let us assume that there are k data points in some n dimensional
hyper-space. Each point has to be mapped to one of m possible output signals.
The hyper-planes have to split the training data points that are mapped to the
different output signals. A naive approach would be based on calculating the
centroid of the data points for which the output signal is the same. Then a
hyper-plane would be created between two randomly selected centroids, and the
set of data points is shattered into two parts. The algorithm is repeated for each
part till there is only a single centroid in each set. We have tested this approach,
but it turned out to be inefficient and in some cases inconsistent.

 

Fig. 3. Steps of the algorithm that creates hyper-planes

We base our approach on the observation that by splitting the closest dis-
tinguishable points we achieve the network with higher ability to distinct input
data. Therefore we select such data points from varying groups that are closest
to one other and create a hyper-plane between them. We repeat the process till
the groups are homogenous. The algorithm is illustrated on Fig. 3.

3.2 Reducing the Set of Neurons

Each hyper-plane splits a hyper-space into two parts. Let us assume that for
each data point, the value 0 is assigned if the data point is located in the first
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Table 4. A layer of neurons presented as the truth table

Point number Assignments for each hyper-plane Output signal
neuron 1 neuron 2 neuron 3 ... neuron n

1 1 1 1 ... 0 0 ...
2 0 0 1 ... 0 0 ...
3 0 0 1 ... 1 0 ...
... ... ... ... ... ... ...
k 0 1 0 ... 1 1 ...

part of the hyper-space and the value 1 if one is located in the other part. This
corresponds to assigning the value of the binary activation function (Table 4).

A logic function (similar to the one shown in Table 1) is created, so an argu-
ment reduction can be applied to it. The argument reduction removes unneces-
sary input arguments so the corresponding hyper-planes can be safely removed.
Thus we will have a quasi-minimal set of neurons in a layer. We can also use
a parallel decomposition and create the set with the minimum number of neu-
rons for each output. Then we may group these sets to get the best results. We
have performed a number of experiments, which have shown that the argument
reduction used for the hyper-planes created by the algorithm sketched in p. 3.1
reduces the number of the neurons dozens times.

3.3 Normal Neural Network as the Output

The presented algorithms are not perfect. Although they significantly reduce the
number of dimensions in the hyper-space for the layers, there is rather a slim
chance that the cardinality of different output signals is equal to the cardinality
of unique output signals of the system. To this end, we can (1) map the output
signals of the last layer to the desired output signals or (2) create a simple neural
network which can process them. We have selected the second solution for our
experiments.

Fig. 4. A model of reduced neural network



Application of Parallel Decomposition 571

4 Experimental Results

The experiments have been performed with the RPROP [6] learning algorithm
for two cases: (1) a normal neural network and (2) a reduced neural network. The
learning process was stopped when the error measure had fallen behind 0.01. If
the algorithm had stuck in a local minimum, the learning process was started
again, and a time was reset. In the experiments the neural network simulator and
the decomposition tool created by authors were used. The measured variables
were:

- a total learning time, i.e. the time of creating the hyper-planes and reducing
the neural network (in case of testing the reduced network) + a time of
learning),

- a learning result (a part of learning vectors that were correctly classified),
- a test result (a part of testing vectors that were correctly classified) and
- a number of local minima (an average number of events that the learning

algorithm got stuck in a local minimum).
Each test was repeated for 5 times and an average value was calculated for each
variable.

4.1 Comparison of Learning Time, Generalization Ability

In the first experiment 10 inputs and 4 outputs neural network was used. It an-
alyzed the input vector, translating it to a code. The number of learning vectors
was 492. We have divided the initial network into 4 parts for both normal and
reduced neural network tests, so that each output was evaluated independently
(one part per single output).

The second experiment was performed for the pattern classifier. Input data
were matrices of 36 characters, each character in 3 variants – so the total number
of learning vectors was equal to 108. There were 360 inputs and 36 outputs –
each output is activated for the single character.

Table 5. The results of learning and testing the ones counter

Neural Total learning Learning Test Number of
network time result result local minimums

Normal 38.6 0.9455 0.5779 3.6
Reduced 23.7 0.9565 0.6335 1.0

Table 6. The results of learning and testing the pattern classifier

Neural Total learning Learning Test Number of
network time result result local minimums

Normal 33,9 0.9889 0.7630 0.0
Reduced 0,9 1.0000 0.7778 0.0
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The results mentioned above show that the learning time was significantly
shortened and the generalization abilities were slightly increased for the reduced
network. Moreover, Table 5 shows that for the normal neural network the learn-
ing process stuck in the local minimum some 3 times more than for the reduced
one.

4.2 Comparison of Abilities to Generalize for Different Noise Level
in the Test Data

In the third experiment an input data were matrices of 93 characters, each
character in 3 variants – so the total number of learning vectors was 279. The
size of the input matrix was 1200. 7 outputs were binary representation of the
character code. The tests were performed for 4 sets of the test vectors with a
different noise level. The initial neural network was divided into 7 networks -
each network for the single output.

Table 7 shows that the learning time was over 30 times shorter in the case of
the reduced neural network. Furthermore the generalization abilities were better

Table 7. The learning time comparison

Neural network Total learning time

Normal 345.5
Reduced 10.4

Table 8. The generalization ability for the different noise levels

Neural network Test result - Generalization ability
Noise 25 Noise 50 Noise 100 Noise 200

Normal 0.515 0.389 0.278 0.121
Reduced 0.722 0.647 0.449 0.371
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for each examined noise level (Table 8). Fig. 5 depicts that they decrease slower
for the reduced neural network than for the normal one.

5 Conclusions

The presented method allows simplifying a learning process of a feed-forward
neural network. It is useful especially to solve various pattern recognition prob-
lems. The experimental results presented in the paper prove the effectiveness and
efficiency of the proposed method. The time of learning, as well as, the prob-
ability of sticking in a local minimum were significantly reduced. The method
allows also increasing the generalization abilities. The technique we put forward
can be improved in the future works. The goal is to develop an algorithm for
creating hyper-planes such that it would eliminate the need of using a normal
neural network in the last layer.
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Abstract. Improving classification performance of learning systems can
be achieved by constructing multiple classifiers which include sets of sub-
classifiers, whose individual predictions are combined to classify new
objects. The diversification of sub-classifiers is one of necessary condi-
tions for improving the classification accuracy. To obtain more diverse
sub-classifiers we extend the bagging approach by integrating sampling
different distributions of learning examples with selecting multiple sub-
sets of features. We summarize results of our experiments on studying
the usefulness of different feature selection techniques in this extension.
The main aim of the paper is to examine the use of three methods for
aggregating predictions of sub-classifiers in the extended bagging classi-
fier. Our experimental results show that the extended classifier, with a
dynamic choice of answers instead of a simple voting aggregation rule, is
more accurate than standard bagging.

Keywords: machine learning, multiple classifiers, bagging, feature se-
lection, aggregation rules.

1 Introduction

In the last decade it has been observed a growing research interest in increas-
ing classification accuracy of supervised learning systems by integrating several
classifiers into combined systems [4,9,19]. Such systems are known under the
names multiple classifiers, ensembles methods or committees. It has been showed
that these classifiers were often more accurate than the component classifiers
that make them up and could be used for difficult tasks, where standard single
classifiers failed. More motivations for creating such systems are presented, e.g.
in [4,9]. Some methodological studies say that combining identical classifiers is
useless [9]. The diversification of these sub-classifiers is treated as a necessary
condition for their efficient combination.

Several methods have been proposed to get diverse base classifiers inside mul-
tiple classifiers. In general two kinds of approaches are distinguished [4,9,19]. In
the first approaches, the same learning algorithm is used over different samples
of the input data set, while in the other approaches different learning algorithms
are applied to the same data set. In this paper we focus our attention on the
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bagging approach [2], which is based on using bootstrap sampling to get several
different distributions of input examples and learning diversified classifiers from
these samples. We have chosen it because it is quite efficient, we have good pre-
vious experience with combing it with rule induction [15], and its architecture
could be easier extended than boosting or more advanced classifiers. Moreover,
we are interested in feature ensembles, where different learning sets are obtained
by selecting multiple, different subsets of features in the input data [12].

It should be noticed, however, that these two diversification approaches are
considered independently in the current literature. So, one can ask a question
about integrating together bootstrap sampling and selection of multiple feature
subsets. The main motivation behind this idea is to make the ensemble more
diverse than using any of these approaches alone. Such research have already
been undertaken. In [10] Latinne et al proposed to combine the standard bag-
ging with random selection of feature subsets over each bootstrap sample. They
showed that this combination outperformed each of the single approach. The
author, together with Kaczmarek, have also studied in [16] this kind of an inte-
gration, i.e. the bagging was extended in the other way by integrating bootstrap
sampling with more advanced methods of feature selection, which are based on
evaluation of the relationship between single feature, or feature subsets, and the
target class. This paper was focusing on choosing the most appropriate feature
selection methods. The following paper will summarize the main of these results
and compare them to evaluations of new extensions of the bagging.

However, the other aspect while constructing multiple classifiers is to choose
a proper technique for aggregating predictions of sub-classifiers. The standard
bagging uses a majority vote rule. In other multiple classifiers more sophisti-
cated techniques, as e.g. meta-learning from predictions of sub-classifiers, are
also applied. Moreover, let us stress the observation made by other researchers,
see e.g. [17], saying that if some sub-classifiers are more accurate in some sub-
spaces of the input data but may be inaccurate on the rest of data, then it could
be beneficial to promote their decisions for these objects which they are better
specialized for. We think that this issue could be considered in the proposed
extended bagging as the component sub-classifiers could be more diversified and
may refer to different aspects of learning data.

Therefore, the main aim of this paper is to experimentally verify the usefulness
of new methods for integrating the answers of sub-classifiers in our proposed
enhancement of bagging. In particular, we focus attention on dynamic selection
of classifiers and meta-learning methods and compare them against previous
approaches on a diverse collection of benchmark data sets [1]. To be consistent
with experiments from [10,16] all configurations of bagging sub-classifiers are
decision trees induced by the Ross J. Quinlan’s C4.8 algorithm.

2 Feature Selection and Feature Ensembles

The feature subset selection is a well studied problem in machine learning, data
mining or statistics [11,8]. Typically, this problem is referred to a single learning
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algorithm and aims at finding a subset of features leading to not worse classi-
fication accuracy than the set of all features. The selection of features is done
according a chosen evaluation measure. Some measures evaluate a degree of re-
lationship between values of a single feature and a decision class and allow to
rank features. Other measures and search strategies are more appropriate for
evaluating subsets of features.

However, within the context of multiple classifiers the motivation is different.
Feature subset selection is used as a mechanism for introducing the diversity of
base classifiers. According to it, the learning sets for creating sub-classifiers are
obtained by using different subsets of features for each of them (with maintaining
the presence of the same learning examples in each learning set) [12]. The subsets
of features are either overlapping or disjoint.

In some problems the features are naturally grouped, for example in signal
processing (speaker identification or image recognition). The author also met
such a grouping in e-mail machine classification, where separate features con-
cerned the text content of the email body, the next features were coming from
the email subject, others were extracted from the header or the attachments.

In general, natural grouping features may not occur and their multiple subsets
should be automatically found. Reviews of such approaches are given in [19,9].
Quite well known is Random Subspace Method introduced by Ho [6], which con-
sists of training several classifiers from input data sets constructed with a given
proportion k of features picked randomly from the original set of features - the
author of this method suggested in his experiment to select around 50% of the
original set of features. There are also other ”non-random” methods, where the
correlation between each feature and the output class is computed and the base
classifier is trained only on the most correlated subset of features. Other ”favorite
class” feature selection iterative methods have been considered by Puuronen at
el. [13] - they also derived special contextual merit measures instead of using the
simple correlation. Kuncheva also described in [9] the use of genetic algorithms
to guide the random search in the space of possible feature subsets with inten-
sifying a chosen diversity measure in a population of feature subsets. However,
several experimental studies of different methods led to conclusions that there
is no one best method for all situations [19].

3 Integrating Bagging with Feature Selection

Let us start from reminding principles of the bagging approach, introduced by
Breiman [2]. It is based on an idea of running the same learning algorithm several
times to get diversified classifiers, each time using a different distribution of the
learning examples. Diversified learning sets are obtained from the input data set
by bootstraping sampling with replacement. Each sample has the same size as
the original set, however, some examples do not appear in it, while others may
appear more than once. For a learning set with m examples, the probability of an
example being selected at least once is 1−(1−1/m)m. For a large m, this is about
1 - 1/e. According to Breiman [2] each bootstrap sample contains≈ 63.2% unique
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examples from the original set. Let {T1, . . . , Ts} be a set of bootstrap samples.
From each sample Ti a classifier Ci is induced by the same learning algorithm and
the final classifier C∗ is formed by aggregating s classifiers. A final classification
of object x is built by an equal voting scheme on C1, C2, . . . , Cs, i.e. the object
is assigned to the class predicted most often by these sub-classifiers.

Let us shortly discuss the previous, related approaches to integrate bootstrap
sampling in the bagging with the selection of subsets of features. According
to our best knowledge, this idea was introduced by Latinne et al [10]. In this
proposal, first, S bootstrap samples Ti of the learning set are generated with the
same sampling schema as in [2]. Then, for each sample independently select R
different subsets of features are randomly selected. The proportion of features K
selected from the original sets is a parameter of the approach (details of tuning
this value - the same for all subsets are given in [10]). Proceeding in this way,
S ·R learning sets are obtained to which the same learning algorithm is applied.
In [10] decision tree were induced as base classifiers. The experimental results
with this approach, called further BagFs, showed that it performed better than
both diversification approaches used alone.

The author and Kaczmarek introduced in [16] another version of this enhanced
approach, where subsets of features were selected according to more complex
methods than plain random choice only. For each bootstrap sample, R random
feature selection iterations were replaced by R different selection methods. The
choice of these methods was common for all S bootstraps and each of them
was conducted according to another evaluation measure. Sub-classifiers were
trained on more classification relevant subsets of features and we hypothesized
that as a result of choosing different methods these feature subsets could also be
sufficiently diversified.

In [16] we experimentally studied the problem of choosing such methods and
performed experiments on the same data sets as used in the following paper. In all
experiments the sub-classifiers were decision trees induced by the C4.8 algorithm
available in WEKA [20] - to be consistent with earlier works [10]. We used
standard options of this algorithm. We tested 8 feature selection methods, which
were either available in ”filter” options of WEKA or had to be implemented. Due
to the size of this paper we skip all detailed results (see e.g. [16]) and summarize
that finally we propose to use the following evaluation measures:

– Contextual-merit measure: Proposed in [7] evaluates single features not their
subset. It assigns the highest merit to features, where examples from different
classes have different values.

– Info-Gain : The well known measure based on the information entropy often
used in symbolic induction.

– Chi-Squared statistic: It is based on widely used statistics to evaluate pairs
of features. Any numeric feature have to be discretized [20].

– Correlation-based measure: The idea behind it is that a good subset should
contain features highly correlated with the class but uncorrelated with each
other; For its definition see [5].
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Table 1. A comparison of classification accuracy for standard classifier and bagging
variants (an average value with a standard deviation represented in %)

Data C4.8 Bag49 Bag7Fs7 Bag10DFS5

glass 67.76±1.44 74.77±1.62 77.01±1.80 76.87±2.2

bupa 65.42±1.21 73.62±0.85 71.91±1.81 70.32±1.64

vote 94.23±0.65 94.80±0.28 94.83±0.39 94.97±0.11

breast 94.48±0.62 96.25±0.39 94.56±0.75 95.99±0.38

election 90.56±0.66 91.22±0.76 92.23±0.66 91.73±0.48

wine 93.82±1.18 96.07±0.88 95.00±1.44 96.69±1.04

ecoli 83.10±1.04 84.38±0.80 84.61±0.74 83.99±1.2

german 69.22±1.30 74.14±0.88 73.65±1.12 74.43 ±0.98

As the last method we considered the Random Subspace Method [6], because
it is based on an absolutely different principle than above methods. Nearly all
these methods evaluate the single features and the choice of features is done
according to their ranking - which requires using the threshold parameter k for
the best features (details of tuning it are given in [16]).

Below we summarize our experience with this extension. First, we had to de-
cide about the number of sub-classifiers inside bagging. Previous experimental
studies, e.g. [10,14,16], showed that choosing a high number (e.g. up to 343)
did not led to much better accuracy while significantly increased computational
costs. Following these observations we chose a configuration with around 49
component sub-classifiers - also to be consistent with previous results from [10].
Thus, our enhanced bagging was started with 10 bootstrap samples and, then,
for each of these samples 5 iterations of chosen feature subsets selection methods
were applied - this version is denoted as Bag10DFS5. We also tested more ver-
sions of this integration changing the number of bootstraps and feature selection
loops but it seemed that next increasing the number of different feature selection
less influenced the final classification than increasing the number of bootstraps.
As we wanted to study another way of extending bagging with feature selection,
we also created a classifier Bag7Fs7, where for each of 7 bootstraps 7 multi-
ple feature subsets were randomly chosen by plain drawing (in the similar way
as proposed in [10]). Moreover, to extend a comparison of bagging variants we
added a standard bagging classifier built with 49 bootstraps (denoted as Bag49).
In all bagging configurations the equal weight voting was used as an aggregation
method. Finally, we also evaluate a classification performance of the standard
single decision tree induced by the same implementation of the C4.8 algorithm.
Classification accuracy of all compared classifiers are presented in Table 1. The
classification accuracy was estimated by the 10-fold stratified cross validation.
All results were presented in tables as average values with standard deviations.
We used 8 following data sets: glass, bupa, vote, breast cancer Wisconsin, bush-
election, wine, ecoli, german. All the data sets, except election, were coming
from UCI repository [1].
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We also decided to examine other possible configurations of Bag −DFS ap-
proach including a smaller number iterations of feature selection. First, we stud-
ied 5 new configurations of enhanced bagging, where for each of 12 bootstraps
4 different feature selection iterations were considered (i.e. one of the previous
methods was temporary skipped). We also checked next configurations with 3
feature selection iterations for each of 16 bootstraps. Due to the page limits we
skip detailed results (see [16]) and remark that the variant with feature selec-
tion methods based on Context-merit, Correlation based measures and Random
selection was the best – its performance is given in Table 2 in column 2 as
Bag16DFS3 +EV . In the additional experiments presented in this study we will
also use the wrapper approach [8], where the search algorithm conducts a forward
stepwise search for a subset of features using an induction of classifier inside an
internal cross-validation to evaluate their classification accuracy [14].

4 Aggregating Answers of Sub-classifiers

In general, there are two kinds of methods for aggregating predictions of sub-
classifiers: group combination or specialized selection. In the first method all
classifiers are consulted to classify a new object while the other method chooses
only these classifiers whose are ”expertised” for this object.

Voting is the most common method used to combine predictions of single
sub-classifiers. The classification prediction of each base classifier is considered
as an equally weighted vote for the particular class. The class that receives the
highest number of votes is selected as a final decision. The vote of each classifier
may be weighted, e.g., by estimating its accuracy. There are also more advanced
aggregation rules, e.g. using Bayesian rule or fuzzy operators - see [19,9].

Yet another idea includes explicitly training a combination rule - usually a
second level meta-learning classifier is put on the outputs of base classifiers and
has to merge these predictions into the final decision of the system. It is based
on the idea of meta-learning, which is loosely defined as ”learning from learned
knowledge” [3]. Shortly speaking predictions made by the base classifiers on a
set of extra validation examples, together with correct decision classes, form a
basis for a meta-level training set and the learning algorithm is used to create
the meta-classifier.

Few specialized selection methods have also been proposed, for review see e.g.
[17]. In case of bagging or feature ensembles the dynamic integration methods,
called Dynamic Selection, Dynamic Voting were considered as useful ones[17].
They are based on estimating local accuracy for sub-classifiers. Having learning
data, the classification accuracy of respective sub-classifiers on each learning
example is calculated, e.g. by cross-validation, and stored. When a new example
is provided for classification, first its k nearest neighbors (examples) are found
in the learning set using a distance metric based on its feature values. Then, the
classification accuracies of all the sub-classifiers on this neighbors’ set are found
out in the previously stored estimates. Using these estimates one can establish
which sub-classifiers are better performing on previous learning examples the
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Table 2. Comparing aggregation techniques: equal weight voting, stacked combination
vs. dynamic voting comparison

Data Bag16DFS3 Bag16DFS3 Bag16DFS3 BagFS
set +EV +DV +SC +DV

glass 76.54±1.9 76.87±1.87 68.71±2.33 76.26±1.18

bupa 70.9±1.13 71.39±1.0 66.81±1.41 71.74±2.04

vote 95.0±0.1 95.0±0.1 94.40±0.16 94.77±0.64

breast 96.07±0.36 96.18±0.22 95.26±0.44 96.44±0.34

election 91.98±0.75 92.50±0.53 90.95±0.7 92.39±0.52

wine 97.08±0.96 97.08±1.02 93.31±1.28 96.74±0.37

ecoli 83.80±0.89 84.16±0.91 80.77±1.46 83.51±0.43

german 74.58±0.59 74.79±0.61 71.97±1.2 73.29±1.08

most similar to new coming object. In Dynamic Voting all of the sub-classifiers
are used in a weighted voting, each with a weight proportional to its estimated
accuracy. Dynamic Selection chooses the subset of classifiers with the highest
classification accuracy to produce the final decision. According to [17] the above
methods led to a better accuracy than the simple Equal Weight Voting for both
bagging and boosting classifiers.

5 Experiments

The aim of these experiments is to evaluate the impact of applying different
methods of integrating sub-classifiers answers on the classification accuracy of
the proposed enhanced approach integrating different feature subset selection
methods with bootstrap sampling within bagging framework. The following ag-
gregation methods are verified:

– Simple Equal Weight Voting,
– Stacked Meta-Combiner - which was implemented as a decision tree induced

by C4.5 algorithm.
– Dynamic Voting.

In dynamic voting we compute nearest learning examples of the classified ob-
ject with an Euclidean distance measure for numeric features and Cost-Salzberg
Value Difference Metric for symbolic ones. We tested several variants of the pa-
rameter ”a number” of nearest neighbors and stayed with 21 - what was similar
to the parameter used in [17]. In carried out experiments we applied the best
found variant of our approach, i.e. Bag16DFS3, and extended it by using either
Dynamic Voting method or Stacked Combiner for aggregation of sub-classifiers
answers. To have more extensive comparison we also used it for the bagging with
only random feature selection iterations denoted as BagFs + DV . The results
are given in Table 2 are presented in the same way as before.

Moreover we studied the possibility of introducing the wrapper approach as
an extra feature selection methods. We skipped it in earlier experiments with
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looking for the best extended variant [16] because it was the most computation-
ally demanding [14]. We chose the Bag16DFS3 + DV variant, which led to the
best improvement of classification accuracy and considered its two new possible
configurations containing the use of wrapper, i.e.: Bag12DFS3+wrapper (where
for each of 12 bootstrap the 4 feature subsets were selected by methods using
Correlation-based, Contextual Merit measures, Plain Random Drawing and the
wrapper approach and Bag16DFS2 + wrapper (where the wrapper was added
as an additional feature selection to Correlation-based measure and Plain Ran-
dom Drawing for each of 16 samples) Classification results for all these bagging
variants are presented in Table 3.

Table 3. Classification accuracy of different bagging variants

Data Bag7Fs7 Bag16DFS3 Bag12DFS3 Bag16DFS2

set + wrapper + wrapper

glass 77.01±1.80 76.87±1.87 77.11±1.15 77.53±1.82

bupa 71.91±1.81 71.39±1.0 72.23±1.72 72.46±1.9

vote 94.83±0.39 95.00±0.11 95.35±0.2 94.97±0.1

breast 94.56±0.75 96.18±0.22 96.28±0.29 96.69±0.26

election 92.23±0.66 92.50±0.53 92.66±0.37 92.73±0.48

wine 95.00±1.44 97.08±1.02 97.64±0.66 97.36±0.71

ecoli 84.61±0.74 84.16±0.91 84.94±0.82 85.39±1.02

german 73.65±1.12 74.79±0.61 74.36±0.73 74.86±0.96

6 Discussion of Experimental Results and Final Remarks

Improving classification performance of classifiers induced by data mining meth-
ods is still one of the key problems in knowledge discovery and machine learning.
One of the solutions is to integrate base classifiers into combined systems. In
this paper we discussed different approaches for extending the bagging classifier,
which besides boosting is one of the most popular multiple classifier. Follow-
ing the postulate of the diversification of answers from the ensemble the main
idea was to integrate bootstrap sampling with various feature selection methods
which should produce a larger number of more diverse component classifiers.
The main contribution of this paper has been to study usefulness of different
methods for integrating answers of these sub-classifiers inside bagging instead of
simple voting combination rule, which is typically applied in the bagging.

Firstly, let us summarize the results of the experimental evaluation of these
enhancements starting from verification of various feature selection methods.
The first observation is that all versions of the extended bagging classifier are
significantly better than a single, standard classifier (in the sense of t - Student
paired statistical test). Moreover, for nearly all data they are competitive com-
paring to the standard version of the bagging classifier (Bag49). The exception
is bupa data set, where Bag49 is still the best.
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The best version of the extended bagging classifier proposed in this paper,
called Bag16DFS3 + DV , is significantly better than the variant with using
only random selections of multiple feature subsets (Bag7Fs7) on 3 out of 8
data sets (precisely breast, wine and german) while for other data sets observed
improvements were not significant in the sense of paired t test. This classifier
consisted of 16 bootstrap samples duplicated 3 times, each time using a different
feature selection method - Correlation-based measure, Contextual Merit measure
and Plain Random drawing. One should also notice that the new Bag16DFS3 +
DV was generally better for data containing a higher number of examples, while
insignificant differences occurred for data with a smaller number of examples.

Introducing the wrapper method inside enhanced bagging slightly increased
the classification accuracy – see Table 3.

Let us now discuss results of evaluating different methods of integrating sub-
classifiers answers on the classification accuracy. Implementing the dynamic vot-
ing to combine answers of base classifiers led to better results for the Bag16DFS3

classifier, while having less influence on the plain random BagFs classifier. How-
ever, no progress was noticed for the other aggregation technique based on incor-
porating stacked generalization with an additional decision tree. Perhaps other
meta-learning algorithm, as e.g. naive Bayes, could be chosen. It also seems that
the dynamic voting worked slightly better when the wrapper method has been
applied as an additional feature selection method - see Table 3. Here, we can
also remark that in the most related research [17] the dynamic voting, applied
directly to feature selection, also improved the classification performance of bag-
ging. However, we should conclude from our experiments that observed increases
of the classification accuracy around 1-2 % are not too impressive. It seems that
the considered aggregation methods has less influenced the final classification ac-
curacy than an earlier integration of bagging with selections of multiple feature
subsets.

Finally, we should pay attention to computational requirements - in particular
if we think about mining larger data. Although the proposed extended classifier is
more accurate, we also observed the growth of computational costs comparing it
to the traditional approach. For instance, in our experiments single C4.8 classifier
was built on the glass data set in 1.5 second, Bag49 in 26 seconds, Bag7Fs7 in
27 seconds, Bag16DFS3 in 234 seconds and with wrapper even more. Thus, if
the time restrictions are important, the simple random feature selection could
be an acceptable alternative to more advanced approaches.
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Abstract. Some quasi–ordering for coverings are here defined. Different
definitions of entropies and co–entropies for coverings are examined, also
focusing on the distinction between the here called global and pointwise
approaches to co–entropies. The entropies and co–entropies are defined
both for coverings generated from an information system via a similarity
relation and for generic coverings of a universe X (i.e., coverings not nec-
essarily generated from an information system via a similarity relation).
The behavior of the entropies and co–entropies for coverings with respect
to the defined quasi–orderings is thus explored.

1 Introduction

In this work we explore the behavior of entropies and co–entropies for coverings
of a universe X with respect to some quasi-ordering relations, as extension of the
similar concepts widely used in the case of partitions of the standard approach
to information theory [Sha48], with possible applications to incomplete infor-
mation systems. In order to facilitate the comprehension of some extensions, let
us briefly introduce in this introductory section the main concepts and results
in the stronger context of partitions of X , whose collection will be denoted by
Π(X) in the sequel.

First of all, let us recall that the original Pawlak approach to rough set theory
is essentially based (see [Cat98]) on an approximation space, formalized as a pair
〈X,π〉, where X is a (finite) set of objects (the universe of the discourse) and π =
{A1, A2, . . . , AN} is a partition of X , generally induced by an indiscernibility
equivalence relation in the context of an information system [Paw81], whose
elements are the elementary sets (in the Pawlak terminology) or elementary
events (in the probabilistic approach). In general, each elementary set Ai of the
partition π is assumed to represents a granule of some knowledge supported
by the approximation space. The σ–algebra E(X,π) generated by the partition
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π consists of the empty set and the collection of all set theoretic unions of
elementary events. A (measurable) set Ej ∈ E(X,π) is called a definable set in
the context of rough set theory and event in the context of measurable spaces
of probability theory.

For each granule Ai we can consider the counting measure m(Ai) = |Ai|, which
is a granularity measure of the elementary event Ai. Besides this granularity mea-
sure, it is further on possible to consider the probability measure p(Ai) = |Ai|/|X |
of the elementary event Ai, which is related to the uncertainty of the occurrence
of event Ai. For any partition π ∈ Π(X) we thus can associate two “vectors”:
the granularity distribution m(π) = (m(A1), m(A2), . . . , m(AN )) and the prob-
ability distribution p(π) = (p(A1), p(A2), . . . , p(AN )).

From the probabilistic point of view, for any granule Ai of the partition π it is
possible to introduce the non–negative real quantity G(Ai) := logm(Ai) ∈ R+,
interpreted as the granularity measure of Ai, obtaining in this way a discrete ran-
dom variable G[π] = (logm(A1), logm(A2), . . . , logm(AN )), called the “gran-
ularity random variable” generated by the partition π. Similarly, for each event
Ai we can consider the quantity in the unit real interval I(Ai) := − log p(Ai),
which in information theory is known as the information function measuring
the uncertainty related to the probability p(Ai) of occurrence of the (elemen-
tary) event Ai. In this case, we have a discrete “uncertainty random variable”
I[π] = (− log p(A1),− log p(A2), . . . , − log p(AN )). As usual in statistical the-
ory, the expectation value of the granularity random variable G[π] with respect
to the probability distribution p(π) (also granularity average of π) is given by the
quantity Exp 〈G[π],p(π)〉 =

∑N
i=1 G(Ai) p(Ai). This quantity in the sequel will

be denoted simply by E(π), and trivially E(π) = 1
|X|

∑N
i=1 |Ai| log |Ai|. Similarly

the average of the information uncertainty random variable I[π] with respect to
the probability distribution p(π) is given by Exp 〈I[π],p(π)〉 =

∑N
i=1 I(Ai) p(Ai)

(the uncertainty average of π), usually called the entropy of the partition π, and
simply denoted by H(π). Also in this case we have the complete formula H(π) =
− 1
|X|

∑N
i=1 |Ai| log |Ai|

|X| . It is easy to see that their sum, H(π) + E(π) = log |X |,
is invariant with respect to the choice of the partition, and this is the reason of
the name “co–entropy” assigned to the quantity E(π) in order to underline that
it complements the entropy H(π) with respect to the constant quantity log |X |.
Let us stress that the semantic of these two quantities associated to any parti-
tion π of the universe X must not be confused: the co–entropy E(π) furnishes a
measure of the average granularity of a partition π, whereas the entropy H(π)
measures the average uncertainty assigned to this partition.

In the collection Π(X) of all the partitions of X , one can introduce the partial
order relation �, for which we say that a partition π1 (resp., π2) is finer (resp.,
coarser) than a partition π2 (resp., π1), written π1 � π2, iff ∀Ai ∈ π1, ∃Bj ∈ π2

such that Ai ⊆ Bj . The strict partial ordering is as usual defined as π1 ≺ π2

iff π1 � π2 and π1 �= π2 (this means that there must exist at least a situation
for which Ai ⊂ Bj). The set Π(X) with respect to this partial ordering � is a
lattice, such that the meet π1∧π2 of two partitions π1 = {Ai; i = 1, 2, . . . , R} and
π2 = {B1, B2, . . . , BS} is given by the collection of all the nonempty intersections
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Ci,j = Ai∩Bj �= ∅. An important result about co–entropy is its strict monotonic
behavior: let π1 ≺ π2, then E(π1) < E(π2) (see for instance [BCC07]). From this
result it follows the strict anti–monotonicity of the standard information entropy:
let π1 ≺ π2, then H(π2) < H(π1).

In order to bridge the gap with respect to some generalizations of co–entropy
which can be found in literature (see for instance [LX00]), we consider now a par-
tition π from a pointwise point of view, i.e., for each point x ∈ X we will take into
account the granule gr(x) which contains this object (or, more properly, the gran-
ule generated by x through the chosen equivalence relation). If the finite universe
is X = {x1, x2, . . . , xM}, the partition π will be thus described by the pointwise
collection πp := {gr(x1), gr(x2), . . . , gr(xM )}. For this pointwise collection, we
can define a pointwise co–entropy as: ELX(π) = 1

|X|
∑

x∈X |gr(x)| log |gr(x)|
[BCC07]. This pointwise co–entropy behaves monotonically with respect to the
ordering � of partitions (see [BCC07] for more details). Similarly, we can define
the pointwise entropy HLX(π) = −

∑
x∈X

|gr(x)|
|X| log |gr(x)|

|X| , which unfortunately
behaves neither monotonically, nor anti–monotonically with respect to �.

Let us stress that two other binary relations can be introduced on Π(X) ac-
cording to the following definitions: π1 9 π2 iff ∀Bj ∈ π2, ∃{Aj1 , Aj2 , . . . , Ajp} ⊆
π1: Bj = Aj1 ∪ Aj2 ∪ . . . ∪ Ajp and π1 � π2 iff ∀x ∈ X , grπ1(x) ⊆ grπ2(x). In
[BCC07] it has been recalled that these three partial order relations �, 9 and
�, are equivalent in the partition context, i.e., they define the same partial or-
der relation on Π(X), but it has been stressed that in the covering context
they become three different quasi–orderings. Hence, in the transition from the
partitioning context to the covering one, the main objectives are: (Gen1) to
generalize the single ordering for partitions (described in three equivalent ways)
in three distinct quasi–orderings for coverings; (Gen2) to generalize the def-
inition of co–entropy for partition to the covering case (firstly via the global
co–entropies and then by the pointwise approach, the former one computation-
ally more economic than the latter); (Gen3) explore whether or not the mono-
tonicity of co–entropies defined in the covering context is preserved. The final
aim of the present work is to provide a complete answer to the question “which
are the co–entropies for coverings that behave monotonically with respect to
the quasi–orderings �, 9, and �?” The results discussed here (and completing
some partial results proved in [BCC07]) are that unfortunately any considered
global co–entropy for coverings do not behave monotonically, differently from
the pointwise approaches, which all behave monotonically with respect to the
three above introduced quasi–orderings. The cases of monotonicity will be for-
mally proven; when neither a monotonic nor an anti–monotonic behavior can be
proven, counterexamples will be illustrated.

1.1 Co–entropies and Entropies for Coverings

The so–called global co–entropies defined for coverings as the more natural gen-
eralizations of the co–entropy for partitions, do not succeed in preserving the
above discussed monotonicity. On the contrary, it is the pointwise approach to
co–entropies for coverings (introduced for the first time by [LX00], and further
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on extended in more general way in [BCC07]) which preserves the desired mono-
tonicity. The aim of this work is to extensively cover the treatment of quasi
orderings and co–entropies in the covering case, also completing some partial re-
sults appeared in [BCC07]. Let us recall that the definition of a generic covering
γ of a universe X , can be described as a collection of nonempty subsets of X
such that

⋃N
i=1 Bi = X . The collection of all coverings of the universe X will be

denoted by Γ (X).
From a generic covering we can construct or extract other coverings, following

determinate criteria. In [BCC07] we have introduced the definition of genuine
covering formalized as a covering γ = {B1, B2, . . . , BN} for which the following
condition is satisfied: ∀Bi ∈ γ, ∀Bj ∈ γ, Bi ⊆ Bj implies Bi = Bj . In the
sequel, we will denote by Γg(X) the class of all genuine coverings of X .

2 Quasi–ordering for Coverings

In [BCC07] some quasi–orderings (i.e., reflexive and transitive, but in general
non anti–symmetric relations [Bir67, p. 20]) for coverings has been introduced.
The first quasi–ordering is given by the following binary relation:

Let γ, δ ∈ Γ (X), then γ � δ iff ∀Ci ∈ γ, ∃Dj ∈ δ : Ci ⊆ Dj (1)

In this case, we will say that γ is finer than δ or that δ is coarser than γ.
The corresponding strict quasi–order relation is γ ≺ δ iff γ � δ and γ �= δ. As
remarked in [BCC07], in the class of genuine coverings Γg(X) the quasi–ordering
relation � results to be an ordering. Another quasi–ordering on Γ (X) different
from (1) and with no general relationship with it (in the covering context), is
defined by the following binary relation:

γ 9 δ iff ∀D ∈ δ, ∃{C1, C2, . . . , Cp} ⊆ γ : D = C1 ∪ C2 ∪ . . . ∪ Cp (2)

After the introduction of these two quasi–orderings for coverings, let us consider
a covering γ and its partition π(γ) obtained according to the procedure described
in the previous section, then both π(γ)9 γ and π(γ) � γ hold.

In [BCC07] we have also introduced two possible kinds of similarity classes
induced for an object x of the universe X by a covering γ of X : the upper
granule γu(x) = ∪{C ∈ γ : x ∈ C} and the lower granule γl(x) := ∩{C ∈ γ :
x ∈ C} generated by x. Thus, for any x ∈ X we can define the granular rough
approximation of x induced by γ as the pair rγ(x) := 〈γl(x), γu(x)〉, where
γl(x) ⊆ γu(x). The collections γu := {γu(x) : x ∈ X} and γl := {γl(x) : x ∈ X}
of all such granules are both coverings of X , called the upper covering and the
lower covering generated by γ. It is easy to prove that the following hold:

γl � γ � γu and γl 9 γ 9 γu (3)

We can now introduce three more quasi–ordering relations on Γ (X) defined
by the following three binary relations:

γ �u δ iff ∀x ∈ X, γu(x) ⊆ δu(x); γ �l δ iff ∀x ∈ X, γl(x) ⊆ δl(x);
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γ � δ iff γ �l δ and γ �u δ. (4)

We have that γ � δ implies γ �u δ, but in general γ �l δ does not hold. It
is also trivial to show that for every covering γ, one has γl � γ � γu. Let us
denote by Γl(X) := {γl : γ ∈ Γ (X)} the family of all lower coverings and by
Γu(X) := {γu : γ ∈ Γ (X)} the family of all upper coverings of X induced by
γ. Then we have that the pair r(γ) := 〈γl, γu〉 is the rough approximation of
the covering γ with respect to all quasi–orderings �, 9, and � in the rough
approximation space (see [Cat98, CC04]) 〈Γ (X), Γl(X), Γu(X)〉 consisting of
the collection Γ (X) of all approximable coverings, and the collections Γl(X)
(resp., Γu(X)) of lower (resp., upper) definable coverings.

We can thus introduce another quasi–ordering on the family Γ (X) of all cov-
erings of X as

γ � δ iff δ �l γ and γ �u δ. (5)

In particular we have that, for this defined quasi–ordering, the following property
holds:

γ � δ implies ∀x ∈ X, δl(x) ⊆ γl(x) ⊆ (???) ⊆ γu(x) ⊆ δu(x) (6)

where the question marks represent an intermediate covering granule γ(x), which
is something of “hidden” in the involved structure. This “local” behavior can be
equivalently described as

∀x ∈ X, rγ(x) := 〈γl(x), γu(x)〉 � 〈δl(x), δu(x)〉 =: rδ(x)

where � means that, according to (6), for any point x ∈ X the local approx-
imation rγ(x) given by the covering γ is better than the local approximation
rδ(x) given by the covering δ. We will conventionally denote this fact simply by
r(γ) � r(δ), so that (6) can be summarized by

γ � δ implies r(γ) � r(δ)

2.1 Entropies and Co–entropies for Coverings of a Universe

In [BCC07] we proposed a first approach to define a global co–entropy and
entropy for coverings, which, in short, consists of the following steps:

(1) let us consider the characteristic functional χBi : X &→ {0, 1} of the set Bi

defined for any point x ∈ X as χBi(x) = 1 if x ∈ Bi and = 0 otherwise;
(2) ∀x ∈ X , let us define n(x) :=

∑N
i=1 χBi(x);

(3) ∀x ∈ X , let us define ωBi(x) := 1
n(x)χBi(x);

(4) the measure of the generic set Bi of the covering γ is defined as m(Bi) :=∑
x∈X ωBi(x) =

∑
x∈X

1
n(x)χBi(x);

(5) the probability of occurrence of Bi is p(Bi) := 1
|X|m(Bi);

(6) lastly, we can define the global entropy for coverings as
H(γ) = −

∑N
i=1 p(Bi) log p(Bi) and the global co–entropy as

E(γ) = 1
|X|

∑N
i=1 m(Bi) logm(Bi).
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Let us note that one of the main characteristics of this approach is that
∀x ∈ X,

∑N
i=1 ωBi(x) = 1, and consequently, that

∑N
i=1 m(Bi) = |X |. This

leading to the fact that p(γ) = (p(B1), p(B2), . . . , p(BN )) defines a probability
distribution, that is a reason for which we first considered this approach, together
with the fact that ∀γ ∈ Γ (X), H(γ)+E(γ) = log |X |. An important drawback
of this co–entropy is that it could assume negative values, as shown in example
4.1 of [BCC07]. Also if this is not considered as a drawback, even in the restricted
case of genuine coverings this co–entropy does not behave monotonically with
respect to all the quasi–orderings �, 9, and �j (j = l, u) as shown in the next
example.

Example 1. In the universe X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, let
us consider the two genuine coverings γ = {C1 = {1, 4, 5}, C2 = {2, 4, 5}, C3 =
{3, 4, 5}, C4 = {14, 15}, C5 = {4, 5, . . . , 13}} and δ1 = {D1 = {1, 4, 5} =
C1, D2 = {2, 4, 5} = C2, D3 = {3, 4, . . . , 13, 14} = C3 ∪ C5, D4 = {4, 5, . . . , 14,
15} = C4 ∪ C5, }. Trivially, γ � δ1 and γ 9 δ1. In this case we obtain
E(γ) = 2.05838 < 2.18897 = E(δ1), as expected.

In the same universe, let us now take the genuine covering δ2 = {F1 =
{1, 4, 5, . . . , 12, 13} = C1∪C5, F2 = {2, 4, 5, . . . , 12, 13} = C2∪C5, F3 ={3, 4, . . . ,
12, 13} = C3 ∪ C5, F4 = {4, 5, . . . , 14, 15} = C4 ∪ C5}. Trivially, γ � δ2 and
γ 9 δ2, but, contrary to the previous case, we here obtain an anti–monotonic
result, with E(γ) = 2.05838 > 1.91613 = E(δ2) .

On the other hand, in the universe X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, let us
consider the two genuine coverings γ1 ={{1, 3}, {2, 3, 4, 5}, {10, 11, 12}, {3, 4, . . . ,
11}} and δ1 = {{1, 3, 4, . . . , 10, 11}, {2, 3, . . . , 10, 11}, {3, 4, . . . , 11, 12}}. Triv-
ially, γ1 � δ1 and γ1 9 δ1. According to the procedure previously illustrated, we
can construct the lower and upper coverings for γ1 and δ1, obtaining the lower
coverings: γ1l

= {γ1l
(1) = {1, 3}, γ1l

(2) = {2, 3, 4, 5}, γ1l
(3) = {3}, γ1l

(4) =
γ1l

(5) = {3, 4, 5}, γ1l
(6) = γ1l

(7) = γ1l
(8)=γ1l

(9) = {3, 4, . . . , 10, 11}, γ1l
(10) =

γ1l
(11) = {10, 11}, γ1l

(12) = {10, 11, 12}}; δ1l
= {δ1l

(1) = {1, 3, 4, . . . , 10, 11},
δ1l

(2) = {2, 3, . . . , 10, 11}, δ1l
(3) = δ1l

(4) = . . . = δ1l
(10) = δ1l

(11) = {3, 4, . . . ,
10, 11}, δ1l

(12) = {3, 4, . . . , 11, 12}}; and the upper coverings: γ1u = {γ1u(1) =
{1, 3}, γ1u(2) = {2, 3, 4, 5}, γ1u(3) = {1, 2, . . . , 10, 11}, γ1u(4) = γ1u(5) = {2, 3,
. . . , 10, 11}, γ1u(6) = γ1u(7) = γ1l

(8) = γ1u(9) = {3, 4, . . . , 10, 11}, γ1u(10) =
γ1u(11) = {3, 4, . . . , 11, 12}, γ1u(12) = {10, 11, 12}}; δ1u = {δ1u(1)={1, 3, 4, . . . ,
10, 11}, δ1u(2) = {2, 3, . . . , 10, 11}, δ1u(3) = δ1u(4) = . . . = δ1u(10) = δ1u(11) =
{X}, δ1u(12) = {2, 3, . . . , 11, 12}}. We can observe that γ1 �l δ1 and γ1 �u δ1,
hence γ1 � δ1. The co–entropies are E(γ1) = 1.85592 < 2.00000 = E(δ1),
E(γ1l

) = 1.32072 < 1.60097 = E(δ1l
), and E(γ1u) = 0.94928 < 1.59646 =

E(δ1u). These results could suggest a monotonic behavior of this co–entropy
with respect to �, 9 and �j .

We can see that unfortunately this does not correspond to a general behavior.
In the same universe, let us consider the genuine covering γ2 ={{1, 3}, {2, 3, 4, 5},
{12}, {3, 4, . . . , 11}}. We have γ2 � δ1 and γ2 9 δ1. Let us construct the lower
and upper coverings of γ2: γ2l

= {γ2l
(1) = {1, 3}, γ2l

(2) = {2, 3}, γ2l
(3) =

{3}, γ1l
(4) = γ2l

(5) = . . . = γ2l
(10) = γ2l

(11) = {3, 4, . . . , 10, 11}, γ2l
(12) =
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{12}}; γ2u = {γ2u(1) = {1, 3}, γ2u(2) = {2, 3}, γ2u(3) = {1, 2, . . . , 10, 11},
γ2u(4) = γ2u(5) = . . . = γ2u(10) = γ2u(11) = {3, 4 . . . , 10, 11}, γ2u(12) = {12}}.
Again we have γ2 �l δ1 and γ2 �u δ1 and thus γ2 � δ1, but in this case the
co–entropies are E(γ2) = 2.21646 > 2.00000 = E(δ1), E(γ2l

) = 2.11842 >
1.60097 = E(δ1l

), and E(γ2u) = 1.73407 > 1.59646 = E(δ1u).

For these reasons, in [BCC07], we tried a second approach defining an entropy
and corresponding co–entropy, somehow inspired by the Liang and Xu approach
introduced in [LX00]. In order to illustrate the definition of these global entropy
and co–entropy, let us first define the total outer measure of γ as m∗(γ) :=∑N

i=1 |Bi| ≥ |X |, and let us consider the probability pLX(Bi) = |Bi|
|X| . The entropy

H
(g)
LX of the covering γ is defined as:

H
(g)
LX(γ) := −

N∑

i=1

pLX(Bi) log pLX(Bi) = m∗(γ)
log |X |
|X | −

1
|X |

N∑

i=1

|Bi| log |Bi|

The corresponding co–entropy E
(g)
LX(γ) is:

E
(g)
LX(γ) :=

1
|X |

N∑

i=1

|Bi| · log |Bi|. (7)

Unfortunately, we found out that this co–entropy (7) shows neither a monoto-
nic, nor an anti–monotonic general behavior with respect to the quasi–orderings
�, 9, and �j , as it is illustrated in the following example.

Example 2. Making reference to example 1, let us consider the genuine coverings
γ2 and δ1, recalling that γ2 � δ1, γ2 9 δ1 and that γ2 � δ1. According to (7)
we obtain E

(g)
LX(γ2) = 2.71078 < 8.30482 = E

(g)
LX(δ1), E

(g)
LX(γ2l

) = 2.71078 <

10.68226 = E
(g)
LX(δ1l

), and E
(g)
LX(γ2u) = 5.88192 < 12.29265 = E

(g)
LX(δ1u), as

desired.
In the same universe, let us now take the genuine coverings γ3 ={{1, 3, 4, 5, 6},

{2, 3, 4, 5, 6}, {5, 6, 7, . . . , 11, 12}, {3, 4, 5, 6, 7, 8}} and δ2 = {{1, 3, 4, 5, 6}, {2, 3,
4, 5, 6}, {3, 4, . . . , 11, 12}}. Trivially we can see that γ3 � δ2 and γ3 9 δ2. With
little more effort, we can find out that in this case we also have γ3�δ2. Unluckily
in the present example we obtain E

(g)
LX(γ3) = 5.22742 > 4.70321 = E

(g)
LX(δ2),

E
(g)
LX(γ3l

) = 5.43494 > 5.36988 = E
(g)
LX(δ2l

), and E
(g)
LX(γ3u) = 12.28818 >

8.28818 = E
(g)
LX(δ2u) which represents a behavior opposite to the one previously

observed with γ2 and δ1.

The just considered two entropies and co–entropies are of global type in the sense
that they involve global subsets of the investigated covering. Let us see now two
other entropies and co–entropies inspired by the Liang and Xu approach [LX00],
described also in [BCC07], whose definition is deeply pointwise. Given a covering
γ of X , let us consider the similarity classes γl(x) and γu(x) generated by every
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element x ∈ X , and the resultant coverings γl and γu, previously described. We
can define the following pointwise entropies:

HLX(γj) := −
∑

x∈X

|γj(x)|
|X | log

|γj(x)|
|X | for j = l, u (8)

The corresponding pointwise co–entropies are defined as:

ELX(γj) :=
1
|X |

∑

x∈X

|γj(x)| log |γj(x)| for j = l, u. (9)

We have the following relationship between HLX(γj) and ELX(γj): HLX(γj)+
ELX(γj) = log |X|

|X| ·
∑

x∈X |γj(x)|. In [BCC07] we showed that the following
property holds.

Proposition 1. Let γ1 and γ2 be two coverings of X such that γ1 �j γ2, then
we have that ELX(γ1j) ≤ ELX(γ2j). In particular, with respect to the quasi–
ordering (5) we have that

γ1 � γ2 implies ELX(γ2l) ≤ ELX(γ1l) ≤ (???) ≤ ELX(γ1u) ≤ ELX(γ2u) (10)

Moreover, in in the same work we also introduced the rough co–entropy approx-
imation of the covering γ defining it as as the pair rE(γ) = 〈ELX(γl), ELX(γu)〉,
where we have the following: 0 ≤ ELX(γl) ≤ ELX(γu) ≤ |X | · log |X |. So,
summarizing, we have that γ1 � γ2 implies rE(γ1) � rE(γ2).

2.2 Co–entropy for Coverings Induced by Similarity Relation in
Incomplete Information Systems

From the rough set theory point of view, we know that when we deal with an
incomplete information system IS = 〈X,Att, F 〉 (with F only partially defined
on X ×Att), for any family A of attributes we can define the similarity relation
SA on X as

xSAy iff ∀ a ∈ A, either fa(x) = fa(y) or fa(x) = ∗ or fa(y) = ∗. (11)

The granules generated by this relation are denoted as similarity classes sA(x) =
{y ∈ X : (x, y) ∈ SA}. All the similarity classes induced by a similarity relation
SA constitute a covering, here denoted by γ(A) := {sA(x) : x ∈ X}; in fact it
results that x ∈ sA(x) �= ∅, and so a fortiori X = ∪{sA(x) : x ∈ X}. In the sequel
we will indicate with Γ (IS) := {γ(A) ∈ Γ (X) : A ⊆ Att} the collection of the
coverings generated by all the possible families of attributes A from Att. With
respect to a covering γ(A) induced by a similarity relation from an incomplete
information system, Liang and Xu in [LX00] introduced an interesting approach
to the here called co–entropy defining it as follows

ELX(γ(A)) =
1
|X |

∑

x∈X

|sA(x)| · log |sA(x)| (12)

This co–entropy behaves monotonically with respect to the quasi–ordering �.
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Proposition 2. In an incomplete information system 〈X,Att, F 〉 let us con-
sider two families of attributes A and B such that B ⊆ A. Let the induced
coverings of X be γ(A) and γ(B). The following holds:

γ(A) � γ(B) implies ELX(γ(A)) ≤ ELX(γ(B)). (13)

The proof of this property is similar to the proof of Theorem 1 in [LX00] (Propo-
sition 6.2 in [BCC07]). Furthermore, the following holds for the co–entropy (12)
generated in the context of incomplete information systems.

Proposition 3. Given an incomplete information system 〈X,Att, F 〉 and two
similarity relations defined on the objects of X for the two families of attributes
A and B, let the induced coverings of X be respectively γ(A) and γ(B). We have
that for any A,B ⊆ Att, with B ⊆ A:

γ(A)9 γ(B) implies ELX(γ(A)) ≤ ELX(γ(B)). (14)

Moreover, if ∃ sB(xk) = sA(xk1) ∪ sA(xk2) ∪ . . . ∪ sA(xkp ) such that p ≥ 2, the
strict monotonicity ELX(γ(A)) < ELX(γ(B)) holds.

Proof. Let the two coverings be respectively γ(A) = {sA(x1), sA(x2), . . . ,
sA(xN )} and γ(B) = {sB(x1), sB(x2), . . . , sB(xN )}. We have that γ(A)9 γ(B),
hence ∀ sB(xi) ∈ γ(B), ∃{sA(xi1), sA(xi2 ), . . . , sA(xip )} ⊆ γ(A) : sB(xi) =
sA(xi1 ) ∪ sA(xi2) ∪ . . . ∪ sA(xip ). Let us consider the simple case in which
sB(xk) = sA(xk1 )∪ sA(xk2 )∪ . . .∪ sA(xkp ) with p ≥ 2, and sB(xj) = sA(xj) for
any j �= k. Then we have that:

ELX(γ(B)) = 1
|X|

∑
xi∈X |sB(xi)| · log |sB(xi)| = 1

|X|
(∑

xj∈X, j �=k |sB(xj)| · log |sB

(xj)|+ |sB(xk)| · log |sB(xk)|
)

= 1
|X|

(∑
xj∈X, j �=k |sA(xj)| · log |sA(xj)|+ |sA(xk1)∪ . . .∪

sA(xkp)| · log |sA(xk1)∪ . . .∪sA(xkp)|
)
. Since |sA(xk1 )∪. . .∪sA(xkp )| ·log |sA(xk1 )∪

. . .∪ sA(xkp )| > |sA(xk)| log |sA(xk)|, we obtain that ELX(γ(A)) < ELX(γ(B)).
Hence in general we have that, given two coverings γ(A) and γ(B) such that
γ(A) 9 γ(B), ELX(γ(A)) ≤ ELX(γ(B)). In particular, when p ≥ 2 the strict
monotonicity ELX(γ(A)) < ELX(γ(B)) holds.

3 Conclusions

In this work we have explored different quasi–orderings on coverings and dif-
ferent definitions of entropies and co–entropies for coverings. We have analyzed
the behavior of these co–entropies with respect to the defined quasi–orderings.
Table 1 illustrates the compact answer “Yes/No” for the monotonicity of the
co–entropies for coverings here analyzed.

We have shown that the here called pointwise co–entropies behave monotoni-
cally with respect to all the quasi–orderings �,9 , and �j. We have also shown
that with respect to the quasi–ordering �, the co–entropies ELX(γj) behave
according to (10). On the contrary, for what concerns the global co–entropies
E(γ) and E

(g)
LX(γ) we have observed that unfortunately they behave neither
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Table 1. Behavior of co–entropies for coverings with respect to some quasi–orderings:
“Yes” stands for monotonicity, “No” for non–monotonicity (nor anti–monotonicity)

Global Pointwise

E(γ) E
(g)
LX(γ) ELX(γ) [ELX(γj)]

� No No Yes
� No No Yes
�l No No Yes
�u No No Yes

monotonically nor anti–monotonically with respect to all the considered quasi–
orderings �, 9, and �j, even in the restricted case of genuineness of coverings.
Hence, we may (for now) conclude that a co–entropy for coverings, in order to be-
have monotonically with respect to some (quasi) orderings, should be pointwise
defined .
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Abstract. In this paper, the design, simulation, implementation and
experiment of rough set processor are described. The experiment result
shows that the proposed processor is ten times faster than PC, though
the clock frequency is about 70 times lower.

Keywords: Rough sets, Processor, FPGA.

1 Introduction

The rough set theory can discover profitable knowledge from the incomplete
database [1][2]. The calculation of rough set is simple, but it is difficult to obtain
quick responses by software tools on general computers. Then, the authors have
been proposed the architecture of a special processor for rough set theory [3][4].
In this paper, the design, the implementation and the experiment of rough set
processor on FPGA evaluation board are described.

2 Architecture

Fig. 1 shows the flow of knowledge discovery by rough set theory. In the present,
the processor treats only the part where knowledge is discovered from a large-
scale logical function. The reason is the processing of text data and the setting
of the threshold values are difficult for hardware.

Fig. 1. Flow of knowledge discovery
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Fig. 2. Block diagram of proposed processor

Fig. 3. Input logical function

Fig. 2 and Fig. 3 show the block diagram and input logical function of the
proposed processor, respectively. In Fig. 2, “Core-Selector” and “Covering-Unit”
reduce the data in the pre-processing, and ”Reconstruction-Unit” extracts the
rules in the post-processing.
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2.1 Core Selector

“Core Selector” selects some core data and transfers to “Core Register”. The row
which contains a lot of ‘0’ is chosen as a core. Fig. 4 shows the block diagram of
Core Selector.

Fig. 4. Block diagram of Core Selector

2.2 Covering Unit

“Covering Unit” deletes the data that can be deleted by using the selected core
data. By this pre-processing of “Core Selector” and “Covering Unit”, the post-
processing time of “Reconstruction Unit” is reduced.

The reduction processing by covering is concisely described as follows. In
expression (1), the shortest term (x0 + x2 + x6) is chosen as a core.

F = (x0 + x2 + x6) ∧ (x0 + x1 + x2 + x5 + x6) ∧ (x1 + x2 + x6 + x7). (1)

The second term can be deleted, because it satisfies (x0 + x2 + x6) ⊆ (x0 +
x1 + x2 + x5 + x6). On the other hand, the third term can’t be deleted, because
x0 + x2 + x6) �⊆ (x1 + x2 + x6 + x7). That is, the condition “core ⊆ other term”
is checked in the covering unit.

Fig. 5 shows the block diagram of covering unit. Each input data (2,048 bit)
is read from the internal memory, and the judgment processing is done to each
data field as shown in this figure. This processing is done by 16 bit, and executed
127 times. The judgment processing is continued by using the following core data
until there is an error in the result of the judgment processing. The error means
the failure of covering.
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Fig. 5. Block diagram of Covering Unit

Fig. 6. Discovery of important rules
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2.3 Reconstruction Unit

“Reconstruction Unit” discovers the most important rules from the reduced log-
ical function. In this post-processing, the most important rule is the logical
term that has a few variables. Fig. 6 shows the discovery of the most important
rules.

The reconstruction unit consists of the parallel counter unit, the sorter, and
the control circuit. Fig. 7 shows the block diagram of parallel counter unit. Be-
cause the processing time for the parallel counter unit is long, this unit processes

Fig. 7. Block diagram of Parallel Counter Unit

Fig. 8. Block diagram of Sorter
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Fig. 9. Block diagram of Reconstruction Controller

the data of 128 bits in parallel. Fig. 8 and Fig. 9 show the block diagram of
sorter and reconstruction controller [3][4].

3 Design and Simulation

The authors performed the design and the simulation using the logic synthe-
sis tool (Xilinx ISE WebPACK 8.2i) and HDL simulator (Mentor Graphics
ModelSim XE 6.1e) [5]. The target FPGA is Spartan3E (500 thousands gates,
Xilinx Inc.) [5]. In this paper, the input data size is chosen as 2,032 columns
and 128 rows. The number of core data is eight and the number of rule is
eight. Table 1 summarizes the synthesized gate number and simulated pro-
cessing time.

Table 1. Gate number and processing time

Unit name Gate number (gates) Processing time (μs)

Core-Selector (8 core data) 4,828 47

Covering-Unit (8 core data) 1,906 84

reconstruction-Unit (8 rules) 31,311 7,176

Total 38,045 7,307
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4 Implementation and Experiments

The proposed processor and the test circuits have implemented on the FPGA
evaluation board (Xilinx Spartan-3E Starter Kit). The FPGA board includes
the 500 thousand gates FPGA LSI, switches, LEDs, VGA port, 2-line LCD
display, etc.

Fig. 10. Test Circuit

Fig. 10 shows the test circuit. Table 2 summarizes the units. Fig. 11 shows
the photograph of experiment where a VGA monitor is connected to the FPGA
board. Fig. 12 shows the example of obtained rules by the proposed processor.
The input logical function is 2,032 bit and 128 rows random data.

