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Abstract. We present a method to speed up the dynamic program al-
gorithms used for solving the HMM decoding and training problems
for discrete time-independent HMMs. We discuss the application of our
method to Viterbi’s decoding and training algorithms [21], as well as to
the forward-backward and Baum-Welch [4] algorithms. Our approach is
based on identifying repeated substrings in the observed input sequence.
We describe three algorithms based alternatively on byte pair encoding
(BPE) [19], run length encoding (RLE) and Lempel-Ziv (LZ78) pars-
ing [22]. Compared to Viterbi’s algorithm, we achieve a speedup of Ω(r)
using BPE, a speedup of Ω( r

log r
) using RLE, and a speedup of Ω( log n

k
)

using LZ78, where k is the number of hidden states, n is the length of
the observed sequence and r is its compression ratio (under each com-
pression scheme). Our experimental results demonstrate that our new
algorithms are indeed faster in practice. Furthermore, unlike Viterbi’s
algorithm, our algorithms are highly parallelizable.
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1 Introduction

Over the last few decades, Hidden Markov Models (HMMs) proved to be an
extremely useful framework for modeling processes in diverse areas such as error-
correction in communication links [21], speech recognition [6], optical character
recognition [2], computational linguistics [17], and bioinformatics [12].

The core HMM-based applications fall in the domain of classification methods
and are technically divided into two stages: a training stage and a decoding stage.
During the training stage, the emission and transition probabilities of an HMM
are estimated, based on an input set of observed sequences. This stage is usually
executed once as a preprocessing stage and the generated (”trained”) models are
stored in a database. Then, a decoding stage is run, again and again, in order to
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classify input sequences. The objective of this stage is to find the most probable
sequence of states to have generated each input sequence given each model, as
illustrated in Fig. 1.
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Fig. 1. The HMM on the observed sequence X = x1, x2, . . . , xn and states 1, 2, . . . , k.
The highlighted path is a possible path of states that generate the observed sequence.
VA finds the path with highest probability.

Obviously, the training problem is more difficult to solve than the decoding
problem. However, the techniques used for decoding serve as basic ingredients in
solving the training problem. The Viterbi algorithm (VA) [21] is the best known
tool for solving the decoding problem. Following its invention in 1967, several
other algorithms have been devised for the decoding and training problems, such
as the forward-backward and Baum-Welch [4] algorithms. These algorithms are
all based on dynamic programs whose running times depend linearly on the
length of the observed sequence. The challenge of speeding up VA by utilizing
HMM topology was posed in 1997 by Buchsbaum and Giancarlo [6] as a major
open problem. In this contribution, we address this open problem by using text
compression and present the first provable speedup of these algorithms.

The traditional aim of text compression is the efficient use of resources such
as storage and bandwidth. Here, however, we compress the observed sequences
in order to speed up HMM algorithms. This approach, denoted “acceleration by
text-compression”, was previously applied to some classical problems on strings.
Various compression schemes, such as LZ77, LZW-LZ78, Huffman coding, Byte
Pair Encoding (BPE) and Run Length Encoding (RLE), were employed to accel-
erate exact and approximate pattern matching [14,16,19,1,13,18] and sequence
alignment [3,7,11,15]. In light of the practical importance of HMM-based classi-
fication methods in state-of-the-art research, and in view of the fact that such
techniques are also based on dynamic programming, we set out to answer the
following question: can “acceleration by text compression” be applied to HMM
decoding and training algorithms?

Our results. Let X denote the input sequence and let n denote its length. Let
k denote the number of states in the HMM. For any given compression scheme,
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let n′ denote the number of parsed blocks in X and let r = n/n′ denote the
compression ratio. Our results are as follows.

1. BPE is used to accelerate decoding by a factor of Ω(r).
2. RLE is used to accelerate decoding by a factor of Ω( r

logr ).
3. Using LZ78, we accelerate decoding by a factor of Ω( log n

k ). Our algorithm
guarantees no degradation in efficiency even when k > log n and is experi-
mentally more than five times faster than VA.

