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Abstract. We study the approximate string matching and regular ex-
pressionmatchingproblem for the casewhen the text tobe searched is com-
pressed with theZiv-Lempel adaptive dictionary compression schemes. We
present a time-space trade-off that leads to algorithms improving the pre-
viously known complexities for both problems. In particular, we signifi-
cantly improve the space bounds. In practical applications the space is
likely to be a bottleneck and therefore this is of crucial importance.

1 Introduction

Modern text databases, e.g., for biological and World Wide Web data, are huge.
To save time and space the data must be kept in compressed form and allow
efficient searching. Motivated by this Amir and Benson [1,2] initiated the study
of compressed pattern matching problems, that is, given a text string Q in com-
pressed form Z and a specified (uncompressed) pattern P , find all occurrences
of P in Q without decompressing Z. The goal is to search more efficiently than
the näıve approach of decompressing Z into Q and then searching for P in Q.
Various compressed pattern matching algorithms have been proposed depending
on the type of pattern and compression method, see e.g., [2,9,11,10,17,13]. For
instance, given a string Q of length u compressed with the Ziv-Lempel-Welch
scheme [22] into a string of length n, Amir et al. [3] gave an algorithm for find-
ing all exact occurrences of a pattern string of length m in O(n + m2) time and
space.

In this paper we study the classical approximate string matching and reg-
ular expression matching problems on compressed texts. As in previous work
on these problems [10, 17] we focus on the popular ZL78 and ZLW adaptive dic-
tionary compression schemes [24, 22]. We present a new technique that gives
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a general time-space trade-off. The resulting algorithms improve all previously
known complexities for both problems. In particular, we significantly improve
the space bounds. When searching large text databases space is likely to be a
bottleneck and therefore this is of crucial importance.

In the following sections we give the details of our contribution.

1.1 Approximate String Matching

Given strings P and Q and an error threshold k, the approximate string matching
problem is to find all ending positions of substrings of Q whose edit distance to
P is at most k. The edit distance between two strings is the minimum number
of insertions, deletions, and substitutions needed to convert one string to the
other. The classical dynamic programming solution due to Sellers [20] solves the
problem in O(um) time and O(m) space, where u and m are the length of Q
and P , respectively. Several improvements of this result are known, see e.g., the
survey by Navarro [16]. For this paper we are particularly interested in the fast
solution for small values of k, namely, the O(uk) time algorithm by Landau and
Vishkin [12] and the more recent O(uk4/m + u) time algorithm due to Cole and
Hariharan [7] (we assume w.l.o.g. that k < m). Both of these can be implemented
in O(m) space.

Recently, Kärkkäinen et al. [10] studied the problem for text compressed with
the ZL78/ZLW compression schemes. If n is the length of the compressed text
their algorithm achieves O(nmk + occ) time and O(nmk) space, where occ is
the number of occurrences of the pattern. Currently, this is the only non-trivial
worst-case bound for the problem. For special cases and restricted versions of the
problem other algorithms have been proposed [14,19]. An experimental study of
the problem and an optimized practical implementation can be found in [18].

In this paper, we show that the problem is closely connected to the uncom-
pressed problem and we achieve a simple time-space trade-off. More precisely,
let t(m, u, k) and s(m, u, k) denote the time and space, respectively, needed by
any algorithm to solve the (uncompressed) approximate string matching prob-
lem with error threshold k for pattern and text of length m and u, respectively.
We show the following result.

Theorem 1. Let Q be a string compressed using ZL78 into a string Z of length
n and let P be a pattern of length m. Given Z, P , and a parameter τ ≥ 1, we can
find all approximate occurrences of P in Q with at most k errors in O(n(τ +m+
t(m, 2m + 2k, k))+ occ) expected time and O(n/τ + m + s(m, 2m + 2k, k)+ occ)
space.

