

Lecture Notes in Computer Science 4580
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bin Ma Kaizhong Zhang (Eds.)

Combinatorial
Pattern Matching

18th Annual Symposium, CPM 2007
London, Canada, July 9-11, 2007
Proceedings

13

Volume Editors

Bin Ma
Kaizhong Zhang
University of Western Ontario
Department of Computer Science
London, Ontario, N6A 5B7, Canada
E-mail: {bma; kzhang}@csd.uwo.ca

Library of Congress Control Number: 2007929746

CR Subject Classification (1998):
F.2.2, I.5.4, I.5.0, H.3.3, J.3, E.4, G.2.1, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73436-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73436-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12086467 06/3180 5 4 3 2 1 0

Preface

The papers contained in this volume were presented at the 18th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 2007) held at the University
of Western Ontario, in London, Ontario, Canada from July 9 to 11, 2007.

All the papers presented at the conference are original research contribu-
tions on computational pattern matching and analysis, data compression and
compressed text processing, suffix arrays and trees, and computational biology.
They were selected from 64 submissions. Each submission was reviewed by at
least three reviewers. The committee decided to accept 32 papers. The pro-
gramme also included three invited talks by Tao Jiang from the University of
California, Riverside, USA, S. Muthukrishnan from Rutgers University, USA,
and Frances Yao from City University of Hong Kong, Hong Kong.

Combinatorial Pattern Matching addresses issues of searching and matching
strings and more complicated patterns such as trees, regular expressions, graphs,
point sets, and arrays. The goal is to derive non-trivial combinatorial properties
of such structures and to exploit these properties in order to either achieve
superior performance for the corresponding computational problems or pinpoint
conditions under which searches cannot be performed efficiently.

The Annual Symposium on Combinatorial Pattern Matching started in 1990,
and has since taken place every year. The objective of the annual CPM meet-
ings is to provide an international forum for research in combinatorial pattern
matching and related applications. Previous CPM meetings were held in Paris,
London, Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscat-
away, Warwick, Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island,
and Barcelona. Selected papers from the first meeting appeared in volume 92 of
Theoretical Computer Science, from the 11th meeting in volume 2 of the Journal
of Discrete Algorithms, from the 12th meeting in volume 146 of Discrete Applied
Mathematics, and from the 14th meeting in volume 3 of the Journal of Discrete
Algorithms. Starting from the 3rd meeting, the proceedings of all meetings have
been published in the LNCS series, volumes 644, 684, 807, 937, 1075, 1264, 1448,
1645, 1848, 2089, 2373, 2676, 3109, 3537, 4009, and 4580.

The whole submission and review process, as well as the production of this
volume, was carried out with the help of the EasyChair system. The conference
was sponsored by the University of Western Ontario and by the Fields Institute.

April 2007 Bin Ma
Kaizhong Zhang

Conference Organization

Programme Chairs

Bin Ma
Kaizhong Zhang

Programme Committee

Tatsuya Akutsu
Amihood Amir
Raffaele Giancarlo
Gregory Kucherov
Ming Li
Guohui Lin
Heikki Mannila
Gonzalo Navarro
Ron Pinter
Mathieu Raffinot
Cenk Sahinalp
David Sankoff
Steve Skiena
James Storer
Masayuki Takeda
Gabriel Valiente
Martin Vingron
Lusheng Wang

Local Organization

Meg Borthwick
Jingping Liu
Cheryl McGrath
Roberto Solis-Oba (Co-chair)
Kaizhong Zhang (Co-chair)

External Reviewers

Cagri Aksay
Hideo Bannai
Petra Berenbrink

Guillaume Blin
Marie-Pierre Béal
Cedric Chauve

VIII Organization

Shihyen Chen
Phuong Dao
Guillaume Fertin
Tom Friedetzky
Liliana Félix
Aris Gionis
Stefan Haas
Niina Haiminen
Iman Hajiresouliha
Tzvika Hartman
Rodrigo Hausen
Hannes Heikinheimo
Yasuto Higa
Fereydoun Hormozdiari
Lucian Ilie
Shunsuke Inenaga
Hossein Jowhari
Oren Kapah
Emre Karakoc
Orgad Keller
Takuya Kida
Roman Kolpakov
Tsvi Kopelowitz
Dennis Kostka
Juha Kärkkäinen
Gad Landau
Michael Lappe
Thierry Lecroq
Avivit Levy
Weiming Li

Yury Lifshits
Jingping Liu
Mercè Llabrés
Antoni Lozano
Giovanni Manzini
Conrado Mart́ınez
Igor Nor
Pasi Rastas
Tobias Rausch
David Reese
Hugues Richard
Jairo Rocha
Oleg Rokhlenko
Francesc Rosselló
Dominique Rossin
Wojciech Rytter
Kunihiko Sadakane
Hiroshi Sakamoto
Rahaleh Salari
Marcel Schulz
Jouni Seppanen
Dina Sokol
Jens Stoye
Takeyuki Tamura
Eric Tannier
Helene Touzet
Antti Ukkonen
Tomas Vinar
Robert Warren
Lei Xin

Table of Contents

Invited Talks (Abstracts)

A Combinatorial Approach to Genome-Wide Ortholog Assignment:
Beyond Sequence Similarity Search . 1

Tao Jiang

Stringology: Some Classic and Some Modern Problems 2
S. Muthukrishnan

Algorithmic Problems in Scheduling Jobs on Variable-Speed
Processors . 3

Frances F. Yao

Session 1: Alogirthmic Techniques I

Speeding Up HMM Decoding and Training by Exploiting Sequence
Repetitions . 4

Shay Mozes, Oren Weimann, and Michal Ziv-Ukelson

On Demand String Sorting over Unbounded Alphabets 16
Carmel Kent, Moshe Lewenstein, and Dafna Sheinwald

Session 2: Approximate Pattern Matching

Finding Witnesses by Peeling . 28
Yonatan Aumann, Moshe Lewenstein, Noa Lewenstein, and
Dekel Tsur

Cache-Oblivious Index for Approximate String Matching 40
Wing-Kai Hon, Tak-Wah Lam, Rahul Shah, Siu-Lung Tam, and
Jeffrey Scott Vitter

Improved Approximate String Matching and Regular Expression
Matching on Ziv-Lempel Compressed Texts . 52

Philip Bille, Rolf Fagerberg, and Inge Li Gørtz

Self-normalised Distance with Don’t Cares . 63
Peter Clifford and Raphaël Clifford

Session 3: Data Compression I

Move-to-Front, Distance Coding, and Inversion Frequencies Revisited . . . 71
Travis Gagie and Giovanni Manzini

X Table of Contents

A Lempel-Ziv Text Index on Secondary Storage . 83
Diego Arroyuelo and Gonzalo Navarro

Dynamic Rank-Select Structures with Applications to Run-Length
Encoded Texts . 95

Sunho Lee and Kunsoo Park

Most Burrows-Wheeler Based Compressors Are Not Optimal 107
Haim Kaplan and Elad Verbin

Session 4: Computational Biology I

Non-breaking Similarity of Genomes with Gene Repetitions 119
Zhixiang Chen, Bin Fu, Jinhui Xu, Boting Yang, Zhiyu Zhao, and
Binhai Zhu

A New and Faster Method of Sorting by Transpositions 131
Maxime Benôıt-Gagné and Sylvie Hamel

Finding Compact Structural Motifs . 142
Jianbo Qian, Shuai Cheng Li, Dongbo Bu, Ming Li, and Jinbo Xu

Session 5: Computational Biology II

Improved Algorithms for Inferring the Minimum Mosaic of a Set of
Recombinants . 150

Yufeng Wu and Dan Gusfield

Computing Exact p-Value for Structured Motif . 162
Jing Zhang, Xi Chen, and Ming Li

Session 6: Algorithmic Techniques II

Improved Sketching of Hamming Distance with Error Correcting 173
Ely Porat and Ohad Lipsky

Deterministic Length Reduction: Fast Convolution in Sparse Data and
Applications . 183

Amihood Amir, Oren Kapah, and Ely Porat

Guided Forest Edit Distance: Better Structure Comparisons by Using
Domain-knowledge . 195

Zeshan Peng and Hing-fung Ting

Space-Efficient Algorithms for Document Retrieval 205
Niko Välimäki and Veli Mäkinen

Table of Contents XI

Session 7: Data Compression II

Compressed Text Indexes with Fast Locate . 216
Rodrigo González and Gonzalo Navarro

Processing Compressed Texts: A Tractability Border 228
Yury Lifshits

Session 8: Computational Biology III

Common Structured Patterns in Linear Graphs: Approximation and
Combinatorics . 241

Guillaume Fertin, Danny Hermelin, Romeo Rizzi, and
Stéphane Vialette

Identification of Distinguishing Motifs . 253
WangSen Feng, Zhanyong Wang, and Lusheng Wang

Algorithms for Computing the Longest Parameterized Common
Subsequence . 265

Costas S. Iliopoulos, Marcin Kubica, M. Sohel Rahman, and
Tomasz Waleń

Fixed-Parameter Tractability of the Maximum Agreement Supertree
Problem . 274

Sylvain Guillemot and Vincent Berry

Session 9: Pattern Analysis

Two-Dimensional Range Minimum Queries . 286
Amihood Amir, Johannes Fischer, and Moshe Lewenstein

Tiling Periodicity . 295
Juhani Karhumäki, Yury Lifshits, and Wojciech Rytter

Fast and Practical Algorithms for Computing All the Runs in a String . . 307
Gang Chen, Simon J. Puglisi, and W.F. Smyth

Longest Common Separable Pattern Among Permutations 316
Mathilde Bouvel, Dominique Rossin, and Stéphane Vialette

Session 10: Suffix Arrays and Trees

Suffix Arrays on Words . 328
Paolo Ferragina and Johannes Fischer

XII Table of Contents

Efficient Computation of Substring Equivalence Classes with Suffix
Arrays . 340

Kazuyuki Narisawa, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda

A Simple Construction of Two-Dimensional Suffix Trees in Linear
Time . 352

Dong Kyue Kim, Joong Chae Na, Jeong Seop Sim, and Kunsoo Park

Author Index . 365

A Combinatorial Approach to

Genome-Wide Ortholog Assignment:
Beyond Sequence Similarity Search

Tao Jiang

Computer Science Department, University of California - Riverside
jiang@cs.ucr.edu

Abstract. The assignment of orthologous genes between a pair of
genomes is a fundamental and challenging problem in comparative ge-
nomics. Existing methods that assign orthologs based on the similarity
between DNA or protein sequences may make erroneous assignments
when sequence similarity does not clearly delineate the evolutionary re-
lationship among genes of the same families. In this paper, we present
a new approach to ortholog assignment that takes into account both
sequence similarity and evolutionary events at genome level, where or-
thologous genes are assumed to correspond to each other in the most
parsimonious evolving scenario under genome rearrangement and gene
duplication. It is then formulated as a problem of computing the signed
reversal distance with duplicates between two genomes of interest, for
which an efficient heuristic algorithm was constructed based on solu-
tions to two new optimization problems, minimum common partition and
maximum cycle decomposition. Following this approach, we have imple-
mented a high-throughput system for assigning orthologs on a genome
scale, called MSOAR, and tested it on both simulated data and real
genome sequence data. Our predicted orthologs between the human and
mouse genomes are strongly supported by ortholog and protein func-
tion information in authoritative databases, and predictions made by
other key ortholog assignment methods such as Ensembl, Homologene,
INPARANOID, and HGNC. The simulation results demonstrate that
MSOAR in general performs better than the iterated exemplar algorithm
of D. Sankoff’s in terms of identifying true exemplar genes.

This is joint work with X. Chen (Nanyang Tech. Univ., Singapore),
Z. Fu (UCR), J. Zheng (NCBI), V. Vacic (UCR), P. Nan (SCBIT),
Y. Zhong (SCBIT), and S. Lonardi (UCR).

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Stringology: Some Classic and Some Modern

Problems

S. Muthukrishnan

Department of Computer Science, Rutgers University
and

Google Inc.
muthu@cs.rutgers.edu

Abstract. We examine some of the classic problems related to suffix
trees from 70’s and show some recent results on sorting suffixes with
small space and suffix selection. Further, we introduce modern versions
of suffix sorting and their application to XML processing. The study of
combinatorial aspects of strings continues to flourish, and we present
several open problems with modern applications.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Algorithmic Problems in Scheduling Jobs on

Variable-Speed Processors

Frances F. Yao

Department of Computer Science,
City University of Hong Kong

Hong Kong SAR, China
csfyao@cityu.edu.hk

Abstract. Power and heat have become two of the major concerns for
the computer industry, which struggles to cope with the energy and
cooling costs for servers, as well as the short battery life of portable
devices. Dynamic Voltage Scaling (DVS) has emerged as a useful tech-
nique: e.g. Intel’s newest Foxton technology enables a chip to run at
64 different speed levels. Equipped with DVS technology, the operating
system can then save CPU’s energy consumption by scheduling tasks
wisely. A schedule that finishes the given tasks within their timing con-
straints while using minimum total energy (among all feasible schedules)
is called an optimal DVS schedule. A theoretical model for DVS schedul-
ing was proposed in a paper by Yao, Demers and Shenker in 1995, along
with a well-formed characterization of the optimum and an algorithm for
computing it. This algorithm has remained as the most efficient known
despite many investigations of this model. In this talk, we will first give
an overview of the DVS scheduling problem, and then present the latest
improved results for computing the optimal schedule in both the finite
and the continuous (infinite speed levels) models. Related results on ef-
ficient on-line scheduling heuristics will also be discussed.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, p. 3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Speeding Up HMM Decoding and Training

by Exploiting Sequence Repetitions

Shay Mozes1,�, Oren Weimann1, and Michal Ziv-Ukelson2,��

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA
shaymozes@gmail.com,oweimann@mit.edu

2 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
michaluz@post.tau.ac.il

Abstract. We present a method to speed up the dynamic program al-
gorithms used for solving the HMM decoding and training problems
for discrete time-independent HMMs. We discuss the application of our
method to Viterbi’s decoding and training algorithms [21], as well as to
the forward-backward and Baum-Welch [4] algorithms. Our approach is
based on identifying repeated substrings in the observed input sequence.
We describe three algorithms based alternatively on byte pair encoding
(BPE) [19], run length encoding (RLE) and Lempel-Ziv (LZ78) pars-
ing [22]. Compared to Viterbi’s algorithm, we achieve a speedup of Ω(r)
using BPE, a speedup of Ω(r

log r
) using RLE, and a speedup of Ω(log n

k
)

using LZ78, where k is the number of hidden states, n is the length of
the observed sequence and r is its compression ratio (under each com-
pression scheme). Our experimental results demonstrate that our new
algorithms are indeed faster in practice. Furthermore, unlike Viterbi’s
algorithm, our algorithms are highly parallelizable.

Keywords: HMM, Viterbi, dynamic programming, compression.

1 Introduction

Over the last few decades, Hidden Markov Models (HMMs) proved to be an
extremely useful framework for modeling processes in diverse areas such as error-
correction in communication links [21], speech recognition [6], optical character
recognition [2], computational linguistics [17], and bioinformatics [12].

The core HMM-based applications fall in the domain of classification methods
and are technically divided into two stages: a training stage and a decoding stage.
During the training stage, the emission and transition probabilities of an HMM
are estimated, based on an input set of observed sequences. This stage is usually
executed once as a preprocessing stage and the generated (”trained”) models are
stored in a database. Then, a decoding stage is run, again and again, in order to
� Work conducted while visiting MIT.

�� Work supported by an Eshkol grant of the Israeli Ministry of Science and Tech-
nology.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 4–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Speeding Up HMM Decoding and Training 5

classify input sequences. The objective of this stage is to find the most probable
sequence of states to have generated each input sequence given each model, as
illustrated in Fig. 1.

1

2

k

2

k

1

2

1

k

x1 x2 x3 xn

1

k

2

Fig. 1. The HMM on the observed sequence X = x1, x2, . . . , xn and states 1, 2, . . . , k.
The highlighted path is a possible path of states that generate the observed sequence.
VA finds the path with highest probability.

Obviously, the training problem is more difficult to solve than the decoding
problem. However, the techniques used for decoding serve as basic ingredients in
solving the training problem. The Viterbi algorithm (VA) [21] is the best known
tool for solving the decoding problem. Following its invention in 1967, several
other algorithms have been devised for the decoding and training problems, such
as the forward-backward and Baum-Welch [4] algorithms. These algorithms are
all based on dynamic programs whose running times depend linearly on the
length of the observed sequence. The challenge of speeding up VA by utilizing
HMM topology was posed in 1997 by Buchsbaum and Giancarlo [6] as a major
open problem. In this contribution, we address this open problem by using text
compression and present the first provable speedup of these algorithms.

The traditional aim of text compression is the efficient use of resources such
as storage and bandwidth. Here, however, we compress the observed sequences
in order to speed up HMM algorithms. This approach, denoted “acceleration by
text-compression”, was previously applied to some classical problems on strings.
Various compression schemes, such as LZ77, LZW-LZ78, Huffman coding, Byte
Pair Encoding (BPE) and Run Length Encoding (RLE), were employed to accel-
erate exact and approximate pattern matching [14,16,19,1,13,18] and sequence
alignment [3,7,11,15]. In light of the practical importance of HMM-based classi-
fication methods in state-of-the-art research, and in view of the fact that such
techniques are also based on dynamic programming, we set out to answer the
following question: can “acceleration by text compression” be applied to HMM
decoding and training algorithms?

Our results. Let X denote the input sequence and let n denote its length. Let
k denote the number of states in the HMM. For any given compression scheme,

6 S. Mozes, O. Weimann, and M. Ziv-Ukelson

let n′ denote the number of parsed blocks in X and let r = n/n′ denote the
compression ratio. Our results are as follows.

1. BPE is used to accelerate decoding by a factor of Ω(r).
2. RLE is used to accelerate decoding by a factor of Ω(r

logr).
3. Using LZ78, we accelerate decoding by a factor of Ω(log n

k). Our algorithm
guarantees no degradation in efficiency even when k > log n and is experi-
mentally more than five times faster than VA.

4. The same speedup factors apply to the Viterbi training algorithm.
5. For the Baum-Welch training algorithm, we show how to preprocess a re-

peated substring of size � once in O(�k4) time so that we may replace the
usual O(�k2) processing work for each occurrence of this substring with an
alternative O(k4) computation. This is beneficial for any repeat with λ non-
overlapping occurrences, such that λ > �k2

�−k2 .
6. As opposed to VA, our algorithms are highly parallelizable. This is discussed

in the full version of this paper.

Roadmap. The rest of the paper is organized as follows. In section 2 we give a
unified presentation of the HMM dynamic programs. We then show in section 3
how these algorithms can be improved by identifying repeated substrings. Two
compressed decoding algorithms are given in sections 4 and 5. In section 6 we
show how to adapt the algorithms to the training problem. Finally, experimental
results are presented in Section 7.

2 Preliminaries

Let Σ denote a finite alphabet and let X ∈ Σn, X = x1, x2, . . . , xn be a sequence
of observed letters. A Markov model is a set of k states, along with emission
probabilities ek(σ) - the probability to observe σ ∈ Σ given that the state is k,
and transition probabilities Pi,j - the probability to make a transition to state i
from state j.

The Viterbi Algorithm. The Viterbi algorithm (VA) finds the most probable
sequence of hidden states given the model and the observed sequence. i.e., the
sequence of states s1, s2, . . . , sn which maximize

n∏
i=1

esi(xi)Psi,si−1 (1)

The dynamic program of VA calculates a vector vt[i] which is the probability
of the most probable sequence of states emitting x1, . . . , xt and ending with the
state i at time t. v0 is usually taken to be the vector of uniform probabilities
(i.e., v0[i] = 1

k). vt+1 is calculated from vt according to

vt+1[i] = ei(xt+1) ·max
j

{Pi,j · vt[j]} (2)

Speeding Up HMM Decoding and Training 7

Definition 1 (Viterbi Step). We call the computation of vt+1 from vt a
Viterbi step.

Clearly, each Viterbi step requires O(k2) time. Therefore, the total runtime re-
quired to compute the vector vn is O(nk2). The probability of the most likely
sequence of states is the maximal element in vn. The actual sequence of states
can be then reconstructed in linear time.

It is useful for our purposes to rewrite VA in a slightly different way. Let Mσ

be a k × k matrix with elements Mσ
i,j = ei(σ) · Pi,j . We can now express vn as:

vn = Mxn �Mxn−1 � · · · �Mx2 �Mx1 � v0 (3)

where (A�B)i,j = maxk{Ai,k ·Bk,j} is the so called max-times matrix multipli-
cation. VA computes vn using (3) from right to left in O(nk2) time. Notice that
if (3) is evaluated from left to right the computation would take O(nk3) time
(matrix-vector multiplication vs. matrix-matrix multiplication). Throughout, we
assume that the max-times matrix-matrix multiplications are done näıvely in
O(k3). Faster methods for max-times matrix multiplication [8] and standard
matrix multiplication [20,10] can be used to reduce the k3 term. However, for
small values of k this is not profitable.

The Forward-Backward Algorithms. The forward-backward algorithms are
closely related to VA and are based on very similar dynamic programs. In con-
trast to VA, these algorithms apply standard matrix multiplication instead of
max-times multiplication. The forward algorithm calculates ft[i], the probability
to observe the sequence x1, x2, . . . , xt requiring that st = i as follows:

ft = Mxt ·Mxt−1 · · · · ·Mx2 ·Mx1 · f0 (4)

The backward algorithm calculates bt[i], the probability to observe the sequence
xt+1, xt+2, . . . , xn given that st = i as follows:

bt = bn ·Mxn ·Mxn−1 · · · · ·Mxt+2 ·Mxt+1 (5)

Another algorithm which is used in the training stage and employs the forward-
backward algorithm as a subroutine, is the Baum-Welch algorithm, to be further
discussed in Section 6.

A motivating example. We briefly describe one concrete example from com-
putational biology to which our algorithms naturally apply. CpG islands [5] are
regions of DNA with a large concentration of the nucleotide pair CG. These
regions are typically a few hundred to a few thousand nucleotides long, located
around the promoters of many genes. As such, they are useful landmarks for
the identification of genes. The observed sequence (X) is a long DNA sequence
composed of four possible nucleotides (Σ = {A, C, G, T }). The length of this
sequence is typically a few millions nucleotides (n � 225). A well-studied clas-
sification problem is that of parsing a given DNA sequence into CpG islands
and non CpG regions. Previous work on CpG island classification used Markov
models with either 8 or 2 states (k = 8 or k = 2) [9,12].

8 S. Mozes, O. Weimann, and M. Ziv-Ukelson

3 Exploiting Repeated Substrings in the Decoding Stage

Consider a substring W = w1, w2, . . . , w� of X , and define

M(W) = Mw� �Mw�−1 � · · · �Mw2 �Mw1 (6)

Intuitively, Mi,j(W) is the probability of the most likely path starting with
state j, making a transition into some other state, emitting w1, then making a
transition into yet another state and emitting w2 and so on until making a final
transition into state i and emitting w�.

In the core of our method stands the following observation, which is immediate
from the associative nature of matrix multiplication.

Observation 1. We may replace any occurrence of Mw� �Mw�−1 � · · · �Mw1

in eq. (3) with M(W).

The application of observation 1 to the computation of equation (3) saves � −
1 Viterbi steps each time W appears in X , but incurs the additional cost of
computing M(W) once.

An intuitive exercise. Let λ denote the number of times a given word W
appears, in non-overlapping occurrences, in the input string X . Suppose we
näıvely compute M(W) using (|W | − 1) max-times matrix multiplications, and
then apply observation 1 to all occurrences of W before running VA. We gain
some speedup in doing so if

(|W | − 1)k3 + λk2 < λ|W |k2

λ > k (7)

Hence, if there are at least k non-overlapping occurrences of W in the input
sequence, then it is worthwhile to näıvely precompute M(W), regardless of it’s
size |W |.

Definition 2 (Good Substring). We call a substring W good if we decide to
compute M(W).

We can now give a general four-step framework of our method:

(I) Dictionary Selection: choose the set D = {Wi} of good substrings.
(II) Encoding: precompute the matrices M(Wi) for every Wi ∈ D.

(III) Parsing: partition the input sequence X into consecutive good sub-
strings X = Wi1Wi2 · · ·Win′′ and let X ′ denote the compressed repre-
sentation of this parsing of X , such that X ′ = i1i2 · · · in′′ .

(IV) Propagation: run VA on X ′, using the matrices M(Wi).

The above framework introduces the challenge of how to select the set of good
substrings (step I) and how to efficiently compute their matrices (step II). In the
next two sections we show how the RLE and LZ78 compression schemes can

Speeding Up HMM Decoding and Training 9

be applied to address this challenge. The utilization of the BPE compression
scheme is discussed in the full version of this paper. Another challenge is how to
parse the sequence X (step III) in order to maximize acceleration. We show that,
surprisingly, this optimal parsing may differ from the initial parsing induced by
the selected compression scheme. To our knowledge, this feature was not applied
by previous “acceleration by compression” algorithms.

Throughout this paper we focus on computing path probabilities rather than
the paths themselves. The actual paths can be reconstructed in linear time as
described in the full version of this paper.

4 Acceleration Via Run-Length Encoding

In this section we obtain an Ω(r
logr) speedup for decoding an observed sequence

with run-length compression ratio r. A string S is run-length encoded if it is
described as an ordered sequence of pairs (σ, i), often denoted “σi”. Each pair
corresponds to a run in S, consisting of i consecutive occurrences of the character
σ. For example, the string aaabbcccccc is encoded as a3b2c6. Run-length encoding
serves as a popular image compression technique, since many classes of images
(e.g., binary images in facsimile transmission or for use in optical character
recognition) typically contain large patches of identically-valued pixels. The four-
step framework described in section 3 is applied as follows.

(I) Dictionary Selection: for every σ ∈ Σ and every i = 1, 2, . . . , log n we
choose σ2i

as a good substring.
(II) Encoding: since M(σ2i

) = M(σ2i−1
) � M(σ2i−1

), we can compute the
matrices using repeated squaring.

(III) Parsing: Let W1W2 · · ·Wn′ be the RLE of X , where each Wi is a run
of some σ ∈ Σ. X ′ is obtained by further parsing each Wi into at most
log |Wi| good substrings of the form σ2j

.
(IV) Propagation: run VA on X ′, as described in Section 3.

Time and Space Complexity Analysis. The offline preprocessing stage consists of
steps I and II. The time complexity of step II is O(|Σ|k3 log n) by applying max-
times repeated squaring in O(k3) time per multiplication. The space complexity
is O(|Σ|k2 log n). This work is done offline once, during the training stage, in
advance for all sequences to come. Furthermore, for typical applications, the
O(|Σ|k3 log n) term is much smaller than the O(nk2) term of VA.

Steps III and IV both apply one operation per occurrence of a good substring
in X ′: step III computes, in constant time, the index of the next parsing-comma,
and step IV applies a single Viterbi step in k2 time. Since |X ′| =

∑n′

i=1 log|Wi|,
the complexity is

n′∑
i=1

k2log|Wi| = k2log(|W1| · |W2| · · · |Wn′ |) ≤ k2log((n/n′)n′
) = O(n′k2log

n

n′).

Thus, the speedup compared to the O(nk2) time of VA is Ω(
n
n′

log n
n′

) = Ω(r
logr).

10 S. Mozes, O. Weimann, and M. Ziv-Ukelson

5 Acceleration Via LZ78 Parsing

In this section we obtain an Ω(log n
k) speedup for decoding, and a constant

speedup in the case where k > log n. We show how to use the LZ78 [22] (hence-
forth LZ) parsing to find good substrings and how to use the incremental nature
of the LZ parse to compute M(W) for a good substring W in O(k3) time.

LZ parses the string X into substrings (LZ-words) in a single pass over X .
Each LZ-word is composed of the longest LZ-word previously seen plus a single
letter. More formally, LZ begins with an empty dictionary and parses according
to the following rule: when parsing location i, look for the longest LZ-word
W starting at position i which already appears in the dictionary. Read one
more letter σ and insert Wσ into the dictionary. Continue parsing from position
i + |W |+ 1. For example, the string “AACGACG” is parsed into four words: A,
AC, G, ACG. Asymptotically, LZ parses a string of length n into O(hn/ log n)
words [22], where 0 ≤ h ≤ 1 is the entropy of the string. The LZ parse is
performed in linear time by maintaining the dictionary in a trie. Each node
in the trie corresponds to an LZ-word. The four-step framework described in
section 3 is applied as follows.

(I) Dictionary Selection: the good substrings are all the LZ-words in the
LZ-parse of X .

(II) Encoding: construct the matrices incrementally, according to their or-
der in the LZ-trie, M(Wσ) = M(W) �Mσ.

(III) Parsing: X ′ is the LZ-parsing of X .
(IV) Propagation: run VA on X ′, as described in section 3.

Time and Space Complexity Analysis. Steps I and III were already conducted
offline during the pre-processing compression of the input sequences (in any case
LZ parsing is linear). In step II, computing M(Wσ) = M(W) � Mσ, takes
O(k3) time since M(W) was already computed for the good substring W . Since
there are O(n/ log n) LZ-words, calculating the matrices M(W) for all W s takes
O(k3n/ logn). Running VA on X ′ (step IV) takes just O(k2n/ log n) time. There-
fore, the overall runtime is dominated by O(k3n/ logn). The space complexity
is O(k2n/ log n).

The above algorithm is useful in many applications, such as CpG island clas-
sification, where k < log n. However, in those applications where k > log n such
an algorithm may actually slow down VA.

We next show an adaptive variant that is guaranteed to speed up VA, regard-
less of the values of n and k. This graceful degradation retains the asymptotic
Ω(log n

k) acceleration when k < log n.

5.1 An Improved Algorithm

Recall that given M(W) for a good substring W , it takes k3 time to calculate
M(Wσ). This calculation saves k2 operations each time Wσ occurs in X in
comparison to the situation where only M(W) is computed. Therefore, in step

Speeding Up HMM Decoding and Training 11

I we should include in D, as good substrings, only words that appear as a prefix
of at least k LZ-words. Finding these words can be done in a single traversal of
the trie. The following observation is immediate from the prefix monotonicity of
occurrence tries.

Observation 2. Words that appear as a prefix of at least k LZ-words are rep-
resented by trie nodes whose subtrees contain at least k nodes.

In the previous case it was straightforward to transform X into X ′, since each
phrase p in the parsed sequence corresponded to a good substring. Now, however,
X does not divide into just good substrings and it is unclear what is the optimal
way to construct X ′ (in step III). Our approach for constructing X ′ is to first
parse X into all LZ-words and then apply the following greedy parsing to each
LZ-word W : using the trie, find the longest good substring w′ ∈ D that is a
prefix of W , place a parsing comma immediately after w′ and repeat the process
for the remainder of W .

Time and Space Complexity Analysis. The improved algorithm utilizes sub-
strings that guarantee acceleration (with respect to VA) so it is therefore faster
than VA even when k = Ω(log n). In addition, in spite of the fact that this
algorithm re-parses the original LZ partition, the algorithm still guarantees an
Ω(log n

k) speedup over VA as shown by the following lemma.

Lemma 1. The running time of the above algorithm is bounded by O(k3n/logn).

Proof. The running time of step II is at most O(k3n/ logn). This is because
the size of the entire LZ-trie is O(n/ log n) and we construct the matrices, in
O(k3) time each, for just a subset of the trie nodes. The running time of step IV
depends on the number of new phrases (commas) that result from the re-parsing
of each LZ-word W . We next prove that this number is at most k for each word.

Consider the first iteration of the greedy procedure on some LZ-word W . Let
w′ be the longest prefix of W that is represented by a trie node with at least k
descendants. Assume, contrary to fact, that |W |− |w′| > k. This means that w′′,
the child of w′, satisfies |W | − |w′′| ≥ k, in contradiction to the definition of w′.
We have established that |W | − |w′| ≤ k and therefore the number of re-parsed
words is bounded by k + 1. The propagation step IV thus takes O(k3) time
for each one of the O(n/ log n) LZ-words. So the total time complexity remains
O(k3n/ logn). ��

Based on Lemma 1, and assuming that steps I and III are pre-computed offline,
the running time of the above algorithm is O(nk2/e) where e = Ω(max(1, log n

k)).
The space complexity is O(k2n/logn).

6 The Training Problem

In the training problem we are given as input the number of states in the HMM
and an observed training sequence X . The aim is to find a set of model pa-
rameters θ (i.e., the emission and transition probabilities) that maximize the

12 S. Mozes, O. Weimann, and M. Ziv-Ukelson

likelihood to observe the given sequence P (X | θ). The most commonly used
training algorithms for HMMs are based on the concept of Expectation Max-
imization. This is an iterative process in which each iteration is composed of
two steps. The first step solves the decoding problem given the current model
parameters. The second step uses the results of the decoding process to update
the model parameters. These iterative processes are guaranteed to converge to a
local maximum. It is important to note that since the dictionary selection step
(I) and the parsing step (III) of our algorithm are independent of the model
parameters, we only need run them once, and repeat just the encoding step (II)
and the propagation step (IV) when the decoding process is performed in each
iteration.

6.1 Viterbi Training

The first step of Viterbi training [12] uses VA to find the most likely sequence
of states given the current set of parameters (i.e., decoding). Let Aij denote the
number of times the state i follows the state j in the most likely sequence of
states. Similarly, let Ei(σ) denote the number of times the letter σ is emitted by
the state i in the most likely sequence. The updated parameters are given by:

Pij =
Aij∑
i′ Ai′j

and ei(σ) =
Ei(σ)∑
σ′ Ei(σ′)

(8)

Note that the Viterbi training algorithm does not converge to the set of para-
meters that maximizes the likelihood to observe the given sequence P (X | θ) ,
but rather the set of parameters that locally maximizes the contribution to the
likelihood from the most probable sequence of states [12]. It is easy to see that
the time complexity of each Viterbi training iteration is O(k2n+n) = O(k2n) so
it is dominated by the running time of VA. Therefore, we can immediately apply
our compressed decoding algorithms from sections 4 and 5 to obtain a better
running time per iteration.

6.2 Baum-Welch Training

The Baum-Welch training algorithm [4,12] converges to a set of parameters that
locally maximize the likelihood to observe the given sequence P (X | θ), and is the
most commonly used method for model training. We give here a brief explanation
of the algorithm and of our acceleration approach. The complete details appear
in the full version of this paper.

Recall the forward-backward matrices: ft[i] is the probability to observe the
sequence x1, x2, . . . , xt requiring that the t’th state is i and that bt[i] is the
probability to observe the sequence xt+1, xt+2, . . . , xn given that the t’th state
is i. The first step of Baum-Welch calculates ft[i] and bt[i] for every 1 ≤ t ≤ n
and every 1 ≤ i ≤ k. This is achieved by applying the forward and backward
algorithms to the input data in O(nk2) time (see eqs. (4) and (5)). The second
step recalculates A and E according to

Speeding Up HMM Decoding and Training 13

Ai,j =
∑

t

P (st = j, st+1 = i|X, θ)

Ei(σ) =
∑

t|xt=σ

P (st = i|X, θ) (9)

where P (st = j, st+1 = i|X, θ) is the probability that a transition from state j
to state i occurred in position t in the sequence X , and P (st = i|X, θ) is the
probability for the t’th state to be i in the sequence X . These quantities are
given by:

P (st = j, st+1 = i|X, θ) =
ft[j] · Pi,j · ei(xt+1) · bt+1[i]∑

i fn[i]
(10)

and
P (st = i|X, θ) =

ft[i] · bt[i]∑
i fn[i]

. (11)

Finally, after the matrices A and E are recalculated, Baum-Welch updates the
model parameters according to equation (8).

We next describe how to accelerate the Baum-Welch algorithm. Note that
in the first step of Baum-Welch, our algorithms to accelerate VA (Sections 4
and 5) can be used to accelerate the forward-backward algorithms by replacing
the max-times matrix multiplication with regular matrix multiplication. How-
ever, the accelerated algorithms only compute ft and bt on the boundaries of
good substrings. In order to solve this problem and speed up the second step
of Baum-Welch as well, we observe that when accumulating the contribution
of some appearance of a good substring W of length |W | = � to A, Baum-
Welch performs O(�k2) operations, but updates at most k2 entries (the size of
A). Hence, it is possible to obtain a speedup by precalculating the contribution
of each good substring to A and E. For brevity the details are omitted here
and will appear in the full version of this paper. To summarize the results, pre-
processing a good substring W requires O(�k4) time and O(k4) space. Using the
preprocessed information and the values of ft and bt on the boundaries of good
substrings, we can update A and E in O(k4) time per good substring (instead
of �k2). To get a speedup we need λ, the number of times the good substring W
appears in X to satisfy:

�k4 + λk4 < λ�k2

λ >
�k2

�− k2
(12)

This is reasonable if k is small. If � = 2k2, for example, then we need λ to be
greater than 2k2. In the CpG islands problem, if k = 2 then any substrings of
length eight is good if it appears more than eight times in the text.

7 Experimental Results

We implemented both a variant of our improved LZ-compressed algorithm from
subsection 5.1 and classical VA in C++ and compared their execution times on a

14 S. Mozes, O. Weimann, and M. Ziv-Ukelson

4 12 20 28 36 44 50
10

1

10
2

10
3

10
4

10
5

k

tim
e

(a
rb

itr
ar

y
un

its
)

Fig. 2. Comparison of the cumulative running time of steps II and IV of our algorithm
(marked x) with the running time of VA (marked o), for different values of k. Time is
shown in arbitrary units on a logarithmic scale. Runs on the 1.5Mbp chromosome 4 of
S. cerevisiae are in solid lines. Runs on the 22Mbp human Y-chromosome are in dotted
lines. The roughly uniform difference between corresponding pairs of curves reflects a
speedup factor of more than five.

sequence of approximately 22,000,000 nucleotides from the human Y chromosome
and on a sequence of approximately 1,500,000 nucleotides from chromosome 4 of
S. Cerevisiae obtained from the UCSC genome database. The benchmarks were
performed on a single processor of a SunFire V880 server with 8 UltraSPARC-IV
processors and 16GB main memory. The implementation is just for calculating
the probability of the most likely sequence of states, and does not traceback the
optimal sequence itself. As we have seen, this is the time consuming part of the al-
gorithm. We measured the running times for different values of k. As we explained
in the previous sections we are only interested in the running time of the encod-
ing and the propagation steps (II and IV) since the combined parsing/dictionary-
selections steps (I and III) may be performed in advance and are not repeated by
the training and decoding algorithms. The results are shown in Fig. 2. Our algo-
rithm performs faster than VA even for surprisingly large values of k. For example,
for k = 60 our algorithm is roughly three times faster than VA.

References

1. Benson, G., Amir, A., Farach, M.: Let sleeping files lie: Pattern matching in Z-
compressed files. Journal of Comp. and Sys. Sciences 52(2), 299–307 (1996)

2. Agazzi, O., Kuo, S.: HMM based optical character recognition in the presence of
deterministic transformations. Pattern recognition 26, 1813–1826 (1993)

3. Apostolico, A., Landau, G.M., Skiena, S.: Matching for run length encoded strings.
Journal of Complexity 15(1), 4–16 (1999)

4. Baum, L.E.: An inequality and associated maximization technique in statistical
estimation for probabilistic functions of a Markov process. Inequalities 3, 1–8 (1972)

Speeding Up HMM Decoding and Training 15

5. Bird, A.P.: Cpg-rich islands as gene markers in the vertebrate nucleus. Trends in
Genetics 3, 342–347 (1987)

6. Buchsbaum, A.L., Giancarlo, R.: Algorithmic aspects in speech recognition: An
introduction. ACM Journal of Experimental Algorithms, 2(1) (1997)

7. Bunke, H., Csirik, J.: An improved algorithm for computing the edit distance of
run length coded strings. Information Processing Letters 54, 93–96 (1995)

8. Chan, T.M.: All-pairs shortest paths with real weights in O(n3/logn) time. In:
Proc. 9th Workshop on Algorithms and Data Structures, pp. 318–324 (2005)

9. Churchill, G.A.: Hidden Markov chains and the analysis of genome structure. Com-
puters Chem. 16, 107–115 (1992)

10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetical progres-
sions. Journal of Symbolic Computation 9, 251–280 (1990)

11. Crochemore, M., Landau, G., Ziv-Ukelson, M.: A sub-quadratic sequence align-
ment algorithm for unrestricted cost matrices. In: Proc. 13th Annual ACMSIAM
Symposium on Discrete Algorithms, pp. 679–688 (2002)

12. Durbin, R., Eddy, S., Krigh, A., Mitcheson, G.: Biological Sequence Analysis. Cam-
bridge University Press, Cambridge (1998)

13. Karkkainen, J., Navarro, G., Ukkonen, E.: Approximate string matching over Ziv-
Lempel compressed text. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS,
vol. 1848, pp. 195–209. Springer, Heidelberg (2000)

14. Karkkainen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In: Proc. Third South American Workshop on String
Processing (WSP), pp. 141–155 (1996)

15. Makinen, V., Navarro, G., Ukkonen, E.: Approximate matching of run-length com-
pressed strings. In: Proc. 12th Annual Symposium On Combinatorial Pattern
Matching (CPM). LNCS, vol. 1645, pp. 1–13. Springer, Heidelberg (1999)

16. Manber, U.: A text compression scheme that allows fast searching directly in the
compressed file. In: CPM 2001. LNCS, vol. 2089, pp. 31–49. Springer, Heidelberg
(2001)

17. Manning, C., Schutze, H.: Statistical Natural Language Processing. MIT Press,
Cambridge (1999)

18. Navarro, G., Kida, T., Takeda, M., Shinohara, A., Arikawa, S.: Faster approximate
string matching over compressed text. In: Proc. Data Compression Conference
(DCC), pp. 459–468 (2001)

19. Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A., Shinohara, T.,
Arikawa, S.: Speeding up pattern matching by text compression. In: Bongiovanni,
G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 306–315.
Springer, Heidelberg (2000)

20. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13,
354–356 (1969)

21. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory IT-13, 260–269
(1967)

22. Ziv, J., Lempel, A.: On the complexity of finite sequences. IEEE Transactions on
Information Theory 22(1), 75–81 (1976)

On Demand String Sorting over Unbounded

Alphabets

Carmel Kent1, Moshe Lewenstein2, and Dafna Sheinwald1

1 IBM Research Lab, Haifa 31905, Israel
2 Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel

Abstract. On-demand string sorting is the problem of preprocessing a
set of n strings to allow subsequent queries of finding the k < n lexi-
cographically smallest strings (and afterwards the next k etc.) This on-
demand variant strongly resembles the search engine queries which give
you the best k-ranked pages recurringly.

We present a data structure that supports this in O(n) preprocessing
time, and answers queries in O(log n) time. There is also a cost of O(N)
time amortized over all operations, where N is the total length of the
strings.

Our data structure is a heap of strings, which supports heapify and
delete-mins. As it turns out, implementing a full heap with all operations
is not that simple. For the sake of completeness we propose a heap with
full operations based on balanced indexing trees that supports the heap
operations in optimal times.

1 Introduction

Sorting strings is a fundamental algorithmic task that has been intensively re-
searched in various flavors. The classical problem appears in textbooks [1,16], and
variants of the problem have attracted much interest over the years, e.g. mul-
tikey sorting [5,21,7], parallel string sorting [12,11,13] and cache-aware string
sorting [4,22]. Even integer sorting can be considered a special case of this
problem.

Over the last few years there has also been much interest in indexing struc-
tures, such as suffix trees [8,19,23,25] and suffix arrays [18]. The strong connec-
tion between suffix tree construction and suffix sorting was stressed in [8] and
in the extended journal version [9]. In fact, a suffix array is an array containing
a lexicographic ordering of the suffixes. One of the exciting results of the last
several years is a linear time algorithm to construct suffix arrays, see [14,15,17].
These results followed along the line of the suffix tree construction of Farach [8]
(note the leaves of the suffix tree also represent a lexicographic ordering of the
suffixes of the string). Nevertheless, the linear time results hold for alphabets
which can be sorted in linear time. For unbounded alphabets the time to sort
the strings is still O(n log n), where n is the string length.

While all suffixes of an n length string (even over an unbounded alphabet)
can be sorted in O(n log n) time, when it comes to sorting strings one needs to

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 16–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Demand String Sorting over Unbounded Alphabets 17

take into consideration also the overall length of the strings, which we denote N .
Nevertheless, it is known that one can sort strings in time O(n log n +N) which
matches the lower bound in the comparison model. To achieve this time bound
one may use a weight balanced ternary search trie [20] or adapted mergesort [3]
(where the time bounds are implicit) or use balanced indexing structures [2],
among others. The adapted mergesort technique [3] has the advantage of using
very little extra memory and works well in cache. The weight balanced ternary
search tries [20] and balanced indexing structures [2] have the advantage of being
dynamic. There have also been studies of more practically efficient methods [7,6]
who adapt quicksort.

In the on demand setting it is required to preprocess a collection of items for
output where the user controls the number of elements it desires to see in a well-
defined order. For example, a search engine query may have a long list of hits
which gets ranked in some ordering of importance. However, the search engine
will return a limited (digestible) number, say k, of the best hits to the user. If
the user desires another k these will be fetched and returned. (See, e.g., [26])

In on demand string sorting one is given a collection of strings and desires to
preprocess the strings so that subsequent queries of “return the next k smallest
lexicographically strings” will execute fast, consuming time proportional to k.

One way to solve this is to first sort the strings in one of the O(n log n + N)
methods and then simply return the next k in O(k) time. It is also possible to
concatenate all the strings (separated by external symbols) to one large string
S and then to create a suffix array for S. This will work well if the alphabet size
is O(|S|) = O(N) since the suffix array can then be created in O(N) time and
the desired ordering can be extracted from the suffix array ordering. However,
if the alphabet is unbounded the suffix array construction will take O(N log N)
time, which is worse than the previous solutions.

In on demand sorting of numbers a heap is a natural data structure to use.
We propose to do the same for strings. We propose to use a heap where the
elements of the heap are strings. However, a simple implementation will lead
us to running times which can be even worse than we have just mentioned.
We propose a construction of the heap in a careful manner utilizing the longest
common prefixes (lcp’s) among pairs of strings. In fact, lcp’s have been used in
suffix arrays, quicksort of strings [7,6], mergesort of strings [3] and in balanced
indexing structures [2] (although they were not used in the ternary digital search
tries [20]). However, handling the lcp’s require special care with regards to heaps
and we elaborate on this later.

Note that it is sufficient to support heapify and delete-mins to capture the
application of the on demand string sorting, which we show how to support.
Nevertheless, allowing insertions together with delete-mins does not work well
with the lcp solution. To solve this we use a balanced indexing structure [2].

The roadmap to our paper is as follows: in section 2 we give preliminaries
and definitions. In section 3 we recall the balanced indexing data structure [2]
and show what needs to be adapted for it to sort strings (instead of suffixes
mentioned there). In section 4 we introduce the heap (of strings) data structure

18 C. Kent, M. Lewenstein, and D. Sheinwald

and show how to implement heapify, delete-mins, insertions, and delete-min and
insertion together. In section 5 we show how to support a heap fully using a
balanced indexing structure.

2 Definitions and Preliminaries

Alphabet Σ is a fully ordered set of letters. Σ is unbounded, yet, we assume
that any two letters thereof can be compared in a single computational operation,
consuming a constant amount of time. A string S of length m over Σ is a sequence
of m characters S[1], S[2], . . . , S[m], each being a member of Σ. The length, m,
of S is denoted |S|. For 1 ≤ i ≤ j ≤ m, we denote by S[i, j] the substring
S[i], S[i + 1], . . . , S[j] of length j − i + 1. When i > j, substring S[i, j] is defined
to be the empty string of length 0. We say that S1 = S2, if |S1| = |S2|, and
S1[i] = S2[i] for all 1 ≤ i ≤ |S1|. We say that S1 < S2, if S1 precedes S2 in
the lexicographic order. Formally, S1 < S2, if there exists an index 1 ≤ j <
min{|S1|, |S2|} such that S1[1, j] = S2[1, j] and S1[j + 1] < S2[j + 1], or if
|S1| < |S2| and S1 = S2[1, |S1|].

For ease of description, we assume that the strings in the underlying dataset
are distinct. Modifications needed to also allow equal strings are rather obvious.

2.1 Longest Common Prefix

Definition 1. Given strings S1 and S2, the largest i ≤ min{|S1|, |S2|}, such that
S1[1, i] = S2[1, i] is denoted by lcp(S1, S2), and called the length of the longest
common prefix of S1 and S2.

The following well-known folklore lemma has been widely used for string algo-
rithms. For brevity, we omit its proof.

Lemma 1. Given strings S1 ≤ S2 ≤ · · · ≤ Sm, then
lcp(S1, Sm) = min1≤i<m lcp(Si, Si+1).

Corollary 1. Given strings S1, S2, S3, with S1 ≤ S2 and S1 ≤ S3, then:
[i] S2 ≤ S3 implies lcp(S1, S2) ≥ lcp(S1, S3) and lcp(S2, S3) ≥ lcp(S1, S3).

Equivalently, lcp(S1, S2) < lcp(S1, S3) implies S2 > S3.
[ii] lcp(S1, S2) > lcp(S1, S3) implies lcp(S2, S3) = lcp(S1, S3).

Proposition 1. Given strings S1, S2, S3, then:
[i] Identifying the smaller of S1, S2 and computing lcp(S1, S2) can be done in

O(lcp(S1, S2)) time.
[ii] Identifying j such that Sj is the smallest of S1, S2, S3, and finding lcp(Si, Sj)

for i 	= j, can be done in O(maxi�=j lcp(Si, Sj)) time.

Proof. Directly from Definition 1, by simply comparing the strings character by
character (two characters for [i], and three at a time for [ii]). Note that Σ need
not be bounded. ��

On Demand String Sorting over Unbounded Alphabets 19

3 Balanced Indexing Structures

The Balanced Indexing Structure (BIS, for short) [2] is an AVL search tree that
indexes into online text T , by containing one suffix (of T) in each node. It
is shown in [2] to allow the insertion of suffixes in an online manner, spending
O(log n) time inserting each new suffix, and to support finding all occ occurrences
of a pattern P in T in O(|P | + log |T |+ occ) time.

BIS is lcp-based. Specifically, a BIS node v, associated with a suffix S(v), main-
tains pointers to parent, pa(v), and children, le(v) and ri(v), in the BIS, and to
predecessor, pr(v), and successor, su(v), in the lexicographic order of all the suf-
fixes in the BIS, and to the smallest and largest suffixes, sm(v) and la(v), in the
subtree rooted at v. In addition, v maintains lcp pr(v) being lcp(S(v), S(pr(v))),
and lcp extreme(v) being lcp(sm(v), la(v)).

While suffixes of a given text are strongly correlated, the different strings in
a collection are not definitely correlated. Moreover, when seeing a string for the
first time we must at least read the string, whereas, suffixes are handled one
after the other, so we are really seeing only the next character. Nevertheless, we
show here that with a bit of adaptation, we can utilize the procedures of [2], and
have the BIS work similarly as a data structure for maintaining a collection of
n strings, where insert of a string S will cost O(log n + |S|), search of a string
S will also cost O(log n + |S|) and deleting a string from the collection will cost
O(log n).

The following lemma of the BIS is crucial to our setting. It is applicable to
any collection of strings, and is only based on the data items described above
that are maintained in the nodes.

Lemma 2. (Based on Lemma 8 of [2]) Let p be a path leading from a node v1

to any descendant v2 thereof, via pointers le(v) and ri(v), then lcp(S(v1), S(v2))
can be computed in O(|p|) time.

Proof. (sketch) (i) Let u = le(v) (in analogy for the right child). Let w =
sm(ri(u)) and z = la(ri(u)), then w = su(u) and v = su(z), implying S(u) <
S(w) < S(z) < S(v). Now, lcp(S(u), S(w)) = lcp pr(w); lcp(S(w), S(z)) =
lcp exptreme(ri(u)); and lcp(S(z), S(v)) = lcp pr(v). With Lemma 1, we gain
lcp(S(v), S(le(v))) in constant time. (ii) If v2 is reached from v1 via le() pointers
only, then the lemma follows by repeated application of (i) and Lemma 1. (iii)
Let y be any node reached from u via ri() pointers only. Denote w′ = sm(ri(y)),
and note that z = la(ri(y)). Then, w′ = su(y) and v = su(z), implying, as in (i),
S(y) < S(w′) < S(z) < S(v), and thus yielding lcp(S(v), S(ri(ri(· · · ri(le(v)) · · ·)
in constant time. (iv) Breaking path p into a zig-zag of alternating directions
(left or right), and applying the above repeatedly yields the lemma. ��

Inserting string S to a BIS rooted by string R thus starts with computing
l ← lcp(S, R), while determining whether S < R, which indicates in which
of R’s subtree S continues. The strings in that subtree, as well as S, are either
all smaller than R or all larger than R. Hence for each node v visited in the
subtree, comparing l against lcp(S(v), R) – the lcp computed by Lemma 2, as

20 C. Kent, M. Lewenstein, and D. Sheinwald

S goes down the tree – suffices, in case l 	= lcp(S(v), R), to determine whether
S continues down left or down right from v. If l = lcp(S(v), R) then further
characters, of S and S(v), are read from position l + 1 and on until lcp(S, S(v))
is computed while whether S < S(v) is determined, which indicates in which
of v’s subtree S continues. The strings in that subtree, as well as S, are either
all smaller than S(v) or all larger. Hence, as before, with l ← lcp(S, S(v)), a
comparison of l against lcp(S(u), S(v)) for any node u in this subtree, can tell
how S should go down from u, etc. until S is added to the BIS as a leaf. This
all is done in O(log n + |S|) time, for a BIS of size n.

Removal of a string and extraction of the smallest string are not given in [2].
However, these only require the balancing procedure for the BIS, which was
shown there for insertion, and can be done in O(log n) time. We thus have:

Lemma 3. An (adapted) BIS maintains a collection of strings, where insertion
takes O(log n+ |S|), removal of a string takes O(log n) and extracting minimum
takes O(log n).

Corollary 2. n strings of total length N can be sorted in time O(n log n + N).

4 Heap Sorting of Strings

The well-known heap data structure is a full, balanced binary tree where each
node’s value is larger than its parent’s value.

Definition 2. The heap of strings, over a collection C of strings, is a full,
balanced binary tree where each node v maintains a string S(v) ∈ C and a
field lcp(v), satisfying the heap of strings property: S(v) > S(parent(v)) and
lcp(v) = lcp(S(v), S(parent(v))). (If v is the root, lcp(v) can be of any value.)

A naive adjustment of the integer heap operations to string heap operations
would replace each comparison of two integers by a comparison of two strings,
employing a sequence of as many character comparisons as the lengths of the
compared strings, in the worst case. This, however, multiplies runtime by about
the average string length.

We will observe that our algorithms have each string “wander around” the
heap always accompanied by the same lcp field, whose value never decreases. We
will present an effective use of the lcp fields in the nodes, through which we can
accomplish all the needed string comparisons by only adding a total of O(N)
steps.

4.1 Heapify

Commonly, a full balanced binary tree of n nodes is implemented by an array
T of length n. The left and right children of node T [i] (if any) are T [2i], and
T [2i + 1]. Given an array T of n strings, the heapify procedure changes the
positions of the strings, and their associated lcp fields, in T , so that the resulting
tree is a heap of strings. When we swap two nodes’ strings and lcp fields, we

On Demand String Sorting over Unbounded Alphabets 21

say that we swap these nodes. As with the classic O(n) time heapifying of an
integer array, our algorithm proceeds for nodes T [n], T [n−1], . . . , T [1], making a
heap of strings from the subtree rooted at the current node v = T [i], as follows.
If v is a leaf, return.
If v has one child u = T [2i] (which must be a leaf), compute l = lcp(S(v), S(u)),
assign l in the lcp field of the larger string owner. If that owner is v, swap u and
v. return
Here v has two children, u = T [2i] and w = T [2i + 1], and by the order we
process the nodes, each child now roots a heap of strings. find the smallest, S,
of the three strings S(v), S(u), S(w), and compute the lcp of S with each of the
other two. Assign the newly computed lcps to the other two owners.
If S = S(v), return
If S = S(u) (the case S = S(w) is analogous), swap v and u. Note that now w still
roots a heap of strings, and in addition it satisfies the heap of strings property.
In its new position, v and each of its children, now maintains an lcp of their
string with S (now = S(u), in the former position of v), which is smaller than
all the strings in the subtree (now) rooted at v. Invoking SiftDown(v) from the
new position of v ensures that the subtree it now roots is a heap of strings.

SiftDown(v)
We denote by ch1(v) and ch2(v) both left and right children of v, as applicable by
the conditions on their field values, and its parent – by pa(v). S(v) and lcp(v) are the
string and lcp fields of node v.
Given: (1) All nodes in v’s subtree have strings larger than S(pa(v)); (2) All these
nodes, except, possibly, one or two children of v, satisfy the heap of strings property;
and (3) v and each of its children have their lcp field being the lcp of their respective
strings with S(pa(v)). Swap nodes and update lcp fields, making the resulting subtree
rooted by v a heap of strings.

if v has no children or lcp(v) is greater than each child’s lcp
return /* S(v) is a clear smallest, and all lcp fields are OK */

if lcp(v) < lcp(ch1(v)), and: either ch1(v) is v’s only child
or lcp(ch2(v)) < lcp(ch1(v)) /* ch1 is a clear smallest */
swap v and ch1(v), and in its new position apply SiftDown(v) and return

if lcp(v) = lcp(ch1(v)) = l and if ch2 exists then lcp(ch2(v)) < lcp(ch1(v)),
or lcp(v) < lcp(ch1(v)) = lcp(ch2(v)) = l /* smallest has its lcp = l */
read S1 and S2, the strings of the equal lcp-s owners, from position l + 1 on,
character by character, until l′ = lcp(S1, S2) is computed while the smaller, S,
of two strings is determined. Assign l′ to the lcp field of the larger string owner.
If S is not v’s, replace v with S’s owner, and there apply SiftDown(v).
return

/* v has two children and lcp(v) = lcp(ch1(v)) = lcp(ch2(v)) */
read S(v), S(ch1(v)), and S(ch2(v)), in parallel, from position lcp(v) + 1 on,
until the smallest, S, of the three is determined, as the lcp of it with each of
the other strings is computed. Assign newly computed lcp-s to respective
owners of the other two strings.
if S is not v’s, swap v and S’s owner and there apply SiftDown(v).

22 C. Kent, M. Lewenstein, and D. Sheinwald

Correctness of our algorithm follows from the known heapify for integers and
Corollary 1. As to runtime, note that we process O(n) nodes (including the nodes
processed in the recursive calls), in each we compare lcp values and if needed,
continue the comparison of two or three strings. In such a comparison of strings,
two or three characters (as the number of strings compared) are compared at a
time. The number of such character comparisons exceeds by one the extent by
which one or two lcp values are increased (because we pass over all the equal
characters until reaching inequality). We thus have:

Proposition 2. [i] for every (two or three) string comparison, at least one of
these strings has its associated lcp field increased by the number of character
comparisons incurred, minus 1. [ii] Once a string has its associated lcp field
assigned the value of l, none of its characters in positions 1, 2, . . . , l participates
in any further character comparison.

Corollary 3. Heapifying into a heap of strings can be done in O(n + N) time.

4.2 Extracting Minimal String

Having built a heap of strings H of size n, we now extract the smallest string
therefrom, which resides at the root of H , and invoke PumpUp(root(H)) which
discards one node from tree H , while organizing the remaining nodes in a tree,
with each of them satisfying the heap of strings property.

PumpUp(v)
We denote by ch1(v) and ch2(v) both left and right children of v, as applicable by the
conditions on their field values. S(v) and lcp(v) are the string and lcp fields of node v.
Given: (1) v has a null string and a non relevant lcp (2) All nodes in v’s subtree,
other than v and its children, satisfy the heap of strings property. (3) The lcp in each
of v’s children reflects the lcp of their string with the string formerly residing in v,
which is smaller than each child’s string. Arrange such that: (1) along a path from
v down to one leaf, strings and their associated lcp-s climb up one node, so that one
node becomes redundant and can be discarded from the tree. (2) All remaining nodes
satisfy the heap of strings property.

if v is a leaf, discard v from the tree and return.
if v has one child, discard v and have this child take its place. return
if lcp(ch1(v)) > lcp(ch2(v)) /* ch1 is smaller */

swap v and ch1(v), and in its new position apply PumpUp(v), and return.
/* v has two children, with equal lcp-s: l = lcp(ch1(v)) = lcp(ch2(v)) */

read S(ch1(v)) and S(ch2(v)) from position l + 1 on, character by character, until
l′ = lcp(S(ch1(v)), S(ch2(v))) is computed, and the smaller of the two strings is
determined. Assign l′ as the lcp of the larger string owner, say ch1.
swap v and ch2(v), and in its new position apply PumpUp(v), and return.

Correctness of PumpUp follows directly from Corollary 1. Observe that now
H is not necessarily full and not necessarily balanced, but its height is O(log n),
and hence any further extractions of minimal string does not process more than

On Demand String Sorting over Unbounded Alphabets 23

O(log n) nodes. Note that, as with our heapify procedure, in each node we com-
pare lcp-s and if needed, continue the comparison of two strings by sequentially
comparing characters. The number of such character comparisons exceeds by
one the extent by which one lcp increases. None of the lcp fields decreases from
the value it had at the end of the heapify process.

In fact, if we start with heapify, and then extract smallest string by smallest
(over the remaining) string, we lexicographically sort the set of n input strings.

Corollary 4. Sorting of n strings of total length N , over unbounded alphabet,
can be done in O(n log n + N) worst case time, using O(n) auxiliary space.

4.3 On-Demand Sorting

As construction time for a heap of strings is O(n), smaller than the O(n log n)
for BIS, the heap of strings is better suited for cases where we will need only an
(unknown) fraction of the strings from the lexicographic order.

Corollary 5. On Demand Sorting of n strings of total length N can be done
with the retrieval of the first result in O(n + N1) time, after which the retrieval
of further results in O(log n + Ni) time for the i-th result, with

∑
i Ni ≤ N .

Proof. Using heap of strings, the first result can be extracted immediately af-
ter heapifying. Further results are extracted each following a PumpUp that
rearranges the heap of strings, of height O(log n), following the previous extrac-
tion. Through the whole process lcp fields never decrease, and each character
comparison (except for one per node) incurs an lcp increase. ��

4.4 Find the Smallest k Strings

When we know in advance that we will only need the k < n smallest strings
from the input set of n strings of total length N , we can use a heap of strings
of size k, and achieve the goal in O(n log k + N) time as follows. We use a heap
of size k where parents hold larger strings than their children, and hence the
largest string in the heap resides at the root node. We heapify the first k strings
of the input set into such a heap, in analogy with our heapify process above.
Then, for each string S of the remaining n− k strings in the input, we compare
S with string R at the root, while finding lcp(S, R). If S is found greater than
R, it is discarded. Otherwise, R is discarded, and S finds its place in the heap
using procedure SiftDown adopted for heaps where parents hold larger strings
than their children.

After this process, the heap of size k holds the smallest k strings in the col-
lection. We can now sequentially extract the (next) largest string therefrom, re-
trieving the k smallest strings in decreasing lexicographic order, using PumpUp
adopted for heaps where parents hold larger strings than their children. As here,
too, lcp fields only grow, we conclude that:

Corollary 6. Finding (and sorting) the smallest k strings of a given input set
of n strings of total length N , can be done in O(n log k + N) time, using O(k)
auxiliary space.

24 C. Kent, M. Lewenstein, and D. Sheinwald

4.5 Insertion of Strings to a Heap of Strings

Heap build-up linearity in number of nodes does not apply for post build-up
insertions. Namely, inserting an additional element to an existing heap of size n
incurs the processing of O(log n) nodes, not O(1). Moreover, insertion of data
elements to a heap by the known heap algorithm causes some nodes to have their
parents replace their data elements by a smaller one, without them (the children)
replacing their data elements. Hence, with a heap of strings, by Corollary 1, the
lcp field of such a child node, which needs to reflect the lcp of its string with its
parent’s string, might decrease.

More specifically, here is how we can insert a string, S, to a heap of strings,
H , of size n, in O(log n + |S|) time (as with BIS). H remains a full balanced
heap of strings. Only a few lcp fields therein might decrease. We first add an
empty leaf node, denoted leaf , to H , such that H is still balanced. We then
invoke procedure InsertString which finds the right position for S in the path
leading from H ’s root to leaf , and pushes the suffix of the path from that point
down, making a room for S, while updating lcp fields of nodes out of the path
whose parents now hold smaller strings than before.

InsertString(H, S)
Given: A heap of strings H of size n plus a newly added empty leaf, leaf , whose
lcp is set to -1, and a string S. Insert S in a position along path, being the path
root = n1, n2, . . . , nm = leaf , making H a heap of strings of n + 1 nodes.

1 Compare S with the root string R, while computing l = lcp(S, R).
2 if S > R
3 for i ← 2 to m while l ≤ lcp(ni) /* S ≥ S(ni) */
4 if l = lcp(ni) read strings S and S(ni) from position l + 1 on, until

l′ ← lcp(S, S(ni)) is computed and whether S < S(ni) is determined.
5 if S < S(ni) PushDown(H,S, path, i, l′, l) and then return
6 l ← l′

7 PushDown(H,S, path, i, lcp(ni), l)
8 else /* S < R */ PushDown(H,S, path, 1, l, 0)

Procedure PushDown actually modifies the heap the same as does the classic
Sift-up process of inserting a new element to an existing heap. In addition,
PushDown also updates lcp fields as necessary. This is where some of these
fields might decrease.

The decrease in lcp values prevents from ensuring overall O(N) characters
comparisons for heap buildup followed by some string insertions, followed by
smallest string extractions. Number of nodes processed, however, remains O(n)
for heap buildup, followed by O(m log(n + m)) for the insertion of additional m
strings, followed by O(log(m + n)) for each smallest string extraction.

PushDown(H, S, path, i, li, li−1)
Given A heap of strings H of size n plus an empty leaf, leaf ; a string S; path
root = n1, n2, . . . , nm = leaf ; an index i for S to be inserted between ni−1 and ni

in the path; lcp value li−1 = lcp(S(ni−1), S); and li = lcp(S(ni), S). Push nodes

On Demand String Sorting over Unbounded Alphabets 25

ni, ni+1, . . . , nm−1 down the path, and place S in the evacuated position, while main-
taining H a heap of strings.

for j = m down to i + 1 /* push down end of path */
S(nj) ← S(nj−1); lcp(nj) ← lcp(nj−1)
lcp(sibling(nj+1)) ← min{lcp(sibling(nj+1)), lcp(nj+1)} /* sibling(nj+1) has its

/* grandparent become its new parent, which might decrease its lcp */
lcp(ni+1) ← li; S(ni)) ← S; and lcp(ni) ← li−1

lcp(sibling(ni+1)) ← min{lcp(sibling(ni+1)), li} /* S is new sibling(ni+1)’s parent */

4.6 Inserting Strings Without Decreasing lcp-s

One way to avoid decreasing of lcp-s is to insert single-childed nodes. This comes,
however, at the expense of tree balancing. Before invoking InsertString, do not
prepare an empty leaf node. Rather, once the right point in path, between ni−1

and ni is found by InsertString, instead of invoking PushDown, add a new, empty
node to H , and place S there, making it ni−1’s child instead of ni, and making
ni its only child. As before, number of characters processing does not exceed
|S|. Now, however, no lcp field needs to decrease. Let n denote the size of the
heap upon its build up, and m the number of strings thus inserted the heap post
build up. It is easy to see that further extractions, using our PumpUp above,
would not incur more than O(log n) node processing, since this procedure stops
once a single-childed node is reached. Further insertions, however, although not
exceeding O(|S|) character comparisons, might incur the processing of O(log n+
m) nodes, much greater than O(log(n + m)) which BIS processes.

5 Heap of Strings Embedded with Binary Search Trees

In this section we circumvent the non-balancing introduced in Subsection 4.6.
Generally speaking, we embed chains of single-childed nodes on a BIS, which is
lcp based. We start with heapify a heap of strings from the initial set of n strings.
Then, for each string arriving post heapifying, we insert it as in Subsection 4.6.
The path of single-childed newly born nodes, which hold strings in increasing
order, is arranged on a BIS and is not considered part of the heap of strings.

The BIS thus born is pointed at from both nodes of the heap of strings, above
and below it. The smallest node in that BIS will maintain, in its lcp prev field,
the lcp of its string and the string of the heap of strings node above the BIS.

As in Subsection 4.6, before calling InsertString we do not prepare an empty leaf
node. Rather, when InsertString finds the right point to insertS, between ni−1 and
ni of the heap of strings, instead of invoking PushDown, S will join the BIS that
resides between these two nodes (or start a new BIS if there is not any) as described
in Section 3 (See Fig. 1). When we are about to insert S to the BIS “hanging”
between ni−1 and ni, we have already computed l = lcp(S, S(ni−1)). All the BIS
strings, as well as S, are larger than S(ni−1), and the lcp fields maintained in the
BIS suffice to compute, in constant time, the value of lcp(R, S(ni−1)), for the BIS
root R. Hence, the first step of inserting S to the BIS, namely the comparison

26 C. Kent, M. Lewenstein, and D. Sheinwald

against R, can be done without reading S[1, l] again. Thus, the insertion of string
S to a heap of strings that was heapified with n strings, incurs O(log n+log m+|S|)
time, with m denoting the size of the BIS to include S.

Extracting of strings from the root of the heap can continue as before, using
PumpUp, which now, if visits a node v of the heap of strings which has a BIS
leading from it to its child in the heap of strings, sees the smallest node of the
BIS as v’s single child, and pumps this child up to take the place of v. This child
is removed from the BIS and becomes a member of the heap of strings, and this
completes the execution of PumpUp (it does not go further down). The removal
of a node from BIS of size m takes O(log m) time, and our PumpUp incurs the
processing of O(log n) nodes plus reading as many characters as needed, while
increasing lcp fields.

Note that a string arriving post heapify may spend “some time” in a BIS, but
once removed from there and joined the heap of strings, it will never go into any
BIS again. Only newly arriving strings may go into a BIS. We conclude that:

Theorem 1. It is possible to construct a heap of n strings in O(n) time and
support string insertion and smallest string extraction in O(log(n) + log(m))
time, with an additional O(N) amortized time over the whole sequence of oper-
ations, where m is the number of strings inserted post heapifying and were not
extracted yet.

Fig. 1. heap of strings embedded with Balanced Indexing Structure

References

1. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, MA (1974)

2. Amir, A., Kopelowitz, T., Lewenstein, M., Lewenstein, N.: Towards Real-Time
Suffix Tree Construction. In: Proc. of Symp. on String Processing and Information
Retrieval (SPIRE), pp. 67–78 (2005)

3. Iyer, B.R.: Hardware assisted sorting in IBM’s DB2 DBMS. In: International Con-
ference on Management of Data, COMAD 2005b, Hyderabad, India (December
20-22, 2005)

On Demand String Sorting over Unbounded Alphabets 27

4. Arge, L., Ferragina, P., Grossi, R., Vitter, J.S.: On sorting strings in external
memory. In: Symposium of Theory of Computing (STOC), pp. 540–548 (1997)

5. Gonnet, G.H., Baeza-Yates, R.: Handbook of Algorithms and Data Structures.
Addison-Wesley, Reading (1991)

6. Baer, J.-L., Lin, Y.-B.: Improving Quicksort Performance with a Codeword Data
Structure. IEEE Transactions on Software Engineering 15, 622–631 (1989)

7. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
Proc. of Symposium on Discrete Algorithms (SODA), pp. 360–369 (1997)

8. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. 38th
IEEE Symposium on Foundations of Computer Science, pp. 137–143 (1997)

9. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity of
suffix tree construction. J. of the ACM 47(6), 987–1011 (2000)

10. Grossi, R., Italiano, G.F.: Efficient techniques for maintaining multidimensional
keys in linked data structures. In: Wiedermann, J., van Emde Boas, P., Nielsen,
M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 372–381. Springer, Heidelberg (1999)

11. Hagerup, T.: Optimal parallel string algorithms: sorting, merging and computing
the minimum. In: Proc. of Symposium on Theory of Computing (STOC), pp. 382–
391 (1994)

12. Hagerup, T., Petersson, O.: Merging and Sorting Strings in Parallel. Mathematical
Foundations of Computer Science (MFCS), pp. 298–306 (1992)

13. JaJa, J.F., Ryu, K.W., Vishkin, U.: Sorting strings and constructing difital search
tries in parallel. Theoretical Computer Science 154(2), 225–245 (1996)

14. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

15. Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix ar-
rays. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 186–199. Springer, Heidelberg (2003)

16. Knuth, D.: the Art of Computer Programming. Sorting and Searching, vol. 3.
Addison-Wesley, Reading, MA (1973)

17. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-
Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp.
200–210. Springer, Heidelberg (2003)

18. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. on Computing 22(5), 935–948 (1993)

19. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. of the
ACM 23, 262–272 (1976)

20. Mehlhorn, K.: Dynamic Binary Search. SIAM J. Comput. 8(2), 175–198 (1979)
21. Munro, J.I., Raman, V.: Sorting multisets and vectors inplace. In: Proc. of Work-

shop on Algorithms and Data Structures (WADS), pp. 473–479 (1991)
22. Sinha, R., Zobel, J., Ring, D.: Cache-efficient string sorting using copying. J. Exp.

Algorithmics 11, 1084–6654 (2006)
23. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)
24. Scott Vitter, J.: External memory algorithms. In: Handbook of massive data sets,

pp. 359–416. Kluwer Academic Publishers, Norwell, MA, USA (2002)
25. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th IEEE Symposium

on Switching and Automata Theory, pp. 1–11 (1973)
26. IBM OmniFind Enterprise Edition: Programming Guide and API Reference for

Enterprise Search. Sorting by relevance, date, numeric fields, or text fields, p. 30.
http://publibfp.boulder.ibm.com/epubs/pdf/c1892843.pdf

http://publibfp.boulder.ibm.com/epubs/pdf/c1892843.pdf

Finding Witnesses by Peeling

Yonatan Aumann1, Moshe Lewenstein1, Noa Lewenstein2, and Dekel Tsur3

1 Bar-Ilan University
{aumann,moshe}@cs.biu.ac.il

2 Netanya College
noa@netanya.ac.il

3 Ben-Gurion University
dekelts@cs.bgu.ac.il

Abstract. In the k-matches problem, we are given a pattern and a text,
and for each text location the goal is to list all, but not more than k,
matches between the pattern and the text. This problem is one of several
string matching problems that ask to not only to find where the pattern
matches the text, under different “match” definitions, but also to provide
witnesses to the match. Other such problems include: k-aligned ones [4],
k-witnesses, and k-mismatches [18]. In addition, the solution to several
other string matching problems relies on the efficient solution of the
witness finding problems.

In this paper we provide a general efficient method for solving such
witness finding problems. We do so by casting the problem as a gener-
alization of group testing, which we then solve by a process which we
call peeling. Using this general framework we obtain improved results for
all of the above problems. We also show that our method also solves a
couple of problems outside the pattern matching domain.

1 Introduction

Pattern matching is a well studied domain with a large collection of problems. In
classical pattern matching one desires to find all appearances of a pattern with
a text [14]. One avenue of research within pattern matching is the extension of
this problem to allow for more general matching criteria. Another is to allow a
bounded number of errors to occur. In both of these extensions we announce
the locations that match, or the locations which mismatch, under the extended
criteria or other limitations.

In several applications it is not sufficient to announce the locations which
matched or mismatched. Rather we will want a witness to the match or mis-
match. For example consider the classical pattern matching problem. If we have
a pattern p = ‘aba’ and a text t = ‘aabaa’. Then the pattern matches at text
location 2 but not at any other text location. The |p|-length substring beginning
at text location 1 is ‘aab’. A witness to the mismatch at location 1 is the second
character of the pattern as it is ‘b’ in p and ‘a’ in ‘aab’. Of course, match is a gen-
eral term which is application dependent and also witness needs can change per

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 28–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding Witnesses by Peeling 29

application. Finding witnesses arises in several applications which we mention
below. However, doing so efficiently is not a simple task.

The concept of finding a “witness” was independently introduced for applica-
tions of boolean matrix multiplication, specifically for the all-pairs shortest path.
Formally let C be the (boolean) multiplication of A and B. Then if ci,j = 1, we
say that t is a witness if Ai,t = 1 and Bt,j = 1.

We now bring several applications where finding k witnesses is desired. To
solve these problems we define a generalization of group testing which is a process
in which we “peel witnesses”, called the reconstruction problem. We solve several
variants of the reconstruction problem in this paper and utilize them to solve
our witness problems. We believe that the peeling process is interesting in its
own right, although we view the main contribution of the paper as a generalized
setting and solution for the set of problems mentioned below. We show, at the
end of the introduction how these problems fit into the setting of our problem.

Aligned Ones and Matches. Let t = t0, . . . , tn−1 be a text and p = p0, . . . , pm−1

be a pattern. For a text location i, we say that there is a match at position j if
ti+j = pj , i.e. when aligning the beginning of p at location i of the text, the j-th
position of the pattern matches that of the text. The k-aligned ones problem,
defined in [4] and further explored in [18], is the following. For text and pattern
both over the alphabet Σ = {0, 1}, for each text location i where there are at
most k matches of the character 1, output all of these matches (in this problem,
we ignore matches of the character 0). In the k-witnesses problem, we need to
find k matches of the character 1 for every text location i (if there are fewer
than k matches, we need to find all of the matches). The solution in [4] to the
k-aligned ones problem is a very interesting, but a rather involved and costly
procedure. In [18] a simpler solution was suggested and it hints at the direction
we take.

In the k-matches problem for each text location i, output at least k matches;
if there are less than k matches, output all matches. Here the problem is over
general alphabets (i.e. not restricted to {0, 1}). This problem has appeared in a
couple of applications and is a useful tool in pattern matching.

Mismatches under General Matching Relations. A similar problem to the above
is the k-mismatches problem. Here the problem is to find all text location where
the number of mismatches does not exceed k. This problem is well-studied
(e.g. [1,5,11,16]), and the most efficient algorithm [5] runs in time O(n

√
k log k).

The algorithms of [11,16], which run in time O(nk), allow to also report the
positions of these mismatches.

All of the above works assume that the matching relation (between pattern
elements and text elements) is the equality relation. In many application, how-
ever, other “matching” relations may arise (e.g. matching between color pictures
with different color coding schemes). In such cases, the matching is defined by a
Σ × Σ matching matrix M , where Σ is the alphabet. The k-mismatches prob-
lem [18] is the problem of finding for each text location i, at least k mismatches
(under M); if there are less than k mismatches, find all mismatches.

30 Y. Aumann et al.

For general matching relations M the suffix tree methods of [11,16] do not
work. Muthukrishnan [18, Theorem 5] shows a relationship between the k-
mismatches problem and the k-witnesses problem.

Half-Rectangular Matching. In half-rectangular matching one is given a
2-dimensional text t and a 2-dimensional pattern p which contains variable length
rows (the half-rectangular property). Searching for the appearances of p in t is
known as the half-rectangular matching problem [4].

Amir and Farach [4] provide an efficient algorithm for the half-rectangular
matching problem, which uses an algorithm for the k-aligned ones problem as a
subroutine. We will obtain improved algorithms for the half-rectangular match-
ing problem based on improving the k-aligned-ones problem.

Matrix Multiplication and All-Pairs Shortest Path Problem. Let A and B be
two boolean n × n matrices, and let C = A · B, where multiplication is the
logical ∧ and addition the logical ∨. The witness for boolean matrix multiplication
problem is for each i, j such that ci,j = 1 find a t such that ai,t = bt,j = 1.
Alon, Galil, Margalit, and Naor [2] and Seidel [19] independently discovered a
simple randomized algorithm to solve the problem. Both consider the concept of
witness for boolean matrix multiplication problem to solve the all-pairs shortest
path problem on undirected unweighted graphs.

A natural extension to the all-pairs shortest path problem is the problem of
the all-pairs k-shortest paths. That is for every pair of vertices u, v we desire
to output the k (not necessarily disjoint) shortest paths between u and v (if
they exist). Naturally, one way to solve this problem is to extend the witness
problem to the k-witnesses for boolean matrix multiplication problem: Let C =
A · B with multiplication over the reals. For each i, j, find k′ = min(k, ci,j)
“witnesses” for ci,j , i.e. indexes t1, . . . , tk′ , such that for each t ∈ {t1, . . . , tk′},
ai,t = bt,j = 1. Hence, the all-pairs k-shortest paths problem can be solved in
the same time complexity as the k-witnesses for boolean matrix multiplication
problem. However, one cannot simply reiterate the procedure of the one witness
problem as it may rediscover the same witness once again.

1.1 The Reconstruction Problem

We first give a group testing setting and then return to show how this helps to
solve our above-mentioned problems.

Let U be a universe of m distinct items, all taken from some commutative
group G. In group testing one desires to determine the members of a set S ⊆
U, |S| ≤ k, by queries of the form “does A contain an element of S?”, where A
is some subset of U . The goal of group testing is to determine S with a minimal
number of queries.

Many variants of group testing have been considered. One of these variants is
a change of query asking for |S ∩A| rather than whether S ∩A is empty or not.
This problem of producing a series of non-adaptive queries A1, . . . , Al is known
as quantitative group testing, see [10], or interpolation set [12,13]. In additive
group testing, a query asks for the value of

∑
u∈S∩A u for some set A.

Finding Witnesses by Peeling 31

Here we consider a generalization of the above. Consider a collection of un-
known sets S1, . . . , Sn ⊆ U , and suppose that we are interested in reconstructing
S1, . . . , Sn, or in finding k elements of each Si (for some parameter k). We are
provided with procedures such that for any set A ⊆ U , we can compute:

– Intersection Cardinality: ISize(S1, . . . , Sn, A) = 〈|S1 ∩ A|, . . . , |Sn ∩ A|〉.
– Intersection Sum: ISum(S1, . . . , Sn, A) = 〈

∑
u∈S1∩A u, . . . ,

∑
u∈Sn∩A u〉.

Clearly, given a sufficient number of calls to these procedures, it is possible to
fully reconstruct S1, . . . , Sn. However, we aim at doing so with a minimal amount
of work. We note that an efficient algorithm for this problem must provide:

1. The list or sequence of sets A on which to compute ISize(S1, . . . , Sn, A)
and/or ISum(S1, . . . , Sn, A) (note that for determining the A’s we do not
have explicit knowledge of S1, . . . , Sn),

2. An efficient procedure to reconstruct k elements of each Si based on the
information provided by these computations.

In this paper we consider two variants of the general setting outlined above.
In the first variant, the size of S1, . . . , Sn can be arbitrary, and we are interested
in finding min(k, |Si|) elements of Si for all i. We call this the k-reconstruction
problem. In the second variant, the size of each Si is known to be bounded by k,
and we are interested in fully reconstructing S1, . . . , Sn. We call this the bounded
k-reconstruction problem. We present efficient solutions to both these problems.
The solutions are based upon a combinatorial structure, which we call peeling
collections, and a matching algorithmic procedure, which we call the peeling
procedure. The basic idea is as follows. If a set A ⊆ U satisfies |Si ∩ A| = 1,
then we can “peel” the unique element of the intersection of Si by querying∑

u∈Si∩A u. A peeling collection is a collection of sets such that for any S its
elements can be peeled one by one by peeling and updating the other sets to
reflect that an element has been peeled. The full details appear in section 2.

We point out the following differences from previous works:

1. Most group testing codes are universal in the sense that the elements of any
set S can be recovered using the codes. In [8] a lower bound of Ω(k log m) was
given on the construction of k-selective codes equivalent to the deterministic
bounded-reconstruction (see section 2). Here we consider reconstructing a
single set S (which one can view as a special code for one unknown S) with
high probability beating the lower bounds for the k-selective codes.

2. The problem is an n-set problem as opposed to the one-set problems in the
previous variants. While the problem can be solved by finding separate tests
for each set, this sometimes can be done more efficiently directly. Moreover,
we show applications that fall nicely into this setting.

3. The peeling method. This gives an adaptive flavor to a non-adaptive setting.
It should be mentioned that the peeling method appears implicitly in [13]
yet is rather inefficient and unexploited.

As far as we know, the k-reconstruction problems have not been studied explic-
itly before. However, in previous works, these problems are solved implicitly:

32 Y. Aumann et al.

Amir et al. [4] implicitly give a deterministic algorithm that solves the bounded
k-reconstruction problem. A deterministic algorithm for this problem can also
be obtained from [13] with some simple observations.

For the unbounded problem, Seidel [19] and Alon and Naor [3] implicitly solve
the unbounded 1-reconstruction problem. Muthukrishnan [18] implicitly gives a
randomized algorithm for solving the unbounded k-reconstruction problem.

New results. We now describe our results for the reconstruction problem, which
improve the previous (implicit) results. Suppose that computing
ISize(S1, . . . , Sn, A) or ISum(S1, . . . , Sn, A) takes O(f) steps. For the bounded
k-reconstruction problem we present a deterministic algorithm that solves the
problem in O(k·polylog(m)(f+n)) steps, and a randomized algorithm that solves
the problem in expected O(f(k + log k · log n) + nk log(mn)) steps. For the (un-
bounded) k-reconstruction problem, we give a deterministic algorithm with time
complexity O(k·polylog(mn)(f+n)), and a randomized algorithm with expected
time complexity O(f(k(log m + log k log log m) + log n log m) + nk log(mn)).

Given the efficient solutions to the general problems, we show problems can be
cast as special cases of this general framework. Accordingly, we provide improved
algorithms for these problems. We now list the new results. In the following, let
Tb(n, m, k, f) (resp., Tu(n, m, k, f)) be the time needed to solve the bounded
(resp., unbounded) k-reconstruction problem with parameters n, m, k, and f .

1.2 Our Results

Aligned Ones and Matches. For the k-aligned ones problem, Amir and Farach [4]
give an O(nk3 log m log k) time deterministic algorithm, and Muthukrishnan [18]
provides an O(nk2 log4 m) randomized algorithm. Muthukrishnan [17] improved
this to an O(nk log4 m) randomized algorithm.

We show that the k-aligned ones problem can be solved in time O(n
mTb(2m, m,

k, m logm)). Therefore, we obtain an O(nk ·polylog(m)) deterministic algorithm,
and an O(n log m(k+log k · log m)) randomized algorithm for the problem. More-
over, the k-matches problem can be solved in O(|Σ| n

mTu(2m, m, k, m logm)) time.

Mismatches under General Matching Relations. Muthukrishnan[18, Theorem 5]
shows that the k-mismatches problem over arbitrary M can be solved with
cpn(G) calls to the k-witnesses problem, where G is the conflict graph (i.e. the
bipartite graph corresponding to the complement of M) and cpn(G) is the min-
imum number of edge-disjoint bipartite cliques of G. Additionally, [18] provides
an O(n

√
km logm) deterministic algorithm, and an expected O(nk2 log3 m log n)

randomized algorithm to the k-witnesses problem. An open problem presented
in [18] was to find a deterministic algorithm for the k-witnesses problem with
time comparable to the randomized algorithm.

The k-witnesses problem can be solved in O(n
mTu(2m, m, k, m logm)) time,

and therefore, we obtain an O(nk · polylog(m)) deterministic algorithm and an
O(n log m(k(log m + log k log log m) + log2 m)) randomized algorithm for this
problem.

Finding Witnesses by Peeling 33

Matrix Multiplication Witnesses and All-Pairs k-Shortest Paths. Alon, Galil,
Margalit and Naor [2] and Seidel [19] independently discovered a simple ran-
domized algorithm to solve the problem of finding a witness for Boolean matrix
multiplication that runs in expected O(M(n) log n) time, where M(n) is the time
of the fastest algorithm for matrix multiplication. Alon and Naor [3] derandom-
ized the algorithm providing an O(M(n) · polylog(n)) deterministic algorithm
for this problem.

Using our construction we solve the k-witness problem for matrices in O(M(n)·
k ·polylog(n)) deterministic time, and O(M(n)(k+log n)) randomized time. This
yields a solution to the all-pairs k-shortest paths problem with the same time com-
plexity as the k-witnesses for the Boolean matrix multiplication problem.

2 The Peeling Processes

2.1 Peeling Collections and the Peeling Process

Consider the k-reconstruction problem which was defined in the introduction.
Recall that a call to the procedures ISize(S1, . . . , Sn, A) or ISum(S1, . . . , Sn, A)
takes O(f) steps. We are interested in finding k elements of each set Si with
minimal work. Thus, we seek an algorithm that both uses few calls to these
procedures and allows for efficient reconstruction of the k elements based on the
results obtained from these calls.

Separating Collections. For sets S and A we say that A peels S if |S ∩ A| = 1.
If S ∩ A = {s} we say that A peels the element s.

Definition 1. Let S be a set and F a collection of sets. We say that F is a
k-separator for S if there are sets A1, . . . , Amin(k,|S|) ∈ F such that:

1. for each i, Ai peels S,
2. for i 	= j, S ∩ Ai 	= S ∩Aj (i.e. the sets peel different elements of S).

For a collection of sets S = {S1, . . . , Sn} we say that F is a k-separator for S if
it is a k-separator for each S ∈ S.

Suppose that F is a k-separator for S. Then, it is possible to reconstruct k′ =
min(k, |S|) elements of S by simply invoking the procedure ISize(S, A) for all
A ∈ F . For each A such that ISize(S, A) = 1 compute sA = ISum(S, A). The
element sA is necessarily a member of S, and since F is a k-separator, there
must be at least k′ distinct such sA’s.

Peeling Collections and the Peeling Procedure. A separating collection requires
that for each element s ∈ S to be recovered, there is a distinct set A ∈ F
that peels s. We now show how to reconstruct k′ elements of S with a weaker
condition. We do so by iteratively “peeling off” elements from S.

Let P = (A1, . . . , Ak) be a sequence of sets. We say that P is a peeling
sequence for S if for i = 1, . . . , k, Ai peels (S − ∪i−1

j=1Aj). Let F be a collection
of sets, and P = (A1, . . . , Ak) a sequence of sets. We say that F contains P if
A1, . . . , Ak ∈ F .

34 Y. Aumann et al.

Definition 2. Let S be a set and F a collection of sets. We say that F is a
k-peeler for S if F contains a peeling sequence for S of length k′ = min(k, |S|).
We say that F is a bounded k-peeler for S if it is a k-peeler for S provided that
|S| ≤ k.

For a collection of sets S = {S1, . . . , Sn} we say that F is a (bounded) k-
peeler for S if it is a (resp., bounded) k-peeler for each S ∈ S.

Note that a k-separator for a set S is also a k-peeler for S. Let F be a k-peeler
for S. Consider the following process, which we call the Peeling Procedure:

1 For each A ∈ F assign zA ← ISize(S, A) and mA ← ISum(S, A)
2 Ones ← {A ∈ F : zA = 1}
3 While Ones is not empty do
4 Choose any A ∈ Ones and remove A from Ones

5 si ← mA

6 For each A′ ∈ F such that si ∈ A′ do
7 zA′ ← zA′ − 1
8 If zA′ = 1 then add A′ to Ones

9 mA′ ← mA′ − si

At each iteration of lines 3–9, the procedure finds one element of S and “peels”
it off S (lines 4–5). In addition, the procedure also updates the corresponding
values of the ISize(S, A) and ISum(S, A), for all A ∈ F .

We assume that the sets of F are represented by linked lists of the elements
of the set. Thus, in time O(

∑
A∈F |A|) we can create for every element s ∈ U a

list of all the sets of F that contain s, and use these lists for the loop in line 6.
Since F is a k-peeler for S, if the procedure happens to choose (in line 4)

exactly the A’s from the peeling sequence contained in F , and in exactly the right
order, then the process will necessarily find at least k′ = min(k, |S|) elements of
S. What happens if other A’s are chosen? or in a different order? The following
lemma proves that k′ elements are necessarily found, regardless of the choice of
the A’s and their ordering.

Lemma 1. Suppose that F is a k-peeler for S. Then the peeling procedure nec-
essarily finds at least k′ = min(k, |S|) elements of S.

Proof. Let (B1, . . . , Bk′) be the peeling sequence for S contained in F . Consider
an invocation of the peeling procedure. Let P = (A1, . . . , At) be the sequence
of sets chosen so far in the peeling process. We show that if t < k′ then P can
necessarily be extended. For i = 1, . . . , k′ let bi = (S − ∪i−1

j=1Bj) ∩ Bi (i.e. bi is
the element of S “peeled” by Bi) and for i = 1, . . . , t let ai = (S−∪i−1

j=1Aj)∩Ai.
Let i0 be smallest index such that bi0 	∈ {a1, . . . , at} (such an index necessarily
exists since t < k′ and all bi’s are distinct). Then,

Bi0 ∩ (S − ∪t
j=1Aj) = bi0

Hence, the peeling process can be continued by choosing Bi0 . ��

Finding Witnesses by Peeling 35

The Peeling Procedure can be extended for reconstructing a collection of sets
S = {S1, . . . , Sn} with a k-peeler F for S: In step 1 compute 〈zA,1, . . . , zA,n〉 ←
ISize(S1, . . . , Sn, A) and 〈mA,1, . . . , mA,n〉 ← ISum(S1, . . . , Sn, A). Then, per-
form steps 2–9 for every set Si separately.

Two factors determine the time complexity of the Peeling Procedure. The one
is the size of the peeling collection F . The other is the total number of times
lines 6–9 are performed during the peeling process. This number can be bounded
as follows. For an element u ∈ U and a peeling collection F , let Occu(F) be the
number of sets in F that contain u. Define MaxOcc(F) = maxu∈U {Occu(F)}.
The number of times lines 6–9 are performed is bounded by k ·MaxOcc(F).

Hence, we seek small peeling collections with a small MaxOcc(F). Clearly, for
any set S of size k there is a trivial k-peeler with |F | = k and MaxOcc(F) = 1.
However, since we are not provided with S explicitly, we must construct the
peeling collection without explicit knowledge of S.

The notions of k-separator and k-peeler are similar to k-selective collec-
tions [7,13]. A collection F is k-selective if for any set S, with |S| ≤ k, there is
a set A ∈ F such that A peels S. Note that a k-selective collection is universal,
namely the property is satisfied for any set S ⊆ U , while our definitions of k-
separator and k-peeler are with respect to a given set S or a collection of sets
S. k-selective collections were also been studied in a non-universal setting [6].
In the universal setting, a collection F is k-selective iff it is a universal bounded
k-peeler (a universal bounded k-peeler is a collection of sets which is a bounded
k-peeler for any set S ⊆ U). However, in the non-universal setting the proper-
ties of being k-selective and being bounded k-peeler are different: Every bounded
k-peeler is also k-selective, but the converse is not true.

Bounded k-peelers are very similar to the universal lists in [15]. The universal
lists are defined for the universal setting. Therefore, the construction in [15],
which is similar to the construction in Section 2.3, is less efficient than ours.

2.2 Deterministic Constructions

Bounded k-Peelers. Consider the problem of constructing a universal bounded
k-peeler, or equivalently, constructing a k-selective collection. A probabilistic
argument provides that there is a k-selective collection of size O(k log m) and
MaxOcc(F) = O(log m). Indyk [13] shows how to deterministically construct
a k-selective collection with |F | = O(k · polylog(m)). His construction also gives
MaxOcc(F) = O(polylog(m)). We note that there is no efficient construction
of universal (unbounded) k-peeler. More precisely, the size of a universal k-peeler
must be at least m (even for k = 1) [9].

k-Separators. Let S = {S1, . . . , Sn} be a collection of sets, each of size at least
k logc m, for some constant c to be determined later. We construct a k-separator
for S.

The construction uses the algorithm of Alon and Naor [3]. Using the terminol-
ogy presented here, [3] provides an algorithm to construct a 1-separator for S.

36 Y. Aumann et al.

The algorithm uses O(k ·polylog(nm)) calls to the procedure ISize(·, ·), and out-
puts a collection F of size O(polylog(nm)). We use this algorithm to construct
the k-separator.

The following Lemma follows from the explicit disperser constructions of [20].

Lemma 2. There is a constant c such that for every U , there is an explicit
construction of a collection H of subsets of U that satisfies

1. For every subset S of U such that |S| ≥ k logc m, there are disjoint sets
A1, . . . , Ak ∈ H such that S ∩ Ai is not empty for all i, and

2. |H | = O(k · polylog(m)).

To construct the k-separator for S1, . . . , Sn we do the following. Let H be the
collection as provided by Lemma 2. For every A ∈ H , use the Alon-Naor al-
gorithm to construct a 1-separator for S1 ∩ A, . . . , Sn ∩ A. The union of these
1-separators is a k-separator for S1, . . . , Sn. We obtain:

Theorem 1. There exists a constant c such that the following holds. Let S =
{S1, . . . , Sn} be a collection of sets each of size at least k logc m. It is possible to
construct a k-separator collection F for S such that |F | = O(k · polylog(mn)).
Constructing F requires O(k · polylog(mn)) calls to the procedure ISize(·, ·).

2.3 Randomized Constructions

Preliminaries. For p ∈ [0, 1], consider the process of choosing each element
of U independently at random with probability p. We call the resulting set a
p-random set. Let α = 1/(2e).

Lemma 3. Let A be a 1/t-random set, and let S be a set with t/2 ≤ |S| ≤ t.
Then, Pr [A peels S] ≥ α.

Consider a set S of size t and a collection of sets F . We say that F peels S down
to t′ (t′ < t) if F is a k-peeler for S with k = t− t′.

Corollary 1. Let F be a collection of r 1/t-random sets, and let S be a set with
t/2 ≤ |S| ≤ t. Then Pr [F does not peel S down to t/2] ≤ 2t(1 − α)r.

Bounded k-Peelers. Let S be a collection of n sets. We now show how to
construct a collection F such that with probability ≥ 1− 1

2n−1, F is a bounded
k-peeler for S. W.l.o.g. k ≥ 2. We construct F as a union of collections F (j),
j = 0, . . . , �log k� (all logarithms in this section are base 2). F (0) = {U}. For
j > 0, the collection F (j) consists of rj

1
2j -random sets, with rj = 2j+3 log(nk)

log(1/(1−α))

(to simpify the presentation, we omit the ceiling function in the definition of rj).
Consider the following process. Given a set S of size k, use F (�log k) to peel
S down to a set of size 2�log k	−1. Denote the resulting set by S(�log k	−1). Use
F (�log k	−1) to peel S(�log k	−1) down to size 2�log k	−2. Denote the resulting set
by S(�log k	−2). Continue in this way until the entire set S is peeled.

Finding Witnesses by Peeling 37

Theorem 2. Let S be a collection of n sets. With probability ≥ 1 − 1
2n−1, F

is a bounded k-peeler for S, and MaxOcc(F) = O(log(nm)). The size of F is
O(k + log k · log n).

Proof. Consider some set S ∈ S of size at most k. By Corollary 1, the probability
that F (j) fails to peel S(j) down to 2j−1 is ≤ 22j

(1 − α)rj = (nk)−3. Thus, the
probability that F is not a bounded k-peeler for S is ≤� log k�·(nk)−3 ≤ 1

4n−2.
Therefore, the probability that F is not a bounded k-peeler for S is ≤ 1

4n−1.
The size of F is

|F | = 1 +
�log k	∑

j=1

2j + 3 log(nk)
log(1/(1 − α))

= O(k + log k · log(nk)) = O(k + log k · log n).

Next we bound MaxOcc(F). We have that

E(Occu(F))=1+
�log k	∑

j=1

2−j 2j + 3 log(nk)
log(1/(1 − α))

≤1+4�logk�+11 log(nk)≤20 log(nk).

Hence, by Hoeffding’s inequality, Pr [Occu(F) > 40 log(nm)] ≤ 1
4 (nm)−1. There

are m different u’s, so Pr [MaxOcc(F) > 40 log(nm)] ≤ 1
4n−1. ��

k-Separators. Let S be a collection of n sets, each of size ≥ 4k. We show how
to construct a collection F such that with probability ≥ 1 − 1

2n−1, F is a k-
separator for S. For j = �log(4k)�, . . . , �log m�, let F (j) be a set of rj

1
2j -random

sets, with rj = 16
α log(4n) + 2

αkj/(j − 1 − log k). Let F =
⋃�log m	

j=�log 4k	 F (j).

Theorem 3. Let S be collection of n sets, each of size ≥ 4k. With probability ≥
1− 1

2n−1, F is a k-separator for S. The size of F is O(k(log m+log k log log m)+
log n log m).

Proof. Consider a set S ∈ S, and let j be an integer such that 2j−1 < |S| ≤ 2j .
By Lemma 3, the probability that a fixed set A ∈ F (j) peels S is ≥ α. Hence,
the expected number sets in F (j) that peel S is ≥ αr. By Hoeffding’s inequality,
with probability ≥ 1 − 1

4n−2, there are ≥ 1
2αr′ sets that peel S. For an element

s ∈ S, we say that s is peeled if there is a set A that peels s. Assuming there are
≥ 1

2αr′ sets that peel S,

Pr [there are < k peeled elements] ≤ |S|k−1

(
k − 1
|S|

)α
2 r

≤ 2jk

(
k

2j−1

)α
2 r

≤ 1
4n2

.

Thus, the probability that F is not a k-separator for S is ≤ 1
2n−2. Hence, the

probability that F is not a k-separator of S is ≤ 1
2n−1. The bound on |F | stated

in the theorem is straightforward. ��

38 Y. Aumann et al.

2.4 Solving the k-Reconstruction Problem

We are now ready to show how we use the separating and peeling collections
to solve the reconstruction problems presented in the introduction. Recall that
given a collection S containing n subsets of U , the k-reconstruction problem is:
For each S ∈ S, find min(k, |S|) elements of S. The bounded k-reconstruction
problem is: Fully reconstruct every set S ∈ S of size at most k.

For the bounded k-reconstruction problem, bounded k-peelers fully solve the
problem. Thus, we obtain:

Theorem 4. Suppose that computing ISize(S, A) or ISum(S, A) for all S ∈ S
and one set A takes O(f) steps. Then, there exist deterministic and randomized
algorithms for the bounded k-reconstruction problem with the following running
times:

– Deterministic: O(k · polylog(m)(f + n)) steps.
– Randomized: O(f(k + log k · log n) + nk log(mn)) steps.

The randomized algorithm solves the reconstruction problem with probability at
least 1/2. We can reapetedly run the algorithm until all sets are reconstructed,
and the bound above is the expected number of steps.

For the (unbounded) k-reconstruction problem we do the following. We choose
some integer k′, and construct both a bounded k′-peeler, which will fully recon-
struct sets with at most k′ elements, and a k-separator which will reconstruct k el-
ements from sets with at least k′ elements. For the deterministic setting we choose
k′ = k logc m, and use the results of Section 2.2 for the k′-peeler and that of Theo-
rem 1 for the k-separating collection. For the randomized construction we choose
k′ = 4k, and use Theorem 2 for the k′-peeler and Theorem 3 for the k-separators.

Theorem 5. Suppose that computing ISize(S, A) or ISum(S, A) for all S ∈ S
and one set A takes O(f) steps. Then, there exist deterministic and randomized
algorithms for the k-reconstruction problem with the following running times:

– Deterministic: O(k · polylog(mn)(f + n)) steps.
– Randomized: O(f(k(log m+log k log log m)+log n log m)+nk log(mn)) steps.

We note that except for the deterministic result for the (unbounded) k-
reconstruction problem, the other algorithms are non-adaptive, in sense that the
set of A’s on which the procedures ISize(S, A) and ISum(S, A) are performed is
determined independently of the outcomes of any other such calls.

Due to lack of space, we omit the applications of the results above.

References

1. Abrahamson, K.: Generalized string matching. SIAM J. on Computing 16(6), 1039–
1051 (1987)

2. Alon, N., Galil, Z., Margalit, O., Naor, M.: Witnesses for boolean matrix multipli-
cation and for shortest paths. In: Symposium on Foundations of Computer Science
(FOCS), pp. 417–426 (1992)

Finding Witnesses by Peeling 39

3. Alon, N., Naor, M.: Derandomization, witnesses for boolean matrix multiplication
and construction of perfect hash functions. Algorithmica 16, 434–449 (1996)

4. Amir, A., Farach, M.: Efficient 2-dimensional approximate matching of half-
rectangular figures. Information and Computation 118(1), 1–11 (1995)

5. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k
mismatches. J. of Algorithms 50(2), 257–275 (2004)

6. Brito, C., Gafni, E., Vaya, S.: An information theoretic lower bound for broadcast-
ing in radio networks. In: Proc. 21st Annual Symposium on Theoretical Aspects
of Computer Science (STACS), pp. 534–546 (2004)

7. Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic
broadcasting in ad hoc radio networks. Distributed Computing 15(1), 27–38 (2002)

8. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Proc. 13th Symposium on Dis-
crete Algorithms(SODA), pp. 709–718 (2001)

9. Damaschke, P.: Randomized group testing for mutually obscuring defectives. In-
formation Processing Letters 67, 131–135 (1998)

10. Du, D.Z., Hwang, F.K.: Combinatorial group testing and its applications. World
Scientific (2000)

11. Galil, Z., Giancarlo, R.: Improved string matching with k mismatches. SIGACT
News. 17(4), 52–54 (1986)

12. Indyk, P.: Interpolation of symmetric functions and a new type of combinatorial
design. In: Proc. of Symposium on Theory of Computing (STOC), pp. 736–740
(1999)

13. Indyk, P.: Explicit constructions of selectors and related combinatorial structures,
with applications. In: Proc. 13th Symposium on Discrete Algorithms (SODA), pp.
697–704 (2002)

14. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comp. 6, 323–350 (1977)

15. Komlós, J., Greenberg, A.G.: An asymptotically nonadaptive algorithm for conflict
resolution in multiple-access channels. IEEE Trans. on Information Theory 31(2),
302–306 (1985)

16. Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theoret-
ical Computer Science 43, 239–249 (1986)

17. Muthukrishnan, S.: Personal communication
18. Muthukrishnan, S.: New results and open problems related to non-standard

stringology. In: Galil, Z., Ukkonen, E. (eds.) Combinatorial Pattern Matching.
LNCS, vol. 937, pp. 298–317. Springer, Heidelberg (1995)

19. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs.
J. of Computer and System Sciences 51, 400–403 (1995)

20. Ta-Shma, A., Umans, C., Zuckerman, D.: Loss-less condensers, unbalanced ex-
panders, and extractors. In: Proc. 33th Symposium on the Theory of Computing
(STOC), pp. 143–152 (2001)

Cache-Oblivious Index for Approximate

String Matching�

Wing-Kai Hon1, Tak-Wah Lam2, Rahul Shah3,
Siu-Lung Tam2, and Jeffrey Scott Vitter3

1 Department of Computer Science, National Tsing Hua University, Taiwan
wkhon@cs.nthu.edu.tw

2 Department of Computer Science, The University of Hong Kong, Hong Kong
{twlam,sltam}@cs.hku.hk

3 Department of Computer Sciences, Purdue University, Indiana, USA
{rahul,jsv}@cs.purdue.edu

Abstract. This paper revisits the problem of indexing a text for ap-
proximate string matching. Specifically, given a text T of length n and a
positive integer k, we want to construct an index of T such that for any
input pattern P , we can find all its k-error matches in T efficiently. This
problem is well-studied in the internal-memory setting. Here, we extend
some of these recent results to external-memory solutions, which are also
cache-oblivious. Our first index occupies O((n logk n)/B) disk pages and
finds all k-error matches with O((|P | + occ)/B + logk n log logB n) I/Os,
where B denotes the number of words in a disk page. To the best of our
knowledge, this index is the first external-memory data structure that
does not require Ω(|P | + occ + poly(log n)) I/Os. The second index re-
duces the space to O((n log n)/B) disk pages, and the I/O complexity is
O((|P | + occ)/B + logk(k+1) n log log n).

1 Introduction

Recent years have witnessed a huge growth in the amount of data produced
in various disciplines. Well-known examples include DNA sequences, financial
time-series, sensor data, and web files. Due to the limited capacity of main
memory, traditional data structures and algorithms that perform optimally in
main memory become inadequate in many applications. For example, the suffix
tree [19,25] is an efficient data structure for indexing a text T for exact pattern
matching; given a pattern P , it takes O(|P |+ occ) time to report all occurrences
of P in T , where occ denotes the number of occurrences. However, if we apply
a suffix tree to index DNA, for example, the human genome which has 3 billion
characters, at least 64G bytes of main memory would be needed.

� Research of T.W. Lam is supported by the Hong Kong RGC Grant 7140/06E. Re-
search of R. Shah and J.S. Vitter is supported by NSF Grants IIS–0415097 and
CCF–0621457, and ARO Grant DAAD 20–03–1–0321. Part of the work was done
while W.K. Hon was at Purdue University.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 40–51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Cache-Oblivious Index for Approximate String Matching 41

To solve the problem in dealing with these massive data sets, a natural way
is to exploit the external memory as an extension of main memory. In this
paradigm of computation, data can be transferred in and out of main memory
through an I/O operation. In practice, an I/O operation takes much more time
than an operation in main memory. Therefore, it is more important to minimize
the number of I/Os.

Aggarwal and Vitter [2] proposed a widely accepted two-level I/O-model for
analyzing the I/O complexity. In their model, the memory hierarchy consists of
a main memory of M words and an external memory. Data reside in external
memory initially (as they exceed the capacity of main memory), and computa-
tion can be performed only when the required data are present in main memory.
With one I/O operation, a disk page with B contiguous words can be read
from external memory to main memory, or B words from main memory can
be written to a disk page in external memory; the I/O complexity of an algo-
rithm counts only the number of I/O operations involved. To reduce the I/O
complexity, an algorithm must be able to exploit the locality of data in external
memory. For instance, under this model, sorting a set of n numbers can be done
in O

(
(n

B log n
B)/ log(M

B)
)

I/Os, and this bound is proven to be optimal. (See [24]
for more algorithms and data structures in the two-level I/O model.)

Later, Frigo et al. [15] introduced the notion of cache-obliviousness, in which
we do not have advance knowledge of M or B in designing data structures
and algorithms for external memory; instead, we require the data structures and
algorithms to work for any given M and B. Furthermore, we would like to match
the I/O complexity when M and B are known in advance. Among others, cache-
obliviousness implies that the algorithms and data structures will readily work
well under different machines, without the need of fine tuning the algorithm (or
recompilation) or rebuilding the data structures. Many optimal cache-oblivious
algorithms and data structures are proposed over the recent years, including
algorithms for sorting [20] and matrix transposition [20], and data structures
like priority queues [8] and B-trees [7].

For string matching, the recent data structure proposed by Brodal and Fager-
berg [9] can index a text T in O(n/B) disk pages1 and find all occurrences of
a given pattern P in T in O((|P | + occ)/B + logB n) I/Os. This index works
in a cache-oblivious manner, improving the String-B tree, which is an earlier
work by Ferragina and Grossi [14] that achieves the same space and I/O bounds
but requires the knowledge of B to operate.2 In this paper, we consider the
approximate string matching problem defined as follows:

Given a text T of length n and a fixed positive integer k, construct an index
on T such that for any input pattern P , we can find all k-error matches of
P in T , where a k-error match of P is a string that can be transformed to
P using at most k character insertions, deletions, or replacements.

1 Under the cache-oblivious model, the index occupies O(n) contiguous words in the
external memory. The value of B is arbitrary, which is considered only in the analysis.

2 Recently Bender et al. [6] have devised the cache-oblivious string B-tree, which is
for other pattern matching queries such as prefix matching and range searching.

42 W.-K. Hon et al.

The above problem is well-studied in the internal-memory setting
[21,12,3,10,17,11]. Recently, Cole et al. [13] proposed an index that occupies
O(n logk n) words of space, and can find all k-error matches of a pattern P in
O(|P |+logk n log log n+occ) time. This is the first solution with time complexity
linear to |P |; in contrast, the time complexity of other existing solutions depends
on |P |k. Chan et al. [11] later gave another index that requires only O(n) space,
and the time complexity increases to O(|P |+ logk(k+1) n log log n + occ). In this
paper, we extend these two results to the external-memory setting. In addition,
our solution is cache-oblivious.

The main difficulty in extending Cole et al.’s index to the external-memory
setting lies in how to answer the longest common prefix (LCP) query for an arbi-
trary suffix of a pattern P using a few I/Os. More specifically, given a suffix Pi,
we want to find a substring of T that is the longest prefix of Pi. In the internal
memory setting, we can compute all possible LCP values in advance in O(|P |)
time (there are |P | such values) by exploiting the suffix links in the suffix tree of
T . Then each LCP query can be answered in O(1) time. In the external memory
setting, a naive implementation would require Ω(min{|P |2/B, |P |}) I/Os to com-
pute all LCP values. To circumvent this bottleneck, we target to compute only
some “useful” LCP values in advance (using O(|P |/B + k logB n) I/Os), so that
each subsequent LCP query can still be answered efficiently (in O(log logB n)
I/Os). Yet this target is very difficult to achieve for general patterns. Instead,
we take advantage of a new notion called k-partitionable and show that if P is k-
partitionable, we can achieve the above target; otherwise, T contains no k-error
match of P . To support this idea, we devise an I/O-efficient screening test that
checks whether P is k-partitionable; if P is k-partitionable, the screening test
would also compute some useful LCP values as a by-product, which can then
be utilized to answer the LCP query for an arbitrary Pi in O(log logB n) I/Os.

Together with other cache oblivious data structures (for supporting LCA,
Y-Fast Trie and WLA), we are able to construct an index to find all k-error
matches using O((|P |+ occ)/B + logk n log logB n) I/Os. The space of the index
is O((n logk n)/B) disk pages. To the best of our knowledge, this is the first
external-memory data structure that does not require Ω(|P |+ occ+poly(log n))
I/Os. Note that both Cole et al.’s index and our index can work even if the
alphabet size is unbounded.

Recall that the internal-memory index by Chan et al. [11] occupies only O(n)
space. The reduction of space demands a more involved searching algorithm. In
particular, they need the data structure of [10] to support a special query called
Tree-Cross-Product. Again, we can ‘externalize’ this index. Here, the difficulties
come in two parts: (i) computing the LCP values, and (ii) answering the Tree-
Cross-Product queries. For (i), we will use the same approach as we externalize
Cole et al.’s index. For (ii), there is no external memory counter-part for the
data structure of [10]; instead, we reduce the Tree-Cross-Product query to a two-
dimensional orthogonal range search query, the latter can be answered efficiently
using an external-memory index based on the work in [1]. In this way, for any
fixed k ≥ 2, we can construct an index using O((n log n)/B) disk pages, which

Cache-Oblivious Index for Approximate String Matching 43

can find all k-error matches of P in O((|P |+occ)/B +logk(k+1) n log log n) I/Os.
Following [11], our second result assumes alphabet size is constant.

In Section 2, we give a survey of a few interesting queries that have efficient
cache-oblivious solutions. In particular, the index for WLA (weighted level an-
cestor) is not known in the literature. Section 3 reviews Cole et al.’s internal
memory index for k-error matching and discusses how to turn it into an ex-
ternal memory index. Section 4 defines the k-partitionable property, describes
the screening test, and show how to compute LCP queries efficiently. Finally,
Section 5 states our result obtained by externalizing the index of Chan et al.

2 Preliminaries

2.1 Suffix Tree, Suffix Array, and Inverse Suffix Array

Given a text T [1..n], the substring T [i..n] for any i ∈ [1, n] is called a suffix of
T . We assume that characters in T are drawn from an ordered alphabet which
is of constant size, and T [n] = $ is a distinct character that does not appear
elsewhere in T . The suffix tree of T [19,25] is a compact trie storing all suffixes
of T . Each edge corresponds to a substring of T , which is called the edge label.
For any node u, the concatenation of edge labels along the path from root to
u is called the path label of u. There are n leaves in the suffix tree, with each
leaf corresponding to a suffix of T . Each leaf stores the starting position of its
corresponding suffix, which is called the leaf label. The children of an internal
node are ordered by the lexicographical order of their edge labels.

The suffix array of T [18], denoted by SA, is an array of integers such that
SA[i] stores the starting position of the ith smallest suffix in the lexicographical
order. It is worth-mentioning that SA can also be obtained by traversing the
suffix tree in a left-to-right order and recording the leaf labels. Furthermore,
the descendant leaves of each internal node u in the suffix tree correspond to a
contiguous range in the suffix array, and we call this the SA range of u.

The inverse suffix array, denoted by SA−1, is defined such that SA−1[i] = j
if and only if i = SA[j]. When stored in the external memory, the space of both
arrays take O(n/B) disk pages, and each entry can be reported in one I/O.

Suppose that we are given a pattern P , which appears at position i of T . That
is, T [i..i+ |P | − 1] = P . Then, we observe that P is a prefix of the suffix T [i..n].
Furthermore, each other occurrence of P in T corresponds to a distinct suffix of
T sharing P as a prefix. Based on this observation, the following lemma from
[18] shows a nice property about the suffix array.

Lemma 1. Suppose P is a pattern appearing in T . Then there exists i ≤ j such
that SA[i], SA[i + 1], . . . , SA[j] are the starting positions of all suffixes sharing
P as a prefix. In other words, SA[i..j] lists all occurrences of P in T . ��

2.2 Cache-Oblivious String Dictionaries

Recently, Brodal and Fagerberg proposed an external-memory index for a text
T of length n that supports efficient pattern matching query [9]. Their index

44 W.-K. Hon et al.

takes O(n/B) disk pages of storage; also, it does not require the knowledge of
M or B to operate and is therefore cache-oblivious. For the pattern matching
query, given any input pattern P , we can find all occurrences of P in T using
O((|P | + occ)/B + log

B
n) I/Os.

In this paper, we are interested in answering a slightly more general query.
Given a pattern P , let � be the length of the longest prefix of P that appears in
T . We want to find all suffixes of T that has P [1..�] as a prefix (that is, all suffixes
of T whose common prefix with P is the longest among the others). We denote
Q to be the set of starting positions of all such suffixes. Note that Q occupies a
contiguous region in SA, say SA[i..j]. Now we define the LCP query of P with
respect to T , denoted by LCP (P, T), which reports (i) the SA range, [i, j], that
corresponds to the SA region occupied by Q, and (ii) the LCP length, �.

With very minor adaptation, the index in [9] can readily be used to support
efficient LCP query, as stated in the following lemma.

