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Abstract. In this paper we define a new similarity measure, the non-
breaking similarity, which is the complement of the famous breakpoint
distance between genomes (in general, between any two sequences drawn
from the same alphabet). When the two input genomes G and H, drawn
from the same set of n gene families, contain gene repetitions, we consider
the corresponding Exemplar Non-breaking Similarity problem (ENbS) in
which we need to delete repeated genes in G and H such that the resulting
genomes G and H have the maximum non-breaking similarity. We have
the following results.
– For the Exemplar Non-breaking Similarity problem, we prove that

the Independent Set problem can be linearly reduced to this prob-
lem. Hence, ENbS does not admit any factor-n1−ε polynomial-time
approximation unless P=NP. (Also, ENbS is W[1]-complete.)

– We show that for several practically interesting cases of the Ex-
emplar Non-breaking Similarity problem, there are polynomial time
algorithms.

1 Introduction

In the genome comparison and rearrangement area, the breakpoint distance
is one of the most famous distance measures [15]. The implicit idea of break-
points was initiated as early as in 1936 by Sturtevant and Dobzhansky [14].
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Until a few years ago, in genome rearrangement research, it is always assumed
that every gene appears in a genome exactly once. Under this assumption, the
genome rearrangement problem is in essence the problem of comparing and sort-
ing signed/unsigned permutations [10,11]. In the case of breakpoint distance,
given two perfect genomes (in which every gene appears exactly once, i.e., there
is no gene repetition) it is easy to compute their breakpoint distance in linear
time.

However, perfect genomes are hard to obtain and so far they can only be
obtained in several small virus genomes. For example, perfect genomes do not
occur on eukaryotic genomes where paralogous genes are common [12,13]. On
the one hand, it is important in practice to compute genomic distances, e.g., us-
ing Hannenhalli and Pevzner’s method [10], when no gene duplication arises; on
the other hand, one might have to handle this gene duplication problem as well.
In 1999, Sankoff proposed a way to select, from the duplicated copies of genes,
the common ancestor gene such that the distance between the reduced genomes
(exemplar genomes) is minimized [13]. A general branch-and-bound algorithm
was also implemented in [13]. Recently, Nguyen, Tay and Zhang proposed us-
ing a divide-and-conquer method to compute the exemplar breakpoint distance
empirically [12].

For the theoretical part of research, it was shown that computing the exemplar
signed reversal and breakpoint distances between (imperfect) genomes are both
NP-complete [1]. Two years ago, Blin and Rizzi further proved that computing
the exemplar conserved interval distance between genomes is NP-complete [2];
moreover, it is NP-complete to compute the minimum conserved interval match-
ing (i.e., without deleting the duplicated copies of genes). In [6,3] it was shown
that the exemplar genomic distance problem does not admit any approximation
(regardless of the approximation factor) unless P=NP, as long as G = H implies
that d(G, H) = 0, for any genomic distance measure d( ). This implies that
for the exemplar breakpoint distance and exemplar conserved interval distance
problems, there are no polynomial-time approximations. In [6] it was also shown
that even under a weaker definition of (polynomial-time) approximation, the
exemplar breakpoint distance problem does not admit any weak approximation
of factor n1−ε for any 0 < ε < 1, where n is the maximum length of the input
genomes. In [3,4] it was shown that under the same definition of weak approx-
imation, the exemplar conserved interval distance problem does not admit any
weak approximation of a factor which is superlinear (roughly n1.5).

In [5] three new kinds of genomic similarities were considered. These similarity
measures, which are not distance measures, do not satisfy the condition that
G = H implies that d(G, H) = 0. Among them, the exemplar common interval
measure problem seems to be the most interesting one. When gene duplications
are allowed, Chauve, et al. proved that the problem is NP-complete and left
open a question whether there is any inapproximability result for it.