The expectation is due to hashing and can be removed at an additional O(n)
space cost. In this case the bound also hold for ZLW compressed strings. We as-
sume that the algorithm for the uncompressed problem produces the matches
in sorted order (as is the case for all algorithms that we are aware of). Other-
wise, additional time for sorting must be included in the bounds. To compare
Theorem 1 with the result of Karkkainen et al. [10] plug in the Landau-Vishkin
algorithm and set τ = mk. This gives an algorithm using O(nmk+occ) time and
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O(n/mk+m+occ) space. This matches the best known time bound while improv-
ing the space by a factor Θ(m2k2). Alternatively, if we plugin the Cole-Hariharan
algorithm and set τ = k4 +m we get an algorithm using O(nk4 +nm+occ) time
and O(n/(k4 +m)+m+occ) space. Whenever k = O(m1/4) this is O(nm+occ)
time and O(n/m + m + occ) space.

To the best of our knowledge, all previous non-trivial compressed pattern
matching algorithms for ZL78/ZLW compressed text, with the exception of a very
slow algorithm for exact string matching by Amir et al. [3], use Ω(n) space.
This is because the algorithms explicitly construct the dictionary trie of the
compressed texts. Surprisingly, our results show that for the ZL78 compression
schemes this is not needed to get an efficient algorithm. Conversely, if very little
space is available our trade-off shows that it is still possible to solve the problem
without decompressing the text.

1.2 Regular Expression Matching

Given a regular expression R and a string, Q the regular expression matching
problem is to find all ending position of substrings in Q that matches a string in
the language denoted by R. The classic textbook solution to this problem due
to Thompson [21] solves the problem in O(um) time and O(m) space, where u
and m are the length of Q and R, respectively. Improvements based on the Four
Russian Technique or word-level parallelism are given in [15, 6, 4].

The only solution to the compressed problem is due to Navarro [17]. His
solution depends on word RAM techniques to encode small sets into memory
words, thereby allowing constant time set operations. On a unit-cost RAM with
w-bit words this technique can be used to improve an algorithm by at most
a factor O(w). For w = O(log u) a similar improvement is straightforward to
obtain for our algorithm and we will therefore, for the sake of exposition, ignore
this factor in the bounds presented below. With this simplification Navarro’s
algorithm uses O(nm2 + occ · m log m) time and O(nm2) space, where n is the
length of the compressed string. In this paper we show the following time-space
trade-off:

Theorem 2. Let Q be a string compressed using ZL78 or ZLW into a string Z
of length n and let R be a regular expression of length m. Given Z, R, and a
parameter τ ≥ 1, we can find all occurrences of substrings matching R in Q in
O(nm(m + τ) + occ · m logm) time and O(nm2/τ + nm) space.

If we choose τ = m we obtain an algorithm using O(nm2 + occ · m log m) time
and O(nm) space. This matches the best known time bound while improving
the space by a factor Θ(m). With word-parallel techniques these bounds can be
improved slightly.

1.3 Techniques

If pattern matching algorithms for ZL78 or ZLW compressed texts use Ω(n) space
they can explicitly store the dictionary trie for the compressed text and apply
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any linear space data structure to it. This has proven to be very useful for
compressed pattern matching. However, as noted by Amir et al. [3], Ω(n) may
not be feasible for large texts and therefore more space-efficient algorithms are
needed. Our main technical contribution is a simple o(n) data structure for
ZL78 compressed texts. The data structure gives a way to compactly represent a
subset of the trie which combined with the compressed text enables algorithms
to quickly access relevant parts of the trie. This provides a general approach
to solve compressed pattern matching problems in o(n) space, which combined
with several other techniques leads to the above results. Due to lack of space we
have left out the details for regular expression matching. They can be found in
the full version of the paper [5].

2 The Ziv-Lempel Compression Schemes

Let Σ be an alphabet containing σ = |Σ| characters. A string Q is a sequence of
characters from Σ. The length of Q is u = |Q| and the unique string of length 0
is denoted ε. The ith character of Q is denoted Q[i] and the substring beginning
at position i of length j − i + 1 is denoted Q[i, j]. The Ziv-Lempel algorithm
from 1978 [24] provides a simple and natural way to represent strings, which we
describe below. Define a ZL78 compressed string (abbreviated compressed string
in the remainder of the paper) to be a string of the form

Z = z1 · · · zn = (r1, α1)(r2, α2) . . . (rn, αn),

where ri ∈ {0, . . . , i − 1} and αi ∈ Σ. Each pair zi = (ri, αi) is a compression
element, and ri and αi are the reference and label of zi, denoted by reference(zi)
and label(zi), respectively. Each compression element represents a string, called a
phrase. The phrase for zi, denoted phrase(zi), is given by the following recursion.

phrase(zi) =

{
label(zi) if reference(zi) = 0,
phrase(reference(zi)) · label(zi) otherwise.