Lemma 2. We can construct a cache-oblivious index for a text T of length n,
such that given a pattern P , we can find LCP (P, T), its SA range, and its length
in O(|P |/B + logB n) I/Os. The space of the index is O(n/B) disk pages. ��

2.3 LCA Index on Rooted Tree

For any two nodes u and v in a rooted tree, a common ancestor of u and v is a
node that appears in both the path from u to the root and the path from v to
the root; among all common ancestors of u and v, the one that is closest to u
and v is called the lowest common ancestor of u and v, denoted by LCA(u, v).
The lemma below states the performance of an external-memory index for LCA
queries, which follows directly from the results in [16,5].

Lemma 3. Given a rooted tree with n nodes, we can construct a cache-oblivious
index of size O(n/B) disk pages such that for any nodes u and v in the tree,
LCA(u, v) can be reported in O(1) I/Os. ��

2.4 Cache-Oblivious Y-Fast Trie

Given a set X of x integers, the predecessor of r in X , denoted by Pred(r, X), is
the largest integer in X which is smaller than r. If the integers in X are chosen
from [1, n], the Y-fast trie on X [26] can find the predecessor of any input r in
O(log log n) time under the word RAM model; 3 the space occupancy is O(x)
words. In the external-memory setting, we can store the Y-fast trie easily using
the van Emde Boas layout [7,22,23,20], giving the following lemma.

Lemma 4. Given a set X of x integers chosen from [1, n], we can construct a
cache-oblivious Y-fast trie such that Pred(r, X) for any integer r can be answered
using O(log logB n) I/Os. The space of the Y-fast trie is O(x/B) disk pages. ��
3 A word RAM supports standard arithmetic and bitwise boolean operations on word-

sized operands in O(1) time.

Cache-Oblivious Index for Approximate String Matching 45

2.5 Cache-Oblivious WLA Index

Let R be an edge-weighted rooted tree with n nodes, where the weight on each
edge is an integer in [1, W]. We want to construct an index on R so that given
any node u and any integer w, we can find the unique node v (if exists) with the
following properties: (1) v is an ancestor u, (2) sum of weights on the edge from
the root of R to v is at least w, and (3) no ancestor of v satisfies the above two
properties. We call v the weighted level ancestor of u at depth w, and denote it
by WLA(u, w).

Assume that log W = O(log n). In the internal-memory setting, we can con-
struct an index that requires O(n) words of space and finds WLA(u, w) in
O(log log n) time [4]. In the following, we describe the result of a new WLA
index that works cache-obliviously, which may be of independent interest. This
result is based on a recursive structure with careful space management, whose
proof is deferred to the full paper.

Lemma 5. We can construct a cache-oblivious index on R such that for any
node u and any integer w, WLA(u, w) can be reported in O(log log

B
n) I/Os.

The total space of the index is O(n/B) disk pages. ��

2.6 Cache-Oblivious Index for Join Operation

Let T be a text of length n. For any two strings Q1 and Q2, suppose that
LCP (Q1, T) and LCP (Q2, T) are known. The join operation for Q1 and Q2 is
to compute LCP (Q1Q2, T), where Q1Q2 is the concatenation of Q1 and Q2.

Cole et al. (Section 5 of [13]) had developed an index of O(n log n) words that
performs the join operation in O(log log n) time in the internal-memory setting.
Their index assumes the internal-memory results of LCA index, Y-fast trie, and
WLA index. In the following lemma, we give an index that supports efficient
join operations in the cache-oblivious setting.

Lemma 6. We can construct a cache-oblivious index on T of O((n log n)/B)
disk pages and supports the join operation in O(log logB n) I/Os.

Proof. Using Lemmas 3, 4, and 5, we can directly extend Cole et al.’s index into
a cache-oblivious index. ��

3 A Review of Cole et al.’s k-Error Matching

In this section, we review the internal-memory index for k-error matching pro-
posed by Cole et al. [13], and explain the challenge in turning it into a cache-
oblivious index.

To index a text T of length n, Cole et al.’s index includes two data structures:
(1) the suffix tree of T that occupies O(n) words, and (2) a special tree structure,
called k-error tree, that occupies a total of O(n logk n) words in space. The k-
error tree connects a number of (k−1)-error trees, each of which in turn connects

46 W.-K. Hon et al.

to a number of (k − 2)-error trees, and so on. The bottom of this recursive
structure are 0-error trees.

Given a pattern P , Cole et al.’s matching algorithm considers different ways of
making k edit operations on P in order to obtain an exact match in T . Intuitively,
the matching algorithm first considers all possible locations of the leftmost error
on P to obtain a match; then for each location i that has an error, we can focus on
searching the remaining suffix, P [i + 1..|P |], for subsequent errors. The searches
are efficiently supported by the recursive tree structure. More precisely, at the
top level, the k-error tree will immediately identify all matches of P in T with no
errors; in addition, for those matches of P with at least one error, the k-error tree
classifies the different ways that the leftmost edit operation on P into O(log n)
groups, and then each group creates a search in a dedicated (k − 1)-error tree.
Subsequently, each (k − 1)-error tree being searched will immediately identify all
matches of P with one error, while for those matches of P with at least two errors,
the (k− 1)-error tree further classifies the different ways that the second-leftmost
edit operation on P into O(log n) groups, and then each group creates a search
in a dedicated (k − 2)-error tree. The process continues until we are searching a
0-error tree, in which all matches of P with exactly k errors are reported.

The classification step in each k′-error tree is cleverly done to avoid repeatedly
accessing characters in P . It does so by means of a constant number of LCA,
LCP, Pred, and WLA queries; then, we are able to create enough information
(such as the starting position of the remaining suffix of P to be matched) to
guide the subsequent O(log n) searches in the (k′ − 1)-error trees. Reporting
matches in each error tree can also be done by a constant number of LCA, LCP,
Pred, and WLA queries. In total, it can be done by O(logk n) of these queries.
See Figure 1 for the framework of Cole et al.’s algorithm.

Each LCA, Pred, or WLA query can be answered in O(log log n) time. For
the LCP queries, they are all in the form of LCP (Pi, T), where Pi denotes
the suffix P [i..|P |]. Instead of computing these values on demand, Cole et al.
computes all these LCP values at the beginning of the algorithm. There are
|P | such LCP values, which can be computed in O(|P |) time by exploiting the
suffix links of the suffix tree of T (the algorithm is essentially McCreight’s suffix
tree construction algorithm [19]). Consequently, each LCP query is returned in
O(1) time when needed. Then, Cole et al.’s index supports k-error matching in
O(|P |+logk n log log n+occ) time, where occ denotes the number of occurrences.

3.1 Externalization of Cole et al.’s Index

One may now think of turning Cole et al.’s index directly into a cache-oblivious
index, based on the existing techniques. While each LCA, Pred, or WLA query
can be answered in O(log log

B
n) I/Os by storing suitable data structures (See

Lemmas 3, 4, and 5), the bottleneck lies in answering the O(logk n) LCP queries.
In the external memory setting, though we can replace the suffix tree with Bro-
dal and Fagerberg’s cache-oblivious string dictionary (Lemma 2), we can no
longer exploit the suffix links as efficiently as before. That means, if we compute
LCP (Pi, T) for all i in advance, we will need Ω(|P |2/B) I/Os. Alternatively, if

Cache-Oblivious Index for Approximate String Matching 47

Algorithm Approximate Match(P)
Input: A pattern P
Output: All occurrences of k-error match of P in T
1. R ← k-error tree of T ;
2. Search Error Tree(P,R,nil);
3. return;

Subroutine Search Error Tree(P, R, I)
Input: A pattern P , an error tree R, information I to guide the search

of P in R
1. if R is a 0-error tree
2. then Output all matches of P with k errors based on R and I ;
3. return;
4. else (∗ R is a k′-error tree for some k′ > 0 ∗)
5. Output all matches of P with k − k′ errors based on R

and I ;
6. Classify potential error positions into O(log n) groups

based on P , R, and I ;
7. for each group i
8. Identify the (k′ − 1)-error tree Ri corresponding

to group i;
9. Compute information Ii to guide the search of P

in Ri;
10. Search Error Tree(P, Ri, Ii);
11. return;

Fig. 1. Cole et al.’s algorithm for k-error matching

we compute each LCP query on demand without doing anything at the begin-
ning, we will need a total of Ω((logk n)|P |/B) I/Os to answer all LCP queries
during the search process. In summary, a direct translation of Cole et al.’s index
into an external memory index will need Ω((min{|P |2, |P | logk n} + occ)/B +
logk n log logB n) I/Os for k-error matching.

In the next section, we propose another approach, where we compute some
useful LCP values using O(|P |/B + k logB n) I/Os at the beginning, and each
subsequent query of LCP (Pi, T) can be answered efficiently in O(log logB n)
I/Os (see Lemma 9 in Section 4). This result leads us to the following theorem.

Theorem 1. For a fixed integer k, we can construct a cache-oblivious index on
T of size O((n logk n)/B) disk pages such that, given any pattern P , the k-error
matches of P can be found in O((|P | + occ)/B + logk n log log

B
n) I/Os. ��

4 Cache-Oblivious k-Error Matching

Let P be a pattern, and let Pi = P [i..|P |] be a suffix of P . In this section, our
target is to perform some preprocessing on P in O(|P |/B + k logB n) I/Os to

48 W.-K. Hon et al.

obtain some useful LCP (Pi, T) values, such that subsequent query of LCP (Pj , T)
for any j can be answered in O(log logB n) I/Os.

We observe that for a general pattern P , the above target may be difficult to
achieve. Instead, we take advantage by concerning only those P that potentially
has k-error matches. We formulate a notion called k-partitionable and show that

– if P is k-partitionable, we can achieve the above target;
– if P is not k-partitionable, there must be no k-error match of P in T .

In Section 4.1, we first define the k-partitionable property, and describe an
efficient screening test that checks whether P is k-partitionable; in case P is
k-partitionable, the screening test would have computed LCP (Pi, T) values for
some i as a by-product. In Section 4.2, we show how to utilize these precomputed
LCP values to answer LCP (Pj , T) for any j in O(log logB n) I/Os.

In the following, we assume that we have maintained the suffix array and
inverse suffix array of T . Each entry of these two arrays will be accessed one at
a time, at the cost of one I/O per access.

4.1 k-Partitionable and Screening Test

Consider the following partitioning process on P . In Step 1, we delete the first �
characters of P where � is the LCP length reported by LCP (P, T). While P is not
empty, Step 2 removes further the first character from P . Then, we repeatedly
apply Step 1 and Step 2 until P is empty. In this way, P is partitioned into
π1, c1, π2, c2, . . . , πd, cd, πd+1 such that πi is a string that appears in T , and ci is
called a cut-character such that πici is a string that does not appear in T . (Note
that πd+1 is an empty string if P becomes empty after some Step 2.) Note that
this partitioning is unique, and we call this the greedy partitioning of P .

Definition 1. P is called k-partitionable if the greedy partitioning of P consists
of at most k cut-characters. ��

The following lemma states that k-partitionable property is a necessary condition
for the existence of k-error match.

Lemma 7. If P has a k-error match, P is k-partitionable. ��

The screening test on P performs the greedy partitioning of P to check if P
is k-partitionable. If not, we can immediately conclude that P does not have a
k-error match in T . One way to perform the screening test is to apply Lemma 2
repeatedly, so that we discover π1 and c1 in O(|P |/B+logB n) I/Os, then discover
π2 and c2 in O((|P | − |π1| − 1)/B + log

B
n) I/Os, and so on. However, in the

worst case, this procedure will require O(k(|P |/B+logB n)) I/Os. In the following
lemma, we make a better use of Lemma 2 with the standard doubling technique
and show how to use O(|P |/B + k log

B
n) I/Os to determine whether P passes

the screening test or not.

Lemma 8. The screening test on P can be done cache-obliviously in O(|P |/B+
k logB n) I/Os.

Cache-Oblivious Index for Approximate String Matching 49

Proof. Let r = �|P |/k�. In Round 1, we perform the following steps.

– We apply Lemma 2 on P [1..r] to see if it appears in T . If so, we double the
value of r and check if P [1..r] appears in T . The doubling continues until we
obtain some P [1..r] which does not appear in T , and in which case, we have
also obtained π1 and LCP (π1, T).

– Next, we remove the prefix π1 from P . The first character of P will then
become the cut-character c1, and we apply Lemma 2 to get LCP (c1, T).
After that, remove c1 from P .

In each subsequent round, say Round i, we reset the value of r to be �|P |/k�, and
apply the same steps to find πi and ci (as well as LCP (πi, T) and LCP (ci, T)).
The algorithm stops when P is empty, or when we get ck+1.

It is easy to check that the above process correctly outputs the greedy parti-
tioning of P (or, up to the cut-character ck+1 if P does not become empty) and
thus checks if P is k-partitionable. The number of I/Os of the above process can
be bounded as follows. Let ai denote the number of times we apply Lemma 2
in Round i, and bi denote the total number of characters compared in Round i.
Then, the total I/O cost is at most O((

∑
i bi)/B + (

∑
i ai) log

B
n) by Lemma 2.

The term
∑

i bi is bounded by O(|P | + k) because Round i compares O(|πi| +
�|P |/k�) characters, and there are only O(k) rounds. For ai, it is bounded by
O(log(k|πi|/|P |) + 1), so that by Jensen’s inequality, the term

∑
i ai is bounded

by O(k). ��

4.2 Computing LCP for k-Partitionable Pattern

In case P is k-partitionable, the screening test in Section 4.1 would also have
computed the answers for LCP (πi, T) and LCP (ci, T). To answer LCP (Pj , T),
we will make use of the join operation (Lemma 6) as follows. Firstly, we deter-
mine which πi or ci covers the jth position of P .4 Then, there are two cases:

– Case 1: If the jth position of P is covered by πi, we notice that the LCP
length of LCP (Pj , T) cannot be too long since πi+1ci+1 does not appear in
T . Denote πi(j) to be the suffix of πi that overlaps with Pj . Indeed, we have:

Fact 1. LCP (Pj , T) = LCP (πi(j)ciπi+1, T).

This shows that LCP (Pj , T) can be found by the join operations in Lemma 6
repeatedly on πi(j), ci and πi+1. The SA range of πi(j) can be found easily
using SA, SA−1 and WLA as follows. Let [p, q] be the SA range of πi. The
pth smallest suffix is the string T [SA[p]..n], which has πi as a prefix. We
can compute p′ = SA−1[SA[p] + j], such that the p′th smallest suffix has
πi(j) as a prefix. Using the WLA index, we can locate the node (or edge)
in the suffix tree of T corresponding to πi(j). Then, we can retrieve the
required SA range from this node. The LCP query on Pj can be answered
in O(log log

B
n) I/Os.

4 This is in fact a predecessor query and can be answered in O(log logB n) I/Os by
maintaining a Y-fast trie for the starting positions of each πi and ci.

50 W.-K. Hon et al.

– Case 2: If ci is the jth character of P , the LCP query on Pj can be answered
by the join operation on ci and πi+1 in O(log logB n) I/Os, using similar
arguments as in Case 1.

Thus, we can conclude the section with the following lemma.

Lemma 9. Let T be a text of length n, and k be a fixed integer. Given any
pattern P , we can perform a screening test in O(|P |/B + k logB n) I/Os such
that if P does not pass the test, it implies there is no k-error match of P in
T . In case P passes the test, LCP (P [j..|P |], T) for any j can be returned in
O(log log

B
n) I/Os. ��

5 O(n log n) Space Cache-Oblivious Index

To obtain an O(n log n)-space index, we externalize Chan et al.’s internal-memory
index, so that for patterns longer than logk+1 n, they can be searched in O((|P |+
occ)/B + logk(k+1) n log log n) I/Os. Roughly speaking, this index consists of a
‘simplified’ version of the index in Theorem 1, together with the range-searching
index by Arge et al. [1] to answer the Tree-Cross-Product queries. To handle short
patterns, we find that the internal-memory index of Lam et al. [17] can be used di-
rectly without modification, so that short patterns can be searched in O(logk(k+1)

n log log n + occ/B) I/Os.
Due to space limitation, we only state our result obtained by the above

schemes. Details are deferred to the full paper.

Theorem 2. For a constant k ≥ 2, we can construct a cache-oblivious index
on T of size O(n log n/B) pages such that on given any pattern P , the k-error
matches of P can be found in O((|P |+ occ)/B + logk(k+1) n log log n) I/Os. For
k = 1, searching takes O((|P | + occ)/B + log3 n logB n) I/Os. ��

Acknowledgement

The authors would like to thank Gerth Stølting Brodal and Rolf Fagerberg for
discussion on their results in [9], and the anonymous referees for their comments.

References

1. Arge, L., Brodal, G.S., Fagerberg, R., Laustsen, M.: Cache-Oblivious Planar Or-
thogonal Range Searching and Counting. In: Proc. of Annual Symposium on Com-
putational Geometry, pp. 160–169 (2005)

2. Aggarwal, A., Vitter, J.S.: The Input/Output Complexity of Sorting and Related
Problems. Communications of the ACM 31(9), 1116–1127 (1988)

3. Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewenstein, N., Rodeh,
M.: Indexing and Dictionary Matching with One Error. In: Proc. of Workshop on
Algorithms and Data Structures, pp. 181–192 (1999)

Cache-Oblivious Index for Approximate String Matching 51

4. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic Text and Static
Pattern Matching. In: Proc. of Workshop on Algorithms and Data Structures, pp.
340–352 (2003)

5. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Proc. of Latin
American Symposium on Theoretical Informatics, pp. 88–94 (2000)

6. Bender, M.A., Farach-Colton, M., Kuszmaul, B.C.: Cache-Oblivious String B-trees.
In: Proc. of Principles of Database Systems, pp. 233–242 (2006)

7. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-Oblivious B-trees. In:
Proc. of Foundations of Computer Science, pp. 399–409 (2000)

8. Brodal, G.S., Fagerberg, R.: Funnel Heap—A Cache Oblivious Priority Queue. In:
Proc. of Int. Symposium on Algorithms and Computation, pp. 219–228 (2002)

9. Brodal, G.S., Fagerberg, R.: Cache-Oblivious String Dictionaries. In: Proc. of Sym-
posium on Discrete Algorithms, pp. 581–590 (2006)

10. Buchsbaum, A.L., Goodrich, M.T., Westbrook, J.: Range Searching Over Tree
Cross Products. In: Proc. of European Symposium on Algorithms, pp. 120–131
(2000)

11. Chan, H.L., Lam, T.W., Sung, W.K., Tam, S.L., Wong, S.S.: A Linear Size Index
for Approximate Pattern Matching. In: Proc. of Symposium on Combinatorial
Pattern Matching, pp. 49–59 (2006)

12. Cobbs, A.: Fast Approximate Matching using Suffix Trees. In: Proc. of Symposium
on Combinatorial Pattern Matching, pp. 41–54 (1995)

13. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary Matching and Indexing with
Errors and Don’t Cares. In: Proc. of Symposium on Theory of Computing, pp.
91–100 (2004)

14. Ferragina, P., Grossi, R.: The String B-tree: A New Data Structure for String
Searching in External Memory and Its Application. JACM 46(2), 236–280 (1999)

15. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-Oblivious Algo-
rithms. In: Proc. of Foundations of Computer Science, pp. 285–298 (1999)

16. Harel, D., Tarjan, R.: Fast Algorithms for Finding Nearest Common Ancestor.
SIAM Journal on Computing 13, 338–355 (1984)

17. Lam, T.W., Sung, W.K., Wong, S.S.: Improved Approximate String Matching Us-
ing Compressed Suffix Data Structures. In: Proc. of International Symposium on
Algorithms and Computation, pp. 339–348 (2005)

18. Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

19. McCreight, E.M.: A Space-economical Suffix Tree Construction Algorithm.
JACM 23(2), 262–272 (1976)

20. Prokop, H.: Cache-Oblivious Algorithms, Master’s thesis, MIT (1999)
21. Ukkonen, E.: Approximate Matching Over Suffix Trees. In: Proc. of Symposium

on Combinatorial Pattern Matching, pp. 228–242 (1993)
22. van Emde Boas, P.: Preserving Order in a Forest in Less Than Logarithmic Time

and Linear Space. Information Processing Letters 6(3), 80–82 (1977)
23. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and Implementation of an Effi-

cient Priority Queue. Mathematical Systems Theory 10, 99–127 (1977)
24. Vitter, J.S.: External Memory Algorithms and Data Structures: Dealing with Mas-

sive Data, 2007. Revision to the article that appeared in ACM Computing Sur-
veys 33(2), 209–271 (2001)

25. Weiner, P.: Linear Pattern Matching Algorithms. In: Proc. of Symposium on
Switching and Automata Theory, pp. 1–11 (1973)

26. Willard, D.E.: Log-Logarithmic Worst-Case Range Queries are Possible in
SpaceΘ(N). Information Processing Letters 17(2), 81–84 (1983)

Improved Approximate String Matching and

Regular Expression Matching on Ziv-Lempel
Compressed Texts

Philip Bille1, Rolf Fagerberg2, and Inge Li Gørtz3,�

1 IT University of Copenhagen. Rued Langgaards Vej 7, 2300 Copenhagen S,
Denmark

beetle@itu.dk
2 University of Southern Denmark. Campusvej 55, 5230 Odense M, Denmark

rolf@imada.sdu.dk
3 Technical University of Denmark. Informatics and Mathematical Modelling,

Building 322, 2800 Kgs. Lyngby, Denmark
ilg@imm.dtu.dk

Abstract. We study the approximate string matching and regular ex-
pressionmatchingproblem for the casewhen the text tobe searched is com-
pressed with theZiv-Lempel adaptive dictionary compression schemes. We
present a time-space trade-off that leads to algorithms improving the pre-
viously known complexities for both problems. In particular, we signifi-
cantly improve the space bounds. In practical applications the space is
likely to be a bottleneck and therefore this is of crucial importance.

1 Introduction

Modern text databases, e.g., for biological and World Wide Web data, are huge.
To save time and space the data must be kept in compressed form and allow
efficient searching. Motivated by this Amir and Benson [1,2] initiated the study
of compressed pattern matching problems, that is, given a text string Q in com-
pressed form Z and a specified (uncompressed) pattern P , find all occurrences
of P in Q without decompressing Z. The goal is to search more efficiently than
the näıve approach of decompressing Z into Q and then searching for P in Q.
Various compressed pattern matching algorithms have been proposed depending
on the type of pattern and compression method, see e.g., [2, 9,11,10,17, 13]. For
instance, given a string Q of length u compressed with the Ziv-Lempel-Welch
scheme [22] into a string of length n, Amir et al. [3] gave an algorithm for find-
ing all exact occurrences of a pattern string of length m in O(n + m2) time and
space.

In this paper we study the classical approximate string matching and reg-
ular expression matching problems on compressed texts. As in previous work
on these problems [10, 17] we focus on the popular ZL78 and ZLW adaptive dic-
tionary compression schemes [24, 22]. We present a new technique that gives
� Supported by a grant from the Carlsberg Foundation.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 52–62, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improved Approximate String Matching and Regular Expression 53

a general time-space trade-off. The resulting algorithms improve all previously
known complexities for both problems. In particular, we significantly improve
the space bounds. When searching large text databases space is likely to be a
bottleneck and therefore this is of crucial importance.

In the following sections we give the details of our contribution.

1.1 Approximate String Matching

Given strings P and Q and an error threshold k, the approximate string matching
problem is to find all ending positions of substrings of Q whose edit distance to
P is at most k. The edit distance between two strings is the minimum number
of insertions, deletions, and substitutions needed to convert one string to the
other. The classical dynamic programming solution due to Sellers [20] solves the
problem in O(um) time and O(m) space, where u and m are the length of Q
and P , respectively. Several improvements of this result are known, see e.g., the
survey by Navarro [16]. For this paper we are particularly interested in the fast
solution for small values of k, namely, the O(uk) time algorithm by Landau and
Vishkin [12] and the more recent O(uk4/m + u) time algorithm due to Cole and
Hariharan [7] (we assume w.l.o.g. that k < m). Both of these can be implemented
in O(m) space.

Recently, Kärkkäinen et al. [10] studied the problem for text compressed with
the ZL78/ZLW compression schemes. If n is the length of the compressed text
their algorithm achieves O(nmk + occ) time and O(nmk) space, where occ is
the number of occurrences of the pattern. Currently, this is the only non-trivial
worst-case bound for the problem. For special cases and restricted versions of the
problem other algorithms have been proposed [14,19]. An experimental study of
the problem and an optimized practical implementation can be found in [18].

In this paper, we show that the problem is closely connected to the uncom-
pressed problem and we achieve a simple time-space trade-off. More precisely,
let t(m, u, k) and s(m, u, k) denote the time and space, respectively, needed by
any algorithm to solve the (uncompressed) approximate string matching prob-
lem with error threshold k for pattern and text of length m and u, respectively.
We show the following result.

Theorem 1. Let Q be a string compressed using ZL78 into a string Z of length
n and let P be a pattern of length m. Given Z, P , and a parameter τ ≥ 1, we can
find all approximate occurrences of P in Q with at most k errors in O(n(τ +m+
t(m, 2m + 2k, k))+ occ) expected time and O(n/τ + m + s(m, 2m + 2k, k)+ occ)
space.

The expectation is due to hashing and can be removed at an additional O(n)
space cost. In this case the bound also hold for ZLW compressed strings. We as-
sume that the algorithm for the uncompressed problem produces the matches
in sorted order (as is the case for all algorithms that we are aware of). Other-
wise, additional time for sorting must be included in the bounds. To compare
Theorem 1 with the result of Karkkainen et al. [10] plug in the Landau-Vishkin
algorithm and set τ = mk. This gives an algorithm using O(nmk+occ) time and

54 P. Bille, R. Fagerberg, and I.L. Gørtz

O(n/mk+m+occ) space. This matches the best known time bound while improv-
ing the space by a factor Θ(m2k2). Alternatively, if we plugin the Cole-Hariharan
algorithm and set τ = k4 +m we get an algorithm using O(nk4 +nm+occ) time
and O(n/(k4 +m)+m+occ) space. Whenever k = O(m1/4) this is O(nm+occ)
time and O(n/m + m + occ) space.

To the best of our knowledge, all previous non-trivial compressed pattern
matching algorithms for ZL78/ZLW compressed text, with the exception of a very
slow algorithm for exact string matching by Amir et al. [3], use Ω(n) space.
This is because the algorithms explicitly construct the dictionary trie of the
compressed texts. Surprisingly, our results show that for the ZL78 compression
schemes this is not needed to get an efficient algorithm. Conversely, if very little
space is available our trade-off shows that it is still possible to solve the problem
without decompressing the text.

1.2 Regular Expression Matching

Given a regular expression R and a string, Q the regular expression matching
problem is to find all ending position of substrings in Q that matches a string in
the language denoted by R. The classic textbook solution to this problem due
to Thompson [21] solves the problem in O(um) time and O(m) space, where u
and m are the length of Q and R, respectively. Improvements based on the Four
Russian Technique or word-level parallelism are given in [15, 6,4].

The only solution to the compressed problem is due to Navarro [17]. His
solution depends on word RAM techniques to encode small sets into memory
words, thereby allowing constant time set operations. On a unit-cost RAM with
w-bit words this technique can be used to improve an algorithm by at most
a factor O(w). For w = O(log u) a similar improvement is straightforward to
obtain for our algorithm and we will therefore, for the sake of exposition, ignore
this factor in the bounds presented below. With this simplification Navarro’s
algorithm uses O(nm2 + occ · m log m) time and O(nm2) space, where n is the
length of the compressed string. In this paper we show the following time-space
trade-off:

Theorem 2. Let Q be a string compressed using ZL78 or ZLW into a string Z
of length n and let R be a regular expression of length m. Given Z, R, and a
parameter τ ≥ 1, we can find all occurrences of substrings matching R in Q in
O(nm(m + τ) + occ · m logm) time and O(nm2/τ + nm) space.

If we choose τ = m we obtain an algorithm using O(nm2 + occ · m log m) time
and O(nm) space. This matches the best known time bound while improving
the space by a factor Θ(m). With word-parallel techniques these bounds can be
improved slightly.

1.3 Techniques

If pattern matching algorithms for ZL78 or ZLW compressed texts use Ω(n) space
they can explicitly store the dictionary trie for the compressed text and apply

Improved Approximate String Matching and Regular Expression 55

any linear space data structure to it. This has proven to be very useful for
compressed pattern matching. However, as noted by Amir et al. [3], Ω(n) may
not be feasible for large texts and therefore more space-efficient algorithms are
needed. Our main technical contribution is a simple o(n) data structure for
ZL78 compressed texts. The data structure gives a way to compactly represent a
subset of the trie which combined with the compressed text enables algorithms
to quickly access relevant parts of the trie. This provides a general approach
to solve compressed pattern matching problems in o(n) space, which combined
with several other techniques leads to the above results. Due to lack of space we
have left out the details for regular expression matching. They can be found in
the full version of the paper [5].

2 The Ziv-Lempel Compression Schemes

Let Σ be an alphabet containing σ = |Σ| characters. A string Q is a sequence of
characters from Σ. The length of Q is u = |Q| and the unique string of length 0
is denoted ε. The ith character of Q is denoted Q[i] and the substring beginning
at position i of length j − i + 1 is denoted Q[i, j]. The Ziv-Lempel algorithm
from 1978 [24] provides a simple and natural way to represent strings, which we
describe below. Define a ZL78 compressed string (abbreviated compressed string
in the remainder of the paper) to be a string of the form

Z = z1 · · · zn = (r1, α1)(r2, α2) . . . (rn, αn),

where ri ∈ {0, . . . , i − 1} and αi ∈ Σ. Each pair zi = (ri, αi) is a compression
element, and ri and αi are the reference and label of zi, denoted by reference(zi)
and label(zi), respectively. Each compression element represents a string, called a
phrase. The phrase for zi, denoted phrase(zi), is given by the following recursion.

phrase(zi) =

{
label(zi) if reference(zi) = 0,
phrase(reference(zi)) · label(zi) otherwise.

The · denotes concatenation of strings. The compressed string Z represents the
concatenation of the phrases, i.e., the string phrase(z1) · · · phrase(zn).

Let Q be a string of length u. In ZL78, the compressed string represent-
ing Q is obtained by greedily parsing Q from left-to-right with the help of a
dictionary D. For simplicity in the presentation we assume the existence of
an initial compression element z0 = (0, ε) where phrase(z0) = ε. Initially, let
z0 = (0, ε) and let D = {ε}. After step i we have computed a compressed
string z0z1 · · · zi representing Q[1, j] and D = {phrase(z0), . . . , phrase(zi)}. We
then find the longest prefix of Q[j + 1, u − 1] that matches a string in D,
say phrase(zk), and let phrase(zi+1) = phrase(zk) · Q[j + 1 + |phrase(zk)|]. Set
D = D ∪ {phrase(zi+1)} and let zi+1 = (k, Q[j + 1 + |phrase(zi+1)|]). The com-
pressed string z0z1 . . . zi+1 now represents the string Q[1, j+ |phrase(zi+1)|]) and
D = {phrase(z0), . . . , phrase(zi+1)}. We repeat this process until all of Q has
been read.

56 P. Bille, R. Fagerberg, and I.L. Gørtz

1 2

34

0D
Q = ananas

Z = (0,a)(0,n)(1,n)(1,s)

a

s

n

n

Fig. 1. The compressed string Z representing Q and the corresponding dictionary trie
D. Taken from [17].

Since each phrase is the concatenation of a previous phrase and a single char-
acter, the dictionary D is prefix-closed, i.e., any prefix of a phrase is a also a
phrase. Hence, we can represent it compactly as a trie where each node i corre-
sponds to a compression element zi and phrase(zi) is the concatenation of the
labels on the path from zi to node i. Due to greediness, the phrases are unique
and therefore the number of nodes in D for a compressed string Z of length n is
n + 1. An example of a string and the corresponding compressed string is given
in Fig. 1.

Throughout the paper we will identify compression elements with nodes in
the trie D, and therefore we use standard tree terminology, briefly summed up
here: The distance between two elements is the number of edges on the unique
simple path between them. The depth of element z is the distance from z to z0

(the root of the trie). An element x is an ancestor of an element z if phrase(x)
is a prefix of phrase(z). If also |phrase(x)| = |phrase(z)| − 1 then x is the parent
of z. If x is ancestor of z then z is a descendant of x and if x is the parent of
z then z is the child of x.The length of a path p is the number of edges on the
path, and is denoted |p|. The label of a path is the concatenation of the labels
on these edges.

Note that for a compression element z, reference(z) is a pointer to the parent
of z and label(z) is the label of the edge to the parent of z. Thus, given z we
can use the compressed text Z directly to decode the label of the path from
z towards the root in constant time per element. We will use this important
property in many of our results.

If the dictionary D is implemented as a trie it is straightforward to compress
Q or decompress Z in O(u) time. Furthermore, if we do not want to explicitly
decompress Z we can compute the trie in O(n) time, and as mentioned above,
this is done in almost all previous compressed pattern matching algorithm on
Ziv-Lempel compression schemes. However, this requires at least Ω(n) space
which is insufficient to achieve our bounds. In the next section we show how to
partially represent the trie in less space.

2.1 Selecting Compression Elements

Let Z = z0 . . . zn be a compressed string. For our results we need an algorithm
to select a compact subset of the compression elements such that the distance

Improved Approximate String Matching and Regular Expression 57

from any element to an element in the subset is no larger than a given threshold.
More precisely, we show the following lemma.

Lemma 1. Let Z be a compressed string of length n and let 1 ≤ τ ≤ n be
parameter. There is a set of compression elements C of Z, computable in O(nτ)
expected time and O(n/τ) space with the following properties:

(i) |C| = O(n/τ).
(ii) For any compression element zi in Z, the minimum distance to any com-

pression element in C is at most 2τ .

Proof. Let 1 ≤ τ ≤ n be a given parameter. We build C incrementally in a
left-to-right scan of Z. The set is maintained as a dynamic dictionary using
dynamic perfect hashing [8], i.e., constant time worst-case access and constant
time amortized expected update. Initially, we set C = {z0}. Suppose that we
have read z0, . . . , zi. To process zi+1 we follow the path p of references until we
encounter an element y such that y ∈ C. We call y the nearest special element
of zi+1. Let l be the number of elements in p including zi+1 and y. Since each
lookup in C takes constant time the time to find the nearest special element is
O(l). If l < 2 · τ we are done. Otherwise, if l = 2 · τ , we find the τth element y′

in the reference path and set C := C ∪ {y′}. As the trie grows under addition of
leaves condition (ii) follows. Moreover, any element chosen to be in C has at least
τ descendants of distance at most τ that are not in C and therefore condition
(i) follows. The time for each step is O(τ) amortized expected and therefore the
total time is O(nτ) expected. The space is proportional to the size of C hence
the result follows. ��

2.2 Other Ziv-Lempel Compression Schemes

A popular variant of ZL78 is the ZLW compression scheme [22]. Here, the label of
compression elements are not explicitly encoded, but are defined to be the first
character of the next phrase. Hence, ZLW does not offer an asymptotically better
compression ratio over ZL78 but gives a better practical performance. The ZLW
scheme is implemented in the UNIX program compress. From an algorithmic
viewpoint ZLW is more difficult to handle in a space-efficient manner since labels
are not explicitly stored with the compression elements as in ZL78. However, if
Ω(n) space is available then we can simply construct the dictionary trie. This
gives constant time access to the label of a compression elements and therefore
ZL78 and ZLW become ”equivalent”. This is the reason why Theorem 1 holds
only for ZL78 when space is o(n) but for both when the space is Ω(n).

Another well-known variant is the ZL77 compression scheme [23]. Unlike ZL78
and ZLW phrases in the ZL77 scheme can be any substring of text that has already
been processed. This makes searching much more difficult and none of the known
techniques for ZL78 and ZLW seems to be applicable. The only known algorithm
for pattern matching on ZL77 compressed text is due to Farach and Thorup [9]
who gave an algorithm for the exact string matching problem.

58 P. Bille, R. Fagerberg, and I.L. Gørtz

3 Approximate String Matching

In this section we consider the compressed approximate string matching problem.
Before presenting our algorithm we need a few definitions and properties of
approximate string matching.

Let A and B be strings. Define the edit distance between A and B, γ(A, B),
to be the minimum number of insertions, deletions, and substitutions needed to
transform A to B. We say that j ∈ [1, |S|] is a match with error at most k of
A in a string S if there is an i ∈ [1, j] such that γ(A, S[i, j]) ≤ k. Whenever k
is clear from the context we simply call j a match. All positions i satisfying the
above property are called a start of the match j. The set of all matches of A in S
is denoted Γ (A, S). We need the following well-known property of approximate
matches.

Proposition 1. Any match j of A in S with at most k errors must start in the
interval [max(1, j − |A| + 1 − k), min(|S|, j − |A|+ 1 + k)].

Proof. Let l be the length of a substring B matching A and ending at j. If the
match starts outside the interval then either l < |A| − k or l > |A|+ k. In these
cases, more than k deletions or k insertions, respectively, are needed to transform
B to A. ��

3.1 Searching for Matches

Let P be a string of length m and let k be an error threshold. To avoid triv-
ial cases we assume that k < m. Given a compressed string Z = z0z1 . . . zn

representing a string Q of length u we show how to find Γ (P, Q) efficiently.
Let li = |phrase(zi)|, let u0 = 1, and let ui = ui−1 + li−1, for 1 ≤ i ≤ n, i.e.,

li is the length of the ith phrase and ui is the starting position in Q of the ith
phrase. We process Z from left-to-right and at the ith step we find all matches
in [ui, ui + li − 1]. Matches in this interval can be either internal or overlapping
(or both). A match j in [ui, ui + li − 1] is internal if it has a starting point in
[ui, ui + li − 1] and overlapping if it has a starting point in [1, ui − 1]. To find all
matches we will compute the following information for zi.

– The start position, ui, and length, li, of phrase(zi).
– The relevant prefix, rpre(zi), and the relevant suffix, rsuf(zi), where

rpre(zi) = Q[ui, min(ui + m + k − 1, ui + li − 1)] ,

rsuf(zi) = Q[max(1, ui + li −m− k), ui + li − 1] .

In other words, rpre(zi) is the largest prefix of length at most m + k of
phrase(zi) and rsuf(zi) is the substring of length m+ k ending at ui + li − 1.
For an example see Fig. 2.

– The match sets MI(zi) and MO(zi), where

MI(zi) = Γ (P, phrase(zi)) ,

MO(zi) = Γ (P, rsuf(zi−1) · rpre(zi)) .

We assume that both sets are represented as sorted lists in increasing order.

Improved Approximate String Matching and Regular Expression 59

phrase(zi)phrase(zi−1)

rsuf(zi−1) rsuf(zi)

rpre(zi)rpre(zi−1)

· · · · · ·

Fig. 2. The relevant prefix and the relevant suffix of two phrases in Q. Here,
|phrase(zi−1)| < m + k and therefore rsuf(zi−1) overlaps with previous phrases.

We call the above information the description of zi. In the next section we
show how to efficiently compute descriptions. For now, assume that we are given
the description of zi. Then, the set of matches in [ui, ui + li − 1] is reported as
the set

M(zi) = {j + ui − 1 | j ∈ MI(zi)} ∪
{j + ui − 1 − |rsuf(zi−1)| | j ∈ MO(zi) ∩ [ui, ui + li − 1]} .

We argue that this is the correct set. Since phrase(zi) = Q[ui, ui + li − 1] we
have that

j ∈ MI(zi) ⇔ j + ui − 1 ∈ Γ (P, Q[ui, ui + li − 1] .

Hence, the set {j+ui−1 | j ∈ MI(zi)} is the set of all internal matches. Similarly,
rsuf(zi−1) · rpre(zi) = Q[ui − |rsuf(zi−1)|, ui + |rpre(zi)| − 1] and therefore

j ∈ MO(zi)⇔j+ui−1−|rsuf(zi−1)| ∈ Γ (P, Q[ui−|rsuf(zi−1)|, ui+1+|rpre(zi)|]).

By Proposition 1 any overlapping match must start at a position within the
interval [max(1, ui−m+1−k), ui]. Hence, {j+ui−1−|rsuf(zi−1)| | j ∈ MO(zi)}
includes all overlapping matches in [ui, ui + li − 1]. Taking the intersection with
[ui, ui + li − 1] and the union with the internal matches it follows that the set
M(zi) is precisely the set of matches in [ui, ui+ li−1]. For an example see Fig. 3.

Next we consider the complexity of computing the matches. To do this we first
bound the size of the MI and MO sets. Since the length of any relevant suffix
and relevant prefix is at most m + k, we have that |MO(zi)| ≤ 2(m + k) < 4m,
and therefore the total size of the MO sets is at most O(nm). Each element in
the sets MI(z0), . . . , MI(zn) corresponds to a unique match. Thus, the total size
of the MI sets is at most occ, where occ is the total number of matches. Since
both sets are represented as sorted lists the total time to compute the matches
for all compression elements is O(nm + occ).

3.2 Computing Descriptions

Next we show how to efficiently compute the descriptions. Let 1 ≤ τ ≤ n be a
parameter. Initially, we compute a subset C of the elements in Z according to
Lemma 1 with parameter τ . For each element zj ∈ C we store lj , that is, the
length of phrase(zj). If lj > m + k we also store the index of the ancestor x of

60 P. Bille, R. Fagerberg, and I.L. Gørtz

Q = ananasbananer, P = base, Z = (0,a)(0,n)(1,n)(1,s)(0,b)(3,a)(2,e)(0,r)

Descriptions
z0 z1 z2 z3 z4 z5 z6 z7

ui 1 2 3 5 7 8 11 13
li 1 1 2 2 1 3 2 1
rpre(zi) a n an as b ana ne r
rsuf(zi) a an anas ananas nanasb asbana banane ananer
MI(zi) ∅ ∅ ∅ {2} ∅ ∅ ∅ ∅
MO(zi) ∅ ∅ ∅ {6} {6, 7} {5, 6, 7, 8} {2, 3, 4, 5, 6} {2, 3, 4, 6}
M(zi) ∅ ∅ ∅ {6} {7} {8, 9, 10} {12} ∅

Fig. 3. Example of descriptions. Z is the compressed string representing Q. We are
looking for all matches of the pattern P with error threshold k = 2 in Z. The set of
matches is {6, 7, 8, 9, 10, 12}.

zj of depth m + k. This information can easily be computed while constructing
C within the same time and space bounds, i.e., using O(nτ) time and O(n/τ)
space.

Descriptions are computed from left-to-right as follows. Initially, set l0 = 0,
u0 = 0, rpre(z0) = ε, rsuf(z0) = ε, MI(z0) = ∅, and MO(z0) = ∅. To compute the
description of zi, 1 ≤ i ≤ n, first follow the path p of references until we encounter
an element zj ∈ C. Using the information stored at zj we set li := |p| + lj and
ui = ui−1 + li−1. By Lemma 1(ii) the distance to zj is at most 2τ and therefore
li and ui can be computed in O(τ) time given the description of zi−1.

To compute rpre(zi) we compute the label of the path from z0 towards zi of
length min(m + k, li). There are two cases to consider: If li ≤ m + k we simply
compute the label of the path from zi to z0 and let rpre(zi) be the reverse of this
string. Otherwise (li > m + k), we use the ”shortcut” stored at zj to find the
ancestor zh of distance m + k to z0. The reverse of the label of the path from zh

to z0 is then rpre(zi). Hence, rpre(zi) is computed in O(m + k + τ) = O(m + τ)
time.

The string rsuf(zi) may be the divided over several phrases and we therefore
recursively follow paths towards the root until we have computed the entire
string. It is easy to see that the following algorithm correctly decodes the desired
substring of length min(m + k, ui) ending at position ui + li − 1.

1. Initially, set l := min(m + k, ui + li − 1), t := i, and s := ε.
2. Compute the path p of references from zt of length r = min(l, depth(zt))

and set s := s · label(p).
3. If r < l set l := l − r, t := t − 1, and repeat step 2.
4. Return rsuf(zi) as the reverse of s.

Since the length of rsuf(zi) is at most m+k, the algorithm finds it in O(m+k) =
O(m) time.

The match sets MI and MO are computed as follows. Let t(m, u, k) and
s(m, u, k) denote the time and space to compute Γ (A, B) with error threshold k

Improved Approximate String Matching and Regular Expression 61

for strings A and B of lengths m and u, respectively. Since |rsuf(zi−1)·rpre(zi)| ≤
2m + 2k it follows that MO(zi) can be computed in t(m, 2m + 2k, k) time and
s(m, 2m+2k, k) space. Since MI(zi) = Γ (P, phrase(zi)) we have that j ∈ MI(zi)
if and only if j ∈ MI(reference(zi)) or j = li. By Proposition 1 any match ending
in li must start within [max(1, li − m + 1 − k), min(li, li − m + 1 + k)]. Hence,
there is a match ending in li if and only if li ∈ Γ (P, rsuf ′(zi)) where rsuf′(zi) is
the suffix of phrase(zi) of length min(m + k, li). Note that rsuf′(zi) is a suffix of
rsuf(zi) and we can therefore trivially compute it in O(m + k) time. Thus,

MI(zi) = MI(reference(zi)) ∪ {li | li ∈ Γ (P, rsuf′(zi))} .

Computing Γ (P, rsuf′(zi)) uses t(m, m + k, k) time and s(m, m + k, k) space.
Subsequently, constructing MI(zi) takes O(|MI(zi)|) time and space. Recall that
the elements in the MI sets correspond uniquely to matches in Q and therefore
the total size of the sets is occ. Therefore, using dynamic perfect hashing [8] on
pointers to non-empty MI sets we can store these using in total O(occ) space.

3.3 Analysis

Finally, we can put the pieces together to obtain the final algorithm. The pre-
processing uses O(nτ) expected time and O(n/τ) space. The total time to com-
pute all descriptions and report occurrences is expected O(n(τ +m + t(m, 2m+
2k, k)) + occ). The description for zi, except for MI(zi), depends solely on the
description of zi−1. Hence, we can discard the description of zi−1, except for
MI(zi−1), after processing zi and reuse the space. It follows that the total space
used is O(n/τ + m + s(m, 2m + 2k, k) + occ). This completes the proof of Theo-
rem 1. Note that if we use Ω(n) space we can explicitly construct the dictionary.
In this case hashing is not needed and the bounds also hold for the ZLW com-
pression scheme.

References

1. Amir, A., Benson, G.: Efficient two-dimensional compressed matching. In: Pro-
ceedings of the 2nd Data Compression Conference, pp. 279–288 (1992)

2. Amir, A., Benson, G.: Two-dimensional periodicity and its applications. In: Pro-
ceedings of the 3rd Symposium on Discrete algorithms, pp. 440–452 (1992)

3. Amir, A., Benson, G., Farach, M.: Let sleeping files lie: pattern matching in Z-
compressed files. J. Comput. Syst. Sci. 52(2), 299–307 (1996)

4. Bille, P.: New algorithms for regular expression matching. In: Proceedings of the
33rd International Colloquium on Automata, Languages and Programming, pp.
643–654 (2006)

5. Bille, P., Fagerberg, R., Gørtz, I.L.: Improved approximate string matching and
regular expression matching on ziv-lempel compressed texts (2007) Draft of full
version available at arxiv.org/cs/DS/0609085

6. Bille, P., Farach-Colton, M.: Fast and compact regular expression matching, Sub-
mitted to a journal (2005) Preprint availiable at arxiv.org/cs/0509069

arxiv.org/cs/DS/0609085
arxiv.org/cs/0509069

62 P. Bille, R. Fagerberg, and I.L. Gørtz

7. Cole, R., Hariharan, R.: Approximate string matching: A simpler faster algorithm.
SIAM J. Comput. 31(6), 1761–1782 (2002)

8. Dietzfelbinger, M., Karlin, A., Mehlhorn, K., auf der Heide, F.M., Rohnert, H.,
Tarjan, R.: Dynamic perfect hashing: Upper and lower bounds. SIAM J. Com-
put. 23(4), 738–761 (1994)

9. Farach, M., Thorup, M.: String matching in Lempel-Ziv compressed strings. Algo-
rithmica 20(4), 388–404 (1998)

10. Kärkkäinen, J., Navarro, G., Ukkonen, E.: Approximate string matching on Ziv-
Lempel compressed text. J. Discrete Algorithms 1(3-4), 313–338 (2003)

11. Kida, T., Takeda, M., Shinohara, A., Miyazaki, M., Arikawa, S.: Multiple pattern
matching in LZW compressed text. In: Proceedings of the 8th Data Compression
Conference, pp. 103–112 (1998)

12. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.
J. Algorithms 10(2), 157–169 (1989)

13. Mäkinen, V., Ukkonen, E., Navarro, G.: Approximate matching of run-length com-
pressed strings. Algorithmica 35(4), 347–369 (2003)

14. Matsumoto, T., Kida, T., Takeda, M., Shinohara, A., Arikawa, S.: Bit-parallel
approach to approximate string matching in compressed texts. In: Proceedings of
the 7th International Symposium on String Processing and Information Retrieval,
pp. 221–228 (2000)

15. Myers, E.W.: A four-russian algorithm for regular expression pattern matching. J.
ACM 39(2), 430–448 (1992)

16. Navarro, G.: A guided tour to approximate string matching. ACM Comput.
Surv. 33(1), 31–88 (2001)

17. Navarro, G.: Regular expression searching on compressed text. J. Discrete Algo-
rithms 1(5-6), 423–443 (2003)

18. Navarro, G., Kida, T., Takeda, M., Shinohara, A., Arikawa, S.: Faster approximate
string matching over compressed text. In: Proceedings of the Data Compression
Conference (DCC ’01), p. 459. IEEE Computer Society, Washington, DC, USA
(2001)

19. Navarro, G., Raffinot, M.: A general practical approach to pattern matching over
Ziv-Lempel compressed text. Technical Report TR/DCC-98-12, Dept. of Computer
Science, Univ. of Chile (1998)

20. Sellers, P.: The theory and computation of evolutionary distances: Pattern recog-
nition. J. Algorithms 1, 359–373 (1980)

21. Thompson, K.: Programming techniques: Regular expression search algorithm.
Commun. ACM 11, 419–422 (1968)

22. Welch, T.A.: A technique for high-performance data compression. IEEE Com-
puter 17(6), 8–19 (1984)

23. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inform. Theory 23(3), 337–343 (1977)

24. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inform. Theory 24(5), 530–536 (1978)

Self-normalised Distance with Don’t Cares

Peter Clifford1 and Raphaël Clifford2

1 Dept. of Statistics, University of Oxford, UK
clifford@stats.ox.ac.uk

2 Dept. of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
clifford@cs.bris.ac.uk

Abstract. We present O(n log m) algorithms for a new class of prob-
lems termed self-normalised distance with don’t cares. The input is a
pattern p of length m and text t of length n > m. The elements of these
strings are either integers or wild card symbols. In the shift version, the
problem is to compute minα

�m−1
j=0 (α + pj − ti+j)

2 for all i, where wild
cards do not contribute to the sum. In the shift-scale version, the objec-
tive is to compute minα,β

�m−1
j=0 (α + βpj − ti+j)

2 for all i, similarly. We
show that the algorithms have the additional benefit of providing simple
O(n log m) solutions for the problems of exact matching with don’t cares,
exact shift matching with don’t cares and exact shift-scale matching with
don’t cares.

Classification: Algorithms and data structures; pattern matching;
string algorithms.

1 Introduction

A fundamental problem in image processing is to measure the similarity be-
tween a small image segment or template and regions of comparable size within
a larger scene. It is well known that the cross-correlation between the two can be
computed efficiently at every position in the larger image using the fast Fourier
transform (FFT). In practice, images may differ in a number of ways including
being rotated, scaled or affected by noise. We consider here the case where the
intensity or brightness of an image occurrence is unknown and where parts of
either image contain don’t care or wild card pixels, i.e. pixels that are consid-
ered to be irrelevant as far as image similarity is concerned. As an example, a
rectangular image segment may contain a facial image and the objective is to
identify the face in a larger scene. However, some faces in the larger scene are
in shadow and others in light. Furthermore, background pixels around the faces
may be considered to be irrelevant for facial recognition and these should not
affect the search algorithm.

In order to overcome the first difficulty of varying intensity within an image,
a standard approach is to compute the normalised cross-correlation when com-
paring a template to part of a larger image (see e.g. [12]). Thus both template
and image are rescaled in order to make any matches found more meaningful
and to allow comparisons between matches at different positions.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 63–70, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

64 P. Clifford and R. Clifford

For simplicity we will describe algorithms in a one-dimensional context in-
volving one-dimensional FFTs. The extension to two and higher dimensions is
straightforward.

Consider two strings with elements that are either integers in the range
1, . . . , N or don’t care symbols. Let the text t = t0, . . . , tn−1 and pattern p =
p0, . . . , pm−1. In the absence of don’t care symbols, the squared Euclidean dis-
tance between the pattern and the text at position i is

∑m−1
j=0 (pj − ti+j)2. In this

case, for each i, the pattern can be normalised, or fitted as closely as possible
to the text, by adding an equal quantity to its values to minimise the distance.
The fit can then be assessed by computing

Ai = minα

∑m−1
j=0 (α + pj − ti+j)2

for each i.
When either pj or ti+j is a don’t care symbol the contribution of the pair

to the sum is taken to be zero, i.e. they make no contribution to the distance
and the minimisation is carried out using the sum of the remaining terms. The
objective is to find the resulting values of Ai for each i. We call this the shift
version of the self-normalised distance problem with don’t cares.

More generally we can consider the problem of computing

Bi = minα,β

∑m−1
j=0 (α + βpj − ti+j)2

for each i with a similar convention for don’t care symbols. We call this the
shift-scale version of the self-normalised distance problem with don’t cares. We
show that in both cases the self-normalised distance problem can be solved in
O(n log m) by the use of fast Fourier transforms of integer vectors1.

Our main results also provide a O(n log m) time solution to the classic problem
of exact matching with don’t cares, which we believe is conceptually simpler than
existing methods since it only involves integer codes. Further, we obtain the same
time complexity for the problem of exact shift matching with don’t cares and
the new problem of exact shift-scale matching with don’t cares.

1.1 Previous Work

Combinatorial pattern matching has concerned itself mainly with strings of sym-
bolic characters where the distance between individual characters is specified by
some convention. However in recent years there has been a surge in interest in
provably fast algorithms for distance calculation and approximate matching be-
tween numerical strings. Many different metrics have been considered, with for
example, O(n

√
m log m) time solutions found for the Hamming distance [1, 14],

L1 distance [4, 6, 3] and less-than matching [2] problems and an O(δn log m)
algorithm for the δ-bounded version of the L∞ norm first discussed in [7] and
then improved in [6, 16]. A related problem to the shift version of self-normalised

1 We assume the RAM model of computation throughout in order to be consistent
with previous work on matching with wild cards.

Self-normalised Distance with Don’t Cares 65

distance is transposition invariant matching (see e.g. [17]) which has been con-
sidered under a number of different distance measures, including edit distance
and longest common subsequence. In the image processing literature, a fast and
practical solution to the problem of computing fast normalised cross-correlation
for template matching was given in [15].

The problem of determining the time complexity of exact matching with don’t
cares on the other hand has been well studied over many years. Fischer and Pa-
terson [10] presented the first solution based on fast Fourier transforms (FFT)
with an O(n log m log |Σ|) time algorithm in 1974. Subsequently, the major chal-
lenge has been to remove the dependency on the alphabet size. Indyk [11] gave
a randomised O(n log n) time algorithm which was followed by a simpler and
slightly faster O(n log m) time randomised solution by Kalai [13]. In 2002 a de-
terministic O(n log m) time solution was given by Cole and Hariharan [8] and
further simplified in [5]. In the same paper an O(n log(max(m, N))) time algo-
rithm for the exact shift matching problem with strings of positive integers is
presented, where N is the largest value in the input.

Notation. With two numerical strings x and y of equal length, we use the no-
tation xy for the string with elements xiyi. Similarly, x2y is the string with
elements x2

i yi, and x/y is the string with elements xi/yi, etc. Our algorithms
make extensive use of the fast Fourier transform (FFT). An important property
of the FFT is that all the inner-products,

(t ⊗ p)[i] def=
∑m−1

j=0 pjti+j , 0 ≤ i ≤ n−m,

can be calculated accurately and efficiently in O(n log m) time (see e.g. [9], Chap-
ter 32). In order to reduce the time complexity from O(n log n) to O(n log m) we
employ a standard trick. The text is partitioned into n/m overlapping substrings
of length 2m and the matching algorithm is performed on each one. Each itera-
tion takes O(m log m) time giving an overall time complexity of O((n/m)m log m)
= O(n log m).

Accuracy. Since we only make use of integer codes, the numerical accuracy of
the algorithms presented in this paper need only be sufficient to distinguish 0
from other integer values. By way of comparison, the well known deterministic
exact matching with wildcards algorithm of [8] involves coding into rational
numbers that are subsequently represented with fixed accuracy in fast Fourier
transform calculations. Furthermore, these calculations must be accurate enough
to distinguish 0 from values as small as 1/N(N − 1) (see [8] for further details).

2 Problems and Solutions

Let text t = t0, . . . , tn−1 and pattern p = p0, . . . , pm−1. We give O(n log m)
solutions for shift and shift-scale versions of the self-normalised distance problem
with don’t cares. We show that this enables us to solve exact matching, exact
shift matching and exact shift-scale matching in the same time complexity for
inputs containing don’t care symbols.

66 P. Clifford and R. Clifford

2.1 Self-normalised Distance with Don’t Cares

In the self-normalised distance with don’t cares problem, p and t are strings
with elements that are either numerical or wild card values. We use ∗ for the
wild card symbol and define a new string p′ with p′j = 0 if pj = ∗, and p′j = 1
otherwise. Similarly, define t′i = 0 if ti = ∗, and 1 otherwise.

We can now express the shift version of the self-normalised squared distance at
position i as Ai = minα

∑
(α+pj −ti+j)2p′jt

′
i+j where here and in the remainder

of this paper we will use
∑

as an abbreviation for
∑m−1

j=0 .

Input: Pattern p and text t
Output: Ai = minα

�
(α + pj − ti+j)

2p′
jt

′
i+j , 0 ≤ i ≤ n − m

Create binary string p′
j = 0 if pj = ∗, 1 otherwise;

Create binary string t′
i = 0 if ti = ∗, 1 otherwise;

A ← (t2t′) ⊗ p′ − 2(tt′) ⊗ (pp′) + t′ ⊗ (p2p′) − [(tt′) ⊗ p′ − t′ ⊗ (pp′)]
2
/(t′ ⊗ p′)

Algorithm 1. Shift version of self-normalised distance with don’t cares

Theorem 1. The shift version of the self-normalised distance with don’t cares
problem can be solved in O(n log m) time.

Proof. Consider Algorithm 1. The first two steps require only single passes over
the input. Similarly p2p′, pp′, tt′ and t2t′ can all be calculated in linear time once
t′ and p′ are known. This leaves 6 correlation calculations to compute A. Using
the FFT, each correlation calculation takes O(n log m) time which is therefore
the overall time complexity of the algorithm.

To find Ai, the minimum value of
∑

(α + pj − ti+j)2p′jt
′
i+j , we differentiate

with respect to α and obtain the minimising value as

α̂ =

∑
(ti+j − pj)p′jt

′
i+j∑

p′jt
′
i+j

=
((tt′) ⊗ p′ − (pp′) ⊗ t′) [i]

(p′ ⊗ t′)[i]
. (1)

Substituting α = α̂, expanding and collecting terms we find Ai is the ith
element of

(t2t′) ⊗ p′ − 2(tt′) ⊗ (pp′) + t′ ⊗ (p2p′) − ((tt′)⊗ p′ − t′ ⊗ (pp′))2

(t′ ⊗ p′)

Similarly, the minimised shift-scale distance at position i can be written as
Bi = minα,β

∑
(α + βpj − ti+j)2p′jt

′
i+j .

Theorem 2. The shift-scale version of the self-normalised distance with don’t
cares problem can be solved in O(n log m) time.

Proof. Consider Algorithm 2. Notice that the same 6 correlations have to be
calculated for this problem so the running time is O(n log m).

Self-normalised Distance with Don’t Cares 67

Input: Pattern p and text t
Output: Bi = minα,β

�
(α + βpj − ti+j)

2p′
jt

′
i+j , 0 ≤ i ≤ n − m

Create binary string p′
j = 0 if pj = ∗, 1 otherwise;

Create binary string t′
i = 0 if ti = ∗, 1 otherwise;

T1 ← (tt′) ⊗ (pp′) − [(tt′) ⊗ p′] [t′ ⊗ (pp′)] /(t′ ⊗ p′) ;
T2 ← t′ ⊗ (p2p′) − [t′ ⊗ (pp′)]

2
/(t′ ⊗ p′);

B ← (t2t′) ⊗ p′ − [(tt′) ⊗ (p′)]
2
/(t′ ⊗ p′) − T 2

1 /T2;

Algorithm 2. Shift-scale version of self-normalised distance with don’t cares

To find Bi, the minimum value of
∑

(α + βpj − ti+j)2p′jt
′
i+j , we differenti-

ate with respect to both α and β to obtain the minimising values α̂ and β̂.
Substituting these values, expanding and collecting terms we find

Bi =
(
(t2t′) ⊗ p′

)
[i]− [(tt′) ⊗ (p′)]2 [i]/(t′ ⊗ p′)[i] − T 2

i /Ui,

where

Ti = ((tt′) ⊗ (pp′)) [i]− ((tt′) ⊗ p′) [i] (t′ ⊗ (pp′)) [i]/ (t′ ⊗ p′) [i]

and
Ui =

(
t′ ⊗ (p2p′)

)
[i]− (t′ ⊗ (pp′))2 [i]/ (t′ ⊗ p′) [i].

Note that the shift approximation α̂ at each location is given by (1) and
involves just three cross-correlations. Similar expressions are available for the
minimising values of α and β in the shift-scale distance problem.

3 Exact Matching with Don’t Cares

In their seminal paper Cole and Hariharan [8] show how to use non-boolean
coding to solve the problems of exact matching and exact shift matching with
wildcards (don’t cares). They show that their algorithms having running times
of O(n log(m)) and O(n log(max(m, N)) respectively.

In the exact matching problem, the pattern p is said to occur at location i in
t if, for every position j in the pattern, either pj = ti+j or at least one of pj and
ti+j is the wild card symbol. The exact matching problem is to find all locations
where the pattern occurs.

Cole and Hariharan use four codings for the exact matching problem. In the
first two codings, wildcards in p and t are replaced by 0 and non-wildcards by
1. This gives p′ and t′. The second coding replaces wildcards in t by 0 and any
number a by 1/a. The resulting string is t′′. Finally, the same coding is used
to generate p′′. Cross-correlations are then calculated using the FFT, giving
p′ ⊗ t′, p′ ⊗ t′′ and t′ ⊗ p′′ and an exact match at location i is then declared if

((pp′) ⊗ t′′ + (tt′)⊗ p′′ − 2p′ ⊗ t′)[i] = 0.

68 P. Clifford and R. Clifford

Coleman and Hariharan show that this quantity can be as small as 1/(N(N−1))
when it is non-zero, so that calculations must be carried out with sufficient
precision to make this distinction. In simple terms the algorithm can be thought
of as testing whether∑ p′jt

′
i+j(pj − ti+j)2

pjti+j
=
∑

p′jpjt
′′
i+j − 2p′jt

′
i+j + p′′j t′i+jti+j) = 0,

A simple alternative is to test whether∑
p′jt

′
i+j(pj − ti+j)2 =

∑
(p′jp

2
j t

′
i+j − 2p′jpjt

′
i+jti+j + p′jt

′
i+jt

2
i+j)

equals 0. This is similar to the approach taken in [5]. The advantage now is that
all calculations are in integers.

Exact Shift Matching with Don’t Cares

For the exact shift matching problems with wildcards, a match is said to occur
at location i if, for some shift α and for every position j in the pattern, either
α + pj = ti+j or at least one of pj and ti+j is the wild card symbol. Coleman
and Hariharan [8] introduce a new coding for this problem that maps the string
elements into 0 for wildcards and complex numbers of modulus 1 otherwise. The
FFT is then used to find the (complex) cross-correlation between these coded
strings and finally a shift match is declared at location i if the ith element of
the modulus of the cross-correlation is equal to (p′ ⊗ t′)[i].

Our Algorithm 1 provides a straightforward alternative method for shift match-
ing with wildcards. It has the advantage of only using simple integer codings. Since
Algorithm 1 finds the minimum L2 distance at location i, over all possible shifts,
it is only necessary to test whether this distance is zero. The running time for the
test is then O(n log(m) since it is determined by the running time of Algorithm 1.

Input: Pattern p and text t
Output: Ai = 0 iff p has a shift occurrence at location i in t
A ← Algorithm 1 (p, t)

Algorithm 3. Algorithm for exact shift matching with don’t cares

Theorem 3. The problem of exact shift matching with don’t cares can be solved
in O(n log m) time.

Exact Shift-Scale Matching with Don’t Cares

The pattern p is said to occur at location i in t with shift α and scale β if, for
every position j in the pattern, either α + βpj = ti+j or at least one of pj and
ti+j is the wild card symbol.

Self-normalised Distance with Don’t Cares 69

Input: Pattern p and text t
Output: Bi = 0 iff p has a shift occurrence at location i in t
B ← Algorithm 2 (p, t)

Algorithm 4. Algorithm for exact shift-scale matching with don’t cares

Theorem 4. The problem of exact shift-scale matching with don’t cares can be
solved in O(n log m) time.

Proof. Consider Algorithm 4 and note that Algorithm 2 runs in O(n log m) time
and provides the minimised distance at each location under shift-scale normal-
isation. This is zero if and only if there is an exact match with a suitable shift
and scaling.

4 Discussion

We have shown how to use the FFT to obtain O(n log m) time solutions to a
number of problems involving strings with numerical and wild card/don’t care
symbols. We have focussed on one-dimensional self-normalisation problems with
don’t cares in which linear distortions of the pattern are compared with the
text in terms of the L2 distance. The technology can be readily extended to
more general polynomial distortions and higher dimensional problems can be
tackled in the same manner at the cost of notational complexity. It is an open
question whether self-normalisation with don’t cares can be applied to other
distance measures without increasing the time complexity of their respective
search algorithms.

Acknowledgements

The authors would like to thank an anonymous referee in a previous conference
for helpful comments on the use of cross-correlations for matching in different
metrics.

References

[1] Abrahamson, K.: Generalized string matching. SIAM journal on Computing 16(6),
1039–1051 (1987)

[2] Amir, A., Farach, M.: Efficient 2-dimensional approximate matching of half-
rectangular figures. Information and Computation 118(1), 1–11 (1995)

[3] Amir, A., Lipsky, O., Porat, E., Umanski, J.: Approximate matching in the L1

metric. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS,
vol. 3537, pp. 91–103. Springer, Heidelberg (2005)

[4] Atallah, M.J.: Faster image template matching in the sum of the absolute value
of differences measure. IEEE Transactions on Image Processing 10(4), 659–663
(2001)

70 P. Clifford and R. Clifford

[5] Clifford, P., Clifford, R.: Simple deterministic wildcard matching. Information
Processing Letters 101(2), 53–54 (2007)

[6] Clifford, P., Clifford, R., Iliopoulos, C.S.: Faster algorithms for δ,γ-matching and
related problems. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005.
LNCS, vol. 3537, pp. 68–78. Springer, Heidelberg (2005)

[7] Clifford, R., Iliopoulos, C.: String algorithms in music analysis. Soft Comput-
ing 8(9), 597–603 (2004)

[8] Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard
matching. In: Proceedings of the Annual ACM Symposium on Theory of Com-
puting, pp. 592–601 (2002)

[9] Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

[10] Fischer, M., Paterson, M.: String matching and other products. In: Karp, R.
(ed.) Proceedings of the 7th SIAM-AMS Complexity of Computation, pp. 113–
125 (1974)

[11] Indyk, P.: Faster algorithms for string matching problems: Matching the convo-
lution bound. In: Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, pp. 166–173 (1998)

[12] Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York
(1995)

[13] Kalai, A.: Efficient pattern-matching with don’t cares. In: Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 655–656, Philadel-
phia, PA, USA (2002)

[14] Kosaraju, S.R.: Efficient string matching. Manuscript (1987)
[15] Lewis, J.P.: Fast template matching. In: Vision Interface, pp. 120–123 (1995)
[16] Lipsky, O., Porat, E.: Approximate matching in the l∞ metric. In: Consens, M.P.,

Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 91–103. Springer, Heidelberg
(2005)

[17] Mäkinen, V., Navarro, G., Ukkonen, E.: Transposition invariant string matching.
Journal of Algorithms 56(2), 124–153 (2005)

Move-to-Front, Distance Coding, and Inversion

Frequencies Revisited�

Travis Gagie and Giovanni Manzini

Dipartimento di Informatica, Università del Piemonte Orientale,
I-15100 Alessandria, Italy

{travis,manzini}@mfn.unipmn.it

Abstract. Move-to-Front, Distance Coding and Inversion Frequencies
are three somewhat related techniques used to process the output of the
Burrows-Wheeler Transform. In this paper we analyze these techniques
from the point of view of how effective they are in the task of compressing
low-entropy strings, that is, strings which have many regularities and are
therefore highly compressible. This is a non-trivial task since many com-
pressors have non-constant overheads that become non-negligible when
the input string is highly compressible.

Because of the properties of the Burrows-Wheeler transform, being
locally optimal ensures an algorithm compresses low-entropy strings ef-
fectively. Informally, local optimality implies that an algorithm is able to
effectively compress an arbitrary partition of the input string. We show
that in their original formulation neither Move-to-Front, nor Distance
Coding, nor Inversion Frequencies is locally optimal. Then, we describe
simple variants of the above algorithms which are locally optimal. To
achieve local optimality with Move-to-Front it suffices to combine it with
Run Length Encoding. To achieve local optimality with Distance Coding
and Inversion Frequencies we use a novel “escape and re-enter” strategy.
Since we build on previous results, our analyses are simple and shed new
light on the inner workings of the three techniques considered in this
paper.

1 Introduction

Burrows-Wheeler compression is important in itself and as a key component
of compressed full-text indices [15]. It is therefore not surprising that the the-
ory and practice of Burrows-Wheeler compression has recently received much
attention [5,6,7,9,10,11,12,14,13].

In the original Burrows-Wheeler compression algorithm [4] the output of the
Burrows-Wheeler Transform (bwt from now on) is processed by Move-to-Front
encoding followed by an order-0 encoder. Recently, [12] has provided a simple
and elegant analysis of this algorithm and of the variant in which Move-to-Front
encoding is replaced by Distance Coding. This analysis improves the previous
� Partially supported by Italian MIUR Italy-Israel FIRB Project “Pattern Discovery

Algorithms in Discrete Structures, with Applications to Bioinformatics”.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 71–82, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

72 T. Gagie and G. Manzini

one in [14] and provides new insight on the Move-to-Front and Distance Coding
procedures. In [12] the output size of Burrows-Wheeler algorithms on input s
is bounded by μ|s|Hk(s) + Θ(|s|) for any μ > 1, where Hk is the k-th order
empirical entropy (more details in Sect. 2). We point out that this is a significant
bound only as long as the string s is not too compressible. For highly compressible
strings, for example s = abn, we have |s|Hk(s) = O(log |s|) so the Θ(|s|) term
in the above bound becomes the dominant term. In this case, the bound tells
one nothing about how close the compression ratio is to the entropy of the input
string.

The above considerations suggest that further work is required on the problem
of designing algorithms with an output size bounded by λ|s|Hk(s)+Θ(1) where
λ > 1 is a constant independent of k, |s|, and of the alphabet size. We call this an
“entropy-only” bound. An algorithm achieving an “entropy-only” bound guaran-
tees that even for highly compressible strings the compression ratio will be pro-
portional to the entropy of the input string. Note that the capability of achieving
“entropy-only” bounds is one of the features that differentiate Burrows-Wheeler
compression algorithms from the family of Lempel-Ziv compressors [14].

As observed in [14], the key property for achieving “entropy-only” bounds
is that the compression algorithm used to process the bwt be locally optimal.
Informally, a locally optimal algorithm has the property of being able to compress
efficiently an arbitrary partition of the input string (see Definition 2). Starting
from these premises, in this paper we prove the following results:
1. We analyze Move-to-Front (Mtf), Distance Coding (Dc), and Inversion Fre-

quencies Coding (If)—which is another popular variant of Move-to-Front en-
coding. We prove that in their original formulation none of these algorithms
is locally optimal.

2. We describe simple variants of the above algorithms which are locally op-
timal. Therefore, when used together with the bwt these variants achieve
“entropy-only” bounds. To achieve local optimality with Mtf it suffices to
combine it with Run Length Encoding (Rle from now on). To achieve local
optimality with If and Dc we use an “escape and re-enter” technique.

3. The procedures Mtf, If, and Dc all output sequences of positive integers. One
can encode these sequences either using a prefix-free encoding [6] or feed the
whole sequence to an Order-0 encoder [4]. Taking advantage of previous
results of Burrows-Wheeler compression [12,13], we are able to provide a
simple analysis for both options.

In terms of “entropy-only” bounds our best result is the bound (2.707 +
η0)|s|H∗

k (s)+Θ(1) bits where η0 is a constant characteristic of the Order-0 final
encoder (for example η0 ≈ .01 for arithmetic coding). This bound is achieved by
our variant of Distance Coding and it improves the previously known “entropy-
only” bound of (5 + 3η0)|s| H∗

k (s) + Θ(1) established in [14] for Mtf + Rle.

2 Notation and Background

Let s be a string drawn from the alphabet Σ = {σ1, . . . , σh}. For i = 1, . . . , |s|
we write s[i] to denote the i-th character of s. For each σi ∈ Σ, let ni be the

Move-to-Front, Distance Coding, and Inversion Frequencies Revisited 73

number of occurrences of σi in s. The 0-th order empirical entropy of the string s
is defined as1 H0(s) = −

∑h
i=1(ni/|s|) log(ni/|s|). It is well known that H0 is the

maximum compression we can achieve using a fixed codeword for each alphabet
symbol.

Definition 1. An algorithm A is an Order-0 algorithm if for any input string s
we have

|A(s)| ≤ |s|H0(s) + η0|s|.

Examples of Order-0 algorithms are Huffman coding, for which η0 = 1, and
Arithmetic coding, for which η0 ≈ .01. It is well known that we can often achieve
a compression ratio better than |s|H0(s) if the codeword we use for each symbol
depends on the k symbols preceding it. In this case, the maximum compression
is bounded by the k-th order entropy Hk(s) (see [14] for the formal definition).

In [12] the authors analyze the original Burrows-Wheeler compressor in which
the output of the bwt is processed by Mtf followed by an Order-0 compressor
and they prove a bound of the form

μ|s|Hk(s) + (log(ζ(μ)) + η0)|s| + O(1) (1)

where ζ is the Riemann zeta function and η0 is the constant associated with the
Order-0 algorithm (see Definition 1). The above bound holds simultaneously for
any μ > 1 and k ≥ 0. This means we can get arbitrarily close to the k-th order
entropy for any k ≥ 0. Unfortunately, in (1) there is also a Θ(|s|) term which
becomes dominant when s is highly compressible. For example, for s = abn we
have |s|H0(s) = log |s|. In this case, the bound (1) does not guarantee that the
compression ratio is close to the entropy.

We are interested, therefore, in proving “entropy-only” bounds of the form
λ|s|Hk(s) + Θ(1). Unfortunately, such bounds cannot be established. To see
this, consider the family of strings s = an; we have |s|H0(s) = 0 and we cannot
hope to compress all strings in this family in Θ(1) space. For that reason, [14]
introduced the notion of 0-th order modified empirical entropy:

H∗
0 (s) =

⎧⎨⎩
0 if |s| = 0
(1 + �log |s|�)/|s| if |s| 	= 0 and H0(s) = 0
H0(s) otherwise.

(2)

Note that if |s| > 0, |s| H∗
0 (s) is at least equal to the number of bits needed to

write down the length of s in binary. The k-th order modified empirical entropy
H∗

k is then defined in terms of H∗
0 as the maximum compression we can achieve

by looking at no more than k symbols preceding the one to be compressed. With
a rather complex analysis [14] proves the bound (5 + 3η0)|s| H∗

k (s) + Θ(1) for
the output size of an algorithm described in [4].

This paper is the ideal continuation of [12] and [14]. We analyze the clas-
sical Move-to-Front encoding [2], and two popular (and effective) alternatives:
Distance Coding [3,5], and Inversion Frequencies Coding [1]. We provide simple

1 We assume that all logarithms are taken to the base 2 and 0 log 0 = 0.

74 T. Gagie and G. Manzini

proofs that simple variants of these algorithms achieve “entropy-only” bounds
of the form λ|s|H∗

k (s) + Θ(1). The key tool for establishing these bounds is the
notion of local optimality introduced in [14].

Definition 2. A compression algorithm A is locally λ-optimal if there exists a
constant ch such that for any string s and for any partition s1s2 · · · st of s we
have

A(s) ≤ λ

[t∑
i=1

|si|H∗
0 (si)

]
+ cht,

where the constant ch depends only on the alphabet size h.

The importance of the notion of local optimality stems from the following lemma
which establishes that processing the output of the bwt with a locally optimal
algorithm yields an algorithm achieving an “entropy-only” bound.

Lemma 1 ([14]). If A is locally λ-optimal then the bound

A(bwt(s)) ≤ λ|s| H∗
k (s) + chhk

holds simultaneously for any k ≥ 0. ��

Useful lemmas. Move-to-Front, Distance Coding, and Inversion Frequencies
all output sequences of positive integers. In the following we assume that Pfx is
a prefix-free encoder of the integers such that for any integer i we have |Pfx(i)| ≤
a log i + b where a and b are positive constants. Note that since |Pfx(1)| ≤ b we
must have b ≥ 1. Also note that for γ codes we have a = 2 and b = 1. This
means that it is only worth investigating prefix codes with a ≤ 2. Indeed, a code
with a > 2 (and necessarily b ≥ 1) would be worse than γ codes and therefore
not interesting. Hence, in the following we assume a ≤ 2, b ≥ 1 and thus a ≤ 2b
and a ≤ b+1. Under these assumptions on a and b we have the following lemma
whose simple proof will be given in the full paper.

Lemma 2 (Subadditivity). Let x1, x2, . . . , xk be positive integers. We have

|Pfx(x1 + x2)| ≤ |Pfx(x1)| + |Pfx(x2)| + 1,

and ∣∣∣∣Pfx
(∑k

i=1
xk

)∣∣∣∣ ≤ (∑k

i=1
|Pfx(xi)|

)
+ 2.

��

The next lemma, which follows from the analysis in [12], establishes that if we
feed a sequence of integers to an Order-0 encoder (see Definition 1) the output
is no larger than the output produced by a prefix-free encoder with parameters
a = μ and b = log(ζ(μ)) + η0 for any μ > 1.

Lemma 3 ([12]). Let A be an order zero encoder with parameter η0. For any
sequence of positive integers i1i2 · · · in and for any μ > 1 we have

|A(i1i2 · · · in)| ≤
∑n

i=1

(
μ log(i) + log ζ(μ) + η0

)
. ��

Move-to-Front, Distance Coding, and Inversion Frequencies Revisited 75

Given a string s = s1s2 · · · sn, a run is a substring sisi+1 · · · si+k of identical
symbols, and a maximal run is a run which cannot be extended; that is, it is not
a proper substring of a larger run.

Lemma 4 ([13, Sect. 3]). The number of maximal runs in a string s is bounded
by 1 + |s|H0(s). ��

3 Local Optimality with Move-to-Front Encoding

Move-to-Front (Mtf) is a well known technique proposed independently in [2,16].
Mtf encodes a string by replacing each symbol with the number of distinct sym-
bols seen since its last occurrence. To this end, Mtf maintains a list of the symbols
ordered by recency of occurrence; when the next symbol arrives the encoder out-
puts its current rank and moves it to the front of the list. If the input string is
defined over the alphabet Σ, in the following we assume that ranks are in the
range [1, h], where h = |Σ|. For our analysis we initially assume that the output
of Mtf is encoded by the prefix-free encoder Pfx, such that |Pfx(i)| ≤ a log i + b.
Note that to completely determine the encoding procedure we must specify the
initial status of the recency list. However, changing the initial status increases
the output size by at most O(h log h) so we will add this overhead and ignore the
issue. The following simple example shows that Mtf+ Pfx is not locally optimal.

Example 1. Consider the string s = σn and the partition consisting of the single
element s. We have Mtf(s) = 1n and |Pfx(Mtf(s))| = |s|b. Since |s| H∗

0 (s) =
1 + �log |s|� it follows that Mtf + Pfx is not locally optimal. ��

Note that a similar result holds even if we replace Pfx with an Order-0 encoder
(see Definition 1). In that case the output size is at least η0|s|. These examples
clearly show that if we feed to the final encoder Θ(|s|) “items” there is no hope
of achieving “entropy-only” bounds.

The above considerations suggest the algorithm Mtf rl, which combines Mtf
with Run Length Encoding (Rle). Assume that σ = s[i + 1] is the next symbol
to be encoded. Instead of simply encoding the Mtf rank r of σ, Mtf rl finds the
maximal run s[i + 1] · · · s[i + k] of consecutive occurrences of σ, and encodes the
pair (r, k). We define the algorithm Mtf rl + Pfx as the algorithm which encodes
each such pair with the codeword Pfx(r − 1) followed by Pfx(k) (this is possible
since we cannot have r = 1).

Lemma 5. Let A1 = Mtf rl + Pfx. For any string s we have

|A1(s)| ≤ (a + 2b)|s|H∗
0 (s) + O(h log h) .

Proof. Assume H0(s) 	= 0 (otherwise we have s = σn and the proof follows by
an easy computation). Let C(i) = a log i + b. For each σ ∈ Σ let Pσ denote the
set of pairs (ri, ki) generated by the encoding of runs of σ. We have

|A1(s)| ≤
∑
σ∈Σ

⎡⎣ ∑
pi∈Pσ

(
C(ri − 1) + C(ki)

)⎤⎦+ O(h log h) .

76 T. Gagie and G. Manzini

Note that
∑

σ |Pσ| is equal to the number of maximal runs in s. By Lemma 4
we have

|A1(s)| ≤
∑
σ∈Σ

a

⎡⎣ ∑
pi∈Pσ

log(ri − 1) + log(ki)

⎤⎦+ 2b|s|H0(s) + O(h log h) .

For any given σ the total number of non-zero terms in the summations within
square brackets is bounded by the number nσ of occurrences of σ in s. Since the
sum of the log’s argument is bounded by |s|, by Jensen’s inequality the content
of the square brackets is bounded by nσ log(n/nσ). Hence, the outer summation
is bounded by a|s|H0(s). Since H0(s) ≤ H∗

0 (s) the lemma is proven. ��

Theorem 1. The algorithm A1 = Mtf rl + Pfx is locally (a + 2b)-optimal.

Proof. By Lemma 5 it suffices to prove that

|A1(s1s2)| ≤ |A1(s1)| + |A1(s2)| + O(h log h).

To prove this inequality observe that compressing s2 independently of s1 changes
the encoding of only the first occurrence of each symbol in s2. This gives a
O(h log h) overhead. In addition, if a run crosses the boundary between s1 and
s2 the first part of the run will be encoded in s1 and the second part in s2. By
Lemma 4 this produces an O(1) overhead and the theorem follows. ��

Theorem 2. The algorithm Mtf rl + Order0 is locally (μ + 2 log(η(μ)) + η0)-
optimal for any μ > 1. By taking μ = 2.35 we get that Mtf rl + Order0 is locally
(3.335 + η0)-optimal. By Lemma 1 we conclude that for any string s and k ≥ 0

|Order0(Mtf rl(bwt(s)))| ≤ (3.335 + η0)|s|H∗
k (s) + O

(
hk+1 log h

)
. ��

4 Local Optimality with Distance Coding

Distance Coding (Dc) is a variant of Mtf which is relatively little-known, probably
because it was originally described only on a Usenet post [3]. Recently, [12] has
proven that, combining the Burrows-Wheeler transform with Dc and an Order-0
encoder (see Def. 1), we get an output bounded by 1.7286|s|Hk(s) + η0|s| +
O(log |s|). Using Lemma 4, the analysis in [12] can be easily refined to get the
bound (1.7286+η0)|s|Hk(s)+O(log |s|). Note that this is not an “entropy-only”
bound because of the presence of the O(log |s|) term.

To encode a string s over the alphabet Σ = {σ1, . . . , σh} using distance coding:

1. we write the first character in s;
2. for each other character σ ∈ Σ, we write the distance to the first σ in s, or a

1 if σ does not occur (notice no distance is 1, because we do not reconsider
the first character in s);

3. for each maximal run of a character σ, we write the distance from the start
of that run to the start of the next maximal run of σ’s, or 1 if there are no
more σ’s (again, notice no distance is 1);

Move-to-Front, Distance Coding, and Inversion Frequencies Revisited 77

4. finally, we encode the length � of the last run in s as follows: if � = 1 we
write 1, otherwise we write 2 followed by �− 1.

In other words, in Dc we encode the distance between the starting points of
consecutive maximal runs of any given character σ ∈ Σ. It is not hard to prove
Dc correct, by induction on the number of runs in s. In the following we define
Dc + Pfx as the algorithm in which the integers produced by Dc are encoded
using Pfx.

Lemma 6. Let A2 = Dc + Pfx. For any string s we have

|A2(s)| ≤ (a + b)|s| H∗
0 (s) + O(h).

Proof. (Sketch) Assume H0(s) 	= 0 (otherwise we have s = σn and the proof
follows by an easy computation). Writing the first character in s takes O(log h)
bits; we write h copies of 1 while encoding s (or h + 1 if the first character is
a 1), which takes O(h) bits. We are left with the task of bounding the cost of
encoding: 1) the starting position of the first run of each character, 2) distances
between runs and 3) the length of the last run. Reasoning as in Lemma 5 we
can prove that the cost associated with the runs of each character σ is bounded
by a nσ log(|s|/nσ) + brσ + a + b bits, where nσ is the number of occurrences of
σ and rσ is the number of (maximal) runs of σ (the only non-trivial case is the
symbol which has the last run in s). Summing over all σ’s and using Lemma 4
yields the thesis. ��

The following example shows that Dc + Pfx is not locally optimal.

Example 2. Consider the partition s = s1s2s3 where

s1 = s3 = σ1σ2 · · ·σh, , s2 = σn
2 .

We have
∑2h

i=1 |si| H∗
k (si) = log n + O(h log h), whereas Dc + Pfx produces an

output of size Θ(h logn). To see this, observe that for each character it has to
write a distance greater than n. ��

The above example suggests that to achieve local optimality with Dc we should
try to avoid the encoding of “long jumps”. To this end, we introduce Distance
Coding with escapes (Dc esc). The main difference between Dc and Dc esc is
that, whenever Dc would write a distance, Dc esc compares the cost of writing
that distance to the cost of escaping and re-entering later, and does whichever
is cheaper.

Whenever Dc would write 1, Dc esc writes 〈1, 1〉; this lets us use 〈1, 2〉 as a
special re-entry sequence. To escape after a run of σ’s, we write 〈1, 1〉; to re-
enter at the the next run of σ’s, we write 〈1, 2, �, σ〉, where � is the length of the
preceding run (of some other character). To see how Dc esc works suppose we
are encoding the string

s = · · · σr
1 σs

2 σt
3 σu

1 · · · .

78 T. Gagie and G. Manzini

When Dc reaches the run σr
1 it encodes the value r + s + t which is the distance

to the next run of σ1’s. Instead, Dc esc compares the cost of encoding r + s + t
with the cost of encoding an escape (sequence 〈1, 1〉) plus the cost of re-entering.
In this case the re-entry sequence would be written immediately after the code
associated with the run σt

3 and would consist of the sequence 〈1, 2, t, σ1〉. When
the decoder finds such sequence it knows that the current run (in this case of
σ3’s) will only last for t characters and, after that, there is a run of σ1’s. (Recall
that Dc only encodes the starting position of each run: the end of the run is
usually induced by the beginning of a new run. When we re-enter an escaped
character we have to provide explicitly the length of the ongoing run).

Notice we do not distinguish between instances in which 〈1, 1〉 indicates a
character does not occur, cases in which it indicates a character does not occur
again, and cases in which it indicates an escape; we view the first two types of
cases as escapes without matching re-entries.

Lemma 7. Let A2 = Dc + Pfx and let A3 = Dc esc + Pfx. For any string s and
for any partition s = s1, . . . , st

|A3(s)| ≤
t∑

i=1

|A2(si)| + O(ht log h) .

Proof. (Sketch) We consider the algorithm Dc esc* that, instead of choosing at
each step whether to escape or not, uses the following strategy: use the escape
sequence if and only if we are encoding the distance between two runs whose
starting points belong to different partition elements (say si and sj with j > i).
Let A′

3 = Dc esc* + Pfx. Since Dc esc always performs the most economical
choice, we have |A3(s)| ≤ |A′

3(s)|; we prove the lemma by showing that

|A′
3(s)| ≤

t∑
i=1

|A2(si)| + O(ht log h).

Clearly Dc esc* escapes at most th times. The parts of an escape/re-enter se-
quence that cost Θ(1) (that is, the codewords for 〈1, 1〉, 〈1, 2〉 and the encoding
of the escaped character σ) are therefore included in the O(ht log h) term. Thus,
we only have to take care of the encoding of the value � which encodes the length
of the run immediately preceding the re-entry point. We now show that the cost
of encoding the run lengths �s is bounded by costs paid by Dc and not paid by
Dc esc*. Let σ denote the escaped character. Let sj denote the partition element
containing the re-entry point and let m denote the position in sj where the new
run of σ’s starts (that is, at position m of sj there starts a run of σ’s; the previ-
ous one was in some si with i < j so Dc esc* escaped σ and is now re-entering).
We consider two cases:

� ≤ m. In this case we observe that the cost |Pfx(�)| paid by Dc esc* is no greater
than the cost Pfx(m) paid by Dc for encoding the first position of σ in sj.

� > m. Let m′ = �−m and assume m′ < |sj−1|. In this case we observe that by
Lemma 4 the cost |Pfx(�)| paid by Dc esc* is at most 1 plus the cost |Pfx(m)|

Move-to-Front, Distance Coding, and Inversion Frequencies Revisited 79

paid by Dc for encoding the first position of σ in sj , plus the cost |Pfx(m′)|
paid by Dc to encode the length of the last run in sj−1. If m′ > |sj−1| then
there is a run spanning sj−1, sj−2 and so on, and the thesis follows by the
first part of Lemma 4. ��

Combining the above lemma with Lemma 6 we immediately get

Theorem 3. The algorithm A3 = Dc esc + Pfx is locally (a + b)-optimal. ��

Theorem 4. The algorithm Dc esc + Order0 is locally (μ + log(η(μ)) + η0)-
optimal for any μ > 1. By taking μ = 1.88 we get that Dc esc + Order0 is locally
(2.707 + η0)-optimal. By Lemma 1 we conclude that for any string s and k ≥ 0

|Order0(Dc esc(bwt(s)))| ≤ (2.707 + η0)|s| H∗
k (s) + O

(
hk+1 log h

)
. ��

5 Local Optimality with Inversion Frequencies Coding

Inversion Frequencies (If for short) is a coding strategy proposed in [1] as an al-
ternative to Mtf. Given a string s over an ordered alphabet Σ = {σ1, σ2, . . . , σh},
in its original formulation If works in h− 1 phases. In the i-th phase we encode
all the occurrences of the symbol σi as follows: first If outputs the position in s of
the first occurrence of σi, then it outputs the number of symbols greater than σi

between two consecutive occurrences of σi. Note that there is no need to encode
the occurrences of σh. The output of If consists of the concatenation of the out-
put of the single phases prefixed by an appropriate encoding of the number of
occurrences of each symbol σi (this information is needed by the decoder to fig-
ure out when a phase is complete). For example, if s = σ2σ2σ1σ3σ3σ1σ3σ1σ3σ2,
the first phase encodes the occurrences of σ1, producing the sequence 〈3, 3, 2〉;
the second phase encodes the occurrences of σ2, producing the sequence 〈1, 1, 5〉.
The output of If is therefore an encoding of the number of occurrences of σ1, σ2,
and σ3 (3, 3, and 4 in our example), followed by the sequence 〈3, 3, 2, 1, 1, 5〉.

Note that, differently from Mtf, If usually outputs integers larger than the
alphabet size. However, the encoding of the symbols becomes more and more
economical, up to the last symbol in the alphabet which needs no encoding at all.
Recently, in [8], the authors showed that If coding is equivalent to coding with
a skewed wavelet tree, and have theoretically justified leaving the most frequent
symbol for last (so that it gets encoded for free). Unfortunately, the following
example shows that If is not locally optimal.

Example 3. Consider the partition s = s1s2 · · · s2h where

s1 = σ1σ2 · · ·σh s2 = σn
1 s3 = s1 s4 = σn

2 s5 = s1 s6 = σn
3

and so on up to s2h = σn
h . We have

∑2h
i=1 |si| H∗

k (si) = O(h log n), whereas, no
matter how we order the alphabet Pfx(If(s)) = O

(
h2 log n

)
. ��

80 T. Gagie and G. Manzini

We now describe two variants of the basic If procedure and we prove that the
second variant is (2a+ b+0.5)-locally optimal. The first variant, called Forward
Inversion Frequencies (If rl), will serve only as an intermediate step but we believe
it is an interesting procedure in itself.

For i = 1, . . . , h − 1, If rl first outputs the integer ni equal to the number of
symbols greater than σi that can be found from the beginning of s up to the
first occurrence of σi in s. Then, for i = 1, . . . , h−1, If rl encodes the positions of
the symbol σi “ignoring” the occurrences of symbols smaller than σi. However,
differently from If, If rl works with all the alphabet symbols simultaneously. This
is how it is done. Assume that s[j] is the next symbol to be encoded and let
s[j] = σi. Let s[�] be the first occurrence of a symbol greater than σi to the right
of s[j], and let s[m] be the first occurrence of the symbol σi to the right of s[�].
The procedure If rl encodes the number k of occurrences of σi in s[j] · · · s[�− 1]
and the number t of occurrences of symbols greater than σi in s[�] · · · s[m− 1].
Then, If rl moves right in s up to the first symbol different from σi (and σh).

Note that If rl is essentially encoding the following information: “starting from
s[j] there are k occurrences of σi before we reach the first symbol greater than σi;
after that there are t symbols greater than σi before we find another occurrence
of σi”. If s[�] does not exist (there are no symbols greater than σi to the right
of s[j]) or s[m] does not exist (there are no occurrences of σi to the right of
s[�]), then If rl encodes the value t = 0, which indicates that there are no further
occurrences of σi. Note that the above procedure encodes no information about
the last symbol σh. However, as a final step, it is necessary to encode whether s
terminates with a run of σh and the length of such a run.

It is not difficult to prove that from the output of If rl we can retrieve s. For
each symbol σ, σ 	= σh, the decoder maintains two variables To be written and
To be skipped. The former indicates how many σ’s have to be written before we
find a character greater than σ; the latter indicates how many characters greater
than σ there are between the current run of σ’s and the next one. The decoder
works in a loop. At each iteration it outputs the smallest symbol σi such that its
associated variable To be written is nonzero; if all To be written variables are
zero the decoder outputs σh. After outputting σi, the decoder decreases by one
the variable To be skipped associated with all symbols smaller than σi. If one or
more variables To be skipped reaches zero, the decoder reads a pair 〈k, t〉 from
the compressed file and sets To be written ← k and To be skipped ← t for the
pair of variables associated with the smallest symbol with To be skipped = 0.

We define If rl +Pfx as the algorithm which encodes the pairs 〈k, t〉 as follows
(for the h− 1 initial values we use the same encoding as for the parameter t):
1. the value k is encoded with Pfx(k);
2. a value t = 0 is encoded with with a single 0 bit, a value t > 0 is encoded

with a bit 1 followed by Pfx(t).
As a final step, If rl + Pfx outputs a single 0 bit if s does not end with σh, and
outputs a bit 1 followed by Pfx(�) if s ends with a run of σh of length � ≥ 1.

Lemma 8. Let A4 = If rl + Pfx. For any string s we have

|A4(s)| ≤ (2a + b + 0.5)|s|H∗
0 (s) + O(1).

Move-to-Front, Distance Coding, and Inversion Frequencies Revisited 81

Proof. (Sketch) We reason as in the proof of Lemma 5. Each pair 〈k, t〉 has
a cost a(log k + log t) + 2b + 1 if t > 0 or a log k + 2b + 1 if t = 0. Refining
the proof of Lemma 4, we can show that the total number of pairs is bounded
by h + |s|H0(s)/2. Hence, the overall contribution of the 2b + 1 term is (b +
0.5)|s|H0(s)+O(h). To bound the contribution of the logs we use again Jensen’s
inequality and prove that their overall contribution is bounded by a|s|H0(s).
Finally, the cost of encoding the length of the last run of σh is bounded by
a log |s|+ b which is less than a|s| H∗

0 (s) + b and the lemma follows. ��
Unfortunately, we can repeat verbatim Example 3 to show that If rl is not locally
optimal. We observe that an obvious inefficiency of If and If rl is that sometimes
they are forced to pay the cost of a “long jump” many times. Consider the
following example:

s = σ1σ2σ
n
3 σ2σ1.

Assuming σ1 < σ2 < σ3 we see that If rl and If pay a O(log n) cost in the
encoding of both σ1 and σ2 because of the presence of the σn

3 substring. We now
propose an escape and re-enter mechanism that essentially guarantees that in
the above situation we pay the O(log n) cost at most once.

The new algorithm, called Inversion Frequencies with Escapes (If esc), works
as follows. Assume that s[j] = σi is the next character to be encoded, and let
s[�], s[m], k, and t be defined as for the algorithm If rl. Moreover, let p denote
the largest index such that � < p ≤ m and s[p− 1] > s[p] (p does not necessarily
exist). If p does not exist, If esc behaves as If rl and outputs the pair 〈k, t〉. If p
exists, If esc chooses the more economical option between 1) encoding 〈k, t〉 and
2) escaping σi (which means encoding the pair 〈k, 1〉) and re-entering it at the
position p (it is possible to re-enter at p since the condition s[p−1] > s[p] implies
that when the decoder reaches the position p it will read a new pair from the
compressed file). The code for re-entering will contain the character σi and the
number t′ of characters greater than σi in s[p] · · · s[m− 1]. The crucial points of
this escape/re-enter strategy are the following:
1. if s[m− 1] < σi then t′ = 0 (for the choice of p there cannot be a character

greater than σi in s[p] · · · s[m − 1]) so encoding t′ takes a constant number
of bits;

2. if s[m − 1] > σi, then t′ can be as large as m − p. However, If esc will not
be forced to pay the cost of “jumping” the substring s[p] · · · s[m − 1] for
encoding another character σ, since it will have the option of escaping σ
before the position p and re-entering it at the position m.

If p does not exist the situation is analogous to case 2: If esc will have to pay
the cost of encoding t, but for any character σ, σ 	= σi, it will have the option
of re-entering at m, so it will not be forced to pay that cost twice.

In the full paper we will prove the following theorem.

Theorem 5. The algorithm If esc + Pfx is locally (2a + b + 0.5)-optimal. In
addition, the algorithm If esc + Order0 is locally (4.883 + η0)-optimal, and for
any string s and any k ≥ 0 we have

|Order0(If esc(bwt(s)))| ≤ (4.883+η0)|s|H∗
k (s)+O

(
hk+1 log h

)
. ��

82 T. Gagie and G. Manzini

References

1. Arnavut, Z., Magliveras, S.: Block sorting and compression. In: Procs of IEEE
Data Compression Conference (DCC), pp. 181–190 (1997)

2. Bentley, J., Sleator, D., Tarjan, R., Wei, V.: A locally adaptive data compression
scheme. Communications of the ACM 29(4), 320–330 (1986)

3. Binder, E.: Distance coder, Usenet group (2000) comp.compression
4. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.

Technical Report 124, Digital Equipment Corporation (1994)
5. Deorowicz, S.: Second step algorithms in the Burrows-Wheeler compression algo-

rithm. Software: Practice and Experience 32(2), 99–111 (2002)
6. Fenwick, P.: Burrows-Wheeler compression with variable length integer codes. Soft-

ware: Practice and Experience 32, 1307–1316 (2002)
7. Ferragina, P., Giancarlo, R., Manzini, G.: The engineering of a compression boost-

ing library: Theory vs practice in bwt compression. In: Azar, Y., Erlebach, T. (eds.)
ESA 2006. LNCS, vol. 4168, pp. 756–767. Springer, Heidelberg (2006)

8. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 561–572. Springer, Heidelberg (2006)

9. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual compres-
sion in optimal linear time. Journal of the ACM 52, 688–713 (2005)

10. Foschini, L., Grossi, R., Gupta, A., Vitter, J.: Fast compression with a static model
in high-order entropy. In: Procs of IEEE Data Compression Conference (DCC), pp.
62–71 (2004)

11. Giancarlo, R., Sciortino, M.: Optimal partitions of strings: A new class of Burrows-
Wheeler compression algorithms. In: Baeza-Yates, R.A., Chávez, E., Crochemore,
M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 129–143. Springer, Heidelberg (2003)

12. Kaplan, H., Landau, S., Verbin, E.: A simpler analysis of Burrows-Wheeler based
compression. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009,
Springer, Heidelberg (2006)

13. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing 12(1), 40–66 (2005)

14. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48(3), 407–430 (2001)

15. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys.
(To Appear)

16. Ryabko, B.Y.: Data compression by means of a ’book stack’. Prob.Inf.Transm,
16(4) (1980)

A Lempel-Ziv Text Index on Secondary Storage�

Diego Arroyuelo and Gonzalo Navarro

Dept. of Computer Science, Universidad de Chile,
Blanco Encalada 2120, Santiago, Chile
{darroyue,gnavarro}@dcc.uchile.cl

Abstract. Full-text searching consists in locating the occurrences of a
given pattern P [1..m] in a text T [1..u], both sequences over an alpha-
bet of size σ. In this paper we define a new index for full-text searching
on secondary storage, based on the Lempel-Ziv compression algorithm
and requiring 8uHk +o(u log σ) bits of space, where Hk denotes the k-th
order empirical entropy of T , for any k = o(logσ u). Our experimental re-
sults show that our index is significantly smaller than any other practical
secondary-memory data structure: 1.4–2.3 times the text size including
the text, which means 39%–65% the size of traditional indexes like String
B-trees [Ferragina and Grossi, JACM 1999]. In exchange, our index re-
quires more disk access to locate the pattern occurrences. Our index is
able to report up to 600 occurrences per disk access, for a disk page of
32 kilobytes. If we only need to count pattern occurrences, the space can
be reduced to about 1.04–1.68 times the text size, requiring about 20–60
disk accesses, depending on the pattern length.

1 Introduction and Previous Work

Many applications require to store huge amounts of text, which need to be
searched to find patterns of interest. Full-text searching is the problem of locat-
ing the occ occurrences of a pattern P [1..m] in a text T [1..u], both modeled as
sequences of symbols over an alphabet Σ of size σ. Unlike word-based text search-
ing, we wish to find any text substring, not only whole words or phrases. This has
applications in texts where the concept of word does not exist or is not well de-
fined, such as in DNA or protein sequences, Oriental languages texts, MIDI pitch
sequences, program code, etc. There exist two classical kind of queries, namely:
(1) count(T, P): counts the number of occurrences of P in T ; (2) locate(T, P):
reports the starting positions of the occ occurrences of P in T .

Usually in practice the text is a very long sequence (of several of gigabytes, or
even terabytes) which is known beforehand, and we want to locate (or count) the
pattern occurrences as fast as possible. Thus, we preprocess T to build a data
structure (or index), which is used to speed up the search, avoiding a sequential
scan. However, by using an index we increase the space requirement. This is
unfortunate when the text is very large. Traditional indexes like suffix trees [1]
� Supported in part by CONICYT PhD Fellowship Program (first author) and Fonde-

cyt Grant 1-050493 (second author).

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 83–94, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

84 D. Arroyuelo and G. Navarro

require O(u log u) bits to operate; in practice this space can be 10 times the text
size [2], and so the index does not fit entirely in main memory even for moderate-
size texts. In these cases the index must be stored on secondary memory and
the search proceeds by loading the relevant parts into main memory.

Text compression is a technique to represent a text using less space. We denote
by Hk the k-th order empirical entropy of a sequence of symbols T over an
alphabet of size σ [3]. The value uHk provides a lower bound to the number
of bits needed to compress T using any compressor that encodes each symbol
considering only the context of k symbols that precede it in T . It holds that
0 � Hk � Hk−1 � · · · � H0 � log σ (log means log2 in this paper).

To provide fast access to the text using little space, the current trend is to use
compressed full-text self-indexes, which allows one to search and retrieve any part
of the text without storing the text itself, while requiring space proportional to
the compressed text size (e.g., O(uHk) bits) [4,5]. Therefore we replace the text
with a more space-efficient representation of it, which at the same time provides
indexed access to the text. This has applications in cases where we want to reduce
the space requirement by not storing the text, or when accessing the text is so
expensive that the index must search without having the text at hand, as occurs
with most Web search engines. As compressed self-indexes replace the text, we
are also interested in operations: (3) display(T, P, �), which displays a context of
� symbols surrounding the pattern occurrences; and (4) extract(T, i, j), which
decompresses the substring T [i..j], for any text positions i � j.

The use of a compressed full-text self-index may totally remove the need to
use the disk. However, some texts are so large that their corresponding indexes
do not fit entirely in main memory, even compressed. Unlike what happens with
sequential text searching, which speeds up with compression because the com-
pressed text is transferred faster to main memory [6], working on secondary
storage with a compressed index usually requires more disk accesses in order
to find the pattern occurrences. Yet, these indexes require less space, which in
addition can reduce the seek time incurred by a larger index because seek time
is roughly proportional to the size of the data.

We assume a model of computation where a disk page of size B (able to store
b = ω(1) integers of log u bits, i.e. B = b log u bits) can be transferred to main
memory in a single disk access. Because of their high cost, the performance of
our algorithms is measured as the number of disk accesses performed to solve a
query. We count every disk access, which is an upper bound to the real number
of accesses, as we disregard the disk caching due to the operating system. We
can hold a constant number of disk pages in main memory. We assume that our
text T is static, i.e., there are no insertions nor deletions of text symbols.

There are not many works on full-text indexes on secondary storage, which
definitely is an important issue. One of the best known indexes for secondary
memory is the String B-tree [7], although this is not a compressed data structure.
It requires (optimal) O(logb u+ m+occ

b) disk accesses in searches and (worst-case
optimal) O(u/b) disk pages of space. This value is, in practice, about 12.5 times
the text size (not including the text) [8], which is prohibitive for very large texts.

A Lempel-Ziv Text Index on Secondary Storage 85

Clark and Munro [9] present a representation of suffix trees on secondary
storage (the Compact Pat Trees, or CPT for short). This is not a compressed
index, and also needs the text to operate. Although not providing worst-case
guarantees, the representation is organized in such a way that the number of
disk accesses is reduced to 3–4 per query. The authors claim that the space
requirement of their index is comparable to that of suffix arrays, needing about
4–5 times the text size (not including the text).

Mäkinen et al. [10] propose a technique to store a Compressed Suffix Array on
secondary storage, based on backward searching [11]. This is the only proposal
to store a (zero-th order) compressed full-text self-index on secondary memory,
requiring u(H0 + O(log log σ)) bits of storage and a counting cost of at most
2(1 + m�logB u�) disk accesses. Locating the occurrences of the pattern would
need O(log u) extra accesses per occurrence.

In this paper we propose a version of Navarro’s LZ-index [12] that can be
efficiently handled on secondary storage. Our index requires 8uHk + o(u log σ)
bits of space for any k = o(logσ u). In practice the space requirement is about 1.4–
2.3 times the text size including the text, which is significantly smaller than any
other practical secondary-memory data structure. Although we cannot provide
worst-case guarantees at search time (just as in [9]), our experiments show that
our index is effective in practice, yet requiring more disk accesses than larger
indexes: our LZ-index is able to report up to 600 occurrences per disk access, for
a disk page of 32 kilobytes. On the other hand, count queries can be performed
requiring about 20–60 disk accesses (depending on the pattern length).

2 The LZ-Index Data Structure

Assume that the text T [1..u] has been compressed using the LZ78 [13] algorithm
into n+1 phrases, T = B0 . . . Bn. We say that i is the phrase identifier of phrase
Bi. The data structures that conform the LZ-index are [12]:

1. LZTrie: is the trie formed by all the LZ78 phrases B0 . . . Bn. Given the
properties of LZ78 compression, this trie has exactly n + 1 nodes, each one
corresponding to a phrase.

2. RevTrie: is the trie formed by all the reverse strings Br
0 . . . Br

n. In this trie
there could be empty nodes not representing any phrase.

3. Node: is a mapping from phrase identifiers to their node in LZTrie.
4. RNode: is a mapping from phrase identifiers to their node in RevTrie.

Each of these four structures requires n log n(1+o(1)) bits if they are represented
succinctly. As n log u = uHk + O(kn log σ) � u log σ for any k [14], the final size
of the LZ-index is 4uHk + o(u log σ) bits of space for any k = o(logσ u).

We distinguish three types of occurrences of P in T , depending on the phrase
layout [12]. For locate queries, pattern occurrences are reported in the format
�t, offset�, where t is the phrase where the occurrence starts, and offset is the
distance between the beginning of the occurrence and the end of the phrase.
However, occurrences can be shown as text positions with little extra effort [15].

86 D. Arroyuelo and G. Navarro

Occurrences of Type 1. The occurrence lies inside a single phrase (there are
occ1 occurrences of this type). Given the properties of LZ78, every phrase Bk

containing P is formed by a shorter phrase B� concatenated to a symbol c. If
P does not occur at the end of Bk, then B� contains P as well. We want to
find the shortest possible phrase Bi in the LZ78 referencing chain for Bk that
contains the occurrence of P . Since phrase Bi has the string P as a suffix, P r

is a prefix of Br
i , and can be easily found by searching for P r in RevTrie. Say

we arrive at node v. Any node v′ descending from v in RevTrie (including v
itself) corresponds to a phrase terminated with P . Thus we traverse and report
all the subtrees of the LZTrie nodes corresponding to each v′. Total locate time
is O(m + occ1).

Occurrences of Type 2. The occurrence spans two consecutive phrases, Bk

and Bk+1, such that a prefix P [1..i] matches a suffix of Bk and the suffix P [i +
1..m] matches a prefix of Bk+1 (there are occ2 occurrences of this type). P can be
split at any position, so we have to try them all. For every possible split P [1..i]
and P [i + 1..m] of P , assume the search for P r[1..i] in RevTrie yields node vrev,
and the search for P [i + 1..m] in LZTrie yields node vlz . Then, we check each
phrase t in the subtree of vrev and report occurrence �t, i� if Node[t+1] descends
from vlz . Each such check takes constant time. Yet, if the subtree of vlz has fewer
elements, we do the opposite: check phrases from vlz in vrev, using RNode[t−1].
The total time is proportional to the smallest subtree size among vrev and vlz .

Occurrences of Type 3. The occurrence spans three or more phrases, Bk−1

. . . B�+1, such that P [i..j] = Bk . . . B�, P [1..i − 1] matches a suffix of Bk−1

and P [j + 1..m] matches a prefix of B�+1 (there are occ3 occurrences of this
type). As every phrase represents a different string (because of LZ78 properties),
there is at most one phrase matching P [i..j] for each choice of i and j. Thus,
occ3 is limited to O(m2) occurrences. We first identify the only possible phrase
matching every substring P [i..j]. This is done by searching for every P [i..j] in
LZTrie, recording in a matrix Clz [i, j] the corresponding LZTrie node. Then we
try to find the O(m2) maximal concatenations of successive phrases that match
contiguous pattern substrings. If P [i..j] = Bk . . . B� is a maximal concatenation,
we check whether phrase B�+1 starts with P [j + 1..m], i.e., we check whether
Node[�+1] is a descendant of node Clz [j+1, m]. Finally we check whether phrase
Bk−1 ends with P [1..i−1], by starting from Node[i−1] in LZTrie and successively
going to the parent to check whether the last i− 1 nodes, read backwards, equal
P r[1..i − 1]. If all these conditions hold, we report an occurrence �k − 1, i − 1�.
Overall locate time is O(m2 log m) worst-case and O(m2) on average.

3 LZ-Index on Secondary Storage

The LZ-index [12] was originally designed to work in main memory, and hence
it has a non-regular pattern of access to the index components. As a result, it
is not suitable to work on secondary storage. In this section we show how to

A Lempel-Ziv Text Index on Secondary Storage 87

achieve locality in the access to the LZ-index components, so as to have good
secondary storage performance. In this process we introduce some redundancy
over main-memory proposals [12,15].

3.1 Solving the Basic Trie Operations

To represent the tries of the index we use a space-efficient representation similar
to the hierarchical representation of [16], which now we make searchable. We
cut the trie into disjoint blocks of size B such that every block stores a subtree
of the whole trie. We arrange these blocks in a tree by adding some inter-block
pointers, and thus the trie is represented by a tree of subtrees.

We cut the trie in a bottom-up fashion, trying to maximize the number of
nodes in each block. This is the same partition used by Clark and Munro [9],
and so we also suffer of very small blocks. To achieve a better fill ratio and reduce
the space requirement, we store several trie blocks into each disk page.

Every trie node x in this representation is either a leaf of the whole trie, or it
is an internal node. For internal nodes there are two cases: the node x is internal
to a block p or x is a leaf of block p (but not a leaf of the whole trie). In the
latter case, x stores a pointer to the representation q of its subtree. The leaf is
also stored as a fictitious root of q, so that every block is a subtree. Therefore,
every such node x has two representations: (1) as a leaf in block p; (2) as the
root node of the child block q.

Each block p of N nodes and root node x consists basically of:

– the balanced parentheses (BP) representation [17] of the subtree, requiring
2N + o(N) bits;

– a bit-vector Fp[1..N] (the flags) such that Fp[j] = 1 iff the j-th node of the
block (in preorder) is a leaf of p, but not a leaf of the whole trie. In other
words, the j-th node has a pointer to the representation of its subtree. We
represent Fp using the data structure of [18] to allow rank and select queries
in constant time and requiring N + o(N) bits;

– the sequence letsp[1..N] of symbols labeling the arcs of the subtree, in pre-
order. The space requirement is N�log σ� bits;

– only in the case of LZTrie, the sequence idsp[1..N] of phrase identifiers in
preorder. The space requirement is N log n bits;

– a pointer to the leaf representation of x in the parent block;
– the depth and preorder of x within the whole trie;
– a variable number of pointers to child blocks. The number of child blocks of

a given block can be known from the number of 1s in Fp.
– an array Sizep such that each pointer to child block stores the size of the

corresponding subtree.

Using this information, given node x we are able to compute operations: parent(x)
(which gets the parent of x), child(x, α) (which yields the child of x by label α),
depth(x) (which gets the depth of x in the trie), subtreesize(x) (which gets the
size of the subtree of x, including x itself), preorder(x) (which gets the preorder
number of x in the trie), and ancestor(x, y) (which tells us whether x is ancestor of

88 D. Arroyuelo and G. Navarro

node y). Operations subtreesize, depth, preorder, and ancestor can be computed
without extra disk accesses, while operations parent and child require one disk
access in the worst case. In [19] we explain how to compute them.

Analysis of Space Complexity. In the case of LZTrie, as the number of
nodes is n, the space requirement is 2n+n+n logσ +n logn+ o(n) bits, for the
BP representation, the flags, the symbols, and phrase identifiers respectively. To
this we must add the space required for the inter-block pointers and the extra
information added to each block, such as the depth of the root, etc. If the trie
is represented by a total of K blocks, these data add up to O(K log n) bits. The
bottom-up partition of the trie ensures K = O(n/b), so the extra information
requires O(n

b log n) bits. As b = ω(1), this space is o(n log n) = o(u log σ) bits.
In the case of RevTrie, as there can be empty nodes, we represent the trie using

a Patricia tree [20], compressing empty unary paths so that there are n � n′ � 2n
nodes. In the worst case the space requirement is 4n + 2n + 2n logσ + o(n) bits,
plus the extra information as before.

As we pack several trie blocks in a disk page, we ensure a utilization ratio of
50% at least. Hence the space of the tries can be at most doubled on disk.

3.2 Reducing the Navigation Between Structures

We add the following data structures with the aim of reducing the number of
disk accesses required by the LZ-index at search time:

– Prelz [1..n]: a mapping from phrase identifiers to the corresponding LZTrie
preorder, requiring n log n bits of space.

– Rev[1..n]: a mapping from RevTrie preorder positions to the corresponding
LZTrie node, requiring n log u + n bits of space. Later in this section we
explain why we need this space.

– TPoslz[1..n]: if the phrase corresponding to the node with preorder i in
LZTrie starts at position j in the text, then TPoslz[i] stores the value j.
This array requires n log u bits and is used for locate queries.

– LR[1..n]: an array requiring n logn bits. If the node with preorder i in LZTrie
corresponds to the LZ78 phrase Bk, then LR[i] stores the preorder of the
RevTrie node for Bk−1.

– Sr[1..n]: an array requiring n logu bits, storing in Sr[i] the subtree size of
the LZTrie node corresponding to the i-th RevTrie node (in preorder). This
array is used for counting.

– Node[1..n]: the mapping from phrase identifiers to the corresponding LZTrie
node, requiring n log n bits. This is used to solve extract queries.

As the size of these arrays depends on the compressed text size, we do not need
that much space to store them: they require 3n logu + 3n logn + n bits, which
summed to the tries gives 8uHk + o(u log σ) bits, for any k = o(logσ u).

If the index is used only for count queries, we basically need arrays Prelz , LR,
Sr, and the tries, plus an array RL[1..n], which is similar to LR but mapping

A Lempel-Ziv Text Index on Secondary Storage 89

from a RevTrie node for Bk to the LZTrie preorder for Bk+1. All these add up
to 6uHk + o(u log σ) bits.

After searching for all pattern substrings P [i..j] in LZTrie (recording in
Clz [i, j] the phrase identifier, the preorder, and the subtree size of the corre-
sponding LZTrie node, along with the node itself) and all reversed prefixes
P r[1..i] in RevTrie (recording in array Cr[i] the preorder and subtree size of the
corresponding RevTrie node), we explain how to find the pattern occurrences.

Occurrences of Type 1. Assume that the search for P r in RevTrie yields node
vr. For every node with preorder i, such that preorder(vr) � i � preorder(vr)+
subtreesize(vr) in RevTrie, with Rev[i] we get the node vlzi in LZTrie repre-
senting a phrase Bt ending with P . The length of Bt is d = depth(vlzi), and the
occurrence starts at position d − m inside Bt. Therefore, if p = preorder(vlzi),
the exact text position can be computed as TPoslz[p]+d−m. We then traverse
all the subtree of vlzi and report, as an occurrence of type 1, each node con-
tained in this subtree, accessing TPoslz[p..p + subtreesize(vlzi)] to find the text
positions. Note that the offset d−m stays constant for all nodes in the subtree.