Table 2. Units of the test circuit

Unit Function Gate number (gates)

1, 2 Chattering prevention 447 + 447

3 Sequencer 47

4 Measurement of processing time 3,932

5 VGA monitor controller 2,036

A program was made by C language for the speed comparison with a general-
purpose microprocessor. The process is only reconstruction. The development
tool is “Visual Studio.net”, and OS is “Windows XP”. To measure pure process-
ing time, the input data is built into the program code, and the screen drawing
is avoided. Table 3 summarizes the comparison of processing time with PC. It
is clarified that the proposed processor is ten times faster than PC, though the
clock frequency is about 70 times lower.
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Fig. 11. Experiment with FPGA board and VGA monitor

Fig. 12. Photograph of monitor (partial) and obtained rule
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Table 3. Comparison of processing time with PC

Clock Time (μs) (reconstruction unit)

Proposed Processor 50 (MHz) 7,176

PC (Xeon) 3.4 (GHz) 72,539

Fig. 13 shows the LCD display (on board) for processing time. The experiment
result (7,308 μs) is corresponding to the simulation result (7,307 μs) with high
accuracy.

Fig. 13. LCD display (on board) for processing time

5 Conclusion

In this paper, the design, simulation, implementation and experiment of rough
set processor are described. The processor was implemented on a 500 thousands
gates FPGA evaluation board with VGA monitor. The experiment result shows
that the proposed processor is ten times faster than PC, though the clock fre-
quency is about 70 times lower. The problem in the future is further speed-up.
The pipeline processing, the optimization of clock frequency and parallel opera-
tion of the processor are effective for the achievement.
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Abstract. This paper details a computationally efficient (suboptimal)
nonlinear Model Predictive Control (MPC) algorithm with Radial Basis
Function (RBF) type neural network models and discusses its application
to a polymerisation reactor. Neural model of the process is used on-line
to determine the local linearisation and the nonlinear free trajectory.
Unlike the nonlinear MPC technique, which hinges on non-convex opti-
misation, the presented algorithm is more reliable and less computation-
ally demanding because it results in a quadratic programming problem,
whereas its closed-loop control performance is similar.

1 Introduction

Model Predictive Control (MPC) is recognised as the only advanced control
technique which has been very successful in practical applications [2], [8], [14],
[15], [16]. MPC algorithms can take into account constraints imposed on both
process inputs (manipulated variables) and outputs (controlled variables), which
usually decide on quality, economic efficiency and safety. Furthermore, MPC
techniques are very efficient in multivariable process control.

Structure of the model used in nonlinear MPC decides on the controller’s accu-
racy and computational burden. Fundamental (first-principles) models, although
potentially very precise, are usually not suitable for on-line control because they
are very complicated and may lead to numerical problems. Since neural network
models [1] are able to approximate precisely nonlinear behaviour of technolog-
ical processes [3], [10], have relatively small number of parameters and simple
structure, they can be effectively used in MPC algorithms as process models.
Feedforward perceptron multilayer networks [5], [6], [7], [10], [15], [16] and RBF
(Radial Basis Function) networks [13] are usually considered.

The paper describes the computationally efficient MPC with Nonlinear Pre-
diction and Linearisation (MPC-NPL) algorithm with RBF type neural network
models and its application to a polymerisation process. Analogously to its vari-
ant with perceptron type neural models [5], [6], [7], [15], [16], the algorithm gives
good closed-loop performance and, unlike the nonlinear MPC technique, which
hinges on nonlinear optimisation, it uses on-line only the numerically reliable
quadratic programming approach.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 603–612, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Model Predictive Control Algorithms

In the MPC algorithms [8], [16] at each consecutive sampling instant k a set of
future control increments is calculated

Δu(k) = [Δu(k|k) Δu(k + 1|k) . . .Δu(k + Nu − 1|k)]T (1)

It is assumed that Δu(k + p|k) = 0 for p ≥ Nu, where Nu is the control horizon.
The objective is to minimise the differences between the predicted values of the
output ŷ(k + p|k) and the reference trajectory yref (k + p|k) over the prediction
horizon N . The following quadratic cost function is usually used

J(k) =
N∑

p=1

(yref (k + p|k)− ŷ(k + p|k))2 +
Nu−1∑

p=0

λp(Δu(k + p|k))2 (2)

where λp > 0 are weighting factors. Typically, Nu < N , which decreases the
dimensionality of the optimisation problem and leads to smaller computational
load. Only the first element of the determined sequence (1) is applied to the
process, the control law is then

u(k) = Δu(k|k) + u(k − 1) (3)

At next sampling instant, k + 1, the prediction is shifted one step forward and
the whole procedure is repeated.

Since the constraints have to be usually taken into account, future control
increments are determined as the solution to the following optimisation problem
(assuming hard output constraints [8], [16] for simplicity of presentation)

min
Δu(k|k)...Δu(k+Nu−1|k)

{J(k)}

umin ≤ u(k + p|k) ≤ umax p = 0, . . . , Nu − 1

−Δumax ≤ Δu(k + p|k) ≤ Δumax p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax p = 1, . . . , N

(4)

Predicted output values of the output over the prediction horizon are calcu-
lated using a dynamic model of the process. The choice of the model (linear or
nonlinear, if nonlinear – fundamental or black-box) is crucial. This decision af-
fects not only the possible control accuracy but also the computational load and
reliability of the whole control policy. MPC algorithms based on linear mod-
els have been usually applied in practice [2], [14], [16], since the predictions
ŷ(k + p|k) can be expressed as a linear combination of decision variables, which
means that the optimisation problem (4) is a quadratic programming one [8],
[15], [16]. Unfortunately, when the process exhibits severe nonlinearity, such an
approach is likely to result in poor closed-loop control performance, even in-
stability. In general, a nonlinear model used for prediction purposes leads to
a non-quadratic, non-convex and even multi-modal optimisation problem. For
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such problems there are no sufficiently fast and reliable optimisation algorithms,
i.e. those which would be able to determine the global optimal solution at each
sampling instant and within predefined time limit as it is required in on-line
control. Gradient based optimisation techniques may terminate in local minima
while global ones substantially increase the computational burden, yet they still
give no guarantee that the global solution is found.

To overcome the computational problems inevitable in MPC with nonlinear
optimisation, a few alternatives have been found. For example, affine nonlinear
models of neural structure result in a quadratic programming problem [4]. The
whole MPC algorithm can be approximated by a trained off-line neural network
[11]. Yet another option is to use a combination of a neural steady-state model
and a simplified nonlinear second order quadratic dynamic model [12]. Although
the resulting optimisation task is not convex, the model is relatively simple, the
approach is reported to be successful in many industrial applications.

Bearing in mind all the aforementioned computational difficulties typical of
nonlinear MPC, linearisation-based MPC techniques, in which only a quadratic
programming problem is solved on-line, are reasonable alternatives. Compared
to MPC algorithms with full nonlinear optimisation, they are suboptimal, but
in most practical applications the accuracy is sufficient [2], [5], [6], [7], [15], [16].

3 MPC-NPL Algorithm with Neural Models

3.1 Neural Model of the Process

Let the Single-Input Single-Output (SISO) process under consideration be de-
scribed by the following nonlinear discrete-time equation

y(k) = g(x(k)) = g(u(k − τ), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (5)

where g : �nA+nB−τ+1 −→ � ∈ C1, τ ≤ nB. The RBF type neural network
containing one hidden layer with Gaussian functions and linear output is used
as the function g in (5). Output of the model can be expressed as

y(k) = g(x(k)) = w0 +
K∑

i=1

wi exp(−‖x(k)− ci‖Qi
)

= w0 +
K∑

i=1

wi exp(−zi(k)) (6)

where K is the number of hidden nodes. The vectors ci and the diagonal weight-
ing matrices Qi = diag(qi,1, . . . , qi,nA+nB−τ+1) describe centres and widths of
the nodes, respectively, i = 1, . . . ,K. The model (6) is sometimes named Hyper
Radial Basis Function (HRBF) neural network in contrast to the ordinary RBF
neural networks in which widths of the nodes are constant. Let zi(k) be the sum
of inputs of the i-th hidden node. Recalling the arguments of the model (5)

zi(k) =
Iu∑

j=1

qi,j(u(k − τ + 1− j)− ci,j)2 +
nA∑

j=1

qi,Iu+j(y(k − j)− ci,Iu+j)2 (7)
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where the number of the network’s input nodes depending on input signal u is
Iu = nB − τ + 1.

Considering the prediction over the horizon N , the quantities zi(k + p|k) and
consequently ŷ(k + p|k) depend on future values of control signal (i.e. decision
variables of the control algorithm), values of control signal applied to the plant
at previous sampling instants, future output predictions and measured values of
the plant output signal. From (7) one has

zi(k + p|k) =
Iuf (p)∑

j=1

qi,j(u(k − τ + 1− j + p|k)− ci,j)2

+
Iu∑

j=Iuf (p)+1

qi,j(u(k − τ + 1− j + p)− ci,j)2

+
Iyp(p)∑

j=1

qi,Iu+j(ŷ(k − j + p|k)− ci,Iu+j)2

+
nA∑

j=Iyp(p)+1

qi,Iu+j(y(k − j + p)− ci,Iu+j)2 (8)

where Iuf (p) = max(min(p− τ + 1, Iu), 0) is the number of the network’s input
nodes depending on future control signals and Iyp(p) = min(p − 1, nA) is the
number of the network’s input nodes depending on output predictions.

3.2 MPC-NPL Optimisation Problem

In the MPC-NPL algorithm at each sampling instant k the neural model is
used on-line twice: to determine the local linearisation and the nonlinear free
trajectory. It is assumed that the output prediction can be expressed as the sum
of the forced trajectory, which depends only on the future (on future input moves
Δu(k)) and the free trajectory y0(k), which depends only on the past [16]

ŷ(k) = y0(k) + G(k)Δu(k) (9)

where

ŷ(k) = [ŷ(k + 1|k) . . . ŷ(k + N |k)]T (10)

y0(k) =
[
y0(k + 1|k) . . . y0(k + N |k)

]T
(11)

The dynamic matrix G(k) of dimension N × Nu is calculated on-line from the
nonlinear model taking into account the current state of the plant

G(k) =

⎡

⎢⎢⎢⎣

s1(k) 0 . . . 0
s2(k) s1 . . . 0

...
...

. . .
...

sN (k) sN−1(k) . . . sN−Nu+1(k)

⎤

⎥⎥⎥⎦ (12)
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The step-response coefficients of the linearised model are determined from

sj(k) =
min(j,nB)∑

i=1

bi(k)−
min(j−1,nA)∑

i=1

ai(k)sj−i(k) (13)

where ai(k) and bi(k) are coefficients of the linearised model. Calculation of
these quantities and the nonlinear free trajectory is detailed in the following
subsections.

On the one hand, the suboptimal prediction calculated from (9) is different
from the optimal one determined from the nonlinear neural model as it is done
in MPC algorithms with nonlinear optimisation [5], [7], [15], [16]. On the other
hand, thanks to using the superposition principle (9), the optimisation problem
(4) becomes the following quadratic programming task

min
Δu(k)

{
J(k) =

∥∥yref (k)− y0(k)−G(k)Δu(k)
∥∥2 + ‖Δu(k)‖2Λ

}

umin ≤ JΔu(k) + uk−1 ≤ umax

−Δumax ≤ Δu(k) ≤ Δumax

ymin ≤ ŷ(k) ≤ ymax

(14)

where the vectors of length N are

yref (k) =
[
yref (k + 1|k) . . . yref (k + N |k)

]T
(15)

ymin(k) =
[
ymin . . . ymin

]T
(16)

ymax(k) = [ymax . . . ymax]T (17)

the vectors of length Nu are

umin(k) =
[
umin . . . umin

]T
(18)

umax(k) = [umax . . . umax]T (19)

Δumax(k) = [Δumax . . . Δumax]T (20)

uk−1(k) = [u(k − 1) . . . u(k − 1)]T (21)

the matrix of dimension Nu ×Nu is

J =

⎡

⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

⎤

⎥⎥⎥⎦ (22)

and Λ = diag(λ0, . . . , λNu−1). Structure of the MPC-NPL algorithm is depicted
in Fig. 1. At each sampling instant k the following steps are repeated:

1. Linearisation of the neural model: obtain the matrix G(k).
2. Calculate the nonlinear free trajectory y0(k) using the neural model.
3. Solve the quadratic programming problem (14) to determine Δu(k).
4. Apply u(k) = Δu(k|k) + u(k − 1).
5. Set k := k + 1, go to step 1.
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Fig. 1. Structure of the MPC algorithm with Nonlinear Prediction and Linearisation
(MPC-NPL)

3.3 On-Line Linearisation of the Neural Model

Defining a linearisation point as the vector composed of past input and output
signal values corresponding to the arguments of the nonlinear model (5)

x̄(k) = [ū(k − τ) . . . ū(k − nB) ȳ(k − 1) . . . ȳ(k − nA)]T (23)

and using Taylor series expansion at this point, the linear approximation of the
model, obtained at sampling instant k, can be expressed as

y(k) = g(x̄(k)) +
nB∑

l=1

bl(x̄(k))(u(k − l)− ū(k − l)) (24)

−
nA∑

l=1

al(x̄(k))(y(k − l)− ȳ(k − l))

The coefficients of the linearised model are calculated from

al(x̄(k)) = − ∂g(x̄(k))
∂y(k − l)

l = 1, . . . , nA (25)

bl(x̄(k)) =

⎧
⎨

⎩

0 l = 1, . . . , τ − 1
∂g(x̄(k))
∂u(k − l)

= l = τ, . . . , nB
(26)

Taking into account the structure of the neural model and corresponding
equations (6) and (7), one has

al(x̄(k)) = 2
K∑

i=1

wi exp(−zi(x̄(k)))qi,Iu+l(y(k− l)−ci,Iu+l) l = 1, . . . , nA (27)
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bl(x̄(k)) =

⎧
⎪⎨

⎪⎩

0 l = 1, . . . , τ − 1

−2

K∑

i=1

wi exp(−zi(x̄(k)))qi,l−τ+1(u(k − l)− ci,l−τ+1) l = τ, . . . , nB

(28)

3.4 Calculation of the Nonlinear Free Trajectory

The nonlinear free trajectory y0(k + p|k), p = 1, . . . , N , is calculated on-line
recursively from the general prediction equation

ŷ(k + p|k) = y(k + p|k) + d(k) (29)

where the quantities y(k + p|k) are calculated from the nonlinear neural model
(6). The ”DMC type” disturbance model is used. The unmeasured disturbance
d(k) is assumed to be constant over the prediction horizon. It is estimated from

d(k) = y(k)− y(k|k − 1) = y(k)−
(
w0 +

K∑

i=1

wi exp(−zi(k))

)
(30)

where y(k) is a measured value while the quantity y(k|k − 1) is calculated from
the model (6). From (29) the nonlinear free trajectory is given by

y0(k + p|k) = w0 +
K∑

i=1

wi exp(−z0
i (k + p|k)) + d(k) (31)

The quantities z0
i (k + p|k) are determined from (8) assuming no changes in

control signals from sampling instant k onwards and replacing predicted output
signals from k + 1 by corresponding values of the free trajectory

u(k + p|k) := u(k − 1) p ≥ 0

ŷ(k + p|k) := y0(k + p|k) p ≥ 1 (32)

hence

z0
i (k + p|k) =

Iuf (p)∑

j=1

qi,j(u(k − 1)− ci,j)2

+
Iu∑

j=Iuf (p)+1

qi,j(u(k − τ + 1− j + p)− ci,j)2

+
Iyp(p)∑

j=1

qi,Iu+j(y0(k − j + p|k)− ci,Iuj)2

+
nA∑

j=Iyp(p)+1

qi,Iu+j(y(k − j + p)− ci,Iuj)2 (33)
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Fig. 2. Polymerisation reactor control system structure

4 Simulation Results

The process under consideration is a polymerisation reaction taking place in a
jacketed continuous stirred tank reactor [9] depicted in Fig. 2. The reaction is the
free-radical polymerisation of methyl methacrylate with azo-bis-isobutyronitrile
as initiator and toluene as solvent. The output NAMW (Number Average
Molecular Weight) is controlled by manipulating the inlet initiator flow rate
FI . Flow rate F of the monomer is assumed to be constant.

Three models of the process are used. The fundamental model [9] is used as
the real process during simulations. An identification procedure is carried out,
a linear model and a neural one are obtained. Both empirical models have the
same input arguments determined by τ = 2, nA = nB = 2. The horizons are
N = 10, Nu = 3, the weighting coefficients λp = 0.2. The manipulated variable
is constrained, Fmin

I = 0.003, Fmax
I = 0.06, the sampling time is 1.8 min.

As the reference trajectories, three set-point changes occurring at k = 1 are
considered, namely from NAMW = 20000 to NAMW = 25000, NAMW =
30000 and NAMW = 40000, respectively. Simulation results of the MPC algo-
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Fig. 3. Simulation results of the MPC algorithm with the linear model
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Fig. 4. Simulation results of the MPC-NPL (dotted) and MPC-NO (solid) algorithms
with the same neural network model
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Fig. 5. Coefficients a1(k), a2(k), b2(k) of the linearised model in the MPC-NPL algo-
rithm with the neural network model: NAMW ref = 25000 (dotted), NAMW ref =
30000 (solid), NAMW ref = 40000 (solid-circles)

rithm with the linear model are depicted in Fig. 3. It works well for the smallest
set-point change, but for medium and big ones the system becomes unstable.
Simulation results of the MPC-NPL and MPC with Nonlinear Optimisation
(MPC-NO) algorithms with the same neural network model are depicted in
Fig. 4. Both nonlinear algorithms are stable. Moreover, for three considered set
point changes the closed-loop performance obtained in the suboptimal MPC-
NPL algorithm with quadratic programming is very close to that obtained in
computationally prohibitive MPC-NO approach, in which a nonlinear optimisa-
tion problem has to be solved on-line at each sampling instant. The bigger the
change in the set-point variable, the bigger the changes of the coefficients a1(k),
a2(k), b2(k) of the linearised model as it is shown in Fig. 5.

5 Conclusion

Reliability, computational efficiency and closed-loop accuracy are the advantages
of the presented MPC-NPL algorithm with RBF type neural network models.
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The MPC-NPL algorithm uses on-line only the numerically reliable quadratic
programming procedure, the necessity of full nonlinear optimisation is avoided.
Although suboptimal, in practice the algorithm gives performance comparable
to that obtained in MPC schemes with nonlinear optimisation.

Neural networks (primarily perceptron type and RBF type) are able to ap-
proximate precisely nonlinear nature of processes and, unlike fundamental mod-
els, have relatively small number of parameters and simple structure. Hence,
they are particularly suitable to be used in nonlinear MPC algorithms.
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Abstract. We consider algebraic properties of interval matrices. Opera-
tions on interval matrices are strictly connected with interval-valued fuzzy
sets. We examine lattice and semigroup properties of interval matrices.
Next, we discuss asymptotic properties in semigroup of powers. In partic-
ular, a convergence of power sequence is examined. There is a dependence
between this convergence and convergence of powers of boundary matrices.

Keywords: lattice, interval, interval matrices.
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1 Introduction

In 1965 L.A. Zadeh presented fuzzy sets. Since then many new extensions of this
concept have been given as IFS (cf. [1]) or IVFS (cf. [6], [17]). Arithmetic opera-
tions on sets were first introduced in [18]. Standard properties of interval arith-
metic are completed in [13], where set of intervals form a lattice (non distributive
lattice). Then sup− inf product of matrices over this lattice is not associative.
The convergence of powers of interval matrices was studied in [9], [10] and [11].

In this paper we consider lattice operations on intervals induced by partial
order between intervals. Such lattice is distributive and we can consider sup− inf
product (associative) of matrices over this lattice. We want to examine some
properties of this product of interval matrices.

Interval matrices, product of interval matrices and powers of a matrix can
be used in describing of a system dynamics, interval errors (cf.[13], [8]), time-
invariant fuzzy systems (cf.[7]) and systems analysis (cf.[14]).

First part of this paper deals with algebraic operations on sets. In the second
part we consider interval lattice and interval matrices. Next we consider some
facts connected with properties of elements in a semigroup. We concentrate on
convergence of the sequence of powers for fuzzy matrices connected with interval
matrices.

2 Algebraic Operations on Sets

At the beginning we recall on algebraic operations on the sets.

Definition 1 (cf.[12], p.8). Let (X, ∗) be a nonempty set with a binary oper-
ation. Extension of the operation ∗ on sets A,B ⊂ X we call the operation

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 613–621, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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A ∗B := {a ∗ b : a ∈ A, b ∈ B} ⊂ X.

For this operation the following theorems hold.

Theorem 1 (cf.[12], p.9). Operation ∗ in 2X preserves commutativity, asso-
ciativity and the neutral element of operation ∗ in X.

Proof. If the operation ∗ is commutative in X , then
A ∗B = {a ∗ b : a ∈ A, b ∈ B} = {b ∗ a : b ∈ B, a ∈ A} = B ∗A.
If the operation ∗ is associative in X , then
(A ∗B) ∗ C = {(a ∗ b) ∗ c : a ∈ A, b ∈ B, c ∈ C} = {a ∗ (b ∗ c) :
a ∈ A, b ∈ B, c ∈ C} = A ∗ (B ∗ C).
If the operation ∗ has the neutral element e in X , then
A ∗ {e} = {a ∗ e : a ∈ A} = {e ∗ a : a ∈ A} = {a : a ∈ A}.

Theorem 2. Let (X, ∗, 2) be a nonempty set with two binary operations. Dis-
tributivity and absorption of the operation ∗ over the operation 2 in X implies
distributivity and absorption of this operations in 2X.

Proof. Let the operation ∗ be left-distributive over 2 in X . We obtain
A ∗ (B 2 C) = {a ∗ (b 2 c) : a ∈ A, b ∈ B, c ∈ C} =
{(a ∗ b) 2 (a ∗ c) : a ∈ A, b ∈ B, c ∈ C} = (A ∗B) 2 (A ∗ C).
By analogy we can prove the right-distributivity.
We consider the right-absorption:
(A 2B) ∗A = {(a 2 b) ∗ a : a ∈ A, b ∈ B} = {a : a ∈ A} = A.
By analogy we can prove the left-absorption.

3 Interval Calculus

Interval calculus is an extension of arithmetic operations on closed intervals.
We consider closed intervals: A = [a, a], B = [b, b], A, B ⊂ [0, 1], A, B �= ∅
(a ≤ a, b ≤ b) with the relation

∀
A,B⊂[0,1]

A ≤ B ⇔ a ≤ b, a ≤ b. (1)

The relation (1) is the partial order relation (cf. [15]). In this paper we put
S = {[a, a] : a, a ∈ [0, 1], a ≤ a}, where [0, 0] = minS, [1, 1] = maxS with
respect to (1).

Theorem 3. If A,B ∈ S, then operations generated by binary min ” ∧ ” and
max ” ∨ ” have the form

A ∧B = [a ∧ b, a ∧ b], A ∨B = [a ∨ b, a ∨ b]. (2)

Proof. Using binary operations min and max in Definition 1 we have
x ∈ A ∧B ⇒ ∃

a∈A, b∈B
x = a ∧ b⇒ x ≥ a ∧ b, x ≤ a ∧ b⇒ x ∈ [a ∧ b, a ∧ b].



Operations on Interval Matrices 615

Then A ∧B ⊂ [a ∧ b, a ∧ b]. Now
x ∈ [a ∧ b, a ∧ b]⇒ a ∧ b ≤ x ≤ a ∧ b⇒ ∃

a∈A, b∈B
a ≤ a ≤ a, b ≤ b ≤ b.

Putting a = (a ∨ x) ∧ a, b = (b ∨ x) ∧ b we get
a ∧ b = (a ∨ x) ∧ (b ∨ x) ∧ a ∧ b = ((a ∧ b) ∨ x) ∧ (a ∧ b) = x ∧ (a ∧ b) = x.
So [a ∧ b, a ∧ b] ⊂ A ∧B.
Analogously we can prove the formula (2) for ∨.

Definition 2 (cf.[3], p.6,12). The lattice (distributive lattice) (L,∧,∨) is a
non empty set L with two monotone, associative operations with laws of absorp-
tion (distributivity) and with relation

a ≤ b⇔ a ∧ b = a for a, b ∈ L. (3)

The condition (3) holds in S for relation (1) and operations (2). So from above
definition and Theorems 1, 2 we have

Theorem 4. The structure (S,∧,∨) with operations (2) forms a distributive
lattice.

In the following example we obtain lattice operations (2) for given intervals.

Example 1. For A,B ∈ S we can consider two cases:
If A,B are comparable, e.g. A = [0.1, 0.5], B = [0.2, 0.8], then A ∧ B = A,
A ∨B = B,
If A,B are non-comparable, e.g. A = [0.1, 0.8], B = [0.3, 0.5], then we obtain
two new intervals A ∧B = [0.1, 0.5] and A ∨B = [0.3, 0.8].

Definition 3 (cf.[3], p.6). The lattice L is complete if for every set A ⊂ L
there exist extremal bounds inf A ∈ L, supA ∈ L denoted also by

∧
A,

∨
A.

For indexed family of intervals we have more general operations.

Definition 4. Let T �= ∅, At ∈ S, At = [at, at], t ∈ T. We have

∨

t∈T

At = [sup
t∈T

at, sup
t∈T

at],
∧

t∈T

At = [inf
t∈T

at, inf
t∈T

at]. (4)

Theorem 5. The lattice (S,∧,∨) is a complete lattice.

Proof. Operations (4) give extend bounds of the family (At)t∈T , At ⊂ S.
Let x ∈

∨
t∈T At, i.e. ∃

at∈At

x = supt∈T at. So x ≥ supt∈T at, x ≤ supt∈T at or

x ∈ [supt∈T at, supt∈T at]. Thus
∨

t∈T At ⊂ [supt∈T at, supt∈T at].
Now let x ∈ [supt∈T at, supt∈T at]. Putting at = (at ∧ x) ∨ at, we get
supt∈T at = supt∈T [(at ∧ x) ∨ at] = supt∈T (at ∧ x) ∨ supt∈T at =
[(supt∈T at) ∧ x] ∨ (supt∈T at) = x ∨ (supt∈T at) = x,
which proves the converse inclusion. The proof for operation

∧
is similar.
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Definition 5 (cf.[3], p.119). The complete lattice (L,∨,∧) is infinitely dis-
tributive with respect to supremum (sup-distributive), if

∀
T 
=∅

∀
t∈T

∀
a,bt∈L

a ∧ (
∨

t∈T

bt) =
∨

t∈T

(a ∧ bt), (5)

and infinitely distributive with respect to infimum (inf-distributive), if

∀
T 
=∅

∀
t∈T

∀
a,bt∈L

a ∨ (
∧

t∈T

bt) =
∧

t∈T

(a ∨ bt). (6)

The lattice sup-distributive and inf-distributive is called infinitely distributive.

Theorem 6. The lattice (S,∨,∧) is infinitely distributive.

Proof. Let B = [b, b], At = [at, at], t ∈ T. We consider property of sup-
distributivity:
[b, b] ∧

∨
t∈T At = [b, b] ∧ [supt∈T at, supt∈T at] = [b ∧ supt∈T at, b ∧ supt∈T at] =

[supt∈T (b ∧ at), supt∈T (b ∧ at)] =
∨

t∈T [b ∧ at, b ∧ at] =
∨

t∈T ([b, b][at, at]),
which proves (5) in S. The proof of (6) is similar.

4 Interval Matrices

In this section we consider some properties of interval matrices.

Definition 6 (cf.[2], p. 277). The set of matrices

[A,A] = {A = [aij ] ∈ Lm×m : aij ≤ aij ≤ aij , i, j = 1, 2, ...,m}, (7)

where A,A ∈ [0, 1]m×m, A = [aij ], A = [aij ] we call the interval matrices.

The above formula has double meaning. We have an interval of matrices and a
matrix over the interval lattice (S,∨,∧). According to [5] we can consider the
lattice of interval matrices. The set of all m×m interval matrices on S we denote
by Sm×m. In Sm×m we consider according to (1) the relation

∀
[A,A],[B,B]∈Sm×m

[A,A] ≤ [B,B]⇔ A ≤ B, A ≤ B. (8)

Moreover, for set of fuzzy matrices we have

∀
[A,A],[B,B]∈Sm×m

[A,A] ≤ [B,B]⇔ ∀
1≤i,j≤m

aij ≤ bij , aij ≤ bij . (9)

Similarly, by (2) we get

([A,A] ∨ [B,B])ij = [aij ∨ bij , aij ∨ bij ], ([A,A] ∧ [B,B])ij = [aij ∧ bij , aij ∧ bij ]
(10)

for [A,A], [B,B] ∈ Sm×m.
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Now (4) leads to
∨

t∈T

[At, At]ij = [(sup
t∈T

at)ij , (sup
t∈T

at)ij ],
∧

t∈T

[At, At]ij = [(inf
t∈T

at)ij , (inf
t∈T

at)ij ].

(11)

Example 2. We use the above formulas for matrices of intervals:

[A,A] =
[

[0.2, 0.4] [0.6, 0.9]
[0, 1] [0.5, 0.8]

]
, A =

[
0.2 0.6
0 0.5

]
, A =

[
0.4 0.9
1 0.8

]
,

[B,B] =
[

[0.4, 0.6] [0.1, 0.7]
[0.9, 1] [0.4, 0.8]

]
, B =

[
0.4 0.1
0.9 0.4

]
, B =

[
0.6 0.7
1 0.8

]
,

and we have

[A,A] ∨ [B,B] =
[

[0.4, 0.6] [0.6, 0.9]
[0.9, 1] [0.5, 0.8]

]
,

[A,A] ∧ [B,B] =
[

[0.2, 0.4] [0.1, 0.7]
[0, 1] [0.4, 0.8]

]
.

Matrices over distributive lattice form a distributive lattice (cf.[5]), moreover,
similarly to Theorem 6 we obtain

Theorem 7. (Sm×m,∨,∧) is an infinitely distributive lattice.

Now, we examine sup− inf product of interval matrices.

Definition 7. The sup− inf product of [A,A], [B,B] ∈ Sm×m is a matrix of
elements:

([A,A] ◦ [B,B])ij =
∨

1≤k≤m

([A,A]ik ∧ [B,B]kj).

Theorem 8. For [A,A], [B,B] ∈ Sm×m we have

([A,A] ◦ [B,B])ij = [(A ◦B)ij , (A ◦B)ij ], (12)

where in the lattice ([0, 1]m×m,∨,∧) :

(A ◦B)ij =
∨

1≤k≤m

(aik ∧ bkj). (13)

Proof. By Definition 7, 3, 4 and (13) we obtain

([A,A] ◦ [B,B])ij =
∨

1≤k≤m

([aik, aik]∧ [bkj , bkj ]) =
∨

1≤k≤m

([aik ∧ bkj , aik ∧ bkj ]) =

[
∨

1≤k≤m

(aik ∧ bkj),
∨

1≤k≤m

(aik ∧ bkj)] = [(A ◦B)ij , (A ◦B)ij ],

which proves (12).
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Example 3. We use the above theorem for m = 2,

[A,A] =
[

[0.1, 0.2] [0.3, 0.9]
[0, 1] [0.1, 0.8]

]
, [B,B] =

[
[0, 0.7] [0.2, 0.5]
[0.9, 1] [0.5, 0.6]

]
,

and we get

[A,A] ◦ [B,B] =
[

[0.3, 0.9] [0.3, 0.6]
[0.1, 0.8] [0.1, 0.6]

]
.

According to [5] we obtain

Theorem 9. For [A,A], [B,B], [C,C] ∈ Sm×m we have
•[A,A] ◦ ([B,B] ◦ [C,C]) = ([A,A] ◦ [B,B]) ◦ [C,C], (associativity)
•[A,A] ≤ [B,B]⇒ [A,A] ◦ [C,C] ≤ [B,B] ◦ [C,C], (monotonicity)
•[A,A] ◦ ([B,B] ∨ [C,C]) = ([A,A] ◦ [B,B]) ∨ ([A,A] ◦ [C,C]),
(distributivity over supremum)
•[A,A] ◦ ([B,B] ∧ [C,C]) ≤ ([A,A] ◦ [B,B]) ∧ ([A,A] ◦ [C,C]),
(sub-distributivity over infimum)
•[A,A] ◦ [I, I] = [I, I] ◦ [A,A] = [A,A] (neutral element), where

[I, I]ij =
{

[1, 1], i = j
[0, 0], i �= j

, i, j = 1, ...,m.

Corollary 1. (Sm×m, ◦) is an ordered semigroup with identity [I, I].

In semigroups we can consider powers of its elements.

Definition 8 (cf.[16]). The powers of a matrix A ∈ Lm×m we call

A1 = A, An+1 = An ◦A, n ∈ N.

The sequence (An) is convergent, if

∃
k∈N

Ak+1 = Ak.

Definition 9. The index of a matrix A is the number

k = k(A) = min{q ∈ N : ∃
p>q

(Ap = Aq)}.

Definition 10 (cf.[7]). Let A, B ∈ [0, 1]m×m, F = {A,B}. A mixed power
sequence of matrices A and B is the sequence

F1 = C1, Fn+1 = FnCn+1, n ∈ N,

where C : N→ F . This family F is called weakly convergent, if all the sequences
(Fn) are convergent. Weakly convergent family is strongly convergent, if all the
limit matrices are equal.
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Lemma 1 (cf.[4]). Let F = {A,A}. If [A,A] ∈ Sm×m, then for every sequence
(Fn), n ∈ N we have inequalities

∀
k∈N

Ak ≤ Fk ≤ A
k
.

Theorem 10. Let F = {A,A}. If (An), (A
n
) are convergent to the same limit,

then (An) is convergent to the same limit for each A ∈ [A,A].
In particular, F is strongly convergent.

Proof. For each A ∈ [A,A] we have

A ≤ A ≤ A.

From Lemma 1 and Theorem 9 (monotonicity) we have inequalities

Ak ≤ Ak ≤ A
k
, for k ∈ N,

so (An) is convergent by the Squeeze Law.

Definition 11. The matrix A ∈ [0, 1]m×m is nilpotent, iff

∃
p∈N

AP = [0].

From Lemma 1 and the above theorem we get

Theorem 11. If matrix A
n

is nilpotent, then sequence ([A,A]n) is convergent.

Now we consider the interval matrix with two different limit matrices for (An),
(A

n
). From Theorem 8 we have

[A,A]n = [An, A
n
], (14)

so we obtain

Corollary 2. Let [A,A] ∈ Sm×m. If (An), (A
n
) are convergent with indexes

k1(A), k2(A) respectively, then ([A,A]n) is convergent with k = max(k1(A),
k2(A)).

Proof. From assumption we have:

Ak1(A)+1 = Ak1(A), A
k2(A)+1

= A
k2(A)

.

Putting k = max(k1(A), k2(A)) in (14) we get

[A,A]k+1 = [Ak+1, A
k+1

] = [Ak, A
k
] = [A,A]k,

which proves that k is the index of considered interval matrix.
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Example 4. This example presents a weakly convergent family of matrices (with
different limit matrices). Let m = 2,

A =
[

0.1 0.3
0 0.1

]
, A =

[
0.2 0.4
0.1 0.3

]
,

we have A2 = A3 �= A
2

= A
3
, where

(A)2 =
[

0.1 0.1
0 0.1

]
, (A)2 =

[
0.2 0.3
0.1 0.3

]
,

AA =
[

0.1 0.3
0.1 0.1

]
, AAA =

[
0.1 0.1
0.1 0.1

]
, AA =

[
0.1 0.2
0.1 0.1

]
.

The family F={A, A} is weakly convergent with the limit matrices: A2, A
2
, AA,

AAA = AA2, AA. From the above corollary we know, that ([A,A]n) is also
convergent with k = 2, because

([A,A])2 =
[

[0.1, 0.2] [0.1, 0.3]
[0, 0.1] [0.1, 0.3]

]
= ([A,A])3.

5 Conclusions

Our results show some facts connected with convergence of powers of interval
matrix. Estimations of index of the interval matrix and construction of the ap-
proximation operation (the transitive closure operation) remain open problems.
Interval valued fuzzy sets are, in general, extensions of fuzzy sets. Moreover, fuzzy
sets theory and rough set theory are complementary. Thus, rough set methods
can be used to define fuzzy concepts of approximation operations.

References

1. Atanassov, K.T.: Intuitionistic fuzzy sets, Theory and applications. Springer, Hei-
delberg (1999)

2. Bia�las, S.: Matrices Selected problems (Polish) AGH, Krakow (2006)
3. Birkhoff, G.: Lattice theory, vol. 25. AMS Coll. Publ., Providence (1967)
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Abstract. Cryptography in its present state relies increasingly on com-
plex mathematical theories, e.g., elliptic curves, group theory, etc. We
address in this article the problem of proxy signatures and we set this
problem in the framework of Lie algebras. We show how to use a cho-
sen maximal set of differentiable automorphisms in order to carry out
the task of proxy signing. We also show possible attacks and the way to
protect against them.
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1 Introduction

1.1 Lie Algebras

Definition 1. Let K be a commutative field. We say that a linear space L over
K is a Lie algebra, if there is a bilinear operation

L× L ; (a, b)→ [a, b] ∈ L,

called the Lie bracket (Lie product), satisfying the conditions:

(a) [a, b] = −[b, a], (anty-symmetry)
(b)

[
a, [b, c]

]
+
[
b, [c, a]

]
+
[
c, [a, b]

]
= 0.

Condition (b) is called the Jacobi identity.

Obviously, condition (a) can be rewritten in an equivalent form: [a, a] = 0.
Fact 1. The set of all endomorphisms End(X), where X is a linear space, is a
Lie algebra with bracket defined as:

[f, g] = fg − gf,

for f, g ∈ End(X).

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 622–629, 2007.
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Definition 2. Let A be a linear algebra over K, with an operation A × A ;
(a, b) → a # b ∈ A. An endomorphism α : A → A is called a differentiation, if
for a, b ∈ A

α(a # b) = α(a) # b + a # α(b).

The set of all differentiations over the algebra A is denoted as Der(A).

Theorem 1. Der(A) is a Lie subalgebra of End(A).

Proof. Proof of this theorem is a simple algebraic computing.

Now, we consider some maximal set of pair-wise commuting differentiations and
we denote it as CDer(A), clearly, such a set is non-unique.
Fact 2. There exists a non-empty set CDer(A).

Proof. Let α ∈ Der(A). Then α is commutative with α. Composite αα ∈
Der(A), but α is commutative with αα too, etc. So that α, αα, . . . , αα . . . α
are pair-wise commuting, and the set {αn : n = 1, 2, . . .} extends to a maximal
set CDer(A).

Fact 1.2 shows that a set CDer(A) exists.

Theorem 2. CDer(A) is an algebra.

Proof. Proof of this theorem is a simple algebraic computing.

1.2 The Diffie-Hellman Problem

Let us recall the definition of discrete logarithm from [2].
Let F∗p = (Z/pZ)∗ = {1, 2, · · · , p − 1} be the multiplicative group of integer

numbers modulo a prime number p. Let g ∈ F∗p be a fixed element. The discrete
logarithm problem in F∗p at the base g is the problem of finding for the fixed
y ∈ F∗p of a natural number x, such that y = gx modulo p.

We remind now the Diffie-Hellman key exchange system (see [2]). Assume,
that Alice and Bob want to agree on a secret key in any cryptosystem with
private keys. Keys exchange occurs over an insecure communication channel, so
that an adversary Charlie knows the substance of all communicates, which are
sent between Alice and Bob. Alice and Bob agree at first on a large prime number
p and a base g. Then Alice in secret picks a random natural number kA < p (of
the same order as p) and computes the remainder from division of gkA by p and
the result is sent to Bob. Bob proceeds in a similar manner and sends to Alice
gkB ∈ F∗p keeping kB secret. The key agreed upon will be the number gkAkB .
The problem which Charlie is facing, is the Diffie-Hellman problem: having the
data g, gkA , gkB ∈ F∗p, compute gkAkB . It is worth to notice, that everyone who
can solve the discrete logarithm problem, can solve the Diffie-Hellman problem,
too.

In [1], the author generalizes the discrete logarithm problem and the Diffie-
Hellman problem to cyclic groups. We define the general discrete logarithm prob-
lem as follows: Let G =< a1, a2, · · · , an > be a cyclic group and f : G → G
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be a non identity automorphism. General discrete logarithm problem is to find
f(b) for any b ∈ G having given f(a) for some a ∈ G. In other words the general
discrete logarithm problem is to find the automorphism f knowing its action on
only one element.

Suppose now, that we have two non identity automorphisms ϕ, ψ : G → G
and that we know a, ϕ(a) i ψ(a). Then, the general Diffie-Hellman problem is
to find ϕ(ψ(a)).

2 Diffie-Hellman Problem in Lie Algebras

2.1 Key Exchange System

Alice and Bob want to agree on a private key for exchange of information over an
insecure channel. They agree on a Lie algebra L, a set CDer(A), and an element
g ∈ L. Alice picks randomly a differentiation α ∈ CDer(L), and an element
a ∈ L. She sends Bob the value α([g, a]). Bob picks at random a differentiation
β ∈ CDer(L), and he sends to Alice the value β(α([g, a])). Alice determines α−1

and computes β([g, a]) :

α−1(β(α([g, a]))) = α−1(α(β([g, a]))) = α−1α(β([g, a])) = β([g, a])

Now, Alice randomly chooses a next differentiation γ ∈ CDer(L), and computes
γ(β([g, a])) and then the result is sent to Bob. Alice can compute γ([g, a]) too,
and Bob, knowing the differentiation β, computes β−1 and finds γ([g, a]), (in
analogy to Alice’s computation). The value γ([g, a]) is their fixed key.

2.2 System Analysis

Notice, that Alice doesn’t show a, so the adversary Charlie knows L, g, α([g, a]),
β(α([g, a])) and γ(β([g, a])). To find γ([g, a]) is a problem which incorporates the
general discrete logarithm problem with the general Diffie-Hellman problem de-
scribed in [2]. We can restrict the problem to finding a differentiation β (exactly
β−1) having as information L, g, α([g, a]), β(α([g, a])) and γ(β([g, a])). The task
of finding β, can be reduced to computation α. Finally, the problem of finding
the key can be reduced to computing of the differentiation α knowing only the
action of α on one element [g, a]. An additional impediment for Charlie is the
fact, that he doesn’t know the element a, which Alice doesn’t show.

2.3 Sending Information

For simplifying of notation, we mark the earlier fixed key as x = γ([g, a]). Sup-
pose, that Alice wants to send to Bob an information m already converted to
an element from the Lie algebra L. Alice sends to Bob the element y = [m,x].
Bob knows the Lie algebra L, so he knows the Lie bracket and key x and he
can compute the value m. The difficulty of this computation will depend on
the specified Lie bracket and the internal multiplication in the algebra. For an
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example, for Lie algebra with the standard commutator and anti-commutative
internal multiplication, we have:

[m,x] = y

mx− xm = y

2mx = y

m = 2−1yx−1.

Adversary Charlie doesn’t know the key x, so he can’t decode the information
m. Further, if Alice computes the information hash H(m), and she sends to
Bob the algebra element z = [H(m), x], too, then Bob will be able to verify,
whether he gets the information in an unspoiled form. Analogically, to decipher
the information m, Bob will decifer the hashed message H(m), and he compares
whether what he has got is the same as the element H(m), which he got from
Alice. So, for increased security, Alice sends to Bob the pair (y, z).

3 Information Signature

In our algorithm, we can use the signature scheme with proxy signers, analogical
to scheme described in [4].

3.1 Notation

We mark original signer as P0 and proxy signers as {P1, P2, · · · , Pm}. We suppose,
that all signers Pi have private keys ai and the corresponding public keys Ai =
[ai, g], where g is Lie algebra’s element, certified by the central authority for
i = 0, · · · ,m. Let w be a message created by the original signer P0. Moreover, we
will assume that H i H1 are some suitably chosen collision -free hash functions.

3.2 Group Secret Key Generation

P0 prepares the information w, and chooses randomly an algebra element r and
computes R = [r, g]. Next, he determines the value H = H(w,R) of the collision-
free hash function H. Having this data, P0 computes the group secret key,

d = [ao, H ] + r.

We notice, that d = d(R) and d = d(a0), where a0 is a private key of P0, thus only
P0 can compute d, moreover, the private key a0 of signer P0 is well protected by
randomly behaving hash function H. The public verification that the signature
is true is not difficult, too, because we have publicly known R and A0 :

d = [a0, H ] + r −→ [d, g] = [[a0, H ], g] + [r, g] = [A0, H ] + R

[d, g] = [[a0, H ] + r, g] = [a0H −Ha0, g] + [r, g] = [a0H, g]− [Ha0, g] + R
= [a0, g]H −H [a0, g] + R = [[a0, g], H ] + R = [A0, H ] + R.
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3.3 Group Secret Key Share

The original signer P0 selects a polynomial

f0(x) = c0(t−1)x
(t−1) + · · ·+ c01x + d,

where each ci for i = 1, · · · , t− 1 is a random algebra element. We see, that Lie
multiplication of any element by itself results in 0, so we specify power as internal
multiplication in algebra. Next, P0 computes C0i = [c0i, g] for i = 1, · · · , t − 1,
and he sends it to proxy signers Pi.

T ransfer : ({C0i = [c0i, g] : i = 1, · · · , t− 1}),

so that,
f0(x) = c0(t−1)x

(t−1+ · · ·+ c01x+ d
↓ ↓ ↓= a0H + r
C0(t−1) C01 HA0 + R

Let xi be the public identity of Pi. Now, P0 distributes the secret key d0 = f0(0)
distributing the values yi0 = f0(xi) for each Pi ∈ P, and he sends them by secret
channels.

P0 &−→ f0(x) =
t−1∑

i=1

c0ix
i + d d = a0H + r.

Each proxy signer can verify yi0 by the equation

[yi0, g] = A0H + R︸ ︷︷ ︸ +
t−1∑
j=1

xj
iC0j .

[d, g]

3.4 The Proxy Signature Generation

Now, each proxy signer Pi selects a secret polynomial

fi(x) = ci(t−1)x
t−1 + · · ·+ ci1x + ci0 + ai,

where cik for k = 1, · · · , t−1 is a random Lie algebra’s element and ai is a secret
key of Pi. Next, Pi computes and broadcasts Cik = [cik, g], for k = 0, · · · , t− 1.

T ransfer : (Cik : {k = 0, · · · , t− 1}, Ai)

Pi computes the value of the hash function H1 = H1(w,R,M,B) too, where M
is a message, which Pi wants to sign on behalf of the original signer P0 and B
is any subset of t (or more) proxy signers, and he computes the value fi(xj) for
i �= j and sends to Pj by the secret channel his part

yji := H1fi(xj), j = 1, · · · t

Pi : yji = H1fi(xj) −→ Pj ∀j �= i, Pj ∈ B.
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Next, each signer Pj verifies the received values fi(xj) from other t − 1 proxy
signers by the equation

[yji, g] = H1(Ai +
t−1∑

k=0

xk
jCik), ∀j �= i, Pi ∈ B.

If all of the above equation hold, then each Pj computes his partial proxy sig-

nature from the received values as sj =
t∑

i=1

yji.

P1 : s1 =
t∑

i=1

y1i =
t∑

i=1

H1fi(x1)=H1f1(x1)+H1f2(x1)+. . .+H1ft(x1)=H1f(x1)

P2 : s2 =
t∑

i=1

y2i =
t∑

i=1

H1fi(x2)=H1f1(x2)+H1f2(x2)+. . .+H1ft(x2)=H1f(x2)

...

Pt : st =
t∑

i=1

yti =
t∑

i=1

H1fi(xt)=H1f1(xt) + H1f2(xt) + . . . + H1ft(xt)=H1f(xt)

This share has a value H1f(xj), where f(x) is the virtual polynomial

f(x) = xt−1(
t∑

i=1

ci(t−1))+ · · ·+ (
t∑

i=1

ci0)+ (
t∑

i=0

ai0)

↓ ↓ ↓ ↓

F (x) = xt−1 (
t∑

i=1

Ci(t−1))

︸ ︷︷ ︸
+ · · ·+ (

t∑

i=1

Ci0)

︸ ︷︷ ︸
+ (

t∑

i=1

)Ai

︸ ︷︷ ︸
:= C′t−1 := C′0 := A′

The public obligations of signers group B are

Transfer : ({C′k : k = 0, 1, · · · , t− 1}, A′)
Next, each proxy signer Pj computes the threshold proxy signature on M as
follows:

σj = σj(M,B,w,R) = yj0 +
t∑

i=1

yji = yj0 + sj .

Pj sends by the secret channel the calculated σj for each Pi ∈ B. Now, each Pj

does the test of the received shares:

[σj , g] = [yj0 + sj , g] = [yj0 +
t∑

i=1

yji, g] = [yj0, g] + [
t∑

i=1

yji, g]

= HA0 + R +
t−1∑

k=1

xk
j C0k +

t∑

j=1

H1(Aj +
t−1∑

k=0

xk
jCjk).

Finally, if all was correct, then the threshold proxy signature is the following:
(M,C′0, A

′, σ, w,B), where σ = d + H1f(0).
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3.5 Verification of the Proxy Signature

Addressee of the message in the first step does verify correctness of the threshold
(M,C′0, A

′, w,B) by the verifying equation:

[σ, g] = [d + H1f(0), g] = [d, g] + [H1f(0), g] = [f0(0), g] + [H1f(0), g].

If this equation is true, then the addressee infers, that the proxy signature
(M,C′0, A

′, σ, w,B) is the proper proxy signature obtained from the delegation
key of the original signer and that the set B consists of the actual proxy signers.

Next, the addressee computes:

f0(0) = d = a0H + r,

[f0(0), g] = [d, g] = A0H + R,

and

[H1f(0), g] = [H1(w,R,M,B)f(0), g] = [H1(
t∑

i=1

fi)(0), g]

= [H1

t∑

i=1

ci0, g] = H1

t∑

i=1

[ci0, g] = H1

t∑

i=1

Ci0 = H1F (0).

4 The Analysis of the Insider Attack

Suppose, that one from the pair proxy signer - insider attacker (without the loss
of the generality, we agree that this is P1) wants to get a threshold proxy signa-
ture on message M. While generating the proxy signature, P1 does not broadcast
his data C1k, but he waits until will receives from remaining proxy signers their
data Ci1. Now, P1 computes the hash function H1 = H1(w,R,M,B) and as-
sign f1(xj) for i �= j. P1 can compute yj1 = H1f1(xj), but he can’t compute
s1 which is indispensable to falsify the threshold proxy signature, because he
does not know all yji. So, this attack isn’t practical, let us suppose that proxy
signers don’t continue the broadcast of the data until they receive earlier obli-
gations from all signers. Let’s see now, what happens,when the insider attacks
on the later transfer of the data, i.e. just during sending yji. Then the scheme
generating the proxy signature would look as follows:

Each proxy signer Pi selects the secret polynomial fi(x) = ci(t−1)x
t−1 + · · ·+

ci1x+ci0 +ai, and they compute and broadcast Cik = [cik, g] for k = 0, · · · , t−1.
Later Pi computes the value of the hash function H1 = H1(w,R,M,B) and
determines fi(xj) for i �= j. At this moment, P1 attacks and he doesn’t broadcast
his value yji but waits for values from remaining signers. In this way P1 receives
all values y1i for i �= 1 and he computes y11. In this situation, after the verification
of the data, P1 can compute his part of the threshold proxy signature

s1 =
t∑

i=1

y1i.
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So now P1 computed his part of the threshold proxy signature s1, but he has
not broadcasted his data to remaining signers. Theoretically P1 can privately
compute y′1 and for this value the likely value s′1, so the threshold proxy signature
is correct for y′1, however the counterfeited value y′1 will not pass verification
conducts by remaining signers, because P1 can not alter the sent earlier C1k.

Finally, we see, that the scheme of the proxy signature is resistant to the
attack by any insider signer if we suppose that proxy signers will not send data,
until they not receive earlier obligations.

5 Conclusion

We have presented an approach to the Diffie-Hellman problem in Lie algebras,
by exploiting sets of commutative differentiations. Our results generalize in a
sense the approach in [1].
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Abstract. This paper is an extension of our earlier work in combining
strengths of rough set theory and neuro-fuzzy decision trees in classi-
fying software defect data. The extension includes the application of a
rough-fuzzy classification trees to classifying defects. We compare classi-
fication results for five methods: rough sets, neuro-fuzzy decision trees,
partial decision trees, rough-neuro-fuzzy decision trees and rough-fuzzy
classification trees. The analysis of the results include a paired t-test for
accuracy and number of rules. The results demonstrate that there is im-
provement in classification accuracy with the rough fuzzy classification
trees with a minimal set of rules. The contribution of this paper is a
comparative study of several hybrid approaches in classifying software
defect data.

Keywords: Classification, rough-fuzzy classification trees, neuro-fuzzy
decision trees, rough sets, software defects.

1 Introduction

The paper is an extension of our earlier work in combining strengths of rough
set theory and neuro-fuzzy decision trees in classifying software defect data [16].
The extension includes the application of a rough-fuzzy classification trees to
classifying defects. Specifically, in our previous work, the hybrid approach was
limited to employing the strength of rough sets to attribute reduction as the
first step in classification with neuro-fuzzy decision trees. In contrast, in this
paper, we use the fuzzy-rough set proposed in [8] extended by dependency degree
measure proposed in [2] to the classification problem. Other data mining methods
reported in this paper are from rough set theory [13], fuzzy decision trees [20]
and neuro-fuzzy decision trees [1].

In the context of software defect classification, the term data mining refers to
knowledge-discovery methods used to find relationships among defect data and
the extraction of rules useful in making decisions about defective modules either
during development or during post-deployment of a software system. A software
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defect is a product anomaly (e.g, omission of a required feature or imperfection
in the software product) [15]. As a result, defects have a direct bearing on the
quality of the software product and the allocation of project resources to program
modules. Software metrics make it possible for software engineers to measure and
predict quality of both the product and the process. In this work, the defect data
consists of product metrics drawn from the PROMISE1 Software Engineering
Repository data set.

There have been several studies in applying computational intelligence tech-
niques such as rough sets [14], fuzzy clustering [7,21], neural networks [11] to
software quality data. Statistical predictive models correlate quality metrics to
number of changes to the software. The predicted value is a numeric value that
gives the number of changes (or defects) to each module. However, in practice,
it is more useful to have information about modules that are highly defective
rather than knowing the exact number of defects for each module.

The contribution of this paper is a comparative study of several hybrid ap-
proaches in classifying software defect data. The results demonstrate that there
is improvement in classification accuracy with the rough fuzzy classification trees
with a minimal set of rules.

This paper is organized as follows. In Sect. 2, we give a brief overview of two
hybrid methods. The details of the defect data and classification methods are
presented in Sect. 3. This is followed by an analysis of the classification results
in Sect. 4.

2 Hybrid Approaches

Fuzzy-Rough Classification Trees (FRCT) integrate rule generation technique
of fuzzy decision trees and rough sets. The measure used for the induction of
FRCT is fuzzy-rough dependency degree proposed in [3,4]. Neuro-fuzzy decision
trees (NFDT) include a fuzzy decision tree (FDT) structure with parameter
adaptation strategy based on neural networks [1].

2.1 Fuzzy-Rough Classification Trees

In this section, we briefly outline the steps of computing the fuzzy-rough depen-
dency degree. Let {Fjk| k = 1, . . . , cj} be overlapping and non-empty partitions
of real-valued attributes xj (1 ≤ j ≤ p) on the set of training set U. Fjk is the
kth fuzzy set of jth attribute xj . The lower approximation of an arbitrary class
l of Fjk is given by:

μl (Fjk) = inf
∀i∈U

max
{

1− μFjk

(
xi

j

)
, μl

(
yi
)}

where xi
j and yi are ith value of attribute xj . Given an attribute xj with cj

fuzzy partitions, dependency degree γxj of y on attribute xj can be calculated
as follows:
1 http://promise.site.uottawa.ca/SERepository
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– Calculate the lower approximation member function μl (Fjk) using the above
definition

– Calculate fuzzy positive region μPOS (Fjk) = sup
l=1,..,q

{
μl (Fjk)

}

– Calculate the ith pattern to the fuzzy positive region
μPOS

(
xi

j

)
= sup

l=1,..,q
min

{
μFjk

(
xi

j

)
, μPOS (Fjk)

}

– Calculate the dependency degree γxj (y) =

n∑
i=1

μP OS(xi
j)

n

Given fuzzy partitions of feature space, leaf selection threshold βth, and fuzzy-
rough dependency degree γ as expanded attribute (attribute to represent each
node in fuzzy decision tree) selection criterion, the general procedure for gener-
ating fuzzy decision trees using FRCT algorithm is outlined in Alg.1.

Algorithm 1. Algorithm for generating fuzzy decision trees using FRCT
Input : fuzzy partitions of feature space, βth, γ
Output: fuzzy decision trees
while ∃ candidate nodes do

select node with highest γ; // dependency degree
Generate its child-nodes;
//root node will contain attribute with highest γ
if (βchild−node ≥= βth) then

childnode = leafnode
else

search continues with child-node as new root node
end

end

Before training the initial data, the α cut is usually used for the initial data [4].
Usually, α is in the interval (0, 0.5]. A detailed description of fuzzy-rough depen-
dency degree is available in [3]. The cut of a fuzzy set A is defined as:

μAα (a) =
{

μA (a) ;μA (a) ≥ α
0;μA (a) < α

.

2.2 Neuro-fuzzy Decision Trees

In the forward cycle, NFDT constructs a fuzzy decision tree using the standard
FDT induction algorithm fuzzy ID3 [20]. In the feedback cycle, parameters of
fuzzy decision trees (FDT) have been adapted using stochastic gradient descent
algorithm by traversing back from each leaf to root nodes. During the parameter
adaptation stage, NFDT retains the hierarchical structure of fuzzy decision trees.
All the attributes have been fuzzified using fuzzy c-means algorithm [5] into three
fuzzy clusters. From the clustered row data, Gaussian membership functions have
been approximated by introducing the width control parameter λ. The center of
each gaussian membership function has been initialized by fuzzy cluster centers
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generated by the fuzzy c-means algorithm. To initialize standard deviations,
we have used a value proportional to the minimum distance between centers of
fuzzy clusters. For each numerical attribute xj and for each gaussian membership
function, the Euclidean distance between the center of Fjk and the center of
any other membership function Fjh is given by dc (cjk, cjh), where h �= k. For
each kth membership function, after calculating dcmin (cjk, cjh), the standard
deviation σjk has been obtained by (1)

σjk = λ× dcmin (cjk, cjh) ; 0 < λ ≤ 1, (1)

where λ is the width control parameter. For the computational experiments
reported here, we have selected various values of λ ∈ (0, 1] to introduce variations
in the standard deviations of initial fuzzy partitions. After attribute fuzzification,
we run the fuzzy ID3 algorithm with cut α = 0 and leaf selection threshold βth =
0.75. These fuzzy decision trees have been tuned using the NFDT algorithm for
500 epochs with the target MSE value 0.001.

3 Software Defect Data

The PROMISE data set includes a set of static software metrics about the
product as a predictor of defects in the software. There are a total of 94 at-
tributes and one decision attribute (indicator of defect level). The defect level
attribute value is TRUE if the class contains one or more defects and FALSE
otherwise. The metrics at the method level are primarily drawn from Halstead’s
Software Science metrics [9] and McCabe’s Complexity metrics [12]. The metrics
at the class level, include such standard measurements as Weighted Methods per
Class (WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC),
Response For a Class (RFC), Coupling Between Object Classes (CBO), and
Lack of Cohesion of Methods (LCOM) [6]. The data includes measurements for
145 modules (objects).

Experiments reported were performed with RSES2 using rule-based and tree-
based methods. The RSES tool is based on rough set methods. Only the rule-
based method which uses genetic algorithms in rule derivation [19] is reported in
this paper. Experiments with non-rough set based methods were performed with
WEKA3 using a partial decision tree-based method (DT) which is a variant of
the well-known C4.5 revision 8 algorithm [17]. The experiments were conducted
using 10-fold cross-validation technique. The accuracy results with ROSE (an-
other rough-set based tool) using a basic minimal covering algorithm was 79%.
However, since ROSE4 uses an internal 10-fold cross-validation technique, we
have not included the experimental results in our pair-wise t-statistic test. The
attributes were discretized in the case of rough set methods. The Rough-NFDT
method included i) generating reducts from rough set methods ii) using the data
from the reduced set of attributes to run the NFDT algorithm.
2 http://logic.mimuw.edu.pl/∼rses
3 http://www.cs.waikato.ac.nz/ml/weka
4 http://idss.cs.put.poznan.pl/site/rose.html
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4 Analysis of Classification Results

Tables 1 and 2 give a summary of computational experiments using five methods.
Percentage classification accuracy has been calculated by nc

n × 100%, where n is
the total number of test patterns, and nc is the number of test patterns classified
correctly. A comparison of pairs of differences in classification accuracy and
number of rules using the 10-fold cross-validated paired t-test is also discussed
in this section.