The · denotes concatenation of strings. The compressed string Z represents the
concatenation of the phrases, i.e., the string phrase(z1) · · · phrase(zn).

Let Q be a string of length u. In ZL78, the compressed string represent-
ing Q is obtained by greedily parsing Q from left-to-right with the help of a
dictionary D. For simplicity in the presentation we assume the existence of
an initial compression element z0 = (0, ε) where phrase(z0) = ε. Initially, let
z0 = (0, ε) and let D = {ε}. After step i we have computed a compressed
string z0z1 · · · zi representing Q[1, j] and D = {phrase(z0), . . . , phrase(zi)}. We
then find the longest prefix of Q[j + 1, u − 1] that matches a string in D,
say phrase(zk), and let phrase(zi+1) = phrase(zk) · Q[j + 1 + |phrase(zk)|]. Set
D = D ∪ {phrase(zi+1)} and let zi+1 = (k, Q[j + 1 + |phrase(zi+1)|]). The com-
pressed string z0z1 . . . zi+1 now represents the string Q[1, j+ |phrase(zi+1)|]) and
D = {phrase(z0), . . . , phrase(zi+1)}. We repeat this process until all of Q has
been read.
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Fig. 1. The compressed string Z representing Q and the corresponding dictionary trie
D. Taken from [17].

Since each phrase is the concatenation of a previous phrase and a single char-
acter, the dictionary D is prefix-closed, i.e., any prefix of a phrase is a also a
phrase. Hence, we can represent it compactly as a trie where each node i corre-
sponds to a compression element zi and phrase(zi) is the concatenation of the
labels on the path from zi to node i. Due to greediness, the phrases are unique
and therefore the number of nodes in D for a compressed string Z of length n is
n + 1. An example of a string and the corresponding compressed string is given
in Fig. 1.

Throughout the paper we will identify compression elements with nodes in
the trie D, and therefore we use standard tree terminology, briefly summed up
here: The distance between two elements is the number of edges on the unique
simple path between them. The depth of element z is the distance from z to z0
(the root of the trie). An element x is an ancestor of an element z if phrase(x)
is a prefix of phrase(z). If also |phrase(x)| = |phrase(z)| − 1 then x is the parent
of z. If x is ancestor of z then z is a descendant of x and if x is the parent of
z then z is the child of x.The length of a path p is the number of edges on the
path, and is denoted |p|. The label of a path is the concatenation of the labels
on these edges.

Note that for a compression element z, reference(z) is a pointer to the parent
of z and label(z) is the label of the edge to the parent of z. Thus, given z we
can use the compressed text Z directly to decode the label of the path from
z towards the root in constant time per element. We will use this important
property in many of our results.

If the dictionary D is implemented as a trie it is straightforward to compress
Q or decompress Z in O(u) time. Furthermore, if we do not want to explicitly
decompress Z we can compute the trie in O(n) time, and as mentioned above,
this is done in almost all previous compressed pattern matching algorithm on
Ziv-Lempel compression schemes. However, this requires at least Ω(n) space
which is insufficient to achieve our bounds. In the next section we show how to
partially represent the trie in less space.

2.1 Selecting Compression Elements

Let Z = z0 . . . zn be a compressed string. For our results we need an algorithm
to select a compact subset of the compression elements such that the distance
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from any element to an element in the subset is no larger than a given threshold.
More precisely, we show the following lemma.

Lemma 1. Let Z be a compressed string of length n and let 1 ≤ τ ≤ n be
parameter. There is a set of compression elements C of Z, computable in O(nτ)
expected time and O(n/τ) space with the following properties:

(i) |C| = O(n/τ).
(ii) For any compression element zi in Z, the minimum distance to any com-

pression element in C is at most 2τ .

