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Preface

This volume contains the proceedings of the 2nd International Conference on
Algebraic Biology (AB2007). It was held during July 2–4, 2007 in the Castle of
Hagenberg, Austria, and was organized by the Research Institute for Symbolic
Computation (RISC) of the Johannes Kepler University, Linz.

Algebraic biology is the interdisciplinary forum for the presentation of re-
search on all aspects of applications of symbolic computation (computer alge-
bra, computational logic, and related methods) in biology. The first conference
on algebraic biology (AB 2005) was held during November 28–30, 2005 in Tokyo,
Japan.

The initiation of the series of algebraic biology conferences was motivated by
the recent trends in symbolic computation and biology: In symbolic computation,
the recent advances in computer performance and algorithmic methods have ac-
celerated the extension of the scientific fields to which symbolic computation can
be applied. In biology, the determination of complete genomic sequences and the
subsequent improvements of experimental techniques have yielded large amounts
of information about the biological molecules underlying various biological phe-
nomena. Under these circumstances, the marriage of symbolic computation and
biology is expected to generate new algebraic models for biological phenomena
and new symbolic techniques for biological data analysis.

This remains the intended profile of the series of algebraic biology conferences,
and it figured in the manuscripts published in AB 2007. The papers in the present
volume are evidence of the healthy growth in the field of algebraic biology.

We received 40 submissions from 22 countries (Armenia, Australia, Bulgaria,
Canada, Chile, France, Germany, Greece, Hungary, India, Italy, Japan, Portugal,
Romania, Russia, Spain, South Africa, Switzerland, Taiwan, The Netherlands,
UK, and USA), and 19 papers were accepted for publication. Each submis-
sion was assigned to at least three Program Committee members, who care-
fully reviewed the papers, in many cases with the help of external referees. The
merits of the submissions were discussed by the Program Committee over one
week through the Internet, by means of the EasyChair conference management
system.

Besides the contributed papers, this volume also includes three invited pa-
pers, by Reinhard Laubenbacher (Discrete Models of Biochemical Networks: The
Toric Variety of Nested Canalyzing Functions), Bud Mishra (Algebraic Systems
Biology: Theses and Hypotheses), and Gheorghe Paun (Membrane Computing
as a Framework for Bio-Modeling).

The tutorial session of the conference provided an opportunity for scientists
in symbolic computation and biology to come together and learn about each
others’ research problems and problem-solving techniques. The session consisted
of five symbolic computation and five biology tutorials. Four tutorial speakers
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submitted their papers to the proceedings. These papers are included in this
volume.

We are pleased to start our collaboration with Springer, who agreed to publish
the conference proceedings in the Lecture Notes in Computer Science series.

We, the AB Steering Committee, and the organizers of the conference, are
grateful to the following sponsors for their financial contributions towards its
operation and success: Austrian Grid, Linzer Hochschulfonds, MapleSoft, the
National Institute of Advanced Industrial Science and Technology, Raiffeisen
Landesbank Oberösterreich, RISC Software GmbH, Special Research Program
SFB F013 of the Austrian Science Fund (FWF), and the Upper Austrian
Government.

Our thanks are also due to the members of the Program Committee and
the additional referees, and to those who ensured the effective running of the
conference.

July 2007 Hirokazu Anai
Bruno Buchberger

Hoon Hong
Katsuhisa Horimoto

Temur Kutsia
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Algebraic Systems Biology: Theses and Hypotheses�

Bud Mishra1,2

1 Courant Institute, New York University, New York, NY, U.S.A.
2 NYU School of Medicine, New York University, New York, NY, U.S.A.

mishra@nyu.edu

Abstract. What is systems biology? What can biologists gain from an attempt
to algebraize the questions in systems biology? Starting with plausible biologi-
cal theses, can one algebraically model them and then manipulate them to sug-
gest meaningful hypotheses? Using these hypotheses, can one measure and mine
suitable experimental data to validate or refute these hypotheses? Through these
intertwined processes of measuring, mining, modeling and manipulating biolog-
ical systems, can one generate the set of theses and hypotheses upon which sys-
tems biology will be founded? This review provides one algorithmic-algebraist’s
somewhat idiosyncratic response to these and other related questions, but also
aims to persuade young algebraists to examine the possible role they and algebra
can play to enrich this subject.

1 Hypotheses Non Fingo: Hooke Meets Newton

Over the last few years, Sir Robert Hooke, a somewhat maligned, but still a very fasci-
nating English experimental scientist, had begun to feature unexpectedly prominently in
practically all my public presentations on Systems Biology. Initially, what had attracted
me to the story of Hooke, was the uncanny resemblance he bore to many contemporary
scientists in terms of their insistence on data, observations and hypotheses, their appar-
ent non-rigorous and intuitive approaches to scientific questions, but most inexplicably,
their protracted and debilitating open rivalries over the questions of recognition. But,
as I learned more about Hooke’s life and views, it also became clearer that his indirect
influence on the way we think about science today is only surpassed by the opinions of
only a handful of other contemporary thinkers, with some of whom Hooke fought bitter
and hopeless semi-philosophical battles. They have, thus, unwittingly lent us a useful
perspective that is worth examining with some care. How the emerging field of systems
biology could establish itself, how it should face its trials and tribulations along the way,
and how it could be a significant component of the “new new” biology, etc., could all
be examined from the points of view of these 17th century scientists—a viewpoint that
remains anachronically and peculiarly relevant even today.

Robert Hooke (1635-1703) was an experimental scientist, mathematician, architect,
and astronomer. He was also the first Secretary of the Royal Society from 1677 to 1682,
and because of his wide ranging interests, Hooke has been variously described as the
“England’s Da Vinci.” His work Micrographia of 1665 contained his microscopical

� The work reported in this paper was supported by two grants from NSF ITR program.

H. Anai, K. Horimoto, and T. Kutsia (Eds.): AB 2007, LNCS 4545, pp. 1–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 B. Mishra

investigations, which included the first identification of biological cells, an enduring
discovery that has maintained its central place in subsequent developments in biology
for more than three centuries. In his drafts of Book II, Newton had referred to him as the
most illustrious Hooke—“Cl[arissimus] Hookius.” However, not long after, Hooke be-
came involved in a bitter dispute with Sir Isaac Newton over the priority of the discovery
of the inverse square law of gravitation. In a letter Hooke wrote to Halley, he complained
about omission of credit given to his discovery of the properties of gravity, “which of
late Mr. Newton has done me the favour to print and publish as his own inventions.” In
response Newton wrote back to Halley, “Now is this not very fine? Mathematicians that
find out, settle & do all the business must content themselves with being nothing but dry
calculators & drudges I beleive[sic] you would think him a man of a strange unsocia-
ble temper”—perhaps still a common protest of many unhappy mathematicians whose
contributions have been ignored or forgotten. In a more well-known letter that Newton
wrote directly to Hooke, he famously said, “If I have seen further[sic] than other men,
it is because I have stood on the shoulders of giants”—where, of course, the giants
Newton was alluding to were Kepler and Galileo, and not the dwarfish, small-minded
and short-tempered likes of Hooke! When Christopher Wren was brought in to resolve
this rather strangely English war-of-words, Wren diplomatically described the disagree-
ment using Clairaut’s characterization of “the great distance between a glimpsed truth
and a demonstrated truth”—raising perhaps, the question of relative roles that should
be ascribed to the inductive hypothesis-driven science with respect to the deductive
principle-driven science—theses vs. hypotheses.

What is the nature of “TRUTH” in biology, and how is it to be sought? Hooke saw
biology as an observational science; he wrote in Micrographia, “The truth is, the sci-
ence of Nature has already been too long made only a work of the brain and the fancy.
It is now high time that it should return to the plainness and soundness of observations
on material and obvious things,” —a view supporting hypothesis-driven experimenta-
tion that advances science through steps of falsification or validation. Newton, on the
other hand, championed a search for deep and unifying principles. Newton shunned
hypotheses; his motto stated in Principia was “Hypotheses non fingo.” (“I feign no hy-
potheses.”) Newton’s viewpoints are probably best stated by his most ardent disciple,
Halley; in his rather ornately titled essay ‘The true Theory of the Tides, extracted from
that admired Treatise of Mr. Issac Newton, Intituled, Philosophiae Naturalis Principia
Mathematica,’ he wrote the following: “Truth being uniform and always the same, it is
admirable to observe how easily we are enabled to make out very abstruse and difficult
matters, when once true and genuine Principles are obtained.”