Note that every node in the subtree of vr produces a random access in LZTrie.
In the worst case, the subtree of vlzi has only one element to report (vlzi itself),
and hence we have occ1 random accesses in the worst case. To reduce the worst
case to occ1/2, we use the n extra bits in Rev: in front of the log u bits of each
Rev element, a bit indicates whether we are pointing to a LZTrie leaf. In such a
case we do not perform a random access to LZTrie, but we use the corresponding
log u bits to store the exact text position of the occurrence.

To avoid accessing the same LZTrie page more than once, even for different
trie blocks stored in that page, for each Rev[i] we solve all the other Rev[j]
that need to access the same LZTrie page. As the tries are space-efficient, many
random accesses could need to access the same page.

For count queries we traverse the Sr array instead of Rev, summing up the
sizes of the corresponding LZTrie subtrees without accessing them, therefore
requiring O(occ1/b) disk accesses.

Occurrences of Type 2. For occurrences of type 2 we consider every possible
partition P [1..i] and P [i+1..m] of P . Suppose the search for P r[1..i] in RevTrie
yields node vr (with preorder pr and subtree size sr), and the search for P [i +
1..m] in LZTrie yields node vlz (with preorder plz and subtree size slz). Then
we traverse sequentially LR[j], for j = plz..plz + slz , reporting an occurrence
at text position TPoslz[j] − i iff LR[j] ∈ [pr..pr + sr]. This algorithm has the
nice property of traversing arrays LR and TPoslz sequentially, yet the number
of elements traversed can be arbitrarily larger than occ2.

For count queries, since we have also array RL, we choose to traverse RL[j],
for j = pr..pr + sr, when the subtree of vr is smaller than that of vlz, counting
an occurrence only if RL[j] ∈ [plz ..plz + slz].

To reduce the number of accesses from 2� slz+1
b � to � 2(slz+1)

b �, we interleave
arrays LR and TPoslz, such that we store LR[1] followed by TPoslz[1], then
LR[2] followed by TPoslz[2], etc.

90 D. Arroyuelo and G. Navarro

Occurrences of Type 3. We find all the maximal concatenations of phrases
using the information stored in Clz and Cr. If we found that P [i..j] = Bk . . . B�

is a maximal concatenation, we check whether phrase B�+1 has P [j + 1..m]
as a prefix, and whether phrase Bk−1 has P [1..i − 1] as a suffix. Note that,
according to the LZ78 properties, B�+1 starting with P [j + 1..m] implies that
there exists a previous phrase Bt, t < � + 1, such that Bt = P [j + 1..m]. In
other words, Clz [j + 1, m] must not be null (i.e., phrase Bt must exist) and the
phrase identifier stored at Clz [j +1, m] must be less than �+1 (i.e., t < �+1). If
these conditions hold, we check whether P r[1..i− 1] exists in RevTrie, using the
information stored at Cr[i−1]. Only if all these condition hold, we check whether
Prelz [� + 1] descends from the LZTrie node corresponding to P [j + 1..m] (using
the preorder and subtree size stored at Clz [j + 1, m]), and if we pass this check,
we finally check whether LR[Prelz[k]] (which yields the RevTrie preorder of the
node corresponding to phrase k−1) descend from the RevTrie node for P r[1..i−1]
(using the preorder and subtree size stored at Cr [i− 1]). Fortunately, we have a
high probability that Prelz [�+1] and Prelz[k] need to access the same disk page.
If we find an occurrence, the corresponding position is TPoslz[Prelz [k]]−(i−1).

Extract Queries. In [19] we explain how to solve extract queries.

4 Experimental Results

For the experiments of this paper we consider two text files: the text wsj (Wall
Street Journal) from the trec collection [21], of 128 megabytes, and the XML file
provided in the Pizza&Chili Corpus1, downloadable from http://pizzachili.
dcc.uchile.cl/texts/xml/dblp.xml.200MB.gz, of 200 megabytes. We
searched for 5,000 random patterns, of length from 5 to 50, generated from
these files. As in [8], we assume a disk page size of 32 kilobytes. We compared
our results against the following state-of-the-art indexes for secondary storage:

Suffix Arrays (SA): following [22] we divide the suffix array into blocks of
h � b elements (pointers to text suffixes), and move to main memory the
first l text symbols of the first suffix of each block, i.e. there are u

h l extra
symbols. We assume in our experiments that l = m holds, which is the best
situation. At search time, we carry out two binary searches [23] to delimit
the interval [i..j] of the pattern occurrences. Yet, the first part of the binary
search is done over the samples without accessing the disk. Once the blocks
where i and j lie are identified, we bring them to main memory and finish
the binary search, this time accessing the text on disk at each comparison.
Therefore, the total cost is 2+2 logh disk accesses. We must pay � occ

b � extra
accesses to report the occurrences of P within those two positions. The space
requirement including the text is (5 + m

h) times the text size.
String B-trees [7]: in [8] they pointed out that an implementation of String

B-trees for static texts would require about 2 + 2.125
k times the text size

1 http://pizzachili.dcc.uchile.cl

A Lempel-Ziv Text Index on Secondary Storage 91

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7

D
is

k
ac

ce
ss

es

Index size, as a fraction of text size (including the text)

counting cost - XML text, m=5

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7

D
is

k
ac

ce
ss

es

Index size, as a fraction of text size (including the text)

counting cost - XML text, m=15

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7

D
is

k
ac

ce
ss

es

Index size, as a fraction of text size (including the text)

counting cost - WSJ text, m=5

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7

D
is

k
ac

ce
ss

es

Index size, as a fraction of text size (including the text)

counting cost - WSJ text, m=15

LZ-index
String B-trees

SA
CPT

Fig. 1. Count cost vs. space requirement for the different indexes we tested

(where k > 0 is a constant) and the height h of the tree is 3 for texts of
up to 2 gigabytes, since the branching factor (number of children of each
tree node) is b′ ≈ b

8.25 . The experimental number of disk accesses given by
the authors is O(log k)(�m

b � + 2h) + � occ
b′ �. We assume a constant of 1 for

the O(log k) factor, since this is not clear in the paper [8, Sect. 2.1] (this is
optimistic). We use k = 2, 4, 8, 16, and 32.

Compact Pat Trees (CPT) [9]: we assume that the tree has height 3, ac-
cording to the experimental results of Clark and Munro. We need 1 + � occ

b �
extra accesses to locate the pattern occurrences. The space is about 4–5
times the text size (plus the text).

We restrict our comparison to indexes that have been implemented, or at
least simulated, in the literature. Hence we exclude the Compressed Suffix Arrays
(CSA) [10] since we only know that it needs at most 2(1+m�logb u�) accesses for
count queries. This index requires about 0.22 and 0.45 times the text size for the
XML and WSJ texts respectively, which, as we shall see, is smaller than ours.
However, CSA requires O(log u) accesses to report each pattern occurrence2.

Fig. 1 shows the time/space trade-offs of the different indexes for count
queries, for patterns of length 5 and 15. As it can be seen, our LZ-index re-
quires about 1.04 times the text size for the (highly compressible) XML text,
and 1.68 times the text size for the WSJ text. For m = 5, the counting requires
about 23 disk accesses, and for m = 15 it needs about 69 accesses. Note that
for m = 5, there is a difference of 10 disk accesses among the LZ-index and
2 The work [24] extends this structure to achieve fast locate. The secondary-memory

version is still a theoretical proposal and it is hard to predict how will it perform,
so we cannot meaningfully compare it here.

92 D. Arroyuelo and G. Navarro

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7

O
cc

ur
re

nc
es

 p
er

 d
is

k
ac

ce
ss

Index size, as a fraction of text size (including the text)

locating cost - XML text, m=5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 1 2 3 4 5 6 7

O
cc

ur
re

nc
es

 p
er

 d
is

k
ac

ce
ss

Index size, as a fraction of text size (including the text)

locating cost - XML text, m=15

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7

O
cc

ur
re

nc
es

 p
er

 d
is

k
ac

ce
ss

Index size, as a fraction of text size (including the text)

locating cost - WSJ text, m=5

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7

O
cc

ur
re

nc
es

 p
er

 d
is

k
ac

ce
ss

Index size, as a fraction of text size (including the text)

locating cost - WSJ text, m=15

LZ-index
String B-trees

SA
CPT

Fig. 2. Locate cost vs. space requirement for the different indexes we tested. Higher
means better locate performance.

 0

 50

 100

 150

 200

 5 10 15 20 25 30 35 40 45 50

D
is

k
ac

ce
ss

es

Pattern length

XML text

tries
type 1
type 2
type 3

total

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 5 10 15 20 25 30 35 40 45 50

D
is

k
ac

ce
ss

es
 p

er
 o

cc
ur

re
nc

e

Pattern length

XML text

tries
type 1
type 2
type 3

total

Fig. 3. Cost for the different parts of the LZ-index search algorithm

String B-trees, the latter requiring 3.39 (XML) and 2.10 (WSJ) times the space
of the LZ-index. For m = 15 the difference is greater in favor of String B-Trees.
The SA outperforms the LZ-index in both cases, the latter requiring about 20%
the space of SA. Finally, the LZ-index needs (depending on the pattern length)
about 7–23 times the number of accesses of CPTs, the latter requiring 4.9–5.8
(XML) and 3–3.6 (WSJ) times the space of LZ-index.

Fig. 2 shows the time/space trade-offs for locate queries, this time show-
ing the average number of occurrences reported per disk access. The LZ-index
requires about 1.37 (XML) and 2.23 (WSJ) times the text size, and is able of
reporting about 597 (XML) and 63 (WSJ) occurrences per disk access for m = 5,
and about 234 (XML) and 10 (WSJ) occurrences per disk access for m = 15. The
average number of occurrences found for m = 5 is 293,038 (XML) and 27,565
(WSJ); for m = 15 there are 45,087 and 870 occurrences on average. String
B-trees report 3,449 (XML) and 1,450 (WSJ) occurrences per access for m = 5,

A Lempel-Ziv Text Index on Secondary Storage 93

and for m = 15 the results are 1,964 (XML) and 66 (WSJ) occurrences per
access, requiring 2.57 (XML) and 1.58 (WSJ) times the space of the LZ-index.

Fig. 3 shows the cost for the different parts of the LZ-index search algorithm, in
the case of XML (WSJ yields similar results): the work done in the tries (labeled
“tries”), the different types of occurrences, and the total cost (“total”). The
total cost can be decomposed in three components: a part linear on m (trie
traversal), a part linear in occ (type 1), and a constant part (type 2 and 3).

5 Conclusions and Further Work

The LZ-index [12] can be adapted to work on secondary storage, requiring up
to 8uHk + o(u log σ) bits of space, for any k = o(logσ u). In practice, this value
is about 1.4–2.3 times the text size, including the text, which means 39%–65%
the space of String B-trees [7]. Saving space in secondary storage is important
not only by itself (space is very important for storage media of limited size, such
as CD-ROMs), but also to reduce the high seek time incurred by a larger index,
which usually is the main component in the cost of accessing secondary storage,
and is roughly proportional to the size of the data.

Our index is significantly smaller than any other practical secondary-memory
data structure. In exchange, it requires more disk accesses to locate the pattern
occurrences. For XML text, we are able to report (depending on the pattern
length) about 597 occurrences per disk access, versus 3,449 occurrences reported
by String B-trees. For English text (WSJ file from [21]), the numbers are 63 vs.
1,450 occurrences per disk access. In many applications, it is important to find
quickly a few pattern occurrences, so as to find the remaining while processing
the first ones, or on user demand (think for example in Web search engines).
Fig. 3 (left, see the line “tries”) shows that for m = 5 we need about 11 disk
accesses to report the first pattern occurrence, while String B-trees need about
12. If we only want to count the pattern occurrences, the space can be dropped
to 6uHk + o(u log σ) bits; in practice 1.0–1.7 times the text size. This means
29%–48% the space of String B-trees, with a slowdown of 2–4 in the time.

We have considered only number of disk accesses in this paper, ignoring seek
times. Random seeks cost roughly proportionally to the size of the data. If we
multiply number of accesses by index size, we get a very rough idea of the overall
seek times. The smaller size of our LZ-index should favor it in practice. For ex-
ample, it is very close to String B-trees for counting on XML and m = 5 (Fig. 1).
This product model is optimistic, but counting only accesses is pessimistic.

As future work we plan to handle dynamism and the direct construction on
secondary storage, adapting the method of [16] to work on disk.

References

1. Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algorithms
on Words. NATO ISI Series, pp. 85–96. Springer, Heidelberg (1985)

2. Kurtz, S.: Reducing the space requeriments of suffix trees. Softw. Pract. Ex-
per. 29(13), 1149–1171 (1999)

94 D. Arroyuelo and G. Navarro

3. Manzini, G.: An analysis of the Burrows-Wheeler transform. JACM 48(3), 407–430
(2001)

4. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
(to appear)

5. Ferragina, P., Manzini, G.: Indexing compressed texts. JACM 54(4), 552–581
(2005)

6. Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and flexible word search-
ing on compressed text. ACM TOIS 18(2), 113–139 (2000)

7. Ferragina, P., Grossi, R.: The String B-tree: a new data structure for string search
in external memory and its applications. JACM 46(2), 236–280 (1999)

8. Ferragina, P., Grossi, R.: Fast string searching in secondary storage: theoretical
developments and experimental results. In: Proc. SODA, pp. 373–382 (1996)

9. Clark, D., Munro, J.I.: Efficient suffix trees on secondary storage. In: Proc. SODA,
383–391 (1996)

10. Mäkinen, V., Navarro, G., Sadakane, K.: Advantages of backward searching —
efficient secondary memory and distributed implementation of compressed suffix
arrays. In: Proc. ISAAC, pp. 681–692 (2004)

11. Sadakane, K.: Succinct representations of lcp information and improvements in the
compressed suffix arrays. In: Proc. SODA, pp. 225–232 (2002)

12. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. of Discrete Algo-
rithms 2(1), 87–114 (2004)

13. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE TIT 24(5), 530–536 (1978)

14. Kosaraju, R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM J.Comp. 29(3), 893–911 (1999)

15. Arroyuelo, D., Navarro, G., Sadakane, K.: Reducing the space requirement of LZ-
index. In: Proc. CPM, pp. 319–330 (2006)

16. Arroyuelo, D., Navarro, G.: Space-efficient construction of LZ-index. In: Proc.
ISAAC pp. 1143–1152 (2005)

17. Munro, I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J.Comp. 31(3), 762–776 (2001)

18. Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) Foundations of Software Tech-
nology and Theoretical Computer Science. LNCS, vol. 1180, pp. 37–42. Springer,
Heidelberg (1996)

19. Arroyuelo, D., Navarro, G.: A Lempel-Ziv text index on secondary storage. Tech-
nical Report TR/DCC-2004, -4, Dept. of Computer Science, Universidad de Chile
(2007) ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/lzidisk.ps.gz

20. Morrison, D.R.: Patricia – practical algorithm to retrieve information coded in
alphanumeric. JACM 15(4), 514–534 (1968)

21. Harman, D.: Overview of the third text REtrieval conference. In: Proc. Third Text
REtrieval Conference (TREC-3), NIST Special Publication, pp. 500–207 (1995)

22. Baeza-Yates, R., Barbosa, E.F., Ziviani, N.: Hierarchies of indices for text search-
ing. Inf. Systems 21(6), 497–514 (1996)

23. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J.Comp. 22(5), 935–948 (1993)

24. González, R., Navarro, G.: Compressed text indexes with fast locate. In: Proc. of
CPM’07. LNCS (To appear 2007)

ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/lzidisk.ps.gz

Dynamic Rank-Select Structures with

Applications to Run-Length Encoded Texts�

(Extended Abstract)

Sunho Lee and Kunsoo Park��

School of Computer Science and Engineering,
Seoul National University, Seoul, 151-742, Korea

kpark@theory.snu.ac.kr

Abstract. Given an n-length text over a σ-size alphabet, we propose a
dynamic rank-select structure that supports O((1 + log σ

log log n
) log n) time

operations in n log σ + o(n log σ) bits space. If σ < log n, then the oper-
ation time is O(log n). In addition, we consider both static and dynamic
rank-select structures on the run-length encoding (RLE) of a text. For
an n′-length RLE of an n-length text, we present a static structure that
gives O(1) time select and O(log log σ) time rank using n′ log σ + O(n)
bits and a dynamic structure that provides O((1 + log σ

log log n
) log n) time

operations in n′ log σ + o(n′ log σ) + O(n) bits.

1 Introduction

A succinct rank-select structure is an essential ingredient of compressed full text
indices such as compressed suffix array (CSA) [8,24] and FM-index [4]. Given a
text of length n over a σ-size alphabet, the succinct rank-select structure occupies
only the same space as the text T , n log σ bits, plus a small extra space, o(n log σ)
bits. The structure can be compressed into even smaller space, nHk + o(n log σ)
bits, where Hk is the empirical k-th order entropy of T [16].

The static rank-select structure answers the following queries.

– rankT (c, i): gives the number of character c’s up to position i in text T
– selectT (c, k): gives the position of the k-th c in T .

For a dynamic structure, we consider the following insert and delete operations
on T in addition to rankT and selectT .

– insertT (c, i): inserts character c between T [i] and T [i + 1]
– deleteT (i): deletes T [i] from text T

In compressed full-text indices for a text T , a rank-select structure is built
on Burrows-Wheeler Transform (BWT) of T , which is a permutation of T made

� This work was supported by FPR05A2-341 of 21C Frontier Functional Proteomics
Project from Korean Ministry of Science & Technology.

�� Corresponding author.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 95–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

96 S. Lee and K. Park

Table 1. Static rank-select structures

Alphabet Text Time Space Reference

Binary Plain O(log n) n + o(n) Jacobson [12]

(σ = 2) O(1) n + O(n log log n
log n

) rank Clark [2], Munro [18]

n + O(n
log log n

) select

O(1) n + O(n log log n
log n

) rank Kim, Na,

n + O(n log log n√
log n

) select Kim and Park [13]

O(1) nH0 + o(n) Raman, Raman and Rao [23]

polylog(n) Plain O(1) nH0 + o(n) Ferragina, Manzini,

O(nβ), O(log σ
log log n

) nH0 + o(n log σ) Mäkinen and Navarro [5]

β < 1

General Plain O(log σ) nH0 + o(n log σ) Grossi, Gupta and Vitter [7]
O(1) select nH0 + O(n) Golynski, Munro and Rao [6]
O(log log σ) rank
O(1) select n log σ + O(n) Hon, Sadakane and Sung [10]
O(log log σ) rank

RLE O(log σ) rank n′H ′
0 + O(n) Mäkinen and Navarro [14]

O(1) select n′H ′
0 + O(n) This paper

O(log log σ) rank

from lexicographically sorted suffixes of T . This rank-select structure on BWT
of T directly supports the functions of compressed full-text indices. For instance,
O(1) rank queries are posted in each step of backward searching [4]. From the
duality between BWT and Ψ -function of CSA [10], select queries are used im-
plicitly to give Ψ -function.

Since BWT provides easy compression of a text [16], Mäkinen and Navarro
employed Run-Length Encoding (RLE) of BWT to obtain Run-Length based
FM-index (RLFM) [14]. They showed that the length of RLE of BWT is nHk +
o(n) for k < α logσ n, 0 < α < 1. Applying RLE to a rank structure produces
RLFM of nHk log σ + o(n log σ) + O(n) bits space. RLFM is built upon a rank
structure on a plain text as a black box.

In this paper, we propose a dynamic rank-select structure that supports
O((1 + log σ

log log n) log n) time operations in n log σ + o(n log σ) bits space. For a
small alphabet with σ ≤ log n, our structure gives O(log n) time operations.
For a large alphabet with σ > log n, the time complexity of our structure is an
improvement upon [11]. In addition, we consider both static and dynamic rank-
select structures on RLE, by following Mäkinen and Navarro’s RLFM strategy.
For an n′-length RLE of an n-length text, we obtain a static structure that
gives O(1) time select and O(log log σ) time rank using n′ log σ + O(n) bits
and a dynamic structure that provides O((1 + log σ

log log n) log n) time operations in
n′ log σ + o(n′ log σ) + O(n) bits.

The results of static rank-select structures are shown in Table 1. Jacobson
first considered this problem for a binary alphabet and gave O(log n) time rank-
select using n + o(n) bits [12]. This was improved to O(1) time rank-select in

Dynamic Rank-Select Structures 97

Table 2. Dynamic rank-select structures

Alphabet Text Time Space Reference

σ ≤ log n Plain O(log n) n log σ + o(n log σ) This paper
RLE O(log n) n′ log σ + o(n′ log σ)

+O(n)

General Plain O(log σ log n
log log n

) n log σ + o(n log σ) Raman, Raman

O(log σ logb n) rank-select and Rao [22]
O(log σ b) flip
O(log σ logb n) rank-select n log σ + o(n log σ) Hon, Sadakane
O(log σ b) insert-delete and Sung [11]
O(log σ log n) nH0 + o(n log σ) Mäkinen

and Navarro [15]
O((1/ε) log log n) rank-select n log σ + o(n log σ) Gupta, Hon,
O((1/ε)nε) insert-delete Shah and Vitter [9]

O((1 + log σ
log log n

) log n) n log σ + o(n log σ) This paper

RLE O((1 + log σ
log log n

) log n) n′ log σ + o(n′ log σ)

+O(n)

n+o(n) bits by Clark [2] and Munro [18], and further improved in space by Kim
et al [13]. The structure by Raman et al. [23] achieves O(1) time rank-select
in nH0 + o(n) bits space. The trade-off between time and space was studied
by Miltersen [17]. These binary structures can be the key structures of various
succinct data structures [19,20,21,23].

The rank-select structure for a large alphabet was studied in the context of
compressed full-text indices. Grossi et al. [7] gave a wavelet-tree structure of
nH0 + o(n log σ) bits size, which answers rank-select queries in O(log σ) time.
This was improved for certain alphabet sizes by Ferragina et al [5]. The structure
for a general alphabet was considered by Golynski et al. [6] and by Hon et al
[10]. Using these results, the rank structure on RLE by Mäkinen and Navarro
[14] immediately gives O(log log σ) time rank instead of O(log σ) time rank.

The results of dynamic structures are shown in Table 2. For the case of a binary
alphabet, it was addressed as a special case of the partial sum problem by Raman
et al. [22] and Hon et al [11]. Raman et al. gave O(log n

log log n) worst-case time rank-
select-flip operations or O(logb n) time rank-select with O(b) amortized time flip
in n+o(n) bits space for log n

log log n ≤ b < n. It was extended to support insert-delete
by Hon et al [11]. Mäkinen and Navarro [15] gave an entropy-bound structure of
nH0+o(n) bits space, which enables O(log n) worst-case time operations. For the
case of a large alphabet, the extensions of binary structures using wavelet-trees
as in [7,15] achieve O(n log σ) bits space with O(log σ) slowdown factor (Table 2).
Recently, Gupta et al. [9] presented a dynamic structure of n log σ+o(n log σ) bits
space, which provides O((1/ε) log log n) time retrieving queries and O((1/ε)nε)
updating queries, without wavelet-trees.

Our rank-select structures can be applied to index structures based on BWT.
For instance, our dynamic structure can be applied to the index of a collection
of texts by Chan et al [1]. The index of a collection in [1] has two structures,

98 S. Lee and K. Park

COUNT and PSI, which can be replaced by rank and select on BWT of the
concatenation of given texts. For the collection indexing, our structure reduces
its space usage to nHk log σ+o(nHk log σ)+O(n) bits, and removes its constraint
that σ has to be a constant. Note that Hk is defined on the concatenation of
the given texts. Our structures also support the XML indexing, which is based
on the XBW transform proposed by Ferragina et al [3]. The XBW transform
is an extension of BWT for XML trees, which can be handled by rank-select
operations.

2 Definitions and Preliminaries

We denote by T = T [1]T [2] . . . T [n] the text of length n over a σ-size alphabet
Σ = {0, 1, . . . σ − 1}. T is assumed to be terminated by a unique endmarker,
T [n] = $, which is lexicographically smaller than any other character in Σ. We
assume the alphabet size σ is o(n), because otherwise the size of text becomes
n log σ = Ω(n log n) bits; Ω(n log n) bits space makes the problem easy. This is
the only assumption on the alphabet size.

Let n-length text T = cl1
1 cl2

2 . . . c
ln′
n′ be a concatenation of n′ runs, where a run

is li consecutive occurrences of a same character ci. We represent a run-length
encoding of T by two vectors, T ′ and L, such that T ′ = c1c2 . . . cn′ consists of
the character of each run, and bit vector L = 10l1−110l2−1 . . . 10ln′−1 contains
the length of each run. T ′ and L are denoted by RLE(T), our representation of
RLE of T .

The compressed full-text indices usually consist of two components: one is the
Burrows-Wheeler Transform (BWT) of a text T , and the other is the Ψ -function.
The BWT of T , BWT (T), is a permutation of T , which has the information of
suffix arrays [16]. Because BWT (T) takes the same size as T , BWT (T) can
replace the suffix array of O(n log n) bits size and it is employed by compressed
full-text indices, explicitly or implicitly. Mäkinen and Navarro showed that the
number of runs in BWT (T) is less than nHk + σk, so the size of rank-select
structures on RLE(BWT (T)) is bounded by the following lemma.

Lemma 1. [14] The number of runs in BWT (T) is at most n ·min(Hk(T), 1)+
σk, for any k ≥ 0. In particular, this is nHk(T)+ o(n) for any k ≤ α logσ n, for
any constant 0 < α < 1.

The other component, Ψ -function, gives the lexicographic order of the next suffix.
Let SA[i] denote the starting position of the lexicographically i-th suffix of T ,
and SA−1[i] be the order of the suffix with starting position i, T [i, n]. The Ψ -
function is defined as

Ψ [i] =
{

SA−1[SA[i] + 1] if SA[i] 	= n
SA−1[1] otherwise.

In fact, from the duality between BWT (T) and Ψ -function [10] we obtain Ψ -
function by applying select on BWT (T). Let F [c] be the number of occurrences

Dynamic Rank-Select Structures 99

of characters less than c in the text T . We also denote by C[i], the first character
of the i-th suffix, T [SA[i], n]. Then, Ψ -function is

Ψ [i] = selectBWT (T)(C[i], i − F [C[i]]).

3 Dynamic Rank-Select Structures on a Plain Text

In this section, we prove the following theorem by considering two cases of the
alphabet size. For a small alphabet with σ ≤ log n, we improve Mäkinen and
Navarro’s binary structure [15] to support all operations in O(log n) time. For a
large alphabet with σ > log n, we extend our small-alphabet structure to provide
O((1 + log σ

log log n) log n) time operations, by using k-ary wavelet-trees [7,5].

Theorem 1. Given a text T over an alphabet of size σ, there is a dynamic
structure that supports O((1 + log σ

log log n) log n) worst-case time rank, select and
access, while supporting O((1+ log σ

log log n) log n) amortized time insert and delete

in n logσ + o(n log σ) bits space.

3.1 Dynamic Rank-Select Structure for a Small Alphabet

We assume the RAM model with word size w = Θ(log n) bits, which supports
an addition, a multiplication, and bitwise operations in O(1) time. For a small
alphabet structure, we partition the text into blocks of size 1

2 log n to 2 logn
words. Because a dynamic operation handles variable sizes of blocks, we define
a partition vector I that represents the boundary of a block by a 1 and the
following 0s. This partition vector I gives the mapping between a position and
a block. For position i, rankI(1, i) gives the number of the block that contains
i, and selectI(1, k) inversely returns the starting position of the k-th block. We
employ Mäkinen and Navarro’s binary structure for the operations on I.

Using the partition I, we divide a given operation into an over-block operation
and an in-block one. For instance, given rankT (c, i), we first compute the b-
th block that contains i and the offset r of position i in the b-th block by
b = rankI(1, i) and r = i − selectI(1, b) + 1. The over-block rank gives the
number of occurrences of c before the b-th block. The in-block rank returns the
number of c up to position r in the b-th block. Then, rankT (c, i) is the sum of
these over-block rank and in-block rank. We define the over-block operations as

– rank-overT (c, b): gives the number of c’s in blocks preceding the b-th block.
– select-overT (c, k): gives the number of the block containing the k-th c.
– insert-overT (c, b): increases the number of c’s in the b-th block.
– delete-overT (c, b): decreases the number of c’s in the b-th block.

Let Tb be the b-th block. The in-block operation for the b-th block is defined as

– rankTb
(c, r): gives the number of c’s up to position r in Tb.

– selectTb
(c, k): gives the position of the k-th c in Tb.

100 S. Lee and K. Park

– insertTb
(c, r): inserts character c between Tb[r] and Tb[r + 1].

– deleteTb
(r): deletes the r-th character of Tb.

Note that the over-block updates just change the structure for over-block oper-
ations, and the in-block updates actually change the text itself.

In-block Operations To process in-block operations, we employ the same
hierarchy as Mäkinen and Navarro’s: a word, a sub-block and a block. We first
show that the characters in a word can be processed in O(1) time. Instead of
a word of Θ(log n) bits for the binary structure, our word contains Θ(log n

log σ)
characters for a σ-size alphabet. We convert Θ(log n

log σ) characters to Θ(log n
log σ) bits

by bitwise operations, and then use the rank-select tables which take o(n) bits
space and give binary rank-select on a word in O(1) time [2,18,13,23].

Lemma 2. We can process rank, select, insert, and delete on a text of a word
size with Θ(log n

log σ) characters, by using O(1) time and o(n) bits space.

Secondly, we show a structure for O(log n) time in-block operations as in Mäkinen
and Navarro’s. To refer to the b-th block, we build a red-black tree over the blocks.
Each block becomes a leaf node, and an internal node v maintains n(v), the num-
ber of blocks in the subtree rooted at v. From the root node to the b-th block, we
choose a child of v by comparing n(left(v)) and b, where left(v) is the left child
of v. If n(left(v)) > b, the b-th block is in the left subtree of v. Otherwise the b-th
block is in the right subtree of v. The total size of the tree is 2n

log n Θ(log n
log σ)

·O(log n) =

O(n log σ
log n) bits.

Mäkinen and Navarro introduced sub-block structures that use only o(n log σ)
bits extra space. Because we set the block size from 1

2 log n to 2 logn words,
allocating 2 logn words for each block can waste O(log n) words as extra space
for each block. This causes our structure to waste total O(n log σ) bits space.
To use only o(n log σ) bits space, each block is divided into sub-blocks of

√
log n

words and a block has only one sub-block as extra space. A block maintains
1
2

√
log n to 2

√
log n sub-blocks by using a linked list, whose last sub-block is the

extra sub-block. Since the pointer size is O(log n), we use total 2n√
log n Θ(log n

log σ)
·

O(log n) = O(n log σ√
log n

) bits space for the list. The space of extra sub-blocks is also
2n

log n Θ(log n
log σ)

·
√

log n Θ(log n
log σ) = O(n log σ√

log n
) bits.

To give rankTb
and selectTb

, we find the b-th block by traversing the red-
black tree in O(log n) time and scan O(log n) words in a block by Lemma 2. The
in-block updates, insertTb

and deleteTb
trigger a carry character to neighbor

blocks, and we process the carry by using the extra sub-block of the block. If
the extra sub-block is full, we create a new sub-block and add it to the list of
the block. When the last two sub-blocks become empty, we remove one empty
sub-block in the list.

Lemma 3. Given an n-length text over a σ-size alphabet with σ ≤ log n and
its partition of blocks of log n words, we can support O(log n) worst-case time
rankTb

, selectTb
, insertTb

and deleteTb
using n log σ + O(n log σ√

log n
)bits space.

Dynamic Rank-Select Structures 101

Note that we can process an accessing of the i-th character, accessT (i) in
O(log n) time using the block structures. From b = rankI(1, i) and r = i −
selectI(1, b), we find the b-th block that contains the i-th character and scan its
sub-blocks to get the r-th character of the b-th block.

Over-block operations. In Mäkinen and Navarro’s binary structure, the over-
block operations are provided by storing the number of 1s in the internal nodes
of the red-black tree. For a σ-size alphabet, this method cannot obtain o(n log σ)
bits space. We propose a new structure for the over-block operations by using
the idea of the static structure by Golynski et al. [6] and Hon et al [10].

We first define a character-and-block pair. Given a text T , let (T [i], b) be the
character-and-block pair of T [i], where the block number b is given by rankI(1, i).
We define CB(T) as the sorted sequence of (T [i], b). Let (cj , bj) denote the j-th
pair of CB(T).

We encode CB(T) into a bit vector B of O(n) bits size. CB(T) is a non-
decreasing sequence from (0, 1) to (σ − 1, nb), where nb is the total number of
blocks. CB(T) has the consecutive occurrences of a same (cj , bj) pair, which
means the occurrences of cj in the bj-th block. The bit vector B represents
the occurrences of (cj , bj) as a 1 and the following 0s. If there is no occurrence
of (cj , bj), it is represented as a single 1. Hence, the k-th 1 of B gives a pair
(c, b), where c = �k−1

nb
� and b = (k − 1) mod nb + 1. Since the block size varies

from 1
2 log n to 2 log n words, nb is 2n

log n Θ(log n
log σ)

= O(n
log n). For a small alphabet

σ ≤ log n, n
log n ≤ n

σ . Then, the size of B is O(n) bits, because the total number
of 1s is σnb = O(n) and the number of 0s is exactly n. The binary operations
on B directly supports our over-block operations.

T = babc ababc abca

I = 1000 10000 1000
(b, 1)(a, 1)(b, 1)(c, 1) (a, 2)(b, 2)(a, 2)(b, 2)(c, 2) (a, 3)(b, 3)(c, 3)(a, 3)

CB(T) = (a, 1)(a, 2)(a, 2)(a, 3)(a, 3) (b, 1)(b, 1)(b, 2)(b, 2)(b, 3) (c, 1)(c, 2)(c, 3)
B = 10100100 10010010 101010

Fig. 1. Example of CB(T) and B

We employ Mäkinen and Navarro’s binary rank-select on B which supports
all operations in O(log n) worst-case time. The rank-select on B immediately
gives rank-over and select-over. To update the number of c’s in the b-th block,
we update 0s after the (cnb + b)-th 1 in B. If the size of the b-th block is out of
the range, 1

2 log n to 2 log n words, then we split or merge the b-th block in B.
We split or merge the b-th block for each character by σ insert-delete operations
on B. Since σ ≤ log n, these σ queries can be amortized over Θ(log2 n

log σ) = Ω(σ)
in-block operations for each character.

Lemma 4. Given an n-length text over a σ-size alphabet with σ ≤ log n and its
partition of blocks of log n words, we can answer rank-over and select-over in

102 S. Lee and K. Park

O(log n) worst-case time and O(n) bits space, while supporting insert-over and
delete-over in O(log n) amortized time.

From Lemmas 3 and 4, we can process the operations for a small alphabet by
in-block operations and over-block ones. Given position i, the partition vector
I gives the block b and the offset r. Then, rankT (c, i) is the sum of rank-
over(c, b) and rankTb

(c, r). selectT (c, k) is the sum of the position of the block
given by b = select-over(c, k) and selectTb

(c, k′). For selectTb
(c, k′), we remove c

preceding Tb by k′ = k−rank-over(c, b)+1. insertT (c, i) is supported by insert-
over(c, b) and insertTb

(c, r). deleteT (i) is also provided by delete-over(c, b) and
deleteTb

(r), where c = accessT (i).
Note that we fix log n in the above descriptions. That is, the number of char-

acters in a word is fixed as Θ(log n
log σ). If n becomes σn or n/σ, then we need

to change the block size and the tables of the word operation. In Mäkinen and
Navarro’s binary structure, partial structures are built for the values log n − 1,
log n, and log n + 1 to avoid amortized O(1) update [15]. In this paper, we sim-
ply re-build whenever log n/ log σ changes. This is amortized over all update
operations and makes O(1) costs per operation.

Lemma 5. Given an n-length text over a σ-size alphabet with σ ≤ log n, there is
a dynamic structure that gives O(log n) worst-case time access, rank, and select
while supporting O(log n) amortized-time insert and delete in n log σ+O(n log σ√

log n
)

bits space.

3.2 Dynamic Rank-Select Structure for a Large Alphabet

From the above log n-alphabet rank-select, we show a dynamic rank-select for a
large alphabet, by using a k-ary wavelet-tree [7,5]. Given a text T over a large
alphabet with σ > log n, we regard T [i] of log σ bits as log σ

log log n characters of a
log n-size alphabet. We define T j as the concatenation of the j-th log log n-bits
of T [i] for all i. Let T j

s denote a subsequence of T j such that the j-th log log n
bits of T [i] belongs to T j

s iff T [i] has the same prefix s of (j − 1) log log n bits.

T = abb bbc abc cab abb acc cab baa, Σ = {aaa, aab, . . . ccc}

T 1 = abacaacb

T 2
a = bbbc T 2

b = ba T 2
c = aa

T 3
aa T 3

ab = bcb T 3
ac = c T 3

ba = a T 3
bb = c T 3

bc T 3
ca = bb T 3

cb T 3
cc

Fig. 2. Example of k-ary wavelet-tree

The k-ary wavelet-tree represents each T j grouped by the prefix bits. The root
of the tree contains T 1 and each of its children contains T 2

c for c ∈ Σ′. If a node
of the j-th level contains T j

s , then its children contain T j+1
s0 , T j+1

s1 , . . . T j+1
s(σ′−1).

Dynamic Rank-Select Structures 103

At the level j ≤ log σ
log log n , each node T j

s represents a group of T [i] by the order of
prefix s. Then, a branching from T j

s to T j+1
sc is done by counting the number of

characters less than c in T j
s . We use total O(n) bits space for counting the number

of c for all T j
s at level j. The sum of branching space is O(n log σ

log log n). For rank-select
structure, each node stores a rank-select structure on T j

s instead of T j
s . Then,

the total size of the structure becomes log σ
log log n · (n log log n + O(n log log n√

log n
)) =

n log σ + O(n log σ√
log n

).

Let log σ-bits character c be l = log σ
log log n characters of log log n bits, c1c2 . . . cl.

Then rankT (c, i) = kl and selectT (c, k) = p1 are given by the following steps:

k1 = rankT 1 (c1, i) pl = selectT l
c1c2...cl−1

(cl, k)
k2 = rankT 2

c1
(c2, k1) pl−1 = selectT l−1

c1c2...cl−2
(cl−1, pl)

.
kl = rankT l

c1c2...cl−1
(cl, kl−1) p1 = selectT 1(c1, p2)

To process accessT , we have to find the path of the character T [i] from the
root to a leaf. This path starts from c1 = accessT 1(i) and we can find the next
node by rankT 1(c1, i).

c1 = accessT 1(i) k1 = rankT 1 (c1, i)
c2 = accessT 2

c1
(k1) k2 = rankT 2

c1
(c2, k2)

.

cl = accessl−1
Tc1c2...cl−1

(kl−1)

Processing insertT and deleteT goes through the same step as accessT and
updates the character of each level. Finally, we obtain a rank-select structure for
a large alphabet.

Lemma 6. Given an n-length text over a σ-size alphabet with σ > log n, there
is a dynamic structure that gives O((1 + log σ

log log n) log n) worst-case time access,
rank, and select while supporting O((1 + log σ

log log n) log n) amortized-time insert

and delete in n log σ + O(n log σ
log log n) bits space.

4 Rank-Select Structure on RLE

In this section we describe a rank-select structure on RLE(T) by using the
structures on (plain) text T ′ and on bit vectors including L. This method is
an extension of RLFM by Mäkinen and Navarro’s. For the static rank-select
structures on T ′, we employ Golynski et al.’s structure or the implicit structure
which is used in the construction of CSA by Hon et al.

Theorem 2. [6,10] Given a text T over an alphabet of size σ, there is a suc-
cinct rank-select structure that supports O(log log σ) time rank and O(1) time
select, using only nH0 + O(n) bits space. This structure can be constructed in
deterministic O(n) time.

104 S. Lee and K. Park

Our structure in Theorem 1 provides the dynamic rank-select on T ′. For the
operations on bit vectors, we use a static structure supporting O(1) time rank-
select in O(n) bits space by Raman et al. [23] and a dynamic structure providing
O(log n) time operations in O(n) bits space by Mäkinen and Navarro [15]. Note
that the total size of a structure on RLE(T) is bounded by the size of a structure
on T ′ plus O(n) bits.

In addition to L, we use some additional bit vectors - a sorted length vector
L′ and a frequency table F ′. A length vector L′ is obtained from a sequence of
runs in T sorted by the order of characters and the starting position of each run.
L′ represents lengths of runs in this sorted sequence. The frequency table F ′

gives F ′[c] that is the number of occurrences of characters less than c in text T ′.
We store F ′ as a bit vector that represents the number of occurrences of each
character as 0s and a following 1. F ′[c] can be given by counting the number of
0s up to the c-th 1, i.e., F ′[c] = selectF ′(1, c) − c for 1 ≤ c < σ and F ′[0] = 0.
From L′ and F ′, we can also compute F [c] by selectL′(1, F ′[c] + 1) − 1. Then,
there is a mapping between the k-th c of T and the (F [c]+ k)-th position of L′.

T = bb aa bbbb cc aaa
L = 10 10 1000 10 100

T ′ = babca
→

aa aaa bb bbbb cc
L′ = 10 100 10 1000 10
F ′ = 00100101

Fig. 3. Additional vectors for rank-select on RLE(T)

We start from Mäkinen and Navarro’s rank on RLE and extend RLFM to
support select and dynamic updates.

Lemma 7. [14] Given RLE(T), if there are O(tS) time selectT ′ and O(tR) time
rankT ′ using s(T ′) bits space, then we can answer rankT (c, i) in O(tS+tR)+O(1)
time and s(T ′) + O(n) bits.

Lemma 8. Given RLE(T), if there is O(tS) time selectT ′ using s(T ′) bits
space, then we can answer selectT (c, k) in O(tS) + O(1) time and s(T ′) + O(n)
bits space.

From Theorem 2 and Lemmas 7, 8, we obtain a static rank-select structure
on RLE(T). This structure can be constructed in O(n) time, because binary
structures are constructed in linear time by simple scanning of bit vectors. For the
compressed full text, the size of RLE structure on BWT (T) is nHk(T)H0(T ′)+
o(nH0(T ′)) + O(n) by Lemma 1. Note that the structure can be compressed to
achieve nHk(T)Hk(T ′)-bound by applying Sadakane and Grossi’s scheme [25].

Theorem 3. Given RLE(T) of a text T with n′ runs, there is a succinct rank-
select structure that supports O(log log σ) time rank and O(1) time select, using
n′H0(T ′) + O(n) bits space. This structure can be constructed in deterministic
O(n) time.

The dynamic rank-select on RLE(T) is supported by dynamic structures on T ′,
L, L′ and F ′. Since the retrieving operations, rankT and selectT , are

Dynamic Rank-Select Structures 105

provided by the same steps as in Lemmas 7 and 8, we address only the up-
dating operations, insertT (c, i) and deleteT (i). For updating RLE(T), we need
an additional operation accessT ′(i) that returns the i-th character, T ′[i].

Lemma 9. Given RLE(T), if there are O(tA) time accessT ′ , O(tR) time rankT ′ ,
and O(tI) time insertT ′ using s(T ′) bits space, then we can process insertT in
O(tA + tR + tI) + O(log n) time and s(T ′) + O(n) bits space.

Lemma 10. Given RLE(T), if there are O(tA) time accessT ′ , O(tR) time
rankT ′ , and O(tD) time deleteT ′ using s(T ′) bits space, then we can process
deleteT in O(tA + tR + tD) + O(log n) time and s(T ′) + O(n) bits space.

Theorem 4. Given RLE(T) of a text T with n′ runs, there is a dynamic rank-
select structure that supports O((1 + log σ

log log n) log n) worst-case time rank and
select, while supporting O((1 + log σ

log log n) log n) amortized time insert and delete

in n′ log σ + o(n′ log σ) + O(n) bits space.

References

1. Chan, H.-L., Hon, W.-K., Lam, T.-W.: Compressed index for a dynamic collection
of texts. In: Proceedings of the 15th Annual Symposium on Combinatorial Pattern
Matching, pp. 445–456 (2004)

2. Clark, D.R.: Compact Pat Trees. PhD thesis, Univ. Waterloo (1998)
3. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees

for optimal succinctness, and beyond. In: Proceedings of the IEEE Symposium on
Foundations of Computer Science, pp. 184–196 (2005)

4. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of ACM 52(4), 552–
581 (2005)

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Succinct representation of
sequences and full-text indexes. ACM Transactions on Algorithms (To appear)

6. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: Proceedings of the 17th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 368–373 (2006)

7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compresssed text indexes.
In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 841–850 (2003)

8. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing 35(2), 378–407
(2005)

9. Gupta, A., Hon, W.-K., Shah, R., Vitter, J.S.: Dynamic rank/select dictionaries
with applications to xml indexing. Manuscript (2006)

10. Hon, W.-K., Sadakane, K., Sung, W.-K.: Breaking a time–and–space barrier in
constructing full–text indices. In: Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, pp. 251–260 (2003)

11. Hon, W.-K., Sadakane, K., Sung, W.-K.: Succinct data structures for searchable
partial sums. In: Proceedings of the 14th Annual Symposium on Algorithms and
Computation, pp. 505–516 (2003)

12. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th
Annual IEEE Symposium on Foundations of Computer Science, pp. 549–554 (1989)

106 S. Lee and K. Park

13. Kim, D.-K., Na, J.-C., Kim, J.-E., Park, K.: Fast computation of rank and select
functions for succinct representation. Manuscript (2006)

14. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding. In:
Proceedings of the 16th Annual Symposium on Combinatorial Pattern Matching,
pp. 45–56 (2005)

15. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. In: Proceedings of the 17th Annual Symposium on Compinatorial Pattern
Matching, pp. 306–317 (2006)

16. Manzini, G.: An analysis of the burrows-wheeler transform. Journal of ACM 48(3),
407–430 (2001)

17. Miltersen, P.B.: Lower bounds on the size of selection and rank indexes. In: Pro-
ceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
11–12 (2005)

18. Munro, J.I.: Tables. In: Proceedings of the 16th Conference on Foundations of
Software Technology and Theoretical Computer Science, pp. 37–42 (1996)

19. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of per-
mutations. In: Proceedings of the 30th International Colloquium on Automata,
Language, and Programming, pp. 345–356 (2003)

20. Munro, J.I., Raman, V.: Succinct representations of balanced parentheses and sta-
tic trees. SIAM Journal on Computing 31(3), 762–776 (2001)

21. Munro, J.I., Rao, S.S.: Succinct representations of functions. In: Proceedings of
the 31st International Colloquium on Automata, Languages, and Programming,
pp. 1006–1015 (2004)

22. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Proceed-
ings of the 7th International Workshop on Algorithms and Data Structures, pp.
426–437 (2001)

23. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 233–242 (2002)

24. Sadakane, K.: New text indexing functionalites of the compressed suffix arrays.
Journal of Algorithms 48(2), 294–313 (2003)

25. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.
In: Proceedings of the 17-th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1230–1239 (2006)

Most Burrows-Wheeler Based Compressors Are

Not Optimal

Haim Kaplan and Elad Verbin

School of Computer Science, Tel Aviv University, Tel Aviv, Israel
{haimk,eladv}@post.tau.ac.il

Abstract. We present a technique for proving lower bounds on the com-
pression ratio of algorithms which are based on the Burrows-Wheeler
Transform (BWT). We study three well known BWT-based compres-
sors: the original algorithm suggested by Burrows and Wheeler; BWT
with distance coding; and BWT with run-length encoding. For each com-
pressor, we show a Markov source such that for asymptotically-large text
generated by the source, the compression ratio divided by the entropy
of the source is a constant greater than 1. This constant is 2 − ε, 1.26,
and 1.29, for each of the three compressors respectively. Our technique
is robust, and can be used to prove similar claims for most BWT-based
compressors (with a few notable exceptions). This stands in contrast
to statistical compressors and Lempel-Ziv-style dictionary compressors,
which are long known to be optimal, in the sense that for any Markov
source, the compression ratio divided by the entropy of the source as-
ymptotically tends to 1.

We experimentally corroborate our theoretical bounds. Furthermore,
we compare BWT-based compressors to other compressors and show
that for “realistic” Markov sources they indeed perform bad and often
worse than other compressors. This is in contrast with the well known
fact that on English text, BWT-based compressors are superior to many
other types of compressors.

1 Introduction

In 1994, Burrows and Wheeler [5] introduced the Burrows-Wheeler Transform
(BWT) together with two new lossless text-compression algorithms that are based
on the BWT. Since then many other BWT-based compressors have emerged. To-
day, BWT-based compressors are well established alongside with dictionary-based
compressors (e.g. the Lempel-Ziv family of compressors, including e.g. gzip) and
statistical coders (e.g. PPMd). A widely used implementation of a BWT compres-
sor is bzip2 [19].

BWT-based compressors are typically more effective than dictionary-based
compressors, but less effective than statistical coders. For example, bzip2 shrinks
the King James version of the Bible to about 21% of its original size while gzip
shrinks it to about 29% of the original size, and PPMd to 19% of the original
size [1]. See [1, 13, 9] for more experimental results.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 107–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 H. Kaplan and E. Verbin

In tandem with developing efficient implementations of compression algo-
rithms, analytical upper bounds on compression ratios have been proved. The
most famous result of this type is the proof that Huffman codes are the most ef-
fective prefix-free codes and, in particular, that the average length of a codeword
is close to the entropy of the source (see e.g. [12]).

A compression algorithm is called optimal if the algorithm, when applied to
a string generated by a Markov source, outputs a number of bits per character
which is equal to the entropy of the source, plus a term that tends to 0 as the
length of the string tends to infinity. (For a more formal definition see Section
2). It is of particular interest to prove that a compression algorithm is optimal.
A famous result of this type is that the Lempel-Ziv-Welch (LZW) compression
algorithm [22] is optimal [6, 21]. It is traditionally taken for granted that good
compression algorithms should be optimal. In this paper we prove that, surpris-
ingly, most BWT-based compressors are not optimal.

Several papers prove analytical upper bounds on the compression ratio of
BWT-based compressors. The bounds found in the papers of Manzini [15] and
of Kaplan et al. [13], analyze BWT-based algorithms of the type that is in
widespread use today: such algorithms run BWT, followed by a move-to-front
encoding or some variant of it, and then apply some type of order-0 encoding (see
Section 2 for more information). However, no known upper bound establishes
optimality of an algorithm of this type. In Section 3 we show that the reason
that optimality was not proved is that these algorithms are in fact not optimal:
for each algorithm of this type, there exists a Markov source where the expected
number of bits per character that the compressor at stake uses is c times the en-
tropy of the source. Here, c > 1 is a constant that depends on which BWT-based
algorithm we are considering. For example, for the most well-known algorithm
BWRL, which is BWT with run-length encoding, we have c = 1.297. For the
algorithm BW0 first proposed by Burrows and Wheeler, we have c = 2 − ε for
any ε > 0. For BWDC , which is BWT with distance coding, we get c = 1.265.
Our technique is quite robust, and can be used to prove non-optimality of most
BWT-based compressors.

Two notable exceptions to the above rule are the compression booster of
Ferragina et al. [10, 9], and the “block-based” BWT-based compressor of Effros
et al. [8]. Both of these compressors have been proved to be optimal. However,
none of these compressors is in widespread use today, and both algorithms require
further study in order to determine if they are effective in practice, or if they
can be made effective in practice. In this paper we do not give an in-depth
discussion of these algorithms. For the compression booster, a separate study is in
progress to find out whether it can indeed achieve much better compression than
other BWT-based compressors, see e.g. [10, 9, 13]. Regarding the block-based
compressor of Effros et al., this compressor is proved to be optimal, but only when
the block-size is asymptotically large. When the block-size is asymptotically
large, the compressor behaves in a way that is not typical of a “classical” BWT-
based compressor, and it may behave badly in practice. For constant block-size
that is independent of the length of the text, the compressor of Effros et al. is

Most Burrows-Wheeler Based Compressors Are Not Optimal 109

similar to more traditional BWT-based compressors, and Effros et al. state that
it is not optimal.

In Section 4 we present experimental evidence that solidify the non-optimality
of BWT-based compressors. We begin by applying the compressors to the theo-
retically bad Markov models, and comparing the compression ratio to the entropy
of the source. This confirms our analytical results from Section 3. We briefly out-
line experiments that were omitted from this version due to lack of space, which
show that on texts generated from Markov sources with realistic parameters, the
compression ratio divided by the entropy of the source is significantly greater
than 1. (We created such “realistic” Markov sources by setting the parameters
to values that mimic actual English text).

The results presented in this paper raise an interesting question, which we
have not yet fully resolved: if Lempel-Ziv compression is optimal, and BWT-
based compression is not optimal, then why does gzip has worse compression
ratios than bzip2? (and in general, why do practical BWT-based compressors
beat dictionary-based compressors?). The textbook answer is that the proofs of
optimality hold for asymptotically large file-sizes, while these compressors, in
order to be practical, make some compromises, such as cutting the input into
chunks and compressing each separately (in the case of bzip2), or keeping a
limited-size dictionary (for gzip). These compromises imply that effectively, in
practice, the compressors do not actually operate on large files, and thus the
analysis that implies optimality stays largely theoretical. Granted, this is a good
answer, but we would like to propose a different answer, which we think should
be the subject of further research: We believe that theoretical results that are
proved on Markov sources do not have straightforward theoretical implications
to English text, since English text was not generated by a Markov source. Eng-
lish text has properties that Markov-generated text does not have, such as an
abundance of long exact repetitions and approximate repetitions. It is an in-
teresting open question to give a theoretical analysis of compression algorithms
that takes into account such differences.

2 Preliminaries

Due to lack of space, we omit the proofs of all claims, except that of Thm. 4. All
proofs can be found in the full version of this paper, which is available online.

Let s be the string which we compress, and let Σ denote the alphabet (set of
symbols in s). Let n = |s| be the length of s, and h = |Σ|. Let nσ be the number
of occurrences of the symbol σ in s. Let Σk denote the set of strings of length k
over Σ. We denote by [h] the integers {0, . . . , h − 1}.

Let s[i] be the ith character in s. The context of length k of s[i] is the substring
of length k that precedes s[i], i.e. s[i − k..i − 1]. For a compression algorithm
A we denote by |A(s)| the size in bits of the output of A on a string s. Note
that we always measure the length of strings in characters, and the output of a
compression algorithm in bits. The zeroth order empirical entropy of the string
s is defined as H0(s) =

∑
σ∈Σ

nσ

n log n
nσ

. (All logarithms in the paper are to the

110 H. Kaplan and E. Verbin

base 2, and we define 0 log 0 = 0). For any word w ∈ Σk, let ws denote the
string consisting of the characters following all occurrences of w in s. The value
Hk(s) = 1

n

∑
w∈Σk |ws|H0(ws) is called the k-th order empirical entropy of the

string s. See [15] for a more detailed definition of empirical entropy.

Markov Sources. Let D be a distribution over σ. The order-zero Markov model
M defined by D is a stochastic process that generates a string by repeatedly
picking characters independently according to D.

Let {Dw} be a family of distributions over σ, one for each string w ∈ Σk.
The family Dw defines an order-k Markov model M over the alphabet Σ. The
model M is a stochastic process that generates a string s as follows. The first
k characters of s are picked arbitrarily and then each character is generated
according to Dw where w is the preceding k characters generated by M .

For a Markov model M we denote by Mn the distribution over Σn generated
by running M for n steps. In particular, for a string s ∈ Σn, we denote by
Mn(s) the probability that Mn produces s. The entropy of M is defined as
H(M) = limn→∞

1
nH(Mn), where H(Mn) is the entropy of the distribution

Mn, i.e. H(Mn) = −
∑

s∈Σn Mn(s) log Mn(s).
We remind the reader that Markov models are always discussed asymptoti-

cally: we fix a Markov model, and then let n tend to infinity. Thus, the model
has “finite memory”, while the string’s length approaches infinity.

Optimality. A compression algorithm A is called C-Markov-optimal if for every
Markov model M it holds that Es∈RMn [|A(s)|] ≤ CnH(M) + o(n). Here, o(n)
is a function such that o(n)

n approaches 0 as n tends to infinity. This function
may depend arbitrarily on the model M (e.g. it may contain a term exponential
in the order of the model). Also, s ∈R Mn denotes that s is a random string
chosen according to the distribution Mn. A is called (≥ C)-Markov-optimal if
it is not C′-Markov-optimal for any C′ < C.1

An algorithm A is called C-w.c.-optimal (w.c. stands for worst-case) if for all
alphabets Σ, for all k ≥ 0, for all n large enough, and for all s ∈ Σn, it holds
that |A(s)| ≤ CnHk(s) + o(n). The o(n) term may depend arbitrarily on |Σ|
and k. An algorithm A is called (≥ C)-w.c.-optimal if it is not C′-w.c.-optimal
for any C′ < C.

The following connection holds between the notions of Markov-optimality and
w.c.-optimality.

Proposition 1. If A is C-w.c.-optimal then it is C-Markov-optimal. If A is
(≥ C)-Markov-optimal then it is (≥ C)-w.c.-optimal.

Thus, a lower bound on Markov-optimality is stronger than a lower bound on
w.c.-optimality.

1 Note that if an algorithm is (≥ C)-Markov-optimal, this only constitutes a lower
bound, and does not imply that the algorithm is optimal in any sense. For example,
the algorithm that compresses every string to itself is (≥ 2007)-Markov-optimal, but
it is not C-Markov-optimal for any C.

Most Burrows-Wheeler Based Compressors Are Not Optimal 111

A well-known example of an optimality result is the proof that the LZ77
compression algorithm is 1-Markov-optimal [24]. A similar analysis shows [21]
that the LZW compression algorithm is 1-w.c.-optimal. Similar results have been
shown for other dictionary-based compressors.

The BWT. Let us define the BWT, which is a function bwt : Σn → Σn.
For a string s ∈ Σn, we obtain bwt(s) as follows. Add a unique end-of-string
symbol ‘$’ to s. Place all the cyclic shifts of the string s$ in the rows of an
(n + 1) × (n + 1) conceptual matrix. Note that each row and each column in
this matrix is a permutation of s$. Sort the rows of this matrix in lexicographic
order (‘$’ is considered smaller than all other symbols). The permutation of s$
found in the last column of this sorted matrix, with the symbol ‘$’ omitted, is
bwt(s). See an example in Figure 1. Although it may not be obvious at first
glance, this function is invertible, assuming that the location of ‘$’ prior to its
omission is known to the inverting procedure. In fact, efficient algorithms exist
for computing and inverting bwt in linear time (see for example [16]).

———————–
mississippi$

ississippi$m

ssissippp$mi

sissippi$mis

issippi$miss

ssippi$missi

sippi$missis

ippi$mississ

ppi$mississi

pi$mississip

i$mississipp

$mississippi

———————–

⇒

————————–
$ mississipp i

i $mississip p

i ppi$missis s

i ssippi$mis s

i ssissippi$ m

m ississippi $

p i$mississi p

p pi$mississ i

s ippi$missi s

s issippi$mi s

s sippi$miss i

s sissippp$m i

————————–

Fig. 1. The Burrows-Wheeler Transform for the string s = mississippi. The matrix
on the right has the rows sorted in lexicographic order. The string bwt(s) is the last
column of the matrix, i.e. ipssmpissii, and we need to store the index of the symbol
‘$’, i.e. 6, to be able to compute the original string. The first and last columns of the
matrix on the right hand side are drawn slightly apart from the rest of the matrix in
order to highlight them.

Compressors. Let us describe the three compression algorithms based on the
BWT that we analyze in this paper: BW0, BWDC and BWRL. Many more
algorithms exist, but we have chosen these three as representative examples:
BW0 is the most basic algorithm, and the easiest to analyze. It was the algorithm
originally suggested by Burrows and Wheeler in [5]. BW0 is conjectured to be 2-
w.c.-optimal by [13]. BWRL is the most famous BWT-based algorithm. It is the
algorithm that the program bzip2 is based on. It was analyzed by Manzini [15],
who proved that it is 5-w.c.-optimal. BWDC was invented but not published

112 H. Kaplan and E. Verbin

by Binder (see [4, 2]), and is described in a paper of Deorowicz [7]. BWDC is
1.7286-w.c.-optimal [13].
The algorithm BW0 compresses the input text s in three steps.

1. Compute bwt(s).
2. Transform bwt(s) to a string of integers ṡ = mtf(bwt(s)) by using the move

to front algorithm, originally introduced in [3]. mtf encodes the character
s[i] = σ with an integer equal to the number of distinct symbols encoun-
tered since the previous occurrence of σ in s. More precisely, the encoding
maintains a list of the symbols ordered by recency of occurrence. When the
next symbol arrives, the encoder outputs its current rank and moves it to
the front of the list. Therefore, a string over the alphabet Σ is transformed
to a string over [h] (note that the length of the string does not change).2

3. Encode the string ṡ by using Arithmetic Coding, to obtain the final string of
bits BW0(s) = Arith(ṡ). We do not describe Arithmetic Coding here. The
interested reader is referred to [23, 17]. All we use is that for any string s,
|s|H0(s) ≤ |Arith(s)| ≤ |s|H0(s) + O(log |s|).3

We denote this algorithm by BW0 = BWT + MTF + Arith. Here, ‘+’ is the
composition operator for compression algorithms, and Arith stands for Arith-
metic Coding.

Intuitively, BW0 is a good compressor, since in bwt(s) characters with the
same context appear consecutively. Therefore, if s is, say, a text in English,
we expect bwt(s) to be a string with symbols recurring at close vicinity. As a
result ṡ = mtf(bwt(s)) is an integer string which we expect to contain many
small numbers. (Note that by “integer string” we mean a string over an integer
alphabet). Therefore, the frequencies of the integers in ṡ are skewed, and so
an order-0 encoding of ṡ is likely to be short. This, of course, is an intuitive
explanation as to why BW0 should work on typical inputs. Manzini [15] has
formalized this intuition to get an upper bound on the compression ratio of
BW0. This upper bound was improved and simplified in [13].

The algorithm BWDC = BWT + DC + Arith works like BW0, except that
MTF is replaced by a transformation called distance coding (DC). The transfor-
mation DC encodes the character s[i] = σ with an integer equal to the distance
to the previous occurrence of σ in s, but only if this distance is not zero. When
the distance is 0 (i.e. when s[i−1] = σ), we simply skip this character. Therefore,
DC(s) is potentially a much shorter string than s. However, DC(s) might be
a string over a larger alphabet, since the distances might be as big as n. (It is
2 To completely determine the encoding we must specify the status of the recency list

at the beginning of the procedure. For our purposes, it is enough to assume that
in the initial recency list the characters are sorted by any arbitrary order, e.g. their
ASCII order.

3 This upper bound follows from the analysis of [23], but it is not proved anywhere
in the literature, since it holds only for a costly version of Arithmetic Coding that
is not used in practice. The versions of Arithmetic Coding used in practice actually
have, say, |Arith(s)| ≤ |s|H0(s)+10−2 |s|+O(log |s|) and are more efficient in terms
of running time.

Most Burrows-Wheeler Based Compressors Are Not Optimal 113

not hard to see that the number of different integers that occur in DC(s) is at
most h

√
2n).4 To be able to decode DC, we also need to store some auxiliary

information consisting of the positions of the first and last occurrence of each
character. Since this additional information takes at most 2h logn = O(log n)
bits we disregard this from now on. It is not hard to see that from DC(s) and the
auxiliary information we can recover s (see [13]). We observe that DC produces
one integer per run of s. Furthermore, when s is binary, then this integer is equal
to the length of the run.

The algorithm BWRL = BWT +MTF +RLE+Arith works like BW0, with
an additional run-length encoding (RLE) step that we perform on the output
of MTF before the Arithmetic Coding. The particular way RLE is implemented
varies in different papers. The general idea is to encode each run as a separate
character or sequence of characters so that a long run of, say, m 0’s, can be
represented using, say, log m characters in a new alphabet. Afterwards, we per-
form Arithmetic Coding on a string defined over this new alphabet. A standard
version of RLE is described by Manzini [15].

3 Lower Bounds

We first state two lemmas that we use for proving our lower bounds. The first
lemma roughly states that if a compression algorithm A performs badly on an
order-zero Markov model then BWT + A performs badly on the same model.
This gives us a way to derive a lower bound on the optimality ratio of BWT +A
from a lower bound on the optimality ratio of A on order-0 Markov models.

Lemma 2. Suppose that Prs∈RMn [|A(s)| > CnH(M)] > 1− 1/n2, where M is
an order-zero Markov model. Then, Es∈RMn [|A(BWT (s))|] ≥ CnH(M)−O(1).
In particular, the compression algorithm BWT + A is (≥ C)-Markov-optimal.

Proof Sketch. The rough intuition behind the proof of this lemma, is that at
least a 1

n+1 -fraction of strings are in the image of the function bwt (we call these
strings bwt-images). The condition of the lemma states that all but a 1

n2 -fraction
of strings are hard to compress. Therefore, via a simple counting argument, we
see that a vast majority of the bwt-images are hard to compress, and this gives
the lemma. Special care must be taken with measuring what “a vast majority
of the bwt-images” means, since some strings are bwt-images of only one string,
while some may be bwt-images of n + 1 strings. This point accounts for most of
the technical difficulty of the lemma.

The second lemma bounds the number of runs in binary strings generated by an
order-zero Markov model. We use it to analyze the behavior of algorithms such
as MTF + Arith on order-zero Markov models.
4 This is a simplified version of the transformation described by [4, 2, 7]. Originally,

two more properties were used to discard some more characters from DC(s) and
make the numbers that do appear in DC(s) smaller. However, we prove the lower
bound using a binary alphabet, where the additional properties do not matter.

114 H. Kaplan and E. Verbin

Here, by substring we mean a consecutive substring, and a run in a string
s is a maximal substring consisting of identical characters. Also, denote by Mp

the zero-order Markov model that outputs ‘a’ with probability p, and ‘b’ with
probability 1 − p.

Lemma 3. For any 0 < p ≤ 1
2 and any constant c ≥ 1, for all large enough n,

a string s chosen from Mn
p has, with probability at least 1 − 1/n2, both of the

following properties:

1. The number of runs in s is between 2p(1−p)(n−n2/3) and 2p(1−p)(n+n2/3).
2. For every 1 ≤ k ≤ c, the number of runs of ‘a’ of length exactly k is between

(1− p)2pk(n−n2/3) and (1− p)2pk(n + n2/3), and the number of runs of ‘b’
of length exactly k is between p2(1− p)k(n−n2/3) and p2(1− p)k(n + n2/3).

3.1 BW0 is (≥ 2)-Markov-Optimal

We now prove that the algorithm BW0 = BWT + MTF + Arith is (≥ 2)-
Markov-optimal. Let ε > 0 be some positive number. It is enough to prove that
BW0 is (≥ 2− ε)-Markov-optimal. Let A0 = MTF + Arith. By Lemma 2, it is
enough to show an order-zero Markov model M such that for large enough n,

Prs∈RMn [|A0(s)| > (2 − ε)nH(M)] > 1 − 1/n2 .

Theorem 4. For every ε > 0 there exists p such that for large enough n,

Prs∈RMn
p
[|A0(s)| > (2 − ε)nH(Mp)] > 1 − 1/n2 .

Therefore BW0 is (≥ 2)-Markov-optimal.

Proof. Let s ∈ Σn
2 be a string with r runs. Then the string MTF (s) contains

r ‘1’s and n − r ‘0’s, and thus |A0(s)| ≥ r log n
r + (n − r) log n

n−r ≥ r log n
r . We

prove that r log n
r > (2 − ε)nH(Mp) for r = 2p(1 − p)(n ± n2/3). By Lemmas 2

and 3 this gives the theorem. In fact, we prove that r log n
r > (2 − ε/2)nH(Mp)

for r = 2p(1 − p)n. The term ±n2/3 is “swallowed” by the slack of ε/2 when n
is large enough.
To prove that r log n

r

nH(Mp) > 2 − ε/2 first note that

r log n
r

nH(Mp)
=

2p(1 − p)n log 1
2p(1−p)

np log 1
p + n(1 − p) log 1

1−p

.

This expression approaches 2 from below when p tends to 0, since

2p(1− p) log 1
2p(1−p)

p log 1
p + (1 − p) log 1

1−p

=
2p(1 − p) log 1

p −Θ(p)

p log 1
p + Θ(p)

p→0−−−→ 2 .

Thus, we can choose p to be a function of ε (but not of n), such that this
expression is larger than 2 − ε/2. ��
This gives a positive answer to Conjecture 20 in [13]. Also, it was shown there
that for binary alphabet, BW0 is 2-w.c.-optimal. Therefore, the lower bound we
prove here is tight. In [13] it was also conjectured that BW0 is 2-w.c.-optimal
for alphabets of any size. We have not been able to prove this so far.

Most Burrows-Wheeler Based Compressors Are Not Optimal 115

3.2 BWDC Is (≥ 1.265)-Markov-Optimal, BWRL Is
(≥ 1.297)-Markov-Optimal

In the full version of the paper we also prove that BWDC is (≥ 1.265)-Markov-
optimal. Due to Lemma 2, in order to prove this it suffices to prove that the
algorithm ADC = DC + Arith performs badly on an order-zero Markov model.
The Markov model that was used in the last section, which had infinitesimally
small probability for producing ‘a’, will not work here. ADC works quite well
for such Markov models. Instead, we use Lemma 3 to get exact statistics (up to
lower-order terms) for the character frequencies in DC(s) where s is taken from
the Markov model Mp, and we compute the entropy according to these character
frequencies. Using a similar technique we prove that BWRL is (≥ 1.297)-Markov-
optimal.

4 Experiments

We confirmed experimentally that our lower bounds indeed hold. For this pur-
pose, we have coded the three algorithms BW0, BWDC , and BWRL. Unlike
bzip2 which cuts the file into chunks of 900K before compressing, our programs
compress the whole file in one piece.

Rather than using Arithmetic Coding on the integer sequence, as the final
stage of the compression algorithm, our implementations computed the empirical
entropy of the integer sequence. For any string this entropy is a lower bound on
the size of the Arithmetic Encoding of that string. This made our experiment
cleaner since our focus is on lower bounds. We also did not consider auxiliary
data that one needs to save in order to decompress the file, such as the initial
status of the mtf recency list, the location of the end-of-string symbol after
bwt, etc. We refer to our implementations as “clean” versions of the respective
algorithms.

To compare BWT-based compressors against dictionary-based compressors
we also implemented a clean version of the LZW algorithm [22]. This imple-
mentation follows closely the theoretical version of LZW described in [22]. In
particular it does not have an upper bound on the dictionary size. The com-
pressed representation consists of a sequence of pointers (integer values) to the
dictionary and a sequence of characters (the list of addition symbols). We com-
pute the entropy of each of these sequences. The sum of both entropies is the
“compressed size” of the file according to our clean LZW implementation. Note
that the sequence of pointers is a string defined over a potentially very large
alphabet. Therefore to arithmetically code this string one would need to store
a very large table which is not realistic. We believe however that the entropy of
this string does reflect in a clean way the size of the LZW encoding.

We have generated 100 files of size 10 Megabytes from the source Mp for
various values of p. For each compressor and each value of p, we compute the
optimality ratio, which is the ratio between the number of bits per character
that the compressor used and the entropy of the source. These results are given
in Table 1.

116 H. Kaplan and E. Verbin

First notice that the performance of BW0, BWDC , and BWRL follow closely
the theoretical results of Section 3. In particular for p = 0.001 the optimality
ratio of BW0 is 1.823. (A calculation, omitted due to lack of space, shows that
this ratio is exactly equal to the theoretical prediction). For p = 0.051 the
optimality ratio of BWDC is 1.266, and for p = 0.06 the optimality ratio of
BWRL is 1.298. Furthermore as predicted by our analysis the optimality ratio
of BW0 increases as p goes to zero.

The optimality ratio of our “clean” implementation of LZW increases when p
decreases. This effect is related to results of Kosaraju and Manzini [14]. Recall,
that the optimality ratio of LZW on Mp tends to 1 as n tends to infinity. So it is
surprising, to see that in our experiments the optimality ratio of LZW may get
as large as 1.53, and is always at least 1.11. This indicates that the optimality
ratio of LZW tends to 1 quite slowly, and is quite far from 1 for the 10MB strings
that we compressed. Also, note that for some values of p, the optimality ratio of
LZW is worse than that of the BWT-based compressors.

We have also checked how the optimality ratios of the algorithms change when
we fix the value of p, and increase the file size. (The experimental data is not
included due to lack of space. It can be found in the full version of the paper).
The optimality ratio of each of the BWT-based compressors stays exactly the
same when the file size grows. The optimality ratio of LZW, on the other hand,
tends to 1 as n grows, but it decreases slowly. This can be explained if we recall
that the optimality ratio of LZW is 1+O

(
1

log n

)
, see [18]. Note that the constant

hidden by the O-notation depends on the parameters of the Markov model, see
[24, 14]. (In our case, it depends on p). The low-order O

(
1

log n

)
term decays

slowly. For example, for n = 107, 1
log n ≈ 0.04. Nonetheless, for any fixed p,

there exists a large enough value of n for which LZW beats the BWT-based
compressors for strings of length n drawn from Mp. Thus, we can say that LZW
asymptotically beats BWT-compressors on Markov models.

We did not consider statistical compressors in any of the experiments here.
Intuitively, for an order-zero Markov model, such a compressor is simply Arith-
metic Coding (or the “clean” version thereof), which has a constant optimality
ratio of 1, no matter what n is. We have continued to see that statistical com-
pressors are the best among all compressors we study, when working over Markov
models.

Real Compressors. We have also performed a similar experiment using the
“real” compressors bzip2 [19], gzip [11], and ppmdi [20]. These compressors seem
to work like their theoretical counterparts, with some interesting exceptions. We
include these experimental results in the full version of the paper.

Experiments on Realistic High-Order Models. We have also performed
experiments on high-order Markov models that were generated using realistic
parameters extracted from English text. We found that BWT-based compres-
sors behave quite badly on such Markov models. These experimental results are
included in the full version of the paper.

Most Burrows-Wheeler Based Compressors Are Not Optimal 117

Table 1. The optimality ratio of the clean compressors, measured on texts generated
from the Markov source Mp. Each experiment was run on 100 samples, each of size
10MB. The standard deviations are not listed per-entry, but the maximal standard
deviation among all those in the row is listed in the last column (the standard deviations
tend to be similar for values in the same row).

p clean BW0 clean BWDC clean BWRL clean LZW σ

0.001 1.823 1.141 1.143 1.535 0.016
0.005 1.772 1.210 1.216 1.490 0.006
0.01 1.737 1.232 1.242 1.347 0.004
0.051 1.579 1.266 1.296 1.211 0.0012
0.06 1.552 1.265 1.298 1.202 0.0011
0.1 1.450 1.250 1.286 1.171 0.0008
0.2 1.253 1.176 1.202 1.137 0.0004
0.3 1.114 1.093 1.103 1.124 0.0002
0.4 1.029 1.027 1.028 1.113 0.00013
0.5 1.000 1.000 1.000 1.113 0.00004

5 Conclusion

In this paper we have shown lower bounds on the optimality ratio of BWT-
based compressors on Markov sources. This suboptimal performance on Markov
sources is corroborated by experiments with Markov sources that imitate an
English text.

On the other hand it is known that on English text, BWT-based compressors
work extremely well. We believe that BWT-compressors work on English text
better than Dictionary-based compressors (and not much worse than statistical
compressors) because of non-Markovian elements in English text.

This discrepancy between the performance of BWT-based compressors on
Markov sources that resemble an English text and their performance on the text
itself is yet to be explored. What kind of regularity is there in English text that
compressors exploit?

References

[1] The Canterbury Corpus http://corpus.canterbury.ac.nz

[2] Abel, J.: Web page about Distance Coding
http://www.data-compression.info/Algorithms/DC/

[3] Bentley, J.L., Sleator, D.D., Tarjan, R.E., Wei, V.K.: A locally adaptive data
compression scheme. Communications of the ACM 29(4), 320–330 (1986)

[4] Binder, E.: Distance coder. Usenet group comp.compression (2000)
[5] Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algo-

rithm. Technical Report 124, Digital Equipment Corporation, Palo Alto, Cali-
fornia (1994)

[6] Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & sons,
New York (1991)

http://corpus.canterbury.ac.nz
http://www.data-compression.info/Algorithms/DC/

118 H. Kaplan and E. Verbin

[7] Deorowicz, S.: Second step algorithms in the Burrows–Wheeler compression algo-
rithm. Software–Practice and Experience 32(2), 99–111 (2002)

[8] Effros, M., Visweswariah, K., Kulkarni, S., Verdu, S.: Universal lossless source
coding with the Burrows Wheeler transform. IEEE Transactions on Information
Theory 48(5), 1061–1081 (2002)

[9] Ferragina, P., Giancarlo, R., Manzini, G.: The engineering of a compression boost-
ing library: Theory vs practice in BWT compression. In: Azar, Y., Erlebach, T.
(eds.) ESA 2006. LNCS, vol. 4168, pp. 756–767. Springer, Heidelberg (2006)

[10] Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting textual com-
pression in optimal linear time. Journal of the ACM 52, 688–713 (2005)

[11] Gailly, J., Adler, M.: The gzip compressor http://www.gzip.org/

[12] Gallager, R.: Variations on a theme by Huffman. IEEE Transactions on Informa-
tion Theory 24(6), 668–674 (1978)

[13] Kaplan, H., Landau, S., Verbin, E.: A simpler analysis of Burrows-Wheeler based
compression. To be puiblished in Theoretical Computer Science, special issue on
the Burrows-Wheeler Transform and its Applications, Preliminary version pub-
lished in CPM ’06 (2007)

[14] Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM J. Comput. 29(3), 893–911 (1999)

[15] Manzini, G.: An analysis of the Burrows-Wheeler Transform. Journal of the
ACM 48(3), 407–430 (2001)

[16] Manzini, G., Ferragina, P.: Engineering a lightweight suffix array construction
algorithm. Algorithmica 40, 33–50 (2004)

[17] Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM Transac-
tions on Information Systems 16(3), 256–294 (1998)

[18] Savari, S.A.: Redundancy of the Lempel-Ziv-Welch code. In: Proc. Data Com-
pression Conference (DCC), pp. 191–200 (1997)

[19] Seward, J.: bzip2, a program and library for data compression
http://www.bzip.org/

[20] Shkarin, D., Cheney, J.: ppmdi, a statistical compressor. This is Shkarin’s com-
pressor PPMII, as modified and incorporated into XMLPPM by Cheney, and then
extracted from XMLPPM by Adiego. J

[21] Shor, P.: Lempel-Ziv compression (lecture notes for the course principles of applied
mathematics) www-math.mit.edu/∼shor/PAM/lempel ziv notes.pdf

[22] Welch, T.A.: A technique for high-performance data compression. Computer 17,
8–19 (1984)

[23] Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression.
Communications of the ACM 30(6), 520–540 (1987)

[24] Wyner, A.D., Ziv, J.: The sliding-window Lempel-Ziv algorithm is asymptotically
optimal. Proc. IEEE 82(8), 872–877 (1994)

http://www.gzip.org/
http://www.bzip.org/
www-math.mit.edu/~shor/PAM/lempel_ziv_notes.pdf

Non-breaking Similarity of Genomes with Gene

Repetitions�

Zhixiang Chen1, Bin Fu1, Jinhui Xu2, Boting Yang3, Zhiyu Zhao4,
and Binhai Zhu5

1 Department of Computer Science, University of Texas-American, Edinburg,
TX 78739-2999, USA

chen, binfu@cs.panam.edu
2 Department of Computer Science, SUNY-Buffalo, Buffalo, NY 14260, USA

jinhui@cse.buffalo.edu
3 Department of Computer Science, University of Regina, Regina, Saskatchewan,

S4S 0A2, Canada
boting@cs.uregina.ca

4 Department of Computer Science, University of New Orleans, New Orleans,
LA 70148, USA

zzha2@cs.uno.edu.
5 Department of Computer Science, Montana State University, Bozeman,

MT 59717-3880, USA
bhz@cs.montana.edu.

Abstract. In this paper we define a new similarity measure, the non-
breaking similarity, which is the complement of the famous breakpoint
distance between genomes (in general, between any two sequences drawn
from the same alphabet). When the two input genomes G and H, drawn
from the same set of n gene families, contain gene repetitions, we consider
the corresponding Exemplar Non-breaking Similarity problem (ENbS) in
which we need to delete repeated genes in G and H such that the resulting
genomes G and H have the maximum non-breaking similarity. We have
the following results.
– For the Exemplar Non-breaking Similarity problem, we prove that

the Independent Set problem can be linearly reduced to this prob-
lem. Hence, ENbS does not admit any factor-n1−ε polynomial-time
approximation unless P=NP. (Also, ENbS is W[1]-complete.)

– We show that for several practically interesting cases of the Ex-
emplar Non-breaking Similarity problem, there are polynomial time
algorithms.

1 Introduction

In the genome comparison and rearrangement area, the breakpoint distance
is one of the most famous distance measures [15]. The implicit idea of break-
points was initiated as early as in 1936 by Sturtevant and Dobzhansky [14].
� This research is supported by Louisiana Board of Regents under contract number

LEQSF(2004-07)-RD-A-35, NSF grant CCF-0546509, NSERC grant 261290-03 and
Montana EPSCOR’s Visiting Scholar’s Program.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 119–130, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

120 Z. Chen et al.

Until a few years ago, in genome rearrangement research, it is always assumed
that every gene appears in a genome exactly once. Under this assumption, the
genome rearrangement problem is in essence the problem of comparing and sort-
ing signed/unsigned permutations [10,11]. In the case of breakpoint distance,
given two perfect genomes (in which every gene appears exactly once, i.e., there
is no gene repetition) it is easy to compute their breakpoint distance in linear
time.

However, perfect genomes are hard to obtain and so far they can only be
obtained in several small virus genomes. For example, perfect genomes do not
occur on eukaryotic genomes where paralogous genes are common [12,13]. On
the one hand, it is important in practice to compute genomic distances, e.g., us-
ing Hannenhalli and Pevzner’s method [10], when no gene duplication arises; on
the other hand, one might have to handle this gene duplication problem as well.
In 1999, Sankoff proposed a way to select, from the duplicated copies of genes,
the common ancestor gene such that the distance between the reduced genomes
(exemplar genomes) is minimized [13]. A general branch-and-bound algorithm
was also implemented in [13]. Recently, Nguyen, Tay and Zhang proposed us-
ing a divide-and-conquer method to compute the exemplar breakpoint distance
empirically [12].

For the theoretical part of research, it was shown that computing the exemplar
signed reversal and breakpoint distances between (imperfect) genomes are both
NP-complete [1]. Two years ago, Blin and Rizzi further proved that computing
the exemplar conserved interval distance between genomes is NP-complete [2];
moreover, it is NP-complete to compute the minimum conserved interval match-
ing (i.e., without deleting the duplicated copies of genes). In [6,3] it was shown
that the exemplar genomic distance problem does not admit any approximation
(regardless of the approximation factor) unless P=NP, as long as G = H implies
that d(G, H) = 0, for any genomic distance measure d(). This implies that
for the exemplar breakpoint distance and exemplar conserved interval distance
problems, there are no polynomial-time approximations. In [6] it was also shown
that even under a weaker definition of (polynomial-time) approximation, the
exemplar breakpoint distance problem does not admit any weak approximation
of factor n1−ε for any 0 < ε < 1, where n is the maximum length of the input
genomes. In [3,4] it was shown that under the same definition of weak approx-
imation, the exemplar conserved interval distance problem does not admit any
weak approximation of a factor which is superlinear (roughly n1.5).

In [5] three new kinds of genomic similarities were considered. These similarity
measures, which are not distance measures, do not satisfy the condition that
G = H implies that d(G, H) = 0. Among them, the exemplar common interval
measure problem seems to be the most interesting one. When gene duplications
are allowed, Chauve, et al. proved that the problem is NP-complete and left
open a question whether there is any inapproximability result for it.

In this paper, we define a new similarity measure called non-breaking sim-
ilarity. Intuitively, this is the complement of the traditional breakpoint dis-
tance measure. Compared with the problem of computing exemplar breakpoint

Non-breaking Similarity of Genomes with Gene Repetitions 121

distance, which is a minimization problem, for the exemplar non-breaking simi-
larity problem we need to maximize the number of non-breaking points. Unfor-
tunately we show in this paper that Independent Set can be reduced to ENbS;
moreover, this reduction implies that ENbS is W[1]-complete (and ENbS does
not have a factor-nε polynomial-time approximation). This reduction works even
when one of the two genomes is given exemplar.

The W[1]-completeness (see [8] for details) and the recent lower bound results
[7] imply that if k is the optimal solution value, unless an unlikely collapse
occurs in the parameterized complexity theory, ENbS is not solvable in time
f(k)no(k), for any function f . However, we show that for several practically
interesting cases of the problem, there are polynomial time algorithms. This is
done by parameterizing some quantities in the input genomes, followed with
some traditional algorithmic techniques.

This effort is not artificial: in real-life datasets, usually there are some special
properties in the data. For example, as reported in [12], the repeated genes in
some bacteria genome pairs are often pegged, i.e., the repeated genes are usually
separated by a peg gene which occurs exactly once. Our solution can help solving
cases like these, especially when the number of such repeated genes is limited.

This paper is organized as follows. In Section 2, we go over the necessary
definitions. In Section 3, we reduce Independent Set to ENbS, hence showing the
inapproximability result. In Section 4, we present polynomial time algorithms
for several practically interesting cases. In Section 5, we conclude the paper with
some discussions.

2 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed/unsigned sequence of genes1. The order of
the genes corresponds to the position of them on the linear chromosome and the
signs correspond to which of the two DNA strands the genes are located. While
most of the past research are under the assumption that each gene occurs in a
genome once, this assumption is problematic in reality for eukaryotic genomes
or the likes where duplications of genes exist [13]. Sankoff proposed a method
to select an exemplar genome, by deleting redundant copies of a gene, such that
in an exemplar genome any gene appears exactly once; moreover, the resulting
exemplar genomes should have a property that certain genomic distance between
them is minimized [13].

The following definitions are very much following those in [1,6]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F . (Throughout
this paper, we will consider unsigned genomes, though our results can be applied
to signed genomes as well.) In general, we allow the repetition of a gene family
in any genome. Each occurrence of a gene family is called a gene, though we will
not try to distinguish a gene and a gene family if the context is clear.
1 In general a genome could contain a set of such sequences. The genomes we focus

on in this paper are typically called singletons.

122 Z. Chen et al.

The number of a gene g appearing in a genome G is called the occurrence of g
in G, written as occ(g,G). A genome G is called r-repetitive, if all the genes from
the same gene family occur at most r times in G. For example, if G = abcbaa,
occ(b,G) = 2 and G is a 3-repetitive genome.

For a genome G, alphabet(G) is the set of all the characters (genes) that appear
at least once in G. A genome G is an exemplar genome of G if alphabet(G) =
alphabet(G) and each gene in alphabet(G) appears exactly once in G; i.e., G
is derived from G by deleting all the redundant genes (characters) in G. For
example, let G = bcaadage there are two exemplar genomes: bcadge and bcdage.

For two exemplar genomes G and H such that alphabet(G) = alphabet(H)
and |alphabet(G)| = |alphabet(H)| = n, a breakpoint in G is a two-gene sub-
string gigi+1 such that gigi+1 is not a substring in H . The number of breakpoints
in G (symmetrically in H) is called the breakpoint distance, denoted as bd(G, H).
For two genomes G and H, their exemplar breakpoint distance ebd(G,H) is the
minimum bd(G, H), where G and H are exemplar genomes derived from G
and H.

For two exemplar genomes G and H such that alphabet(G) = alphabet(H)
|alphabet(G)| = |alphabet(H)| = n, a non-breaking point is a common two-gene
substring gigi+1 that appears in both G and H . The number of non-breaking
points between G and H is also called the non-breaking similarity between G
and H , denoted as nbs(G, H). Clearly, we have nbs(G, H) = n − 1 − bd(G, H).
For two genomes G and H, their exemplar non-breaking similarity enbs(G,H) is
the maximum nbs(G, H), where G and H are exemplar genomes derived from G
and H. Again we have enbs(G,H) = n− 1 − ebd(G,H).

The Exemplar Non-breaking Similarity (ENbS) Problem is formally defined
as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n identical
gene families (i.e., at least one gene from each of the n gene families appears in
both G and H); integer K.
Question: Are there two respective exemplar genomes of G and H, G and H ,
such that the non-breaking similarity between them is at least K?

In the next two sections, we present several results for the optimization versions
of these problems, namely, to compute or approximate the maximum value K in
the above formulation. Given a maximization problem Π , let the optimal solution
of Π be OPT . We say that an approximation algorithmA provides a performance
guarantee of α for Π if for every instance I of Π , the solution value returned by
A is at least OPT/α. (Usually we say that A is a factor-α approximation for Π .)
Typically we are interested in polynomial time approximation algorithms.

3 Inapproximability Results

For the ENbS problem, let OENbS be the corresponding optimal solution value.
First we have the following lemma.

Non-breaking Similarity of Genomes with Gene Repetitions 123

Lemma 1. 0 ≤ OENbS ≤ n − 1.

Proof. Let the n gene families be denoted by 1, 2, ..., n. We only consider the
corresponding exemplar genomes G, H . The lower bound of OENbS is achieved
by setting G = 123 · · · (n − 1)n and H can be set as follows: when n is even,
H = (n − 1)(n − 3) · · · 531n(n − 2) · · · 642; when n is odd, H = (n − 1)(n −
3) · · · 642n135 · · · (n− 4)(n− 2). It can be easily proved that between G, H there
is no non-breaking point. The upper bound of OENbS is obtained by setting
G = H in which case any two adjacent genes form a non-breaking point. ��

The above lemma also implies that different from the Exemplar Breakpoint Dis-
tance (EBD) problem, which does not admit any polynomial-time approximation
at all (as deciding whether the optimal solution value is zero is NP-complete),
the same cannot be said on ENbS. Given G and H, it can be easily shown that
deciding whether OENbS = 0 can be done in polynomial time (hence it is easy
to decide whether there exists some approximation for ENbS—for instance, as
OENbS ≤ n − 1, if we can decide that OENbS 	= 0 then it is easy to obtain a
factor-O(n) approximation for ENbS). However, the next theorem shows that
even when one of G and H is given exemplar, ENbS still does not admit a
factor-n1−ε approximation.

Theorem 1. If one of G and H is exemplar and the other is 2-repetitive, the
Exemplar Non-breaking Similarity Problem does not admit any factor n1−ε poly-
nomial time approximation unless P=NP.

Proof. We use a reduction from Independent Set to the Exemplar Non-breaking
Similarity Problem in which each of the n genes appears in G exactly once and in
H at most twice. Independent Set is a well known NP-complete problem which
cannot be approximated within a factor of n1−ε [9].

Given a graph T = (V, E), V = {v1, v2, · · · , vN}, E = {e1, e2, · · · , eM}, we
construct G and H as follows. (We assume that the vertices and edges are sorted
by their corresponding indices.) Let Ai be the sorted sequence of edges incident
to vi. For each vi we add v′i as an additional gene and for each ei we add xi, x

′
i

as additional genes. We have two cases: N + M is even and N + M is odd. We
mainly focus on the case when N + M is even. In this case, the reduction is as
follows.

Define Yi = viAiv
′
i, if i ≤ N and YN+i = xix

′
i, if i ≤ M .

G : v1v
′
1v2v

′
2 · · · vNv′Nx1e1x

′
1x2e2x

′
2 · · ·xMeMx′

M .
H : YN+M−1YN+M−3 · · ·Y1YN+MYN+M−2 · · ·Y2.
(Construct H as YN+M−1YN+M−3 · · ·Y2YN+MY1Y3 · · ·YN+M−2 when N +M

is odd. The remaining arguments will be identical.)
We claim that T has an independent set of size k iff the exemplar non-breaking

similarity between G and H is k. Notice that G is already an exemplar genome,
so G = G.

If T has an independent set of size k, then the claim is trivial. Firstly, construct
the exemplar genome H as follows. For all i, if vi is in the independent set, then
delete Ai in Yi = viAiv

′
i (also arbitrarily delete all redundant edges in As in H

124 Z. Chen et al.

for which vs is not in the independent set of T). There are k non-breaking points
between G, H—notice that any vertex vi which is in the independent set gives
us a non-breaking point viv

′
i. The final exemplar genomes obtained, G and H ,

obviously have k exemplar non-breaking points.
If the number of the exemplar non-breaking points between G and H is k, the

first thing to notice is that Yi = xix
′
i (N < i ≤ N + M) cannot give us any

non-breaking point. So the non-breaking points must come from Yi = viAiv
′
i

(i ≤ N), with some Ai properly deleted (i.e., such a Yi becomes viv
′
i in H).

Moreover, there are exactly k such Ai’s deleted. We show below that any two
such completely deleted Ai, Aj correspond to two independent vertices vi, vj in
T . Assume that there is an edge eij between vi and vj , then as both Ai, Aj

are deleted, both of the two occurrences of the gene eij will be deleted from H.
A contradiction. Therefore, if the number of the exemplar non-breaking points
between G and H is k, there is an independent set of size k in T .

To conclude the proof of this theorem, notice that the reduction take polyno-
mial time (proportional to the size of T). ��

v v

vv

1 2

3 v54

e
e e

e

e

1
2

3

5

4

Fig. 1. Illustration of a simple graph for the reduction

In the example shown in Figure 1, we have
G : v1v

′
1v2v

′
2v3v

′
3v4v

′
4v5v

′
5x1e1x

′
1x2e2x

′
2x3e3x

′
3x4e4x

′
4x5e5x

′
5 and

H : x4x
′
4x2x

′
2v5e4e5v

′
5v3e1v

′
3v1e1e2v

′
1x5x

′
5x3x

′
3x1x

′
1v4e3e5v

′
4v2e2e3e4v

′
2.

Corresponding to the optimal independent set {v3, v4}, we have
H : x4x

′
4x2x

′
2v5e5v

′
5v3v

′
3v1e1e2v

′
1x5x

′
5x3x

′
3x1x

′
1v4v

′
4v2e3e4v

′
2. The two

non-breaking points are [v3v
′
3], [v4v

′
4].

We comment that EBD and ENbS, even though complement to each other, are
still different problems. With respect to the above theorem, when G is exemplar
and H is not, there is a factor-O(log n) approximation for the EBD problem [6].
This is significantly different from ENbS, as shown in the above theorem.

4 Polynomial Time Algorithms for Some Special Cases

The proof of Theorem 1 also implies that ENbS is W[1]-complete, as Independent
Set is W[1]-complete [8]. Following the recent lower bound results of Chen, et al.,
if k is the optimal solution value for ENbS then unless an unlikely collapse occurs
in the parameterized complexity theory, ENbS is not solvable in time f(k)no(k),
for any function f [7]. Nevertheless, we show below that for several practically

Non-breaking Similarity of Genomes with Gene Repetitions 125

interesting cases of the problem, there are polynomial time algorithms. The
idea is to set a parameter in the input genomes (or sequences, as we will use
interchangeably from now on) and design a polynomial time algorithm when
such a parameter is O(log n).

In practical datasets, usually there are some special properties in the data.
For instance, the repeated genes in the five bacteria genome pairs (Baphi-Wigg,
Pmult-Hinft, Ecoli-Styphi, Xaxo-Xcamp and Ypes) are usually pegged, i.e., the
repeated genes are usually separated by a peg gene which occurs exactly once
[12]. When the total number of such repeated genes is a constant, our algorithm
can solve this problem in polynomial time.

We first present a few extra definitions. For a genome G and a character
g, span(g,G) is the maximal distance between the two positions that are oc-
cupied by g in the genome G. For example, if G = abcbaa, span(a,G) = 5
and span(b,G) = 2. For a genome G and c ≥ 0, we define totalocc(c,G) =∑

g is a character in G and span(g,G)≥c occ(g,G).
Assume that c and d are positive integers. A (c, d)-even partition for a genome

G is G = G1G2G3 with |G2| = c and |G1| + �|G2|/2� = d.
For a genome G and integers c, d > 0, a (c, d)-split G1, G2, G3 for G is derived

from a (c′, d)-even partition G = G1G2G3 for G for some c ≤ c′ ≤ 2c and satisfies
the following conditions 1)-6):

(1) alphabet(G) = alphabet(G1G2G3).
(2) We can further partition G2 into G2 = G1

2G2
2G3

2 such that |G2
2 | ≤ c + 1, and

there is at least one gene g with all its occurrences in G being in G2
2 . We call

such a gene g as a whole gene in G2
2 .

(3) G2 is obtained from G2
2 by deleting some genes and every gene appears at

most once in G2. And, G2 contains one occurrence of every whole gene in G2
2 .

(4) G1 is obtained from G1G1
2 by deleting all genes in G1G1

2 which also appear
in G2.

(5) G3 is obtained from G3
2G3 by deleting all genes in G3

2G3 which also appear
in G2.

(6) G2 has no gene common with either G1 or G3.

Finally, for a genome G and integers c, d ≥ 0, a (c, d)-decomposition is G1x,
G2G3, where G1, G2, G3 is a (c, d)-split for G and x is the first character of G2.
We have the following lemma. From now on, whenever a different pair of genomes
are given we assume that they are drawn from the same n gene families.

Lemma 2. Assume that c, d are integers satisfying c ≥ 0 and |G|−2c ≥ d ≥ 2c.
and G is a genome with span(g,G) ≤ c for every gene g in G. Then, (1) the
number of (c, d)-decompositions is at most 2c+1; (2) every exemplar genome of
G is also an exemplar genome of G1G2G3 for some (c, d)-split G1, G2, G3 of G.

Proof. (1). Since span(g,G) ≤ c for every gene g in G, it is easy to see that there
is a c′, c ≤ c′ ≤ 2c, such that we can find (c, d)-splits G1, G2 and G3 from a
(c′, d)-even partition G = G1G2G3 with G2 = G1

2G2
2G3

2 . Since |G2
2 | ≤ c + 1, there

are at most 2c+1 possible ways to obtain G2. Therefore, the total number of
decompositions is at most 2c+1. (2) is easy to see. ��

126 Z. Chen et al.

Lemma 3. Let c be a positive constant and ε be an arbitrary small positive
constant. There exists an O(nc+2+ε)-time algorithm such that given an exem-
plar genome G, in which each genes appears exactly once, and H, in which
span(g,H) ≤ c for every g in H, it returns enbs(G,H).

Proof. We use the divide-and-conquer method to compute enbs(G,H). The sep-
arator is put at the middle of H with width c. The genes within the region of
separator are handled by a brute-force method.

Algorithm
A(G,H)

Input: G is a genome with no gene repetition,
and H is a genome such that span(g,H) ≤ c for each gene in H.

let s = 0 and d = |H|/2.
for every (c, d)-decomposition H1x, H2H3 of H)

begin
if the length of H1x and H2H3 is ≤ log n

then compute A(G, H1x) and A(G, H2H3) by brute-force;
else let s′ = A(G, H1x) + A(G, H2H3);

if (s < s′) then s = s′

end
return s;

The correctness of the algorithm is easy to verify. By Lemma 2 and the de-
scription of the algorithm, the computational time is based on the following
recursive equation: T (n) ≤ (2c+1(2T (n/2 + c)) + c0n, where c0 is a constant.
We show by induction that T (n) ≤ c1n

c+2+ε, where c1 is a positive constant.
The basis is trivial when n is small since we can select constant c1 large enough.
Assume that T (n) ≤ c1n

c+2+ε is true all n < m.
T (m) ≤ 2c+1(2T (m/2+c)+c0m ≤ 2(2c+1c1(m/2+c)c+2+ε)+c0m < c1m

c+2+ε

for all large m. ��

We now have the following theorem.

Theorem 2. Let G and H be two genomes with t = totalocc(1,G) + totalocc
(c,H), for some arbitrary constant c. Then enbs(G,H) can be computed in O
(3�t/3�nc+2+ε) time.

Proof. Algorithm:
d = 0;
for each gene g1 in G with span(g1,G) ≥ 1
begin

for each position p1 of g1 in G
begin

remove all g1’s at all positions other than p1;
end
assume that G has been changed to G;
for each gene g2 in H with span(g2,H) > c
begin

Non-breaking Similarity of Genomes with Gene Repetitions 127

for each position p2 of g2 in H
begin

remove all g2’s at all positions other than p2;
end
assume that H has been changed to H′;
compute d0 = enbs(G,H′) following Lemma 3;
if (d < d0) then d = d0;

end
end
return d;

Let gi, 1 ≤ i ≤ m, be the genes in G and H with span(g1,G) ≥ 1 in G or
span(g2,H) > c in H. We have t = k1 + · · · + km. Let ki be the number of
occurrences of gi. Notice that ki ≥ 2. The number of cases to select the positions
of those genes in G and the positions of those genes in H is at most k1 · · ·km,
which is at most 4 · 3�t/3� following Lemma 6. In G, every gene appears exactly
once. In H′, every gene has span bounded by c. Therefore, their distance can be
computed in O(nc+2+ε) steps by Lemma 3. ��
Next, we define a new parameter measure similar to the Maximum Adjacency
Disruption (MAD) number in [5].

Assume that G and H are two genomes/sequences. For a gene g, define
shift(g,G,H) = maxG[i]=g,H[j]=g |i − j|, where G[i] is the gene/character of G
at position i. A space-permitted genome G may have space symbols in it. For two
space-permitted genomes G1 and G2, a non-breaking point g1g2 satisfies that g1

and g2 appear at two positions of G without any other genes/characters except
some spaces between them, and also at two positions of H without any other
genes except spaces between them.

For a genome G and integers c, d > 0, an exact (c, d)-split G1, G2, G3 for G is
obtained from a (c, d)-even partition G = G1G2G3 for G and satisfies the following
conditions (1)-(5):

(1) alphabet(G) = alphabet(G1G2G3).
(2) G2 is obtained from G2 by replacing some characters with spaces and every

non-space character appears at most once in G2.
(3) G1 is obtained from G1 by changing all G characters that also appear in

G2 into spaces.
(4) G3 is obtained from G3 by changing all G3 characters that also appear in

G2 into spaces.
(5) G2 has no common non-space character with either G1 or G3.

We now show the following lemmas.

Lemma 4. Let c, k, d be positive integers. Assume that G is a space-permitted
genome with span(g,G) ≤ c for every character g in G, and G only has spaces
at the first kc positions and spaces at the last kc positions. If |G| > 2(k + 4)c
and (k + 2)c < d < |G| − (k + 2)c, then G has at least one exact (2c, d)-split
and for every exact (2c, d)-split G1, G2, G3 for G, G2 has at least one non-space
character.

128 Z. Chen et al.

Proof. For (k+2)c < d < |G|−(k+2)c, it is easy to see that G has a subsequence
S of length 2c that starts from the d-th position in G and has no space character.
For every subsequence S of length 2c of G, if S has no space character, it has at
least one character in G that only appears in the region of S since span(g,G) ≤ c
for every character g in G. ��

Lemma 5. Let c be a positive constant. There exists an O(n2c+1+ε) time al-
gorithm such that, given two space-permitted genomes/sequences G and H, it
returns enbs(G,H), if shift(g,G,H) ≤ c for each non-space character g, G and
H only have spaces at the first and last 4c positions, and |G| ≥ 16c and |H| ≥ 16c.

Proof. Since shift(g,G,H) ≤ c for every gene/character g in G or H, we have
span(g,G) ≤ 2c and span(g,H) ≤ 2c for every character g in G or H.

Algorithm
B(G,H)
Input: G,H are two space-permitted genomes.
assume that |G| ≤ |H|;
set s = 0 and d = �|G|/2�;
for every exact (2c, d)-split G1, G2, G3 of G
begin

for every exact (2c, d)-split H1, H2, H3 of H
begin

if the length of G and H is ≤ log n
then compute enbs(G,H) by brute-force;
else s = B(G1G2, H1H2) + B(G2G3, H2H3) −B(G2, H2);

if (s < s′) then s = s′;
end

end
return s;

Following the divide-and-conquer method, it is easy to see that G1G2, H1H2,
G2G3 and H2H3 have spaces in the first and last 2c positions. This is because
span(g,G) ≤ 2c, span(g,H) ≤ 2c for every character g. B(G2, H2) can be deter-
mined by a linear scan, since both of them are exemplar. The computational time
is determined by the recurrence relation: T (n) = (22c + 2c)(2T (n

2 + 2c)+ O(n)),
which has solution T (n) = O(n2c+1+ε) as we show in the Lemma 3. ��

Lemma 6. Let k ≥ 3 be a fixed integer. Assume that k1, k2, · · · , km are m inte-
gers that satisfies ki ≥ 2 for i = 1, 2, · · · , m and k1 + k2 + · · · + km = k. Then
k1k2 · · ·km ≤ 4 · 3� k

3 �.

Proof. We assume that for fixed k, m is the largest integer that makes the
product k1k2 · · ·km maximal and k1 + k2 + · · ·+ km = k. We claim that ki ≤ 3
for all i = 1, 2, · · · , m. Otherwise, without loss of generality, we assume that
km > 3. Clearly, 2 · (km − 2) ≥ km. Replace km by k′

m = 2 and km+1′ =
km − 2. We still have that k1 + k2 + · · · + km−1 + k′

m + k′
m+1 = k and k1k2 ·

km−1k
′
mk′

m+1 ≥ k1k2 · · · km. This contradicts that m is maximal. Therefore,
each ki(i = 1, 2, · · · , m) is either 2 or 3 while k1 + k2 + · · · + km−1 + km = k

Non-breaking Similarity of Genomes with Gene Repetitions 129

and k1k2 · · · km is still maximal. It is impossible that there are at least three 2s
among k1, k2, · · · , km. This is because that 2 + 2 + 2 = 3 + 3 and 2 · 2 · 2 < 3 · 3.
On the other hand, the number of 3s among k1, k2, · · · , km is at most �k

3 � since
k1 + k2 + · · ·+ km−1 + km = k. ��
Finally, we have the following theorem.

Theorem 3. Let G and H be two genomes with a total of t genes g satisfying
shift(g,G,H) > c, for some arbitrary positive constant c. Then enbs(G,H) can
be computed in O(3�t/3�n2c+1+ε) time.

The idea to prove this theorem is as follows. We consider all possible ways to
replace every gene g, shift(g,G,H) > c, with space in G and H, while keeping
one occurrence of g in G and H. For each pair of such resulting G′ and H′, we
consider to use the algorithm in Lemma 5 to compute enbs(G′,H′). Notice that
we may have spaces not only in the two ends but also in the middle of G′ or
H′. However, we can modify the method of selecting exact (c, d)-splits for the
two genome. The new method is to start at the middle position of G′ (or H′)
to find the nearest non-space gene either in the right part or the left of the
middle position. Say, such a gene is u in the right part of the middle position of
H′. Then, we determine H2 by including c positions to the right of u and also
including c or more positions to the left to make sure that the middle position
is also included. The rest part in the left of H2 is H1, and the rest in the right
of H2 is H3. It is easy to see that the number of genes (not spaces) in H2 is
no more than 2c. Similarly, we can determine an even partition for G1. Notice
also that spaces do not contribute to constructing exact (c, d)-splits. Therefore,
enbs(G′,H′) can be computed, following the spirit of the algorithm in Lemma 5.

5 Concluding Remarks

We define a new measure—non-breaking similarity of genomes and prove that
the exemplar version of the problem does not admit an approximation of factor
n1−ε even when one of the input genomes is given exemplar; and moreover, the
problem is W[1]-complete. This differs from the corresponding result for the dual
exemplar breakpoint distance problem, for which a factor-O(log n) approxima-
tion exists when one of the input genomes is exemplar (and for the general input
there is no polynomial time approximation) [6]. On the other hand, we present
polynomial time algorithms for several practically interesting cases under this
new similarity measure. In practice, the practical datasets usually have some
special properties [12], so our negative results might not hold and our positive
results might be practically useful. We are currently working along this line.

References

1. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D.,
Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches
to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families,
pp. 207–212. Kluwer Acad. Pub. Boston, MA (2000)

130 Z. Chen et al.

2. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial
genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer,
Heidelberg (2005)

3. Chen, Z., Fu, B., Fowler, R., Zhu, B.: Lower bounds on the application of the
exemplar conserved interval distance problem of genomes. In: Chen, D.Z., Lee,
D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 245–254. Springer, Heidelberg
(2006)

4. Chen, Z., Fu, B., Fowler, R., Zhu, B.: On the inapproximability of the exemplar
conserved interval distance problem of genomes. J. Combinatorial Optimization
(to appear)

5. Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Genomes containing duplicates are
hard to compare. In: Proc. 2nd Intl. Workshop on Bioinformatics Research and
Applications (IWBRA’06), LNCS 3992, pp. 783–790 (2006)

6. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance
problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp.
291–302. Springer, Heidelberg (2006)

7. Chen, J., Huang, X., Kanj, I., Xia, G.: Linear FPT reductions and computational
lower bounds. In: Proc. 36th ACM Symp. on Theory Comput. (STOC’04), pp.
212–221 (2004)

8. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
9. Hästad, J.: Clique is hard to approximate within n1−ε. Acta. Mathematica, 182,

105–142 (1999)
10. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algo-

rithm for sorting signed permutations by reversals. J. ACM, 46(1), 1–27 (1999)
11. Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. Oxford University

Press, Oxford, UK (2004)
12. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar

breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)
13. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 16(11), 909–

917 (1999)
14. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of

drosophila pseudoobscura, and their use in the study of the history of the species.
In: Proc. Nat. Acad. Sci. USA, vol. 22 pp. 448–450 (1936)

15. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion prob-
lem. J. Theoretical Biology 99, 1–7 (1982)

A New and Faster Method of Sorting by

Transpositions�

Maxime Benôıt-Gagné and Sylvie Hamel

Département d’Informatique et de Recherche Opérationnelle,
Université de Montréal, CP.6128 Succ. Centre-Ville

Montréal, Québec Canada, H3C 3J7
phone:+1 514 343-6111(3504) fax:+1 514 343-5834

sylvie.hamel@umontreal.ca

Abstract. Some of the classical comparisons of DNA molecules con-
sists in computing rearrangement distances between them, i.e.: a mini-
mal number of rearrangements needed to change a molecule into another.
One such rearrangement is that of transposition. At this time, it is not
known if a polynomial time algorithm exists to compute the exact trans-
position distance between two permutations. In this article, we present
a new and faster method of sorting by transpositions. While there does
exist better algorithms with regards to distance approximation, our ap-
proach relies on a simpler structure which makes for a significantly faster
computation time, while keeping an acceptable close approximation.

Keywords: Genome rearrangement, transposition distance, permuta-
tion.

1 Introduction

Among the methods used to estimate the evolutionary distance between two
different organisms, some consist in finding out which evolutionary events are
more probable to have modified one genome into another. One may thus search
for ”local” mutations – insertions, deletions or substitutions of nucleotides– or
for genome rearrangements –mutations that change the gene order of a genome.
These genome rearrangements are apparently rarer than local mutations so this
should make them a more robust evolutionary indicator.

One natural rearrangement that is considered is a transposition. In this case,
two DNA sequences containing the same n genes, in some different orders, are
each represented by a permutation. A transposition consists in removing a block
of consecutive elements from the sequence and placing it elsewhere. Given two
species with different gene orders, we want to compute a parsimonious trans-
position distance between them. This is the minimal number of transpositions
needed to change one gene order into the other one. Even if it is true that many
species have different sets of genes and possibly multiple copies of these genes,

� With the support of NSERC.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 131–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 M. Benôıt-Gagné and S. Hamel

we can compute a transposition distance between any two species by restraining
our set of genes to those present in both species, choosing, arbitrarily, one copy
for each of them. We can also choose to only work with species that have exactly
the same set of genes (for examples of such species see [6,8]).

At this time, no known polynomial time algorithm exists for computing the
exact transposition distance between two permutations. Several algorithms al-
ready exist to compute approximate transposition distances, with different ap-
proximation factor and time complexity. Most of these algorithms rely on the
construction of a so-called cycle graph [1,2,3,5,10]. The proofs of soundness for
the approximation factor of these algorithms rely on an analysis of these cycle
graphs regarding particular properties. The resulting algorithms can be quite
time-consuming even for nice theoretical time complexities. The first such al-
gorithm, by Bafna and Pevzner [1], has an approximation factor of 1.5 and a
theoretical time complexity of O(n2). This algorithm relies on a complex data
structure and its best known implementation, due to Walter and al. [10], has
time complexity of O(n3). In 2003, Hartman [5] simplified Bafna and Pevzner’s
algorithm without changing the time complexity or approximation factor; and in
2005, with Elias [3], he presented an 1.375 approximation algorithm, which again
has quadratic complexity. To this day, this is the best approximation algorithm,
with the drawback that it requires the analysis of about 80 000 different cases
of cycle graphs in order to prove this 1.375 factor.

To try to simplify the implementation complexity of the problem, Walter,
Dias and Meidanis [9] suggested a 2.25 approximation algorithm using a more
simpler data structure known as the breakpoint diagram. The time complexity
of their algorithm is also quadratic. Even if breakpoint diagrams are much sim-
pler than cycle graphs, it is still a graph structure that has to be built out of
the permutation to get the approximate distance. The goal of this article is to
describe an O(n2) algorithm that neither relies on a graph construction nor on
a cycle analysis, thus resulting in a better real time complexity.

The article is organized as follows. In section 2, we recall formally the trans-
position distance problem and introduce the notion of coding for a permutation.
In section 3, we present a very simple approximation algorithm for our problem
and discuss its approximation factor. Section 4 presents a more complex version
of time complexity O(n4) but with a better approximation factor. Finally, in sec-
tion 5, we establish results on both algorithms for small and large permutations
and conclude.

2 Definitions

Let us briefly recall the standard definitions needed for our problem and define
the manner in which permutations will be encoded.

2.1 The Transposition Distance Problem

A permutation π is a bijection of [n] = {1, 2 . . . , n} onto itself. As usual we
will denote a permutation π of [n] as π = π1π2 . . . πn.

A New and Faster Method of Sorting by Transpositions 133

Definition 1. A transposition is an operation on permutations that moves a
block of contiguous elements, placing it elsewhere. More formally, for 1 ≤ i ≤
j ≤ n + 1 and j < k ≤ n + 1 (or 1 ≤ k < i), we define the transposition
ρ(i, j, k) on π as

ρ(i, j, k) · π = π1 . . . πi−1πj . . . πk−1πi . . . πj−1πk . . . πn

i.e.: the block going from πi to πj−1 (inclusively) has been removed and placed
right before πk.

The transposition distance problem consists in finding the minimal num-
ber of transpositions needed to sequentially transform any permutation π =
π1π2 . . . πn into the identity permutation Id = 12 . . . n. This transposition dis-
tance is denoted d(π). To simplify the presentation, sometimes a permutation
π = π1π2 . . . πn will be extended, as in [9], by two elements π0 = 0 and πn+1 =
n + 1. This extended permutation is still denoted π.

Definition 2. Given a permutation π of [n], we say that we have a breakpoint
at πi if πi + 1 	= πi+1, for 0 ≤ i ≤ n. The number of breakpoints of π is denoted
b(π).

One observes readily that at most three breakpoints can be removed by a single
transposition. It is also easy to see that a permutation can be sorted by trans-
posing one element πi at a time to its “right position”, thus removing at least
one breakpoint each time. These two observations lead to the following classical
lemma.

Lemma 1. Given a permutation π of [n], we have b(π)
3 ≤ d(π) ≤ b(π)

2.2 Coding a Permutation

For a given permutation π, we compute two codes. From these codes we can
derive an approximate transposition distance for the permutation. Intuitively,
for a position i in a permutation π, the left (resp. right) code at this position is
simply the number of elements bigger (resp. smaller) than πi to its left (resp. its
right). More formally we have

Definition 3. Given a permutation π = π1 . . . πn, the left code of the element
πi of π, denoted lc(πi), is

lc(πi) = |{πj | πj > πi and 0 ≤ j ≤ i− 1}|, for 1 ≤ i ≤ n,

Similarly, the right code of the element πi of π, denoted rc(πi), is

rc(πi) = |{πj | πj < πi and i + 1 ≤ j ≤ n + 1}|, for 1 ≤ i ≤ n.

The left (resp. right) code of a permutation π is then defined as the sequence of
lc’s (resp. rc’s) of its elements.

134 M. Benôıt-Gagné and S. Hamel

π = 6 3 2 1 4 5 σ = 3 5 2 1 6 4 γ = 6 5 4 3 2 1
lc(π) = 0 1 2 3 1 1 lc(σ) = 0 0 2 3 0 2 lc(γ) = 0 1 2 3 4 5
rc(π) = 5 2 1 0 0 0 rc(σ) = 2 3 1 0 1 0 rc(γ) = 5 4 3 2 1 0

Fig. 1. The left and right codes of some permutations

Figure 1 gives both left and right codes for three different permutations of
length 6.

Observe that the identity permutation Id = 12 . . . n, is the only permutation
for which we have lc(Id) = 00 . . .0 = rc(Id). In the next section we describe a
method for sorting permutations using only transpositions that raise the number
of zeros in either the left or right code of π.

3 Sorting a Permutation - The Easy Way

In this section, we show how to sort permutations with transpositions using only
their codes. The emphasis is on the time complexity of the algorithm, but we
also prove that the number of transpositions needed to sort π approximates the
real distance by a factor lying between 1 and 3, depending on π.

3.1 Definitions, Algorithm and Approximation Factor

Definition 4. Let us call plateau any maximal length sequence of contiguous
elements in a number sequence that have the same nonzero value. The number
of plateaux in a code c is denoted p(c).

Definition 5. We denote by p(π) the minimum of p(lc(π)) and p(rc(π)).

Example 1. For the permutation π from Figure 1, we have p(lc(π)) = 4 since we
have the four plateaux: 1, 2, 3 and 1 1 and p(rc(π)) = 3 since we have the three
plateaux: 5, 2 and 1. Thus, p(π) = 3.

Lemma 2. Given a permutation π = π1 . . . πn, the leftmost (resp. rightmost)
plateau of lc(π) (resp. rc(π)) can be removed by a transposition to the left (resp.
the right) without creating any new plateaux in the code.