We want to test the hypothesis that mean difference in accuracy or number
of rules between any two classification learning algorithms is zero. Let μd denote

Table 1. Defect Data Classification I

10CV Accuracy% Results

Run NFDT R-NFDT Rough FRCT DT

1 85.71 71.42 92.9 85.71 71.43
2 85.71 92.85 78.6 85.71 85.71
3 64.28 67.58 57.1 71.42 64.29
4 71.42 71.42 57.1 92.85 71.43
5 64.28 57.14 50 71.42 71.43
6 78.57 78.57 78.6 78.57 64.29
7 85.71 71.42 71.4 85.71 85.71
8 71.42 78.57 71.4 71.42 57.14
9 92.85 100 78.6 92.85 78.57
10 89.47 89.47 84.2 89.47 84.21

Avg.Acc 78.94 77.84 71.99 82.51 73.42

Table 2. Defect Data Classification II

10CV Results - Number of Rules

Run NFDT R-NFDT Rough FRCT DT

1 3 2 231 7 9
2 14 18 399 5 12
3 4 3 330 4 8
4 2 5 282 9 8
5 6 1 308 5 8
6 6 4 249 7 7
7 6 7 124 3 12
8 2 6 292 3 10
9 10 7 351 9 14
10 4 4 235 7 9

Avg.#ofrules 5.7 5.7 280 5.7 9.7
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the mean difference in accuracy during a 10-fold classification of software defect
data. Let H0 denote the hypothesis to be tested (i.e., H0 : μd = 0). This is our
null hypothesis. The paired difference t-test is used to test this hypothesis and
its alternative hypothesis (HA : μd �= 0). Let d , S2

d denote the mean difference
and variance in the error rates of a random sample of size n from a normal
distribution N(μd, σ2), where μd and σ2 are both unknown. The t statistic used
to test the null hypothesis is as follows:

t =
d̄− μd

Sd/
√
n

=
d̄− 0
Sd/
√
n

=
d̄
√
n

Sd

where t has a student’s t-distribution with n-1 degrees of freedom [10]. In our
case, n− 1 = 9 relative to 10 sample error rates. The significance level α of the
test of the null hypothesis H0 is the probability of rejecting H0 when H0 is true
(called a Type I error). Let tn−1, α/2 denote a t-value to right of which lies α/2
of the area under the curve of the t-distribution that has n-1 degrees of freedom.
Next, formulate the following decision rule with α/2 = 0.025:

Decision Rule: Reject H0 : μd = 0 at significance level α if, and only if
|t− value| < 2.262

Table 3. T-test Results

Accuracy Number of Rules

Pairs Avg. Diff. Std. Dev. t-stat Avg. Diff. Std. Dev. t-stat

R-NFDT/NFDT −1.10 8.24 −0.42 0.00 3.02 0.00
R-NFDT/Rough 5.85 11.67 1.59 −274.00 74.36 −11.67

R-NFDT/DT 4.42 12.58 1.11 −4.00 3.83 −3.30
NFDT/Rough 6.95 7.57 2.91 −274.40 74.42 −11.66

NFDT/DT 5.52 8.09 2.16 −4.00 2.94 −4.30
Rough/DT −1.43 14.22 −0.32 270 75.96 11.26

FRCT/R-NFDT 4.67 10.65 1.39 0.2 5.51 0.114
FRCT/NFDT 3.57 6.94 1.63 0.2 4.32 0.147
FRCT/Rough 10.52 12.35 2.69 −274.2 75.9 −11.42

FRCT/DT 9.09 7.65 3.76 −3.8 3.23 −3.73

Pr-values for tn−1, α/2 can obtained from a standard t-distribution table. In
terms of the t-test for accuracy, in general the three hybrid methods (FRCT, R-
NFDT and NFDT) are comparable in that there is no significant difference in any
of the methods based on the null hypothesis. In contrast, there is a difference
in accuracy between three methods outlined above(FRCT/Rough, FRCT/DT
and NDFT/Rough). The same is true with the three hybrid methods in terms
of the number of rules. The reason being that the average number of rules used
by hybrid methods are similar and few. However, the genetic algorithm-based
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Table 4. Null-Hypothesis Results

Accept H0 (ud = 0) if |t value| < 2.262

Pairs t-stat(Acc.) Acc/Rej H0 t-stat(Rules) Acc/Rej H0

R-NFDT/NFDT −0.42 Accept 0.00 Accept
R-NFDT/Rough 1.59 Accept −11.67 Reject

R-NFDT/DT 1.11 Accept −3.30 Reject
NFDT/Rough 2.91 Reject −11.66 Reject

NFDT/DT 2.16 Accept −4.30 Reject
Rough/DT −0.32 Accept 11.26 Reject

FRCT/R-NFDT 1.39 Accept 0.12 Accept
FRCT/NFDT 1.63 Accept 0.147 Accept
FRCT/Rough 2.69 Reject −11.42 Reject

FRCT/DT 3.76 Reject −3.73 Reject

classifier in RSES induces a large set of rules. As a result, there is a significant
difference when classifiers are compared with the rough classifier on the basis of
number of rules.

(a) Average Accuracy Values (b) Average Number of Rules

Fig. 1. Comparison of Results

The other result that is noteworthy is the actual average accuracy values for the
five methods as shown in Fig. 1(a). There is some improvement with the FRCT
method reported in this paper. Fig. 1(b) demonstrates the comparable number
of rules in all methods except the rough set method.

The other important observation is the role that reducts play in defect data
classification. On an average, only 10 attributes (out of 95) were used by the
rough set method with no significant reduction in classification accuracy. The
Rough-NFDT (hybrid) method uses the reduced set of attributes resulting in
a minimal number of rules with comparable accuracy. The average number of
attributes (over 10 runs) is about 4. The metrics that are most significant on
the class-level include: DIT, RFC, CBO and LCOM. At the method level, the
metrics that are most significant include: i) Halstead’s metric of content where
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the complexity of a given algorithm independent of the language used to express
the algorithm ii) Halstead’s metric of level which is level at which the program
can be understood iii) Halstead’s metric of number of unique operands which
includes variables and identifiers, constants (numeric literal or string) function
names when used during calls iv) total lines of code v) branch − count is the
number of branches for each module. Branches are defined as those edges that
exit from a decision node.

5 Conclusion

This paper presents several approaches to classification of software defect data
using rough set algorithms, rough-fuzzy, neuro-fuzzy decision trees and partial
decision tree methods. The t-test shows that there is no significant difference be-
tween any of the hybrid methods in terms of accuracy at the 95% confidence level.
However, in terms of rules, there is a marked difference. The hybrid rough-fuzzy
classification tree method appears to be an improvement over earlier methods.

Acknowledgements

The research of Sheela Ramanna and Piotr Biernot is supported by NSERC
Canada grant 194376.

References

1. Bhatt, R.B., Gopal, M.: Neuro-fuzzy decision trees. International Journal of Neural
Systems 16(1), 63–78 (2006)

2. Bhatt, R.B.: Fuzzy-Rough Approach to Pattern Classification- Hybrid Algorithms
and Optimization, Ph.D. Dissertation, Electrical Engineering Department, Indian
Institute of Technology Delhi, India (2006)

3. Bhatt, R.B., Gopal, M.: On the Extension of Functional Dependency Degree from
Crisp to Fuzzy Partitions. Pattern Recognition Letters 27(5), 487–491 (2006)

4. Bhatt, R.B., Gopal, M.: Induction of Weighted and Interpretable Fuzzy Classifica-
tion Rules for Medical Informatics. International Journal of Systemics, Cybernetics,
and Informatics 3(1), 20–26 (2006)

5. Bezdek, J.C: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York (1981)

6. Chidamber, S.R., Kemerer, F.C.: A metrics suite for object-oriented design. IEEE
Trans. Soft. Eng. 20(6), 476–493 (1994)

7. Dick, S., Meeks, A., Last, M., Bunke, H., Kandel, A.: Data mining in software
metrics databases. Fuzzy Sets and Systems 145, 81–110 (2004)

8. Dubois, D., Prade, H.: Rough Fuzzy Sets and Fuzzy Rough Sets. Internation Jour-
nal of General Systems 17(2-3), 191–209 (1990)

9. Halstead, M.H.: Elements of Software Science. Elsevier, New York (1977)
10. Hogg, R.V., Tanis, E.A: Probability and Statistical Inference. Macmillan Publish-

ing Co., Inc, New York (1977)



638 S. Ramanna, R. Bhatt, and P. Biernot

11. Khoshgoftaar, T.M., Allen, E.B.: Neural networks for software quality prediction.
In: Pedrycz, W., Peters, J.F. (eds.) Computational Intelligence in Software Engi-
neering, River Edge, NJ, pp. 33–63. World Scientific, Singapore (1998)

12. McCabe, T.: A complexity measure. IEEE Trans. on Software Engineering SE-2(4),
308–320 (1976)

13. Pawlak, Z.: Rough sets. International J. Comp. Information Science 11(3), 341–356
(1982)

14. Peters, J.F., Ramanna, S.: Towards a software change classification system: A
rough set approach. Software Quality Journal 11, 121–147 (2003)

15. Peters, J.F., Pedrycz, W.: Software Engineering: An Engineering Approach. John
Wiley and Sons, New York (2000)

16. Ramanna, S., Bhatt, R., Biernot, P.: A Rough-Hybrid Approach to Software Defect
Classification. Joint Rough Set Symposium, Canada [to appear] (2007)

17. Quinlan, J.R: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
18. Tsang, E.C.C., Yeung, D.S., Lee, J.W.T., Huang, D.M., Wang, X.Z.: Refinement

of generated fuzzy production rules by using a fuzzy neural network. IEEE Trans.
on SMC-B 34(1), 409–418 (2004)
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Abstract. In this paper, Rough Sets approach has been used to reduce
the number of inputs for two neural networks-based applications that
are, diagnosing plant diseases and intrusion detection. After the reduc-
tion process, and as a result of decreasing the complexity of the classi-
fiers, the results obtained using Multi-Layer Perceptron (MLP) revealed
a great deal of classification accuracy without affecting the classification
decisions.

Keywords: Rough Sets, Neural networks, Multi-layered Perceptron
(MLP).

1 Introduction

Recently, Artificial Neural Networks (ANN) has been applied successfully to cre-
ate accurate and efficient models for classification problems [1]. The initial phase
of MLP modeling requires selection of input parameter vectors and the corre-
sponding output vectors, which adequately characterize the component to be
modeled. Two rules are thus important regarding the input parameter selection.
One is that the input parameter vector should be chosen in a manner so that
they will weave a domain to cover the model parameter of interest. The other is
to select the parameters without redundancy [2].

Dimensionality reduction methods in general try to find a reduced number of
new dimensions to account for the original data. Several techniques are avail-
able, which can be seen as variants of factors analysis to find a smaller set of
representative dimensions. Principal Component Analysis (PCA) [3] is the best
known of these techniques: the new dimensions, linear combinations of the orig-
inal features, are given by the eigenvectors (ordered by decreasing eigenvalue) of
the covariance matrix of input data. The new features, called principal compo-
nents, are uncorrelated and of maximum variance so that the new representation
is now minimal. Successive components are of decreasing importance, and the
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first principal components (of higher eigenvalue) usually account for most of the
variance in the input data. Unfortunately, the size of the covariance matrix is
very large for high-dimension data vectors, as input vectors of dimension n give
rise to a matrix of sizen×n, thus standard PCA methods cannot then deal with
data vectors of huge number of features, because space and time costs become
prohibitive [4].

Rough Sets technique introduced by Pawlak [5] is another method that can
be used to extract patterns from data for classification. It is a mathematical
tool to search large, complex databases for meaningful decision rules. Rough
set has been applied in many applications such as machine learning, knowledge
discovery, and expert systems [6-9]. It deals with the classificatory analysis of
data tables. The data can be acquired from measurements or from human ex-
perts. The main goal of the rough set analysis is to synthesize approximation
of concepts from the acquired data and makes reduction of data to a mini-
mal representation. Many rough sets models have been developed in the rough
set community in the last decades [10-14], including VPRS [14] and GRS [15].
Some of them have been applied in the industry data mining projects such as
stock market prediction, patient symptom diagnosis, telecommunication churner
prediction, and financial bank customer attrition analysis to solve challenging
business problems [6,16]. Recently, rough set approach has been used as a tool
for reducing the number of input data presented to a neural network [17,18].
In this study, we used the rough set approach to eliminate the superfluous at-
tributes for two multi-class neural networks applications with different number
of attributes and classes. These applications are diagnosing plant diseases and
intrusion detection. The approach we used for theses applications depends on the
degree of dependency between the condition attributes and decision attributes.
The degree of dependency measure always lies in the range [0,1], with 0 indi-
cating non-dependency and 1 indicating total dependency. During the analysis
process, it has been shown that using a small set of attributes resulted from
the rough sets approach did not affect the final classification decisions, and thus
reduce the computation time for the proposed MLP models. Finally, the results
obtained using neural networks revealed a great deal of classification accuracy
in comparison with applying the whole information system to the model.

This paper is organized as follows: Section 2 introduces the basic ideas and
concepts of Rough Sets approach. In section 3, we present the theory of rough
sets approach for data reduction applied on two cases studies. Finally, the paper
ends with a conclusion and the possibilities for future work.

2 Rough Sets Concepts

2.1 Information System

A data set is represented as a table, where each row represents a case, an event,
or simply an object. Every column represents an attribute (a variable, an ob-
servation, a property, etc.) that can be measured for each object; the attribute
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may be also be supplied by a human expert or user. This table is called an in-
formation system IS [15] which can be defined as IS = (U,A, ρ, V ), where U is
a non-empty finite set of objects called a universe and Ais a non-empty finite
set of attributes. Any subset X ⊆ V will be called a concept or a category in U .
Each attribute a ∈ Acan be viewed as a function ρ that maps elements of U into
a set Va, where the set Va is called the value of a set of the attributea.

ρ : U ×A→ Va (1)

2.2 Mathematical Model in Information System

To extract knowledge from information system, it is necessary to find mathe-
matical models using the given data.

– Indiscernibility Relation

With any P ⊆ A there is an associated equivalence relationIND(P ):

IND(P ) = {(x, y) ∈ U2 : ∀a ∈ P, a(x) = a(y)} (2)

The partition of U , generated byIND(P ) is denoted U/IND(P ) (or U/P ) and
can be calculated as follows:

U/IND(P ) = ⊗{a ∈ P : U/IND({a})}, (3)

Where
A⊗B = {X ∩ Y : ∀X ∈ A, ∀Y ∈ B,X ∩ Y �= φ} (4)

If(x, y) ∈ IND(P ), then x and yare indiscernible by attributes fromP . The
equivalence classes of the P − indiscernibility relation are denoted[x]P .

– Lower and Upper Approximations

LetX ⊆ U . X can be approximated using only the information contained within
P by constructing theP − lower and P − upper approximations of X :

PX = {x : [x]P ⊆ X} (5)

PX = {x : [x]P ∩X �= φ} (6)

– Positive, Negative, and Boundary Regions

Let C and D be equivalence relations overU , then the positive, negative, and
boundary regions can be defined as:

POS(C,D) = ∪X∈UPX (7)

NEG(C,D) = U − ∪X∈UPX (8)

BND(C,D) = U − POS(C,D) ∪NEG(C,D) (9)

The positive region contains all objects of Uthat can be classified to classes of
U/Dusing the information in attributesC. The boundary region BND(C,D) is
the set of objects that can possibly, but not certainly, be classified in this way.
The negative regionNEG(C,D) is the set of objects that cannot be classified to
classes of U/D.
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– Degree of Dependency and Reduction

An important issue in data analysis is discovering dependencies between at-
tributes. Intuitively, a set of attributes Ddepends totally on a set of attributes
C, denoted C ⇒ D, if all attribute values from D are uniquely determined by
values of attributes from C. If there exists a functional dependency between
values ofDand C, then Ddepends totally on C. In rough set theory, dependency
is defined as follows: For C,D ⊂ A, it is said that D depends onC in a degree
K(0 ≤ K ≤ 1), denoted C ⇒K D, if

K(C,D) = ‖POS(C,D)‖ / ‖U‖ (10)

where‖.‖ is the cardinality of a set. If K = 1, D depends totally on C, if 0 < K <
1, D depends partially (in a degree K on C, and if K = 0 then D does not depend
on C. By calculating the change in dependency when an attribute is removed
from the set of considered conditional attributes, a measure of the significance
of the attribute can be obtained. The higher the change in dependency, the
more significant the attribute is. If the significance is 0, then the attribute is
dispensable.

– Reduction of Condition Attributes Relative to Decision Attributes

Attributes can be divided into condition attributes C and decision attributesD.
An attribute a ∈ C is called superfluous with respect to D if K(C,D) = K(C −
{a}, D), otherwise a is indispensable in C [15]. Eliminating a superfluous C −
attribute will not decrease or increase the degree of dependency. This means
that this attribute is not necessary for the decision.

A subset Mof the condition attributes is called a reduct of Cwith respect to
D if:

(i) K(C,D) = K(M,D),

(ii)K(M,D) �= K(M − {a}, D) ∀ a ∈M (11)

Thus, we can get the minimal reduction of the number of attributes.

3 Two Cases Studies

The applications, which have been chosen for this study, are different in nature
wherefrom the dimensionality, degree of complexity, and the number of classes
in each application. For example, the first application is a five-class problem
with a few number of inputs (in comparison with the second application), but
has a high degree of overlapping between classes. On the other hand, the second
application is a three-class problem with low degree of complexity, but has a
high degree of dimensionality. Both applications have been tackled in our pre-
vious studies [19,20] using the whole feature vector as inputs to the proposed
MLP models. Here we treat the problems again by using rough sets approach
for data reduction. Rosetta (version 1.4.1) is the software package used in our
experiments. It is a toolkit for analyzing tabular data within the framework of
rough set theory [21].
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3.1 Case 1 (Diagnosing Plant Diseases)

– Description

In agriculture mass production, it is needed to discover the beginning of plant
diseases batches early to be ready for appropriate timing control to reduce the
damage and production costs, and increase the income. Leaf batches are con-
sidered the important units indicating the existence of diseases in the plant. In
order to identify those leaf spots into their cause, we first need to extract their
features such as color, shape, and size. Second, we need a classifier capable to
learn from those features and then differentiate between them. In this regard, a
neural network-based classifier has been used for diagnosing plant diseases. Neu-
ral network has been used for classifying the plant symptoms according the leaf
spots categories. These categories are, yellow spotted (YS), white spotted (WS),
red spotted (RS), and discolored (D) categories. In order to recognize the leaf
spot category, a number of features are extracted from a segmented leaf image to
be later used for classification. These features correspond to the color character-
istics of the spots such as the mean of the gray level of the red, green, and blue
channel of the spots. Other features correspond to morphological characteristics
of the spots (see Table 1).

Table 1. The entire feature vector for the first case study (Diagnosing Plant Diseases)

# Description # Description
1 AVR R, 6 Eccentricity Measure

2 AVR G 7 Compactness Measure

3 AVR B 8 Extent Measure

4 The length of the principal axes 9 Euler’s Number Measure

5 The diameter of a spot 10 Orientation Measure

– Data Reduction Using Rough Set Approach

Table 2 shows the information system of the first case study, which indicates
that there are 1640 objects (records) and 11 attributes divided into 10 condition
attributes ”inputs” and 1 decision attribute (5 classes) as shown:

U = {1, 2, 3, ..., 1640}, A = {C,D}, C = {i1, i2, i3, ..., i10}, D = {output}

By using rough set approach described in section 2, we get RED(C) as shown
in Table 3 (we have 9 reducts). Since the choice of reducts dose not effect on the
final decision; therefore, we can use any one of them.

– Experimental Results and Classifier Evaluation

This problem has been treated again using two hidden layers neural network.
After the reduction process, it has been noticed that; for each of the nine reducts
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Table 2. Information system for first case study (Diagnosing Plant Diseases)

U/A
C D
i1 i2 . . . i10 output

1 210.35 156.66 . . . 133.74 A

2 212.83 158.21 . . . 23.96 A

. . . . . . . . . . . . . . . . . .

500 174.41 85.88 . . . -7.7 B

. . . . . . . . . . . . . . . . . .

1000 189.44 99.11 . . . 23.57 C

. . . . . . . . . . . . . . . . . .

1500 180.41 118.87 . . . 64.61 D

. . . . . . . . . . . . . . . . . .

1640 167.69 191.61 . . . .. 9.53 E

Table 3. Reduction of Table 2 using Rough Set Approach

# RED(C) number of attributes

1 {i2, i7} 2

2 {i2, i8} 2

3 {i1, i2} 2

4 {i2, i3} 2

5 {i1, i3} 2

6 {i2, i4, i6} 3

7 {i2, i4, i9} 3

8 {i2, i4, i5} 3

9 {i2, i4, i10} 3

Table 4. The correct classification rates obtained using MLP for each of the 9 reducts
generated using Rough Sets approach, (WFV stands for Whole Feature Vector) (Case 1)

Feature # 1 2 3 4 5 6 7 8 9 10 Classification
Accuracy

WFV X X X X X X X X X X 90%

Reduct 1 X X 93.78%

Reduct 2 X X 93.89%

Reduct 3 X X 91.89%

Reduct 4 X X 92.65%

Reduct 5 X X 93.56%

Reduct 6 X X X 95.89%

Reduct 7 X X X 96.93%
Reduct 8 X X X 93.96%

Reduct 9 X X X 94.51%
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obtained using rough set approach there is a considerable improvement in classi-
fication accuracy, comparing to our previous study. Table 4 illustrates the correct
classification rates for each reduct.

Obviously, it can be seen from the previous table that, all of the scenarios
resulted from the rough sets approach gave a higher classification rates than
using the whole feature vector (90%) (See first row in the Table 1). This means
that reducing the input vector improved the generalization capability of MLP
without affecting the classification decision.

3.2 Case 2 (Intrusion Detection)

– Description

The ubiquity of the Internet poses serious concerns on the security of computer
infrastructures and the integrity of sensitive data. Network Intrusion Detection
Systems aim at protecting networks and computers from malicious network-
based attacks. A MLP neural network has been used to recognize tow types of
attacks in addition to the normal case (no attack), thus we have a three- classes
problem.

– Data Reduction Using Rough Set Approach

The information system of the second case study is described as follows:
There are 13058 objects and 36 attributes divided into 35 condition attributes

(inputs) and 1 decision attribute (output) as shown:

U = {1, 2, ..., 13058}, A = {C,D}, C = {i1, i2, ..., i35}, D = {out}

By using rough set approach described in section 2, we get RED(C) as shown
in Table 5. From Table 5 we can see that we have 100 reducts. Since the choice
of reducts dose not effect on the final decision; therefore, we can use any one of
them.

Table 5. Reduction of using Rough Set Approach for Intrusion Detection

# RED(C) number of attributes

1 {i5, i7, i21} 3

2 {i5, i19, i30} 3

3 {i5, i19, i26} 3

4 {i5, i24, i26} 3

5 {i5, i24, i30} 3

6 {i5, i20, i24, i31} 4

7 {i5, i21, i27, i35} 4

8 {i5, i21, i24, i31} 4

. . . . . . . . .

99 {i5, i22, i24, i27} 4

100 {i5, i17, i22, i32, i33} 5
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– Experimental Results and Classifier Evaluation

This problem has been treated again using two hidden layers of MLP. After the
reduction process it has been noticed that, for most of the reducts obtained using
rough set approach there was a considerable improvement in the classification
accuracy in comparison with our previous study (94%) [18]. Applying the reduct
{i5, i17, i22, i32, i33}we got 98% of classification accuracy (on the same test set)
using two hidden layers MLP.

4 Conclusion and Future Work

In this paper, Rough Sets approach has been used to reduce the number of inputs
for two neural networks-based applications; that is, diagnosing plant diseases and
intrusion detection. After the reduction process, and as a result of decreasing the
complexity of the classification models the results obtained using Multi-Layer
Perceptron (MLP) revealed a great improvement in classification accuracy than
using the whole feature vector used in our previous studies. By means of rough
set approach, it has been shown that reducing the number of features introduced
to the network increases the model accuracy without affecting the classification
decisions. More challenging classification problems can be tackled using rough
set approach if we transformed the problem into higher dimension feature space
that is, the Polish Space. Such spaces have many properties to do an optimum
classification, which we will focus on in our future studies.
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Abstract. Many monitoring and control computer systems contain a rule-based
system as a part of them. Such a rule based system is used to determine which ac-
tions should be taken depending on the data collected from sensors. For both em-
bedded and rule-based systems many different approaches have been proposed,
but it is hardly possible to find a formalism that can cope with both of them.
The paper deals with a problem of including decision tables into colour Petri
net models. A few kinds of decision tables are considered and methods of trans-
formation them into coloured Petri nets form called D-nets are presented. Both
non-hierarchical and hierarchical D-nets are considered in the paper.

1 Introduction

The use of formal methods for embedded system development is motivated by the ex-
pectation that performing appropriate mathematical analyses can contribute to the soft-
ware quality. Formal methods are usually used in the development of safety-critical
systems, i.e. systems that may result in injury, loss of life or serious environmental
damage upon their failure [9]. The high cost of safety-critical systems failure means
that trusted methods and techniques must be used for development. For such systems,
the costs of verification and validation are usually very high (more than 50% of the total
system development cost). Using of formal methods can reduce the amount of testing
and ensure more dependable products [3].

Multiple embedded systems are control systems that monitor quantities of interest in
an environment. In response to changes in the monitored quantities they perform control
operations or other externally visible actions [1]. The process of making decision which
actions should be performed may be based on a rule-based system that is incorporated
into such an embedded system. Thus, formal methods are useful for modelling of such
systems only if rule-based systems can be also expressed in the selected formalism.

Rule-based systems can be represented in various forms, e.g. decision tables, deci-
sion trees, extended tabular trees (XTT, [7]), Petri nets [4] etc. An interesting compari-
son of different forms of rule-based systems description can be found in [6]. Decision
tables seem to be the most popular form of rule-based systems presentation. They vary
widely in the way the condition and decision entries are represented. The entries can
take the form of simple true/false values, atomic values of different types, non-atomic
values or even fuzzy logic formulas.

A decision table represents a set of decision rules that can be given explicitly by an
expert or generated from analyzed data automatically, e.g. using rough sets approach

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 648–657, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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[2]. The paper deals with a problem of including of an already constructed decision
table into a hierarchical colour Petri net model (CP-net [5] or RTCP-net [10]). Both
decision tables with atomic values of attributes [6] and with generalized rules [11] are
considered in the paper.

The paper is organized as follows. Decision tables with atomic values of attributes
are described in section 2. Generalized decision tables are presented in section 3. Hier-
archical D-nets are considered in section 4. A more practical example of a decision table
is presented in section 5. Computer software for decision tables called Adder Designer
is described is section 6. The paper is shortly concluded in the final section.

2 Decision Tables with Atomic Values of Attributes

Let’s recall the definition of a decision table presented in [8]. At first sight a decision
table can be treated as an extension of a knowledge representation system. Such a sys-
tem is a pair K = (U,A), where U is a nonempty, finite set called the universe, and A
is a nonempty, finite set of attributes. Every attribute a ∈ A is a function a:U → Va,
where Va denotes the domain of a.

To transform a knowledge representation system into a decision table, we have to
distinguish two subsets of A called conditional (C) and decision (D) attributes respec-
tively. In case of a decision table the elements of the set U denote not any real objects,
but are identifiers of decision rules. Hence the symbol R will be used instead of U .
Therefore, a decision table is a tuple T = (R,A,C,D), where C,D ⊂ A.

Such a decision table is often called a table with atomic values of attributes (or
simple decision table, [6]). To construct such a decision table, we draw a column for
each conditional and decision attribute. Then, for every decision rule a row should be
drawn. We fill cells so as to reflect which decisions are generated for each combination
of conditions. An example of a simple decision table is shown in Tab. 1.

Table 1. Example of a simple decision table (T1)

a b c d e

R1 1 2 1 1 1
R2 1 2 2 2 2
R3 2 1 1 1 1
R4 2 2 2 2 2
R5 3 1 2 2 1
R6 3 2 2 2 2
R7 4 1 1 2 1
R8 4 2 2 2 1

The table T1 contains three conditional and two decision attributes (C = {a, b, c},
D = {d, e}). In this case, for each attribute its domain is a subset of natural numbers,
but in general other types are also possible (e.g. real, boolean, enumerated types, etc.)

To include the decision table T1 into a Petri net model (CP-net or RTCP-net), it must
be first transformed into a D-net [11]. A D-net is a non-hierarchical coloured Petri net
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that represents a set of decision rules. It contains two places: a conditional place (input
place) for values of conditional attributes and a decision place (output place) for values
of decision attributes. Types for these places are defined as the Cartesian product of
domains of conditional and decision attributes respectively.

Each decision rule is represented by one transition and its input and output arcs. The
conditional part of a rule is represented by the expression attached to the input arc of the
corresponding transition. Similarly, the decision part is represented by the expression
attached to the output arc.

D-nets are used as the bottom level pages in hierarchical models [10]. The condi-
tional and decision places are input and output ports respectively. The superpage (see
[5]) for such a D-net is used to gather all necessary information for the D-net and to
distribute the results of its activity. In other words, the superpage prepares a token that
represents a sequence of values of conditional attributes and that is next placed on the
conditional place. If at least one transition in the D-net is enabled, the token is removed
from the conditional place and a new token that represents a decision is added to the de-
cision place. Then the superpage removes the token and brings the decision into effect.
The D-net form of the decision table T1 is shown in Fig. 1.

R1

R2

R3

R4

R5

R6

R7

R8

In
Condition

C

Out
Decision

D

(1,2,1)

(1,2,2)

(2,1,1)

(2,2,2)

(3,1,2)

(3,2,2)

(4,1,1)

(4,2,2)

(1,1)

(2,2)

(1,1)

(2,2)

(2,1)

(2,2)

(2,1)

(2,1)

Fig. 1. D-net for the decision table T1

The decision table presented in Tab. 1 contains values for all conditional attributes.
Methods based on the rough set theory can be used to reduce such a decision table.
The reduction algorithm consists in the elimination of conditions from a decision table,
which are unnecessary to make decisions specified in the table (see [8]).

Let’s consider the decision tables presented in Tab. 2. Some redundant values of
conditional attributes are omitted in the table. In such a case to transform a decision
table into a D-net variables have to be used. In this case we need two variables for
attributes a and b. An variable attached to an attribute x ∈ C can take any value that
belongs to the domain of the attribute.



Decision Tables in Petri Net Models 651

Thus before the transformation algorithm can be applied, the table T2 is represented
in the form shown in Tab. 3. For simplicity, the name of an variable is the same as the
name of the corresponding attribute. The D-net form of the decision table T2 is shown
in Fig. 2.

Table 2. Example of a simple decision table (T2)

a b c d

R1 1 1 1 1
R2 1 2 1 2
R3 4 1 1 2
R4 4 2 1 1
R5 2 – 1 1
R6 3 – 1 1
R7 – – 2 2
R8 – – 3 2

Table 3. Decision table T2 with variables

a b c d

R1 1 1 1 1
R2 1 2 1 2
R3 4 1 1 2
R4 4 2 1 1
R5 2 b 1 1
R6 3 b 1 1
R7 a b 2 2
R8 a b 3 2

R1

R2

R3

R4

R5

R6

R7

R8

In

C

Out

D

(1,1,1)

(1,2,1)

(4,1,1)

(4,2,1)

(2,b,1)

(3,b,1)

(a,b,2)

(a,b,3)

1

2

2

1

1

1

2

2

Condition Decision

Fig. 2. D-net for the decision table T2
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3 Generalized Decision Tables

Encoding decision tables with the use of atomic values of attributes only is not sufficient
for many real applications. If the domains of attributes contain more than several values
it may be really hard to cope with the number of decision rules. To handle the problem
one can use formulas instead of atomic values of attributes. In such a case, a cell in
a decision table will contain a formula that evaluates to a boolean value for conditional
attributes, and to a single value (that belongs to the corresponding domain) for decision
attributes.

The result of this approach is a decision table with generalised decision rules (or
rules’ patterns). Each generalised decision rule covers a set of decision rules with atomic
values of attributes. Such decision tables will be called generalized decision tables.
An example of a generalized decision table is presented in Tab. 4. Domains for these
attributes are defined as follows:

Va = Vd = {1, 2, 3, 4, 5},
Vb = Ve = {off , on}, (Boolean values)
Vc = {x, y, z}.

Table 4. Example of a generalized decision table

a b c d e

R1 a < 4 b = on c = x a + 2 on

R2 a b = on c �= y 3 off

R3 a = 5 b c 2 ¬b

R4 a > 2 b c �= x a− 2 on

R5 a = 2 b c = x 4 on

A generalized decision table can be also transformed into the D-net form (see Fig. 3).
Formulas that describe values of conditional attributes are usually attached to the guard
of the corresponding transition. The algorithm of transformation of a generalized deci-
sion table into the D-net form can be found in [11].

Out
Decision

D

In
Condition

C

R5

R4

R3

R2

R1
(a,on,x)

(a,on,c)

(5,b,c)

(a,b,c)

(2,b,x)

[a < 4]

[c <> y]

[(a > 2) andalso (c <> x)]

(a+2,on)

(3,off)

(2,not b)

(a−2,on)

(4,on)

Fig. 3. D-net form of the decision table presented in Tab. 4
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4 Hierarchical D-Nets

The main problem in the rule-based system design process is that it is difficult to cope
with systems having more than several rules. To simplify the design process a decision
table T =(R,A,C,D) can divided into a set of tables T1 = (R1, A1, C1, D), · · · , Tn =
(Rn, An, Cn, D) such that R1, · · · , Rn ⊆ R, Ri ∩ Rj = ∅ for i �= j, R =

⋃n
i=1 Ri,

A1, · · · , An ⊆ A, C1, · · · , Cn ⊆ C and Ci = C ∩Ai for i = 1, . . . , n.
Such decomposition for the rule-based system presented in Tab. 3 is shown in Tab. 5.

Table 5. Table T2 split into parts

a b c d

R1 1 1 1 1
R2 1 2 1 2
R3 4 1 1 2
R4 4 2 1 1

a c d

R5 2 1 1
R6 3 1 1

c d

R7 2 2
R8 3 2

For each of the three decision tables a D-net (called sub-D-net) can be constructed as
it was shown in section 2. Next such sub-D-nets are combine into one hierarchical struc-
ture. In order to design a hierarchical D-net, a superpage with a substitution transition
for each sub-D-net is constructed. The superpage for the consider rule-based system is
presented in Fig. 4.

In

In

In

C2

C1

C3

Cond1

Cond2

Cond3

HS

HS

HS

Decision

D

Out

Set1

Set2

Set3

Fig. 4. Superpage for the hierarchical D-net

The superpage together with three sub-D-nets constitute a hierarchical D-net. In this
case the superpage contains three different conditional places because we have three
different sets of conditional attributes. In general the set of rules can be divided into
subsets such that some of them share the same set of conditional attributes. In such
a case the number of conditional places in the corresponding superpage is less than the
number of sub-D-nets. In particular only one conditional place can be used.

On the other hand, the one conditional place is used if we define its colour as a union
[5]. For the considered example the conditional place colour should be defined as C =
C1∪C2∪C3. However, using of a few conditional places seems to be more practical.
The general scheme of a hierarchical D-net is shown in Fig. 5.
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...

...

......

...

D−net (superpage)

HS

HS
Set2

Setn
HS

Set1
Sub−D−net1

Sub−D−net2

Sub−D−netn

Fig. 5. General structure of a hierarchical D-net

5 Example

Let’s consider an example of computer network design, presented in Fig. 6 [7]. It is
a typical configuration for many security-aware small office, or company networks.
The network is composed of three subnetworks: LAN (local area network), DMZ (the
so-called demilitarized zone), and INET (Internet connection). The subnetworks are
separated by a firewall having three network interfaces.

LANDMZ

INET

Fig. 6. Network firewall configuration

The firewall controlls the input and output and decides whether the request should be
accepted or rejected. Decision table for such a firewall system contains three conditional
(service, source address, destination address) and one decision attribute (routing). The
attribute Service stands for a type of the net service, attributes Srcaddr and Destaddr
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are connected with source and destination IP addresses respectively, and the attribute
Routing stands for the final routing decision. Domains for these attributes are defined
as follows:

DService = {ssh, smtp, http, imap},
DSrcaddr = DDestaddr = {inet , dmz , lan};
DRouting = {accept , reject}.

A complete decision table for the firewall system (presented in Tab. 6) contains
eleven positive and four negatives rules. The negative rules (without values of deci-
sion attributes) are used to state in an explicit way that the particular combinations of
input values (values of conditional attributes) are impossible or not allowed. The nega-
tive rules are used to check whether the table is complete and are usually omitted when
the corresponding D-net is generated.

D-net generated for the considered decision table is shown in Fig. 7.

Table 6. Decision table for the firewall system

Service Srcaddr Destaddr Routing

Service = http Srcaddr = inet Destaddr = dmz accept
Service = http Srcaddr = inet Destaddr = lan reject
Service = http Srcaddr = lan Destaddr accept
Service = smtp Srcaddr Destaddr = lan reject
Service = smtp Srcaddr Destaddr = dmz accept
Service = smtp Srcaddr = lan Destaddr = inet reject
Service = imap Srcaddr = lan Destaddr = dmz accept
Service = imap Srcaddr �= lan Destaddr reject
Service = ssh Srcaddr = inet Destaddr reject
Service = ssh Srcaddr = lan Destaddr accept
Service = ssh Srcaddr = dmz Destaddr accept
Service = http Srcaddr = dmz Destaddr
Service = http Srcaddr = inet Destaddr = inet
Service = imap Srcaddr = lan Destaddr �= dmz
Service = smtp Srcaddr �= lan Destaddr = inet

6 Adder Designer

Manual analysis of a decision table can be time-consuming even for very small sets of
decision rules. Adder Designer supports design and analysis of both simple and genera-
lized decision tables. The tool is equipped with a decision table editor and verification
procedures.

Adder Designer is a free software covered by the GNU Library General Public Li-
cense. It is being implemented in the GNU/Linux environment by the use of the Qt
Open Source Edition. The Qt library is freely available for the development of Open
Source software for Linux, Unix, Mac OS X and Windows under the GPL license.
Code written for either environment compiles and runs with the other ones. Adder Tools
home page, hosting information about the current status of the project, is located at
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(ssh,dmz,Destaddr)

[Srcaddr <> lan]

Fig. 7. D-net for the network firewall system

Fig. 8. Example of Adder Designer session

http://adder.ia.agh.edu.pl. An example of Adder Designer session is shown in Fig. 8.
The figure contains a decision table for a home heating system with a boiler fueled by
natural gas and results of completeness and consistency (determinism) analysis.

Using of Adder Designer for design of decision tables consists of a few steps. It is
first necessary to define attributes selected to describe important features of the system
under consideration. There are possible three types of domains: integer, boolean and
enumerated data type. Moreover, a new domain may be defined as an alias for already
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defined one. Secondly, it is necessary to choose conditional and decision attributes.
Each attribute can be used twice. Finally, the set of decision rules should be defined.

The verification stage is included into design process. At any time, during the design
stage, users can check whether a decision table is complete, consistent (deterministic)
or it contains some dependent rules. Moreover, the tool enables users to pack a simple
decision table to a generalized one and vice versa.

The tool and the presented approach have been successfully used for developing
a few practical examples of rule-based systems, e.g. for a railway traffic management
system (22 attributes, 123 decision rules).

7 Summary

Methods of transformation of decision tables into a coloured Petri net form called D-net
were presented in the paper. The presented approach can be used to transform into
D-nets both simple and generalized decision tables. Moreover, it is also possible to
construct hierarchical D-nets that can be treated as a structural form of presentation of
rule based systems with many decision rules. The presented approach is supported with
computer tools for design and verification of decision tables.
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Abstract. In this paper, we introduce two pairs operators in fuzzy for-
mal contexts. Based on the proposed operators, we present two types
of generalized variable precision formal concepts, i.e. property oriented
crisp-fuzzy concepts and object oriented fuzzy-crisp concepts. We have
different level generalized formal concepts with different precision level.
Last, we discuss the relationship between different precision level gener-
alized concepts lattices in details.

Keywords: Formal concept analysis, fuzzy formal context, concept lat-
tice; variable precision.

1 Introduction

The theory of formal concept analysis (FCA) proposed by Wille [1,2] is initially
formalized as mathematical thinking for conceptual data analysis and knowledge
processing, in which the notion of formal concept originally come from formal
logic. From the early of 1980s, FCA has been studied intensively, and have at-
tracted the wide attention of numerous researchers. Over the years development
both in theoretical and practical issues, FCA have grown to a powerful theory
for conceptual knowledge processing. Now, FCA has been successfully used in
various fields such as data mining,information retrieval, knowledge acquisition,
software engineering, data base management systems [3,4,5,6,7].

In FCA, formal concepts and concept lattices are two central issues where the
concept lattice is usually used represent the domains of knowledge representation
and knowledge discovery. Wille’s definition of a concept be a (objects, attributes)
pair, the set of objects is referred to as the extension and the set of attributes
as the intension of formal concept. They uniquely determine each other [1,2].

FCA is analyzed based on a formal context, which is a binary relation between
a set of objects and a set of attributes with the value 0 and 1. However, in
many practical applications, the binary relation is a fuzzy set represented by a
membership degrees, instead of a single value in {0, 1}. For this fuzzy binary

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 658–667, 2007.
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relation, several generalizations to formal concept can be found in the existent
literatures [8,9,10,11,12,13]. In [9], Elloumi defined a Lukasiewicz based fuzzy
Galois connection. Belohlavek [10,11]proposed fuzzy concepts in fuzzy formal
context based on residuated lattice. Moreover, Georgescu and Popescu [12,13]
discussed a general approach to fuzzy FCA. The constant study to the fuzzy
binary relation has bringed on the notion of “fuzzy concept”, which now be
successfully used for the fuzzy classier and decision making [14,15].

Fan present the notion of variable precision concept lattice [16]. The notions of
the object oriented formal concept and the property oriented formal concept are
proposed by [17,18] and Duntsch [19] respectively. In the paper, we introduce two
pairs operators in fuzzy formal contexts. Based on the proposed operators, we
present two types of generalized variable precision formal concepts, i.e. property
oriented crisp-fuzzy concepts and object oriented fuzzy-crisp concepts. We have
different level generalized formal concepts with different precision level. The
relationship between different precision level generalized concepts lattices are
also discussed in details.

2 Two Kinds of Multi-level Formal Concepts

In the following, we recall the notion of residuated lattice and some of its basic
properties.

Definition 1. [11] A residuated lattice is a structure (L,∨,∧,⊗,→, 0, 1) such
that
(1) (L,∨,∧, 0, 1) is a lattice with the least element 0 and the greatest element
1;
(2) (L,⊗, 1) is a commutative monoid;
(3) for all a, b, c ∈ L, a ≤ b→ c iff a⊗ b ≤ c.

Residuated lattice L is called complete if (L,∨,∧) is a complete lattice.

Lemma 1. [11,12] The following hold in any complete residuated lattice:
(1) a→ 1 = 1; 1→ a = a; a→ b = 1 iff a ≤ b; 0⊗ a = a⊗ 0 = 0;
(2) → is antitone in the first and isotone in the second argument; a ≤ (a →
b)→ b;
(3) a → b ≤ (b → c) → (a → c); a → b ≤ (c → a) → (c → b); a → (b → c) =
b→ (a→ c);
(4) (

∨
i∈I ai)→ a =

∧
i∈I(ai → a); a→ (

∧
i∈I ai) =

∧
i∈I(a→ ai);

(5)
∧

i∈I(ai → bi) ≤ (
∧

i∈I ai) → (
∧

i∈I bi);
∧

i∈I(ai → bi) ≤ (
∨

i∈I ai) →
(
∨

i∈I bi);
(6) ⊗ is isotone in both arguments; a⊗ b ≤ a; a⊗ b ≤ b;
(7) b ≤ a→ (a⊗ b); (a→ b)⊗ a ≤ b; (a⊗ b)→ c = a→ (b→ c);
(8) a→ b ≤ (a⊗ c)→ (b ⊗ c); (a→ b)⊗ (b→ c) ≤ (a→ c);
(9) (

∨
i∈I ai)⊗ a =

∨
i∈I(ai ⊗ a); (

∧
i∈I ai)⊗ a ≤

∧
i∈I(ai ⊗ a).
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Let L be a residuated lattice. An L − set A on a universe set U is any map A:
U → L,A(x) being interpreted as the truth degree of the fact “ x belongs to A”.
By LU denote the set of all L− set in U . For any X1, X2 ∈ LU , X1 ⊆ X2 if and
only if X1(x) ≤ X2(x) (∀ x ∈ U). Operations ∨ and ∧ on LX are defined by:

(X1∨X2)(x) = X1(x)∨X2(x), (X1∧X2)(x) = X1(x)∧X2(x), ∀X1, X2 ∈ LU .

Example 1. Let U = {x1, x2, . . . , xn} be a set of n elements, An L− set A on U
is denoted by A = {x1/A(x1), x2/A(x2), . . . , xn/A(xn)}, where A(x) represents
the degree to which an element x ∈ U is an element of A.

A fuzzy formal context is defined as a triple (U,M,R), where U and M are the
object and attribute sets, R ∈ LU×M is a fuzzy relation between U and M .

Example 2. Table 1 represents a fuzzy formal context (U,M,R) with U =
{x1, x2, x3, x4} and M = {a, b, c, d}, the fuzzy relation R defined as in Table 1.

Table 1.

R a b c d
x1 0.4 0.4 0.9 0.6

x2 0.8 0.2 0.7 0.8

x3 0.5 0.4 0.7 0.9

x4 0.8 0.2 0.7 0.7

Let (U,M,R) be a fuzzy formal context and we denote the power set of U by
P(U). For any δ ∈ (0, 1], a pair of operators, ♦, � : P(U) −→ LM , defined for
X ∈ P(U) and a ∈M by

X♦(a) =
∨

x∈X(δ ⊗R(x, a)),
X�(a) =

∧
x∈X(R(x, a)→ δ).

Analogously, for any B ∈ P(M), a pair of approximation operators, ♦, � :
P(M) −→ LU , defined for B ∈ P(M) and x ∈ U by

B♦(x) =
∨

b∈B(δ ⊗R(x, b)),
B�(x) =

∧
b∈B(R(x, b)→ δ).

Let (U,M,R) be a fuzzy formal context and X ⊆ LU , a pair of approximation
operators, �,  : LU −→ P(M) defined by

X� = {b ∈M |
∨

x∈U (X(x)⊗R(x, b)) ≥ δ},
X = {b ∈M |

∧
x∈U (R(x, b)→ X(x)) ≥ δ}.
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Analogously, for any B ⊆ LM , a pair of approximation operators, �,  :
LM −→ P(U) defined by

B� = {x ∈ U |
∨

a∈M (B(a)⊗R(x, a)) ≥ δ},
B = {x ∈ U |

∧
a∈M (R(x, a)→ B(a)) ≥ δ}.

The following property list the basic properties of the adjoint pair of operators.

Theorem 1. Let (U,M,R) be a fuzzy formal context, X,X1, X2 ∈ P(U), B,B1,
B2 ∈ P(M), then

(i) X1 ⊆ X2 ⇒ X♦
1 ⊆ X♦

2 , X�
2 ⊆ X�

1 ;
(ii) B1 ⊆ B2 ⇒ B♦

1 ⊆ B♦
2 , B�

2 ⊆ B�
1 ;

(iii) X ⊆ X♦ , B ⊆ B♦ .

Proof. (i) Since X1 ⊆ X2, then
∨

x∈X1
R(x, a) ≤

∨
x∈X2

R(x, a). For any a ∈M ,
from Lemma 1 (9) we have

X♦
1 (a) =

∨
x∈X1

(δ ⊗R(x, a))
= δ ⊗

∨
x∈X1

R(x, a)
≤ δ ⊗

∨
x∈X2

R(x, a)
=

∨
x∈X2

(δ ⊗R(x, a))
= X♦

2 (a).

It is evident that X�
2 ⊆ X�

1 .
(ii) It is similar to the proof of (i).
(iii) On one hand,

X♦ = {x ∈ U |
∧

a∈M (R(x, a)→ X♦(a)) ≥ δ}
= {x ∈ U |

∧
a∈M (R(x, a)→ (

∨
y∈X(δ ⊗R(y, a))) ≥ δ}.

On the other hand, for any x ∈ X , we have
∧

a∈M (R(x, a)→ (
∨

y∈X(δ ⊗R(y, a)))) ≥
∧

a∈M (R(x, a)→ (δ ⊗R(x, a)))
≥

∧
a∈M δ.

Thus, x ∈ X♦ . Then, X ⊆ X♦ . And B ⊆ B♦ can be obtained by the similar
proof.

Theorem 2. Let (U,M,R) be a fuzzy formal context, X,X1, X2 ∈ LU , B,B1,
B2 ∈ LM , then

(i) X1 ⊆ X2 ⇒ X�1 ⊆ X�2 , X 1 ⊆ X 2 ;
(ii) B1 ⊆ B2 ⇒ B�1 ⊆ B�2 , B 1 ⊆ B 2 ;
(iii) X ♦ ⊆ X, B ♦ ⊆ B.

Proof. (i) and (ii) follows immediately from Lemma 1 (2) and Lemma 1 (6).
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(iii) For any x ∈ X , we have

X ♦(x) =
∨

a∈X�(δ ⊗R(x, a))
=

∨
a∈{b∈M|

∧
y∈U (R(y,b)→X(y))≥δ}(δ ⊗R(x, a))

=
∨

a∈{b∈M|∀y∈U,R(y,b)⊗δ≤X(y)}(δ ⊗R(x, a))
≤ X(x). �

By the similar proof we have B ♦ ⊆ B.

Theorem 3. Let (U,M,R) be a fuzzy formal context, X,X1, X2 ∈ P(U), B,B1,
B2 ∈ P(M), then

(i) X♦ ♦ = X♦, B♦ ♦ = B♦;
(ii) (X1 ∩X2)� = X�

1 ∧X�
2 , (X1 ∪X2)♦ = X♦

1 ∨X♦
2 ;

(iii) (B1 ∩B2)� = B�
1 ∧B�

2 , (B1 ∪B2)♦ = B♦
1 ∨B♦

2 .

Proof. (i) On one hand, from Theorem 1 (i) and (iii) we have X♦ ≤ X♦ ♦; on
the other hand, from Theorem 2 (iii) we have X♦ ≥ (X♦) ♦. Thus, we have
X♦ = X♦ ♦. And, B♦ ♦ = B♦ can be obtained by the similar proof.

(ii) For any a ∈M ,

(X1 ∩X2)�(a) =
∧

x∈X1∩X2
(R(x, a)→ δ)

= (
∧

x∈X1
(R(x, a)→ δ)) ∧ (

∧
x∈X2

(R(x, a)→ δ))
= X�

1 (a) ∧X�
2 (a).

(X1 ∪X2)♦(a) =
∨

x∈X1∪X2
(δ ⊗R(x, a))

= (
∨

x∈X1
(δ ⊗R(x, a))) ∨ (

∨
x∈X2

(δ ⊗R(x, a)))
= X�

1 (a) ∨X�
2 (a).

(iii) It is similar to the proof of (ii).

Theorem 4. Let (U,M,R) be a fuzzy formal context, X,X1, X2 ∈ LU , B,B1,
B2 ∈ LM , then

(i) X ♦ = X , B ♦ = B ;
(ii) (X1 ∧X2) = X 1 ∩X 2 , (X1 ∨X2)� = X�1 ∪X�2 ;
(iii) (B1 ∧B2) = B 1 ∩B 2 , (B1 ∨B2)� = B�1 ∪B�2 .

Proof. (i) On one hand, from Theorem 2 (i) and (iii) we have X ♦ ⊆ X ; on
the other hand, from Theorem 1 (iii) we have (X )♦ ⊇ X . Thus, we have
X ♦ = X . And, B ♦ = B can be obtained by the similar proof.

(ii) From Lemma 1 (4), we have

(X1 ∧X2)	 = {b ∈M |
∧

x∈U(R(x, b) → (X1 ∧X2)(x)) ≥ δ}
= {b ∈M |

∧
x∈U((R(x, b) → X1(x)) ∧ (R(x, b) → X2(x))) ≥ δ}

= {b ∈M |(
∧

x∈U(R(x, b) → X1(x)) ∧ (
∧

x∈U (R(x, b) → X2(x)))) ≥ δ}
= X	

1 ∩X	
2 .
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From Lemma 1 (9), we have

(X1 ∨X2)
 = {b ∈ M |
∨

x∈U ((X1 ∨X2)(x)⊗R(x, b)) ≥ δ}
= {b ∈ M |

∨
x∈U ((X1(x)⊗R(x, b)) ∨ (X1(x)⊗R(x, b))) ≥ δ}

= {b ∈ M |(
∨

x∈U (X1(x)⊗R(x, b)) ∨ (
∨

x∈U (X1(x)⊗R(x, b)))) ≥ δ}
= X


1 ∪X

2 .

(iii) It is similar to the proof of (ii).

A pair (X,B), X ∈ P(U), B ∈ LM , is called a property oriented crisp-fuzzy
concept if X♦ = B and B = X . The set of objects X is called the extension of
the property oriented crisp-fuzzy concept (X,B), and the fuzzy set of properties
is called the intension. For a set of objects X ⊆ U and a fuzzy set of attributes
B ⊆ LM , from Theorem 1 (iii) and Theorem 4 (iii) we have that (X♦ , X♦)
and (B , B ♦) are property oriented crisp-fuzzy concepts, and we have different
level property oriented fuzzy-crisp concepts by different precision level δ. For
two property oriented crisp-fuzzy concepts (X1, B1) and (X2, B2), (X1, B1) ≤
(X2, B2), if and only if X1 ⊆ X2 (or equivalently, B1 ⊆ B2). The set of all
property oriented crisp-fuzzy concepts forms a complete lattice which is denoted
by Lδ(U, M̃,R). The meet and join of the lattice is given by:

(X1, B1) ∨ (X2, B2) = ((X1 ∪X2)♦ , B1 ∪B2)
= ((B1 ∪B2) , B1 ∪B2);

(X1, B1) ∧ (X2, B2) = (X1 ∩X2, (B1 ∩B2) ♦)
= (X1 ∩X2, (X1 ∩X2)♦).

A pair (X,B), X ∈ LU , B ∈ P(M), is called an object oriented fuzzy-crisp
concept if X = B and B♦ = X . The fuzzy set of objects X is called the exten-
sion of the object oriented fuzzy-crisp concept (X,B), and the set of properties
is called the intension. For a fuzzy set of objects X ∈ LU and a set of attributes
B ⊆M , from Theorem 2 (iii) and Theorem 3 (iii) we have that (X ♦, X ) and
(B♦, B♦ ) are object oriented fuzzy-crisp concepts, and we have different level
object oriented fuzzy-crisp concepts by different precision level δ.For two object
oriented fuzzy-crisp concepts (X1, B1) and (X2, B2), (X1, B1) ≤ (X2, B2), if and
only if X1 ⊆ X2 (or equivalently, B1 ⊆ B2). The set of all object oriented fuzzy-
crisp concepts forms a complete lattice which is denoted by Lδ(Ũ ,M,R) with
meet and join defined by:

(X1, B1) ∨ (X2, B2) = (X1 ∪X2, (B1 ∪B2)♦ )
= (X1 ∪X2, (X1 ∪X2) );

(X1, B1) ∧ (X2, B2) = ((X1 ∩X2) ♦, B1 ∩B2)
= ((B1 ∩B2)♦, B1 ∩B2).

Example 3. In Example 2, let → be the Lukasiewicz implication, ie. for x, y ∈
[0, 1],

x→ y =
{ 1, x ≤ y,

1− x + y, x > y;
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x⊗ y = (x + y − 1) ∨ 0.

When δ = 0.9, by computation we obtain the property oriented crisp-fuzzy
concepts presented in Table 2.

Table 2. The property oriented crisp-fuzzy concepts for δ = 0.9

Label Objects × properties
FC0 ∅ × {a/0.0, b/0.0, c/0.0, d/0.0}
FC1 {x1} × {a/0.4, b/0.4, c/0.9, d/0.6}
FC2 {x3} × {a/0.5, b/0.4, c/0.7, d/0.9}
FC3 {x4} × {a/0.8, b/0.2, c/0.7, d/0.7}
FC4 {x1, x3} × {a/0.5, b/0.4, c/0.9, d/0.9}
FC5 {x1, x4} × {a/0.8, b/0.4, c/0.9, d/0.7}
FC6 {x2, x4} × {a/0.8, b/0.2, c/0.7, d/0.8}
FC7 {x1, x2, x4} × {a/0.8, b/0.4, c/0.9, d/0.8}
FC8 {x2, x3, x4} × {a/0.8, b/0.4, c/0.7, d/0.9}
FC9 {x1, x2, x3, x4} × {a/0.8, b/0.4, c/0.9, d/0.9}

Example 4. Continuing from Example 3, when δ = 0.9, by calculation we obtain
the object oriented fuzzy-crisp concepts presented in Table 3.

Table 3. TThe object oriented fuzzy-crisp concepts for δ = 0.9

Label Objects × properties
FC0 {x1/0.0, x2/0.0, x3/0.0, x4/0.0} × ∅
FC1 {x1/0.3, x2/0.1, x3/0.3, x4/0.1} × {b}
FC2 {x1/0.3, x2/0.7, x3/0.4, x4/0.7} × {a, b}
FC3 {x1/0.8, x2/0.6, x3/0.6, x4/0.6} × {b, c}
FC4 {x1/0.5, x2/0.7, x3/0.8, x4/0.6} × {b, d}
FC5 {x1/0.8, x2/0.7, x3/0.6, x4/0.7} × {a, b, c}
FC6 {x1/0.5, x2/0.7, x3/0.8, x4/0.7} × {a, b, d}
FC7 {x1/0.8, x2/0.7, x3/0.8, x4/0.6} × {b, c, d}
FC8 {x1/0.8, x2/0.7, x3/0.8, x4/0.7} × {a, b, c, d}

3 Relationship Between Different Precision Level
Concepts Lattices

In the following, we denote the extents of the latticesLδ(U, M̃,R) andLδ(Ũ ,M,R)
by LU

δ (U, M̃,R) and LU
δ (Ũ ,M,R). similarity, we denote the intents of the lattices

Lδ(U, M̃,R) and Lδ(Ũ ,M,R) by LM
δ (U, M̃,R) and LM

δ (Ũ ,M,R).
We denote ♦δ as the operator ♦ with the precision δ, and similarly with the

operators �,� and  .
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Theorem 5. Let (U,M,R) be a fuzzy formal context, X ∈ P(U) and B ∈
P(M). If 0 ≤ δ1 ≤ δ2 ≤ 1, then

X♦δ1 ≤ X♦δ2 , X�δ1 ≤ X�δ2 , B♦δ1 ≤ B♦δ2 , B�δ1 ≤ B�δ2 .

Proof. For any x ∈ X , a ∈M ,

δ1 ≤ δ2 ⇐⇒ δ1 ⊗R(x, a) ≤ δ1 ⊗R(x, a)
⇐⇒

∨
x∈X(δ1 ⊗R(x, a)) ≤

∨
x∈X(δ2 ⊗R(x, a))

⇐⇒ X♦δ1 (a) ≤ X♦δ2 (a).

From Lemma 1 (2) we have

δ1 ≤ δ2 ⇐⇒ R(x, a)→ δ1 ≤ R(x, a)→ δ2

⇐⇒
∧

x∈X(R(x, a)→ δ1) ≤
∧

x∈X(R(x, a)→ δ2)
⇐⇒ X�δ1 (a) ≤ X�δ2 (a).

By the similar proof we have B♦δ1 ≤ B♦δ2 , B�δ1 ≤ B�δ2 .

Theorem 6. Let (U,M,R) be a fuzzy formal context, X ∈ LU and B ∈ LM . If
0 ≤ δ1 ≤ δ2 ≤ 1, then

X�δ1 ⊇ X�δ2 , X δ1 ⊇ X δ2 , B�δ1 ⊇ B�δ2 , B δ1 ⊇ B δ2 .

Proof. Since δ1 ≤ δ2, then

∀ b ∈ X�δ2 =⇒
∨

x∈U (X(x)⊗R(x, b)) ≥ δ2

=⇒
∨

x∈U (X(x)⊗R(x, b)) ≥ δ1

=⇒ b ∈ X�δ1 .

Which implies X�δ2 ⊆ X�δ1 .

∀ b ∈ X δ2 =⇒
∧

x∈U (R(x, b)→ X(x)) ≥ δ2}
=⇒

∧
x∈U (R(x, b)→ X(x)) ≥ δ1}

=⇒ b ∈ X δ1 .

Which implies X δ2 ⊆ X δ1 . And, B�δ1 ⊇ B�δ2 , B δ1 ⊇ B δ2 can be ob-
tained by the similar proof.

Theorem 7. Let Lδ(U, M̃,R) be a crisp-fuzzy concept lattice. If 0 ≤ δ1 ≤ δ2 ≤
1, then

LU
δ1

(U, M̃,R) ⊆ LU
δ2

(U, M̃,R).

Proof. For any (X,B) ∈ Lδ1(U, M̃,R), we have X♦δ1 δ1 = X . It is evident that
(X♦δ2 δ2 , X♦δ2 ) ∈ Lδ2(U, M̃,R). We are to prove X♦δ2 δ2 = X . On one hand,
X ⊆ X♦δ2 δ2 ; on the other hand,
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X♦δ2 δ2 = {x ∈ U |
∧

a∈M (R(x, a)→ X♦δ2 (a)) ≥ δ2}
= {x ∈ U |

∧
a∈M (R(x, a)→

∨
y∈X(δ2 ⊗R(y, a)) ≥ δ2}

= {x ∈ U |∀ a ∈M,R(x, a)→
∨

y∈X(δ2 ⊗R(y, a) ≥ δ2}
= {x ∈ U |∀ a ∈M,R(x, a)⊗ δ2 ≤

∨
y∈X(δ2 ⊗R(y, a)}

= {x ∈ U |∀ a ∈M,R(x, a)⊗ δ2 ≤ δ2 ⊗ (
∨

y∈X R(y, a))}
⊆ {x ∈ U |∀ a ∈M,R(x, a)⊗ δ1 ≤ δ1 ⊗ (

∨
y∈X R(y, a))}

= X♦δ1 δ1

= X.

Thus, we have X♦δ2 δ2 = X , which implies LU
δ1

(U, M̃,R) ⊆ LU
δ2

(U, M̃,R).