Biology still remains an observational science; it continues to move through the toils
of a vast army of scientists each examining a small subsystem of a favored organism, as
the scientists sharpen their intuitions, build upon guesses, conjectures, and hypotheses,
and refine their ideas in many small steps—occasionally interrupted by a great leap, a
grand vision or a comprehensive shift in paradigm. If subtle principles are to be brought
to light, they must wait for serendipity. It has been argued that life is complex, it does
not yield to few small neat explanations or pigeon-holing, and if there is a unifying
principle in biology, it is that there is no unifying principle in biology.
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Can ideas from algorithms and algebra be brought to bear to systematically hunt
for principles and patterns that will reveal a grand unified theory of biology? Are their
design rules at play in how these systems evolve, interact, and self-assemble? What
algebraic tools must we build, if we wish to create a global view of biology? What
can be automated to make computers work on tasks that are humanly impossible? Is
algebraic systems biology the answer to the problems of biology?

2 Systems Biological Models

2.1 Processes

We start with the following taxonomy into which the cellular biochemical processes are
typically organized, as described below.

GENETIC REGULATION: The oft-repeated “central dogma of biology” states that bio-
chemical information in cells is encoded primarily in the Deoxyribo Nucleic Acid
(DNA) molecules. DNA is transcribed into messenger Ribo Nucleic Acid (mRNA),
and the mRNA then is translated into proteins at the ribosomes. Genetic regulation
is the process of modulation of the expression of the relevant genes at the correct loca-
tions and times, and is keyed by specific proteins called transcriptional factors. Through
transcriptional factors and other ancillary modulators, proteins, the products of genes,
themselves partake in this genetic regulatory process, thus giving rise to complex inter-
action networks; such proteins interact with regions of the DNA to effect modulation of
how genes are transcribed. The binding of the transcription machinery and the transcrip-
tional factors to the DNA involves complex protein-DNA-protein interactions, where,
more often than not, the structural modification of the DNA (such as euchromatin and
heterochromatin regions) and the protein has to be accounted for.

The rate of gene transcription, the post-transcriptional mechanisms that affect mRNA
half-life (i.e., stability) and the formation of the mRNA-ribosome complex are other
aspects of genetic regulation. Similarly, there are post-translational mechanisms for pro-
tein modification such as phosphorylation of key residues, multimerization, chaperone-
guided complex formation, protein-folding control, and genetic control by small
interfering RNA (siRNA).

SIGNAL TRANSDUCTION: The cell responds to external signals through receptors,
which may be on its surface or in its cytoplasm. The signal is transmitted to the interior
through messengers, which induce the desired response to the external signal. Typi-
cally, a ligand binds to a trans-membrane receptor whose conformation subsequently
changes. This change is detected by proteins bound to it (usually on the cytoplasmic
side), or is manifested as a change in the receptor’s chemical properties. Subsequently,
second messenger molecules amplify the signal and communicate it to the target(s).
Alternatively, the ligand can directly enter the cell through non-specific channels and
then bind to the receptors inside the cell. Small molecules like calcium often participate
in these pathways, where most of the reactants are enzymatic proteins. The net result
of the signal transduction pathway is an appropriate response by the specific subcellu-
lar component. Very often, the signaling pathway results in the nuclear localization of
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transcription factors, leading to the transcription (or shutting down) of corresponding
genes. The binding of the signaling molecule with the receptor, the modification of the
structure of the receptor and associated proteins (with the receptor sometimes acting
as an enzyme) and dispatching of second messengers are the activities near the cell
membrane. Receptor desensitization, internalization and regeneration are other com-
plex sub-processes, thus altering the physical properties of binding and diffusion.

METABOLISM: Metabolism represents almost all processes that are not genetic reg-
ulatory or signal transducing. The gigantic set of biochemicals needed by the cell are
continuously produced and consumed by complex enzyme catalyzed pathways. These
comprise the metabolic network. They essentially govern the matter and energy cycles
of a cell— the way energy and matter are obtained, transformed and consumed by liv-
ing organisms. Photosynthesis for example is the process by which light energy is con-
verted into chemical energy during sugar (e.g., glucose) formation. During respiration,
the oxidation of glucose transforms the energy into Adenosine Tri-Phosphate (ATP).
While the ATP-cycle and photosynthesis comprise the well-known energy metabolism,
carbohydrate metabolism deals with Glycolysis and Phosphates, lipid metabolism per-
tains to Triacyl Glycerol and Fatty Acids, and amino acid metabolism mostly refers to
Glutamate and Urea.

OTHER PROCESSES: Biology is complex, and of course, there are still more aspects
to cellular biology beyond this simple trichotomic characterization. These include the
biophysics of DNA packaging, small interfering RNA (siRNA), protein folding and
DNA-protein interaction, cell adhesion, non-transcriptional regulatory pathways, cellu-
lar compartments and related spatio-temporal phenomena, cell proliferation, and cell
migration. While the modeling approaches suggested here, when further augmented
with suitable stochastic and spatial formalisms, will generalize as well, I will not em-
phasize those applications directly in my discussion here.

2.2 Models

Algorithmic algebraic models of biological systems are created through a process of
conceptual simplification. Models, created in this fashion, must strike a balance among
fidelity, expressivity and ability to be manipulated algorithmically. For this purposes, the
different component parts and processes in the biochemical domain may be represented
at different levels of abstraction [22,37]. I summarize some of the major approaches
below, but will guide the discussion towards hybrid automata representation, a very
general and powerful model for these systems.

LOGICAL MODELING: The state of the reactant is captured through a finite number
of abstract-states (where intermediate expression levels are assumed to have the same
behavior), and functions are used to describe the new states (concentration range) of the
chemical species, given their old states. The transitions between states can be assumed
to occur synchronously or (more accurately) asynchronously. In the simplest case, only
two states (“on” and “off”) are used, and Boolean algebra is used to describe the dy-
namics. Literature on Concurrent Transition Systems [20,19] and Pathway (Rewrite)
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Logic [25] provides good expositions of logical modeling. Kappler et al. [38] demon-
strate how to extend simple Boolean networks by using ordinary differential equations
to capture the concentration, while Boolean functions continue to determine the rates
of the reactions. The probability of being in a state is sometimes a more reasonable
measure to estimate, as in the case of Sachs et al. [57], who use Bayesian networks
to model cell signaling pathways. Similarly, Shmulevich et al. [58] describe the use of
probabilistic Boolean networks to model genetic regulatory networks and determine the
long-term joint probabilistic behavior of a few selected genes. Platzer et al. [55] simu-
late the embryonic development of C. elegans by assuming Boolean states for the genes
and synchronously updating at each time step based on an interaction matrix. Batt et al.
[12] have applied model checking theory on biochemical systems modeled though
qualitative simulation.

DIFFERENTIAL EQUATIONS: If instead the concentrations are represented exactly in
the real continuous domain, the ordinary differential equations (ODEs) of the dynamics
directly follow from the law of general mass action (GMA) [21,39,59]. For instance,
in the reaction aA + bB←→ cC + dD, the rate of the forward reaction v f ≡ k f [A]a[B]b

and the rate of the backward reaction vb ≡ kb[C]c[D]d , where k f and kb are the for-
ward and backward rate constants respectively and the rate of individual reactants is
1
cĊ = 1

d Ḋ = − 1
a Ȧ = − 1

b Ḃ = (v f − vb). As a compromise between discrete and con-
tinuous representations, qualitative differential equations can be used with qualitative
states corresponding to the different concentration ranges [12,23]. Partial differential
equations are necessary for spatially distributed models, e.g., pde’s, sde’s, or reaction-
diffusion equations.