In this paper, we define a new similarity measure called non-breaking sim-
ilarity. Intuitively, this is the complement of the traditional breakpoint dis-
tance measure. Compared with the problem of computing exemplar breakpoint
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distance, which is a minimization problem, for the exemplar non-breaking simi-
larity problem we need to maximize the number of non-breaking points. Unfor-
tunately we show in this paper that Independent Set can be reduced to ENbS;
moreover, this reduction implies that ENbS is W[1]-complete (and ENbS does
not have a factor-nε polynomial-time approximation). This reduction works even
when one of the two genomes is given exemplar.

The W[1]-completeness (see [8] for details) and the recent lower bound results
[7] imply that if k is the optimal solution value, unless an unlikely collapse
occurs in the parameterized complexity theory, ENbS is not solvable in time
f(k)no(k), for any function f . However, we show that for several practically
interesting cases of the problem, there are polynomial time algorithms. This is
done by parameterizing some quantities in the input genomes, followed with
some traditional algorithmic techniques.

This effort is not artificial: in real-life datasets, usually there are some special
properties in the data. For example, as reported in [12], the repeated genes in
some bacteria genome pairs are often pegged, i.e., the repeated genes are usually
separated by a peg gene which occurs exactly once. Our solution can help solving
cases like these, especially when the number of such repeated genes is limited.

This paper is organized as follows. In Section 2, we go over the necessary
definitions. In Section 3, we reduce Independent Set to ENbS, hence showing the
inapproximability result. In Section 4, we present polynomial time algorithms
for several practically interesting cases. In Section 5, we conclude the paper with
some discussions.

2 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed/unsigned sequence of genes1. The order of
the genes corresponds to the position of them on the linear chromosome and the
signs correspond to which of the two DNA strands the genes are located. While
most of the past research are under the assumption that each gene occurs in a
genome once, this assumption is problematic in reality for eukaryotic genomes
or the likes where duplications of genes exist [13]. Sankoff proposed a method
to select an exemplar genome, by deleting redundant copies of a gene, such that
in an exemplar genome any gene appears exactly once; moreover, the resulting
exemplar genomes should have a property that certain genomic distance between
them is minimized [13].

The following definitions are very much following those in [1,6]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F . (Throughout
this paper, we will consider unsigned genomes, though our results can be applied
to signed genomes as well.) In general, we allow the repetition of a gene family
in any genome. Each occurrence of a gene family is called a gene, though we will
not try to distinguish a gene and a gene family if the context is clear.
1 In general a genome could contain a set of such sequences. The genomes we focus

on in this paper are typically called singletons.
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The number of a gene g appearing in a genome G is called the occurrence of g
in G, written as occ(g, G). A genome G is called r-repetitive, if all the genes from
the same gene family occur at most r times in G. For example, if G = abcbaa,
occ(b, G) = 2 and G is a 3-repetitive genome.

For a genome G, alphabet(G) is the set of all the characters (genes) that appear
at least once in G. A genome G is an exemplar genome of G if alphabet(G) =
alphabet(G) and each gene in alphabet(G) appears exactly once in G; i.e., G
is derived from G by deleting all the redundant genes (characters) in G. For
example, let G = bcaadage there are two exemplar genomes: bcadge and bcdage.

For two exemplar genomes G and H such that alphabet(G) = alphabet(H)
and |alphabet(G)| = |alphabet(H)| = n, a breakpoint in G is a two-gene sub-
string gigi+1 such that gigi+1 is not a substring in H . The number of breakpoints
in G (symmetrically in H) is called the breakpoint distance, denoted as bd(G, H).
For two genomes G and H, their exemplar breakpoint distance ebd(G, H) is the
minimum bd(G, H), where G and H are exemplar genomes derived from G
and H.

For two exemplar genomes G and H such that alphabet(G) = alphabet(H)
|alphabet(G)| = |alphabet(H)| = n, a non-breaking point is a common two-gene
substring gigi+1 that appears in both G and H . The number of non-breaking
points between G and H is also called the non-breaking similarity between G
and H , denoted as nbs(G, H). Clearly, we have nbs(G, H) = n − 1 − bd(G, H).
For two genomes G and H, their exemplar non-breaking similarity enbs(G, H) is
the maximum nbs(G, H), where G and H are exemplar genomes derived from G
and H. Again we have enbs(G, H) = n − 1 − ebd(G, H).