Theorem 8. Let Lδ(Ũ ,M,R) be a fuzzy-crisp concept lattice. If 0 ≤ δ1 ≤ δ2 ≤
1, then

LM
δ2

(Ũ ,M,R) ⊆ LM
δ1

(Ũ ,M,R).

Proof. It is similar to the proof of Theorem 7.

4 Conclusions

In the paper, we introduce two pairs operators in fuzzy formal contexts. Based
on the proposed operators, we present two types of generalized variable precision
formal concepts, i.e. property oriented crisp-fuzzy concepts and object oriented
fuzzy-crisp concepts. The relationship between different precision level general-
ized concepts lattices are also discussed in details. By different precision level,
we have different level generalized formal concepts.

Variable precision formal concept analysis is an important tool that can be
applied to deal with uncertainty contained in conceptual fuzzy data analysis
and knowledge processing. The proposed generalized variable precision formal
concepts is a important complement to formal concept analysis. The applications
of the proposed formal concepts are our next research.
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Abstract. The multi-agent system paradigm has proven to be a useful means of
abstraction when considering distributed systems with interacting components. It
is often the case that each component may be viewed as an intelligent agent with
specific and often limited perceptual capabilities. It is also the case that these
agent components may be used as information sources and such sources may be
aggregated to provide global information about particular states, situations or ac-
tivities in the embedding environment. This paper investigates a framework for
information fusion based on the use of generalizations of rough set theory and the
use of dynamic logic as a basis for aggregating similarity relations among objects
where the similarity relations represent individual agents perceptual capabilities
or limitations. As an added benefit, it is shown how this idea may also be inte-
grated into description logics.

Keywords: approximate reasoning, similarity relation, information fusion.

1 Introduction

Information fusion is the process of exploiting various information sources to provide
improved and possibly complete knowledge about a situation in question. Usually in-
formation sources such as agents or sensors are local and limited in capabilities, so ob-
taining a global description of a situation requires special aggregation operations. Many
such operations have been considered in the literature. In [1] the following classes of
aggregation operations have been found to be frequently used:

– operations generalizing the notion of conjunction (corresponding to the minimum)
– operations generalizing the notion of disjunction (corresponding to the maximum)
– averaging operations (providing values between the minimum and the maximum).

Since the process of information fusion is applied in so many contexts and situations,
it would be desirable to have a uniform framework for defining aggregation operations
on information sources such as agents or sensors which are characterized by limited
perceptual capabilities. In addition, one would also like to reason about the resulting
global, fused knowledge in a principled manner. In the current paper we make an at-
tempt to contribute to the development of such a framework.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 668–677, 2007.
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We will focus on fusing information obtained from imprecise measurements. Ac-
cording to [1], merging uncertain observations usually addresses the problem of finding
the most plausible values of an observed parameter or the most credible description of
a situation. In the paper, we focus on finding the most credible description of a situation
as well as a description of possible situations, assuming that the imprecision of mea-
surement devices or an agent’s limited perceptual capabilities is modelled by similarity
spaces [2], as considered, e.g., in [3,4] (see also the book [5]). As a side effect, the pro-
posed approach can be combined in a natural way with the approaches for higher-level
information fusion, provided in [3,4].

The approach proposed in this paper depends on using dynamic logic [6] to specify
aggregation operations and reason about them1. To do this, we first reinterpret dynamic
logic in such a way that rather than considering programs and their aggregation, we
consider similarity relations and their aggregation instead. This makes sense since one
would like to associate one or more similarity relations with perspective agents to model
their sensory or perceptual limitations.

In the paper we will talk about approximate information rather than uncertain infor-
mation, with the understanding that approximate information is obtained from uncertain
information by applying approximation operators. This allows us to propose a novel
interpretation of a well known formalism, which is well developed with underlying rea-
soning techniques which may be capitalized upon. Another positive side-effect of the
proposed approach is that the basic specification of aggregated similarity relations can
be directly translated into the description logic formalism (for an introduction to de-
scription logics see, e.g., [9,10]). This is useful, since description logics are one of the
most frequently used knowledge representation formalisms and provide a logical basis
for a variety of well known paradigms.

We will also show that given a specific type of similarity spaces, one can substantially
reduce the complexity of reasoning and apply the reasoning calculus even in demanding
real-time autonomous systems consisting of many independent components (agents).

The paper is structured as follows. In Section 2 we present similarity spaces. In
Section 3, we provide an interpretation of dynamic logic as a calculus for similarity-
based information fusion. In Section 4 ,we consider a scenario based on the use of mini
UAVs (UAV is an acronym for Unmanned Aerial Vehicle). Section 5 shows the relation
between the proposed approach and description logics. Finally, Section 6 concludes the
paper.

2 Similarity Spaces

There is a natural generalization of relations, where instead of crisp relations one con-
siders rough sets and relations, as introduced in [11]. These can further be generalized
to approximate relations based on similarity spaces. In order to approximate relations
one uses here a covering of the underlying domain by similarity-based neighborhoods
(see, e.g., [12,2]). In this approach the lower and upper approximations of relations
are defined via neighborhoods rather than equivalence classes which are used with

1 A study of various operations on relations related to this context can also be found in [7].
A rough set-based approach to multiagent systems has also been considered in [8].
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rough sets. Approximate relations and similarity spaces have been shown to be quite
versatile in many application areas requiring the use of approximate knowledge struc-
tures [5,13,14].

There are many choices that can be made concerning the constraints one might want
to place on the similarity relation used to define upper and lower approximations. For
example, one might not want the relation be transitive since similar objects do not nat-
urally chain in a transitive manner. Many of these issues are discussed in the context
of rough sets (see, e.g., [11,15,16,17,18]). In order to represent arbitrary notions of
similarity in a universe of individuals, similarity relations have no initial constraints.

Definition 2.1. By a similarity space we mean any pair 〈U, σ〉, where U is a non-empty

set and σ ⊆ U×U . By a neighborhood of u wrt σ we mean nσ(u)def= {u′∈U | σ(u, u′)}.
For A ⊆ U , the lower and upper approximation of A wrt σ, denoted respectively by A

+

σ

and A
⊕
σ , are defined by A

+

σ = {u∈U : nσ(u)⊆A}, A⊕
σ = {u∈U : nσ(u) ∩ A �= ∅}.

We also define A
−
σ

def= −A⊕
σ and A

±
σ

def= −A+

σ ∩ −A
−
σ . �

Let S = 〈U, σ〉 be a similarity space and let A ⊆ U . Then an alternative way to define
upper and lower approximations used throughout this paper is as follows:

A
+

S = {a ∈ A | ∀b [σ(a, b)→ b ∈ A]}
A

⊕
S = {a ∈ A | ∃b [σ(a, b) ∧ b ∈ A]}

A
−
S = {a ∈ A | ∀b[σ(a, b)→ b �∈ A]}

A
±
S = {a ∈ A | ∃b∃c[σ(a, b) ∧ σ(a, c) ∧ b ∈ A ∧ c �∈ A]}.

3 Interpretation of Dynamic Logic as Calculus for Approximate
Information Fusion

3.1 Dynamic Logic

PDL has been introduced as a tool for expressing properties of programs and reasoning
about them (see, e.g., [6]).

Syntax. The language of PDL consists of formulas and programs.2 Let V0 and P0 be
countable sets of propositions and atomic programs, respectively. Programs and formu-
las are built inductively from V0 and P0 by using propositional connectives (¬,∨,∧,→,
≡), modalities indexed by programs [p], 〈p〉, program operators ; ,∪ ,∩ ,∗ ,−1 and a test
operator ?

If A,B are formulas and p, q are programs then ¬A,A ∨ B, [p]A, 〈p〉A are also
formulas3 and p; q, p ∪ q, p ∩ q, p∗, p−1, A? are programs.

In what follows we shall replace the term “programs” by “similarity relation sym-
bols” and denote those symbols by σ with indices, if necessary, rather than by p, q, . . ..

2 We actually deal with the concurrent dynamic logic with converse, as we consider ∩ and −1,
too — see [19,6,20].

3 Other typical propositional connectives, like ∧,→,≡ are defined as usual.
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Semantics. The semantics of PDL is defined using the notion of Kripke frames of the
form K = 〈U,Π,Σ〉, where

– U is a set of objects
– Π : V0 −→ 2U (for each proposition A, Π assigns a set of objects, for which A is

TRUE)
– Σ : P0 −→ 2U×U (for each similarity relation symbol σ, Σ assigns a binary

relation on U ).

Let K = 〈U,Π,Σ〉 be a Kripke structure, a ∈ U , A,B be formulas and σ1, σ2 be
similarity relation symbols. The satisfiability relation is then defined as follows:

– K, a |= A iff a ∈ Π(A), when A ∈ V0

– K, a |= ¬A iff K, a �|= A
– K, a |= A ∨B iff K, a |= A or K, a |= B
– K, a |= [σ]A iff for any b ∈ U such that σ(a, b) we have K, b |= [σ]A
– K, a |= 〈σ〉A iff there is b ∈ U such that σ(a, b) and K, b |= [σ]A,

where Σ is extended to cover all expressions on similarity relations recursively:

– Σ(σ1;σ2) def= Σ(σ1) ◦Σ(σ2), where ◦ is the composition of relations

– Σ(σ1 ∪ σ2) def= Σ(σ1) ∪Σ(σ2), where ∪ on the righthand of equality is the union
of relations

– Σ(σ1 ∩ σ2) def= Σ(σ1) ∩ Σ(σ2), where ∩ on the righthand of equality is the inter-
section of relations

– Σ(σ∗) def= (Σ(σ))∗, where ∗ on the righthand of equality is the transitive closure
of a relation

– Σ(σ−1) def= (Σ(σ))−1, where −1 on the righthand of equality is the converse of
a relation

– Σ(A?) def= {〈a, a〉 | K, a |= A}.

3.2 Useful Properties of Approximations Expressible in the Dynamic Logic

Observe that:

1. [σ]A expresses the lower approximation of A wrt. σ, i.e., A
+

σ

2. 〈σ〉A expresses the upper approximation of A wrt. σ, i.e., A
⊕
σ .

Example 3.1.

1.
(
[σ1]red ∧ 〈σ2〉 fast

)
→ car — if an object (according to σ1) is surely red and

(according to σ2) its speed might be fast, then conclude that it is a car.
2.

(
〈σ1〉hot ∨ 〈σ2〉 hot

)
→ dangerous — if (according to σ1 or to σ2) an object

might be hot, then conclude that it is dangerous. �

Expression σ∗ defines the transitive closure of a relation, i.e., it makes an object o
similar to an object o′ if there is k ≥ 1 and a chain of objects o1, . . . , ok such that
o1 = o, ok = o′ and for all 1 ≤ i ≤ k − 1, oi is similar to oi+1, i.e., σ(oi, oi+1) holds.
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Example 3.2. In rough set theory, the underlying similarity relations are equivalence
relations so rather than considering arbitrary relations σ, one should consider their re-
flexive, symmetric and transitive closures, (σ ∪ id ∪ σ−1)∗, where id is the identity
relation (e.g., defined by TRUE?). �

Other typical operations on programs can be interpreted in multiagent setting as follows,
where σ1, σ2 are similarity relations of two agents Ag1, Ag2:

– σ1;σ2 is the composition of relations, i.e., it makes an object o1 similar to an object
o2 if agent Ag1 finds o1 similar to some object o′ and Ag2 considers objects o′ and
o2 similar

– σ1 ∪σ2 is the set-theoretical union of relations, i.e., it makes an object o1 similar to
an object o2 if at least one of agents Ag1, Ag2 considers objects o1 and o2 similar

– σ1 ∩ σ2 is the set-theoretical intersection of relations, i.e., it makes an object o1

similar to an object o2 if both agents Ag1 and Ag2 consider objects o1 and o2

similar.

Example 3.3. Assume that agent Ag1 observes objects o1, o2 and finds that they are of
a similar color (σ1(o1, o2) holds). Assume further that Ag2 observes objects o2, o3 and
finds their color similar, too (σ2(o2, o3) holds). We are interested whether the color of
o1 is similar to the color of o3. This property can be expressed by

(
(σ1;σ2) ∪ (σ2;σ1)

)
(o1, o3).

Therefore, e.g., 〈(σ1;σ2) ∪ (σ2;σ1)〉 red expresses that a given object might be red
according to the fused knowledge of Ag1 and Ag2. On the other hand, [σ1 ∩ σ2]red
expresses the fact that both agents find a given object to be red. �

Test allows one to create conditional definitions, as shown in Example 3.4.

Example 3.4. In some circumstances the choice of similarity may depend on the state
of the environment. For example, if the temperature is high, the observed process might
be more sensitive on pressure (reflected by similarity σ1) than in the case when the
temperature is not high (reflected by similarity σ2). Then

(
high_temp?;σ1

)
∪
(
(¬high_temp)?;σ2)

)

expresses the guarded choice between σ1 and σ2 dependent on the temperature (“if the
temperature is high then use σ1 otherwise use σ2”). �

3.3 Reasoning over Concrete Similarity Spaces

The version of dynamic logic we consider is highly undecidable (see, e.g., [6]). Re-
moving the ∩ operator makes the logic decidable but still quite complex. On the other
hand, when we deal with concrete similarity spaces, the calculus can be used in a useful,
practical manner.
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The following example illustrates this idea.

Example 3.5. Consider a sensor measuring a given parameter, say ρ in the scale [0, 10].
Assume that the measurement error is not greater than 0.5. This means that we deal with

a similarity space 〈U, σ〉, where U
def= [0, 10] and σ(x, y)

def≡ |x − y| ≤ 0.5. Assume
that the value of ρ is acceptable when ρ ∈ [2.6, 6.8]. Suppose that we are interested
in evaluating formula 〈σ〉 acc, where acc abbreviates “acceptable”. Then it can easily
be seen that 〈σ〉 acc ≡ ρ ∈ [2.1, 7.3]. Similarly, [σ]acc ≡ ρ ∈ [3.1, 6.3]. One can,
therefore use these definitions rather than modal operators. �

When one deals with similarity spaces and relational or deductive databases, the sit-
uation becomes tractable, assuming that the underlying similarity relation is tractable.
In order to compute the set of objects x satisfying 〈σ〉A one just queries the database
using first-order formula ∃y[σ(x, y) ∧ A(y)], where y refers to objects (e.g., rows in
database tables). Similarly, computing [σ]A depends on supplying to the database the
query ∀y[σ(x, y)→ A(y)].

Operators on similarity relations allowed in the language of dynamic logic we deal
with are first-order definable, except for ∗ which, as transitive closure, also leads to
tractable queries (see, e.g., [21]).

4 Mini UAV: A Case Study

4.1 A Scenario

In a given area traces of a chemical X and signs of radiation have been detected. There
is a fleet of mini UAV available. They are of three kinds: capable to measure tempera-
ture, to measure radiation and, the most advanced and expensive ones, to measure the
concentration of X .

Dependent on its concentration and the temperature of the environment, the chemical
X can be relatively safe for humans, can be dangerous or even explosive. It also causes
radiation. The goal for the fleet of UAV is to autonomously investigate the area and to
report on a possible level of danger by aggregating their local knowledge.

4.2 Underlying Assumptions

Individual UAV’s Level of Evaluation. The individual level concerns individual
knowledge of UAVs. We assume that measurements of all UAV’s are adjusted to the
scale [0, 1]. Due to the accuracy of sensors the UAVs have certain perceptual limita-
tions:

– the measurement error of temperature sensors is not greater than 0.02
– the measurement error of radiation sensors is not greater than 0.05
– the measurement error of concentration sensors is not greater than 0.01.
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Perceptual limitations due to sensor limitations are modelled by similarity spaces with
universe [0, 1] and similarity relations:

σt(x, y) def= |x− y| ≤ 0.02 for the temperature

σr(x, y) def= |x− y| ≤ 0.05 for the radiation

σc(x, y) def= |x− y| ≤ 0.01 for the concentration of X.

Table 1 provides conditions as to the evaluation of a situation from the perspective of
a single UAV. Then, slightly abusing notation, for example we would have,

(
t |= [σt]safe

)
≡ t ≤ 0.43 and

(
t |= 〈σt〉 expl

)
≡ FALSE,(

r |= [σr ]safe
)
≡ r ≤ 0.15 and

(
r |= 〈σr〉 safe

)
≡ r ≤ 0.25,(

c |= [σc] expl
)
≡ 0.71 < c and

(
c |= 〈σc〉 expl

)
≡ 0.69 < c.

Table 1. Individual conditions as to the danger.

Danger level Temperature (t) Radiation (r) concentration of X (c)
safe for humans (safe) t ≤ 0.45 r ≤ 0.2 c ≤ 0.4
dangerous (danger) 0.45 < t ≤ 1.0 0.2 < r ≤ 0.8 0.4 < c ≤ 0.7
explosive (expl) never 0.8 < r ≤ 1 0.7 < c ≤ 1.0

Group Level of Evaluation. Here we, in fact, deal with distributed knowledge (see,
e.g., [22,23] and in the context of multiagent systems [24,25]), since the actual evalua-
tion of a situation requires fusing information from various UAVs. In our scenario we
can, e.g., assume that the danger level is given in Table 2. In such a case we have to
evaluate three attributes and therefore have to define a new similarity space on triples.
For example, such a similarity space might be 〈T, σ〉, where

– T
def= [0, 1]× [0, 1]× [0, 1]

– σ(〈x, y, z〉 , 〈x′, y′, z′〉) def= σt(x, x′) ∧ σr(y, y′) ∧ σc(z, z′).

Table 2. Group conditions as to the danger

Danger level Group condition
safe for humans (safe) t ≤ 0.3 ∧ r ≤ 0.1 ∧ c ≤ 0.4
dangerous (danger) 0.3 < t ≤ 0.6 ∧ r ≤ 0.5 ∧ c ≤ 0.6
explosive (expl) in all other cases

Now, e.g.,
(
〈t, r, c〉 |= [σ]safe

)
≡ t ≤ 0.28 ∧ r ≤ 0.05 ∧ c ≤ 0.39,(

〈t, r, c〉 |= 〈σ〉 danger
)
≡ 0.28 < t ≤ 0.62 ∧ r ≤ 0.55 ∧ c ≤ 0.61.
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4.3 Tuning Safety Conditions to Circumstances

Observe that σ of the previous section can still be tuned. The underlying intuition is
that by adding successive iterations of similarities one makes more and more situations
similar to each other. For example, we might want to increase safety by iterating σ,

– σ itself may be used for the cheapest mini UAV
– σ∪(σ;σ) can be used for more expensive ones (measuring the concentration of X)
– σ ∪ (σ;σ) ∪ (σ;σ;σ) can be used by humans, where a relatively highest safety is

required.

5 A Relation to Description Logics

In this section we show that the approach we propose can easily be integrated with the
description logic formalism.

Description logics refer to a family of formalisms concentrated around concepts, roles
and individuals. There is a rich literature on description logics. For good survey papers
consult [26], in particular papers [9,10,27] as well as the bibliography provided there.

Assume that sets of atomic concepts, C, and of atomic roles,R are given. More com-
plex concepts and roles are built by the use of constructors given in Table 3, where
concepts are represented by unary predicates and roles are represented by binary pred-
icates. Also, rather than using a formal semantics, we show a translation of the con-
sidered constructs into the classical first-order logic. Various description languages are
distinguished by the constructors that allow to specify complex concepts and roles.

Table 3. Constructors used in description logics

Constructor name Syntax Translation (Tr)
concept name A A(x)
top ! TRUE

bottom ⊥ FALSE

complement (C) ¬E ¬Tr(E,x)
conjunction E # F Tr(E,x) ∧ Tr(F,x)
union (U) E $ F Tr(E,x) ∨ Tr(F,x)
universal quantification ∀R.E ∀y[R(x, y)→ Tr(E, y)]
existential quantification (E ) ∃R.E ∃y[R(x, y) ∧ Tr(E, y)]

Observe that

– ∃σ.A mirrors the semantics of 〈σ〉A
– ∀σ.A mirrors the semantics of [σ]A.

What then remains to show is how to deal with operations on similarity relations con-
sidered as roles. This has actually been done in [28] by introducing operations on roles
corresponding to operations on programs4. The resulting formalism T SL, is given by

4 Transitive closure of roles, corresponding to ∗, has been studied also, e.g., in [29,30].
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the same concept formation rules as provided in Table 3 together with allowing one to
form new roles by applying operators ; ,�, ∗,−1 , ?. In fact, we also need an additional
operator �. Now the translation of dynamic logic formulas into description logic for-
mulas, denoted below by Tδ, is rather immediate, where & ∈ {∗,−1 }, ◦ ∈ {; ,∪,∩} and

;′ def= ; , ∪′ def= �, ∩′ def= �:

Tδ(A) def= A when A ∈ V0 Tδ(〈C?〉A) def= ∃C?.Tδ(A)
Tδ(¬A) def= ¬Tδ(A) Tδ(〈σ1 ◦ σ2〉A) def= ∃σ1 ◦′ σ2.Tδ(A)
Tδ(A ∨B) def= Tδ(A) � Tδ(B) Tδ(

〈
σ�
〉
A) def= ∃σ�.Tδ(A)

and similarly for the modal operator [.].

6 Conclusions

We have proposed a framework for aggregating information sources associated with
agents where those information sources are inherently approximate due to the limited
perceptual capabilities of the agents. These limitations are represented as similarity
spaces. The dynamic logic framework is then used to aggregate information sources
associated with the agents by aggregating their similarity spaces. This creates a global
or fused situational context for the evaluation of formulas. These techniques have been
demonstrated using a multi UAV scenario.
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17. Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In:
Wang, P. (ed.) Advances in Machine Intelligence & Soft Computing, Raleigh NC, Book-
wrights, pp. 17–33 (1997)
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Abstract. In the paper a certain class of classification systems based on
hybrid fuzzy-genetic approach is considered. The particular solution pro-
posed allows for coevolution of two different populations, that search for
a rule base structure and linguistic variables definitions respectively. The
search is organised according to the principles of evolutionary multi-agent
systems, which results in high generalisation capabilities of the system,
as illustrated by the preliminary experimental results.
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1 Introduction

Classification problems obviously arouse interest of many researchers. Among
a variety of different approaches there is also a specific class of classification
systems based on fuzzy and genetic techniques that operate in tandem. Such
approach assumes the integration of a fuzzy rule base and inference system,
which is responsible for the classification itself, and an evolutionary algorithm,
which provides learning capabilities [2].

The aim of this paper is to present a specific technique of fuzzy classifiers
generation by learning from examples using evolutionary processes. The novelty
of the proposed approach firstly consists in using an evolutionary multi-agent
system (EMAS) instead of classical evolutionary algorithms [8]. Also two coe-
volving populations, resulting from the proposed decomposition of the problem
are introduced [21]. One population, which performs the search for the structure
of a rule base, is organised according to the principles of EMAS allowing for high
generalisation, so that even a smaller set of training data can assure correct as-
signment of unknown example. The definitions of linguistic variables used by the
rules are coevolved by the second population as a classical evolutionary strategy
[1]. At each step of the search, the best individuals from respective populations
are used to evaluate another population, which makes the search a mutually
adaptive process, and allows to get satisfactory solution of the whole problem
(i.e. a complete fuzzy classifier).

The paper starts with a short introduction to a fuzzy rule-based classification
systems (section 2). Then evolutionary processes are discussed as a technique

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 678–686, 2007.
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of learning the FRBCS (section 3). Section 4 presents the system under consid-
eration and the last section – preliminary experimental results, which illustrate
how the proposed approach works for a few benchmark problems.

2 Fuzzy Classification Systems

In general classification consists in assigning certain membership classes to
objects (events, phenomena), described by vectors of attributes [7]. In practice
classification algorithms involve getting some data on input and putting the ap-
propriate class on output, mostly assuming a given objects attributes set and a
given class set. Of course before a classifier can give answers about the classes of
presented objects, it should be trained using teaching data with correct member-
ship classes provided. Efficient classification models characterize high generaliza-
tion, which means they can assign a new (not provided in the learning phase)
example to the right class. Anyway, building a proper knowledge base that can
become a correct classifier strongly rely on the selection of training data with
known assignments.

There are plenty of classification algorithms that use various classifier repre-
sentations and different learning schemata. A classification mechanism can be
constructed as a rule-based system, which approach dates back to early ’60s,
when Holland proposed the idea of a message passing, learning rule-based sys-
tem, called simply a classifier system [5]. Rules represent the knowledge in a
comprehensible form for those who will use the classification system, facilitating
the use of this kind of systems as a tool in decision making processes. In ad-
dition, rules represent independent units of knowledge, so that alterations can
easily take place in their contents. Classification rules can be based on fuzzy
logic, which enables processing of imprecise or incomplete information, common
in real classification problems. The systems that use fuzzy rules as knowledge
representation are often called Fuzzy Rule-Based Classification Systems (FR-
BCS).

A knowledge base of FRBCS most often consists of [4]:

1. Fuzzy rules with class as the conclusion [3]. Conditions are defined by fuzzy
sets and the conclusion is the class to be assigned to the object.

2. Fuzzy rules with class and the membership degree as the conclusion [6]. Con-
ditions are defined by fuzzy sets and the conclusion is the class (with its
membership degree) to be assigned to the object.

3. Fuzzy rules with memberships degrees to all classes as the conclusion [10].
Conditions are defined by fuzzy sets and the conclusion are membership
degrees to all the classes.

A rule base of FRBCS is sometimes distingiushed from the so-called data base,
which contains the fuzzy set definitions related to the fuzzy rules (fig. 1).

A classification process starts with reading an example i.e. object attribute
values that may be represented as a tuple:

o = 〈a1, ..., aM 〉 (1)
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Fuzzy Rule Base

Data Base

Fig. 1. The structure of FRBCS

where M is the number of attributes in the input data and ak is the value of
k-th attribute for the object o.

A Fuzzy Reasoning Method (FRM) is an inference procedure that derives a
class to be assigned to object o by applying the rules from the knowledge base to
the read data. In the first phase a matching degree is calculated for all the rules
and the considered example. Then some rules are selected and used to draw the
overall conclusion. Most often FRM considers only one rule (e.g. with the highest
matching degree), which is the winning one and the response of the classifier is
the class in this rule’s conclusion.

3 Evolving the FRBCS

Despite apparent simplicity, constructing FRBCS for a given classification prob-
lem is not an easy task. In fact the construction of FRBCS is a supervised
inductive process that fundamentally implies following tasks [4]:

1. feature selection and extraction,
2. learning of fuzzy rules, which means generation of a rule base,
3. simplifying the rule base,
4. tuning the membership functions that describe the semantics associated to

the linguistic labels used by the linguistic variables.

In recent years a great number of publications have explored the use of evo-
lutionary algorithms as a tool for designing fuzzy systems. Thus evolutionary
computation can be used for completing each of the above tasks. Specific ap-
proaches differ in chromosome structure, fitness function shape, rule selection
mechanism or the population behavior [4].
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As far as evolutionary learning of a rule base is concerned (task 2) three
approaches are often distinguished [11]:

– Michigan approach in which the chromosomes represent single rules and the
whole population an rule base,

– in Pittsburgh approach each chromosome encodes a whole rule base,
– in Iterative Rule Learning approach each chromosome represents a single

rule, but only the best individual (in iteration) is considered as the solution,
discarding the remaining chromosomes in the population.

Evolutionary processes can also be applied to the data base searching for the
definitions of fuzzy sets describing linguistic variables (task 4). Both these sets
– rules and fuzzy set definitions – are relatively dependent, so that when one
of them is changed it influences the another one. This observation leads to the
discussed coevolutionary approach, which uses two populations realising tasks 2
and 4 simulatnously.

4 System Description

The discussed classification system is based on the general idea of evolving FR-
BCS, as described in two previous sections. Yet it introduces some essential
modifications.

In the considered system rule’s conditions are linguistic labels used to discre-
tise the continuous domain of the variables, whereas conclusion is the class where
the pattern belongs (1st type from the list in section 2) [3]. Each attribute value
of the classified examples is assigned to one of linguistic labels (Low, Medium,
High) that correspond to appropriate fuzzy sets defined separately for each at-
tribute. Definitions of fuzzy sets can be represented by a set of parameters as
shown in fig. 2 (a bigger number of sets can be represented analogically by in-
creasing the number of parameters).

In the classification process a winning rule is assigned to the considered ex-
ample according to the formula [9]:

arg max
i=1,...,N

{ min
j=1,...,M

{Wij(aj)}} (2)

Fig. 2. Membership functions for linguistic labels in rule
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where N is a number of rules in rule base, and Wij(aj) denotes the membership
degree of i-th fuzzy rule of the j-th attribute. The conclusion in the winning rule
becomes the response of the whole classifier.

As it was already mentioned, evolutionary processes concern rules and fuzzy
sets definitions. Pittsburgh approach was chosen as a fundamental model of the
rule base structure evolution. Yet instead of classical evolutionary algorithms
evolutionary multi-agent approach was used [8]. The fitness of an agent rep-
resenting a whole rule base was calculated according to the following formula:

fitness = (TP/(TP + FN)) · (TN/(TN + FP )) (3)

where:

– TP (true positives) is the number of examples that are covered by at least
one of the individual’s rules and have the class indicated by those rules;

– FP (false positives) is the number of examples that are covered by at least
one of the individual’s rules but have a class different from the class indicated
by those rules;

– FN (false negatives) is the number of examples that are not covered by any
of the individual’s rules but have the class indicated by those rules;

– TN (true negatives) is the number of examples that are not covered by any
of the individual’s rules and do not have the class indicated by those rules.

The main advantage of this approach to fitness evaluation is the fact that it
considers not only number of proper and wrong examples assignment, but also
linguistic variables definitions related to this assignment.

The reproduction of an individual agent depends on value of some probabil-
ity factor. Mechanism of establishing reproduction partner in the case of positive
decision is similar to the tournament selection. Individual agent is offered to co-
operate with two partners. Finally there is one winner – the agent with better
fitness. When these two agents are equally good there their complexity is taken
into account. Recombination is done according to the one-point crossover schema
where exchanged genetic material concerns whole rules. Mutation can be realised
in two following ways:

– for conditions linguistic labels can be changed,
– for conclusions a class label can be changed.

Each continuous attribute is associated with its own set of membership func-
tions, which define linguistic variables used by the rules of an agent. Simultaneous
evolution of membership function definitions is realised according to a classical
evolutionary strategy. The goal of this algorithm is to get better adaptation of
a corresponding attribute to the structure of the rule bases used by the agents.
The main advantage of this co-evolutionary approach is that the fitness of a
given set of membership function definitions is evaluated across several rule sets,
encoded into several different individuals, rather than on a single rule base.
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5 Experimental Studies

The goal of the experiments was to evaluate the classification quality of the
discussed system in comparison to other techniques. During the tests reported
below there were used two data sets from the UCI Machine Learning repository,
called iris and glass types respectively. Iris data set contains 150 examples, that
may be divided to 3 linearly separable classes – 50 examples per class. All of
the examples is described by 4 attributes. Glass types data set includes 214
examples, described by 9 attributes. Glass can be assigned to one of 7 (not
linearly separable) classes.

5.1 Iris Set

Comparison tests were performed in two phases. The reason of this was different
division ratio of the data between learning and testing sets in the compared
algorithms.

Phase 1: Learning and testing data were divided in proportion 1:1. The results
of the system were compared with the following methods: FCFSOM – a fuzzy
classification system using self-organizing feature map [12], Nozaki method [13],
Umano method [14], as presented in table 1.

Table 1. Quality comparison for iris data – phase 1

Classifier quality [%]
learning set testing set

FCSOM 99.23 94.83
Nozaki - 93.03
Umano - 94.43
Our system 98.07 93.48

Phase 2: In a learning set there were 70% of examples while in test set there
were 30% of them. The results are presented in table 2 and were compared with
following methods: C4.5 [15], CN2 [16], LVQ [17], and with another FRBCS
systems: FRBCS [4], WM-FRLP [18], for which there were performed different
configurations:

– classical FRM,
– FRM Normalised Sum - FRM NS,
– FRM Weighted Normalised Sum - FRM WNS,
– FRM Quasiarithmetic Mean - FRM QM.

The results presented show the high position of the system among other algo-
rithms in both data set dividing proportions. Additionally there can be noticed
the fact that quality of the system in test set is the best of the considered results.
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Table 2. Quality comparison for iris data – phase 2

Classifier quality [%]
learning set testing set

C4.5 98.38 92.70
CN2 98.92 94.16
LVQ 98.55 95.72
FRBCS - FRM Classic 95.49 94.26
FRBCS - FRM NS 98.58 95.80
FRBCS - FRM WNS 97.47 94.36
FRBCS - FRM QM 95.30 94.23
WM-FRLP - FRM Classic 90.97 88.25
WM-FRLP - FRM NS 97.29 92.88
WM-FRLP - FRM WNS 98.56 94.38
WM-FRLP - FRM QM 91.18 90.34
Our system 98,20 99,20

5.2 Glass Types Set

Results collected for glass kinds set were compared with: LDA [19], SVM – for
versions linear, quad and RBF [19], CART – for versions with full and best tree
[19], neural nets [20], as presented in table 3.

Table 3. Quality comparison for glass kinds data

Classifier quality [%]
learning set testing set

LDA 73.74 83.33
SVN - linear 70.53 62.5
SVN - quad 73.68 75
SVN - RBF 86.84 37.5
CART - full tree 87.00 71.00
CART - best tree 81.00 67.00
Neural nets 80.95 75.00
Our system 94,12 81,90

Classification quality comparison shows that system tends to gain very good
results, and proves a high position of the system among other algorithms. Based
on these results it can be said that the system characterizes high adaptation
to different kinds of problems together with high effectiveness, yet it must be
stressed that high computational cost is paid for that.

6 Concluding Remarks

In the paper a co-evolutionary approach for discovering fuzzy classification rules
was presented. The main advantage of the approach is that the fitness of a given
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set of membership function definitions is evaluated across several fuzzy rule sets,
encoded into several different individuals, rather than on a single fuzzy set. A
multi-agent environment allows for organisation of this complex process, so that
the final result is a rule base and a set of membership function definitions which
are well adapted to each other. It also makes the evaluation more robust.

The reported preliminary results show high classification quality for the con-
sidered problems, as compared to the results of several other approaches found
in the literature which used the same data sets.

Obviously there are many directions for the future research considered, such
as checking adaptation of the system with high dimensional problems or inves-
tigating the influence of increasing the number fuzzy sets per attribute.
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W.I., Plášil, F. (eds.) SOFSEM 2002 LNCS, vol. 2540, Springer, Heidelberg (2002)

9. Mendes, R.R.F., de B., F., Voznika, A.A., Freitas, J.C.: Nievola, Discovering
Fuzzy Classification Rules with Genetic Programming and Co-Evolution (PUC-
PR, PPGIA-CCET), Curitiba - PR, Brazil (2001)

10. Punch, W.F, Goodman, E.D., Pei, M., Chia-Shun, L., Hovland, P., Enbody, R.:
Further research on feature selection and classification using genetic algorithms. In:
Proceedings of the Fifth International Conference on Genetic Algorithms (1993)

11. Freitas, A.A.: A survey of evolutionary algorithms for data mining and knowledge
discovery, pp. 819–845. Springer, Heidelberg (2003)

12. Horikawa, S.: Fuzzy Classification System Using Self-Organizing Feature Map,
Kansai General Laboratory, Research and Development Group

13. Nozaki, K., Ishibuchi, H., Tanaka, H.: Selecting fuzzy if-then rules with forgetting
in fuzzy classification systems. Journal of Japan Society for Fuzzy Theory and
Systems, vol. 6(3) (1994)

14. Umano, F., Hatono, T.: Extraction of fuzzy rules using fuzzy neural networks
with forgetting. Transaction of Society of Instrument and Control Engineers, vol.
32(3)(1996)
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Abstract. In this paper problems of planning in transportation systems based
on Pickup and Delivery Problem with Time Windows (PDPTW) are discussed.
The results of two variants of evolutionary algorithms illustrate the pros and cons
of using different approaches, and their cooperation in hybrid island model in-
dicates how they can help each other in achieving better solutions. This leads
to the general idea of an agent-based cooperative system, in which many differ-
ent techniques may be used simultaneously, exchanging the obtained solutions.
Experimental study of such a system that uses evolutionary algorithms and tabu
search concludes the work.
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1 Introduction

It is rather obvious that effective organisation of transportation systems allows compa-
nies to highly limit sustained costs and be more competitive on the market. This could
hardly be achieved without adequate tools, which should support transport planning on
the basis of acquired knowledge on available resources, incoming requests and road
network structure. Critical situations analysis seems to be of vast importance for such
planning. Yet, even though there is a wide selection of planning techniques, most of
them assume a complete description of both resources and requests available a priori.
Thus it is very difficult (or even impossible) to apply them to dynamic problems, and
even more difficult, with unsure and incomplete knowledge.

The goal of the research partially reported in this paper is to create concepts and
tools, that should manage planning in dynamic environments of multi-agent systems in
the face of crisis, considering transportation systems as a particular case. Based on a
general scheme of crises management in MAS, as well as preliminary results obtained
in the field of transportation systems [7], several possible variants of planning-support
techniques were already considered [2]. In this paper special attention is paid to evolu-
tionary techniques as a tool for solving static transportation problems, moving to coop-
erative systems, which should be flexible enough to be used in dynamic environments.

# This work was partially sponsored by State Committee for Scientific Research (KBN) grant
no. 3 T11C 025 27.

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 687–696, 2007.
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Still the paper does not touch dynamic problems, but rather shows how different tech-
niques or different configurations of similar techniques can help one another, attaining
better results than when used alone.

Section 2 introduces a particular transportation problem considered in the paper, that
is Pickup and Delivery Problem with Time Windows (PDPTW). In section 3 there is
a discussion of evolutionary algorithms dedicated to solving transportation problems,
with special attention to the advantages and shortcomings of different approaches. Se-
lected experimental results that illustrate the described algorithms are presented in the
next section. Section 5 introduces the idea of a cooperative system that allows for ex-
changing of solutions between different algorithms solving transportation problems,
and finally section 6 provides an experimental study of the system at work.

2 Research on Transportation Problems

Typical transportation problems are based on a set of requests being realised by a set
of available vehicles. Vehicles are characterised by their capacity and speed, and re-
quests by the required capacity of vehicles and a time period (known as time window)
within which the pickup and delivery operations have to take place. In a more widely
researched Vehicle Routing Problem with Time Windows (VRPTW) with each transport
request only one location point (either pickup or delivery) is associated, but in Pickup
and Delivery Problem with Time Windows (PDPTW) each request is characterised by
both a pickup and delivery location. The quality of a solution depends on the number
of vehicles used and the total distance travelled. Sometimes, to express the quality of
a solution, a total travel time of vehicles and a total waiting time of vehicles before
the start of any time window is also considered. In problems with hard time windows,
it is absolutely necessary that pickup and delivery operations start in the given time
window. In problems with soft time windows, pickup and delivery operations may start
after the end of this time period, but in estimating the quality of a solution, a penalty
for the delay may be taken into account (higher delay may result in higher penalties).
The problems have numerous practical applications — for example in planning sea and
air transport, different kinds of cargo services and transport services on demand (for
example transport of handicapped for treatment) or taxi-share services.

A set of benchmark tests for VRPTW was proposed by Solomon and extended by
Gehring and Homberger. Li and Lim proposed a similar set of benchmark problems
to verify the quality of the algorithms for PDPTW [9]. Benchmarks are divided into
different groups depending on the number of requests to be served and locations to
be visited (about 100, 200, 400 locations etc.). For each group six classes of tests are
distinguished: on one hand due to the characteristics of time windows (problems with
small time windows and a short scheduling horizon — LR1, LC1, LRC1, as well as with
large time windows and a long planning horizon — LC2, LR2, LRC2), on the other due
to the spatial distribution of requests (request locations may be grouped into clusters
— LC1, LC2, evenly distributed — LR1, LR2, and there are also mixed problems with
some request locations in clusters and some randomly distributed — LRC1, LRC2).

Due to the complexity of the described transportation problems (mainly on account
of many constraints) nowadays the most promising approximate solutions provide
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heuristic approaches (accurate solutions are not attainable because of NP-hardness of
the problem). The majority of algorithms are based on the generation of an initial solu-
tion using some simple heuristics (like insertion heuristic, sweep heuristic or partition
heuristic), which is optimised afterwards using some metaheuristics. The proposed al-
gorithms for VRPTW are numerous and it would be difficult to list them here. However
it is worth mentioning that when comparing different VRPTW solving algorithms [1],
hybrid evolutionary approaches achieve the best results. The approach based on the
tabu search and simulated annealing [5] provided the best solutions obtained so far for
PDPTW. Many other interesting approaches to PDPTW are also based on tabu search,
e.g. [6,4].

3 Evolutionary Approach to Transportation Problems

Evolutionary algorithms are based on iterative transformation of the population of in-
dividuals potential solutions of the given problem. Evolution consists on generating
consecutive generations, using so called genetic operators (or variation operators) and
the selection mechanism.

Most evolutionary algorithms for transportation problems use direct representation
of solutions [1] – each individual consists of consecutive locations assigned to partic-
ular routes. Such representation assumes no coding, which results in genetic operators
operating directly on solutions. This guarantees the generation of acceptable solutions,
which is easily achieved introducing genetic operators based on existing optimisation
algorithms dedicated to transportation problems (e.g. pointed out in the previous sec-
tion). Also the initial population is not generated randomly, as for typical evolutionary
algorithms, but by using some existing construction heuristics. Several criteria consid-
ered for transportation problems are often aggregated (e.g. as a weighted sum) into a
single value, which may be used as the fitness of individuals.

The discussed approach [3] is based on GENEROUS algorithm, which uses direct
representation as described above. Two recombination operators: based on sequence
(SBX) and route exchange (RBX), allow an improvement of the total distance, yet can
hardly reduce the number of vehicles. Thus two mutation operators: one level (1M) and
two level (2M) exchange, aim at emptying (the shortest) routes. Third mutation operator
works as a local optimiser based on or-opt technique. If the solution cannot be repaired
(there are unserved locations), it is rejected and the whole process is repeated [8].

This algorithm was adapted for the PDPTW problem, leaving the same representa-
tion, as well as slightly modified SBX recombination and 1M mutation operators. Also,
additional recombination operator for exchanging best routes and mutation operators
based on the concept of ghost routes were introduced. The initial population is gener-
ated using a clustering technique in the first phase and a modified sweep heuristic [5] to
fill in the population up to the assumed size in the second phase. Tournament selection
was used with individual comparison based on three criteria: the number of routes, a
total distance, and a total waiting time, considered one by one in the given order.

In general the process of evolution should tend to generate better individuals and
finally to find the needed (usually approximate) problem solution, which quality de-
pends on the operators used and the parameters of the algorithm. Yet, evolutionary
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computation often suffers from the loss of population diversity, which practically hin-
ders further search. This means that the algorithm locates the basin of attraction of some
local optimum instead of a global one. This is especially important considering trans-
portation problems with direct representation, because of introduced constraints, which
often eliminate many new individuals from the population.

That is why a second considered variant of evolutionary algorithm utilized a par-
tial representation of the solution, which consisted of only pickup locations. For such
representation genetic operators for travelling salesman problem might be used. Also
the initial population could be generated randomly. An insertion heuristics [5] allowed
for transformation of every individual into a feasible complete solution. It was chosen
because of its low computational complexity (it must be used for every individual in
every generation), yet unfortunately permitted different individuals to be transformed
into the same, often weak solution. Selection and fitness evaluation was realised in the
same way as for the previous algorithm.

4 Experimental Comparative Study of the Evolutionary
Approaches

Various experimental studies were conducted in order to compare the performance of
the above-described algorithms [3]. Below, only selected results allowing for drawing
preliminary conclusions are presented. The results were obtained for 100-location prob-
lems with even distribution of request locations, with small (LR1) and large (LR2) time
windows. Tables 1 and 2 show the benchmark results [9] and the best individual ob-
tained averaged over 3 independent runs of each algorithm, with the population of 125
individuals evolving for 125 generations.

Table 1. Results obtained for problems with small time windows (LR1)

benchmark GEN1 GEN2 GEN1+GEN2
problem routes distance routes distance routes distance routes distance
lr101 19 1650.8 19 1744.5 19 1650.8 19 1650.8
lr102 17 1487.6 17 1580.9 17 1575.1 17 1523.9
lr103 13 1292.7 14 1550.1 13 1421.2 13 1369.8
lr104 9 1013.4 10.7 1149.9 11 1244.7 9.5 1037.2
TOTAL 58 5444.4 60.7 6025.4 60 5891.7 58.5 5581.8

For problems with small time windows (table 1) the results were quite good – both
algorithms could find solutions very close to the benchmark ones (but one must re-
member that one vehicle more in the obtained solution gives a considerable relative
difference to the benchmark value). The situation was slightly different for large time
windows (table 2) – even though the number of vehicles obtained by both algorithms
was still comparable to the benchmark result, the total distance was worse for the algo-
rithm with direct representation (GEN1), and much worse for the algorithm with partial
representation (GEN2).
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Table 2. Results obtained for problems with large time windows (LR2)

benchmark GEN1 GEN2 GEN1+GEN2
problem routes distance routes distance routes distance routes distance
lr201 4 1253.2 4 1419.1 4 1923.5 4 1328.4
lr202 3 1197.7 4 1398.9 4 1734.9 4 1341.2
lr203 3 949.4 3 1224.4 3 1849.6 3 1115.3
lr204 2 849.1 3 1099.7 3 1494.1 3 1110.9
TOTAL 12 4249.4 14 5142.1 14 7002.1 14 4895.9

The reasons for the weak results obtained seem to be different for the algorithms
discussed. As already suggested and illustrated by figures 1, the first algorithm suf-
fered from the lack of diversity in the evolving population, which inhibited its search
capabilities from ca. 40-50 generation. One may notice that the second algorithm main-
tained the diversity for the whole run. The reason for weak results in this case was the
heuristics used to generate complete solutions, as suggested in the previous section.
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Fig. 1. The number of different solutions (a) and the similarity of solutions (b) in algorithms
GEN1 and GEN2

The obvious conclusion drawn from these experiments was to use both algorithms
simultaneously, allowing to exchange the solutions during the search. This meets the
idea of the hybrid island model of parallel evolutionary algorithm, assuming that mi-
gration operator is responsible for conversion of the solutions between representations
used by both algorithms. The results presented in the third part of tables 1 and 2 are
quite promising and initially confirm the correctness of the approach.

5 Solution at a Cooperative Level

As it was illustrated in the previous section different algorithms applied to transporta-
tion problems have different strengths and weaknesses, e.g. some may be better suited
to solving problems with small time windows and other for problems with large time
windows. This is also confirmed by benchmark results – the best known solutions
for a given test case are often obtained by different algorithms [9]. Preliminary re-
sults obtained for the discussed dual-population evolutionary algorithm indicated that
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cooperation of different approaches should allow to achieve more flexibility and pro-
duce better results for a variety of test cases.

That is why the environment was developed that facilitates the cooperation of differ-
ent algorithms solving PDPTW (with both hard and soft time windows), by means of
exchanging solutions or even parts of solutions (routes, requests served in the routes).
The system model and architecture is based on a multi-agent approach and consist of
several embedded sub-environments which contain computational agents [3]. There are
two kinds of agent groups:

– standard groups – applying the algorithms proposed by [5] based on tabu search
and simulated annealing,

– evolutionary groups - take advantage of algorithms presented above.

Of course the optimisation is performed simultaneously by different agents using dif-
ferent algorithms.

The quality function used has the following form:

f = αN + β D + γCD + δWT + εP (1)

where: NV – the number of vehicles, TD – total distance, SD – total service realisation
time, WT – total waiting time, P – total lateness, α – weighing factor of the number
of vehicles (in tests equals 5000000), β – weighing factor of the total distance (in tests
equals 1000), γ – weighing factor of total service realisation time (in tests equals 1),
δ – weighing factor of total waiting time (in tests equals 0.001), ε –weighing factor of
penalty caused by lateness (in tests equals 100). The quality of the solution decreases
with the increase of the value of the f function.

The important characteristic feature of the presented approach is a cooperative as-
pect of the computation process. Agents which represent different algorithms find the
routes and requests having the worst influence on the quality of solution (have the high-
est impact on the quality function). Each agent is then informed by other agents about
similar routes to their worst ones (identified by the central point calculated as the aver-
age of respective coordinates of request/delivery locations present in the given route),
and about the routes, where the other agents placed the most costly requests that were
analysed. On the basis of the obtained suggestions, the agent may modify its route or
even construct a new one, selecting the request from the route being replaced or from
other accessible routes and moving the other requests from the route being removed to
other feasible positions in other routes.

6 Results of the Cooperative Approach

The goal of the tests performed was to compare the quality of solutions offered by
the discussed cooperative algorithm with the quality offered by the considered meta-
heuristics used alone, as well as the quality of the best known solutions. Numerous
tests were performed for different sets of Li-Lim benchmarks, but as the space in this
paper is somewhat limited, only the most interesting results concerning the number of
vehicles and total travel distance are presented.
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To search a wide part of the solution space, different quality functions were applied
in the particular agents. These differences are consequences of different weights (some-
times randomly generated) of particular elements of the quality function. Thanks to this
approach, it was possible to take into consideration different kinds of solutions, for ex-
ample the ones that attached greater significance to the number of vehicles used, a total
distance or the arrival on time at service points. The difference between the results may
also be influenced by the fact that the cooperative approach used soft time windows and
thus allowed solutions with vehicles arriving late at service points, but their lateness
was penalised by an important factor.
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Fig. 2. Results for 100 locations: vehicles (a) and total distance (b) for LC1/LC2, vehicles (c) and
total distance (d) for LR1/LR2 and vehicles (e) and total distance (f) for LRC1/LCR2; dark bars
– results of our cooperative algorithm, fair bars – the best known solutions

The computational environment was composed of two groups of three agents of dif-
ferent types (tabu and evolutionary). If the basic algorithms were able to find the best
known solution, the meta-algorithms were unable to find a better one, unless it accepted
some lateness and penalty factor associated with it. In the situations when basic algo-
rithms were not able to find the best known solutions, the meta-algorithm sometimes
guaranteed an increase of solution quality. The best benefits of the introduced approach
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appeared in the problems with small time windows in the LR type problems. One can
also notice that the worst results were obtained for LRC problems and for long time
windows.

Figures 2 and 3 show the results obtained by the cooperative algorithm in comparison
to the best known solutions for benchmark problems with 100 and 200 request locations.
The figures include the results for cases with clusters, with even spatial distribution and
mixed clusters/distributed. For each figure, the results for small and large time windows
are presented. The number of used vehicles and a total travel distance for each group of
tests are presented in separate figures.
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Fig. 3. Results for 200 locations: vehicles (a) and total distance (b) for LC1/LC2, vehicles (c) and
total distance (d) for LR1/LR2 and vehicles (e) and total distance (f) for LRC1/LCR2; dark bars
– results of the cooperative algorithm, fair bars – the best known solutions

In table 3 the results obtained for cooperative algorithm are compared with the re-
sults obtained using only evolutionary island model based on algorithms presented in
the previous section and the multi-agent systems which uses only tabu-search heuris-
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tics. In the columns concerning the distances ”+” (”-”) means that cooperative algo-
rithm obtained better (worse) results with respect the total travel distance in the given
percentage of tests of the considered test class. In the columns concerning the number
of routes additional information is provided. It concerns a difference between the num-
ber of routes used by the cooperative solution and basic solutions (”+” – less routes, ”-”
– more routes).

Note that in the case of island model of evolutionary algorithm and multi-agent sys-
tem consisting of tabu agents sometimes not all benchmark problems in the given class
were solved. The table shows that mixing the solutions obtained from evolutionary and
tabu algorithms using the cooperative algorithm in general gives better results.

Table 3. Results obtained for cooperative approach in comparison to evolutionary algorithm and
agent-based tabu search

cooperative/evolutionary cooperative/agent-based tabu
problem routes distance routes distance
100 LC1 (25%,-1) (25%+),(25%-) (11%+)
100 LC2 (50%+) (25%+),(25%-)
100 LR1 (25%,+1) (75%+),(25%-) (10%,+1) (60%+)
100 LR2 (25%,+1) (100%+)
100 LRC1 (25%,+1) (100%+) (12.5%,+1) (75%+)
100 LRC2 (25%,+1) (75%+), (25%-) (37.5%+)
200 LC1 (25%,+1) (75%+), (25%-) (12.5,%+1) (50%+), (12.5%-)
200 LC2 (50%+), (25%-) (50%+) (37.5%+), (12.5%-)
200 LR1 (25%,+2),(25%,+1) (75%+) (50%,+2) (75%+), (25%-)
200 LR2 (25%,+1) (50%+), (50%-) — —
200 LRC1 (25%,+2),(25%,+1) (50%+),(50%-) — —
200 LRC2 (75%, +1) (25%+),(75%-) — —

The final total results are as follows:

– 33% was equal to the best known solutions,
– 22% was better than the best known solution, after the application of soft-time

windows and calculation of penalties,
– 14% was worse than the best know solutions obtained so far, considering the num-

ber of vehicles,
– 36% of results were worse then the best known solutions considering the total travel

distance.

7 Concluding Remarks

In this paper two different approaches of growing complexity for solving transportation
problems were presented. The results obtained using both systems do not differ sig-
nificantly from the best known solutions for the existing set of benchmark problems.
The cooperative approach not only allows to get slightly better results but also proves
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much more flexible. This is due to the use of soft time windows, because often it is
not possible to strictly predict times of the particular activities (like travel time, pickup
time, delivery time) or the definition of changes in the problem (due to breaking down
of the cars or withdrawing of requests). In relation to this, considering the possibility
of development of plans based on different definitions of quality function may make it
possible to find solutions which are more resistant to critical situations. It also makes it
possible to develop a set of plans which afterwards may be adapted to the current condi-
tions with respect to new or unpredicted events arising. Additionally, it may constitute a
basis for the development of solutions for dynamic problems (when new requests arrive
simultaneously while the vehicles are serving the previously accepted requests), which
will be the subject of further research.
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Abstract. Online dispute resolution is becoming the main method when
dealing with a conflict in e-commerce. Our framework exploits the argu-
mentation semantics of defeasible logic, shown to be a suitable choice
for legal reasoning. We introduce the rough set theory within defeasible
logic for handling the gradual information revealed in a legal dispute.
The rough sets are being used in the generation of defeasible theories
from available cases, but also in the inference rules required for the ar-
gumentation process. The framework can cover both aspects of the law:
case based reasoning and legal syllogism.

1 Introduction

Online Dispute Resolution (ODR) promises to become the predominant ap-
proach to settle e-commerce disputes, after ten years of fast and sustained de-
velopment [1]. Our goal is to provide a flexible decision support framework, ac-
cording to the current practice in law, with potential benefits to the e-commerce
and legal communities [2,3].

Flexibility in configuring ODR systems is both an opportunity and a challenge.
The opportunity is that any business can, quite quickly, have its own “court”
specialized in disputes that might occur in its specific business domain. The
challenge is that the technical instrumentation must simultaneously satisfy the
business viewpoint asking for trust [4] and the legal viewpoint, which requires
accordance with the current practice in law. One aspect covers how to combine
different knowledge sources such as the legal framework, contractual clauses, and
data representing precedent litigation cases for assisting the resolution process.

We base our framework on rough set theory and defeasible logic, enriched
with level of certainty to handle practical applications. After the presentation
of the formalism by defining both sustaining and defeating rules for a claim, we
show how available cases can be used to generate defeasible theories. Consider-
ing judicial decisions, four components are particularly relevant: the inference
method, the minimul level of certainty required to accept evidence, the selection
of relevant arguments, and the derivation of the outcome.
� Part of this work was supported by the grant 27702-990 from the National Research

Council of the Romanian Ministry for Education and Research.
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2 Argumentation Framework

Our framework exploits the argumentation semantics of defeasible logic which
is proved to be the most suitable choice for legal reasoning [5]. A theory in
defeasible logic is a structure 〈F , R〉 formed by a finite set of facts f(β) ∈ F ,
and a finite set of rules r(γ, cov) ∈ R, having the certainty factors β, γ and the
coverage factor cov ∈ [0..1]. A fact f(β) ∈ F is strict if β = 1 and defeasible if
β < 1. The rules are split in two disjoint sets: the set of support rules Rsup which
can be used to infer conclusions and the set of defeaters Rdef that can be use
only to block the derivation of conclusions. A rule r(γ, cov) ∈ Rsup is strict if and
only if γ = 1. The set of strict rules is represented as Rs = {r(γ) ∈ Rsup|γ = 1}.
A rule r(γ) ∈ Rsup is defeasible if and only if γ < 1. The set of defeasible rules
is represented as Rd = {r(γ) ∈ Rsup|γ < 1}.

Strict rules are rules in the classical sense, that is whenever the premises are
indisputable, then so is the conclusion, while defeasible rules are rules that can be
defeated by contrary evidence. Defeaters are rules that cannot be used to draw
conclusions, they are use for preventing conclusions. A defeasible conclusion q
can be defeated either by inferring the opposite ∼q with a superior certainty
factor (rebuttal defeater), or by attacking the link between the premises and the
conclusion q (undercutting defeater1). The problem arises since a defeater of the
consequent q attacks all rules which sustain q and there is no mean to attack
a single rule sustaining the respective conclusion. To handle this we introduce
negated rules, with the following notation: � for ¬ (a → b), meaning that “a
does not strictly determine b”, � for ¬ (a ⇒ b), expressing that “a does not
defeasibly determine b”, and �� for ¬ (a � b), meaning that “a does not defeat
b”. Rns denotes the set of negated strict rules, Rnd the set of negated defeasible
rules, and Rndef the set of negated defeaters.

Table 1. Attacking a sentence ϕ depends on its type

ϕ ∼ϕ

q ¬q, X → ¬q, X ⇒ ¬q

A → q ¬q, X → ¬q, A � q

A ⇒ q ¬q, X → ¬q, X ⇒ ¬q, X � ¬q, A � q

A � q A �� q

A � q A → q

A � q A ⇒ q

A �� q A � q

The type of counterargument depends on the type of the current sentence ϕ:
fact, support rule, defeater (table 1), where A represents the set of antecedents
sustaining q and X represents a different set of premises supporting the opposite
1 Intuitively, an undercutting defeater argues that the conclusion is not sufficiently

supported by its premises.
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conclusion. “A defeasible implies q” (A⇒ q) can be attacked either by i) simply
claiming the opposite fact ¬q, ii) deriving (strictly or defeasibly) the opposite
conclusion based on a different set of premises X (X → ¬q, X ⇒ ¬q), iii)
blocking the derivation of the consequent (X � ¬q), or iv) claiming the set A
does not suffice to sustain the consequent q (A � q).

3 From Data to Defeasible Theory

Consider a dispute scenario where the initial information provided by the plaintiff
reveals that the item was delivered in time, but supplementary charge
has occurred. As no clause has been signed regarding another remedy in case
of a dispute issue, the customer considers he is right to claim the money
back.

Collecting Similar Cases. The first phase consists of collecting all the cases
with the similar attributes and the respective remedy in each case. The decision
table we consider consists of the 98 cases for dispute resolution (table 2). The
condition attributes regards the payment arrangements, the delivery status, and
the existence or not of a contractual clause stipulating that no refund will be
considered, but only the item replacement. The column labeled “remedy” con-
tains the output of the resolutions, while N represents the number of similar
cases, considering the given attributes.

Table 2. Dispute resolution cases for the refund claim

# payment contractual clause delivery remedy N

1 supplementary charge yes partial refund 8

2 incorrect price yes on time refund 10

3 supplementary charge no on time refund 4

4 initial price yes partial no refund 50

5 incorrect price no delayed refund 6

6 supplementary charge no on time no refund 20

The current level of abstraction contains inconsistent data: facts 3 and 6
where the same premises imply opposite decisions. These cases contain hid-
den reasons which have influenced the outcome and which might be revealed in
the case of a low level dispute analysis. At this phase, the attributes payment,
contractual clause, and delivery describe the set of refund decisions approxi-
mately2. Under the rough set theory, the lower approximation Ba = {1, 2, 5}
represents the maximal set of facts that can certainly be classified as with the

2 The report The European Online Marketplace: Consumer Complaints 2005 conveyed
that 46% of the complaints regard delivery issues, 8% payment arrangements, and
8% quality of the items.
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refund outcome. The upper approximation Ba = {1, 2, 5, 3, 6} contains the pos-
sible cases where the refund decision might be taken. The difference Ba \ Ba =
B = {3, 6} is called boundary region of the set {1, 2, 3, 5} in which the refund
decision was taken. A set is rough if its boundary region is not empty [6].

Computing the Reducts. The next step in data analysis is to find a minimal
subset of data that preserves the degree of consistency. This reduct represent the
essential data used to derive the corresponding defeasible theory. Following [6],
table 3 presents one such reduct.

Table 3. Dispute resolution cases with consistency

# payment contractual clause remedy N
1’ supplementary charge yes refund 8

2’ incorrect price - refund 10

3’ supplementary charge no refund 4

4’ initial price - no refund 50

5’ incorrect price - refund 6

6’ supplementary charge no no refund 20

Every fact in the data table determines a decision rule. For instance the fact 1’
is synonym with the rule r′1 : supplementary charge∧clause⇒ refund. In order
to provide explanation of decisions in terms of conditions one can define inverse
decision rules [6]: r′′1 : refund ⇒ supplementary charge ∧ no refund clause.
Explanation capabilities are necessary [4] in such a dispute resolution system to
provide trustworthiness in the outcome.