HYBRID SYSTEMS: Many biological systems, such as the cell, follow a combination
of discrete and continuous behaviors, which cannot be characterized in a proper way
using either only discrete or only continuous models. On one hand, their evolution is
ruled by a continuous dynamical law concerning substance concentrations and gradi-
ents, and, on the other hand, such a dynamical law may change discretely depending
on the system status itself. Because of their hybrid nature, part discrete and part con-
tinuous, such systems are named hybrid systems. To model hybrid systems, Alur et al.
introduced the notion of hybrid automata in [3]. Intuitively a hybrid automaton is a
“finite-state” automaton with continuous variables, which evolve according to a set of
continuous laws characterizing each discrete mode of the automaton itself. The use of
hybrid automata for modeling biomolecular networks has been described by Alur et al.
[1] and Mishra et al. [46]. Amonlirdviman et al. [7] demonstrated the utility of hy-
brid systems by modeling Drosophila planar cell polarity. Starting with the S-System
formulation of Savageau and Voit [60], Antoniotti et al. [11] used an additional automa-
ton to broaden the set of representable systems, subsequently using full-fledged hybrid
automata [10]. Ghosh et al. presented both delta-notch [29,28] and protein signaling
network [30] models based on the hybrid automaton formalism. Casagrande et al. [16]
suggested a simple (and decidable) hybrid automaton model for the E. coli chemotaxis.
Lincoln and Tiwari [43] detail hybrid automaton modeling of biochemical networks,
while Hu et al. [36] describe stochastic hybrid system modeling of subtilin production
in Bacillus subtilis. More recently, Drulhe et al. [24] have described piecewise-affine
models of genetic regulatory networks.
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ALGEBRAIC HYBRID AUTOMATA, TEMPORAL LOGIC AND ALGORITHMS: To cre-
ate a comprehensive theoretical framework for systems biology, what is needed is an
appropriate generalization of discrete-time systems, classical temporal logic, possible-
world models of temporal logic given by Kripke (e.g., Kripke structures), model check-
ing algorithms based on graph theoretic analysis, etc. to this richer and more powerful
domain. However, the generalization must be suitably powerful to capture reasoning
processes closely resembling what is used by the biologists, and yet it should also be
appropriately constrained so that these systems can be reasoned by feasible computa-
tional means. At the least, the resulting problems should be decidable (computable). We
seek such a framework below by a judicious amalgamation of symbolic algebra (using
decision procedures of semi-algebraic geometry), sufficiently constrained dense-time
logic and algebraic models based hybrid automata. We start with a discussion of such
hybrid automata and their reachability problem.

3 Algebraic Systems and Biological Models

The subject Algorithmic Algebraic Model Checking was introduced to examine con-
nections between systems biology, dynamical systems, modal logic and computability,
and how they can be useful in the biological context. Towards this aim, one could begin
by addressing the symbolic model checking problem for a new class of hybrid models
arising in systems biology – semi-algebraic hybrid systems, introduced in the first pa-
per of our “AAMC” (Algorithmic Algebraic Model Checking) series [53]. There, our
goal was to characterize the widest range of automata that admit sound albeit expensive
mathematical techniques, as opposed to focusing on a very narrow class of systems that
often prematurely sacrifice genralizability for the sake of efficiency.

We built upon and integrated many existing ideas: e.g., semi-algebraic hybrid au-
tomata, the Blum-Shub-Smale model of “real” computation and TCTL (a powerful
temporal logic formalism suitable for our setting)—more formally defined below.

Definition 1 Semi-Algebraic Set [45,47]. Every quantifier-free boolean formula com-
posed of polynomial equations and inequalities defines a semialgebraic set (i.e., un-
quantified first-order formulæ over the reals - (R,+,×,=,<)). �

Definition 2 Semi-Algebraic Hybrid Automata [53]. A k-dimensional hybrid au-
tomaton is a 7-tuple, H = (Z, V , E, Init, Inv, Flow, Jump), consisting of the following
components:

– Z = {Z1, . . . , Zk} a finite set of variables ranging over the reals R;
– (V,E) is a directed graph of discrete states and transitions;
– Each vertex v∈V is labeled by “Init”(initial), “Inv”(invariant) and “Flow” labels;
– Each edge e ∈ E is labeled by a “Jump” condition;
– Init, Inv, Flow, and Jump are semi-algebraic. �

Definition 3 Semantics of Hybrid Automata. Let H = (Z, V , E, Init, Inv, Flow, Jump)
be a hybrid automaton of dimension k.
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– A location � of H is a pair 〈v, R〉, where v∈V is a state and R∈Rk is an assignment
of values to the variables of Z. A location 〈v, R〉 is said to be admissible, if Invv(R)
is satisfied.

– The continuous reachability transition relation
h−→
C

forces the state invariant to hold

at every point except the end-point along the evolution curve determined by the
flow equations during the h(> 0) time units from the current time t0:

〈v,R〉 h−→
C
〈v,S〉 iff(

Flowv(R,S,t0,h) ∧ ∀S′,h′ ∈ [0,h) Flowv(R,S′,t0,h′)⇒ Invv(S′)
)
,

where Flowv(R,S,t,h) is a relation between the continuous state R at time t and
the continuous state S after h time units in the discrete state v. It is “well-defined”
in the sense that ∀R,S,t,h Flowv(R,S, t,h)⇒ {∀h′ ∈ [0,h) ∃S′ Flowv(R,S′, t,h′)}.

– The discrete reachability transition relation
0−→
D

ensures that both parts of the zero-

time jump1 — the guard condition which needs to be satisfied just before the tran-
sition is taken, and the reset condition which determines the values after the tran-
sition, are satisfied.

〈v,R〉 0−→
D
〈u,S〉 iff 〈v,u〉 ∈ E ∧ Jumpv,u(R,S).

– The transition relation T of H connects the possible values of the system vari-
ables before and after one step — a discrete step for a time h = 0 or a continuous
evolution for any time period h > 0:

T (� h−→ �′) = {h = 0∧ �
0−→
D

�′} ∨ {h > 0∧ �
h−→
C

�′}.

– A trace of H is a sequence �0,�1, . . ., �n, . . . of admissible locations such that

∀i≥ 0, ∃hi ≥ 0, T (�i
hi−→ �i+1). �

Definition 4 Finite-Dimensional Machine Over R: [13]. A finite dimensional ma-
chine M over R consists of a finite directed connected graph with four types of nodes:
input, computation, branch and output.

In addition the machine has three spaces: input space IM , state space SM and output
space OM of the form Rn,Rm,R l , respectively, where n,m and l are positive integers.

1. Associated with the input node is a linear map I : IM → SM and a unique next
node β1.

2. Each computation node η has an associated computation map, a polynomial (or
rational) map gη : SM →SM given by m polynomials (or rational functions) g j :
Rm →R, j = 1, · · · ,m, and a unique next node βη .

1 Jumpv,u(R,S) ≡ Guardv,u(R)∧Resetv,u(R,S).
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3. Each branch node η has an associated branching function, a nonzero polynomial
function hn : SM →R.

4. Each output node η has an associated linear map Oη : SM → OM and no next
node. �

Theorem 1 Path Decomposition Theorem: [13]. For any machine M over R the
following properties hold.

1. For any T > 0, the time-T halting set of M : ΩT (=
⋃

γ∈ΓT
νγ ) is a finite disjoint

union of basic semi-algebraic sets (respectively, basic quasi-algebraic sets, in the
unordered case), where ΓT is the set of time-T halting paths and νγ is the initial
path set.

2. The halting set of M : ΩM (=
⋃

γ∈ΓM′
νγ ) is a countable disjoint union of basic

semi-algebraic (respectively, basic quasi-algebraic) sets, where ΓM′ is the set of
minimal halting paths.

3. For γ ∈ ΓM (the set of halting paths of M ), the input-output map ΦM restricted to
νγ – ΦM|νγ is a polynomial map, or a rational map if R is a field. �

Definition 5 The Mandelbrot Set [44]. M is the subset of the set of complex numbers
C that remains bounded when subject to the following iterative procedure: f0(c) = c ,
fn+1(c) = fn(z)2 + c. Formally, the complement M ′ of the Mandelbrot set is defined as

M ′ = {c ∈ C | fn(c)→ ∞ as n→ ∞}.

It is to be noted that fi(c)≥ 2 implies that eventually fn(c)→ ∞. �

Definition 6. The Mandelbrot Hybrid Automaton consists of

– One discrete state with invariant False and two continuous variables x and y.
– Flow1 : { x′ = x ∧ y′ = y } (no continuous evolution).
– One Discrete State Transition: 1→ 1 with Jump1 : (x′ = x2−y2 +Cr)∧(y′ = 2xy+

Ci), where Cr and Ci are two constants (real numbers).
– Only possible trace: zeno path of infinite self-loops. �

Theorem 2 Undecidability Of The Mandelbrot Set: [13]. The Mandelbrot set2 can-
not be expressed as the countable union of semi-algebraic sets over R, and hence not
decidable over R. �

Definition 7 TCTL[2]. It has the following syntactic structure:

φ ::= p | ¬φ | φ1∨φ2 | φ1∃U φ2 | φ1∀U φ2 | z.φ .

Its associated semantics is described below:

– z.: The freeze quantification “z.” binds the associated variable z to the current
time. Thus the formula z.φ(z) holds at time t iff φ(t) does.

2 The corresponding 2-dimensional set of real numbers.
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– φ1∀U φ2 and φ1 ∃U φ2: universal (on all paths) and existential (on at least one
path) “until” operators. For φ1 U φ2 to be true on a path, φ2 is required to be true
somewhere along the path, and φ1 is required to be true all along the path up to
(but not necessarily at) that point. �

Remark 1. The basic notations are often extended by the following syntactic abbrevia-
tions [2].