4. The same speedup factors apply to the Viterbi training algorithm.
5. For the Baum-Welch training algorithm, we show how to preprocess a re-

peated substring of size � once in O(�k4) time so that we may replace the
usual O(�k2) processing work for each occurrence of this substring with an
alternative O(k4) computation. This is beneficial for any repeat with λ non-
overlapping occurrences, such that λ > �k2

�−k2 .
6. As opposed to VA, our algorithms are highly parallelizable. This is discussed

in the full version of this paper.

Roadmap. The rest of the paper is organized as follows. In section 2 we give a
unified presentation of the HMM dynamic programs. We then show in section 3
how these algorithms can be improved by identifying repeated substrings. Two
compressed decoding algorithms are given in sections 4 and 5. In section 6 we
show how to adapt the algorithms to the training problem. Finally, experimental
results are presented in Section 7.

2 Preliminaries

Let Σ denote a finite alphabet and let X ∈ Σn, X = x1, x2, . . . , xn be a sequence
of observed letters. A Markov model is a set of k states, along with emission
probabilities ek(σ) - the probability to observe σ ∈ Σ given that the state is k,
and transition probabilities Pi,j - the probability to make a transition to state i
from state j.

The Viterbi Algorithm. The Viterbi algorithm (VA) finds the most probable
sequence of hidden states given the model and the observed sequence. i.e., the
sequence of states s1, s2, . . . , sn which maximize

n∏

i=1

esi(xi)Psi,si−1 (1)

The dynamic program of VA calculates a vector vt[i] which is the probability
of the most probable sequence of states emitting x1, . . . , xt and ending with the
state i at time t. v0 is usually taken to be the vector of uniform probabilities
(i.e., v0[i] = 1

k ). vt+1 is calculated from vt according to

vt+1[i] = ei(xt+1) · max
j

{Pi,j · vt[j]} (2)
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Definition 1 (Viterbi Step). We call the computation of vt+1 from vt a
Viterbi step.

Clearly, each Viterbi step requires O(k2) time. Therefore, the total runtime re-
quired to compute the vector vn is O(nk2). The probability of the most likely
sequence of states is the maximal element in vn. The actual sequence of states
can be then reconstructed in linear time.

It is useful for our purposes to rewrite VA in a slightly different way. Let Mσ

be a k × k matrix with elements Mσ
i,j = ei(σ) · Pi,j . We can now express vn as:

vn = Mxn � Mxn−1 � · · · � Mx2 � Mx1 � v0 (3)

where (A�B)i,j = maxk{Ai,k ·Bk,j} is the so called max-times matrix multipli-
cation. VA computes vn using (3) from right to left in O(nk2) time. Notice that
if (3) is evaluated from left to right the computation would take O(nk3) time
(matrix-vector multiplication vs. matrix-matrix multiplication). Throughout, we
assume that the max-times matrix-matrix multiplications are done näıvely in
O(k3). Faster methods for max-times matrix multiplication [8] and standard
matrix multiplication [20,10] can be used to reduce the k3 term. However, for
small values of k this is not profitable.

The Forward-Backward Algorithms. The forward-backward algorithms are
closely related to VA and are based on very similar dynamic programs. In con-
trast to VA, these algorithms apply standard matrix multiplication instead of
max-times multiplication. The forward algorithm calculates ft[i], the probability
to observe the sequence x1, x2, . . . , xt requiring that st = i as follows:

ft = Mxt · Mxt−1 · · · · · Mx2 · Mx1 · f0 (4)

The backward algorithm calculates bt[i], the probability to observe the sequence
xt+1, xt+2, . . . , xn given that st = i as follows:

bt = bn · Mxn · Mxn−1 · · · · · Mxt+2 · Mxt+1 (5)

Another algorithm which is used in the training stage and employs the forward-
backward algorithm as a subroutine, is the Baum-Welch algorithm, to be further
discussed in Section 6.