The Exemplar Non-breaking Similarity (ENbS) Problem is formally defined
as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n identical
gene families (i.e., at least one gene from each of the n gene families appears in
both G and H); integer K.
Question: Are there two respective exemplar genomes of G and H, G and H ,
such that the non-breaking similarity between them is at least K?

In the next two sections, we present several results for the optimization versions
of these problems, namely, to compute or approximate the maximum value K in
the above formulation. Given a maximization problem Π , let the optimal solution
of Π be OPT . We say that an approximation algorithm A provides a performance
guarantee of α for Π if for every instance I of Π , the solution value returned by
A is at least OPT/α. (Usually we say that A is a factor-α approximation for Π .)
Typically we are interested in polynomial time approximation algorithms.

3 Inapproximability Results

For the ENbS problem, let OENbS be the corresponding optimal solution value.
First we have the following lemma.
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Lemma 1. 0 ≤ OENbS ≤ n − 1.

Proof. Let the n gene families be denoted by 1, 2, ..., n. We only consider the
corresponding exemplar genomes G, H . The lower bound of OENbS is achieved
by setting G = 123 · · · (n − 1)n and H can be set as follows: when n is even,
H = (n − 1)(n − 3) · · · 531n(n − 2) · · · 642; when n is odd, H = (n − 1)(n −
3) · · · 642n135 · · · (n− 4)(n− 2). It can be easily proved that between G, H there
is no non-breaking point. The upper bound of OENbS is obtained by setting
G = H in which case any two adjacent genes form a non-breaking point. ��

The above lemma also implies that different from the Exemplar Breakpoint Dis-
tance (EBD) problem, which does not admit any polynomial-time approximation
at all (as deciding whether the optimal solution value is zero is NP-complete),
the same cannot be said on ENbS. Given G and H, it can be easily shown that
deciding whether OENbS = 0 can be done in polynomial time (hence it is easy
to decide whether there exists some approximation for ENbS—for instance, as
OENbS ≤ n − 1, if we can decide that OENbS �= 0 then it is easy to obtain a
factor-O(n) approximation for ENbS). However, the next theorem shows that
even when one of G and H is given exemplar, ENbS still does not admit a
factor-n1−ε approximation.

Theorem 1. If one of G and H is exemplar and the other is 2-repetitive, the
Exemplar Non-breaking Similarity Problem does not admit any factor n1−ε poly-
nomial time approximation unless P=NP.

Proof. We use a reduction from Independent Set to the Exemplar Non-breaking
Similarity Problem in which each of the n genes appears in G exactly once and in
H at most twice. Independent Set is a well known NP-complete problem which
cannot be approximated within a factor of n1−ε [9].

Given a graph T = (V, E), V = {v1, v2, · · · , vN}, E = {e1, e2, · · · , eM}, we
construct G and H as follows. (We assume that the vertices and edges are sorted
by their corresponding indices.) Let Ai be the sorted sequence of edges incident
to vi. For each vi we add v′i as an additional gene and for each ei we add xi, x

′
i

as additional genes. We have two cases: N + M is even and N + M is odd. We
mainly focus on the case when N + M is even. In this case, the reduction is as
follows.

Define Yi = viAiv
′
i, if i ≤ N and YN+i = xix

′
i, if i ≤ M .

G : v1v
′
1v2v

′
2 · · · vNv′Nx1e1x

′
1x2e2x

′
2 · · · xMeMx′

M .
H : YN+M−1YN+M−3 · · ·Y1YN+MYN+M−2 · · · Y2.
(Construct H as YN+M−1YN+M−3 · · · Y2YN+MY1Y3 · · · YN+M−2 when N +M

is odd. The remaining arguments will be identical.)
We claim that T has an independent set of size k iff the exemplar non-breaking

similarity between G and H is k. Notice that G is already an exemplar genome,
so G = G.