1. p ∃U≤max q ≡ p ∃U (q∧z.(z≤max)) and p ∀U≤max q ≡ p ∀U (q∧z.(z≤max)):
“subscripted” Until operators (max is the time-bound).

2. (∀F p≡ true ∀U p) and (∃F p ≡ true ∃U p): “eventuality” operators.
3. (∀G p ≡ ¬∃F¬p) and (∃G p≡ ¬∀F¬p): “invariance” operators.

Definition 8 Single-Step Until Operator, �, [35]. The formula p � q holds if p∨ q
is true all along “one step” of the hybrid system and q is true at the end of the
transition. �

Definition 9 T μ-Calculus Syntax: [35]. φ ::= X | p | ¬φ | φ1∨φ2 | φ1�φ2 | z.φ | μX .φ ,
where μ is the least-fixpoint operator3. Thus,

– Existential Until: p ∃U q = μX .(q∨ (p �X))
– Universal Until:4 p∀U q = ¬(¬q ∃U (¬p∧¬q)) �

3.1 What Questions Can and Cannot Be Answered

One may now wish to devise algorithmic algebraic solutions to various kinds of queries
(in TCTL) to examine interesting properties and invariants about the hybrid automata
that model biochemical systems. The simplest and perhaps the most important question
that one can ask about these systems is the symbolic state reachability problem: namely,
can one reach a particular state from an initial state by following the dynamics of the
hybrid automaton which may be described symbolically? A more relevant biological
question could be to provide a symbolic description of the initial conditions (states)
from which the biological system (modeled via a semi-algebraic hybrid automaton)
can reach a desired state (say, apoptosis state for a cancer cell), or avoid certain un-
safe states. In this sense, algebraic descriptions in systems biology can be a potent tool.
However, the immediate answers to these questions are depressingly negative. Thus, our
community needs to engage in many years of focused work to devise a mature algebraic
systems biological toolset. We and others have made some progress by exploiting ap-
proximations, bounded reachability analysis, etc. or by suitably constraining the power
of the family of hybrid automata studied [54,52,50,17,15,49,51,48,14]. But much more
remains to be done!

Just to summarize few of the positive steps in this direction, we mention the follow-
ing two different approaches: The first way is to identify hybrid automaton classes for
which the problem is decidable and to use such classes to model hybrid systems. In the
last ten years, many decidable classes have been discovered [3,6,56,40,41,18], but, be-
cause of the restrictions imposed on them to achieve decidability, often they cannot be

3 The greatest-fixpoint ν can be expressed as ¬μX .(¬φ [X := ¬X ]).
4 This translation is valid only when q is “finitely variable” over all premodels [35].
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easily applied in the analysis of real biological systems. The second way is approximate
analysis, like bounded model checking [31,27], abstract interpretation [4,5], or quotient
reduction [32,33,34], to obtain a partial (or approximate) result for the model check-
ing problem (e.g., the property holds for at least ten seconds starting from the initial
condition).

On other approaches that resemble the systems described here, we enumerate few
recent results: Anai [8] and Fränzle [26] independently suggested the use of quantifier
elimination for the verification of polynomial hybrid systems. Anai and Weispfenning
subsequently expounded the use of quantifier elimination for the reachability analysis
of continuous systems with parametric inhomogeneous linear differential equations [9].
Fränzle went on to prove that progress, safety, state recurrence and reachability are
semi-decidable using quantifier elimination of semi-algebraic formulæ [26], and to de-
velop proof engines for bounded model checking [27]. Lafferiere et al. [42] have de-
scribed a quantifier-elimination-centric method for symbolic reachability computation
of linear vector fields. Many of these powerful techniques remain to be fully integrated
into the context that systems biology proposes.

We only present technical details of the following negative result, here. Rest can be
found in the reference [52].

Theorem 3 General Undecidability Of Reachability. For semi-algebraic hybrid
systems, reachability is undecidable even in Blum et al.’s “real” Turing machine
formalism.

Proof. Consider the Mandelbrot hybrid automaton defined earlier, with the complex
number C = Cr + ı.Ci. Let S(t) = x(t) + ı.y(t). After 1 discrete state transition (self-
loop), we get

S′(t) = {x(t)2− y(t)2 +Cr}+ ı.{2x(t)y(t)+Ci}= {x(t)+ ı.y(t)}2 +{Cr + ı.Ci}
In other words, S′(t) = S2(t)+C which is the defining equation of the Mandelbrot Set.
Clearly, if there exists an evolution where |S(t)| ≥ 2 then we know that C does not
belong to the Mandelbrot set i.e. if the reachability query5 (x2 + y2 ≥ 4) is decidable, it
would imply that the Mandelbrot set is decidable, thus resulting in a contradiction. �

3.2 Final Thoughts

Lest some may mistakenly conclude that I have argued parochially in favor of theses
over hypotheses (equivalently, Newton over Hooke), I conclude this review with the
following beautiful quote from Hooke:

“So many are the links, upon which the true Philosophy depends, of which, if
any can be loose, or weak, the whole chain is in danger of being dissolved; it
is to begin with the Hands and Eyes, and to proceed on through the Memory,
to be continued by the Reason; nor is it to stop there, but to come about to the
Hands and Eyes again, and so, by a continuall passage round from one Faculty
to another, it is to be maintained in life and strength.”

It is hoped that someday, algebra will serve its role as a strong link between biological
theses and hypotheses— maintained in life and strength!

5 Reachable(p) ≡ ∃F (p).
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Abstract. This paper focuses on the class of nested canalyzing Boolean
functions. This class has been introduced and studied recently as a possi-
ble source for models of biological networks with favorable dynamic prop-
erties. We provide a geometric model for this class in the form of a toric
algebraic variety described by a set of binomial polynomial equations,
each of whose rational points corresponds to a nested canalyzing func-
tion. Toric varieties have a rich geometric and combinatorial structure
which provides a basis for a theoretical study of the properties of can-
alyzing functions. In particular, a good computational characterization
of this class would facilitate their incorporation into network inference
methods for discrete biochemical networks.

1 Introduction

Time-discrete dynamical systems with a finite state space have a long tradition
as models for cellular biochemical networks, beginning with the use of Boolean
networks as models of gene regulatory networks in [10]. Other discrete modeling
frameworks that have been used in this context include the logical models in-
troduced in [17] and multi-state polynomial models in [12], among others. The
latter generalize Boolean networks to arbitrary finite fields, rather than just the
field with two elements. The main result in [12] is a network inference algorithm
using tools from computational algebra. It takes as input one or more time course
measurements, such as gene expression measurements, and produces as output a
most likely polynomial dynamical systems model over a suitable finite field that
fits the given data set. We briefly describe a few details of the algorithm, since
it provides the motivation for the main result of the paper.

Suppose that the biological system to be modeled contains n variables, e.g.,
genes, and we measure r + 1 time points p0, . . . ,pr, using, e.g., gene chip tech-
nology, each of which can be viewed as an n-dimensional real-valued vector. The
first step is to discretize the entries in the pi into a prime number of states, which
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author was supported partially by NIH Grant RO1 GM068947-01, a joint computa-
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are viewed as entries in a finite field k. If we choose to discretize into two states
by choosing a threshold, then we will obtain Boolean networks as models. The
discretization step is crucial in this process as it represents the interface between
the continuous and discrete worlds. Other network inference methods, such as
most dynamic Bayesian network methods, also have to carry out this prepro-
cessing step. Unfortunately, there is very little work that has been done on this
problem. We have developed a new discretization method which is described in
[4]. It compares favorably to other commonly used discretization methods, using
different network inference methods.

Given this data set, an admissible model

f = (f1, f2, . . . , fn) : kn −→ kn

consists of a dynamical system f which satisfies the property that

f(pj) = (f1(pj), . . . , fn(pj)) = pj+1.

The algorithm then proceeds to select such a model f , which is the most likely
one based on certain specified criteria. This is done by first reducing the problem
to the case of one variable, that is, to the problem of selecting the fi separately.
For this purpose, we compute the set of all functions fi such that fi(pj) = pi

j+1,
that is, all polynomial functions fi whose value on pj is the ith coordinate of
pj+1. This set can be represented as the coset f0 + I, where f0 is a particular
such function and I ⊂ k[x1, . . . , xn] is the ideal of all polynomials that vanish
on the given data set, also known as the ideal of points of p1, . . . ,pr.