A motivating example. We briefly describe one concrete example from com-
putational biology to which our algorithms naturally apply. CpG islands [5] are
regions of DNA with a large concentration of the nucleotide pair CG. These
regions are typically a few hundred to a few thousand nucleotides long, located
around the promoters of many genes. As such, they are useful landmarks for
the identification of genes. The observed sequence (X) is a long DNA sequence
composed of four possible nucleotides (Σ = {A, C, G, T }). The length of this
sequence is typically a few millions nucleotides (n � 225). A well-studied clas-
sification problem is that of parsing a given DNA sequence into CpG islands
and non CpG regions. Previous work on CpG island classification used Markov
models with either 8 or 2 states (k = 8 or k = 2) [9,12].
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3 Exploiting Repeated Substrings in the Decoding Stage

Consider a substring W = w1, w2, . . . , w� of X , and define

M(W ) = Mw� � Mw�−1 � · · · � Mw2 � Mw1 (6)

Intuitively, Mi,j(W ) is the probability of the most likely path starting with
state j, making a transition into some other state, emitting w1, then making a
transition into yet another state and emitting w2 and so on until making a final
transition into state i and emitting w�.

In the core of our method stands the following observation, which is immediate
from the associative nature of matrix multiplication.

Observation 1. We may replace any occurrence of Mw� � Mw�−1 � · · · � Mw1

in eq. (3) with M(W ).

The application of observation 1 to the computation of equation (3) saves � −
1 Viterbi steps each time W appears in X , but incurs the additional cost of
computing M(W ) once.

An intuitive exercise. Let λ denote the number of times a given word W
appears, in non-overlapping occurrences, in the input string X . Suppose we
näıvely compute M(W ) using (|W | − 1) max-times matrix multiplications, and
then apply observation 1 to all occurrences of W before running VA. We gain
some speedup in doing so if

(|W | − 1)k3 + λk2 < λ|W |k2

λ > k (7)

Hence, if there are at least k non-overlapping occurrences of W in the input
sequence, then it is worthwhile to näıvely precompute M(W ), regardless of it’s
size |W |.

Definition 2 (Good Substring). We call a substring W good if we decide to
compute M(W ).

We can now give a general four-step framework of our method:

(I) Dictionary Selection: choose the set D = {Wi} of good substrings.
(II) Encoding: precompute the matrices M(Wi) for every Wi ∈ D.

(III) Parsing: partition the input sequence X into consecutive good sub-
strings X = Wi1Wi2 · · · Win′′ and let X ′ denote the compressed repre-
sentation of this parsing of X , such that X ′ = i1i2 · · · in′′ .

(IV) Propagation: run VA on X ′, using the matrices M(Wi).

The above framework introduces the challenge of how to select the set of good
substrings (step I) and how to efficiently compute their matrices (step II). In the
next two sections we show how the RLE and LZ78 compression schemes can
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be applied to address this challenge. The utilization of the BPE compression
scheme is discussed in the full version of this paper. Another challenge is how to
parse the sequence X (step III) in order to maximize acceleration. We show that,
surprisingly, this optimal parsing may differ from the initial parsing induced by
the selected compression scheme. To our knowledge, this feature was not applied
by previous “acceleration by compression” algorithms.

Throughout this paper we focus on computing path probabilities rather than
the paths themselves. The actual paths can be reconstructed in linear time as
described in the full version of this paper.

4 Acceleration Via Run-Length Encoding

In this section we obtain an Ω( r
logr ) speedup for decoding an observed sequence

with run-length compression ratio r. A string S is run-length encoded if it is
described as an ordered sequence of pairs (σ, i), often denoted “σi”. Each pair
corresponds to a run in S, consisting of i consecutive occurrences of the character
σ. For example, the string aaabbcccccc is encoded as a3b2c6. Run-length encoding
serves as a popular image compression technique, since many classes of images
(e.g., binary images in facsimile transmission or for use in optical character
recognition) typically contain large patches of identically-valued pixels. The four-
step framework described in section 3 is applied as follows.

(I) Dictionary Selection: for every σ ∈ Σ and every i = 1, 2, . . . , log n we
choose σ2i

as a good substring.
(II) Encoding: since M(σ2i

) = M(σ2i−1
) � M(σ2i−1

), we can compute the
matrices using repeated squaring.

(III) Parsing: Let W1W2 · · · Wn′ be the RLE of X , where each Wi is a run
of some σ ∈ Σ. X ′ is obtained by further parsing each Wi into at most
log |Wi| good substrings of the form σ2j

.
(IV) Propagation: run VA on X ′, as described in Section 3.