If T has an independent set of size k, then the claim is trivial. Firstly, construct
the exemplar genome H as follows. For all i, if vi is in the independent set, then
delete Ai in Yi = viAiv

′
i (also arbitrarily delete all redundant edges in As in H
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for which vs is not in the independent set of T ). There are k non-breaking points
between G, H—notice that any vertex vi which is in the independent set gives
us a non-breaking point viv

′
i. The final exemplar genomes obtained, G and H ,

obviously have k exemplar non-breaking points.
If the number of the exemplar non-breaking points between G and H is k, the

first thing to notice is that Yi = xix
′
i (N < i ≤ N + M) cannot give us any

non-breaking point. So the non-breaking points must come from Yi = viAiv
′
i

(i ≤ N), with some Ai properly deleted (i.e., such a Yi becomes viv
′
i in H).

Moreover, there are exactly k such Ai’s deleted. We show below that any two
such completely deleted Ai, Aj correspond to two independent vertices vi, vj in
T . Assume that there is an edge eij between vi and vj , then as both Ai, Aj

are deleted, both of the two occurrences of the gene eij will be deleted from H.
A contradiction. Therefore, if the number of the exemplar non-breaking points
between G and H is k, there is an independent set of size k in T .

To conclude the proof of this theorem, notice that the reduction take polyno-
mial time (proportional to the size of T ). ��
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Fig. 1. Illustration of a simple graph for the reduction

In the example shown in Figure 1, we have
G : v1v

′
1v2v

′
2v3v

′
3v4v

′
4v5v

′
5x1e1x

′
1x2e2x

′
2x3e3x

′
3x4e4x

′
4x5e5x

′
5 and

H : x4x
′
4x2x

′
2v5e4e5v

′
5v3e1v

′
3v1e1e2v

′
1x5x

′
5x3x

′
3x1x

′
1v4e3e5v

′
4v2e2e3e4v

′
2.

Corresponding to the optimal independent set {v3, v4}, we have
H : x4x

′
4x2x

′
2v5e5v

′
5v3v

′
3v1e1e2v

′
1x5x

′
5x3x

′
3x1x

′
1v4v

′
4v2e3e4v

′
2. The two

non-breaking points are [v3v
′
3], [v4v

′
4].

We comment that EBD and ENbS, even though complement to each other, are
still different problems. With respect to the above theorem, when G is exemplar
and H is not, there is a factor-O(log n) approximation for the EBD problem [6].
This is significantly different from ENbS, as shown in the above theorem.

4 Polynomial Time Algorithms for Some Special Cases

The proof of Theorem 1 also implies that ENbS is W[1]-complete, as Independent
Set is W[1]-complete [8]. Following the recent lower bound results of Chen, et al.,
if k is the optimal solution value for ENbS then unless an unlikely collapse occurs
in the parameterized complexity theory, ENbS is not solvable in time f(k)no(k),
for any function f [7]. Nevertheless, we show below that for several practically
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interesting cases of the problem, there are polynomial time algorithms. The
idea is to set a parameter in the input genomes (or sequences, as we will use
interchangeably from now on) and design a polynomial time algorithm when
such a parameter is O(log n).

In practical datasets, usually there are some special properties in the data.
For instance, the repeated genes in the five bacteria genome pairs (Baphi-Wigg,
Pmult-Hinft, Ecoli-Styphi, Xaxo-Xcamp and Ypes) are usually pegged, i.e., the
repeated genes are usually separated by a peg gene which occurs exactly once
[12]. When the total number of such repeated genes is a constant, our algorithm
can solve this problem in polynomial time.

We first present a few extra definitions. For a genome G and a character
g, span(g, G) is the maximal distance between the two positions that are oc-
cupied by g in the genome G. For example, if G = abcbaa, span(a, G) = 5
and span(b, G) = 2. For a genome G and c ≥ 0, we define totalocc(c, G) =∑

g is a character in G and span(g,G)≥c occ(g, G).
Assume that c and d are positive integers. A (c, d)-even partition for a genome

G is G = G1G2G3 with |G2| = c and |G1| + �|G2|/2� = d.
For a genome G and integers c, d > 0, a (c, d)-split G1, G2, G3 for G is derived

from a (c′, d)-even partition G = G1G2G3 for G for some c ≤ c′ ≤ 2c and satisfies
the following conditions 1)-6):

(1) alphabet(G) = alphabet(G1G2G3).
(2) We can further partition G2 into G2 = G1

2G2
2G3

2 such that |G2
2 | ≤ c + 1, and

there is at least one gene g with all its occurrences in G being in G2
2 . We call

such a gene g as a whole gene in G2
2 .