Modifications of the algorithm in [12] have been constructed. The algorithm
in [6] starts with only data as input and computes all possible minimal wiring
diagrams of polynomial models that fit the given data and outputs a most likely
one, based on one of several possible model scoring methods. The algorithm in
[3] uses the Gröbner fan of the ideal of points as a computational tool to find a
most likely wiring diagram. Both of these algorithms circumvent the need for a
particular choice of variable order needed for the algorithm in [12], which affects
the structure of the resulting model.

Note that the model space f0 + I contains all possible polynomial functions
that fit the given data. In order to improve the performance of model selection
algorithms it would be very useful to be able to select certain subspaces of func-
tions that have favorable properties as models of particular biological systems,
thereby reducing the model space. For instance, one might consider imposing
certain constraints on the structure of the polynomials. We might require that
each fi contains a single term. This amounts essentially to the assumption that
the regulatory inputs for a given gene are multiplicative. Or one might add the
restriction that the functions result in a dynamical system that has certain con-
straints on the possible dynamics, e.g., only fixed points as limit cycles. This
amounts to the assumption that the system to be modeled does not show pe-
riodic behavior. For Boolean networks such constraints have been investigated
previously (see, e.g., [2]), in particular the dynamic properties of so-called can-
alyzing Boolean functions.
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Canalyzing functions were introduced by S. Kauffman [11] as appropriate
rules in Boolean network models of gene regulatory networks. The definition
is reminiscent of the concept of “canalisation” introduced by the geneticist C.
H. Waddington [19] to represent the ability of a genotype to produce the same
phenotype regardless of environmental variability. One important characteristic
of canalyzing functions is that they exhibit a stabilizing effect on the dynamics
of a system. For example, Moreira and Amaral [13], showed that the dynamics of
a Boolean network which operates according to canalyzing rules is robust with
regard to small perturbations.

A special type of canalyzing function, so-called nested canalyzing functions
(NCFs), were introduced recently in [8], and it was shown in [9] that Boolean
networks made from such functions show stable dynamic behavior. Nested can-
alyzing functions have received considerable attention recently. Other classes of
functions have also been investigated, e.g., [14]. Certain post classes of Boolean
functions have been studied in [16], chain functions in [5], and stabilizing func-
tions in [15].

In order to restrict model selection algorithms to special classes such as nested
canalyzing functions (or suitable multi-state generalizations), it is necessary to
characterize them computationally in a way that can be integrated in the model
selection process. This requirement is the motivation for the main result in this
paper. We provide a parametrization of the class of all nested canalyzing func-
tions as the rational points of an affine algebraic variety over the algebraic closure
of k which is toric, that is, defined by a collection of binomial polynomial equa-
tions. (The set of rational points on the variety are those whose coordinates lie
in k.) We also identify the irreducible components of the variety. Toric varieties
have a particularly nice combinatorial structure and have been studied exten-
sively. This result is to be interpreted as a first step in a program to parametrize
interesting classes of polynomial functions by algebraic varieties, with the goal
of studying them theoretically and characterizing them computationally.

2 Polynomial Form of Nested Canalyzing Functions

In this section we briefly recall some definitions and results in [7], where a poly-
nomial form for nested canalyzing functions was derived. It was also shown there
that nested canalyzing functions are the same as unate cascade functions, a class
studied since the 1970’s in electrical engineering and computer science.

We first recall the definitions of canalyzing and nested canalyzing functions
from [9].

Definition 1. A canalyzing function is a Boolean function with the property
that one of its inputs alone can determine the output value, for either “true” or
“false” input. This input value is referred to as the canalyzing value, while the
output value is the canalyzed value.

Example 1. The function f(x, y) = xy is a canalyzing function in the variable x
with canalyzing value 0 and canalyzed value 0. However, the function f(x, y) =
x + y is not canalyzing in either variable.



18 A.S. Jarrah and R. Laubenbacher

Nested canalyzing functions are a natural specialization of canalyzing functions.
They arise from the question of what happens when the function does not get the
canalyzing value as input but instead has to rely on its other inputs. Throughout
this paper, when we refer to a function of n variables, we mean that f depends
on all n variables. That is, for 1 ≤ i ≤ n, there exists (a1, . . . , an) ∈ Fn

2 such
that f(a1, . . . , ai−1, ai, ai+1, . . . , an) �= f(a1, . . . , ai−1, 1 + ai, ai+1, . . . , an).

Definition 2. A Boolean function f in n variables is a nested canalyzing func-
tion(NCF) in the variable order x1, x2, . . . , xn with canalyzing input values a1,
. . . , an and canalyzed output values b1, . . . , bn, respectively, if it can be expressed
in the form

f(x1, x2, . . . , xn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 if x1 = a1,

b2 if x1 �= a1 and x2 = a2,

b3 if x1 �= a1 and x2 �= a2 and x3 = a3,
...

...
bn if x1 �= a1 and · · · and xn−1 �= an−1

and xn = an,

bn + 1 if x1 �= a1 and · · · and xn �= an.

Example 2. The function f(x, y, z) = x(y − 1)z is nested canalyzing in the
variable order x, y, z with canalyzing values 0, 1, 0 and canalyzed values 0, 0, 0,
respectively. However, the function f(x, y, z, w) = xy(z+w) is not a nested can-
alyzing function because if x �= 0 and y �= 0, then the value of the function is
not constant for any input values for either z or w.

It is shown in [7] that the ring of Boolean functions is isomorphic to the quotient
ring R = F2[x1, . . . , xn]/I, where I = 〈x2

i − xi : 1 ≤ i ≤ n〉. Indexing monomials
by the subsets of [n] := {1, . . . , n} corresponding to the variables appearing in
the monomial, we can write the elements of R as

R =
{ ∑

S⊆[n]

cS

∏
i∈S

xi : cS ∈ F2

}
.

As a vector space over F2, R is isomorphic to F2n

2 via the correspondence

R �
∑

S⊆[n]

cS

∏
i∈S

xi ←→ (c∅, . . . , c[n]) ∈ F2n

2 , (1)

for a given fixed total ordering of all square-free monomials. That is, a polynomial
function corresponds to the vector of coefficients of the monomial summands.
The main result in [7] is the identification of the set of nested canalyzing functions
in R with a subset V ncf of F2n

2 by imposing relations on the coordinates of its
elements.

Definition 3. Let σ be a permutation of the elements of the set [n]. We define
a new order relation <σ on the elements of [n] as follows: σ(i) <σ σ(j) if and
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only if i < j. Let rσ
S be the maximum element of a nonempty subset S of [n]

with respect to the order relation <σ. For any nonempty subset S of [n], the
completion of S with respect to the permutation σ, denoted by [rσ

S ], is the set
[rσ

S ] = {σ(1), σ(2), . . . , σ(rS)}.
Note that, if σ is the identity permutation, then the completion is [rS ] :=

{1, 2, . . . , rS}, where rS is the largest element of S.

Theorem 1. Let f ∈ R and let σ be a permutation of the set [n]. The polynomial
f is a nested canalyzing function in the order xσ(1), xσ(2), . . . , xσ(n), with input
values aσ(i) and corresponding output values bσ(i), 1 ≤ i ≤ n, if and only if
c[n] = 1 and, for any proper subset S ⊆ [n],

cS = c[rσ
S]

∏
σ(i)∈[rσ

S ]\S

c[n]\{σ(i)}. (2)

Corollary 1. The set of points in F2n

2 corresponding to nested canalyzing func-
tions in the variable order xσ(1), xσ(2), . . . , xσ(n), denoted by V ncf

σ , is defined by

V ncf
σ =

{
(c∅, . . . , c[n]) ∈ F2n

2 : (3)

c[n] = 1, cS = c[rσ
S]

∏
σ(i)∈[rσ

S ]\S

c[n]\{σ(i)}, for S ⊆ [n]
}
.

It was also shown in [7] that

V ncf =
⋃
σ

V ncf
σ .

In the next section we study the variety V ncf , whose points parametrize all nested
canalyzing functions in n variables.

3 The Variety of Nested Canalyzing Functions

Since F2 is a finite field, V ncf and V ncf
σ are algebraic varieties for all permutations

σ on [n]. We call V ncf the variety of nested canalyzing functions and V ncf
σ the

variety of nested canalyzing functions in the variable order xσ(1), . . . , xσ(n). As
mentioned earlier, the ideal of relations satisfied by the coefficients of a nested
canalyzing function can be viewed as an algebraic model of the class of nested
canalyzing functions. If this algebraic model has an interesting structure, then
it can be studied with the tools of algebra and algebraic geometry, and its prop-
erties can help gain insight into the class of nested canalyzing functions. Ideals
and their corresponding varieties are best studied over algebraically closed fields.
In this section we show that the variety V ncf

σ defined by the ideal of relations
over the algebraic closure F of F is the union of irreducible components, each
of which is defined by an ideal Iσ for a particular variable order. That is, Iσ is
a binomial prime ideal and, therefore, a toric ideal [18, p. 31]. Toric ideals and
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their varieties have much interesting structure, which can shed light on the class
of nested canalyzing functions.