Generating Defeasible Rules. We use the conditional probabilities in [6] to
derive defeasible rules. The support of a rule r : p ⇒ q represents the num-
ber of cases in the decision system that pose both properties p and q, where
p is the conjunction of premises. The certainty factor represents the accuracy
of the rule p ⇒ q, defined as γ(r) = γ(q|p) = support(p, q)/support(p). The
coverage factor reflects how well a specific case is replicable cov(r) = cov(p|q) =
support(p, q)/support(q). The certainty factor helps to introduce defeasible logic.
A rule with γ = 1 defines a strict rule, while a rule with γ < 1 a defeasible rule.
Strict rules act in the lower approximation region, while defeasible rules in the
boundary region. When new information is available, it guides the process into a
refined stage. The new facts are modeled with defeaters (rebuttal, undercutting
or negated rules), which may block the derivation of some defeasible conclusions.
In the rough set interpretation, the initial boundary region will be adjusted ac-
cording to the new information, for which the defeater semantics helps to adapt
the model built so far. Thus, an incorrect classification in the boundary region
can be challenged by an undercutting defeater which attacks the link between
the premises and the conclusion. From table 3 the pairs 〈γ, cov〉 are computed
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for each rule3, with the defeasible theory generated as illustrated in figure 1. The
frequency of the rules generated from all the computed reducts can be used to
define an importance measure of the rule [7].

r′
1〈1, 0.29〉 : supplementary charge, no refund clause → refund

r′
2〈1, 0.57〉 : incorrect price → refund

r′
3〈0.27, 0.14〉 : supplementary charge, no clause ⇒ ¬refund

r′
4〈1, 0.71〉 : supplementary charge → refund

r′
6〈0.83, 0.29〉 : supplementary charge, no clause ⇒ ¬refund

Fig. 1. Defeasible theory generated from available data

Handling Exceptions. Usually the rules that apply to only few cases are
seeded out [8]. In our approach marginal rules can be seen rather as exceptions
and modeled with defeaters. When a court distinguishes a case it points to

r′
1〈1, 0.29〉 : supplementary charge, no refund clause → refund

r′
2〈1, 0.57〉 : incorrect price → refund

r′
31〈0.75, 0.035〉 : item broken by client � refund

r′
32〈0.127, 0.105〉 : supplementary charge, no clause � ¬refund

r′
4〈1, 0.71〉 : supplementary charge → refund

r′
6〈0.873, 0.29〉 : supplementary charge, no clause ⇒ ¬refund

Fig. 2. Handling exceptions and counterexamples

some features that make that case different. If we can find such attributes for
a particular case, we can formalize it with undercutting defeaters. If it cannot
be distinguished by the precedent case it remains a counterexample. Here, the
marginal rules are given by the convergence factor. If we establish a threshold of
0.2 only rule 3’ with a cov = 0.14 is considered marginal. For this particular rule,
suppose that 3 out of the N = 4 cases in table 2 have, compared to the rule 6’,
a supplementary attribute item broken by client (not used in the first phase of
approximation). This exception is modeled with the undercutting defeater r′31,
with the certainty factor 3/4 = 0.75 and the coverage 1/28 = 0.035. For the
remaining rule of the N = 4 cases there is no known distinguished attribute.
3 The number of all cases satisfying the decision attribute refund is 8+1+4+6=28,

while for ¬refund is 20+50=70. Each judicial case has some meta-data attached,
such as court which filed the case or data of judgment. The indiscernability relation
of the cases in the rough set approach can be considered for both attributes of the
case and these meta-data. In the above computation, we consider all the cases having
the same relevance. By taking meta-data into consideration, one can introduce legal
strategies such as legis posterior or legis superior. Under the legis posterior doctrine,
instead of simply counting the cases, one may compute a weighted sum with the
contribution of each case. According to the legis superior principle, the outcome
imposed by the stronger court takes precedence when computing the certainty factor
of a defeasible rule.
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Therefore it represents a counterexample and is modeled with the negated rule
r′32 in figure 2. The increase in the certainty factor of the rule r′6 covers the idea
in common low that exception proves the rule in the case not excepted4. Note
also, the high confidence assigned to the defeater r′31, value reflecting one of the
legal principles for conflict resolution, known as legis specialis5.

4 Mediation in ODR

Since the inclination of mediators to accept as evidence the facts conveyed by the
disputants vary, the following components are relevant for the overall process.

4.1 Inference Rules in Argumentation

Given a conclusion q that can be derived based on strict premises in the rule
r[γ], meaning that the consequent is inferred to a degree of γr, the same con-
clusion might also be derived up to a certain degree βq ≤ γr using defeasible
premises. There are two inherited sources of uncertainty: either the premises
represent vague concepts or they represent a clearly defined concept, but the
facts can only be approximately assigned to the concept represented by the
premises. Consequently, the reliance on each conclusion depends both on the
certainty factor of the rule (representing how strong the premises sustain the
conclusion) and also on the membership function characterizing the premises.
We consider two complementary inference methods: fuzzy-based, and rough-
sets-based.

Fuzzy Inference. Using the weakest link principle for deductive arguments [9],
the conclusion q0 is as good as the weakest premise, given by min(β1, ..., βk),
where βi is the fuzzy membership. Additionally, the strength of the consequent
is also influenced by the certainty factor γ of the inferencing rule, with β0 =
min(βi, γ), i ∈ [1..k] (in the fuzzy approach) leading to the following rule.

q0[β0]
γ←−

∧

i∈[1..k]

qi[βi]

Rough Inference. The approximation of similarity [10] considers that it would
be correct to reason with the neighbors of perceived values, instead of a crisp
probability value. The conclusion q1 would inherit the inaccuracy of the perceived
premises and their associated tolerance spaces. One must assume that every

4 Known as Exceptio probam regulam in casibus not exceptis. Another interpretation
in legal practice is: if an excepting clause makes it impermissible when there is
no excepting clause, that it is necessary that it is permissible, which fits perfectly
with the semantics of defeaters. The “necessary” term is relaxed by introducing the
certainty factor.

5 Under this doctrine the most specific norm takes precedence.
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attribute in table 3 has a lower and upper approximation, taking into account
the inherent perceptual or contextual limitations, in the latter case two intervals
being defined.

In the case of continuous variables two intervals are defined, using the double
interval notation 〈UAI : LAI〉 [11], with UAI = [us, ue] representing the interval
where the fact is defeasibly derived, and LAI = [ls, le] the interval where the
fact is certainly true. With us

0 = max(us
i ), ue

0 = min(ue
i ), ls0 = max(lsi ), ue

0 =
min(ue

i ), i ∈ [1, k] we have the following rough rule.

q0[us
0, u

e
0] : [ls0, l

e
0]

γ←−
∧

i∈[1..k]

qk[us
k, u

e
k] : [lsk, l

e
k]

The certainty factor within the UAI is computed according to a rough mem-
bership function meeting three constraints: complementarity, nonmonotonicy,
border conditions [11]. The function is designed by the mediator taking in con-
sideration statistical data and some sense of symmetry.

4.2 Level of Acceptance

The next step consists in determining the minimum degree of certainty assigned
to a defeasible premise within the UAI in order to act as a valid antecedent
when it fires a rule. For each antecedent a supporting the consequent q, we
use a rough membership coefficient derived from the initial dataset: βa

min(q) =
support(a)/support(a, q). For instance, in table 3, βsupplementary charge

min (refund)
= (8+4)/(8+4+20) = 0.375 and for βcontractual clause

min (refund) = 4/(4+20) =
0.17. This parameter acts as a guideline in the process of accepting a fact as re-
liable for the current situation, based on the intuition that the attributes which
highly influence the outcome must meet a similar level of certainty to be ac-
cepted in the argumentation process. Some adjustments, in the spirit of toler-
ance spaces [10] may be useful, by considering the α× βa

min(outcome), where α
depends both on the reliance or importance given to the dataset in the current
dispute and on the phase of the current dispute, in both cases α −→ 16. Hav-
ing designed a rough membership function for each attribute, the mediator can
extract the certainty factor βq for that fact q. If βq ≥ α × βq

min(outcome), the
premise will be accepted in the argumentation process.

4.3 Accrual of Arguments

The same conclusion q can be sustained by several pro and counter arguments
with different degree of reliance βq ≥ α × βq

min(outcome). The accrual of argu-
6 It is possible to define thresholds to decide, during dispute resolution phases whether

a given claim is fulfilled or not. The certainty factor of the conclusion must meet
the level of confidence accepted for each dispute phase: scintilla of evidence in dis-
pute commencement (20%), preponderence of evidence in discovery phase (50%),
clear and convincing evidence (75%) in arbitration phase, and beyond reasonable
doubt in post-trial or appeal(95%), thresholds corresponding to credulous, caution,
or respectively skeptical attitudes [12].
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ments does not hold in our approach, since the types of defeaters are treated
differently to achieve different patterns of defeasible reasoning [9]. The strongest
undercutting defeater contributes to the decrease of the certainty factor and if
the remained strength of the conclusion overwhelms the most powerful rebuttal
defeater, the respective conclusion is derived.

βq =

{
max(βqi)−max(β∼qj ) if max(βqi )−max(β∼qj ) > max(β∼qk

)
0 otherwise

4.4 Defeasible Derivation of a Consequent

Having defeasible rules and accepted valid premises with a level of certainty, the
next step consists in inferring the possible consequences. Next we present the
derivation formula of a consequent according to the argumentation semantics of
the defeasible logic. A conclusion in a defeasible logic theory is a tagged literal
which can have the following forms: i) +Δq : ⇔ q is definitely provable using
only strict facts and rules (figure 3); ii) −Δq ⇔ q is not definitely provable;
iii) +∂q : ⇔ q is defeasible provable (figure 4); iv) −∂q ⇔ q is not defeasible
provable. A conclusion q is strictly provable (figure 3) if (1) q is a strict fact valid
or (2) there exists a strict rule r with conclusion q which rule (2.1) have all its
antecedents a valid and (2.2) there is no a strict negated rule ns, attacking the
rule r.

+Δ:
If P (i + 1) = +Δq then

(1) ∃q(β) ∈ F and β = 1 or
(2) ∃r ∈ Rs[q] so that

(2.1)∀a ∈ A(r) + Δa ∈ P (1..i)
(2.2) � ∃ns ∈ Rns[r]

Fig. 3. Definite proof for the consequent q

The sentence q is defeasibly provable7 (figure 4) if (1) it is strictly provable, or
(2) there is a valid support for q either (2.1) it is a defeasible valid fact, or (2.2)
there exists a rule with all premises valid sustaining that conclusion q and it is
not defeated by (2.3) a negated rule with a stronger certainty factor, or (2.4)
by an undercutting defeater def where (2.4.1) the defeater has an antecedent a
which cannot be derived, or (2.4.2) there exists a negated defeater stronger than
def , and (2.5) for all rebuttal defeaters d either (2.5.1) there is a negated rule
which defeats d or (2.5.2) the support for conclusion q after it is attacked by the
undercutter defeaters remains stronger than all the valid rebuttal defeaters. The
non strict order relation in (2.3), (2.4.2), and (2.5.2) does not provide a skeptical
7 The answer to a defeasible query is based on premises situated in the boundary

region, similar to the concept of approximation queries [10].
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+∂:
If P (i + 1) = +∂q then
(1) +Δq ∈ P (1..i) or
(2) q is supported

(2.1) ∃q(βq) ∈ F and βq
min < βq < 1 or

(2.2) ∃r(γr) ∈ Rsup[q], ∀a ∈ A(r) so that +∂a ∈ P (1..i), βa ≥ βa
min, not defeated

(2.3) ∀nd(γnd) ∈ Rnd[r] ∪Rns[r], γr ≥ γnd and
(2.4) ∀def(γdef ) ∈ Rdef [q] or

(2.4.1) ∃a ∈ A(def)− ∂a or
(2.4.2) ∃ndef(γndef ) ∈ Rndef [def ], γndef ≥ γdef and

(2.5) ∀d(γd) ∈ Rsup[∼q] with ∀a(βa) ∈ A(d), +∂a and βa ≥ βa
min either

(2.5.1) ∃nnd(γnnd) ∈ Rnd[d] ∪ Rns[d], γnnd > γd, or
(2.5.2) γr − γdef ≥ γd

Fig. 4. Defeasible derivation of consequence q

reasoning mechanism, meaning that both of q and∼q may be derived when they
have equal support8.

5 Discussion and Related Work

The essential advantage of our approach compared to existing ones for deriving
defeasible theories from data [3,13] is that we do not assume that the available
information is consistent. The reasoning pattern in HeRO [3] is conservative
since it does not draw any conclusion in case of doubt, a very hard (skeptical)
constraint for ODR systems, which has been relaxed in our framework.

The Apriori algorithm used to generate association rules can facilitate the dis-
covery of defeasible rules [13] by suggesting hypotheses, the candidate defeasible
rules reduced later by applying support, confidence and interest metrics. In the
rough set approach the irrelevant defeasible rule candidates are not even com-
puted, because they are derived from reducts which contain only the important
attributes. Our approach is adapted to the constraints of practical applications
where the information is revealed gradually and in the first phases indiscernabil-
ity is a fact of life.

To the best of our knowledge this is the first attempt to combine rough set
theory with defeasible reasoning, aiming to cover both aspects of the law: case
based reasoning and legal syllogism. Given the current demand for ODR tech-
nologies, our future work will enrich the framework with explanation capabilities
of the outcome. The variant of defeasible logic proposed here offers a rich knowl-
edge representation formalism and a clearly interpreted theory, with adequate
argumentative semantics for legal reasoning.
8 In some cases the law gives no straight answer and consequently judges can legiti-

mately decide either way. Allowing ambiguity propagation increases the number of
inferred conclusions, useful in the argumentation process, in ODR systems oriented
towards solution rather than finding the degree of guilt.
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Abstract. The service of Universal Network is different from that of
current network, because the former has QoS (Quality of Service) grad-
ing. Therefore, service discovery of Universal Network is quite distinct
from that of present network. In this paper, we present service discov-
ery with QoS measurement to adapt to Universal Network. Many re-
searches adopt semantic web technology-OWL-S (Web Ontology Lan-
guage for Services), which is innovative for service discovery. With the
aim of service discovery in Universal Network, we append QoS descrip-
tions to OWL-S. Such OWL-S with QoS information is called OWL-QoS
which is the groundwork for service discovery. Moreover, we also propose
a matching algorithm that allows matching on the bases of capabilities
and QoS descriptions of services.

Keywords: service discovery, semantic service, QoS, Universal Network.

1 Introduction

The Universal Network, which combines Telecom Network with IP Network, is
under developing. Providing services based on it for clients is a core of research
in the world. Providing QoS grading is one of the most important features in
the Universal network. Present Internet supplies best-effort services, which can
not meet users’ requirements. Users often need service with specified QoS.

The promotion of services has stimulated providers to develop and publish
their services. Consequently, service requesters can discover services which they
want through looking up registry center. In the Universal Network, Services
with distinct QoS will be published in the registry center, and requesters can
get services with distinct QoS. Thus, discovering services now requires more
sophisticated pattern.

In this paper we concentrate on discovering services with QoS measurement
in Universal Network for satisfying requesters’ high-grade demand. In practice,
we divide service discovery into two steps. In the first step, a requester discovers
the service using the basic ability description-what the service does, its input
and output parameters, preconditions, and effects [1]. This step satisfies the
requester’s basic need. The second step is to identify sufficiently similar service

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 707–715, 2007.
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for the requester with QoS measurement. This second step is the emphasis of
our research.

At present, many service discovery processes use keyword-matching technique
to find published services. This method often discontents requester with so many
unrelated results and leads to a bit of manual work to choose the proper service
according to its semantics. In order to realize automatic discovery, we adopt
semantic web technique-OWL-S, which is innovative for service discovery. With
OWL-S markup of services, the information necessary for service discovery could
be specified as computer-interpretable semantic markup at the service registry
or ontology-enhanced search engine could be used to locate the services auto-
matically [2].

OWL-S provides three essential types of knowledge about a service: a service
profile (what the service does), a service model (how the service works), and a
service grounding (how to use the service). The service profile describes what the
service can do, for purposes of advertising, discovery, and matchmaking [3]. It
describes the basic ability of service, so it is helpful for fulfilling the requirement
of the first step of service discovery mentioned afore.

In order to accomplish the second step of service discovery, we propose to add
QoS descriptions to OWL-S to specify the service’s QoS information in Universal
Network for satisfying users’ high-class requirement.

The rest of this paper is organized as follows: Section 2 introduces the architec-
ture of the Universal Network. Section 3 gives details about OWL- QoS which
is ontology with QoS descriptions. Section 4 discusses a matching algorithm
between advertisements and requests described in OWL- QoS that recognizes
various degrees of matching. Section 5 provides concluding remarks.

2 Services in the Universal Network

In the present Information Network, one kind of network mostly supports one
kind of service. For instance, Telecom Network basically faces phonetic business
while IP Network mainly supports data business. Due to the limitation of the
original model, the existing network can not satisfy diversified requirements es-
sentially. It is very meaningful to form Universal Network. The universal Network
Model is specified in [16] and [17].

According to [4], we give the definition of the service in the Universal Network:
Service is self-contained, modular applications that can be described, published,
located, and invoked over the Universal Network.

Providing various qualities of services for different users is one of the greatest
features of the Universal Network.Quality depends on user’s request and pay.
Paying more can get more. It means if user wants to have high quality service
then he should pay more.

QoS refers to connectivity, security and so on. The details will be discussed in
section 3.1. Pay means the spending of the user. For example, how much money
is invested.
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3 Ontology with QoS

A fundamental component of the Semantic Web will be the markup of services
to make the computer-interpretable, use-apparent, and agent-ready. The Web
Ontology Language for Semantic Web Services (OWL-S) supports automatic
service discovery via matchmakers through its service profile language construc-
ture [5]. For the sake of automatic service discovery, we adopt OWL-S markup for
describing services and so we can call the services marked by OWL-S as seman-
tic services. We can also call service discovery with OWL-S as semantic service
discovery. For the purpose of discovery with proper QoS in Universal Network,
we append service’s quality description to service profile. We will discuss QoS in
detail as follows.

3.1 The Definition and Classification of QoS

QoS Definition[6]. According to ITU-T QoS Study Group the term of QoS is
defined as: ”collective effect of service performances that determine the degree
of satisfaction by a user of the service” (ITU-T R.E.800) [7].

International Organization for Standardization has proposed another defini-
tion in ISO/IEC 10746-2 [8] for the term of QoS as follows:

“a set of qualities related to the collective behavior of one or more objects”
and the Internet Engineering Task Force (IETF) Network Working Group has
proposed the following QoS definition in RFC 2386 [9]:

“a set of service requirements to be met by the network while transporting a
flow”

We can see that ITU-T Study Group gives definition from the user’s point of
view while IETF Network Working Group defines QoS from network’s point of
view.

QoS Classification. From network’s point of view, we provide QoS with several
properties: Delay, Loss Probability, and QoS Spectrum.

Delay is classified into four grading:

1. Delay Time � 1s(It is applied to Interactive Service)
2. 1s < Delay Time � 3s (It is applied to Response-Service)
3. 3s < Delay Time � 10s (It is applied to Timely Service)
4. Delay Time > 10s (It is applied to Delay-Insensitive Service)

Loss Probability has three classes according to threshold which is given by
the Universal Network as f ollows:

1. Loss Probability 9 τ
2. Loss Probability is approximate to τ
3. Loss Probability / τ

While Expedited Forwarding, Assured Forwarding and Best Effort [10] belong
to QoS Spectrum.
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Properties of QoS are not only Delay, Loss Probability, and QoS Spectrum,
but also Connectivity, Security and Trustworthy Degree from user’s point of
view.

Table 1 shows the mapping from user’s view to network’s view. This mapping
is prepared for the matching of user’s request and network’s supply.

Table 1. Mapping from user’s view to network’s view

QoS properties from user’s view QoS properties from network’s view

Excellent
Good

Connectivity
bad

Delay Time � 1s
1s < Delay Time � 3s

Delay
Delay Time > 10s

High
Medium

Security
Low

Loss Probability � τ
Loss Probability ≈ τ

Loss Probability
Loss Probability & τ

High
Medium

Trustworthy Degree
Low

Expedited Forwarding
Assured Forwarding

QoS Spectrum
Best Effort

3.2 OWL-QoS

We call our ontology OWL-QoS which is designed for Universal Network; it is a
complementary ontology that provides detailed QoS information for OWL-S.

Original Service Profile. An OWL-S Profile describes three types of infor-
mation: the organization that supplies the service, the function of the service,
and the features of the service. The provider information consists of contact
information that refers to the entity that provides the service. Specifically, the
functional description of the service specifies the input required by the service,
the output generated, the preconditions required by the service and the expected
effects. The features specify the category of a given service, quality rating of the
service and so on [2].

The provider information and the feature descriptions are nonfunctional as-
pects of the description, while the function of the service is functional aspect of
the description.

Appending QoS specification to Service Profile. As service profile mostly
supports automatic discovery of the service, we add QoS specification to it for
adapting to the service discovery of the Universal Network and it forms OWL-
QoS.

The new service profile model which includes QoS is depicted as Fig.1.
Others are classes and properties which are the same as those in [2]. Class

QoS is the common superclass for all QoS specification. RequesterQoS and
ProviderQoS are subclasses of class QoS. RequesterQoS is the requester’s QoS
description and ProviderQoS is the QoS description from the Universal network’s
viewpoint.
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ProviderQoS has three object properties which are mentioned afore: Delay,
Loss Probability and QoS Spectrum. DelayValue and LossProValue which are
data properties belong to class Delay and class LossPro respectively. Class
QoSSpe owns three data properties: ExpeditedForw, AssuredForw and Best
Effort.

RequesterQoS also has three object properties mentioned in section 3.1. They
are Connectivity, Security and Trustworthy Degree. Data properties such as
Excellent, Good and Bad belong to Class Connectivity. Both Class Security and
Class Trustworthy Degree have three identical data properties: High, Medium
and Low.

We give definitions of classes QoS, ProviderQoS, and Delay in profile as fol-
lows. Definitions of RequesterQoS and ProviderQoS are identical while the defini-
tions of Loss Probability, QoS Spectrum, Connectivity, Security and Trustworthy
Degree are similar to the definition of class Delay.

Fig. 1. Service profile model with QoS

4 Semantic Service Discovery with OWL-QoS

Semantic service discovery is a process for location of semantic services that can
provide a particular class of service capabilities and a specified QoS, while ad-
hering to some client-specified constrats [2]. Using OWL-QoS markup of services
of Universal Network, the information that is useful for service discovery could
be specified as computer-interpretable semantic markup at the service web sites
[11]. A server could proactively advertise itself in OWL-QoS with a service reg-
istry, which is also called middle agent [2, 12, 13, 14], while requesters can find
the needed services when they query the registry. So OWL-QoS is helpful for
automatic service discovery.
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4.1 Semantic Service Discovery Model

Because the services of the Universal Network are graded according to the prop-
erties of QoS, it is essential to use profile with QoS for semantic service discovery.
Fig.2 shows the semantic service discovery model with QoS measurement.

Fig. 2. Service profile model with QoS

Advertisements DB stores advertisements provided by service providers and
the advertisement info includes basic ability description and QoS specification
of service. After receiving a request, the Matching Engine chooses the adver-
tisements that are relevant for the current request from Advertisements DB
according to Matching Algorithm. This Matching Algorithm will be detailed in
the next section. It includes QoS matching as its one point.

4.2 Matching Algorithm with QoS Measurement

Matching algorithm is a key for semantic service discovery. Some earlier al-
gorithms are too restrictive. An advertisement matches a request, when the
advertisement and the request describe exactly the same service. This is too re-
strictive, because advertisers and requesters have no prior agreement on how a
service is represented and they have different objectives. Such restrictive a match
inevitably bounds to fail to recognize similarities between advertisements.

We give a flexible matching algorithm. The result of the match is not a hard
true or false, however it relies on the degree of similarity between the concepts in
the match. The matching algorithm composes of two parts: basic ability match-
ing and QoS matching.

In this section we will discuss the matching algorithm in some detail. At first
we will present the main program. The request is matched against all adver-
tisements stored in Advertisements DB in Fig.2. When a match between the
request and any of the advertisement is found, it is recorded and scored to find
the matches with the highest degree [15].
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match(Request) {
ResultMatch = empty
forall Adv in advertisements do {
if Match(Request, Adv) then

ResultMatch.add(Request, Adv) }
return Sort(ResultMatch);}

A match between an advertisement and a request consists of the match of
all the outputs of the request against the outputs of the advertisement; all the
inputs of the advertisement against the inputs of the request; all the QoS re-
quirements of the request against the QoS requirements of the advertisement.
The algorithm for output matching is described as follows. The degree of success
is due to the degree of match detected. The QoS matching algorithm is the same
as output matching’s. The matching algorithm of inputs is similar to that of
outputs, but with the reversed order of the request and the advertisement, i.e.
the advertisement’s inputs are matched against the request’s inputs [15].

OutputMatch(OutputsRequest,OutputsAdvertisement)
globaldegreeMatch =Excellent
forall OutR in outputsRequest do
find OutA in OutputsAdvertisement such that

degreeMatch =maxdegreeMatch(OutR,OutA)
if (degreeMatch = error) return Failed
if (degreeMatch < globaldegreeMatch)
globaldegreeMatch = degreeMatch

return globaldegreeMatch;

The degree of match between two outputs, two inputs and two QoS depends on
the relation between the concepts associated with those inputs, outputs and QoS.
We give rules for outputs matching degree and QoS matching degree respectively.
The inputs matching degree rules are identical to ouputs’.

degreeMatch(OutR,OutA)
if OutA = OutR then return Excellent
if OutR is a subclassOf OutA then return Exact
if OutA subsumes OutR then return PlugIn
if OutR subsumes OutA then return Subsumes
otherwise Error

degreeMatch(QoSR,QoSA)
if QoSA = QoSR then return Excellent
if |QoSR-QoSA| = 1 then return Distinguishing
if |QoSR-QoSA| > 1 then return Distinguishing
otherwise Error



714 Y. Zhang et al.

In the above QoS degree matching, |QoSR-QoSA| = 1 means that according
to table 1, the distance between QoSR and QoSA is equal to 1. For instance,
if requester requires that the connectivity isent and the advertisement provides
1s<Delay Time � 3s, then the distance between QoS of requester and QoS of
provider amounts to 1.

At last, the sorting rule is showed. It reflects that it will select the match with
the highest score in the outputs firstly. If the outputs’ matching scores are equal,
then choose the match with the highest score in the QoS. Finally input matching is
used only to break ties between equally scoring outputs and equally scoring QoS.

SortingRule(Match1,Match2) {
if Match1.output > Match2.output then Match1 > Match2

if Match1.output = Match2.output & Match1.QoS >
Match2.QoS then Match1 > Match2

if Match1.output = Match2.output & Match1.QoS =
Match2.Oos & Match1.input > Match2.input then
Match1 > Match2

if Match1.output = Match2.output & Match1.QoS =
Match2.Qos & Match1.input = Match2.input then
Match1 = Match2}

5 Conclusion

Services are classified and have various qualities in Universal Network, so service
discovery of Universal Network is different from that of current Network. This
paper contributes to this challenge by presenting semantic descriptions of ser-
vices with QoS measurement, and we call it OWL-QoS. Describing a matching
algorithm with OWL-QoS is another contribution of this paper. This algorithm
allows matching of advertisements and requests not only on the bases of the ca-
pabilities that they describe, but also on QoS which they specify. In the future,
the research on Universal Network will still be a point. As part of our future
work, we would like to delve into automatic service invocation, composition and
interoperation in Universal Network.
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Abstract. Detection of natural selection at the molecular level is one of
the crucial problems in contemporary population genetics. There exists
a number of statistical tests designed for it, however, the interpretation
of the outcomes is often obscure, because of the existence of factors like
population growth, migration and recombination. In his earlier work, the
author has proposed the multi-null methodology, and he applied it for
four genes implicated in human familial cancer: ATM, RECQL, WRN
and BLM. Because of high computational effort required for estimat-
ing critical values under nonclassical nulls, mentioned methodology is
not appropriate for selection screening. In the current paper, the author
presents novel, rough set based methodology, helpful in the interpreta-
tion of tests outcomes applied versus only classical nulls. This method
does not require long-lasting simulations and, as it is shown in the paper,
it gives reliable results.

Keywords: rough sets, natural selection, ATM, BLM, RECQL, WRN,
neutrality tests.

1 Introduction

Widely accepted Kimuras neutral model of evolution [1] states that, at the molec-
ular level, the majority of genetic variation is caused by the selectively neutral
forces like silent mutations and a genetic drift. Nevertheless, the model does not
contradict the existence of selection at molecular level, although the role of it is
not so important, as it had been thought before Kimuras work. When this work
was published and, after some discussion, accepted, the majority of the genome
was assumed to be selectively neutral. However, it is obvious that some muta-
tions must be deleterious (and in fact we know many of such mutations causing
serious genetic dysfunctions), some must be selectively positive (at least when
the environment is changing) and some are known to be responsible for a phe-
nomenon called balancing selection. Perhaps the most representative example of
a positive selection is the ASMP locus, which is a major contributor to the brain
size in primates [2,3]. Yet, even if the number of positive selections found grows
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up, the evidence for balancing selection is not so numerous. Therefore, the de-
tection of the signatures for balancing selection operating at the molecular level
remains one of the crucial problems in contemporary population genetics.

There exists a number of statistical non-neutrality tests [4,5,6,7] designed for
the detection of such a selection in a gene under study. However, the interpre-
tation of the outcomes of tests is hard because of the existence of factors like
population growth, migration and recombination, which are not included in clas-
sical null hypothesis [8]. In his earlier work (published in part in [9] and in part
unpublished), the author has proposed the multi-null hypothesis methodology,
and using it, he was able to detect the signatures of a balancing selection in
genes implicated in human familial cancer: in ATM (ataxia-telangiectasia mu-
tated) and in a helicase involved in a repair of the DNA called RECQL. He also
confirmed no evidence of such a selection in two other DNA helicases: WRN
(Werners syndrome, see [10]) and BLM (Blooms syndrome, see [11]).

Because of high computational effort required for computing (by computer
simulations) the critical values of the tests under nonclassical null hypotheses,
the methodology proposed earlier is not appropriate as a screening tool. In a
current paper the author presents rough set based methodology, helpful in the
interpretation of tests outcomes, applied versus only classical nulls. The use of
rough set theory for knowledge processing was dicated by the fact that test
outcomes can be naturally discretized to a few values only, such as statistically
non signinficant, statistically signinficant, or strongly statisctically significant.
Moreover, since the critical values for classical null hypotheses are known, this
method does not require time-consuming computer simulations and, as it is
shown in the paper, it gives relatively reliable results.

2 Materials and Methods

As genetic material for this study, there was taken the single nucleotide polymor-
phisms (SNP) data, taken from the intronic regions of target genes. They form
haplotypes, which can be used as tools to investigate the genetic diversity and
possible disease associations. The first locus analyzed is ataxia-telangiectasia mu-
tated (ATM) [12,13]. The ATM gene product is a member of a family of large
proteins implicated in the regulation of the cell cycle and in the response to
DNA damage. The other three genes include: human helicase RECQL, Blooms
syndrome (BLM) and Werners syndrome (WRN). The products of these three
genes are DNA helicases, enzymes involved in various types of DNA repair, in-
cluding mismatch repair, nucleotide excision repair, and direct repair. A number
of interesting facts about these genes were determined, including the question of
selection signatures, addressed by the author and his co-workers [9].

The ATM gene, located in human chromosomal region 11q22-q23, spans 184
kb of genomic DNA. The intron-exon structure of the WRN locus spanning 186
kb at 8p12-p11.2 includes 35 exons, with the coding sequence beginning in the
second exon. RECQL is composed of 15 exons, located at 12p12-p11 and spans
180 kb, whereas BLM, mapped to 15q26.1, has 22 exons and spans 154 kb. Blood
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samples for this study were collected from the residents of Houston, TX, from
four major ethnic groups: Caucasians, Asians, Hispanics, and African-Americans.

To detect departures from the neutral model, the following statistics were
used: Tajimas (1989) T (for uniformity, we follow here the nomenclature of Fu
[5] and Wall [7]), Fu and Lis (1993) F ∗ and D∗, Kellys (1997) ZnS and Walls
(1999) Q and B, as well as Strobecks S test. The definitions of these statistics
can be found in original works of the inventors, as well as, in a brief form, in
Cyran et. al. (2004) pilot study [9].

In this study the rough set based method is used to simplify the process of
determining whether the given gene is exhibiting the signatures of balancing se-
lection or not. Such a selection (if present) is reflected by statistically significant
departures from the null of the Tajimas and Fus tests towards positive values.
However, not all such departures are indeed caused by a balancing selection
[8], since such factors like population change in time, migration between sub-
populations and a recombination can be reflected by similar outcomes of these
tests. Therefore, a wide range of tests was included and the problem with the
interpretation of their combinations occurred.

In order to apply a rough set based methodology, the decision table was built
with tests outcomes treated as conditional attributes and a decision about the
balancing selection treated as the only decision attribute. Fortunately, basing on
previous studies, using multi-null methodology and heavy computer simulations,
the author was able to determine the value of this decision attribute for given
combination of conditional attributes. The purpose of this work was to propose
and verify that the automatic and reliable interpretation of the battery of tests
outcomes (perhaps without using all of them) can be done without application
of the time consuming multi-null strategy. Therefore, to find the required set
of tests, which is informative about the problem, there was applied the notion
of a relative reduct with respect to decision attribute. Also, in order to obtain
as simple decision rules as possible, the relative value reducts were used for
particular elements of the Universe. To study the generalization properties and
to estimate the decision error, the jack-knife crossvalidation technique was used.

3 Results and Discussion

The haplotypes for particular loci were inferred and their frequencies were es-
timated by using the Expectation-Maximization algorithm [14]. The results of
tests T , D∗, F ∗, S, Q, B and ZnS , together with the decision concerning the
evidence of balancing selection based on multi-null methodology, are given in
Table 1.

The rough set based analysis of the Decision Table 1 reveals that there exist
two relative reducts: RED1 = {D∗, T, ZnS} and RED2 = {D∗, T, F ∗}. It is
clearly visible that the core set is composed of tests D∗ and T , whereas tests
ZnS and F ∗ can be chosen arbitrarily, according to the automatic data analysis.
However, since it is known that both Fus tests F ∗ and D∗ are examples of tests
belonging to the same family, and therefore their outcomes are rather strongly
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correlated, it is advantageous to choose Kellys ZnS instead of F ∗ test. It is
so, because ZnS outcomes are theoretically less correlated with outcomes of
test D∗, belonging, as it was stated above, to the core and therefore required
in any reduct. Generally, the same rule should be applicable also to the cases
when the number of reducts is larger than two. However, the actual choice of
the appropriate reduct in such a case can be more difficult, and the advise of
a genetician should be of great relevance. The Decision Table 1 with set of
conditional attributes reduced to the set RED1 is presented in Table 2.

Table 1. The outcomes of the statistical tests for the classical null hypothesis. The
table includes: Fus D∗ test Walls B test, Walls Q test, Tajimas T test (known also
as Tajimas D), Strobecks S test, Kellys ZnS test, and Fus F ∗ test. The values of the
test are: Non significant (NS) when p > 0.05, significant (*) if 0.01 < p < 0.05, and
strongly significant (**) when p < 0.01. The last column indicates the evidence or no
evidence of balancing selection, based on the detailed analysis according to multi-null
methodology.

D∗ B Q T S ZnS F ∗ Balancing selection

AfAm * NS NS * NS NS * Yes
ATM Cauc * NS NS ** ** * ** Yes

Asian NS NS NS * NS * NS Yes
Hispanic * NS NS ** NS * * Yes

AfAm NS NS NS ** NS NS NS Yes
RECQL Cauc * NS NS ** NS NS ** Yes

Asian NS * * * NS * NS Yes
Hispanic * NS NS ** NS NS * Yes

AfAm NS NS NS NS NS NS NS No
WRN Cauc * NS NS NS NS NS NS No

Asian * NS NS NS NS NS NS No
Hispanic NS NS NS NS NS NS NS No

AfAm NS NS NS NS NS NS NS No
BLM Cauc NS NS NS * NS NS * No

Asian NS NS NS NS NS NS NS No
Hispanic NS NS NS NS NS NS NS No

After a reduction of the set of informative tests to set RED1 = {D∗, T, ZnS},
there was considered the problem of coverage of the discrete space generated by
these statistics, by the examples included in the training set. The results are
given in Table 3, and they reveal that in such a space the fraction of points,
which are included in training data, is only 30%. The next step was to apply the
notion of the relative value reducts to particular decision rules in the Decision
Table 2. The resulting new Decision Table is presented in Table 4. Basing on
this table, the Decision Algorithm 1 was obtained. Note that this algorithm
is simplified as compared to the algorithm that corresponds to the Decision
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Table 2. The Decision Table, in which the set of tests is reduced to relative reduct
RED1 composed of tests: D∗, T , and ZnS

D∗ T ZnS Balancing selection

AfAm * * NS Yes
ATM Cauc * ** * Yes

Asian NS * * Yes
Hispanic * ** * Yes

AfAm NS ** NS Yes
RECQL Cauc * ** NS Yes

Asian NS * * Yes
Hispanic * ** NS Yes

AfAm NS NS NS No
WRN Cauc * NS NS No

Asian * NS NS No
Hispanic NS NS NS No

AfAm NS NS NS No
BLM Cauc NS * NS No

Asian NS NS NS No
Hispanic NS NS NS No

Table 2. At the same time, it is more general, which can be observed in Table 5,
presenting the information analogous to Table 3. In Table 5, the coverage of
points is based on the number of points which are classified with the use of the
simplified Algorithm 1. One should notice that the fraction of points covered
by algorithm is 74%, however, since 11% is classified as both with and without
the evidence of balancing selection, therefore only 63% of the points could be
treated as really covered.

Algorithm 1

BALANCING_SELECTION If: T = ** or (T = * and D* = *) or ZnS = *
NO_SELECTION If: T = NS or (T = * and D* = NS and ZnS = NS)

Purely automatic knowledge processing technique resulting in Algorithm 1,
can be further improved by supplying it with the additional information, con-
cerning the domain under study. It is clearly true that, if a balancing selection
is determined by the statistical significance of the given test, then such a selec-
tion is even more probable when the outcome of this test is strongly statistically
significant.

Therefore, instead of equalities in Algorithm 1, there are proposed inequalities
in the generalized version referred to as Algorithm 2. Such inequality means that
the given test is at least of the value of statistical significance shown to the right
of the inequality sign, but it can obviously be also more significant. In other
words, the main difference between Algorithm 2, as compared to the Algorithm
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Table 3. The discrete space of three tests: D∗, T and ZnS . The domain of each test
outcome (coordinate) is composed of three values: ** (strong statistical significance
p < 0.01), * (statistical significance 0.01 < p < 0.05), and NS (no significance p > 0.05).
The given point in a space is assigned to: S (the evidence of balancing selection), N (no
evidence of balancing selection) or empty cell (point not covered by the training data).
The assignment is done basing on raw training data with conditional part reduced
to the relative reduct RED1 . Note that the fraction of points covered by training
examples is only 30%.

T
∗∗ ∗∗ NS

ZnS ZnS ZnS

∗∗ ∗ NS ∗∗ ∗ NS ∗∗ ∗ NS

∗∗
D∗ ∗ S S S N

NS S S N N

Table 4. The set of tests is reduced to reflect the relative reduct composed of tests:
D∗, T , and ZnS , and additionally the notion of relative value reduct is used to further
reduce the complexity of separate rows in a decision table

D∗ T ZnS Balancing selection

AfAm * * Yes
ATM Cauc ** Yes

Asian * Yes
Hispanic ** Yes

AfAm ** Yes
RECQL Cauc ** Yes

Asian * Yes
Hispanic ** Yes

AfAm NS No
WRN Cauc NS No

Asian NS No
Hispanic NS No

AfAm NS No
BLM Cauc NS * NS No

Asian NS No
Hispanic NS No

1, is that instead of formulas of the type testoutcome = ∗ it uses formulas of the
type testoutcome >= ∗, meaning that the test outcome is at least significant
(and perhaps strongly significant).

Algorithm 2 deals also with the problem of contradiction, and in such a case, it
generates no decision about the evidence of balancing selection in a gene under
study. The problem of covering points in a discrete space generated by three
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Table 5. The discrete space of three tests: D∗, T and ZnS , forming a relative reduct.
The domain of each test outcome (coordinate) is composed of three values: ** (strong
statistical significance p < 0.01), * (statistical significance 0.01 < p < 0.05), and NS
(no significance p > 0.05). The given point in a space is assigned to S and N (with the
meaning identical to that given in the caption of Table 3), or ”-” having the meaning of
contradiction between evidence and no evidence of the balancing selection. The space
is filled basing on the simplified Decision Algorithm 1, which uses the relative value
reducts varying among different training examples. Note that the fraction of points
covered is now 74%, but it includes 11% denoting the contradicting decisions, and such
a case should be treated as the lack of decision. Therefore, the real fraction of points
assigned with some decision is now 63%.

T
∗∗ ∗∗ NS

ZnS ZnS ZnS

∗∗ ∗ NS ∗∗ ∗ NS ∗∗ ∗ NS

∗∗ S S S - N
D∗ ∗ S S S S S S - N

NS S S S S N - N

tests in Algorithm 2 is presented in Table 6. This table shows that all points are
covered by Algorithm 2, yet since 22% are designated as contradictions, therefore
78% points in a space are really recognizable by this algorithm.

Moreover, the remainding fraction of 22% of points with no decision assigned
to them, are such points which denote situations that are extremely rare from
genetics point of view. Namely, these are the situations where the outcome of the
Tajima test T is non significant and, at the same time, the outcome of the Kelly
ZnS test is significant or even strongly significant. Such a situation has never
happened for any gene, for any population and for any of the null hypothesis,
considered in the detailed multi-null study. Therefore, even if one cannot totally
exclude such situations from theoretical point of view, in practice one meets
them very rarely.

Algorithm 2

BALANCING_SELECTION := False; NO_DECISION := False;
If T >= ** or (T >= * and D* >= *) or ZnS >= * then

BALANCING_SELECTION := True;
If T = NS or (T = * and D* = NS and ZnS = NS) then

If BALANCING_SELECTION then
NO_DECISION := True

else
BALANCING_SELECTION := False;

The comparison of Table 3 with Tables 5 and 6 shows the degree of generaliza-
tion (into unknown combinations of the tests outcomes). It was increased by the
application of rough set theory (Table 5) and by additional genetic knowledge
(Table 6). Both these strategies, when applied together, resulted in a relatively



Rough Sets in the Interpretation of Statistical Tests Outcomes 723

Table 6. The discrete space of three tests: D∗, T and ZnS , forming a relative reduct.
The domain of each test outcome (coordinate) is composed of three values: ** (strong
statistical significance p < 0.01), * (statistical significance 0.01 < p < 0.05), and NS (no
significance p > 0.05). The given point in a space is assigned to S, N or ”-” (with the
meaning identical to that given in captions of Tables 3 and ??). If any character is in
parentheses, it means, that the point is assigned to the given value not automatically.
Rather, the simple reasoning is used. It states that the selection is even more probable
for given test showing strong significance (**), when automatic knowledge acquisition
indicated such selection for this test being just significant (*) with the values of other
tests unchanged. The assignment in Table 6 is done basing on the Decision Algorithm 2,
which, similarly to Algorithm 1, uses the relative value reducts varying among different
training examples. Note that the fraction of points covered by the algorithm is now
100%, but 22% denotes the contradiction in the decision, and such a case should be
treated as the lack of decision. Therefore, the fraction of points really assigned with
the decision is now 78%.

T
∗∗ ∗∗ NS

ZnS ZnS ZnS

∗∗ ∗ NS ∗∗ ∗ NS ∗∗ ∗ NS

∗∗ S S S (S) (S) (S) (-) - N
D∗ ∗ S S S S S S (-) - N

NS S S S (S) S N (-) - N

high increase of covering of the space generated by test outcomes (from 30%
covered by the training examples, to 78% covered by the Algorithm 2).

However, here the question could be raised, what is the probability of correct
generalization into unknown situations. To study this problem, there was applied
automatic knowledge extraction procedure presented above, in the so-called jack-
knife cross-validation, which is known to be unbiased in estimating the decision
error of any classifier. Classical jack-knife strategy assumes that the training is
performed basing on all-but-one training examples, and that the testing is done
for the excluded example. After iterating this procedure N times (where N is the
number of training facts), the average of decision errors in separate iterations is
an unbiased estimate of the decision error. However, in case considered such a
strategy could give too optimistic results, because training facts describing one
gene in four different populations are not independent, and even after excluding
one of them some knowledge about it is passed to the classifier. That is why, to be
rigorous about the conclusions, the author decided to exclude from the iterations
all four examples concerning one particular gene, and perform training basing
on examples concerning three remaining genes.

The detailed presentation of results of cross-validation is beyond the scope of
this paper. Here, the author would only like to point out that relatively large
decrease of the number of training examples, which was the result of the assumed
strategy, could produce pessimistic estimates of the decision error. However, it
proved that even such pessimistic estimate as can be seen in Table 7, is small
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enough (12.5% with a variation between iterations equal to 0.0156) to claim that
the proposed methodology could be utilized as useful tool in looking for candi-
dates for more detailed analysis with computationally more requiring strategy,
like the multi-null methodology. The last statement is based on the fact that
as much as 87.5% correct recognitions of balancing selection for unknown genes
were done when the proposed rough set based methodology was applied, with
completely no need for performing long-lasting computer simulations for calcu-
lation of critical values of tests under non-classical null hypotheses (as required
by multi-null methodology). The results of cross-validation procedure are also
summarized in a form of confusion matrix in Table 8.

Table 7. The results of the cross-validation in a modified jack-knife strategy

Iteration Errors in populations Percentage of Decision
without gene African-American Caucasian Asian Hispanic correct decisions Error

ATM Y N N N 75% 25%
RECQL N N N N 100% 0%
WRN N N N N 100% 0%
BLM N Y N N 75% 25%
Average: 87.5% 12.5%

Table 8. The confussion matrix of the cross-validation test

Prediction

Lack of balancing selection Balancing selection

Actual Lack of balancing selection 7 1

value Balancing selection 1 7

4 Conclusion

Since the time of Kimura’s book [1] the search for the signatures of natural
selection at molecular level has become one of important directions in genetics.
However, many non-neutrality tests generate similar patterns for such depatures
from neutral model like population growth or substructure of population. Since
these factors influence different tests in a different way, the battery of tests can
be more informative than any separate one. The problem of interpretation of
a battery of such tests was considered in a paper. It proved that the rough
set based decision making system can correctly (i.e with the concordance with
time consuming mulit-null methodology) recognize 87.5% of cases of balancing
selection for genes not used in a training.
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Rough Sets in the Interpretation of Statistical Tests Outcomes 725

3T11F 010 29, and in the rough set related part under author’s activities BW2007
at SUT. The author would like also to thank to Prof. M. Kimmel from Rice
University in Houston for long discussions and advise concerning the multi-null
methodology using statistical non-neutrality tests.

References

1. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University
Press, Cambridge (1983)

2. Zhang, J.: Evolution of the Human ASPM Gene, a Major Determinant of Brain
Size. Genetics 165, 2063–2070 (2003)

3. Evans, P.D., Anderson, J.R., Vallender, E.J., Gilbert, S.L., Malcom, Ch.M. et al.:
Adaptive Evolution of ASPM, a Major Determinant of Cerebral Cortical Size in
Humans. Human Molecular Genetics 13, 489–494 (2004)

4. Fu, Y.X., Li, W.H.: Statistical Tests of Neutrality of Mutations. Genetics 133,
693–709 (1993)

5. Fu, Y.X.: Statistical Tests of Neutrality of Mutations Against Population Growth,
Hitchhiking and Background Selection. Genetics 147, 915–925 (1997)

6. Kelly, J.K.: A Test of Neutrality Based on Interlocus Associations. Genetics 146,
1197–1206 (1997)

7. Wall, J.D.: Recombination and the Power of Statistical Tests of Neutrality. Genet.
Res. 74, 65–79 (1999)

8. Nielsen, R.: Statistical Tests of Selective Neutrality in the Age of Genomics. Hered-
ity 86, 641–647 (2001)

9. Cyran, K.A., Polaska, J., Kimmel, M.: Testing for Signatures of Natural Selection
at Molecular Genes Level. J. Med. Inf. Techn. 8, 31–39 (2004)

10. Dhillon, K.K., Sidorova, J., Saintigny, Y., Poot, M., Gollahon, K., Rabinovitch,
P.S., Mon-nat Jr., R.J.: Functional Role of the Werner Syndrome RecQ Helicase
in Human Fibroblasts. Aging Cell 6, 53–61 (2007)

11. Karmakar, P., Seki, M., Kanamori, M., Hashiguchi, K., Ohtsuki, M., Murata, E.,
Inoue, E., Tada, S., Lan, L., Yasui, A., Enomoto, T.: BLM is an Early Responder to
DNA Double-strand Breaks. Biochem. Biophys. Res. Commun. 348, 62–69 (2006)

12. Golding, S.E., Rosenberg, E., Neill, S., Dent, P., Povirk, L.F., Valerie, K.: Ex-
tracellular Signal-Related Kinase Positively Regulates Ataxia Telangiectasia Mu-
tated, Homologous Recombination Repair, and the DNA Damage Response. Can-
cer Res. 67, 1046–1053 (2007)

13. Schneider, J., Philipp, M., Yamini, P., Dork, T., Woitowitz, H.J.: ATM Gene Muta-
tions in Former Uranium Miners of SDAG Wismut: a Pilot Study. Oncol. Rep. 17,
477–482 (2007)

14. Polanska, J.: The EM Algorithm and its Implementation for the Estimation of the
Frequencies of SNP-Haplotypes. Int. J. Appl. Math. Comp. Sci. 13, 419–429 (2003)



Indiscernibility Relation for Continuous

Attributes: Application in Image Recognition

Krzysztof Cyran and Urszula Stanczyk

Institute of Informatics, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland

{krzysztof.cyran,urszula.stanczyk}@polsl.pl

Abstract. The paper presents an application of rough sets in a prob-
lem defined for the continuous feature space used by hybrid, high speed,
pattern recognition system. The feature extraction part of this system is
built as a holographic ring-wedge detector based on binary grating. Such
feature extractor can be optimized and we apply for this purpose au-
tomatic knowledge acquisition and processing. Features from optimized
extractor are then classified with the use of probabilistic neural network
classifier. The methodology, proposed by one of the authors in earlier
works, has been further enhanced here by application of modified in-
discernibility relation. Modified version of this relation makes possible
natural application of discrete type rough knowledge representation to
problems defined in continuous space. We present an application of mod-
ified indiscernibility relation in the domain of image recognition.

Keywords: indiscernibility relation, ring-wedge detectors, probabilistic
neural networks, image recognition, evolutionary optimization.

1 Introduction

The pattern recognition problems are of great importance among applications of
machine learning. Therefore, many researchers and companies have focused their
attention on trying to build system which is reliable, fast and easily adaptable.
Hybrid solutions, designed to perform heavy computations in optical mode with
practically no time delays, and to post-process the optical results in classical
computers, are considered in the paper as the target for rough based optimization
of the feature extractor. We present enhancements in the system capable of size,
rotation and shift invariant recognition of the input images.

As the feature extractor of the system a holographic ring-wedge detector
(HRWD) has been proposed [1]. The first complete recognition system was com-
posed of a commercially available ring wedge-detector (RWD) and a neural net-
work [2]. The system, however, was lacking the possibility of adaptation because
of application of RWD instead of HRWD fitted specifically to given application.
According to optical characteristics the HRWD is a grating-based diffractive
optical variable device (DOVD) [3]. The first propositions of the methodology
suitable for optimization of HRWD considered the choice of the objective func-
tion. The analysis of this problem led Cyran, Mrozek and Jaroszewicz [4,5] to

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 726–735, 2007.
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choose as an objective the quality of approximation of the decision attribute by
conditional attributes. This notion is defined within the theory of rough sets,
originated by Pawlak [6]. The subsequent development of the theory was due to
work of such researches like (among others) Mrozek [7], Skowron and Grzymala-
Busse [8], Ziarko who proposed the variable precision model [9], or Pawlak and
Skowron [10,11,12].

The optimization of HRWD was successfully applied to ANN-based system for
recognition of the type of subsurface stress in materials with embedded optical
fiber [13,14,15] or in systems designed by Podeszwa, Jaroszewicz et al. [16,17]
for monitoring airplane engines wear. The purely optical version of considered
here recognition system was also studied [18] but its practical applicability is
limited by the slow development of technology of optical neural networks. The
serious problems with obtaining non linear activation function in an optically
implemented artificial neuron are the main reason for such a situation.

Remarkably, neural network is not the only type of classifiers that could be
used in classification of features generated by HRWD. Moreover, the first version
of optimization procedure was better designed for the rough set based classifiers.
The fact is due to identical, discrete nature of knowledge representation in the
theory of rough sets applied both in HRWD optimization and in subsequent
rough set based classification. The general ideas concerning the design of such
a rough classifier, as well as the project of the fast rough classifier implemented
as a programming logic device (PLD) can be found in [19,20].

However, systems obtained in these early works were suboptimal. This subop-
timality was a simple consequence of the fact, that the feature space generated
optically by the HRWD is always a continuous space. Therefore, a separate dis-
cretization of each conditional attribute, required by rough set based machine
learning methods, introduced highly nonlinear transformation and potentially
lost some useful information.

Natural enhancement could be possible if both, classifier and optimization
procedure worked in a continuous space. The first can be easily achieved by the
application of a probabilistic neural network classifier, but the latter demands a
modification of the indiscernibility relation in rough set theory.

We propose here to use one of possible generalizations of the indiscernibil-
ity relation, allowing for natural processing of real valued attributes. Such a
modification improves the results of evolutionary optimization of HRWD and
makes possible to avoid highly non linear transformation of separate features
corresponding to conditional attributes in the theory of rough sets.

The paper explains the mutual relationship between classical and modified
indiscernibility relations in the section 2. In the section 3 there is presented the
high speed HRWD-ANN based pattern recognition system, utilizing optimization
with modified indiscernibility relation. This section starts with foundations of
the system considered and continues with description of experimental results,
comparing the enhanced methodology with that published before. The discussion
and final conclusions are presented in the section 4.
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2 Modified Indiscernibility Relation

In our previous work we proposed to use as the objective function the approx-
imation of the decision attribute by conditional attributes. It is equivalent to
the statement, that the consistency measure of a decision table has been used,
as these two notions are different expressions of the same concept. Such a ob-
jective was proposed to be used in evolutionary optimization of HRWD. The
motivations supporting such a criterion have been considered in [4]. Even if they
seem to be reasonable, both from theoretical and experimental perspective, yet
assuming classical definition of indiscernibility relation, they always resulted in
suboptimal solutions.

Taking above into consideration, we decided to use such an indiscernibility
relation that defines two objects as indiscernible if they belong to the same
clusters in a continuous space (or subspaces). It makes possible to avoid the need
of independent discretization of individual features when calculating the rough
set based objective function. The consistency measure of decision table, used as
a criterion in optimization for classification, can be easily computed based on
modified indiscernibility relation, satisfying the demand that this relation should
be an equivalence relation, i.e. it should be reflexive, symmetric and transitive.
More general indiscernibility relations have been also proposed, however, for
classification the equivalence relation seems to be the most natural one.

Formally, let us consider the information system S =<U,Q, v, f > composed
of universe U , set of atributes Q, information function f , and a mapping v which
associates each attribute q ∈ Q with its domainVq. Let the process of discretiza-
tion be denoted as a vector function Λ: � card(C) → {1, 2, . . . , ξ},where ξ denotes
the number of clusters covering the domain of attributes q ∈ C. Furthermore, let
discretization of any individual attribute q ∈ C be denoted as a scalar function
Λ: � → {1, 2, . . . , ξ}. Then, the classical indiscernibility relation is defined as:

x IND0 (Λ[C]) y ⇔ ∀q ∈ C, f(x, Λ[q]) = f(y, Λ[q]) (1)

To introduce formally the modification that we propose to use in our pattern
recognizer, let us change the notation of indiscernibility relation from classical
form (1) dependent on unstructured set of attributes, to a version being depen-
dent on a family (set) of sets of attributes. Such modification makes it possible
to introduce hierarchy into originally unstructured set of attributes. If we denote
C = {C1, C2, . . . , CN} as a family of disjoint sets of attributes Cn ⊆ Q then the
originally unstructured set of attributes C ⊆ Q is equal to the union of elements
of the family C, i.e. C =

⋃
Cn∈C, Cn. Furthermore, let the indiscernibility rela-

tion be dependent on family C instead of being dependent on a set C. Note, that
both sets C and C contain the same collection of single attributes, however C
includes additional, second order structure, and C is a normal set of attributes.
If this structure proves to be irrelevant for the problem considered, it can be
simply ignored and we can go back to the classical version of indiscernibility
relation IND0. Let the modified indiscernibility relation IND1(C) ∈ U × U be
defined as
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x IND1 (C) y ⇔ ∀Cn ∈ C, Cluster(x,Cn) = Cluster(y, Cn) (2)

where x, y ∈ U , and Cluster(x,Cn) denotes the cluster, that the element x
belongs to. There are two opposite cases influencing the exact meaning of this
relation. The first is obtained when the family C is composed of exactly one set of
all conditional attributes C, and the second is when the family C is composed of
N = card(C) one-element sets containing different conditional attributes q ∈ C.
The classical form IND0 of the indiscernibility relation is obviously the latter
special case of modified version IND1, which can be denoted as IND0(Λ[C]) ≡
IND1(C)⇔ C =

{
{qn}: C =

⋃
qn∈C , {qn}

}
∧ Clus(x, {q}) = f(x, Λ[q]). In such a

case the clustering and discretization is performed separately for each continuous
attribute.

3 Application into Image Recognition System

As it was already stated, the feature extraction part of the system considered
is performed by optical methods. The information required for understanding of
Fraunhofer diffraction pattern sampling performed by HRWD, is presented in
this paper, as briefly as possible.

Let us assume that some amplitude transmittance denoted by f(x, y) repre-
sents the transparent image to be recognized. Let it be placed in a plane of the
Cartesian coordinate system, perpendicular to axis z and such that coordinate
z = 0. This situation is represented by the left part of the Fig. 1.

Fig. 1. The input plane with the transparent image f(x, y) and the observation plane
with observation point B, are parallel to each other and perpendicular to the optical
axis represented by the axis z of Cartesian coordinate system. Modified basing on [20].

The input image is illuminated by a plane wave Ep(x, y) = E0exp(ikr) of
coherent light. In the above equation k = [kx, ky, kz] and r = [rx, ry , rz] are
are wave and spatial vectors, respectively. Note, that this is the situation of
illuminating the hologram with amplitude transmittance f by a reference beam
(plane wave). The field directly behind the considered amplitude transmittance
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is given by the equation E(x, y) = f(x, y)Ep(x, y). At observation plane, that is
for points with coordinate z > 0 the integration over all spherical waves emitted
from points (x, y, 0) results in Fresnel-Kirchhoff integral, given by the equation
[14,20,21]:

E(ψ, ϕ, z) =
iE0

λ

∞∫

−∞

∞∫

−∞

f(x, y)
e−ikR

R

(
1
2

+
1
2

cosα
)

dxdy (3)

In (3) R and α denote radius and angle respectively. They extend from the
point, say A, of emission of light with length λ to the point, say B, of observation.
For points with coordinate z → ∞, i.e. when z / π(x2 + y2)/λ, so called
Fraunhofer approximation of the integral is (3) given by [14,20,21]:

E(ψ, ϕ, z) =
iE0

λz
e−

iπ
λz (ψ2+ϕ2)

∞∫

−∞

∞∫

−∞

f(x, y)e
i2π
λz (xψ+yϕ)dxdy (4)

Given in Fig. 1 basic optical setup generating Fraunhofer approximation of
Fresnel-Kirchhoff integral is of no practical use, since this approximation is ob-
servable for really great distances between input and observation planes (to
satisfy the assumption that z →∞). Therefore, additional element, namely the
spherical lens is very often applied. Such lens generates a phase delay Δ∅(x, y),
and thus it can be treated as a transparency with a complex amplitude trans-
mittance given by [14,20,21]:

tL(x, y) = e
iπ
λf (x2+y2) (5)

For a setup composed of the input image f(x, y) and the lens tL(x, y), the
Fresnel approximation becomes a Fraunhofer approximation in a back focal plane
(z = f) of the lens. In other words, Fraunhofer approximation of the Fresnel-
Kirchhoff integral is brought by the spherical lens from the infinity to its back
focal plane, which is expressed by [14,20,21]:

E(ψ, ϕ, z = f) =
iE0

λf
e−

iπ
λf (ψ2+ϕ2)

∞∫

−∞

∞∫

−∞

f(x, y)e
i2π
λf (xψ+yϕ)dxdy (6)

One can observe that equation (6) is a Fourier transform of the input image
f(x, y) up to the multiplication of the result with a spherical phase factor. How-
ever, since only the intensity can be directly observed or recorded, therefore in
practical applications the spherical phase factor can be omitted. The resulting
intensity, which is a Fourier power spectrum F 2(u, v) of the input transmittance
f(x, y), is called Fraunhofer diffraction pattern and the back focal plane of the
lens is often referred to as a Fourier plane.