Time and Space Complexity Analysis. The offline preprocessing stage consists of
steps I and II. The time complexity of step II is O(|Σ|k3 log n) by applying max-
times repeated squaring in O(k3) time per multiplication. The space complexity
is O(|Σ|k2 log n). This work is done offline once, during the training stage, in
advance for all sequences to come. Furthermore, for typical applications, the
O(|Σ|k3 log n) term is much smaller than the O(nk2) term of VA.

Steps III and IV both apply one operation per occurrence of a good substring
in X ′: step III computes, in constant time, the index of the next parsing-comma,
and step IV applies a single Viterbi step in k2 time. Since |X ′| =

∑n′

i=1 log|Wi|,
the complexity is

n′∑

i=1

k2log|Wi| = k2log(|W1| · |W2| · · · |Wn′ |) ≤ k2log((n/n′)n′
) = O(n′k2log

n

n′ ).

Thus, the speedup compared to the O(nk2) time of VA is Ω(
n
n′

log n
n′

) = Ω( r
logr ).
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5 Acceleration Via LZ78 Parsing

In this section we obtain an Ω( log n
k ) speedup for decoding, and a constant

speedup in the case where k > log n. We show how to use the LZ78 [22] (hence-
forth LZ) parsing to find good substrings and how to use the incremental nature
of the LZ parse to compute M(W ) for a good substring W in O(k3) time.

LZ parses the string X into substrings (LZ-words) in a single pass over X .
Each LZ-word is composed of the longest LZ-word previously seen plus a single
letter. More formally, LZ begins with an empty dictionary and parses according
to the following rule: when parsing location i, look for the longest LZ-word
W starting at position i which already appears in the dictionary. Read one
more letter σ and insert Wσ into the dictionary. Continue parsing from position
i + |W | + 1. For example, the string “AACGACG” is parsed into four words: A,
AC, G, ACG. Asymptotically, LZ parses a string of length n into O(hn/ log n)
words [22], where 0 ≤ h ≤ 1 is the entropy of the string. The LZ parse is
performed in linear time by maintaining the dictionary in a trie. Each node
in the trie corresponds to an LZ-word. The four-step framework described in
section 3 is applied as follows.

(I) Dictionary Selection: the good substrings are all the LZ-words in the
LZ-parse of X .

(II) Encoding: construct the matrices incrementally, according to their or-
der in the LZ-trie, M(Wσ) = M(W ) � Mσ.

(III) Parsing: X ′ is the LZ-parsing of X .
(IV) Propagation: run VA on X ′, as described in section 3.

Time and Space Complexity Analysis. Steps I and III were already conducted
offline during the pre-processing compression of the input sequences (in any case
LZ parsing is linear). In step II, computing M(Wσ) = M(W ) � Mσ, takes
O(k3) time since M(W ) was already computed for the good substring W . Since
there are O(n/ log n) LZ-words, calculating the matrices M(W ) for all W s takes
O(k3n/ logn). Running VA on X ′ (step IV) takes just O(k2n/ log n) time. There-
fore, the overall runtime is dominated by O(k3n/ logn). The space complexity
is O(k2n/ log n).

The above algorithm is useful in many applications, such as CpG island clas-
sification, where k < log n. However, in those applications where k > log n such
an algorithm may actually slow down VA.

We next show an adaptive variant that is guaranteed to speed up VA, regard-
less of the values of n and k. This graceful degradation retains the asymptotic
Ω( log n

k ) acceleration when k < log n.

5.1 An Improved Algorithm

Recall that given M(W ) for a good substring W , it takes k3 time to calculate
M(Wσ). This calculation saves k2 operations each time Wσ occurs in X in
comparison to the situation where only M(W ) is computed. Therefore, in step
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I we should include in D, as good substrings, only words that appear as a prefix
of at least k LZ-words. Finding these words can be done in a single traversal of
the trie. The following observation is immediate from the prefix monotonicity of
occurrence tries.

Observation 2. Words that appear as a prefix of at least k LZ-words are rep-
resented by trie nodes whose subtrees contain at least k nodes.