We show that for all permutations σ on [n], the ideal of the variety V ncf
σ ,

denoted by Iσ := I(V ncf
σ ), is a binomial prime ideal in the polynomial ring

F2[{cS : S ⊆ [n]}], where F2 is the algebraic closure of F2, see [1, p. 62].

By the correspondence (1) and Corollary 1, the ideal Iσ ⊆
F2[{cS : S ⊆ [n]}]
〈c2S − cS : S ⊆ [n]〉

is generated by the relations (2). That is,

Iσ =
〈
c[n] − 1, cS − c[rσ

S]

∏
σ(i)∈[rσ

S ]\S

c[n]\{σ(i)} : S ⊂ [n]
〉
.

It is enough to show that the ideal Iid is prime, since Iσ becomes Iid after
permuting the indexing set [n] by σ.

Let T = {∅} ∪ {[r] : 1 ≤ r ≤ n} ∪ {[n] \ {i} : 1 ≤ i ≤ n}.

Theorem 2. Let φ : F2[{cS : S ⊆ [n]}] −→ F2[{cS : S ∈ T }]
〈c[n] − 1〉 such that, for

S ⊆ [n],

cS �→ c[rS]

∏
i∈[rS ]\S

c[n]\{i}.

Then
ker(φ) =

〈
c[n] − 1, cS − c[rS]

∏
i∈[rS ]\S

c[n]\{i} : S ⊂ [n] \ T
〉
.

Proof. By [1, Theorem 2.4.2] and the fact F2[{cS : S ∈ T }] ⊂ F2[{cS : S ⊆ [n]}],
it follows that ker(φ) is the binomial ideal generated by c[n] − 1 and the set of
all binomials cS − φ(cS) where S ⊆ [n]. That is,

ker(φ) = 〈cS − φ(cS) : S ⊆ [n]〉

=
〈
c[n] − 1, cS − c[rS ]

∏
i∈[rS ]\S

c[n]\{i} : S ⊂ [n]
〉
.

But φ(cS) = cS for all S ∈ T . Thus

ker(φ) =
〈
c[n] − 1, cS − c[rS]

∏
i∈[rS]\S

c[n]\{i} : S ⊂ [n], and S /∈ T
〉
.

��

Now, since
F2[{cS : S ∈ T }]

〈c[n] − 1〉 is an integral domain, the following is straightfor-

ward.

Corollary 2. The ideal Iid is a prime ideal in the ring F2[{cS : S ⊆ [n]}].
Consequently, for any permutation σ on [n], the ideal Iσ is prime in the ring
F2[{cS : S ⊆ [n]}]. In particular, the ideal of the variety V ncf is

I(V ncf) =
⋂
σ

Iσ.
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4 Discussion

Discrete models for cellular biochemical networks have shown considerable pro-
mise in applications. By comparison to dynamical systems described by differ-
ential equations, however, the mathematical theory of finite dynamical systems
is not well developed yet. The point of view of polynomial dynamical systems
over finite fields provides a well-developed computational and theoretical basis
with tools and concepts from algebra and algebraic geometry. The network infer-
ence algorithm in [12] capitalized on these tools. The description of the class of
nested canalyzing functions as an algebraic variety with a rich structure should
be viewed as a “proof-of-concept” result that interesting computational objects
that have been studied mostly from a statistical point of view can be modeled
by interesting mathematical objects in a rich mathematical context.
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Abstract. Membrane computing is a well developed branch of natural
computing, having as its goal to abstract computing models from the
structure and the functioning of the living cell. A recent vivid direction
of investigation in this area is devising models for and carrying out appli-
cations in biology/medicine and in other disciplines. We briefly present
here the basic ideas of membrane computing, its interest for modeling in
biology, as well as some applications.

1 An Quick Presentation of Membrane Computing

Membrane computing was initiated [10] as an attempt to learn something useful
to computer science from the structure and the functioning of the living cell
and from complexes of cells, such as tissues and neural nets. Thus, the resulting
research area developed initially as a branch of natural computing, investigating
ideas, models, data structures, computing devices/architectures of interest for
(theoretical) computer science, especially in what concerns the computing power
(in comparison with standard computing models, such as Turing machines and
restrictions of them) and the computing efficiency (the possibility to solve com-
putationally hard problems in a polynomial time). A large variety of models –
called P systems – were introduced, starting will cell-like systems, passing then
to tissue-like and population P systems, and, in the last time, also considering
(spiking) neural P systems.

Essentially, a P system is a distributed computing device, handling in a par-
allel way multisets of objects in the compartments defined by a cell-like or a
tissue-like architecture of membranes.

There are several important points here, most of them related to the biological
origin of this area of research.

First, the basic data structure used in this framework is the multiset (a set with
multiplicities associated with its elements). The starting point is the fact that
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in biochemistry “the multiplicity matters”, the bio-chemical reactions deal with
counted objects, swimming in a solution, without any spatial ordering of them.
Mathematically speaking, a multiset can be seen as a string modulo permutation,
and this has an important consequence: we do not have positional information,
only the number of copies of elements carries information. Thus, numbers are
represented in base one by means of multisets. The previous observation also
suggests a natural and compact representation of multisets: as strings, with
the convention that a string w actually represents the equivalence class of all
permutations of w (a string and any of its permutations represent the same
multiset and the number of occurrences of a symbol in a string indicates the
multiplicity of that symbol in the multiset; the empty multiset, the one with no
elements, is represented by the empty string, denoted here by λ).

Then, extending the bio-chemical metaphor, the multisets are processed by
means of “reactions”, written as multiset rewriting rules. Like in formal lan-
guage theory, we represent such a rule in the form u → v, where u and v are
strings representing multisets. Using such a rule for rewriting a multiset w means
removing (“consuming”) the elements indicated by u and adding the elements
indicated by v, in each case, with the corresponding multiplicities.

Third, the evolution of the process (the “computation”) is localized, by means
of membranes. Like in a cell, we have a hierarchical arrangement of membranes,
which determine compartments, “protected reactors”, where specific (multisets
of) objects evolve by means of specific evolution rules. In each compartment, all
objects which can evolve by the local rules should do it. Moreover, all compart-
ments of the system evolve simultaneously (a global clock is assumed, marking
the time for the whole system, that is, the system is synchronized). Thus, we
have two levels of parallelism, one for compartments and one for the objects
in each compartment. In each compartment, the rules to apply to the available
objects are chosen in a non-deterministic way.

The objects not only evolve, but they can also pass across membranes, thus
relating the processes taking place in adjacent compartments. In turn, also the
membranes can evolve, for instance, they can be dissolved (the contents of a
dissolved membrane is left free in the surrounding membrane), merged, divided,
created, etc.

Figure 1, which became a sort of logo of this area, illustrates the idea of a
cell-like membrane structure and the associated terminology.

The membrane architecture and the contents of its compartments describe
the configuration of the system. Using the rules as suggested above, we can pass
from a configuration to another one. This passage is called transition. A sequence
of transitions is called computation.

When interpreting a P system as a computing device, we have to specify an
input and an output, and, in most cases, the input and the output should be
numbers, encoded in multisets, hence in the multiplicity of certain objects. Sev-
eral possibilities exist: using a P system in the generative mode, like a grammar
(we start from an initial configuration and we collect all results of halting com-
putations), in the accepting mode, like an automaton (a number is introduced in
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Fig. 1. A membrane structure

the system in the form of the multiplicity of a specified object and this number
is accepted if the computation halts), or in the functional mode (an input is pro-
vided and an output is computed). A particular case of the last two possibilities
is to use a P system in the decidability mode: an instance of a decision problem
is introduced and the answer to this instance, yes or no, codified in a specified
way, is computed.

Strings can also be processed, by considering the ordering of objects which
enter and/or leave a system.

A lot of variants of P systems can be obtained by considering various forms of
the membrane structure (hierarchical or described by graphs of arbitrary forms),
types of objects (symbols as above, strings, arrays, and so on), forms of rules (be-
sides multiset rewriting rules, we have mentioned rules for handling membranes,
but we also have symport/antiport rules1 like in biology, or other rules for mov-
ing objects across membranes; in the case of string objects we need specific rules
for string manipulation), and ways to use the rules (maximally parallel, as sug-
gested above, with a limited parallelism, sequentially, in the minimally parallel
mode and so on).