Proof. Let 1 ≤ τ ≤ n be a given parameter. We build C incrementally in a
left-to-right scan of Z. The set is maintained as a dynamic dictionary using
dynamic perfect hashing [8], i.e., constant time worst-case access and constant
time amortized expected update. Initially, we set C = {z0}. Suppose that we
have read z0, . . . , zi. To process zi+1 we follow the path p of references until we
encounter an element y such that y ∈ C. We call y the nearest special element
of zi+1. Let l be the number of elements in p including zi+1 and y. Since each
lookup in C takes constant time the time to find the nearest special element is
O(l). If l < 2 · τ we are done. Otherwise, if l = 2 · τ , we find the τth element y′

in the reference path and set C := C ∪ {y′}. As the trie grows under addition of
leaves condition (ii) follows. Moreover, any element chosen to be in C has at least
τ descendants of distance at most τ that are not in C and therefore condition
(i) follows. The time for each step is O(τ) amortized expected and therefore the
total time is O(nτ) expected. The space is proportional to the size of C hence
the result follows. ��

2.2 Other Ziv-Lempel Compression Schemes

A popular variant of ZL78 is the ZLW compression scheme [22]. Here, the label of
compression elements are not explicitly encoded, but are defined to be the first
character of the next phrase. Hence, ZLW does not offer an asymptotically better
compression ratio over ZL78 but gives a better practical performance. The ZLW
scheme is implemented in the UNIX program compress. From an algorithmic
viewpoint ZLW is more difficult to handle in a space-efficient manner since labels
are not explicitly stored with the compression elements as in ZL78. However, if
Ω(n) space is available then we can simply construct the dictionary trie. This
gives constant time access to the label of a compression elements and therefore
ZL78 and ZLW become ”equivalent”. This is the reason why Theorem 1 holds
only for ZL78 when space is o(n) but for both when the space is Ω(n).

Another well-known variant is the ZL77 compression scheme [23]. Unlike ZL78
and ZLW phrases in the ZL77 scheme can be any substring of text that has already
been processed. This makes searching much more difficult and none of the known
techniques for ZL78 and ZLW seems to be applicable. The only known algorithm
for pattern matching on ZL77 compressed text is due to Farach and Thorup [9]
who gave an algorithm for the exact string matching problem.
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3 Approximate String Matching

In this section we consider the compressed approximate string matching problem.
Before presenting our algorithm we need a few definitions and properties of
approximate string matching.

Let A and B be strings. Define the edit distance between A and B, γ(A, B),
to be the minimum number of insertions, deletions, and substitutions needed to
transform A to B. We say that j ∈ [1, |S|] is a match with error at most k of
A in a string S if there is an i ∈ [1, j] such that γ(A, S[i, j]) ≤ k. Whenever k
is clear from the context we simply call j a match. All positions i satisfying the
above property are called a start of the match j. The set of all matches of A in S
is denoted Γ (A, S). We need the following well-known property of approximate
matches.

Proposition 1. Any match j of A in S with at most k errors must start in the
interval [max(1, j − |A| + 1 − k), min(|S|, j − |A| + 1 + k)].

Proof. Let l be the length of a substring B matching A and ending at j. If the
match starts outside the interval then either l < |A| − k or l > |A| + k. In these
cases, more than k deletions or k insertions, respectively, are needed to transform
B to A. ��

3.1 Searching for Matches

Let P be a string of length m and let k be an error threshold. To avoid triv-
ial cases we assume that k < m. Given a compressed string Z = z0z1 . . . zn

representing a string Q of length u we show how to find Γ (P, Q) efficiently.
Let li = |phrase(zi)|, let u0 = 1, and let ui = ui−1 + li−1, for 1 ≤ i ≤ n, i.e.,

li is the length of the ith phrase and ui is the starting position in Q of the ith
phrase. We process Z from left-to-right and at the ith step we find all matches
in [ui, ui + li − 1]. Matches in this interval can be either internal or overlapping
(or both). A match j in [ui, ui + li − 1] is internal if it has a starting point in
[ui, ui + li − 1] and overlapping if it has a starting point in [1, ui − 1]. To find all
matches we will compute the following information for zi.

– The start position, ui, and length, li, of phrase(zi).
– The relevant prefix, rpre(zi), and the relevant suffix, rsuf(zi), where

rpre(zi) = Q[ui, min(ui + m + k − 1, ui + li − 1)] ,

rsuf(zi) = Q[max(1, ui + li − m − k), ui + li − 1] .