In the previous case it was straightforward to transform X into X ′, since each
phrase p in the parsed sequence corresponded to a good substring. Now, however,
X does not divide into just good substrings and it is unclear what is the optimal
way to construct X ′ (in step III). Our approach for constructing X ′ is to first
parse X into all LZ-words and then apply the following greedy parsing to each
LZ-word W : using the trie, find the longest good substring w′ ∈ D that is a
prefix of W , place a parsing comma immediately after w′ and repeat the process
for the remainder of W .

Time and Space Complexity Analysis. The improved algorithm utilizes sub-
strings that guarantee acceleration (with respect to VA) so it is therefore faster
than VA even when k = Ω(log n). In addition, in spite of the fact that this
algorithm re-parses the original LZ partition, the algorithm still guarantees an
Ω( log n

k ) speedup over VA as shown by the following lemma.

Lemma 1. The running time of the above algorithm is bounded by O(k3n/logn).

Proof. The running time of step II is at most O(k3n/ logn). This is because
the size of the entire LZ-trie is O(n/ log n) and we construct the matrices, in
O(k3) time each, for just a subset of the trie nodes. The running time of step IV
depends on the number of new phrases (commas) that result from the re-parsing
of each LZ-word W . We next prove that this number is at most k for each word.

Consider the first iteration of the greedy procedure on some LZ-word W . Let
w′ be the longest prefix of W that is represented by a trie node with at least k
descendants. Assume, contrary to fact, that |W |− |w′| > k. This means that w′′,
the child of w′, satisfies |W | − |w′′| ≥ k, in contradiction to the definition of w′.
We have established that |W | − |w′| ≤ k and therefore the number of re-parsed
words is bounded by k + 1. The propagation step IV thus takes O(k3) time
for each one of the O(n/ log n) LZ-words. So the total time complexity remains
O(k3n/ logn). ��

Based on Lemma 1, and assuming that steps I and III are pre-computed offline,
the running time of the above algorithm is O(nk2/e) where e = Ω(max(1, log n

k )).
The space complexity is O(k2n/logn).

6 The Training Problem

In the training problem we are given as input the number of states in the HMM
and an observed training sequence X . The aim is to find a set of model pa-
rameters θ (i.e., the emission and transition probabilities) that maximize the
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likelihood to observe the given sequence P (X | θ). The most commonly used
training algorithms for HMMs are based on the concept of Expectation Max-
imization. This is an iterative process in which each iteration is composed of
two steps. The first step solves the decoding problem given the current model
parameters. The second step uses the results of the decoding process to update
the model parameters. These iterative processes are guaranteed to converge to a
local maximum. It is important to note that since the dictionary selection step
(I) and the parsing step (III) of our algorithm are independent of the model
parameters, we only need run them once, and repeat just the encoding step (II)
and the propagation step (IV) when the decoding process is performed in each
iteration.

6.1 Viterbi Training

The first step of Viterbi training [12] uses VA to find the most likely sequence
of states given the current set of parameters (i.e., decoding). Let Aij denote the
number of times the state i follows the state j in the most likely sequence of
states. Similarly, let Ei(σ) denote the number of times the letter σ is emitted by
the state i in the most likely sequence. The updated parameters are given by:

Pij =
Aij∑
i′ Ai′j

and ei(σ) =
Ei(σ)∑
σ′ Ei(σ′)

(8)

Note that the Viterbi training algorithm does not converge to the set of para-
meters that maximizes the likelihood to observe the given sequence P (X | θ) ,
but rather the set of parameters that locally maximizes the contribution to the
likelihood from the most probable sequence of states [12]. It is easy to see that
the time complexity of each Viterbi training iteration is O(k2n+n) = O(k2n) so
it is dominated by the running time of VA. Therefore, we can immediately apply
our compressed decoding algorithms from sections 4 and 5 to obtain a better
running time per iteration.

6.2 Baum-Welch Training

The Baum-Welch training algorithm [4,12] converges to a set of parameters that
locally maximize the likelihood to observe the given sequence P (X | θ), and is the
most commonly used method for model training. We give here a brief explanation
of the algorithm and of our acceleration approach. The complete details appear
in the full version of this paper.