1 Symport is the process of moving simultaneously two or more chemicals across a
membrane, through a protein channel, in the same direction, and antiport is the
process of moving two chemicals across a membrane in opposite directions. Math-
ematically, a symport rule is written in the form (u, in) or (u, out), meaning that
the objects from multiset u enter, respectively exit together the membrane, and an
antiport rule is given in the form (u, in; v, out), meaning that the objects of multiset
u enter and those of multiset v exit simultaneously the membrane. Of course, each of
these rules is applicable only if all the mentioned objects are present in the respective
compartments.
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We do not give here precise definitions, nor bibliographical details. The in-
terested reader can consult the monograph [11], the collective volume [3] (it
starts with a comprehensive introduction to membrane computing), as well as
the up-to-dated bibliography from [15] (many downloadable papers are avail-
able at this address, in particular, the pre-proceedings of most workshops on
membrane computing, as well as the proceedings of the brainstorming weeks on
membrane computing held up to now). An example of a P system (with symbol
objects, processed by multiset rewriting rules) is given in Appendix 1, both in
the formal way and in a graphical representation.

It is important to note at this stage the generality of the approach. We start
from the cell, but the abstract model deals with very general notions: membranes
interpreted as separators of regions, objects and rules assigned to regions; the
basic data structure is the multiset (a set with multiplicities associated with its
elements); the rules are used in the (non-deterministic) parallel manner, and in
this way we get sequences of transitions, hence computations. In such terms,
membrane computing can be interpreted as a bio-inspired framework for dis-
tributed parallel processing of multisets.

2 Classes of Theoretical Results

As we have mentioned before, membrane computing was much developed as a
branch of theoretical computer science, thus intensively investigating the power
and the efficiency of P systems.

In what concerns the first direction of research, we may say that “the cell
is a powerful computer” (and this is true also for cells organized in tissues or
other higher order structures). Specifically, many classes of P systems, combining
various ingredients (as described above or similar) are able of simulating Turing
machines, hence they are computationally complete. Always, the proofs of results
of this type are constructive, and this have an important consequence from
the computability point of view: there are universal (hence programmable) P
systems. In short, starting from a universal Turing machine (or an equivalent
universal device, for instance, a universal Minsky register machine), we get an
equivalent universal P system. Among others, this implies that in the case of
Turing complete classes of P systems, the hierarchy on the number of membranes
always collapses (at most at the level of the universal P systems). Actually, the
number of membranes sufficient in order to characterize the power of Turing
machines by means of P systems is always rather small. Universality results
were obtained both in the case of P systems working in the generating and the
accepting mode.

The computational power (the “competence”) is only one of the important
questions to be dealt with when defining a new (bio-inspired) computing model.
The other fundamental question concerns the computing efficiency. Because
P systems are parallel computing devices, it is expected that they can solve
computationally hard problems in an efficient manner – and this expectation is
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confirmed for systems provided with ways for producing an exponential
workspace in a linear time. Three main such biologically inspired possibilities
have been considered so far in the literature, and all of them were proven to lead
to polynomial (often, linear) solutions to NP-complete problems (and even to
still harder problems, such as PSPACE-complete problems).

These three ideas are membrane division, membrane creation, and string repli-
cation. The standard problems addressed in this framework were decidability
problems, starting with SAT, the Hamiltonian Path problem, the Node Covering
problem, but also other types of problems were considered, such as the problem
of inverting one-way functions, or the Subset-sum and the Knapsack problems
(note that the last two are numerical problems, where the answer is not of the
yes/no type, as in decidability problems).

There are a series of open problems in these areas, mainly related to the bor-
derline between universality and non-universality and between efficiency (the
possibility to solve computationally hard problems in polynomial time) and non-
efficiency. How many membranes, objects, rules, and which ingredients we need
in order to reach universality/efficiency? Many results were reported in the liter-
ature, but still many questions still wait to be solved. Because the focus of this
note is not on the theoretical researches/results, but on applications, we do not
enter into details and refer the reader to the titles mentioned in the bibliography
and, in general, to those available at [15].

We have not mentioned above a recent direction of research in membrane
computing inspired from neurology, namely, from the way neurons communicate
among each other by means of spikes; spiking neural P systems are a class of P
systems, introduced in [6] and much investigated in the last time (universality
is again obtained, but the complexity matters were only briefly investigated in
this case, while applications are still waited for).

3 Applications (In Biology)

As presented above, membrane computing does not deal with a system or a class
of computing systems, but it is a general framework for devising such devices.
Moreover, membrane computing proved to be a very useful framework for build-
ing models for biological applications. After a powerful abstract development,
the domain returned to the area where it was originating, and although the ini-
tial goal was not to model the cell and the processes taking place in it, now this
is a strong tendency and already a series of applications were reported proving
the usefulness of this approach.

There are many features of membrane computing which make it attractive for
applications in several disciplines, especially for biology.

First, there are several keywords which are genuinely proper to membrane
computing and which are of interest for many applications: distribution
(with the important system-part interaction, emergent behavior, non-linearly
resulting from the composition of local behaviors), algorithmicity (hence easy
programmability), scalability/extensibility (this is one of the main difficulties of
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using differential equations in biology), transparency (multiset rewriting rules
are nothing else than reaction equations as customarily used in chemistry and
bio-chemistry), parallelism (a dream of computer science, a common sense in
biology), non-determinism, communication (with the marvelous and still not
completely understood way the life is coordinating the many processes taking
place in a cell, in contrast with the costly way of coordinating/synchronizing
computations in parallel electronic computing architectures, where the commu-
nication time becomes prohibitive with the increase of the number of processors),
and so on and so forth.

Then, for biology, besides the easy understanding of the formalism and
the transparency of the (graphical and symbolic) representations, encouraging
should also be the simple observation that membrane computing emerged as a
bio-inspired research area, explicitly looking to the cell for finding computability
models (though, not looking initially for models of relevance for the biological
research), hence it is just natural to try to use these models in the study of
the very originating ground. This should be put in contrast with the attempt
to “force” models and tools developed in other scientific areas, e.g., in physics,
to cover biological facts, presumably of a genuinely different nature as those of
the area for which these models and tools were created and proven to be ad-
equate/useful. (This does not mean that membrane computing should be seen
as competing with differential equations as tools for bio-modeling, but only as
a complement to them, especially adequate in cases when we deal with small
populations of chemicals, hence the process is essentially discrete, or with slow
reactions.)

Now, in what concerns the applications themselves reported up to now, they
are developed at various levels. In many cases, what is actually used is the lan-
guage of membrane computing, having in mind three dimensions of this aspect:
(i) the long list of concepts either newly introduced, or related in a new manner
in this area, (ii) the mathematical formalism of membrane computing, and (iii)
the graphical language, the way to represent cell-like structures or tissue-like
structures, together with the contents of the compartments and the associated
evolution rules (the “evolution engine”).

However, this level of application/usefulness is only a preliminary, superficial
one. The next level is to use tools, techniques, results of membrane computing,
and here there appears an important question: to which aim? Solving problems
already stated, e.g., by biologists, in other terms and another framework, could
be an impressive achievement, and this is the most natural way to proceed –
but not necessarily the most efficient one, at least at a long term. New tools
can suggest new problems, which either cannot be formulated in a previous
framework (in plain language, as it is the case in biology, whatever specialized
the specific jargon is, or using other tools, such as differential equations) or
have no chance to be solved in the previous framework (see [8], [14] for more
discussions about this idea).

Applications of all these types were reported in the literature of membrane
computing. As expected and as natural, most applications were carried out in
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biology, but also applications in computer graphics (where the compartmental-
ization seems to add a significant efficiency to well-known techniques based on
L systems), linguistics (both as a representation language for various concepts
related to language evolution, dialogue, semantics, and making use of the paral-
lelism, in solving parsing problems in an efficient way), economics (where many
bio-chemical metaphors find a natural counterpart – see [12], with the mentioning
that the “reactions” which take place in economics, for instance, in market-like
frameworks, are not driven only by probabilities/stoichiometric calculations, but
also by psychological influences, which makes the modeling still more difficult
than in biology), computer science (in devising sorting and ranking algorithms),
cryptography, approximate algorithms for optimization problems, etc.