After presenting the processing of the Fourier transform by the spherical lens,
let us consider the operation of the holographic ring-wedge detector. It is a circu-
lar element composed of rings and wedges, covered with rectangular diffraction
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gratings of different spatial frequency and orientation [1]. When HRWD is placed
in a Fourier plane, then it samples the Fraunhofer diffraction pattern by inte-
grating the power spectrum over rings and wedges. In this way, each region of
HRWD generates exactly one real-valued feature, and the value of this feature
is equal to the integral of the power spectrum integrated over that region.

Assuming that the Fraunhofer diffraction pattern is expressed in polar coor-
dinates (ρ, θ), features generated by rings Ri and features generated by wedges
Wj have the values [14,20]:

Ri =

π∫

0

ρi+1∫

ρi

F 2(ρ, θ)dρ dθ, Wj =

R∫

0

θj+1∫

θj

F 2(ρ, θ)dρ dθ (7)

In above equation R is the radius of the HRWD element, ρi (i = 1, . . . , NR)
are radii of rings and θj (j = 1, . . . , NW ) are angles of wedges. The numbers NR

and NW represent total numbers of rings and wedges respectively. Taking into
consideration well-known properties of Fourier transform and specific shapes of
HRWD regions it is clear, that the entire feature vector contains elements shift
and rotation invariant, but scale dependent (generated by rings), and shift and
scale invariant, but rotation dependent (generated by wedges). The answer to
the question: which invariances and which dependencies in a feature vector are
informative for the image recognition, is a task dependent problem, which can
be automatically resolved by a properly trained classifier.

When all classes can be represented by single clusters, the choice of the objec-
tive function in optimization of feature extraction is simple. In such a case the
distance between clusters can be used as an objective function. In more complex
problems, however, one class can be represented by points, which not necessarily
form single cluster in a feature space. These are so called multimodal distribu-
tions of data, and certainly they are more general as compared to single-cluster
per class distribution. However, even in the case of multimodal distribution of
data the distance between one class clusters belonging to different classes can
be used as an auxiliary criterion in bi-objective optimization. The definition of
the good main objective function is not a trivial task in such a situation.

In our previous work [4,5] we proposed the objective function as a coefficient
defined in the theory of rough sets. More specifically it was the consistency
measure γC(D∗) of the decision table with conditional attributes corresponding
to rings and wedges of HRWD, whereas the decision attribute was the class
of the image. In this study, we used this coefficient as a main criterion in the
evolutionary optimization.

As it was already stated, such an objective, when maximized, leads to the
feature space optimal for the rough classifiers. However, for ANN-based clas-
sifiers the feature space is suboptimal. The reason for this lies in the require-
ment of discretization light intensities independently of each other, as demanded
by classical definition of indiscernibility relation in rough set theory. Now, we
propose to use the same criterion, however, computed for modified version of
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indiscernibility relation defined by formula (2), and additionally to use auxiliary
criterion to separate one-class clusters in a feature space.

Defined above enhanced objective function is not differentiable and therefore,
gradient-based search method should be excluded. However, the HRWD can be
optimized in a framework of an evolutionary algorithm. As genetic operations
classical one-point recombination and uniform mutation have been used. The
selection was proportional, however it was used in the elitist model propagating
best solution from generation to generation with probability 1. The scalariza-
tion of objectives was done basing on the weighted average for the purpose of
proportional selection, and basing on the lexicographic order for the purpose of
elitist model.

4 Results and Conclusions

We verified the recognition abilities of presented system using PNN for classi-
fication. In order to show that presented methodology used for optimization of
HRWD is general and does not make any specific assumptions about the type of
images, we considered three different image recognition problems: 1) the recogni-
tion of speckle structures from the output of the optical fiber, 2) the recognition
of the type of the vehicle, and 3) the recognition of the type of road obstacle
based on infrared images.

In the first problem the experiments were conducted for a set of 128 images of
speckle patterns generated by intermodal interference occurring in optical fiber
and belonging to eight classes. We obtained the Fraunhofer diffraction patterns
of input images by calculating the intensity patterns from discrete Fourier trans-
form equivalent to (6). To compute the feature vectors we applied discrete forms
of equations (7).

To cross-validate the quality of recognition we applied modified jack-knife
methodology. In classical jack-knife strategy all-but-one examples are used for
a training, and the recognition of the example excluded from the training data
is iterated for all examples. However, in each iteration we excluded 8 images,
each belonging to different class. In this way we achieved 8-fold increase in the
computational time, required to cross-validate the results. The time course of
evolutionary optimization is given in the Fig. 2.

In the recognition of the type of vehicles we used a set of 128 images belonging
to 4 different classes: buses, trucks, vans and cars. However, in this experiment
each vehicle was represented by a set composed of 4 images shifted slightly, to
reflect the different conditions of exposure. Since the images of the same vehicle
are positively correlated therefore we always excluded from the training set all
4 images of the same car. To perform time-efficient cross-validation we excluded
in all iterations images of four vehicles belonging to different classes (that is we
excluded in fact 16 images). Therefore, we had to iterate such a procedure 8
times. The optimization of the HRWD in this experiment is presented in Fig. 3.

The images in the experiment of recognition of the type of the road obstacle
in the infrared light belonged to two classes: living creatures and others. We
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Fig. 2. Experiment with the recognition of speckle structures. Evolutionary optimiza-
tion of HRWD as a time course of the objective function for the best individual in a
population. Curve bestfit1 indicates the course of the main rough set based criterion,
curve bestfit2 represents the course of the additional distance based criterion, and
curve denoted bestfit3 is a weighted average of these criterions. Plot is presented in a
logarithm scale of time.

used a set of 64 such images. In the cross-validation, in each of 32 iterations two
images belonging to different classes were excluded. The optimization in this
experiment is presented in a Fig. 4.

Observe that even if the behavior of the second, distance based, criterion de-
noted by bestfit2 is different among Fig. 2, 3, and 4, the rough set based criterion
qualitatively looks similar. In all these courses, it follows a monotonic growth,
approximated by a straight line in the plot with log-time scale. Therefore, in a
linear time scale, the increase of this criterion can be approximated by a loga-
rithmic curve, reflecting the fact, that the more optimized the current solution,
the more difficult it is to optimize it further.

The cross-validation procedures described above indicated that the normalized
decision errors in these experiments were ranging from 14 to 5 percent suggesting
over-all relatively good recognition abilities of the system considered, especially
when it is taken into mind that the system is not dedicated for recognition of
specific types of images.

The theory of rough sets (and some generalizations of it, like variable precision
model) has been successfully applied in many machine learning problems. How-
ever, it is well known drawback of classical versions of these theories, that they
deal with continuous attributes in an unnatural way. To overcome this disad-
vantage we applied indiscernibility relation based on structural family of subsets
of conditional attributes (2), which is equivalently valid for classical theory of
rough sets as well as for the variable precision model, most often used in machine
learning concerning large data sets.

Such modified indiscernibility relation introduces the flexibility in applying a
particular case of it to the given application. In the case of continuous attributes
it allows for multidimensional cluster analysis, as opposed to one-dimensional
analyses required by classical form of indiscernibility relation. At the same time,
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Fig. 3. Experiment with the recognition of the type of vehicles. Further explanations
like in capture of Fig. 2.

Fig. 4. Experiment with the recognition of the road obstacle in infrared light. Further
explanations like in capture of Fig. 2.

the modified version remains the equivalence relation, which seems to be a nat-
ural choice in a classification problems.

When using modified relation IND1, in majority of cases the cluster analysis
should be performed in a space generated by all attributes. This corresponds to
a family C, which consists of only one set composed of all conditional attributes.
However, in this experimental study we used a family C = {CR, CW } composed
of two sets containing 8 elements each (card(C) = 16, card(CR) = card(CW ) =
8, card(C) = 2). Such a structure is suggested by the architecture and properties
of the HRWD that we used as a feature extractor.
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Abstract. This paper focuses on the clustering of leaf-labelled trees on
free leafset. It extends the previously proposed algorithms, designed for
trees on the same leafset. The term z-equality is proposed and all the
necessary consensus and distance notions are redefined with respect to z-
equality. The clustering algorithms that focus on maximizing the quality
measure for two representative trees are described, together with the
measure itself. Finally, the promising results of experiments on tandem
duplication trees are presented.

1 Introduction

This paper is a part of a larger work on applying data mining techniques to tree
data - tree mining. Tree mining techniques have large applications in bioinfor-
matics, image processing, text mining and others. This paper concentrates on
clustering techniques for leaf-labelled trees, which have their main applications
in the bioinformatics field. Previously in [1], we have presented techniques for
clustering leaf-labelled trees, where all the trees where built on the same leafset.
In this paper we enhance these methods so that they can be used for trees which
do not contain exactly the same leafsets. We call them trees on a free leafset. In
the first part of the paper we enhance the basic notions considering a tree repre-
sentation, distance measure and consensus methods so that they are applicable
to trees with free leafset. We introduce z-distance and z-consensus methods.
The next section concentrates on the clustering of leaf-labelled trees with a free
leafset. We show how to construct the algorithms for strict and majority rule
consensus tree as a representative tree. We also discuss the quality measure used
for assessing the clustering. Finally, we describe the results of clustering of tan-
dem duplication trees, which are the leaf-labelled trees on a free leafset taken
from bioinformatics field.

2 Basic Notions

2.1 Splits

One of the most popular leaf-labelled tree representations is the set of splits,
which highlights the leaf-labelled trees interpretation as a space partition.
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Definition 1 (Split). Split A|B (of a tree T with leafset L), corresponding to
an edge e is a pair of leafsets A and B, which originated by splitting tree T into
two disconnected trees whilst removing an edge e from a tree T , A ∪B = L.

If |A| or |B| is equal to 1, the split is trivial. Split A|B is a valid split if both sets A
and B are non-empty. The splits of tree T1 from Fig. 1 are: a|bcde, b|acde, c|abde,
d|abce, e|abcd, abe|cd, be|acd; among them abe|cd, be|acd are non-trivial splits.

Definition 2 (Split Equality). Two splits A|B and C|D are considered equal
iff (A = C and B = D) or (A = D and B = C).

The trees with free leafset cannot be compared easily if they are not built on the
same leafset. In particular, the conventional distance or consensus techniques
cannot be used, because splits, built on a different leafset cannot be equal. On
the other hand, there is a need to compare such trees to determine whether they
share common information or not. We present therefore, the restricted equality
as an efficient and well-interpretable method of comparing two trees on free
leafset.

Definition 3 (Restricted Split). Split s1 is a restricted version of split s2 on
the leafset z if it is built with removing leafs not in z from s2: sz

2 = s1.

Split restriction is a complementary term to the term restricted tree described
in [2]. It can be shown that the restricted tree of a tree T is built of restricted
splits of a tree T on the same set z.

Definition 4 (Restricted Split Equality(z-equality)). Splits s1 and s2 are
restrictedly equal on the leafset z, if their restricted versions on the leafset z are
equal: s1 =z s2 ⇐⇒ sz

1 = sz
2.

For example: abc|def and fabc|deg are restrictedly equal on the leafset abcde,
because their corresponding restricted splits: abc|de and abc|de are equal, how-
ever they are not equal on a leafset abcdef because their corresponding restricted
splits: abc|def and fabc|de are not equal.

Definition 5 (Split Coherence). Splits s1 and s2 are coherent if they are
z-equal on the leafset z that is an intersection of their leafsets

s1 ∼ s2 ⇐⇒ s1 =z s2 ∧ z = L(s1) ∩ L(s2).

Z-equality/coherence relations as opposed to normal split equality relations do
not determine whether two splits carry the same information but whether two
splits do not contain contradictory information with respect to given leafset. For
example abc|def and fabc|deg are not equal but they are restrictedly equal on
the leafset abcde, which means that set of leaves abcde in both splits is divided
identically. Both the z-equality and the coherence are the equivalence relations.
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2.2 Distance Between Leaf-Labelled Trees

One of the most popular distances for leaf labelled trees is a Robinson-Foulds
distance. R-F distance between two trees T1 and T2 with set of splits S1 and S2

respectively is defined as follows:

dR−F (T1, T2) = |S1 ∪ S2| − |S1 ∩ S2|. (1)

For the reasons described earlier, classic R-F distance will not work if even
one leaf is not present in both of the compared trees. Therefore, we extend the
R-F distance with respect to leaf-labelled trees on free leafset.

Definition 6 (z-distance). The z-distance for a given z is number of splits
that are not z-equal on some leafset z.

dz(T1, T2) = |S1 ÷z S2| = |S1 ∪z S2| − |S1 ∩z S2|,
, where

S1 ∪z S2 = {s : (r ∈ S1 ∨ r ∈ S2) ∧ (s = rz)},
S1 ∩z S2 = {s : (r ∈ S1 ∧ r ∈ S2) ∧ (s = rz)}.

(2)

Let us consider trees form Fig. 1 as an example. They are built on the following
splits:
T1 : a|bcde, b|acde, c|abde, d|abce, e|abcd, abe|cd, be|acd.
T2 : a|bcdef , b|acdef , c|abdef , d|abcef , e|abcdf , f |abcde, ab|cdef , ef |abcd,
def |abcd.
The z-distance, where z = abcd, is counted as follows:
The restricted splits are the following:
T1 : a|bcd, b|acd, c|abd, d|abc, ab|cd. T2 : a|bcd, b|acd, c|abd, d|abc, ab|cd.
Therefore the z-distance on set abcd equals 0.
Z-distance on set abcde is equal to 4 the same as for set abcdexy.
It may seem more natural to count the distance for two trees where z contains
common leaves of compared trees i.e. with respect to coherence relation rather
than z-equality. However, the distance defined in this way could not meet triangle
inequality, therefore it is not a metrics. There are more possible ways to define
the distance between leaf labelled trees on free leafset. However the z-distance is
both efficient and has a good interpretation. The value of z-distance for two trees
indicates the amount of contradictory information in those trees, with respect
to a given leafset. For an interpretation in phylogenetic analysis we may imagine
that we have two species trees that share common taxa a, b, c, d among others,
that are not shared. Counting z-distance on abcd, we want to check how much
the information about relations of these particular taxa differ in given trees. Z-
distance is a natural extension of R-F distance, because for trees with the same
leafset it will give the same result.

2.3 Consensus Methods Extensions for Free Leafset

Consensus methods in phylogenetic analysis are used to extract common infor-
mation from set of trees and represent it as a single tree. The most popular are a



Clustering of Leaf-Labelled Trees on Free Leafset 739

Fig. 1. Two leaf-labelled trees on free leafset and their z-restricted on a leafset abcd
and common-restricted strict consensus trees

strict consensus tree and a majority rule consensus tree. Strict consensus tree is
built of splits that occur in all of the input trees. Majority-rule consensus tree is
built of splits that occur in the majority of the input trees. Consensus methods
used for trees with free leafset will result in empty consensus tree split-set (al-
ways for strict and often for a majority-rule). Therefore we extend these terms
with respect to restricted splits.

Definition 7 (z-restricted Strict Consensus Tree). For a profile of trees
T1, . . . , Tn z-restricted strict consensus tree is built of valid splits s such that s
is restrictedly equal on z to at least one split in each tree, in other words, split s
is a restricted version of at least one split in each tree on leafset z.

Tzc(T1, . . . , Tm) : Szc =

(
m⋂

i=1

)z

Si. (3)

Definition 8 (Common-restricted Strict Consensus Tree). Common-
restricted consensus tree is a z-restricted consensus tree where z is an inter-
section of all corresponding leafsets L1, . . . , Ln.

In order to construct z-restricted or common-restricted tree, we restrict all splits
to a leafset z, and count classic consensus tree. For trees from the Fig. 1, the z-
restricted strict consensus tree on a leafset abcd contains a|bcd, b|acd, c|abd, d|abc,
ab|cd (see Fig. 1 - TCZ) and the common-restricted strict consensus tree consists
of: a|bcde, b|acde, c|abd, d|abceande|abcd (see Fig. 1 - TCC)

Property 1. For any given set of trees T1, . . . , Tm and a set z.

Tzc(T1, . . . , Tm) = Tzc(T1, Tzc(T2, . . . , Tm)), (4)

where Tzc is z-restricted strict consensus tree on leafset z.
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Proof.

Tzc(T1, . . . , Tm) : Szc = (
⋂m

i=1)zSi =
⋂m

i=1 Sz
i ,

Tzc(T1, Tzc(T2, . . . , Tm)) : Szc = (
⋂m

i=2 Sz
i ) ∩ Sz

1 =
⋂m

i=1 Sz
i .

(5)

Definition 9 (z-restricted Majority-rule Consensus Tree). For a profile
of trees T1, . . . , Tn, z-restricted majority-rule consensus tree is built of valid splits
s such that s is restrictedly equal on z to some split, from the majority of trees.

Definition 10 (Common-restricted Majority-rule Consensus Tree).
Common-restricted majority-rule consensus tree is a z-restricted consensus tree,
where z is an intersection of all corresponding leafsets L1 . . . Ln of the whole
profile.

In the Fig. 2 and Fig. 3 there are examples on z-restricted on abcdef and common-
restricted majority rule consensus trees.

Fig. 2. Profile of trees together with their z-restricted on abcdef and common-
restricted majority- rule consensus trees

The examples from Fig. 2 and Fig. 3 show that choosing a set z is not obvious.
If an intersection of leaves is used, sometimes the tree may lose some interesting
information, like in example from Fig. 2, however taking a larger leafset may
bring totally uninformative tree like in example from Fig. 3. Finding most infor-
mative z-restricted majority-rule consensus tree is another interesting task for
future considerations.

Property 2. For any given set of trees z-restricted majority-rule consensus tree is
a middle tree with respect to z-distance i.e. it minimizes the sum of z-distances
between itself and all the trees. (Theorem 1 is a proof of this property)

Lemma 1. For any set of trees T1, . . . , Tm on the same leafset if TM is a
majority-rule consensus tree then

TM : min
m∑

i=1

d(Ti, TM ) (6)

(this was proved by [3] ).
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Fig. 3. Profile of trees together with their z-restricted on abcdef and common-restricted
majority- rule consensus trees

Theorem 1.

TMz : min
m∑

i=1

dz(Ti, TMz). (7)

Proof.

TM : min
∑m

i=1 d(Ti, TM )⇒ T z
Mz : min

∑m
i=1 d(T z

i , T
z
Mz)

⇒ T z
Mz : min

∑m
i=1 dz(Ti, TMz),

because dz(Ti, TMz) = d(T z
i , T

z
Mz)

⇒ TMz : min
∑m

i=1 dz(Ti, TMz),
because TMz = T z

Mz.

(8)

Consensus methods presented above are suitable for representing common infor-
mation in leaf-labelled trees on free leafset.

3 Clustering of Leaf-Labelled Trees on Free Leaf-Set

The aim of our clustering techniques is to divide trees into k groups in such a
way the clustering is possibly the best towards our quality measure.

3.1 Quality Measure

The quality measure is based on the informativity of the representative trees of
each cluster. The representative may be any predefined tree that shares common
knowledge of all the trees, it can possibly be strict consensus tree, majority-rule
consensus tree or other. The representative tree shall only contain the knowledge
present in input trees but nothing more. We can state that SR ⊆

⋃
i∈C Sz

i , which
is again the free-leafset extension of what was proposed in [1]. Here we focus on
z-restricted (also common-restricted as a special case) strict consensus tree and
majority-rule consensus tree, because these trees can be efficiently counted with
simple algorithms. The quality is counted as follows:
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1. select the k representative trees, one for each cluster
2. count how much information is lost when replacing the whole dataset of trees

with k representative trees - this is information loss
3. count how much information is lost when replacing the whole dataset with

a single representative tree - this is one-cluster information loss
4. count information gain as follows:

IG =
ΔIC0 −ΔI

ΔIC0

, (9)

which shows how much our clustering is better from no clustering.

The informativity of a tree is simply the amount of non-trivial splits contained
by tree [4], therefore information loss for a cluster is counted with formula:

ΔICx =
l∑

i=1

|Si ÷z SR|. (10)

For further information on informativity and information gain please refer
to [1].

3.2 Clustering of Leaf-Labelled Trees with Free Leafset with a
z-Restricted Strict Consensus Tree as a Representative Tree

The aim of this clustering is to divide trees into k groups in such a way that
information gain towards the z-restricted strict consensus tree is maximal. For
this purpose we choose an agglomerative clustering algorithm, but we replace
common merging strategies min, max and complete linkage with our own: min-
imum information loss linkage (agg-inf). We choose such two clusters to merge
that merging minimizes the information loss of the clustering after the merging.

arg min
Cx,Cy

ΔI ′ −ΔI. (11)

This way it automatically maximizes the information gain in each step. Fortu-
nately, while selecting the clusters to merge, we do not need to count complete
information loss for all possible mergings. It is enough to count the components
of the two candidate clusters (x, y) and one resulting cluster (z). So the merging
condition:

arg min
Cx,Cy

ΔIz − (ΔIx + ΔIy). (12)

Due to this property and Property 1 we can construct the algorithm that is
very efficient. In such an algorithm, the clusters in each step are represented
only with their consensus trees and the amount of trees assigned. Moreover, the
information loss in each step is not completely counted, because the minimum
loss linkage in each step can be determined on the basis of consensus trees
informativity in the previous step. It can be shown, (which we omit due to lack
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of space), that for a agg-inf clustering for a given z used for z-distance and
z-restricted strict consensus tree

ΔI ′ −ΔI = lx ∗ (|SCx | − |SCx ∩z SCy |) + ly ∗ (|SCy | − |SCx ∩z SCy |), (13)

where lx and ly are the amount of trees in clusters candidate for merge and |Sc|
is the amount of splits in corresponding consensus trees.

3.3 Clustering of Leaf-Labelled Trees with Free Leafset with
z-Restricted Majority Rule Consensus Tree as a Representative
Tree

The aim of this clustering is to divide the trees into k groups in such a way
that the information gain towards the z-restricted majority-rule consensus tree
is maximal. For this purpose we choose k-mean clustering algorithm. Because of
Property 2, which states that majority-rule consensus tree is a middle tree, we
can use it as a centroid in k-mean algorithm whose objective function will be
automatically identical to ours because its objective function is as follows:

min
C,{TMk

}K
k=1

K∑

k=1

∑

C(i)=k

d(Ti, TMk
). (14)

3.4 Z Parameter Selection

The main problem of this approach is the selection of set z. We may think of an
application, for example from phylogenetic analysis, where particular taxa let’s
say a, b, c, d are of a special interest. In this case, the quite obvious thing is to
choose a set z as abcd. On the other hand, we may also think of such a clustering
where no particular taxa is preferred. For a phylogenetic or duplication trees,
where all the clustered trees share most but not all leaves, we may choose z
as an intersection of leaves. However, when the input data contains a weakly
connected set of leaves such an approach will not bring any reasonable results.
There is a need to provide a distance measure that does not require arbitrary
z selection, for example based on coherence relation. Construction of a middle
tree for such distance is required as well. We intend to do it in future studies.

4 Results

Below we describe the results of clustering tandem duplication trees, which are
the leaf-labelled trees on free leafset taken from a bioinformatics field. Tandem
duplication is a DNA sequence built of the adjacent copies of a pattern. The ad-
jacent copies are not exactly the same as they diverged over time, due to point
mutations. Tandem duplications are thought to be a result of events based on the
duplication of one or more already existent copies. Tandem duplication process
can be illustrated as a leaf-labelled tree where the labels on leaves correspond to
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Table 1. Quality of clustering with various algorithms

k Agg-inf Agg-min Agg-max Agg-compl K-mean

10 0.83 0.49 0.73 0.73 0.85
9 0.76 0.41 0.73 0.73 0.65
8 0.68 0.32 0.62 0.62 0.68
7 0.61 0.25 0.54 0.54 0.60
6 0.51 0.19 0.50 0.50 0.53
5 0.45 0.11 0.29 0.37 0.49

Table 2. Sample clustering results

k Agg-inf Agg-min Agg-max K-mean

5-12 48(1.0):81(2.0): 423(0.0): 39(2.0): 69(1.0): 189(1.0): 202(0.0): 15(2.0):
80(2.0):78(1.0): 46(2.0): 8(2.0): 134(1.0): 11(2.0): 61(1.0): 23(2.0):
93(1.0): 77(1.0): 34(2.0): 42(2.0): 42(2.0): 77(1.0): 6(6.0): 17(3.0):
98(1.0):69(2.0) 21(2.0): 11(2.0) 46(2.0): 56(2.0) 11(6.0): 16(2.0)

9-12 40(1.0):170(0.0): 343(0.0):1(6.0): 277(0.0):17(1.0): 158(0.0):54(1.0):
41(1.0):32(1.0): 1(6.0):1(6.0): 15(2.0):12(2.0): 37(1.0):18(2.0):
15(2.0):7(4.0): 1(6.0):1(6.0): 8(1.0):7(1.0): 15(2.0):4(6.0):
14(2.0): 32(1.0) 2(4.0): 1(6.0) 5(2.0): 10(1.0) 21(3.0): 44(1.0)

the position of a given copy in a sequence. There are techniques that are able to
reconstruct such a tree, basing on a sequence, especially the differences between
the copies [5]. In general cases such trees are unrooted due to problems with
estimating time on the basis of those differences. Here we have performed ex-
periments on tandem duplication trees which were reconstructed with DTScore
algorithm [5]. The sequences were retrieved from Tandem Repeats Database [6].
We have examined trees that contained from 5 up to 12 copies due to efficiency
barriers considering trees reconstruction. The selection of z was natural as an
intersection of leafsets of examined trees. So when examining for example trees
consisting of 9-12 copies at a time, a leafset containing 1, 2, 3, 4, 5, 6, 7, 8, 9 is
chosen. As a sample of results we present the agg-inf algorithm as opposed to
standard min, max and complete linkage clustering for strict consensus and k-
mean algorithm for majority-rule consensus. The input trees were pre-processed
by removing duplicating trees for more reliable results. In the Table 1 we show
the results of clustering the trees with 5-12 copies, for a different number of clus-
ters (k). Because of the large possible number of different trees the clustering
results is only reliable for at least 5 groups. In the Table 2 the sample clustering
results for 8 groups are presented, where trees with 5-12 and 9-12 leaves were
tested. The results are presented in format: 203(0.0):179(1.0): 69(2.0): 80(2.0):
93(1.0) which indicates how many trees were assigned to the following groups:
203,179,69,93 and what was the informativity (numer of non-trivial splits) of a
representative tree -(value in brackets). In all cases, the agg-inf strategy was bet-
ter then others, even up to 75%. For experiments with smaller range of copies,
the informativity of representative trees was significantly higher.
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5 Discussion

In this paper we have presented the methodology aimed at the clustering leaf-
labelled trees on a free leafset. Although we perform experiments for tandem
duplication data, our approach is described in general terms. In the future there
will be a need to construct a better distance measure that does not require
arbitrary z selection and allows more accurate clustering. A middle tree for such
a distance is also required. There is also a need to test the proposed methods
for trees from other disciplines.
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Abstract. Most information about the external world comes from our
visual brain. However, it is not clear how this information is processed.
We will analyze brain responses using machine learning methods based
on rough set theory. We will test the expertise of the visual area V4, which
is responsible for shape classifications. Characteristic of each stimulus are
treated as a set of learning attributes. We assume that bottom-up infor-
mation is related to hypotheses, while top-down information is related
to predictions. Therefore, neuronal responses are divided into three cat-
egories. Category 0 occurs if cell response is below 20 spikes/s (sp/s),
indicating that the hypothesis is not valid. Category 1 occurs if cell ac-
tivity is higher than 20 spikes, implying the hypothesis is valid. Category
2 occurs if cell response is above 40 sp/s; in this case we conclude that
the hypothesis and prediction are valid. By using experimental data we
make a decision table for each cell, and generate equivalence classes. We
express the brains basic concepts by means of the learners basic cate-
gories. By approximating stimulus categories with concepts of different
cells we determine core properties of cells, and differences between them.
On this basis we have created profiles of their receptive field properties.

Keywords: V4, machine learning, bottom-up, top-down processes, neu-
ronal activity.

1 Introduction

Most of our knowledge about function of the brain is based on electrophysiologi-
cal recordings from single neurons. In the lower visual areas like the retina, LGN
or V1 (primary visual cortex) it is relatively easy to find an optimal stimulus
for each neuron. The receptive fields in these areas are small and simple. On the
other end, in the area designated as IT (inferotemporal cortex), receptive fields
are very large and optimal stimuli are generally unknown, though they could
be as complex as faces. In consequence, different laboratories propose different
often contradictory hypotheses on the basis of their different testing stimuli. An-
other part of the confusion is related to non-uniform properties of neurons in
area V4 of the brain. Therefore we do not know if different experimental results
and hypotheses are related to different methods and classifications or to different
classes of cells.
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In order to clarify these confusions, we propose the use of rough set theory
(Pawlak, [1]) to classify concepts of different cells as related to different stimuli
attributes. We define an information system [1] as a pair S = (U,A) where
U denotes a nonempty set of objects, and A set of attributes. For each pair
(a, u), a ∈ A, u ∈ U the value a(u) is a unique element of V (a value set).
The indiscernibility relation of any subset B of A, or IND(B), is defined [1]
as follows: (x, y) ∈ IND(B) if and only if a(x) = a(y) for every a ∈ B, where
a(x) ∈ V . IND(B) is the equivalence relation, and [u]B is the equivalence class
of u. The concept X ⊆ U is B − definable if for each u ∈ U either [u]B ⊆ X or
[u]B ⊆ U −X . B

¯
X = {u ∈ U : [u]B ⊆ X} is a lower approximation of X . The

concept X ⊆ U is B− indefinable if is not B−definable and exists such u ∈ U
that [u]B ∩X �= ∅. B̄X = {u ∈ U : [u]B ∩X �= ∅} is an upper approximation of
X .

2 Methods

Most of our analysis will be related to data from Pollen et al. [2]. As mentioned
above we have divided all cell responses into three ranges. Activity below 20
sp/s is defined as a category 0 cell response. Activity above 20 sp/s is defined
as category 1, and activity above 40 sp/s as category 2. The reason for choosing
the minimum significant cell activity of 20 sp/s is as follows. During normal
activity our eyes are constantly moving. Our fixation periods are between 100
and 300ms, which is similar to those of monkeys (averaged fixation duration was
195± 168ms(SD), median 144ms [3]).

Assuming that a single neuron, in order to give reliable information about
an object, must fire a minimum of 2-3 spikes during the eye fixation period, we
obtained a minimum frequency of 20 sp/s. We assume that these discharges are
related to bottom-up information (hypothesis testing) and that they are related
to the objects form.

The brain is constantly making predictions which are verified by comparing
them with sensory information. These tests are performed in a positive feedback
loop ([4], [5]). If prediction is in agreement with the hypothesis, activity of the
cell increases approximately twofold ([4]). This increased activity is related to
category 2. (neuronal discharges of 40 sp/s). We will represent data from Pollen
et al. [2] in the following table. In the first column there are different measure-
ments of neurons. Neurons are classified by numbers related to various figures
in [2]. Different measurements of the same cell are denoted by letters (a, b,).
For example, 11a denotes the first measurement in neuron 1 Fig. 1, 11b - etc.
Stimulus properties are as follows:

1. orientation in degrees appears in the column labeled o, and orientation band-
width is labeled by ob.

2. spatial frequency is denoted as sf , spatial frequency bandwidth is sfb
3. x-axis position is denoted by xp and the range of x-positions is xpr
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4. y-axis position is denoted by yp and the range of y-positions is ypr
5. x-axis stimulus size is denoted by xs
6. y-axis stimulus size is denoted by ys
7. stimulus shape is denoted by s: for grating s = 1, for vertical bar s = 2, for

horizontal bar s = 3, for disc s = 4, for annulus s = 5

Stimulus attributes can be express as: B = {o, ob, sf, sfb, xp, xpr, yp, ypr, xs,
ys, s}. Cell responses are denoted by r and divided into three ranges: r0: activity
below 20 sp/s; r1: activity above 20sp/s; r2: activity above 40sp/s .

3 Results

We have analyzed several neurons from [2]. Below we have shown modified figures
from the above work, along with their decision tables. On this basis we have
generated figures comparing the category of the stimulus with the concept of
the brain cell. Fig. 1 shows tests performed on two neurons. Curves describe
responses to long narrow bars which in Fig. 1A, C are oriented vertically and
in Fig. 1B, D horizontally. They change their position along the x and y axis.
The light intensity of bars is constantly changing these are so-called drifting
gratings [2]. The cell in the left part of Fig. 1 (Fig. 1A, B) does not show strong
responses. Only when a vertical (Fig. 1A) or horizontal bar (Fig. 1C) is near the
middle of the receptive field the cells activity reaches 20 spikes/s. It means that
this stimulus has category 1. More interesting is the second cell (on the right Fig.
1C, D). It shows several areas of strong activity where not only category 1 but

Fig. 1. Curves represent approximated responses of two cells (A,B) and (C, D) from
area V4 to vertical and horizontal bars. Bars changed their position in Xpos or Ypos
directions and responses of the cell was measured. Mean SE are marked in the figures.
Stimulus attributes are shown in the table below. Cell responses are divided to two
ranges (concepts) by horizontal lines. Plots are modified on the basis of [2].



Checking Brain Expertise Using Rough Set Theory 749

also category 2 are realized. As one can notice, these hot spots are not symmetric
along the middle of the receptive field, but they divide the receptive field into
several smaller subfields. Such results are the basis of the idea that the receptive
field of V4 neurons can be divided into several independent parts (see Fig. 3). In
the next step of our analysis, we have converted these data into decision table
(Table 1). In the top row of the table is a list of stimulus attributes, next two
rows describe the first cell other rows describe the second cell from Fig. 1. As
it was mentioned above different rows are related to different measurements.
Results presented in the decision table for the second cell are shown in Fig. 2
as the preferred stimulus for this cell. Fig. 2 shows areas in the receptive field
where category 1 (left side) and category 2 (right side) are fulfilled and become
concept 1 and concept 2.

Table 1. Decision table for two cells shown in Fig. 1. Attributes ob, sf, sfb were con-
stant and they are not presented in the table

cell o xp xpr yp ypr xs ys s r

11a 90 0 0.6 0 0 0.5 1 2 1
11b 0 0 0 -0.4 1.5 2 0.5 3 1
12a 90 -0.6 1.3 0 0 0.4 4 2 1
12a1 90 -0.6 0.8 0 0 0.4 4 2 2
12a2 90 1.3 1.1 0 0 0.4 4 2 1
12a3 90 1.3 0.6 0 0 0.4 4 2 2
12b 0 0 0 -2.2 1.5 4 0.4 3 1
12b1 0 0 0 -2.2 1.2 4 0.4 3 2
12b2 0 0 0 0.15 1.4 4 0.4 3 1
12b3 0 0 0 0.15 0.5 4 0.4 3 2

Let us define 0 ≤ xpr ≤ 0.8 will be sign as xprn (narrow bar x-range),
0 ≤ ypr ≤ 1.2 will be sign as yprn (narrow bar y-range),

Decision rules related to the cell in Fig. 1C, D are following:

DR1: o90 ∧ (xp−0.6 ∨ xp1.3) ∧ xprn ∧ xs0.4 ∧ ys4 → r2

DR2: o0 ∧ (yp−2.2 ∨ yp0.15) ∧ yprn ∧ xs4 ∧ ys0.4 → r2

Fig. 3 shows responses of a V4 cell tested with different stimuli. Fig. 3A
shows cell responses to different orientation of grating of a large disc covering the
receptive field (RF). Fig. 3B shows changes in cell response when the width of the
stimulus was changed. Figs. 3C-F show cell responses when different subfields
of the RF were stimulated with different stimulus orientation. Cell responses
were also tested when the same subfields were stimulated with different spatial
frequencies (Fig. 5 in [2]). These results are summarized in the Table 2.

Let us simplify 0 < ob < 50 will be sign as obn (narrow orientation band-
width), ob > 100 as obw (wide orientation bandwidth), 0 < sfb < 2 as sfbn ,
and sfb > 2.5 sfbw.
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Fig. 2. Schematic representation of Table 1. Long bars have approximate concepts
of the stimulus, with their positions in the receptive field related to the concept in
the brain. The left schematic represents concept 1, while the right side represents
concept 2.

Fig. 3. Modified plots on the basis of [2]. One V4 cell tested with different stimuli. A.
a large disc of grating covering the whole receptive field B. a large slit of light which
changes its width. Notice the optimal width is around 1 deg. C-F Curves representing
responses of the same cell when its subfields (their positions are shown in plots) are
covered with a small 2 deg grating discs 2 deg apart in a 6 deg receptive field.
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Table 2. Decision table for one cell responses to subfields stimulation Fig. 3C-F and
Fig.5 in [2]. Attributes xpr, ypr, s are constant and they are not presented in the table.

cell o ob sf sfb xp yp r

3c 172 105 2 0 0 0 1
3c1 10 140 2 0 0 0 1
3c2 180 20 2 0 0 0 2
3d 172 105 2 0 0 -2 1
3d1 5 100 2 0 0 -2 1
3d2 180 50 2 0 0 -2 2
3e 180 0 2 0 -2 0 0
3f 170 100 2 0 0 2 1
3f1 10 140 2 0 0 2 1
3f2 333 16 2 0 0 2 2
5a 180 0 2.3 2.6 0 -2 1
5b 180 0 2.5 3 0 2 1
5c 180 0 2.45 2.9 0 0 1
5c1 180 0 2.3 1.8 0 0 2

Fig. 4. Schematic representation of Table 2. Receptive field was divided into five sub-
fields which were stimulated separately. Gray circles indicate cell response was below
20 spikes/s. The two upper plots represent subfields tuning to different orientations,
whereas the two lower plots describe spatial frequency tuning. Plots on the left are
related to concept 1, and plots on the right to concept 2. Notice that on the basis of
the plots on the right one can imagine an optimal stimulus. It cannot be the same
stimulus in all subfields because it does not give a strong response (Fig. 3A).
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Table 3. Decision table for eight cells comparing the center-surround interaction. All
stimuli were concentric, and therefore attributes were not xs, ys, but xo outer diameter,
xi inner diameter. All stimuli were localized around middle of the receptive field so
xp = yp = xpr = ypr = 0 and were skipped.

cell ob sf sfb xo xi s r

101 0 0.5 0 7 0 4 0
101a 0 0.5 0 7 2 5 1
102 0 0.5 0 8 0 4 0
102a 0 0.5 0 8 3 5 0
103 0 0.5 0 6 0 4 0
103a 0 0.5 0 6 2 5 1
104 0 0.5 0 8 0 4 0
104a 0 0.5 0 8 3 5 2
105 0 0.5 0 7 0 4 0
105a 0 0.5 0 7 2 5 1
106 0 0.5 0 6 0 4 1
106a 0 0.5 0 6 3 5 2
107 0 0.5 0.25 6 0 4 2
107a 0 2.1 3.8 6 2 5 2
107b 0 2 0 4 0 4 1
108 0 0.5 0 6 0 4 1
108a 0 2 0 4 0 4 2
108b 0 5 9 6 2 5 2
20a 0.5 0.5 0 6 0 4 1
20b 0.3 0.5 0 6 0 4 2

Decision rules related to cell from Fig. 3 are following:

DR3: obn ∧ (yp0 ∨ yp2)→ r2

DR4: obw ∧ xp0 → r1

DR5: sfbn ∧ yp0 → r2

DR6: sfbw ∧ xp0 → r1

Notice that Figs. 2 and 4 show possible configurations of the optimal stimuli.
However, they do not take into account interactions between several stimuli,
when more than one subfield is stimulated.

Therefore we propose following Subfield Interaction Rules:

SIR1: facilitation when stimulus consists of multiple bars with small distances
(0.5 − 1 deg) between them, and inhibition when distance between bars is
1.5− 2 deg.

SIR1: inhibition when stimulus consists of multiple similar discs with distance
between them ranging from 0 deg (touching) to 3 deg.

SIR1: Center-surround interaction, which is described below in detail.

We will concentrate on the center-surround interaction. We will make a deci-
sion table for nine different cells tested with the disc covering their receptive field
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and an annulus when the center of the receptive field is not stimulated (Pollen
et al. [2] Fig. 10). If the center is stimulated with another stimulus attributes
then the surround inhibitory mechanism is also weak (Fig. 9B in [2]). In order
to compare different cells, we have normalized their optimal orientation which
will be denoted as 1.

The experiments test receptive field with disc and annulus stimuli, which could
be, described as following six categories:

Y0 = |o1 ob0 sf0.5 sfb0 xo7 xi0 s4| = {101, 105}

Y1 = |o1 ob0 sf0.5 sfb0 xo7 xi2 s5| = {101a, 105a}

Y2 = |o1 ob0 sf0.5 sfb0 xo8 xi0 s4| = {102, 104}

Y3 = |o1 ob0 sf0.5 sfb0 xo8 xi3 s5| = {102a, 104a}

Y4 = |o1 ob0 sf0.5 sfb0 xo6 xi0 s4| = {103, 106, 107, 108, 20a}

Y5 = |o1 ob0 sf0.5 sfb0 xo6 xi2 s5| = {103a, 106a, 107a, 108b, 20b}

Y6 = |o1 ob0 sf2 sfb0 xo4 xi0 s4| = {107b, 108a}

which are equivalence classes for stimulus attributes, which means that in
each class they are indiscernible IND(B). For simplicity we simplify orientation
bandwidth to 0 in {20a, 20b} and spatial frequency bandwidth to 0, in cases
{107, 107a, 108a, 108b}, and put values covered by the bandwidth to the spatial
frequency parameters. There are three ranges of responses denoted as ro, r1, r2

therefore the experts knowledge involves the following three concepts:

|ro| = {101, 102, 102a, 103, 104, 105}

|r1| = {101a, 103a, 105a, 107b, 108, 20a}

|r2| = {104a, 106a, 107, 107a, 108a, 108b, 20b}

which will be denoted as Xo, X1, X2.
We want to find out whether equivalence classes of the relation IND{r} form

the union of some equivalence relation IND(B), or whether B ⇒ {r}. We will
calculate the lower and upper approximation [1] of the brains basic concepts in
term of stimulus basic categories:

B
¯
X0 = Y0 = {101, 105}

B̄X0 = Y0∪Y2 ∪Y3∪Y4 = {101, 105, 102, 104, 102a, 104a, 103, 106, 107, 108, 20a}
B
¯
X1 = Y1 = {101a, 105a}

B̄X1 = Y1 ∪ Y5 ∪ Y6 ∪ Y4 =
{101a, 105a, 103a, 107a, 108b, 106a, 20b, 107b, 108a, 103, 107, 106, 108, 20a}
B
¯
X2 = 0

B̄X2 = Y3 ∪ Y4 ∪ Y5 ∪ Y6 =
{102a, 104a, 103a, 107a, 108b, 106a, 20b, 103, 107, 106, 108, 20a, 107b, 108a}
Concept 0 and concept 1 are roughly B − defined, which means that only with
some approximation can we say that stimulus Yo does not evoke a response
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(concept 0) in cells 101, 105, but that other stimuli Y2, Y3 can evoke no response
or weak (concept 1) or strong (concept 2) response. This is similar for concept
1. However, concept 2 is internally B−undefinable. Stimulus attributes related
to this concept should give us information about cell characteristics, but data
from the Table 3 cannot do it.

We can find quality [1] of our experiments by comparing properly classified
stimuli POSB(r) = {101, 101a, 105, 105a} to all stimuli and to all responses:
γ{r} = card{101,101a,105,105a}

card{101,101a,,20a,20b} = 0.2. We can also ask what percentage of cells we
fully classified. We obtain consistent responses from 2 of 9 cells, which means that
γ = 0.22. This is related to the fact that for some cells we have tested more than
two stimuli. What is also important from an electrophysiological point of view
is there are negative cases. There are many negative instances for the concept 0,
which means that in many cases this brain area responds to our stimuli; however
it seems that our concepts are still only roughly defined. Decision rules related
to cells listed in the Table 3 are following:

DR7: xo7 ∧ xi2 ∧ s5 → r1

DR8: xo7 ∧ s4 → r0

DR9: xo8 ∧ s4 → r0

They can be interpreted that large annulus (s5) evokes weak response, but large
disc (s4) evokes no response.

4 Discussion

The purpose of our study was to determine how different categories of stimuli
and particular concepts, as related to the expertise of a single cell. We can test
our theory on a set of data from David et al. [5], shown in Fig.5.

Assuming that the stimulus configuration in top two images on the left side
is similar to that proposed in Fig. 2, we can apply DR2 and SIR1. This means
that these images will be related to concept 2. Top-right and bottom-left im-
ages show significant differences between their center and surround, therefore
these images would also give significant responses. However, in the top-right
image only part of the surround is stimulated therefore DR4, DR6, and DR7
rules are applied. In the bottom-left image the object is localized in part of the
center and part of the surround: DR5 but SIR3. In consequence responses to
both images are related to the concept 1. In two bottom-right images there is no
significant difference between stimulus in the center and the surround. There-
fore the response will be similar to that obtained when a single disc covers the
whole receptive field: DR8, DR9. In most cells such a stimulus is classified as
concept 0.

In summary, we have showed that using rough set theory we can divide stimu-
lus attributes in relationships to neuronal responses into different concepts. Even
if most of our concepts were very rough, they determine rules on whose basis we
can predict neural responses to new, natural images.
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Fig. 5. In their paper David et al. [6] stimulated V4 neurons (medium size of their
receptive fields was 10.2 deg) with natural images. Several examples of their images
are shown above. We have divided responses of their cells into three concepts. Two left
images in top gave strong responses above 40 sp/s related concept 2. Image top-right
and bottom-left evoke responses above 20 sp/s related to concept 1. Two images on
the right in bottom row gave very weak related to concept 0 responses.
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Abstract. Stress echocardiography is an important functional diagno-
sis and prognostic tool that is now routinely applied to evaluate the risk
of cardiovascular artery disease (CAD). A complete dataset containing
data on 558 subjects undergoing a prospective longitudinal study is em-
ployed to investigate what attributes correlate with the final outcome.
The dataset was examined using rough sets, which resulted in a series of
decision rules that predict which attributes influence the outcomes mea-
sured clinically and recorded in the dataset. The results indicate that the
ECG attribute was very informative. In addition, prehistory information
has a significant impact on the classification accuracy.

1 Introduction

Heart disease remains the number one cause of mortality in the western world.
Coronary arterial disease (CAD) is a primary cause of morbidity and mortality
in patients with heart disease. The early detection of CAD was in part made
possible in the late 1970s by the introduction of echocardiography a technique
for measuring the physical properties of the heart using a variety of imaging tech-
niques such as ultrasound, and doppler flow measurements. The purpose of these
imaging studies is to identify structural malformations such as aneurysms and
valvular deformities. Although useful, structural information may not provide
the full clinical picture in the way that functional imaging techniques such as
stress echocardiography (SE) may. This imaging technique is a versatile tool that
allows clinicians to diagnosis patients with CAD efficiently and accurately. In ad-
dition, it provides information concerning the prognosis of the patient which
can be used to provide on-going clinical support to help reduce morbidity.

The underlying basis for SE is the induction of cardiovascular stress, which
generates ischemia, resulting in wall motion abnormality (WMA) distal to the
coronary lesion. In addition to detecting CAD, the technique is also routinely
employed to measure the extent of valvular heart disease. Normally, the walls
of the heart (in particular the left ventrical) change (move) in a typical fash-
ion in response to stress (i.e. heavy exercise). A quantitative measure called
the wall motion score is computed and its magnitude is directly related to the
extent of the WMA score. The WMA provides a quantitative measure of how
the heart responds to stress. Stress echocardiography (SE) was originally in-
duced under conditions of strenuous exercise such as bike and treadmills. In
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many cases though, patients are not able to exercise to the level required and
pharmacological agents such as dobutamine or dipyridamole have been used to
induce approximately the same level of stress on the heart as physical exercise.
Dobutamine in particular emulates physical exercise effects on the cardiovascu-
lar system by increasing the heart rate and blood pressure and impacts cardiac
contractility which drives cardiac oxygen demand [1]. A number of reports have
indicated that though there are subtle differences between exercise and phar-
macologically induced stress, they essentially provide the same stimulus to the
heart and can therefore, in general, be used interchangeably [2], [3].

In this paper, we investigate the effectiveness of dobutamine stress echocardio-
graphy (DSE) by analysing the results of a large study of 558 patients undergoing
DSE. The purpose is to determine which attributes collected in this study corre-
late most closely with the decision outcome. After a careful investigation of this
dataset, a set of rules is presented that relates condition attributes to decision
outcomes. This rule set is generated through the application of rough sets, a
data mining technique developed by the late Professor Pawlak [4]. In the next
section, we present an overview of the dataset, followed by a description of the
pre-processing stages.

1.1 The Dataset

The data employed in this study was obtained from a prospective dobutamine
stress echocardiography (DSE) study at the UCLA Adult Cardiac Imaging and
Hemodynamics Laboratory held between 1991 and 1996. The patients were mon-
itored during a five year period and then observed for a further twelve months
to determine if the DSE results could predict patient outcome. The outcomes
were categorised into the following cardiac events: cardiac death, myocardial
infarction (MI), and revascularisation by percutaneous transluminal coronary
angioplasty (PTCA) or coronary artery bypass graft surgery (CABG) [2], [3].
After normal exclusionary processes, the patient cohort consisted of 558 subjects
(220 women and 338 men) with a median age of 67 (range 26-93). Dobutamine
was administered intraveneously using a standard delivery system yielding a
maximum dose of 40 g/kg/min. There were a total of 30 attributes collected in
this study which are listed in Table 1. The attributes were a mixture of categor-
ical and continuous values. The decision class used to evaluate this dataset was
the outcomes as listed as listed above and in Table 1. As a preliminary evaluation
of the dataset, the data was evaluated with respect to each of the four possible
measured outcomes included in the decision table individually, excluding each of
the other three possible outcomes. This process was repeated for each of the out-
comes in the decision table. Next, the effect of the echocardiogram (ECG) was
investigated. Reports indicate that this is a very informative attribute with re-
spect to predicting the clinical outcome of a patient [3]. To evaluate the effect of
ECG on the outcomes, the base case investigation (all four possible outcomes)
was investigated with (base case) and without the ECG attribute. Lastly, we
investigated whether any prehistory information would provide a correlation be-
tween the DSE and the outcome. There were a total of six different history
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Table 1. The decision table attributes and their data types (continuous, ordinal, or
discrete) employed in this study (see [2] for details). Note the range of correlation
coefficients was 0.013 to 0.2476 (specific data not shown).

Attributename Attributetype

bhr basal heart rate Integer
basebp basal blood pressure Integer
basedp basal double product (= bhr x basebp) Integer
pkhr peak heart rate Integer
sbp systolic blood pressure Integer
dp double product (= pkhr x sbp) Integer
dose dose of dobutamine given Integer
maxhr maximum heart rate Integer
mphr(b) % of maximum predicted heart rate Integer
mbp maximum blood pressure Integer
dpmaxdo double product on maximum dobutamine dose Integer
dobdose dobutamine dose at which maximum double product Integer
age Integer
gender (male = 0) Level (2)
baseef baseline cardiac ejection fraction Integer
dobef ejection fraction on dobutamine Integer
chestpain (0 experienced chest pain) Integer
posecg signs of heart attack on ecg (0 = yes) Integer
equivecg ecg is equivocal (0 = yes) Integer
restwma wall motion anamoly on echocardiogram (0 = yes) Integer
posse stress echocardiogram was positive (0 = yes) Integer
newMI new myocardial infarction, or heart attack (0 = yes) Integer
newPTCA recent angioplasty (0 = yes) Level (2)
newCABG recent bypass surgery (0 = yes) Level (2)
death died (0 = yes) Level (2)
hxofht history of hypertension (0 = yes) Level (2)
hxofptca history of angioplasty (0 = yes) Level (2)
hxofcabg history of bypass surgery (0 = yes) Level (2)
hxofdm history of diabetes (0 = yes) Level (2)
hxofMI history of heart attack (0 = yes) Level (2)

attributes (see Table 1) that were tested to determine if each in isolation had
a positive correlation with the outcomes. In the next section, we describe the
experiments that were performed using rough sets (RSES 2.2.1).

2 Results

In the first experiment, each outcome was used as the sole decision attribute. The
four outcomes were: new Myocardial Infarction (MI) (28 cases), death (24 cases),
newPTCA (27 cases), and newCABG (33 cases). All continuous attributes were
discretised using the MDL algorithm within Rosetta ([9]). Note there were no
missing values in the dataset. A 10-fold cross validation was performed using
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Table 2. Confusion matrices for the base cases of the four different outcomes. The
label A corresponds to death, B to MI, C to new PTCA, and D to newCABG. Note
the overall accuracy is placed at the lower right hand corner of each subtable (large
bold).

A 0 1 B 0 1

0 204 7 0.97 0 205 4 0.98

1 2 10 0.80 1 0 14 1.0

0.95 0.22 0.92 0.94 0 0.92

C 0 1 D 0 1

0 207 9 0.96 0 191 25 0.88

1 1 6 0.14 1 0 7 1.0

0.97 0.10 0.93 0.96 0.0 0.93

decision rules and dynamic reducts. The results reported here are the average
values from 10 executions under identical conditions. Without any filtering of
the reducts or rules, Table 2 presents randomly selected confusion matrices that
were generated for each of the decision outcomes for the base case. The number
of rules was quite large and initially no filtering was performed to reduce either
the number of reducts nor the number of rules. The number of reducts for panels
A D in Table 2 were: 104, 159, 245, and 122 respectively. On average, the length
of the reducts ranged from 5-9, out of a total of 27 attributes (minus the 3 other
outcome decision classes). The number of rules (all of which were deterministic)
was quite large, with a range of 23,356-45,330 for the cases listed in table 2.
Filtering was performed on both reducts (based on support) and rule coverage
in order to reduce the cardinality of the decision rules. The resulting decision
rule set were reduced to a range of 314-1,197. The corresponding accuracy was
reduced by approximately 4% (range 3- 6%). Filtering can be performed on a
variety of conditions, such as LHS support, coverage, RHS support. For a discus-
sion of rule filtering, please consult [5], [6], [8] for a comprehensive discussions
of this topic.

The number of rules was quite large and initially no filtering was performed
to reduce either the number of reducts nor the number of rules. The number of
reducts for panels A D in Table 2 were: 104, 159, 245, and 122 respectively. On
average, the length of the reducts ranged from 5-9, out of a total of 27 attributes
(minus the 3 other outcome decision classes). The number of rules (all of which
were deterministic) was quite large, with a range of 23,356-45,330 for the cases
listed in table 2. Filtering was performed on both reducts (based on support)
and rule coverage in order to reduce the cardinality of the decision rules. This
technique has been employed successfully in similar types of biomedical datasets
(see [10], [11]. The resulting decision rule set were reduced to a range of 314-
1,197. The corresponding accuracy was reduced by approximately 4% (range
3-6%).

In the next experiment, the correlation between the outcome and the ECG
result was examined. It has been reported that the ECG, which is a standard
cardiological test to measure functional activity of the heart, should be corre-
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Table 3. Confusion matrices for the base cases without the inclusion of the ECG
attribute for the four different outcomes (as in Table 2). The label A corresponds to
death, B to MI, C to new PTCA, and D to newCABG. Note the overall accuracy is
placed at the lower right hand corner of each subtable (large bold).

A 0 1 B 0 1

0 206 5 0.98 0 209 0 1.0

1 2 10 0.80 1 0 14 1.0

0.95 0.22 0.92 0.94 0 0.92

C 0 1 D 0 1

0 207 9 0.96 0 191 25 0.91

1 1 6 0.86 1 0 7 1.0

0.97 0.10 0.93 0.96 0.0 0.93

lated with the outcome [2]. We therefore repeated the experiment in Table 2,
with the ECG attribute excluded (masked) from the decision table. The results
are reported in Table 3. Lastly, we examined the effect of historical information
that was collected and incorporated into the dataset (see Table 1). These histor-
ical attributes include: history of hypertension, diabetes, smoking, myocardial
infarction, angioplasty, and coronary artery bypass surgery. We repeated the
base set of experiments (including ECG) and withheld each of the historical at-
tributes one at a time and report the results as a set of classification accuracies,
listed in Table 4.

Table 4. The classification accuracy obtained from the classification using the exact
same protocol for the table reported in Table 2 (note the ECG attribute was included
in the decision table). The results are the average over the four different outcomes.

Attributename Classificationaccuracy

History of hypertension 91.1%

History of diabetes 85.3%

History of smoking 86.3%

History of angioplasty 90.3%

History of coronary artery bypass surgery 82.7%

In addition to classification accuracy, rough sets provides a collection of de-
cision rules in conjunctive normal form. These rules contain the attributes and
their values that are antecedents in a rule base. Therefore, the decision rules
provide a codification of the knowledge contained within the decision table. Ex-
amples of the resulting rule set for the base case, using MI as the decision
attribute is presented in table 5.

Lastly, to further validate and compare the accuracy of the classification el-
ement of this study, two standard neural networks (radial basis function and
feed forward multi-layer) were applied to this dataset. With both neural net-
work validation experiments, the inputs were the discretised version employed
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Table 5. Sample set of rules from the base case (+ ECG) with death as the outcome.
The right hand column lists the support (LHS) for the corresponding rule. These rules
were selected randomly from the rule set.

Decisionrule Support

dp([20716, *)) AND dobdose(40) AND hxofDM(0) AND anyevent(0)
= death(0)

19

dp([*, 13105)) AND dobdose(40) AND hxofDM(0) AND anyevent(0)
= death(0)

18

basebp([*, 159)) AND sbp([115, 161)) AND dose(40) AND dobdose(40)
AND dobEF([61, 71)) AND hxofDM(0) = death(0)

24

dp([*, 13105)) AND dobdose(35) AND dobEF([53, 61)) AND hx-
ofDM(1) = death(1)

14

dp([20633, 20716)) AND dobdose(40) AND baseEF([56, 76)) AND hx-
ofDM(0) AND anyevent(1) = death(1)

9

dp([*, 13105)) AND dobdose(30) AND hxofCABG(0) AND anyevent(1)
AND ecg([*, 2)) = death(1)

12

in the rough sets analysis and the outputs were the aforementioned four decision
classes. For the feed forward multi-layered network, training was applied using
a batch mode back propagation algorithm, with a momentum value - 0.1 and
a learning rate parameter = 0.2. The data was divided 70/30 (training/testing)
and the error was measured over 10 trials and the results averaged. The classi-
fication accuracy for this neural network was 86.8%. The radial basis function
network employed the same input/outputs and produced an overall accuracy
(after 10 trials, 70/30 training/testing) of 89.9%.

3 Conclusion

This dataset contained a complete set of attributes (30) that was a mixture of
continuous and categorical data. The data was obtained from a prospective study
of cardiovascular health obtained by professional medical personal (cardiogra-
phers). The attributes were obtained from patients undergoing stress echocardio-
graphy, a routine medical technique employed to diagnose cardiovascular artery
disease. From the initial classification results, the specificity of the classification
using rough sets was quite high (90+%) consistent with some literature reports
[2]. The accuracy produced by rough sets was higher than that generated using
neural networks such as multi-layer perceoptrons and a radial basis function. As
can be seen in Table 2, the sensitivity of the test was quite low, resulting in a
reduced classification accuracy. The effect of ECG, the attribute most correlated
with the clinical outcome of CAD, was measured by masking this attribute. The
results indicate that this attribute did not have a significant impact on the over-
all classification accuracy, but did manage to increase the sensitivity when it was
excluded from the decision table. This is an interesting result that may require
specific medical knowledge in order to interpret. The effect of patient history
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was examined, and the results (see Table 4) indicate that in general, relevant
medical history did have a positive impact on the classification accuracy. This
result was quantified by examining the classification accuracy when these 5 his-
tory factors were removed from the decision table (one at a time). The effect of
their combination was not examined in this paper, which is left for future work.
Lastly, the rule set that was produced yielded a consistently reduced set of at-
tributes ranging from 4-9 attributes, greatly reducing the size of the dataset.
As displayed in Table 5 - and generally across the rule set, the dp and dobdose
attributes appear consistently (has a large support) within all decision outcomes
(data not displayed). This type of analysis is a major product of the rough sets
approach to data analysis extraction of knowledge from data.

This is a preliminary study that will be pursued in conjunction with a qualified
cardiologist. The results generated so far are interesting and certainly consistent
and in many cases superior to other studies [1],[3]. To this authors knowledge,
this is the first report which examined the dobutamine SE literature using rough
sets. Komorowski & Ohn have examined a similar dataset but the imaging
technique and attributes selected were different from those used in the study
investigated in this work [7]. It is hoped that close collaboration between medical
experts and data mining engineers will provide the conditions necessary for a
full extraction of knowledge from the data.
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Abstract. Support Vector Machine (SVM) has high classifying accu-
racy and good capabilities of fault-tolerance and generalization. The
Rough Set Theory (RST) approach has the advantages on dealing with
a large amount of data and eliminating redundant information. In this
paper, we join SVM classifier with RST which we call the Improved
Support Vector Machine (ISVM) to classify digital mammography. The
experimental results show that this ISVM classifier can get 96.56% ac-
curacy which is higher about 3.42% than 92.94% using SVM, and the
error recognition rates are close to 100% averagely.