Proof. This follows directly from the definition of lc(π) (resp. rc(π)). Suppose
that the leftmost (resp. rightmost) plateau in lc(π) (resp. rc(π)) is from position
i to j − 1. Then all entries of the left (resp. right) code are equal to 0 before
position i (resp. after position j − 1). In other terms, the entries π1, . . . , πi−1

(resp. πj , . . . , πn) are in increasing order. So, if lc(πi) = v (resp. rc(πi) = v),
the transposition ρ(i, j, k), where k = i − v (resp. k = j + v), removes the first
plateau without creating a new one.

Lemma 2 gives us the following result.

Lemma 3. We have d(π) ≤ p(π).

A New and Faster Method of Sorting by Transpositions 135

Proof. The identity permutation Id is the only permutation for which we have
lc(Id) = 00 . . .0 = rc(Id). Thus, Lemma 3 comes directly from the facts that we
have p(π) = 0 ⇐⇒ π = Id and that we can transpose all plateaux appearing
in either lc(π) or rc(π), one by one without creating new ones.

From Lemma 2 and Lemma 3 we can immediately derive the following O(n2)
algorithm for the computation of an approximate transposition distance.

Algorithm EasySorting (input: π a permutation of [n])

lc(π) = left code of π (easily computed in O(n2))
rc(π) = right code of π (easily computed in O(n2))
lp(π) = p(lc(π))(easily computed in O(n))
rp(π) = p(rc(π))(easily computed in O(n))
RETURN p(π) = min{lp(π), rp(π)}

To list the p(π) transpositions needed to sort π, while computing p(lc(π)) and
p(rc(π)), we need only to record both ends (start and finish) of the plateaux
considered as well as their code values. (see Lemma 2).

Given a permutation π, Lemma 1 and Lemma 3 gives us directly the following
approximation factor for d(π).

Lemma 4. An approximation factor of d(π), for permutation π, with Algorithm
EasySorting is

c · p(π)
b(π)

, where c =
3
⌊

b(π)
3

⌋
+ b(π) mod 3⌈
b(π)
3

⌉
Proof. From Lemma 1, the best possible outcome, given a permutation π, is
that each transposition reduces the number of breakpoints by 3. If the number
of breakpoints is a multiple of 3 then c = 3. Otherwise, we have to perform at
least one transposition which will reduce the number of breakpoints by a factor
less than 3. The constant c gives, in that case, the best average scenario. Since
b(π)/p(π) is the number of breakpoints removed, on average, with our algorithm,
the result follows.

Example 2. Going back on Example 1, we get, for permutation π of Figure 1,
p(π) = p(rc(π)) = 3. The three plateaux are 1 at position 3, 2 at position 2 and
finally 5 at position 1. The next transpositions (see proof of Lemma 2) sort the
permutation:

rc(π) = 5 2 1 0 0 0 5 2 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
π = 6 3 2 1 4 5 ρ(3,4,5)

−→ 6 3 1 2 4 5 ρ(2,3,5)
−→ 6 1 2 3 4 5 ρ(1,2,7)

−→ 1 2 3 4 5 6

Since the extended permutation π = 0 6 3 2 1 4 5 7 has 6 breakpoints, our approx-
imative theoretical factor is 3p(π)

b(π) = 3∗3
6 = 1.5, while the real factor is 1, since in

fact d(π) = 3.

136 M. Benôıt-Gagné and S. Hamel

The upper bound of the theoretical approximation factor of Lemma 4 is not
tight for certain permutations π of [n], that we can not classify at this time. For
example, it has been proved in [7] and then, later on, independently in [2] and [4]
that if π is the inverse permutation π = n n− 1 . . . 2 1, then d(π) = �n/2�+ 1.
Since, in that case p(π) = n − 1 and b(π) = n + 1, we have the theoretical
approximation factor, given by Lemma 4, limn→∞

c·p(π)
b(π) = 3, which is bigger

than the real one, p(π)/d(π)=2.
We were able to compute the exact distance d(π) for all permutations of n, 1 ≤

n ≤ 9. We performed our algorithm on these small permutations and compared
the real approximation factor of our algorithm, i.e.: p(π)/d(π), and the theoretical
one given by Lemma 4. The results are presented in figure 2 and 3.

1 1,2 1,25 1,33 1,4 1,5 1,67 1,75 2 Real
n 1 1,33 1,5 1,67 2 1,67 1,33 2 2,33 1,5 2 1,67 2,33 2 Theo.

4 23 0 1 0 0 0 0 0 0 0 0 0 0 0
5 84 0 30 0 0 0 0 1 0 5 0 0 0 0
6 380 43 189 0 0 2 63 7 0 35 0 1 0 0
7 1793 1096 728 0 0 408 772 28 0 140 9 64 0 2
8 7283 11323 2142 1995 817 9153 4812 84 24 420 1501 693 23 50

Fig. 2. Comparison between real and theoretical approximation factor for small per-
mutations

a) b)

Fig. 3. Some results on the real versus theoretical approximation factor

Figure 2 shows for each n, 1 ≤ n ≤ 8, the number of permutations that have
a certain real versus theoretical approximation factor. It can be seen that of the
20 748 permutations of n = 8 that were sorted correctly (real approximation
factor of 1) by our algorithm not even half of them (7283 to be exact) have a
theoretical approximation factor of 1. The rest have a theoretical approximation
factor of 1,33, 1,5 and even 1,67. So, the theoretical approximation factor we
will get for large permutations is as much as 1,67 bigger than the real one. Keep
that in mind when looking at the results for large permutations (Figure 6). In
order to give a better view of what has been just discussed, Figure 3a shows, for
each n, the percentage of permutations for which the real approximation factor,

A New and Faster Method of Sorting by Transpositions 137

p(π)/d(π), is correctly approximate by Lemma 4. We see that as n grows larger,
this percentage decreases rapidly.

Figure 3b shows graphically the relation between the mean of the real approx-
imation factors and the mean of the theoretical ones obtained from the formula
in Lemma 4. These data suggest that the curve of the real mean grows more
slowly than the theoretical one. This may indicate that, although the theoretical
approximation factor tends to 3, the real one tends to a number significantly
smaller than 3.

4 Sorting a Permutation - The Other Way

The algorithm presented in the previous section naively computes an approxi-
mate transposition distance given left or right codes of permutations. Here, we
summarily present ways to improve the performance of our algorithm. For lack
of space, these ideas have to be developed in a future paper.

One clear way to improve the performance of our algorithm is to find an effi-
cient way to move more than one plateau with each transposition. The following
definitions introduce some properties of codes that can be used to do this. These
definitions are illustrated in Figure 4. The ideas presented here have already been
implemented but only for left codes. However the definitions apply for both codes
and implementations for both ought to give even better performances.

Definition 6. Given a permutation π of [n], let us denote by P1, P2, · · · Pm,
the m plateaux of lc(π), from left to right. Let us further denote by v(Pi) the
value Pi i.e.: the left code of the elements of the permutation in this plateau. We
have the following definitions:

a) Two consecutive plateaux Pi and Pi+1 are said to be a fall if v(Pi) > v(Pi+1)
and a rise if v(Pi) < v(Pi+1). A fall (or rise) is said to be good if there exists
a position k in the permutation such that the transposition of the segment
PiPi+1 just before k removes at least two plateaux.

b) Three consecutive plateaux Pi, Pi+1 and Pi+2 are called a ditch if v(Pi+1) <
v(Pi), v(Pi+2) and v(Pi) = v(Pi+2). They are called an asymmetric ditch
if v(Pi+1) < v(Pi), v(Pi+2) and v(Pi) + l = v(Pi+2), where l is the length of
Pi+1.

c) The sequence of plateaux PiPi+1 . . . Pi+k is a mountain if v(Pi) = v(Pi+k)
and v(Pi+1), · · · , v(Pi+k−1) ≥ v(Pi).

d) The sequence of plateaux PiPi+1 . . . Pi+k is an ascent if k ≥ 4 and v(Pi+1) =
v(Pi) + li, · · · , v(Pi+k) = v(Pi+k−1) + li+k−1, where lj is the length of Pj.

Without going into details, let us just mention that we can use these notions to
sort a permutation in more effective ways than before. Indeed, the transposition
of a good fall (or rise) removes at least two plateaux (see Figure 4a where the
good fall at position 5 and 6 of the permutation are moved before position 1).
For an asymmetric ditch, it is easy to see that we can first transpose the bottom
of the asymmetric ditch and then the rest, thus removing 3 plateaux with 2

138 M. Benôıt-Gagné and S. Hamel

π

lc(π)

π

lc(π)

a) good fall b) ascent

c) mountain d) ditch

Fig. 4. Illustrations of the terms in Definition 6 and first efficient transposition

transpositions. In the case of ditches, the transposition of the bottom often
creates a good fall. In this case, we can also remove 3 plateaux in 2 transpositions
(see Figure 4d). Mountains can be sorted by “level”. In Figure 4c, we pictured a
mountain having 3 levels and 4 plateaux. By transposition of the whole mountain
one position to the left, the values in the plateaux drop by 1, thus removing two
plateaux. The other levels of the mountain can then be transposed one by one.
Finally, as illustrated in Figure 4b, an example of an ascent is the code of the
inverse permutation. This fact allows an easy generalization of the algorithm for
the sorting of inverse permutations ([2,4,7]) in the ascent case. This means that
an ascent containing m plateaux can be sorted with �m/2�+ 1 transpositions.

All these different entities can overlap in a code so that we need to transpose
them in a specific order to get the best performance. We have tried different
orders and the best way seems to first sort the mountains, then ascents, ditches,
falls, rises and finally the remaining plateaux. This gives an O(n5) algorithm.
Using a heuristic testing only one transposition position while testing for a good
fall or a good rise we can decrease the complexity of the algorithm to O(n4). The
results on small and large permutations are presented in the next section, where
the algorithm is called MADFRP (for Mountain, Ascent, Ditch, Fall, Rise and
Plateau). Note that we use slightly modified definitions of the entities (enabling
falls and rises with more than two plateaux) in our implementation in order to
use to the maximum the potential of these ideas.

5 Some Other Results and Comparisons

In [1], Bafna and Pevzner presented three algorithms to compute an approximate
transposition distance of a permutation based on graph cycles properties. One is
called TSort and has an approximation factor of 1,75, another is called TransSort
and has an approximation factor of 1,5. Finally they mentioned a simpler version

A New and Faster Method of Sorting by Transpositions 139

that has an approximation factor of 2. Here, we call this last algorithm BP2 and
use it for comparison with our algorithm. We have implemented EasySorting,
Mountain (an algorithm that uses the left code of a permutation and first sorts
the mountains from left to right and then the remaining plateaux), MADFRP
(briefly presented in section 4) and BP2 in JAVA and performed our computa-
tions on an AMD Athlon 64 bits, 2200 MHZ with 3.9 Gb RAM computer. The
results for small and large permutations are presented, respectively, in Figure 5
and 6.

EasySort Mountain MADFRP BP2

n Total �= d(π) Approx. �= d(π) Approx. �= d(π) Approx. �= d(π) Approx.

2 2 0 1 0 1 0 1 0 1

3 6 0 1 0 1 0 1 0 1

4 24 0 1 0 1 0 1 1 1,5

5 120 6 1,5 6 1,5 1 1,5 7 1,5

6 720 108 1,667 103 1,5 29 1,5 86 1,5

7 5040 1423 2 1314 1,67 484 1,67 792 1,67

8 40320 17577 2 15941 2 7416 2 9162 1,75

9 362880 211863 2 190528 2 102217 2 100332 1,75

Fig. 5. Comparison of the number of wrong calculations and worst real approximation
factors

EasySort Mountain BP2

n sample size distance factor time distance time distance time

10 1000 5,59 1,51 - 5,46 - 5,06 -

16 1000 10,63 1,86 - 10,11 - 8,50 -

32 1000 25,02 2,29 - 23,60 - 17,76 -

64 1000 55,45 2,55 - 52,50 - 36,09 0,00167

128 1000 117,96 2,75 0,00106 113,29 0,00181 72,57 0,00484

256 1000 244,38 2,85 0,00255 237,23 0,00529 145,18 0,02288

512 1000 498,91 2,92 0,00761 488,57 0,0234 290,56 0,1160

1000 100 985,63 2,95 0,02874 971,72 0,1152 567,53 1,299

5000 100 4982,05 2,99 0,5824 4958,75 4,448 2840,89 144,8

Fig. 6. Comparison of the mean of the transposition distances and computational time
for large permutations

Figure 5 shows, for each algorithm, first the number of permutations for which
the algorithm did not compute the right distance d(π) and then, given n, the worst
approximation factor for any permutation of [n]. The computational time is not
shown here since all the algorithms were able to give their results in less than 1×
10−3 seconds/permutation. It is interesting to see that, even with an algorithm as
simple as EasySorting, a lot of permutations were sorted correctly and the worst
approximation factor we got was 2. By looking at entities, like mountains, that

140 M. Benôıt-Gagné and S. Hamel

removes more than one plateau at once, we see that the results are slightly better
and we get even better than BP2 with MADFRP for n up to 8.

To compare the algorithms for large permutations, we randomly pick a sample
of 1000 permutations for each n, except for n = 1000 and 5000, for which we pick
a smaller sample of 100 permutations due to computational time. Since for these
permutations π, we do not know d(π), we computed for each sample the mean
of the approximate distances given by each algorithm. The results are shown in
Figure 6, where a “− ” in the time column indicates that the calculation time is
less than 1×10−3. Looking at the results, we see that EasySorting and Mountain
are way faster than BP2 and that they get distances close to the ones obtained
by BP2, up to n = 64. For bigger n, BP2 is better, getting distances up to 1.7
smaller than our algorithms.

6 Conclusions and Future Work

In this article we have presented a method for the computation of an approxi-
mate transposition distance for a permutation which does not rely on graph
cycles as other existing algorithms. We have divised an encoding for permu-
tations giving a fast algorithm exhibiting good results on small permutations.
On large permutations, our algorithm is way faster than any existing one with
the potential small drawback that we can only prove an approximation factor
bound of 3. However, this bound appeared to be far from tight as far as our
experimental data suggests. We plan to investigate in more detail the aspects
briefly outlined in section 4 to get more precise theoretical bounds. The practical
running time of the algorithm MADFRP should also be improved by avoiding
the recomputations of the codes after each transposition.

Acknowledgements

We first thank the NSERC summer intern Caroline Quinn who participated to
this project in its early stages. We also thank the anonymous reviewers for their
helpful and constructive comments.

References

1. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2),
224–240 (1998)

2. Christie, D.A.: Genome rearrangements problems, PhD thesis, Glasgow University,
Scotland (1998)

3. Elias, I., Hartman, T.: A 1.375-Approximation Algorithm for Sorting by Transpo-
sitions. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp.
204–215. Springer, Heidelberg (2005)

4. Eriksson, H., et al.: Sorting a bridge hand. Discrete Mathematics 241, 289–300
(2001)

A New and Faster Method of Sorting by Transpositions 141

5. Hartman, T.: A Simpler 1.5-Approximation Algorithm for Sorting by Transposi-
tions. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 156–169. Springer, Heidelberg (2003)

6. Hoot, S.B., Palmer, J.D.: Structural rearrangements, including parallel inversions,
within the chloroplast genome of Anemone and related genera. Journal of Molecular
Evolution 38, 274–281 (1994)

7. Meidanis, J., Walter, M.E.M.T., Dias, Z.: Transposition distance between a per-
mutation and its reverse. In: Proceedings of the 4th South American Workshop on
String Processing (WSP’97), pp. 70–79 (1997)

8. Palmer, J.D., Herbon, L.A.: Tricircular mitochondrial genomes of Brassica and
Raphanus: reversal of repeat configurations by inversion. Nucleic Acid Research 14,
9755–9764 (1986)

9. Walter, M.E.M.T., Dias, Z., Meidanis, J.: A new Approach for Approximating the
Transposition Distance. In: Proceedings of SPIRE, pp. 199–208 (2000)

10. Walter, M.E.M.T., et al.: Improving the algorithm of Bafna and Pevzner for the
problem of sorting by transpositions: a practical approach. Journal of Discrete
Algorithms 3, 342–361 (2005)

Finding Compact Structural Motifs

Jianbo Qian1, Shuai Cheng Li1, Dongbo Bu1, Ming Li1, and Jinbo Xu2

1 David R. Cheriton School of Computer Science
University of Waterloo, Waterloo

Ontario, Canada N2L 3G1
{j3qian,scli,dbu,mli}@cs.uwaterloo.ca
2 Toyota Technological Institute at Chicago
1427 East 60th Street, Chicago, IL 60637

j3xu@tti-c.org

Abstract. Protein structure motif detection is one of the fundamental
problems in Structural Bioinformatics. Compared with sequence motifs,
structural motifs are more sensitive in detecting the evolutionary rela-
tionships among proteins. A variety of algorithms have been proposed
to attack this problem. However, they are either heuristic without theo-
retical performance guarantee, or inefficient for employing an exhaustive
search strategy. Here, we study a reasonably restricted version of this
problem: the compact structural motif problem. In this paper, we prove
that this restricted version is still NP-hard, and we present a polynomial-
time approximation scheme to solve it. To the best of our knowledge, this
is the first approximation algorithm with a guarantee ratio for the protein
structural motif problem.

1 Introduction

Identifying structural motifs for proteins is a fundamental problem in computa-
tional biology. It has been widely accepted that during the evolution of proteins,
structures are more conserved than sequences. In addition, structural motifs are
thought to be tightly related to protein functions [1]. Thus, identifying the com-
mon substructures from a set of proteins can help us to know their evolutionary
history and functions. With rapid growth in the number of structures in the
Protein Data Bank (PDB) and protein folding methods, the need for fast and
accurate structural comparison methods has become more and more crucial.

The multiple structural motif finding problem is the structural analogy of the
sequence motif finding problem. For the former problem, the input consists of a
set of protein structures in three-dimensional space, R3. The objective is to find
a set of substructures, one from each protein, that exhibit the highest degree of
similarity.

Roughly speaking, there are two main methods to measure the structural
similarity, i.e., coordinate root mean squared deviation (cRMSD) and distance

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 142–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding Compact Structural Motifs 143

root mean squared deviation (dRMSD). The first one calculates the internal
distance for each protein first, and compares this internal distance matrix for
the input structures. In contrast, the second method uses the Euclidean distance
between the corresponding residues from different protein structures. To do this,
the optimal rigid transformation of these protein structures should be done first.

Various methods have been proposed to attack this problem under different
similarity measuring strategies. Under the unit-vector RMSD (URMSD) mea-
sure, L.P Chew et al. [4] proposed an iterative algorithm to compute the consen-
sus shape and proved the convergence of this algorithm. Applying graph-based
data mining tools, D. Bandyopadhyay et al. [3] described a method to assign
a protein structure to functional families using the family-specific fingerprints.
Under the bottleneck metric similarity measure, M. Shatsky et al. [15] presented
an algorithm for recognition of binding patterns common to a set of protein
structures. This problem is also attacked in [5][6][10][13][14][18].

One of the closely related problems is the structural alignment problem, to
which a lot of successful approaches have been developed. Among them, DALI
[7] and CE [16] attempt to identify the alignment with minimal dRMSD, while
STRUCTURAL [17] and TM-align [20] employ some heuristics to detect the
alignment with minimal cRMSD.

However, the methods mentioned above are all heuristic; the solutions are
not guaranteed to be optimal or near optimal. Recently, R. Kolodny et al. [9]
proposed the first polynomial-time approximate algorithm for pairwise protein
structure alignment based on the Lipschitz property of the scoring function.
Though this method can be extended to the case of multiple protein structural
alignment, the simple extension has the time complexity exponential in the num-
ber of proteins.

In this paper, we present an approximation algorithm employing the sampling
technique [11] under the dRMSD measure. Adopting a reasonable assumption,
we prove that our algorithm is efficient and produces a good approximation
solution. In contrast to the method in [9], our algorithm is polynomial in the
number of proteins. Furthermore, the sampling size is an adjustable parameter,
adding more flexibility to our algorithm.

The rest of our manuscript is organized as follows. In Section 2, we introduce
the notations and some background knowledge. In Section 3, we prove the NP-
completeness of the compact structural motif problem. The algorithm, along
with performance analysis, is given in Section 4.

2 Preliminaries

A protein consists of a sequence of amino acids (also called residues), each of
which contains a few atoms including one Cα atom. In a protein structure, each
atom is associated with a 3D coordinate. In this paper, we only take into con-
sideration the Cα atom of a residue; thus a protein structure can be simplified

144 J. Qian et al.

as a sequence of 3D points. The common globular protein is generally compact,
with the distance between two consecutive Cα atoms restrained by the bond
length, and the volume of the bounding sphere linear in the number of residues.

A structural motif of a protein is a subset of its residues arranged by order
of appearance, and its length is the number of elements in this subset. In this
paper, we consider only the (R, C)-compact motif, which is bounded in the
minimal ball B (refered to as containing ball) with radius at most R, and at
most C residues in this ball do not belong to this motif.

To measure the similarity of two protein structures, a transformation, in-
cluding rotation and translation, should be done first. Such a transformation
is known as a rigid transformation and can be expressed with a 6D-vector
τ = (tx, ty, tz, r1, r2, r3), r1, r2, r3 ∈ [0, 2π], tx, ty, tz ∈ R . Here, (tx, ty, tz) de-
notes a translation and (r1, r2, r3) denotes a rotation. Applying the transforma-
tion τ for a 3D-point u, we get a new 3D coordinate τ(u).

In this paper, we adopt dRMSD to measure the similarity between two struc-
tural motifs. Formally, for two motifs u = (u1, u2, · · · , u�) and v = (v1, v2, · · · , v�),
the dRMSD distance between them is defined as d(u, v) =

∑�
i=1 ‖ui − vi‖2,

where ‖.‖ is the Euclidean distance.
Throughout this paper, we will study the following consensus problem:

(R, C)-Compact Motif Problem: Given n protein structures P1,P2, . . . ,Pn,
and an integer �, find a consensus with length �: q = (q1, q2, . . . , q�), where qi is
a point in 3D, rigid transformation τi, and (R, C)-compact motif ui of length �
for Pi, 1 ≤ i ≤ n, such that

∑n
i=1 d(q, τi(ui)) is minimized.

Before we present the approximation algorithm, we first prove that the trans-
formation can be simplified for this special case. More specifically, it is unnec-
essary to consider all rigid translations; that is, we can consider only rotations
without loss of generality.

The following lemma that is originally from [8] will be used in our proofs.
Roughly speaking, it states that if we want to overlap two chains of points
closely, we must make their centroids coincide.

Lemma 1. Given n points (a1, a2, · · · , an) and n points (b1, b2, · · · , bn) in 3D
space, to minimize

∑
i ‖ρ(ai) + T − bi‖2, where ρ is a rotation matrix and T

a translation vector, T must make the centroid of ai and bi coincide with each
other.

Lemma 2. In the optimal solution of (R, C)-compact motif problem, the cen-
troid of τi(ui) must coincide with the centroid of q, for 1 ≤ i ≤ n.

This lemma is a direct corollary of Lemma 1. The basic idea is that to find the
optimal rigid transformation, we can first translate the proteins so their cen-
troids coincide with each other. Therefore, a transformation can be simplified
to a vector (r1, r2, r3), where r1, r2, r3 ∈ [0, 2π]. For a real number ε, we can
discretize the range [0, 2π] into a series of bins with width of ε. We refer to this

Finding Compact Structural Motifs 145

discrete transformation set {(i · ε, j · ε, k · ε)|0 ≤ i, j, k ≤ 2π
ε }, where i, j, k are

integers, as an ε-net of rotation space T .

3 NP-Completeness Result

In this section, we will show that the (R, C)-compact motif problem is NP-hard.
The reduction is from the sequence consensus problem, which has been proven
to be NP-hard in [12].

Consensus Patterns (sum-of-pairs variant)[12]: Given a set of sequences
over {0, 1}, S = {s1, s2, ..., sn}, each of length m, and an integer �, find a median
string s of length � and a substring ti (consensus pattern) of length � from each
si, minimizing

∑
1≤i<j≤n dH(s, ti), where dH is the Hamming distance.

Theorem 1. The (R, C)-compact motif problem is NP-hard.

Proof. For convenience, we adopt the following equivalent scoring function in
our proof:

∑
1≤i<j≤n d(τi(ui), τj(uj)). The equivalence is proved in [19].

For an instance of the Consensus Patterns problem, we will map each sequence
s to a group of chains of 3D points through the following two steps:

extending step. For each of its �-mer, say M = s[i]s[i + 1] · · · s[i + �− 1], we first
attach its complement M ′ after it, then attach a tail of 2� 0’s and 2� 1’s. For
example, 100 becomes 100011000000111111.

mapping step. Then we map this extended �-mer to a chain of 3D points as
follows: 0 is mapped to a residue at position (0, 2i, 0), 1 is mapped to a residue
at position (1, 2i, 0). Therefore, each �-mer is mapped to a chain of 6� points at
2 positions. Note that the centroid of this chain is (1/2, 2i, 0).

Hence, each of the n sequences, sj , is mapped to a protein Pj with 6�(m−�+1)
residues.

By our construction, each (1, 0)− compact motif must be a chain of residues
occupying 2 positions. From Lemma 2, it is easy to see that the optimal solution
for this compact motif problem corresponds to the optimal solution for the orig-
inal Consensus Patterns problem. Thus, the NP-hardness of the Compact Motif
problem is proven. Q.E.D.

4 (R, C)-Compact Motif Finding Algorithm

The basic idea of our algorithm is as follows: first, we translate the proteins to
make their centroids coincide. Then, for each discrete rigid transformation and
each r-tuple of compact motifs, we calculate the median, and find from each
protein the closest part to this median. The median with the minimal value of
the objective function value is output.

Let f(x) =
∑n

i=1(x − ai)2. It is easy to see that f(x) is minimized when
x equals the average of {ai}. The following lemma states that if we randomly
choose r number from {ai}, and let x equals the average of them, then the
expected value of f(x) is 1 + 1/r times the minimum.

146 J. Qian et al.

(R, C)-Compact Motif Finding Algorithm
Input: n protein structures P1,P2, . . . ,Pn, integer �, C, r, real number
R, ε.
Output: median consensus u of length �, rigid transformation τi,
(R, C)-compact motif ui of length � for Pi, for 1 ≤ i ≤ n.
1. Fix P1, translate other proteins to make their centroids coincide with that
of P1

2. FOR every r length-� (R, C)-compact motif u1, u2, · · · , ur, where ui is a
motif of some Pj DO
3. FOR every r − 1 transformations τ2, τ3, · · · , τr from ε/Rn�-net of ro-
tation space T DO

(a) Find the average of u1, τ2(u2), · · · , τr(ur): u = (u1 + τ2(u2) + · · ·+
τr(ur))/r

(b) FOR i = 1, 2, · · · , n DO
Find the length-� (R, C)-compact motif vi of Pi and its optimal

rigid transformation τ ′
i that minimize d(u, τ ′

i(vi)).
(c) Let c(u) =

∑n
i=1 d(u, τ ′

i(vi)).
4. Output the u and the corresponding vi, τ ′

i that minimize c(u).

Lemma 3. Let a1, a2, ..., an be n real numbers, 1 ≤ r ≤ n is an integer. Then
the following equation holds:

1

nr

�

1≤i1,i2,...,ir≤n

n�

i=1

(
ai1 + ai2 + ... + air

r
−ai)

2 =
r + 1

r

n�

i=1

(
a1 + a2 + ... + an

n
−ai)

2.

Proof. For the sake of simplicity, we use σ to denote
∑n

i=1 ai and σ′ denote∑n
i=1 a2

i .

1
nr

∑
1≤i1,i2,...,ir≤n

(n
ai1 + ai2 + ... + air)2

r2
− 2

ai1 + ai2 + ... + air

r
σ + σ′)

=
1
nr

∑
1≤i1,i2,...,ir≤n

n
a2

i1
+ a2

i2
+ ... + a2

ir
+ 2(ai1ai2 + · · ·+ air−1air)

r2

−2rnr−1σ

rnr
σ + σ′

=
rnr−1σ′ + r(r − 1)nr−2σ2

r2nr−1
− 2σ2

n
+ σ′

=
σ′

r
+

r − 1
r

σ2

n
−−2σ2

n
+ σ′

=
r + 1

r
(σ′ − σ2

n
)

=
r + 1

r
(
σ2

n
− 2

σ2

n
+ σ′)

Finding Compact Structural Motifs 147

=
r + 1

r

n∑
i=1

(
σ

n
− ai)2

Q.E.D.
The following lemma is needed for our analysis of the time complexity:

Lemma 4. All of the (R, C)-compact motifs of length � for protein P with m
residues can be enumerated in O(m5�c) time.

Proof. According to the definition of the (R, C)-compact motif, we know that
the containing ball B of a motif must contain � to �+C residues of P . In addition,
it is easy to see that either there are 4 residues on the surface of B, or there
are 3 residues on its surface and the radius of B is R, due to the minimality
of B. Therefore, to enumerate the compact motifs, we can first enumerate the
containing balls, which takes O(m5); then from each ball, we enumerate the
motifs, which takes O(�c) times. In total, it takes O(m5�c) time. Q.E.D.

Theorem 2. The (R, C)-Compact Motif Finding Algorithm outputs a solution
with cost no more than

(1 +
1
r
)copt + O(ε),

in time O(n4r−2m5r+5R3r−3�cr+c+3r−2/ε3r−3), where copt is the cost of the op-
timal solution.

Proof. Step 1 takes O(nm) time. The enumeration of {ui} takes O(nr(m5�c)r)
time, {τi} takes O((Rn�

ε)3(r−1)). Step 3(a)-(c) takes O(n ·m5�c · �) time (finding
τ ′
i takes O(�) time according to [2]). So, the time complexity of the algorithm is

O(n4r−2m5r+5R3r−3�cr+c+3r−2/ε3r−3).
Now, we prove the performance ratio. Given an instance of the problem, we

use u∗ to denote the optimal median; v∗i and τ∗
i denote the optimal motif in

Pi and corresponding optimal rigid transformation, respectively. Then we have
copt =

∑n
i=1 d(u∗, τ∗

i (v∗i)). By the property of our cost function, it is easy to see
that u∗ is the average of τ∗

1 (v∗1), τ∗
2 (v∗2), · · · , τ∗

n(v∗n), i.e., u∗ = (τ∗
1 (v∗1) + τ∗

2 (v∗2) +
· · ·+ τ∗

n(v∗n))/n.
First, we claim that copt can be approximated by sampling r proteins. In

particular, we will show that there exist 1 ≤ i1, i2, ..., ir ≤ n s.t.

n∑
i=1

d(u∗
i1i2...ir

, τ∗
i (v∗i)) ≤ (1 + 1/r)copt, (1)

where u∗
i1i2...ir

= (τ∗
i1 (v

∗
i1) + τ∗

i2(v
∗
i2) + · · · + τ∗

ir
(v∗ir

))/r. It suffices to prove that
the average of such value for all 1 ≤ i1, i2, ..., ir ≤ n is (1 + 1/r)copt, which can
be easily deduced from Lemma 3.

For 1 ≤ i ≤ n, let τ ′
i be a rotation in ε/Rn�-net (remember R is the maximum

radius of the motifs) of T that is closest to τ∗
i in T . Then τ∗

i can be reached
from τ ′

i by moving at most ε/2Rn� along each of the three dimensions. Let
u′

i1i2...ir
= (τ ′

i1
(v∗i1) + τ ′

i2
(v∗i2) + · · ·+ τ ′

ir
(v∗ir

))/r.
Now we will prove that

∑n
i=1 d(u′

i1i2...ir
, τ ′

i(v
∗
i)) ≤

∑n
i=1 d(u∗

i1i2...ir
, τ∗

i (v∗i)) +
O(ε).

148 J. Qian et al.

By our choice of τ ′
ij

, it is easy to see that ‖τ ′
i(v

∗
i)−τ∗

i (v∗i)‖ ≤ ε/Rn�, ‖u′
i1i2...ir

−
u∗

i1i2...ir
‖ ≤ ε/Rn� (more details can be found in [9]), let u∗

i1i2...ir
[j] be the j-th

node of u∗
i1i2...ir

, v∗i [j] be the j-th node of v∗i , then we have

n∑
i=1

d(u′
i1i2...ir

, τ ′
i(v

∗
i)) =

n∑
i=1

�∑
j=1

‖u′
i1i2...ir

[j] − τ ′
i(v

∗
i [j])‖2

=
n∑

i=1

�∑
j=1

‖u′
i1i2...ir

[j]− u∗
i1i2...ir

[j] + u∗
i1i2...ir

[j]− τ∗
i (v∗i [j]) + τ∗

i (v∗i [j])

−τ ′
i(v

∗
i [j])‖2

≤
n∑

i=1

�∑
j=1

(‖u∗
i1i2...ir

[j] − τ∗
i (v∗i [j])‖ + (‖u′

i1i2...ir
[j]− u∗

i1i2...ir
[j]‖ + ‖τ∗

i (v∗i [j])

−τ ′
i(v

∗
i [j])‖))2

=
n∑

i=1

�∑
j=1

(‖u∗
i1i2...ir

[j] − τ∗
i (v∗i [j])‖2 + (‖u′

i1i2...ir
[j] − u∗

i1i2...ir
[j]‖ + ‖τ∗

i (v∗i [j])

−τ ′
i(v

∗
i [j])‖)2 + 2‖u∗

i1i2...ir
[j]− τ∗

i (v∗i [j])‖(‖u′
i1i2...ir

[j] − u∗
i1i2...ir

[j]‖
+‖τ∗

i (v∗i [j])− τ ′
i(v

∗
i [j])‖))

≤
n∑

i=1

d(u∗
i1i2...ir

, τ∗
i (v∗i)) + O(ε) + 4ε2/Rn�

=
n∑

i=1

d(u∗
i1i2...ir

, τ∗
i (v∗i)) + O(ε).

It is easy to see that the output of our algorithm is at least as good as∑n
i=1 d(u′

i1i2...ir
, τ ′

i(v
∗
i)). Together with (1), the performance ratio of our algo-

rithm is proven. Q.E.D

5 Conclusion

In this paper, we present a sampling-based approximation algorithm for the
problem of finding the compact consensus shape from a family of proteins. Our
algorithm requires that the consensus pattern satisfies the compactness condi-
tion. To find a good algorithm in more general case is an interesting problem.

References

1. Aloy, P., Querol, E., Aviles, F.X., Sternberg, M.J.: Automated structure-based
prediction of functional sites in proteins: Applications to assessing the validity of
inheriting protein function from homology in genome annotation and to protein
docking. Journal of Molecular Biology 311, 395–C408 (2001)

Finding Compact Structural Motifs 149

2. Arun, K.S., Huang, T.S., Blostein, S.D.: Least square fitting of two 3-d point sets.
IEEE Transactions on Pattern Analysis and Machine Intelligence 9(5), 698–700
(1987)

3. Bandyopadhyay, D., Huan, J., Liu, J., Prins, J., Snoeyink, J., Wang, W., Tropsha,
A.: Structure-based function inference using protein family-specific fingerprints.
Journal of Protein Science 15, 1537–1543 (2006)

4. Chew, L.P., Kedem, K.: Finding the consensus shape of a protein family. In: Proc.
18th Annual ACM Symposium on Computational Geometry, pp. 64–73 (2002)

5. Gelfand, I., Kister, A., Kulikowski, C., Stoyanov, O.: Geometric invariant core
for the vl and vh domains of immunoglobulin molecules. Protein Engineering 11,
1015–1025 (1998)

6. Gerstein, M., Altman, R.B.: Average core structure and variability measures for
protein families: application to the immunoglobins. Journal of Molecular Biol-
ogy 112, 535–542 (1995)

7. Holm, L., Sander, C.: Dali: a network tool for protein structure comparison. Trends
Biochem Sci. 20(11), 478–480 (1995)

8. Huang, T.S., Blostein, S.D., Margerum, E.A.: Least-square estimation of motion
parameters from 3-d point correspondences. In: Proc of the IEEE Conference on
Computer Vision and Pattern Recognition, vol. 69 pp. 198–201 (1986)

9. Kolodny, R., Linial, N.: Approximate protein structural alignment in polynomial
time. Proc. Natl Acad. Sci. 101, 12201–12206 (2004)

10. Leibowitz, N., Fligelman, Z.Y., Nussinov, R.: Multiple structural alignment and
core detection by geometric hashing. In: Proc. 7th Int. Conf. Intell. Sys. Mol. Biol,
pp. 169–177 (1999)

11. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. In: Proceedings
of the thirty-first annual ACM symposium on Theory of computing (STOC), pp.
473–482, Atlanta (May 1999)

12. Moan, C., Rusu, I.: Hard problems in similarity searching. Discrete Appl.
Math. 144(1-2), 213–227 (2004)

13. Orengo, C.: Cora-topological fingerprints for protein structural familie. Protein
Science 8, 699–715 (1999)

14. Orengo, C., Taylor, W.: Ssap: Sequential structure alignment program for protein
structure comparison. Methods in Enzymology 266, 617–635 (1996)

15. Shatsky, M., Shulman-Peleg, A., Nussinov, R., Wolfson, H.: The multiple com-
mon point set problem and its application to molecule binding pattern detection.
Journal of Computational Biology 13(2), 407–428 (2006)

16. Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental com-
binatorial extension ce of the optimal path. Protein Eng. 11(9), 739–747 (1998)

17. Subbiah, S., Laurents, D.V., Levitt, M.: Structural similarity of dna-binding do-
mains ofbacteriophage repressors and the globin core. Current Biology 3, 141–148
(1993)

18. Xu, J., Jiao, F., Berger, B.: A parameterized algorithm for protein structure align-
ment. In: RECOMB, pp. 488–499 (2006)

19. Ye, J., Janardan, R.: Approximate multiple protein structure alignment using the
sum-of-pairs distance. Journal of Computational Biology 11(5), 986–1000 (2004)

20. Zhang, Y., Skolnick, J.: Tm-align: a protein structure alignment algorithm based
on the tm-score. Nucleic Acids Research 33, 2302–2309 (2005)

Improved Algorithms for Inferring the Minimum

Mosaic of a Set of Recombinants

Yufeng Wu and Dan Gusfield

Department of Computer Science
University of California, Davis

Davis, CA 95616, U.S.A.
{wuyu,gusfield}@cs.ucdavis.edu

Abstract. Detecting historical recombination is an important computa-
tional problem which has received great attention recently. Due to recom-
bination, input sequences form a mosaic, where each input sequence is
composed of segments from founder sequences. In this paper, we present
improved algorithms for the problem of finding the minimum mosaic
(a mosaic containing the fewest ancestral segments) of a set of recom-
binant sequences. This problem was first formulated in [15], where an
exponential-time algorithm was described. It is also known that a re-
stricted version of this problem (assuming recombination occurs only at
predefined block boundaries) can be solved in polynomial time [15,11].
We give a polynomial-time algorithm for a special case of the minimum
(blockless) mosaic problem, and a practical algorithm for the general
case. Experiments with our method show that it is practical in a range
of data much larger than could be handled by the algorithm described
in [15].

1 Introduction

A grand challenge for post-genomic era is dissecting the genetic basis of com-
plex diseases. An important connection between the sequences (the genotypes)
and the traits of interest (the phenotypes) is the evolutionary history (the ge-
nealogy) of the chosen individuals. Thus, inferring genealogy from sequences has
received much attention recently. A major difficulty in inferring genealogy is
meiotic recombination, one of the principal evolutionary forces responsible for
shaping genetic variation within species. Efforts to deduce patterns of historical
recombination or to estimate the frequency or the location of recombination are
central to modern-day genetics.

A central genetic model used throughout this paper (and used before in [15]) is
that the current population evolved from a small number of founder sequences.
Over time, recombination broke down ancestral sequences and thus a current
sequence is a concatenation of segments from the founder set. The set of input
sequences then looks like a mosaic of segments from the founder sequences,
when sequences are arranged as aligned rows. Thus, we refer the model as the
mosaic model. See Figure 1 for an illustration. The biological literature contains

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 150–161, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improved Algorithms for Inferring the Minimum Mosaic 151

validations of this model. For example, it is stated in the Nature paper [14]
that “The Ferroplasma type II genome seems to be a composite from three
ancestral strains that have undergone homologous recombination to form a large
population of mosaic genomes.”

The mosaic pattern is potentially very informative in understanding the pop-
ulation evolution. The mosaic tells which sequences inherit their DNA from the
same founder at a genomic site, and thus can be very useful in understanding the
genetic basis of traits. In the context of inferring haplotypes from genotypes (i.e.
the haplotype inference problem, also called phasing problem), Hidden Markov
Model (HMM) based probabilistic approaches which exploit the mosaic patterns
have been actively studied [3,9,10]. Therefore, understanding the genomic mo-
saic structure is an interesting problem, and better understanding of the mosaic
pattern may be useful for population genetics problems.

Unfortunately, the mosaic boundaries (called breakpoints) are not readily seen
from the sequences, and so we have the problem of inferring the true breakpoints
(and the ancestral founder sequences) for the given input sequences. The break-
points break the given sequences into segments of (possibly inexact) copies of
ancestral materials that are inherited from some founder sequences of the popu-
lation. The inexact copies of ancestral materials are often due to point mutations
at nucleotide sites. In the context of recent human populations, however, the as-
sumption is that the time period is short and the point mutation rates are low
[15,11,1,2]. Hence, we assume throughout the paper that the input sequences in-
herit exact copies of ancestral material between two neighboring breakpoints. So
every input sequence is a concatenation of segments of some founder sequences.
Since there are a huge number of possible mosaic patterns for a set of input
sequences, we need a biologically meaningful model to infer breakpoints and
founders.

In 2002, Ukkonen [15] proposed a computational problem based on the mosaic
model, given input of n binary sequences with m columns each. The model
assume that the population evolves from a set of relatively small number of
founders. The natural parsimonious objective is to construct a mosaic with fewest
breakpoints. This motivates the following optimization problem.

The Minimum Mosaic Problem . Given n input sequences (each with m columns)
and a number Kf , find Kf founder sequences that minimize the total number
of breakpoints needed to be put in the input sequences, which break the input
sequences into segments from the founder sequences. See Figure 1 for an example.
The Minimum Mosaic Problem has also been turned into a graphical game, called
the Haplotye Threading Game, developed at the University of North Carolina [5].

It is important to emphasize that we require each segment to be derived
from the corresponding aligned positions of a founder sequence, although the
breakpoints do not need to be the same in each of the input sequences. Also
note that once founder sequences are known, it is straightforward (using e.g. a
method in [12]) to place breakpoints in the input sequences, so that the number of
breakpoints is minimized for each sequence and thus also for all input sequences
together.

152 Y. Wu and D. Gusfield

(a) Haplotypes (b) Mosaic

Fig. 1. An example illustrating the minimum mosaic problem on binary sequences.
Figure 1(a) shows the input sequences. Figure 1(b) shows one way to partition the
sequences in Figure 1(a) into segments, such that each segment comes from one of three
founders: 0110100, 1101111 and 1010001. Note that there are totally four breakpoints,
which is the minimum over all possible solutions with three founders.

In [15] (and also [11]), efficient algorithms were developed for a related but dif-
ferent problem. In addition, Ukkonen [15] also described a dynamic programming
algorithm for the minimum mosaic problem described above. But the algorithm
given in [15] does not scale well when the number of founders or the size of in-
put matrix grows. Another unaddressed question is how to deal with genotypes
(to be defined later), since most current biological data comes in the form of
genotypes.
Our contributions. This paper focuses on the combinatorial properties of the
minimum mosaic problem, on which little progress has been made since the
work of Ukkonen [15]. We report on two main results.

1. For the special case where there are two founders, we show the minimum
mosaic problem can be solved in O(mn) time 1. We also give an efficient
algorithm for finding the minimum breakpoints when the input sequences
consist of genotype data (instead of haplotype data).

2. For the general minimum mosaic problem, we present an efficiently com-
putable lower bound on the minimum number of breakpoints. We also de-
velop an algorithm which solves the minimum mosaic problem exactly. Sim-
ulations show that this method is practical when the number of founders is
small, and the numbers of rows and columns are moderate.

1.1 Additional Definitions

In diploid organisms (such as humans) there are two (not completely identical)
“copies” of each chromosome, and hence of each region of interest. A description
of the data from a single copy is called a haplotype, while a description of the con-
flated (mixed) data on the two copies is called a genotype. Today, the underlying
data that forms a haplotype is usually a vector of values of m single nucleotide
1 Note that the algorithm proposed by Ukkonen [15] is also implicitly polynomial-time

when Kf = 2. The advantage of our method is that we establish an easily-verified
condition to construct a minimum mosaic for two founder sequences.

Improved Algorithms for Inferring the Minimum Mosaic 153

polymorphisms (SNP’s). A SNP is a single nucleotide site where exactly two (of
four) different nucleotides occur in a large percentage of the population. Geno-
type data is represented as n n by m 0-1-2 (ternary) matrix G. Each row is a
genotype. A pair of binary vectors of length m (haplotypes) generate a row i of
G if for every position c both entries in the haplotypes are 0 (or 1) if and only
if G(i, c) is 0 (or 1) respectively, and exactly one entry is 1 and one is 0 if and
only if G(i, c) = 2.

Given an input set of n genotype vectors (i.e. matrix) G of length m, the
Haplotype Inference (HI) Problem is to find a set (or matrix) H of n pairs of
binary vectors (with values 0 and 1), one pair for each genotype vector, such
that each genotype vector in G is generated by the associated pair of haplotypes
in H . H is called an “HI solution for G”. Genotype data is also called “unphased

data”, and the decision on whether to expand a 2 entry in G to [01] or to [10] in

H , is called a “phasing” of that entry. The way that all the 2’s in a column (also
called a site) are expanded is called the phasing of the column (site). Note that
if a genotype is 02 at two sites, we know the two haplotypes in an HI solution
will be 00 and 01 at these two positions. We sometimes call this case trivial for
these two sites. If a genotype is 22 instead, the HI solutions are ambiguous : an
HI solution may be either 00/11 or 01/10 at the two sites.

Each input row r inherits a state at a site s from a particular founder. We
say this founder is ancestral to r at site s.

2 The Two-Founder Case

We consider the special case where there are only two founders. Note that for
any haplotype data H , there exists two founders that can derive H in a mosaic
[15]: a trivial set of two founders consists an all-0 sequence and an all-1 sequence.
However, it is not immediately clear which pair of founder sequences leads to a
minimum mosaic.

2.1 Solution for Haplotype Data Input

For a haplotype matrix H at two sites si and sj , there are four possible states
(called gametes): 00, 01, 10, 11. We use ni,j,g to denote the number of times that
a gamete g appears in H for two sites si and sj . As an example, for the first two
sites (sites 1 and 2) of the data in Figure 1, n1,2,00 = 0, n1,2,01 = 2, n1,2,10 = 1
and n1,2,11 = 2.

It is easy to see that we can remove from input sequences any site that is
uniform (i.e. either all 0 or all 1). This will not reduce the minimum number
of breakpoints in a minimum mosaic. Hence we assume there are two founder
states at any site, one is 0 and the other is 1. We can also remove any site i
which is identical to site i + 1. A key observation is: at two neighboring sites
si, si+1, we will have either 00, 11 gametes or 01, 10 gametes for the two founder
sequences. We define the distance between a sites si and its neighboring site to

154 Y. Wu and D. Gusfield

the right si+1 in H as di = MIN(ni,i+1,00 + ni,i+1,11, ni,i+1,10 + ni,i+1,01). We
have the following simple lemma.

Lemma 1. The minimum number of breakpoints between two neighboring sites
si, si+1 is at least di.

Proof. Since the two founders have either 00/11 or 01/10 gametes at sites si and
si+1, either there is a breakpoint between si and si+1 for every gamete 01 and
10 (if the founders have 00/11 states at sites si and si+1), or between si and
si+1 for every gamete 00 and 11 (if the founders have 01/10 states). ��

The above lemma implies that the minimum number of breakpoints is at least
ntb =

∑m−1
i=1 di. On the other hand, the following algorithm finds two founders

that derive the input sequences with exactly ntb breakpoints.

Algorithm 1. Polynomial-time algorithm for finding two founders F1, F2 that
gives the minimum number of breakpoints
1. Let F1[1] ← 0, and F2[1] ← 1. And set i ← 1.
2. while i ≤ m − 1
2.1. If ni,i+1,00 +ni,i+1,11 ≥ ni,i+1,10 +ni,i+1,01, then F1[i+1] = F1[i], and F2[i+1] =

F2[i].
2.2. Otherwise, F1[i + 1] = 1 − F1[i], and F2[i + 1] = 1 − F2[i].
2.3 i ← i + 1

It is easy to verify that the above algorithm produces two founder sequences
using exactly ntb breakpoints. Intuitively, Algorithm 1 gives the optimal solution
to the minimum mosaic problem by constructing founders from left to right.
At each position (other than the leftmost site, i.e. s1) the algorithm is only
constrained by the single site to its immediate left. This means it can always
choose a state to introduce exactly di breakpoints for each si and si+1. Thus,
the solution is optimal due to Lemma 1. The running time of the algorithm is
O(mn). Thus, we have:

Proposition 1. When Kf = 2, the minimum mosaic problem can be solved for
haplotype data H in O(nm) time.

2.2 Solution for Genotype Data Input

Now we consider genotypes (not haplotypes) as input. This problem is important
because most currently available biological data is genotypic. With genotype
data, the minimum problem can be formulated as follows.

The minimum mosaic problem with genotypes. Given a genotype matrix G and
a number Kf , find an HI solution H and Kf founder sequences such that the
number of breakpoints needed to derive H from the founders is minimized among
all possible HI solutions and Kf founder sequences.

Improved Algorithms for Inferring the Minimum Mosaic 155

We give a polynomial-time algorithm for the special case of Kf = 2. We begin
with a lemma which extends Lemma 1 to genotypes. Note that for two genotypic
sites i and j, the possible states are: 00, 01, 10, 11, 02, 20, 12, 21, and 22. Similar
to the haplotype case, we denote the number of times that gamete g appears at
two sites i and j as ni,j,g. We define the distance between two genotypic sites
si and its right neighbor si+1 as dg

i = MIN(2ni,i+1,00 + ni,i+1,02 + ni,i+1,20 +
2ni,i+1,11 + ni,i+1,12 + ni,i+1,21, 2ni,i+1,01 + ni,i+1,02 + ni,i+1,21 + 2ni,i+1,10 +
ni,i+1,20 + ni,i+1,12).

Lemma 2. The minimum number of breakpoints between two neighboring geno-
typic sites si, si+1 is at least dg

i .

Proof. Note that dg
i represents the minimum number of gametes 00/11 and

gametes 01/10 for all possible ways of phasing these two sites. Note that one
can always phase a “22” gamete at sites si and si+1 to agree exactly with the two
founders at si, si+1. Therefore, following the same idea in the proof of Lemma
1, it is easy to see dg

i is a lower bound on the number of breakpoints between
sites i and i + 1. ��

Proposition 2. When Kf = 2, the minimum mosaic problem with genotypes
can be solved in O(nm) time.

Proof. Using a similar idea as in Proposition 1, the two-founder minimum mosaic
problem can also be solved efficiently even when the input is genotypic. The
number of minimum breakpoints is equal to

∑m−1
i=1 dg

i . This can be done as
follows.

We can construct two founders using a procedure similar to Algorithm 1. A
small difference is that here we use the smaller term in dg

i (rather than di) to
decide whether to let founders have gametes 00/11 or 01/10. Now that we have
constructed two founders, we derive an HI solution H as follows. We start from
the leftmost site and move to the right by one site each time. We pick any feasible
phasing for the leftmost site. Now we consider site si+1 by assuming si has been
properly phased. Note that the only ambiguous rows at sites si and si+1 are
those containing 22. We phase 22 so that the phased gametes agree with the
founder states at sites si and si+1.

The only subtle issue left is whether there are will ever be an inconsistency
during the process. That is, will we be prohibited from phasing si+1 in the way
described, due to the phasing of site si. But inconsistency will not occur. For
one row r of G, suppose the above procedure dictates the two 2’s in si, si+1 are

phased to 01 and 10. If column si (for row r) has been phased as [
0
1] we phase

si+1 (for row r) as [
1
0]. Otherwise, we phase si+1 as [

0
1]. In either case, we will

produce the needed binary pairs in sites si, si+1 for row r. ��

156 Y. Wu and D. Gusfield

2.3 The Minimum Mosaic Problem with Unknown Site Order

We consider here a variation of the two-founder minimum mosaic problem, where
the linear order of the m sites is unknown. Formally, we define an optimization
problem as follows.

The two-founder minimum mosaic with permutation problem. Given a matrix
M , we want to find a permutation Π of the sites, and two founder sequences,
such that with those founders and by ordering the sites according to Π , the
number of breakpoints used is the minimum over all possible site permutations
and all possible pair of founders.

A Biological motivation. One biological motivation for allowing site permutation
is the linkage mapping problem, which is to find the true ordering of multiple loci
on a chromosome. Linkage maps remain important for species which have not
yet been sequenced. See the recent paper [13] for a discussion of current interest
in linkage mapping and a detailed explanation of computational issues involved
in linkage mapping. In order to infer the true site ordering, a natural approach
is to find the ordering of sites, and a small set of founders, so that the number
of needed breakpoints is minimized with that number of founders.

We establish an interesting connection to the metric traveling salesman prob-
lem, which implies a 1.5-approximation solution to the minimum mosaic with
permutation problem. Details are omitted due to lack of space.

3 The Case of Three or More Founders

When the number of founders is at least three, we do not have a polynomial-time
algorithm for the minimum mosaic problem, although we conjecture that there
is one. In this section, we first describe an efficiently computable lower bound
on the minimum number of breakpoints for any fixed Kf with haplotype data.
We also develop an algorithm that solves the minimum mosaic problem exactly.
In our testing, the method is practical for many problem instances when the
number of founders is three or four and the size of input matrix is moderate
(e.g. with 50 sequences and 50 sites).

3.1 Lower Bound on the Number of Breakpoints for Haplotype
Data

We now describe a simple lower bound on the minimum mosaic problem, inspired
by the “composite haplotype bound”, a lower bound developed for a different
recombination model [7]. Consider a binary matrix H . We collect the set S of
distinct rows together with their multiplicities (denoted as (si, ni) ∈ S). Here,
ni records the number of times si appears in the input. We order S so that
{ni} is non-increasing. If |S| ≤ Kf , then the lower bound (denoted Bm) on the
minimum number of breakpoints is simply 0. Otherwise,

∑|S|
i=Kf +1 ni is a lower

bound on the minimum number of breakpoints.

Improved Algorithms for Inferring the Minimum Mosaic 157

This is a trivial bound. But Myers and Griffiths [7] introduced a general
method (called the composite method) to amplify weaker bounds, to get much
higher overall lower bounds. We apply the composite method to the minimum
mosaic problem. Instead of computing a lower bound on the whole matrix, we
compute lower bound Bm for each of the

(
m
2

)
intervals, each with the above

idea. Then we combine these bounds to form a composite bound as detailed in
[7,6]. This improves the lower bounds, demonstrated by our empirical studies in
Section 4. One of our major results in this paper is the demonstration of the
effectiveness of the composite lower bound for the minimum mosaic problem.

3.2 Exact Method for the Minimum Mosaic Problem When Kf ≥ 3

When Kf ≥ 3, no polynomial-time algorithm is known for the minimum mo-
saic problem for either haplotypes or genotypes. Here we develop a method that
solves the minimum mosaic problem exactly, and give heuristics that make it
practical for a range of data of current biological interest. Simulation shows
that our method works well for a large range of problem instances when Kf =
3, and for medium-size data (say 50 by 50 matrix) when Kf = 4. We de-
scribe our method for haplotypes, but remark that the method can be modi-
fied to handle genotype data. Practical performance of the method in [15] was
not demonstrated there, but the method was implemented in program haplovi-
sual (http://www.cs.helsinki.fi/u/prastas/haplovisual). Direct implementation
of Ukkonen’s method is expected to be prohibitive when n and m increase, even
for a small number of founders. Our initial experiments with program haplovisual
suggest it is not practical for 20 or more rows and three or more founders.

We start by developing some notation and terminology. The choice of binary
states for each of the Kf founders at a site i is called the “founder setting at
site i”, and denoted f(i). There are 2Kf − 2 possible founder settings at a site,
assuming each site contains both 0’s and 1’s. A combined founder setting at each
of the sites from 1 to i is denoted F (i) and called a “founder setting up to i”;
a founder setting up to m is denoted F and is called a “full founder setting”.
The founder setting at site i together with a legal mapping of input sequences
to the Kf founders is called the “configuration at site i”. A mapping is legal
for site i if the state of each input sequence equals the state, at site i, of the
founder it is mapped to. Clearly, given configurations at sites i and i + 1, the
number of breakpoints that occur between these two sites is the number of input
sequences mapped to different founders at sites i and i + 1, which is at most n.
A combined configurations at each of the sites from 1 to i is denoted C(i) and
called a “configuration up to i”, and the founder setting up to m is called the
“full configuration”.

Given a founder setting F , the problem of finding a full configuration that
minimizes the number of breakpoints is called the “CF problem”. Given F and
i, the problem of finding a configuration C(i) up to i to minimize the number of
breakpoints in F (i) is called the CF (i) problem. Problem CF can be solved by
a simple greedy algorithm [12] that is run independently for each input sequence
s as follows. To start, set a variable ps to 1 and find the longest match, starting

158 Y. Wu and D. Gusfield

at site ps, between s and any of the founder sequences. If the longest match
extends to site i and occurs between s and founder q, then map each site from 1
to i in s to founder q. If there are ties for longest match, q can be set to be any
one of the tied founders. Next, set ps to i+1 and iterate. Continue until the end
of s is reached.

Now suppose that a full founder setting F , and the input sequences, are only
given to the greedy algorithm one site at a time, in increasing order. Then the
greedy algorithm doesn’t know the full length of any match between a founder
sequence and an input sequence. However, the CF problem can be solved with
a “locally greedy algorithm” that implicitly records all the possible actions of
the greedy algorithm on each F (i). Since the greedy algorithm considers each
input sequence separately, we describe the locally-greedy algorithm for one input
sequence s. At each site i, the locally-greedy algorithm records a subset SFs(i) of
founders, and a number BFs(i). To begin, let x denote the state of sequence s at
site 1. The original greedy algorithm would map s to one of the founders that has
state x at site 1, so in the locally-greedy algorithm we let SFs(1) be the set of all
founders which have state x at site 1, and set BFs(1) to zero. For i > 1, let As(i)
be the subset of founders whose state at site i agrees with the state of s at site i.
Then SFs(i) = SFs(i− 1) ∩ As(i), and BFs(i) = BFs(i− 1), if the intersection
is non-empty; otherwise, SFs(i) = As(i), and BFs(i) = BFs(i− 1) + 1. BFs(m)
is the number of breakpoints in the optimal solution to problem CF , given the
full founder setting F . It is also easy to reconstruct the optimal configuration
by a backwards trace from m to 1. Note that at each i, the SF sets compactly
and implicitly encode all the optimal configurations for the CF (i) problem that
the greedy algorithm could find. Note also that the locally-greedy algorithm not
only solves the CF problem, given F , but also solves each of the CF (i) problems
implied by each F (i).

We now describe our method to solve the minimum mosaic problem; the
method must find both an optimal F and a solution to the implied CF problem.
At the high level, before optimizations to significantly speed it up, the method
enumerates all possible founder settings F (i), for i from 1 to m, dovetailing the
execution of the locally-greedy algorithm on each growing F (i). In more detail,
the algorithm builds a branching tree T where the root is at level 0 and each node
v at level i represents one possible founder setting at site i, denoted fv(i). The
path from the root to v specifies a distinct founder setting up to i, denoted F v(i).
Let w denote the predecessor of v in T ; the path in T to w specifies a founder
setting denoted Fw(i − 1). Suppose that the execution of the locally-greedy
algorithm along the path to w has computed the subset of founders SFw

s (i− 1)
and the number of breakpoints BFw

s (i− 1) (based on Fw(i− 1)), for each input
sequence s. Then, given fv(i), one step of the locally-greedy algorithm can easily
compute the next set SF v

s (i) and the number BF v
s (i) for each input sequence s.

Note that the algorithm at level i only needs information from level i− 1, which
allows significant space savings. The node at level m with smallest

∑
s BFs(m)

identifies an optimal solution to the minimum mosaic problem. The correctness
of this method follows from the correctness of the locally-greedy algorithm on any

Improved Algorithms for Inferring the Minimum Mosaic 159

fully specified F , and the fact that all possible F (i) are enumerated. However,
without further speedups the method is only practical for very small data sizes.

The obvious speedup is to implement a branch-and-bound strategy, using a
lower bound L(i + 1) on the number of breakpoints needed for the sites i + 1
to m. If at node v,

∑
s BF v

s (i) + L(i + 1) is greater or equal to the number of
breakpoints needed in some known full configuration, then no expansion from
node v is needed. We have implemented this strategy using the lower bound
described earlier, but we have found the following speedup to be more effective.

If
∑

s BF v
s (i) −

∑
s BFu

s (i) ≥ n, then no expansion from v is needed. To see
this, note that if v were expanded, any configuration at a child of v (at level i+1)
can be created from any one of the implicitly described configurations at u, using
at most n breakpoints between sites i and i + 1. Therefore, any path to level m
from v requiring b breakpoints will require at most b + n breakpoints from u.
This idea can be greatly sharpened as follows. Suppose for some input sequence
s, the set SF v

s (i) ⊆ SFu
s (i), and consider a configuration c at a child of v at

level i + 1. If configuration c maps s to a founder in SF v
s (i), then configuration

c can be created from at least one of the implicitly described configurations at
u, with no breakpoints in s between sites i and i + 1. If c maps s to a founder
not in SF v

s (i) then there is one breakpoint used (for s) on that path out of v,
and so one breakpoint can also be used on a path out of u to create the same
mapping of s. Continuing with this reasoning, let n′ be the number of sequences
s where SF v

s (i) ⊆ SFu
s (i). Then if

∑
s BF v

s (i) −
∑

s BFu
s (i) ≥ n − n′, node

u is as good or better than v, and v can be pruned. To fully implement this
idea, we examine pairs of nodes at level i to find any node that is “beaten” by
another node, and therefore can be pruned. While that is a relatively expensive
step, without any pruning the size of T grows exponentially with i, and so it
is worthwhile for the algorithm to spend time finding significant pruning. We
have seen empirically that this approach is very effective in efficiently solving
the minimum mosaic problem for a small number of founders (in the range 3
to 5) and a number of input sequences and sites which is generally larger than
many biological applications today.

There is another speedup that can be introduced if the number of founders
becomes large. As described above, tree T cannot contain two founder settings
up to i, Fu(i) and F v(i) at nodes u and v, where the ordered rows of Fu(i) and
F v(i) are identical. However, the rows of Fu(i) can be the same as the rows of
F v(i), but in a permuted order. We call such a pair of nodes “isomorphic”, and
in any isomorphic pair only one of the two nodes needs to be expanded; the other
node and the subtree extending from it can be deleted. Redundant computation
caused by isomorphism only becomes a significant problem when the number
of founders is large, but isomorphism can be easily handled or avoided. One
simple rule to handle it is to only expand a node u if the rows of Fu(i) are
in lexicographic sorted order (say lexicographically non-decreasing); any node
whose rows are not in lexicographic sorted order can be pruned. That leads
to the idea of only generating founder settings whose rows are in lexicographic
order, avoiding isomorphic pairs entirely. Suppose inductively that at level i−1,

160 Y. Wu and D. Gusfield

every generated founder setting up to i − 1, Fw(i − 1), has rows that are in
lexicographic sorted order. Of course, all identical rows in Fw(i − 1) will be
contiguous. Then for any set of k identical rows in Fw(i − 1), if a potential
founder setting fv(i) for a child v of w, would set k′ of those k rows to 0, and
k − k′ to 1, at site i, place the zeros in the first k′ of those k rows. In that way,
the rows of F v(i) will be in lexicographic sorted order, and no isomorphism will
be created at level i.

4 Simulation Results and Open Problems

We implemented the general method (without speedups to avoid isomorphism)
in a C++ program, and ran our program on biological datasets on a standard
2.0GHz Pentium PC.

The first data is Kreitman’s classic data [4]. After appropriate data reduction
[12], there are 9 haplotypes and 16 sites left. The simulation results, including
lower bound and exact minimum number of breakpoints, are shown in Table 1
for different Kf . As expected, as the number of founders increases, the minimum
number of breakpoints decreases. Note that the composite lower bound using the
composite method can be higher than the simple lower bound Bm on the entire
data. For example, when Kf = 3, Bm = 9 − 3 = 6, while the composite bound
reported in Table 1 is equal to 10.

Table 1. Solutions for minimum mosaic problem for Kreitman’s data. The data is
reduced from the original 11 haplotypes and 43 binary sites. After data reduction,
there are 9 rows and 16 sites left. Both lower bound (LB) and exact minimum number
of breakpoints (EMB) are shown. Running time (Time) is also displayed.

Kf = 2 Kf = 3 Kf = 4 Kf = 5 Kf = 6

LB 27 10 7 4 3
EMB 37 15 8 6 4
Time (s) < 1 < 1 1 12 1245

For a larger example, we use the full Jackson region of the LPL data [8] (with
40 haplotypes and 49 sites). After data reduction, it contains 37 haplotypes and
43 sites. When Kf = 3, it takes 27 seconds to find 241 as the minimum number
of breakpoints. When Kf = 4, it takes a little over an hour to find 181 as the
minimum number of breakpoints. The program, taking about 50 minutes, was
also used to show that 53 breakpoints are the minimum needed in a dataset with
20 haplotypes and 36 sites and Kf = 5, posted at http://www.unc.edu/courses/
2007spring/comp/790/087/. A heuristic greedy algorithm discussed there previ-
ously found a solution with 54 breakpoints.

Our program, called RecBlock, is available for download at the web page:
http://wwwcsif.cs.ucdavis.edu/˜wuyu/.

Improved Algorithms for Inferring the Minimum Mosaic 161

Open problems. A major open problem is to determine the complexity of the mini-
mum mosaic problem. Another interesting problem is to develop a (possibly para-
metrized) polynomial time algorithm when Kf is a small constant larger than two.

Acknowledgments. Work supported by grants CCF-0515278 and IIS-0513910
from National Science Foundation. We thank Leonard McMillan at UNC for
providing the dataset discussed above. We also thank Yun S. Song for bringing
the linkage mapping problem to our attention.

References

1. El-Mabrouk, N.: Deriving haplotypes through recombination and gene conversion,
J. of Bioinformatics and Computational Biology 2, 241–256 (2004)

2. El-Mabrouk, N., Labuda, D.: Haplotype histories as pathways of recombinations,
Bioinformatics 20, 1836–1841 (2004)

3. Kimmel, G., Shamir, R.: A block-free hidden markov model for genotypes and its
application to disease association, J. of Comp. Bio. 12, 1243–1260 (2005)

4. Kreitman, M.: Nucleotide polymorphism at the alcohol dehydrogenase locus of
drosophila melanogaster, Nature 304, 412–417 (1983)

5. McMillan, L., Moore, K.:
http://www.unc.edu/courses/2007spring/comp/790/087/?p=11

6. Myers, S.: The detection of recombination events using DNA sequence data, PhD
dissertation, Dept. of Statistics, University of Oxford, Oxford, England (2003)

7. Myers, S.R., Griffiths, R.C.: Bounds on the minimum number of recombination
events in a sample history. Genetics 163, 375–394 (2003)

8. Nickerson, D., Taylor, S., Weiss, K., Clark, A., et al.: DNA Sequence Diversity in
a 9.7-kb region of the human lipoprotein lipase gene. Nature Genetics 19, 233–240
(1998)

9. Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A Hidden Markov Technique
for Haplotype Reconstruction. In: Proceedings of Workshop on Algorithm of Bioin-
formatics (WABI 2005) pp. 140–151 (2005)

10. Scheet, P., Stephens, M.: A fast and flexible statistical model for large-scale pop-
ulation genotype data: applications to inferring missing genotypes and haplotypic
phase. Am. J. Human Genetics 78, 629–644 (2006)

11. Schwartz, R., Clark, A., Istrail, S.: Methods for Inferring Block-Wise Ancestral
History from Haploid Sequences. In: Proceedings of Workshop on Algorithm of
Bioinformatics (WABI’02), vol. 2452, pp. 44–59 (2002)

12. Song, Y.S., Wu, Y., Gusfield, D.: Efficient computation of close lower and upper
bounds on the minimum number of needed recombinations in the evolution of
biological sequences. Bioinformatics, vol. 421, pp. i413–i422. In: Proceedings of
ISMB (2005)

13. Tan, Y., Fu, Y.: A Novel Method for Estimating Linkage Maps, Genetics 173,
2383–2390 (2006)

14. Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E., Ram, R., Richardson, P.,
Solovyev, V., Rubin, E., Rokhsar, D., Banfield, J.: Community structure and
metabolism through reconstruction of microbial genomes from the environment,
Nature 428, 37–43 (2004)

15. Ukkonen, E.: Finding Founder Sequences from a Set of Recombinants. In: Pro-
ceedings of Workshop on Algorithm of Bioinformatics (WABI’02), vol. 2452, pp.
277–286 (2002)

http://www.unc.edu/courses/2007spring/comp/790/087/?p=11

Computing Exact p-Value for Structured Motif

Jing Zhang1, Xi Chen1, and Ming Li2

1 Computer Science, Tsinghua University, Beijing, 100084, China
{mitjj00,xichen00}@mails.thu.edu.cn

2 School of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada

mli@uwaterloo.ca

Abstract. Extracting motifs from a set of DNA sequences is important
in computational biology. Occurrence probability is a common used sta-
tistics to evaluate the statistical significance of a motif. A main problem
is how to calculate the occurrence probability of the motif on the random
model of DNA sequence efficiently and accurately. In this paper, we are
interested in a particular motif model which is useful in transcription
process. This motif, which is called structured motif, is composed two
motif words on single nucleotide alphabet and with fixed spacers between
them. We present an efficient algorithm to calculate the exact occurrence
probability of a structured motif on a given sequence. It is the first non-
trivial algorithm to calculate the exact p-value for such kind of motifs.

Keywords: Pattern and motif discovery, exact p-value, structured motif,
dynamic programming.

1 Introduction

Transcription factors play a prominent role in gene regulation; identifying and
characterizing their binding sites is central to annotating genomic regulatory
regions and understanding gene-regulatory networks. More and more research
works focus on this field. An important aspect of this is determining the statis-
tical significance of the occurrences of transcription factor binding site (TFBS),
also called motifs, in a DNA sequence. Statistical measures used for evaluating
overabundance of patterns in sequences have been studied extensively, among
which the z-score and p-value are most popular. P-value is the occurrence prob-
ability of a motif on the random model of DNA sequences for at least observed
times.

A widely used random model of DNA sequences is Markov chain model which
considers DNA sequences as a sequence of variable indexed by a finite state
Markov chain. In our paper, we use 1-order markov chain to model DNA se-
quences. There are many different ways to model a motif and the p-value is
different under different models. The basic motif model is a word on single nu-
cleotide alphabet Σ = {A, C, G, T } or IUPAC alphabet which allows more than
one nucleotide to occupy a single position. To represent more complex motifs,

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 162–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computing Exact p-Value for Structured Motif 163

general models such like PWM(position weight matrix) and PSSM(position spe-
cific scoring matrix) are introduced. In this representation, the nucleotide on
each position of the motif is chosen from single nucleotide alphabet according
to certain probabilities. A very useful model called ”structured motif” is in-
troduced by Marsan and Sagot [1,2]. The structured motif may be composed
of two or more ordered of words, called ”boxes”. Each box is separated from
the next one by a certain number of spacers(”N”). The interval may be dif-
ferent for two pairs of consecutive boxes. We can find many motifs having the
structured property in biological data such like GAL4 which can be written as
”CGGNNNNNNNNNNCCG”.

The non-overlapped two boxes problem has been studied by van Helden et
al. [4] in which the structured motifs are not allowed to overlap each other when
they appear. Robin S. et al. gave an algorithm to calculate the approximation
probability of occurrence of a motif composed of two of more boxes separated
by variable number of spacers in [3]. However, there is no efficient algorithm to
calculate the exact probability for motif composed of exact two boxes separated
by a fixed number of spacers considering motif overlap. In this paper, we propose
the first non-trivial and efficient algorithm to solve such a problem. The time
complexity of the algorithm is polynomial when the ratio of the number of
spacers to the length of the second box is a constant.

We will give the notations and the formal description of the problem in section
2. The details of the algorithm are introduced in section 3 and we will give the
conclusion and future work in section 4. We will show the details of the time com-
plexity analysis in Appendix A. We also implement the algorithms and do some
computational experiments on yeast data. The results are shown in Appendix
B. The software and materials are available on our website http://bio.dlg.cn.

2 Preliminary

2.1 Basic Notations

For any string S, we use S[i] to denote the ith position of S, and S[i, j] to
denote the substring of S from S[i] to S[j] inclusive, i.e. S[i]S[i + 1] . . . S[j]. Let
Σ = {A, C, G, T } be the alphabet of nucleotides. The random model of DNA
sequence is Markov chain with length n on Σ, i.e. we assume that it has been
generated by a Markov chain. We denote by

m = m1(#N = t)m2 (1)

a structured motif composed of two words separated by t spacers which means
that there can be any nucleotide between them. The lengths of m, m1 and m2 are
l, l1 and l2 where l = l1 + l2 + t. A motif is considered to hit a string if the string
contains the motif as a substring. That is, there ∃i, such that m1 = R[i, i+l1−1]
and m2 = [i + l1 + t, i + l − 1]. Ai represents an event that m hits at position i.
The number of hits is the number of such different i, regardless of overlaps.

164 J. Zhang, X. Chen, and M. Li

2.2 Problem Description

From a theoretical point of view, regulatory regions can be divided into two parts:
the binding sites which play an important role in regulating gene expression, and
the background which is not bound by transcription factors of interest. The key
point for discriminating the signals from the background is to estimate if the
motif is over-represented under the null hypothesis. To evaluate the statistical
significance of the motif, we have to calculate the probability of a structured
motif m hits a Markov region at least k times, where k is the appearance times
of the motif on the given sequence. We give the formal description as following:

Input: A structured motif m = m1(#N = t)m2 where m1 and m2 are motif
words over alphabet Σ = {A, C, G, T }, an integer k > 0 and a Markov Region
R with length n
Output: Pr(m hits region R at least k times)

3 Algorithm

To sketch the idea of the algorithm and make the description clean, we first
give the algorithm for an independent and identically distributed (i.i.d) model
and we will extend it to Markov model later. The main technic used here is
dynamic programming. But if we use dynamic programming directly, the number
of terms to calculate will expand too larger. To avoid such a problem, first we
do transformations to the target probability and decompose the probability into
terms which can be calculated using dynamic programming and the number of
terms is constrained.

We will present the details of our algorithm for case k = 1, i.e the motif hits
the region at least one times and extend it to general k later. When a motif m
hits a region R, it can appear on any position of R, so the target probability
equals to Pr(A1

⋃
A2

⋃
. . .
⋃

An) where Ai represents an event that m hits at
position i. We can use the principle of inclusion and exclusion to decompose the
target probability. Each term in the equation is the sum of probability that the
motif hits at some positions simultaneously, for example, motif m hits region at
b, b + 2 in Figure 2 at the same time. We further decompose the term by the
first hit position and second hit position. After decomposition, the term is the
probability that the motif hits a shorter region with a well-defined prefix for
fewer times and we can use dynamic programming to calculate it.

3.1 Decomposition and Transformation

First, We use the principle of inclusion and exclusion to decompose the target
probability and classify the hit events by the first hit position.

Pr(m hits R) = Pr(A1

⋃
A2

⋃
. . .
⋃

An)

=
n∑

a=1

(−1)a−1
∑

1≤i1<i2<...<ia≤n

Pr(
a⋂

v=1

Aiv) (2)

Computing Exact p-Value for Structured Motif 165

=
n∑

a=1

(−1)a−1
n∑

b=1

∑
i1=b<i2<...<ia≤n

Pr(
a⋂

v=1

Aiv) (3)

The equation (2) is from the principle of inclusion and exclusion . We classify
the events according to different value of i1 to get the equation (3). Let

P (a, b) =
∑

i1=b<i2<...<ia≤n

Pr(
a⋂

v=1

Aiv) (4)

The key problem is how to calculate P (a, b) for all a and b from 1 to n.

A A A A C A

A A A A C A

bi =1

2i

m

m

A A A A C Am

2i

case1:

case2:

lii +< 12

112 +> lii

Fig. 1. Two cases of i2

We do further decomposition to P (a, b). When i1 decided, there are two kinds
of relation between i1 and i2, one is that the motif starting from i1 does not
overlap that starting from i2 and the other is overlap case. We classify the
events by different value of i2 in equation (5):

P (a, b) = Pr(Ab) ×
n∑

b1=b+l

P (a− 1, b1) (5)

+
b+l−1∑

b2=b+1

∑
i1=b<i2=b2<...<ia<n

Pr(
a⋂

v=1

Aiv)

Let

P1(a, b) =
b+l−1∑

b2=b+1

∑
i1=b<i2=b2<...<ia<n

Pr(
a⋂

v=1

Aiv) (6)

P2(a, b) = Pr(Ab) ×
n∑

b1=b+l

P (a− 1, b1)

166 J. Zhang, X. Chen, and M. Li

We can see that P1 corresponds to the overlap case and P2 the non-overlap
case. P2 can be calculated by P (a − 1, b1) which is already known in dynamic
programming, but we can not calculate P1 using dynamic programming directly
and we keep on doing transformations to P1.

In fact, the events Ai1 and Ai2 can not hold simultaneously for many choices
of i2. For two given motif m′ and m′′, we define the compatible position set.

Definition 1. For given motif m′ and m′′ with length l on alphabet {A, C, G, T,
N}. Let Q(m′, m′′) denote the compatible position set of m′ and m′′. For any
i that 0 < i ≤ l, i ∈ Q(m′, m′′) ⇐⇒ ∀1 ≤ j < i, m′[j] = m′′[l − i + j] or
m′[j] = N or m′′[l − i + j] = N .

In another word, Q(m′, m′′) are all the possible positions for m′′ to appear in
when there is already a motif m′ appears. We constrain the choices of i2 in
equation (6) and rewrite it.

P1(a, b) =
∑

d∈Q(m,m)

∑
i1=b<i2=b+d<...<ia≤n

Pr(
a⋂

v=1

Aiv)

=
∑

d∈Q(m,m)

Pr(m[1, d] = R[b, b + d− 1]) ×
∑

b+d<i3<...<ia≤n

Pr(sd is the prefix of R[b + d, n],
a⋂

v=3

Aiv) (7)

in which Pr(m[1, d] = R[b, b + d− 1]) can be calculated using the parameters
of i.i.d model directly. We show the meaning of sd in Figure 2 for case d = 9.
The basic idea of equation (7) is to divide the region R[b, n] into two parts at i2.
A suffix of the motif m which starts from i1 = b locates in region R[b+d, n]. The
combination of the suffix and the motif m which starts from i2 = b + d forms
the prefix sd.

A A A A C A

A A A A

A A A A C A

A C

A CA A

s d

b n

R

m2

m

db +

Fig. 2. Cut the region from b + d and form the prefix sd

Computing Exact p-Value for Structured Motif 167

Till now, we keep on doing transformations to the target probability and try
to find some variants which are easy to calculate using dynamic programming
and the number of variants does not expand too fast during the recursion. We
will define another probability in subsection 3.2 and show that P (a, b) and the
well-defined probability can be calculated by dynamic programming together.

3.2 Dynamic Programming

The probability I(x, y, z) is defined to be:

I(x, y, z) =
∑

y≤i1<i2<...<ix≤n

Pr(z is a prefix of R[y, n],
x⋂

v=1

Aiv) (8)

in which 1 ≤ x, y ≤ n and s ∈ SP (m). SP (m) is the structured prefix set of m
which is defined as following:

Definition 2. A string s with length l belongs to the structured prefix set of
a given motif m = m1(#N = t)m2 when it satisfies the three constraints:
Constraint 1: s[1, l1] = m1 and s[l − l2 + 1, l] = m2

Constraint 2: s[l − d − l2 + 1, l − d] = m2, where d ∈ Q(m, m).
Constraint 3: Other positions are covered by spacers or several overlapped m2.

We can see that when the other positions are only covered by spacers, it is exactly
the prefix sd. Assume the number of m2 used to do covering is r, we illustrate
all the possible structured prefixes when m = AAA(#N = 5)ACA and d = 9
in Figure 3. We can regard it as using several m2 to cover a string with length
t and filling the rests with spacers. It is possible that several m2 overlap each
other and overlap s[1, l1] or s[l− l2 +1, l]. The constraint 3 is meant to make the
prefix set complete in dynamic programming.

Then we prove that P (a, b) and I(x, y, z) can be calculated by dynamic pro-
gramming. Since the complexity is related to the size of SP (m), we just use
|SP (m)| to represent the size of SP (m) in the time complexity analysis and the
details of the estimation to |SP (m)| are given in Appendix A.

Lemma 1. For 1 ≤ x, y ≤ n and z ∈ SP (m), 1 ≤ a, b ≤ n, all I(x, y, z) and
P (a, b) can be calculated using Dynamic Programming. If the size of SP (m) is
|SP (m)|, the total time complexity is O(n3|SP (m)|).

Proof. It is easy to see that P1(a, b) =
∑

d∈Q(m,m) Pr(m[1, d] = R[b, b + d −
1]) × I(a − 2, b + d, zd), so P (a, b) can be calculated by P (a′, b′) and I(x, y, z)
already known in dynamic programming. We calculate I(x, y, z) for y from n to
1, x from 1 to n − y and z in the structured prefix set of m in arbitrary order.
When x = 0, I(x, y, z) = Pr(z is a prefix of R[y, n]) is easy to calculate. Assume
we have got the value of I(x′, y′, z) for all y′ > y, x′ < x, any z ∈ SP (m). We
do decomposition to I(x, y, z) according to the first hit position:

168 J. Zhang, X. Chen, and M. Li

I(x, y, z) =
n∑

b=y

∑
i1=b<i2<...<ix<n

Pr(z is a prefix of R[y, n],
x⋂

v=1

Aiv) (9)

=
n∑

b1=y+l

(Pr(z is a prefix of R[y, n])× P (x, b1)) (10)

+
∑

b2−y∈Q(z,m)

(Pr(z[1, b2 − y + 1] = R[y, b2]) × I(x − 1, b2, z
′)

Since z′ is a string covered by the prefix m and z[b2 − y, l], it is still in SP (m).
The number of different I(x, y, z) is n2|SP (m)| and the time to calculate each
I(x, y, z) is O(n), so the total complexity is O(n3|SP (m)|).

We conclude the recursion formula for I(x, y, z) and P (a, b) as following:

P (a, b) = Pr(Ab)×
n∑

b1=b+l

P (a − 1, b1)

+
∑

d∈Q(m,m)

Pr(m[1, d] = R[b, b + d − 1])× I(a − 2, b + d, zd)

I(x, y, z) =
n∑

b1=y+l

(Pr(z is a prefix of R[y, n])× P (x, b1))

+
∑

b2−y∈Q(z,m)

(Pr(z[1, b2 − y + 1] = R[y, b2]) × I(x − 1, b2, z
′)

We can see that the DP algorithms to calculate P (a, b) and I(x, y, z) get involved
with each other. �

A A A A C A

A A A C A C A

m

m

s 9(r = 0)

A A A C A C As 9(r = 1) C A

A A A C A C As 9(r = 1) A C A

A A A C A C As 9(r = 1) A C

A A A C A C As 9(r = 2) C A C

m2

m2

m2

m2 m2

A A A A C A

A

A

A

A

A

Fig. 3. all the prefixes in the structured prefix set when m = AAA(#N = 5)ACA and
d = 9. r is the number of m2 to do covering in constraint 3

Computing Exact p-Value for Structured Motif 169

Given all P (a, b) for 1 ≤ a, b ≤ n, we can calculate the target probability by

Pr(m hits region R at least k times) =
n∑

a=k

(−1)(a−k)%2
n∑

b=1

P (a, b) (11)

In Appendix A, we prove that the size of the structured prefix set of a structured
motif m = m1(#N = t)m2 is O((2l2 + 2)2t/l2+2). When t/l2 is a constant, it is
O(lc2) for some constant c. We have the following theorem:

Theorem 1. Given a structured motif m = m1(#N = t)m2 on alphabet Σ =
{A, C, G, T } and an i.i.d region R of length n, we can calculate Pr(m hits region
R at least k times) in O(n3× smax + tmax× rmax) where smax = (2l2 +2)2t/l2+2

and rmax = 2 × l2+t
l2+1 . When t/l2 is some constant c, the time complexity is

O(n3 × lc2).

3.3 Sketch of Algorithm on Markov Model

The algorithm on markov model is quite similar to that on i.i.d model. The
key idea for the extension is to maintain the last char before the region. We can
rewrite the Subsection 3.1 and 3.2 using this idea and the frame of the algorithm
and time complexity analysis remains the same.

We take equation (4)∼(7) in decomposition and transformation as an example
do show the extension. We rewrite equation (4) as

PM (a, b, c) =
∑
c∈Σ

∑
i1=b<i2<...<ia≤n

Pr(
a⋂

v=1

Aiv |R[b− 1] = c)

which is the sum over conditional probabilities with different char before region
R[b, n]. We can also classify the events by different value of i2 similar to equation
(5) as following:

PM (a, b, c) =
∑
c∈Σ

(Pr(Ab|R[b− 1] = c)
∑
d∈Σ

n∑
b1=b+l

(P (a− 1, b1, d)× Pr(R[b1 − 1]

= d|Ab)) +
b+l−1∑

b2=b+1

∑
i1=b<i2=b2<...<ia<n

Pr(
a⋂

v=1

Aiv |R[b− 1] = c))

The conditional probability in the non-overlap part PM2 can be calculated us-
ing the transition probabilities of markov model. For the overlap part PM1 , we
rewrite it like equation (7):

PM1 =
∑
c∈Σ

(
∑

d∈Q(m,m)

Pr(m[1, d] = R[b, b + d − 1]|R[b− 1] = c)×
∑

b+d<i3<...<ia≤n

Pr(sd is the prefix of R[b + d, n],
a⋂

v=3

Aiv |R[b + d − 1] = m[d]))

The extension in Dynamic Programming is quite similar to that of decompo-
sition and transformation part.

170 J. Zhang, X. Chen, and M. Li

4 Conclusion and Future Work

In this paper, we present a non-trivial and efficient algorithm to calculate the
probability of the occurrence of a structured motif m = m1(#N = t)m2 where
m1 and m2 are motif words on basic alphabet Σ = {A, C, G, T } with t spacers.
We do transformations to the target probability and define two variants which
can be calculated by DP algorithm. The time complexity of the algorithm is
O(n3 × lc2) for some constant c when t/l2 is a constant where l1 and l2 are the
length of m1 and m2.

The algorithm can be used to evaluate the statistical significance of motif
candidates with structured property. This kind of motifs are often with larger
length in real biological data and it is harder to calculate the occurrence prob-
ability. Our algorithm is the first non-trivial and efficient algorithm to calculate
the exact p-value of such kind of motifs.

One problem is that the algorithm is still an exponential time algorithm in
worst case. Finding a polynomial time algorithm or proving that it is NP-hard
are two main directions in the future work.

Acknowledgement

ZJ’ and CX’s work is supported by the National Natural Science Foundation of
China Grant 60553001 and the National Basic Research Program of China Grant
2007CB807900, 2007CB807901.ML’s work was partially supported by the Chang
Jiang Scholarship Program, NSERC, and Canada Research Chair program.

References

1. Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification. J.
Comp. Biol. 7, 345–362

2. Marsan, L., Sagot, M.F: Extracting structured motifs using a suffix tree-algorithm
and application to promoter consensus identification. In: RECOMB’00 Proceedings
of Fourth Annual International Conference on Computational Molecular Biology,
pp. 210–219. ACM Press, New York (2000)

3. Robin, S., Daudin, J.-J., Richard, H., Sagot, M.-F., Schbath, S.: Occurrence proba-
bility of structured motifs in random sequences. J. Comp. Biol. 9, 761–773 (2002)

4. Van Helden, J., Rios, A.F., Collado-Vides, J.: Discovering and Regulatory elements
in non-coding sequences by analysis of spaced dyads. Nucl. Acids Res. 28, 1808–1818

5. Zhu, J., Zhang, M.Q.: SCPD: A promoter database of yearst saccharomyces cere-
visiae. Bioinformatics 15, 607–611 (1999)

A Estimation of the Size of Structured Prefix Set

The following lemma is about the size of the structured prefix set of m.
Lemma 2. The size of the structured prefix set of a structured motif m =
m1(#N = t)m2 is O((2l2 + 2)2t/l2+2). When t/l2 is a constant, it is O(lc2)
for some constant c.

Computing Exact p-Value for Structured Motif 171

Proof. According to definition 2, for any string s in SP (m), the contents of the
first l1 and the last l2 length of s are fixed. Although there must be a m appeared
at some position in constraint 2, this constraint is just for the convenience to
define sd from SP (m) and it has been contained in constraint 3. We can omit
it when estimating the size of SP (m). The number of different s[l1 + 1, l1 + t] is
exact the size of SP (m), so we prove that the number of different s∗ is at most
O((2l2 + 2)2t/l2+2) where s∗ = s[l1 + 1, l1 + t].

First, we give the upper bound of the needed number of m2 to cover the whole
s∗. Assume we use m

(1)
2 , m

(2)
2 , . . . , m

(t)
2 to cover s∗. m

(j1)
2 appears before m

(j2)
2 if

j1 < j2. Make sure that every m
(j)
2 is needed. Here, the needed means that there

exists a substring of s∗ which is only covered by m
(j)
2 . We have the following to

facts:

Fact 1. ∀1 ≤ j ≤ r, m
(j)
2 covers at a substring of s∗ with length at least 1.

Fact 2. m
(j)
2 can not overlap m

(j+2)
2 .

Fact 2 is right because if they overlap each other, m
(j+1)
2 is not needed. Combine

the two facts, we have an upper bound of r,

r ≤ 2 × l2 + t

l2 + 1
= rmax

The number of different s∗ is bounded by the number of choosing r positions
from l2 + t possible start positions for m2 in which r is ranging from 0 to rmax.

number of different s∗ ≤
rmax∑
r=0

(
l2 + t

r

)
≤
(

l2 + t

rmax

)rmax

= (2l2 + 2)2×
l2+t
l2+1 ≤ (2l2 + 2)2t/l2+2

Let smax denote (2l2 +2)2v/l2+2. We can construct the structured prefix set just
by trying all the possible choices of r from 0 to rmax increasingly and the total
construction time complexity is bounded by O(rmax × smax).

B Computational Experiment

We implement the algorithm in C++ and do computational experiment on yeast
data. GAL4 is a family of transcription activator of genes. It has a typical Zn-
binding region and is reported to bind to a 17 base-pair palindromic site. The
consensus binding motif is ”CGGNNNNNNNNNNNCCG” which can be regarded
as a structured motif of two boxes with length 3 and 11 spacers between them.

In Saccharomyces crevisiae Promoter Database (SCPD) [5], transcription fac-
tor GAL4 is reported to bind to 7 Genes: GAL1, GAL2, GAL4, GAL7, GAL10,
GAL80 and GCY1. We extract upstream sequence, of length 1000 bp, for these 7
genes and estimate the occurrence probabilities of {A, C, G, T } on each sequence.

172 J. Zhang, X. Chen, and M. Li

We calculate the exact p-value of motif GAL4 to appear on each sequence for
observed times. The p-value and consumed time1 are shown in Table 1. If we use
α = 0.05 in hypothesis test to decide whether motif GAL4 is over-represented
in the promoter region, we can see that all the p-values are significant below
α except GAL80. The result shows the power of the algorithm to discriminate
the transcription signals from the background. The average time is 12.6s which
is acceptable in application. We also enumerate all the structured motifs with

Table 1. The p-value of motif GAL4 on corresponding Genes

Gene Name P-value of motif GAL4 Time

GAL1 9.61361E-06 12813ms
GAL2 2.16228E-09 12734ms
GAL4 0.006578594 12609ms
GAL7 0.034349462 12532ms
GAL10 9.61361E-06 12641ms
GAL80 0.092351709 12282ms
GCY1 0.045182862 12640ms

l1 = l2 = 3 and t = 11. The number of such motifs is 46 = 4096. We calculate
the exact p-value of all such motifs on Gene GAL4 and rank them according to
p-value increasingly. The top 20 p-values are shown in Table 2. We can see that
the rank of ”CGG(#N=11)CCG” is the 11-th of all 4096 structured motifs of
similar structure, that is in the top 0.2%.

Table 2. The top 20 p-value of structured motif on Genes GAL4

Structured Moitf P-value Structured Moitf P-value

TTT(#N=11)TTT 0.00135 CGG(#N=11)CCG 0.00658
ACA(#N=11)AGG 0.00141 AAA(#N=11)CTT 0.00689
AGA(#N=11)CAG 0.00151 ATT(#N=11)ACA 0.00704
GTG(#N=11)AGA 0.00163 GGA(#N=11)GGC 0.00858
AGC(#N=11)TCA 0.00182 CGG(#N=11)AGG 0.00858
GAC(#N=11)CTA 0.00183 TTA(#N=11)TTC 0.00963
TTT(#N=11)CGC 0.00273 GGT(#N=11)CGG 0.01004
ATT(#N=11)GTG 0.00393 GGG(#N=11)TCC 0.01020
TTT(#N=11)GAG 0.00430 GTC(#N=11)CGG 0.01037
CAC(#N=11)TTT 0.00516 TTT(#N=11)CTT 0.01238

1 The compiler is Microsoft VC 6.0 and The test PC is equipped with a Pentium 4
running at 2.8GHz and 512MB of RAM.

Improved Sketching of Hamming Distance with

Error Correcting

Ely Porat1 and Ohad Lipsky2

1 Bar-Ilan University, Dept. of Computer Science, 52900 Ramat-Gan,
Israel and Google Inc.

porately@cs.biu.ac.il
2 Bar-Ilan University, Dept. of Computer Science, 52900 Ramat-Gan, Israel

ohadlipsky@yahoo.com

Abstract. We address the problem of sketching the hamming distance of
data streams. We develop Fixable Sketches which compare data streams or
files and restore the differences between them. Our contribution: For two
streams with hamming distance bounded by k we show a sketch of size
O(k log n) with O(log n) processing time per new element in the stream
and how to restore all locations where the two streams differ in time linear
in the sketch size. Probability of error is less than 1/n.

1 Introduction

Massive data streams are fundamental part in many data processing applica-
tions. The increasing size of data sets raises the need for improved algorithms
for processing these massive data sets. We discuss various problems and present
improved algorithms for problems in the streaming model and communication
complexity. We use novel techniques of sketching (”fingerprint”) and encodings.
See [12] for detailed motivation. Indyk [10] presented a wide range of very use-
ful tools in data streams algorithms using stable distributions. In the streaming
model the algorithm can make only one pass on the data and maintain a small
”sketch” for further processing and queries. In [7] they present a sketch of size
O(log(n|Σ|) log(1/δ)/ε2) that allows approximating the L1-difference between
two streams up to a factor of 1 ± ε and error probability δ. Another known
problem in the streaming model is maintaining histograms of the stream, as dis-
cussed in [9, 8]. In [4] the problem of estimating the hamming norm for massive
data streams is presented. They give a sketch of size O(1/ε2 · log 1/δ) that allows
hamming distance approximation with a factor of 1± ε and error probability δ.
A similar result of approximating the hamming distance is presented in [11]. Let
s(x) denote the sketch of stream x. There are three parameters that are relevant
when comparing different sketching algorithms:

– The sketch size, i.e. the number of bits it requires.
– Time to process new element in the stream.
– Time to compute target function f(x, y) given s(x) and s(y).

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 173–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

174 E. Porat and O. Lipsky

In [6] a sketch of size O(k4 log2 n) that allow computation of the hamming dis-
tance between binary streams is presented, with error probability exponentially
small in k, where k is a bound on the hamming distance between the streams.
We can combine this with a constant size sketch that identify cases where the
hamming distance is greater than 2k in order to discard these cases. Bar-Yossef,
Jayram, Kumar and Sivakumar et al. [2] presented a sketch with reduced size
of O(k log2 k) that allows computation of the hamming distance between binary
streams with error probability polynomially small in k, time of processing new
element is O(log k) and query time linear in the sketch size. This sketch can be
changed to be of size O(k2 log k) in order to have exponentially small in k error
probability. We solve a more complicated problem; we design a sketch, that will
enable us, not only to compute the hamming distance between two streams, but
also to restore the locations the streams differed. Moreover, the specific symbols
that appeared in each stream in these locations can be restored. Sketch size is
O(k log n) (O(k log k) without the ability of error correcting), time to process
new element is O(log n) (O(log k)) and time to compute hamming distance lin-
ear in the sketch size. An easier version of the problem is studied in [5]. However,
they do not work in the streaming model, and therefore can go over the input
more than once. They have a small sketch indeed, but time to process a query
is exponential.

The possibility to use such error correcting sketches is useful in a wide range
of applications in network synchronization, pda synchronization, and more, for
example see [13, 14].

2 Outline

In section 3 we summarize the sketch algorithm of [2] and we enhance it to fit
general alphabet Σ rather than only binary one. In section 4 we show how to
produce a sketch with reduced size of O(2log∗ kk log k), processing time per ele-
ment O(2log∗ k log k) and query time linear in the sketch size. The final algorithm
with the error correcting capabilities appears in section 5; understanding of this
section does not require prior knowledge of sections 3 and 4.

3 Sketching Hamming Distance First Algorithm

Our first algorithm is a generalization of the algorithm of Bar-Yossef, Jayram,
Kumar and Sivakumar in [2] to work for any alphabet Σ (rather than only
binary one). The idea is to encode the stream into a binary stream and use the
sketching technique on the encoded stream. Note that our sketch size is inde-
pendent of the stream length.

The binary encoding:
We can assume w.l.o.g. that Σ = {1, 2, . . . , |Σ|}. Define c(σ) = c1(σ)c2(σ) . . .
c|Σ|(σ) where ci(j) = 1 if i = j or 0 otherwise. For a string σ1 . . . σn

Improved Sketching of Hamming Distance with Error Correcting 175

define c(σ1, . . . , σn) = c(σ1) . . . c(σn). Clearly HD(c(x), c(y)) = 2HD(x, y) and
HD(c(x), c(y)) < 2k. Each new element xi in the x stream is translated to |Σ|−1
zeros, and only one 1-bit in location (i − 1)|Σ| + xi. Updates to the sketch are
done only when a 1-bit occur, therefore one element in the original stream cause
update of one element in the binary encoded stream c(x).

The sketch:
Pick at random 2k-wise independent hash functions h : [n|Σ|] → [k/3 lnk]
and h′ : [n|Σ|]× [2 lnk] → [c ln2 k] (c = 72e).

Our sketch s(x) is of size 2c
3 k ln2 k bits, initialized by zeros.

For each new element σi (in the stream x) the following updates are done to
the sketch:

Let bucket ← h((i − 1)|Σ|+ σi).
For every t = 1, 2, . . . , 2 ln k

– sub bucket ← h′((i− 1)|Σ|+ σi, t)
– d ← (bucket− 1) · 2c ln3 k + (t − 1) · c ln2 k + sub bucket.
– s(x)d ← s(x)d ⊕ 1.

Claim. Let x and y be two binary streams of the same length with HD(x, y) <
2k. Let i1, i2, . . . , ik′ be the locations where x differ from y (where k′ ≤ 2k).
Pr(∀bucket ∈ [1, k/3 lnk]|{iz|z ∈ [1, k′], h(iz) = bucket}| ≤ 12 lnk) ≥ 1 − 1

k ln k .

Proof. It is assumed that k′ < 2k. Since our hash functions are 2k-wise indepen-
dent, For every bucket ∈ [1, k/3 lnk]

E(|{iz|z ∈ [1, k′], h(iz) = bucket}|) ≤ 6 ln k.

This imply that

Pr(∃1 ≤ bucket ≤ k/3 lnk|{iz|z ∈ [1, k′], h(iz) = bucket}| > 12 lnk)

≤ k

2 ln k
Pr(|{iz |z ∈ [1, k′], h(iz) = bucket}| > 12 lnk)

<
k

2 ln k
· 1
k2

=
1

k ln k

(Using Chernoff inequality).

Claim. Let x and y be two binary streams of the same length with HD(x, y) <
2k. Let i1, i2, . . . , ik′ be the locations where x differ from y (where k′ ≤ 2k) and
let h be a hash function s.t. ∀b ∈ [1, k/3 lnk]|{iz|z ∈ [1, k′], h(iz) = b}| ≤ 12 lnk.

176 E. Porat and O. Lipsky

∀b ∈ [1, k/3 lnk], t ∈ [1, 2 lnk]Pr(∃i, i′ ∈ {i1, . . . , ik′}h(i) = h(i′) = b ∧ h′(i, t) =
h′(i′, t)) < e−1.

Proof. For each bucket b there are at most 12 lnk indexes s.t. h(iz) = b. They
are hashed into c ln2 k buckets.

Pr(∃i, i′h(i) = h(i′) = bs.t.h′(i, t) = h′(i′, t)) <

(
12 ln k

2

)
c ln2 k

< e−1

Corollary 3.1. Pr(∀b ∈ [1, k/3 lnk]∃t ∈ [1, 2 lnk]∀iu, iv ∈ {i1, . . . , ik′}h(iu) =
h(iv) = b : h′(iu, t) 	= h′(iv, t)) > 1 − 1

k lnk .

Computing HD(c(x), c(y)):
1. For every bucket b ∈ [1, k/3 lnk]:

Let d ← (b− 1) · 2c ln3 k + (j − 1)c ln2 k.
H(bj) ← Σd+c ln2 k

l=d+1 neq(s(x)l, s(y)l).
2. H(b) ← max

j∈[1,2 lnk]
H(bj)

3. Dist ← Σ
b
H(b)

Claim. Let i1, i2, . . . , ik′ be the locations where c(x) differ from c(y) (k′ < 2k).
If h and h′ obey the following conditions:

– ∀b ∈ [1, k/3 lnk]|{iz|z ∈ [1, k′], h(iz) = b}| ≤ 12 lnk

– ∀b ∈ [1, k/3 lnk]∃t ∈ [1, 2 lnk] s.t. ∀u, v ∈ [1, k′] if h(iu) = h(iv) = b then
h′(iu, t) 	= h′(iv, t).

Then HD(x, y) = Dist
2 .

Proof: Let b ∈ [1, k/3 lnk] and let t be the value for whom ∀i, i′ s.t. h(i) = h(i′) =
b h′(i′, t) 	= h′(i, t). It implies that at most one location that differ between c(x)
and c(y) is mapped into each bit in the sketch segment between (b−1) ·2c ln3 k+
(t−1)·c ln2 k+1 and (b−1)·2c ln3 k+(t)·c ln2 k, which in turn imply that H(bj) =
|{i|h(i) = b}| and therefore also H(b) = |{i|h(i) = b}|. Since every location
is mapped into exactly one bucket b We can conclude that HD(c(x), c(y)) =
Dist = Σ

b
H(b). As mentioned before HD(x, y) = 1

2HD(c(x), c(y)).

Theorem 3.2. Given a stream x over alphabet Σ, there is an algorithm that
maintain a sketch s(x) that requires O(k log2 k) bits of memory and O(log k)
processing time per element and has the following property: Using sketches s(x),
s(y) for two streams x and y where HD(x, y) ≤ k we can compute HD(x, y)
with probability of error less than 1/k.

Proof. Immediate, combining claims 3, 3 and corollary 3.1 together.

Improved Sketching of Hamming Distance with Error Correcting 177

4 Sketching Hamming Distance - Second Algorithm

In the second algorithm we reduce the sketch size to be only O(2log∗ kk log k)
bits of memory.

In the first algorithm the stream partitioned into buckets, and each bucket
into sub-buckets. Here, We recursively partition the stream into smaller buckets,
till we have buckets with at most one difference (with high probability). For
each new element we update the relevant buckets. The sketch will be only the
lowest level bucket’s parity. We use the same binary encoding as in the previous
sketching.

We define α(k) = k
4 ln k(ln∗ k)2 , β(k) = 2 ln k

ln[4 ln k(ln∗ k)2] and
γ(k) = (1+ 1

ln∗ k)4 lnk(ln∗ k)2. We will divide the stream into α(k) buckets, and
for each bucket b we will run independent β(k) times the sketch in recursion,
with k′ = γ(k) as bound.

The sketch:
Pick at random 2k-wise independent hash functions:
h1 : [n|Σ|] → [α(k)]
h2 : [n|Σ|]× [β(k)] → [α(γ(k))].
h3 : [n|Σ|]× [β(γ(k))] → [α(γ(γ(k)))]
...
hi : [n|Σ|]× [β(γ(i−2)(k))] → [α(γ(i−1)(k))]
...
When γ(i)(k) becomes small enough s.t. α(γ(i)) < 4 we can bound γ(i) by some
constant c′, and use a simple constant size sketch with error probability of less
than 1

2c′ . It is easily seen that it occurs when i < ln∗ k. Denote by i′ the index
it occurred.

For each new element σi (in the stream x) the following updates are done to
the sketch:

– depth ← 1
– l ← (i − 1)|Σ|+ σi

– b1 ← h1(l)
– For every t1 = 1, 2, . . . , β(k)
– Update procedure (l, t1, γ(k), depth)

Where Update(l, t, k, depth) Defined by:
If depth = i′ then update the sketch segment relevant to b1, b2, . . . , bdepth.
else:

depth ← depth + 1
bdepth ← hdepth(l, t)
For every tdepth = 1, 2, . . . , β(k)
Update(l, tdepth, γ(k), depth)

Claim. The sketch size is of O(2ln∗ kk log k).

178 E. Porat and O. Lipsky

Proof: Let d(z) = 4 ln z(ln∗ z)2.

Size(k) = α(k) · β(k)Size(γ(k)) =

= α(k)β(k)α(γ(k))β(γ(k))Size(γ(γ(k))) =

= . . . = Π i′

i=0α(γ(i)(k)) ·Πi′

i=0β(γ(i)(k))

Where

f (i)(k) =
{

f(k) if i = 1
f(f (i−1)(k)) if i > 1

Observe that γ(z) = d(z) · (1 + 1
ln∗ k).

Πi′

i=0α(γ(i)(k)) =
k

d(k)
· γ(k)

d(γ(k))
· γ(γ(k))

d(γ(γ(k)))
· · · γ(i′)(k)

d(γ(i′)(k))
=

k

d(c′)
·(1+

1

ln∗ k
)i

′
∈ O(k)

(Using that i < ln∗ k).

Πi′

i=0β(γ(i)(k)) ∈ O(2ln∗ k ln k)

Claim. Processing time per new element is O(2ln∗ k log k).

Proof: Each element appears in

β(k)β(γ(k))β(γ(γ(k))) . . . β(γ(log∗ k)(k)) = O(2log∗ k log k)

buckets.

Computing HD(x, y): For each of the α(k) buckets we take the maximum over
the β(k) repetitions. This is done recursively.

Claim. With probability at least 1 − 1/k HD(x, y) is computed correctly.

Proof: Denote Xi the event that the algorithm failed when k = i. Let assume
Pr(Xi) < 1

i for i < k. Pr(Xk) = Pr[One of the α(k) sub problems of size γ(k)
failed in all the β(k) times] ≤ α(k)Pr(Xγ(k))β(k) < 1

k

Theorem 4.1. Given a stream x over alphabet Σ, there is an algorithm that
maintain a sketch s(x) that requires O(2log∗ kk log k) bits of memory and O(2log∗ k

log k) processing time per element and has the following property: Using sketches
s(x), s(y) for two streams x and y where HD(x, y) ≤ k we can compute HD(x, y)
with probability of error less than 1/k.

5 Error correction and Fixable Sketches - Third
Algorithm

In this section we present a totally different technique. We first present the
notion of Fixable sketch. Fixable sketch is a sketching algorithm s that has
the following property: Given a sketch s(x) for a stream x = x1 · · ·xn, error

Improved Sketching of Hamming Distance with Error Correcting 179

location i ∈ [1, n], and symbols xi and c, one can compute s(x′), where x′ =
x1, x2, · · · , xi−1, c, xi+1, · · · , xn. Informally, fixable sketch is for the case where
we kept moving on the stream, and we are interrupted by some correction from
elements we have already passed, in this case we would like to be able to fix
the sketch according to the error corrected. This property can be useful for
example in a case that relatively few errors encountered in the stream cause the
sketch to be worthless. In the previous sections we presented sketches (which
are, indeed, fixable sketches) that compute the hamming distance only if it is
bounded by some k. Now, assume that in a stream x a random segment of size
2k was received, and later corrected, we still cannot use the sketch s(x) as is in
order to compute the distance from another stream y (given only s(y)) because
probably it exceeds k even if y is identical to the corrected stream x′. Since we
can adapt the sketch to the corrected stream it is possible to answer queries as
needed. An important parameter in fixable sketches is the time it cost to make
an error correction. In all the sketches described in this paper it is the same time
as processing new element in the stream.

In the following we present a sketching technique that given the sketches
of two streams x and y, s.t. HD(x, y) ≤ k we can restore (w.h.p.) at least
HD(x, y) − k

2 locations i1, i2, . . . where xij 	= yij and restore the values xij and
yij . Such sketching will serve as the main building block of our sketch.

5.1 Error Correction Fixable sketch

We present here a sketch s = sk with the following properties:

1. The size of the sketch is of O(k(log |x| + log |Σ|)).
2. Time to process new element (or error correction) is constant
3. Using sketches s(x) and s(y) for streams x and y respectively, we can find

(with probability > 1 − 1
|x|) at least HD(x, y) − k

2 locations where x differ
from y and restore the symbols of both x and y in these locations.

Let |x| = n and let p ∈ O(n3|Σ|) be prime. All the computations will be done
in Fq unless mentioned otherwise.

The sketch
Our sketch consists 8k quadruplets of variables: aj , bj, cj , dj ∈ Fp (j ∈ [1, 8k]),
initialized by zeros. Pick at random k-wise independent hash functions h : [n]×
[8] → [8k] and h′ : [n]× [8k] → Fp.
When we receive a new element in the stream xi we apply the following to the
sketch:

Let Qi = {h(i, t)|t ∈ [1, 8]} (i.e. Qi is of size ≤ 8)
For every j ∈ Qi

r ← h′(i, j)
Add r · i · xi to aj

Add r · xi to bj

Add r2 · xi to cj

Add r · x2
i to dj

Clearly the sketch size is of O(k log p) = O(k log n).

180 E. Porat and O. Lipsky

Finding Mismatches between streams
The input is s(x), s(y) of two streams x and y s.t. HD(x, y) ≤ k.
The notation will be aj(x) and aj(y) referring to the variables in s(x) and s(y),
respectively. The other variables will be denoted in similar way. We assume both
h′ and h are common for both, we can later drop this assumption by using k-
wise independent pseudo random generator with seed of size O(log n). The idea
of the sketch is that when looking at specific j ∈ [1, 8k] we get, with constant
probability, the case where only in one location i that x differ from y some value
is added to aj , bj, cj and dj . If this is the case, we are able to restore i, xi and yi

easily. We formalize it in the following claim.

Lemma 1. Let L = {i1, i2, . . . , ik′} be the locations where x differ from y (where
k′ ≤ k). If k′ > k

2 then for every j ∈ [1, 8k]Pr(∃i′ ∈ L, t ∈ [1, 8]h(i, t) = j ∧ ∀i ∈
L, i 	= i′∀t ∈ [1, 8]h(i, t) 	= j) > 1

2e .

Proof. For every i ∈ L: Since h(i, t) is chosen in random, the probability h(i, t) =
j for some given j is exactly 1

8k . Now, since t runs from 1 to 8, it is 8
8k = 1

k . If we
have k′ elements, and we choose each one with probability 1

k then the probability
we chose exactly one is k′ · 1

k (1 − 1
k)k′−1. Given that k′ < k and k′ > k/2 this

probability is at least 1
2e .

This leads us to the following procedure:
Initialize an empty set Mismatches.
For each j ∈ [1, 8k]:

r′ ← cj(x)−cj(y)
bj(x)−bj(y) .

i′ ← aj(x)−aj(y)
bj(x)−bj(y) .

If h′(i′, j) = r′ add (i′, x′
i, y

′
i)

∗ to Mismatches.

* x′
i and y′

i can be easily extracted from bj(x) − bj(y) = r′(x′
i − y′

i)
and dj(x) − dj(y) = r′(x′2

i − y′2
i).

Lemma 2. Let L = {i1, i2, . . . , ik′} be the locations where x differ from y (where
k′ ≤ k).∀j ∈ [1, 8k] If ∃γ, δ ∈ Ls.t.j ∈ Qγ ∧ j ∈ Qδ then Pr(h′(i′, j) = r′) < 1

p

where i′ and r′ are the ones computed in the j-th step of procedure above.

Proof: Since h′(i′, j) is a random number in Fp, the probability that it equals
r′ is 1

p .

Conclusion: Pr(|Mismatches| < HD(x, y) − k/2) < 1/n2

Note that for k < log n some minor changes needed to be done.
In order to find all locations of errors we maintain sketches as above for k, k/2,
k/4, . . . , 1 and after querying the sketch of k-bound we have k/2 errors found, we
fix the rest of the sketches according to this errors, then we use the k/2-sketch
to find another k/4 errors, fixing the remaining sketches, and so on. The total
sketch size will be of O(k log p) = O(k log n).

Theorem 5.1. Given a stream x over alphabet Σ, there is an algorithm that
maintain a sketch s(x) that requires O(k log n) bits of memory and O(log n)

Improved Sketching of Hamming Distance with Error Correcting 181

processing time per element and has the following property: Using sketches s(x),
s(y) for two streams x and y where HD(x, y) ≤ k we can compute all locations
i where xi 	= yi, and output the pair (xi, yi) for each of these locations. The
probability of error is less than 1

|x| .

Obviously, one can use this method also if he is interested only in HD(x, y), and
not in the exact locations that x differ from y and the values on those locations.
this leads to the following theorem.

Theorem 5.2. Given a stream x over alphabet Σ, there is an algorithm that
maintain a sketch s(x) that requires O(k log n) bits of memory and O(log n)
processing time per element and has the following property: Using sketches s(x),
s(y) for two streams x and y where HD(x, y) ≤ k we can compute HD(x, y)
with probability of error less than 1/n.

Proof: We randomly hash x into k3 buckets. Next, we create x′ by x′[i] = sum of
bucket i (mod Fp). We encode x′ into binary stream c(x′) (as described in the
first algorithm) and run the last sketching technique with x′. For two streams
x, y The probability that two differences fall into the same bucket is less than
1
2k , and therefore with a confidence of 1− 1

2k we have HD(x, y) = HD(x′, y′) =
1
2HD(c(x′), c(y′)). Next,O(k(log |c(x′)| + log 2)) = O(k log k).

6 Summary and Open Problem

We considered in this paper the sketching of the hamming distance. we presented
a sketch of size O(k log n) that allows restoring the mismatches between different
streams in time linear in the sketch size. Processing time per element is O(log n).
Our sketch also fit the case that the stream does not come in the original order,
for example if the data arrives in packets, or for the case we are informed of
specific errors. Considering the more general case, of Edit distance it is still an
open problem to present such a sketch. Although a sketch of size O(k log n) can
be easily constructed by random linear combinations of the data, but the query
time (restoring the errors between streams) will be exponential. In [1] a constant
size sketch for a gap version of this problem, they identify between the case of
distance < k and the case where the distance exceeds k2. Another algorithm to
distinguish between Ω(n) and nα edit distance is presented in [3].

References

[1] Bar-Yossef, Z., Jayram, T.S., Krauthgamer, R., Kumar, R.: Approximating edit
distance efficiently. In: FOCS, pp. 550–559. IEEE Computer Society Press, Los
Alamitos (2004)

[2] Bar-Yossef, Z., Jayram, T.S, Kumar, R., Sivakumar, D.: Manuscript (2003)
[3] Batu, T., Ergün, F., Kilian, J., Magen, A., Raskhodnikova, S., Rubinfeld, R., Sami,

R.: A sublinear algorithm for weakly approximating edit distance. In: STOC, pp.
316–324. ACM, New York (2003)

182 E. Porat and O. Lipsky

[4] Cormode, G., Datar, M., Indyk, P., Muthukrishnan, S.: Comparing data streams
using hamming norms (how to zero in). IEEE Trans. Knowl. Data Eng. 15(3),
529–540 (2003)

[5] Cormode, G., Paterson, M., Sahinalp, S.C, Vishkin, U.: Communication com-
plexity of document exchange. In: SODA ’00: Proceedings of the eleventh annual
ACM-SIAM symposium on Discrete algorithms, pp. 197–206. Society for Indus-
trial and Applied Mathematics (2000)

[6] Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M., Wright, R.: Se-
cure multiparty computation of approximations. In: Orejas, F., Spirakis, P.G.,
van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 927–938. Springer,
Heidelberg (2001)

[7] Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate l1-
difference algorithm for massive data streams. SIAM J. Comput (and in Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer Science),
32(1) 131–151, (2002) Appeared in Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, pp. 501–511 (1999)

[8] Gilbert, A.C, Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.:
Fast, small-space algorithms for approximate histogram maintenance. In: STOC
’02: Proceedings of the thiry-fourth annual ACM symposium on Theory of com-
puting, pp. 389–398. ACM Press, New York (2002)

[9] Guha, S., Koudas, N., Shim, K.: Data-streams and histograms. In: STOC ’01:
Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pp. 471–475. ACM Press, New York (2001)

[10] Indyk, P.: Stable distributions, pseudorandom generators, embeddings and data
stream computation. In: FOCS ’00: Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, Washington, DC, USA, p. 189. IEEE Computer
Society Press, Los Alamitos (2000)

[11] Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate near-
est neighbor in high dimensional spaces. SIAM J. Comput. 30(2), 457–474 (2000)

[12] Muthukrishnan, S.: Data streams: algorithms and applications. In: SODA ’03:
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 413–413, Philadelphia, PA, USA, Society for Industrial and Applied
Mathematics (2003)

[13] Starobinski, D., Trachtenberg, A., Agarwal, S.: Efficient pda synchronization.
IEEE Trans. Mob. Comput. 2(1), 40–51 (2003)

[14] Trachtenberg, A., Starobinski, D., Agarwal, S.: Fast pda synchronization using
characteristic polynomial interpolation. In: INFOCOM (2002)

Deterministic Length Reduction: Fast

Convolution in Sparse Data and Applications

Amihood Amir�, Oren Kapah, and Ely Porat

Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel,
+972 3 531-8770

{amir,kapaho,porately}@cs.biu.ac.il

Abstract. In this paper a deterministic algorithm for the length reduc-
tion problem is presented. This algorithm enables a new tool for perform-
ing fast convolution in sparse data. The proposed algorithm performs the
convolution in O(n1 log3 n1), where n1 is the number of non-zero values
in V1. This algorithm assumes that V1 is given in advance, and the V2 is
given in running time.