(3) G2 is obtained from G2
2 by deleting some genes and every gene appears at

most once in G2. And, G2 contains one occurrence of every whole gene in G2
2 .

(4) G1 is obtained from G1G1
2 by deleting all genes in G1G1

2 which also appear
in G2.

(5) G3 is obtained from G3
2G3 by deleting all genes in G3

2G3 which also appear
in G2.

(6) G2 has no gene common with either G1 or G3.

Finally, for a genome G and integers c, d ≥ 0, a (c, d)-decomposition is G1x,
G2G3, where G1, G2, G3 is a (c, d)-split for G and x is the first character of G2.
We have the following lemma. From now on, whenever a different pair of genomes
are given we assume that they are drawn from the same n gene families.

Lemma 2. Assume that c, d are integers satisfying c ≥ 0 and |G|−2c ≥ d ≥ 2c.
and G is a genome with span(g, G) ≤ c for every gene g in G. Then, (1) the
number of (c, d)-decompositions is at most 2c+1; (2) every exemplar genome of
G is also an exemplar genome of G1G2G3 for some (c, d)-split G1, G2, G3 of G.

Proof. (1). Since span(g, G) ≤ c for every gene g in G, it is easy to see that there
is a c′, c ≤ c′ ≤ 2c, such that we can find (c, d)-splits G1, G2 and G3 from a
(c′, d)-even partition G = G1G2G3 with G2 = G1

2G2
2G3

2 . Since |G2
2 | ≤ c + 1, there

are at most 2c+1 possible ways to obtain G2. Therefore, the total number of
decompositions is at most 2c+1. (2) is easy to see. ��
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Lemma 3. Let c be a positive constant and ε be an arbitrary small positive
constant. There exists an O(nc+2+ε)-time algorithm such that given an exem-
plar genome G, in which each genes appears exactly once, and H, in which
span(g, H) ≤ c for every g in H, it returns enbs(G, H).

Proof. We use the divide-and-conquer method to compute enbs(G, H). The sep-
arator is put at the middle of H with width c. The genes within the region of
separator are handled by a brute-force method.

Algorithm
A(G, H)

Input: G is a genome with no gene repetition,
and H is a genome such that span(g, H) ≤ c for each gene in H.

let s = 0 and d = |H|/2.
for every (c, d)-decomposition H1x, H2H3 of H)

begin
if the length of H1x and H2H3 is ≤ log n

then compute A(G, H1x) and A(G, H2H3) by brute-force;
else let s′ = A(G, H1x) + A(G, H2H3);

if (s < s′) then s = s′

end
return s;

The correctness of the algorithm is easy to verify. By Lemma 2 and the de-
scription of the algorithm, the computational time is based on the following
recursive equation: T (n) ≤ (2c+1(2T (n/2 + c)) + c0n, where c0 is a constant.
We show by induction that T (n) ≤ c1n

c+2+ε, where c1 is a positive constant.
The basis is trivial when n is small since we can select constant c1 large enough.
Assume that T (n) ≤ c1n

c+2+ε is true all n < m.
T (m) ≤ 2c+1(2T (m/2+c)+c0m ≤ 2(2c+1c1(m/2+c)c+2+ε)+c0m < c1m

c+2+ε

for all large m. ��

We now have the following theorem.

Theorem 2. Let G and H be two genomes with t = totalocc(1, G) + totalocc
(c, H), for some arbitrary constant c. Then enbs(G, H) can be computed in O
(3�t/3�nc+2+ε) time.