In other words, rpre(zi) is the largest prefix of length at most m + k of
phrase(zi) and rsuf(zi) is the substring of length m+ k ending at ui + li − 1.
For an example see Fig. 2.

– The match sets MI(zi) and MO(zi), where

MI(zi) = Γ (P, phrase(zi)) ,

MO(zi) = Γ (P, rsuf(zi−1) · rpre(zi)) .

We assume that both sets are represented as sorted lists in increasing order.
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phrase(zi)phrase(zi−1)

rsuf(zi−1) rsuf(zi)

rpre(zi)rpre(zi−1)

· · · · · ·

Fig. 2. The relevant prefix and the relevant suffix of two phrases in Q. Here,
|phrase(zi−1)| < m + k and therefore rsuf(zi−1) overlaps with previous phrases.

We call the above information the description of zi. In the next section we
show how to efficiently compute descriptions. For now, assume that we are given
the description of zi. Then, the set of matches in [ui, ui + li − 1] is reported as
the set

M(zi) = {j + ui − 1 | j ∈ MI(zi)} ∪
{j + ui − 1 − |rsuf(zi−1)| | j ∈ MO(zi) ∩ [ui, ui + li − 1]} .

We argue that this is the correct set. Since phrase(zi) = Q[ui, ui + li − 1] we
have that

j ∈ MI(zi) ⇔ j + ui − 1 ∈ Γ (P, Q[ui, ui + li − 1] .

Hence, the set {j+ui−1 | j ∈ MI(zi)} is the set of all internal matches. Similarly,
rsuf(zi−1) · rpre(zi) = Q[ui − |rsuf(zi−1)|, ui + |rpre(zi)| − 1] and therefore

j ∈ MO(zi)⇔j+ui−1−|rsuf(zi−1)| ∈ Γ (P, Q[ui−|rsuf(zi−1)|, ui+1+|rpre(zi)|]).

By Proposition 1 any overlapping match must start at a position within the
interval [max(1, ui−m+1−k), ui]. Hence, {j+ui−1−|rsuf(zi−1)| | j ∈ MO(zi)}
includes all overlapping matches in [ui, ui + li − 1]. Taking the intersection with
[ui, ui + li − 1] and the union with the internal matches it follows that the set
M(zi) is precisely the set of matches in [ui, ui+ li −1]. For an example see Fig. 3.

Next we consider the complexity of computing the matches. To do this we first
bound the size of the MI and MO sets. Since the length of any relevant suffix
and relevant prefix is at most m + k, we have that |MO(zi)| ≤ 2(m + k) < 4m,
and therefore the total size of the MO sets is at most O(nm). Each element in
the sets MI(z0), . . . , MI(zn) corresponds to a unique match. Thus, the total size
of the MI sets is at most occ, where occ is the total number of matches. Since
both sets are represented as sorted lists the total time to compute the matches
for all compression elements is O(nm + occ).

3.2 Computing Descriptions

Next we show how to efficiently compute the descriptions. Let 1 ≤ τ ≤ n be a
parameter. Initially, we compute a subset C of the elements in Z according to
Lemma 1 with parameter τ . For each element zj ∈ C we store lj , that is, the
length of phrase(zj). If lj > m + k we also store the index of the ancestor x of
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Q = ananasbananer, P = base, Z = (0,a)(0,n)(1,n)(1,s)(0,b)(3,a)(2,e)(0,r)

Descriptions
z0 z1 z2 z3 z4 z5 z6 z7

ui 1 2 3 5 7 8 11 13
li 1 1 2 2 1 3 2 1
rpre(zi) a n an as b ana ne r
rsuf(zi) a an anas ananas nanasb asbana banane ananer
MI(zi) ∅ ∅ ∅ {2} ∅ ∅ ∅ ∅
MO(zi) ∅ ∅ ∅ {6} {6, 7} {5, 6, 7, 8} {2, 3, 4, 5, 6} {2, 3, 4, 6}
M(zi) ∅ ∅ ∅ {6} {7} {8, 9, 10} {12} ∅

Fig. 3. Example of descriptions. Z is the compressed string representing Q. We are
looking for all matches of the pattern P with error threshold k = 2 in Z. The set of
matches is {6, 7, 8, 9, 10, 12}.

zj of depth m + k. This information can easily be computed while constructing
C within the same time and space bounds, i.e., using O(nτ) time and O(n/τ)
space.