1 Introduction

The d-Dimensional point set matching problem, and its generalization - the d-
Dimensional sparse wildcard matching problem, serve as powerful tools in nu-
merous application domains. In the d-Dimensional point set matching problem,
two sets of points T, P ∈ N

d consisting of n, m points, respectively, are given.
The goal is to determine if there is a rigid transformation under which all the
points in P are covered with points in T .
The d-Dimensional sparse wildcard matching problem is similar, except that
every point in N

d is associated with a value. A match is declared if the values of
coinciding points are equal.

Among the important application domains to which these problems contribute
are the following:

Model based object recognition

In model-based recognition problems, a model of an object undergoes some geo-
metric transformation that maps the model into a sensor coordinate system.
This may be an image plane, a coordinate system from a 3d scanner, or a mul-
tidimensional feature space. When seeking occurrences of an object in a larger
space, one needs to solve a problem similar to the point-set matching prob-
lem. For many applications one needs affine transformations, rather than just
translations, in order to declare a match (e.g. [8,3]). Nevertheless, the point-set
matching problem is a natural tool to use when seeking occurrences of an object
in feature space, or in applications where translation alone suffices [9].

� The first author was partially supported by ISF grant 53/05.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 183–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

184 A. Amir, O. Kapah, and E. Porat

Pharmacophore Identification
One of the purposes of structural computational biology is the development of
pharmaceutical drugs. A pharmacophore is a three dimensional map of biological
properties common to all active conformations of a set of ligands which exhibit a
particular activity. Conceptually, a pharmacophore is a distillation of the func-
tional attributes of ligands which accomplish a specific task. Pharmacophores
are conceptual templates for drug design. Once extracted, a pharmacophore can
be used as a model for the design of other molecules that can accomplish the
same activity. The pharmacophore is an abstraction of a molecule, which must be
congruent to the functional components of another desired molecule [6]. Again,
the point-set matching is a tool towards solution.

Searching In Music Archives

Currently, many music archives are stored in MIDI format. In this representation,
among other information, the pitch level of every played note is stored with a
time-stamp. This information can be represented as points in a 2-Dimensional
space where the axes are time and pitch. The problem of seeking a given melody
in the archive is immediately reduced to a point set matching problem in 2-
dimensional space [10].

Given the importance of the point-set matching problem it is not surprising
that the problem has been widely considered in the literature in many variations,
not the least of which in the algorithms literature. In [9] Cardoze and Schulman
used a randomized algorithm to reduce the space size of T, P and then apply
solve the problem in the reduced space. In [4] Cole and Hariharan proposed a
solution to the d-Dimensional Sparse Wildcard Matching. Their solution consists
of two steps. The first step is a Dimension Reduction where the inputs T, P are
linearized into raw vectors T ′, P ′ of size polynomial in the number of non-zero
values. The second step was a Length Reduction where each of the raw vectors
T ′, P ′ was replaced by log n short vectors of size O(n) where n is the number
of non-zeros. The idea is that the mapping to the short vectors preserves the
distances in the original vectors, thus the problem is reduced to a matching
problem of short vectors, to which efficient solutions exist. The problem with
the length reduction idea is that more then one point can be mapped into the
same location, thus it is no longer clear whether there is indeed a match in the
original vectors. The proposed solution of Cole and Hariharan was to create a
set of log n pairs of vectors using log n hash function rather then a single pair
of vectors. Their scheme reduced the failure probability. To our knowledge, all
currently known efficient solutions to the problem are randomized.

In this paper we present the first deterministic algorithm for finding log n
hash functions that reduce the size of the vectors to O(n log n). We guarantee
that each non-zero value appears with no collisions in at least one of the vectors,
thus eliminating the possibility of en error. Our algorithm also has the advantage
that it is surprisingly simple and easy to implement.

In Section 4 we use our length reduction algorithm to solve the Sparse Con-
volution problem posed in [7], where the aim is to find the convolution vector

Deterministic Length Reduction 185

W of the two vectors V1, V2. It is assumed that the two vectors are not given
explicitly, rather they are given as a set of (index, value) pairs. Using the Fast
Fourier Transform (FFT) algorithm, the convolution can be calculated in run-
ning time O(N1 log N2)[5]. In our context, though, the vectors V1, V2 are sparse.
The aim of the algorithm is to compute W in time proportional to the number
of non-zero entries in W , which may be significantly smaller than O(N1).

It should be noted that our algorithm assumes that the point-set matching is
done on an archive, i.e. we assume a given set of points which we pre-process in
time quadratic in the number of non-zero points. Subsequently, we can solve any
point-set matching query in time linear times polylog of the number of points.
In the sparse convolution setting this means that the larger vector is fixed. The
best known current deterministic solution takes time proportional to the product
of the number of non-zero values in the two vectors, even if the same vector is
re-used.

In Section 5 we demonstrate our fast sparse convolution algorithm on two
applications: the d-Dimensional Point Set Matching and Searching in Music
Archives problems. In both cases there is no known deterministic algorithm
whose time is better than O(n1n2). Our algorithm offers a solution in time
O(n1 log3 n1).

2 Preliminaries and Notations

Throughout this paper, a capital letter (usually N) is used to denote the size
of the vector, which is equivalent to the largest index of a non-zero value, and
a small letter (usually n) is used to denote the number of non-zero values. It is
assumed that the vectors are not given explicitly, rather they are given as a set
of (index, value) pairs, for all the non-zero values.

A convolution uses two initial functions, v1 and v2, to produce a third function
w. We formally define a discrete convolution.

Definition 1. Let V1 be a function whose domain is {0, ..., N1 − 1} and V2 a
function whose domain is {0, ..., N2 − 1}. We may view V1 and V2 as arrays of
numbers, whose lengths are N1 and N2, respectively. The discrete convolution of
V1 and V2 is the polynomial multiplication

W [j] =
N2−1∑
i=0

V1[j + i]V2[i].

In the general case, the convolution can be computed by using the Fast Fourier
Transform (FFT) [5]. This can be done in time O(N1 log N2), in a computational
model with word size O(log N2). In the sparse case, many values of V1 and V2

are 0. Thus, they do not contribute to the convolution value. In our convention,
the number of non-zero values of V1(V2) is n1(n2). Clearly, we can compute
the convolution in time O(n1n2). The question posed by Muthukrishnan [7] is
whether the convolution can be computed in time o(n1n2).

186 A. Amir, O. Kapah, and E. Porat

Cole and Hariharan’s suggestion was to use length reduction. Suppose we
can map all the non-zero values into a smaller vector, say of size O(n1 log n1).
Suppose also that this mapping is alignment preserving in the sense that applying
the same transformation on V2 will guarantee that the alignments are preserved.
Then we can simply map the the vectors V1 and V2 into the smaller vectors
and then use FFT for the convolutions on the smaller vectors, achieving time
O(n1 log2 n1).

The problem is that to-date there is no known mapping with that alignment
preserving property. Cole and Hariharan [4] suggested a randomized idea that
answers the problem with high probability. The reason their algorithm is not
deterministic is the following: In their length reduction phase, several indices of
non-zero values in the original vector may be mapped into the same index in
the reduced size vector. If the index of only one non-zero value is mapped into
an index in the reduced size vector, then this index is denoted as singleton and
the non-zero value is said to appear as a singleton. If more then one non-zero
value is mapped into the same index in the reduced size vector, then this index is
denoted as multiple. The multiple case is problematic since we can not be sure of
the right alignment. Fortunately, Cole and Hariharan showed a method whereby
in O(log n1) tries, the probability that some index will always be in a multiple
situation is small. In the next section we present a deterministic solution to the
multiple problem.

3 Deterministic Length Reduction

Let Pi be a prime number. Construct the array Vi achieved by mapping the
(index, value) pair (i, v) to (i mod Pi, v). Call array Vi the reduced length vector
by Pi.

Our idea is to deterministically find a set {P1, ..., Pi, ..., Plog n1} of prime num-
bers in the preprocessing phase, such that when constructing the reduced length
vectors V1,i, i = 1, ..., logn1, each non-zero input is guaranteed to appear as a
singleton in at least one of the new vectors. Note that in order to save space,
there is no need to keep the new vectors, since they can be reconstructed in
running time given the set of prime numbers.

The rest of this section is devoted to finding this set of prime numbers. We
distinguish between two cases.

1. The size of the original vector is polynomial in n1 (N1 < nc
1).

2. The size of the original vector is exponential in n1.

Most of the practical applications fall into the first category. In addition, it is
important to note that in case of N1 exponential in n1, just encoding the pairs
requires O(n2

1) space. However, we provide an algorithm for the second case for
the sake of completeness. This algorithm works in the arithmetic model, i.e. we
assume that an address can fit in a computer word and that a word operation
can be done in constant time.

Deterministic Length Reduction 187

3.1 Case 1: N1 Is Polynomial in n1

In the first case we find a set of log n1 prime numbers which enables the creation
of log n1 vectors of size O(n1 log n1) such that each non-zero appears in at least
one of the vectors as a singleton. For every prime number Pi the corresponding
vector V1,i is created by setting the index of each non-zero value (i, v) to be the
i mod Pi.

Observation 1. For every i, two non-zeros can be mapped into the same loca-
tion in V1,i only if Pi divides the distance between them.

The following lemma is crucial to our algorithm.

Lemma 1. Any two non-zeros can be mapped to the same location in at most c
vectors.

Proof. The distance between any two non-zeros is bounded by the size of the
original vector N1 < nc

1, thus the number of different prime numbers greater
then n1 which divide the distance between them is bounded by logn1

nc
1 = c. ��

Since any non-zero can be mapped into the same location with at most n1 − 1
other non-zeros, and with each of them at most c times, due to Lemma 1, then
we get the following Corollary:

Corollary 1. Any non-zero can appear as a multiple in not more then n1c
vectors.

In the preprocessing step 2cn1 prime numbers of size O(n1 log n1) are selected.
Corollary 1 assures us that they can be selected in any way. For example, the
first 2cn1 prime numbers which are greater than n1 log n1 can be chosen. For
each prime number Pi the reduced length vector Vi is constructed. Then a set
of log n1 prime numbers is chosen from them such that each of the non-zeros
will appear as a singleton in at least one of the corresponding reduced length
vectors.

The selection of the log n1 prime number is done as follows: Construct table
A with n1 columns and 2cn1 rows. Row i correspond to a prime number Pi and
its reduced length vector V1,i. A column corresponds to a non-zero value in V1.
The value of Aij is set to 1 if non-zero j appears as a singleton in vector V1,i.
Due to Corollary 1, the number of zeros in each column can not exceed n1c.
Thus, in each column there are 1’s in at least half of the rows, which means that
the table is at least half full. Since the table is at least half full there exist a row
in which there is one in at least half of the columns. The prime number which
generated this row is chosen. All the columns where there was a 1 in the selected
row are deleted from the table.

Recursively another prime number is chosen and the table size is halved again,
until all the columns are deleted. Since at each step at least half of the columns
are deleted, the number of prime number chosen can not exceed log n1.

The algorithm appears in detail below.

188 A. Amir, O. Kapah, and E. Porat

Algorithm – N1 < nc
1, for constant c

1. Create a matrix A of n1 columns and 2cn1 rows.
2. For i = 1 to 2cn1

(a) Select a new prime number Pi of size O(n1 log n1).
(b) Create a new vector V1,i from the input by mapping the index � of each

non-zero pair (�, v) to: � mod Pi.
(c) For each non-zero input j from 1 to n1

(d) If j appears as a singleton in V1,i set Aij = 1, else set Aij = 0
3. Choose a row which is at least half full.
4. Delete all the columns in which 1 appears in the selected row from the

matrix.
5. while the matrix is not empty go to step 3.

end Algorithm

Correctness: Immediately follows from the discussion.

Time: Creating vector V1,i (row i) takes O(n1) time. Since we start with a full
matrix of O(n1) rows then the initialization takes O(n2

1) time. Choosing the
log n1 primes is done recursively. The recurrence is:

t(n2
1) = n2

1 + t(
n2

1

2
)

The closed form of this recurrence is O(n2
1).

Primality Testing: The set of prime numbers {P1, ..., Plog n1} is independent of
the vector V1. The same set can be used for all vectors with n1 non-zero values.
Thus we may assume that a prime numbers table is available. In any event,
primality testing of number n can be currently done in O(log4+ε n) time [1],
thus one can also generate prime numbers online.

3.2 Case 2: N1 Is Exponential in n1

In this case, the algorithm reduces the original vector to a single vector of size
O(n4

1), where all the non-zeros appear as singletons, and then continues as in
the first case. This is achieved by choosing a prime number of size O(n4

1), such
that all of the non-zeros appear as singletons in the reduced length vector. When
such a prime number is found, the algorithm in Subsection 3.1 is applied on the
reduced length vector.

Finding such a prime number, which generates a reduced length vector in
which all the non-zeros appear as singletons, is achieved by choosing sequentially
prime numbers of size O(n4

1) and testing them.

Lemma 2. There are at most log N1 prime number greater than n4
1 that map

two non-zeros of V1 to the same location.

Deterministic Length Reduction 189

Proof. The distance between any two non-zeros is bounded by the size N1 of the
original vector. Thus there are at most log N1 prime numbers that divide the
distance between them. ��

Since the number of distinct distances between any pair of non-zeros is bounded
by n2

1, then the number of prime numbers which generate a multiple location is
bounded by n2

1 × log N1. Thus, at most n2
1 × log N1 prime numbers need to be

tested before finding the desired prime number.
After finding such a prime number Q, a vector T ′ of size 2Q is created for the

text, where each non-zero from index l in the text is mapped into two indices:
(1) lmodQ. (2) (lmodQ) + Q.

The vector P ′ which is created from the pattern is of size Q, in which, each
non-zero from index l in the pattern is mapped into lmodQ.

After obtaining the vectors T ′ and P ′, the algorithm continues as described
in the previous section on the newly obtained vectors.

Algorithm – N1 is exponential in n1

1. Select a new prime number Q of size O(n4
1).

2. Create a new vector V ′
1 from the input by mapping the index � of each

non-zero pair (�, v) to: � mod Q and to: (� mod Q) + Q.
3. If not all the non-zeros appear as singletons in V1,i go to step 2.
4. Apply the algorithm for case 1 on the resulting vector.

end Algorithm

Correctness: Immediate from the discussion.

Time: Checking if the vector contains only singletons takes time O(n1) thus the
time spent on steps 1 and 2 is O(n1). we repeat these steps at most O(n2

1)×log N1

times until we find a prime number which creates a vector with no multiples,
thus the total time for the algorithm is O(n3

1 × log N1) = O(n4
1).

4 Fast Convolution in Sparse Data Using Length
Reduction

We return to the problem of finding the convolution vector W of the two vectors
V1, V2. It is assumed that the two vectors are not given explicitly, rather they are
given as a set of (index, value) pairs. While in the regular fast convolution the
running time is O(N1 log N2), the aim here is to compute W in time proportional
to the number of non-zero entries in W . This problem was posed in [7]. Note that
the result of the convolution needs to be computed only for the locations in which
every non-zero in V2 is aligned with non-zero in V1. In [4] Cole and Hariharan
proposed a Las Vegas randomized algorithm which works in time O(w log2 n2)
whose failure probability is inverse polynomial in n2. We now present the first
deterministic solution to this problem.

190 A. Amir, O. Kapah, and E. Porat

4.1 The Main Idea

The algorithm works in 2 steps: (1) Find the locations in which all non-zeros
from V2 are aligned with non-zeros in V1 [4], and (2) Calculate the desired
convolution by performing convolutions over all the log n1 vectors V1,i, V2,i, and
sum the results for every location where an alignment was found. In order not
to sum the results of a non-zero value more then once, if it appears as singleton
in more then one reduced size vector, its value is zeroed after the first time.

Note that when reducing the vector size, more then one index in the original
vector may be mapped into the same index in the reduced size vector. It may,
therefore, happen that two aligned singletons will appear in the reduced size
vectors V1,i, V2,i, while in the original vectors the non-zero in V2 was aligned
with an empty index in V1. In order to eliminate this possibility the first step is
mandatory. The first step eliminates this problem due to the fact that it ensures
that every non-zero in V2 is aligned with a non-zero in V1, thus by the property
of the length reduction, every non-zero in the reduced size vector V2,i has to
be aligned with at least the value which was aligned with it in the original
vector. Thus, if there is only one non-zero in V1,i aligned with a non-zero in V2,i,
they must have originated from two non-zero values which where aligned in the
original size vectors V1, V2.

The algorithm for the first step uses the solution of Cole and Hariharan [4]
for the Shift Matching problem.

Definition 2. Let T be a length n text and P a length m pattern over alphabet
N ∪ {φ}, where φ is the wildcard symbol. We say that P shift matches T at
location i if there exist an integer �i such that one of the following conditions
holds for all non-wildcard symbols P [j] in P :

1. The text character T [i + j] aligned with P [j] is a wildcard.
2. T [i + j] − P [j] = �i.

Cole and Hariharan [4] provide an algorithm for solving this problem in time
O(n log m).

Note that for a location i where every non-zero V2[j] is aligned with a non-
zero V1[i + j] in V1, there exists a shift match between the indices of V2 and the
indices of V1 and the shift is exactly j.

In the same paper Cole and Hariharan also give the following definition and
Lemmas:

Definition 3. A wrap around placement of V2,i starting at location � in V1,i is
a placement such that V2,i[k] is aligned with V1,i[(� + k) mod Pi]

Lemma 3. Consider a wrap-around placement of V2,i in V1,i[j mod Pi]. Then
for each k, 0 ≤ k ≤ N2, V2,i[k mod Pi] is aligned with V1,i[(j + k) mod Pi].

Lemma 4. For any location where all non-zeros from V2 are aligned with non-
zeros in V1, if a non-zero appears as a singleton in V1,i then it appears as a
singleton in V2,i.

Deterministic Length Reduction 191

Following these lemmas, checking for existence of such an alignment is performed
as follows:

For every Pi create the corresponding vectors V1,i, V2,i where the indices of
each non-zero are filled in the new vectors for every non-zero which appears as
singleton. All the locations defined as multiples are assigned with a wildcard
(zeroed). Perform a shift matching between V1,i, V2,i. Subsequently, the same
vectors are created, this time with the value 1 instead of the indices, and the
convolution is performed again to count the number of non-zeros which where
considered in the shift match of every location.

Lemma 5. A placement of V2 in V1 where all non-zeros in V2 are aligned with
non-zeros in V1 exists if and only if there exist a shift match in all of the created
vectors with the same shift (the shift amount is the location where the alignment
exist), and the number of non-zeros which participate is n2.

Proof. ⇒ Consider a location j where such an alignment exists. Now consider a
non-zero at location j +k in V1 which aligns with a non-zero at location k in V2.
Due to the construction of the reduced vectors, there exist an i such that this
non-zero appears as a singleton in V1,i, and due to Lemma 4, the aligned non-
zero, at location k in V2 appears as a singleton in V2,i. A shift match between
them will give the difference between the indices which is j, and this is the same
for all the n2 non-zeros which participate in this alignment.
⇐ Consider a shift match where the indices of n2 distinct non-zeros in V2,i, 0 ≤
i ≤ log n1 are in distance j with the indices of non-zeros in V1,i. Thus there
exist n2 non-zeros at locations k1, ..., kn2 in V2 and n2 non-zeros at locations
j + k1, ..., j + kn2 in V1. This means that at location j all the non-zeros in V2 are
aligned with non-zeros in V1. ��

To calculate the result of the convolution, a pair of vectors V1,i, V2,i is created
for every Pi. The values of all non-zeros are filled in the new vectors for every
non-zero which appears as a singleton. All the locations defined as multiples are
zeroed. Each value of non-zero in the V1 is filled in only one of the vectors and in
the rest of the vectors it is zeroed. In V2 values are zeroed only if they appears
at locations which are defined as multiples.

We are now ready to present the algorithm in detail.

4.2 The Algorithm

1. For every i = 1 to log n
(a) For each non-zero value x ∈ V1

i. If V1,i[index(x)modPi] = 0 and not marked as multiple,
– Set V1,i[index(x)modPi] = OriginalIndex(x).

ii. Else,
– Mark it as multiple.
– Set V1,i[index(x)modPi] = 0.

(b) For each non-zero value x ∈ V2 set
i. If V2,i[index(x)modPi] = 0 and not marked as multiple,

192 A. Amir, O. Kapah, and E. Porat

– Set V2,i[index(x)modPi] = OriginalIndex(x).
ii. Else,

– Mark it as multiple.
– Set V2,i[index(x)modPi] = 0.

(c) Perform Shift-Matching.
(d) Replace all the indices in V1,i with the value of the non-zero and delete all

the non-zeros which appeared in previous vectors.
(e) Replace all the indices in V2,i with the value of the non-zero and delete all

the non-zeros which appeared in previous vectors.
(f) Calculate the convolution of V1,i, V2,i using FFT.
(g) Replace all non-zeros in V1,i, V2,i with ones.
(h) Calculate the convolution of V1,i, V2,i using FFT.

2. Mark all locations where the results of the Shift Match is consistent over all the
log n vectors.

3. For each such location

(a) Sum the results of the convolution of the ones vectors.
(b) If the sum equal N2,

i. Sum the results of the convolution of the values vectors.
ii. Set ResultV ector[shift] to be the calculated sum.

Correctness: Follows from the discussion above.
Time: We perform O(log n1) convolutions of the reduced length vectors, whose
lengths are O(n1 log n1). Each convolution’s time is therefore O(n1 log2 n1) for
a total time of O(n1 log3 n1).

5 Applications

5.1 d-Dimensional Point Set Matching

In this problem, the input is given as d-dimensional text and pattern T, P ∈ N
d,

of size n, m respectively. The goal is to find the translations of P , under which
each point in P is covered by a point in T . This problem is easily solved using
the algorithm for fast convolution in sparse data. The first step is a dimension
reduction [4], where from the d-dimensional input, a long raw vector is created.
This is performed by simply concatenating the indices of each point, i.e for each
point with indices i1, ..., id, the index in the raw vector will be i1 ∗ N

d−1 + ... +
id ∗ N

0. This is done for both T, P creating T ′, P ′, where 1 is placed in each
index where there is a point. Then the fast convolution as suggested in this
paper is performed. Any index where the result of the convolution is m gives the
translation under which a match is found. The running time of this algorithm is
the time of the convolution which is O(n log3 n). This is the first deterministic
algorithm which performs better the naive algorithm which takes time O(nm).

Deterministic Length Reduction 193

5.2 Searching in Music Archives

This problem deals with archive files in MIDI format. Among other information,
this format records the pitch level with the time-stamp for every note that was
played. This information can be represented as points in a 2-Dimensional space
where one axis is time, and the other axis of the pitch. Given such a database
of melodies D of n notes, and a new melody P , the goal is to find wether P
appears in D. Usually, if the pitch was translated by a constant value, P is still
referred as the same melody, thus this problem is reduced to a point set matching
problem in 2-dimensional space. The time of this algorithm will be O(n log3 n),
with a preprocessing step on the database in time O(n2) if N < nc or O(n4) if
N ∈ Exp(n).

Another possible problem may be finding an exact match with no translation
on the pitch. This can be solved by creating from the input a vector where the
time is the index, and the pitch is the value. Using the fast sparse convolution
algorithm presented in this paper, this problem can be solved in time O(n log3 n).
To our knowledge, this is the first deterministic solution to the problem whose
time is o(nm), where m is the number of notes in the pattern melody [10].

6 Conclusion and Open Problems

Deterministic algorithms for Length Reduction and Sparse Convolution where
presented in this paper. These can be used as tools to provide faster algorithms
for several well known problems.

Several problems still remained open, such as the problem of d-Dimensional
Point Set Matching under transformations such as rotation, or the problem of
Searching in Music with Scaling (in both the pitch and the time), where nothing
better then the naive algorithm is known.

Another important problem remains: Can the Length Reduction and Sparse
Convolution problems be solved in real time without the need of the preprocess-
ing step.

References

1. Berrizbeitia, P.: Sharpening primes is in p for a large family of numbers (November
2002) http://arxiv.org/abs/math.NT/0211334

2. Gottesfeld Brown, L.: A survey of image registration techniques. ACM Computing
Surveys 24(4), 325–376 (1992)

3. Cheung, K.-W., Yeung, D.-Y., Chin, R.T.: Bidirectional deformable matching with
application to handwritten character extraction. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(8), 1133–1139 (2002)

4. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard match-
ing. In: Proc. 34st Annual Symposium on the Theory of Computing (STOC), pp.
592–601 (2002)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, McGraw-Hill, Cambridge (1992)

http://arxiv.org/abs/math.NT/0211334

194 A. Amir, O. Kapah, and E. Porat

6. Kavraki, L.: Pharmacophore identification and the unknown receptor problem. J
Comput Aided Mol Des. 16(8-9), 653–681 (2002)

7. Muthukrishnan, S.: New results and open problems related to non-standard
stringology. In: Galil, Z., Ukkonen, E. (eds.) Combinatorial Pattern Matching.
LNCS, vol. 937, pp. 298–317. Springer, Heidelberg (1995)

8. Rucklidge, W.J.: Efficient visual recognition using the hausdorff distance. Springer,
Heidelberg (1996)

9. Schulman, L., Cardoze, D.: Pattern matching for spatial point sets. In: Proc. 39th
IEEE FOCS, pp. 156–165 (1998)

10. Ukkonen, E., Lemström, K., Mäkinen, V.: Sweepline the music! In: Klein, R., Six,
H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598, pp.
330–342. Springer, Heidelberg (2003)

Guided Forest Edit Distance: Better Structure

Comparisons by Using Domain-knowledge

Zeshan Peng and Hing-fung Ting�

Department of Computer Science, University of Hong Kong
{zspeng,hfting}@cs.hku.hk

Abstract. We introduce the guided forest edit distance problem, which
measures the similarity of two forests under the guidance of a third forest.
We give an efficient algorithm for the problem. Our problem is a natural
generalization of many important structure comparison problems such as
the forest edit distance problem, constrained sequence alignment problem
and the longest constrained common subsequence problem. Our algorithm
matches the performance of the best known algorithms for these problems.

1 Introduction

We propose and study an interesting extension of the classical Forest Edit Dis-
tance (FED) problem [11, 13], which asks for a sequence of edit operations with
minimum cost that transforms a forest E to another forest F . This minimum
cost reflects the similarity of the two forests; the smaller the cost, the larger
the similarity. Since forests are commonly used to represent 2-D structures such
as the secondary structures of RNA and XML documents, the FED problem
has found applications in comparing these structures. To provide some natural
mechanism for guiding the comparisons, we introduce the Guided Forest Edit
Distance (GFED) problem. In addition to the forests E and F , the GFED problem
has another input G, which is a sub-forest of both E and F . The problem asks
for a sequence of edit operations with minimum cost that transforms E and F
to some forests E′ and F ′ such that E′ and F ′ are identical and both E′ and F ′

include G. Intuitively, G captures some domain knowledge on some important
sub-structure of E and F that must be included in the comparison. It can be
proved that when G is empty, our GFED problem is equivalent to the FED problem.

1.1 Some Motivations

Structure comparison is a fundamental technique in bioinformatics and there are
many computational tools applying this technique. Although these tools have
helped us tremendously in discovering new knowledge, they have the common
weakness of not allowing users to guide/control the comparisons. This weakness
becomes serious as we now have accumulated much biological knowledge and in

� This research is supported in part by Hong Kong RGC grant HKU-7172/06E.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 195–204, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 Z. Peng and H.-f. Ting

Fig. 1. (a) RNA primary structure, (b) its secondary structure and (c) its forest rep-
resentation

many cases we have good ideas on how the structures should be compared. Many
problems in bioinformatics need new structure comparison tools that provide
natural mechanisms for guiding the comparisons.

For example, the classification of RNAs can be done by comparing their sec-
ondary structures. As observed in [14], many of these structures can be repre-
sented by an ordered labelled forest (see Figure 1 for an example). There are
many algorithms that determine the similarity of RNA by comparing their rep-
resenting forests [3,10,13,6]. However, we may have better results if we can guide
the comparisons using our knowledge of the RNA’s motifs, which are some func-
tionally important sub-structures in the RNAs and can also be represented by
forests. For example, to decide whether a newly discovered RNA E belongs to
some family, we compare it with the consensus F of the family and use their sim-
ilarity to determine whether it belongs to the family. A important requirement
for the comparison is that a motif G common to E and F should be aligned.
This can be done by solving the GFED problem on input E, F and G.

Another motivation of the GFED problem comes from Extensible Markup Lan-
guage (XML) documentations. The structures of XML documents are hierarchi-
cal and can be modelled by ordered labelled forests (see Figure 2). There are
many forest-oriented algorithms for comparing XML docuements. For example,
Nierman and Jagadish [8] used forest edit distance to measure the similarity of
two XML documents. Cobéna et al [2] proposed a tree-based algorithm diff to
detect changes in XML documents. To compare two XML documents E and F
with the same Document Type Descriptor G1, which is a sub-forest of both E
and F , we should include and align this “bone-structure” G in our comparison;
again, this problem can be formulated as the GFED problem.

1.2 The Results

The classical FED problem has been studied extensively. Tai [11] gave an algo-
rithm for the problem that uses O(|E||F |dp(E)2dp(F)2) time and space where
1 For example, XML documents in different versions of warehouses.

UG
GC
AU

UA
AU

A G C A G U CG AUAA A
UG
CG
CG
CG
UA
GU

A U
U A

UA
G
U

C
G

AAG

A G CUCAG

U

A

A
U

G

GG G

C

G

C

U

AU C U

AA

A

A
A

G

C

C

G

G

U
G
U

CG
AU
GC

A A AA

U G U G

(333)

5’(337)3’(287)

(291)

(b) (c)

UGAUAAAGCAGAAAACUGAGCAGUCAUCCCUGUGUGUAGGGGUAUAUCG

(a)

3’ 5’

(287) (337)

Guided Forest Edit Distance 197

Fig. 2. An XML document and its forest representation

|X | is the number of nodes in forest X and dp(X) is the depth of X . Zhang
and Shasha [13] gave a better algorithm that uses O(|E||F |) space and runs
in O(|E||F |min{|L(E)|, dp(E)}min{|L(F)|, dp(F)}) time where L(X) is the set
of leaves of the forest X . Klein [5] later proposed an algorithm that runs in
O(|E|2|F | log |F |) time and use O(|E||F |) space. Note that Zhang and Shasha’s
algorithm has performance better than that of Klein’s in most cases.

We give an O(|E||F ||G|min{dp(E), |L(E)|}min{dp(F), |L(F)|}|L(G)|2) time
and O(|E||F | |G||L(G)|2) space algorithm for the GFED problem with input
forests E and F , and guiding forest G. Note that when the guiding forest
G is empty, our GFED problem becomes the traditional FED problem, and in
this case, the time and space complexity of our algorithm becomes respec-
tively O(|E||F |min{dp(E), |L(E)|}min{dp(F), |L(F)|}) and O(|E||F |), match-
ing those of Zhang and Shasha’s algorithm [13].

Observe that a sequence can be regarded as a forest containing only one
leaf, where the ancestor-descendent relationship among the nodes in the for-
est preserve the sequential relationship for the characters in the sequence. This
observation enables us to use our algorithm to solve some constrained align-
ment problems on sequences, such as the Constrained Sequence Alignment (CSA)
problem [7, 9] and the Longest Constrained Common Subsequence (LCCS) prob-
lem [1,12]. Given two sequences e and f , the CSA problem and the LCCS problem
ask to find respectively an optimal alignment and a longest common subsequence
that include a constrained sequence g as a subsequence. For these problems,
our algorithm runs in O(|e||f ||g|) time, matching the fastest known CSA algo-
rithm [9,7] and LCCS algorithms [1].

2 Definitions and Notations

Ordered labelled trees are rooted trees whose nodes are labelled and the left-to-
right orders among siblings are fixed. An ordered labelled forest is a sequence of
ordered labelled trees. We define three edit operations between two such forests
E and F as follows. Let a be a node in E and b a node in F .

– Operation (a, b): Relabelling a by the label of b.

"1
.0

"

"I
SO

−
...

"

declaration

encodingversion

"C
om

m
en

ts
...

"

comment

"J
ou

rn
al

...
"

"J
ac

k"

"C
on

s.
.."

"D
am

on
...

"

"E
va

l..
."

"T
C

S"

journal

publication

journal

JtitlearticlearticleeditorJtitle

title author title

<publication>
<journal>

<Jtitle> Journal of ACM </Jtitle>
<editor> Jack </editor>
<article>

</article>
<article>

</article>
</journal>

<title> Evaluation </title>

<title> Constrained Similarity </title>
<author> Damon </author>

<journal>
<Jtitle> TCS </Jtitle>

</journal>
</publication>

<?xml version="1.0" encoding="ISO−8859−1" ?>
<!−− Comments not displayed −−>

198 Z. Peng and H.-f. Ting

– Operation (a,−): Deleting a from the forest E. If a is not the root, we make
every child of a to be a child of its parent p(a).

– Operation (−, b): Similar to (a,−), except that we now delete node b from
the forest F .

Every edit operation (a, b) 	= (−,−) is associated with a cost δ(a, b) where
δ(a, b) = 0 if a, b are nodes having the same label, and δ(a, b) > 0 otherwise.
Furthermore, we have δ(a, b) = δ(b, a). The cost δ(Π) of a sequence Π of edit
operations is the total cost of all operations in Π . The edit distance δ(E, F)
between E and F is the minimum cost of a sequence of edit operations (i.e.,
relabelling and deletions) that transforms E and F to two forests E′ and F ′

such that E′ and F ′ are identical2.
We say that a forest G is a sub-forest of E if there exists a sequence of delete

operations that transforms E to G. Suppose that G is a sub-forest of both E
and F . The guided edit distance δ(E, F, G) of E and F with respect to G is
the minimum cost of a sequence of edit operations that transforms E and F to
forests E′ and F ′ such that (i) E′ and F ′ are identical, and (ii) G is a sub-forest
of both E′ and F ′. We say that G is the guiding forest.

Tai [11] and Zhang and Shasha [13] also studied edit mapping, which is closely
related to edit distance and will help us analyze our algorithm. Given two forests
E and F , an edit mapping from E to F is a set M of node pairs (a, b) where
a ∈ E and b ∈ F , and any two pairs (a1, b1), (a2, b2) ∈ M satisfy the following
conditions.

Uniqueness: a1 = a2 if and only if b1 = b2.
Ancestor-descendent: a1 is an ancestor of a2 if and only if b1 is an ancestor

of b2.
Left-Right: a1 is to the right of a2 if and only if b1 is to the right of b2.

Define Dom(M) = {a | (a, b) ∈ M} and Rng(M) = {b | (a, b) ∈ M}. Given any
subset S of nodes of a forest X , define X‖S, the sub-forest of X restricted on S,
to be the one obtained by deleting from X those nodes that are not in S. The
cost of M is defined to be

δ(M) =
∑

(a,b)∈M
δ(a, b) +

∑
i∈E\Dom(M)

δ(a,−) +
∑

b∈F\Rng(M)

δ(−, j).

To study guided edit distance, we extend edit mapping to guided edit mapping
as follows. Suppose that G is a sub-forest of both E and F . A guided edit mapping
from E to F with respect to G is an edit mapping M from E to F such that
there exists a subset M′ ⊆ M where F‖Rng(M′) = G. (It is easy to verified that
we also have E‖Dom(M′) = G.) We say that M is optimal if δ(M) is minimum
among all guided edit mappings. The following lemma shows that guided edit
distance and guided edit mapping are closely related.
2 Note that in the standard definition of edit distance we also includes insertions. It is

easy to prove that our definition is equivalent to the standard one. We use this non-
standard definition because we want to make the definition of guided edit distance
more intuitive.

Guided Forest Edit Distance 199

5

43

21

13

12

10

9

87

6

11

8765

4

14

F 8..4F

Fig. 3. A restricted sub-forest F‖4..8 of forest F

Lemma 1. Suppose that M is an optimal guided edit mapping from E to F
with respect to G. Then, δ(M) = δ(E, F, G). Furthermore, we can construct a
sequence Π of edit operations from M that gives δ(E, F, G) as follows: For every
(a, b) ∈M, insert the relabelling operation (a, b), and for every a ∈ E \ Dom(M)
and b ∈ F \ Rng(M), insert the delete operations (a,−) and (−, b) to Π.

Proof. Lemma 2 of [13] implies this lemma for the case when G = ∅. It is
straightforward to generalize their proof for the general case. ��

Consider any forest F . Suppose that we have performed a post-order traversal
of F . A node in F has name i if it is the ith visited node during the traversal.
For any node i, let F [i] denote the subtree rooted at i, and define s(i) to be the
node with the smallest name in F [i]. Define i : j to be the set of nodes k in F
such that i ≤ k ≤ j. (Note that if j < i, i : j is the empty set.) Figure 3 shows
a forest F and its sub-forest F‖4..8 restricted on the set of nodes 4..8. Note that
s(3) = s(5) = 1 and s(9) = 7.

Fact 1. For any node i in F , s(i) is the leftmost leaf in F [i] and F [i] = F‖s(i)..i.
Furthermore, for any leaf �, and any node k with � ≤ k, F‖�..k is a forest of rooted
trees, i.e., F‖�..k = 〈F [h1], F [h2], . . . , F [hr]〉 for some nodes h1 < h2 < · · · < hr.

3 An Algorithm for the GFED Problem

In this section, we describe the algorithm GFED for computing δ(E, F, G). Note
that if G is not a sub-forest of E or F , then δ(E, F, G) is undefined; for this
case, we let δ(E, F, G) = ∞. In the rest of paper, we make the assumption that
G is a sub-forest of both E and F , which can be verified in O((|E| + |F |)|G|)
time [4]. Furthermore, to simplify our description, we assume that E and F are
indeed trees. This is not a serious restriction because of the following fact.

Fact 2. Let E′ be a tree obtained by adding a root to the forest E and making
the roots of all trees in E to be its children. Define F ′ from F similarly. Label
the root of E′ and F ′ by some label that does not appear in E, F and G. Then
δ(E, F, G) = δ(E′, F ′, G).

Since E and F are trees, E = E[n] and F = F [m] where n and m are the
number of nodes of E and F , respectively. The core of our algorithm GFED is

200 Z. Peng and H.-f. Ting

Procedure DPtree(E[io], F [jo], G)

1: Use Zhang and Shasha’s algorithm to find δ(E[i], F [j], ∅) for all i ∈ E and j ∈ F .
2: for i := s(io), · · · , io do
3: for j := s(jo), · · · , jo do
4: for h := 1, · · · , |G| do
5: for k := 1, · · · , (|G| − h + 1) do
6: if node k is a leaf in G, find δ(E‖s(io)..i, F‖s(jo)..j , G‖k..(k+h−1))

the following dynamic programming procedure DPtree(E[io], F [jo], G), which
computes δ(E[io], F [jo], G) for the trees E[io], F [jo].

Thus, to find δ(E, F, G), we call DPtree(E[n], F [m], G). The task of GFED is
simply to prepare all the necessary values for the dynamic programming proce-
dures to proceed by calling them systematically as follows: for i = 1, . . . , n and
for j = 1, . . . , m, call DPtree(E[i], F [j], G).

Let 1 ≤ io ≤ n and 1 ≤ jo ≤ m. Since G = G‖1..|G|, E[io] = E‖s(io)..io
and

F [jo] = F‖s(jo)..jo
, we have δ(E[io], F [jo], G) = δ(E‖s(io)..io

, F‖s(jo)..jo
, G‖1..|G|).

DPtree finds this value in a bottom-up manner. As a preprocessing, the first
step of the procedure calls Zhang and Shasha’s algorithm to compute δ(E, F),
or equivalently, δ(E, F, ∅). Their algorithm also uses dynamic programming, and
after the execution, we find δ(E[i], F [j], ∅) for all i ∈ E and j ∈ F . We now
explain how to find the value in Line 6 of the procedure. Suppose that k is a leaf
of G. Note that if G‖k..(k+h−1) 	= ∅ and one of the forests E‖s(io)..i and F‖s(jo)..j

is empty, then δ(E‖s(io)..i, F‖s(jo)..j , G‖k..(k+h−1)) is trivially ∞. Otherwise, we
find the value using the Lemma 2.

Lemma 2. Let r(G‖k..l) = {i1, i2, . . . , iq} be the roots of the subtrees in the
forest G‖k..l where k ≤ l. Then, for any s(io) ≤ i ≤ io and s(jo) ≤ j ≤ jo,
δ(E‖s(io)..i, F‖s(jo)..j , G‖k..l) is equal to the minimum of the following values:

(i) δ(E‖s(io)..i−1, F‖s(jo)..j , G‖k..l) + δ(i,−),
(ii) δ(E‖s(io)..i, F‖s(jo)..j−1, G‖k..l) + δ(−, j),
(iii) δ(E‖s(io)..s(i)−1, F‖s(jo)..s(j)−1, G‖k..l) + δ(E[i], F [j], ∅),
(iv) δ(E‖s(io)..s(i)−1, F‖s(jo)..s(j)−1, G‖k..s(p)−1)+

δ(E‖s(i)..i−1, F‖s(j)..j−1, G‖s(p)..l) + δ(i, j) for each p ∈ r(G‖k..l),
(v) δ(E‖s(io)..s(i)−1, E‖s(jo)..s(j)−1, G‖k..s(l)−1)+

δ(E‖s(i)..i−1, F‖s(j)..j−1, G‖s(l)..l−1) + δ(i, j) if l has the same label of j.

Proof. Let M be the mapping from E‖s(io)..i to F‖s(jo)..j with respect to G‖k..l

given by Lemma 1 such that δ(E‖s(io)..i, F‖s(jo)..j, G‖k..l) = δ(M), and let Π be
the sequence of edit operations constructed from M as described by the lemma.
We consider the following cases.

Case a: Node i is not mapped to any node in F (i.e., i 	∈ Dom(M)). Lemma 1
asserts that Π has the operation (i,−). Furthermore, by the principle of op-
timality, the sequence Π − 〈(i,−)〉, the one obtained by removing the oper-
ation (i,−) from Π , has optimal cost δ(E‖s(io)..i−1, F‖s(jo)..j, G‖k..l). Hence,

Guided Forest Edit Distance 201

δ(M) = δ(E‖s(io)..i−1, F‖s(jo)..j , G‖k..l) + δ(i,−), which is the value (i) in the
lemma.

Case b: Node j is not mapped by any node in E (i.e., j 	∈ Rng(M)). By similar
argument, we have δ(M) = δ(E‖s(io)..i, F‖s(jo)..j−1, G‖k..l) + δ(−, j), which is
value (ii).

Case c: Both i and j are mapped (i.e., i ∈ Dom(M) and j ∈ Rng(M)). Since
i and j are respectively the rightmost roots in E‖s(io)..i and F‖s(jo)..j , by the
Ancestor-descendent and Left-Right conditions, i must be mapped to j by M.
It follows that for any (a, b) ∈ M, a is a node of E[i] if and only if b is a node
of F [j] (because of the Ancestor-descendent condition). Define M1 = {(a, b) ∈
M | b 	∈ F [j]} and M2 = {(a, b) ∈M | b ∈ F [j]}, and we have

M1 is an edit mapping from E‖s(io)..s(i)−1 to F‖s(jo)..s(j)−1,

M2 − {(i, j)} is an edit mapping from E‖s(i)..i−1 to F‖s(j)..j−1, and
δ(M) = δ(M1) + δ(M2 − {(i, j)}) + δ(i, j). (*)

Since M is a guided edit mapping with guiding forest G‖k..l, there is a subset
M′ of M such that (F‖s(jo)..j)‖Rng(M′) = G‖k..l. We consider the following sub-
cases.

– Rng(M′) does not contain any node in F [j] = F‖s(j)..j . Then, for every
(a, b) ∈M′, b 	∈ F [j] and hence M′ ⊆ M1, M′ ∩M2 = ∅. It follows that

(F‖s(jo)..s(j)−1)‖Rng(M′) = (F‖(s(jo)..s(j)−1)∪(s(j)..j))‖Rng(M′) = G‖k..l.

Together with (*), and by the principle of optimality, we conclude M1 is an
optimal edit mapping from E‖s(io)..s(i)−1 to F‖s(jo)..s(j)−1 with respect to
G‖k..l and hence δ(M1) = δ(E‖s(io)..s(i)−1, F‖s(jo)..s(j)−1, G‖k..l). Similarly,
we can argue that δ(M2−{(i, j)}) = δ(E‖s(i)..i−1, F‖s(j)..j−1, ∅). Substitute
them in the equation of (*), we conclude that value (iii) is a bound.

– Rng(M′) contains some node in F [j] but j 	∈ Rng(M′). Define M′
1 =

M′ ∩ M1 and M′
2 = M′ ∩ M2. Note that M′ = M′

1 ∪ M′
2, and since

(F‖s(jo)..j)‖Rng(M′) = G‖k..l = 〈G[i1], G[i2], . . . , G[iq]〉, there is some ip ∈
r(G‖k..l) such that (F‖s(jo)..s(j)−1)‖Rng(M′

1)
= 〈G[i1], G[i2], . . . , G[ip−1]〉 =

G‖k..ip−1 = G‖k..s(ip)−1 and (F‖s(j)..j)‖Rng(M′
2)

= 〈G[ip], G[ip+1], . . . , G[iq]〉
= G‖s(ip)..iq

= G‖s(ip)..l. Together with M′
1 ⊆ M1, M′

2 ⊆ M2, j 	∈ Rng(M′)
and (*), we conclude

δ(M1) = δ(E‖s(io)..s(i)−1, F‖s(jo)..s(j)−1, G‖k..s(ip)−1), and

δ(M2 − {(i, j)}) = δ(E‖s(i)..i−1, F‖s(j)..j−1, G‖s(ip)..l).

Substitute them in the equation in (*), we have value (iv) in the lemma.
– j ∈ Rng(M′). In this case, node j of F‖s(jo)..j and node l of G‖k..l must have

the same label. The analysis of this case is almost identical to that of the
previous case. The only difference is that we now have j ∈ Rng[M′

2]. Since j
is the root of F [j], we conclude that (F‖s(j)..j)‖Rng(M′

2)
is a single tree, and

202 Z. Peng and H.-f. Ting

as F [j] is the rightmost tree in F , (F‖s(j)..j)‖Rng(M′
2) must be the right most

tree in G‖k..l, namely G[l] = G‖s(l)..l. We conclude that

δ(M1) = δ(E‖s(io)..s(i)−1, F‖s(jo)..s(j)−1, G‖k..s(l)−1), and
δ(M2 − {(i, j)}) = δ(E‖s(i)..i−1, F‖s(j)..j−1.G‖s(l)..l−1).

(Note that the guiding forest in the last equality is G‖s(l)..l−1, not G‖s(l)..l

because the root l is associated with the root j of E[j].) Substitute them in
(*), we get value (v).

All cases are considered and δ(M) is the minimum among the above cases. ��
Theorem 3. When E and F are trees, the algorithm GFED correctly finds δ(E, F,
G) using O(|E|2|F |2|G||L(G)|2) time and O(|E||F ||G||L(G)|2) space.

Proof. To be given in the full paper.
��

We explain how to speed up this algorithm and give complete proofs on the
correctness and complexities of this faster algorithm in the next section.

4 Speeding up GFED

Recall that the depth dp(i) of a node i is defined to be the number of ancestors of
i, and the depth dp(X) of a forest X is the maximum depth of a node in X . In this
section, we adapt a clever trick of Zhang and Shasha [13] to reduce the running
time of GFED to O(|E||F ||G|min{dp(E), |L(E)|}min{dp(F), |L(F)|}|L(G)|2). In
our discussion, we still assume that E and F are trees. For any node i ∈ E, we
say that i is a key-root if either it is the root of E or it has a left sibling. Let
κ(E) be the set of key-roots of E. The following lemma relates κ(E) to the set
L(E) of leaves of E.

Lemma 3. |κ(E)| ≤ |L(E)|.
Proof. Note that for any key-root i ∈ κ(E)−{n}, s(i) ∈ L(E)−{1}; s(i) ∈ L(E)
because of Fact 1 and it is not equal to the leave 1 because by definition, i has
a left-sibling i′ and by the property of post-order traversal, 1 ≤ i′ < s(i). We
claim that the function ϕ : (κ(E) − {n}) → (L(E) − {1}) where ϕ(i) = s(i)
is one-to-one, and the lemma follows. Suppose to the contrary that there are
two key-roots i and i′ such that s(i) = s(i′) = �. Since E is a tree, one of the
key-root, say i′, is on the path from the other key-root i to �. Since s(i) = � is
the leftmost leaf in E[i] (Fact 1 again), we conclude that the nodes on the path
from i to � do not have any left sibling; in particular, i′ does not have any left
sibling and i′ 	∈ κ(E), a contradiction. ��
The main observation for speeding up GFED is that to prepare enough values
for the bottom-up computation to proceed, we do not need to call the proce-
dure DPtree(E[i], F [j], G) for all possible i, j; we only need to focus on those
i, j that are both key-roots. The following algorithm fastGFED implements this
modification.

Guided Forest Edit Distance 203

Algorithm fastGFED(E, F, G)

1: Use Zhang and Shasha’s algorithm to find δ(E[i], F [j], ∅) for all i ∈ E and j ∈ F .
2: for i = 1, . . . , n do
3: for j = 1, . . . , m do
4: if i ∈ κ(E) and j ∈ κ(F), call DPtree(E[i], F [j], G);

Theorem 4. The space and time complexity of fastGFED is O(|E||F ||G||L(G)|2)
and O(|E||F ||G|min{dp(E), |L(E)|}min{dp(F), |L(F)|}|L(G)|2), respectively.

Proof. Obviously, the algorithm uses no more that the O(|E||F ||G||L(G)|2)
space of GFED. For the time, note that for any 1 ≤ i ≤ |E| and 1 ≤ j ≤ |F |, the
procedure DPtree(E[i], F [j], G) computes |E[i]||F [j]||G||L(G)| different values
of δ(E‖s(i)..x, F‖s(j)..y, G‖a..b) and each of them can be found by Lemma 2 us-
ing O(|L(G)|) time. Thus, DPtree(E[i], F [j], G) runs in O(|E[i]||F [j]||G||L(G)|2)
time, and fastGFED runs in time (in the order of)∑
i∈κ(E)

∑
j∈κ(F)

|E[i]||E[j]||G|(|L(G)|)2 =
(∑

i∈κ(E)

|E[i]|
)(∑

j∈κ(F)

|F [j]|
)
|G|(|L(G)|)2.

Note that
∑

i∈κ(E) |E[i]| =
∑

x∈E

∑
i∈E α(i, x) where α(i, x) = 1 if i ∈ κ(E)

and x ∈ E[i], and 0 otherwise. Since x ∈ E[i] if and only if i is an ances-
tor of x, we conclude that

∑
i∈E α(i, x) = |{i | i ∈ κ(E) and i ∈ anc(x)}| =

|κ(E)∩anc(x)| ≤ min{|anc(x)|, |κ(E)|} ≤ min{dp(E), |L(E)|} (Lemma 3) where
anc(x) is the set of ancestors of x. Hence,

∑
i∈κ(E) |E[i]| =

∑
x∈E

∑
i∈E α(i, x) ≤

|E|min{dp(E), |L(E)|}. Similarly,
∑

j∈κ(F) |F [j]| = |F |min{dp(F), |L(F)|}, and
the theorem follows. ��

Theorem 5. Algorithm fastGFED(E, F, G) finds δ(E, F, G) correctly.

Proof. Since n ∈ κ(E) and m ∈ κ(F), the last DPtree called by the algorithm is
DPtree(E[n], F [m], G), which computes δ(E, F, G) = δ(E‖1..n, F‖1..m, G) before
exiting. Thus, fastGFED finds δ(E, F, G) correctly if during the execution, it has
pre-computed enough values to complete every DPtree(E(io), F (jo), G) it calls.
Recall that DPtree(E(io), F (jo), G) uses Lemma 2 to compute iteratively the
values δ(E‖s(io)..i, F‖s(jo)..j, G‖k..l). Note that for those values required by the
lemma that are of the form δ(E‖s(io)..x, F‖s(jo)..y, G‖a..b), we have either x < i or
y < j and thus are computed earlier in the execution of DPtree(E[io], F [jo], G).
Those values δ(E[i], F [j], ∅) are computed by Zhang and Shasha’s algorithm
executed at Line 1 of fastGFED.

Note that the remaining values are δ(E‖s(i)..i−1, E‖s(j)..j−1, G‖a..b) where
s(io) ≤ i ≤ io and s(jo) ≤ j ≤ jo, which appear in (iv) and (v) of Lemma 2.
By the property of post-order traversal, we have i ∈ E[io] and j ∈ E[jo].
Let i′ be the least ancestor of i that is a key-root. Note that i′ ≤ io be-
cause by the design of fastGFED, io is a key-root ancestor of i. Note that
all the nodes on the path from i to i′ do not have any left sibling (they are
not key-roots) and this implies s(i′) = s(i). We define j′ similarly and we

204 Z. Peng and H.-f. Ting

also have s(j′) = s(j). Since i′ ≤ io and j′ ≤ jo and both of them are key-
roots, fastGFED would have called DPtree(E[i′], F [j′], G). If either i′ < io or
j′ < jo, the call GFED(E[i′], F [j′], G) would have finished and computed the value
δ(E‖s(i′)..i−1, E‖s(j′)..j−1, G‖a..b) = δ(E‖s(i)..i−1, E‖s(j)..j−1, G‖a..b). If i = io
and j = jo, δ(E‖s(i)..i−1, E‖s(j)..j−1, G‖a..b) = δ(E‖s(io)..i−1, E‖s(jo)..j−1, G‖a..b)
is computed before the computation of δ(E‖s(io)..i, E‖s(jo)..j , G‖k..l). Hence, all
the necessary values for computing δ(E‖s(io)..i, E‖s(jo)..j, G‖k..l) are ready. ��

References

1. Chin, F.Y.L., Santis, A.D., Ferrara, A.L., Ho, N.L., Kim, S.K.: A simple algorithm
for the constrained sequence problems. Information Processing Letters. 90(4), 175–
179 (2004)

2. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in XML documents. In:
Proc. of the 18th IEEE International Conference on Data Engineering, pp. 41–52
(2002)

3. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA struc-
tures. Journal of Molecular Biology 9(2), 371–388 (2002)

4. Kilpelainen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM Journal
on Computing 24(2), 340–356 (1995)

5. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Proc.
of the 6th European Symposium on Algorithms(ESA 1998), pp. 91–102 (1998)

6. Lin, G.H., Ma, B., Zhang, K.: Edit distance between two RNA structures. In:
Proc. of the 5th international conference on Computational molecular biology, pp.
211–220 (2001)

7. Lu, C.L., Huang, Y.P.: A memory-efficient algorithm for multiple sequence align-
ment with constraints. Bioinformatics 21(1), 20–30 (2004)

8. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents.
In: Proc. of the 5th International Workshop on the Web and Databases, pp. 61–66
(2002)

9. Peng, Z.S., Ting, H.F.: Time and space efficient algorithms for constrained sequence
alignment. In: Proc. of the 9th International Conference on Implementation and
Application of Automata, pp. 237–246 (2004)

10. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using
tree comparisons. Bioinformatics 6, 309–318 (1990)

11. Tai, K.C.: The tree-to-tree correction problem. Journal of the ACM 26(3), 422–433
(1979)

12. Tsai, Y.T.: The constrained longest common subsequence problem. Information
Processing Letters, 88(4) (2003)

13. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

14. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math.
Biol. 46, 591–621 (1984)

Space-Efficient Algorithms for Document

Retrieval

Niko Välimäki and Veli Mäkinen�

Department of Computer Science, University of Helsinki, Finland.
{nvalimak,vmakinen}@cs.helsinki.fi

Abstract. We study the Document Listing problem, where a collection
D of documents d1, . . . , dk of total length

�
i di = n is to be preprocessed,

so that one can later efficiently list all the ndoc documents containing
a given query pattern P of length m as a substring. Muthukrishnan
(SODA 2002) gave an optimal solution to the problem; with O(n) time
preprocessing, one can answer the queries in O(m + ndoc) time. In this
paper, we improve the space-requirement of the Muthukrishnan’s solu-
tion from O(n log n) bits to |CSA| + 2n + n log k(1 + o(1)) bits, where
|CSA| ≤ n log |Σ|(1 + o(1)) is the size of any suitable compressed suffix
array (CSA), and Σ is the underlying alphabet of documents. The time
requirement depends on the CSA used, but we can obtain e.g. the opti-
mal O(m+ndoc) time when |Σ|, k = O(polylog(n)). For general |Σ|, k the
time requirement becomes O(m log |Σ| + ndoc log k). Sadakane (ISAAC
2002) has developed a similar space-efficient variant of the Muthukrish-
nan’s solution; we obtain a better time requirement in most cases, but a
slightly worse space requirement.

1 Introduction and Related Work

The inverted file is by far the most often utilized data structure in the Informa-
tion Retrieval domain, being a fundamental part of Internet search engines such
as Google, Yahoo, and MSN Search. In its simplest form, an inverted file con-
sists of a set of words, where each word is associated with the list of documents
containing it in a given document collection D. The Document Listing problem
is then solved by printing out the document list associated with the given query
word.

This approach works as such only for documents consisting of distinct words,
such as natural language documents. If one considers the more general case,
where a document consists of a sequence of symbols without any word bound-
aries, then the inverted file approach may turn out to be infeasible. There are
basically two alternative approaches to proceed; (i) create an inverted file over
all substrings of D; or (ii) create an inverted file over all q-grams of D, i.e., over
all substrings of D of length q.

Approach (i) suffers from (at least) quadratic space requirement, and approach
(ii) suffers from the slow time requirement affected by the size of intermediate
� Funded by the Academy of Finland under grant 108219.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 205–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

206 N. Välimäki and V. Mäkinen

results; In approach (ii) the search for a pattern P of length m > q proceeds
by covering the pattern with q-grams, and searching each q-gram from the in-
verted file. In this case, each q-gram needs to be associated with a list of exact
occurrence positions inside the documents. One can then merge the occurrence
lists to spot the co-occurrences of the q-grams covering P . The total time re-
quirement is determined by the length of the longest intermediate occurrence list
associated with a q-gram of P . This can be significantly more than the number
of occurrences of whole P .

Despite the above mentioned weakness, a q-gram based inverted file is very
effective in practice, and it has found its place in important applications such
as in a popular search tool BLAST for genome data [1]. One of the attractive
properties of an inverted file is that it is easily compressible while still supporting
fast queries [13]. In practice, an inverted file occupies space close to that of a
compressed document collection.

Nevertheless, it is both practically and theoretically interesting to study index
structures having the same attractive space requirement properties as inverted
files and at the same time having provably good performance on queries.

If one can afford to use more space, then so-called full-text indexes such as
suffix arrays and suffix trees [3] provide good alternatives to inverted files. These
structures can be used, among many other things, to efficiently solve the Occur-
rence Listing problem, where all occurrence positions of a given pattern P are
sought for from the document collection.

Recently, several compressed full-text indexes have been proposed that achieve
the same good space requirement properties as inverted files [10]. These indexes
also provide provably good performance in queries. Many of these indexes have
been implemented and experimented, and shown effective in practice as well.1

Puglisi et al. [11] made an important sanity-check study on the practical
efficiency of compressed full-text indexes when compared to inverted files. They
concluded that, indeed, pattern searches are typically faster using compressed
full-text indexes. However, when the number of occurrence positions becomes
high (e.g. more than 5, 000 on English text [11]), inverted files become faster.
This experimental observation is consistent with the theoretical properties of
the indexes; In compressed full-text indexes each occurrence position must be
decoded, and this typically takes O(log n) time per occurrence. On the other
hand, the shorter the pattern, the more occurrences there are, meaning that in a
q-gram based inverted file, the intermediate occurrence lists are not significantly
larger than the final result.

Let us now get back to the original motivation — the Document Listing prob-
lem. Unlike for the Occurrence Listing problem, there is yet no simultaneously
space- and time-efficient solution known for this problem. Interestingly, even
achieving a good time requirement is nontrivial. One can, of course, solve the
problem by pruning the answer given by any solution to the Occurrence List-
ing problem. This is clearly not optimal, since the number of occurrences, nocc,

1 See http://pizzachili.dcc.uchile.cl/

Space-Efficient Algorithms for Document Retrieval 207

may be arbitrarily greater than the number of documents, ndoc, containing these
occurrences!

Matias et al. [8] gave the first efficient solution to the Document Listing prob-
lem; with O(n) time preprocessing of a collection D of documents d1, . . . , dk of
total length

∑
i di = n, they could answer the document listing query on a pat-

tern P of length m in O(m log k + ndoc) time. The algorithm uses a generalized
suffix tree augmented with extra edges making it a directed acyclic graph.

Muthukrishnan [9] simplified the solution in [8] by replacing the augmented
edges with a divide and conquer strategy. This simplification resulted into opti-
mal query time O(m + ndoc).

The space requirements of both the above solutions are O(n log n) bits. This
is significantly more than the collection size, O(n log |Σ|) bits, where Σ is the
underlying alphabet. More importantly, the space usage is much more than that
of an inverted file.

Sadakane [12] has developed a space-efficient version of the Muthukrishnan’s
algorithm. He obtains a structure taking |CSA| + 4n + O(k log n

k) + o(n) bits.
However, his structure is not anymore time-optimal, as document listing queries
take O(m+ndoc logε n) time on a constant alphabet, where |CSA| is the size of
any compressed suffix array that supports backward search and O(logε n) time
retrieval of one suffix array value. Here ε > 0 is a constant affecting the size of
such compressed suffix array.

Very recently, Fischer and Heun [6] have shown how the space of the Sadakane’s
structure can be reduced to |CSA|+2n+O(k log n

k)+o(n) bits; they also improve
the extra space needed to build the Sadakane’s structure from O(n log n) bits to
O(n log |Σ|) bits.

In this paper, we give an alternative space-efficient variant of Muthukrishnan’s
structure that is capable of supporting document listing queries in optimal time
under realistic parameter settings. Our structure takes |CSA|+ 2n + n logk(1 +
o(1)) bits, where |CSA| ≤ n log |Σ|(1+ o(1)) is the size of any compressed suffix
array supporting backward search. (We do not require the CSA to support the
retrieval of suffix array values as the Sadakane’s structure.) The time requirement
depends on the underlying CSA used, but we can obtain e.g. optimal O(m +
ndoc) time when Σ, k = O(polylog(n)). For general Σ, k the time requirement
becomes O(m log |Σ|+ ndoc log k).

We also show that a recent data structure by Bast et al. [2] proposed for
output-sensitive autocompletion search can be used for the Document Listing
problem. The space requirement is asymptotically the same as above but the
time requirement is slightly inferior.

We provide some preliminary experimental evidence to show that our struc-
ture is significantly faster than an inverted file, especially when ndoc << nocc.

2 Preliminaries

A string T = t1t2 · · · tn is a sequence of symbols from an ordered alphabet Σ. A
substring of T is any string Ti...j = titi+1 · · · tj , where 1 ≤ i ≤ j ≤ n. A suffix of

208 N. Välimäki and V. Mäkinen

T is any substring Ti...n, where 1 ≤ i ≤ n. A prefix of T is any substring T1...j ,
where 1 ≤ j ≤ n. A pattern is a short string over the alphabet Σ. We say that
the pattern P = p1p2 · · · pm occurs at the position j of the text alias document
string T iff p1 = tj , p2 = tj+1, . . . , pm = tj+m−1. Length of a document T is
denoted |T |.

Definition 1 (Document Listing problem). Given a collection D of docu-
ments d1, d2, . . . , dk of total length

∑k
i=1 |di| = n, the Document Listing problem

is to build an index for D such that one can later efficiently support the docu-
ment listing query of listing for any given pattern P of length m the documents
that contain P as a substring.

The output of the document listing query in Def. 1 is a subset of document
identifiers {1, 2, . . . , k}.

We say that a space-optimal solution to the Document Listing problem is an
index that occupies n log Σ(1 + o(1)) bits. This is the asymptotic lower-bound
given by the Kolmogorov complexity for any representation of D. Here we count
the representation of D as part of the index. For compressible documents, it is
possible to achieve better bounds.

Likewise, we say that a time-optimal solution to the Document Listing prob-
lem is an index that can be constructed in O(n) time, and that supports listing
of documents in O(m + ndoc) time, where ndoc is the size of the output.

3 Time-Optimal Document Listing

Muthukrishnan [9] obtained a time-optimal solution to the document listing
problem, but the solution was yet not space-optimal. In the sequel, we show
that one can adjust the solution to obtain the space-optimality as well in certain
parameter settings.

Let us describe the Muthukrishnan’s solution in a level suitable for our pur-
poses. We use a generalized suffix array instead of the generalized suffix tree
used in the original proposal.

Let the document collection d1, d2, . . . , dk be represented as a concatena-
tion D = d1d2 · · · dk. A generalized suffix array for the document collection
D is then an array A[1 . . . n] containing the permutation of 1, 2, . . . , n such that
DA[i],n <b DA[i+1],n for 1 ≤ i < n. Here <b is the normal lexicographic order
< of strings, except that the document boundaries are handled separately; the
order of suffixes is computed assuming (virtually) a special symbol $i inserted
after each document di, such that $1 < $2 < · · · < $k < c, where c ∈ Σ.2

Using two binary searches on A, one can easily locate the maximal range
[sp, ep] of A such that the pattern P is a prefix of all the suffixes DA[sp],n,
DA[sp+1],n, . . ., DA[ep],n. Now, the remaining task is to report the ndoc docu-
ments containing those suffixes without having to spend time on each occurrence.
2 Concrete insertion of symbols $i is the standard definition. However, here it would

make the alphabet size grow to |Σ| + k, affecting the later results. Therefore we opt
for the virtual handling of boundaries.

Space-Efficient Algorithms for Document Retrieval 209

Muthukrishnan introduces a divide and conquer strategy on two arrays
C[1 . . . n] and E[1 . . . n] for this task. The array E simply lists the document
numbers of each suffix in the order they appear in the suffix array A, that is,
E[i] = j if A[i] points inside the document dj in the concatenation D. The array
C is defined as

C[i] = max{j | j < i, E[i] = E[j]} (1)

(if there is no such j < i, then C[i] = −1). The algorithm is based on the
following observation.

Lemma 1 ([9]). Let [sp, ep] be the maximal range of A corresponding to suffixes
that have pattern P as a prefix. The document k′ contains P if and only if there
exists precisely one j ∈ [sp, ep] such that E[j] = k′ and C[j] < sp.

To proceed, the table C is assumed to be preprocessed for constant time Range
Minimum Queries (RMQ). That is, on a given interval I, one can compute
mini∈I C[i] in constant time (as well as the argument i giving the minimum).
This preprocessing can be done in O(n) time [4].

The divide and conquer algorithm starts by finding the i ∈ [sp, ep] such that
C[i] is the smallest (using the constant time RMQ). If C[i] > sp then there is no
document to report and the process stops. Otherwise, we output E[i] and repeat
the same process recursively on [sp, i− 1] and on [i + 1, ep]. One can see that all
the documents containing P are reported and each of them only once [9].

By replacing the generalized suffix array with a generalized suffix tree, one
can find the range [sp, ep] in O(m) time on a constant size alphabet (on gen-
eral alphabets, this takes O(m log |Σ|) time). Afterward, the reporting of the
documents takes O(ndoc) time.

Theorem 1 ([9]). Document Listing problem can be solved using an index
structure occupying O(n log n) bits and having an O(n) time construction algo-
rithm. The index supports document listing queries in O(m+ndoc) time on con-
stant size alphabets. On general alphabets, the query time becomes O(m log |Σ|+
ndoc).

4 Space-Optimal Document Listing

We will derive a space-efficient version of the index structure derived in the
previous section. This is accomplished by representing the arrays A, C, E, as
well as the structure for RMQ, compressed. The algorithm for answering the
queries stays the same.

Representing A. Instead of suffix array A we can use any compressed suffix array
supporting the backward search [10]. Different time/space tradeoffs are possible,
e.g. one can find the range [sp, ep] of A containing the occurrences of P in O(m)
time, when |Σ| = O(polylog(n)), using an index of size nHh + o(n log |Σ|) bits
[5]. Here Hh = Hh(D) ≤ log |Σ| is the h-th order empirical entropy of the
text collection D (lower bound for the average number of bits needed to code a

210 N. Välimäki and V. Mäkinen

symbol using a fixed code table for each h-context in D). The given space bound
holds for small h (see [5]), but for our purposes it is enough to use an estimate
Hh ≤ log |Σ| that is independent of h. That is, the index size can be expressed
as n log |Σ|(1+o(1)) bits. The space bound is valid for general alphabets as well,
but the time requirement becomes O(m log |Σ|).

Representing C and E. The crucial observation is that the array C is not needed
at all, but instead it can be represented implicitly via the array E. Recall the
definition of C in Eq. (1). We can re-express the definition as

C[i] = selectE[i](E, rankE[i](E, i) − 1), (2)

where rankk′ (E, i) gives the number of times the value k′ appears in E[1, i] and
selectk′(E, j) gives the index of E containing the j-th occurrence of the value k′

(and we define selectk′(E, 0) = −1 to handle the boundary case). It is easy to
see that Eqs. (1) and (2) are identical; both express the link from the value E[i]
to its predecessor in E.

The array E can be seen as a sequence of symbols from the alphabet Σ′ =
{1, 2, . . . , k}. The functions rank and select on such sequences are an essential
part of the index structure we are already using as a representation of the suffix
array A [5]. That is, we can represent E using n log |Σ′|(1 + o(1)) = n log k(1 +
o(1)) bits of space for a so-called generalized wavelet tree [5]. Each value of E
as well as the queries rankk′ (E, i) and selectk′(E, j) can then be computed in
constant time when k = O(polylog(n)). On general k ≤ n, the space stays the
same, but the time requirement becomes O(log k).

Representing RMQ structure. The algorithm requires range minimum queries on
C. As C is now implicitly represented via E, some modifications to the existing
RMQ structures are needed. Sadakane [12] gives a succinct representation of the
RMQ structure in [4] requiring 4n+o(n) bits on top of the array indexed. Fischer
and Heun [6] have recently found another constant time RMQ representation
occupying only 2n + o(n) bits on top of the array indexed. We can use either of
these representations on top of our implicit representation of C. Explicit values of
C are mainly needed only during construction; queries access a constant number
of values in C, which can then be computed from the generalized wavelet tree
representation of E.

We have obtained the following result.

Theorem 2. The Document Listing problem can be solved using an index struc-
ture occupying n log |Σ|(1 + o(1)) + 2n + n log k(1 + o(1)) bits and having an
O(n log |Σ|+n log k) time construction algorithm. The index supports document
listing queries in O(m + ndoc) time when |Σ|, k = O(polylog(n)). On general
alphabets and on general document collection sizes k ≤ n, the query time com-
ponent O(m) becomes O(m log |Σ|) and O(ndoc) becomes O(ndoc log k), respec-
tively.

Proof. The space and query time bounds should be clear from the above discus-
sion. The construction time is achieved by building first the suffix array of D

Space-Efficient Algorithms for Document Retrieval 211

using e.g a linear time construction algorithm, and then building the generalized
wavelet tree on the Burrows-Wheeler transform and other structures to form the
compressed representation of the suffix array [5]. The array E and its generalized
wavelet tree are constructed similarly. The bottleneck is the generalized wavelet
tree construction. Although not explicitly stated in [5], it can be constructed in
time linear in the final result size in bits. ��

Notice that the obtained structure is space-optimal when k = o(|Σ|) and |Σ| =
O(polylog(n)).

The space requirement of the O(n log |Σ|) time construction algorithm is
O(n log n) bits. A slower construction algorithm, taking O(n log n log |Σ|) time,
that uses the same asymptotic space as the final structure, is easy to derive using
the dynamic wavelet tree proposed in [7]. Also the RMQ-solution by Fischer and
Heun can be constructed within these space and time limits.

4.1 Extended Functionality

So far our structure can list the documents containing the pattern. A useful
extension would be to list the occurrences inside the selected documents.

For motivation, imagine that the collection represents a file system; files are
concatenated into D in the order of a depth-first traversal. A search on the
file system would return the documents containing the query word. A user could
select documents of interest from the list, and ask to see the occurrence positions.
Most likely the user would like to see a context around each occurrence to judge
the relevance.

Also, to guide the selection of relevant documents, it would be good to have
the matching documents listed in the order of expected relevance; one way would
be to list the documents in the order of number of occurrences of the pattern.

We can support the above described functionalities with our index. First, to
have the matching documents listed in the order of relevance, one may use the
fact that the number of occurrences nocck′ in document k′ can be computed by

nocck′ = rankk′ (E, ep)− rankk′ (E, sp − 1). (3)

After sorting the numbers nocck′ , one has achieved the goal.
Second, to list the occurrences lying in a selected document (or in the range

of documents lying in a subdirectory), one may use the existing functionali-
ties of compressed suffix arrays to list all the occurrences. To make this faster
than just pruning the list, one can proceed as follows. Let k′ be a selected doc-
ument known to contain occurrences of P . To find the last occurrence inside
the suffix array range [sp, ep], one can query i = selectk′(E, rankk′ (E, ep)) and
compute the occurrence position A[i] by decoding the entry from the compressed
suffix array. The process is continued step-by-step with i = selectk′(E, rankk′

(E, i− 1)) until i < sp. At each step one can also output a context around each
occurrence.

212 N. Välimäki and V. Mäkinen

5 Autocompletion Search and Document Listing

Recently, Bast et al. [2] studied a related problem of providing a space-efficient
index for the so-called output-sensitive autocompletion search problem.

Consider a user typing a query in a document retrieval tool. The tool can
provide repeatedly a list of matching documents while the user is still completing
the query. This interactive feature is called autocompletion.

To avoid the trivial solution of starting the query on each new symbol from
scratch, Bast et al. proposed an online output-sensitive method that focuses
the query W on the so-far matching documents, say D′ ⊂ D. They developed
an index structure supporting this query assuming a text collection consisting
of distinct words. As they mention [2, p. 153], the structure can be extended
to the case of full-text sequences by using e.g. a suffix array on top of their
index.

Let us now consider how the structure of Bast et al., when applied to the
full-text setting, can be used to solve the Document Listing problem. Their
AUTOTREE structure is basically a succinct version of the following; a balanced
binary tree built on the lexicographically ordered suffixes of D such that each
node lists the documents containing suffixes in its subtree. In fact, the succinct
coding they propose (TREE+BITVEC) is almost identical to a balanced wavelet tree
built on our array E! However, the difference comes in the queries supported;
they engineer the representation suitable for fast autocompletion searches and
do not exploit the divide and conquer strategy to speed up the search. In-
stead they avoid reporting the same occurrence repeatedly by pruning the tree
suitably.

Nevertheless, one cannot obtain exactly as fast reporting time for the Doc-
ument Listing problem using AUTOTREE as what we obtain in Theorem 2; the
reason is that AUTOTREE outputs word-in-document pairs where the prefix of the
word matches the query pattern. In our case, this means outputting all suffixes
whose prefix matches the pattern (that is, all occurrences). However, one can
adjust the search algorithm in [2, page 154, step 2] to work only on the O(log n)
nodes covering the search range; in the worst case, each document can appear
in each of those nodes and be reported O(log n) times. This gives O(ndoc log n)
reporting time which is still inferior to our structure. The space usage of both
structures are closely the same, since in our terminology the size of AUTOTREE is
n�log k� bits (their N equals our number of suffixes n, and their n is our k).

6 Comparison to Sadakane’s Solution

Our solution is very similar to the Sadakane’s solution [12]. The difference is
in the use of generalized wavelet trees to represent the document numbers as-
sociated with the suffixes. Sadakane is able to represent this information in
O(k log n

k) bits, as we use n log k(1 + o(1)) bits. However, to retrieve the docu-
ment numbers, he needs to use the expensive O(logε n) time operation to retrieve
a suffix array value. Choosing a small value of ε affects the multiplicative con-
stant factor in the size of the underlying compressed suffix array inversely. We

Space-Efficient Algorithms for Document Retrieval 213

can do this in constant time using generalized wavelet tree, when the number of
documents is k = polylog(n).

7 Preliminary Experimental Results

Extrapolating from the experimental results in [11] for the Occurrence Listing
problem, one could expect that our structure is superior to inverted files in
typical document listing settings, that is, where the inverted file needs to examine
all occurrences and our index can work directly on the document level. The
space should be quite close as well; Inverted files use more space in representing
the document collection as such, while in our index the document collection is
compressed inside the index. Our n log k(1 + o(1)) may exceed the space needed
for the inverted file, when k is large.

We have a preliminary implementation ready of our structure, which is yet
not fully optimized for time or space usage. However, it is enough for validating
the claim of being faster when the number of occurrence positions nocc is large
but the number of matching documents ndoc is small. To see this, we compared
our structure to the same inverted file implementation as used in [11]. We used
different size prefixes of a catenated English text collection as the input and
partitioned each prefix to k equal size “documents”, with varying k. We selected
randomly from the text collection two sets of patterns, each containing 1000
patterns of length m = 3 and m = 4, respectively. The small pattern length
was used to guarantee that ndoc << nocc. Table 1 shows the results for the
inverted file, and Table 2 shows the results for our structure. The running times
are the total time needed for the 1000 queries, and values nocc/pattern and
ndoc/pattern are the average output sizes.

Table 1. Running times and index sizes for inverted file. The results correspond to
Occurrence Listing queries; the time needed for pruning the Document Listing result
would be negligible. We used parameter values Block size = 64, q-gram size = 3, and
list intersection limit = 10000 inside the inverted file implementation, see [11].

m = 3 m = 4
|text| (MB) |index| (MB) time (s) nocc/pattern time (s) nocc/pattern

1 2.00 0.35 1334.5 0.13 267.4
25 49.12 8.61 29085.4 2.23 3077.1
50 98.11 17.46 57136.0 4.29 6428.9

The results are as expected: The running times of both structures depend
almost linearly on their output sizes. When the input size grows, but the number
of documents (i.e. the maximum output size for our structure) stays the same,
our structure becomes faster than the inverted file. On short collections the
running times are almost the same.

This result with short patterns, combined with the observation in [11] that
compressed suffix arrays are faster than inverted files for Occurrence Listing

214 N. Välimäki and V. Mäkinen

Table 2. Running times and index sizes for our structure, with varying k

m = 3 m = 4
|text| (MB) k |index| (MB) time (s) ndoc/pattern time (s) ndoc/pattern

1 1 2.12 0.0029 1 0.0036 1
1 50 3.13 0.35 40.7 0.21 27.9
1 100 3.31 0.68 72.9 0.35 44.0
1 150 3.41 0.95 100.0 0.45 55.7
1 200 3.47 1.21 123.4 0.54 65.0
1 250 3.52 1.41 144.3 0.61 72.8

25 200 84.76 3.1 180.1 2.1 132.2
50 200 169.29 3.7 185.1 2.7 148.6

queries on long patterns, gives reason to argue that an index based on com-
pressed suffix arrays may be an attractive alternative to inverted files as a generic
building block for flexible Information Retrieval tasks.

8 Future Work

Muthukrishnan [9] studied many other important Information Retrieval tasks
such as document mining (finding the documents where a given pattern appears
more often than a given threshold) and proximity queries (where the occurrences
of patterns appearing near to each others are searched for). The solutions to
these problems use the same kind of ideas as for the Document Listing problem,
but are somewhat more complicated, and hence more difficult to make space-
efficient. It is an interesting future challenge to derive space-efficient solutions
to these problems such that they would become competitive with inverted file
-based solutions in practice.

Acknowledgement

We wish to thank Gonzalo Navarro for bringing [9] to our attention and anony-
mous reviewers for bringing [8] and[12] to our attention.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

2. Bast, H., Mortensen, C.W., Weber, I.: Output-sensitive autocompletion search. In:
Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS, vol. 4209,
pp. 150–162. Springer, Heidelberg (2006)

3. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2002)
4. Farach-Colton, M., Bender, M.A.: The lca problem revisited. In: Proc. Latin Amer-

ican Theoretical Informatics (LATIN), pp. 88–94 (2000)

Space-Efficient Algorithms for Document Retrieval 215

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representation
of sequences and full-text indexes. ACM Transactions on Algorithms (to appear)

6. Fischer, J., Heun, V.: A new succinct representation of rmq-information and im-
provements in the enhanced suffix array. In: Proceedings of the International Sym-
posium on Combinatorics, Algorithms, Probabilistic and Experimental Method-
ologies (ESCAPE’07), LNCS. Springer (to appear)

7. Mäkinen, V., Navarro, G.: Dynamic entropy compressed sequences and full-text
indexes. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp.
306–317. Springer, Heidelberg (2006)

8. Matias, Y., Muthukrishnan, S., Sahinalpk, S.C., Ziv, J.: Augmenting suffix trees
with applications. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.)
ESA 1998. LNCS, vol. 1461, pp. 67–78. Springer, Heidelberg (1998)

9. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Pro-
ceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA’02), pp. 657–666 (2002)

10. Navarro, G., Mäkinen, V.: Compressed full-text indexes (Article 2). ACM Com-
puting Surveys 39(1) (2007)

11. Puglisi, S.J., Smyth, W.F., Turpin, A.: Inverted files versus suffix arrays for locating
patterns in primary memory. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.)
SPIRE 2006. LNCS, vol. 4209, pp. 122–133. Springer, Heidelberg (2006)

12. Sadakane, K.: Space-efficient data structures for flexible text retrieval systems.
Journal of Discrete Algorithms. ISAAC 2002 5(1), 12–22 (2002)

13. Witten, I.H., Moffat, A., Bell, T.C.: Managing gigabytes scompressing and indexing
documents and images, 2nd edn. Morgan Kaufmann Publishers Inc, San Francisco,
CA, USA (1999)

Compressed Text Indexes with Fast Locate

Rodrigo González� and Gonzalo Navarro��

Dept. of Computer Science, University of Chile
{rgonzale,gnavarro}@dcc.uchile.cl

Abstract. Compressed text (self-)indexes have matured up to a point
where they can replace a text by a data structure that requires less
space and, in addition to giving access to arbitrary text passages, support
indexed text searches. At this point those indexes are competitive with
traditional text indexes (which are very large) for counting the number
of occurrences of a pattern in the text. Yet, they are still hundreds to
thousands of times slower when it comes to locating those occurrences in
the text. In this paper we introduce a new compression scheme for suffix
arrays which permits locating the occurrences extremely fast, while still
being much smaller than classical indexes. In addition, our index permits
a very efficient secondary memory implementation, where compression
permits reducing the amount of I/O needed to answer queries.

1 Introduction and Related Work

Compressed text indexing has become a popular alternative to cope with the
problem of giving indexed access to large text collections without using up too
much space. Reducing space is important because it gives one the chance of main-
taining the whole collection in main memory. The current trend in compressed
indexing is full-text compressed self-indexes [13,1,4,14,12,2]. Such a self-index (for
short) replaces the text by providing fast access to arbitrary text substrings, and
in addition gives indexed access to the text by supporting fast search for the oc-
currences of arbitrary patterns. These indexes take little space, usually from
30% to 150% of the text size (note that this includes the text). This is to be
compared with classical indexes such as suffix trees [15] and suffix arrays [10],
which require at the very least 10 and 4 times, respectively, the space of the
text, plus the text itself. In theoretical terms, to index a text T = t1 . . . tn over
an alphabet of size σ, the best self-indexes require nHk + o(n log σ) bits for any
k ≤ α logσ n and any constant 0 < α < 1, where Hk ≤ log σ is the k-th order
empirical entropy of T [11,13]1. Just the uncompressed text alone would need
n log σ bits, and classical indexes require O(n log n) bits on top of it.

The search functionality is given via two operations. The first is, given a
pattern P = p1 . . . pm, count the number of times P occurs in T . The second

� Work supported by Mecesup Grant UCH 0109, Chile.
�� This work was funded by a grant from Yahoo! Research Latin America.
1 In this paper log stands for log2.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 216–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Compressed Text Indexes with Fast Locate 217

is to locate the occurrences, that is, to list their positions in T . Current self-
indexes achieve a counting performance that is comparable in practice with that
of classical indexes. In theoretical terms, for the best self-indexes the complexity
is O(m(1+ log σ

log log n)) and even O(1+ m
logσ n), compared to O(m log σ) of suffix trees

and O(m log n) or O(m+log n) of suffix arrays. Locating, on the other hand, is far
behind, hundreds to thousands of times slower than their classical counterparts.
While classical indexes pay O(occ) time to locate the occ occurrences, self-indexes
pay O(occ logε n), where ε can in theory be any number larger than zero but is
in practice larger than 1. Worse than that, the memory access patterns of self-
indexes are highly non-local, which makes their potential secondary-memory
versions rather unpromising. Extraction of arbitrary text portions is also quite
slow and non-local compared to having the text directly available as in classical
indexes. The only implemented self-index which has more local accesses and
faster locate is the LZ-index [12], yet its counting time is not competitive.

In this paper we propose a suffix array compression technique that builds on
well-known regularity properties that show up in suffix arrays when the text they
index is compressible [13]. This regularity has been exploited in several ways in
the past [7,14,8], but we present a completely novel technique to take advantage
of it. We represent the suffix array using differential encoding, which converts the
regularities into true repetitions. Those repetitions are then factored out using
Re-Pair [6], a compression technique that builds a dictionary of phrases and
permits fast local decompression using only the dictionary (whose size one can
control at will, at the expense of losing some compression). We then introduce
some novel techniques to further compress the Re-Pair dictionary, which can be
of independent interest. We also use specific properties of suffix arrays to obtain
a much faster compression losing only 1%–14% of compression.

As a result, for several text types, we reduce the suffix array to 20–70% of
its original size, depending on its compressibility. This reduced index can still
extract any portion of the suffix array very fast by adding a small set of sampled
absolute values. We prove that the size of the result is O(Hk log(1/Hk)n log n)
bits for any k ≤ α logσ n and any constant 0 < α < 1. Note that this reduced
suffix array is not yet a self-index as it cannot reproduce the text.

This structure can be used in two ways. One way is to attach it to a self-
index able of counting, which in this process identifies as well the segment of
the (virtual) suffix array where the occurrences lie. We can then locate the
occurrences by decompressing that segment using our structure. The result is a
self-index that needs 1–3 times the text size (that is, considerably larger than
current self-indexes but also much smaller than classical indexes) and whose
counting and locating times are competitive with those of classical indexes, far
better for locating than current self-indexes. In theoretical terms, assuming for
example the use of an alphabet-friendly FM-index [2] for counting, our index
needs O(Hk log(1/Hk)n log n+n) bits of space, counts in time O(m(1+ log σ

log log n))
and locates the occ occurrences of P in time O(occ + log n).

A second and simpler way to use the structure is, together with the plain text,
as a replacement of the classical suffix array. In this case we must not only use

218 R. González and G. Navarro

it for locating the occurrences but also for binary searching. The binary search
can be done over the samples first and then decompress the area between two
consecutive samples to finish the search. This yields a very practical alternative
requiring 0.8–2.4 times the text size (as opposed to 4) plus the text.

On the ther hand, if the text is very large, even a compressed index must
reside on disk. Performing well on secondary memory with a compressed index
has proved extremely difficult, because of their non-local access pattern. Thanks
to its local decompression properties, our reduced suffix array performs very well
on secondary memory. It needs the optimal � occ

B � disk accesses for locating the
occ occurrences, being B the disk block size measured in integers. On average,
if the compression ratio (compressed divided by uncompressed suffix array size)
is 0 ≤ c ≤ 1, we perform � c·occ

B � accesses. That is, our index actually performs
better, not worse (as it seems to be the norm), thanks to compression. We show
how to upgrade this structure to an efficient secondary-memory self-index.

We experimentally explore the compression performance we achieve, the time
for locating, and the simplified suffix array implementation, comparing against
previous work. Our structure stands out as an excellent practical alternative.

2 Compressing the Suffix Array

Given a text T = t1 . . . tn over alphabet Σ of size σ, where for technical reasons
we assume tn = $ is smaller than any other character in Σ and appears nowhere
else in T , a suffix array A[1, n] is a permutation of [1, n] such that TA[i],n ≺
TA[i+1],n for all 1 ≤ i < n, being “≺” the lexicographical order. By Tj,n we
denote the suffix of T that starts at position j. Since all the occurrences of a
pattern P = p1 . . . pm in T are prefixes of some suffix, a couple of binary searches
in A suffice to identify the segment in A of all the suffixes that start with P ,
that is, the segment pointing to all the occurrences of P . Thus the suffix array
permits counting the occurrences of P in O(m log n) time and reporting the occ
occurrences in O(occ) time. With an additional array of integers, the counting
time can be reduced to O(m + log n) [10].

Suffix arrays turn out to be compressible whenever T is. The k-th order empir-
ical entropy of T , Hk [11], shows up in A in the form of large segments A[i, i+ �]
that appear elsewhere in A[j, j + �] with all the values shifted by one position,
A[j + s] = A[i + s] + 1 for 0 ≤ s ≤ �. Actually, one can partition A into runs
of maximal segments that appear repeated (shifted by 1) elsewhere, and the
number of such runs is at most nHk + σk for any k [8,13].

This property has been used several times in the past to compress A. Mäki-
nen’s Compact Suffix Array (CSA) [7] replaces runs with pointers to their de-
finition elsewhere in A, so that the run can be recovered by (recursively) ex-
panding the definition and shifting the values. Mäkinen and Navarro [8] use
the connection with FM-indexes (runs in A are related to equal-letter runs in
the Burrows-Wheeler transform of T , basic building block of FM-indexes) and
run-length compression. Yet, the most successful technique to take advantage of
those regularities has been the definition of function Ψ(i) = A−1[A[i] + 1] (or

Compressed Text Indexes with Fast Locate 219

A−1[1] if A[i] = n). It can be seen that Ψ(i) = Ψ(i − 1) + 1 within runs of A,
and therefore a differential encoding of Ψ is highly compressible [14].

We present a completely different method to compress A. We first represent
A in differential form: A′[1] = A[1] and A′[i] = A[i]−A[i− 1] if i > 1. Take now
a run of A of the form A[j + s] = A[i + s] + 1 for 0 ≤ s ≤ �. It is easy to see that
A′[j + s] = A′[i + s] for 1 ≤ s ≤ �. We have converted the runs of A into true
repetitions in A′.

The next step is to take advantage of those repetitions in a way that permits
fast local decompression of A′. We resort to Re-Pair [6], a dictionary-based com-
pression method based on the following algorithm: (1) identify the most frequent
pair A′[i]A′[i+1] in A′, let ab be such pair; (2) create a new integer symbol s ≥ n
larger than all existing symbols in A′ and add rule s → ab to a dictionary; (3)
replace every occurrence of ab in A by s2; (4) iterate until every pair has fre-
quency 1. The result of the compression is the table of rules (call it R) plus the
sequence of (original and new) symbols into which A′ has been compressed (call
it C). Note that R can be easily stored as a vector of pairs, so that rule s → ab
is represented by R[s− n + 1] = a : b.

Any portion of C can be easily decompressed in optimal time and fast in
practice. To decompress C[i], we first check if C[i] < n. If it is, then it is an
original symbol of A′ and we are done. Otherwise, we obtain both symbols from
R[C[i] − n + 1], and expand them recursively (they can in turn be original or
created symbols, and so on). We reproduce u cells of A′ in O(u) time, and the
accesses pattern is local if R is small.

Since R grows by 2 integers (a, b) for every new pair, we can stop creating
pairs when the most frequent one appears only twice. R can be further reduced
by preempting this process, which trades its size for overall compression ratio.

A few more structures are necessary to recover the values of A: (1) a sampling
of absolute values of A at regular intervals l; (2) a bitmap L[1, n] marking the
positions where each symbol of C (which could represent several symbols of A′)
starts in A′; (3) o(n) further bits to answer rank queries on L in constant time
[5,13]: rank(L, i) is the number of 1’s in L[1, i]. Thus, to retrieve A[i, j] we: (1)
see if there is a multiple of l in [i, j], extending i to the left or j to the right
to include such a multiple if necessary; (2) make sure we expand an integral
number of symbols in C, extending i to the left and j to the right until L[i] = 1
and L[j + 1] = 1; (3) use the mechanism described above to obtain A′[i, j] by
expanding C[rank(L, i), rank(L, j)]; (4) use any absolute sample of A included
in [i, j] to obtain, using the differences in A′[i, j], the values A[i, j]; (5) return
the values in the original interval [i, j] requested.

The overall time complexity of this decompression is the output size plus what
we have expanded the interval to include a multiple of l (i.e., O(l)) and to ensure
an integral number of symbols in C. The latter can be controlled by limiting the
length of the uncompressed version of the symbols we create.

2 If a = b it might be impossible to replace all occurrences, e.g. aa in aaa, but in such
case one can at least replace each other occurrence in a row.

220 R. González and G. Navarro

2.1 Faster Compression

A weak point in our scheme is compression speed. Re-Pair can be implemented
in O(n) time, but needs too much space [6]. We have used instead an O(n log n)
time algorithm that requires less memory. We omit the details for lack of space.

We note that Ψ (which is easily built in O(n) time from A) can be used to
obtain a much faster compression algorithm, which in practice compresses only
slightly less than the original Re-Pair. Recall that Ψ(i) tells where in A is the
value A[i]+1. The idea is that, if A[i, i+�] is a run such that A[j+s] = A[i+s]+1
for 0 ≤ s ≤ � (and thus A′[j + s] = A′[i + s] for 1 ≤ s ≤ �), then Ψ(i + s) = j + s
for 0 ≤ s ≤ �. Thus, by following permutation Ψ we have a good chance of finding
repeated pairs in A′ (although, as explained, Re-Pair does a slightly better job).

The algorithm is thus as follows. Let i1 = A−1[1]. We start at i = i1 and
see if A′[i]A′[i + 1] = A′[Ψ(i)]A′[Ψ(i) + 1]. If this does not hold, we move on to
i ← Ψ(i) and iterate. If the equality holds, we start a chain of replacements: We
add a new pair A′[i]A′[i + 1] to R, make the replacements at i and Ψ(i) and
move on with i ← Ψ(i), replacing until the pair changes. When the pair changes,
that is A′[i]A′[i+1] 	= A′[Ψ(i)]A′[Ψ(i)+1], we restart the process with i ← Ψ(i),
looking again for a new pair to create. When we traverse the whole A′ without
finding any pair to replace, we are done. With some care (omitted for lack of
space) this algorithm runs in O(n) time.

2.2 Analysis

We analyze the compression ratio of our data structure. Let N be the number of
runs in Ψ . As shown in [8,13], N ≤ Hkn + σk for any k ≥ 0. Except for the first
cell of each run, we have that A′[i] = A′[Ψ(i)] within the run. Thus, we cut off
the first cell of each run, to obtain up to 2N runs now. Every pair A′[i]A′[i + 1]
contained in such runs must be equal to A′[Ψ(i)]A′[Ψ(i)+1], thus the only pairs
of cells A′[i]A′[i + 1] that are not equal to the “next” pair are those where i
is the last cell of its run. This shows that there are at most 2N different pairs
in A′, and thus the most frequent pair appears at least n

2N times. Because of
overlaps, it could be that only each other occurrence can be replaced, thus the
total number of replacements in the first iteration is at least βn, for β = 1

4N .
After we choose and replace the most frequent pair, we end up with at most

n−βn integers in A′. The number of runs has not varied, because a replacement
cannot split a run. Thus, the same argument shows that the second time we
remove at least β(n − βn) = βn(1 − β) cells. The third replacement removes at
least β(n − βn − βn(1 − β)) = βn(1 − β)2 cells. It is easy to see by induction
that the i-th iteration removes βn(1 − β)i−1 cells.

After M iterations we have removed
∑M

i=1 βn(1−β)i−1 = n−n(1−β)M cells,
and hence the length of C is n(1−β)M and the length of R is 2M . The total size

is optimized for M∗ =
ln n+ln ln 1

1−β −ln 2

ln 1
1−β

, where it is
2(ln n+ln ln 1

1−β −ln 2+1)

ln 1
1−β

. Since

ln 1
1−β = ln 4N

4N−1 = 1
4N (1 + O(1

N)), the total size is 8N ln n
4N + O(N) integers.

Compressed Text Indexes with Fast Locate 221

Since N ≤ Hkn + σk, if we stick to k ≤ α logσ n for any constant 0 < α < 1,
it holds σk = O(nα) and the total space is O(Hk log 1

Hk
n logn) + o(n) bits, as

even after the M∗ replacements the numbers need O(log n) bits.

Theorem 1. Our structure representing A′ using R and C needs O(Hk log 1
Hk

n log n) + o(n) bits, for any k ≤ α logσ n and any constant 0 < α < 1.

As a comparison, Mäkinen’s CSA [7] needs O(Hkn log n) bits [13], which is always
better as a function of Hk. Yet, both tend to the same space as Hk goes to zero.
Other self-indexes are usually smaller.

We can also show that the simplified replacement method of Section 2.1
reaches the same asymptotic space complexity (proof omitted for lack of space).

2.3 Compressing the Dictionary

We now develop some techniques to reduce the dictionary of rules R without
affecting C. Those can be of independent interest to improve Re-Pair in general.

A first observation is that, if we have a rule s → ab and s is only mentioned
in another rule s′ → sc, then we could perfectly remove rule s → ab and rewrite
s′ → abc. This gives a net gain of one integer, but now we have rules of varying
length. This is easy to manage, but we prefer to go further. We develop a tech-
nique that permits eliminating every rule definition that is used within R, once
or more, and gain one integer for each rule eliminated. The key idea is to write
down explicitly the binary tree formed by expanding the definitions (by doing a
preorder traversal and writing 1 for internal nodes and 0 for leaves), so that not
only the largest symbol (tree root) can be referenced later, but also any subtree.

For example, assume the rules R = {s → ab, t → sc, u → ts}, and C = tub.
We could first represent the rules by the bitmap RB = 100100100 (where s
corresponds to position 1, t to 4, and u to 7) and the sequence RS = ab1c41
(we are using letters for the original symbols of A′, and the bitmap positions as
the identifiers of created symbols3). We express C as 47b. To expand, say, 4, we
go to position 4 in RB and compute rank0(RB , 4) = 2 (number of zeros up to
position 4, rank0(i) = i− rank(i)). Thus the corresponding symbols in RS start
at position 3. We extract one new symbol from RS for each new zero we traverse
in RB , and stop when the number of zeros traversed exceeds the number of ones
(this means we have completed the subtree traversal). This way we obtain the
definition 1c for symbol 4.

Let us now reduce the dictionary by expanding the definition of s within t
(even when s is used elsewhere). The new bitmap is RB = 11000100 (where
t = 1, s = 2, and u = 6), the sequence is RS = abc12, and C = 16b. We can
now remove the definition of t by expanding it within u. This produces the new
bitmap RB = 1110000 (where u = 1, t = 2, s = 3), the sequence RS = abc3 and
C = 21b. Further reduction is not possible because u’s definition is only used

3 In practice letters are numbers up to n−1 and the bitmap positions are distinguished
by adding them n − 1.

222 R. González and G. Navarro

from C4. At the cost of storing at most 2|R| bits, we can reduce R by one integer
for each definition that is used at least once within R.

The reduction can be easily implemented in linear time, avoiding the suc-
cessive renamings of the example. We first count how many times each rule is
used within R. Then we traverse R and only write down (the bits of RB and
the sequence RS for) the entries with zero count. We recursively expand those
entries, appending the resulting tree structure to RB and leaf identifiers to RS .
Whenever we find a created symbol that does not yet have an identifier, we give
it as identifier the current position in RB and recursively expand it. Otherwise
the expansion finishes and we write down a leaf (a "0") in RB and the identifier
in RS . Then we rewrite C using the renamed identifiers.

3 Towards a Text Index

As explained in the Introduction, the reduced suffix array is not by itself a text
index. We explore now different alternatives to upgrade it to full-text index.

3.1 A Main Memory Self-index

One possible choice is to add one of the many self-indexes able of counting the
occurrences of P in little space [1,2,14,4]. Those indexes actually find out the
area [i, j] where the occurrences of P lie in A. Then locating the occurrences
boils down to decompressing A[i, j] from our structure.

To fix ideas, consider the alphabet-friendly FM-index [2]. It takes nHk +
o(n log σ) bits of space for any k ≤ α logσ n and constant 0 < α < 1, and can
count in time O(m(1 + log σ

log log n)). Our additional structure dominates the space
complexity, requiring O(Hk log(1/Hk)n log n) + o(n) bits for the representation
of A′. To this we must add O((n/l) log n) bits for the absolute samples, and the
extra cost to limit the formation of symbols that represent very long sequences.
If we limit such lengths to l as well, we have an overhead of O((n/l) log n) bits,
as this can be regarded as inserting a spurious symbol every l positions in A′

to prevent the formation of longer symbols. By choosing l = log n we have
O(Hk log(1/Hk)n log n + n) bits of space, and time O(occ + log n) for locating
the occurrences. Other tradeoffs are possible, for example having n log1−ε n bits
of extra space and O(occ + logε n) time, for any 0 < ε < 1.

Extracting substrings can be done with the same FM-index, but the time
to display � text characters is, using n log1−ε n additional bits of space, O((� +
logε n)(1+ log σ

log log n)). By using the structure proposed in [3] we have other nHk +
o(n log σ) bits of space for k = o(logσ n) (this space is asymptotically negligible)
and can extract the characters in optimal time O(1 + �

logσ n).

Theorem 2. There exists a self-index for text T of length n over an alphabet
of size σ and k-th order entropy Hk, which requires O(Hk log(1/Hk)n log n +
4 It is tempting to replace u in C, as it appears only once, but our example is artificial:

A symbol that is not mentioned in R must appear at least twice in C.

Compressed Text Indexes with Fast Locate 223

n log1−ε n) + o(n log σ) bits of space, for any 0 ≤ ε ≤ 1. It can count the oc-
currences of a pattern of length m in time O(m(1 + log σ

log log n)) and locate its occ

occurrences in time O(occ + logε n). For k = o(logσ n) it can display any text
substring of length � in time O(1 + �

logσ n). For larger k ≤ α logσ n, for any

constant 0 < α < 1, this time becomes O((� + logε n)(1 + log σ
log log n)).

3.2 A Smaller Classical Index

A simple and practical alternative is to use our reduced suffix array just like the
classical suffix array, that is, not only for locating but also for searching, keeping
the text in uncompressed form as well. This is not anymore a compressed index,
but a practical alternative to a classical index.

The binary search of the interval that corresponds to P will start over the
absolute samples of our data structure. Only when we have identified the interval
between consecutive samples of A where the binary search must continue, we
decompress the whole interval and finish the binary search. If the two binary
searches finish in different intervals, we will also need to decompress the intervals
in between for locating all the occurrences. For displaying, the text is at hand.

The cost of this search is O(m log n) plus the time needed to decompress the
portion of A between two absolute samples. We can easily force the compressor to
make sure that no symbol in C spans the limit between two such intervals, so that
the complexity of this decompression can be controlled with the sampling rate
l. For example, l = O(log n) guarantees a total search time of O(m log n + occ),
just as the suffix array version that requires 4 times the text size (plus text).

Theorem 3. There exists a full-text index for text T of length n over an alphabet
of size σ and k-th order entropy Hk, which requires O(Hk log(1/Hk)n log n + n)
bits of space in addition to T , for any k ≤ α logσ n and any constant 0 < α < 1.
It can count the occurrences of a pattern of length m in time O(m log n) and
locate its occ occurrences in time O(occ + log n).

3.3 A Secondary Memory Index

In [9], an index of size nH0 + O(n log log σ) bits is described, which can identify
the area of A containing the occurrences of a pattern of length m (and thus
count its occurrences) using at most 2m(1 + �logB n�) accesses to disk, where
B log n is the number of bits in a disk block. However, this index is extremely
slow to locate the occurrences: each locate needs O(logε n) random accesses to
disk, where in practice ε = 1. This is achieved by storing the inverse of Ψ [14].

If, instead, we keep only the data structures for counting, and use our reduced
suffix array, we can obtain � occ

B � accesses to report the occ occurrences, which
is worst-case optimal. Assume table R is small enough to fit in main memory
(recall we can always force so, losing some compression). Then, we read the
corresponding area of C from disk, and uncompress each cell in memory without
any further disk access (the area of C to read can be obtained from an in-memory

224 R. González and G. Navarro

binary search over an array storing the absolute position of the first C cell of
each disk block). On average, if we achieved compression ratio c ≤ 1, we will
need to read c ·occ cells from C, at a cost of � c·occ

B �. Therefore, we achieve for the
first time a locating complexity that is better thanks to compression, not worse.
Note that Mäkinen’s CSA would not perform well at all under this scenario, as
the decompression process is highly non-local.

To extract text passages of length � we could use compressed sequence mech-
anisms like [3], which easily adapt to disk and have local decompression.

4 Experimental Results

We present three series of experiments in this section. The first one regards
compression performance, the second the use of our technique as a plug-in for
boosting the locating performance of a self-index, and the third the use of our
technique as a classical index using reduced space. We use text collections ob-
tained from the PizzaChili site, http://pizzachili.dcc.uchile.cl.

Compression performance. In Section 2.1 we mentioned that compression time
of our scheme would be an issue and gave an approximate method based on Ψ
which should be faster. Table 1 compares the performance of the exact Re-Pair
compression algorithm (RP) and that of the Ψ -based approximation (RPΨ). We
take absolute samples each 32 positions.

Table 1. Index size and build time using Re-Pair (RP) and its Ψ -based approximation
(RPΨ). For the xml case, we also include a Re-Pair version (RPC) with rules up to
length 256. Compression ratio compares with the 4n bytes needed by a suffix array.

Collection, size Method Index Size Compr. Re-Pai Expected Dict. Main Compr. with
(MB), H3/H0 (MB) Ratio Time (s) decompr. compr. memory 5% in RAM
xml, 100, RP 94.04 23.51% 25986 6939.99 57% 49% 34.29%
26.28% RPΨ 102.76 25.69% 260 7570.49 57% 51% 81.85%

RPC 99.82 24.96% 25129 134.99 58% 47% 35.86%
dna, 100, RP 333.96 83.55% 11150 5.01 79% 19% 95.52%
97.02% RPΨ 339.45 84.86% 546 4.73 78% 20% 101.4%
english, 100, RP 221.31 55.33% 93421 238.31 59% 43% 87.98%
53.05% RPΨ 241.33 60.33% 485 202.79 60% 44% 99.33%
pitches, 50, RP 115.54 57.77% 15371 33.71 70% 21% 67.54%
61.37% RPΨ 124.32 62.16% 180 26.78 67% 25% 85.36%
proteins, 100, RP 286.66 71.67% 3143 58.97 80% 10% 79.58%
97.21% RPΨ 295.15 73.78% 641 52.52 75% 13% 91.83%
sources, 100, RP 151.81 37.95% 106173 2046.80 58% 48% 64.03%
40.74% RPΨ 176.15 44.04% 377 1778.79 58% 50% 95.67%

The approximation runs 5 to 280 times faster and just loses 1%–14% in com-
pression ratio. RP runs at 3 to 100 sec/MB, whereas RPΨ needs 0.26 to 0.65
sec/MB. Most of the indexing time is spent this compression; the rest adds up
around 120 sec overall in all cases.

Compression ratio varies widely. On XML data we achieve 23.5% compres-
sion (the reduced suffix array is smaller than the text!), whereas compression

Compressed Text Indexes with Fast Locate 225

is extremely poor on DNA. In many text types of interest we slash the suffix
array to around half of its size. Below the name of each collection we wrote the
percentage H3/H0, which gives an idea of the compressibility of the collection
independent of its alphabet size (e.g. it is very easy to compress DNA to 25%
because there are mainly 4 symbols but one chooses to spend a byte for each in
the uncompressed text, otherwise DNA is almost incompressible).

Other statistics are available. In column 6 we measure the average length of
a cell of C if we choose uniformly in A (longer cells are in addition more likely
to be chosen for decompression). Those numbers explain the times obtained for
the next series of experiments. Note that they are related to compressibility, but
not as much as one could expect. Rather, the numbers obey to a more detailed
structure of the suffix array: they are higher when the compression is not uniform
across the array. In those cases, we can limit the maximum length of a C cell. To
show how this impacts compression ratio and decompression speed, we include
a so-called RPC method for xml (which has the largest C lengths). RPC forbids
a rule to cross a 256-cell boundary. We can see that compression ratio is almost
the same, worsening by 6.17% on xml (and less on others, not shown).

In column 7 we show the compression ratio achieved with the technique of
Section 2.3, charging it the bitmap introduced as well. It can be seen that the
technique is rather effective. Column 8 shows the percentage of the compressed
structure (i.e., the compressed version of R) that should stay in RAM in order
to be able to access C and the samples in secondary memory, as advocated in
Section 3.3. Note that the percentage is not negligible when compression is good,
and that 100 minus the percentage almost gives the percentage taken by C. The
last column shows how much compression we would achieve if the structures
that must reside on RAM were limited to 5% of the original suffix array size
(this is measured before dictionary compression, so it would be around 3% after
compression). We still obtain attractive compression performance on texts like
XML, sources and pitches (recall that on secondary memory the compression
ratio translates almost directly to decompression performance). As expected,
RPΨ does a much poorer job here, as it does not choose the best pairs early.

A plugin for self-indexes. Section 3.1 considers using our reduced suffix array
as a plugin to provide fast locate on existing self-indexes. In this experiment we
plug our structure to the counting structures of the alphabet-friendly FM-index
(AFI [2]), and compare the result against the original AFI, the Sadakane’s CSA
[14] and the SSA [2,8], all from PizzaChili. We increased the sampling rate of
the locating structures of AFI, CSA and SSA, to match the size of our index
(RPT). To save space we exclude DNA and pitches.

Fig. 1 shows the results. The experiment consists in choosing random ranges
of the suffix array and obtaining the values. This simulates a locating query
where we can control the amount of occurrences to locate. Our reduced suffix
array has a constant time overhead (which is related to column 6 in Table 1 and
the sample rate of absolute values) and from then on the cost per cell located is
very low. As a consequence, it crosses sooner or later all the other indexes. For
example, it becomes the fastest on XML after locating 4,000 occurrences, but it

226 R. González and G. Navarro

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000

tim
e(

se
c

pe
r

10
4 e

xt
ra

ct
io

ns
)

Extracted Size

Extract over dblp.xml.100MB

RPT
SSA
AFI

CSA
RPC

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

tim
e(

se
c

pe
r

10
4 e

xt
ra

ct
io

ns
)

Extracted Size

Extract over sources.100MB

RPT
SSA
AFI

CSA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35 40

tim
e(

se
c

pe
r

10
4 e

xt
ra

ct
io

ns
)

Extracted Size

Extract over english.100MB

RPT
SSA
AFI

CSA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20

tim
e(

se
c

pe
r

10
4 e

xt
ra

ct
io

ns
)

Extracted Size

Extract over proteins.100MB

RPT
SSA
AFI

CSA

Fig. 1. Time to locate occurrences, as a function of the number of occurrences to locate.
On xml, RPC becomes the fastest when extracting more than 2 results.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e(
se

c
pe

r
10

6 lo
c)

IndexSize/TextSize-1

Locate xml.100MB

RPT m=05
MakCSA m=05

SA m=05
RPT m=10

MakCSA m=10
SA m=10

RPT m=15
MakCSA m=15

SA m=15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1.5 2 2.5 3 3.5 4

T
im

e(
se

c
pe

r
10

6 lo
c)

IndexSize/TextSize-1

Locate english.100MB

RPT m=05
MakCSA m=05

SA m=05
RPT m=10

MakCSA m=10
SA m=10

RPT m=15
MakCSA m=15

SA m=15
RPT m=20

MakCSA m=20
SA m=20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2.6 2.8 3 3.2 3.4 3.6 3.8 4

T
im

e(
se

c
pe

r
10

6 lo
c)

IndexSize/TextSize-1

Locate proteins.100MB

RPT m=05
MakCSA m=05

SA m=05
RPT m=10

MakCSA m=10
SA m=10

RPT m=20
MakCSA m=20

SA m=20
RPT m=40

MakCSA m=40
SA m=40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 1.5 2 2.5 3 3.5 4

T
im

e(
se

c
pe

r
10

6 lo
c)

IndexSize/TextSize-1

Locate sources.100MB

RPT m=05
MakCSA m=05

SA m=05
RPT m=10

MakCSA m=10
SA m=10

RPT m=20
MakCSA m=20

SA m=20
RPT m=40

MakCSA m=40
SA m=40

Fig. 2. Simulating a classical suffix array to binary search and locate the occurrences

Compressed Text Indexes with Fast Locate 227

needs just 6 occurrences to become the fastest on proteins. However, the RPC
version shows an impressive (more than 500-fold) improvement on the cost per
cell, standing as an excellent alternative when compression is so good.

A classical reduced index. Finally, we test our reduced suffix array as a re-
placement of the suffix array, that is, adding it the text and using it for binary
searching, as explained in Section 3.2. We compare it with a plain suffix array
(SA) and Mäkinen’s CSA (MakCSA [7]), as the latter operates similarly.

Fig. 2 shows the result. The CSA offers space-time tradeoffs, whereas those of
our index (sample rate for absolute values) did not significantly affect the time.
Our structure stands out as a relevant space/time tradeoffs, especially when
locating many occurrences (i.e. on short patterns).

References

1. Ferragina, P., Manzini, G.: Indexing compressed texts. J. of the ACM 52(4), 552–
581 (2005)

2. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representation
of sequences and full-text indexes. ACM Transactions on Algorithms, 2006. TR
2004-05, Technische Fakultät, Univ. Bielefeld, Germany (to appear)

3. González, R., Navarro, G.: Statistical encoding of succinct data structures. In:
Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 295–306.
Springer, Heidelberg (2006)

4. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA, pp. 841–850 (2003)

5. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th FOCS, pp.
549–554 (1989)

6. Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88(11),
1722–1732 (2000)

7. Mäkinen, V.: Compact suffix array — a space-efficient full-text index. Fundamenta
Informaticae 56(1–2), 191–210 (2003)

8. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nordic J. of Computing 12(1), 40–66 (2005)

9. Mäkinen, V., Navarro, G., Sadakane, K.: Advantages of backward searching —
efficient secondary memory and distributed implementation of compressed suffix
arrays. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp.
681–692. Springer, Heidelberg (2004)

10. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Computing 22(5), 935–948 (1993)

11. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. of the ACM 48(3),
407–430 (2001)

12. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. of Discrete Algo-
rithms 2(1), 87–114 (2004)

13. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
(to appear)

14. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
of Algorithms 48(2), 294–313 (2003)

15. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th IEEE Symp. on
Switching and Automata Theory, pp. 1–11 (1973)

Processing Compressed Texts:

A Tractability Border�

Yury Lifshits

Steklov Institute of Mathematics at St.Petersburg, Russia
yura@logic.pdmi.ras.ru

Abstract. What kind of operations can we perform effectively (without
full unpacking) with compressed texts? In this paper we consider three
fundamental problems: (1) check the equality of two compressed texts,
(2) check whether one compressed text is a substring of another com-
pressed text, and (3) compute the number of different symbols (Hamming
distance) between two compressed texts of the same length.

We present an algorithm that solves the first problem in O(n3) time
and the second problem in O(n2m) time. Here n is the size of compressed
representation (we consider representations by straight-line programs) of
the text and m is the size of compressed representation of the pattern.
Next, we prove that the third problem is actually #P-complete. Thus,
we indicate a pair of similar problems (equivalence checking, Hamming
distance computation) that have radically different complexity on com-
pressed texts. Our algorithmic technique used for problems (1) and (2)
helps for computing minimal periods and covers of compressed texts.

1 Introduction

How can one minimize data storage space, without compromising too much on
the query processing time? Here we address this problem using data compression
perspective. Namely, what kind of problems can be solved in time polynomially
depending on the size of compressed representation of texts?

Algorithms on compressed texts have applications in various areas of theoret-
ical computer science. They were used for solving word equations in polynomial
space [23]; for solving program equivalence within some specific class in poly-
nomial time [14]; for verification of message sequence charts [9]. Fast search in
compressed texts is also important for practical problems. Compression for in-
dices of search engines is critical for web, media search, bioinformatics databases.
Next, processing compressed objects has close relation to software/hardware ver-
ification. Usual verification task is to check some safety property on all possible
system states. However, number of such states is so large that can not be verified
by brute force approach. The only way is to store and process all states in some
implicit (compressed) form.

� Support by grants INTAS 04-77-7173 and NSh-8464.2006.1 is gratefully acknowl-
edged.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 228–240, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Processing Compressed Texts: A Tractability Border 229

Problem. Straight-line program (SLP) is now a widely accepted abstract model
of compressed text. Actually it is just a specific class of context-free grammars
that generate exactly one string. Rytter showed [24] that resulting encodings of
most classical compression methods (LZ-family, RLE, dictionary methods) can
be quickly translated to SLP. We give all details on SLPs in Section 2. Recently,
an interesting variation of SLP was presented under the name of collage systems
[13]. For any text problem on SLP-generated strings we ask two following ques-
tions: (1) Does a polynomial algorithm exist? (2) If yes, what is exact complexity
of the problem? We can think about negative answer to the first question (say,
NP-hardness) as an evidence that naive “generate-and-solve” is the best way for
that particular problem.

Consider complexity of pattern matching problem on SLP-generated strings
(sometimes called fully compressed pattern matching or FCPM). That is, given
a SLPs generating a pattern P and a text T answer whether P is a substring of T
and provide a succinct description of all occurrences. An important special case
is equivalence problem for SLP-generated texts. Then we generalize compressed
equivalence problem to compressed Hamming distance problem. Namely, given
two SLP-generated texts of the same length, compute the number of positions
where original texts differ from each other. Equality checking of compressed
texts is a natural seems to be a natural problem related to checking changes
in backup systems. Fully compressed pattern matching can be used in software
verification and media search (audio/video pattern might be quite large and
also require compression). Hamming distance is a simple form of approximate
matching which is widely used in bioinformatics as well as in media search.