Recall the forward-backward matrices: ft[i] is the probability to observe the
sequence x1, x2, . . . , xt requiring that the t’th state is i and that bt[i] is the
probability to observe the sequence xt+1, xt+2, . . . , xn given that the t’th state
is i. The first step of Baum-Welch calculates ft[i] and bt[i] for every 1 ≤ t ≤ n
and every 1 ≤ i ≤ k. This is achieved by applying the forward and backward
algorithms to the input data in O(nk2) time (see eqs. (4) and (5)). The second
step recalculates A and E according to
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Ai,j =
∑

t

P (st = j, st+1 = i|X, θ)

Ei(σ) =
∑

t|xt=σ

P (st = i|X, θ) (9)

where P (st = j, st+1 = i|X, θ) is the probability that a transition from state j
to state i occurred in position t in the sequence X , and P (st = i|X, θ) is the
probability for the t’th state to be i in the sequence X . These quantities are
given by:

P (st = j, st+1 = i|X, θ) =
ft[j] · Pi,j · ei(xt+1) · bt+1[i]∑

i fn[i]
(10)

and
P (st = i|X, θ) =

ft[i] · bt[i]∑
i fn[i]

. (11)

Finally, after the matrices A and E are recalculated, Baum-Welch updates the
model parameters according to equation (8).

We next describe how to accelerate the Baum-Welch algorithm. Note that
in the first step of Baum-Welch, our algorithms to accelerate VA (Sections 4
and 5) can be used to accelerate the forward-backward algorithms by replacing
the max-times matrix multiplication with regular matrix multiplication. How-
ever, the accelerated algorithms only compute ft and bt on the boundaries of
good substrings. In order to solve this problem and speed up the second step
of Baum-Welch as well, we observe that when accumulating the contribution
of some appearance of a good substring W of length |W | = � to A, Baum-
Welch performs O(�k2) operations, but updates at most k2 entries (the size of
A). Hence, it is possible to obtain a speedup by precalculating the contribution
of each good substring to A and E. For brevity the details are omitted here
and will appear in the full version of this paper. To summarize the results, pre-
processing a good substring W requires O(�k4) time and O(k4) space. Using the
preprocessed information and the values of ft and bt on the boundaries of good
substrings, we can update A and E in O(k4) time per good substring (instead
of �k2). To get a speedup we need λ, the number of times the good substring W
appears in X to satisfy:

�k4 + λk4 < λ�k2

λ >
�k2

� − k2 (12)

This is reasonable if k is small. If � = 2k2, for example, then we need λ to be
greater than 2k2. In the CpG islands problem, if k = 2 then any substrings of
length eight is good if it appears more than eight times in the text.

7 Experimental Results

We implemented both a variant of our improved LZ-compressed algorithm from
subsection 5.1 and classical VA in C++ and compared their execution times on a
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Fig. 2. Comparison of the cumulative running time of steps II and IV of our algorithm
(marked x) with the running time of VA (marked o), for different values of k. Time is
shown in arbitrary units on a logarithmic scale. Runs on the 1.5Mbp chromosome 4 of
S. cerevisiae are in solid lines. Runs on the 22Mbp human Y-chromosome are in dotted
lines. The roughly uniform difference between corresponding pairs of curves reflects a
speedup factor of more than five.

sequence of approximately 22,000,000 nucleotides from the human Y chromosome
and on a sequence of approximately 1,500,000 nucleotides from chromosome 4 of
S. Cerevisiae obtained from the UCSC genome database. The benchmarks were
performed on a single processor of a SunFire V880 server with 8 UltraSPARC-IV
processors and 16GB main memory. The implementation is just for calculating
the probability of the most likely sequence of states, and does not traceback the
optimal sequence itself. As we have seen, this is the time consuming part of the al-
gorithm. We measured the running times for different values of k. As we explained
in the previous sections we are only interested in the running time of the encod-
ing and the propagation steps (II and IV) since the combined parsing/dictionary-
selections steps (I and III) may be performed in advance and are not repeated by
the training and decoding algorithms. The results are shown in Fig. 2. Our algo-
rithm performs faster than VA even for surprisingly large values of k. For example,
for k = 60 our algorithm is roughly three times faster than VA.
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