Descriptions are computed from left-to-right as follows. Initially, set l0 = 0,
u0 = 0, rpre(z0) = ε, rsuf(z0) = ε, MI(z0) = ∅, and MO(z0) = ∅. To compute the
description of zi, 1 ≤ i ≤ n, first follow the path p of references until we encounter
an element zj ∈ C. Using the information stored at zj we set li := |p| + lj and
ui = ui−1 + li−1. By Lemma 1(ii) the distance to zj is at most 2τ and therefore
li and ui can be computed in O(τ) time given the description of zi−1.

To compute rpre(zi) we compute the label of the path from z0 towards zi of
length min(m + k, li). There are two cases to consider: If li ≤ m + k we simply
compute the label of the path from zi to z0 and let rpre(zi) be the reverse of this
string. Otherwise (li > m + k), we use the ”shortcut” stored at zj to find the
ancestor zh of distance m + k to z0. The reverse of the label of the path from zh

to z0 is then rpre(zi). Hence, rpre(zi) is computed in O(m + k + τ) = O(m + τ)
time.

The string rsuf(zi) may be the divided over several phrases and we therefore
recursively follow paths towards the root until we have computed the entire
string. It is easy to see that the following algorithm correctly decodes the desired
substring of length min(m + k, ui) ending at position ui + li − 1.

1. Initially, set l := min(m + k, ui + li − 1), t := i, and s := ε.
2. Compute the path p of references from zt of length r = min(l, depth(zt))

and set s := s · label(p).
3. If r < l set l := l − r, t := t − 1, and repeat step 2.
4. Return rsuf(zi) as the reverse of s.

Since the length of rsuf(zi) is at most m+k, the algorithm finds it in O(m+k) =
O(m) time.

The match sets MI and MO are computed as follows. Let t(m, u, k) and
s(m, u, k) denote the time and space to compute Γ (A, B) with error threshold k
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for strings A and B of lengths m and u, respectively. Since |rsuf(zi−1)·rpre(zi)| ≤
2m + 2k it follows that MO(zi) can be computed in t(m, 2m + 2k, k) time and
s(m, 2m+2k, k) space. Since MI(zi) = Γ (P, phrase(zi)) we have that j ∈ MI(zi)
if and only if j ∈ MI(reference(zi)) or j = li. By Proposition 1 any match ending
in li must start within [max(1, li − m + 1 − k), min(li, li − m + 1 + k)]. Hence,
there is a match ending in li if and only if li ∈ Γ (P, rsuf ′(zi)) where rsuf′(zi) is
the suffix of phrase(zi) of length min(m + k, li). Note that rsuf′(zi) is a suffix of
rsuf(zi) and we can therefore trivially compute it in O(m + k) time. Thus,

MI(zi) = MI(reference(zi)) ∪ {li | li ∈ Γ (P, rsuf′(zi))} .

Computing Γ (P, rsuf′(zi)) uses t(m, m + k, k) time and s(m, m + k, k) space.
Subsequently, constructing MI(zi) takes O(|MI(zi)|) time and space. Recall that
the elements in the MI sets correspond uniquely to matches in Q and therefore
the total size of the sets is occ. Therefore, using dynamic perfect hashing [8] on
pointers to non-empty MI sets we can store these using in total O(occ) space.

3.3 Analysis

Finally, we can put the pieces together to obtain the final algorithm. The pre-
processing uses O(nτ) expected time and O(n/τ) space. The total time to com-
pute all descriptions and report occurrences is expected O(n(τ +m + t(m, 2m+
2k, k)) + occ). The description for zi, except for MI(zi), depends solely on the
description of zi−1. Hence, we can discard the description of zi−1, except for
MI(zi−1), after processing zi and reuse the space. It follows that the total space
used is O(n/τ + m + s(m, 2m + 2k, k) + occ). This completes the proof of Theo-
rem 1. Note that if we use Ω(n) space we can explicitly construct the dictionary.
In this case hashing is not needed and the bounds also hold for the ZLW com-
pression scheme.
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