1 Introduction

Support vector machine (SVM) is a proven success and a state-of-the-art method
in many areas, and a promising machine learning technique proposed by Vapnik
and his group AT Bell Laboratories[1]. It is based on VC dimensional theory
and statistical learning theory. For many practical problems, including pattern
matching and classification[2][3], function approximation[4], data clustering and
forecasting[5][6], support vector machine has drawn much attention and been
applied successfully in recent years because of its greater generalization per-
formance. An interesting property of SVM is that it is an approximate imple-
mentation of the structural risk minimization induction principle that aims at
minimizing a bound on the generalization error of a model, rather than mini-
mizing the mean square error over the data set[7]. SVM is considered as a good
learning method that can overcome the internal drawbacks of neural networks[8].
But there exists a drawback which can not distinguish the importance of training
sample attributes. Furthermore, it will take up more storage space when there
are a large number of sample attributes. Although SVM has strong capabilities of
recognizing patterns and good capabilities of fault-tolerance and generalization,
SVM cannot reduce the input data and select the most important information.
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Several techniques aim to reduce the prediction complexity of SVM by expressing
the SVM solution with a smaller kernel expansion. Since one must compute the
SVM solution before applying these post-processing techniques, they are not
suitable for reducing the complexity of the training stage[9].

Rough Set Theory(RST), introduced by Pawlak[10] in his seminal paper of
1982, is a new mathematical approach to uncertain and vague data analysis and
is also a new fundamental theory of soft computing [11]. In recent years, RST
becomes an attractive and promising issue. RST can mine useful information
from a large amount of data, generate decision rules without prior knowledge,
and eliminate redundant information. It is used generally in many fields[12],
such as knowledge discovery, machine learning, pattern recognition and data
mining. In this paper, a new classification algorithm based on SVM and RST
is proposed, which we call Improved Support Vector Machine (ISVM). ISVM
inherits the merits of both SVM and RST. We apply ISVM to medical images
classify. It is tested on real datasets MIAS[13](the Mammographic Image Anal-
ysis Society)and can get 96.56% accuracy which is higher about 3.42% than
92.94% using SVM, and the error recognition rates are close to 100%averagely.

The rest of the paper is organized as follows: Section 2 describes the theory
of SVM. Section 3 presents rough set theory, the reduction algorithm and the
Improved SVM algorithm–ISVM. In section 4, data pre-processing and feature
extraction are introduced. In section 5, we present our experiments and results.
Finally, in section 6, we show our conclusions and future work.

2 Support Vector Machine(SVM)[1]

Consider the problem of separable training vectors belonging to two separate
classes,

G = {(xi, yi)}li=1, xi ∈ Rn, yi ∈ {−1, 1}, i = 1, · · · , l (1)

We should find a linear function,

y = f(x) = ωϕ(x) + b (2)

That is to say, we should make the margin between the two classes points as
possible as big, it is equal to minimize 1

2‖ω‖2, so the optimal classification
problem is transformed into a convex quadratic programming problem:

min
1
2
‖ω‖2 s.t. yi((ω · xi) + b) ≥ 1, i = 1, · · · , l (3)

when the training points are non-linearly separable, (3) should be transformed
into (4).

min
1
2
‖ω‖2 + cΣl

i=1ξi s.t. yi((ω · xi) + b) ≥ 1− ξi, i = 1, · · · , l (4)
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The solution to the above optimization problem of equation (4) is transformed
into the dual problem (5) by the saddle point of the Lagrange functional,

max Σl
i=1αi −

1
2
Σl

i=1Σ
l
j=1αiαjyiyjk(xi, xj)

s.t. Σl
i=1αiyi = 0, 0 ≤ αi ≤ c, i = 1, · · · , l

(5)

We can get the decision function:

f(x) = Σl
i=1αiyiK(xi, x) + b (6)

kernel function K(xi, x) = (Φ(xi) · Φ(x)) is a symmetric function satisfying
Mercer’s condition, when given the sample sets are not separate in the primal
space, we can be used to map the data with mapping Φ into a high dimensional
feature space where linear classification is performed.

There are three parameters in SVM model that we should choose, they make
great impact on model’s generalization ability. It is well known that SVM gener-
alization performance depends on a good setting of hyperparameters C, the
kernel function and kernel parameter. Moreover, kernel function and kernel
parameter’s selection connects with feature selection in SVM, so feature selection
is very important.

3 The Improved Support Vector Machine Algorithm
(ISVM)

In this section, the theory of rough sets has been used in the first stage to
reduce the original feature sets. In the second stage the SVM algorithm has
been executed with the reduced feature sets. The reduction of original feature
sets results in a smaller structure and quicker learning of the SVM and as a whole
the hybrid algorithm provides better performance than the SVM algorithm from
individual paradigm. The following are the basic concepts of the rough set theory,
the algorithms of reduction and the improved SVM (ISVM).

3.1 Rough Set Theory

The original Rough Set Theory was proposed by Pawlak [10][14]. This theory is
concerned with analysis of deterministic data dependencies.

Information Systems. In the Rough Set Theory, information systems are
used to represent knowledge. An information system S = (U,A, V, f) consists
of U which is a nonempty, finite set named universe, which is a set of objects,
U = {x1, x2, · · · , xm}; A is a nonempty, finite set of attributes, A = C ∪D, in
which C is the set of condition attributes, and D is the set of decision attributes;
V =

⋃
a∈A V a is the domain of a; f : U ×A→ V is an information function. For

each a ∈ A and x ∈ U , an information function f(x, a) ∈ V a is defined, which
means that for each object x in U , f specify its attribute value.
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Lower and Upper Approximation. Due to imprecision which exists in the
real world data, there are always conflicting objects contained in a decision table.
Here conflicting objects refers to two or more objects that are undistinguishable
by employing any set of condition attributes, but they belong to different decision
classes. Such objects are called inconsistent. Such a decision table is called
inconsistent decision table. In the rough set theory, the approximations of sets
are introduced to deal with inconsistency. If S = (U,A, V, f) is a decision table,
suppose B ⊆ A, and X ⊆ U , then the B-lower and B-upper approximations of
X are defined as:

B(X) =
⋃
{Y ∈ U/IND(B) : Y ⊆ X},

B(X) =
⋃
{Y ∈ U/IND(B) : Y ∩X �= Ø}

(7)

Here, U/IND(B) denotes the family of all equivalence classes of B; IND(B) =
{(x, y) ∈ U × U | ∀ a ∈ B, f(x, a) = f(y, a)} is the B-indiscernibility relation.
B(X)is the set of all elements of U which can be certainty classified as elements
of X , employing the set of attributes B. The Positive Region of X is defined as:

POSB(X) = B(X) (8)

B(X) is the set of elements of U which can be possibly classified as elements of
X using the set of attributes B. The set BndB(X) = B(X) − B(X) is called
the B-boundary of X . If BndB(X) = Ø, then we say that X is definable on B;
otherwise we say that X is non-definable on B, which is also named as rough
set.

Attribute Reduction. An important issue in the Rough Set Theory is about
attributes reduction. The process of finding a smaller set of attributes than
original one with same classify ability as original set is called attribute reduc-
tion. Core is the intersection of all reductions. Given an information system
S, for a given set of condition attributes P ⊆ C, we can define a positive
region POSP (D) =

⋃
x∈U/D PX , which contains all objects in U , which can

be classified without error into distinct classes defined by IND(D) based only
on information in the IND(P ). Another important issue in data analysis is
discovering dependencies between attributes. Let D and C be subsets of A.D
depends on C in degree as denoted in the following:

γ(C,D) = card(POSC(D))/card(U), γ(C,D) ∈ [0, 1] (9)

The set of attributes reduction is described as:

R = {R : R ⊆ C, γ(R,D) = γ(C,D)} (10)

Thereby, the equality of the attributes dependency can be used as the end
condition of iterative operation.
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3.2 Attribute Reduction Algorithm

For a given decision information table S′ = (U,C∪D,V, f), the subset C′ ⊆ C is
the smallest reduction of C. If C′ satisfy two conditions as below: (1).POSc(γ) =
POSC′(γ), (2).Not exist C′′ ⊂ C′, so as to POSc′′(γ) = POSC′(γ). Based on
the definition of attributes dependency, the importance of an attribute a ∈ C−R
can be defined as:

θ(a,R,D) = γ(R ∪ {a}, D)− γ(R,D) (11)

where R = Ø, θ(a,D) = γ({a}, D). Based on the hereinabove definition, we
design the attributes reduction algorithm-Algorithm1.

Algorithm1: Reduce (S′, R)-Attributes Reduction Algorithm.
Input: Decision information table S′ = (U,C ∪D,V, f)
Output: An attribute reduction set R of S′

1). R = Ø ;
2).For every attribute ai ∈ C−R calculating its attribute importance θ(ai, R,D);
3).Choosing the attribute ai which the value of θ(ai, R,D) is the largest, and

R⇐ R ∪ {ai};
4). If γ(R,D) = γ(C,D) then goto 5) else goto 2);
5).Return (R); // Return the attribute set R which has been reduced.

Obviously,the complexity of the above algorithm is O(m2), m is the number
of condition attributes in decision table S′.

3.3 The Algorithm of Improved Support Vector Machine(ISVM)

The ISVM algorithm is composed with two stages. Firstly, the condition at-
tributes of the information set is reduced by running the reduction algorithm.
Then, the reduced information set will be classified by the SVM classifier. The
ISVM algorithm-Algorithm2 is as following:

Algorithm2: Improved Support Vector Machine-ISVM(S, Y )
Input: A decision information table S = (U,C ∪D,V, f)
Output: The classify result Y
1).Discrete(S);// Discrete the decision information table S
2).Reduce (S,R); // Running the reduction algorithm1, R is the reduced

//condition attributes set.
3).S = R ∪D; //S is a new information table which condition attributes has

//been reduced
4).SVM (S, Y );// Executing SVM classifier. Its input is the new information

//table S, and Y is the classified result.
5).Return (Y );

4 Data Pre-processing and Feature Extraction

This section summarizes the mammography collection and the techniques used
to enhance the mammograms as well as the features that were extracted from
images.
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4.1 Mammography Collection

The data collection used in our experiments was taken from the Mammographic
Image Anlysis Society (MIAS)[13]. We selected this dataset because it is freely
available, and to be able to compare our method with other published work like
[15], since it is a commonly used database for mammography categorization.

MIAS consists of 322 images, which belong to three big categories: normal,
benign and malign. There are 208 normal images, 63 benign and 51 malign,
which are considered abnormal. In addition, the abnormal cases are further
divided in six categories: microcalcification, circumscribed masses, speculated
masses, ill-defined masses, architectural distortion and asymmetry. All the im-
ages also include the locations of any abnormalities that may be present. The
existing data in the collection consists of the location of the abnormality (like
the center of a circle surrounding the tumor), its radius, breast position (right
or left), type of breast tissues (fatty, fatty-glandular and dense) and tumor type
if it exists (benign or malign). All the mammograms are medio-lateral oblique
view.

4.2 Data Pre-processing

Pre-processing is always a necessity whenever the data to be mined is noisy, in-
consistent or incomplete. Pre-processing significantly improves the effectiveness
of data mining techniques [16].The type size of the images in MIAS is 1024x1024
and almost 50% of the whole image comprised the background with a lot of noise.
In addition, these images are scanned at different illumination conditions, and
therefore some images appeared too bright and some were too dark. The first
step toward noise removal was pruning the images with a cropping operation.The
second step was an image enhancement. Thus, we eliminated almost all the
background information and most of the noise. An example of cropping that
eliminates the artefacts and the black background is given in Figure 1 (a-b).
Since the resulting images had different sizes, the x and the y coordinates were
normalized to a value between 0 and 255. The cropping operation was done

(a) original image (b) cropped image (c) enhanced image

Fig. 1. Pre-processing phase on an example image
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automatically by sweeping horizontally through the image. Then we applied
the Histogram Equalization method to enhance the image in order to diminish
the effect of over-brightness or over-darkness in images. Histogram Equalization
increases the contrast range in an image by increasing the dynamic range of grey
levels [16]. Figure 1 (c) shows an example of histogram equalization result after
cropping.

4.3 Feature Extraction

After pre-processing the images, features relevant to the classification are ex-
tracted from the cleaned images. The extracted features are organized in a
database, which is the input for the mining phase of the classifier. This database
is also constructed by merging some already existing features like the type
of the tissue (dense, fatty and fatty-glandular) and the location of the ab-
normality (like the center of a circle surrounding the tumor). The extracted
features are four statistical parameters: mean, variance, skewness and kurtosis.
The formula for the statistical parameters computed is the following: Mean
is μ = ΣN

k=1fkpf (fk); V ariance is σ2 = ΣN
k=1(fk − μ)2pf (fk); Skewness is

μ3 = 1
σ3 Σ

N
k=1(fk − μ)3pf (fk); Kurtosis is μ4 = 1

σ4Σ
N
k=1(fk − μ)4pf (fk). Where

N denotes the number of gray levels in the mammogram, fk is the kth gray level
and pf (fk) = nk

n , where nk is the number of pixels with fk gray level and n is
the total number of pixels in the region.

All these extracted features are computed over smaller windows of the orig-
inal image. The original image is first split in four parts. For a more accu-
rate extraction of the features we split each of these four regions in other
four parts. The statistical parameters were computed for each of the sixteen
sub-parts of the original image [15]. After that, we get sixty-four statistical
features.

5 Experimental Results

We used the 10 fold cross validation techniques to evaluate the algorithm perfor-
mance. We divided the features database in ten splits. For each split we selected
about 90% of the dataset for training and the rest for testing. That is 288 images
in the training set and 34 images in the testing set. The features database
is composed with the extracted features and the existing data of 322 images
in MIAS. All the numeric attributes are discrete using algorithm DBChi2[17].
In the training phase, the ISVM was applied on the training data. Then, for
an image in the testing set, the classification process searches in this ISVM
for finding the class that is the closest to be attached with the object pre-
sented for categorization. At the same time, the number of choosing attributes
is recorded. The SVM program is from LIBSVM[18].The experimental results is
in table1.
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Table 1. The comparison of SVM and ISVM algorithms on MIAS

Ten SVM ISVM ISVM
splits Accuracy(%) Attributes number Accuracy(%)

1
2
3
4
5
6
7
8
9
10

93.56
90.21
92.19
93.88
93.47
94.66
92.25
90.83
93.64
94.75

21
16
18
15
23
20
13
26
19
15

96.42
97.12
97.56
96.87
96.06
96.44
95.15
94.96
97.34
97.69

Average 92.94 18.6 96.56

Table 1 represents the comparison in terms of the choosing attributes number
and classifying accuracy of the present algorithm ISVM and the algorithm SVM.
The first column is the ten splits of MIAS. The second and the fourth columns
are the classified accuracy of SVM and ISVM based on ten splits. The third
volume is the number of choosing attributes of ISVM. At the bottom of the
table, each column’s average is shown. The table shows that the ISVM performs
better than only SVM algorithm in terms of the classifying accuracy. At the
same time, because the data set is reduced firstly, there are only 18.6 condition
attributes averagely inputted to SVM classifier, which makes it easy for the SVM
classifying.

To compare the capabilities of classification and the training time of SVM with
ISVM on MIAS, we give the experiment results about error recognition rate and
training time on small samples simultaneously. Figure 2(a) is the comparison of
error recognition rate on different samples including 20,40,60,80 and 100 applied
to train SVM and ISVM respectively. Figure 2(b) is the comparison of training
time on training samples varies from 10 to 50. Figure 2(a) shows that error

(a) Error recognition rate com-
parison

(b) Training time comparison

Fig. 2. The experimental results comparison of SVM and ISVM
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recognition rate of ISVM classifier is close to 100%, which is higher than SVM
classifier obviously. When the training samples are smaller than 50, the error
recognition rate of SVM can not reach to 90%. From Figure 2(b), the ISVM
classifier needs more time than that of SVM classifier because of the attributes
reduction stage of ISVM. But the training time of them is closed. Because of
calculating with second, the distinction of training time is very little and can be
ignored in practice.

6 Conclusions

In this paper, we have presented a hybrid classifier based on Rough Set The-
ory(RST) and Support Vector Machine(SVM) which is called Improved Sup-
port Vector Machine-ISVM. ISVM makes great use of the advantages of SVM’s
greater generalization performance and RST in effectively dealing with vagueness
and uncertainty information. By data-analyzed method of RST, it can remove
large amount of redundancy, and decrease volume of SVM training data. The
preprocessing step enhances the efficiency of SVM in training and testing phases
and strengthens classification and generation capabilities of SVM. Finally, ISVM
was applied to medical image classification, and the evaluation of the ISVM was
carried out on MIAS dataset. The experimental results show that the accuracy of
the ISVM classifier can reach 96.56% than 92.94% which execute SVM classifier,
and the error recognition rate values of ISVM tend to 100% in more than half
the splits. There are some future research directions to be studied. To cooperate
with medical staff would get more interesting results. In addition, the extraction
of different features or a different database organization could lead to improved
results.
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Abstract. The aim of this paper is to compare the effectiveness of vari-
ous computational intelligence approaches applied to the task of retriev-
ing musical rhythm from musical symbolic files. The study presented in
this paper describes how Artificial Neural Networks and Rough Sets can
be used for searching the metric structure of musical files. The described
approaches are based on examining physical attributes of sound that are
most significant in determining the placement of a particular sound in
the accented location of a musical piece. The results of the experiments
show that the approach based solely on duration is sufficient enough to
retrieve the metric structure of rhythm from musical files.

Keywords: Music Information Retrieval, Rhythm Retrieval, Metric
Rhythm, Artificial Neural Networks, Rough Sets.

1 Introduction

Content-based methods of music retrieval are nowadays developed by researchers
from the multimedia retrieval domain. Rhythm, which is an informative element
of a piece, determines musical style and might be valuable in retrieving music on
the basis of a musical genre. The most common classes of rhythm retrieval mod-
els are: rule-based, multiple-agents, multiple-oscillators and probabilistic. The
rhythm retrieval methods can be classified within the context of what type of
actions they take, i.e. whether they quantize musical data, or find the tempo
of a piece (e.g. van Belle [2]), time signatures, positions of barlines, a metric
structure or an entire hypermetric hierarchy. Rhythm finding systems very of-
ten rank the hypotheses of rhythm, basing on the sound salience function. Since
scientists differ in opinions on the aspect of salience, the Authors carried out spe-
cial experiments to solve the salience problem. A number of research studies are
based on the theory published by Lerdahl & Jackendoff [8], who claim that such
physical attributes of sounds as pitch (frequency), duration and velocity (ampli-
tude) influence the rhythmical salience of sounds. Another approach, proposed
by Rosenthal [12], ranks higher the hypotheses in which long sounds are placed
in accented positions. In Dixon’s [4] multiple-agent approach, two salience func-
tions are proposed, combining duration, pitch and velocity. The first, is a linear
combination of physical attributes, Dixon calls it an additive function. The other
one is a multiplicative function. Dahl [3] notices that drummers play accented
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strokes with higher amplitude than unaccented ones. Parncutt, in his book [10],
claims that lower sounds fall on the beat. In the review of Parncutt’s book, Huron
[5] notices that the high salience of low sounds is “neither an experimentally de-
termined fact nor an established principle in musical practice”. A duration-based
hypothesis appears to predominate in rhythm-related works, but this approach
seems to be based on intuition only. The experimental confirmation of this thesis
– based on the Data Mining (DM) association rules and Artificial Neural Net-
works (ANNs) – can be found in former works by the Authors of this paper [6, 7]
and also in the doctoral thesis of one of them [15]. The experiments employing
rough sets, which are a subject of this paper, were performed in order to confirm
results obtained from the DM and ANN approaches. Another reason was to ver-
ify if all three computational intelligence models applied to the salience problem,
return similar findings, which may prove the correctness of these approaches.

2 Computational Intelligence Models in the Emulation of
Human Perception

Computational Intelligence (CI) is a branch of Artificial Intelligence, which deals
with the AI soft facets, i.e. programs behaving intelligently. The CI is understood
in a number of ways, e.g. as a study of the design of intelligent agents or as a
subbranch of AI, which aims “to use learning, adaptive, or evolutionary compu-
tation to create programs that are, in some sense, intelligent” [14]. Researchers
are trying to classify the branches of CI to designate the ways in which CI
methods help humans to discover how their perception works. However, this is
a multi-facet task with numerous overlapping definitions, thus the map of this
discipline is ambiguous. The domain of CI groups several approaches, the most
common are: the Artificial Neural Networks (ANNs), Fuzzy Systems, Evolution-
ary Computation, Machine Learning including Data Mining, Soft Computing,
Rough Sets, Bayesian Networks, Expert Systems and Intelligent Agents. Cur-
rently, in the age of CI people are trying to build machines emulating human
behaviors, and one of such applications concerns rhythm perception. This paper
presents an example of how to design and build an algorithm which is able to
emulate human perception of rhythm. Two CI approaches, namely the ANNs
and Rough Sets (RS), are used in the experiments aiming at the estimation of
musical salience. The first of them, the ANN model, concerns processes, which
are not entirely known, e.g. human perception of rhythm. The latter is the RS
approach, introduced by Pawlak [9] and used by many researches in data dis-
covery and intelligent management [11].

Since the applicability of ANNs in recognition was experimentally confirmed
in a number of areas, neural networks are also used to estimate rhythmic salience
of sounds. There exists a vast literature on ANNs, and for this reason only a
brief introduction to this area is presented in this paper. A structure of an ANN
usually employs the McCulloch-Pitts model, involving the modification of the
neuron activation function, which is usually sigmoidal. All neurons are inter-
connected. Within the context of the neural network topology, ANNs can be
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classified as feedforward or recurrent networks, which are also called feedback
networks. In the case of recurrent ANNs the connections between units form cy-
cles, while in feedforward ANNs the information moves in only one direction, i.e.
forward. The elements of a vector of object features constitute the values, which
are fed to the input of an ANN. The type of data accepted at the input and/or
returned at the output of an ANN is also a differentiating factor. The quan-
titative variable values are continuous by nature, and the categorical variables
belong to a finite set (small, medium, big, large). The ANNs with continuous
values at input are able to determine the degree of the membership to a certain
class. The output of networks based on categorical variables may be Boolean,
in which case the network decides whether an object belongs to a class or not.
In the case of the salience problem the number of categorical output variables
equals to two, and it is determined whether the sound is accented or not.

In their experiments the Authors examined whether a supervised categorical
network such as Learning Vector Quantization (LVQ) is sufficient to resolve the
salience problem. The classification task of the network was to recognize the
sound as accented or not. LVQs are self-organizing networks with the ability
to learn and detect the regularities and correlations at their input, and then to
adapt their responses to that input. An LVQ network is trained in a supervised
manner, it consists of the competitive and a linear layers. The first one classifies
the input vectors into subclasses, and the latter transforms input vectors into
target classes.

3 Organizing Experimental Database

The experiments proposed in this paper are conducted on a database of national
anthems retrieved from the Internet. The format of files in the experimental
database is symbolic (MIDI files). Sounds constituting melodies of anthems were
included in the training and testing sets. Storing information about meter in the
files is necessary to indicate accented sounds in a musical piece. This information,
however, is optional in MIDI files, thus in the training stage of either ANN- or
RS-based experiments, the information whether the sound is accented or not is
always available. In a number of musical files retrieved from the Internet, the
assigned meter is incorrect or there is no information about meter at all. This is
why the correctness of meter was checked by inserting an additional simple drum
track into the melody. The hits of the snare drum were inserted in the locations
of the piece calculated with Formula (1), where T is a period computed with
the autocorrelation function, and i indicates subsequent hits of a snare drum.

i · T, i = 0, 1, 2, . . . (1)

The Authors listened to the musical files with snare drum hits inserted, and
rejected all the files where accented locations were indicated incorrectly. Also
some anthems with changes in time signature could not be included in the train-
ing and testing sets, because this metric rhythm retrieval method deals with
hypotheses based on rhythmic levels of a constant period. Usually the change in
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time signature results in changes in the period of a rhythmic level correspond-
ing to the meter, and an example of such change might be from 3/4 into 4/4.
Conversely, an example of a change in time signature which does not influence
the correct indication of accented sounds could be from 2/4 into 4/4. Salience
experiments presented in this paper are conducted on polyphonic MIDI tracks
containing melodies of eighty national anthems, only sounds coming from the
tracks constituting the melodies of anthems were included in the training and
testing sets, overlapping sounds coming from the tracks other than melodic ones,
were not included in the experimental sets.

For the purpose of the experiments the values of physical sound attributes
were normalized and discretized with equal subrange method. Minimum and
maximum values within the domain of each attribute are found. The whole
range is then divided into msubranges with thresholds between the subranges,
placed in the locations counted with aid of the Formula (2).

MinV alue + (MaxV alue−MinV alue) · j/mforj = 0, 1, 2, . . .m (2)

4 ANN Experiment

For the training phase, accented locations in each melody were found with meth-
ods described in the previous Section. One of the tested networks had three sep-
arate inputs – one for each physical attribute of sound (duration, frequency and
amplitude - DPV). Three remaining networks had one input each. Each input
took a different physical attribute of a given sound, namely D – duration, P
– pitch (frequency) or V – velocity (amplitude). All attributes were from the
range of 0 to 127. The network output was binary: 1 if the sound was accented,
or 0 if it was not. Musical data were provided to the networks to train them to
recognize accented sounds on the basis of physical attributes.

In this study LVQ network recognized a sound as ‘accented’ or ‘not accented’.
Since physical attributes are not the only features determining whether a sound is
accented, some network answers may be incorrect. The network accuracy NA was
formulated as the ratio of the number of accented sounds, which were correctly
detected by the network, to the total number of accented sounds in a melody,
as stated in Formula (3).

NA = number of accented sounds correctly detected by the network / number
of all accented sounds

(3)

Hazard accuracy HA is the ratio of the number of accents given by the network
to the number of all sounds in a set, as stated in Formula (4).

HA = number of accented sounds detected by the network / number of all
sounds

(4)
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The melodies of anthems were used to create 10 training/testing sets. Each set
included 8 entire pieces. Each sound with an index divisible by 3 was assumed
to be a training sound. The remaining sounds were treated as testing sounds. As
a consequence, the testing set was twice as large as the training set. Accuracies
in the datasets were averaged for each network separately. Evaluating a separate
accuracy for each ANN allowed to compare their preciseness. Standard deviations
were also calculated. Fractions equal to standard deviations were divided by
average values. Such fractions help compare the stability of results. The lower
the value of the fraction is, the more stable the results are. All results are shown
on the right side of Table 1. A single accuracy value was assigned to each ANN.
Standard deviations were also calculated and the resultant stability fraction
equal to standard deviations divided by average values was presented

Table 1. Parameters of training and testing data and performance of ANNs

Set No.
Number of sounds

Acc/all [%]
NA/HA

All Accented Not
accented

D P V DPV

1 937 387 550 41 1.90 1.01 0.95 1.96

2 1173 386 787 33 2.28 0.89 1.23 2.19

3 1054 385 669 37 2.14 0.96 0.11 2.13

4 937 315 622 34 2.25 1.13 0.79 2.49

5 801 293 508 37 1.98 1.02 1.04 1.95

6 603 245 358 41 1.67 1.02 0.93 1.24

7 781 332 449 43 1.93 0.98 1.16 1.89

8 880 344 536 39 2.06 0.97 1.13 2.14

9 867 335 532 39 1.91 0.87 0.83 1.73

10 1767 509 1258 29 2.14 0.72 1.62 2.66

Avg. 980 353 626 37 2.03 0.96 0.98 2.03
StdDev 317 71 251 4 0.19 0.11 0.39 0.39

StdDev/Avg 0.09 0.12 0.40 0.19

The accuracy of finding accented sounds estimated for four networks can be
seen in Fig. 1, the plots are drawn on the basis of the data from Table 1.
There are three plots presenting the results of networks fed with one attribute
only, and one plot for the network presented with all three physical attributes
at its single input (line DPV). The consequent pairs of training and testing sets
are on the horizontal axis, the fraction NA/HA, signifying how many times an
approach is more accurate than a blind choice, is on the vertical axis.

5 Rough Sets Experiment

The aim of this experiment was to obtain the results analogical to the ones
coming from the ANN and to confront them with each other. In particular, it was
expected to confirm whether physical attributes influence a tendency of sounds
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Fig. 1. Accuracy of four networks for melodies of anthems

to be located in accented positions. Further, it was to answer how complex is
the way the rhythmic salience of sound depends on its physical attributes, and
to observe the stability of the accuracies obtained in the RS-based experiment.

In the rough set-based experiment, the dataset named RSESdata1 was split
into a training and testing sets in the 3:1 ratio. Then the rules were generated,
utilizing a genetic algorithm available in the Rough Set Exploration System
[1][13]. For dataset RSESdata1, 7859 rules were obtained resulting in the classi-
fication accuracy of 0.75 with the coverage equal to 1. Rules with support less
than 10 were then removed. The set of rules was thus reduced to 427 and the
accuracy dropped to 0.736 with the coverage still remaining 1. Then the next
attempt to further decrease the number of rules was made, and rules with sup-
port less than 30 were excluded. In this case, 156 rules were still valid but the
accuracy dropped significantly, i.e. to 0.707, and at the same time the coverage
fall to 0.99. It was decided that for a practical implementation of a rough set-
based classifier, a set of 427 rules is suitable. Reducts used in rule generation are
presented in Table 2.

The same approach was used to dataset RSESdata2, and resulted in 11121
rules with the accuracy of 0.742 and the coverage of 1. After removing rules
with support less than 10, only 384 rules remained, and the accuracy dropped

Table 2. Reduct for RSESdata1 dataset

Reducts Positive Region Stability Coefficient

{ duration, pitch } 0.460 1

{ duration, velocity } 0.565 1

{ pitch, velocity } 0.369 1

{ duration } 0.039 1

{ pitch } 0.002 1

{ velocity } 0.001 1
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Table 3. Reduct for RSESdata2 dataset

Reducts Positive Region Stability Coefficient

{ duration, velocity } 0.6956 1

{ duration, pitch } 0.6671 1

{ pitch, velocity } 0.4758 1

{ duration } 0.0878 1

{ pitch } 0.0034 1

{ velocity } 0.0028 1

to 0.735. Again, such number of rules is practically applicable. Reducts used in
rule generation are presented in Table 3.

The approach taken to LVQ network was also implemented for rough sets.
Ten different training\test sets were acquired by randomly splitting data into
five pairs, and than each set in a pair was further divided into two sets – a
training and a testing one – with the 2:1 ratio. Therefore testing sets contained
1679 objects each. The experiments, however, were based on RSESdata1 set
because of its higher generalization ability (see Table 4).

Table 4. Parameters of training and testing data and performance of RSES (RSA is
a Rough Set factor, analogical to NA in ANNs)

Set No.
Number of sounds

Acc/all
RSA/HA

All testing
sounds

Accented Not ac-
cented

D P V DPV

1 1679 610 1069 36.33 1.81 1.06 1.21 1.75

2 1679 608 1071 36.21 1.90 1.08 1.09 1.74

3 1679 594 1085 35.37 1.84 1.12 1.19 1.74

4 1679 638 1041 37.99 1.68 1.08 1.12 1.62

5 1679 632 1047 37.64 1.67 1.07 1.12 1.64

6 1679 605 1074 36.03 1.87 1.16 1.13 1.88

7 1679 573 1106 34.12 1.77 1.09 1.18 1.68

8 1679 618 1061 36.80 1.90 1.06 1.17 1.73

9 1679 603 1076 35.91 1.77 1.08 1.11 1.70

10 1679 627 1052 37.34 1.77 1.08 1.15 1.66

Avg. 1679 610 1068 36.37 1.80 1.09 1.15 1.72
StdDev 0 19.2 19.2 1.14 0.08 0.02 0.039 0.07

StdDev/Avg 0.04 0.02 0.033 0.04

It should be remembered that reduct is a set of attributes that discerns ob-
jects with different decisions. Positive region shows what part of indiscernibility
classes for a reduct is inside the rough set. The larger boundary regions are,
the more rules are nondeterministic, and the smaller positive region is. Stabil-
ity coefficient reveals if the reduct appears also for subsets of original dataset,
which are calculated during the reduct search. For reduct {duration} positive
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region is very small, but during classification a voting method is used to infer
correct outcome from many nondeterministic rules, and, finally, high accuracy is
obtained. Adding another dimension, e.g. {duration, velocity}, results in higher
number of deterministic rules, larger positive region, but it does not guarantee
the accuracy increase (Table 4).

Rules were generated utilizing different reduct sets (compare with Table 1):
D - {duration} only;P - {pitch} only; V - {velocity} only; DPV - all 6 reducts

{duration, velocity}, {duration, pitch}, {pitch, velocity}, {duration}, {pitch},
{velocity} have been employed.

6 Concluding Remarks

On the basis of the results (see Tables 1, 4) obtained for both: RS and ANN
experiments, it may be observed that the average accuracy of all approaches tak-
ing duration D into account – solely or in the combination of all three attributes
DPV – is about twice as good as hazard accuracy (values of 1.72 for Rough
Set DPV, 1.80 for Rough Set D, and a value of 2.03 both for Network D and
for Network DPV were achieved). The performance of approaches considering
pitch P and velocity V separately are very close to random accuracy, the values
are equal to 1.09 and 1.15 for Rough Sets. For the ANN, the values are 0.96
and 0.98, respectively. Thus, it can be concluded that the location of a sound
depends only on its duration.

The algorithms with the combination of DPV attributes performed as well
as the one based only on duration, however this is especially valid for ANNs,
rough sets did a little bit worse. Additional attributes do not increase the per-
formance of the ANN approach. It can be thus concluded that the rhythmic
salience depends on physical attributes in a simple way, namely it depends on a
single physical attribute – duration.

Network D is the ANN that returns the most stable results. The value of
fraction in the third row of Table 1 is low for this network and it is equal to
0.09. Network DPV, which takes all attributes into account, is much less reliable
because the stability fraction is about twice worse than the stability of Network
D and it is equal to 0.19. The stability of Network P , considering the pitch, is
quite high (it equals 0.12), but its performance is close to the random choice.
For learning and testing data used in this experiment, velocity appeared to be
the most data-sensitive attribute (see results of Network V ). Additionally, this
network appeared to be unable to find accented sounds.

In the case of Rough Sets, the duration-based approaches D and DPV re-
turned less stable results than P and V approaches. Values of 0.045, 0.043,
0.026, 0.033 were obtained for D, DPV , P , and V respectively.

The ANN salience-based experiments described in the earlier work by the
Authors [7], were conducted on a database of musical files containing various
musical genres. It consisted of monophonic (non-polyphonic), and the polyphonic
files. Also, a verification of the association rules model of the Data Mining domain
for musical salience estimation was presented in that paper. The conclusions
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derived from the experiments conducted on national anthems for the purpose of
this paper, are consistent with the ones described in the work by Kostek et al. [7].
Thus, the ANNs can be used in systems of musical rhythm retrieval in a wide
range of genres and regardless of the fact whether the music is monophonic of
polyphonic. The average relative accuracy for duration-based approaches where
Rough Sets are used is lower than this obtained by LVQ ANNs. However, the
same tendency is noticeable – utilization of the duration parameter leads to
successful classification. The P (pitch) and V (velocity) parameters appeared
not to be important in making decision about rhythmical structure of a melody.
The Authors believe that using some other discretization schemes instead of
the equal subranges technique could improve the accuracy of rough sets-based
rhythm classification.

Music Information Retrieval (MIR) methods can be applied in practice. A
composer creating a new melody can very often be interested, whether simi-
lar melody was not composed before, in music libraries and shops with music,
customers seeking for music can sing or hum the song not knowing its author
and a title. Computer programs employing MIR algorithms can also be help-
ful for musical professionals in the process of music composing and performing.
The method presented in this paper is a step towards content-based retrieval of
musical phrases, the advantage of this type of methods is that no human assis-
tance is necessary to create text descriptors, indexing the musical piece. This
method is helpful in retrieving the time signature and the locations of barlines
from a piece on the basis of its content only. Rhythmic salience approach worked
out and described in this paper is also valuable in ranking rhythmic hypotheses
and music transcription. On the other hand, fully transcribed music can also
be a subject of automatic analysis or retrieval. Transcription is also useful in
applications of automatic harmonization – beginnings of musical phrases are lo-
cations where a harmonic chord changes, the endings indicate locations where
a percussive fill-in by a drummer is usually performed. Other possible applica-
tions of metric rhythm retrieval method are systems for music recommendation,
plagiarism detection, synchronization music with other elements of multimedia
applications, support in creating musical scores basing on melody played on a
MIDI instrument, retrieval on the basis of musical genre. Also the system, cre-
ating drum accompaniment to a given melody, automatically, on the basis of
highly ranked rhythmic hypothesis is an useful practical application of rhyth-
mic salience method. A prototype of such a system, using salience approach was
developed on the basis of findings of authors of this paper.
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Abstract. In the continuing goal of codifying the classification of mu-
sical sounds and extracting rules for data mining, we present the fol-
lowing methodology of categorization, based on numerical parameters.
The motivation for this paper is based upon the fallibility of Hornbostel
and Sachs generic classification scheme, used in Music Information Re-
trieval for instruments. In eliminating the redundancy and discrepancies
of Hornbostel and Sachs’ classification of musical sounds we present a
procedure that draws categorization from numerical attributes, describ-
ing both time domain and spectrum of sound. Rather than using classi-
fication based directly on Hornbostel and Sachs scheme, we rely on the
empirical data describing the log attack, sustainability and harmonicity.
We propose a categorization system based upon the empirical musical
parameters and then incorporating the resultant structure for classifica-
tion rules.

1 Instrument Classification

Information retrieval of musical instruments and their sounds has invoked a need
to constructive cataloguing conventions with specialized vocabularies and other
encoding schemes. For example the Library of Congress subject headings [1] and
the German Schlagwortnormdatei Decimal Classification both use the Dewey
classification system [3,11] In 1914 Hornbostel-Sachs devised a classification sys-
tem, based on the Dewey decimal classification which essentially classified all
instruments into strings, wind and percussion. Later it went further and broke
instruments into four categories:

1.1 Idiophones, where sound is produced by vibration of the body of the
instrument
2.2 Membranophones, where sound produced by the vibration of a membrane
3.3 Chordophones, where sound is produced by the vibration of strings
4.4 Aerophones, where sound is produced by vibrating air.

For purposes of music information retrieval, the Hornbostel-Sachs catalogu-
ing convention is problematic, since it contains exceptions, i.e. instruments that
could fall into a few categories. This convention is based on what element vi-
brates to produce sound (air, string, membrane, or elastic solid body), and play-
ing method, shape, relationship of parts of the instrument and so on. Since

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 784–792, 2007.
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this classification follows a humanistic conventions, it makes it incompatible for
a knowledge discovery discourse. For example, a piano emits sound when the
hammer strikes strings. For many musicians, especially playing jazz, the piano is
considered percussive, yet its the string that emits the sound vibrations, so it is
classifies as a chordophone, according to Sachs and Hornbostel scheme. Also, the
tamborine comprises a membrane and bells making it both an membranophone
and an idiophone. Considering this, our paper presents a basis for an empirical
music instrument classification system conducive for music information retrieval,
specifically for automatic indexing of music instruments.

2 A Three-Level Empirical Tree

We focus on three properties of sound waves that can be calculated for any
sound and can differentiate. They are: log-attack, harmonicity and sustainability.
The first two properties are part of the set of descriptors for audio content
description provided in the MPEG-7 standard and have aided us in musical
instrument timbre description, audio signature and sound description [16]. The
third one is based on observations of sound envelopes for singular sound of various
instruments and for various playing method, i.e. articulation.

2.1 LogAttackTime (LAT)

The motivation for using the MPEG-7 temporal descriptor, LogAttackTime
(LAT ), is because segments containing short LAT periods cut generic percus-
sive (and also sounds of plucked or hammered string) and harmonic (sustained)
signals into two separate groups [6,7]. The attack of a sound is the first part of
a sound, before a real note develops where the LAT is the logarithm of the time
duration between the point where the signal starts to the point it reaches its
stable part.[12] The range of the LAT is defined as log10( 1

samplingrate ) and is de-
termined by the length of the signal. Struck instruments, such a most percussive
instruments have a short LAT whereas blown or vibrated instruments contain
LATs of a longer duration.

LAT = log10(T 1− T 0), (1)

where T 0 is the time the signal starts; and T 1 is reaches its sustained part
(harmonic space) or maximum part (percussive space).

2.2 AudioHarmonicityType (HRM)

The motivation for using the MPEG-7 descriptor, AudioHarmonicityType is that
it describes the degree of harmonicity of an audio signal.[7] Most ”percussive” in-
struments contain a latent indefinite pitch that confuses and causes exceptions to
parameters set forth in Hornbostel-Sachs. Furthermore, some percussive instru-
ments such as a cuica or guido contain a weak LogAttackTime and therefore fall
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Signal Envelope (t)

t

T0    T1

Fig. 1. Illustration of log-attack time. T0 can be estimated as the time the signal
envelope exceeds .02 of its maximum value. T1 can be estimated, simply, as the time
the signal envelope reaches its maximum value.

into non-percussive cluster while still maintaining an indefinite pitch (although,
we can perceive differences in contents of low and high frequencies in percussive
sounds as well). The use of the descriptor AudioHarmonicityType theoretically
should solve this issue. It includes the weighted confidence measure, SeriesOfS-
calarType that handles portions of signal that lack clear periodicity. AudioHar-
monicity combines the ratio of harmonic power to total power: HarmonicRatio,
and the frequency of the inharmonic spectrum: UpperLimitOfHarmonicity.

First: We make the Harmonic Ratio H(i) the maximum r(i,k) in each frame, i
where a definitive periodic signal for H(i) =1 and conversely white noise = 0.

H(i) = max r(i, k) (2)

where r(i,k) is the normalised cross correlation of frame i with lag k :

r(i, k) =
m+n−1∑

j=m

s(j) s(j − k)

/⎛

⎝
m+n−1∑

j=m

s(j)2 ∗
m+n−1∑

j=m

s(j − k)2

⎞

⎠

1
2

(3)

where s is the audio signal, m=i*n, where i=0, M − 1=frame index and M =
the number of frames, n=t*sr, where t = window size (10ms) and sr = sampling
rate, k=1, K=lag, where K=ω*sr, ω = maximum fundamental period expected
(40ms)

Second: Upon obtaining the i) DFTs of s(j) and comb-filtered signals c(j) in
the AudioSpectrumEnvelope and ii) the power spectra p(f) and p′(f) in the
AudioSpectrumCentroid we take the ratio flim and calculate the sum of power
beyond the frequency for both s(j) and c(j):

a(flim) =
fmax∑

f=flim

p′(f)

/
fmax∑

f=flim

p(f) (4)
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where fmax is the maximum frequency of the DFT.

Third: Starting where flim = fmax we move down in frequency and stop where
the greatest frequency, fulim’s ratio is smaller than 0.5 and convert it to an
octave scale based on 1 kHz:

UpperLimitOfHarmonicity = log2(fulim/1000) (5)

2.3 Sustainability (S)

We define sustainability into 5 categories based on the degree of dampening or
sustainability the instrument can maintain over a maximum period of 7 seconds.
For example, a flutist, horn player and violinist can maintain a singular note
for more than 7 seconds therefore they receive a 1. Conversely a plucked guitar
or single drum note typically cannot sustain that one sound for more than 7
seconds. It is true that a piano with pedal could maintain a sound after ten
seconds but the sustainability factor would be present.

1 2

3
4

5

Fig. 2. Five levels of sustainability to severe dampening

3 Experiments

The sound data consists of a sample set of 156 signals extracted from our online
database at http://www.mir.uncc.edu which contains 6,300 segmented sounds
mostly from MUMS audio CD’s that contain samples of broad range of musical
instruments, including orchestral ones, piano, jazz instruments, organ, etc. [10]
These CD’s are widely used in musical instrument sound research [2,9,15,5,8,4],
so they can be considered as a standard. The database consists of 188 samples
each representing just one sample from group that make up the 6,300 files in the
database. Mums divides the database into the following 18 classes: violin vibrato,
violin pizzicato, viola vibrato, viola pizzicato, cello vibrato, cello pizzicato, double
bass vibrato, double bass vibrato, double bass pizzicato, flute, oboe, b-flat clar-
inet, trumpet, trumpet muted, trombone, trombone muted, French horn, French
horn muted, and tuba. Preprocessing these groups is not a part of rough set theory
because rough sets require that input data process the rough sets. Rough set are
objective with respect to its data. Here we discretize, using MPEG-7 classifiers as
the experts. This is the point of the paper, we show a novel, empirical methodology
of dividing sounds conducive to automatic retrieval of music.
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4 Testing

The principle objective of our testing is to prove how parameter-based classifi-
cation differs, and when used on Sachs-Hornbostel - improves Sachs-Hornbostel.
Our parameters are machine-based, based on MPEG-7 and the temporal signal
dampening. It is not based upon humanistic intuitiveness. We first prove that our
attributes divide instruments into groups. Next we prove that our objects, which
are in leaves for a given class, actually represent another class. This will show
how parameter-based classification differs from and improves Sachs-Hornbostel.
To induce the classification rules in the form of decision trees from a set of given
examples we used Quinlan’s C4.5 algorithm. [13] The algorithm constructs a de-
cision tree to form production rules from an unpruned tree. Next a decision tree
interpreter classifies items which produces the rules. We used Bratko’s Orange
software [14] and implement C4.5 with scripting in Python.

4.1 HRM, LAT, S, with HS01

The first test comprised the testing of the decision attribute Sachs-Hornbostel-
level-1 against our two MPEG-7 descriptors, Harmonicity (HRM), Log Attack
(LAT) and our temporal feature Sustainability (S). The Sachs-Hornbostel-level-
1 attribute consists of four classes based upon human intuitiveness: aerophones,
idiophones, chordophones and membranophones. See Appendix Figure 3

4.2 HRM, LAT, S, with HS02

The second test comprised the testing of the decision attribute Sachs-Hornbostel-
level-2 against the HRM, LAT and S descriptors. The Sachs-Hornbostel-level-
2 attribute consists of four classes: aerophones, idiophones, chordophones and
membranophones. See Appendix Figure 4

4.3 HRM, LAT, S, with Instruments

The third test comprised the testing of the decision attribute instruments against
the HRM, LAT and S descriptors. The Instrument attribute consists of four
classes that describe instruments in the manner machines look at their signals:
percussion, blown, string and struck Harmonics. See Appendix Figure 5

4.4 Resulting Tree

The resulting tree shows how the sound objects are grouped, and we can compare
how this classification differs from Sachs-Hornbostel system. The misclassified
objects show discrepancies between the Sachs-Hornbostel system, and sound
properties described by physical attributes. The novelty of this methodology is
that adding the temporal feature and grouping the instruments from the ma-
chines point of view have lead to 83% correctness. We have 26 more MPEG-7
descriptors to use with this methodology to breakdown the 17% misclassified
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5 Summary and Conclusion

The idea and experiments presented in this paper show how musical instrument
sounds can be classified according to physical properties of sounds, described
by numerical parameters. The differences between obtained classification and
Sachs-Hornbostel classification system show how ambiguous sounds, representing
instruments played with various articulation, can be unambiguously classified.

We plan to continue our experiments, using more of our MPEG-7 features
and applying clustering algorithms in order to find probably better classification
scheme for musical instrument sounds.
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Appendix

Fig. 3. C4.5 results testing the decision attribute Sachs-Hornbostel-level-1 against our
two MPEG-7 descriptors, Harmonicity (HRM), Log Attack (LAT) and our temporal
feature Sustainability (S). S is divided at the ¡2.000 and ¿=2.000 node, Harmonicity is
divided at ¡820889 and ¿=820889 for S ¡2.000 whereas, at ¿=2.000 LAT cuts the tree
at LAT ¡-1182790 and ¿=1182790.

http://www.ailab.si/orange
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Fig. 4. C4.5 results testing the decision attribute Sachs-Hornbostel-level-2 against our
two MPEG-7 descriptors, Harmonicity (HRM), Log Attack (LAT) and our temporal
feature Sustainability (S)
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Fig. 5. C4.5 results testing of the decision attribute instruments against the HRM,
LAT and S descriptors. The Class files indicate whether the instruments are percussive,
blown, string or struck harmonics.
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Abstract. The aim of the research study presented in this paper is the
automatic singing voice recognition. For this purpose a database con-
taining singers’ sample recordings has been constructed and parameters
are extracted from recorded voices of trained and untrained singers of
various voice types. Parameters, which are especially designed for the
analysis of the singing voice are described and their physical interpreta-
tion is given. Decision systems based on artificial neutral networks and
rough sets are used for automatic voice type/voice quality classification.
Results obtained in the automatic classification performed by both de-
cision systems are then compared and conclusions are derived.

Keywords: Singing voice, Feature extraction, Artificial Neural Net-
works, Rough Sets, Automatic Classification, Music Information
Retrieval.

1 Introduction

A parametric description is necessary in many applications related to the au-
tomatic sound recognition. Such systems are well developed in speech, as well
as in the musical instrument sound domains due to many existing applications
both in speech content/speaker automatic recognition and music information
retrieval (MIR). Singing and speech have a common voice production organ but
singing is a form of an artistic expression therefore new parameters are required
to be defined and extracted. Those parameters are shortly described in the first
part of this paper. A very complicated biomechanics of the singing voice [6, 13]
requires numerous features to describe its operation. Such a parametric repre-
sentation needs intelligent decision systems in the classification process. In the
paper artificial neural network (ANN) and rough set (RS) decision systems are
employed for the purpose of the singing voice type/voice quality recognition.
For every singing voice sample a feature vector (FV) containing 331 parameters
was extracted. Resulting parameters were divided into two groups: a so-called
”dedicated” designed by the authors for singing voice and more general which
may be found in the literature on MIR and on speech recognition. The decision
system ability of automatic singing voice recognition is discussed by comparing
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the efficiency of ANN and RS in two categories: ‘voice type’ (classes: bas, bari-
tone, tenor, alto, mezzo-soprano, soprano) and ‘voice quality’ (classes: amateur,
semi-professional, professional).

2 Singing Voice Parametrization

Singing is produced by vibration of human vocal cords and resonances in the
throat and head cavities. As a result of resonances formants in the spectrum of
produced sounds appear. Formants are not only related to articulation allowing
for production of different vowels but also characterize timbre and voice type
qualities. The formant of the middle frequency band (3.5 kHz) is described in
literature as ‘singer’s formant’ and its relation to voice quality has been proved
[2, 13]. The interaction between two factors, namely glottal source and resonance
characteristics shapes, and the resulting timbre and power of an outgoing vocal
sound is equally important. The relation between them is not simple but can be
simplified by assuming the linearity of the vocal tract filter. Since in the proposed
model there exists an analogy between FIR filtering and singing sound which
can be represented as a convolution of glottal source and impulse response of
the vocal tract, singing voice parameters can be divided into two groups related
to those two factors. In literature some inverse filtration methods for deriving
glottis parameters are presented, however they are inefficient due to phase prob-
lems [6]. In this aspect only parameters of vocal tract formants are possible to
calculate directly from the inverse filtering analysis since they are defined in the
frequency domain. Glottal parameters must be parameterized by other methods
which will be shown later. On the other hand, vocal tract parameters can be de-
rived from the warped-LPC method (further called WLPC analysis) resulting in
frequencies and levels of formants. The WLPC analysis allows for controlling low
frequency resolution, which is crucial for precise extraction of formants indepen-
dently from sound pitch [5, 14]. Since WLPC analysis is applied to small signal
frames it can be performed for several parts of the analyzed sounds. Therefore,
any formant parameter Fforms a vector which describes its values in consecutive
frames. Median values of this vector represent a so-called static parameter Fmed,
variances of vector values are dynamic representation and are denoted as Fvar.

Some of the singing voice parameters must be calculated for a whole sound
and not for single frames. Those parameters are defined on the basis of the
fundamental frequency contour analysis and they are related to vibrato and
intonation. Vibrato is described as a modulation of the fundamental frequency
of sounds performed by singers in order to change timbre of sounds, intonation
is their ability to produce sounds perceived as stable and precise in tune.

Another way of determining singing voice parameters is the use of a more gen-
eral signal description such as descriptors contained in the MPEG-7 standard.
Although those parameters are not related to the singing voice biomechanics,
they may be useful in the singing voice recognition process. The MPEG-7 pa-
rameters are not to be presented in detail here, since they were reviewed in
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previous work by one of the authors [9]. The MPEG-7 audio parameters can be
divided into the following groups:

– ASE (Audio Spectrum Envelope). Mean values and variances of each spectral
coefficient over time are denoted as ASE1 . . . ASE34 and ASE1var. . . ASE34var

respectively.
– ASC (Audio Spectrum Centroid). The mean value and the variance are de-

noted as ASC and ASCvar respectively.
– ASS (Audio Spectrum Spread). The mean value and the variance over time

are denoted as ASS and ASSvar respectively.
– SFM (Spectral Flatness Measure) calculated for each frequency band. The

mean values and the variances are denoted as SFM1. . . SFM24 and SFM1var

. . . SFM24var.
– Parameters related to discrete harmonic values: HSD (Harmonic Spectral

Deviation), HSS (Harmonic Spectral Spread), HSV (Harmonic Spectral Vari-
ation).

The level of the first harmonics changes for different voice type qualities [13].
Parameters employed in the analysis were defined for harmonic decomposition of
sounds: mean value of differences between amplitudes of a harmonic in adjacent
time frames (sn, where n is the number of a harmonic); mean value of amplitudes
Ah of a harmonic over time (mn; standard deviation of amplitudes Ah of a
harmonic over time (mdn.

Other parameters used in experiments were: brightness (br) (center of spec-
trum gravity) [8] and mel-cepstrum coefficients mccn, where n is the number of
a coefficient.

2.1 Vocal Tract Parameters

As described in previous Section estimation of formants requires methods of
analysis with a good frequency resolution which is additionally dependent on
pitch of the sounds. When resolution is not properly set single harmonics can
be erroneously recognized as formants. For those purposes the WLPC analysis
seems to be the most appropriate because λ parameter set in this analysis can be
changed in function of pitch of analyzed sounds [5]. However parameters related
to the ‘singing formant’ can be also extracted on the basis of the FFT power
spectrum parametrization. Correlation between WLPC and FFT parameters is
not a problematic issue. Various methods, among them statistical analysis and
rough set method enable to reduce redundancy in FVs and to compare signifi-
cance of parameters. In Fig. 1 WLPC and FFT analyses results are presented
along. Maxima/minima of WLPC curves are determined automatically by an
algorithm elaborated by one of the authors [14].

Extracted WLPC maxima are related to one of the three formants respec-
tively: articulation, singer’s (singing) and high singing formants. Since in liter-
ature a formal prescription how to define mathematically these formants does
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Fig. 1. WLPC analysis shown along with the FFT power spectrum analysis of sound

not exist, three definitions of each of those formants can be proposed basing on
three WLPC minima.

Fnm = WLPCmxn −WLPCmnm (1)

where WLPCmxn is a value of nth WLPC maximum and WLPCmnm is a value
of mth WLPC minimum.

Some additional parameters related to the WLPC analysis have also been
defined.

2.2 Glottal Source Parameters

Interaction between vocal tract filter and glottal shape are, along with phase
problems, obstacles for an accurate automatic glottal source shape extraction
[6, 7, 13]. Glottal source parameters, which are defined in the time domain,
are not easy to compute from the inverse filtration but within the context of
singing voice quality their stability rather that their objective values seem to be
important. The analysis must be done for single periods of sound and a sonogram
analysis with small analyzing frames and big overlapping should be employed.

For each frequency band a sonogram consists of a set of n sequences Sn(k),
where n is the number of the frequency band and k denotes the sample number.
Since the aim of parametrization is a description of stability of energy changes in
sub-bands, the autocorrelation function in time of sequences Sn(k) is employed.
The more frequent and stable are energy changes in a sub-band, the higher are
the values of the maximum of the autocorrelation function (for index not equal
to 0). The analysis in experiments is performed for 16 and 32 sample frames. In
the first case energy band of 0-10 kHz is related to four first indexes n and the
maximum of the autocorrelation function of a sub-band n is denoted as KXn (2),
in the second case n=1...8 and the resulting parameter is defined as LXn (3).
Analyzing signal for two different analyzing frames is performed for comparison
purposes, only.

KXn = max(Corr
k

(S16
n (k))), n = 1...4 (2)

LXn = max(Corr
k

(S32
n (k))), n = 1...8 (3)

where Corr
k

(.) is the autocorrelation function in time domain, k – sample num-

ber, n - number of the frequency sub-band, S16
n - sonogram samples sequence
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for the analyzed frame of 16 samples and frequency sub-band n, and S32
n denotes

sonogram sample sequence for the analyzed frame of 32 samples and the
frequency sub-band n. Conversely, minimum of the correlation Corr(Sn(k)) func-
tion is related to the symmetry or anti-symmetry of energy changes in sub-bands,
which is related to open quotient of glottis source [14]. Therefore in each of
the analyzed sub-band KYn and LYn parameters are defined as (4) and (5),
respectively:

KYn = min(Corr
k

(S16
n (k))), n = 1...4 (4)

LYn = min(Corr
k

(S32
n (k))), n = 1...8 (5)

where Corr
k

(.), k, n, S16
n ,S32

n are defined as in formulas (2) and (3).

Another parameter defined for each analyzed sub-band is a threshold param-
eter KPn defined as the number of samples exceeding the average energy level
of the sub-band n divided by the total number of samples in the sub-band. For
the frame of 32 samples a similar parameter is defined and denoted as LPn.
Parameters KPn and LPn are also related to the open quotient of the glottal
signal [14].

2.3 Vibrato and Intonation Parameters

In order to calculate vibrato parameters pitch contour needs to be extracted.
There are several methods of automatic sound pitch extraction, of which auto-
correlation method seems to be appropriate [4]. Autocorrelation pitch extraction
method consist in determination of the maximum of the autocorrelation function
of the overlapped segments of the audio signal. The fundamental frequency (f0)
within each analyzed frame is determined, and at the same time the frequency
resolution of the analysis is achieved by interpolating three samples around the
maximum autocorrelation function value. In experiments the length of the frame
has been set to 512 samples. The pitch of analyzed sounds is not always stable in
time, especially when sounds of untrained singers are concerned. In order to pa-
rameterize accurately vibrato and intonation of the analyzed sound there should
be determined an equivalent pitch contour of the sound but without vibrato.
The result of such an analysis is a so-called ‘base contour’ which is calculated
by smoothing the pitch contour (using a moving average method) with frame
length equal to reciprocal of half of the vibrato frequency.

Parametrization of vibrato depth and frequency (fV IB) may be not sufficient
in the category of singing quality. Since the quality of the sound reflects the
stability of singing parameters in time [3, 13] additional three vibrato parameters
are defined: ‘perdiodicity’ of vibrato pitch contour, defined as the maximum
value of the autocorrelation of pitch contour function (for index not equal to 0);
‘harmonicity’ of vibrato by calculating Spectrum Flatness Measure for spectrum
of the pitch contour; ‘sinusoidality’ of vibrato VIBS defined as similarity of the
parameterized pitch contour to the sine waveform [3].

To parameterize intonation of singing a base contour is utilized. To calculate
intonation parameters two methods have been proposed. The first method calcu-
lates medium value of a differential sequence of a base contour (IR). The second
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method does not analyze all base contour samples but the first and the last one
and returns IT parameter. Parameters IR and IT are also defined for first and
last N/2 samples of pitch contour separately (N is the number of samples of
pitch contour) and are denoted as IRatt, ITatt, IRrel, ITrel, where att means
attack, and rel – release of the sound.

3 Experiments

Singing voice database was formed and contains over 2900 sound samples. 1700
of them were recorded from 42 singers in a studio environment. Each vocalist
recorded 5 vowels: ‘a’, ‘e’, ‘i’, ‘o’, ‘u’ at several sound pitches belonging to natural
voice scale. Vocalists consisted of three groups: amateurs (Gdansk University
of Technology Choir vocalists), semi-professionals (Gdansk Academy of Music,
Vocal Faculty students) and professionals (qualified vocalists, graduated from the
Vocal Faculty of the Gdansk Academy of Music). The second group of samples
(1200) have been edited from professional CD recordings of famous singers. The
database of professionals needed to be extended due to the fact that voice type
recognition is possible to perform only for professional voices. Amateur voices
do not show much differences within groups of male and female voices [2, 14].

3.1 Neural Network Results

Since Artificial Neural Networks are widely used in automatic sound recognition
[8, 9, 14] the ANN classifier was tested first. The ANN employed was a simple
feed-forward, three layer network with 100 neurons in hidden layer and 3 or 6
neurons in output layer respectively (dependent on the number of classes being
recognized). The input layer consisted of 331 neurons. Sounds from the database
were divided into three groups, namely: training (70%), validation (10%) and
testing (20%). Samples in training, validation and testing sets consisted of sounds
of different vowels and pitches. The network has been trained smoothly and the
validation error started to increase after approx. 3000 cycles of training. To
train the network optimally a minimum of global validation error function had
to be observed. If the validation error was increasing for 50 successive cycles,
the last validation error function minimum was assumed to be global and the
learning was stopped. In Table 1 recognition results are presented for the voice
type category. Rows in table describe recognized voice type classes, and columns
correspond to the ANN-based classification.

A total number of sounds on which the classifier was tested was 254 in the
voice quality and 181 in the voice type categories. The average recognition re-
sult amounts to 94.1% (amateur – 96.3%, semi-professional – 94.3%, and profes-
sional – 89.5%) and 90% respectively. What is important, in most cases errors
of recognition occurred for ‘neighboring’ classes. For example only 0.9% profes-
sional voice samples were recognized as belonging to amateur class and any tenor
samples were recognized as basses, mezzo-sopranos or baritones.
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Table 1. ANN singing voice recognition results

Voice type category recognition [%] bass baritone tenor alto mezzo soprano

bass 90.6 6.3 3.1 0 0 0

baritone 3.3 90 6.7 0 0 0

tenor 0 3.6 89.3 7.1 0 0

alto 0 0 4 80 12 4

mezzo 0 0 0 0 93.8 6.3

soprano 0 0 2.9 0 2.9 94.1

3.2 Rough Sets-Based Results

Rough sets introduced by Pawlak [10] are often employed in the analysis of data
which aims at discovery of significant data and eliminating redundant ones. The
vast literature in the domain of rough sets cover many applications [11], RS are also
used in music information retrieval [9]. Within the context of this paper, the rough
set method was also used for the analysis of descriptors defined for the purpose of
this study. In experiments the rough set decision system RSES was employed [12].
Since this system is widely used by many researches, thus the details concerning its
algorithmic implementation and performance will not be provided here. FVs were
divided into training and testing sets. Parameters were quantized according to the
RSES system principles. The local discretization was used. Local discretization
method uses Maximal Discernibility (MD) Heuristics [1] and allows for reducing
the number of parameters before the rough sets system is trained.