Proof. Algorithm:
d = 0;
for each gene g1 in G with span(g1, G) ≥ 1
begin

for each position p1 of g1 in G
begin

remove all g1’s at all positions other than p1;
end
assume that G has been changed to G;
for each gene g2 in H with span(g2, H) > c
begin
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for each position p2 of g2 in H
begin

remove all g2’s at all positions other than p2;
end
assume that H has been changed to H′;
compute d0 = enbs(G, H′) following Lemma 3;
if (d < d0) then d = d0;

end
end
return d;

Let gi, 1 ≤ i ≤ m, be the genes in G and H with span(g1, G) ≥ 1 in G or
span(g2, H) > c in H. We have t = k1 + · · · + km. Let ki be the number of
occurrences of gi. Notice that ki ≥ 2. The number of cases to select the positions
of those genes in G and the positions of those genes in H is at most k1 · · ·km,
which is at most 4 · 3�t/3� following Lemma 6. In G, every gene appears exactly
once. In H′, every gene has span bounded by c. Therefore, their distance can be
computed in O(nc+2+ε) steps by Lemma 3. ��
Next, we define a new parameter measure similar to the Maximum Adjacency
Disruption (MAD) number in [5].

Assume that G and H are two genomes/sequences. For a gene g, define
shift(g, G, H) = maxG[i]=g,H[j]=g |i − j|, where G[i] is the gene/character of G
at position i. A space-permitted genome G may have space symbols in it. For two
space-permitted genomes G1 and G2, a non-breaking point g1g2 satisfies that g1
and g2 appear at two positions of G without any other genes/characters except
some spaces between them, and also at two positions of H without any other
genes except spaces between them.

For a genome G and integers c, d > 0, an exact (c, d)-split G1, G2, G3 for G is
obtained from a (c, d)-even partition G = G1G2G3 for G and satisfies the following
conditions (1)-(5):

(1) alphabet(G) = alphabet(G1G2G3).
(2) G2 is obtained from G2 by replacing some characters with spaces and every

non-space character appears at most once in G2.
(3) G1 is obtained from G1 by changing all G characters that also appear in

G2 into spaces.
(4) G3 is obtained from G3 by changing all G3 characters that also appear in

G2 into spaces.
(5) G2 has no common non-space character with either G1 or G3.

We now show the following lemmas.

Lemma 4. Let c, k, d be positive integers. Assume that G is a space-permitted
genome with span(g, G) ≤ c for every character g in G, and G only has spaces
at the first kc positions and spaces at the last kc positions. If |G| > 2(k + 4)c
and (k + 2)c < d < |G| − (k + 2)c, then G has at least one exact (2c, d)-split
and for every exact (2c, d)-split G1, G2, G3 for G, G2 has at least one non-space
character.
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Proof. For (k+2)c < d < |G|−(k+2)c, it is easy to see that G has a subsequence
S of length 2c that starts from the d-th position in G and has no space character.
For every subsequence S of length 2c of G, if S has no space character, it has at
least one character in G that only appears in the region of S since span(g, G) ≤ c
for every character g in G. ��

Lemma 5. Let c be a positive constant. There exists an O(n2c+1+ε) time al-
gorithm such that, given two space-permitted genomes/sequences G and H, it
returns enbs(G, H), if shift(g, G, H) ≤ c for each non-space character g, G and
H only have spaces at the first and last 4c positions, and |G| ≥ 16c and |H| ≥ 16c.

Proof. Since shift(g, G, H) ≤ c for every gene/character g in G or H, we have
span(g, G) ≤ 2c and span(g, H) ≤ 2c for every character g in G or H.