Compressed equality problem was solved for the first time in the paper [22]
in 1994 in O(n4) time. The first solution for fully compressed pattern match-
ing appeared a year later in the paper [12]. Next, a polynomial algorithm for
computing combinatorial properties of SLP-generated text was presented in [8].
Finally, in 1997 Miyazaki, Shinohara and Takeda [18] constructed new O(n2m2)
algorithm for FCPM, where m and n are the sizes of SLPs that generate P
and T , correspondingly. In 2000 for one quite special class of SLP the FCPM
problem was solved in time O(mn) [10]. Nevertheless, nothing was known about
complexity of compressed Hamming distance problem.

Our results. The key result of the paper is a new O(n2m) algorithm for pattern
matching on SLP-generated texts. As before, m and n are sizes of SLPs gen-
erating P and T , correspondingly. This algorithm is not just an improvement
over previous ones [8,10,12,18,22] but is also simpler than they are. Next, we
prove #P-completeness of computing Hamming distance between compressed
texts in Section 4. Recall that #P is a class of functions, a kind of extension for
class of predicates NP. Here for the first time we have closely related problems
(equivalence checking, Hamming distance computation) from different sides of
the border between efficiently solvable problems on SLP-generated texts and in-
tractable ones. Algorithmic technique from our main FCPM algorithm could be
used for computing the shortest period/cover of compressed text. We show this
application and state some questions for further research in Section 5.

230 Y. Lifshits

Historical remarks. Algorithms for finding an explicitly given pattern in a
compressed texts were the first results in the field [1,6]. Next, polynomial algo-
rithms for regular expression matching [19], approximate pattern matching [11]
and subsequence matching [5] were constructed for SLP-generated texts. En-
couraging experimental results are reported in [20]. Some other problems turned
out to be hard. Context-free language membership [17], two-dimensional pat-
tern matching [4], fully compressed subsequence matching [16] are all at least
NP-hard. The paper [25] surveys the field of processing compressed texts.

2 Compressed Strings Are Straight-Line Programs

A Straight-line program (SLP) is a context-free grammar generating exactly
one string. Moreover, we allow only two types of productions: Xi → a and
Xi → XpXq with i > p, q. The string represented by a given SLP is a unique
text corresponding to the last nonterminal Xm. Although in previous papers Xi

denotes only a nonterminal symbol while the corresponding text was denoted by
val(Xi) or eval(Xi) we identify this notions and use Xi both as a nonterminal
symbol and as the corresponding text. Hopefully, the right meaning is always
clear from the context. We say that the size of SLP is equal to the number of
productions.

Example. Consider string abaababaabaab. It could be generated by the following
SLP: X7 → X6X5, X6 → X5X4, X5 → X4X3, X4 → X3X2, X3 → X2X1,
X2 → a, X1 → b.

In fact, the notion of SLP describes
only decompression operation. We do
not care how such an SLP was ob-
tained. Surprisingly, while the compres-
sion methods vary in many practical al-
gorithms of Lempel-Ziv family and run-
length encoding, the decompression goes
in almost the same way. In 2003 Rytter
[24] showed that given any LZ-encoding
of string T we could efficiently get an
SLP encoding for the same string which is at most O(log |T |) times longer than
the original LZ-encoding. This translation allows us to construct algorithms only
in the simplest SLP model. If we get a different encoding, we just translate it
to SLP before applying our algorithm. Moreover, if we apply Rytter’s transla-
tion to LZ77-encoding of a string T , then we get an O(log |T |)-approximation of
the minimal SLP generating T . The straight-line programs allow the exponen-
tial ratio between the size of SLP and the length of original text. For example
Xn → Xn−1Xn−1, . . . X2 → X1X1, X1 → a has n rules and generates 2n−1-long
text.

We use both log |T | and n (number of rules in SLP) as parameters of algo-
rithms’ complexity. For example, we prefer O(n log |T |) bound to O(n2), since

Processing Compressed Texts: A Tractability Border 231

in practice the ratio between the size of SLP and the length of the text might
be much smaller than exponential.

3 A New Algorithm for Fully Compressed Pattern
Matching

Decision version of the fully compressed pattern matching problem (FCPM) is
as follows:

INPUT: Two straight-line programs generating P and T
OUTPUT: Yes/No (whether P is a substring in T ?)

Other variations are: to find the first occurrence, to count all occurrences, to
check whether there is an occurrence from the given position and to compute
a “compressed” representation of all occurrences. Our plan is to solve the last
one, that is, to compute an auxiliary data structure that contains all necessary
information for effective answering to the other questions.

We use a computational assumption which was implicitly used in all previous
algorithms. In analysis of our algorithm we count arithmetical operations on
positions in original texts as unit operations. In fact, text positions are integers
with at most log |T | bits in binary form. Hence, in terms of bit operations the
algorithm’s complexity is larger than our O(n2m) estimate up to some log |T |-
dependent factor.

Explanation of the algorithm goes in three steps. We introduce a special data
structure (AP-table) and show how to solve pattern matching problem using
this table in Subsection 3.1. Then we show how to compute AP-table using local
search procedure in Subsection 3.2. Finally, we present an algorithm for local
search in Subsection 3.3.

3.1 Pattern Matching Via Table of Arithmetical Progressions

We need some notation and terminology. We call a position in the text a point
between two consequent letters. Hence, the text a1 . . . an has positions 0, . . . , n
where first is in front of the first letter and the last one after the last letter.
We say that some substring touches a given position if this position is either
inside or on the border of that substring. We use the term occurrence both for
a corresponding substring and for its starting position. Again, we hope that the
right meaning is always clear from the context.

Let P1, . . . , Pm and T1, . . . , Tn be nonterminal symbols of SLPs generating P
and T . For each of these texts we define a special cut position. It is a starting
position for one-letter texts and merging position for Xi = XrXs. In the example
above, the cut position for the intermediate text X6 is between 5th and 6th
letters: abaab|aba, since X6 is obtained by concatenating X5 = abaab and X4 =
aba.

Our algorithm is based on the following theoretical fact (it was already used
in [18], a similar technique was used also in [2]):

232 Y. Lifshits

Lemma 1 (Basic Lemma). All occurrences of P in T touching any given
position form a single arithmetical progression (ar.pr.)

2 4 6

P P P

Common
position

The AP-table (table of arithmetical progressions) is defined as follows. For
every 1 ≤ i ≤ m, 1 ≤ j ≤ n the value AP [i, j] is a code of ar.pr. of occurrences
of Pi in Tj that touch the cut of Tj. Note that any ar.pr. could be encoded by
three integers: first position, difference, number of elements. If |Tj | < |Pi| we
define AP [i, j] = ∅1, and if text is large enough but there are no occurrences we
define AP [i, j] = ∅2.

P1

...

Pm

T1
. . . Tn

Pi

Tj

Claim 1: Using AP-table (actually, only top row is necessary) one can solve
decision, count and checking versions of FCPM in time O(n).

Claim 2: One can compute the whole AP-table by dynamic programming
method in time O(n2m).

Proof of Claim 1. We get the answer for decision FCPM by the following
rule: P occurs in T iff there is j such that AP [m, j] is nonempty. Checking
and counting are slightly more tricky. Recursive algorithm for checking: test
whether the candidate occurrence touches the cut in the current text. If yes,
use AP-table and check the membership in the corresponding ar.pr., otherwise
call recursively this procedure either for the left or for the right part. We can
inductively count the number of P -occurrences in all T1, . . . , Tn. To start, we
just get the cardinality of the corresponding ar.pr. from AP-table. Inductive
step: add results for the left part, for the right part and cardinality of central
ar.pr. without “just-touching” occurrences.

3.2 Computing AP-Table

Sketch of the algorithm for computing AP-table:

Processing Compressed Texts: A Tractability Border 233

1. Preprocessing: compute lengths and cut positions for all intermediate
texts;

2. Compute all rows and columns of AP-table that correspond to one-
letter texts;

3. From the smallest pattern to the largest one, from the smallest text
to the largest one consequently compute AP[i,j]:

(a) Compute occurrences of the larger part of Pi in Tj around the
cut of Tj ;

(b) Compute occurrences of the smaller part of Pi in Tj that start
at ending positions of the larger part occurrences;

(c) Intersect occurrences of smaller and larger part of Pi and merge
all results to a single ar.pr.

Step 1: preprocessing. At the very beginning we inductively compute arrays
of lengths, cut positions, first letter, last letter of the texts P1, . . . , Pm, T1, . . . , Tn

in time O(n + m).

Step 2: computing AP-table elements in one-letter rows/columns. Case
of |Pi| = 1: compare it with Tj if |Tj | = 1 or compare it with the last letter
of the left part and the first one of the right part (we get this letters from
precomputation stage). The resulting ar.pr. has at most two elements. Hence,
just O(1) time used for computing every cell in the table. Case of |Tj| = 1: if
|Pi| > 1 return ∅1, else compare letters. Also O(1) time is enough for every
element.

Step 3: general routine for computing next element of AP-table. After
one-letter rows and columns we fill AP-table in lexicographic order of pairs
(i, j). Let Pi = PrPs. We use already obtained elements AP [r, 1], . . . , AP [r, j]
and AP [s, 1], . . . , AP [s, j] for computing AP [i, j] . In other words, we only need
information about occurrences of left/right part of the current pattern in the
current and all previous texts.

Pi

Pr

Ps

Tj

Order of computation:
“grey” values are used for computing “black” one
(we assume Pi = PrPs)

Let the cut position in Tj be γ (we get it from the preprocessing stage), and
without loss of generality let |Pr| ≥ |Ps|. The intersection method is (1) to
compute all occurrences of Pr “around” cut of Tj , (2) to compute all occurrences
of Ps “around” cut of Tj , and (3) shift the latter by |Pr| and intersect.

Miyazaki et al. [18] construct a O(mn) realization of intersection method. We
use a different (more accurate)way and new technical tricks that require only O(n)
time for computing AP [i, j]. We use the same first step as in intersection method.
But on the second one we look only for Ps occurrences that start from Pr endings.

234 Y. Lifshits

We design a special auxiliary local search procedure that extracts useful informa-
tion from already computed part of AP-table. Procedure LocalSearch(i, j, [α, β])
returns occurrences of Pi in Tj inside the interval [α, β]. Important properties: (1)
Local search uses values AP[i,k] for 1 ≤ k ≤ j, (2) It works properly only when
|β − α| ≤ 3|Pi|, (3) It works in time O(j), (4) The output of local search is a pair
of ar.pr., all occurrences inside each ar.pr. have a common position, and all ele-
ments of the second are to the right of all elements of the first. We now show how
to compute a new element using 5 local search calls.

Step 3a: finding occurrences of bigger part of the pattern. We apply
local search for finding all occurrences of Pr in the interval [γ−|Pi|, γ + |Pr|]. Its
length is |Pi|+ |Pr| ≤ 3|Pr|. As an answer we get two ar.pr. of all potential starts
of Pr occurrences that touch the cut. Unfortunately, we are not able to do the
same for Ps, since the length of interesting interval is not necessarily constant
in terms of |Ps|. So we are going to find only occurrences of Ps that start from
endings of two arithmetical progressions of Pr occurrences.

Step 3b: finding occurrences of smaller part of the pattern. We process
each ar.pr. separately. We call an ending continental if it is at least |Ps| far from
the last ending in progression, otherwise we call it seaside.

|Ps|Tj
continental seaside

| |← →

Pr Pr Pr Pr Pr

Since we have an ar.pr. of Pr occurrences that have common position (property
4 of local search), all substrings of length |Ps| starting from continental endings
are identical. Hence, we need to check all seaside endings and only one conti-
nental position. For checking the seaside region we just apply local search for
|Ps|-neighborhood of last endpoint and intersect the answer with ar.pr. of sea-
side ending positions. Intersecting two ar.pr. could be done in time O(log |T |).
Indeed, the difference of resulting ar.pr. is equal to the least common multiple
of differences of initial progressions. To find the first common point we should
solve an equation of type ax ≡ b (mod c). This kind of equations can be solved
by technique similar to Euclid algorithm.

For checking continental region we apply local search for |Ps| substring start-
ing from the first continental ending.

Step 3c: simplifying answer to a single progression. Complete answer
consists of all continental endings/or none of them, plus some sub-progression
of seaside endings, plus something similar for the second ar.pr. Since all of these
four parts are ar.pr. going one after another, we could simplify the answer to
one ar.pr. (it must be one ar.pr. by Basic Lemma) in time O(1).

Complexity analysis. We use one local search call for Pr, four local search
calls for Ps, and twice compute the intersection of arithmetical progressions.
Hence, we perform 7 steps of O(n) complexity for computing a new element.

Processing Compressed Texts: A Tractability Border 235

3.3 Realization of Local Search

Local search finds all Pi occurrences in the substring Tj[α, β]. On the first step we
run recursive crawling procedure with main parameters (i, j, α, β). After halt-
ing of all computation branches we get a sorted list of progressions representing
Pi occurrences within [α, β] interval in Tj . Then we run merging procedure
that simplifies all progressions to two ones.

Crawling procedure. Here we have three main parameters (i, j, [α, β]) and two
auxiliary ones: global shift and pointer to output list. Initially we start with main
parameters of local search, zero shift and a pointer to empty list. In every call
we take the ar.pr. of occurrences of Pi in Tj that touch the cut, leave only occur-
rences within the interval, and output this truncated ar.pr. (adding global shift)
to the list (using current pointer). After that, we check whether the intersection
of the interval [α, β] with left/right part of Tj is at least |Pi| long. If so, we re-
cursively call crawling procedure with the same i, the index of left/right part of
Tj, and with this intersection interval. We also update global shift parameter for
the right part and use new pointers to places just before/after inserted element.

Consider the set of all intervals we work with during the crawling procedure.
Note that, by construction, any pair of them are either disjoint or embedded.
Moreover, since the initial interval is at most 3|Pi|, there are no four pairwise
disjoint intervals in this set. If we consider a sequence of embedded intervals,
then all intervals correspond to their own intermediate text from T1, . . . , Tj .
Therefore, there were at most 3j recursive calls in crawling procedure and it
works in time O(j). At the end we get a sorted list of at most 3n arithmetical
progressions. By “sorted” we mean that the last element of k-th progression
is less than or equal to the first one of k + 1-th progression. It follows from
construction of crawling procedure, that output progressions could have only
first/last elements in common.

Merging procedure. We go through the resulting list of progressions. Namely,
we compare the distance between the last element of current progression and
the first element of the next progression with the differences of these two pro-
gressions. If all three numbers are equal we merge the next progression with
the current one. Otherwise we just announce a new progression. Applying Basic
Lemma to δ1 = � 2α+β

3 � and δ2 = �α+2β
3 � positions, we see that all occurrences

of Pi in [α, β] interval form at most two (one after another) arithmetical progres-
sions. Namely, those who touch δ1 and those who don’t touch but touch δ2. Here
we use that β − α ≤ 3|Pi|, and therefore any occurrence of Pi touches either δ1

or δ2. Hence, our merging procedure starts a new progression at most once.

3.4 Discussion on the Algorithm

Here we point out two possible improvements of the algorithm. Consider in
details the “new element routine”. Note that local search uses only O(h) time,
where h is the height of the SLP generating T , while intersection of arithmetical
progressions uses even O(log |T |). Hence, if it is possible to “balance” any SLP up

236 Y. Lifshits

to O(log |T |) height, then the bound for working time of our algorithm becomes
O(nm log |T |).

It is interesting to consider more rules for generating texts, since collage sys-
tems [13] and LZ77 [26] use concatenations and truncations. Indeed, as Rytter
[24] showed, we could leave only concatenations expanding the archive just by
factor O(log |T |). However, we hope that the presented technique works directly
for the system of truncation/concatenation rules. We also claim that AP-table
might be translated to a polynomial-sized SLP generating all occurrences of P
in T .

4 Hardness Result

Hamming distance (denoted as HD(S, T)) between two strings of the same
length is the number of characters which differ. Compressed Hamming distance
problem (counting version): given two straight-line programs generating texts of
the same length, compute Hamming distance between them.

A function belongs to class #P if there exists a nondeterministic Turing
machine M such that the function value corresponding to input x is equal
to the number of accepting branches of M(x). In other words, there exists
a polynomially-computable function G(x, y) such that f(x) = #{y|G(x, y) =
“yes”}. A function f has a [1]-Turing reduction to a function g, if there exist
polynomially-computable functions E and D such that f(x) = D(g(E(x))). We
call a function to be #P-complete (under [1]-Turing reductions), if it belongs to
the class #P and every other function from this class has a [1]-Turing reduction
to it.

Theorem 1. Compressed Hamming distance problem is #P-complete.

Proof. Membership in #P. We can use a one-position-comparison as G func-
tion: G(T, S; y) = “yes”, if Ty 	= Sy. Then number of y giving answer “yes” is
exactly equal to Hamming distance. Function G is polynomially computable.
Indeed, knowing lengths of all intermediate texts we can walk through SLP de-
compression tree “from the top to the bottom” and compute value of Ty in linear
time.

#P-hardness. It is enough to show a reduction from another complete prob-
lem. Recall the well-known #P-complete problem subset sum [7]: given integers
w1, . . . , wn, t in binary form, compute the number of sequences x1, . . . , xn ∈
{0, 1} such that

∑n
i=1 xi · wi = t. In other words, how many subsets of W =

{w1, . . . , wn} have the sum of elements equal to t? We now construct a [1]-
Turing reduction from subset sum to compressed Hamming distance. Let us fix
input values for subset sum. We are going to construct two straight-line pro-
grams such that Hamming distance between texts generated by them can help
to solve subset sum problem.

Our idea is the following. Let s = w1 + · · · + wn. We construct two texts of
length (s+1)2n, describing them as a sequence of 2n blocks of size s+1. The first
text T is an encoding of t. All its blocks are the same. All symbols except one

Processing Compressed Texts: A Tractability Border 237

are “0”, the only “1” is located at the t + 1-th place. Blocks of the second text
S correspond to all possible subsets of W . In every such block the only “1” is
placed exactly after the place equal to the sum of elements of the corresponding
subset. In a formal way, we can describe T and S by the following formulas:

T = (0t10s−t)2
n

, S =
2n−1∏
x=0

(0x̄·w̄10s−x̄·w̄).

Here x̄ · w̄ =
∑

xiwi and
∏

denotes concatenation.
The string S (let us call it Lohrey string) was used for the first time in the

Markus Lohrey’s paper [17], later it was reused in [16]. Lohrey proved in [17]
that knowing input values for subset sum one can construct polynomial-size SLP
that generates S and T in polynomial time. Notice that HD(T, S) is exactly two
times the number of subsets of W with elements’ sum nonequal to t. Therefore,
the subset sum answer can be computed as 2n − 1

2HD(T, S).

It turns out that #P-complete problems could be divided in subclasses that
are not Karp-reducible to each other. E.g. recently [21] a new class TotP was
presented. A function belongs to TotP, if there exists a nondeterministic machine
M such that f(x) is equal to the number of all branches of M(x) minus one. Many
problems with polynomially-easy “yes/no” version and #P-complete counting
version belong to TotP.

We can show that compressed Hamming distance belongs to TotP. Indeed, we
can test equality of substrings and split computation every time when both the
left half and the right half of a substring in the first text are not equal to the
corresponding left/right halves of the same interval in the second text. We should
also add a dummy computing branch to every pair of nonequal compressed texts.

5 Consequences and Open Problems

A period of string T is a string W (and also an integer |W |) such that T is a
prefix of W k for some integer k. A cover (notion originated from [3]) of a string
T is a string C such that any character in T is covered by some occurrence of C
in T . Problem of compressed periods/covers: given a compressed string T , find
the length of minimal period/cover and compute a “compressed” representation
of all periods/covers.

Theorem 2. Assume that AP-table can be computed in time O((n+m)k). Then
compressed periods problem can be solved in time O(nk log |T |), while compressed
cover problem can be solved in time O(nk log2 |T |).

Corollary. Our O(n2m) algorithm for AP-table provides O(n3 log |T |) and O(n3

log2 |T |) complexity bounds for compressed periods and compressed covers, cor-
respondingly.

238 Y. Lifshits

For complete proof of Theorem 2 we refer to technical report version of this
paper [15]. The compressed periods problem was introduced in 1996 in the ex-
tended abstract [8]. Unfortunately, the full version of the algorithm given in [8]
(it works in O(n5 log3 |T |) time) was never published.

We conclude with some problems and questions for further research:

1. To speed up the presented O(n2m) algorithm for fully compressed pat-
tern matching. Conjecture: improvement to O(nm log |T |) is possible. More
precisely, we believe that every element in AP-table can be computed in
O(log |T |) time.

2. Is it possible to speed up computing of edit distance (Levenshtein distance)
in the case when one text is highly compressible? Formally, is it possible
to compute the edit distance in O(nm) time, where n is the length of T1,
and m is the size of SLP generating T2? This result leads to speedup of
edit distance computing in case of “superlogarithmic” compression ratio.
Recall that the classical algorithm has O(n2

log n) complexity.
3. Consider two SLP-generated texts. Is it possible to compute the length of

the longest common substring for them in polynomial (from SLPs’ size)
time?

Compressed suffix tree. Does there exist a data structure for text representa-
tion such that (1) it allows pattern matching in time linear to the pattern’s length,
and (2) for some reasonable family of “regular” texts this structure requires less
storing space than original text itself?

Application to verification. Algorithm for symbolic verification is one of
the major results in model checking. It uses OBDD (ordered binary decision
diagrams) representations for sets of states and transitions. It is easy to show
that every OBDD representation can be translated to the SLP-representation of
the same size. On the other hand there are sets for which SLP representation is
logarithmically smaller. In order to replace OBDD representations by SLPs we
have to answer the following question. Given two SLP-represented sets A and
B, how to compute a close-to-minimal SLP representing A ∩ B and a close-to-
minimal SLP representing A ∪ B?

References

1. Amir, A., Benson, G., Farach, M.: Let sleeping files lie: Pattern matching in Z-
compressed files. In: SODA’94 (1994)

2. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS,
vol. 2748, pp. 340–352. Springer, Heidelberg (2003)

3. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39(1), 17–20 (1991)

4. Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the
complexity of pattern matching for highly compressed two-dimensional texts. Jour-
nal of Computer and Systems Science 65(2), 332–350 (2002)

Processing Compressed Texts: A Tractability Border 239

5. Cegielski, P., Guessarian, I., Lifshits, Y., Matiyasevich, Y.: Window subsequence
problems for compressed texts. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.)
CSR 2006. LNCS, vol. 3967, Springer, Heidelberg (2006)

6. Farach, M., Thorup, M.: String matching in lempel-ziv compressed strings. In:
STOC ’95, pp. 703–712. ACM Press, New York (1995)

7. Garey, M., Johnson, D.: Computers and Intractability: a Guide to the Theory of
NP-completeness. Freeman (1979)

8. Ga̧sieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for
Lempel-Ziv encoding (extended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT
1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)

9. Genest, B., Muscholl, A.: Pattern matching and membership for hierarchical mes-
sage sequence charts. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp.
326–340. Springer, Heidelberg (2002)

10. Hirao, M., Shinohara, A., Takeda, M., Arikawa, S.: Fully compressed pattern
matching algorithm for balanced straight-line programs. In: SPIRE’00, pp. 132–
138. IEEE Computer Society Press, Los Alamitos (2000)

11. Kärkkäinen, J., Navarro, G., Ukkonen, E.: Approximate string matching over Ziv-
Lempel compressed text. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS,
vol. 1848, pp. 195–209. Springer, Heidelberg (2000)

12. Karpinski, M., Rytter, W., Shinohara, A.: Pattern-matching for strings with short
descriptions. In: Galil, Z., Ukkonen, E. (eds.) Combinatorial Pattern Matching.
LNCS, vol. 937, pp. 205–214. Springer, Heidelberg (1995)

13. Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A., Arikawa, S.:
Collage system: a unifying framework for compressed pattern matching. Theor.
Comput. Sci. 298(1), 253–272 (2003)

14. Lasota, S., Rytter, W.: Faster algorithm for bisimulation equivalence of normed
context-free processes. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 646–657. Springer, Heidelberg (2006)

15. Lifshits, Y.: Algorithmic properties of compressed texts. Technical Report PDMI,
23/2006 (2006)

16. Lifshits, Y., Lohrey, M.: Quering and embedding compressed texts. In: Královič,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Hei-
delberg (2006)

17. Lohrey, M.: Word problems on compressed word. In: Dı́az, J., Karhumäki, J., Lep-
istö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 906–918. Springer,
Heidelberg (2004)

18. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight line programs. In: Hein, J., Apostolico, A. (eds.)
Combinatorial Pattern Matching. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg
(1997)

19. Navarro, G.: Regular expression searching on compressed text. J. of Discrete Al-
gorithms 1(5-6), 423–443 (2003)

20. Navarro, G., Raffinot, M.: A general practical approach to pattern matching over
Ziv-Lempel compressed text. In: Crochemore, M., Paterson, M.S. (eds.) Combina-
torial Pattern Matching. LNCS, vol. 1645, pp. 14–36. Springer, Heidelberg (1999)

21. Pagourtzis, A., Zachos, S.: The complexity of counting functions with easy decision
version. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
741–752. Springer, Heidelberg (2006)

22. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg
(1994)

240 Y. Lifshits

23. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3), 483–496 (2004)

24. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003)

25. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with im-
plicit input. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004)

26. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3), 337–343 (1977)

Common Structured Patterns in Linear Graphs:

Approximation and Combinatorics

Guillaume Fertin1,�, Danny Hermelin2,��,
Romeo Rizzi3,�, and Stéphane Vialette4,�

1 LINA, Univ. Nantes, 2 rue de la Houssinière, Nantes, France
Guillaume.Fertin@lina.univ-nantes.fr

2 Dpt. Computer Science, Univ. Haifa, Mount Carmel, Haifa, Israel
danny@cri.haifa.ac.il

3 DIMI, Univ. Udine, Udine, Italy
Romeo.Rizzi@dimi.uniud.it

4 LRI, UMR 8623, Univ. Paris-Sud, Orsay, France
Stephane.Vialette@lri.fr

Abstract. A linear graph is a graph whose vertices are linearly ordered.
This linear ordering allows pairs of disjoint edges to be either preceding
(<), nesting (�) or crossing (�). Given a family of linear graphs, and a
non-empty subset R ⊆ {<, �, �}, we are interested in the MCSP prob-
lem: Find a maximum size edge-disjoint graph, with edge-pairs all compa-
rable by one of the relations in R, that occurs as a subgraph in each of the
linear graphs of the family. In this paper, we generalize the framework
of Davydov and Batzoglou by considering patterns comparable by all
possible subsets R ⊆ {<, �, �}. This is motivated by the fact that many
biological applications require considering crossing structures, and by the
fact that different combinations of the relations above give rise to differ-
ent generalizations of natural combinatorial problems. Our results can
be summarized as follows: We give tight hardness results for the MCSP

problem for {<, �}-structured patterns and {�, �}-structured patterns.
Furthermore, we prove that the problem is approximable within ratios:
(i) 2H (k) for {<, �}-structured patterns, (ii) k1/2 for {�, �}-structured
patterns, and (iii) O(

√
k lg k) for {<, �, �}-structured patterns, where

k is the size of the optimal solution and H (k) =
�k

i=1 1/i is the k-th
harmonic number.

1 Introduction

Many biological molecules such as RNA and proteins exhibit a three-dimensional
structure that determines most of their functionality. This three dimensional
structure can be modeled in two dimensions by an edge-disjoint linear graph, i.e.,
a graph with linearly ordered vertices that are incident to exactly one edge. The

� Partially supported by the French-Italian Galileo Project PAI 08484VH.
�� Partially supported by the Caesarea Edmond Benjamin de Rothschild Foundation

Institute (CRI).

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 241–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

242 G. Fertin et al.

corresponding structure-similarity or structure-prediction problems that arise in
such contexts usually translate to finding common edge-disjoint subgraphs, or
common structured patterns, that occur in a family of general linear graphs. Ex-
amples of such problems are Longest Common Subsequence [19,20], Maxi-

mum Common Ordered Tree Inclusion [2,8,21], Arc-Preserving Subse-

quence [4,14,17], and Maximum Contact Map Overlap [15]. In this paper,
we study a general framework for such problems which we call Maximum Com-

mon Structured Pattern (MCSP).
The MCSP problem was introduced by Davydov and Batzoglou [10] in the

context of (non-coding) RNA secondary structure prediction via multiple struc-
tural alignment. There, an RNA sequence of n nucleotides is represented by a
linear graph with n vertices, and an edge connects two vertices if and only if
their corresponding nucleotides are complementary. A family of linear graphs is
then used to represent a family of functionally-related RNAs, and a common
structured pattern in such a family is considered to be a probably common sec-
ondary structure element of the family. The ordering amongst the vertices of a
linear graph allows a pair of disjoint edges in the graph to be either preceding
(<), nesting (�), or crossing (�). Since most RNA secondary structures translate
to linear graphs with non-crossing edges, Davydov and Batzoglou [10] focused
on the variant of MCSP where the common structured pattern is required to
be non-crossing. However, there are known RNAs which have secondary struc-
tures that translate to linear graphs with a few edge-crossings (pseudo-knotted
RNA secondary structures). Also, when predicting proteins rather than RNA
structures, the non-crossing restriction becomes an even bigger limitation since
the folding structures of proteins are often more complex than those of RNAs.
In [16], it is argued that many important protein secondary structure elements
like alpha helices and anti-parallel beta sheets exhibit {<, �}-structured patterns,
i.e. patterns which are non-nesting rather than non-crossing.

In this sequel, we present a framework which extends the work of [10] by
considering different types of common structured patterns. Following [31], we
consider structured patterns that are allowed to have crossing edges, and which
might also be restricted to be non-nesting or non-preceding. More specifically,
the MCSP problem receives as input a family of linear graphs and a non-empty
subset R ⊆ {<, �, �}, and the goal is to find a maximum common R-structured
pattern. We study the combinatorics behind the structures of these different
types of patterns, with a focus on approximation algorithms for MCSP.

The paper is organized as follows. In the remaining part of this section we
briefly review related work and notations that will be used throughout the paper.
In Section 2, we discuss simple structured patterns (i.e. R-structured patterns,
where R ∈ {<, �, �}) and {<, �}-structured patterns. Following this, we discuss
the more complex {<, �}-structured patterns and {�, �}-structured patterns in
Section 3 and Section 4 respectively. In Section 5, we deal with general structured
patterns, i.e. {<, �, �}-structured patterns. An overview of the paper, along with
some open problems, is given in Section 6.

Common Structured Patterns in Linear Graphs 243

Fig. 1. Four linear graphs and a {<, �, �}-common structured pattern. The occurrence
of the structured pattern in each graph is emphasized in bold. Edges b,c, and d, are
nesting in edge a. Edge b precedes edge d, and they both cross edge c.

1.1 Related Work

There are many structural comparison problems that are closely related to
MCSP. First, as mentioned previously, MCSP for {<, �}-structured patterns
has been studied by Davydov and Batzoglou in [10] under the name Maximum

Common Nested Subgraph. Recently, new results concerning this problem
appeared in [25]. We discuss the results of both these works in Section 2.

Closely related to MCSP are Arc-Preserving Subsequence [4,14,17], and
Maximum Contact Map Overlap [15]. Both are concerned with finding
maximum common subgraphs in a pair of linear graphs, except that in Arc-

Preserving Subsequence the vertices of the linear graphs are assigned let-
ters from some given alphabet, and an occurrence of a common subgraph in
each of the linear graphs is required to preserve the letters, as well as their
arc structure. Another closely related problem is Pattern Matching over

2-Interval Set [31], where one asks whether a structured pattern occurs in a
given 2-interval set, which is a generalization of a linear graph. The 2-Interval

Pattern problem [5,9,31] asks to find the maximum R-structured pattern, for
some given R ⊆ {<, �, �}, in a single family of 2-interval sets.

There is a well-known bijective correspondence between {<, �}-structured
patterns and ordered forests – the nesting relation corresponds to the ances-
tor/predecessor relationship between the nodes, and the precedence relation
corresponds to their order. Hence, MCSP for {<, �}-structured patterns can
be viewed as the problem of finding a tree which is included in all trees of a
given tree family, the Maximum Common Ordered Tree Inclusion prob-
lem. Determining whether a tree is included in another is studied in [2,8,21].
Finding the maximum common tree included in a pair of trees can be done us-
ing the algorithms given in [22,29]. The MCSP problem for {<, �}-structured
patterns has been studied in [10,25]. We discuss the results there in Section 2.

Like {<, �}-structured patterns, {�, �}-structured patterns also correspond
to natural combinatorial objects, namely permutations (see Section 4). In [6],
the authors studied the problem of determining whether a permutation-pattern
occurs in a given permutation, the so called Pattern Matching for Permu-

tations problem. This problem corresponds to determining whether a {�, �}-
structured pattern is a subpattern of another {�, �}-structured pattern. Bose,

a
d

b
c

244 G. Fertin et al.

Buss, and Lubiw proved that Pattern Matching for Permutations is NP-
complete [6].

Determining whether a given {<, �}-structured pattern occurs in a general
linear graph has been studied in [16,26]. Gramm [16] gave a polynomial-time
algorithm for this problem. Recently, Li and Li [26] proved that this algorithm
was incorrect and showed the problem was in fact NP-complete. Prior to this,
Blin et al. [5] proved that a generalization of this problem, where the linear
graph is replaced by a 2-interval set, is NP-complete. Finally, probably the
oldest and most famous problem related to MCSP is the Longest Common

Subsequence (LCS) [19,20] problem, where one wishes to find the longest
common subsequence in two or more sequences. Important developments of the
initial algorithms of [19,20] can be found in [3,12,28]. Maier [27] proved that the
LCS problem for multiple sequences is NP-hard.

1.2 Terminology and Basic Definitions

For a graph G, we denote V (G) as the set of vertices and E(G) as the set of
edges. The order and the size of G stand for |V (G)| and |E(G)|, respectively. A
linear graph of order n is a vertex-labeled graph where each vertex is labeled by a
distinct label from {1, 2, . . . , n}. Thus, it can be viewed as a graph with vertices
embedded on the integral line, yielding a total order amongst them. In case of
linear graphs, we write an edge between vertices i and j, i < j, as the pair (i, j).
Two edges of a linear graph are disjoint if they do not share a common vertex.
A linear graph G is said to be edge-disjoint if it is composed of disjoint edges,
i.e. if G is a matching. Of particular interest are the relations between pairs of
disjoint edges [31]: Let e = (i, j) and e′ = (i′, j′) be two disjoint edges in a linear
graph G; we write (i) e < e′ (e precedes e′) if i < j < i′ < j′, (ii) e � e′ (e is
nested in e′) if i′ < i < j < j′ and (iii) e � e′ (e and e′ cross) if i < i′ < j < j′.

Two edges e and e′ are R-comparable, for some R ∈ {<, �, �}, if eRe′ or e′Re.
For a subset R ⊆ {<, �, �}, R 	= ∅, e and e′ are said to be R-comparable if e
and e′ are R-comparable for some R ∈ R. A set of edges E (or a linear graph
G with E(G) = E) is R-comparable if any pair of distinct edges e, e′ ∈ E are
R-comparable. A subgraph of a linear graph G is a linear graph H which can
be obtained from G by a series of vertex and edge deletions, where a deletion
of vertex i results in removing vertex i and all edges incident to it from the
graph, and then relabeling all vertices j with j > i to j − 1. An edge-disjoint
subgraph of a linear graph is called a structured-pattern. For a family of linear
graphs G = G1, . . . , Gn, a common structured pattern of G is an edge-disjoint
linear graph H that is a subgraph of Gi, for all 1 ≤ i ≤ n. Following the above
notation, H is called an R-structured pattern, for some non-emptyR ⊆ {<, �, �},
if E(H) is R-comparable.

Definition 1. Given a family of linear graphs G = G1, . . . , Gn and a subset R ⊆
{<, �, �}, R 	= ∅, the Maximum Common Structured Pattern (MCSP)
problem asks to find a maximum-size common R-structured pattern of G.

Common Structured Patterns in Linear Graphs 245

We will use the following terminology to describe special edge-disjoint linear
graphs. A linear graph is called a sequence if it is {<}-comparable, a tower if
it is {�}-comparable, and a staircase if it is {�}-comparable. We define the
width (resp. height and depth) of a linear graph to be the size of the maximum
cardinality sequence (resp. tower and staircase) subgraph of the graph. A {<, �}-
comparable linear graph with the additional property that any two maximal
towers in it do not share an edge is called a sequence of towers. Similarly, a
{<, �}-comparable linear graph is a sequence of staircases if any two maximal
staircases do not share an edge. A tower of staircases is a {�, �}-comparable
linear graph where any pair of maximal staircases do not share an edge, and
a staircase of towers is a {�, �}-comparable linear graph where any pair of
maximal towers do not share an edge. A sequence of towers (resp. sequence
of staircases, tower of staircases, and staircase of towers) is balanced if all of
its maximal towers (resp. staircases, staircases, and towers) are of equal size.
Figure 2 illustrates an example of the above types of linear graphs.

Fig. 2. Examples of restricted edge-disjoint linear graphs: (a) a tower of height 6, (b)
a staircase of depth 6, (c) a sequence of towers of width 4 and height 2, (d) a balanced
sequence of staircases of width 2 and depth 3, (e) a tower of staircases of height 3 and
depth 3 and (f) a balanced staircase of towers of height 2 and depth 3

2 Simple and {<, �}-Structured Patterns

A structured pattern is simple if it is an R-structured pattern for a single rela-
tion R ∈ {<, �, �}. We begin our study by considering the MCSP problem for
simple structured patterns, and for {<, �}-structured patterns. We first discuss
the analogy between the relations we defined for disjoint edges in a linear graph,
and well-studied relations defined for families of intervals. We show that known
algorithms on interval families can be used to solve MCSP for simple struc-
tured patterns in polynomial-time. Following this, we discuss results presented
in [10,25] for MCSP for {<, �}-structured patterns.

For a given linear graph G of size m, let I(G) = {[i, j] | (i, j) ∈ E(G)} be
the family of intervals obtained by considering each edge of G as an interval of
the line, closed between both its endpoints. A pair of {<}-comparable edges in

(a)

(b)

(c)

(d)

(e)

(f)

246 G. Fertin et al.

E(G) correspond to a pair of disjoint intervals in I(G), a pair of {�}-comparable
edges correspond to a pair of nesting intervals, and a pair of {�}-comparable
edges correspond to a pair of overlapping intervals. Note that this correspondence
is bi-directional only if G is edge-disjoint, since a pair of edges sharing a vertex
can correspond to a pair of nesting or overlapping intervals. Nevertheless, we can
always modify I(G) in such a way, so that all intervals have unique endpoints,
and so that any pair of intervals who shared an endpoint now become non-nesting
(resp. non-overlapping). A maximum pairwise disjoint subset of intervals can be
computed in linear time using standard dynamic-programming, assuming the
interval family is given in a sorted manner [18] (which we can provide in linear
time in our case using bucket sorting). A maximum pairwise nesting subset can
be computed in O(m lg lg m) in an interval family of m intervals (see for example
the algorithm in [7]), and a maximum pairwise overlapping subset in O(m1.5)
time [30].

Lemma 1. Let G be a linear graph of size m. Then there exists a O(m) (resp.
O(m lg lg m) and O(m1.5)) time algorithm for finding the largest {<}-comparable
(resp. {�}-comparable and {�}-comparable) subgraph of G.

Theorem 1. The MCSP problem for {<}-structured patterns (resp. {�}-
structured patterns and {�}-structured patterns) is solvable in O(nm) (resp.
O(nm lg lg m) and O(nm1.5)) time, where n = |G| and m = maxG∈G |E(G)|.

We next consider {<, �}-structured patterns. The MCSP problem for this type
of patterns was considered by [10,25], in the context of multiple RNA structural
alignment.

Theorem 2 ([25]). The MCSP problem for {<, �}-structured patterns is NP-
hard even if each input linear graph is a sequence of towers of height at most 2.

Note, however, that the problem MCSP is polynomial-time solvable in case the
number of input linear graphs is a constant [25]. Also, it is proven in [25] that
MCSP for {<, �}-structured patterns is approximable with ratio lg k+1, where
k is the size of the optimal solution.

Theorem 3 ([25]). The MCSP problem for {<, �}-structured patterns is ap-
proximable within ratio O(lg k) in O(nm2) time, where k is the size of an optimal
solution, n = |G|, and m is the maximum size of any graph in G.

3 {<, �}-Structured Patterns

We now turn to consider MCSP for {<, �}-structured patterns. We begin by
proving a tight hardness result for the problem. Following this, we present
an approximation algorithm for the problem which achieves a ratio of 2H (k)
in O(nm3 log2 m) time, where k is the size of an optimal solution, H (k) =∑k

i=1 1/i, n = |G|, and m is the maximum size of any graph in G.

Common Structured Patterns in Linear Graphs 247

Theorem 4. The MCSP problem for {<, �}-structured patterns is NP-hard
even if each input linear graph is a sequence of staircases of depth at most 2.

A recent result [26] implies that MCSP for {<, �}-structured patterns is hard
even if G consists of only two graphs of unlimited structure. We next show
that one can approximate the maximum common {<, �}-structured pattern of G
within ratio 2H (k). The first ingredient of our proof is to observe that every {<
, �}-structured pattern contains a sequence of staircases of substantial size. The
second ingredient consists in showing that any sequence of staircases contains a
balanced subgraph of substantial size.

Lemma 2. Let H be a {<, �}-comparable linear graph. There exists a partition
E(H) = ERED ∪ EBLUE such that both H [ERED] and H [EBLUE] are sequences of
staircases.

Lemma 3. Let H be a sequence of staircases of size k. Then H contains a
balanced sequence of staircases with at least k

H (k) edges.

As a direct corollary of Lemmas 2 and 3, we obtain:

Corollary 1. Any {<, �}-comparable linear graph of size k contains as a sub-
graph a balanced sequence of staircases of size at least k

2H (k) .

What is left is to show that, given a set of linear graphs, one can find in
polynomial-time the size of the largest balanced sequence of staircases that oc-
curs in each input linear graph. For this particular purpose, we present Algorithm
Bal-Seq-Staircase in Figure 3.

Algorithm Bal-Seq-Staircase(G, w, d).
Data : A linear graph G of size m, and two positive integers d and w.
Result : true iff G contains a balanced sequence of staircases of width w and

depth d.
begin

1. E′ ← ∅
2. for i = 1, 2, . . . , m − 1 do

(a) Let j be the smallest integer such that G[i, . . . , j] contains as a
subgraph a staircase of size d (set j = ∞ if no such integer exists).
(b) if j �= ∞ then E′ ← E′ ∪ {(i, j)}.

end
3. Compute H , the maximum {<}-comparable subgraph of G′ = (V (G), E′).
4. if |E(H)| ≥ w then return true else return false.

end

Fig. 3. Algorithm Bal-Seq-Staircase for finding a balanced sequence of staircases of
width w and depth d in a linear graph. For a linear graph G ∈ G, and two integers i
and j with 1 ≤ i < j ≤ |V (G)|, G[i, . . . , j] stands for the subgraph of G obtained by
deleting all vertices labeled k with k < i or j < k.

248 G. Fertin et al.

Lemma 4. Algorithm Bal-Seq-Staircase(G, w, d) runs in O(m2.5 log m) time and
returns true if and only if G contains a balanced sequence of staircases of width w
and depth d.

Theorem 5. The MCSP problem for {<, �}-structured patterns is approximable
within ratio 2H (k) in O(nm2.5 log2 m) time, where k is the size of an optimal
solution, n = |G|, and m is the maximum size of any graph in G.

4 {�, �}-Structured Patterns

We next consider {�, �}-structured patterns. We begin by proving a hardness
result, analogous to Theorem 4, which states that MCSP for {�, �}-structured
patterns is NP-hard even if the input consists of towers of staircases of depth
at most 2. However, unlike the approach we used for {<, �}-structured pat-
terns, we cannot use towers of staircases to obtain very good approximations
of maximum common {�, �}-structured patterns. We show that there exists a
{�, �}-comparable linear graph of size k which does not contain a tower of stair-
cases of size ε

√
k for some constant ε. On the other hand, such a graph must

contain either a tower or a staircase with at least
√

k edges.

Theorem 6. The MCSP problem for {�, �}-structured patterns is NP-hard
even if each input linear graph is a tower of staircases of depth at most 2.

We now turn to approximating MCSP for {�, �}-structured patterns. First, let
us observe the one-to-one correspondence between {�, �}-structured patterns
and permutations. Let H be a {�, �}-comparable linear graph of size k. Then
the vertices in H which are left endpoints of edges are labeled {1, . . . , k} and the
right endpoints are labeled {k+1, . . . , 2k}. The permutation πH corresponding to
H is defined by πH(i) = j−k ⇐⇒ (i, j) ∈ E(H). Clearly, all {�, �}-comparable
linear graphs have corresponding permutations, and vice versa. It follows from
this bijective correspondence, that the number of different {�, �}-comparable
linear graphs of size k is exactly k!. Moreover, notice that increasing subse-
quences in πH correspond to {�}-comparable subgraphs of H , while decreasing
subsequences correspond to {�}-comparable subgraphs. The well known Erdős-
Szekeres Theorem [13] states that any permutation on 1, . . . , k contains either an
increasing or a decreasing subsequence of size at least

√
k (see also Lemma 6).

Hence, using the algorithms in Lemma 1 for finding the maximum common
{�}-structured {�}-structured patterns, we obtain the following theorem:

Theorem 7. The MCSP problem for model M = {�, �} is approximable within
ratio k1/2 in O(nm1.5) time, where k is the size of an optimal solution n = |G|,
and m = maxG∈G |E(G)|.

Alon [1] recently showed that towers of staircases cannot be used to obtain a
much better approximation algorithm than the one proposed above. To see this,
let us count the number of different towers of staircases with k edges. Note that
the number of towers of staircases of size k and of height h, is exactly the number

Common Structured Patterns in Linear Graphs 249

of different partitions of {1, . . . , k} into h consecutive intervals, i.e.
(

k
h−1

)
. Hence

the total number of towers of staircases of size k equals
∑k

h=1

(
k

h−1

)
= 2k−1 < 2k.

Using this simple observation, the following lemma can be proved.

Lemma 5 ([1]). There exists a {�, �}-comparable linear graph of size K =
Ω(k2) which does not contain a tower of staircases of size k.

5 General Structured Patterns

In this section we consider MCSP for general, i.e., {<, �, �}, structured pat-
terns. Since {<, �, �}-structured patterns generalize all other types of patterns,
all hardness results presented in previous sections apply for general structured
patterns as well. We present three approximation algorithms with increasing
time complexities and decreasing approximation ratios.

Observe that both < and � induce partial orders on the edges of a given linear
graph. Recall now that a chain (resp. anti-chain) in a partial order is a subset
of pairwise comparable (resp. incomparable) elements. Dilworth’s Theorem [11]
states that in any partial order, the size of the maximum chain equals the size
of the minimum anti-chain partitioning. Therefore, in any partial order on k
elements, the size of the maximum chain multiplied by the size of the maximum
anti-chain is at least k. The following lemma states this property in our terms.

Lemma 6. Let H be a {<, �, �}-comparable linear graph of size k, width w(H),
and height h(H). Also, let hd(H) and wd(H) be the sizes of the maximum {�, �}-
comparable and {<, �}-comparable subsets of E(H). Then k ≤ w(H) ·hd(H) and
k ≤ h(H) · wd(H).

An immediate consequence of Lemma 6 is as follows.

Lemma 7. Let H be a {<, �, �}-comparable linear graph of size k. Then H
contains a simple structured pattern of size at least k1/3.

Combining the lemma above with the fact that a maximum common simple
structured pattern of G can be found in O(nm1.5) time (Theorem 1), we obtain
our first approximation algorithm for general structured patterns.

Theorem 8. The MCSP problem for {<, �, �}-structured patterns is approx-
imable within ratio O(k2/3) in O(nm1.5) time, where k is the size of an optimal
solution, n = |G|, and m = maxG∈G |E(G)|.

It is easily seen that Lemma 7 is tight. One way to obtain an extremal example of
this is as follows: Take k1/3 balanced towers of staircases, each one of depth k1/3

and height k1/3, and concatenate them one next to the other into one supergraph
of size k, reassigning labels accordingly.

Lemma 8. Let k be an integer such that k1/3 is also integer. Then there exists
an {<, �, �}-comparable linear graph of size k that does not contain a simple
structured pattern of size ε k1/3 for any ε > 1.

250 G. Fertin et al.

Dilworth’s theorem does not apply on the crossing relation since it is not transi-
tive. However, an analogous result proven in [23] (see also [24]) implies that for
any {<, �, �}-comparable linear graph H , |E(H)| = O(d·wh lg wh), where d and
wh are sizes of the maximum {�}-comparable and {<, �}-comparable subsets of
E(H). This yields the following analogous of Lemma 6.

Lemma 9. Let H be a {<, �, �}-comparable linear graph of size k. Then H
contains a subgraph of size Ω(

√
k/ lg k) which is either {<, �}-comparable or

{�}-comparable.

Using Lemma 9, the algorithm for finding a maximum structured pattern given
in Theorem 1, and the O(lg k)-approximation algorithm for {<, �}-structured
patterns given in Theorem 3, we obtain our second approximation algorithm.

Theorem 9. The MCSP problem for {<, �, �}-structured patterns is approx-
imable within ratio O(

√
k lg3 k) in O(nm2) time.

For our third algorithm, we show that any {<, �, �}-comparable linear graph
contains a subgraph of sufficient size that is either a tower or a balanced sequence
of staircases.

Lemma 10. Let H be a {<, �, �}-comparable linear graph of size k. Then H
contains either a tower or a balanced sequence of staircases of size Ω(

√
k/ lg k).

Applying Lemma 3 and the algorithms for finding the maximum common tower
and balanced sequence of staircases in G given in Theorems 1 and 5, respectively,
we obtain the following theorem.

Theorem 10. The MCSP problem for {<, �, �}-structured patterns is approx-
imable within ratio O(

√
k lg k) in O(nm2.5 lg2 m) time.

We next consider subgraphs of {<, �, �}-comparable linear graphs that are com-
parable by pairs of relations. We show that any {<, �, �}-comparable linear
graph of size k contains such a subgraph of size at least m2/3, and that this
lower bound is relatively tight. Unfortunately, this result can not be applied
for approximation purposes (approximating MCSP for {�, �}-patterns remains
the bottleneck). Nevertheless, we present this result on account of independent
interest.

Lemma 11. Let H be a {<, �, �}-comparable graph of size k. Then H has a
subgraph of size ε k2/3, where ε =

√
17−1
8 , which is either {<, �}-comparable,

{<, �}-comparable, or {�, �}-comparable.

We believe the bound of Lemma 11 to be not the best possible. However, com-
bining Lemmas 6 and 8, we show that the above lemma is relatively tight.

Lemma 12. Let k be an integer such that k1/3 is integer. Then there exists
a {<, �, �}-comparable linear graph of size k that contains neither a {<, �}-
comparable subgraph, nor a {<, �}-comparable subgraph, nor a {�, �}-comparable
subgraph of size least ε k2/3 for any ε > 1.

Common Structured Patterns in Linear Graphs 251

6 Discussion and Open Problems

In this paper we introduced MCSP as a general framework for many structure-
comparison and structure-prediction problems, that occur mainly in compu-
tational molecular biology. Our framework followed the approach in [31] by
analyzing all types of R-structured patterns, R ⊆ {<, �, �}. We gave tight
hardness results for finding maximum common {<, �}-structured patterns and
maximum common {<, �}-structured patterns. We also proved that MCSP is
approximable within ratio: (i) 2H (k) for {<, �}-structured patterns, (ii) k1/2

for {�, �}-structured patterns, and (iii) O(
√

k lg k) for {<, �, �}-structured pat-
terns.

There are many questions left open by our study. Below we list some of them.
According to Lemma 11, we could improve in terms of approximation ratio on
all the algorithms suggested for general structured patterns, if we had a better
approximation algorithm for {�, �}-structured patterns. Is there an approxi-
mation algorithm which achieves a better ratio then the simple

√
k algorithm?

On the same note, can lower bounds on the approximation factor of MCSP

for {<, �, �}-structured patterns or {�, �}-structured patterns be proven? How
about {<, �}-structured patterns or {<, �}-structured patterns?

References

1. Alon, N.: Private communication (2006)
2. Alonso, L., Schott, R.: On the tree inclusion problem. In: Borzyszkowski, A.M.,

Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 211–221. Springer, Heidel-
berg (1993)

3. Apostolico, A., Guerra, C.: The longest common subsequence problem revisited.
Algorithmica 2, 315–336 (1987)

4. Blin, G., Fertin, G., Rizzi, R., Vialette, S.: What makes the arc-preserving sub-
sequence problem hard ? In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 860–868. Springer, Heidel-
berg (2005)

5. Blin, G., Fertin, G., Vialette, S.: New results for the 2-interval pattern problem.
In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS,
vol. 3109, Springer, Heidelberg (2004)

6. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. IPL 65(5),
277–283 (1998)

7. Chang, M.-S., Wang, F.-G.: Efficient algorithms for the maximum weight clique
and maximum weight independent set problems on permutation graphs. IPL 43(6),
293–295 (1992)

8. Chen, W.: More efficient algorithm for ordered tree inclusion. J. Algorithms 26(2),
370–385 (1998)

9. Crochemore, M., Hermelin, D., Landau, G.M., Vialette, S.: Approximating the 2-
interval pattern problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS,
vol. 3669, pp. 426–437. Springer, Heidelberg (2005)

10. Davydov, E., Batzoglou, S.: A computational model for RNA multiple structural
alignment. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM
2004. LNCS, vol. 3109, pp. 254–269. Springer, Heidelberg (2004)

252 G. Fertin et al.

11. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of
Mathematics Series 2 51, 161–166 (1950)

12. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming
I: Linear cost functions. J. ACM 39(3), 519–545 (1992)

13. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math-
ematica 2, 463–470 (1935)

14. Evans, P.A.: Algorithms and complexity for annotated sequence analysis. PhD
thesis, University of Alberta (1999)

15. Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein struc-
ture similarity. In: Proc. 40th Foundations of Computer Science (FOCS), pp. 512–
522 (1999)

16. Gramm, J.: A polynomial-time algorithm for the matching of crossing contact-map
patterns. IEEE/ACM Trans. Comp. Biol. and Bioinfo. 1(4), 171–180 (2004)

17. Gramm, J., Guo, J., Niedermeier, R.: Pattern matching for arc-annotated se-
quences. In: Agrawal, M., Seth, A.K. (eds.) FST TCS 2002: Foundations of Soft-
ware Technology and Theoretical Computer Science. LNCS, vol. 2556, pp. 182–193.
Springer, Heidelberg (2002)

18. Gupta, U.I., Lee, D.T., Leung, J.Y-T.: Efficient algorithms for interval graph and
circular-arc graphs. Networks 12, 459–467 (1982)

19. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J.
ACM 24(4), 664–675 (1977)

20. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common
subsequences. Communications of the ACM 20, 350–353 (1977)

21. Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM J.
Comp. 24(2), 340–356 (1995)

22. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Bi-
lardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 91–102. Springer, Heidelberg (1998)

23. Kostochka, A.: On upper bounds on the chromatic numbers of graphs. Transactions
of the Institute of Mathematics (Siberian Branch of the Academy of Sciences in
USSR) 10, 204–226 (1988)

24. Kostochka, A., Kratochvil, J.: Covering and coloring polygon-circle graphs. Dis-
crete Mathematics 163, 299–305 (1997)

25. Kubica, M., Rizzi, R., Vialette, S., Waleń, T.: Approximation of RNA multiple
structural alignment. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS,
vol. 4009, pp. 211–222. Springer, Heidelberg (2006)

26. Li, S.C., Li, M.: On the complexity of the crossing contact map pattern matching
problem. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175,
pp. 231–241. Springer, Heidelberg (2006)

27. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (1978)

28. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances.
J. Comp. and Syst. Sc. 20(1), 18–31 (1980)

29. Shasha, D., Zhang, K.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comp. 18(6), 1245–1262 (1989)

30. Tiskin, A.: Longest common subsequences in permutations and maximum cliques
in circle graphs. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009,
pp. 270–281. Springer, Heidelberg (2006)

31. Vialette, S.: On the computational complexity of 2-interval pattern matching prob-
lems. Theoretical Computer Science 312(2-3), 223–249 (2004)

Identification of Distinguishing Motifs

WangSen Feng1, Zhanyong Wang2, and Lusheng Wang2

1 Department of Computer Science
Peking University, People’s Republic of China

2 Department of Computer Science, City University of Hong Kong, Hong Kong
zhyong@cs.cityu.edu.hk, cswangl@cityu.edu.hk

Abstract. Motivation: Motif identification for sequences has many
important applications in biological studies, e.g., diagnostic probe design,
locating binding sites and regulatory signals, and potential drug target
identification. There are two versions.

1. Single Group: Given a group of n sequences, find a length-l motif
that appears in each of the given sequences and those occurrences
of the motif are similar.

2. Two Groups: Given two groups of sequences B and G, find a
length-l (distinguishing) motif that appears in every sequence in B
and does not appear in anywhere of the sequences in G.

Here the occurrences of the motif in the given sequences have errors.
Currently, most of existing programs can only handle the case of single
group. Moreover, it is very difficult to use edit distance (allowing indels
and replacements) for motif detection.

Results: (1) We propose a randomized algorithm for the one group
problem that can handle indels in the occurrences of the motif. (2) We
give an algorithm for the two groups problem. (3) Extensive simulations
have been done to evaluate the algorithms.

Keywords: motif detection, EM Algorithms, and two groups.

1 Introduction

Motif identification for DNA sequences has many important applications in bi-
ological studies, e.g., diagnostic probe design, locating binding sites and regula-
tory signals, and potential drug target identification [6,17,19]. The most general
problem is as follows:

Two Groups: Given two groups of sequences B and G, find a length-l (dis-
tinguishing) motif that appears in every sequence in B and does not appear in
anywhere of the sequences in G.

The motif we want to find is called the distinguishing motif that can differ-
entiate the two groups. If no error is allowed, the problem is easy. However,
in practice, the occurrence of the motif in each of the given sequences has er-
rors (mutations and indels). The problem becomes extremely hard when errors
appear. Many mathematic models have been proposed.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 253–264, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 W. Feng, Z. Wang, and L. Wang

The following definition was first stated in [12].

Distinguishing substring selection: given a set B = {s1, s2, . . . , sn1} of n1

(bad) strings of length at least l, and a set G = {g1, g2, . . . , gn2} of n2 (good)
strings of length at least l, the problem is to find a string s of length l such that
for each string si ∈ B there exists a length-l substring ti of si with dH(s, ti) ≤ db

and for any length-l substring ui of gi ∈ G, dH(s, ui) ≥ dg. Here db and dg are
two parameters, called the radius of the two groups. We want db to be small and
dg to be large. dH(,) represents the Hamming distance between two strings.

When indels are allowed in the occurrences of the motif, the problem is called
the distinguishing subsequence selection problem, where the input is the same as
the previous problem and the objective here is to find a string s of length l such
that for each string si ∈ B there exists a substring ti of si with d(s, ti) ≤ db

and for any substring ui of gi ∈ G, d(s, ui) ≥ dg. Here d(,) represents the edit
distance.

A special case, where only one group is involved is as follows:

Single Group: Given a group of n given sequences, find a motif that appears
in each of the given sequences and those occurrences of the motif are similar.

There are several ways to define the similarity of the motif occurrences, e.g.,
the consensus score, general consensus score and SP-score [8,14]. Here we use
the following mathematical definitions.

The Closest Substring Problem: Given n sequences {s1, s2, . . . , sn}, each is
of length m (m ≥ l), the problem is to find a center string s of length l and a
substring ti of length l in si such that

d =
n

max
i=1

dH(s, ti)

is minimized, where dH(,) is the Hamming distance between the two strings of
the same length.

When indels are allowed, the problem is called the closest subsequence problem,
where the input is the same as the closest substring problem and the objective
here is to find a center string s of length l and a substring ti in si such that

d =
n

max
i=1

d(s, ti)

is minimized, where d(,) is the edit distance between the two sequences.
The closest substring problem was proved to be NP-hard in [12]. Thus, the

more general problem, the distinguishing substring selection problem, is also
NP-hard. Some polynomial time approximation schemes have been designed for
both the closest substring problem and the distinguishing substring selection
problem [16,5]. However, those polynomial time approximation schemes are too
slow and do not work very well in practice.

Several programs have been developed for the single group problem based
on various mathematical models. Bailey and Elkan designed MEME that uses
the EM algorithm for motif identification [1]. The algorithm allows the motif to
be absent in some of the given sequences. Waterman introduced the extended

Identification of Distinguishing Motifs 255

sample-driven approach in [25]. Keich and Pevzner proposed a variant of the
extended sample-driven approach in [10]. Keich and Pevzner also developed an-
other motif detection program in [11]. Buhler and Tompa develop a software,
PROJECTION, that combines the EM algorithm and a random projection ap-
proach [3]. PROJECTION outperforms the programs in [10,11]. Recently, Price,
Ramabhadran and Pevzner designed a new algorithm that uses branching from
sample strings [21]. Their program, PatternBranching, is much faster than the
previously best known program, PROJECTION. All the algorithms and pro-
grams mentioned here do not allow indels in the occurrences of the motif and
can only handle the one group problem. As pointed out by Buhler and Tompa,
using edit distasnce for motif detection seems extremely difficult for the random
projection and EM approach [3]. Along this line, some algorithms can handle
one gap (a segment of consecutive spaces) [9,13,4].

In this paper, we design an algorithm that allows indels in the occurrences of
the motif. Our algorithm is an extension of the EM approach. We also propose
an algorithm to solve the two groups problem.

2 Representations of Motifs

In our algorithms, we use two representations of motifs, consensus pattern, and
profile [7]. Let t1, t2, · · · , tn be n strings of length l. Each ti is an occurrence
of a motif. The consensus pattern of the n occurrences is obtained by choosing
the letter that appears the most in each of the l columns. Here the alphabet
is {A, C, G, T }. The profile of the n occurrences is a 4 × l matrix W , each cell
W (i, j) is a number indicating the occurrence rate of letter i in column j. Figure
1 gives an example. In this paper, we will use the two representations to design
our algorithm. We find that both representations are useful. We actually use
the profile representation in the early stage of the EM algorithm. The consensus
pattern representation is used after the EM refining procedure to improve the
accuracy.

3 Computing the Closest Subsequence

In this section, we describe the algorithm for computing the closest subsequence
problem and show the simulation results. The general frame is similar as in [24].

3.1 The General Frame

From mathematical point of view, the basic ideas of the algorithm we are going
to describe are from [15,16]. In [15,16], a random sampling technique is used
to select substrings from the given sequences to form a set of linear inequali-
ties. Here we use the technique to directly give the starting matrix for the EM
approach.

The idea is to randomly choose k positions among the l positions of the motif.
Then we can guess the true motif at the k selected positions by trying 4k possible

256 W. Feng, Z. Wang, and L. Wang

strings of length k. The partial motif (with k guessed letters) is used to search
all the given sequences s1, s2, . . ., sn to find a ti from each si that is closest
to the partial motif, i.e., the number of mismatches between ti and the partial
motif at those selected k positions is minimized. Let K be the set of k selected
positions, and t′i and s two strings of length l. We use d(t′i, s|K) to denote the
number of mismatches between t′i and s at the positions in K. The algorithm is
given in Figure 2.

caaccca

caacccc a 0 1 0.4 0 0 0 0.4

catcccg

catccct c 1 0 0.2 1 1 1 0.2

cacccca

____________________ g 0 0 0.0 0 0 0 0.2

consensus pattern caaccca

another con. pattern catccca t 0 0 0.4 0 0 0 0.2

(a) (b)

Fig. 1. (a) The 5 occurrences of the motif and the consensus patterns. (b) The profile
matrix.

In Step (3), when using a partial string sp to search a given string si, we try
to find a substring of length l such that the number of mismatches at those k
selected positions is minimized. Steps (1)-(4) generate a candidate of the motif.
Since this is a randomized algorithm, different executions generate different re-
sults. Thus, in the algorithm, we repeat Steps (1)-(4) several times to enhance
the quality of the output. The following theorem is from [24].

Theorem 1. [24] Let s∗ be the optimal center string and ti the length l sub-
string of si in the optimal solution. Set k = � 4

ε2 log(nm)�. With probability
1− 2(nm)−

1
3 , the algorithm finds a string s of length l and a length l substring

t′i for each given string si such that
∑n

i=1 d(s, t′i) ≤
∑n

i=1(d(s∗, ti) + 2εl). The
running time of the algorithm is O(4knml).

In practice, k has to be a relatively big number in order to get satisfactory
results. The speed is far below that of PROJECTION. PROJECTION uses a
random projection method to find seeds and uses an EM method to do local
search. In [24], a combined approach was proposed. It uses the EM algorithm to
replace Steps (3) and (4) in Figure 2.

3.2 EM Method

Lawrence and Reilly were the first to introduce the Expectation Maximization
(EM) algorithm in motif finding problems [13]. Bailey and Elkan used it in
multiple motif finding [2]. Buhler and Tompa adopted the EM method in their
PROJECTION algorithm in the motif refining step [3]. The following description
of the EM algorithm is based on [2].

Identification of Distinguishing Motifs 257

1. randomly choose k positions from the l positions of the motif;
2. try all 4k possible (partial) strings;
3. use the partial consensus strings sp to search all the n given strings and find a

substring that is closest to the partial string from each of the n given strings;
4. reconstruct the center string s based on the n selected substrings of length l;
5. repeat 1–4 several times and choose the best result.

Fig. 2. A randomized algorithm for consensus pattern

In the EM algorithm, a motif of length-l is represented by a 4× l matrix. Let
a 4 × l matrix W be the initial guess of the motif. si(j) denotes the j-th letter
in sequence si. Here is the standard EM algorithm to refine the motif:

1. For each position j in each sequence si, sij = si(j)si(j + 1) . . . si(j + l − 1)
denotes the l-mer (substring of length l) starting at si(j) and ending at
si(j + l− 1). Calculate the likelihood that sij (1 ≤ i ≤ n, 1 ≤ j ≤ m− l +1)
is the occurrence of the motif as follows:

P (i, j) =
l∏

x=1

W (sij(x), x),

where sij(x) = si(j + x − 1) is the x-th base in l-mer sij . In order to avoid
zero weights, a fixed small number δ (we use δ = 0.1) is added to every
element of W before calculating the likelihoods.

2. For each l-mer sij , we get a normalized probability from the likelihood.

P ′(i, j) =
P (i, j)∑m−l+1

j=1 P (i, j)
.

Replace P (i, j) with P ′(i, j).
(The normalization guarantees that

∑m−l+1
j=1 P ′(i, j) = 1, reflecting the fact

that there is exactly one motif occurrence in each sequence.)
3. Re-estimate the (motif) matrix W from all the l-mers as follows:

W =
n∑

i=1

m−l+1∑
j=1

W ij ,

where W ij is also a 4 × l matrix, constructed from sij :

W ij(b, x) =
{

P (i, j) : if b = sij(x)
0 : otherwise.

4. A normalization is applied to W to ensure that the sum of each column in
W is 1, i.e.,

W ′(b, x) =
W (b, x)∑

b=A,C,G,T W (b, x)
.

Replace W with W ′.

258 W. Feng, Z. Wang, and L. Wang

5. Steps 1–4 are called a cycle. Let Wq−1 and Wq be the two consecutive ma-
trices produced in cycles q − 1 and q. If

max |Wq(b, x) −Wq−1(b, x)| < ε, (1)

then EM stops. Otherwise, goto step 1 and start next cycle.

In step 5, ε is a parameter given by the user. We use a relatively large value
ε = 0.05 such that on average the EM algorithm stops within very few cycles.

Improved EM Algorithm
The algorithm in Section3.1 directly finds a substring that is closest to the
guessed motif, whereas the standard EM algorithm in Section 3.2 considers every
substring when constructing W . In [24], it was proposed that one can use 1

m−l+1 ,
the average P (i, j) for j = 1, 2, . . . , m − l + 1, as the threshold when construct-
ing W . All terms with value less than 1

m−l+1 are ignored when constructing W
in Step 3. Another improvement is the shifting technique. For the occurrences
of motifs with high score, we try to shift the occurrences of the motifs to left
and right by one or two positions. It was shown that for the improved EM al-
gorithm, both speed and accuracy are improved significantly [24]. The software
MotifDetector in [24] can outperform PROJECTION for long motifs. However,
PatternBranching in [21] is much faster than both PROJECTION and MotifDe-
tector in all cases. All the methods mentioned in this subsection cannot handle
indels in the occurrences of the motif.

The main reason that we still work on the EM approach is that we have ways
to extend the EM algorithms to handle indels and to solve the two groups case.

3.3 Incorporating Indels

In this section, we introduce a method that extend the EM algorithms to handle
insertions and deletions.

Recall that the EM algorithm needs to compute W ij for every substring of
length l when no indel is allowed.Let k be the maximum total number of in-
sertions and deletions allowed in an occurrence of a motif. When indels are
allowed, the matrix for EM becomes 5 × l, where we add the space as a letter.
We have to consider all length l + h substrings in all the given sequences, where
h = 0, 1,−1, 2,−2, ...k,−k is the number of insertions (positive number) and
deletions (negative number). For each length l + h substring, we will align it
with the 5 × l matrix.

Aligning a length l + h string with a 5 × l matrix
Let d[i, j] be the score of aligning the first i columns in W with the first j letters
in the string. d[i, j] can be computed as follows:

d[i, j] = max{d[i− 1, j − 1]× w[x, i],
d[i− 1, j]× w[Δ, i], d[i, j − 1]× δ}, (2)

Identification of Distinguishing Motifs 259

where x is the j-th letter in the string, Δ represents the space (a new letter),
and δ = 0.1 is the number that is used to avoid 0-weight in the EM algorithm .

We can compute all the d[i, j]’s in a bottom up order. A standard backtracking
procedure will give an optimal alignment.

The new EM algorithm allowing indels. The new EM algorithm also con-
tains the 5 steps in Section 3.2. We consider all length-l + h (h = 0, 1,−1, 2,−2,
. . . , k,−k) substrings in the given sequences. For a fixed starting position, say,
position q, there are 2k+1 substrings starting at position q and their lengths are
l, l+1, l−1, l+2, l−2, . . ., l+k and l−k. For each starting position q, we align the
2k + 1 substrings with the matrix W and treat the strings in the alignments as
new strings of length l with some possibly inserted spaces in the new strings and
with some letters in the old strings deleted if they correspond to inserted empty
columns in W . We then choose the substring with the biggest score to do Steps
1-5 for the EM algorithm described in Section 3.2. We also apply the threshold
and shifting techniques as in the improved EM algorithm here.

Note that, in equation (2), we use the score (product) for EM approach. In
our algorithm, we use the profile representation (matrix) for the EM iterations.
After EM refining procedure, we convert the matrix into a string (by choosing
the letter with the biggest number in each column) and use Hamming distance
to choose the substring (from a given sequence) that is closest to the computed
motif. The result is better than that of always using the EM score (product of
elements in W as in Step 1 of the Em algorithm in Section3.2). A refinement of
the Hamming distance is the score

∑l
i=1 W (ai, i), where a1, a2, . . . , al is a string

of length l and W is the matrix for the motif. We found that the result using
refinement (of Hamming distance) score to choose the substrings that are closest
to W is better than that of using Hamming distance. The complete algorithm
is given in Figure 3. The number of times that Steps 1-3 are repeated in the
algorithm is denoted as Maxtrials.

1. randomly choose k positions from the l positions of the motif;
2. For each of the 4k possible strings of length k, a matrix W is formed as

follows: for column x, if position x is among the k selected positions, then set
W (b, x) = 1, where b is the letter at position x, and set the other 3 elements
in column x to be 0; otherwise, set W (b, x) = 0.25 for b = A, C, G, T .

3. Use the new EM algorithm allowing indels (with W as initial value) to find
motifs.

4. repeat 1–3 several (Maxtrials) times and choose the best result.

Fig. 3. The complete algorithm for the new algorithm allowing indels

3.4 Experiment Results

In this section, we do simulations to illustrate the quality of our algorithm. (All
cases are run on an IBM T42 1.5GHz notebook computer.)

260 W. Feng, Z. Wang, and L. Wang

Evaluation method
To evaluate the programs, Pevzner and Sze proposed a challenge problem [18],
which has been studied by Keich and Pevzner [10,11]. We randomly generate
n (n = 20) sequences of length m(m = 600). Given a center string s of length
l, for each of the n random sequences, we randomly choose d positions for s,
randomly mutate the d letters from s and implant the mutated copy of s into
the random sequence. The problem here is to find the implanted pattern. The
pattern thus implanted is called an (l, d)-pattern. We will use this model to do
simulations and test our algorithms. To incorporate indels, d here is simply the
total number of insertions, deletions, and mutations.

Simulation Results
Table 1 shows the results, where the motifs for 15 sequences have no insertion
and deletion, and the motifs of the other 5 sequences have one deletion and d−1
mutations. We can see that the accuracy (the probability that the algorithm
finds the implanted patterns) for each case is very close to that of the algorithm
in [24], where no insertion and deletion is involved.

Table 2 shows the results, where the motifs for 10 sequences have no insertion
and deletion, the motifs of 5 sequences have one deletion and d − 1 mutations,
and the motifs of the other 5 sequences have one insertion and d− 1 mutations.
We can see that the running time increases significantly and accuracy in many
cases is slightly worse than that in Table 1.

Table 1. The results for one deletion

Problem Maxtrials Accuracy Time(s)

(11,2) 1 100% 12
(13,3) 4 90% 66
(13,3) 6 95% 101
(15,4) 8 90% 216
(17,4) 1 100% 12
(20,5) 1 100% 22
(25,5) 1 100% 19

Table 2. The mixed case, where the
motifs in 5 sequences have one insertion
and the motifs in the other 5 sequences
have one deletion

Problem Maxtrials Accuracy Time(s)

(11,2) 1 90% 28
(13,3) 1 90% 58
(15,3) 1 100% 17
(15,4) 1 60% 122
(17,4) 1 100% 20
(20,5) 1 100% 54
(25,5) 1 100% 37

Table 3 shows the results for the case, where the motifs in 5 sequences have
one deletion, the motifs in the other 5 sequences have two deletions and the
motifs in the remaining 10 sequences have no indel. Table 4 shows the results
for the case, where the motifs in 5 sequences have one insertion, the motifs in
the other 5 sequences have two insertions and the motifs in the remaining 10
sequences have no indel. The results in Table 4 are slightly better than those
in Table 3. The reason might be that the case in Table 4 needs to insert two
columns in the matrix for the motif, whereas the case in Table 3 needs to insert
two spaces in the motif sequences. Table 5 describes the mixed case, where there

Identification of Distinguishing Motifs 261

Table 3. The motifs in 5 sequences
have one deletion. The motifs in the
other 5 sequences have two deletions.

Problem Maxtrials Accuracy Time(s)

(11,2) 1 90% 77
(15,3) 1 100% 18
(15,4) 1 50% 210
(17,4) 1 100% 93
(20,5) 1 100% 20
(25,5) 1 100% 27

Table 4. The motifs in 5 sequences have
one insertion, the motifs in the other 5
sequences have two insertions

Problem Maxtrials Accuracy Time(s)

(11,2) 1 100% 15
(15,3) 1 100% 36
(15,4) 1 70% 185
(17,4) 1 100% 37
(20,5) 1 100% 49
(25,5) 1 100% 62

are motifs with two indels. We use the following method to randomly generate
the motifs. Among the 20 implanted motifs, the probabilities that a motif has
one insertion, one deletion, two insertions , two deletions , one insertion and one
deletion are all 1/8. Thus, the probability that a implanted motif has no indel
is 3/8. Overall, the results for this mixed case are still reasonable.

Table 5. 1/8 motifs have one insertion, 1/8 motifs have one deletion, 1/8 motifs have
two insertions, 1/8 motifs have two deletions and 1/8 motif have one insertion and one
deletion

Problem Maxtrials Accuracy Time(s)

(11,2) 1 90% 186
(13,3) 1 50% 624
(15,3) 1 100% 50
(17,3) 1 100% 62
(17,4) 1 90% 212
(20,4) 1 100% 102
(25,4) 1 90% 401

4 Computing the Distinguishing Substring Selection

In this section, we extend the EM approach to work for the distinguishing sub-
string selection problem, where there are two groups of sequences.

4.1 The Extended EM Algorithm for Two Groups

Let B = {s1, s2, . . . , sn1} and G = {g1, g2, . . . , gn2} be two groups of sequences.
The problem here is that we want to find a motif s of length l such that for each
string si ∈ B there exists a length-l substring ti of si with d(s, ti) ≤ db and for
any length-l substring ui of gi ∈ G, dH(s, ui) ≥ dg. As a first strick, we do not
consider indels.

We still follow the 5 basic Steps of the EM algorithm in Section 3.2.

262 W. Feng, Z. Wang, and L. Wang

For each length-l substring of si (gk), we compute the likelihood P (i, j)
(P (k, j)) as in Step 1 of Section 3.2 and compute the normalized likelihood
P ′(i, j) (P ′(k, j)) as in Step 2 of Section 3.2. In Step 3, the 4 × l matrix Wij is
computed as usual.

W ij(b, x) =
{

P (i, j) : if b = sij(x)
0 : otherwise.

The main difference is that we re-estimate the (motif) matrix W from all the
l-mers in both groups as follows:

W =
∑
si∈B

m−l+1∑
j=1

W ij − ρ
∑
gi∈G

∑
j s.t. P ′(i,j)>ave

W ij , (3)

where every l-mer from B contributes positively, every l-mer from G with P ′(i, j)
> ave contributes negatively, ρ is a parameter to control the intensity of the
negative contributions and ave is the average P ′(i, j) over all l-mers from group
B. In fact, we do not consider all the l-mers from group G. We only use those
W i,j with P ′(i, j) > ave for every gi ∈ G.

The main idea is that when the motif represented by the matrix W is too
close to some l-mer from group G (P ′(i, j) > ave), we scoop the pattern from
the matrix by subtracting the corresponding matrix W ij .

Steps 4 and 5 of the EM algorithm remain the same.

The choice of ρ: The choice of ρ has influence on the performance of the
program. We carry experiments to determine its value. We find that when ρ is
between 0.1 and 0.4, the program has better performance. So we set ρ to be 0.2
in our program.

The choice of ave: Here ave is set to be the average P ′(i, j) over all l-mers
from group B. This setting allow us to make dg − db to be large. Considering
l-mers in group G with P ′(i, j) > 2ave or P ′(i, j) > 3ave makes the program
faster. Here the users can try to set this parameter to control dg − db and the
running time.

4.2 Experiment Results

We have done experiments based on simulation data. In many applications, the
length of the motif should be from 18 to 30 [22,23].

Simulation data
We first arbitrarily choose a sequence c1 of length 600 as the center for group B.
To get the center c2 for group G, we randomly choose 200 positions (allowing
repeats) from c1 and randomly set the letters at those positions to one of the four
letters. (Thus, it is possible that some of the letters at those selected positions
may remain the same.) After obtaining the two centers c1 and c2, we generate two
groups of sequences. Each group contains 10 sequences. The sequences in each
group is generated as follows: randomly choose 200 positions (allowing repeats)

Identification of Distinguishing Motifs 263

from the center and randomly set the letters at those positions to one of the four
letters. The two centers are not included in the two groups of sequences.

AveDisG1 is the average Hamming distance between two sequences in group
B. AveDisG2 is the average Hamming distance between two sequences in group
G. AveDisG12 is the average Hamming distance between any pair of sequences
in different groups. l is the length of the motif. For two groups of sequences, the
case is successful if our program finds a motif such that for each string si ∈ B
there exists a length-l substring ti of si with dH(s, ti) ≤ d and for any length-l
substring ui of gi ∈ G, dH(s, ui) > d. The accuracy is defined as the percentage
of successful cases. From Table 6, we can see that it is easy to find a motif that
can distinguish the two groups when l is large. Intuitively, it is easy to find a
motif that can distinguish the two groups when the distance between the two
groups (or the distance between the two centers) is large. Table 7 shows the
results when 300 random positions are selected to generate c2.

Table 6. The results for the two
groups, where c2 is generated by ran-
domly choosing 200 positions (allowing
repeats) from c1 and randomly setting
the letters at those positions to one of
the four letters. The average Hamming
distance between c1 and c2 is about 128

AveDisG1 AveDisG2 AveDisG12 l accuracy
215 215 285 12 95%
215 215 285 13 98%
215 215 285 14 99%
215 215 285 15 100%
215 215 285 20 100%
215 215 285 25 100%
215 215 285 30 100%

Table 7. The results for the two
groups, where c2 is generated by ran-
domly choosing 300 positions (allowing
repeats) from c1 and randomly setting
the letters at those positions to one of
the four letters. The average Hamming
distance between c1 and c2 is about 175.

AveDisG1 AveDisG2 AveDisG12 l accuracy
215 215 310 12 98%
215 215 310 13 100%
215 215 310 14 100%
215 215 310 15 100%
215 215 310 20 100%
215 215 310 25 100%
215 215 310 30 100%

Acknowledgement

The paper is supported by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China [Project No. CityU 1196/03E].

References

1. Bailey, T., Elkan, C.: Fitting a mixture model by expectation maximization to
discover motifs in biopolymers. In: Proceedings of the Second International Con-
ference on Intelligent Systems for Molecular Biology (ISMB-94), pp. 28–36. AAAI
Press, Menlo PArk (1994)

2. Bailey, T., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using
expectation maximization. Machine Learning 21, 51–80 (1995)

3. Buhler, J., Tompa, M.: Finding motifs using random projections. Journal of Com-
putational Biology 9, 225–242 (2002)

4. Cardon, L.R., Stormo, G.D.: Expectation maximization algorithm for identifying
protein-binding sites with variable lengths from unaligned DNA fragments. J. Mol.
Biol. 223, 159–170 (1992)

264 W. Feng, Z. Wang, and L. Wang

5. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Generic Drug Design without Side
Effect. SIAM J on Computing 32(4), 1073–1090 (2003)

6. Dopazo, J., Rodŕıguez, A., Sáiz, J.C., Sobrino, F.: Design of primers for PCR
amplification of highly variable genomes. CABIOS 9, 123–125 (1993)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

8. Hertz, G., Stormo, G.: Identification of consensus patterns in unaligned DNA and
protein sequences: a large-deviation statistical basis for penalizing gaps. In: Proc.
3rd Intl Conf. Bioinformatics and Genome Research, pp. 201–216 (1995)

9. Hu, Y.-J.H: Finding subtle motifs with variable gaps in unaligned DNA sequences.
Computer Methods and Programs in Biomedicine 70, 11–20 (2003)

10. Keich, U., Pevzner, P.: Finding motifs in the twilight zone. Bioinformatics 18,
1374–1381 (2002a)

11. Keich, U., Pevzner, P.: Subtle motifs: defining the limits of motif finding algorithms.
Bioinformatics 18, 1382–1390 (2002b)

12. Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. In: Proc. 10th ACM-SIAM Symp. on Discrete Algorithms, pp. 633–642.
Also to appear in Information and Computation

13. Lawrence, C., Reilly, A.: An expectation maximization (EM) algorithm for the
identification and characterization of common sites in unaligned biopolymer se-
quences. Proteins 7, 41–51 (1990)

14. Li, M., Ma, B., Wang, L.: Finding Similar Regions in Many Strings. In: Proceedings
of the Thirty-first Annual ACM Symposium on Theory of Computing, Atlanta, pp.
473–482 (1999)

15. Li, M., Ma, B., Wang, L.: Finding Similar Regions in Many Sequences (special issue
for Thirty-first Annual ACM Symposium on Theory of Computing). J. Comput.
Syst. Sci. 65, 73–96 (2002a)

16. Li, M., Ma, B., Wang, L.: On the closest string and substring problems.
JACM 49(2), 157–171 (2002b)

17. Lucas, K., Busch, M., Mössinger, S., Thompson, J.A.: An improved microcom-
puter program for finding gene- or gene family-specific oligonucleotides suitable as
primers for polymerase chain reactions or as probes, CABIOS,vol. 7, pp. 525–529
(1991)

18. Pevzner, P., Sze, S.: Combinatorial approaches to finding subtle signals in DNA se-
quences. In: Proceedings of the 8th International Conference on Intelligent Systems
for Molecular Biology. pp. 269–278 (2000)

19. Proutski, V., Holme, E.C.: Primer Master: a new program for the design and
analysis of PCR primers. CABIOS 12, 253–255 (1996)

20. Stormo, G.: Consensus patterns in DNA. In: Doolittle, R.F.(ed.) Molecular evolu-
tion: computer analysis of protein and nucleic acid sequences, Methods in Enzy-
mology, vol. 183, pp. 211–221 (1990)

21. Price, A., Ramabhadran, S., Pevzner, P.: Finding Subtle Motifs by Branching from
Sample Strings, Bioinformatics 19, 149–155 (2003)

22. Keller, G.H., Manak, M.M.: DNA Probes, Stockton Press, p. 12 (1989)
23. McPearson, M.J., Quirke, M.J., Taylor, G.R: PCR A Practical Approach, p. 8.

Oxford University Press, New York (1991)
24. Wang, L., Dong, L., Fan, H.: Randomized Algorithms for Motif Detection. In: Fleis-

cher, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 884–895. Springer,
Heidelberg (2004)

25. Waterman, M., Arratia, R., Galas, E.: Pattern recognition in several se-
quences:consenus and alignment. Bull. Math. Biol. 46, 515–527 (1984)

Algorithms for Computing the Longest

Parameterized Common Subsequence

Costas S. Iliopoulos1,�, Marcin Kubica2,��,
M. Sohel Rahman1,� � �,†, and Tomasz Waleń2,��

1 Algorithm Design Group
Department of Computer Science, Kings College London,

Strand, London WC2R 2LS, England
{csi,sohel}@dcs.kcl.ac.uk

http://www.dcs.kcl.ac.uk/adg
2 Institute of Informatics, Warsaw University

Banacha 2, 02-097 Warszawa, Poland
{kubica,walen}@mimuw.edu.pl

Abstract. In this paper, we revisit the classic and well-studied longest
common subsequence (LCS) problem and study some new variants, first
introduced and studied by Rahman and Iliopoulos [Algorithms for Com-
puting Variants of the Longest Common Subsequence Problem, ISAAC
2006]. Here we define a generalization of these variants, the longest para-
meterized common subsequence (LPCS) problem, and show how to solve
it in O(n2) and O(n+R log n) time. Furthermore, we show how to com-
pute two variants of LCS, RELAG and RIFIG in O(n + R) time.

1 Introduction

This paper deals with some new interesting variants of the classic and well-
studied longest common subsequence (LCS) problem. The longest common sub-
sequence between strings can be defined as the maximum number of common
(identical) symbols between them, while preserving the order of those symbols.
Therefore, the LCS problem, can be seen as an investigation for the “closeness”
among strings. Apart from being interesting from pure theoretical point of view,
the LCS problem has extensive applications in diverse areas of computer science
and bioinformatics.

The LCS problem for k > 2 strings was first shown to be NP-hard [13] and
later proved to be hard to be approximated [11]. In fact, Jiang and Li, in [11],
showed that there exists a constant δ > 0, such that, if LCS problem for more

� Supported by EPSRC and Royal Society grants.
�� Partially supported by the Polish Ministry of Science and Higher Education under

grant N20600432/0806.
� � � Supported by the Commonwealth Scholarship Commission in the UK under the

Commonwealth Scholarship and Fellowship Plan (CSFP).
† On Leave from Department of CSE, BUET, Dhaka-1000, Bangladesh.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 265–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

266 C.S. Iliopoulos et al.

than 2 strings has a polynomial time approximate algorithm with performance
ratio nδ, then P = NP . The restricted but probably the more studied problem
that deals with two strings has been studied extensively [7,8,9,14,16,15,17,19].
The classic dynamic programming solution to LCS problem (for two strings),
invented by Wagner and Fischer [19], has O(n2) worst case running time, where
each given string is of length n. Masek and Paterson [14] improved this algorithm
using the “Four-Russians” technique [1] to reduce the worst case running time1

to O(n2/ logn). Since then, not much improvement in terms of n can be found
in the literature. However, several algorithms exist with complexities depending
on other parameters. For example, Myers in [16] and Nakatsu et al. in [17] pre-
sented an O(nD) algorithm where the parameter D is the simple Levenshtein
distance between the two given strings [12]. Another interesting and perhaps
more relevant parameter for this problem is R, where R is the total number of
ordered pairs of positions at which the two strings match. Hunt and Szyman-
ski [9] presented an algorithm running in O((R+ n) log n). They have also cited
applications where R ∼ n and thereby claimed that for these applications the
algorithm would run in O(n log n) time. For a comprehensive comparison of the
well-known algorithms for LCS problem and study of their behaviour in various
application environments the readers are referred to [4].

Very recently, Rahman and Iliopoulos [18,10] introduced the notion of
gap-constraints in LCS and presented efficient algorithms to solve the resulting
variants. The motivations and applications of their work basically come from
Computational Molecular Biology and are discussed in [10]. In this paper, we
revisit those variants of LCS and present improved algorithms to solve them.
The results we present in this paper are summarized in the following table.

PROBLEM INPUT Results in [18,10] Our Results

LPCS X, Y, K1, K2 and D −
O(min(n2, n + R log n))FIG X, Y and K O(n2 + R log log n)

ELAG X, Y, K1 and K2 O(n2 + R log log n)

RIFIG X, Y and K O(n2)
O(n + R)

RELAG X, Y, K1 and K2 O(n2 + R(K2 − K1))

The rest of the paper is organized as follows. In Section 2, we present all the
definitions and notations required to present the new algorithms. In Sections 3
to 5, we present new improved algorithms for all the variants discussed in this
paper. Finally, we briefly conclude in Section 6.

2 Preliminaries

Suppose we are given two sequences X [1] . . .X [n] and Y [1] . . . Y [n]. A subse-
quence S[1..r] = S[1] S[2] . . . S[r] of X is obtained by deleting [0, n− r] symbols
from X . A common subsequence of two strings X and Y , denoted CS(X, Y), is

1 Employing different techniques, the same worst case bound was achieved in [6]. In
particular, for most texts, the achieved time complexity in [6] is O(hn2/ log n), where
h ≤ 1 is the entropy of the text.

Algorithms for Computing the Longest Parameterized Common Subsequence 267

a subsequence common to both X and Y . The longest common subsequence of
X and Y , denoted LCS(X, Y), is a common subsequence of maximum length.
In LCS problem, given two sequences, X and Y , we want to find out a longest
common subsequence of X and Y .

In [18,10], Rahman and Iliopoulos introduced a number of new variants of
the classical LCS problem, namely FIG, ELAG, RIFIG and RELAG problems.
These new variants were due to the introduction of the notion of gap constraints
in LCS problem. In this section we set up a new ‘parameterized’ model for the
LCS problem, giving us a more general way to incorporate all the variants of it.
In the rest of this section we define this new notion of parameterized common
subsequence and define the variants of LCS mentioned above in light of the new
framework. We remark that both the definitions of [18,10] and this paper are
equivalent.

Let X and Y be sequences of length n. We will say, that the sequence C is the
parameterized common subsequence PCS(X, Y, K1, K2, D) (for 1 ≤ K1 ≤ K2 ≤
n, 0 ≤ D ≤ n) if there exist such sequences P and Q, that:

– |C| = |P | = |Q|; we will denote the length of these sequences by l,
– P and Q are increasing sequences of indices from 1 to n, that is: 1 ≤

P [i], Q[i] ≤ n (for 1 ≤ i ≤ l), and P [i] < P [i + 1] and Q[i] < Q[i + 1]
(for 1 ≤ i < l),

– the sequence of elements from X indexed by P and the sequence of elements
from Y indexed by Q are both equal C, that is: C[i] = X [P [i]] = Y [Q[i]]
(for 1 ≤ i ≤ l),

– additionally, P and Q satisfy the following two constraints:
• K1 ≤ P [i + 1]− P [i], Q[i + 1]−Q[i] ≤ K2, and
• |(P [i + 1]− P [i]) − (Q[i + 1]−Q[i])| ≤ D, for 1 ≤ i < l.

By LPCS(X, Y, K1, K2, D) (longest parameterized common subsequence) we will
denote the problem of finding the maximum length of the common subsequence
C of X and Y 2. Now we can define the problems introduced in [18,10] using our
new framework as follows.

– FIG(X, Y, K) (LCS problem with fixed gap) denotes the problem
LPCS(X, Y, 1, K, n),

– ELAG(X, Y, K1, K2) (LCS problem with elastic gap) denotes the problem
LPCS(X, Y, K1, K2, n),

– RIFIG(X, Y, K) (LCS problem with rigid fixed gap) denotes the problem
LPCS(X, Y, 1, K, 0),

– RELAG(X, Y, K1, K2) (LCS problem with rigid elastic gap) denotes the
problem LPCS(X, Y, K1, K2, 0).

Let us denote by R the total number of ordered pairs of positions at which X
and Y match, that is the size of the set M = {(i, j) : X [i] = Y [j], 1 ≤ i, j ≤ n}.
2 The parameterization presented here should not be mistaken with one that can be

found in the parameterized edit distance problem [2,3].

268 C.S. Iliopoulos et al.

3 An O(n2) Algorithm for LPCS

The LPCS(X, Y, K1, K2, D) problem can be solved in polynomial time using
dynamic programming. Let us denote by T [i, j] maximum length of such a
PCS(X [1, . . . , i], Y [1, . . . , j], K1, K2, D), that ends at X [i] = Y [j]. Using the
problem definition, we can formulate the following equation:

T [i, j] =

{
0 if X [i] 	= Y [j]
1 + max({0} ∪ {T [x, y] : (x, y) ∈ Zi−K1,j−K1}) if X [i] = Y [j]

where Zi,j denotes the set:

Zi,j = {(x, y) : 0 ≤ i− x, j − y ≤ K2 −K1, |(i− x) − (j − y)| ≤ D}

We will show, how to compute array T in O(n2) time using dynamic program-
ming. But first we have to introduce an auxiliary data-structure.

3.1 Max-Queue

Max-queue is a kind of priority queue that provides the maximum of the last L
elements put into the queue (for a fixed L). It provides the following operations:

– init(Q, L) initializes Q as the empty queue and fixes the parameter L,
– insert(Q, x) inserts x into Q,
– max(Q) is the maximum from the last L elements put into Q (assuming, that

Q is not empty).

Max-queue is implemented as a pair Q = (q, c), where q is a two-linked queue
of pairs, and c is a counter indexing consecutive insertions. Each element x
inserted into the queue is represented by pair (i, x), where i is its index. The
q contains only pairs containing these elements, that (at some moment) can be
returned as answer to max query. These elements form a decreasing sequence.
The empty queue is represented by (∅, 0). Insertion can be implemented as shown
in Algorithm 1.

Algorithm 1. insert(Q = (q, c), x)
/* Remove such pairs (i, val), that val ≤ x. */

while not empty(q) and q.tail.val ≤ x do RemoveLast(q);1

c + +;2

Enqueue(q, {index = c, val = x});3

/* Remove such pairs (i, val), that i ≤ c − L. */

while q.head.index ≤ c − L do RemoveFirst(q);4

The amortized running time of insert is O(1). The max query simply returns
q.head.val (or 0 if the q is empty).

Algorithms for Computing the Longest Parameterized Common Subsequence 269

K2 −K1 + 1

}
K1

}

C }

B {
(0, 0) i=14

j=12

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

S11,9

S10,8

S9,7

S8,6

S7,5

Fig. 1. Set Zi−K1,j−K1 , for i = 14, j = 12, K1 = 3, K2 = 10, and D = 3

3.2 The Algorithm

The set Zi,j has a complicated shape. It is easier to view it as a sum of squares.
Let B = min(K2 −K1, D) + 1, C = K2 −K1 −B + 2, and Si,j = {(i− x, i− y) :
0 ≤ x, y < B}. Then, we can define Zi,j as:

Zi,j =
⋃

0≤k<C

Si−k,j−k

To compute T , we will use three auxiliary arrays:

– R[i, j] = maxk=0,...,B−1 T [i− k, j],
– S[i, j] = maxk=0,...,B−1 R[i, j − k] = max(x,y)∈Si,j

T [x, y],
– P [i, j] = maxk=0,...,C−1 S[i− k, j − k] = max(x,y)∈Zi,j

T [x, y].

Now, T [i, j] can be expressed as:

T [i, j] =

{
0 if X [i] 	= Y [j]
1 + P [i−K1, j −K1] if X [i] = Y [j]

We will compute all the arrays using dynamic programming, filling them row
by row. We will also use max-queues to compute respective maxima — while
computing elements of these arrays indexed by i and j:

– QR is a max-queue containing information about T [i−B + 1 . . . i, j],
– QS [i] is a max-queue containing information about R[i, j −B + 1 . . . j],
– QP [i− j] is a max-queue containing information about S[i, j], . . . , S[i−C +

1, j − C + 1].

The value LPCS(X, Y, K1, K2, D) is computed in the GlobalMax variable.
Please note, that arrays R, S and P are introduced for the clarity of the algorithm
and can be removed.

The actual longest parameterized common subsequence can be reconstructed
in O(n) time. Since the operations on max-queues run in O(1) amortized time,
total time complexity of the above algorithm is O(n2).

270 C.S. Iliopoulos et al.

Algorithm 2. AlgLPCS-1
Initialize R[i, j] = S[i, j] = GlobalMax = 0;1

for i = 1 to n do Init(QS[i], B);2

for i = −n + 1 to n − 1 do Init(QP [i], C);3

for j = 1 to n do4

Init(QR, B);5

for i = 1 to n do6

if X[i] = Y [j] then7

T [i, j] = P [i − K1, j − K1] + 1;8

GlobalMax = max(GlobalMax, T [i, j]);9

else10

T [i, j] = 0;11

insert(QR, T [i, j]); R[i, j] = max(QR);12

insert(QS[i], R[i, j]); S[i, j] = max(QS[i]);13

insert(QP [i − j], S[i, j]); P [i, j] = max(QP [i − j]);14

4 An O(n + R log n) Algorithm for FIG and ELAG

For special cases, where R = o(n2/ logn), we can solve ELAG (and FIG) prob-
lems more efficiently, namely in O(n +R log n) running time. In order to do it,
instead of computing the whole array T , we should compute only these entries
that correspond to matches from the set M . For (i, j) 	∈ M we have T [i, j] = 0,
and for (i, j) ∈ M we have:

T [i, j] = 1 + max
(
{0} ∪

{
T [x, y] : (x, y) ∈ M, i−K2 ≤ x ≤ i−K1,

j −K2 ≤ y ≤ j −K1

})
We will require data structures D and Q providing the following operations:

– Insert(i, j, p) — inserts element (i, j) with priority p,
– Remove(i, j) — removes element (i, j),
– Priority(i, j) — returns priority of the element (i, j), or 0 if it is not present,
– Max(l, r) — returns maximum priority among such elements (i, j), that l ≤

i ≤ r (or 0 if there are no such elements).

We can implement the above operations in O(log n) time, using balanced search
trees (such, as AVL or Red-Black trees [5]) and enriching each node with a
maximum priority in the corresponding subtree.

Let M ′ = {(i − K1, j − K1) : (i, j) ∈ M} and B = K2 − K1 + 1. The
algorithm scans the consecutive rows of M and M ′. While scanning, we keep
in D information about elements from the last B rows of T [i, j]. Hence, when
processing row j, we have:

D.Max(i−B + 1, i) = max
(x,y)∈M,

i−K2+K1≤x≤i,

j−K2+K1≤y≤j

T [x, y]

Algorithms for Computing the Longest Parameterized Common Subsequence 271

Algorithm 3. AlgELAG
Compute sets M and M ′ = {(i − K1, j − K1) : (i, j) ∈ M};1

Initialize D = ∅, Q = ∅, GlobalMax = 0, B = K2 − K1 + 1;2

for j=1 to n do3

// Remove row j − B from D.4

for (x, y = j − B) ∈ M do D.Remove(x, y);5

// Insert row j into D6

for (x, j) ∈ M do7

Len = 1 + Q.Priority(x − K1, j − K1);8

D.Insert(x, j, Len);9

GlobalMax = max(GlobalMax, Len);10

for (x, j) ∈ M ′ do11

Q.Insert((x, j), D.Max(x − B + 1, x));12

However, instead of storing values T [i, j] in an array, we store in Q pairs (i, j)
(for (i, j) ∈ M ′) with priorities max{T [x, y] : 0 ≤ i− x, j − x < B}.

The value ELAG(X, Y, K1, K2) is computed in the GlobalMax variable. The
actual longest common subsequence with elastic gap can be reconstructed in
O(n) time. Clearly, the overall time complexity of the above algorithm is O(n +
R log n).

The above algorithm can be extended to solve the LPCS problem in O(n +
R log n) running time.

5 An O(n + R) Algorithm for RIFIG and RELAG

To solve the RELAG and RIFIG problems, we need to observe, that they can be
reduced to O(n) independent 1-dimensional problems. Since RIFIG is a special
case of RELAG, for K1 = 1, we will focus on the latter one. Please recall, that
RELAG is equivalent to LPCS(X, Y, K1, K2, 0).

Let T [i, j] denote the maximum length of such a PCS(X [1, . . . , i], Y [1, . . . , j],
K1, K2, 0), that includes X [i] and Y [j]. T [i, j] can be computed using the fol-
lowing formula:

T [i, j] =

{
0 if X [i] 	= Y [j]
1 + max{T [i− p, j − p] : K1 ≤ p ≤ K2} if X [i] = Y [j]

Let M ′ = {(i−K1, j −K1) : (i, j) ∈ M}, and R[i, j] = max{T [i− p, j − p] : 0 ≤
p ≤ K2 − K1}. It is enough to calculate values T [i, j] only for (i, j) ∈ M , and
they can be expressed as: T [i, j] = 1 + R[i−K1, j −K1]. Hence, it is enough to
calculate values R[i, j] only for (i, j) ∈ M ′.

We will use a slightly extended version of max-queue (cf. Section 3.1). Since
we process only indices (i, j) ∈ M ∪M ′, we must be able to insert elements with
specified indices. Let Q = (q, c) be a max-queue. Operation insert-ind(Q, x, i)
first sets the counter c to i − 1, and then calls insert(Q, x). The amortized

272 C.S. Iliopoulos et al.

running time of such an operation is still constant, since each element is inserted
and removed once.

We will process each diagonal separately. For each d = 1, . . . , 2n− 1 we scan
points (i, j) ∈ M ∪M ′ laying on the d-th diagonal (i.e. such that n + i− j = d),
in order of increasing i. We will use a max-queue Q to compute values R[i, j],
but we will store them in a one dimensional vector P [i], P [i] = R[i, n + i − d].
When processing (i, j) ∈ M , we can compute T [i, j], as T [i, j] = R[i − K1, j −
K1] + 1 = P [i − K1] + 1. When processing (i, j) ∈ M ′ we can compute P [i], as
P [i] = R[i, j] = max(Q). The details are shown in Algorithm 4: AlgRELAG.

Algorithm 4. AlgRELAG
Compute sets M and M ′ = {(i − K1, j − K1) : (i, j) ∈ M};1

Initialize GlobalMax = 0, P [i] = 0, for 1 ≤ i ≤ n;2

for d=1 to 2n-1 do3

init(Q, K2 − K1 + 1) ; /* extended Max-Queue */4

foreach (i, j) ∈ M ∪ M ′ and n + i − j = d (in order of increasing i) do5

if (i, j) ∈ M then6

Len = P [i − K1] + 1;7

insert-ind(Q, Len, i);8

GlobalMax = max(GlobalMax, Len);9

if (i, j) ∈ M ′ then10

insert-ind(Q, 0, i) ; /* phony insert, to clean up the Q */11

P [i] = max(Q);12

// Clean modified cells of array P foreach (i, j) ∈ M ′ and n + i − j = d13

do P [i] = 0;

Sets M and M ′ can be computed and sorted in O(n + R) time (assuming,
that the alphabet is composed of polynomially bounded integer numbers). While
scanning the diagonals, we have to process |M ∪ M ′| positions, each requiring
constant amortized time. Hence, the overall time complexity of the AlgRELAG
is O(n +R).

6 Conclusions

We have studied variants of the well-known LCS problem: FIG, ELAG, RIFIG
and RELAG, presented in [18,10]. These problems can be seen as special cases of
the more general LPCS problem, introduced here. We presented an algorithm for
solving the LPCS problem in O(n2) time, that improves the previously known
algorithms for FIG, ELAG and RELAG. For special cases, when R = o(n2),
we have also presented algorithms for RELAG and RIFIG problems running in
O(n + R) time, and for FIG and ELAG problems running in O(n + R log n)
time. The latter one can be extended to solve LPCS problem, without changing
its running time.

Algorithms for Computing the Longest Parameterized Common Subsequence 273

References

1. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economic con-
struction of the transitive closure of a directed graph (english translation). Soviet
Math. Dokl. 11, 1209–1210 (1975)

2. Brenda, S.: Baker, B.S.: Parameterized diff. In: Symposium of Discrete Algorithms
(SODA), pp. 854–855 (1999)

3. Baker, B.S., Giancarlo, R.: Sparse dynamic programming for longest common sub-
sequence from fragments. Journal of Algorithms 42(2), 231–254 (2002)

4. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: String Processing and Information Retrieval (SPIRE), pp. 39–48.
IEEE Computer Society, Los Alamitos (2000)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT
Press, McGraw Hill, Cambridge (1992)

6. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic sequence align-
ment algorithm for unrestricted cost matrices. In: Symposium of Discrete Algo-
rithms (SODA), pp. 679–688 (2002)

7. Hadlock, F.: Minimum detour methods for string or sequence comparison. Con-
gressus Numerantium 61, 263–274 (1988)

8. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. Journal
of ACM 24(4), 664–675 (1977)

9. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest subse-
quences. Commun. ACM 20(5), 350–353 (1977)

10. Iliopoulos, C.S., Rahman, M.S.: Algorithms for computing variants of the longest
common subsequence problem. Theoretical Computer Science (to Appear)

11. Jiang, T., Li, M.: On the approximation of shortest common supersequences and
longest common subsequences. SIAM Journal of Computing 24(5), 1122–1139
(1995)

12. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Problems in Information Transmission 1, 8–17 (1965)

13. Maier, D.: The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25(2), 322–336 (1978)

14. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J.
Comput. Syst. Sci. 20(1), 18–31 (1980)

15. Mäkinen, V., Navarro, G., Ukkonen, E.: Transposition invariant string matching.
Journal of Algorithms 56, 124–153 (2005)

16. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2),
251–266 (1986)

17. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Inf. 18, 171–179 (1982)

18. Rahman, M.S., Iliopoulos, C.S.: Algorithms for computing variants of the longest
common subsequence problem. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288,
pp. 399–408. Springer, Heidelberg (2006)

19. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
ACM 21(1), 168–173 (1974)

Fixed-Parameter Tractability of the Maximum

Agreement Supertree Problem�

Extended Abstract

Sylvain Guillemot and Vincent Berry

Equipe Méthodes et Algorithmes pour la Bioinformatique, LIRMM,
Univ. Montpellier – CNRS

{sguillem,vberry}@lirmm.fr

Abstract. Given a ground set L of labels and a collection of trees whose
leaves are bijectively labelled by some elements of L, the Maximum
Agreement Supertree problem (SMAST) is the following: find a tree T
on a largest label set L′ ⊆ L that homeomorphically contains every input
tree restricted to L′. The problem finds applications in several fields, e.g.
phylogenetics. In this paper we focus on the parameterized complexity of
this NP-hard problem. We consider different combinations of parameters
for SMAST as well as particular cases, providing both FPT algorithms
and intractability results.

1 Introduction

Motivation. Supertree construction consists in building trees on a large set of
labels from smaller trees covering parts of the label set. This task finds applica-
tion in bioinformatics where trees represent phylogenies, but also in other fields
such as databases [1] and data mining [2]. In phylogenetics, the labels are bijec-
tively associated with the leaves of the trees and represent current organisms,
while internal nodes represent hypothetical ancestors. The topological informa-
tion in the input trees consists in the groupings of labels induced by internal
nodes, representing related sets of organisms such as species, orders, families,
etc. The goal is to build a supertree complying as much as possible with the
topological information of the source trees. The task is relatively easy when the
input trees agree on the relative positions of the labels. In this case, it is possible
to find in polynomial time a supertree that contains any input tree as an induced
subtree, hence that incorporates all topological information provided by the data
[1]. However, in practice several input trees usually disagree on the position of
some leaves with respect to other leaves.

Related work. Some methods aim at producing supertrees incorporating as
much input information as possible under the constraint that they do not
� This paper was supported by the Action incitative BIOSTIC-LR.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 274–285, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Fixed-Parameter Tractability of SMAST 275

contradict any input tree: they avoid disagreements between the input trees
by collapsing some of their edges [3,4] or by excluding some of their leaves, i.e.
labels. The Maximum Agreement Supertree (SMAST) method [5,6,7] is appar-
ented to the latter kind. Given a collection T of k trees of maximum degree d
with labels taken in a ground set L of size n, an agreement supertree for T is a
tree T on a subset L′ ⊆ L such that each tree of T restricted to L′ is included in
T . The SMAST problem consists in finding an agreement supertree containing
the maximum number of labels from L. Note that this problem is called MASP

in [5].
This problem is NP-hard in general as it generalizes the MAST problem [8].

SMAST remains NP-hard when d is unrestricted for k ≥ 3 input trees [5] and
for trees of degree d ≥ 2 when k is unrestricted [6]. Moreover, [5,6] have also
considered the complement problem, which is a minimization problem where the
measure is the number p of labels missing in an agreement supertree. This com-
plement problem can not be approximated in polynomial time within a constant
factor, unless P = NP [6]. The corresponding decision problem parameterized in
p is W[2]-hard [6].

For k = 2 [5,6] showed that SMAST can be solved in polynomial time, by
reduction to MAST. For the particular case of d = 2, [5] gave an O(n3k2

)
algorithm for SMAST.

Our results. In this paper, we focus on the particular case where d = 2. Note
that in phylogenetics, the input trees of SMAST will often be binary as a result
of the optimization algorithms used to analyze raw molecular data. We improve
on previous results in several ways.

First, we give an algorithm that solves SMAST on k rooted binary trees on a
label set of size n in O((2k)pkn2) time. This algorithm is only exponential in p,
that roughly represents the extent to which the input trees disagree. Thus, the
algorithm will be reasonably fast when dealing with collections of trees obtained
for genes displaying a low level of conflict. Then, we provide an O((8n)k) algo-
rithm, independent of p, and significantly improving on the O(n3k2

) algorithm of
[5]. This algorithm shows that SMAST is tractable for a small number of trees,
extending in some sense the previously known results for k = 2 trees [5,6]. We
also obtain some fixed-parameter intractability results for various combinations
of parameters of SMAST.

We then consider SMAST on collections of rooted triples (binary trees on
3 leaves), focusing on the complexity of this variant parameterized in p. Since
this problem is equivalent to SMAST in its general setting [6], it is W[2]-hard.
However, we show here that an FPT algorithm can be achieved for complete
collections of rooted triples, i.e., when there is at least one rooted triple for
each set of 3 labels in L. This results from the fact that conflicts between the
input trees can be circumvented to small sets of labels, leading to O(4pn3) and
O(3.12p + n4) algorithms.

276 S. Guillemot and V. Berry

2 Definitions

We consider rooted trees which are bijectively leaf-labelled. Let T be such a
tree, we identify its leaf set with its label set, denoted by L(T). The size of T
is |T | := |L(T)|. The node set of T is denoted by N(T), and r(T) stands for
the root of T . We use a parenthesized notation for trees: if � is a label, then �
also denotes the corresponding leaf-tree; if T1, ..., Tk are trees, then (T1, ..., Tk)
stands for the tree whose root is connected to the child subtrees T1, ..., Tk.

If x is a node of T , T (x) stands for the subtree of T rooted at x, and L(x)
stands for the label set of this subtree. If x, y are two nodes of T , then x <T

y means that x is a descendant of y in T ; we denote by ≤T the non-strict
counterpart of the relation <T . The upper bound of two nodes x, y of T w.r.t.
≤T is called the lowest common ancestor of x, y, and is denoted by lcaT (x, y). If
x, y are two nodes of T s.t. x <T y, denote by childT (x, y) the child of y along
the path joining y to x in T . If x is an internal node of T , the set of children of
x in T is denoted by childrenT (x).

Given a tree T and a label set L, the restriction of T to L, denoted by T |L, is
the tree homeomorphic to the smallest subtree of T connecting leaves of L. Let
T, T ′ be two trees. We say that T embeds in T ′ iff T = T ′|L(T). We say that T
agrees with T ′ iff T |L(T ′) = T ′|L(T). A collection is a family T = {T1, ..., Tk}
of trees, the label set of the collection is L(T) = ∪k

i=1L(Ti). Given a label set
L, the restriction of T to L is the collection T |L = {T1|L, ..., Tk|L}. See Figure
1 for an example of a collection. Note that here, names are also given to some
nodes for the purpose of referencing them in the text.

r3

d c fab c ed

u
t

s
w

r1
p

q

r2

fb ca
zy

xv

Fig. 1. A collection T of 3 input trees on the label set L = {a, b, c, d, e, f}

An agreement supertree for T is a tree S with L(S) ⊆ L(T) and s.t. for each
i ∈ [k], S agrees with Ti. We say that S is a total agreement supertree for T if
additionnally L(S) = L(T). The collection T is compatible iff there exists a total
agreement supertree for T . A conflict between T is a set C ⊆ L(T) s.t. T |C is
incompatible. For instance, T = (((a, b), c), (e, f)) is an agreement supertree for
the collection T of Figure 1, and C = {a, b, c, d} is a conflict between T .

Given a collection T , we define SMAST (T) as the set of agreement supertrees
for T . The Maximum Agreement Supertree problem (Smast) asks: given
a collection T , find an agreement supertree for T with the largest possible size.
Equivalently, it amounts to seek a largest set L ⊆ L(T) s.t. T |L is compatible.
The size of such an optimal solution is denoted by #SMAST (T). We also denote
by P-Smast the parameterized version of Smast, which asks: given a collection
T and a parameter p, can T be made compatible by removing at most p labels?

Fixed-Parameter Tractability of SMAST 277

3 Solving Smast on Binary Trees

Throughout this section, we consider a fixed collection T = {T1, ..., Tk} of binary
trees, we let n denote the size of the label set L(T) and k the number of trees
in T .

If T is a tree, we define N⊥(T) := N(T)∪ {⊥}. We extend the notation T (u)
to u ∈ N⊥(T), s.t. if u =⊥ then T (u) is the empty tree. We extend the relation
≤T to N⊥(T) s.t. ⊥≤T x for each x ∈ N⊥(T).

A position in T is a tuple π = (u1, ..., uk), where each ui ∈ N⊥(Ti). For
i ∈ [k], the ith component of the tuple π is denoted by π[i]. We set I(π) =
{i ∈ [k] : π[i] is an internal node of Ti }. We define the initial position π� =
(r(T1), ..., r(Tk)) and the final position π⊥ = (⊥, ...,⊥).

3.1 Solving Smast in O((2k)p × kn2) Time

In this section, we describe an algorithm deciding the compatibility of a collection
in O(kn2) time, and returning a conflict of size ≤ 2k in case of incompatibility.
This yields an FPT algorithm for P-Smast with O((2k)p × kn2) running time.

The compatibility of a collection can be decided by the well-known Build

algorithm [1,9]. However, in case of incompatibility, this algorithm doesn’t pro-
vide a conflict, which is required here for the purpose of a bounded search FPT
algorithm. Like Build, the algorithm presented here builds the supertree using a
recursive top-down approach. Each step constructs a graph where the connected
components correspond to subtrees of the supertree. Here, we replace the graph
used in Build with a graph that when connected yields a conflict of size ≤ 2k,
identified thanks to a spanning tree.

We begin with some additional definitions. A position is reduced iff no com-
ponent is a leaf (i.e. each component is either ⊥ or an internal node). To any
position π, we associate a reduced position π↓ by replacing by ⊥ any component
of π that is a leaf. In the following, we will assume that π is a reduced position
in T . We set T (π) := {T1(u1), ..., Tk(uk)}.

We define the graph G(T , π) as follows: (i) its vertex set is V = ∪i∈I(π)

childrenTi(π[i]); (ii) two vertices x, y ∈ V are adjacent iff L(x) ∩ L(y) 	= ∅. In
other terms, G(T , π) is the intersection graph of the set system {L(x) : x ∈ V }.
Given V ′ ⊆ V , we define the successor of π w.r.t. V ′, denoted by SuccV ′(π), as
the position π′ s.t.

– if π[i] =⊥, then π′[i] =⊥;
– if π[i] is an internal node of Ti, with children vi, v

′
i, then either:⎧⎪⎪⎪⎨⎪⎪⎪⎩

if vi ∈ V ′ and v′i /∈ V ′ then π′[i] = vi,

if vi /∈ V ′ and v′i ∈ V ′ then π′[i] = v′i,

if vi ∈ V ′ and v′i ∈ V ′ then π′[i] = ui,

if vi /∈ V ′ and v′i /∈ V ′ then π′[i] =⊥ .

We set succV ′(π) = SuccV ′(π)↓.

278 S. Guillemot and V. Berry

To decide the compatibility of T , we use a recursive top-down approach. At a
given step of the recursion, we consider a reduced position π in T , and we try to
identify two successors π1, π2, which are reduced positions corresponding to the
child subtrees of an hypothetical agreement supertree for T (π). We then recurse
on these successor positions π1, π2, until π⊥ is reached.

The recursion step proceeds as follows. It constructs the graph G(T , π), and
performs a connexity test on this graph. If the graph is not connected, then
the connexity test yields a partition of V in two disconnected sets V1, V2 (which
themselves might contain several connected components); then the successor po-
sitions are π1, π2, where πi = succVi(π). The correctness of this step is precisely
stated in Lemma 3. If the graph is connected, then the connexity test yields a
spanning tree of G(T , π), and we obtain a conflict by choosing, for each edge
of the tree, a label present in the intersection of the two corresponding subtrees
(Lemma 4).

See Figure 2 for an illustration of this process.

BA
a

u v

z

w

q

p

u v

y

x
b

c c d

t

s

Fig. 2. A. The graph G(T , π�) of the position π� = (r1, r2, r3) for the collection of
trees of Figure 1. This graph is disconnected, the two connected components indicate
the two successor positions π1 = (p, r2, w) and π2 = (q, ⊥, z) of π�. B. The graph
G(T , π1) is connected. Choosing a spanning tree (bold edges) of the graph and an
arbitrary label shared by the two subtrees corresponding to the extremities of each
edge of this tree identifies a conflict C = {a, b, c, d}.