In the category of voice quality the vector of parameters was reduced to 20
parameters listed below:
FV= [F11, F21, F31, F33, F12var , F13min, F13var , KX1, KX2, KP1, LP3, fV IB,
VIBp, LAT, TC, ASE6, ASE7, ASE8, ASE21, s2]

Parameters which do not have impact on decision are removed. Those left were
utilized in reducts calculation. For this purpose a genetic algorithm available in
the RSES system was used, resulting in 11 reducts, each with positive region
equal 1.0. Reducts were used in rules generation, then new objects were classified
with the rules. If more that one decision was matched to an object, voting method
was performed to choose one most frequent.
{F11, F31, F12var, KX2, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8}
{F11, F31, F12var, F13min, KX2, fV IB, VIBp, LAT, ASE6, ASE7, ASE8, ASE21}
{F11, F31, F13var, KX2, fV IB, VIBp, TC, ASE6, ASE7, ASE8, ASE21}
{F11, F31, KX2, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8, s2}
{F11, F31, KX2, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8, ASE21}
{F11, F13min, KX2, KP1, fV IB, VIBp, TC, ASE6, ASE7, ASE8, ASE18, s2}
{F31, F12var, KX2, KP1, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8}
{F31, F13var, KX2, fV IB, VIBp, TC, ASE6, ASE7, ASE8, ASE21, s2}
{F13var, KX2, KP1, fV IB, VIBp, TC, ASE6, ASE7, ASE8, ASE21, s2}
{F12var, KX2, KP1, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8, ASE21}
{F13min, KX2, KP1, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8, s2}
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Among the reduced set of parameters, descriptors related to the WLPC anal-
ysis of formants can be found, thus qualified as significant for the classification
purposes. They are related to all three formants, thus this proves that in the
category of voice quality all formants are required to be parameterized and con-
tained in FVs. It is interesting that among those parameters F31 and F33which
are related to ‘high formant’ (middle frequency higher than 5kHz) appeared.
The significance of this formant is not described in literature concerning auto-
matic singing voice parametrization. Among glottal source parameters descrip-
tors such as: KX1, KX2, KP1, LP3 have been selected. On the other hand,
frequency (fV IB) and periodicity (VIBp) related to vibrato modulation found
their place among other important descriptors. Among remaining parameters a
few MPEG-7 parameters, namely: LAT, TC, ASE6, ASE7, ASE8, ASE21 have
been qualified, in addition only one parameter related to the analysis of spec-
trum may be found, which is represented by s2 related to the variation of the
second harmonic.

In the category of voice type over 200 from the total number of 331 parameters
have been left during the analysis. It was not possible to obtain such a reduced
parameter representation as in the case of the voice quality category. Within this
context automatic voice type recognition seems to be more complex. One of the
reasons can be a diversity of registers among different voice types and individual
voice qualities which change for the same voice type. Additionally, some singers’
voices were not easy to qualify to the voice type category, e.g. low registers of
soprano voices were similar in timbre to mezzo-soprano and even alto voices.

Parameters derived from the rough set-based analysis for both categories were
used for training and testing of the RSES system. 75% of voice samples were
used in training and the remaining 25% were used for testing. For voice quality
classification 548 rules were generated, with mean support 43, and maximum
support 498, mean length 4.2, and maximum length equals 7. For voice type
classification 15198 rules with mean support 2.8, and maximal support 28, mean
length 5.6, and maximal length 12 have been generated. In Table 2 recognition
results are presented for voice type category. Below, examples of rules having
the highest support are given.
(KX1=”(-Inf, 0.8643”) & (fVIB=”(0.1067, Inf”) & (VIBP=”(-Inf, 0.0185”) &
(ASE6=”(-Inf, 1.9116”) => (quality=pro.[475])
(KX2=”(-Inf, 0.34735”) & (fVIB=”(0.1067, Inf”) & (VIBP=”(-Inf, 0.0185”) &
(ASE6=”(-Inf, 1.9116”) => (quality=pro.[431])
(F12 var=”(0.08080, Inf”) & (fVIB=”(0.1067, Inf”) & (VIBP=”(-Inf, 0.0185”)
& (ASE6=”(-Inf, 1.9116”) => (quality=pro.[425])
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parameters contained in the rules induced by the RSES system correspond
to the ones discussed above. Decision ‘pro’ corresponds to quality of a profes-
sional singer, ‘semi-pro’ denotes a semi-professional singer. Rules that regard
the decision ‘amateur’ contained also a few descriptors, however with a lower
support.
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Table 2. RSES-based singing voice classification results

Voice type category recognition [%] bass baritone tenor alto mezzo soprano

bass 84.0 10.0 4.0 2.0 0 0

baritone 13.0 64.8 13.0 0 1.9 7.3

tenor 6.0 18.0 54.0 10.0 6.0 6.0

alto 0 4.7 16.3 51.2 16.3 11.6

mezzo 3.8 0 2.6 1.3 73.1 19.2

soprano 2.9 2.9 2.9 1.4 11.4 78.6

The automatic recognition results in the case of the category of quality are
better comparing to the ANN. The rough set system achieved very good results
employing a reduced FV of 20 parameters in classification of the voice quality
category (total accuracy 0.976). They are respectively as follows: amateur –
94.7%, semi-professional – 95.4%, and professional – 96.7%. In the category
of voice type the results are much lower. Moreover, in the case of singing voice
type category erroneous classification is not always related to neighboring classes.
Thus, the RSES system was not able to perform the classification as good as ANN
while trained and tested on FVs of more than 200 parameters in the category of
voice type where further vector size reduction was not possible (total accuracy
obtained equals 0.664). It is quite obvious that types of voices being at the
extreme of the voice type category have been recognized with better efficiency
than those close to each other.

4 Conclusions

By comparing automatic recognition results of neural network and rough set
system two main conclusions may be reached. The recognition performed by
the rough set system was better for the quality category and worse in the cat-
egory of the voice type in comparison to the ANN. In the case of the voice
quality category it was possible by the RS system to reduce a large number of
parameters to 20 descriptors to be contained in the FVs and the extraction of
rules went very smoothly. Descriptors describing the level of formants, stabil-
ity of glottal parameters along with those related to vibrato, and in addition
MPEG-7 descriptors allowed for deriving linear IF-THEN rules. This proves
that automatic recognition of quality category is possible on the basis of a sig-
nificantly reduced number of descriptors contained in the FVs. In the case of
the voice type it was not possible to achieve as good recognition results. Neu-
ral networks which are capable to perform non-linear class separation enabled
to classify particular types of singing voices effectively while the rough-set sys-
tem achieved lower efficiency. The reason for the lower recognition results may
be that the database of singing voices was represented by too low number of
different singers.
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Abstract. One of key problems in implementing a dynamic interface
between human and agents is how to do semantic mapping from natural
language questions to OWL. The paper views the task as a two-class
classification problem. A pair of question variable and OWL element is
a sample. Two classes of “Matched” and “Unmatched” explain two re-
lations between the question variable and the OWL element in a given
sample. Building appropriate semantic mapping is the same as classify-
ing the sample to a “Matched” class by an effective machine learning
method and a trained model. Two types of features of samples are se-
lected. Syntactical features denote the syntactical structure of a given
sample. Semantic features present multiple relations between the ques-
tion variable and the OWL element in one sample. Preliminary experi-
mental results show that the sum precision of the learning-based model
is better than that of the constraints-based method.

1 Introduction

Natural language is a common communication means for human. Natural lan-
guage questions are the most convenient representation to acquire knowledge.
OWL [8] is a new knowledge representation language on the Semantic Web,
which can be understood by agents. One of key problems in implementing a
dynamic interface between human and agents is how to build semantic mapping
from natural language questions to OWL.

Natural language and OWL are in essence two heterogeneous representations
for the same semantic knowledge. Building semantic mapping for a natural lan-
guage question and an OWL knowledge base is to map different syntactical
constructs between them based on semantic equivalence. For example, a clause
can be matched with an axiom. The basic mapping is from words (or named
entities) to elements. Because elements in OWL are the basic units and words
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in natural language are the indivisible units. The paper focuses on semantic
mapping from a set of words to a set of elements.

Currently, researches on semantic mapping between natural language ques-
tions and ontology knowledge encounter a few urgent problems. Firstly, most of
methods are semiautomatic and require users to manually solve the ambiguity
problems in semantic mapping. Secondly, lingual common sense, domain dictio-
naries and the behaviors of users include a great deal of accessorial knowledge,
which is not completely used by existing systems, to reduce the ambiguity in se-
mantic mapping. In order to avoid the problems, we proposed a constraints-based
method for semantic mapping from natural language questions to OWL [7]. The
method translated the words of a question as well as their syntactical and seman-
tic properties into constrained question variables and functions, and thereafter,
utilized an optimization-based assigning mechanism to substitute the question
variables with the corresponding constructs in OWL knowledge bases. However,
the method is lack in learning ability and its performance cannot be improved
with increase of instances.

The paper proposes a learning-based model. The task of semantic mapping
can be viewed as a two-class classification problem in the model. A pair of ques-
tion variable and OWL element is a sample. A given sample can be classified to a
“Matched” class or a “Unmatched” class by an effective machine learning method
and a trained model. We extract two types of features for samples. Syntactical
features deal with different levels of structures of a given question variable, such
POS or chunk. Semantic features consider different relations between the ques-
tion variable and the OWL element in the sample. We have performed some
preliminary evaluations using the questions and knowledge base available from
the International WIC Institute (WICI)1.

2 A Workflow of Semantic Mapping Based on Learning

The task of semantic mapping can be viewed as a two-class classification prob-
lem. A pair of question variable and OWL element is a sample. Two classes of
“Matched” and “Unmatched” explain two matching results between the ques-
tion variable and the OWL element in a given sample. Building an appropriate
semantic mapping is the same as classifying the sample to a “Matched” class by
an effective machine learning method.

Figure 1 describes a workflow of semantic mapping based on learning. As
shown in Fig. 1(a,b), firstly, we decompose a given question and a given OWL
knowledge base. Secondly, we build a set of samples using the set of question
variables and the set of elements acquired from the above step as shown in
Fig. 1(c). Thirdly, we compute feature vectors according to the defined features
as shown in Fig. 1(d). Finally, the samples will be classified based on a certain
classifier and the model learned from training data as shown in Fig. 1(e).

1 http://www.iwici.org/
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Fig. 1. A workflow of semantic mapping based on learning. vi in Fig. 1(a) denotes the
ith question variables in Q. Tm and emi in Fig. 1(b) denote the mth triple in B and the
ith element in Tm. Si, Fj and aij in Fig. 1(d) denote the ith sample, the jth feature,
and the value of the jth feature of the ith sample.

2.1 Decomposing Questions

A question is defined as a set of question variables as follows.

Definition 1. Let QV := {vi}ni=1 be a set of question variables and vi :=<
Type, T erm,Attribute > be a question variable in QV , where Type := word|
named entity denotes the real unit of the question variable, Term :=
{Tokenj}rj=1 denotes the set of words that compose the question variable, and
Attribute is the set of the properties of the question variable. Different types
of question variables have different attributes, for example: attributes of a word
include {Token, Stem, Lemma, SY N , POS, Chunk, Length, Order}.

The ultimate goal of decomposing questions is to identify all question variables
in a question. In doing so, various basic techniques of natural language pro-
cessing [5] will be involved, including tokenization, identification of stop words,
stemmer, POS, identification of named entities (NE), synonymies. In this work,
we use Gate [4], WordNet [6] in practical application.

Figure 2 provides a schematic illustration of question decomposition, along
with a sketch of question variables. As shown in the figure, an original ques-
tion is firstly decomposed through tokenization into candidate question variables
containing attributes and terms. Next, part of the variables are replaced with
named entities, since they can be learned from related texts. Thirdly, potential
stop words are marked. Finally, we supplement attributes of the variables by
synonyms or abbreviation.
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Fig. 2. A schematic illustration of question decomposition

2.2 Indexing OWL Knowledge Bases

In order to formalize an OWL knowledge base into a set of elements, existing
OWL parsers, such as Jena or OWL API, are used to parse an OWL knowledge
base into a set of elements. An OWL element in the set is composed of single
word or multiple words. The element with multiple words is decomposed into a
set of words. Three elements are combined to form a RDF triple to present a
terminological or assertion axiom.

An OWL knowledge base can be defined as follows.

Definition 2. Let Onto := (E, T ) be an OWL knowledge base, where E =
{ej}mj=1 is the set of elements, T = {< ei, ej , ek > |1 ≤ i, j, k ≤ m} is the set
of RDF triples. Let ej :=< Type,Name,Relation > be an element in E, where
Type is one of the set {class, individual, DatatypeProperty, ObjectProperty,
value}, Name = {Tokeni}ri=1 is the set of words that compose the element, and
Relation = {{tj}sj=1|ei ∈ tj} is the set of RDF triples including the element.

2.3 Building Sets of Samples

Given a question QV and an OWL knowledge base Onto, the most simple cri-
terion to build a set of samples is the Cartesian product QV × Onto. Every
question variable in QV can be combined with all elements in Onto to form
|Onto| samples. However, most of elements are not completely related to a given
question variable, so that they can be combined with the question variable to
form some negative samples. For the task of semantic mapping, we are more in-
terested in positive samples. It is essential to select candidate elements to build
samples for a given question variable.

From the viewpoint of surface text matching, we propose a strategy of select-
ing candidate elements. The strategy compares the set of words of a question
variable and an element, and then decides whether or not to build a sample for
them. Thus, a sample can be defined as follows.



A Learning-Based Model for Semantic Mapping 807

Definition 3. Let S := {< vi, ej > |vi ∈ QV and ej ∈ E and ej .Name ∩
vi.T erm �= φ} be a sample, where QV is the set of question variables and E is
the set of OWL elements.

3 Feature Extraction

The performance of the learning-based model is tightly coupled with feature
extraction. Syntactical and semantic properties of question variables and OWL
elements are formalized into two types of features: syntactical and semantic
features. Syntactical features denote syntactical characteristics of the question
variable in a given question and the OWL element in a given OWL knowledge
base. Semantic features present different relations between the question variable
and the OWL element in a sample.

Syntactical features of a sample include different levels of xstructures of the
question variable, such as POS or chunk, and the OWL element. Every ques-
tion variable is a lingual member. Some syntactical characteristics of a question
variable, such as POS and Chunk, can be regarded as its features. For a given
question variable, syntactical characteristics of adjacent variables have latent in-
fluence on classifying besides its characteristics. We consider not only POS and
Chunk of the question variable in a given sample, but also those of its neighbors.
Values of POS and Chunk use Penn Treebank II Tags2. The tags are too detailed
to use for our task. For example, a noun has four tags such as NN (singular or
mass), NNS (plural), NNP (proper noun, singular) and NNPS (proper noun,
plural). In fact, the difference can be ignored when we only concern higher-level
structures of a question variable. The tags compressed are displayed in Table 1.
Syntactical characteristics of an OWL element in a given sample are relatively
simple and only include a certain type of the OWL element. Its feature value is
an element of the set {C, DP, OP, I, V}, where the elements in the set denote
class, DatatypeProperty, ObjectProperty, individual, and value, respectively.

Table 1. Tags for POS and compressed POS

Compressed NN WW VB JJ RB ER

POS NN,NNS, WDT,WP, VB, VBD, JJ, JJR, RB, RBR, Other tags
NNP, NNPS WP$, WRB VBG, VBN, JJS RBS

VBP, VBZ

Using various information, such as surface text and counterparts, related to
the question variable and the OWL element in a sample, the paper defines dif-
ferent types of semantic features.

The common profile is to compare the similarity of surface text of the ques-
tion variable and the corresponding element. Besides the original token in ques-
tions, a word can use lemma, stem, and synonym to represent its meaning.
2 http://bulba.sdsu.edu/jeanette/thesis/PennTags.html
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Hence, token-match, lemma-match, stem-match, and syn-match are defined as
four direct semantic features. They denote the degree of similarity of surface text
among original token, lemma, stem, and synonym of the question variable and
the OWL element in a sample, respectively. Eq. (1) is used to calculate the value
of token-match, where < vi, ej > is a given sample. lemma-match, stem-match
and syn-match can use similar formulas.

token-match =

⎧
⎨

⎩

1 : vi.token ∩ ej .token = vi.token
0.5 : vi.token ∩ ej .token �= null

0 : vi.token ∩ ej .token = null
(1)

An OWL element is often composed of multiple words. It may match other
words in the same question besides the question variable. The case indirectly im-
proves the degree of similarity between the question variable and the OWL ele-
ment. We define a semantic feature named other-term to reflect the case by Eq. (2).

other-term =
{

1 : ∃w w ∈ ej .T oken and w �= vi and w ∈ q
0 : otherwise

(2)

where < vi, ej > is a given sample, vi presents a question variable of q, and w
denotes a word in q.

Except for the similarity between the question variable and the OWL element
in a given sample, the relations between their respective counterparts have influ-
ence on semantic mapping. A counterpart of an OWL element is an OWL element
that is combined with the OWL element to form a RDF triple. Counterparts of
a question variable are other question variables in the same question and lingual
members through Wordnet, such as synonym, hyponyms, and hypernyms. In
order to present the relations between counterparts of the question variable and
counterparts of the OWL element in a given sample, we define features, such as
other-variable, synonym 2, hypernyms, and hyponyms by Eq. (3).

other-variable =
{

1 : ∃ek vs ∈ ek.T oken
0 : otherwise

(3)

where < vi, ej > is a sample, ek is a counterpart of ej , vs is a counterpart of vi. For
other-variable, synonym 2, hyponyms, and hypernyms, vs denotes another question
variable in the same question, synonym, hyponyms and hypernyms of vi.

For two samples < e1, v1 > and < e2, v2 > of a question and an OWL knowl-
edge base, e1 and e2 may have a shared counterpart ek. The shared OWL ele-
ment can be viewed as an intermedius to build an indirect relation of counterpart
between e1 and e2. Because v1 and v2 are from the same question, v1 is a coun-
terpart of v2. In order to consider the relation of two samples, we define a feature
named sharing-element for the samples by Eq. (4).

sharing-element =
{

1 : ∃ek ek ∈ e1.Counterpart and ek ∈ e2.Counterpart
0 : otherwise

(4)

There must be other features that can influence semantic mapping. In this
work, we only consider the features based on current properties of question
variables and OWL elements.
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4 Experiments

4.1 Experimental Data

The OWL knowledge base of our experiments is built on the basis of the WICI por-
tal, which includes 83 classes, 90 individuals, 37 object properties, and 20 datatype
properties. We have used two types of natural language questions in our experi-
ments: real questions (RQuestions) selected from students in the WICI; and sim-
ulated questions (SQuestions) manually produced regarding the instances of the
WICI based on the questions set from Webclopedia.3. Table 2 shows the number
of questions and the number of samples (sample 1 ). The samples are built with
sets of questions variables decomposed from the questions and the set of elements
parsed from the OWL knowledge base related to the WICI.

Though questions decomposition has marked the potential stop words, such
as “on” ,“of”, some verbs like “do”, “has” are not confirmed as stop words
completely. They are hold in the set of question variables and formed into the
set of samples, because they have practice meaning in some questions. Hence,
these samples can become noises when the question variables in the samples have
not any meaning in questions. As shown in Table 2, we removed the samples with
stop words to form another set of samples (sample 2 ).

Table 2. Questions and samples

Questions Samples 1 Samples 2
Sum positive negative sum positive negative

RQuestions 69 578 242 336 524 242 282

SQuestions 40 271 124 147 234 124 110

4.2 Experimental Design and Results

In order to select an effective classifier for the task of semantic mapping, we used a
special machine learning tool named Weka [14] in practical experiments. Weka is
implemented in Java and has a good GUI and convenient APIs. It includes various
series of Classifiers, such as bayes series, functions series, tree series and so on. We
carried out several experiments by different Classifiers with default parameters
in Weka, and selected results of three typical Classifiers (J48, SMO, and KStar)
by comparing their precisions as shown in Table 3. From the results, we obtain
three conclusions. The first one is that RQuestions and SQuestions present the
prominent difference for KStar. For two sets of samples, the results of RQuestions
is better than that of SQuestions. KStar is an instance-based classifier (i.e., the
class of a test instance is based upon the class of those training instances similar
to it), as determined by some similarity functions. Through analyzing two sets of
questions, we can see that there are more similar questions in the set of real ques-
tions than in the set of simulated questions. The second one is that the precision
3 http://www.isi.edu/natural-language/projects/webclopedia/
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of J48 rarely declined from samples 1 to samples 2. J48 is a trees classifier, which is
not sensitive about noises in samples. The samples with stop words can be viewed
as noises when the question variables in the samples have not any meaning in ques-
tions. The third one is that the precision of sum and negative is declined and the
precision of positive is improved from samples 1 to samples 2. The results show
that removing stop words is useful for the task of semantic mapping.

Table 3. The precision of simulated questions and real questions. SS1 and SS2 denote
sample 1 and sample 2 of SQuestions; PS1 and PS2 denote sample 1 and sample 2 of
RQuestions; P denotes precision

SS1 SS2 PS1 PS2

Classifier J48 SMO KStar J48 SMO KStar J48 SMO KStar J48 SMO KStar

P Positive 80.1 85.0 72.6 82.7 81.3 79.0 78.4 76.1 82.0 77.7 75.2 84.1
% negative 88.9 88.9 71.5 86.1 81.1 66.4 84.3 83.7 83.1 81.9 80.3 80.0

sum 84.50 87.08 71.96 84.19 81.20 71.79 81.83 80.45 82.70 79.95 77.86 81.68

In order to evaluate the precision of the learning-based model, we compare
the precision of the learning-based method (called LBM) with the constraint-
based method (called CBM) with same weight for different constraints, which
is proposed in [7]. However, the measure of CBM introduced in [7] does not
accord with LBM in the paper. A new evaluating method is defined by Eq. (5),
which is based on the precision of question variables for CBM. For the clarity of
description, we will make the following assumption: n = n1 +n2 +n3 denotes the
number of question variables, n1 presents the number of the question variables
obtained right mapping, n2 is the number of the question variables obtained
wrong mapping, and n3 is the number of the question variables that cannot
obtain sound mapping because of limitation of constraints.

precision =
n1 + (a1/b1 + . . . + an3/bb3)

n
(5)

where ai and bi denote the number of suited elements and candidate elements of
the ith question variable that cannot obtain sound mapping because of limitation
of constraints.

Figure 3 gives the precision comparisons between LBM and CBM methods.
From this figure, we can see that LBM is better than CBM. However, for SS1
and PS1 the precisions of LBM have been improved by over 15% and present a
significant improvement over that of CBM. The results show that removing stop
words is more useful for the CBM method.

5 Related Work

Natural language interfaces to database [1,2,11,10,13] are the same problems
as semantic mapping between natural language questions and OWL knowledge.
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Fig. 3. The precision comparisons between LBM and CBM

Previous methods [1,2] have used predicate logic as the representation language
to manually construct a concept map, which captures the concepts and roles
involved in a question. PRECISE [11,10] parsed questions to the corresponding
SQL queries using a statistical parser, a lexicon, and a maxflow algorithm. Oth-
ers [13] have explored a learning-based approach that combines different learning
methods in inductive logic programming (ILP) to allow learners to produce more
expressive hypotheses than that of an individual learner and to build a predicate
lexicon with different learning methods.

There are some researches [3,12,9] about semantic mapping between natu-
ral language questions and ontology knowledge. MOSES [12] can deal only with
questions in Denish and Italian. AquaLog [9] dealt specifically with English ques-
tions by using customized triples as the intermediate representation language.
It required users to manually solve the ambiguity problems in semantic under-
standing. Strictly speaking, the work presented in [3] was not a real semantic
mapping from natural language questions to ontology. Solvable questions of the
system was a subset of natural English (controlled English).

Compared with the related works, the main features of our work include that
the proposed method without demanding additional information or intervention
from users is automatic, uses many syntactical and semantic characteristics from
analysis of questions and OWL knowledge bases, and can be improved with
increase of instances.

6 Conclusions

In order to map natural language questions to OWL, the paper proposed a
learning-based model, which views the semantic mapping as a two-class clas-
sification problem. Building an appropriate semantic mapping between a ques-
tion variable and an OWL element is the same as classifying the samples to a
“Matched” class by an effective machine learning method. Our preliminary ex-
periments using the questions and knowledge base available from the WICI have
indicated that the proposed model is promising for further development.
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Abstract. Mismatch and overload are two fundamental issues regard-
ing the efficiency of Web information gathering. To provide a satisfactory
solution, this paper presents a Web information gathering system that
encapsulates two phases: the filtering and sophisticated data processing.
The objective of the filtering is to quickly filter out most irrelevant data
in order to avoid mismatch. The phase of the sophisticated data process-
ing can use more sophisticated techniques without carefully considering
time complexities. The second phase is for solving the problem of the
information overload.

1 Introduction

There are two fundamental issues regarding the efficiency of Web information
gathering (WIG) [9]: mismatch and overload. The mismatch means some data
that meets user needs has not been found (or missed out), whereas, the overload
means some gathered data is not what users need.

Traditional techniques related in information retrieval (IR) have touched the
fundamental issues [2]. However, IR-based systems neither explicitly describe
how the systems act like users nor discover enough knowledge from very large
data sets to answer want users really want. This issue has challenged the arti-
ficial intelligence (AI) community to address “what has information gathering
to do with AI” [7]. In a one time, many agent-based approaches have been pre-
sented for this challenge [8]. Unfortunately, agent-based approaches can only
show us the architectures of information gathering systems. They cannot pro-
vide more contributions for finding useful knowledge from data to overcome the
fundamental issues.

Currently, the application of data mining techniques to Web data, called Web
mining, is used to discover knowledge from Web data to help users for infor-
mation gathering [17]. Web mining can be classified into four categories: Web
usage mining, Web structure mining, Web content mining and Web user profiles
mining [4,15,20,11].
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It is obvious that Web information gathering systems must be quickly response
their users’ requests. However, the procedure of mining useful patterns from large
numbers of Web data takes a lot of time. It is also a big challenge to guarantee the
quality of discovered knowledge in Web data since duplications and ambiguities
of data values (e.g., terms). On the other hand, there actually only a small
amount of Web data is relevant to a certain user or a group of users. Therefore,
it is desirable to quickly filter out most irrelevant data first and then conduct
sophisticated data processing.

To provide a satisfactory solution for the fundamental issues, in this paper
we design a Web information gathering system that encapsulates two phases:
the filtering and sophisticated data processing. The objective of the filtering
is to quickly filter out most irrelevant data. The expected result of filtering
is only a small amount of inputs left. So the phase of the sophisticated data
processing can use more sophisticated techniques without carefully considering
time complexities.

2 Definitions

It is easier for users to answer which documents are relevant rather than describe
what they really wants [3]. In this research we assume that the users can provide
feedback to indicate which documents are positive (relevant) or negative (irrele-
vant), that is, we can obtain a training set of relevant documents and irrelevant
documents.

Let T = {t1, t2, . . . , tk} be a set of keywords (or terms), and D be a training
set of documents, which consists of a set of positive documents, D+; and a set
of negative documents, D−, where each document is a set of terms (may include
duplicate terms).

In the phase of filtering, we let D− = ∅ because we attempt to use a smallest
training set for quickly filtering out the irrelevant information.

A set of terms is referred to as a termset. Given a document d (or a paragraph)
and a term t, we define tf(d, t) the number of occurrences of t in d. A set of term
frequency pairs, P = {(t, f)|t ∈ T, f = tf(t, d) > 0}, is referred to as a pattern
in this paper.

Let termset(P ) = {t|(t, f) ∈ P} be the termset of P . In this paper, pattern
P1 equals to pattern P2 if and only if termset(P1) = termset(P2). A pattern is
uniquely determined by its termset. Two patterns should be composed if they
have the same termset (or they are in a same category). In this paper, we use
the composition operation, ⊕, that defined in [11] to generate new patterns.

Let P1 and P2 be two patterns. We call P1 ⊕ P2 the composition of P1 and
P2 which satisfies:

p1 ⊕ p2 = {(t, f1 + f2)|(t, f1) ∈ p1, (t, f2) ∈ p2} ∪
{(t, f)|t ∈ (termset(p1) ∪ termset(p2))−
(termset(p1) ∩ termset(p2)), (t, f) ∈ p1 ∪ p2}



Filtering and Sophisticated Data Processing for WIG 815

In the phase of filtering, we use rough association rules (see [12,13]). A rough
association rule has the form of

< termset, wd > positive,

where termset is set of selected terms, and wd is a weight distribution of these
terms in the rule. We can get rough association rules by using the composition
operation on a set of patterns and then normalizing the corresponding weights
(see [12] or [13]).

3 Filtering

The simplistic approach of filtering is using term vector spaces (e.g., a set of key
words) [6,18]. The main disadvantage of the simplistic approach is the poor inter-
pretation of negative information. In this research, we will present an ontology-
based filtering model.

3.1 Ontology Extraction

Syntactically we assume that user interests (classes) can be constructed from
some primary ones. Fig. 1 shows such an ontology, which organizes a set of dis-
covered patterns. The set of primitive objects Θ = {pet, shop, city, accomm-
odation}. Because dog and cat are pets (also hotel is-an accommodation), we
use “is-a” links to show the relation between them and the corresponding prim-
itive objects. There are three relevant documents in the training set, which are
represented as a set of keyword-frequency pairs:

d1 = {(dog, 4), (shop, 6)}, d2 = {(cat, 5), (shop, 15)}, and
d3 = {(pet, 3), (shop, 7), (city, 10)}.

Using the inheritance (or is-a relation), we can obtain two compound objects:
p1 and p2 (see Fig. 1) from d1, d2 and d3, where, d1 → p1, d2 → p1 and d3 →
p2. The “part-of” relation is used to show the relation between compound and
primitive objects. A document is irrelevant if its any “part-of” section does not
include any pattern.

In order to measure the relationship between classes, we can define an identity
for each class X , that is, id(X) = {Z|Z is a primitive class, and there is a path
from X to Z}, e.g., id(p1) = {pet, shop}. We say class X = class Y if and only
if id(X) = id(Y ). The following is the procedure for an ontology extraction:

Step 1. Lexical entry extraction

– Use tf ∗ idf to get a set of keywords (e.g., we use 150 keywords for each
topic) from the training set;

– Select primitive objects (terms) from the set of keywords using the existing
background knowledge, where each term is a group of keywords, e.g., term
“pet” may include {pet, dog, cat};
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Fig. 1. Backbone of the Ontology

Step 2. Determine patterns

– Decide the id (a set of terms) for all relevant documents in the training sets;

Step 3. Generate a graph representation as one shown in Fig. 1.

Let PL = {(p1, N1), (p2, N2), . . . , (pn, Nn)} be a set of compound objects
which comes from the discovered patterns, Ω be the set of its classes: primitive
or compound, where pi is a pattern (1 ≤ i ≤ n) and Ni denotes the number
of appearance of the similar objects. For example, in Fig. 1 we have PL =
{(p1, 2), (p2, 1)} because of d1 → p1, d2 → p1 and d3 → p2. From PL we can get
a support function, which satisfies:

support : P → [0, 1]

such that

support(pi) =
Ni∑

(pj ,Nj)∈PL Nj
, where P = {p|(p,N) ∈ PL}. (1)

We can obtain the following set-valued mapping to describe the knowledge
implied in PL:

Γ : P → Ω; such that Γ (pi) =
{

X if pi is related to class X
Ωroot otherwise, (2)

where, Ωroot is the root class in Ω. We call Γ a deploying mapping of P on
Ω. If the users could not get a corresponding class for a pattern, the pattern is
indexed by default in the root class in the ontology (Note: in “is-a” taxonomy
we often use empty sets). This convention makes sense if we assume that the
root class represents the entire collection we discuss.

Let Θ be the set of primitive objects. We can get an id mapping from the
deploying mapping:
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ξ : P → 2Θ − {∅}, such that ξ(pi) = id(Γ (pi)). (3)

At last, we can obtain a probability functions prξ to represent the discovered
knowledge on the ontology, which satisfies:

prξ(θ) =
∑

∅
=A⊆Θ,θ∈A

support({(p,N)|(p,N) ∈ PL, ξ(p) = A})
|A| (4)

for all θ ∈ Θ.

3.2 Decision Rules

Similar to type rules used for programming language processing, in this research
we use decision rules on ontology. The main objective here is to make decisions
for new incoming objects. Let p be a pattern and o be a new incoming object.
Our basic assumption is that o should be relevant if id(p) ⊆ id(o). The set of all
objects o in the set of new incoming objects such that id(p) ⊆ id(o) is called the
covering set for p and denoted as [p]. The positive region (POS ) is the union
of all covering sets for all p ∈ P .

Except POS there are many boundary objects o such that ∃p ∈ P ⇒ id(p) ∩
id(o) �= ∅. The set of all objects o in the set of new incoming objects such that
∃p ∈ P ⇒ id(p) ∩ id(o) �= ∅ is called the boundary region (BND). Also, the
set of all objects o in the set of new incoming objects such that ∀p ∈ P ⇒
id(p) ∩ id(o) = ∅ is called the negative region (NEG). Given an object o, the
decision rules can be determined naturally as follows:

∃p ∈ P ⇒ id(p) ⊆ id(o) �= ∅
o ∈ POS

,
∃p ∈ P ⇒ id(p) ∩ id(o) �= ∅

o ∈ BND
, and

∀p ∈ P ⇒ id(p) ∩ id(o) = ∅
o ∈ NEG

.

3.3 Filtering Algorithm

It must be more interesting to determine thresholds theoretically rather than
using experiments. The following is the idea for determining the thresholds.

The probability function prξ on (see Equation 4) has the following property:
∑

t∈id(o)

prξ(t) ≥ min
p∈P
{
∑

t∈ξ(p)

prξ(t)} for all o ∈ pos. (5)

From the above analysis, we can use minp∈P {
∑

t∈ξ(p) prξ(t)} as the thresh-
old. A very important conclusion we can draw from the above analysis is that
our method can guarantee the processing of filtering can retrieve all positive
documents (i.e., POS ).
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Term frequency is a very useful source in information filtering. In order to use
term frequency, the id mapping ξ in Equation 3 can be extended to the following
mapping β, which satisfies:

β : P → 2Θ×[0,1] − {∅} such that
∑

(fst,snd)∈β(pi)
snd = 1 and ξ(pi) = {fst|(fst, snd) ∈ β(pi)} (6)

for all pattern pi ∈ P (please see the example below). We call β a frequency
distribution of ξ.

Using the frequency distribution, we can refine probability functions prξ by
obtaining another probability functions prβ on Θ, which satisfies:

prβ(θ) =
∑

(pi,Ni)∈PL,(θ,snd)∈β(pi)
support((pi, Ni))× snd (7)

for all θ ∈ Θ.
Using the example in Fig. 1 we have PL = {(p1, 2), (p2, 1)}, and ξ(p1) =

{pet, shop} and ξ(p2) = {pet, shop, city}. Assume support(p1) = 2/3 and
support(p2) = 1/3, then we have the corresponding frequency distribution β,
which satisfies (notice: d1 → p1, d2 → p1 and d3 → p2):

β(p1) = {(pet, (4 + 5)÷ (4 + 5 + 6 + 15)), (shop, (6 + 15)÷ (4 + 5 + 6 + 15))}
= {(pet, 0.3), (shop, 0.7)}, and

β(p2) = {(pet, 3÷ (3 + 7 + 10)), (shop, 7÷ (3 + 7 + 10)),
(city, 10÷ (3 + 7 + 10))} = {(pet, 0.15), (shop, 0.35), (city, 0.5)}.

The new filtering algorithm first updates the ontology in Fig. 1 by replacing
p1 and p2 with “p1 : {(pet, 0.3), (shop, 0.7)}” and “p2 : {(pet, 0.15), (shop, 0.35),
(city, 0.5)}”, respectively. It then determines a threshold (see Equation 5). It also
extracts a set of terms from each new incoming document. At last it calculates
the probability of the document (see Equation 7) and makes a decision according
to the threshold.

4 Sophisticated Data Processing

Different from the term based filtering phase, in the phase of Sophisticated Data
Processing we use phrases, a sort of sequential patterns.

It is not very difficult for the discovery of phrases from documents if we view
each paragraph as a transaction. The problem is how to represent the relations
between phrases. One method is to use a document index graph (DIG) [5], where
each node is a unique word, and each edge is a two adjacent nodes which appear
successive in a document. The drawback of this method is that a DIG may
index some nonsense phrases. In this research we use sequential patterns [1] to
represent phrases. We also use a new concept, which is similar to the notation
of closed sequential patterns [16,21], to create a phrase taxonomy model (PTM)
for Web mining.
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4.1 Phrase Taxonomy Model

A sequence s =< x1, . . . , xm > (xi ⊆ T is a termset) is an ordered list. A
sequence α =< a1, . . . , am > is a sub-sequence of another sequence β =<
b1, . . . , bn >, denoted by α ⊆ β, if and only if ∃i1, . . . , im such that 1 ≤ i1
< i2 . . . < im ≤ n and α1 ⊆ βi1 , α2 ⊆ βi2 , . . . , αm ⊆ βim . A sequential pattern s
is a very closed sequential pattern of s′ if s ⊆ s′ and support(s)− support(s′) <
λ× support(s′), where λ is a small positive decimal.

The above definitions can be used to create a phrase taxonomy as showed in
Fig. 2, where a, b, c, and d are terms, the arrows are “is-a” relation, e.g., phrase
< (a)(b) > is a sub-sequence of < (a)(b)(c) >.

If we use the frequency to define the support function for all patterns, we
have support(< (a)(b) >) ≥ support(< (a)(b)(c) >). In general we may get 3
sub-sequence patterns of < (a)(b)(c) >. They are < (a)(b) >, < (a)(c) > and
< (b)(c) >. In our phrase taxonomy we remove the not very closed sequential
patterns if their supports are very closed to their father, e.g., we have pruned
< (a)(c) > in Fig. 2.

Fig. 2. Phrase taxonomy

After we have extracted a phrase taxonomy using a training set, we can use
it to calculate pr(d), the relevance degree of d for a given topic, for each new
incoming document d. The draft procedure of making decisions is described as
follows:

1. Find all longest patterns in document d; // e.g., (< (a)(b)(c) >) is a longest
pattern if (< (a)(b)(c)(d) >) does not appear in d.

2. Determine pr(d) according to the taxonomy. // e.g., pr(d) = support(<
(a)(b)(c) >) + support(< (a)(b) >) + support(< (b)(c) >).

5 Evaluations

The standard TREC (Text REtrieval Conference) test collections Reuters RCV1
(Reuters Corpus Volume 1) was used to test the effectiveness of the proposed
model. RCV1 corpus consists of all and only English language stories produced
by Reuter’s journalists between August 20, 1996, and August 19, 1997 with total
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806,791 documents. It is used by TREC in recent years for the adaptive filtering
track. TREC has developed and provided 100 topics for the filtering track aiming
at building a robust filtering system [19]. The first fifty of these were constructed
by human researchers and the rest by intersecting two Reuters’ topic categories.
Each topic is divided into two sets: training and test set. In this paper, we only
use the first fifty topics for our experimental test.

The document relevance judgments have been given for each topic. This means
that every document is assigned to be either positive or negative.“Positive”
means the document is relevant to the assigned topic; otherwise “negative” will
be given to the document. The set of 50 TREC topics is used to represent the di-
verse Web user’s information needs. The experiments simulated user feedback by
assuming that the user would recognize as relevant the chosen some documents
that were officially judged as relevant from a set of given documents.

5.1 Performance Measures

We measure the effectiveness of our model with three methods. They are Fβ-
measure, Average Precision (AP) and the P/R breakeven point measures. Fβ is
a version of the van Rijsbergen measure of retrieval performance. This measure is
a function of Recall (R) and Precision (P ), together with a free parameter beta
which determines the relative weighting of recall and precision. It is calculated
by the following function:

Fβ =
(β2 + 1)PR

β2P + R
;

The parameter β = 1 is used for our study, which means that recall and
precision is weighted equally. Average precision is a hybrid measure of average
precision and recall. The P/R breakeven point indicates the value at which
precision equals recall. The larger a P/R breakeven point or average precision
or Fβ-measure score is, the better the system performs.

5.2 Results

Wu et. al. [23] used the pattern taxonomy rather than single words to represent
documents. They have conducted experiments on TREC collections (RVC1 cor-
pus) and have compared the performance of their model with keyword based
models. They concluded that their method outperforms the keyword based
method. Therefore, the patter taxonomy model (PTM) based system will be
the baseline for this study.

The results of our experiments reported in Fig. 3 are the average scores of
P/R breakeven point, average precision and Fβ -measure for both methods cal-
culation of scores of performs for the first 50 topics of all 100 TREC topics. Our
method is called Web Information Gathering System (WIGS). It demonstrated
that the performances of WIGS are better than the original PTM system. This
improvement is significant and also it is consistent for all the experiments.
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Fig. 3. The P/R breakeven point, Average Precision and F-measure for WIGS and
PTM

6 Related Work

As mentioned in the introduction, currently Web mining can be classified into
four categories: Web usage mining, Web structure mining, Web user profile min-
ing and Web content mining [4,15,20,11]. The obvious difference between Web
mining and data mining is that the former is based on Web-related data sources,
such as unstructured documents (e.g., HTML), semi-structured documents(e.g.,
XML), log, services and user profiles; and the latter is based on databases.

Association mining has been used in Web text mining, which refers to the
process of searching through unstructured data on the Web and deriving mean-
ing from. The main purposes of text mining were association discovery, trends
discovery, and event discovery. The association between a set of keywords and
a predefined category (e.g., a term) can be described as an association rule.
The trends discovery means the discovery of phrases, a sort of sequence asso-
ciation rules. The event discovery is the identification of stories in continuous
news streams. Usually clustering based mining techniques can be used for such
a purpose. It was also necessary to combine association rule mining with the
existing taxonomies in order to determine useful patterns.

The disadvantage of association rule mining is that there are too many discov-
ered patterns that make the application of the discovered knowledge inefficient.
Also there are many noise patterns that make the discovered knowledge contains
much uncertainties. Although pruning non-closed patterns that can improve the
quality of association mining in text mining in some extents [22,23], the perfor-
mance of text mining systems are still ineffectively.

Granule mining [10] can be an alternative solution to specify association rules,
where a granule is kind of representation of a group of objects (transactions) that
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satisfy user constraints, e.g., all objects have the same attributes’ values. Decision
tables [14] can be a basic structure for granule mining in which attributes are
divided into two groups: condition attributes and decision attributes. However,
there exists ambiguities whist we use the decision rules for Web information
gathering. We have demonstrated in the previous sections that rough association
rule mining can be used to overcome these disadvantages.

The basic architecture we used to implement the above idea is to automatically
construct and maintain an ontology for representation, application and updating
of discovered knowledge. The related work for this architecture is about ontology
learning algorithms. Several ontology learning algorithms have been presented
such as pattern matching, hierarchical clustering and pattern taxonomy [22].

7 Conclusions

We have presented a novel approach that used two information processing phases
(filtering and sophisticated data processing) for Web information gathering. We
have set up an ontology-based method for the phase of information filtering,
which is sound based on the rough set based decision rules. An efficient filter-
ing algorithm is also presented and tested. For sophisticated data process, PTM
based solution is provided and the experimental results are promising. The signif-
icant contribution is that this research presents a promising solution for solving
the two fundamental issues in Web information gathering.
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Abstract. Although human problem solving has been investigated in a
behavior based approach, it has been recognized that ignoring what goes
on in human brain and focusing instead on behavior has been a large
impediment to understand how human being does complex adaptive,
distributed problem solving and reasoning. In the paper, we propose a
methodology for investigating human problem solving process by combin-
ing ERP mental arithmetic tasks, as a case study, with multi-aspect data
analysis. Preliminary results show the usefulness of our methodology.

1 Introduction

Problem-solving is one of main capabilities of human intelligence and has been
studied in both cognitive science and AI [9], where it is addressed in con-
junction with reasoning centric cognitive functions such as attention, control,
memory, language, reasoning, learning, and so on, using a logic based symbolic
and/or connectionist approach. Although logic based problem-solving is “per-
fect”, mathematical systems with no real time and memory constraints, Web-
based problem-solving systems need real-time and dealing with global, multiple,
huge, distributed information sources.

Furthermore, in order to develop a Web based problem-solving system with
human level capabilities, we need to better understand how human being does
complex adaptive, distributed problem solving and reasoning, as well as how in-
telligence evolves for individuals and societies, over time and place [3,11,12,13,17].
In other words, ignoring what goes on in human brain and focusing instead on
behavior has been a large impediment to understand how human being does
complex adaptive, distributed problem solving and reasoning.

In the light of Brain Informatics [16,17], we need to investigate specifically
the following issues:

– What are the existing problem-solving models in AI, cognitive science, and
neuroscience?

– How to design fMRI/EEG experiments and analyze such fMRI/EEG data
to understand the principle of human problem solving in depth?

M. Kryszkiewicz et al. (Eds.): RSEISP 2007, LNAI 4585, pp. 824–834, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– How to build the cognitive model to understand and predict user profile and
behavior in a problem solving process?

– How to implement human-level problem solving on the Web based portals
that can serve users wisely?

As a result, the relationships between classical problem solving and biologically
plausible problem solving need to be defined and/or elaborated [17].

As a step in this direction, we observe that fMRI brain imaging data and EEG
brain wave data extracted from human problem solving system are peculiar ones
with respect to a specific state or the related part of a stimulus. Based on this
point of view, we propose a way of peculiarity oriented mining (POM) for knowl-
edge discovery in multiple human brain data, without using conventional imaging
processing to fMRI brain images and frequency analysis to EEG brain waves.
The proposed approach provides a new way for automatic analysis and under-
standing of fMRI brain images and EEG brain waves to replace human-expert
centric visualization. The mining process is a multi-step one, in which various
psychological experiments, physiological measurements, data cleaning, model-
ing, transforming, managing, and mining techniques are cooperatively employed
to investigate human problem solving system.

The rest of the paper is organized as follows. Section 2 provides a mining
process for multi-aspect human brain data analysis of human problem solving
system. Sections 3 and 4 explain how to design the experiment of an ERP mental
arithmetic task with visual stimuli, and describe how to do multi-aspect analysis
in the obtained ERP data, respectively, as an example to investigate human
problem solving and to show the usefulness of the proposed mining process.
Finally, Section 5 gives concluding remarks.

2 A Mining Process for Multi-aspect Human Brain Data
Analysis

The future of Brain Informatics will be affected by the ability to do large-scale
mining of fMRI and EEG brain activations. The key issues are how to design
the psychological and physiological experiments for obtaining various data from
human problem solving system, as well as how to analyze and manage such data
from multiple aspects for discovering new models of human problem solving sys-
tem. Although several human-expert centric tools such as SPM (MEDx) have
been developed for cleaning, normalizing and visualizing the fMRI images, re-
searchers have also been studying how the fMRI images can be automatically
analyzed and understood by using data mining and statistical learning tech-
niques [4,6,10,11,15]. We are concerned with how to extract significant features
from multiple brain data measured by using fMRI and EEG in preparation for
multi-aspect data mining that uses various data mining techniques for analyzing
multiple data sources.

A mining process is shown in Figure 1, in which various tools can be coopera-
tively used in the multi-step process for pre-processing (data cleansing, modeling
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and transformation), mining and post-processing. Our purpose is to understand
activities of human problem solving system by investigating the spatiotemporal
features and flow of human problem solving system, based on functional re-
lationships between activated areas of human brain for each given task; More
specifically, at the current stage, we want to understand:

– how a peculiar part (one or more areas) of the brain operates in a specific
time;

– how the operated part changes along with time;
– how the activated areas work cooperatively to implement a whole problem

solving system;
– how the activated areas are linked, indexed, navigated functionally, and what

are individual differences in performance.

Fig. 1. The mining process

3 The Experiment of an ERP Mental Arithmetic Task
with Visual Stimuli

In this work, the ERP (event-related potential) human brain waves are derived
by carrying out a mental arithmetic task with visual stimuli, as an example to
investigate human problem solving process. ERP is a light, sound, and brain po-
tential produced with respect to the specific phenomenon of spontaneous move-
ment [2]. Since the potential is very weak, the same stimulus can be repeated
and given, and furthermore addition average processing can be performed. It ar-
gues about ERP in time until a certain wave-like peak appears from a stimulus
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presentation time called P300. This is called latent time and various knowledge
about the mental activity whose measurement is impossible is acquired from
outside.

3.1 Outline of Experiments

The experiment conducted this time shows a numerical calculation problem to
a subject, and asks the subject to solve it in mental arithmetic, and the shown
sum has hit, or it pushes a button, and performs a judging of corrigenda. The
form of the numerical calculation to be shown is the addition problem of “au-
gend + addend = sum”. The wrong sum occurs at half the probability, and the
distribution is not uniform. Figure 2 gives an example of the screen state transi-
tion. Type 1 is two digits addition. Type 2 is eight numbers appear, but it is not
necessary to calculate. Both of them, the figure does not remain on the screen.

472185362

54=62+911

State 8State 7State 6State 5State 4State 3State 2State 1

Type 1 ：19+26=45

Type 2 : random number

472185362

54=62+911

State 8State 7State 6State 5State 4State 3State 2State 1

Type 1 ：19+26=45

Type 2 : random number

Fig. 2. Example of the screen state transition

3.2 Visual Stimuli

In the experiments, three states (tasks), namely, visual on-task, visual off-task,
and no-task, exist by the difference in the stimulus given to a human subject.
Visual on-task is the state which is calculating by looking a number. Visual off-
task is the state which is looking the number that appears at random. No-task
is the relaxed state which does not work at all. We try to compare and analyze
how brain waves change along with the different tasks stated above.

3.3 Trigger Signal and Timing Chart

It is necessary to measure EEG relevant to a certain event to the regular timing
in measurement of ERP repeatedly. In this research, since the attention was paid
to each event of augend, addend, and sum presentation in calculation activities,
three trigger signals with respect to these events were set up, respectively. Pre-
trigger was set to 200 [msec], and addition between two digits are recorded in
1800 [msec], respectively. Figure 3 gives an example of the time chart for a two-
digit addition and off-task. “au” is augend, “ad” is addend, and “su” is sum.
“n” is the random number (1-digits). Therefore “au2” is MSD (last 2-digits) of
augend, and “au1” is LSD (last 1-digits) of augend.
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au2 au1 + ad2 ad1 = su2 su1 Judge time Rest time

600600600600600 600600 600 3000 3500

Trigger 2Trigger 1 Trigger 3

180018001800 : Recording Time

Time

[msec]

au2 au1 + ad2 ad1 = su2 su1 Judge time Rest time

600600600600600 600600 600 3000 3500

Trigger 2Trigger 1 Trigger 3

180018001800 : Recording Time180018001800 : Recording Time

Time

[msec]

(a) Trigger timing of Type 1

n1 n2 n3 n4 n5

600 600 600 600600 3500

Trigger 3Trigger 2Trigger 1

Time

[msec]

Rest timen7n6 n8

600 600 600

180018001800 : Recording Time

n1 n2 n3 n4 n5

600 600 600 600600 3500

Trigger 3Trigger 2Trigger 1

Time

[msec]

Rest timen7n6 n8

600 600 600

180018001800 : Recording Time

n1 n2 n3 n4 n5

600 600 600 600600 3500

Trigger 3Trigger 2Trigger 1

Time

[msec]

Rest timen7n6 n8

600 600 600

180018001800 : Recording Time180018001800 : Recording Time

(b) Trigger timing of Type 2

Fig. 3. Trigger timing

3.4 Experimental Device and Measurement Conditions

Electroencephalographic activity was recorded using a 64 channel BrainAmp
amplifier (Brain Products, Munich, Germany) with a 32 electrode cap as shown
in Figure 4, which are based on an extended international 10-20 system. The
channels with the mark of double circles in Figure 4 will be mainly discussed
with their ERP data in this paper. Furthermore, two additional channels, eye
movement measurement (2ch) and trigger signal detection (3ch), are also used.

Fig. 4. EEG cap electrode
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The electrode adopted for this experiment is the cap electrode and is used as
a standard electrode for measuring both earlobes. The sampling frequency is
2500Hz to be processed. The number of experimental subjects is 20.

4 Multi-aspect Data Analysis

4.1 ERP

For the measured EEG data, a maximum of 40 addition average processing were
performed, and the ERP was derived by using Brain Vision Analyzer (Brain
Products, Munich, Germany). Generally speaking, the Wernicke’s area of a left
temporal lobe and the prefrontal area are related to the calculation process [5].
In this study, we compare calculation activities and non-calculation activities
by focusing on some important channels (Fp1, C5, Oz). We pay attention to
recognition of the number, short-term memory and attentiveness, as well as
compare ERP of Type 1 and Type 2, and study a problem solving process for a
calculation in a macro view.

Figure 5 shows the ERPs in channels Fp1, C5, Oz. First, we discuss the
channel Fp1, which is the prefrontal area related with attention. The presence
of the calculation activity is closely related to the depth of attention to the
number. The activation of Fp1 is earlier than that of the visual area, and it
appears remarkably with On-task. Next, we discuss the channel Oz, which is the
visual related area with respect to the gaze. We can see that it is activated by
a numerical appearance, regardless of the presence of the calculation activity.
However, Type 2 shows high positive potential in all almost time. And, it is
expected that an appearance of P400 in Oz is related to processing and memory
of an afterimage in a brain. Hence, it is necessary to investigate this phenomenon
deeply with the temporal change around the visual area. Finally, we discuss
the channel C5, which is part of the left temporal lobe with respect to the
logical interpretation. Contrary to our expectation, the difference of clear ERP
to the presence of the calculation activity was not found. It is guessed that
what number appeared without any relation to the calculation is unconsciously
confirmed.

Furthermore, we pay attention to the calculated time zone and study response
in each part. In this time zone, we can see that the prefrontal area related chan-
nels (Fp1, Fp2, AF8, F10) are activated. An interesting point we observed is
that the behavior of the left and right brain when calculating is with some indi-
vidual differences. Let us to analyze this phenomenon from the topography with
respect to Trigger 2, as shown in Figure 6. After displayed LSD, the display time
zone is from 200 to 320 milliseconds. We can see that the potential distribution
of the left and right brain is different between subjects, and subject A used the
whole brain thoroughly. We try to understand it in depth by analyzing influence
by good of the calculation and not good as well as how to solve problems, from
the viewpoint of multi-aspect mining.
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Fig. 5. ERP (Fp1,C5,Oz)

4.2 Peculiarity Oriented Mining

It is clear that ERPs are different for channels over the time. Although detect-
ing the concavity and convexity (P300 etc.) is easy by using the existing tool,
it is difficult to find a peculiar one in the multiple channels with the concavity
and convexity [7,8]. In order to discover new knowledge of human information
processing activities, it is necessary to pay attention to the peculiar channel and
time in ERPs for investigating the spatiotemporal features and flow of human in-
formation processing system. This subsection introduces our peculiarity oriented
mining (POM) approach for ERP data analysis.

POM in the Attribute-Value Level. The main task of POM is the iden-
tification of peculiar data. An attribute-oriented method, which analyzes data
from a new view and is different from traditional statistical methods, is recently
proposed by Zhong et al. and applied in various real-world problems [14,15].

Peculiar data are a subset of objects in the database and are characterized by
two features: (1) very different from other objects in a dataset, and (2) consisting
of a relatively low number of objects. The first property is related to the notion
of distance or dissimilarity of objects. Intuitively speaking, an object is different
from other objects if it is far away from other objects based on certain distance
functions. Its attribute values must be different from the values of other objects.
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Subject
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Trigger 2
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Fig. 6. Topography

One can define distance between objects based on the distance between their
values. The second property is related to the notion of support. Peculiar data
must have a low support.

At the attribute-value level, the identification of peculiar data can be done
by finding attribute values having properties (1) and (2). Let xij be the value of
attribute Aj of the i-th tuple in a relation, and n the number of tuples. Zhong
et al. [14] suggested that the peculiarity of xij can be evaluated by a Peculiarity
Factor, PF (xij),

PF (xij) =
n∑

k=1

N(xij , xkj)α (1)

where N denotes the conceptual distance, α is a parameter to denote the im-
portance of the distance between xij and xkj , which can be adjusted by a user,
and α = 0.5 as default.

Based on the peculiarity factor, the selection of peculiar data is simply carried
out by using a threshold value. More specifically, an attribute value is peculiar
if its peculiarity factor is above minimum peculiarity p, namely, PF (xij) ≥ p.
The threshold value p may be computed by the distribution of PF as follows:

threshold = mean of PF (xij) + (2)
β × standard deviation of PF (xij)

where β can be adjusted by a user, and β = 1 is used as default. The threshold
indicates that a data is a peculiar one if its PF value is much larger than the
mean of the PF set. In other words, if PF (xij) is over the threshold value, xij

is a peculiar data. By adjusting the parameter β, a user can control and adjust
threshold value.

Peculiarity Vector Oriented Mining. Unfortunately, the POM in the
attribute-value stated above is not fit for ERP data analysis. The reason is
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that the useful aspect for ERP data analysis is not amplitude, but the latent
time. After smoothing enough by moving average processing, in the time series,
we pays the attention to each potential towards N pole or P pole. Furthermore,
the channel with the direction different from a lot of channels is considered to
be a peculiar channel at that time. Hence, the distance between the attribute-
values is expressed at the angle. And this angle can be obtained from the inner
product and the norm in the vector. Let inclination of wave i in a certain time t
be xit. The extended PF corresponding to ERP can be defined by the following
Eq. (3).

PF (xit) =
n∑

k=1

θ(xit, xkt)α. (3)

However, θ in Eq. (3) is an angle which the wave in time t makes. For the θ, we
can compute for an angle using Eq. (4).

cosθ =
1 + xit · xkt√

1 + x2
it

√
1 + x2

kt

. (4)

Application of the Extended POM Method. The extended POM method
has been used for the ERP data analysis. Figure 7 shows a result in which the pe-
culiarity in ERP data with respect to addition Type 1 (between 2 digits with the
visual stimulus Trigger 1) is presented. All channels show high peculiarity from
200ms to 400ms after presented stimuli. The reason is that a wavy ruggedness
of ERP changes violently, and it is a remarkable response in the frontal cortex
and lobus occipitalis. On the other hand, the PF values of temporal lobes, such
as C5, C6 and P6 are high in all time zones. These channels have a unique prop-
erty of latent time. The higher PF value is related to the interestingness in the
ERP data. Hence, it is necessary to investigate this phenomenon deeply with
the medical standpoint.
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5 Conclusion

In this paper, we described a more whole process from the design of the ERP
experiments of a mental arithmetic task with visual stimuli, carrying out such an
experiment to collect the EEG data, to multi-aspect EEG data analysis by using
the proposed Peculiarity Vector Oriented Mining method etc. Some preliminary
results showed the usefulness of our methodology. By introducing multiple trigger
signals, it is possible to analyze human calculation process in detail, as a case
study for investigating human problem solving system. The previous design of
ERP experiments only gave simple stimulus (e.g., sound stimulus, light stimulus,
etc.) and very few of them are with respect to investigating a more whole human
problem solving mechanism.

Our future work includes obtaining and analyzing more subject data, com-
bining with fMRI human brain image data for multi-aspect analysis in various
approaches of data mining and reasoning.
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Kostek, Bożena 774, 793
Ko�laczkowski, Piotr 485
Kryszkiewicz, Marzena 162, 320, 505,

516
Kvasnica, Michal 211

Lasek, Piotr 320
Letia, Ioan Alfred 697
Lewandowski, Jacek 564
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S�lowiński, Roman 5, 534
Sonamthiang, Sumalee 290
Sosnowski, Janusz 543
Stanczyk, Urszula 726
Stefanowski, Jerzy 574
Stepaniuk, Jaroslaw 300
Sun, Jigui 261
Sun, Peng 764
Suraj, Zbigniew 175
Sza�las, Andrzej 668
Szcz ↪ech, Izabela 534
Szczuko, Piotr 774, 793
Szmuc, Tomasz 648
Szpyrka, Marcin 251, 648

Tatjewski, Piotr 603
Tkacz, Magdalena Alicja 445
Truszczynski, Miros�law 22
Tsumoto, Shusaku 90

Urbanowicz, Miros�law 534

Wakulicz–Deja, Alicja 427, 454
Walczak, Krzysztof 736
Wang, Guoyin 310
Wang, Xizhao 381
Wieczorkowska, Alicja 784
Wilbik, Anna 230
Wojcik, Jaroslaw 774
Wojtusiak, Janusz 29
Wolski, Marcin 192
Wu, Sheng-Tang 803, 813
Wybraniec-Skardowska, Urszula 122

Xia, Ying 310
Xu, Ning 332

Yamaguchi, Daisuke 400
Yang, Hong-Zhi 658
Yao, JingTao 360
Yao, Yiyu 101, 371
Yu, Yongquan 332

Zadeh, Lotfi A. 1
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