Algorithm
B(G, H)
Input: G, H are two space-permitted genomes.
assume that |G| ≤ |H|;
set s = 0 and d = �|G|/2�;
for every exact (2c, d)-split G1, G2, G3 of G
begin

for every exact (2c, d)-split H1, H2, H3 of H
begin

if the length of G and H is ≤ log n
then compute enbs(G, H) by brute-force;
else s = B(G1G2, H1H2) + B(G2G3, H2H3) − B(G2, H2);

if (s < s′) then s = s′;
end

end
return s;

Following the divide-and-conquer method, it is easy to see that G1G2, H1H2,
G2G3 and H2H3 have spaces in the first and last 2c positions. This is because
span(g, G) ≤ 2c, span(g, H) ≤ 2c for every character g. B(G2, H2) can be deter-
mined by a linear scan, since both of them are exemplar. The computational time
is determined by the recurrence relation: T (n) = (22c + 2c)(2T (n

2 + 2c)+ O(n)),
which has solution T (n) = O(n2c+1+ε) as we show in the Lemma 3. ��

Lemma 6. Let k ≥ 3 be a fixed integer. Assume that k1, k2, · · · , km are m inte-
gers that satisfies ki ≥ 2 for i = 1, 2, · · · , m and k1 + k2 + · · · + km = k. Then
k1k2 · · ·km ≤ 4 · 3�

k
3 �.

Proof. We assume that for fixed k, m is the largest integer that makes the
product k1k2 · · ·km maximal and k1 + k2 + · · · + km = k. We claim that ki ≤ 3
for all i = 1, 2, · · · , m. Otherwise, without loss of generality, we assume that
km > 3. Clearly, 2 · (km − 2) ≥ km. Replace km by k′

m = 2 and km+1′ =
km − 2. We still have that k1 + k2 + · · · + km−1 + k′

m + k′
m+1 = k and k1k2 ·

km−1k
′
mk′

m+1 ≥ k1k2 · · · km. This contradicts that m is maximal. Therefore,
each ki(i = 1, 2, · · · , m) is either 2 or 3 while k1 + k2 + · · · + km−1 + km = k
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and k1k2 · · · km is still maximal. It is impossible that there are at least three 2s
among k1, k2, · · · , km. This is because that 2 + 2 + 2 = 3 + 3 and 2 · 2 · 2 < 3 · 3.
On the other hand, the number of 3s among k1, k2, · · · , km is at most �k

3 � since
k1 + k2 + · · · + km−1 + km = k. ��
Finally, we have the following theorem.

Theorem 3. Let G and H be two genomes with a total of t genes g satisfying
shift(g, G, H) > c, for some arbitrary positive constant c. Then enbs(G, H) can
be computed in O(3�t/3�n2c+1+ε) time.

The idea to prove this theorem is as follows. We consider all possible ways to
replace every gene g, shift(g, G, H) > c, with space in G and H, while keeping
one occurrence of g in G and H. For each pair of such resulting G′ and H′, we
consider to use the algorithm in Lemma 5 to compute enbs(G′, H′). Notice that
we may have spaces not only in the two ends but also in the middle of G′ or
H′. However, we can modify the method of selecting exact (c, d)-splits for the
two genome. The new method is to start at the middle position of G′ (or H′)
to find the nearest non-space gene either in the right part or the left of the
middle position. Say, such a gene is u in the right part of the middle position of
H′. Then, we determine H2 by including c positions to the right of u and also
including c or more positions to the left to make sure that the middle position
is also included. The rest part in the left of H2 is H1, and the rest in the right
of H2 is H3. It is easy to see that the number of genes (not spaces) in H2 is
no more than 2c. Similarly, we can determine an even partition for G1. Notice
also that spaces do not contribute to constructing exact (c, d)-splits. Therefore,
enbs(G′, H′) can be computed, following the spirit of the algorithm in Lemma 5.

5 Concluding Remarks

We define a new measure—non-breaking similarity of genomes and prove that
the exemplar version of the problem does not admit an approximation of factor
n1−ε even when one of the input genomes is given exemplar; and moreover, the
problem is W[1]-complete. This differs from the corresponding result for the dual
exemplar breakpoint distance problem, for which a factor-O(log n) approxima-
tion exists when one of the input genomes is exemplar (and for the general input
there is no polynomial time approximation) [6]. On the other hand, we present
polynomial time algorithms for several practically interesting cases under this
new similarity measure. In practice, the practical datasets usually have some
special properties [12], so our negative results might not hold and our positive
results might be practically useful. We are currently working along this line.
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