We will need the following notations. Given V ′ ⊆ V , set L(V ′) = ∪x∈V ′L(x).
Set L(π) = L(T (π)). Given V1, V2 ⊆ V , we say that V1, V2 are connected iff
G(T , π) contains an edge {x, y} with x ∈ V1, y ∈ V2; otherwise, V1, V2 are said
to be disconnected.

We will repeatedly use the following simple observations:

Lemma 1. Let V ′ ⊆ V . Then: L(SuccV ′(π)) ⊆ L(V ′).

Lemma 2. Two sets V1, V2 ⊆ V are connected in G(T , π) iff L(V1)∩L(V2) 	= ∅.

Given a position π in T , we say that π is compatible iff T (π) is compatible. Note
that π⊥ is compatible. Observe also that: π is compatible iff π↓ is compatible.
Let us now consider a reduced position π 	= π⊥. Then |L(π)| ≥ 2. We have the
following recursive characterization of compatibility for this case:

Lemma 3. Suppose that |L(π)| ≥ 2. The following are equivalent:

Fixed-Parameter Tractability of SMAST 279

– π is compatible;
– there exists a partition V1, V2 of V s.t. (i) V1, V2 are disconnected in G(T , π),

(ii) succV1(π), succV2(π) are compatible.

Moreover, if the graph G(T , π) turns out to be connected, a spanning tree of
this graph yields a small conflict between T :

Lemma 4. Suppose that G(T , π) is connected, and let T = (V, F) be a spanning
tree of G(T , π). For each edge e = {u, v} ∈ F , choose �e ∈ L(u) ∩ L(v). Then
C = {�e : e ∈ F} is a conflict between T .

Lemmas 3 and 4 give rise to an algorithm for deciding the compatibility of a
collection, and obtaining a conflict of small size in case of incompatibility:

Theorem 1. There is an algorithm which, in O(kn2) time, decides if T is com-
patible, or returns a conflict of size ≤ 2k.

Proof. We define a procedure IsCompatible(π) which takes as input a reduced
position, decides if π is compatible, or returns a conflict of size ≤ 2k in case of
incompatibility. The procedure is as follows: (i) if π = π⊥, answer (”yes”); (ii)
if π 	= π⊥, test whether G(T , π) is connected:

– If the graph is connected, then let T = (V, F) be a spanning tree of G(T , π),
choose �e ∈ L(u) ∩ L(v) for each edge e = {u, v} ∈ F , construct C = {�e :
e ∈ F}, and return (”no”, C).

– If the graph is not connected, then let V1, V2 be any partition of V in two
disconnected sets, and construct the positions π1, π2 where πi = succVi(π).
Call IsCompatible(π1), let R1 be its result; if R1 = (”yes”) then call
IsCompatible(π2) and return its result R2, else return R1.

To decide if T is compatible, we simply call IsCompatible(π�↓).
We now justify the correctness and the running time of the algorithm. The

correctness of the procedure IsCompatible follows from lemmas 3 and 4. For
the running time, we rely on the fact that using appropriate data structures, we
can ensure that a call to IsCompatible takes O(kn) time (see [10] for details).
By lemmas 1 and 2, the total number of calls to IsCompatible is O(n), therefore
the total running time of the algorithm is O(kn2). ��

The algorithm of Theorem 1 yields a simple FPT algorithm for P-Smast using
the bounded search tree technique:

Theorem 2. The P-Smast problem can be solved in O((2k)p × kn2) time.

Proof. The algorithm constructs a search tree of height ≤ p, where a node of
the search tree at depth i is labelled by a set of labels X ⊆ L s.t. |X | = i. At
a given node u labelled by a set X , the algorithm determines in O(kn2) time
if T |(L\X) is compatible, using the procedure of Theorem 1. If the answer is
positive, the node is labelled by ”success”. Otherwise, the algorithm proceeds as
follows: if the node is at depth p, then it is labelled by ”failure”; if it is at depth

280 S. Guillemot and V. Berry

< p, then the procedure of Theorem 1 has returned a conflict C of size ≤ 2k,
and for each x ∈ C a child node of u is added, with label X ∪ {x}. The running
time follows easily, since the search tree has height ≤ p, degree ≤ 2k, and since
each node is processed in O(kn2) time. ��

3.2 Solving Smast in O((8n)k) Time

In this section, we describe an algorithm which solves Smast in O((8n)k) time.
The algorithm uses dynamic programming, and is somewhat similar in spirit to
the algorithm described in [8] for solving Mast on two trees.

For the needs of this section, it is convenient to characterize the agreement
relation on trees in terms of partial embeddings. Let T, T ′ be two trees, say that
a partial embedding of T into T ′ is a function φ : N(T) → N(T ′) ∪ {⊥} such
that:

– for any x leaf of T , we have φ(x) =⊥ if x /∈ L(T ′), or φ(x) = x otherwise,
– for any x internal node of T with children u1, ..., up, let V = {j : φ(uj) 	=⊥
}, then (i) either V = ∅, and φ(x) =⊥, (ii) either V = {i} and φ(x) =
φ(ui), (iii) or |V | ≥ 2 and φ(ui) <T φ(x) for each i ∈ V , and the nodes
{childT (φ(ui), φ(x)) : i ∈ V } are pairwise distinct.

Then T agrees with T ′ iff there exists a partial embedding of T into T ′.
Let T be a collection and π a position in T . Let SMAST (π) denote the

set of trees T s.t. (i) T is an agreement supertree for T , (ii) for each i, the
partial embedding φi : T → Ti is such that φi(r(T)) ≤Ti π[i]. We denote by
#SMAST (π) the size of a largest tree of SMAST (π).

The algorithm computes values #SMAST (π) for each position π using a
recurrence relation whose base case is stated in Lemma 6 and general case is
stated in Lemma 8. The recurrence relation relies on a partial order ≤T on
positions, which is defined below. Given a position π, #SMAST (π) will be
computed from values #SMAST (π′) with π′ <T π. At the end of the algorithm,
#SMAST (T) is obtained as #SMAST (π�).

We define the relation ≤T on positions in T by: π ≤T π′ iff for each i ∈ [k],
π[i] ≤Ti π′[i]. We denote by <T its strict counterpart, where π <T π′ iff for each
i ∈ [k], π[i] ≤Ti π′[i], and one of these relations is strict. Observe that:

Lemma 5. If π′ ≤T π, then SMAST (π′) ⊆ SMAST (π).

The base case of the recurrence corresponds to terminal positions: a position π
is terminal if for each i ∈ [k], π[i] is a leaf or ⊥. Given x ∈ L(T), let Ind(x) =
{i ∈ [k] : x ∈ L(Ti)}. Given a terminal position π, and given x ∈ L(π), define
Ind(x, π) = {i ∈ [k] : π[i] = x}; observe that Ind(x, π) ⊆ Ind(x). Say that
an element x ∈ L(π) is maximally present iff Ind(x, π) = Ind(x), and let P (π)
denote the set of maximally present elements of L(π). Then:

Lemma 6. Suppose that π is terminal. Then: #SMAST (π) =
∣∣P (π)

∣∣.

Fixed-Parameter Tractability of SMAST 281

We now describe the general case of the recurrence relation, corresponding to
nonterminal positions. If π is nonterminal, then #SMAST (π) is computed from
two values #SMAST1(π), #SMAST2(π).

We first define #SMAST1(π). Say that a position π′ is a successor of π iff
there exists i ∈ [k] s.t. π′[i] is a child of π[i] and π′[j] = π[j] for each j 	= i. Let
S(π) denote the set of successors of π. Then define:

#SMAST1(π) = max
π′∈S(π)

#SMAST (π′). (1)

We now define #SMAST2(π). Say that a pair (π1, π2) of positions is a de-
composition of π iff (i) π1 	= π, π2 	= π and (ii) for each i ∈ [k], the following
holds:

– either π[i] =⊥, in which case π1[i] = π2[i] =⊥;
– either π[i] is a leaf x, in which case we have {π1[i], π2[i]} = {⊥, x};
– either π[i] is an internal node u with two children v, v′, in which case we

have either {π1[i], π2[i]} = {⊥, u} or {π1[i], π2[i]} = {v, v′}.

Let D(π) denote the set of decompositions of π. Then define:

#SMAST2(π) = max
(π1,π2)∈D(π)

(#SMAST (π1) + #SMAST (π2)). (2)

Note that computing the values #SMAST1(π) and #SMAST2(π) only in-
volves values #SMAST (π′) with π′ <T π, by the following lemma:

Lemma 7

(i) If π′ ∈ S(π), then π′ <T π;
(ii) If (π1, π2) ∈ D(π) then π1 <T π and π2 <T π.

We are now ready to state the relation for nonterminal positions:

Lemma 8. Suppose that π is not terminal. Then:
#SMAST (π) = max(#SMAST1(π), #SMAST2(π)).

Proof. We first prove that #SMAST1(π) ≤ #SMAST (π). Let S ∈ SMAST (π′)
for some π′ ∈ S(π), s.t. |S| is maximal. Since π′ <T π by Lemma 7, we have
S ∈ SMAST (π) by Lemma 5, and the result follows.

We now prove that #SMAST2(π) ≤ #SMAST (π). Let (π1, π2) ∈ D(π), and
let S1, S2 s.t. Sj ∈ SMAST (πi), |Sj | maximal. If one of the Sj ’s is empty,
say S1, then #SMAST (π1) = 0, and we obtain #SMAST2(π) = |S2| =
#SMAST (π2) ≤ #SMAST (π) by lemmas 5 and 7. Suppose now that S1, S2 are
not empty. For j ∈ {1, 2}, since Sj ∈ SMAST (πj), there exists partial embed-
dings φj,i : Sj → Ti s.t. φj,i(r(Si)) ≤Ti πj [i] for each i ∈ [k]. Let S = (S1, S2),
we claim that S ∈ SMAST (π). Indeed, define φi : S → Ti as follows. Set
φi(x) = φj,i(x) if x is a node of Sj , and φi(x) = lcaTi(φ1,i(r(S1)), φ2,i(r(S2))
if x is the root of S. Then: (i) L(S1) ∩ L(S2) = ∅, hence S is well-defined, (ii)

282 S. Guillemot and V. Berry

φi is a partial embedding of S into Ti, (iii) φi(r(S)) ≤Ti π[i]. We conclude that
#SMAST2(π) = |S1|+ |S2| = |S| ≤ #SMAST (π).

Finally, we show that #SMAST (π) ≤ max(#SMAST1(π), #SMAST2(π)).
Let S ∈ SMAST (π) s.t. |S| is maximal. Then there exists partial embeddings
φi : S → Ti s.t. φi(r(S)) ≤Ti π[i] for each i ∈ [k]. Let ui = φi(r(S)) for each i.
We consider two cases.

First case: there exists i ∈ [k] s.t. ui <Ti π[i]. This case holds in particular
if |S| ≤ 1. Define π′ from π by setting the ith component to childTi(ui, π[i]),
then π′ ∈ S(π). We verify that S ∈ SMAST (π′): indeed, φi is a partial
embedding of S into Ti s.t. φi(r(S)) ≤Tj π′[j] for each j. We conclude that
|S| = #SMAST (π) ≤ #SMAST (π′) ≤ #SMAST1(π).

Second case: ui = π[i] for each i ∈ [k]. In this case, we have |S| ≥ 2, hence
S = (S1, S2). Let u be the root of S, let vi be the root of Si in S, then π =
(φ1(u), ..., φk(u)). For j ∈ {1, 2}, define πj as follows: given i ∈ [k], (i) if φi(vj) =
φi(u), set πj [i] = φi(u), (ii) if φi(vj) =⊥, set πj [i] =⊥, (iii) if φi(vj) <Ti φi(u),
set πj [i] = childTi(φi(vj), φi(u)). Then (π1, π2) ∈ D(π). We now show that Sj ∈
SMAST (πj): indeed, φi is a partial embedding of Sj into Ti, and by definition
of πj we have φi(r(Sj)) ≤Ti πj [i] for each i ∈ [k]. We conclude that |S| =
#SMAST (π) = |S1|+|S2| ≤ #SMAST (π1)+#SMAST (π2) ≤ #SMAST2(π).

��

Lemmas 6 and 8 yield an algorithm for computing #SMAST (T):

Theorem 3. #SMAST (T) can be computed in O((8n)k) time.

Proof. Using dynamic programming, the algorithm computes the values
#SMAST (π) for each position π, using the recurrence relations stated in lem-
mas 6 and 8. The correctness of the algorithm follows from the lemmas, and the
termination of the algorithm is ensured by Lemma 7 and the fact that <T is an
order relation on positions in T .

We now consider the space and time requirements for the algorithm. First ob-
serve that the number of positions π in T is ≤ (2n)k: indeed, a component π[i]
has ≤ 2n possible values (one of the ≤ 2n− 1 nodes of Ti, or the value ⊥). It fol-
lows that the space complexity is O((2n)k). We claim that the time complexity is
O((8n)k). Indeed, consider the time required to compute #SMAST (π), assum-
ing that the values #SMAST (π′) for π′ <T π are available. Testing if π is termi-
nal requires O(k) time. If π is terminal, computing

∣∣P (π)
∣∣ takes O(k) time. If π is

nonterminal, then we need to compute #SMAST1(π) and #SMAST2(π), which
respectively require O(k) and O(4k) time. Thus, #SMAST (π) is computed in
O(4k) time, hence the total running time of the algorithm is O((8n)k). ��

3.3 Hardness Results

The parameterized complexity of the Smast problem on binary trees is con-
sidered w.r.t. the following parameters: k denotes the number of input trees, l
denotes an upper bound on the maximum size of the input trees, p (resp. q)
denotes an upper (resp. lower) bound on the number of labels to remove (resp.

Fixed-Parameter Tractability of SMAST 283

conserve) in order to obtain compatibility of the collection. Our complexity re-
sults for several combinations of the parameters are summarized in Theorem 4:

Theorem 4. We have the following hardness results for Smast:

Parameters Complexity of Smast

q W[1]-complete (even for l = 3)
q, k W[1]-complete
p W[2]-hard (even for l = 3)
k, p FPT by a O((2k)p × kn2) time algorithm
k XNL-hard, solvable in O((8n)k) time

The proof of the third result can be found in [6]. Other results are proved in [10].

4 Solving Smast on Complete Collection of Triples

A rooted triple (or triple for short) is a binary tree T s.t. |L(T)| = 3. A collection
of triples is a collection R = {t1, ..., tk} where each ti is a triple. R is complete iff
each set of three labels in L(R) is present in at least one ti. To a binary tree T ,
we associate a complete collection of triples rt(T) formed by the triples ti which
embed in T . For a complete collection R, we say that R is treelike iff there exists
a tree T s.t. R = rt(T); then we say that R displays T .

Let P-Smast-CR denote the restriction of P-Smast to complete collections
of triples. We can show that non-treelike collections have conflicts of size ≤ 4, a
result similar to that known on quartets [11]. This allows to solve P-Smast-CR

in O(n4 + 3.12p) time by reduction to 4-Hitting Set (using a O∗(3.12p) al-
gorithm for 4-Hitting Set described in [12]), and also in O(4pn4) time by
bounded search (see, e.g. [13]). In the following, we describe a faster algorithm
with O(4pn3) running time. We first present an algorithm to decide treelikeness
in linear O(n3) time (Proposition 1 and Theorem 5).

Proposition 1. There is an algorithm Insert-Label-Or-Find-Conflict

(R, X, x, T) which takes as input a complete collection of triples R, a set X ⊆
L(R), an element x ∈ L(R)\X and a tree T s.t. R|X displays T , and in O(n2)
time decides if R′ = R|(X ∪ {x}) is treelike. Additionally, the algorithm returns
the tree T ′ displayed by R′ in case of positive answer, or returns a conflict C
between R′ with |C| ≤ 4 in case of negative answer.

Proof. In a first step, the algorithm checks whether R contains two different
triples on the same set of three labels x, �, �′. In such a case, they form a conflict
of size 3 which is then returned by the algorithm.

If no such conflict is found, the algorithm proceeds to a second step during
which it determines for each internal node u of T , the relative subtree in which
u would accept to insert x: its left subtree (L), its right subtree (R), or the
subtree above it (A), namely the part of the tree that is not below u. To that
aim, the algorithm checks that the triples x, �, �′, with �, �′ labels under u in T ,

284 S. Guillemot and V. Berry

all indicate the same subtree relative to u. More formally, let v, v′ be the two
children of u. An u-fork is a pair {�, �′} where � ∈ L(v), �′ ∈ L(v′). Each u-fork
{�, �′} gives an opinion o�,�′ on the positioning of x w.r.t. u in T , where o�,�′

is computed from R as follows: if �x|�′ ∈ R then o�,�′ is set to L, if �′x|� ∈ R
then o�,�′ is set to R, otherwise, ��′|x ∈ R and o�,�′ is set to A. The algorithm
considers each internal node u in turn and computes the opinions o�,�′ of the u-
forks {�, �′}. If two u-forks indicate a different subtree for x, then the algorithm
easily identifies a conflict. In such a case, it can be shown that there exist �, �1, �2

s.t. o�,�1 	= o�,�2 (or o�1,� 	= o�2,�), in which case C = {x, �1, �2, �} is a conflict,
which is then returned by the algorithm. Otherwise, all u-forks indicate the same
subtree for x, and the opinion of u, denoted ou is defined to be this direction (L,
R or A).

In a third step, the algorithm checks that the opinions of the different nodes
u in T consistently indicate a single position to insert x in T . The opinions are
compatible iff for each edge u, v of T with u above v, we have: (i) if v is the
left child of u, then ou = R ⇒ ov = A, (ii) if v is the right child of u, then
ou = L ⇒ ov = A, (iii) if v is a child of u, then ou = A ⇒ ov = A. If one
pair of nodes u, v does not meet the above requirements, then by considering
{�, �′} v-fork and {�, �′′} u-fork, we obtain a conflict C = {x, �, �′, �′′}. Otherwise,
consider the sets of nodes u s.t. ou 	= A, they form a (possibly empty) path in T
starting at the root and ending at a node v. Then R|(X ∪ {x}) is treelike, and
displays the tree obtained from T by inserting x above v, which is returned by
the algorithm.

We now justify the running time of the algorithm. The first step trivially
takes O(n2) time. Consider the second step. Given a node u, let Fu be the set
of u-forks, then an internal node u is processed in time O(|Fu|). Therefore, the
time required by the second step is

∑
u O(|Fu|) = O(n2). Now consider the third

step. The algorithm checks that for each edge u, v of T , Conditions (i)-(ii)-(iii)
hold: for a given edge, checking the conditions or finding a conflict is done in
constant time, hence the time required by this step is O(n). It follows that the
total time required by the algorithm is O(n2). ��

Theorem 5. There is an algorithm Find-Tree-Or-Conflict(R) which takes
a complete collection of triples R, and in O(n3) time decides if R is treelike,
returns a tree T displayed by R in case of positive answer, or a conflict C
between R with |C| ≤ 4 in case of negative answer.

Proof. We use the procedure Insert-Label-Or-Find-Conflict to decide tree-
likeness as follows. We iteratively insert each label, starting from an empty tree,
until: (i) either every label has been inserted, in which case the collection is tree-
like and the displayed tree is returned, (ii) or a conflict is found and returned. ��

Using bounded search, we obtain:

Theorem 6. The P-Smast-CR problem can be solved in O(4pn3) time.

Fixed-Parameter Tractability of SMAST 285

References

1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM Journal on Computing 10(3), 405–421 (1981)

2. Xia, Y., Yang, Y.: Mining closed and maximal frequent subtrees from databases of
labeled rooted trees. IEEE Transactions on Knowledge and Data Engineering 17(2),
190–202 (2005)

3. Gordon, A.G.: Consensus supertrees: the synthesis of rooted trees containing over-
lapping sets of labelled leaves. Journal of Classification 3, 335–348 (1986)

4. Ranwez, V., Berry, V., Criscuolo, A., Guillemot, S., Douzery, E.: Vote or veto:
desirable properties for supertree methods. submitted to syst. biol. LIRMM (2007)

5. Jansson, J., Ng, J.H.K., Sadakane, K., Sung, W.K.: Rooted Maximum Agreement
Supertrees. Algorithmica 4(43), 293–307 (2005)

6. Berry, V., Nicolas, F.: Maximum agreement and compatible supertrees. Journal of
Discrete Algorithms (in press 2007)

7. Kao, M.Y.: Encyclopedia of algorithms (2007)
http://refworks.springer.com/algorithms/

8. Steel, M., Warnow, T.: Kaikoura tree theorems: computing the maximum agree-
ment subtree. Information Processing Letters 48(2), 77–82 (1993)

9. Henzinger, M., King, V., Warnow, T.: Constructing a Tree from Homeomorphic
Subtrees, with Applications to Computational Evolutionary Biology. Algorith-
mica 24(1), 1–13 (1999)

10. Guillemot, S., Berry, V.: Fixed-parameter tractability of the maximum agreement
supertree problem. Technical report, LIRMM (2007)

11. Bandelt, H., Dress, A.: Reconstructing the shape of a tree from observed dissimi-
larity data. Advances in Applied Mathematics 7, 309–343 (1986)

12. Fernau, H.: Parameterized algorithmics: A graph-theoretic approach. Habilitation-
sschrift, Universität Tübingen, Germany (2005)

13. Gramm, J., Niedermeier, R.: A fixed-parameter algorithm for minimum quartet
inconsistency. Journal of Computer and System Sciences 67(4), 723–741 (2003)

http://refworks.springer.com/algorithms/

Two-Dimensional Range Minimum Queries�

Amihood Amir1, Johannes Fischer2, and Moshe Lewenstein1

1 Computer Science Department,
Bar Ilan University,

Ramat Gan 52900, Israel
{moshe,amir}@cs.biu.ac.il

2 Ludwig-Maximilians-Universität München,
Institut für Informatik,

Amalienstr. 17, D-80333 München
Johannes.Fischer@bio.ifi.lmu.de

Abstract. We consider the two-dimensional Range Minimum Query
problem: for a static (m × n)-matrix of size N = mn which may be
preprocessed, answer on-line queries of the form “where is the position
of a minimum element in an axis-parallel rectangle?”. Unlike the one-
dimensional version of this problem which can be solved in provably
optimal time and space, the higher-dimensional case has received much
less attention. The only result we are aware of is due to Gabow, Bent-
ley and Tarjan [1], who solve the problem in O(N log N) preprocessing
time and space and O(log N) query time. We present a class of algorithms
which can solve the 2-dimensional RMQ-problem with O(kN) additional
space, O(N log[k+1] N) preprocessing time and O(1) query time for any
k > 1, where log[k+1] denotes the iterated application of k + 1 loga-
rithms. The solution converges towards an algorithm with O(N log∗ N)
preprocessing time and space and O(1) query time. All these algorithms
are significant improvements over the previous results: query time is op-
timal, preprocessing time is quasi-linear in the input size, and space is
linear. While this paper is of theoretical nature, we believe that our algo-
rithms will turn out to have applications in different fields of computer
science, e.g., in computational biology.

1 Introduction

One of the most basic problems in computer science is finding the minimum (or
maximum) of a list of numbers. An elegant and interesting dynamic version of
this problem is the Range Minimum Query (RMQ) problem. The popular one
dimensional version of this problem is defined as follows:

INPUT: An array A[1..n] of natural numbers.
We seek to preprocess the array A in a manner that yields efficient solutions to
the following queries:
� The second author was partially funded by the German Research Foundation (DFG,

Bioinformatics Initiative).

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 286–294, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Two-Dimensional Range Minimum Queries 287

QUERY: Given 1 ≤ i ≤ j ≤ n, output an index k, i ≤ k ≤ j, such that
A[k] ≤ A[�], i ≤ � ≤ j.

Clearly, with O(n2) preprocessing time, one can answer such queries in con-
stant time. Answering queries in time O(j − i) needs no preprocessing. The
surprising news is that linear time preprocessing can still yield constant time
query solutions. The trek to this result was long. Harel and Tarjan [2] showed
how to solve the Lowest Common Ancestor (LCA) problem with a linear time
preprocessing and constant time queries. The LCA problem has as its input a
tree. The query gives two nodes in the tree and requests the lowest common
ancestor of the two nodes. It turns out that constructing a Cartesian tree of the
array A and seeking the LCA of two indices, gives the minimum in the range
between them [1].

The Harel-Tarjan algorithm was simplified by Schieber and Vishkin [3] and
then by Berkman et al. [4] who presented optimal work parallel algorithms for
the LCA problem. The parallelism mechanism was eliminated and a simple serial
algorithm was presented by Bender and Farach-Colton [5]. In all above papers,
there was an interplay between the LCA and the RMQ problems. Fischer and
Heun [6] presented the first algorithm for the RMQ problem with linear pre-
processing time, optimal 2n + o(n) bits of additional space, and constant query
time that makes no use of the LCA algorithm. In fact, LCA can then be solved
by doing RMQ on the array of levels of the tree’s inorder tree traversal. This last
result gave another beautiful motivation to the naturally elegant RMQ problem.

The problem of finding the minimum number in a given range is by no means
restricted to one dimension. In this paper, we investigate the two-dimensional
case. Consider an (m × n)-matrix of N = mn numbers. One may be interested
in preprocessing it so that queries seeking the minimum in a given rectangle
can be answered efficiently. Gabow, Bentley and Tarjan [1] solve the problem in
O(N log N) preprocessing time and space and O(log N) query time.

We present a class of algorithms which can solve the 2-dimensional RMQ-
problem with O(kN) additional space, O(N log[k+1] N) preprocessing time and
O(1) query time for any k > 1. The solution converges towards an algorithm
with O(N log∗ N) preprocessing time and space and O(1) query time.

2 Preliminaries

Let us first give some general definitions. By log n we mean the binary loga-
rithm of n, and log[k] n denotes the k-th iterated logarithm of n, i.e. log[k] n =
log log . . . log n, where there are k log’s. Further, log∗ n is the usual iterated log-
arithm of n, i.e., log∗ n = min{k : log[k] n ≤ 1}. For natural numbers l ≤ r, the
notation [l : r] stands for the set {l, l + 1, . . . , r}.

Now let us formally define the problem which is the issue of this paper. We
are given a 2-dimensional array A[0 : m − 1][0 : n − 1] of size m × n. We
wish to preprocess A such that queries asking for the position of the minimal
element in an axis-parallel rectangle (denoted by rmq(y1, x1, y2, x2) for range

288 A. Amir, J. Fischer, and M. Lewenstein

minimum query) can be answered efficiently. More formally, rmq(y1, x1, y2, x2)=
argmin(y,x)∈[y1:y2]×[x1:x2]{A[y][x]}. Throughout this paper, let N = mn denote
the size of the input.

3 Methods

For simplicity, assume that the input array is a square, i.e., we have m = n
and N = n2. The reader can verify that this assumption is not necessary for
the validity of our algorithm. Further, because the query time will be constant
throughout this section, we do not always explicitly mention this fact.

We first give a high-level overview of the algorithm (see also Fig. 1). The
idea is to cover the input array with grids of decreasing widths s1, s2, . . . , thus
dividing the array into blocks of decreasing size. For each grid of a certain width,
we preprocess the array such that queries which cross the grid of a certain width
sk, but no grid of width sk′ for k′ < k, can be answered in constant time. Each
such preprocessing will use O(N) space and O(N) time to construct. E.g., query
q1 in Fig. 1 will be answered on level 1 because it crosses the grid with width s1,
whereas q2 will be answered on level 3. If the query rectangle does not cross any of
the grids (e.g., q3 in Fig. 1), we solve it by having precomputed all queries inside
such small blocks which we call microblocks. If the size of these microblocks is
constant, this constitutes no extra (asymptotic) time for preprocessing (leading
to the log∗-solution); otherwise we have to employ sorting of the blocks for a
constant time preprocessing, leading to the O(N log[k+1] N) preprocessing time.
The details are as follows.

3.1 A General Trick for Query Precomputation

Assume we want to answer in O(1) time all queries rmq(y1, x1, y1 + ly, x1 + lx)
for y1 taken from a certain subset of indices Y ⊆ [0 : n−1] (and likewise x1), and
certain query lengths ly ∈ Ly = [1 : |Ly|] (lx ∈ Lx). It suffices to precompute the
answers for query rectangles whose side lengths are a power of 2; i.e., precompute
rmq(y1, x1, y1 + ly, x1 + lx) for all y1 ∈ Y, x1 ∈ X , ly ∈ {21, 22, 23, . . . , |Ly|}, and
lx ∈ {21, 22, 23, . . . , |Lx|} and store the results in a table. These precomputations
can be done in optimal time using dynamic programming, similar to the one-
dimensional case [6]. The reason why precomputing these queries is enough is
given by the simple fact that all queries can be answered by decomposing them
into 4 different rectangles whose side lengths is a power of 2; see Fig. 2. Note the
similarity to the sparse table algorithm for the 1-dimensional solution [5]. We
denote by g(|Y |, |X |, |Ly|, |Lx|) := |Y | · |X | · log |Ly| · log |Lx| the space occupied
by the resulting table for this kind of preprocessing.

Note how this idea already yields an RMQ-algorithm with O(N log2 n) pre-
processing time and space and O(1) query time: simply perform the above pre-
processing for X, Y, Lx, Ly = [1 : n]; the space needed is then g(n, n, n, n) =
N log2 n.

Two-Dimensional Range Minimum Queries 289

s3
s2

s1

q1

q3

q2

Fig. 1. Covering the input array with
grids of different width. q1, q2, q3 denote
queries.

Fig. 2. Decomposing a query rectangle
[y1 : y2] × [x1 : x2] into four equal-sized
overlapping rectangles whose side lengths
are a power of two. Taking the position of
where the overall minimum occurs is the
answer to the query.

3.2 O(N) Preprocessing of the First Level

We now present a preprocessing to answer all queries which cross the grid for
width s := s1 := log n. The array is partitioned into blocks of size s × s. Then
a query can be decomposed into at most 9 different sub-queries, as seen in
Fig. 3. Query number 1 exactly spans over several blocks in both x- and y-
direction. Queries 2–5 span over several blocks in one direction, but not in the
other direction. Queries 6–9 lie completely inside one block (but meet at least
one of the four block “boundaries”).

Next, we show how to preprocess A such that all queries 1–9 can be answered
in constant time. Taking the position where the overall minimum occurs is the
final result.

Queries of type 1. We apply the idea from Sect. 3.1 on the set Y = X = Ly =
Lx = {0, s, 2s, . . . , n/s}; i.e., we precompute rmq(ys, xs, (y + 2k)s, (x + 2l)s) for
all x, y ∈ {0, . . . , n/s} and all k, l ∈ {0, . . . , log(n/s)}. The results are stored in
a table of size g(n/s, n/s, n/s, n/s) ≤ n/s · n/s · log n · log n = O(N). As usual,
queries of this type are then answered by selecting the minimum of at most 4
overlapping precomputed queries.

Queries of type 2–5. We just show how to handle queries 2 and 4; the ideas
for 3 and 5 are similar. Note that unlike Fig. 3 suggests, such queries are not
guaranteed to share an upper or lower edge with the grid; the general appear-
ance of these queries can be seen in Fig. 4. So the task is to answer all queries
rmq(y1, x1s, y1 + ly, x1s + lx) for all y1 ∈ {0, . . . , n − 1}, x1 ∈ {0, . . . , n/s},
ly ∈ {1, . . . , s} and lx ∈ {s, 2s, . . . , n/s}. It is easy to verify that simply applying
the trick from Sect. 3.1 would result in super-linear space; we therefore have
to introduce another “preprocessing layer” by bundling s′ := s2 cells into one
superblock. Then divide the type 2 (or 4)-query into a query that spans over

y2

4

1

1y
x1

2

x2

3

2k

2l

290 A. Amir, J. Fischer, and M. Lewenstein

Fig. 3. Decomposing a query rectangle [y1 : y2] × [x1 : x2] into at most 9 sub-queries

�������������������
�������������������
�������������������
�������������������

x1 x2

y1

y2

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

s

s’

s

Fig. 4. Queries spanning over more than one block in x-direction, but not in the y-
direction. Sub-queries 2 and 4 from Fig. 3 are special cases of these.

several superblocks, and at most two queries that span over several blocks, but
not over a superblock. All three such queries are handled with the usual idea; this
means that the space needed for the superblock-queries is g(n, n/s′, s, n/s′) =
n ·n/ log2 n · log log n · log(n/ log2 n) ≤ n2 log log n/ logn = O(N). The space for
the block-queries is g(n, n/s, s, s′/s) = n · n/ logn · log log n · log log n = O(N).

Queries of type 6–9. Again, unlike Fig. 3 suggests, it is not sufficient to
precompute queries that have a common border with two edges of a block; we
also have to precompute queries that share an edge with just one block-edge.
(E.g., imagine the query in Fig. 4 were shifted slightly to the left. Then there
would be a part of the query in the block to the very left which only touches
the right border of the block.) We just show how to solve queries that share
a border with the upper edge of a block (see Fig. 5); these structures have to
be duplicated for the other three edges. This means that we want to answer
rmq(y1s, x1, y1s + ly, x1 + lx) for all y1 ∈ {0, . . . , n/s}, x1 ∈ {0, . . . , n− 1}, and
ly, lx ∈ {1, . . . , s}. In this case, the idea from Sect. 3.1 can be applied directly,
leading to a space consumption of g(n/s, n, s, s) = n/ logn·n·log log n·log log n =
O(N).

�
�
�
�
�
�
�

�
�
�
�
�
�
�

x1 x2

y1

y2

�������������
�������������
�������������
�������������

�������������
�������������
�������������
��������������
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

����

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

�
�
�
�����

��
��
��

��
��
��
��

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
��������������

�
�

�
�
�

2

3

4

5

7

89

6 1

Two-Dimensional Range Minimum Queries 291

������
������
������
������

������
������
������
������

y1

y2

x1 x2

s

s

Fig. 5. Queries lying completely within a block, but sharing the upper edge with it.
Sub-queries 8 and 9 from Fig. 3 are special cases of these.

3.3 Recursive Partitioning

We are left with the task to answer RMQs which lie completely inside one of the
blocks with side length s = log n. We now offer two recursion strategies which
yield the log[k]- and log∗-algorithms that have been promised before.

The first idea is to recurse at least one more time into the blocks, and there-
after precompute all queries which lie completely in one of the microblocks. To
be precise, we take each of the (n/s)2 resulting blocks from Sect. 3.2 and pre-
pare them with the same method. Then the resulting blocks have side length
s2 := log[2] n. Continue this process until the resulting blocks have side length
sk = log[k] n for some fixed k > 1. As each level needs O(N) space, the result-
ing space is O(Nk). We now show that already for k = 2 we can precompute
all queries inside of microblocks in O(N) space and O(N log[k+1] N) time. We
denote by S := s2

k the size of the microblocks (i.e., the number of elements one
microblock contains).

The idea is to precompute all RMQs for all permutations of [1 : S] and look up
the result for a certain query block in the right place in this precomputed table.
To do so, assign a type to each microblock [y1 : y1+sk−1]× [x1 : x1+sk−1] in A
as follows: (conceptually) write the elements from the microblock row-wise into
an array B; i.e., B[1..S] = A[y1][x1..x1 +sk−1] . . .A[y1 +sk−1][x1..x1 +sk−1].
Then stably-sort B to obtain a permutation π of {1, . . . , S} s.th. B[π1] ≤ B[π2] ≤
· · · ≤ B[πS]. The index of π in an enumeration of all permutations of {1, . . . , S}
is the microblock-type. As there are N/S blocks of size S = s2

k to be sorted, this
takes a total of O(N/S × S log S) = O(N log[k+1] n) time.1

The reason for assigning the same type to microblocks whose elements are in
the same order can be seen by the following (obvious) lemma:

Lemma 1. Let A1 and A2 two arrays that have the same relative order π. Then
rmqA1(y1, x1, x2, y2) = rmqA2(y1, x1, x2, y2) for all values of y1, x1, y2, x2. ��
This implies that the following is enough to answer RMQs inside of microblocks:
For all permutations π of {1, . . . , S}, precompute all possible RMQs inside the
block
1 In the special case where the elements from the original array are in the range from

1 to N , we can bucket-sort all blocks simultaneously in O(N) time.

292 A. Amir, J. Fischer, and M. Lewenstein⎛⎜⎜⎜⎝
π1 . . . πsk

πsk+1 . . . π2sk

...
. . .

...
π(sk−1)sk+1 . . . πS

⎞⎟⎟⎟⎠
and store them in a table P (for “precomputed”) of size

S2(S)! = s4
k

√
2πs2

k ·
(

s2
k

e

)s2
k

· (1 + O(s−2
k)) (by Stirling)

≤ log5 log n ·
(
log2 log n

)log2 log n · (1 + O(s−2
k)) (because k > 1)

= (log log n)2 log2 log n+5 · (1 + O(s−2
k))

= O(N) .

The last equation is true because b2 = O(2b), so (2b2 +5)/ logb 2 ≤ 2b+1 for large

enough b; exponentiating with 2 yields b2b2+5 ≤ 2(2b+1) =
(
2(2b)

)2

, which yields
the result with b = log log n. Now to answer a query, simply look up the result
in this table.

The second idea is to recurse further into the blocks until the resulting mi-
croblocks have constant size; this happens after O(log∗ n) recursive steps. If
the resulting micro-blocks have constant size they can be sorted in O(1) time
each; and because there are (n/ log∗ n)2 microblocks this takes a total of O(N)
time. The space consumed by this kind of preprocessing is clearly bounded by
O(N log∗ N) due to the number of recursive steps performed.

If we now apply the same recursive steps also for answering queries, this yields,
of course, O(log[k+1] N) and O(log∗ N) query time, respectively. The next section
shows how to reduce query time to O(1).

3.4 What’s Left: How to Find the Right Grid

For both the log[k]- and the log∗-algorithm it remains to show how to determine
in O(1) time the grid with the largest width si = log[i] n such that the query
block crosses this grid. In other words, we wish to find the smallest 1 ≤ i ≤ k
such that the query crosses the grid with width si, because at this level the
answers have been precomputed and can hence be looked up. We will just show
how to do this for the x-direction; the ideas for the y-direction are similar. For
simplicity, assume that sj is a multiple of sj+1 for all 1 ≤ j < k.

Let rmq(y1, x1, y2, x2) be the given query, and let lx := x2 − x1 + 1 denote
the side length of the query rectangle in x-direction. Let i be defined such that
si−1 > lx ≥ si. This i can be found in O(1) time by precomputing an array
I[1 : n] with I[l] = min{k : l ≥ sk}; then i = I[lx]. Then the query crosses at
least one column from the si-grid, and at most one column from the si−1-grid.
As an example, consider query q1 in Fig. 6. We have s2 > lx ≥ s3, and indeed,
q3 crosses a column from the s3-grid, but no column from the s2-grid. Likewise,
for query q2 we have s2 > lx ≥ s1, and it crosses an s1- and an s2-column. Let

Two-Dimensional Range Minimum Queries 293

���
���
���
���

���
���
���
���

�������
�������
�������

�������
�������
�������

q1
x’ q2

x’

y1

s3

x1 x3

s2
s1

x2 x4

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�� ��q2

q1

Fig. 6. How to determine the level on which a specific query has been precomputed

x′ := � x2
si−1

� ·si−1 be the x-coordinate of where this crossing with a column from
the si−1-grid can occur.

Assume first that x′ 	∈ [x1 : x2] (as for q1 in Fig. 6). This means that the
si−1-grid does not cross the query rectangle in x-direction; and the same is true
for all i′ < i. So we know for sure that i is the smallest value such that the si-grid
passes through the query rectangle in x-direction. In this case we are done.

Now assume that x′ ∈ [x1 : x2] (as for q2 in Fig. 6). In other words, the
si−1-grid crosses the query rectangle in x-direction at position x′. In this case
we are not yet done, because it could still be that an si′ -column with i′ < i− 1
also passes through x′. To find the smallest such i′, define an array I ′[0 : n− 1]
such that I ′[x′] = j iff j is the smallest value such that there is a column from
the sj-grid passing through x′. This array can certainly be precomputed during
the k rounds of the preprocessing algorithm from the previous sections. As an
example, in Fig. 6 it could still be that a column from a different grid (say from
a hypothetical s0-grid) passes through the query rectangle. But as this must
happen at x′

q2
, we find this value at I ′[x′

q2
].

In total, we do the above for both the x- and y-direction, and look up the
query result at the minimum level i from both steps. If, on the other hand, we
find that the query rectangle does not cross a grid in any direction, the result
can be looked up in table P of precomputed queries.

4 Conclusion

We have seen a class of algorithms which solve the two-dimensional RMQ-
problem. While some ideas of our algorithm were similar to the one-dimensional
counterpart of the problem, others were completely new, e.g., the idea of iterat-
ing the algorithm for k levels, while still handling all queries as if they were on
the first level. Note that preprocessing time of our algorithm is not yet linear in
the size of the input, as it is the case with the 1D-RMQ (though being very close
to linear!). We conjecture that achieving linear time is impossible. In particular,
we believe that it should be possible to show that there is no such nice relation

294 A. Amir, J. Fischer, and M. Lewenstein

as the one between the number of different RMQs and the number of different
Cartesian Trees in the one-dimensional case [7]. This could mean that ideas such
as sorting or recursing become un-avoidable, thereby hinting at a super-linear
lower bound.

Although our results are currently more of theoretical nature, we believe that
our solution will turn out to have interesting applications in the future. One con-
ceivable application comes from computational biology, where one often wishes
to identify minimal (or maximal) numbers in a given region of an alignment
tableau [8].

Acknowledgments

J.F. wishes to thank Simon Ginzinger for fruitful discussions on this subject.

References

1. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proc. of the ACM Symp. on Theory of Computing, pp. 135–143.
ACM Press, New York (1984)

2. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM
J. Comput. 13(2), 338–355 (1984)

3. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988)

4. Berkman, O., Breslauer, D., Galil, Z., Schieber, B., Vishkin, U.: Highly parallelizable
problems. In: Proc. of the ACM Symp. on Theory of Computing, pp. 309–319. ACM
Press, New York (1989)

5. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94
(2005)

6. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and im-
provements in the enhanced suffix array. In: Proc. ESCAPE. LNCS (to appear)

7. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-problem,
with applications to LCA and LCE. In: Lewenstein, M., Valiente, G. (eds.) CPM
2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge (1997)

Tiling Periodicity�

Juhani Karhumäki1, Yury Lifshits2, and Wojciech Rytter3,4

1 Turku University, Finland
karhumak@utu.fi

2 Steklov Institute of Mathematics at St.Petersburg, Russia
yura@logic.pdmi.ras.ru

3 Department of Mathematics and Informatics, Copernicus University, Torun, Poland
4 Warsaw University, Poland

rytter@mimuw.edu.pl

Abstract. We contribute to combinatorics and algorithmics of words
by introducing new types of periodicities in words. A tiling period of a
word w is partial word u such that w can be decomposed into several
disjoint parallel copies of u, e.g. a � b is a tiling period of aabb. We inves-
tigate properties of tiling periodicities and design an algorithm working
in O(n log(n) log log(n)) time which finds a tiling period of minimal size,
the number of such periods and their compact representation. The com-
binatorics of tiling periods differs significantly from that for classical full
periods, for example unlike the classical case the same word can have
many different primitive tiling periods. We consider also a related new
type of periods called in the paper multi-periods. As a side product of
the paper we solve an open problem posted by T. Harju.

1 Introduction

The number p is a full period (period, in short) of a word w of length n iff p|n and
wi = wi+p whenever both sides are defined. Define by period(w) the shortest
nonzero full period of w.

In this paper we extend the notion of a full period. Namely, we are interested
in tilings of a word where the tiles themselves may contain ”transparent” let-
ters. A tiler (or partial word) is a word over Σ ∪ {*} alphabet, where * is a
special transparent (or undefined) letter. In other words, a tiler is a sequence of
connected words (blocks) with gaps between the blocks. The size of a tiler is
the number of defined symbols.

Imagine that we have several copies of a tiler printed on transparencies. Then,
this tiler is a period for some word, if we can put these copies into the stack such
that they form a single connected word without overlapping of visible letters.
Thus, a tiler S is called a tiling period of an (ordinary) word T if we can split T

� Support by grant N 8206039 of the Academy of Finland for the first author, by grants
INTAS 04-77-7173 and NSh-8464.2006.1 for the second author, and by grant of the
Polish Ministry of Science and Higher Education N 206 004 32/0806 is gratefully
acknowledged.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 295–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

296 J. Karhumäki, Y. Lifshits, and W. Rytter

into disjoint parallel copies of S satisfying the following: (a) All defined (visible)
letters of S-copies match the text letters; (b) Every text letter is covered by
exactly one defined (visible) letter. Similarly we define a tiling period x of a
tiler x: x consists of several disjoint copies of y. The word (a tiler) is primitive
if it has no proper tiling period. The tiling period of x is minimal iff it has
minimal size.

Example. For example a a * * b b is a tiling period of aaaabbbbaaaabbbb and
a * b * * * * * c * d is a tiling period of aabbaabbccddccdd. Both have size 4, the
first one is not primitive.

Problem. We investigate basic properties of tiling periodicity and comparing
it to the classical notion. We address the following questions: (1) How to enlist
all possible tiling periods? (2) Does every word have a unique primitive tiling
period? (3) How to find all tiling periods of minimal size? (4) How many periods
can a word of length n have? (5) What is the relation between the primitive clas-
sical and the primitive tiling periods? We have several reasons to be interested
in tiling periodicity. Firstly of all, it is a natural generalization of classical no-
tion, i.e. any full period is also a tiling period. Secondly, in the case when a tiling
period is relatively small, we can describe a long word by just its tiling period
and the length. Hence, we get a new class of words with low Kolmogorov com-
plexity. Tiling periodicity might be useful for the new text compression methods
(especially for generalizing run-length encoding). Note here, that the ratio be-
tween the “size” of tiling period and the length of classical full period may be
arbitrarily small. Next, the notion of tiling periodicity provides a geometrical in-
tuition about structure of the text. We have a conjecture that tiling periodicity
is not expressible by word equations. Yet another motivation for studying tiling
periodicity is a hope for applications in pattern discovery in some real data.

There are natural sources of tiling periodicity when considering multidimen-
sional n1 × · · · × nd rectangles. Let every integer point in it be colored. We
sort all points in lexicographical order of their coordinates and write down all
their colors in a single sequence. Assume that the initial rectangle was tiled by a
smaller one m1×· · ·×md where m1|n1, . . . , md|nd and every copy of the smaller
rectangle was colored in the same way. Then the color sequence for the bigger
rectangle has a tiling period. We comment this example later after introducing
some useful terminology. Automatically generated texts and XML-files might be
another possible sources of tiling periodicity.

Our results. Tilling periodicity looks very simple and natural, but up to our
knowledge it was never formulated before in its whole generality. We introduce
a partial order on tiling periods and discover that contrary to the classical case
there might be several incomparable primitive tiling periods. This helps to dis-
prove a common subtiler conjecture by Tero Harju. However we prove that every
primitive tiling period of a word T is also a tiling period of the primitive full
period of T . This property tells us that tiling periodicity lives “inside” classical
one. Finally, we present an algorithm which in O(n log(n) log log(n)) time finds

Tiling Periodicity 297

a tiling period of minimal size, the number of such periods and their compact
representation.

We present a complete hierarchy of all possible tiling periods. In particular
we get a recursive formula for computing function L(n) that gives the maximal
number of tiling periods for a unary word of length n. The value L(n) might be
even more than the text length. Actually, Bodini and Rivals obtain this recursive
formula a few months earlier: their paper [3] was submitted in January 2006,
while our results were reported only in May 2006 [10]. Here we keep our proof
since (comparing to [3]) it construct explicit one-to-one correspondence between
tilers and length factorizations, and introduces levels in the set of all tilers.

Related results. Prior to other work only tilings of a unary word were consid-
ered [3]. In the paper [13] authors present an algorithm for finding all tilers that
have at least q (quorum parameter) matches with the text. Another related no-
tion is cover [1]: a word C is a cover for a word T if any letter of T belongs
to some occurrence of C in T . One of the most important results related to
periodicity is a theorem by Fine and Wilf [5]. They studied the necessary and
sufficient condition under which from p-periodicity and q-periodicity we can de-
rive gcd(p, q)-periodicity (recall that gcd is the greatest common divisor). We
tried to prove the similar property for tiling periods. Surprisingly, it does not
hold. Even two tiling periods of the same text may have no common subperiod.
Our attempt to generalize the notion of periodicity is not the first one. Recently,
Simpson and Tijdeman generalized Fine and Wilf theorem for multidimensional
periodicity [17]. Berstel and Boasson [9] followed by Shur and Konovalova (Gam-
zova) [16,15] and Blanchet-Sadri [2] extensively studies partial words and their
periodicity properties. However, overlapping of periods (where every letter of the
text is covered exactly once) were not considered and therefore in their terms
only partial words may have partial periods (i.e. periods with gaps). In the paper
[8] borders of a partial word are studied. Katona and Szàsz introduced in [11] a
sort of tiling periodicity in two dimensions. They consider tilers consisting only
of two letters. The notion of periodicity was generalized for infinite words under
the name almost periodic sequences, see e.g. [14].

2 Properties of Tiling Periodicity

We say that one tiler S is smaller than another tiler Q, and write S ≺ Q, if S is
a proper tiling period of Q. In the case of full periodicity any text has a single
primitive full period. We are interested in the following question: is it true that
for every ordinary word there exists a unique primitive tiling period (i.e. it is
smaller than any other tiling period)? It can be reformulated in an alternative
way: do any two tiling periods have a common tiling “subperiod”? Surprisingly,
the answer is negative. Figure 1 presents the shortest known example T (24 let-
ters) with two incomparable periods (the proof of their primitiveness is omitted
in this version).

We can get more incomparable tiling periods. Let TA1B1 and TA2B2 be ob-
tained from T by just using different letters. We construct the text T2 by

298 J. Karhumäki, Y. Lifshits, and W. Rytter

replacing every A in T by TA1B1 and every B in T by TA2B2 . Now we can
describe four incomparable tiling periods for T2. The text T2 has length 242.
Group all letters to 24 blocks of 24 letters. Choose 12 of blocks using one of
two partial words above. Then inside each block also keep only 12 letters using
either first or second tiling period (the same in every block). We can repeat
the construction several times. The text Tk has size 24k and has 2k incompa-
rable periods. Asymptotically it has n

log 2
log 24 > 5

√
n incomparable primitive tiling

periods.

a a a a a a a a b a a b b a a b a a a a a a a a a a a a a a a a b a a b b a a b a a a a a a a a

Fig. 1. Two primitive tiling periods of an example word, both of size 12

In 2003 in his lecture course [6] Tero Harju asked the following question.
Assume that some colored cellular figure has tiling by one pattern and by another
one. Is it always true that there exists the third one such that both first two can
be tiled by that third one? This question is motivated by studying defect effect
in combinatorics of words [7]. Our example shows that the answer is negative
even for one-dimensional (but disconnected!) figures.

We consider now the situation when the number of tilers in a word is maximal,
this happens for a unary word of length n (i.e only one character is used). Then
we reformulate tiling periodicity in the algebraic terms (like si = si+p for full
periodicity). This reformulation helps us to prove that any primitive tiling period
is smaller than the primitive full period and to compute all tiling periods of
minimal size.

Lemma 1. Take any tiling period P . Then all continuous blocks in P are of the
same size s and the length of any gap in P is a multiple of s.

Proof. Indeed, in the text tiling the second copy of P is shifted by the size of the
first block s1. Hence, for avoiding overlapping all other blocks are smaller or equal
than s1. Assume now, that the block b is the first one which is strictly smaller
than s1. Then the gap between b in the first copy of P and b in the second copy
of P is smaller than s1. Hence, that gap cannot be filled by anything. Every gap
in P is filled by several blocks of some copies of P . Hence it must be a multiple
of s.

Theorem 1. There is a one-to-one correspondence between tiling periods of a
unary word and decompositions n = n1· . . . ·nk, where n2, . . . , nk ≥ 2.

Proof. At first, we describe a set of tiling periods (hierarchial construction) for
the word of length n over the unary alphabet. Then we prove that this set is
complete, i.e. contains all possible tiling periods.

We divide the set of all periods in levels. Every period in our system is asso-
ciated with a special code. The whole text itself is the only period from 0-level

Tiling Periodicity 299

and has the code n. For every decomposition n = n1 · n2 with n2 ≥ 2 the block
of size n1 is a period from 1-level with a code n1 · n2. The 0-level and 1-level
actually represent all classical (i.e. connected) full periods.

We now explain how to construct a period Q of k +1-level from a period P of
k− 1-level with the code n1· . . . ·nk. Take any decomposition n1 = m1 ·m2 ·m3

with m2, m3 ≥ 2. Through all our construction the first number of a code is
equal to block size of a tiling period (all continuous blocks have equal sizes
in our constructions). To construct the new tiler Q we take every block of P ,
divide it into m3 groups of size m1 · m2, and in every such group keep only
first m1 letters. We can notice that P can be tiled by m2 copies of Q (with
shifts 0, m1, . . . , m1 · (m2 − 1)). Hence, Q is also a tiling period for the text with
the code m1 · m2 · m3 · n2· . . . ·nk. Note, that our construction maintains the
inequality n2, . . . , nk ≥ 2 for all codes.

We now prove that any tiling period is included in our construction. Consider
a tiler P . Let s be the block size and g · s be the length of the first gap. The
plain power of P is defined as the union of P -copies shifted by 0, s, 2s, . . . , g · s.

Claim: The plain power of any tiling period P is also a tiling period.

Proof: take a text splitting in P -copies. Let s be the block size and g · s be the
length of the first gap. We divide all copies of P into groups of g + 1 copies
in the following way. Consider all P -copies from the left to the right. The gap
between first two blocks of the first copy can be filled only by first blocks of
other P -copies. These copies together with the first one form the first group.
Now assume that we already formed several such groups. Consider the first copy
of P unused so far. Look at its first gap. All P -copies from the previous groups
has long (at least s · (g + 1)) continuous blocks. Hence, this gap is also filled by
new, still unused P -copies. Since we process all copies from the left one to the
right one, all of them contribute to this gap filling by their first block. Therefore
these copies form the next group we need. Every group itself is exactly a plain
power of P . Hence, the initial text has also splitting in the plain power copies.
The claim is proved.

Assume now that there exists some P outside of our construction. Then there
also exists some tiling period P ′ such that (1) it is outside of our hierarchy and
(2) its plain power Q is included in our hierarchy. Let us derive a contradiction
from that. Indeed, let n1·. . . ·nk be the code of Q, let s be the block size of P ′

and s · g be the length of its first gap. Then n1 is the block size of Q and it is a
multiple of s · (g + 1). Let m1 = s, m2 = g + 1, m3 = n1/(s · (g + 1)). Now we
see that P ′ is in fact included in our hierarchy as a tiling period with the code
m1 · m2 ·m3 · n2· . . . ·nk. Therefore, our hierarchy is complete.

Corollary 1. Let L(n) be the number of tiling periods for the word of length n
over a unary alphabet. The theorem above states that L(n) is equal to the num-
ber of factorizations n = n1·. . . nk, where n2, . . . , nk ≥ 2. By grouping all decom-
positions by the rightmost factor we obtain the recurrence: L(1) = 1; L(n) =
1 +
∑

d|n,d �=n L(d).

300 J. Karhumäki, Y. Lifshits, and W. Rytter

Remark. Two related sequences are included in the On-line Encyclopedia of
Integer Sequences [18] maintained by N.J.A. Sloane. The sequence A067824 is
defined by the formula in Corollary 1. The sequence A107736 is the number
of polynomials p with coefficients in {0, 1} that divide xn − 1 and such that
(xn − 1)/((x− 1)p(x)) has all coefficients in {0, 1}. But this is exactly the num-
ber of tiling periods for the unary text of the length n. Indeed, multiplying p
by some polynomial with coefficients in {0, 1} we are trying to split n “ones” in
several parallel copies of p without overlapping. Till August 2006 Encyclopedia
indicated that “A067824 and A107736 agree at least on first 300 terms, but no
proof of equivalence is known”. After recent work [3], Theorem 1 and Corollary
1 give a new independent proof of their equality. Indeed, the number of poly-
nomials is equal to the number of tiling periods, the number of tiling periods is
equal to the number of factorizations (Theorem 1), the number of factorizations
satisfies the recursive formula (Corollary 1). The function L(n) and the number
of factorizations also appear in Knuth’s book [12]. However, no closed formula
for L(n) is known so far.

Definition. Assume we count positions starting from 0. For a divisor p of n, by p-
block we mean a subword of the form x[i·p..(i+1)·p−1], where 0 ≤ i ≤ (n−1)/p.
We say that a word T = T0 . . . Tn−1 has a multi-period (a, b) (or a period a
ranged by b) if b|n, and all b-blocks have a full period a. Observe that the word
corresponding to this period can be different in each block. Classical full period
p coincides with the multi-period (p, n).

Lemma 2. A word T has a tiling period with the code n1·. . . ·n2k or n1·. . . ·n2k+1

iff it has multi-periods respectively

(n1, n1n2), . . . , (
2k−1∏
i=1

ni,

2k∏
i=1

ni) or (n1, n1n2), . . . , (
2k−1∏
i=1

ni,

2k∏
i=1

ni).

Proof. We first describe Step 1: from tiling period P to multiperiodicity. We
use induction over tiler’s level. Consider the corresponding text tiling. Recall
that all copies of P can be divided into groups of size n2 with internal shifts
0, n1, . . . , n1(n2 − 1). If we divide the whole text into the blocks of size n1n2,
every block is covered by P -copies from the same groups, and therefore it is
n1-periodic (inside the block). We proved (n1, n1n2)-multiperiodicity. All others
follow from the induction hypothesis for the plain power of P .

Step 2: from multi-periods to a tiling periodicity.
Consider the top multi-period (

∏2k−1
i=1 ni,

∏2k
i=1 ni). Let us consider the text tiling

by tiler Q with the code (
∏2k−1

i=1 ni) · n2k for the first statement of lemma and
Q with the code (

∏2k−1
i=1 ni) · n2k · n2k+1 for the second case. Directly from this

top multiperiodicity every copy of Q has the same letters on the same places.
Hence, Q is a tiling period for the text. Continuing the reasoning, with the help
of the second multiperiodicity we find another tiling period R inside Q. Finally,
the last multiperiodicity gives us the tiling period with the code we promised in
the lemma’s statement.

Tiling Periodicity 301

Lemma 3. If the text T has a full period p and a multi-period (a, b), then either
b|p or the text has also full period gcd(a, p).

Proof. Take any letter Ti. We are going to make several moves of size ±p and +a
for reaching position i + gcd(a, p). We want to be on the same character every
time and hence we can not make a move of size +a from the last a-blocks in
every b-block. As we know from extended Euclid algorithm, there exist integers
k and l such that gcd(a, p) = ka− lp. We will use the following greedy strategy.
If we are able to make a move of size +a we do this. Otherwise we try to make
several moves of size ±p. After making exactly k moves of size +a we just make
all the remaining moves of size ±p and we are done. We cannot follow greedy
strategy only if for some position j < p from all points j, j +p, . . . j +(n

p −1)p we
cannot jump +a. This means that all that points belong to the last a-groups in
b-blocks. Suppose now that p is not divided by b. Then u = gcd(p, b) ≤ b

2 . Since
p|n and b|n, among the numbers j mod b, . . . , j + (n

p − 1)p mod b, there exists
all residues h modulo b such that h ≡ j(mod u). Hence, one of these values is
smaller than u which does not exceed b/2. But this means that the corresponding
point does not belong to the last a-group in the b-block.

Theorem 2. Any primitive tiling period Q of word T is also a tiling period for
the primitive full period of T .

Proof. We use induction over the text length. In the case of the one-letter-text
theorem is true. Let now p be the length of the full period and (a, b) be the top
multiperiodicity from the code of Q (here we use Lemma 1). From p = n theorem
follows immediately. Assume now that p < n. By hierarchial construction Q
consists of some letters from the first a-block in every b-blocks in the text. Let
us apply Lemma 2. If b|p, then we can produce a new tiling period Q′ restricting
Q to the first p symbols in the text. By p-periodicity Q can be split in several
parallel copies of Q′ with shifts 0, p, 2p, . . . , (n

p − 1)p. We get the contradiction
against the primitivity of Q. Therefore the text has full period gcd(a, p). But
p is the minimal full period. Hence, p|a. Since the text is p-periodic, it is also
a-periodic and b-periodic. That means that we can again restrict Q only for
the first a-block. Either we get a new smaller tiling period Q′ (and that gives
us contradiction) or b = n and all letters of Q belong to the first a-block. We
now see that both full period p and the tiling period Q are periods for the first
a-block. Since a ≤ b/2 ≤ n/2, we can apply induction hypothesis.

Corollary 2. Take any tiling period Q and any full period p. Then they have a
common “tiling subperiod”.

Proof. Consider a primitive tiling period Q′ that is smaller than Q. Consider
the primitive full period p′. From folklore we know that p′|p. By Theorem 2 Q′

is a tiling period for the first p′-block of the text. Hence, Q′ is the required tiling
subperiod for Q and p.

302 J. Karhumäki, Y. Lifshits, and W. Rytter

Remark. Using the technique from Lemma 1, Lemma 2 and Theorem 2 it is
possible to prove that the primitive tiling period is unique for n = 2k. We just
suggest the proof scheme here. Take two primitive incomparable tiling periods.
Consider their top multiperiodicities. Apply the reasoning of Lemma 2. Either
one of the periods is not primitive or these multiperiodicities are the same. Going
down we prove either their equivalence or their non-primitivity.

3 Algorithm Compute-Minimal-Tilers

We define the size of tiling period as the number of defined letters in it. In the
algorithm we use the fact that for every tiling period there is a corresponding
chain of embedded multiperiodicities (a1, b1), . . . , (ak, bk). By “embedded” we
mean that bi|ai+1 holds for every i. Notice that the size of a tiling period is
equal to n

∏k
i=1

ai

bi

ALGORITHM Compute-Minimal-Tilers (w)

1. Construct the acyclic tiling graph G of multi-periods.
(a) V = {(a, b) : 1 ≤ a < b ≤ n, & a|b & b|n & MultiPeriod(a, b))
(b) E = {(a, b) → (c, d) : b|c}.
(c) Assign the weight b/a to every node (a, b) ∈ V .

2. Find in G a path π having maximal product val(π) of its node-weights;
3. Output tiler(w, π) (of size n

val(π)).

Fig. 2. The graph G for the word w = aabbaabbccddccddaabbaabbccddccdd. The path
with maximal product of weights is π : (16, 32) → (4, 8) → (1, 2). We have val(π) = 8
and tiler(w, π) = a�b�����c�d. The size of tiler(w, π) equals 32

8
, since n = |w| = 32.

We describe how to construct the tiler tiler(w, π) corresponding to a path π of
multi-periods:

π = (p1, q1) → (p2, q2) → (p3, q3) → . . . (pk, qk).
For each pi-block of w we replace all symbols which are not in the first qi block
in this block by *. Then from the resulting word we remove all ending *’s.

Remark. The following O(n) size max-paths graph representation G′ ⊆ G of
all tiling periods of minimal size can be constructed with additional linear work
(since the graph is extremely small). For each vertex v of G compute all outgoing

(16,32) (4,8) (1,2)

Tiling Periodicity 303

edges which are on a maximal path starting from v. The graph of all edges on
maximal-product paths represents all tiling periods of minimal size. In particular
we can compute easily the number of such periods.

We describe now an efficient implementation. Let w be a word of length n and
let Divisors(n) denotes the set of divisors of n. The subwords are given by their
starting-ending positions in w. Recall that by p-block we always mean a subword
of length p with a starting position being multiple of p. Denote by period(w) the
size of the smallest full period of a word w. The basic operation in the algorithm
Compute-Minimal-Tilers is the boolean function MultiPeriod(q, p), called main
query, which can be expressed in terminology of the blocks as follows:

MultiPeriod(q, p):

for given p, q ∈ Divisors(n) check if each p-block has a full period q.

Lemma 4. Assume we can preprocess the word in time O(F (n)) to compute
each query MultiPeriod in logarithmic time. Then the algorithm works in time
O(n + F (n)),

Proof. By d(n) we denote the number of divisors of n. It is known that d(n) =
O(nε), for any constant ε > 0. Hence the number of nodes and edges is O(n).
The construction of the graph can be done in linear time after preprocessing.
Computation of a maximal path in time O(n) is very easy, since it is an acyclic
graph with linear number of edges.

Theorem 3. [Fast-Preprocessing]
We can preprocess the word in O(n log n log log n) time in such a way that each
MultiPeriod query can be answered in constant time.

The algorithm Compute-Minimal-Tilers is doing a sublinear number of Multi-
Period queries, hence the theorem implies immediately the following speed-up
result.

Theorem 4. The minimal-size tiler of a word can be found in O(n log n log log n)
time.

We now show the proof of Theorem 3. Firstly we introduce and concentrate on
small queries. A small query operation is to compute for a given subword u
of w (given by interval in w) the value period(u).

We say that a natural number is a 2-power number if it is a power of two.
We use the idea of basic factors: the subwords with 2-power lengths. Denote by
subwordk(i) the subword of size 2k starting at position i in a given word w.
We can add suitable number of endmarkers to guarantee that for each original
position we have subword of the corresponding length.

Define the table NEXT such that for each 0 ≤ k ≤ log n, 0 ≤ i < n the value
of NEXT [k, i] is the first position j > i such that subwordk(i) = subwordk(j).
If there is no such j then NEXT [k, i] = −1.

304 J. Karhumäki, Y. Lifshits, and W. Rytter

Our basic data structure is the dictionary of basic factors, we refer to [4] for
detailed definition. Denote this data structure by DBF (w). For each position i
in w and 0 ≤ k ≤ log n we have a unique label NAME[k, i] ∈ [1..n] such that
subwordk(i) = subwordk(j) ⇔ NAME[k, i] = NAME[k, j].

Lemma 5. The tables NAME and NEXT can be computed in O(n log n) time.

Proof. The table NAME is the basic part of DBF (w) and can be computed
within required complexity using Karp-Miller-Rosenberg algorithm, see [4].

We show how to compute the table NEXT . Let us fix k ≤ log n. We sort lexico-
graphically the pairs (NAME[k, i], i). Then the block of elements in the sorted
sequence with the same first component r gives the increasing sequence of posi-
tions i with the same value NAME[k, i] = r. Let SORTED1[j], SORTED2[j]
be the first and second component of the j-th pair in the sorted sequence.

We execute:
for i := 0 to n− 1 do NAME[k,i]:=-1;
for j := 1 to n− 1 do

if SORTED1[j − 1] = SORTED[j] then
NEXT [k, SORTED2[j − 1] := SORTED2[j];

The radix sorting of pairs of integers can be done in linear time for each k. We
have logarithmic number of k’s, hence the whole computation of NEXT takes
O(n log n) time. This completes the proof.

Lemma 6. [Small Queries]
Assume the tables NAME and NEXT are already computed. Then for any sub-
word u of w (given by interval in w) we can compute period(u) in O(log n)
time.

Proof. We show now how we compute period(u) for u = w[p..q]. We can check
if u has a full period of length u/2 or u/3 in constant time, since we can check
equality of constant number of subwords in constant time. The DBF data struc-
ture allows to check in constant time equality of subwords which lengths are not
necessarily 2-powers (decomposing them into ones which are, possibly overlap-
ping each other).

Now let us go to smaller candidate periods, assume period(u) ≤ |u|/4. Let us take
the prefix v of u which size is a largest power 2k such that |u|/4 ≤ 2k ≤ |u|/2.

Claim. Let u = w[p, q], if period(w[p..q]) ≤ |v|/4 then period(v) is equal to
NEXT [k, p]− p.

The claim follows from the fact that period(u) in this case is a size of a prim-
itive word v such that u is a full power of v. This primitive word can start an
occurrence only at positions which are multiples of v, due to primitivity. Hence
the first such internal position after p should be equal to |v| = period(u). We
can verify this “candidate period” in O(log n) time using NAME table. This
completes the proof of the lemma.

Tiling Periodicity 305

We define now the following data structure. For each p ∈ Divisors(n) define
LCM [p] as the least common multiple of the smallest full periods of all p-blocks
of w.

Lemma 7. We can precompute the table LCM in O(n log n log log n) time.

Proof. Assume we constructed tables NEXT and NAME. We can do it within
required complexity due to Lemma 5. Then for each p ∈ Divisors(n) we can
compute the set of periods of p-blocks in time O(p log n) due to Lemma 6. Then
we compute the lowest common multiple of all these periods in time O(p log n)
for each p. Now the thesis follows from the well known number-theory fact that∑

p∈Divisors(n)

p = O(n log log n)

This completes the proof of the lemma.

We can finish now the proof of Theorem 3. We know that MultiPeriod(p, q) =
true iff LCM [p] is a divisor of q. This property can be checked in constant time
using the precomputed values of LCM [p]. Consequently, this completes the proof
of Theorem 3.

4 Directions for Further Work

There are a lot of natural, important and perhaps not so difficult questions we
can suggest for further work on tiling periodicity. They are summarized in the
list below.

1. Introduce and study not full tiling periodicity, approximate tiling period-
icity, tilings by two (or more) partial words. This kind of tilings might be
even more useful for compression purposes.

2. Calculate how often do words have proper tiling periods for various models
of random words. Compare the answer with the classical case. Characterize
the equivalent of primitive words.

3. Is it true that all primitive tiling periods are minimal-size tiling periods?

References

1. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39(1), 17–20 (1991)

2. Blanchet-Sadri, F.: Periodicity on partial words. Computers and Mathematics with
Applications 47(1), 71–82 (2004)

3. Bodini, O., Rivals, E.: Tiling an interval of the discrete line. In: Lewenstein, M.,
Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 117–128. Springer, Heidelberg
(2006)

4. Crochemore, M., Rytter, W.: Jewels of stringology: text algorithms. World.
Sc. (2003)

306 J. Karhumäki, Y. Lifshits, and W. Rytter

5. Fine, N., Wilf, H.: Uniqueness theorems for periodic functions. Proc. Amer. Math.
Soc. 16, 109–114 (1965)

6. Harju, T.: Defect theorem, lecture notes of Combinatorics of words Tarragona
course (2002/2003)

7. Harju, T., Karhumäki, J.: Many aspects of defect theorems. Theor. Comput.
Sci. 324(1), 35–54 (2004)

8. Iliopoulos, C.S., Mohamed, M., Mouchard, L., Perdikuri, K., Smyth, W.F., Tsaka-
lidis, A.K.: String regularities with don’t cares. Nord. J. Comput. 10(1), 40–51
(2003)

9. Boasson, L., Berstel, J.: Partial words and a theorem of Fine and Wilf. Theor.
Comput. Sci. 218(1), 135–141 (1999)

10. Karhumäki, J., Lifshits, Y.: Tiling periodicity, May 2006, Dagstuhl seminar
Combinatorial and Algorithmic Foundations of Pattern and Association Dis-
covery (2006) http://kathrin.dagstuhl.de/files/Materials/06/06201/06201.
LifshitsYury1.Slides.pdf

11. Katona, G.O.H., Szász, D.O.H.: Matching problems. J. of Combinatorial Theory
Ser B 10(1), 60–92 (1971)

12. Knuth, D.: The Art of Computer Programming, Fascicle 3: Generating All Com-
binations and Partitions, vol. 4. Addison-Wesley, Reading (2005)

13. Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.-F.: Bases of motifs for gen-
erating repeated patterns with wild cards. IEEE/ACM Trans. Comput. Biology
Bioinform. 2(1), 40–50 (2005)

14. Pritykin, Y., Raskin, M.: Almost periodicity and finite automata. Technical Report
(2007) available at http://lpcs.math.msu.su/∼pritykin/files/apfinaut.zip

15. Shur, A.M., Gamzova, Y.V.: Partial words and the periods interaction property.
Izvestiya RAN 68(2), 199–222 (2004)

16. Shur, A.M., Konovalova, Y.V.: On the periods of partial words. In: Sgall, J., Pultr,
A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 657–665. Springer, Hei-
delberg (2001)

17. Simpson, R.J., Tijdeman, R.: Multi-dimensional versions of a theorem of Fine and
Wilf and a formula of Sylvester. Proc. Amer. Math. Soc. 131, 1661–1667 (2003)

18. Sloane, N.J.A.: The on-line encyclopedia of integer sequences.
http://www.research.att.com/∼njas/sequences

http://kathrin.dagstuhl.de/files/Materials/06/06201/06201.LifshitsYury1.Slides.pdf
http://kathrin.dagstuhl.de/files/Materials/06/06201/06201.LifshitsYury1.Slides.pdf
http://lpcs.math.msu.su/~pritykin/files/apfinaut.zip
http://www.research.att.com/~njas/sequences

Fast and Practical Algorithms for Computing

All the Runs in a String�

Gang Chen1, Simon J. Puglisi2, and W.F. Smyth1,2

1 Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1

smyth@mcmaster.ca

www.cas.mcmaster.ca/cas/research/algorithms.htm
2 Department of Computing, Curtin University, GPO Box U1987

Perth WA 6845, Australia
{puglissj,smyth}@computing.edu.au

Abstract. A repetition in a string x is a substring w = ue of x, max-
imum e ≥ 2, where u is not itself a repetition in w. A run in x is a
substring w = ueu∗ of “maximal periodicity”, where ue is a repetition
and u∗ a maximum-length possibly empty proper prefix of u. A run may
encode as many as |u| repetitions. The maximum number of repetitions
in any string x = x[1..n] is well known to be Θ(n log n). In 2000 Kolpakov
& Kucherov showed that the maximum number of runs in x is O(n); they
also described a Θ(n)-time algorithm, based on Farach’s Θ(n)-time suffix
tree construction algorithm (STCA), Θ(n)-time Lempel-Ziv factoriza-
tion, and Main’s Θ(n)-time leftmost runs algorithm, to compute all the
runs in x. Recently Abouelhoda et al. proposed a Θ(n)-time Lempel-Ziv
factorization algorithm based on an “enhanced” suffix array — a suffix
array together with other supporting data structures. In this paper we
introduce a collection of fast space-efficient algorithms for computing all
the runs in a string that appear in many circumstances to be superior
to those previously proposed.

1 Introduction

Periodicity (repetition) in infinite strings was the first topic of stringology [30];
counting and computing the maximum-length adjacent repeating substrings
(repetitions) in a finite string was, along with pattern-matching, one of the ear-
liest computational problems on strings to be studied [17,19]. Given a nonempty
string u and an integer e ≥ 2, we call ue a repetition ; if u itself is not a repe-
tition, then ue is a proper repetition. Given a string x, a repetition in x is
a substring

x[i..i+e|u|−1] = ue,

where ue is a proper repetition and neither x
[
i+e|u|..i+(e+1)|u|−1)

]
nor

x[i−|u|..i−1] equals u. Following [29], we say the repetition has generator u,
� The work of the first and third authors was supported in part by grants from the

Natural Sciences & Engineering Research Council of Canada.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 307–315, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

308 G. Chen, S.J. Puglisi, and W.F. Smyth

period |u|, and exponent e; it can be specified by the integer triple (i, |u|, e).
It is well known [17,3] that the maximum number of repetitions in a string x =
x[1..n] is Θ(n log n), and that the number of repetitions in x can be computed
in Θ(n log n) time [3,2,20].

A string u is a run iff it is periodic of (minimum) period p ≤ |u|/2. Thus
x = abaabaabaabaab = (aba)4ab is a run of period |aba| = 3. A substring
u = x[i..j] of x is a run in x iff it is a run of period p and neither x[i−1..j]
nor x[i..j+1] is a run of period p (nonextendible). The run u has exponent
e = �|u|/p� and possibly empty tail t = x[i+ep..j] (proper prefix of x[i..i+p−1]).
Thus

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x = b a a a b a a b a a b a b a

has a run x[3..12] of period p = 3 and exponent e = 3 with tail t = a of length
t = |t| = 1. It can also be specified by a triple (i, j, p) = (3, 12, 3), and it includes
the repetitions (aab)3, (aba)3 and (baa)2 of period p = 3. In general, for e = 2
a run encodes t+1 repetitions; for e > 2, p repetitions. Clearly, computing all
the runs in x specifies all the repetitions in x.

Runs were introduced by Main [18], who showed how to compute the leftmost
occurrence of every run in x = x[1..n] by

(1) computing STx, the suffix tree of x [32];
(2) using STx to compute LZx, the Lempel-Ziv factorization of x [16];
(3) using LZx to compute leftmost runs.

Since steps (2) and (3) require only Θ(n) (linear) time, the use of Farach’s linear-
time STCA [5] enables the leftmost runs to be computed in linear time. In [14]
Kolpakov & Kucherov proved that the maximum number of runs in any string
of length n is Θ(n), and then showed how to compute all the runs in x from
the leftmost ones in linear time. Thus in theory all runs, hence all repetitions,
could be computed in linear time, though Farach’s algorithm is not practical for
large n.

In [1] Abouelhoda, Kurtz & Ohlebusch show how to compute LZx from a
suffix array SAx, together with other linear structures, rather than from STx.
Since there now exist practical linear-time suffix array construction algorithms
(SACAs) [9,12], it thus becomes feasible to compute all the runs in x in Θ(n)
time for large values of n.

In this paper we describe variants of a worst-case linear-time algorithm (CPS)
that, given SAx and the corresponding longest common prefix array LCPx,
computes LZx in guaranteed Θ(n) time and, according to our experiments, does
so generally faster and generally with lower space requirements than either of the
algorithms AKO [1] or KK-LZ (a suffix tree-based implementation of Ukkonen’s
algorithm [31] by Kolpakov & Kucherov specifically designed for alphabet size
α ≤ 4 [13]). Ukkonen’s algorithm constructs ST on-line and so permits LZ to be
built from subtrees of ST; this gives it an advantage, at least in terms of space,
over the fast and compact version of McCreight’s STCA [25] due to Kurtz [15].
Note also [26] that the linear-time algorithms [9,12] for computing SAx are not,

Fast and Practical Algorithms for Computing All the Runs in a String 309

in practice, as fast as other algorithms [24,22] that have only supralinear worst-
case time bounds. Thus in testing AKO and CPS we make use of the supralinear
SACA [22] that is probably at present the fastest in practice.

In Section 2 we describe our new algorithms. Section 3 summarizes the results
of experiments that compare the algorithms with each other and with existing
algorithms. Section 4 outlines future work.

2 Description of the Algorithms

Given a string x = x[1..n] on an alphabet A of size α, we refer to the suffix x[i..n],
i ∈ 1..n, simply as suffix i. Then SAx is an array 1..n in which SAx[j] = i

iff suffix i is the jth in lexicographical order among all the suffixes of x. Let
lcpx(i1, i2) denote the longest common prefix of suffixes i1 and i2 of x. Then
LCPx is an array 1..n+1 in which LCPx[1] = LCPx[n+1] = −1, while for
j ∈ 2..n,

LCPx[j] =
∣∣∣lcpx

(
SAx[j−1], SAx[j]

)∣∣∣.
Given x and SAx, LCPx can be quickly computed in Θ(n) time [11,23]. When
the context is clear, we write SA for SAx, LCP for LCPx. For example:

1 2 3 4 5 6 7 8 9

x = a b a a b a b a
SAx = 8 3 6 1 4 7 2 5

LCPx = -1 1 1 3 3 0 2 2 -1

The LZ factorization LZx of x is a factorization x = w1w2 · · ·wk such that
each wj , j ∈ 1..k, is

(a) a letter that does not occur in w1w2 · · ·wj−1; or otherwise
(b) the longest substring that occurs at least twice in w1w2 · · ·wj .

For our example string, w1 = a, w2 = b, w3 = a, w4 = aba, w5 = ba. Typically,
integer pairs (POS, LEN) specify the factorization, where POS gives a position
in x and LEN the corresponding length at that position (by convention zero if
the position contains a “new” letter). The example thus yields (POS, LEN) =
(1, 0), (2, 0), (3, 1), (4, 3), (7, 2). Normally LZx is computed by first computing
POS and LEN as arrays POS[1..n] and LEN[1..n], where POS[i] = j < i, j > 0,
means that the longest match for a prefix of suffix i of x that occurs left of i in x
is at position j = POS[i] and has length LEN[i]; POS[i] = 0 means that i is the
leftmost occurrence of letter x[i] in x. As mentioned above, LZx can be quickly
computed from STx in Θ(n) time [33], also from SAx [1]. Our new algorithm is
displayed in Figure 1.

The basic strategy of CPS is first to locate, in a left-to-right traversal of
SA, a next position i2 such that LCP[i2] > LCP[i3] for some least i3 > i2;
then second to backtrack (using stack S) from i2, setting POS[p2] ← p1 or
POS[p1] ← p2 according as p1 = SA[i1] < p2 = SA[i2] or not. until the LCP

310 G. Chen, S.J. Puglisi, and W.F. Smyth

— Using SAx and LCPx, compute POS[1..n] and LEN[1..n].
i1 ← 1; i2 ← 2; i3 ← 3
while i3 ≤ n+1 do
— Identify the next position i2 < i3 with LCP[i2] > LCP[i3].

while LCP[i2] ≤ LCP[i3] do
push(S, i1); i1 ← i2; i2 ← i3; i3 ← i3+1

— Backtrack using the stack S to locate the first i1 < i2 such that
— LCP[i1] < LCP[i2], at each step setting the larger position in POS
— corresponding to equal LCP to point leftwards to the smaller one,
— if it exists; if not, then POS[i] ← i.

p2 ← SA[i2]; �2 ← LCP[i2]
assign(POS, LEN, p2)
while LCP[i1] = �2 do

i1 ← pop(S)
assign(POS, LEN, p2)

SA[i1] ← p2

— Reset pointers for the next stage.
if i1 > 1 then

i2 ← i1; i1 ← pop(S)
else

i2 ← i3; i3 ← i3+1

procedure assign(POS, LEN, p2)
p1 ← SA[i1]
if p1 < p2 then

POS[p2] ← p1; LEN[p2] ← �2; p2 ← p1

else
POS[p1] ← p2; LEN[p1] ← �2

Fig. 1. Algorithm CPS: computing LZx

value for the position i1 popped from S falls below LCP[i2]. This processing does
not guarantee that, for equal LCP (LEN), each corresponding position in POS
necessarily points to the leftmost occurrence in x, the norm for LZ factorization;
however, the Main and KK runs algorithms do not require this property for their
correct functioning, they require only that each position in POS should point
left. In other terminology, what is in fact computed by CPS is a quasi suffix
array (QSA) [6]. We call the algorithm of Figure 1 CPSa.

CPSa maintains the invariant that i1 < i2 < i3, terminating when i3 is in-
cremented beyond n+1. There are two main stages corresponding to two simple
inner while loops. The first of these pushes all entries i1 (actually, the previous
value of i2) onto S until LCP[i2] > LCP[i3]. The second while loop assigns

POS
[
max{p1, p2}

]
← min{p1, p2}

(thus ensuring that POS always points left) corresponding to the current LCP
value, until that value changes.

Now observe that none of the position pointers i1, i2, i3 will ever point to any
position i in SA such that POS

[
SA[i]

]
has been previously set. It follows that the

Fast and Practical Algorithms for Computing All the Runs in a String 311

storage for SA and LCP can be dynamically reused to specify the location and
contents of the array POS, thus saving 4n bytes of storage — neither the Main
nor the KK algorithm requires SA/LCP. In Figure 1 this is easily accomplished
by inserting i2 ← i1 at the beginning of the second inner while loop, then
replacing

POS[p2] ← p1 by SA[i2] ← p2; LCP[i2] ← p1

POS[p1] ← p2 by SA[i2] ← p1; LCP[i2] ← p2

POS can then be computed by a straightforward in-place compactification of SA
and LCP into SA (now redefined as POS). We call this second algorithm CPSb.

But more storage can be saved. Remove all reference to LEN from CPSb,
so that it computes only POS and in particular allocates no storage for LEN.
Then, after POS is computed, the space previously required for LCP becomes
free and can be reallocated to LEN. Observe that only those positions in LEN
that are required for the LZ-factorization need to be computed, so that the total
computation time for LEN is Θ(n). In fact, without loss of efficiency, we can
avoid computing LEN as an array and compute it only when required; given a
sentinel value POS[n+1] = $, the simple function of Figure 2 computes LEN
corresponding to POS[i]. We call the third version CPSc.

function LEN(x, POS, i)
j ← POS[i]
if j = i then

LEN ← 0
else

� ← 1
while x[i+�] = x[j+�] do

� ← �+1
LEN ← �

Fig. 2. Computing LEN corresponding to POS[i]

Since at least one position in POS is set at each stage of the main while
loop, it follows that the execution time of CPS is linear in n. For CPSa space
requirements total 17n bytes (for x, SA, LCP, POS & LEN) plus 4s bytes for
a stack of maximum size s. For x = an, s = n, but in practical cases s will be
close to the maximum height of SAx and so s is bounded by O(logα n) [10].

For CPSb and CPSc, the minimum space required is 13n and 9n bytes, respec-
tively, plus stack. Observe that for CPSa and CPSb the original (and somewhat
faster) method [11] for computing LCP can be used, since it requires 13n bytes
of storage, not greater than the total space requirements of these two variants.
For CPSc, however, to achieve 9n bytes of storage, the Manzini variant [23] for
computing LCP must be used. In fact, as described below, we test two versions
of CPSc, one that uses the original LCP calculation (and therefore requires no
additional space for the stack), the other using the Manzini variant (CPSd).

312 G. Chen, S.J. Puglisi, and W.F. Smyth

We remark that all versions of Algorithm CPS can easily be modified (with the
introduction of another stack) to compute the LZ factorization in its usual form.

3 Experimental Results

We implemented the three versions of CPS described above, with two vari-
ants of CPSc; we call them cpsa, cpsb, cpsc (13n-byte LCP calculation), and
cpsd (9n-byte LCP calculation). We also implemented the other SA-based LZ-
factorization algorithm, ako of [1]. The implementation kk-lz of Kolpakov and
Kucherov’s algorithm was obtained from [13]. All programs were written in C or
C++. We are confident that all implementations tested are of high quality.

All experiments were conducted on a 2.8 GHz Intel Pentium 4 processor with
2Gb main memory. The operating system was RedHat Linux Fedora Core 1
(Yarrow) running kernel 2.4.23. The compiler was g++ (gcc version 3.3.2) exe-
cuted with the -O3 option. All running times given are the average of four runs
and do not include time spent reading input files. Times were recorded with the
standard C getrusage function. Memory usage was recorded with the memusage
command available with most Linux distributions.

Times for the cps implementations and ako include time required for SA and
LCP array construction. The implementation of kk-lz is only suitable for strings
on small alphabets (|Σ| ≤ 4) so times are only given for some files. File chr22
was originally on an alphabet of five symbols A,C,G,T,N but was reduced by
one of replacing occurrences of N randomly by the other four symbols. The N’s
represent ambiguities in the sequencing process. Results are not given for ako
and kk-lz on some files because the memory required exceeded the capacity of
the test machine.

We conclude:

(1) If speed is the main criterion, KK-LZ remains the algorithm of choice for
DNA strings of moderate size.

(2) For other strings encountered in practice, CPSb is consistently faster than
AKO except for some strings on very large alphabets; it also uses substan-
tially less space, especially on run-rich strings.

(3) Overall, and especially for strings on alphabets of size greater than 4, CPSd
is probably preferable since it will be more robust for main-memory use on
very large strings: its storage requirement is consistently low (about half that
of AKO, including on DNA strings) and it is only 25–30% slower than CPSb
(and generally faster than AKO).

4 Discussion

The algorithms presented here make use of full-size suffix arrays, but there have
been many “succinct” or “compressed” suffix structures proposed [21,8,28] that
make use of as little as n bytes. We wish to explore the use of such structures in

Fast and Practical Algorithms for Computing All the Runs in a String 313

Table 1. Description of the data set used in experiments

String Size (bytes) Σ # runs Description

fib35 9227465 2 7049153 The 35th Fibonacci string (see [29])
fib36 14930352 2 11405771 The 36th Fibonacci string
fss9 2851443 2 2643406 The 9th run rich string of [7]
fss10 12078908 2 11197734 The 10th run rich string of [7]
rnd2 8388608 2 3451369 Random string, small alphabet
rnd21 8388608 21 717806 Random string, larger alphabet
ecoli 4638690 4 1135423 E.Coli Genome
chr22 34553758 4 8715331 Human Chromosome 22
bible 4047392 62 177284 King James Bible
howto 39422105 197 3148326 Linux Howto files
chr19 63811651 4 15949496 Human Chromosome 19

Table 2. Runtime in milliseconds for suffix array construction and LCP computation

String saca lcp13n lcp9n

fib35 5530 2130 3090
fib36 10440 3510 5000
fss9 1490 660 960
fss10 8180 2810 4070
rnd2 2960 2360 3030
rnd21 2840 2620 3250
ecoli 1570 1340 1700
chr22 14330 12450 16190
bible 1140 1020 1270
howto 12080 11750 14490
chr19 28400 25730 31840

Table 3. Runtime in milliseconds (in parentheses peak memory usage in bytes per input
symbol) for the LZ-factorization algorithms. Underlining indicates least time/space.

String cpsa cpsb cpsc cpsd ako kk-lz

fib35 9360(19.5) 8560(15.5) 9240(13.0) 10200 (11.5) 12870(26.9) 10060(19.9)
fib36 16730 (19.5) 15420(15.5) 16240(13.0) 17730 (11.5) 23160(26.9) 18680(20.8)
fss9 2680(19.1) 2430(15.1) 2690(13.0) 2990(11.1) 3740(25.4) 1270(21.3)
fss10 13240 (19.1) 12170(15.1) 13390(13.0) 14650 (11.1) 17890(25.4) 7850(22.5)
rnd2 6950(17.0) 6130(13.0) 7010(13.0) 7680 (9.0) 9920(17.0) 9820(11.8)
rnd21 7100(17.0) 6270(13.0) 7130(13.0) 7760 (9.0) 7810(17.0) − (−)
ecoli 3800(17.0) 3350(13.0) 3830(13.0) 4190 (9.0) 4740(17.0) 1610(11.0)
chr22 35240 (17.0) 30320(13.0) 36480(13.0) 40220 (9.0) 65360(17.0) 18240(11.1)
bible 2930(17.0) 2540(13.0) 2970(13.0) 3220 (9.0) 3670(17.0) − (−)
howto 32150 (17.0) 27750(13.0) 33760(13.0) 36500 (9.0) 23830(17.0) − (−)
chr19 70030 (17.0) 61230(13.0) 71910(13.0) 78020 (9.0) − (−) 40420(11.1)

314 G. Chen, S.J. Puglisi, and W.F. Smyth

this context. More generally, we note that all algorithms that compute runs or
repetitions need to compute all the information required for repeats — that is,
not necessarily adjacent repeating substrings. Since runs generally occur sparsely
in strings [14], it seems that they should somehow be computable with less heavy
machinery. Recent results [7,27,4] may suggest more economical methods. In the
shorter term, we are working on methods that compute the LCP as a byproduct
of SA construction, also those that bypass LCP computation.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algs. 2, 53–86 (2004)

2. Apostolico, A., Preparata, F.P.: Optimal off-line detection of repetitions in a string.
Theoret. comput. sci. 22, 297–315 (1983)

3. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inform. process. lett. 12(5), 244–250 (1981)

4. Fan, K., Puglisi, S.J., Smyth, W.F., Turpin, A.: A new periodicity lemma. SIAM
J. Discrete Math. 20(3), 656–668 (2006)

5. Martin Farach, Optimal suffix tree construction with large alphabets Proc. 38th

FOCS pp. 137–143 (1997)
6. Franek, F., Holub, J., Smyth, W.F., Xiao, X.: Computing quasi suffix arrays. J.

Automata, Languages & Combinatorics 8(4), 593–606 (2003)
7. Franek, F., Simpson, R. J., Smyth, W. F.: The maximum number of runs in a

string. In: Miller, M., Park, K.(eds.) Proc. 14th AWOCA, pp. 26–35 (2003)
8. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications

to text indexing & string matching. SIAM J. Computing 35(2), 378–407 (2005)
9. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In: Proc.

30th ICALP. pp. 943–955 (2003)
10. Karlin, S., Ghandour, G., Ost, F., Tavare, S., Korn, L.J.: New approaches for

computer analysis of nucleic acid sequences. Proc. Natl. Acad. Sci. USA 80, 5660–
5664 (1983)

11. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, Springer, Heidelberg (2001)

12. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-
Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676,
Springer, Heidelberg (2003)

13. Kolpakov, R., Kucherov, G.: http://bioinfo.lifl.fr/mreps/
14. Kolpakov, R., Kucherov, G.: On maximal repetitions in words. J. Discrete Algs. 1,

159–186 (2000)
15. Kurtz, S.: Reducing the space requirement of suffix trees. Software Practice &

Experience 29(13), 1149–1171 (1999)
16. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Information

Theory 22, 75–81 (1976)
17. Lentin, A., Schützenberger, M.P.: A combinatorial problem in the theory of free

monoids, Combinatorial Mathematics & Its Applications. In: Bose, R.C., Dowling,
T.A. (eds.) University of North Carolina Press, pp. 128–144 (1969)

18. Main, M.G.: Detecting leftmost maximal periodicities. Discrete Applied Maths 25,
145–153 (1989)

http://bioinfo.lifl.fr/mreps/

Fast and Practical Algorithms for Computing All the Runs in a String 315

19. Main, M.G., Lorentz, R.J.: An O(n log n) Algorithm for Recognizing Repetition,
Tech. Rep. CS-79–056, Computer Science Department, Washington State Univer-
sity (1979)

20. Main, M.G., Lorentz, R.J.: An O(nlog n) algorithm for finding all repetitions in a
string. J. Algs. 5, 422–432 (1984)

21. Mäkinen, V., Navarro, G.: Compressed full-text indices, ACM Computing Surveys
(to appear)

22. Maniscalco, M., Puglisi, S.J.: Faster lightweight suffix array construction. In: Ryan,
J., Dafik (eds.) Proc. 17th AWOCA pp. 16–29 (2006)

23. Manzini, G.: Two space-saving tricks for linear time LCP computation. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, Springer, Heidel-
berg (2004)

24. Manzini, G., Ferragina, P.: Engineering a lightweight suffix array construction al-
gorithm. Algorithmica 40, 33–50 (2004)

25. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. Assoc.
Comput. Mach. 32(2), 262–272 (1976)

26. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms, ACM Computing Surveys (to appear)

27. Rytter, W.: The number of runs in a string: improved analysis of the linear upper
bound. In: Durand, B., Thomas, W. (eds.) Proc. 23rd STACS. LNCS, vol. 2884,
pp. 184–195. Springer, Heidelberg (2006)

28. Sadakane, K.: Space-efficient data structures for flexible text retrieval systems.
In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, Springer, Heidelberg
(2002)

29. Smyth, B.: Computing Patterns in Strings, Pearson Addison-Wesley, p. 423 (2003)
30. Thue, A.: Über unendliche zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl.

Christiana 7, 1–22 (1906)
31. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14, 249–260 (1995)
32. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th Annual IEEE Symp.

Switching & Automata Theory, pp. 1–11 (1973)
33. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Trans. Information Theory 23, 337–343 (1977)

Longest Common Separable Pattern Among

Permutations

Mathilde Bouvel1, Dominique Rossin1, and Stéphane Vialette2

1 CNRS, Université Paris Diderot, Laboratoire d’Informatique Algorithmique:
Fondements et Applications, 2 Place Jussieu, Case 7014,

F-75251 Paris Cedex 05, France
{mbouvel,rossin}@liafa.jussieu.fr

2 Laboratoire de Recherche en Informatique (LRI), bât.490, Univ. Paris-Sud XI,
F-91405 Orsay cedex, France
Stephane.Vialette@lri.fr

Abstract. In this paper, we study the problem of finding the longest
common separable pattern among several permutations. We first give
a polynomial-time algorithm when the number of input permutations
is fixed and next show that the problem is NP–hard for an arbitrary
number of input permutations even if these permutations are separable.

On the other hand, we show that the NP–hard problem of finding the
longest common pattern between two permutations cannot be approx-
imated better than within a ratio of

√
opt (where opt is the size of an

optimal solution) when taking common patterns belonging to pattern-
avoiding permutation classes.

1 Introduction and Basic Definitions

A permutation π is said to be a pattern (or to occur) within a permutation σ if
σ has a subsequence that is order-isomorphic to π. For example, a permutation
contains the pattern 123 (resp. 321) if it has an increasing (resp. decreasing)
subsequence of length three. Here, note that members need not actually be
consecutive, merely increasing (resp. descreasing). Within the last few years, the
study of the pattern containment relation on permutations has become a very
active area of research in both combinatorics and computer science.

In combinatorics, much research focused on closed classes of permutations,
i.e., permutations that are closed downwards under forming subpermutations.
A huge literature is devoted to this subject. To cite only a few of a plethora
of suitable examples, Knuth considered permutations that do not contain the
pattern 312 [15], Lovàsz considered permutations that do not contain the pattern
213 [17] and Rotem those that do not contain 231 nor 312 [20].

Surprisingly enough, there is considerably less research on algorithmic aspects
of pattern involvement. Actually, it appears to be a difficult problem to decide
whether a permutation occurs as a pattern in another permutation. Indeed, the
problem in this general version is NP–complete [6] and only a few special cases
are known to be polynomial-time solvable. Of particular interest here, the case of

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 316–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Longest Common Separable Pattern Among Permutations 317

separable patterns, i.e., permutations that contain neither the subpattern 3142
nor 2413, was however proved to be solvable in O(kn6) time and O(kn4) space
in [6], where k is the length of the pattern and n is the length of the target
permutation. The design of efficient algorithms for the recognition of a fixed
pattern in a permutation is considered in [3] and in particular a O(n5 log n)
time algorithm is given for finding separable patterns. L. Ibarra subsequently
improved the complexity for separable patterns to O(kn4) time andO(kn3) space
in [14]. Beside separable patterns, only a few restricted cases were considered. A
O(n log log n) time algorithm is presented in [9] for finding the longest increasing
or decreasing subpermutation of a permutation of length n.

In the present paper we consider the problem of extending the classical longest
common subsequence problem into the realm of permutations. The longest com-
mon subsequence problem (LCS) is to find a longest sequence which is a subse-
quence of all sequences in a set of input sequences. The LCS problem is known
to be polynomial-time solvable for a fixed number of input sequences [10] and
to be NP–hard for the general case of an arbitrary number (i.e., not a priori
fixed) of input sequences [18], even in the case of the binary alphabet. In the
context of permutations, the LCS-like problem naturally asks to find a longest
permutation that occurs within each input permutation. However, oppositely to
the classical LCS problem, the permutation-related LCS problem is NP–hard
even for two permutations since the problem of deciding whether a permutation
occurs in another permutation is NP–hard [6], and hence additional restrictions
on the input permutations or the common pattern are needed for algorithmic
solutions. We focus in this paper on the case where the common pattern is re-
quired to be a separable permutation, a non-trivial class of permutations for
which the pattern involvement problem is polynomial-time solvable. The prob-
lem we consider is thus the following: Given a set of permutations, find a longest
separable permutation that occurs as a pattern in each input permutation. Of
particular importance in this context, observe that we do not impose here the
input permutations to be separable.

This paper is organized as follows. In the remainder of Section 1, we briefly
discuss basic notations and definitions that we will use throughout. In Section 2,
we give a polynomial-time algorithm for finding the largest common separable
pattern that appears as a pattern in a fixed number of permutations. Section 3
is devoted to proving hardness of the problem. Finally, some inapproximation
issues are presented in Section 4.

1.1 Permutations

A permutation σ ∈ Sn is a bijective map from [1..n] to itself. The integer n is
called the length of σ. We denote by σi the image of i under σ. A permutation
can be seen as a word σ1σ2 . . . σn containing exactly once each letter i ∈ [1..n].
For each entry σi of a permutation σ, we call i its index and σi its value.

Definition 1 (Pattern in a permutation). A permutation π ∈ Sk is a pat-
tern of a permutation σ ∈ Sn if there is a subsequence of σ which is order-
isomorphic to π; in other words, if there is a subsequence σi1σi2 . . . σik

of σ

318 M. Bouvel, D. Rossin, and S. Vialette

(with 1 ≤ i1 < i2 < . . . < ik ≤ n) such that σi�
< σim whenever π� < πm. We

also say that π is involved in σ and call σi1σi2 . . . σik
an occurrence of π in σ.

A permutation σ that does not contain π as a pattern is said to avoid π. Classes of
permutations of interest are the pattern-avoiding permutation classes : the class of
all permutations avoiding the patterns π1, π2 . . . πk is denoted S(π1, π2, . . . , πk),
and Sn(π1, π2, . . . , πk) denotes the set of permutations of length n avoiding
π1, π2, . . . , πk.

Example 1. For example σ = 142563 contains the pattern 1342, and 1563, 1463,
2563 and 1453 are the occurrences of this pattern in σ. But σ ∈ S(321): σ avoids
the pattern 321 as no subsequence of length 3 of σ is isomorphic to 321, i.e., is
decreasing.

If a pattern π has an occurrence σi1σi2 . . . σik
in a permutation σ of length n, let I

and V be two subintervals of [1..n] such that {i1, i2, . . . , ik} ⊆ I and {σi1 , σi2 , . . . ,
σik

} ⊆ V ; then we say that π has an occurrence in σ in the intervals I of indices
and V of values, or that π is a pattern of σ using the intervals I of indices and
V of values in σ.

Among the pattern-avoiding permutation classes, we are particularly inter-
ested here in the separable permutations.

Definition 2 (Separable permutation). The class of separable permutations,
denoted Sep, is Sep = S(2413, 3142).

There are numerous characterizations of separable permutations, for example
in terms of permutation graphs [6], of interval decomposition [8,5,7], or with
ad-hoc structures like the separating trees [6,14]. Separable permutations have
been widely studied in the last decade, both from a combinatorial [21,11] and
an algorithmic [4,6,14] point of view.

We define two operations of concatenation on permutation patterns:

Definition 3 (Pattern concatenation). Consider two patterns π and π′ of
respective lengths k and k′. The positive and negative concatenations of π and
π′ are defined respectively by:

π ⊕ π′ = π1 · · ·πk(π′
1 + k) · · · (π′

k′ + k)
π + π′ = (π1 + k′) · · · (πk + k′)π′

1 · · ·π′
k′

The following property, whose proof is straightforward with separating trees, is
worth noticing for our purpose:

Property 1. If both π and π′ are separable patterns, then π ⊕ π′ and π + π′ are
also separable. Conversely, any separable pattern π of length at least 2 can be
decomposed into π = π1 ⊕ π2 or π = π1 + π2 for some smaller but non-empty
separable patterns π1 and π2.

Longest Common Separable Pattern Among Permutations 319

1.2 Pattern Problems on Permutations

The first investigated problem on patterns in permutations is the Pattern In-
volvement Problem:

Problem 1 (Pattern Involvement Problem).
Input: A pattern π and a permutation σ.
Output: A boolean indicating whether π is involved in σ or not.

It was shown to be NP–complete in [6]. However, in [6] the authors also exhibit a
particular case in which it is polynomial-time solvable: namely when the pattern
π in input is a separable pattern.

Another problem of interest is the Longest Common Pattern Problem (LCP

for short):

Problem 2 (LCP Problem).
Input: A set X of permutations.
Output: A pattern of maximal length occurring in each σ ∈ X .

This problem is clearly NP–hard in view of the complexity of Problem 1. We
showed in [7] that it is solvable in polynomial time when X = {σ1, σ2} with σ1 a
separable permutation (or more generally, when the length of the longest simple
permutation [2] involved in σ1 is bounded).

In this paper, we will consider a restriction of Problem 2. For any class C
of (pattern-avoiding) permutations, we define the Longest Common C-Pattern
Problem (LCCP for short):

Problem 3 (LCCP Problem).
Input: A set X of permutations.
Output: A pattern of C of maximal length occurring in each σ ∈ X .

In particular, we focus in this paper on the Longest Common Separable Pattern
Problem (LCSepP) which in fact is LCCP where C = Sep.

To our knowledge, complexity issues of the LCCP Problem are still unex-
plored. We will show in this paper that the LCSepP Problem is NP–hard in
general, but solvable in polynomial-time when the cardinality of the set X of
permutations in the input is bounded by any constant K. However the method
we use in our polynomial-time algorithm for solving LCSepP on K permuta-
tions is specific to separable patterns and cannot be extended to any class C of
pattern-avoiding permutations.

2 Polynomial Algorithm for the Longest Common
Separable Pattern Among a Finite Number of
Permutations

In [6], the authors show that the problem of deciding whether a permutation
π is a pattern of a permutation σ is NP–complete. A consequence is that the
problem of finding a longest common pattern among two or more permutations

320 M. Bouvel, D. Rossin, and S. Vialette

in NP–hard. However, they describe a polynomial-time algorithm for solving the
Pattern Involvement Problem when the pattern π is separable. This algorithm
uses dynamic programming, and processes the permutation according to one of
its separating trees.

With the same ideas, we described in [7] a polynomial-time algorithm for
finding a longest common pattern between two permutations, provided that
one of them is separable. Notice that a longest common pattern between two
permutations, one of them being separable, is always separable.

In this section, we generalize the result obtained in [7] giving a polynomial-
time algorithm for finding a longest common separable pattern among K permu-
tations, K being any fixed integer, K ≥ 1. Notice that we make no hypothesis
on the K input permutations.

Like in [6] and [7], our algorithm will use dynamic programming. However,
since we do not have a separability hypothesis on any of the permutations,
we cannot design an algorithm based on a separating tree associated to one of
the permutations in the input. To compute a longest common separable pattern
among the input permutations, we will only consider sub-problems corresponding
to K-tuples of intervals of indices and values, one such pair of intervals for each
permutation.

Namely, let us consider K permutations σ1, . . . , σK , of length n1, . . . , nK re-
spectively, and denote by n the maximum of the nq’s, 1 ≤ q ≤ K. For computing
a longest common separable pattern among σ1, . . . , σK , we will consider a dy-
namic programming array M of dimension 4K, and when our procedure for
filling in M ends, we intend that M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) contains a
common separable pattern π among σ1, . . . , σK that is of maximal length among
those using, for any q ∈ [1..K], intervals [iq..jq] of indices and [aq..bq] of values
in σq . If we are able to fill in M in polynomial time, with the above property
being satisfied, the entry M(1, n1, 1, n1, . . . , 1, nK , 1, nK) will contain, at the end
of the procedure, a longest common separable pattern among σ1, . . . , σK .

Algorithm 1 shows how the array M can indeed be filled in in polynomial time.
In Algorithm 1, Longest is the naive linear-time procedure that runs through a
set S of patterns and returns a pattern in S of maximal length.

Before giving the details of the proof of our algorithm for finding a longest
common separable pattern, we state two lemmas. They should help understand-
ing how common separable patterns can be merged, or on the contrary split
up, to exhibit other common separable patterns. We are also interested in the
stability of the maximal length property when splitting up patterns.

Lemma 1. Let π1 be a common separable pattern among σ1, . . . , σK that uses
the intervals [iq..hq −1] of indices and [aq..cq −1] (resp. [cq..bq]) of values in σq,
for all q ∈ [1..K].

Let π2 be a common separable pattern among σ1, . . . , σK that uses the intervals
[hq..jq] of indices and [cq..bq] (resp. [aq..cq−1]) of values in σq, for all q ∈ [1..K].

Then π = π1 ⊕ π2 (resp. π = π1 + π2) is a common separable pattern among
σ1, . . . , σK that uses the intervals [iq..jq] of indices and [aq..bq] of values in σq,
for all q ∈ [1..K].

Longest Common Separable Pattern Among Permutations 321

Algorithm 1. Longest common separable pattern among K permutations
1: Input: K permutations σ1, . . . , σK of length n1, . . . , nK respectively

2: Create an array M :

3: for any integers iq , jq, aq and bq ∈ [1..nq], for all q ∈ [1..K] do
4: M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) ← ε
5: end for

6: Fill in M :

7: for any integers iq , jq , aq and bq ∈ [1..nq], iq ≤ jq , aq ≤ bq , for all q ∈ [1..K], by
increasing values of

�
q(jq − iq) + (bq − aq) do

8: if ∃q ∈ [1..K] such that iq = jq or aq = bq then
9: if ∀q ∈ [1..K], ∃hq ∈ [iq ..jq] such that σq

hq
∈ [aq..bq] then

10: M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) ← 1
11: else
12: M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) ← ε
13: end if
14: else
15: /*∀q ∈ [1..K], iq < jq and aq < bq /*

M(i1, j1, a1, b1, . . . , iK , jK , aK , bK) ← Longest(S⊕ ∪ S� ∪ S) where

S⊕ = {M(i1, h1 − 1, a1, c1 − 1, . . . , iK , hK − 1, aK , cK − 1) ⊕ M(h1, j1, c1, b1,

. . . , hK , jK , cK , bK) : iq < hq ≤ jq , aq < cq ≤ bq, ∀q ∈ [1..K]}
S� = {M(i1, h1 − 1, c1, b1, . . . , iK , hK − 1, cK , bK) � M(h1, j1, a1, c1 − 1,

. . . , hK , jK , aK , cK − 1) : iq < hq ≤ jq , aq < cq ≤ bq, ∀q ∈ [1..K]}
S = {1} if ∀q ∈ [1..K], ∃hq ∈ [iq ..jq] such that σq

hq
∈ [aq..bq],

= {ε} otherwise.

16: end if
17: end for

18: Output: M(1, n1, 1, n1, . . . , 1, nK , 1, nK)

Proof. The proof is technical but straighforward.

Lemma 2. Let π be a common separable pattern of maximal length among
σ1, . . . , σK among those using the intervals [iq..jq] of indices and [aq..bq] of val-
ues in σq, for all q ∈ [1..K].

If π = π1 ⊕ π2 (resp. π = π1 + π2), with π1 and π2 non-empty separable
patterns, then there exist indices (hq)q∈[1..K] and values (cq)q∈[1..K], with iq <
hq ≤ jq, aq < cq ≤ bq, ∀q ∈ [1..K], such that:

i) π1 is a common separable pattern of maximal length among σ1, . . . , σK

among those using the intervals [iq..hq − 1] of indices and [aq..cq − 1] (resp.
[cq..bq]) of values in σq, for all q ∈ [1..K], and

322 M. Bouvel, D. Rossin, and S. Vialette

ii) π2 is a common separable pattern of maximal length among σ1, . . . , σK

among those using the intervals [hq..jq] of indices and [cq..bq] (resp. [aq..cq−
1]) of values in σq, for all q ∈ [1..K].

Proof. This is a direct consequence of the definition of a separable permutation.

Proposition 1. Algorithm 1 is correct: it outputs a longest common separable
pattern among the K permutations in the input.

Proof. Consider the array M returned by Algorithm 1. We show by induction on∑
q(jq − iq) + (bq − aq) using the previous two Lemmas that M(i1, j1, a1, b1, . . .

, iK , jK , aK , bK) contains a common separable pattern π among σ1, . . . , σK that
is of maximal length among those using, for any q ∈ [1..K], intervals [iq..jq] of
indices and [aq..bq] of values in σq. ��

Proposition 2. Algorithm 1 runs in time O(n6K+1) and space O(n4K+1).

Proof. Algorithm 1 handles an array M of size O(n4K), where each cell contains
a pattern of length at most n, so that the total space complexity is O(n4K+1). For
filling in one entry M(i1, j1, a1, b1, . . . , iK , jK , aK , bK), if ∃q ∈ [1..K] such that
iq = jq or aq = bq (lines 9 to 13 of Algorithm 1), the time complexity is O(nK).
If no such q exists (line 15 of Algorithm 1), the time complexity needed to fill in
M(i1, j1, a1, b1, . . . , iK , jK , aK , bK), using the entries of M previously computed,
is O(n2K+1). Indeed, we search for an element of maximal length among O(n2K)
elements, each element being computed in O(n)-time as the concatenation of two
previously computed entries of M . Consequently, the total time complexity to
fill in M is O(n6K+1). ��

A consequence of Propositions 1 and 2 is:

Theorem 1. For any fixed integer K, the problem of computing a longest com-
mon separable pattern among K permutations is in P .

We may wonder whether a longest common separable pattern between two per-
mutations σ1 and σ2 (computed in polynomial time by Algorithm 1) is a good
approximation of a longest common pattern between σ1 and σ2 (whose compu-
tation is NP–hard). Section 4 gives a negative answer to this question, by the
more general Corollary 1.

3 Hardness Result

We proved in the preceding section that the LCSepP problem is polynomial-time
solvable provided a constant number of input permutations. We show here that
the CSepP problem (the general decision version of LCSepP), is NP–complete.

Problem 4 (CSepP Problem).
Input: A set X of permutations and an integer k.
Output: A boolean indicating if there a separable pattern of length k occurring
in each σ ∈ X .

Longest Common Separable Pattern Among Permutations 323

Actually, we will prove more, namely that the CSepP problem is NP–complete
even if each input permutation is separable. An immediate consequence is the
NP–hardness of LCSepP. For ease of exposition, our proof is given in terms of
matching diagrams.

Definition 4 (Matching Diagram). A matching diagram G of size n is a
vertex-labeled graph of order i.e., number of vertices, 2n and size i.e., number of
edges, n where each vertex is labeled by a distinct label from {1, 2, . . . , 2n} and
each vertex i ∈ {1, 2, . . . , n} (resp. j ∈ {n + 1, n + 2, . . . , 2n}) is connected by an
edge to exactly one vertex j ∈ {n+1, n+ 2, . . . , 2n} (resp. i ∈ {1, 2, . . . , n}). We
denote the set of vertices and edges of G by V (G) and E(G), respectively.

It is well-known that matching diagrams of size n are in one-to-one correspon-
dence with permutations of length n (see Figure 1 for an illustration).

Fig. 1. Shown here is the correspondence between the permutation π = 2 3 5 4 1 and
the associated matching diagram G

Let G and G′ be two matching diagrams. The matching diagram G′ is said to
occur in G if one can obtain G′ from G by a sequence of edge deletions. More
formally, the deletion of the edge (i, j), i < j, consists in (1) the deletion of the
edge (i, j), (2) the deletion of the two vertices i and j, and (3) the relabeling of
all vertices k ∈ [i+1..j−1] to k−1 and all the vertices k > j to k−2. Therefore,
the decision version of the LCSepP is equivalent to the following problem: Given
a set of matching diagrams and a positive integer k, find a matching diagram of
size k which occurs in each input diagram [16].

Clearly, two edges in a matching diagram G are either crossing or
nested . Moreover, it is easily seen that an occurrence in G of a matching
diagram G′ of which all edges are crossing (resp. nested) correspond to an occur-
rence in the permutation associated with G of an increasing (resp. decreasing)
subsequence.

For the purpose of permutations, convenient matching diagrams are needed.
A matching diagram is called a tower if it is composed of pairwise nested edges

and a staircase if it is composed of pairwise crossing edges . A
matching diagram is called a tower of staircases if its edge set can be partitioned
in nested staircases .

Theorem 2. The CSepP problem is NP–complete even if each input permuta-
tion is separable.

324 M. Bouvel, D. Rossin, and S. Vialette

Proof. CSepP is clearly in NP. For proving hardness, we reduce from the
Independent-Set problem which is known to be NP–complete [13] . Let
G be an arbitrary graph instance of the Independent-Set problem. Write
V (G) = {1, 2, . . . , n}. We now detail the construction of n + 1 matching dia-
grams G0, G1, G2, . . . , Gn, each corresponding to a separable permutation. First
the matching diagram G0 is a tower of n staircases A0,1, A0,2, . . . , A0,n, each of
size n+1 (see Figure 2, middle part; staircases are represented by shaded forms),
i.e.,

∀j, 1 ≤ j ≤ n, |A0,j | = n + 1.

Each matching diagram Gi, 1 ≤ i ≤ n, is composed of two crossing towers
of n staircases each referred as Ai,1, Ai,2, . . . , Ai,n and Bi,1, Bi,2, . . . , Bi,n (see
Figure 2, bottom part), and defined as follows:

∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n, |Ai,j | =

{
n + 1 if i 	= j

n if i = j

∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n, |Bi,j | =

{
n + 1 if (i, j) /∈ E(G)
n if (i, j) ∈ E(G).

It is simple matter to check that all matching diagrams Gi, 0 ≤ i ≤ n, corre-
spond to separable permutations and that our construction can be carried on in
polynomial time. This ends our construction.

It can be shown that that there exists an independent set V ′ ⊆ V (G) of size
k in G if and only if there exists a matching diagram Gsol of size n2 + k that
occurs in each input matching diagram Gi, 0 ≤ i ≤ n (details omitted). ��

4 Approximation Ratio

In this section, we return to the LCCP Problem for K permutations. As said
before, the general LCP Problem is NP–hard as well as the Pattern Involvement
Problem [6]. In this section we prove the following result:

Theorem 3. For all ε > 0 and C, a pattern-avoiding permutation class, there
exists a sequence (σn)n∈N of permutations σn ∈ Sn such that

|πn| = o
(
n0.5+ε

)
where πn is a longest permutation of class C involved as a pattern in σn.

Before proving this result we need the following Lemma.

Lemma 3. Given a permutation π ∈ Sk, the number of permutations σ ∈ Sn

such that π is involved in σ is at most (n − k)!
(
n
k

)2.
Proof. The statement follows from a simple counting argument. ��

We can now prove Theorem 3.

Longest Common Separable Pattern Among Permutations 325

Fig. 2. Reduction in the proof of Theorem 2

Proof. We make the proof by contradiction. We first prove that if the result
were false, every permutation of length n would contain a pattern of C of length
exactly k = �n0.5+ε�. Next, we show that the number of permutations of length
n containing one permutation of C

⋂
Sk as a pattern is strictly less than n!.

Suppose that there exist ε > 0 and C a pattern-avoiding permutation class
such that for every permutation σ ∈ Sn, the longest pattern π ∈ C of σ has
length |π| ≥ �|σ|0.5+ε� = k. As C is closed - every pattern τ of a permutation
π ∈ C is also in C- for every permutation σ ∈ Sn there exists a pattern τ ∈ C of
σ whose length is exactly |τ | = k.

But, by [19], there exists a constant c, which depends only on the patterns
forbidden in C, such that the number of permutations in C

⋂
Sk is at most ck.

By Lemma 3, for each permutation in C
⋂

Sk, the number of permutations in Sn

having this permutation as a pattern is at most (n− k)!
(

n
k

)2
. Thus the number

of permutations in Sn having a pattern in C
⋂

S≥k is at most ck(n − k)!
(
n
k

)2.
But with k = �n0.5+ε�, ck(n− k)!

(
n
k

)2 = o
(
nn1−2ε

)
= o (n!). Note that a similar

proof is given in [12] for finding the smallest permutation containing all patterns
of a given length. ��

326 M. Bouvel, D. Rossin, and S. Vialette

Corollary 1. The LCP Problem cannot be approximated with a tighter ratio
than

√
opt by the LCCP Problem, where C is a pattern-avoiding permutation

class, and opt is the size of an optimal solution to the LCP Problem.

Proof. Consider the LCP Problem between σn and σn where (σn)n∈N is the
sequence defined in Theorem 3. Then the optimal solution to the LCP Problem
is σn. But the solution to the LCCP Problem is a longest pattern of σn belonging
to the class C for example πn. By Theorem 3, such a pattern may have size

√
|σn|

asymptotically. ��

5 Conclusion

We have given a polynomial-time algorithm for LCSepP on K permutations and
shown a hardness result for this problem if the number of input permutations is
not fixed.

Some classes C of permutations are known for which even the Recognition
Problem (i.e., deciding if a permutation belongs to C) is NP–hard, so that
LCCP on K permutations must be NP–hard for those classes. [1] gives the
example of the class of 4-stack sortable permutations.

However, we are not aware of any example of finitely based pattern-avoiding
permutation classes (with a finite number of excluded patterns) for which the
Recognition Problem is NP–hard. Thus an open question is to know if the LCCP
problem for K permutations is polynomial-time solvable for any finitely based
C, or to exhibit such a class C for which this problem is NP–hard.

References

1. Albert, M.H., Aldred, R.E.L., Atkinson, M.D., van Ditmarsch, H.P., Handley, B.D.,
Handley, C.C., Opatrny, J.: Longest subsequences in permutations. Australian J.
Combinatorics 28, 225–238 (2003)

2. Albert, M.H., Atkinson, M.D., Klazar, M.: The enumeration of simple permuta-
tions. Journal of integer sequences, 6(4) (2003)

3. Albert, M.H., Aldred, R.E.L., Atkinson, M.D., Holton, D.A.: Algorithms for pat-
tern involvement in permutations. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001.
LNCS, vol. 2223, pp. 355–366. Springer, Heidelberg (2001)

4. Bérard, S., Bergeron, A., Chauve, C., Paul, C.: Perfect sorting by reversals is not
always difficult. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 4(1) (2007)

5. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common
intervals of permutations, with applications to modular decomposition of graphs.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790.
Springer, Heidelberg (2005)

6. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Information
Processing Letters 65(5), 277–283 (1998)

7. Bouvel, M., Rossin, D.: The longest common pattern problem for two permutations.
Pure Mathematics and Applications, to be published, arXiv:math.CO/0611679
(2007)

Longest Common Separable Pattern Among Permutations 327

8. Bui-Xuan, B.-M., Habib, M., Paul, C.: Revisiting T. Uno and M. Yagiura’s algo-
rithm. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 146–155.
Springer, Heidelberg (2005)

9. Chang, M.-S, Wang, G.-H: Efficient algorithms for the maximum weight clique and
maximum weight independent set problems on permutation graphs. Information
Processing Letters 43, 293–295 (1992)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press and McGraw-Hil, Cambridge, MA,New York (2001)

11. Ehrenfeucht, A., Harj, T., ten Pas, P., Rozenberg, G.: Permutations, parenthesis
words, and Schröder numbers. Discrete Mathematics 190, 259–264 (1998)

12. Eriksson, H., Eriksson, K., Linusson, S., Wästlund, J.: Dense packing of patterns
in a permutation. Annals of Combinatorics (to appear)

13. Garey, M.R., Johnson, D.S.: Computers and Intractablility: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco (1979)

14. Ibarra, L.: Finding pattern matchings for permutations. Information Processing
Letters 61, 293–295 (1997)

15. Knuth, D.E.: Fundamental Algorithms, 3rd edn. The Art of Computer Program-
ming, vol. 1. Addison-Wesley, Reading (1973)

16. Kubica, M., Rizzi, R., Vialette, S., Walen, T.: Approximation of rna multiple
structural alignment. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS,
vol. 4009, pp. 211–222. Springer, Heidelberg (2006)

17. Lovász, L.: Combinatorial problems and exercices. North-Holland, Amsterdam
(1979)

18. Maier, D.: The Complexity of Some Problems on Subsequences and Superse-
quences. J. ACM 25, 322–336 (1978)

19. Marcus, A., Tardos, G.: Excluded permutation matrices and the Stanley-Wilf con-
jecture. J. Combin. Th. A 107, 153–160 (2004)

20. Rotem, D.: Stack-sortable permutations. Discrete Math. 33, 185–196 (1981)
21. West, J.: Generating trees and the Catalan and Schröder numbers. Discrete Math-

ematics 146, 247–262 (1995)

Suffix Arrays on Words�

Paolo Ferragina1 and Johannes Fischer2

1 Dipartimento di Informatica, University of Pisa
ferragina@di.unipi.it

2 Institut für Informatik, Ludwig-Maximilians-Universität München
Johannes.Fischer@bio.ifi.lmu.de

Abstract. Surprisingly enough, it is not yet known how to build directly
a suffix array that indexes just the k positions at word-boundaries of a
text T [1, n], taking O(n) time and O(k) space in addition to T . We pro-
pose a class-note solution to this problem that achieves such optimal time
and space bounds. Word-based versions of indexes achieving the same
time/space bounds were already known for suffix trees [1, 2] and (com-
pact) DAWGs [3,4]. Our solution inherits the simplicity and efficiency of
suffix arrays, with respect to such other word-indexes, and thus it fore-
sees applications in word-based approaches to data compression [5] and
computational linguistics [6]. To support this, we have run a large set of
experiments showing that word-based suffix arrays may be constructed
twice as fast as their full-text counterparts, and with a working space
as low as 20%. The space reduction of the final word-based suffix array
impacts also in their query time (i.e. less random access binary-search
steps!), being faster by a factor of up to 3.

1 Introduction

One of the most important tasks in classical string matching is to construct an
index on the input data in order to answer future queries faster. Well-known
examples of such indexes include suffix-trees, word graphs and suffix arrays (see
e.g. [7]). Despite the extensive research that has been done in the last three
or four decades, this topic has recently re-gained popularity with the rise of
compressed indexes [8] and new applications such as data compression, text
mining and computational linguistics.

However, all of the indexes mentioned so far are full-text indexes, in the sense
that they index any position in the text and thus allow to search for occurrences
of patterns starting at arbitrary text positions. In many situations, deploying
the full-text feature might be like using a “cannon to shoot a fly”, with unde-
sired negative impacts on both query time and space usage. For example, in

� The first author has been partially supported by the Italian MIUR grant Italy-
Israel FIRB “Pattern Discovery Algorithms in Discrete Structures, with Applications
to Bioinformatics”, and by the Yahoo! Research grant on “Data compression and
indexing in hierarchical memories”. The second autor has been partially funded by
the German Research Foundation (DFG, Bioinformatics Initiative).

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 328–339, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Suffix Arrays on Words 329

European languages, words are separated by special symbols such as spaces or
punctation signs; in a dictionary of URLs, “words” are separated by dots and
slashes. In both cases, the results found by a word-based search with a full-text
index should have to be filtered out by discarding those results that do not
occur at word boundaries. Possibly a time-costly step! Additionally, indexing
every text position would affect the overall space occupancy of the index, with
an increase in the space complexity which could be estimated in practice as a
multiplicative factor 5–6, given the average word length in linguistic texts. Of
course, the use of word-based indexes is not limited to pattern searches, as they
have been successfully used in many other contexts, like data compression [5]
and computational linguistics [6], just to cite a few.

Surprisingly enough, word based indexes have been introduced only recently in
the string-matching literature [1], although they were very famous in Information
Retrieval many years before [9]. The basic idea underlying their design consists
of storing just a subset of the text positions, namely the ones that correspond
to word beginnings. As we observed above, it is easy to construct such indexes
if O(n) additional space is allowed at construction time (n being the text size):
Simply build the index for every position in the text, and then discard those
positions which do not correspond to word beginnings. Unfortunately, such a
simple (and common, among practitioners!) approach is not space optimal. In
fact O(n) construction time cannot be improved, because this is the time needed
to scan the input text. But O(n) additional working space (other than the in-
dexed text and the final suffix array) seems too much because the final index will
need O(k) space, where k is the number of words in the indexed text. This is an
interesting issue, not only theoretically, because “. . .we have seen many papers
in which the index simply ‘is’, without discussion of how it was created. But for
an indexing scheme to be useful it must be possible for the index to be constructed
in a reasonable amount of time.” [10] And in fact, the working-space occupancy
of construction algorithms for full-text indexes is yet a primary concern and an
active field of research [11].

The first result addressing this issue in the word-based indexing realm is due
to Anderson et al. [1] who showed that the word suffix tree can be constructed
in O(n) expected time and O(k) working space. In 2006, Inenaga and Takeda [2]
improved this result by providing an on-line algorithm which runs in O(n) time
in the worst case and O(k) space in addition to the indexed text. They also gave
two alternative indexing structures [3, 4] which are generalizations of Directed
Acyclic Word Graphs (DAWGs) or compact DAWGs, respectively. All three
construction methods are variations of the construction algorithms for (usual)
suffix trees [12], DAWGs [13] and CDAWGs [14], respectively.

The only missing item in this quartet is a word-based analog of the suffix array,
a gap which we close in this paper. We emphasize the fact that, as it is the case
with full-text suffix arrays (see e.g. [15]), we get a class-note solution which is
simple and practically effective, thus surpassing the previous ones by all means.

A comment is in order before detailing our contribution. A more general
problem than word-based string matching is that of sparse string matching,

330 P. Ferragina and J. Fischer

where the set of points to be indexed is given as an arbitrary subset of all n text
positions, not necessarily coinciding with the word boundaries. Although the
authors of [2, 3,4] claim that their indexes can solve this task as well, they did
not take into account an exponential factor [16]. To the best of our knowledge,
this problem is still open. The only step in this direction has been made by
Kärkkäinen and Ukkonen [17] who considered the special case where the indexed
positions are evenly spaced.

1.1 Our Contributions

We define a new data structure called the word(-based) suffix array and show
how it can be constructed directly in optimal time and space; i.e., without first
constructing the sparse suffix tree. The size of the structure is k RAM words, and
at no point during its construction more than O(k) space (in addition to the text)
is needed. This is interesting in theory because we could compress the text by
means of [18] and then build the word-based index in space O(k) + nHh + o(n)
bits and O(n) time, simultaneously over all h = o(log n), where Hh is the h-
th order empirical entropy of the indexed text (alphabet is assumed to have
constant size). If the number k of indexed “words” is relatively “small”, namely
k = o(n/ logn), this index would take the same space as the best compressed
indexes (cf. [8]), but it would need less space to be constructed.

As far as pattern-queries are concerned, it is easy to adapt to word-based suffix
arrays the classical pattern searches over full-text suffix arrays. For patterns of
length m, we then easily show that counting queries take O(m log k) time, or
O(m + log k) if an additional array of size k is used. Note that this reduces
the number of costly binary search step by O(log(n/k)) compared with full-
text suffix arrays. Reporting queries take O(occ) additional time, where occ is
the number of word occurrences reported. We then show that the addition of
another data structure, similar to the Enhanced Suffix Array [19], lowers these
time bounds to O(m) and O(m + occ), respectively.

In order to highlight the simplicity, and hence practicality, of our word-based
suffix array we test it over various datasets, which cover some typical applica-
tions of word-based indexes: natural and artificial language, structured data and
prefix-search on hosts/domains in URLs. Construction time is twice faster than
state-of-the-art algorithms applied to full-text suffix arrays, and the working
space is lowered by 20%. As query time is faster by up to a factor 3 without
post-filtering the word-aligned occurrences, and up to 5 orders of magnitude
including post-filtering, we exclude the idea of using a full-text suffix array for
finding word-aligned occurrences already at this point.

2 Definitions

Throughout this article we let T be a text of length n over a constant-sized
alphabet Σ. We further assume that certain characters from a constant-sized
subset W of the alphabet act as word boundaries, thus dividing T in a natural
sense into k tokens, hereafter called words. Now let I be the set of positions

Suffix Arrays on Words 331

Fig. 1. The initial radix-sort in step 1 Fig. 2. The new text T ′ and its (full-text)
suffix array SA

where new words start: 1 ∈ I and i ∈ I \{1} ⇐⇒ Ti−1 ∈ W . (The first position
of the text is always taken to be the beginning of a new word.) Similar to [2] we
define the set of all suffixes of T starting at word boundaries as Suffix I(T) =
{Ti..n : i ∈ I}. Then the word suffix array A[1..k] is a permutation of I such that
TA[i−1]..n < TA[i]..n for all 1 < i ≤ k; i.e., A represents the lexicographic order of
all suffixes in Suffix I(T).

Definition 1 (Word Aligned String Matching). For a given pattern P of
length m let OP ⊆ I be the set of word-aligned positions where P occurs in T :
i ∈ OP iff Ti..n is prefixed by P and i ∈ I. Then the tasks of word aligned string
matching are (1) to answer whether or not OP is empty (decision query), (2)
to return the size of OP (counting query), and (3) to enumerate the members of
OP in some order (reporting query).

3 Optimal Construction of the Word Suffix Array

This section describes the optimal O(n) time and O(k) space algorithm to con-
struct the word suffix array. For simplicity, we describe the algorithm with only
one word separator (namely #). The reader should note, however, that all steps
are valid and can be computed in the same time bounds if we have more than
one (but constantly many) word separators. We also assume that the set I of
positions to be indexed is implemented as an increasingly sorted array.

As a running example for the algorithm we use the text T = ab#a#aa#a#ab#
baa#aab#a#aa#baa#, so I = [1, 4, 6, 9, 11, 14, 18, 22, 24, 27].

1. The goal of this step is to establish a “coarse” sorting of the suffixes from
Suffix I(T). In particular, we want to sort these suffixes using their first word
as the sort key. To do so, initialize the array A[1..k] = I. Then perform a
radix-sort of the elements in A: at each level l ≥ 0, bucket-sort the array
A using TA[i]+l as the sort key for A[i]. Stop the recursion when a bucket
contains only one element, or when a bucket consists only of suffixes starting

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 2 3 4 5 6 7 8 9 10
A= 4 9 22 6 24 18 1 11 14 27

a
#

a
#

a
#

a

#
a

a
a
#

a
a
b
#

a

#
b

a
b
#

b b
a a
a a
#

1 2 3 4 5bucket−>

a
a
#
a
#

a
b
#
b
a

a
a
#
b
a

a
#
a
b

b
a
a
#

a
#
a

#
a

a
a

b
a
a
#

a
a
b

2 3 4 5 6 7 8 9 10
T’=

SA= 2 8 4 3 9 7 1 5 10 6
4 1 2 1 4 5 3 1 2 5

1
2
5

1
4
5
3
1
2
5

2
1
4
5
3
1
2
5

2
5

3
1
2
5

41
2
1
4
5
3
1
2
5

1
2
1
4
5
3
1
2
5

5
3
1
2
5

5 5
3
1
2
5

11 9 11 144 6 18 22 24 27

332 P. Ferragina and J. Fischer

Fig. 3. The final word suffix array

LCP[1] ← −1, h ← 01

for i ← 1, . . . , k do2

p ← A−1[i], h ← max{0, h − A[p]}3

if p > 1 then4

while TA[p]+h = TA[p−1]+h do5

h ← h + 16

end7

LCP[p] ← h8

end9

h ← h + A[p]10

end11

Fig. 4. O(n)-time longest common prefix com-
putation using O(k) space (adapted from [20])

with w# for some w ∈ (Σ \ {#})�. Since each character from T is involved in
at most one comparison, this step takes O(n) time. See Fig. 1 for an example.

2. Construct a new text T ′ = b(I[1])b(I[2]) . . . b(I[k]), where b(I[i]) is the
bucket-number (after step 1) of suffix TI[i]..n ∈ Suffix I(T). In our example,
T ′ = 4121453125. (We use boldface letters to emphasize the fact that we are
using a new alphabet.) This step can clearly be implemented in O(k) time.

3. We now build the (full-text) suffix array SA for T ′. Because the linear-time
construction algorithms for suffix arrays (e.g., [15]) work for integer alpha-
bets too, we can employ any of them to take O(k) time. See Fig. 2 for an
example. In this figure, we have attached to each position in the new text
T ′ the corresponding position in T as a superscript (i.e., the array I), which
will be useful in the next step.

4. This step derives the word suffix array A from SA. Scan SA from left to right
and write the corresponding suffix to A: A[i] = I[SA[i]]. This step clearly
takes O(k) time. See Figure 3 for an example.

Theorem 1. Given a text T of length n consisting of k words drawn from a
constant-sized alphabet Σ, the word suffix array for T can be constructed in
optimal O(n) time and O(k) extra space.

Proof. Time and space bounds have already been discussed in the description of
the algorithm; it only remains to prove the correctness. This means that we have
to prove TA[i−1]..n ≤ TA[i]..n for all 1 < i ≤ k after step 4. Note that after step 1
we have TA[i−1]..x ≤ TA[i]..y, where x and y are defined so that Tx and Ty is the
first # after TA[i−1] and TA[i], respectively. We now show that steps 2–4 refine
this ordering for buckets of size greater than one. In other words, we wish to
show that in step 4, buckets [l : r] sharing a common prefix TA[i]..x with Tx being
the first # for all l ≤ i ≤ r are sorted using the lexicographic order of Tx+1..n

as a sort key. But this is simple: because the newly constructed text T ′ from
step 2 respects the order of TA[i]..x, and because step 3 establishes the correct
lexicographic order of T ′, the I[SA[i]]’s are the correct sort keys for step 4. ��

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

a
#
a
a
#
b
a

.

.

.

a
#
a
b
#
b
a

.

.

.

b
a
a
#
a
a
b

b
a
a
#

1 2 3 4 5 6 7 8 9 10
A= 4 6 24 18 1 11

a
#

a

#
a

a
a
#

a
a
b
#

a

#
b

a
b
#a

a
#
a
#

a
#
a
b

b
a
a
#

a
#
a

#
a

a
a

b
a
a
#

922 27 14

Suffix Arrays on Words 333

Table 1. Different methods for retrieving all occ occurrences of a pattern at word-
boundaries. The full-text suffix array would have the same time- and space-bounds,
with k substituted by n >> k, and occ by occ′ >> occ, where occ′ is the number of not
necessarily word-aligned occurrences of the pattern.

method space usage (words) time bounds

bin-naive k O(m log k + occ)
bin-improved (1 + C)k, C ≤ 1 O((m − log(Ck)) log k + occ)

bin-lcp 2k O(m + log k + occ)
esa-search 2k + O(k/ log k) O(m|Σ| + occ)

To further reduce the required space we can think of compressing T before
applying the above construction algorithm, by adopting an entropy-bounded
storage scheme [18] which allows constant-time access to any of its O(log n)
contiguous bits. This implies the following:

Corollary 1. The word suffix array can be built in 3k log n + nHh(T) + o(n)
bits and O(n) time, where Hh(T) is the hth order empirical entropy of T . For
any k = o(n/ log n), the space needed to build and store this data structure is
nHh + o(n) bits, simultaneously over all h = o(log n).

This result is interesting because it says that, in the case of a tokenized text
with long words on average (e.g. dictionary of URLs), the word-based suffix ar-
ray takes the same space as the best compressed indexes (cf. [8]), but it would
need less space to be constructed.

4 Searching in the Word Suffix Array

We now consider how to search for the word-aligned occ occurrences of a pattern
P [1, m] in the text T [1, n]. As searching the word suffix array can be done with
the same methods as in the full-text suffix array we keep the discussion short
(see also Table 1); the purpose of this section is the completeness of exposition,
and to prepare for the experiments in the following section.

Here we also introduce the notion of word-based LCP-array and show that it
can be computed in O(n) time and O(k) space. We emphasize that enhancing
the word suffix array with the LCP-array actually yields more functionality
than just improved string-matching performance. As an example, with the LCP-
array it is possible to simulate bottom-up traversals of the corresponding word
suffix tree, and augmenting this further allows us also to simulate top-down
traversals [19]. Additionally, in the vein of [21, Section 5.3.2], we can derive the
word suffix tree from arrays LCP and A. This yields a simple, space-efficient and
memory-friendly (in the sense that nodes tend to be stored in the vicinity of
their predecessor/children) alternative to the algorithm in [2].

Searching in O(m log k) time. Because A is sorted lexicographically, it can
be binary-searched in a similar manner to the original search-algorithm from

334 P. Ferragina and J. Fischer

Manber and Myers [22]. We can also apply the two heuristics proposed there
to speed up the search in practice (though not in theory): the first builds an
additional array of size |Σ|K (K = log|Σ|(Ck) for some C ≤ 1) to narrow
down the initial search interval in A, and the second one reduces the number of
character comparisons by remembering the number of matching characters from
T and P that have been seen so far.

Searching in O(m + log k) time. Like in the original article [22] the idea is
to pre-compute the longest common prefixes of TA[(l+r)/2]..n with both TA[l]..n

and TA[r]..n for all possible search intervals [l : r]. Footnote 6 in [22] actually
shows that only one of these values needs to be stored, so the additional space
needed is one array of size k. Because both the precomputation and the search
algorithm are unchanged, we refer the reader to [22] for a complete description
of the algorithm.

Searching in O(m|Σ|) time. While the previous two searching algorithms have
a searching time that is independent of the alphabet size, we show in this section
how to locate the search interval of P within A in O(m|Σ|). We note that for a
constant alphabet this actually yields optimal O(m) counting time and optimal
O(m + occ) reporting time.

Define the LCP-array LCP[1..k] as follows: LCP[1] = −1 and for i > 1, LCP[i]
is the length of the longest common prefix of the suffixes TA[i−1]..n and TA[i]..n.
We will now show that this LCP-table can be computed in O(n) time in the
order of inverse word suffix array A−1 which is defined as A[A−1[i]] = I[i]; i.e.,
A−1[i] tells us where the i’th-longest suffix among all indexed suffixes from T can
be found in A. A−1 can be computed in O(k) time as a by-product of the con-
struction algorithm (Section 3). In our example, A−1 = [7, 1, 4, 3, 8, 10, 6, 2, 5, 9].

Figure 4 shows how to compute the LCP-array in O(n) time. It is actually
a generalization of the O(n)-algorithm for lcp-computation in (full-text) suffix
arrays [20]. The difference from [20] is that the original algorithm assumes that
when going from position p (here A[p] = i) to position p′ = A−1[i + 1] (hence
A[p′] = i + 1), the difference in length between TA[p]..n and TA[p′]..n is exactly
one, whereas in our case this difference may be larger, namely A[p′]−A[p]. This
means that when going from position p to p′ the lcp can decrease by at most
A[p′]−A[p] (instead of 1); we account for this fact by adding A[p] to h (line 10)
and subtracting p′ (i.e. the new p) in the next iteration of the loop (line 3). At
any iteration, variable h holds the length of the prefix that TA[p]..n and TA[p−1]..n

have in common. Since each text character is involved in at most 2 comparisons,
the O(n) time bound easily follows.

Now in order to achieve O(m|Σ|) matching time, use the RMQ-based variant
of the Enhanced Suffix Array [19] proposed by [23]. This requires o(k) additional
space and can be computed in O(k) time.

5 Experimental Results

The aim is to show the practicality of our method. We implemented the word
suffix array in C++ (www.bio.ifi.lmu.de/∼{}fischer/wordSA.tgz). Instead

www.bio.ifi.lmu.de/~{}fischer/wordSA.tgz

Suffix Arrays on Words 335

Table 2. Our Test-files and their characteristics. In the word separator column, LF
stands for “line feed”, SPC for “space” and TAB for “tabulator”.

dataset size (MB) |Σ| word separators used #words different words avg. length

English 333 239 LF, SPC, - 67,868,085 1,220,481 5.27
XML 282 97 SPC, /, <, >, ” 53,167,421 2,257,660 5.60

sources 201 230 [10 in total] 53,021,263 2,056,864 3.98
URLs 70 67 LF, / 5,563,810 533,809 13.04

random 250 2 SPC 10,000,001 9,339,339 26.0

of using a linear time algorithm for the construction of suffix arrays, we opted for
the method from Larsson and Sadakane [24]. We implemented the search strate-
gies bin-naive, bin-improved, bin-lcp and esa-search from Table 1. Unfortunately,
we could not compare to the other word-based indexes [2,3,4] because there are
no publicly available implementations. For bin-improved we chose C = 1/4, so
the index occupies 1.25k memory words (apart from T , which takes n bytes).
For the RMQ-preprocessing of the esa-search we used the method from Alstrup
et al. [25] which is fast in practice, while still being relatively space-conscious
(about 1.5k words). With the LCP-array and the text this makes a total of
≈ 3.5k words.

We tested our algorithms on the files “English”, “XML”, and “sources” from
the Pizza&Chili site [26] (some of them truncated), plus one file of URLs from
the .eu domain [27]. To test the search algorithms on a small alphabet, we also
generated an artificial dataset by taking words of random length (uniformly from
20 to 30) and letters uniformly from Σ = {a, b}. See Table 2 for the character-
istics of the evaluated datasets.

Table 3 shows the space consumption and the preprocessing times for the four
different search methods. Concerning the space, the first four columns under
“space consumption” denote the space (in MB) of the final index (including the
text) for the different search algorithms it can subsequently support. Column
labeled “peak 1–3” gives the peak memory usage at construction time for search
algorithms 1–3; the peak usage for search algorithm 4 is the same as that of the
final index. Concerning the construction time, most part of the preprocessing is
needed for the construction of the pure word suffix array (method 1); the times
for methods 2–4 are only slightly longer than that for method 1.

To see the advantage of our method over the naive algorithm which prunes
the full-text suffix array to obtain the word suffix array, Table 4 shows the con-
struction times and peak space consumption of two state-of-the-art algorithms
for constructing (full-text) suffix arrays, MSufSort-3.0 [28] and deep-shallow [29].
Note that the figures given in Table 4 are pure construction times for the full-
text suffix array; pruning this is neither included in time nor space. First look at
the peak space consumption in Table 4. MSufSort needs about 7n bytes if the
input text cannot be overwritten (it therefore failed for the largest dataset), and
deep-shallow needs about 5n bytes. These two columns should be compared with
the column labeled “peak 1–3” in Table 3, because this column gives the space

336 P. Ferragina and J. Fischer

Table 3. Space consumption (including the text) and preprocessing times for the 4
different search algorithms: bin-naive (1), bin-improved (2), bin-lcp (3), esa-search (4)

space consumption (MB) preprocessing times (in sec)
dataset 1 2 3 4 peak 1–3 1 2 3 4

English 600.2 664.2 859.1 1,296.0 1,118.0 533.64 558.89 631.57 639.95
XML 485.2 485.5 688.1 1,024.3 890.9 328.38 341.95 370.88 377.54

sources 403.4 403.6 605.6 940.6 807.9 281.12 295.95 323.04 329.74
URLs 90.4 90.7 111.6 145.1 132.9 45.75 46.60 47.14 47.97

random 286.1 286.3 324.2 385.0 362.4 224.75 228.17 239.89 241.33

needed to construct the pure word suffix array (i.e., 12k + n bytes in our imple-
mentation). For all but one data set our method uses significantly less space than
both MSufSort (20.9–57.4%) and deep-shallow (36.5–81.9%). For the construc-
tion time, compare the last two columns in Table 4 with the preprocessing time
for method 1 in Table 3. Again, our method is almost always faster (49.6–90.1%
and 64.4–80.2% better than deep-shallow and MSufSort, respectively); the dif-
ference would be even larger if we did include the time needed for pruning the
full-text suffix array.

Table 4. Space consumption (including the text) and construction times for two dif-
ferent state-of-the-art methods to construct (full-text) suffix arrays

peak space consumption (MB) construction time
dataset MSufSort-3.0 deep-shallow MSufSort-3.0 deep-shallow

English — 1,365.3 — 755.8
XML 1,976.9 1,129.7 363.9 410.8

sources 1,407.7 804.4 193.4 260.6
URLs 484.3 276.7 75.2 71.0

random 1,735.6 991.8 452.7 332.2

We finally tested the different search strategies. In particular, we posed 300,000
counting queries to each index (i.e., determining the interval of pattern P in A)
for patterns of length 5, 50, 500, 5,000, and 50,000. The results can be seen in
Fig. 5.1 We differentiated between random patterns (left hand side of Fig. 5) and
occurring patterns (right hand side). There are several interesting points to note.
First, the improved O(m log k)-algorithm is almost always the fastest. Second, the
O(m|Σ|) is not competitive with the other methods, apart from very long patterns
or a very small alphabet (Subfig. (h)). And third, the query time for the methods
based on binary search (1–3) can actually be higher for short patterns than for
long patterns (Fig. (a)-(b)). This is the effect of narrowing down the search for
the right border when searching for the left one.
1 We omit the results for the sources-dataset as they strongly resemble those for the

URL-dataset.

Suffix Arrays on Words 337

 1e-06

 1e-05

 1e-04

 0.001

 1 10 100 1000 10000 100000

qu
er

y
tim

e
(s

ec
on

ds
)

pattern length

O(m log(k))
improved O(m log(k))

O(m + log(k))
O(m|Σ|)

(a) English, random patterns.

 1e-05

 1e-04

 0.001

 1 10 100 1000 10000 100000

qu
er

y
tim

e
(s

ec
on

ds
)

pattern length

O(m log(k))
improved O(m log(k))

O(m + log(k))
O(m|Σ|)

(b) English, occurring patterns.

 1e-06

 1e-05

 1e-04

 0.001

 1 10 100 1000 10000 100000

qu
er

y
tim

e
(s

ec
on

ds
)

pattern length

O(m log(k))
improved O(m log(k))

O(m + log(k))
O(m|Σ|)

(c) XML, random patterns.

 1e-06

 1e-05

 1e-04

 0.001

 1 10 100 1000 10000 100000

qu
er

y
tim

e
(s

ec
on

ds
)

pattern length

O(m log(k))
improved O(m log(k))

O(m + log(k))
O(m|Σ|)

(d) XML, occurring patterns.

 1e-06

 1e-05

 1e-04

 1 10 100 1000 10000 100000

qu
er

y
tim

e
(s

ec
on

ds
)

pattern length

O(m log(k))
improved O(m log(k))

O(m + log(k))
O(m|Σ|)

(e) URLs, random patterns.

 1e-06

 1e-05

 1e-04

 0.001

 1 10 100 1000 10000 100000

qu
er

y
tim

e
(s

ec
on

ds
)

pattern length

O(m log(k))
improved O(m log(k))

O(m + log(k))
O(m|Σ|)

(f) URLs, occurring patterns.

 1e-06

 1e-05

 1e-04

 1 10 100 1000 10000 100000

qu
er

y
tim

e
(s

ec
on

ds
)

pattern length

O(m log(k))
improved O(m log(k))

O(m + log(k))
O(m|Σ|)

(g) Random words, random patterns.

 1e-06

 1e-05

 1e-04

 0.001

 1 10 100 1000 10000 100000

qu
er

y
tim

e
(s

ec
on

ds
)

pattern length

O(m log(k))
improved O(m log(k))

O(m + log(k))
O(m|Σ|)

(h) Random words, occurring patterns.

Fig. 5. Practical performance of the algorithms from Section 4 (average over 300,000
counting queries; time for index construction is not included). Axes have a log-scale.

338 P. Ferragina and J. Fischer

6 Conclusions

We have seen a space- and time-optimal algorithm to construct suffix arrays on
words. The most striking property was the simplicity of our approach, reflected in
the good practical performance. This supersedes all the other known approaches
based on suffix trees, DAWG and compact DAWG.

As future research issues we point out the following two. In a similar man-
ner as we compressed T (Corollary 1), one could compress the word-based suf-
fix array A by probably resorting the ideas on word-based Burrows-Wheeler
Transform [5] and alphabet-friendly compressed indexes [8]. This would have
an impact not only in terms of space occupancy, but also on the search per-
formance of those indexes because they execute O(1) random memory-accesses
per searched/scanned character. With a word-based index this could be turned
to O(1) random memory-accesses per searched/scanned word, with a significant
practical speed-up in the case of very large texts possibly residing on disk.

The second research issue regards the sparse string-matching problem in which
the set of points to be indexed is given as an arbitrary set, not necessarily coin-
ciding with word boundaries. As pointed out in the introduction, this problem
is still open, though being relevant for texts such as biological sequences where
natural word boundaries do not occur.

References

1. Andersson, A., Larsson, N.J., Swanson, K.: Suffix Trees on Words. Algorith-
mica 23(3), 246–260 (1999)

2. Inenaga, S., Takeda, M.: On-Line Linear-Time Construction of Word Suffix Trees.
In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 60–71.
Springer, Heidelberg (2006)

3. Inenaga, S., Takeda, M.: Sparse Directed Acyclic Word Graphs. In: Crestani, F.,
Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS, vol. 4209, pp. 61–73.
Springer, Heidelberg (2006)

4. Inenaga, S., Takeda, M.: Sparse compact directed acyclic word graphs. In: Stringol-
ogy, pp. 197–211 (2006)

5. Yugo, R., Isal, K., Moffat, A.: Word-based block-sorting text compression. In:
Australasian Conference on Computer Science, pp. 92–99. IEEE Press, New York
(2001)

6. Yamamoto, M., Church, K.W: Using suffix arrays to compute term frequency and
document frequency for all substrings in a corpus. Computational Linguistics 27(1),
1–30 (2001)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge (1997)

8. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
(to appear) Preliminary version available at
http://www.dcc.uchile.cl/∼gnavarro/ps/acmcs06.ps.gz

9. Witten, I.H, Moffat, A., Bell, T.C: Managing Gigabytes: Compressing and Indexing
Documents and Images, 2nd edn. Morgan Kaufmann, San Francisco (1999)

10. Zobel, J., Moffat, A., Ramamohanarao, K.: Guidelines for Presentation and Com-
parison of Indexing Techniques. SIGMOD Record 25(3), 10–15 (1996)

http://www.dcc.uchile.cl/~gnavarro/ps/acmcs06.ps.gz

Suffix Arrays on Words 339

11. Hon, W.K., Sadakane, K., Sung, W.K.: Breaking a Time-and-Space Barrier in
Constructing Full-Text Indices. In: Proc. FOCS, pp. 251–260. IEEE Computer
Society, Los Alamitos (2003)

12. Ukkonen, E.: On-line Construction of Suffix Trees. Algorithmica 14(3), 249–260
(1995)

13. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.I.:
The Smallest Automaton Recognizing the Subwords of a Text. Theor. Comput.
Sci. 40, 31–55 (1985)

14. Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G., Pavesi,
G.: On-line construction of compact directed acyclic word graphs. Discrete Applied
Mathematics 146(2), 156–179 (2005)

15. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear Work Suffix Array Construction.
J. ACM 53(6), 1–19 (2006)

16. Inenaga, S.: personal communication (December 2006)
17. Kärkkäinen, J., Ukkonen, E.: Sparse Suffix Trees. In: Cai, J.-Y., Wong, C.K. (eds.)

COCOON 1996. LNCS, vol. 1090, pp. 219–230. Springer, Heidelberg (1996)
18. Ferragina, P., Venturini, R.: A Simple Storage Scheme for Strings Achieving En-

tropy Bounds. Theoretical Computer Science 372(1), 115–121 (2007)
19. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing Suffix Trees with Enhanced

Suffix Arrays. J. Discrete Algorithms 2(1), 53–86 (2004)
20. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-Time Longest-

Common-Prefix Computation in Suffix Arrays and Its Applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidel-
berg (2001)

21. Aluru, S. (ed.): Handbook of Computational Molecular Biology. Chapman &
Hall/CRC, Sydney, Australia (2006)

22. Manber, U., Myers, E.W.: Suffix Arrays: A New Method for On-Line String
Searches. SIAM J. Comput. 22(5), 935–948 (1993)

23. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In: Proc. ESCAPE. LNCS (to appear)

24. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Technical Report LU-CS-TR:99-
214, LUNDFD6/(NFCS-3140)/1–20/(1999), Department of Computer Science,
Lund University, Sweden (May 1999)

25. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest Common Ancestors: A
Survey and a New Distributed Algorithm. In: Proc. SPAA, pp. 258–264. ACM
Press, New York (2002)

26. Ferragina, P., Navarro, G.: The Pizza & Chili Corpus. Available at
http://pizzachili.di.unipi.it, http://pizzachili.dcc.uchile.cl

27. Università degli Studi di Milano, Laboratory for Web Algorithmics: URLs from
the.eu domain. Available at http://law.dsi.unimi.it/index.php

28. Maniscalco, M.A., Puglisi, S.J.: An efficient, versatile approach to suffix sorting.
ACM Journal of Experimental Algorithmics (to appear) Available at
http://www.michael-maniscalco.com/msufsort.htm

29. Manzini, G., Ferragina, P.: Engineering a lightweight suffix array construction al-
gorithm. Algorithmica, 40(1), 33–50 (2004) Available at
http://www.mfn.unipmn.it/∼manzini/lightweight

http://pizzachili.di.unipi.it
http://pizzachili.dcc.uchile.cl
http://law.dsi.unimi.it/index.php
http://www.michael-maniscalco.com/msufsort.htm
http://www.mfn.unipmn.it/~manzini/lightweight

Efficient Computation of Substring Equivalence

Classes with Suffix Arrays

Kazuyuki Narisawa1, Shunsuke Inenaga2, Hideo Bannai1,
and Masayuki Takeda1,3

1 Department of Informatics, Kyushu University, Fukuoka 819-0395, Japan
2 Department of Computer Science and Communication Engineering,

Kyushu University, Fukuoka 819-0395, Japan
3 SORST, Japan Science and Technology Agency (JST)

{k-nari,bannai,takeda}@i.kyushu-u.ac.jp,
inenaga@c.csce.kyushu-u.ac.jp

Abstract. This paper considers enumeration of substring equivalence
classes introduced by Blumer et al. [1]. They used the equivalence classes
to define an index structure called compact directed acyclic word graphs
(CDAWGs). In text analysis, considering these equivalence classes is
useful since they group together redundant substrings with essentially
identical occurrences. In this paper, we present how to enumerate those
equivalence classes using suffix arrays. Our algorithm uses rank and lcp
arrays for traversing the corresponding suffix trees, but does not need
any other additional data structure. The algorithm runs in linear time in
the length of the input string. We show experimental results comparing
the running times and space consumptions of our algorithm, suffix tree
and CDAWG based approaches.

1 Introduction

Finding distinct features from text data is an important approach for text analy-
sis, with various applications in literary studies, genome studies, and spam de-
tection [2]. In biological sequences and non-western languages such as Japanese
and Chinese, word boundaries do not exist, and thus all substrings of the text
are subject to analysis. However, a given text contains too many substrings to
browse or analyze. A reasonable approach is to partition the set of substrings
into equivalence classes under the equivalence relation of [1] so that an expert
can examine the classes one by one [3]. This equivalence relation groups together
substrings that correspond to essentially identical occurrences in the text. Such
a partitioning is very beneficial for various text mining approaches whose min-
ing criterion is based on occurrence frequencies, since each element in a given
equivalence class will have the same occurrence frequency.

In this paper, we develop an efficient algorithm for enumerating the equiva-
lence classes of a given string, as well as useful statistics such as frequency and
size for each class. Although the number of equivalence classes in a string w of
length n is at most n+1, the total number of elements in the equivalence classes

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 340–351, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Computation of Substring Equivalence Classes with Suffix Arrays 341

is O(n2), that is, the number of substrings in w. However, each equivalence class
can be expressed by a unique maximal (longest) element and multiple minimal
elements. Further, these elements can be expressed by a pair of integers repre-
senting the beginning and end positions in the string. Thus, we consider these
succinct expressions of the equivalence classes, which require only O(n) space.
The succinct expressions can easily be computed using the CDAWG data struc-
ture proposed by [1], which is an acyclic graph structure whose nodes correspond
to the equivalence classes. Although CDAWGs can be constructed in O(n) time
and space [4], we present a more efficient algorithm based on suffix arrays.

In Section 3, we first describe an algorithm using suffix trees with suffix links
(Algorithm 1), for computing the succinct expressions. Although suffix trees can
also be constructed and represented in O(n) time and space [5,6], it has been
shown that many algorithms on suffix trees can be efficiently simulated on suffix
arrays [7] with the help of auxiliary arrays such as lcp and rank arrays [8,9].
However, previous methods require extra time and space for maintaining suffix
link information. In Section 4, we give an algorithm to simulate Algorithm 1 using
the suffix, lcp and rank arrays (Algorithm 2). A key feature of this algorithm is
that it does not require any extra data structure other than these arrays, making
it quite space economical. Section 5 gives results of computational experiments
of Algorithm 1, 2, and an algorithm using CDAWGs.

2 Preliminaries

2.1 Notations

Let Σ be a finite set of symbols, called an alphabet. An element of Σ∗ is called
a string. Strings x, y and z are said to be a prefix, substring, and suffix of
the string w = xyz, respectively, and the string w is said to be a superstring
of substring y. The sets of prefixes, substrings and suffixes of a string w are
denoted by Prefix(w), Substr(w) and Suffix(w), respectively. The length of a
string w is denoted by |w|. The empty string is denoted by ε, that is, |ε| = 0. Let
Σ+ = Σ∗−{ε}. The i-th symbol of a string w is denoted by w[i] for 1 ≤ i ≤ |w|,
and the substring of w that begins at position i and ends at position j is denoted
by w[i : j] for 1 ≤ i ≤ j ≤ |w|. Also, let w[i :] = w[i : |w|] for 1 ≤ i ≤ |w|. For
any string w ∈ Σ∗ and x ∈ Substr(w), a reference pair of x w.r.t. w is a pair
〈i, j〉 such that w[i : j] = x. For any strings x, y ∈ Σ∗, the longest string in
Prefix(x) ∩ Prefix(y) is called the longest common prefix (LCP) of x and y.

2.2 Equivalence Relations on Strings

In this subsection, we recall the equivalence relations introduced by Blumer et
al. [10,1], and then state their properties. Throughout this paper, we consider
the equivalence classes of the input string w that ends with a distinct symbol $
that does not appear anywhere else in w. For any string x ∈ Substr(w), let,

BegPos(x) = {i | 1 ≤ i ≤ |w|, x = w[i : i + |x| − 1]}, and
EndPos(x) = {i | 1 ≤ i ≤ |w|, x = w[i − |x| + 1 : i]}.

342 K. Narisawa et al.

For any string y /∈ Substr(w), let BegPos(y) = Endpos(y) = ∅.
Now we define two equivalence relations and classes based on BegPos and

EndPos .

Definition 1. The equivalence relations ≡L and ≡R on Σ∗ are defined by:

x ≡L y ⇔ BegPos(x) = BegPos(y), and
x ≡R y ⇔ EndPos(x) = EndPos(y),

where x, y are any strings in Σ∗. The equivalence class of a string x ∈ Σ∗ with
respect to ≡L and ≡R is denoted by [x]≡L and [x]≡R , respectively.

Notice that any strings not in Substr(w) form one equivalence class under ≡L,
called the degenerate class. Similar arguments hold for ≡R. The above equiv-
alence classes [x]≡L and [x]≡R correspond to the nodes of suffix trees [5] and
directed acyclic word graphs (DAWGs) [10], respectively. For any string x ∈
Substr(w), let −→x and ←−x denote the unique longest member of [x]≡L and [x]≡R ,
respectively. For any string x ∈ Substr(w), let ←→x = αxβ such that α, β ∈ Σ∗

are the strings satisfying ←−x = αx and −→x = xβ.
Intuitively, ←→x = αxβ means that:

– Every time x occurs in w, it is preceded by α and followed by β.
– Strings α and β are longest possible.

Note that
←−−
(−→x) =

−−→
(←−x) = ←→x .

Now we define another equivalence relation, whose equivalence classes cor-
respond to the nodes of compact directed acyclic word graphs (CDAWGs) [1].

Definition 2. For any string x, y ∈ Σ∗, we denote x ≡ y, if and only if

1. x /∈ Substr(w) and y /∈ Substr(w), or
2. x, y ∈ Substr(w) and ←→x = ←→y .

The equivalence class of a string x with respect to ≡ is denoted by [x]≡. For any
x ∈ Substr(w), the unique longest member ←→x of [x]≡ is called the representative
of the equivalence class.

Now we consider a succinct representation of each non-degenerate equivalence
class under ≡. For any x ∈ Substr(w), let Minimal([x]≡) denote the set of
minimal elements of [x]≡, that is,

Minimal([x]≡) = {y ∈ [x]≡ | z ∈ Substr(y) and z ∈ [x]≡ implies z = y}.

Namely, Minimal ([x]≡) is the set of strings y in [x]≡ such that there is no string
z ∈ Substr(y) − {y} with z ≡ x.

The following lemma shows that the strings in every non-degenerate equiv-
alence class [x]≡ can be represented by a pair of its representative ←→x and
Minimal([x]≡).

Efficient Computation of Substring Equivalence Classes with Suffix Arrays 343

Lemma 1 ([3]). For any x in Substr(w), let y1, . . . , yk be the elements of
Minimal([x]≡). Then,

[x]≡ = Pincer(y1,
←→x) ∪ · · · ∪ Pincer(yk,←→x),

where Pincer(yi,
←→x) is the set of strings z such that z ∈ Substr(←→x) and yi ∈

Substr(z).

Now, a succinct representation of a non-degenerate equivalence class [x]≡ is a
pair of ←→x and Minimal([x]≡), where ←→x and all strings in Minimal([x]≡) are
represented by their reference pairs w.r.t. w. We have the following lemma about
the total space requirement for the succinct representations of all the equivalence
classes under ≡.

Lemma 2. A list of succinct representations of all non-degenerate equivalence
classes under ≡ requires only O(|w|) space.

Let the size of non-degenerate equivalence class [x]≡ be the number of substrings
that belong to [x]≡, that is, |[x]≡|. Let Freq(x) denote the occurrence frequency
of x in w. If x ≡ y, then Freq(x) = Freq(y). Therefore, we consider the frequency
of an equivalence class [x]≡ and denote this by Freq([x]≡).

2.3 Data Structures

We use the following data structures in our algorithms.

Definition 3 (Suffix Trees and Suffix Link Trees). For any string w, the
suffix tree of w, denoted ST (w), is an edge-labeled tree structure (V, E) such that

V = {x | x = −→x , x ∈ Substr(w)}, and
E = {(x, β, xβ) | x, xβ ∈ V, β ∈ Σ+, a = β[1], −→xa = xβ},

where the second component β of each edge (x, β, xβ) in E is its label, and the
suffix link tree of w, denoted SLT (w), is a tree structure (V, E�) such that

E� = {(ax, x) | x, ax ∈ V, a ∈ Σ}.

It is well known that ST (w) with SLT (w) can be computed in linear time and
space [11,6].

The root node of ST (w) and SLT (w) is associated with ε = −→ε . Since the
end-marker $ is unique in w, every nonempty suffix of strings in w corresponds
to a leaf of ST (w), and only such a leaf exists in ST (w). Therefore, each leaf
can be identified by the beginning position of the corresponding suffix of w. The
values Freq(x) for all nodes x ∈ V of ST (w) can be computed in linear time and
space by a post-order traversal on ST (w).

For any node xβ with incoming edge (x, β, xβ) of ST (w), let Paths(xβ) =
{xβ′ | β′ ∈ Prefix(β)−{ε}}. Note that Paths(xβ) = [xβ]≡L , and therefore −→z =
xβ for any z ∈ Paths(xβ). It is easy to see that |Paths(xβ)| = |xβ| − |x| = |β|.

For any node x of ST (w) such that x 	= ε, let Parent(x) denote the parent
of x.

344 K. Narisawa et al.

Definition 4 (Suffix Arrays). The suffix array [7] SA of any string w is an
array of length |w| such that SA[i] = j, where w[j :] is the i-th lexicographically
smallest suffix of w.

The suffix array of string w can be computed in linear time from ST (w), by
arranging the out-going edges of any node of ST (w) in the lexicographically
increasing order of the first symbols of the edge labels. This way all the leaves of
ST (w) are sorted in the lexicographically increasing order, and they correspond
to SA of w. Linear-time direct construction of SA has also been extensively
studied [12,13,14].

Definition 5 (Rank and LCP Arrays). The rank and lcp arrays of any
string w are arrays of length |w| such that rank [SA[i]] = i, and lcp[i] is the length
of the longest common prefix of w[SA[i−1] :] and w[SA[i] :] for 2 ≤ i ≤ |w|, and
lcp[1] = −1.

Given SA of string w, the rank and lcp arrays of w can be computed in linear
time and space [8].

3 Computing Equivalence Classes Under ≡ Using Suffix
Trees

In this section we present a suffix tree based algorithm to compute a succinct
representation of each non-degenerate equivalence class, together with its size
and frequency. This algorithm will be the basis of our algorithm of Section 4,
which uses suffix arrays instead of trees.

The following lemma states how to check the equivalence relation ≡ between
two substrings using ST (w).

Lemma 3. For any x, y ∈ Substr(w), x ≡ y if and only if Freq(−→x) = Freq(−→y)
and −→x ∈ Suffix(−→y) or vise versa.

Proof. The case that −→x = −→y is trivial. We consider the case that −→x 	= −→y .
Assume w.l.o.g. that |−→x | < |−→y |.

Assume x ≡ y. Then we have
←−−
(−→x) = ←→x = ←→y =

←−−
(−→y), which implies that

EndPos(−→x) = EndPos(−→y). Thus we have Freq(−→x) = Freq(−→y). Since |−→x | < |−→y |,
−→x ∈ Suffix(−→y).

Now assume Freq(−→x) = Freq(−→y) and −→x ∈ Suffix(−→y). Since −→x ∈ Suffix(−→y),
we have EndPos(−→x) ⊇ EndPos(−→y). Moreover, since Freq(−→x) = Freq(−→y), we
get EndPos(−→x) = EndPos(−→y). Hence ←→x =

←−−
(−→x) =

←−−
(−→y) = ←→y . ��

Lemma 4. For any node x ∈ V of ST (w) such that ←→x = x, let � = max{i |
Freq(x [i :]) = Freq(x)}. Then, [x]≡ =

⋃
y∈[x]≡R

[y]≡L =
⋃�

i=1 Paths(x[i :]).

Proof. By Lemma3. ��

Efficient Computation of Substring Equivalence Classes with Suffix Arrays 345

For each node x of ST (w), |Paths(x)| = |Parent(x)| − |x| and it can be pre-
computed by a post-order traversal on ST (w). Thus, by the above lemma, the
size of each non-degenerate equivalence class can be computed by a post-order
traversal on SLT (w).

In what follows, we show how to check whether or not a given node x in the
suffix link tree traversal is the representative of the equivalence class under ≡,
namely, whether or not x = ←→x .

Lemma 5. For any node x ∈ V of ST (w), x = ←→x if and only if Freq(ax) <
Freq(x) for any a ∈ Σ such that ax ∈ V .

Proof. By Lemma 3. ��

The following two lemmas follow from Lemma 5.

Lemma 6. For any leaf node x ∈ V of SLT (w), x = ←→x .

Proof. Since x is also a node of ST (w), x = −→x . We show that for any symbol
a ∈ Σ, Freq(ax) < Freq(x), and therefore, x = ←−x . Since x is a leaf of SLT(w),
we have ax 	∈ V for any a ∈ Σ, for which there are the two following cases:

1. ax 	∈ Substr(w). Then, Freq(ax) = 0 while Freq(x) > 0.
2. ax ∈ Substr(w). Consider β ∈ Σ+ such that −→ax = axβ ∈ V . Then, we have

that Freq(ax) = Freq(axβ) ≤ Freq(xβ) < Freq(x).

In both cases we have Freq(ax) < Freq(x), and hence x = ←→x from Lemma 5. ��

Lemma 7. For any internal node x ∈ V of SLT (w) and for any a ∈ Σ with
ax ∈ V , x = ←→x if and only if Freq(ax) 	= Freq(x).

Proof. (⇒) Since x = ←→x , we have Freq(bx) 	= Freq(x) for any b ∈ Σ. (⇐)
Since Freq(x) ≥

∑
b∈Σ Freq(bx) and Freq(x) > Freq(ax) > 0, we have Freq(x) >

Freq(bx) for any b ∈ Σ. ��

We have the following lemma concerning the minimal members of the non-
degenerate equivalence classes.

Lemma 8. For any nodes x, ax ∈ V of ST (w) with a ∈ Σ, and let yb be
the shortest member in Paths(ax) where y ∈ Σ∗ and b ∈ Σ. Then, yb ∈
Minimal([ax]≡) if and only if (1) |Paths(ax)| > |Paths(x)| or (2) Freq(ax) <
Freq(x).

Proof. It is clear when y = ε. We consider the case where y 	= ε. Let y = ay′ for
y ∈ Σ∗.

(⇒) Assume ay′b ∈ Minimal([ax]≡), which implies ay′ /∈ [ax]≡ and y′b /∈
[ax]≡. First, consider the case where x 	∈ [ax]≡. Then clearly (2) holds. For the
case where x ∈ [ax]≡,

−→
y′b 	= x since y′b /∈ [ax]≡ = [x]≡, and there exists a node

corresponding to
−→
y′b on the path from y′ to x. Therefore (1) holds.

(⇐) Since ay′b is the shortest member in Paths(ax), ay′ 	∈ [ax]≡. It remains
to show y′b 	∈ [ax]≡. If we assume (2), Freq(ax) < Freq(x) ≤ Freq(y ′b) since y′b

346 K. Narisawa et al.

Algorithm 1. Algorithm for computing a succinct representation, the size
and frequency of each non-degenerate equivalence class using suffix trees

Input: ST(w),SLT(w) : suffix tree and suffix link tree of w
Output: a succinct representation, the size and frequency of each

non-degenerate equivalence class
foreach node v ∈ V in post-order of ST(w) do1

calculate and store the values Freq(v) and |Paths(v)|;2

size := 0; freq := 0;3

foreach node v ∈ V in post-order of SLT(w) do4

if v is a leaf of SLT(w) or freq �= Freq(v) then5

if size �= 0 then6

report size as the size of [rep v]≡;7

minimal := minimal ∪ {〈i, j〉} s.t. w[i : j] is the shortest string in8

Paths(old v);
report (〈i, j〉, minimal) as a succinct representation of [rep v]≡,9

where w[i : j] = rep v;
minimal := ∅;10

freq := Freq(v); report freq as the frequency of [rep v]≡;11

size := |Paths(v)|; len := |Paths(v)|; old v := v; rep v := v;12

else13

if len > |Paths(v)| then14

minimal := minimal ∪ {〈i, j〉} s.t. w[i : j] is the shortest string in15

Paths(old v);
size := size + |Paths(v)|; len := |Paths(v)|; old v := v;16

end17

end18

is a prefix of x. Therefore, we have y′b 	∈ [ax]≡ because Freq(y ′b) 	= Freq(ax).
Next, assume (1) when (2) does not hold, that is, Freq(y ′b) = Freq(ax). Then,
−→
y′b 	= x or else, |Paths(ax)| = |Paths(x)|. Therefore, y′b 	∈ [x]≡ = [ax]≡. ��

A pseudo-code of the algorithm to compute a succinct representation of each
non-degenerate equivalence class together with its size and frequency is shown
as Algorithm 1. The above arguments lead to the following theorem.

Theorem 1. Given ST (w) and SLT (w), Algorithm 1 computes succinct repre-
sentations of all non-degenerate equivalence classes under ≡, together with their
sizes and frequencies in linear time.

4 Computing Equivalence Classes Under ≡ Using Suffix
Array

In this section, we develop an algorithm that simulates Algorithm 1 using suf-
fix arrays. Our algorithm is based on the algorithm by Kasai et al. [8] which
simulates a post-order traversal on suffix trees with SA, rank and lcp arrays. A

Efficient Computation of Substring Equivalence Classes with Suffix Arrays 347

key feature of our algorithm is that it does not require any extra data structure
other than the suffix, rank and lcp arrays, making it quite space economical.

For any string x ∈ Substr(w), let

Lbeg(x) = SA[min{rank [i] | i ∈ BegPos(x)}] and
Rbeg(x) = SA[max{rank [i] | i ∈ BegPos(x)}].

Recall that Algorithm 1 traverses SLT (w). Our suffix array based algorithm
simulates traversal on ST (w), and when reaching any node x such that x = ←→x ,
it simulates suffix link tree traversal until reaching node y ∈ Suffix(x) such that
y 	≡ x.

The next lemma states that for any node x of ST (w), Freq(x) is constant
time computable using rank array.

Lemma 9. For any node x ∈ V of ST (w),

Freq(x) = rank [Rbeg(x)] − rank [Lbeg(x)] + 1.

When reaching any node x such that x = ←→x in the post-order traversal on
ST (w), we compute a succinct representation of [x]≡ due to Lemma 3. Exami-
nation of whether x = ←→x can be done in constant time according to the following
lemma.

Lemma 10. For any node x ∈ V of ST (w), let l = Lbeg(x) and r = Rbeg(x).
We have x = ←→x if and only if at least one of the following holds: (1) l−1 = 0 or
r−1 = 0, (2) w[l−1] 	= w[r−1], or (3) rank [r]−rank [l] 	= rank [r−1]−rank [l−1].

Proof. (⇒) First, let us assume x = ←→x . If (1) and (2) do not hold, that is,
l− 1 	= 0, r− 1 	= 0 and w[l− 1] = w[r − 1] = a, then Freq(x) > Freq(ax) due to
Lemma 3. This implies rank [r] − rank [l] > rank [Rbeg(ax)] − rank [Lbeg(ax)] ≥
rank [r − 1]− rank [l − 1] from Lemma 9, showing (3).

(⇐) To show the reverse, we have only to show ←−x since x is a node of
ST (w), and therefore x = −→x . First, we show (1) ⇒ x = ←→x . If l = 1, then
|x| ∈ EndPos(x) while |x| 	∈ EndPos(ax) for any a ∈ Σ, implying x = ←−x . The
same applies for r = 1.

Next, we show (2) ⇒ x = ←→x when (1) does not hold, that is, l − 1 	= 0 and
r − 1 	= 0. Since w[l − 1] 	= w[r − 1], we have that l− 1 + |x| ∈ EndPos(x) while
l− 1 + |x| 	∈ EndPos(w[r− 1]x) and r− 1 + |x| ∈ EndPos(w[r− 1]x). Therefore,
Freq(x) > Freq(w [r − 1]x) > 0, and since Freq(x) ≥

∑
a∈Σ Freq(ax), we have

Freq(ax) < Freq(x) for all a ∈ Σ, thus implying x = ←−x .
Finally, we show (3) ⇒ x = ←→x when (1) and (2) do not hold, that is, l−1 	= 0,

r − 1 	= 0 and w[l − 1] = w[r − 1] = a. (3) implies that rank [r] − rank [l] >
rank [Rbeg(ax)]− rank [Lbeg(ax)] ≥ rank [r − 1]− rank [l − 1], and from Lemma 9
we have that Freq(x) > Freq(ax) > 0. Therefore x 	≡ ax from Lemma 3, implying
x = ←−x .

Therefore, we have x = ←→x if we assume at least one of (1)–(3). ��

Now we consider to check whether or not ax ≡ x for any nodes ax, x of ST (w),
where a ∈ Σ and x ∈ Σ∗. By definition, it is clear that Lbeg(ax)+1 ∈ BegPos(x)

348 K. Narisawa et al.

and Rbeg(ax)+1 ∈ BegPos(x). However, note that Lbeg(ax)+1 = Lbeg(x) does
not always hold (same for Rbeg).

To check if ax ≡ x, we need to know whether or not Lbeg(ax) + 1 = Lbeg(x),
and it can be done by the following lemma:

Lemma 11. For any nodes ax, x ∈ V of ST (w) such that a ∈ Σ and x ∈ Σ∗,
let l = Lbeg(ax). Then, lcp[rank [l + 1]] < |ax| − 1 if and only if Lbeg(x) = l + 1.

Proof. If Lbeg(x) = l + 1, then clearly lcp[rank [l + 1]] < |x| = |ax| − 1.
Now, assume on the contrary that Lbeg(x) 	= l + 1. Then, rank [Lbeg(x)] <

rank [l + 1], and since w[Lbeg(x) :] and w[l + 1 :] share x as a prefix, we have
lcp[rank [l + 1]] ≥ |x| = |ax| − 1 which is a contradiction. ��

The following lemma can be shown in a similar way to the above lemma:

Lemma 12. For any nodes ax, x ∈ V of ST (w) such that a ∈ Σ and x ∈ Σ∗,
let r = Rbeg(ax). Then, lcp[rank [r + 1] + 1] < |ax| − 1, if and only if Rbeg(x) =
r + 1.

Now we have the following lemma on which our examination of equivalence
relation is based.

Lemma 13. For any nodes ax, x ∈ V of ST (w) such that a ∈ Σ and x ∈ Σ∗,
we have ax ≡ x if and only if

(1) |ax| − 1 > lcp[rank [l + 1]],
(2) |ax| − 1 > lcp[rank [r + 1] + 1], and
(3) rank [r] − rank [l] = rank [r + 1] − rank [l + 1],

where l = Lbeg(ax) and r = Rbeg(ax).

Proof. (⇒) Assume ax ≡ x. Then, Freq(ax) = Freq(x) and thus we have
rank [Rbeg(ax)]−rank [Lbeg(ax)] = rank [Rbeg(x)]−rank [Lbeg(x)] from Lemma 9.
From Freq(ax) = Freq(x), we have Rbeg(x) = Rbeg(ax) + 1 = r + 1 and
Lbeg(x) = Lbeg(ax) + 1 = l + 1. By Lemma 11 and Lemma 12 we get |ax| − 1 >
lcp[rank [l + 1]] and |ax| − 1 > lcp[rank [r + 1] + 1].

(⇐) From Lemma 11, if |ax|−1 > lcp[rank [l + 1]], then Lbeg(x) = l+1. From
Lemma 12, if |ax| − 1 > lcp[rank [r + 1] + 1], then Rbeg(x) = r + 1. Therefore,
if rank [r] − rank [l] = rank [r + 1] − rank [l + 1], then Freq(ax) = Freq(x) by
Lemma 9. Consequently, we get ax ≡ x from Lemma 3. ��

Next, we consider how to compute |Paths(x)| = |x|−|Parent(x)|. When x = ←→x ,
we know |x| and |Parent(x)| which are computed in post-order traversal on
ST (w) simulated by the algorithm of [8]. When x 	= ←→x , namely, when x has
been reached in suffix link traversal simulation, we have that |x| = |ax|−1 where
ax is the node reached immediately before x in the suffix link tree traversal
simulation. We have the following lemma for computation of |Parent(x)|.

Lemma 14. For any node x ∈ V of ST (w), let l = Lbeg(x) and r = Rbeg(x).
Then, |Parent(x)| = max{lcp[rank [l]], lcp[rank [r] + 1]}.

Efficient Computation of Substring Equivalence Classes with Suffix Arrays 349

Algorithm 2. Algorithm for computing a succinct representation, the size
and frequency of each non-degenerate equivalence class using suffix, lcp and
rank arrays

Input: SA[1 : |w|], lcp[1 : |w|], rank [1 : |w|] : suffix, lcp and rank arrays of stringw
Output: a succinct representation, the size and frequency of each

non-degenerate equivalence class
Stack initialization (Left, Height) := (−1, −1);1

for i = 1, . . . , n do2

Lnew := i − 1; Hnew := lcp[i]; Left := Stack.Left; Height := Stack.Height;3

while Height > Hnew do4

Pop Stack;5

if Stack.Height > Hnew then parent := Stack.Height;6

else parent = Hnew;7

L := Left; R := i − 1; freq := R − L + 1; rlen := Height;8

if (SA[L] �= 1)&(SA[R] �= 1) then9

BL := rank [SA[L] − 1]; BR := rank [SA[R] − 1];10

if (BR−BL+1 �= freq) or (w[BL] �=w[BR]) or (SA[L]=1) or (SA[R]=1) then11

Let x = w[SA[L] : SA[L] + rlen − 1];12

report freq as the frequency of [x]≡;13

size := rlen − parent; mlen := rlen − parent; len := rlen; minimal := ∅;14

FL := rank [SA[L] + 1]; FR := rank [SA[R] + 1]; BL := L; BR := R;15

while (len−1> lcp[FL])&(len−1> lcp[FR+1])&(FR−FL+1= freq) do16

if lcp[FL] ≥ lcp[FR + 1] then parent := lcp[FL];17

else parent := lcp[FR + 1];18

len := len − 1; size := size + len − parent;19

if mlen > len − parent then20

minimal := minimal ∪ {〈SA[BL], SA[BL] + parent〉};21

BL := FL; BR := FR;22

if (SA[FL] + 1 ≥ |w|) or (SA[FR] + 1 ≥ |w|) then break;23

FL :=rank [SA[FL]+1]; FR :=rank [SA[FR]+1]; mlen := len−parent;24

report size as the size of [x]≡;25

minimal := minimal ∪ {〈SA[BL], SA[BL] + parent〉};26

report(〈SA[L], SA[L] + rlen − 1〉, minimal) as a succinct27

representation of [x]≡;
Lnew := Left; Left := Stack.Left; Height := Stack.Height;28

if Height < Hnew then Push(Lnew, Hnew) to Stack;29

Push(i, |w| − SA[i]) to Stack;30

end31

Proof. For all 1 ≤ i < rank [l], the length of the longest common prefix of w[SA[i] :
] and x is at most lcp[rank [l]]. Similarly for rank [r] < j ≤ |w|, the length of the
longest common prefix of w[SA[j] :] and x is at most lcp[rank [r] + 1]. Also, for all
rank [l] ≤ k ≤ rank [r], the longest common prefix of w[SA[k] :] and x is |x|, and
therefore lcp[k] ≥ |x| for all rank [l] < k ≤ rank [r]. This implies that |Parent(x)|
is equal to either lcp[rank [l]] or lcp[rank [r] + 1] and hence the lemma follows. ��

350 K. Narisawa et al.

A pseudo-code of the algorithm is shown in Algorithm 2. The for and while
loops on line 2 and line 2 simulate a post-order traversal on ST (w) using SA,
rank and lcp arrays, and it takes linear time due to [8]. Checking whether or not
x = ←→x for any node x reached in the post-order traversal on ST (w), is done in
line 2 due to Lemma 10. Thus, we go into the while loop on line 2 only when
x = ←→x , and this while loop continues until reaching y ∈ Suffix(x) such that
y 	≡ x due to Lemma 13. It is clear that all calculations in the while loop can
be done in constant time.

Theorem 2. Given SA, rank and lcp arrays of string w, Algorithm 2 computes
succinct representations of all non-degenerate equivalence classes under ≡, to-
gether with their sizes and frequencies in linear time.

5 Experimental Results

We performed preliminary experiments on corpora [15,16], to compare practical
time and space requirements of suffix tree, CDAWG, and suffix array based ap-
proaches to compute a succinct representation of for each non-degenerate equiv-
alence class under ≡, together with its size and frequency.

We constructed suffix trees using Ukkonen’s algorithm [6], and ran Algo-
rithm 1. CDAWGs were constructed using the CDAWG construction algorithm
of [4]. We computed suffix arrays using the qsufsort program by [17]. All the
experiments were conducted on a RedHat Linux desktop computer with a 2.8
GHz Pentium 4 processor and 1 GB of memory.

Table 1 shows the running time and memory usage of the algorithms for
each data structure. The enumeration column shows the time efficiency of the
algorithms computing succinct representations of all equivalence classes together
with their sizes and frequencies. For all the corpora the suffix array approach

Table 1. The comparison of the computation time and memory space for suffix trees,
CDAWGs and suffix arrays

corpora data data size data Time (seconds) memory
name (Mbytes) structure construction enumeration total (Mbytes)

Suffix Tree 0.95 0.21 1.16 21.446
cantrby/plrabn12 0.47 CDAWG 0.97 0.18 1.15 9.278

Suffix Array 0.43 0.14 0.57 5.392

Suffix Tree 12.08 1.43 13.51 121.877
ProteinCorpus/sc 2.8 CDAWG 12.76 1.12 13.88 69.648

Suffix Array 3.08 0.63 3.71 33.192

Suffix Tree 7.33 2.23 9.56 191.869
large/bible.txt 3.9 CDAWG 6.68 1.62 8.30 56.255

Suffix Array 4.71 1.50 6.21 46.319

Suffix Tree 8.17 2.91 11.08 232.467
large/E.coli 4.5 CDAWG 8.58 2.31 10.89 139.802

Suffix Array 5.95 1.46 7.41 53.086

Efficient Computation of Substring Equivalence Classes with Suffix Arrays 351

was the fastest. In addition, the suffix array algorithm uses the least memory
space for all the corpora.

References

1. Blumer, A., Blumer, J., Haussler, D., Mcconnell, R., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)

2. Narisawa, K., Bannai, H., Hatano, K., Takeda, M.: Unsupervised spam detection
based on string alienness measures. Technical report, Department of Informatics,
Kyushu University (2007)

3. Takeda, M., Matsumoto, T., Fukuda, T., Nanri, I.: Discovering characteristic ex-
pressions in literary works. Theoretical Computer Science 292(2), 525–546 (2003)

4. Inenaga, S., Hoshinoa, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G.,
Pavesi, G.: On-line construction of compact directed acyclic word graphs. Discrete
Applied Mathematics 146(2), 156–179 (2005)

5. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th IEEE Annual Symp.
on Switching and Automata Theory, pp. 1–11 (1973)

6. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

7. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Computing 22(5), 935–948 (1993)

8. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidel-
berg (2001)

9. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2(1), 53–86 (2004)

10. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science 40, 31–55 (1985)

11. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

12. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

13. Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix ar-
rays. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 186–199. Springer, Heidelberg (2003)

14. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-
Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp.
200–210. Springer, Heidelberg (2003)

15. Arnold, R., Bell, T.: A corpus for the evaluation of lossless compression algorithms.
In: Proc. DCC ’97, pp. 201–210 (1997) http://corpus.canterbury.ac.nz/

16. Nevill-Manning, C., Witten, I.: Protein is incompressible. In: Proc. DCC ’99, pp.
257–266 (1999),
http://www.data-compression.info/Corpora/ProteinCorpus/index.htm

17. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Technical Report LU-CS-
TR:99-214, LUNDFD6/(NFCS-3140)/1–20/(1999) Department of Computer Sci-
ence, Lund University, Sweden (1999)
http://www.larsson.dogma.net/qsufsort.c

http://corpus.canterbury.ac.nz/
http://www.data-compression.info/Corpora/ProteinCorpus/index.htm
http://www.larsson.dogma.net/qsufsort.c

A Simple Construction of Two-Dimensional

Suffix Trees in Linear Time

(Extended Abstract)

Dong Kyue Kim1,�, Joong Chae Na2, Jeong Seop Sim3,��,
and Kunsoo Park4,� � �

1 Division of Electronics and Computer Engineering, Hanyang University, Korea
dqkim@hanyang.ac.kr

2 Department of Advanced Technology Fusion, Konkuk University, Korea
jcna@theory.snu.ac.kr

3 School of Computer Science and Engineering, Inha University, Korea
jssim@inha.ac.kr

4 School of Computer Science and Engineering, Seoul National University, Korea
kpark@theory.snu.ac.kr

Abstract. The two-dimensional suffix tree of a matrix A is a compacted
trie that represents all square submatrices of A. There exists a linear-time
construction of two-dimensional suffix trees using the odd-even scheme.
This algorithm has the drawback that the merging step is quite compli-
cated. In this paper, we propose a new and simple algorithm to construct
two-dimensional suffix trees in linear time by applying the skew scheme
to square matrices. To do this, we present a simple algorithm to merge
two Isuffix trees in linear time.

1 Introduction

The suffix tree TS of a string S is a compacted trie that represents all substrings
of S. It has been a fundamental data structure not only for Computer Science,
but also for Engineering and Bioinformatics applications [2,5,14]. The suffix tree
was designed as a space-efficient alternative [24] to Weiner’s position tree [29].
When the alphabet Σ of the given string S is of constant size, linear-time algo-
rithms for constructing the suffix tree have been known for quite a while [3,24,28].
For integer alphabets, Farach [6] gave the first linear-time construction algorithm
using a divide-and-conquer approach.

In two dimensions, Gonnet [13] first introduced a notion of suffix tree for a
matrix, called the PAT-tree. Giancarlo [9] proposed the Lsuffix tree, compactly

� Supported by the Korea Research Foundation Grant funded by the Korean Gov-
ernment(MOEHRD) (KRF-2006-311-D00762).

�� Supported by Inha Research Grant 2006.
� � � Corresponding author. Supported by FPR05A2-341 of 21C Frontier Functional

Proteomics Project from Korean Ministry of Science & Technology.

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 352–364, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Simple Construction of Two-Dimensional Suffix Trees in Linear Time 353

storing all square submatrices of an n×n matrix A, together with an O(n2 log n)-
time construction algorithm that uses O(n2) space. Giancarlo and Grossi [10,11]
also introduced the general framework of two-dimensional suffix tree families and
gave an expected linear-time construction algorithm. Kim and Park [20] proposed
the first linear-time construction algorithm of two-dimensional suffix trees, called
Isuffix trees, for polynomially bounded alphabet size using Farach’s paradigm [6].
Cole and Hariharan [4] gave a randomized linear-time construction algorithm.
Giancarlo and Guaiana [12] presented an O(n2 log2 n)-time algorithm for on-line
construction of the Lsuffix Tree. Na, Giancarlo and Park [25] improved their
algorithm and gave an O(n2 log n)-time on-line construction algorithm. Two-
dimensional suffix arrays (extension of Manber and Myers’s suffix arrays [23])
are also constructed in O(n2 log n) time [9,19].

A divide-and-conquer approach has been widely used to develop linear-time
algorithms for constructing full-text index structures, i.e., suffix trees or suffix
arrays. It consists of the following steps:

1. Partition the suffixes of S into two groups X and Y , and generate a string
S′ such that the suffixes in S′ correspond to the suffixes in X . This step
requires encoding several symbols in S into a new symbol in S′.

2. Construct the suffix tree of S′ recursively.
3. Construct the suffix tree for X from the suffix tree of S′ by decoding the

encoded symbols.
4. Construct the suffix tree for Y using the suffix tree for X .
5. Merge the two suffix trees for X and Y to get the suffix tree of S.

In constructing suffix trees, this approach was applied to many sequential
and parallel algorithms [6,8,16,26]. Farach [6] divided the suffixes of S into odd
suffixes (group X) and even suffixes (group Y), called the odd-even scheme, to
get the first linear-time algorithm for integer alphabets. Recently, almost at the
same time, several algorithms [21,22,18,17] have been independently developed
to directly construct suffix arrays in linear time. They are based on this divide-
and-conquer approach. Kim et al. [21] and Hon et al. [17] followed the odd-even
scheme. Kärkkäinen et al. [18] used the skew scheme, i.e., the suffixes of S are
divided into suffixes beginning at positions i mod 3 	= 0 (group X) and suffixes
beginning at positions i mod 3 = 0 (group Y). Most of steps in the odd-even
scheme are simple, but the merging step of this scheme is quite complicated. In
the skew scheme, however, the merging step is simple and elegant, which makes
the divide-and-conquer approach practical.

The linear-time algorithm for constructing two-dimensional suffix trees in [20]
extended the odd-even scheme to an n×n(= N) square matrix. It partitions the
Isuffixes of the matrix into four sets of size 1

4N each, and performs 3
4 -recursion,

i.e., three sets of Isuffixes are regarded as group X and the remaining set as
group Y . Since this construction used the odd-even scheme, the merging step
was performed three times for each recursion.

In this paper, we present a new and simple algorithm for constructing two-
dimensional suffix trees in linear time by applying the skew scheme to square
matrices. Our contribution is twofold.

354 D.K. Kim et al.

– We describe how to construct the Isuffix tree of group X instead of con-
structing three Isuffix trees of three sets of group X . Thus, the merging step
is performed only once for each recursion.

– We present a simple algorithm to merge two Isuffix trees of group X and
group Y in linear time. We also describe how to compare two Isuffixes from
different groups in constant time.

This paper is organized as follows. In Section 2, we give some definitions and
notations. We present outlines of recursive steps of the proposed algorithm in
Section 3. In Section 4, we give detailed description of merging steps. Addition-
ally we describe the decoding algorithm in the appendix, whose details were not
described in [20].

2 Preliminaries

In this section we give some preliminaries including a linearization method of
square matrices and the definition of two-dimensional suffix trees (Isuffix trees)
introduced in [20].

2.1 Linear Representation of Square Matrices

Given an n× m (n ≤ m) matrix A, we denote by A[i : k, j : l] the submatrix of
A with corners (i, j), (k, j), (i, l), and (k, l). When i = k or j = l, we omit one
of the repeated indices. An entry of matrix A is an integer in the range [0, mc]
for some constant c. The integers in A can be mapped into integers in the range
[1, nm] by linear-time sorting. Hence we assume that Σ = {1, 2, . . . , nm}.

Let IΣ =
⋃∞

i=1 Σi. We refer to the strings of IΣ as Icharacters and we
consider each of them as an atomic item. Two Icharacters are equal if and only
if they are equal as strings over Σ. Given two Icharacters Ia and Ib of equal
length, Ia ≺ Ib if and only if Ia as a string is lexicographically smaller than Ib
as a string.

We describe a linearization method for a square matrix C[1 : n, 1 : n] [1,9,19].
When we cut a matrix along the main diagonal, it is divided into an upper
right half and a lower left half. (See Fig. 1 (b).) Let a(i) = C[i + 1, 1 : i] and
b(i) = C[1 : i + 1, i + 1] for 1 ≤ i < n, i.e., a(i) is a row of the lower left half and
b(i) is a column of the upper right half. Then a(i)’s and b(i)’s can be regarded as
Icharacters. We call a(i) a row-type Icharacter and b(i) a column-type Icharacter.
We consider the initial Icharacter C[1, 1] as both row-type and column-type.

The linearized string IC of square matrix C[1 : n, 1 : n], called the Istring
of matrix C, is the concatenation of Icharacters IC[1], . . . , IC[2n − 1] that are
defined as follows: (i) IC[1] = C[1, 1]; (ii) IC[2i] = a(i), 1 ≤ i < n; (iii) IC[2i +
1] = b(i), 1 ≤ i < n. (See Fig. 1 (b).) The Ilength of IC is the number of
Icharacters in IC, denoted by |IC|. Note that |IC| = 2n−1. Let IC[j..k] denote
the Isubstring of IC that is the concatenation of Icharacters IC[j], . . . , IC[k].
The kth Iprefix of an Istring IC is the Isubstring IC[1..k].

A Simple Construction of Two-Dimensional Suffix Trees in Linear Time 355

Fig. 1. (a) A matrix A, (b) the suffix A21 and its Istring, and (c) the Isuffix tree of A

2.2 Isuffix Trees

For 1 ≤ i ≤ n and 1 ≤ j ≤ m, the suffix Aij of matrix A is the largest square
submatrix of A that starts at position (i, j) in A. That is, Aij = A[i : i + k, j :
j + k], where k = min(n− i, m− j). We assume that the entries of the last row
and the last column in A are special symbols #’s, which make all suffixes of A
distinct. The Isuffix IAij of A is the Istring of Aij . The position (i, j) is called
the index of Isuffix IAij .

The Isuffix tree IST (A) of matrix A is a compacted trie that represents all
Isuffixes of A. Each edge (u, v) is labeled with label(u, v) that is a nonempty
Isubstring label(u, v) = IAij [�1..�2] of an Isuffix of A. To maintain the Isuffix
tree in linear space, O(nm), we store a 4-tuple (i, j, �1, �2) for label(u, v). Each
internal node v has at least two children. No two sibling edges have the same
first Icharacters in their labels. For each node v, let L(v) denote the Istring
obtained by concatenating the labels on the path from the root to v. The leaf
corresponding to Isuffix IAij will be denoted by lij . The level of a node v in an
Isuffix tree is |L(v)|. See Fig. 1 for an example of an Isuffix tree.

The least common ancestor of two nodes v and w in a tree is denoted by
lca(v, w). By the results of [15,27] the computation of lca of two nodes can
be done in constant time after linear-time preprocessing on a tree. The length
of the longest common prefix of two strings α and β is denoted by lcp(α, β).
Similarly, the Ilength of the longest common Iprefix of two Istrings Iα and Iβ is
denoted by Ilcp(Iα, Iβ). For all nodes u, v in Isuffix tree IST (A), the following
property is satisfied between Ilcp and lca: Ilcp(L(u), L(v)) = |L(lca(u, v))|.

3 Construction of Two-Dimensional Suffix Trees

We first give some definitions related to partial Isuffix trees and encoded matri-
ces, which are used for recursion.

(b)

ba

(1,1) (2,1)

2# 3# 4#1#

a
b
b
b
b
bbb

b
b
b (3,4)

b 4#

1# 2# 3#

b
b

b
bb

b b

4#3#2#

5#
6#
7#
8#

b
b
b

(1,3)(1,2)

5#
6#
7#

(2,4)

6#
7#

b
b

3# 4#

(2,3)

7#
8#

6#
5#

4#

a
b
b
b
b
bbb

1 2# 3##

a b
b
b

(a)

Matrix A

a b b
bbb

1 2# 3##

a
b

1# 2# 3#

b
b

b
b

1# 2# 3#a b bb bb

(c)

356 D.K. Kim et al.

2 2

Fig. 2. A matrix A123 and its encoded matrix B123

Given an n × m matrix A, we divide all Isuffixes IAij of matrix A into four
types.

– IAij is a type-1 Isuffix if both of i and j are odd.
– IAij is a type-2 Isuffix if i is even and j is odd.
– IAij is a type-3 Isuffix if i is odd and j is even.
– IAij is a type-4 Isuffix if both of i and j are even.

The partial Isuffix tree pIST (A) of A is a compacted trie that represents all
type-1 Isuffixes of A.

We define the encoded matrix B of A. Without loss of generality, we assume
that n and m are even. For all start positions (2i − 1, 2j − 1), 1 ≤ i ≤ n/2
and 1 ≤ j ≤ m/2, of type-1 Isuffixes of A, we make 4-tuples 〈A[2i − 1, 2j −
1], A[2i, 2j − 1], A[2i − 1, 2j], A[2i, 2j]〉. Radix-sort all the tuples in linear time,
and map each tuple into an integer in the range [1, nm/4]. We assign the integer
of each tuple 〈A[2i − 1, 2j − 1], A[2i, 2j − 1], A[2i − 1, 2j], A[2i, 2j]〉 to B[i, j] in
the encoded matrix B. Note that Isuffixes of B correspond to type-1 Isuffixes of
A. We call an encoded Isuffix IBij the corresponding Isuffix of IA2i−1,2j−1.

Let A1 = A, A2 = A[2 : n, 1 : m], A3 = A[1 : n, 2 : m], and A4 = A[2 : n, 2 :
m]. We append a dummy row (resp. a dummy column) at the bottom of A2 and
A4 (resp. on the right of A3 and A4). Let A123 be the concatenation of A1, A2,
and A3, i.e., its size is n × 3m. We denote the encoded matrix of A123 by B123.
(See Fig. 2.) Type-1 Isuffixes of matrix A123 correspond to type-1, type-2, and
type-3 Isuffixes of A. Moreover, special characters in the rightmost column in A1

and A2 play a role of delimiters in A123. So all type-1 Isuffixes of matrix A123

are distinct. Thus, all Isuffixes of matrix B123 are also distinct because Isuffixes
of B123 correspond to type-1 Isuffixes of A123.

a33a32

a23

a31a22

a33a32

a12a13

a23 a22

a33a32

a12a13

a23

A123

n
2
1|

m
2
1| m m

2
3|

#

#
#
#
#

#
#
#

##
###

#
#
#
#

##

#

##

##n

3m2mm

Encoded matrix

##

#

#

#

#

#

#

#’ ’ ’

’

’

’ ’ ’

’

’

’ ’ ’

’

A

’

3A2A1

B 123

a21

a11

a31

a22a21

A Simple Construction of Two-Dimensional Suffix Trees in Linear Time 357

In order to compare two Icharacters in constant time, we define one-dimensional
suffix trees [9]. Let rows (resp. cols) be the string obtained by concatenating the
rows (resp. columns) of A in row (resp. column) major order. We construct one-
dimensional suffix trees Trows and Tcols for strings rows and cols, respectively,
such that all leaves in Trows and Tcols are in lexicographic order of corresponding
suffixes. This construction can be done in O(nm) time for integer alphabets by
Farach’s algorithm [6].

The construction algorithm for the Isuffix tree IST (A) consists of the follow-
ing five steps.

1. Construct Trows and Tcols of matrix A.
After construction of Trows and Tcols using Farach’s algorithm, we perform
the preprocessing for constant-time lca operations on Trows and Tcols.

2. Recursively compute IST (B123).
3. Construct pIST (A123) from IST (B123).

We construct pIST (A123) by decoding the encoded Isuffix tree IST (B123).
This decoding procedure can be done in linear time by bucket partitioning
using Trows and Tcols as in [20]. The details are described in Appendix.

4. Construct pIST (A4) using pIST (A123).
We use the result in [20], which constructs pIST (A4) using pIST (Ar), 1 ≤
r ≤ 3. We can extract pIST (Ar), 1 ≤ r ≤ 3, from pIST (A123) in linear time
by a tree traversal.

5. Merge pIST (A123) and pIST (A4) into IST (A).
This merging procedure is described in the next section.

Our algorithm uses 3
4 -recursion and all steps except the recursion take linear

time. If n = 1, matrix A is a string and so we can construct the Isuffix tree
in O(m) time using Farach’s algorithm [6]. Hence, the worst-case running time
T (n, m) of our algorithm can be described by the recurrence

T (n, m) =
{

O(m) if n = 1,
T (1

2n, 3
2m) + O(nm) otherwise,

whose solution is T (n, m) = O(nm).

Theorem 1. Given an n × m matrix A over integer alphabets, the Isuffix tree
of A can be constructed in O(nm) time.

4 Merging Procedure

Now we describe and analyze our merging procedure that merges two partial
Isuffix trees pIST (A123) and pIST (A4) into the final Isuffix tree IST (A) in
linear-time.

Our merging procedure is performed by a way similar to generic merge sorting.
Since we have pIST (A123), we can find out the lexicographical order of all type-
1, type-2, and type-3 Isuffixes of A in O(nm) time. Also, we can find out the

358 D.K. Kim et al.

lexicographical order of all type-4 Isuffixes of A in O(nm) time using pIST (A4).
Let Lst123 (resp. Lst4) be the list of Isuffixes from pIST (A123) (resp. pIST (A4))
in lexicographically sorted order. Firstly, we preprocess pIST (A123) for constant
time lca operation. Secondly, we choose the first Isuffixes (elements) IAij and
IAkl from Lst123 and Lst4, respectively. Then we determine the lexicographical
order of IAij and IAkl and compute Ilcp between them. After this, we remove
the smaller one from its list and add it into a new list. We do this step until one
of the two lists is exhausted. Finally, we make IST (A) using the merged list of
all Isuffixes of A and computed Ilcp’s.

Consider the time complexity of our merging procedure. The first step of
our merging procedure can be performed in linear time. The final step can be
performed in linear time by [7]. The remaining parts are how to determine the
order of IAij and IAkl, and how to compute their Ilcp. If we can do these in
constant time, we can perform all steps in O(nm) time.

Consider the first different characters from IAij and IAkl. The order between
IAij and IAkl is determined by the order of these two characters. We call these
two characters the d-characters of IAij and IAkl. (d stands for distinguishing.)
Thus, if we find the d-characters, we can determine the order of IAij and IAkl

in constant time by a single character comparison, and also we can compute
Ilcp(IAij, IAkl) in constant time by a simple computation.

Now we explain how to find the d-characters. There are three cases according
to the type of IAij . The first case is when IAij is a type-1 Isuffix of A, the
second case is when IAij is a type-2 Isuffix of A, and the third case is when
IAij is a type-3 Isuffix of A. Since IAij and IAkl are in different partial Isuffix
trees, it is not easy to compare them directly. Thus, instead, we compare either
IAi+1,j and IAk+1,l or IAi,j+1 and IAk,l+1, which are in the same tree. In the
second case, we compare type-1 Isuffix IAi+1,j and type-3 Isuffix IAk+1,l. In the
third case, we compare type-1 Isuffix IAi,j+1 and type-2 Isuffix IAk,l+1. In the
first case, we can compare either IAi+1,j and IAk+1,l or IAi,j+1 and IAk,l+1.
Then, since all the Isuffixes are in the same partial Isuffix tree pIST (A123), we
can compute their Ilcp in constant time.

1. IAij is a type-1 Isuffix of A
Assume we compare IAi+1,j and IAk+1,l. Consider two suffixes α and β of rows
of A such that α starts at (i, j) and β starts at (k, l). Assume Ilcp(IAi+1,j,
IAk+1,l) = p and lcp(α, β) = r. Set q = �p/2�. (Note that q is the number
of column-type Icharacters of the longest common Iprefix between IAi+1,j and
IAk+1,l. See Figure 3.) Let γ and δ be suffixes of cols of A such that γ starts at
(i+1, j + q) and δ starts at (k +1, l+ q), respectively. Assume lcp(γ, δ) = s. We
can compute p, r, and s in constant time using lca operations on pIST (A123),
Trows, and Tcols, respectively. There are five cases when IAij is a type-1 Isuffix
of A.

(a) When r ≤ q (Figure 3-(a)): In this case, the d-characters are simply A[i, j+r]
and A[k, l + r]. It is easy to see that Ilcp(IAij, IAkl) = 2r.

A Simple Construction of Two-Dimensional Suffix Trees in Linear Time 359

Fig. 3. Five cases when IAij is a type-1 Isuffix of A

(b) When r > q, p is even, and s < q (Figure 3-(b)): In this case, the d-characters
are A[i + s + 1, j + q] and A[k + s + 1, l + q]. Since IAij [p + 1] 	= IAkl[p + 1]
due to the d-characters, Ilcp(IAij, IAkl) = p.

(c) When r > q, p is even, and s = q (Figure 3-(c)): Note that s cannot exceed q
because Ilcp(IAi+1,j, IAk+1,l) = p. In this case, the d-characters are A[i +
q + 1, j + q] and A[k + q + 1, l + q] and Ilcp(IAij , IAkl) = p + 1.

(d) When r > q, p is odd, and s < q (Figure 3-(d)): In this case, the d-characters
are A[i + s + 1, j + q] and A[k + s + 1, l + q]. Also, Ilcp(IAij, IAkl) = p + 1,
because IAij [p + 2] 	= IAkl[p + 2] due to the d-characters.

(e) When r > q, p is odd, and s ≥ q (Figure 3-(e)): Let γ′ and δ′ be suffixes
of rows such that γ′ starts at (i + q + 1, j) and δ′ starts at (k + q + 1, l),
respectively. Assume lcp(γ′, δ′) = s′. Then, the d-characters are A[i + q +
1, j + s′] and A[k + q + 1, l + s′]. Also, Ilcp(IAij, IAkl) = p + 2.

2. IAij is a type-2 Isuffix of A
We compare type-1 Isuffix IAi+1,j and type-3 Isuffix IAk+1,l instead of compar-
ing IAij and IAkl. There are also five cases when IAij is a type-2 Isuffix of A.
Details are omitted since all the cases are the same as Case 1.

3. IAij is a type-3 Isuffix of A
As mentioned above, we compare type-1 Isuffix IAi,j+1 and type-2 Isuffix IAk,l+1

instead of comparing IAij and IAkl. Let α and β be suffixes of cols such that
α starts at (i, j) and β starts at (k, l), respectively. Assume that Ilcp(IAi,j+1,

j l

k+1
k

i+1
i

q

q

r

d−characters
r

s

d−characters

s

lj

i+1
i

k
k+1

r

r
q

q

s

q

q
d−characters

s

lj

i+1

k+1
k

i
r

r

(a) (b) (c)
j l

i+1

k+1
k

i
r

r

q

q

d−characters

s

s

s’

s

’

s

s

lj

k+1
k

i+1
i

r

r

q

q

d−characters

(d) (e)

360 D.K. Kim et al.

s’

Fig. 4. Five cases when IAij is a type-3 Isuffix of A

IAk,l+1) = p and lcp(α, β) = r. Set q = �(p + 1)/2�. (Note that q is the
number of row-type Icharacters of the longest common Iprefix between IAi,j+1

and IAk,l+1. See Figure 4.) Let γ and δ be suffixes of rows such that γ starts at
(i+ q, j +1) and δ starts at (k + q, l+1), respectively. Assume lcp(γ, δ) = s. We
can compute p, r, and s in constant time using lca operations on pIST (A123),
Tcols, and Trows, respectively. There are also five cases when IAij is a type-3
Isuffix of A.

(a) When r ≤ q (Figure 4-(a)): In this case, the d-characters are simply A[i+r, j]
and A[k + r, l]. Also, it is easy to see that Ilcp(IAij , IAkl) = 2r − 1.

(b) When r > q, p is even, and s < q − 1 (Figure 4-(b)): In this case, the d-
characters are A[i + q, j + s + 1] and A[k + q, l + s + 1]. Also, due to the
d-characters, IAij [p + 2] 	= IAkl[p + 2], and thus Ilcp(IAij, IAkl) = p + 1.

(c) When r > q, p is even, and s ≥ q− 1 (Figure 4-(c)): Let γ′ and δ′ be suffixes
of cols such that γ′ starts at (i, j + q) and δ′ starts at (k, l + q), respectively.
Assume lcp(γ′, δ′) = s′. Then, the d-characters are A[i + s′, j + q] and
A[k+s′, l+q]. Also, Ilcp(IAij, IAkl) = p+2, because IAij [p+3] 	= IAkl[p+3]
due to the d-characters.

(d) When r > q, p is odd, and s < q − 1 (Figure 4-(d)): In this case, the d-
characters are A[i+q, j+s+1] and A[k+q, l+s+1]. Also, Ilcp(IAij, IAkl) =
p, because IAij [p + 1] 	= IAkl[p + 1] due to the d-characters.

(e) When r > q, p is odd, and s = q−1 (Figure 4-(e)): In this case, the d-characters
ar A[i + q, j + q] and A[k + q, l + q]. Also, Ilcp(IAij, IAkl) = p + 1, because

i
j j+1

r
q

l+1l

k

d−characters

r
q

s

s
k

i
j j+1

q

l+1l

q

r

r

d−characters

s

’

s’

d−characters

s

s

k

i
j j+1 l+1l

r

r

q

q

(a) (b) (c)

s

d−characters

s

k

i
j j+1 l+1l

r

r

q

q

s

d−characters

s

k

i
j j+1 l+1l

r

r
q

q

(d) (e)

A Simple Construction of Two-Dimensional Suffix Trees in Linear Time 361

IAij [p+1] = IAkl[p+1] and IAij [p+2] 	= IAkl[p+2] due to the d-characters.
Note that s cannot exceed q − 1 because Ilcp(IAi,j+1, IAk,l+1) = p.

Lemma 1. Given Trows, Tcols, and pIST (A123) with constant time lca opera-
tion, we can decide the order of a type-123 Isuffix and a type-4 Isuffix, and can
compute their Ilcp in constant time.

Theorem 2. Two partial Isuffix trees pIST (A123) and pIST (A4) can be merged
into the Isuffix tree IST (A) in O(nm) time.

References

1. Amir, A., Farach, M.: Two-dimensional dictionary matching. IPL 21, 233–239
(1992)

2. Apostolico, A.: The myriad virtues of subword trees. In: Apostolico, A., Galil, Z.
(eds.) Combinatorial Algorithms on Words, pp. 85–95. Springer, Heidelberg (1985)

3. Chen, M.T., Seiferas, J.: Efficient and elegant subword tree construction. In: Apos-
tolico, A., Galil, Z. (eds.) Combinatorial Algorithms on Words. NATO Advanced
Science Institutes. F, vol. 12, pp. 97–107. Springer, Heidelberg (1985)

4. Cole, R., Hariharan, R.: Faster suffix tree construction with missing suffix links.
In: Proc. of the 30th STOC, pp. 407–415 (2000)

5. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing,
Singapore (2002)

6. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. of the
38th FOCS, pp. 137–143 (1997)

7. Farach, M., Muthukrishnan, S.: Optimal logarithmic time randomized suffix tree
construction. In: Proc. of the 23rd ICALP, pp. 550–561 (1996)

8. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity of
suffix tree construction. J. ACM 47(6), 987–1011 (2000)

9. Giancarlo, R.: A generalization of the suffix tree to square matrices, with applica-
tion. SIAM J. on Comp. 24(3), 520–562 (1995)

10. Giancarlo, R., Grossi, R.: On the construction of classes of suffix trees for square
matrices: Algorithms and applications. Information and Computation 130(2), 151–
182 (1996)

11. Giancarlo, R., Grossi, R.: Suffix tree data structures for matrices. In: Apostolico,
A., Galil, Z. (eds.) Pattern Matching Algorithms, chapter 11, pp. 293–340. Oxford
University Press, Oxford (1997)

12. Giancarlo, R., Guaiana, D.: On-line construction of two-dimensional suffix trees.
Journal of Complexity 15(1), 72–127 (1999)

13. Gonnet, G.H.: Efficient searching of text and pictures. Technical Report OED-88-
02, University of Waterloo (1988)

14. Gusfield, D.: Algorithms on Strings, Tree, and Sequences. Cambridge University
Press, Cambridge (1997)

15. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM
J. on Comp. 13(2), 338–355 (1984)

16. Hariharan, R.: Optimal parallel suffix tree construction. In: Proc. of the 26th
FOCS, pp. 290–299 (1994)

17. Hon, W.K., Sadakane, K., Sung, W.K.: Breaking a time-and-space barrier in con-
structing full-text indices. In: Proc. of the 44th FOCS, pp. 251–260 (2003)

362 D.K. Kim et al.

18. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM (in press)

19. Kim, D.K., Kim, Y.A., Park, K.: Generalizations of suffix arrays to multi-
dimensional matrices. TCS 302(1-3), 401–416 (2003)

20. Kim, D.K., Park, K.: Linear-time construction of two-dimensional suffix trees. In:
Proc. of the 26th ICALP, pp. 463–372 (1999)

21. Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix arrays in linear time.
J. Disc. Alg. 3(2-4), 126–142 (2005)

22. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. J. Disc.
Alg. 3(2-4), 143–156 (2005)

23. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches.
SIAM J. on Comp. 22(5), 935–948 (1993)

24. McCreight, E.M.: A space-economical suffix tree construction algorithms. J.
ACM 23(2), 262–272 (1976)

25. Na, J.C., Giancarlo, R., Park, K.: O(n2logn) time on-line construction of two-
dimensional suffix trees. In: Proc. of the 11th COCOON, pp. 273–282 (2005)

26. Sahinalp, S.C., Vishkin, U.: Symmetry breaking for suffix tree construction. In:
Proc. of the 26th FOCS, pp. 300–309 (1994)

27. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. SIAM J. on Comp. 17(6), 1253–1262 (1988)

28. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

29. Weiner, P.: Linear pattern matching algorithms. In: Proc. of the 14th IEEE Symp.
on Switching and Automata Theory, pp. 1–11 (1973)

Appendix: Decoding the Encoded Isuffix Trees

Given an n×m matrix V and its encoded matrix W , we describe how to construct
pIST (V) from the encoded Isuffix tree IST (W).

First, let us consider some relations between a (type-1) Isuffix IV2i−1,2j−1 and
its corresponding Isuffix IWij . For simplicity, we denote IV2i−1,2j−1 and IWij

by IC and ID, respectively. As shown in Figure 5, two Icharacters ID[2k..2k+1]
correspond to four Icharacters IC[4k..4k + 3] For example, ID[2..3] correspond
to IC[4..7] (when k = 1). We call IC[4k], IC[4k +1], IC[4k +2], and IC[4k +3]
type-I, type-II, type-III, and type-IV Icharacters, respectively.

A difficulty that arises in decoding IST (W) is that the lexicographic order
of Isuffixes of V may not be that of corresponding Isuffixes of W . As shown in
Figure 5, IC[4..7] represents different linearized string from which ID[2..3] does.
We solve this difficulty by combining two levels in IST (W) and then splitting
into four levels in pIST (V) using Trows and Tcols of V . (Intuitively, this means
that we combine two Icharacters of W and split it to four Icharacters of V .)

Our decoding procedure consists of four stages.

1. Construct the Lsuffix tree LST (W) by combining two levels of IST (W).
2. Construct the decoded Lsuffix tree DLST (V) from LST (W) by modifying

the labels of LST (W) to those of V .
3. Obtain some information on orders of Icharacters at nodes of DLST (V).
4. ConstructpIST (V)by sorting andpartitioning childrenatnodes inDLST (V).

A Simple Construction of Two-Dimensional Suffix Trees in Linear Time 363

Fig. 5. IC and its corresponding Isuffix ID

Stage 1. Construct LST (W) by combining two levels (2k, 2k + 1) of IST (W).
While traversing IST (W), we do the following for an internal node u except

the root such that L(u) is even (say 2k). Let w be the parent of u. We have two
cases.

– If L(w) is 2k−1: Let Ib be an encoded Icharacter label(w, u). For every edge
e of u, we add Ib in front of the label of e and add e to the edge list of w
(we do not care the rank of e in w). Then, we remove u from the tree.

– If L(w) is less than 2k−1: Let Ib be the last encoded Icharacter of label(w, u).
We raise the level of u to 2k− 1 by relabeling edge (w, u) to label(w, u)− Ib
and adding Ib in front of the labels of all edges of u.

Stage 2. Construct DLST (V) by modifying labels in LST (W) into those of V .
For each edge (u, v) in LST (W), let label(u, v) be (i, j, 2�1, 2�2 + 1), i.e.,

IWij [2�1..2�2 + 1]. Because an encoded Lcharacter IWij [2k..2k + 1] corresponds
to an Lcharacter IV2i−1,2j−1 [4k..4k + 3], we change (i, j, 2�1, 2�2 + 1) into (2i−
1, 2j − 1, 4�1, 4�2 + 3).

Stage 3. Compute the orders of Icharacters needed for splitting levels of
DLST (V).

For an internal node u of DLST (V), let v1, . . . , vr be the children of u. Let
EI(u) (resp. EII(u), EIII(u), and EIV(u)) denote the edge list of u sorted by the
first (resp. second, third, and fourth) Icharacters of labels of edges (u, v1), . . . ,
(u, vr).

We explain how to make sorted lists EI’s of all nodes in linear time after
constructing Trows of V . We will use the leaves of Trows as buckets. Recall
that all leaves in Trows are in lexicographic order. For 1 ≤ k ≤ r, let Iak be
the first Icharacter of label(u, vk) and (ik, jk) be a position in V where Iak

starts. Note that Iak is a type-I Icharacter. We call the index (ik, jk) the type-I
position of edge (u, vk). Notice that positions (i1, j1), . . . , (ir, jr) must be distinct.
The lexicographic order of Ia1, . . . , Iar is the lexicographic order of the leaves
li1j1 , . . . , lirjr in Trows. Initially, EI’s are empty.

1. Insert every edge (u, vk) into bucket likjk
in Trows for all internal nodes u.

matrix C 1

3

4

2

1 2 3 4 2k+1 2k+2

2k+1

2k+2
k+1

1 2 k+1

2

1

indices of

[2..3] =ID

[4..7] = IC

encoded matrix D
indices of

encoded Icharacters of D

decoded Icharacters of C

4

5

11
10 122

8
7

6
9

1 3 5 6 9 2 4 10 7 8 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 3

364 D.K. Kim et al.

2. Scan all leaves in Trows in lexicographic order. For each leaf l in Trows, we
extract every edge (u, v) from bucket l and determine the rank of v among
the children of u by adding (u, v) to the end of EI(u).

Similarly, we can construct EIII (resp. EII and EIV) using Trows (resp. Tcols).

Stage 4. Construct pIST (V) by refining edges in DLST (V).
We describe how to partition edges of an internal node u of DLST (V) in O(r)

time, where r is the number of edges of u. Let |L(u)| = 4k − 1.

1. Reorder and partition by the first Icharacters.
(a) Sort the children of u in lexicographical order of their first Icharacters

using EI. Let e1, . . . , er be the edges of u in the order of their first
Icharacters.

(b) Partition the children of u. Let (i1, j1), . . . , (ir, jr) be the type-I positions
of edges e1, . . . , er, respectively. Initially, we create a new node v1 as
a child of u and insert e1 into bucket v1. For every adjacent indices
(ic, jc) and (id, jd) (i.e., d = c + 1), do the following. Find the node
w = lca(licjc , lidjd

) in Trow. Then, |L(w)| is the lcp between V [ic, jc : m]
and V [id, jd : m]. Let vx be the node (bucket) where ec is stored. If
|L(w)| ≥ 2k (i.e., two type-I Icharacter is the same), then ed is inserted
into vx. Otherwise, we create a new node vy as a child of u and insert ed

into bucket vy.
2. Reorder and partition by the second Icharacters. Let v1, . . . , vq be the chil-

dren of u created in Step 1.
(a) Sort edges in each node vi in lexicographical order of type-II Icharacters

simultaneously. It can be done in O(r) time by scanning EII(u).
(b) Partition the edges in each node vi by type-II Icharacter using the same

method as partitioning the edges of u in Step 1 except that we use Tcols

at this time.
3. 4. Similarly, reorder and partition by the third and the fourth Icharacters.
5. Eliminate nodes with only one child. Some nodes (including u) can have only

one child if edges are partitioned into one bucket.
* In special case, the partitioning at the root is started by type-II Icharacters.

Author Index

Amir, Amihood 183, 286
Arroyuelo, Diego 83
Aumann, Yonatan 28

Bannai, Hideo 340
Benôıt-Gagné, Maxime 131
Berry, Vincent 274
Bille, Philip 52
Bouvel, Mathilde 316
Bu, Dongbo 142

Chen, Gang 307
Chen, Xi 162
Chen, Zhixiang 119
Clifford, Peter 63
Clifford, Raphaël 63

Fagerberg, Rolf 52
Feng, WangSen 253
Ferragina, Paolo 328
Fertin, Guillaume 241
Fischer, Johannes 286, 328
Fu, Bin 119

Gagie, Travis 71
González, Rodrigo 216
Gørtz, Inge Li 52
Guillemot, Sylvain 274
Gusfield, Dan 150

Hamel, Sylvie 131
Hermelin, Danny 241
Hon, Wing-Kai 40

Iliopoulos, Costas S. 265
Inenaga, Shunsuke 340

Jiang, Tao 1

Kapah, Oren 183
Kaplan, Haim 107
Karhumäki, Juhani 295
Kent, Carmel 16
Kim, Dong Kyue 352
Kubica, Marcin 265

Lam, Tak-Wah 40
Lee, Sunho 95
Lewenstein, Moshe 16, 28, 286
Lewenstein, Noa 28
Li, Ming 142, 162
Li, Shuai Cheng 142
Lifshits, Yury 228, 295
Lipsky, Ohad 173

Mäkinen, Veli 205
Manzini, Giovanni 71
Mozes, Shay 4
Muthukrishnan, S. 2

Na, Joong Chae 352
Narisawa, Kazuyuki 340
Navarro, Gonzalo 83, 216

Park, Kunsoo 95, 352
Peng, Zeshan 195
Porat, Ely 173, 183
Puglisi, Simon J. 307

Qian, Jianbo 142

Rahman, M. Sohel 265
Rizzi, Romeo 241
Rossin, Dominique 316
Rytter, Wojciech 295

Shah, Rahul 40
Sheinwald, Dafna 16
Sim, Jeong Seop 352
Smyth, W.F. 307

Takeda, Masayuki 340
Tam, Siu-Lung 40
Ting, Hing-fung 195
Tsur, Dekel 28

Välimäki, Niko 205
Verbin, Elad 107
Vialette, Stéphane 241, 316
Vitter, Jeffrey Scott 40

Waleń, Tomasz 265
Wang, Lusheng 253

366 Author Index

Wang, Zhanyong 253

Weimann, Oren 4

Wu, Yufeng 150

Xu, Jinbo 142

Xu, Jinhui 119

Yang, Boting 119
Yao, Frances F. 3

Zhang, Jing 162
Zhao, Zhiyu 119
Zhu, Binhai 119
Ziv-Ukelson, Michal 4

	Title Page
	Preface
	Organization
	Table of Contents
	A Combinatorial Approach to Genome-Wide Ortholog Assignment: Beyond Sequence Similarity Search
	Stringology: Some Classic and Some Modern Problems
	Algorithmic Problems in Scheduling Jobs on Variable-Speed Processors
	Speeding Up HMM Decoding and Training by Exploiting Sequence Repetitions
	Introduction
	Preliminaries
	Exploiting Repeated Substrings in the Decoding Stage
	Acceleration Via Run-Length Encoding
	Acceleration Via LZ78 Parsing
	An Improved Algorithm

	The Training Problem
	Viterbi Training
	Baum-Welch Training

	Experimental Results
	References

	On Demand String Sorting over Unbounded Alphabets
	Introduction
	Definitions and Preliminaries
	Longest Common Prefix

	Balanced Indexing Structures
	Heap Sorting of Strings
	Heapify
	Extracting Minimal String
	On-Demand Sorting
	Find the Smallest k Strings
	Insertion of Strings to a Heap of Strings
	Inserting Strings Without Decreasing lcp-s

	Heap of Strings Embedded with Binary Search Trees
	References

	Finding Witnesses by Peeling
	Introduction
	The Reconstruction Problem
	Our Results

	The Peeling Processes
	Peeling Collections and the Peeling Process
	Deterministic Constructions
	Randomized Constructions
	Solving the k-Reconstruction Problem

	References

	Cache-Oblivious Index for Approximate String Matching
	Introduction
	Preliminaries
	Suffix Tree, Suffix Array, and Inverse Suffix Array
	Cache-Oblivious String Dictionaries
	Cache-Oblivious Y-Fast Trie
	Cache-Oblivious WLA Index
	Cache-Oblivious Index for Join Operation

	A Review of Cole et al.’s k-Error Matching
	Externalization of Cole et al.’s Index

	Cache-Oblivious k-Error Matching
	k-Partitionable and Screening Test
	Computing LCP for k-Partitionable Pattern

	O(n log n) Space Cache-Oblivious Index
	References

	Improved Approximate String Matching and Regular Expression Matching on Ziv-Lempel Compressed Texts
	Introduction
	Approximate String Matching
	Regular Expression Matching
	Techniques

	The Ziv-Lempel Compression Schemes
	Selecting Compression Elements
	Other Ziv-Lempel Compression Schemes

	Approximate String Matching
	Searching for Matches
	Computing Descriptions
	Analysis

	References

	Self-normalised Distance with Don’t Cares
	Introduction
	Previous Work

	Problems and Solutions
	Self-normalised Distance with Don’t Cares

	Exact Matching with Don’t Cares
	Discussion
	References

	Move-to-Front, Distance Coding, and Inversion Frequencies Revisited
	Introduction
	Notation and Background
	Local Optimality with Move-to-Front Encoding
	Local Optimality with Distance Coding
	Local Optimality with Inversion Frequencies Coding
	References

	A Lempel-Ziv Text Index on Secondary Storage
	Introduction and Previous Work
	The LZ-Index Data Structure
	LZ-Index on Secondary Storage
	Solving the Basic Trie Operations
	Reducing the Navigation Between Structures

	Experimental Results
	Conclusions and Further Work
	References

	Dynamic Rank-Select Structures with Applications to Run-Length Encoded Texts
	Introduction
	Definitions and Preliminaries
	Dynamic Rank-Select Structures on a Plain Text
	Dynamic Rank-Select Structure for a Small Alphabet
	Dynamic Rank-Select Structure for a Large Alphabet

	Rank-Select Structure on RLE
	References

	Most Burrows-Wheeler Based Compressors Are Not Optimal
	Introduction
	Preliminaries
	Lower Bounds
	BW0 is (≥ 2)-Markov-Optimal
	BWDC Is (≥ 1.265)-Markov-Optimal, BWRL Is (≥ 1.297)-Markov-Optimal

	Experiments
	Conclusion
	References

	Non-breaking Similarity of Genomes with Gene Repetitions
	Introduction
	Preliminaries
	Inapproximability Results
	Polynomial Time Algorithms for Some Special Cases
	Concluding Remarks
	References

	A New and Faster Method of Sorting by Transpositions
	Introduction
	Definitions
	The Transposition Distance Problem
	Coding a Permutation

	Sorting a Permutation - The Easy Way
	Definitions, Algorithm and Approximation Factor

	Sorting a Permutation - The Other Way
	Some Other Results and Comparisons
	Conclusions and Future Work
	References

	Finding Compact Structural Motifs
	Introduction
	Preliminaries
	NP-Completeness Result
	(R,C)-Compact Motif Finding Algorithm
	Conclusion
	References

	Improved Algorithms for Inferring the Minimum Mosaic of a Set of Recombinants
	Introduction
	Additional Definitions

	The Two-Founder Case
	Solution for Haplotype Data Input
	Solution for Genotype Data Input
	The Minimum Mosaic Problem with Unknown Site Order

	The Case of Three or More Founders
	Lower Bound on the Number of Breakpoints for Haplotype Data
	Exact Method for the Minimum Mosaic Problem When K_f ≥ 3

	Simulation Results and Open Problems
	References

	Computing Exact p-Value for Structured Motif
	Introduction
	Preliminary
	Basic Notations
	Problem Description

	Algorithm
	Decomposition and Transformation
	Dynamic Programming
	Sketch of Algorithm on Markov Model

	Conclusion and Future Work
	References

	Improved Sketching of Hamming Distance with Error Correcting
	Introduction
	Outline
	Sketching Hamming Distance First Algorithm
	Sketching Hamming Distance - Second Algorithm
	Error correction and Fixable Sketches - Third Algorithm
	Error Correction Fixable sketch

	Summary and Open Problem
	References

	Deterministic Length Reduction: Fast Convolution in Sparse Data and Applications
	Introduction
	Preliminaries and Notations
	Deterministic Length Reduction
	Case 1: N_1 Is Polynomial in n_1
	Case 2: N_1 Is Exponential in n_1

	Fast Convolution in Sparse Data Using Length Reduction
	The Main Idea
	The Algorithm

	Applications
	d-Dimensional Point Set Matching
	Searching in Music Archives

	Conclusion and Open Problems
	References

	Guided Forest Edit Distance: Better Structure Comparisons by Using Domain-knowledge
	Introduction
	Some Motivations
	The Results

	Definitions and Notations
	An Algorithm for the GFED Problem
	Speeding up GFED
	References

	Space-Efficient Algorithms for Document Retrieval
	Introduction and Related Work
	Preliminaries
	Time-Optimal Document Listing
	Space-Optimal Document Listing
	Extended Functionality

	Autocompletion Search and Document Listing
	Comparison to Sadakane’s Solution
	Preliminary Experimental Results
	References

	Compressed Text Indexes with Fast Locate
	Introduction and Related Work
	Compressing the Suffix Array
	Faster Compression
	Analysis
	Compressing the Dictionary

	Towards a Text Index
	A Main Memory Self-index
	A Smaller Classical Index
	A Secondary Memory Index

	Experimental Results
	References

	Processing Compressed Texts: A Tractability Border
	Introduction
	Compressed Strings Are Straight-Line Programs
	A New Algorithm for Fully Compressed Pattern Matching
	Pattern Matching Via Table of Arithmetical Progressions
	Computing AP-Table
	Realization of Local Search
	Discussion on the Algorithm

	Hardness Result
	Consequences and Open Problems
	References

	Common Structured Patterns in Linear Graphs: Approximation and Combinatorics
	Introduction
	Related Work
	Terminology and Basic Definitions

	Simple and {<,�}-Structured Patterns
	$\{<,\sqsubset\}$-Structured Patterns
	$\{<,\between\}$-Structured Patterns
	General Structured Patterns
	Discussion and Open Problems
	References

	Identification of Distinguishing Motifs
	Introduction
	Representations of Motifs
	Computing the Closest Subsequence
	The General Frame
	EM Method
	Incorporating Indels
	Experiment Results

	Computing the Distinguishing Substring Selection
	The Extended EM Algorithm for Two Groups
	Experiment Results

	References

	Algorithms for Computing the Longest Parameterized Common Subsequence
	Introduction
	Preliminaries
	An $O(n^2)$ Algorithm for LPCS
	Max-Queue
	The Algorithm

	An $O(n + Rlog n)$ Algorithm for FIG and ELAG
	An $O(n + R)$ Algorithm for RIFIG and RELAG
	Conclusions
	References

	Fixed-Parameter Tractability of the Maximum Agreement Supertree Problem
	Introduction
	Definitions
	Solving $Smast$ on Binary Trees
	Solving Smast in $O((2k)^p × kn^2)$ Time
	Solving Smast in $O((8n)^k)$ Time
	Hardness Results

	Solving Smast on Complete Collection of Triples
	References

	Two-Dimensional Range Minimum Queries
	Introduction
	Preliminaries
	Methods
	A General Trick for Query Precomputation
	O(N) Preprocessing of the First Level
	Recursive Partitioning
	What’s Left: How to Find the Right Grid

	Conclusion
	References

	Tiling Periodicity
	Introduction
	Properties of Tiling Periodicity
	Algorithm Compute-Minimal-Tilers
	Directions for Further Work
	References

	Fast and Practical Algorithms for Computing All the Runs in a String
	Introduction
	Description of the Algorithms
	Experimental Results
	Discussion
	References

	Longest Common Separable Pattern Among Permutations
	Introduction and Basic Definitions
	Permutations
	Pattern Problems on Permutations

	Polynomial Algorithm for the Longest Common Separable Pattern Among a Finite Number of Permutations
	Hardness Result
	Approximation Ratio
	Conclusion
	References

	Suffix Arrays on Words
	Introduction
	Our Contributions

	Definitions
	Optimal Construction of the Word Suffix Array
	Searching in the Word Suffix Array
	Experimental Results
	Conclusions
	References

	Efficient Computation of Substring Equivalence Classes with Suffix Arrays
	Introduction
	Preliminaries
	Notations
	Equivalence Relations on Strings
	Data Structures

	Computing Equivalence Classes Under ≡ Using Suffix Trees
	Computing Equivalence Classes Under ≡ Using Suffix Array
	Experimental Results
	References

	A Simple Construction of Two-Dimensional Suffix Trees in Linear Time
	Introduction
	Preliminaries
	Linear Representation of Square Matrices
	Isuffix Trees

	Construction of Two-Dimensional Suffix Trees
	Merging Procedure
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