These applications are usually based on experiments using programs for simu-
lating/implementing P systems on usual computers, and there are already several
such programs, more and more elaborated (e.g., with better and better inter-
faces, which allow for the friendly interaction with the program). We avoid to
plainly say that we have “implementations” of P systems, because of the inherent
non-determinism and the massive parallelism of the basic model, features which
cannot be implemented, at least in principle, on the usual electronic computer
– but which can be implemented on a dedicated, reconfigurable, hardware, on a
local network, etc. This does not mean that simulations of P systems on usual
computers are not useful; actually, such programs were used in all biological
applications mentioned in this paper, and can also have important didactic and
research applications. An overview of membrane computing software reported
in literature (some programs are available in the web page [15]) can be found
in [3]. Several applications are presented in detail – software included – at [16]
and [17].

Of course, when using a P system for simulating a biological process we are
no longer interested in its computing behavior (power, efficiency, etc.), but in
its evolution in time; the P system is then interpreted as a dynamical system,
and its trajectories are of interest, its “life”. Moreover, the ingredients we use
are different from those considered in theoretical investigations. For instance, in
mathematical terms, we are interested in results obtained with a minimum of
premises and with weak prerequisites, while the rules are used in ways inspired
from automata and language theory (e.g., in a maximally or minimally parallel
way), but when dealing with applications the systems are constructed in such a
way to capture the features of reality (for instance, the rules are of a general form,
they are applied according to probabilistic strategies, based on stoichiometric
calculations, the systems are not necessarily synchronized, and so on).

Many applications in biology were presented at the seventh edition of Work-
shop on Membrane Computing, Leiden, The Netherlands, July 2006. The reader
is refereed to [5] for details. Just to have a flavor of the diversity of these
applications, we recall here some titles from this volume: Formalizing spheri-
cal membrane structures and membrane protein populations, A modeling ap-
proach based on P systems with bounded parallelism, Metabolic P approaches
to biochemical dynamics: biological rhythms and oscillations, Modeling signal
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transduction using P systems, Towards a hybrid metabolic algorithm, Tau leap-
ing stochastic simulation method in P systems, Mitotic oscillators as MP graphs,
A protein substructure based P system for description and analysis of cell
signalling networks.

The typical applications run as follows. One starts from a biological pro-
cess described in general in graphical terms (chemicals are related by reactions
represented in a graph-like manner, with special conventions for capturing the
context-sensitivity of reactions, the existence of promoters or inhibitors, etc.)
or already available in data bases in SBML (system biology mark-up language)
form; these data are converted into a P system which is introduced in a sim-
ulator; the way the evolution rules (reactions) are applied is the key point in
constructing this simulator (often, the classical Gilespie algorithm is used in
compartments, or multi-compartmental variants of it are considered); as a re-
sult, the evolution in time of the multiplicity of certain chemicals is displayed,
thus having a graphical representation of the interplay in time of certain chemi-
cals, their growth and decay, and so on. Many illustrations of this scenario can be
found in [5]. We also briefly recall in Appendix 2 a typical example of this kind,
from [7]. Much more complex processes were approached; for instance, in [13] one
works with 60 proteins, placed in three compartments (hence delimited by two
membranes) and linked by 160 reactions, which is already a process of a real-life
dimension. A similarly complex process is considered in [2]: 53 proteins, placed
in four compartments (environment, cell surface, cytoplasm, mitochondria) and
evolving by means of 99 reactions. A special case is that of investigations related
to quorum sensing in bacteria (see, e.g., [1] and the references therein): simu-
lations of populations of hundreds of bacteria were carried out (and the results
are again consistent with the experimental observations), but in order to give
relevant results to biologists it is necessary to scale-up to thousands of bacteria;
in theory, this is straightforward, but from the computational point of view this
needs much faster implementations than the existing ones.

This approach is especially interesting in the case of complex systems of bio-
chemical equations, with an intricate behavior of objects, involving cycles. Usu-
ally, the cycles induce a non-linear behavior of the system, hard – if not im-
possibly – to predict when simply examining the system. However, because P
systems of most types are universal, they are undecidable, hence no inquiry can
be answered algorithmically, just examining mathematically the system, and this
makes necessary the simulation on computer.

Most of the applications reported so far are of a “post-diction” type: one
takes data from the literature, either based on laboratory experiments or on
other types of models (e.g., differential equations), and one compares the results
given by the P system simulation with those already available, thus checking
whether the new approach is reliable (and this was always the case). The next
step – already done in a few cases – is that of “pre-diction”: working with
research data, with hypotheses, and providing results which are not known by
the biologist. A situation of this type is that from [9].
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Figure 2. We use catalytic rules (of the form ca → cu, where c is a catalyst,
a the object which evolves with the help of the catalyst, and u the multiset of
objects obtained from a) and non-cooperating rules (of the form a → u, with a
and u as above), as well as a rule with promoters, b2 → b2ein|b1 : the object b2
evolves to b2e only if at least one copy of object b1 is present in the same region;
b1 can simultaneously evolve by means of other rules.
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Fig. 2. A P system with catalysts and promoters

Formally, the system is given as follows (thus, we also introduce the usual way
of presenting the components of a P system, in particular, the representation of
a membrane structure by means of an expression of correctly matching labeled
square brackets):

Π = (O,C, μ, w1, w2, R1, R2, io), where:
O = {a, b1, b′1, b2, c, e} (the set of objects)
C = {c} (the set of catalysts)
μ = [1 [2 ]2 ]1 (membrane structure)

w1 = c (initial objects in region 1)
w2 = λ (initial objects in region 2)
R1 = {a→ b1b2, cb1 → cb′1, b2 → b2ein|b1} (rules in region 1)
R2 = ∅ (rules in region 2)
io = 2 (the output region).

Note the target indication in present in the rule b2 → b2ein|b1 : the object e
produced by using this rule has to immediately go to the inner membrane (an-
other target indication can be out, meaning that the respective object has to
immediately go outside the membrane where the rule was applied; having such
an indication in the skin region will send the respective object into the environ-
ment; all objects without an explicit target indication are supposed to have the
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indication here, meaning that they remain in the same region where the rule is
applied).

The rules are applied in the maximally parallel way: in each step, each object
which can evolve must do it.

We start with only one object in the system, the catalyst c. If we want to
compute the square of a number n, then we have to input n copies of the object
a in the skin region of the system. In that moment, the system starts working,
by using the rule a → b1b2, which has to be applied in parallel to all copies of
a; hence, in one step, the n copies of object a are replaced by n copies of b1
and n copies of b2. From now on, the other two rules from region 1 can be used.
The catalytic rule cb1 → cb′1 can be used only once in each step, because the
catalyst is present in only one copy. This means that in each step one copy of
b1 gets primed. Simultaneously (because of the maximal parallelism), the rule
b2 → b2ein|b1 should be applied as many times as possible and this means n
times, because we have n copies of b2. Note the important difference between
the promoter b1, which allows using the rule b2 → b2ein|b1 , and the catalyst c:
the catalyst is involved in the rule, it is counted when applying the rule, while
the promoter makes possible the use of the rule, but it is not counted; the same
(copy of an) object can promote any number of rules. Moreover, the promoter
can evolve at the same time by means of another rule (the catalyst is never
changed).

In this way, in each step we change one b1 to b′1 and we produce n copies of e
(one for each copy of b2); the copies of e are sent to membrane 2 (the indication in
from the rule b2 → b2ein|b1). The computation should continue as long as there
are applicable rules. This means exactly n steps: in n steps, the rule cb1 → cb′1
will exhaust the objects b1 and after n steps neither this rule can be applied,
nor b2 → b2ein|b1 , because its promoter does no longer exist. Consequently, in
membrane 2, considered as the output membrane, we get n2 copies of object e.

Note that the computation is deterministic, always the next configuration
of the system is unique, and that, changing the rule b2 → b2ein|b1 with b2 →
b2eout|b1 , the n2 copies of e will be sent to the environment, hence we can read
the result of the computation outside the system, and in this case membrane 2
is useless.

A2: An Illustrative Application
We now briefly present an example of an application of membrane computing
in modeling (and simulating) a biological phenomenon recalled from [7]. It deals
with the mitotic oscillator in amphibian embryos. One starts from the represen-
tation of this oscillator given in [4], in the form presented in Figure 3.

One identifies here several objects linked through several reactions. These
reactions can be formalized as multiset rewriting rules as shown in Table 1. We
have both “non-cooperative” rules (having only one object in their left-hand
side) and “cooperative” rules (with two or more objects reacting and getting
transformed into other objects). With each rule one also specifies its reactivity,
as given in [4]. (Actually, the passage from the description of the process as given
in Figure 3 to the rules of the P system from Table 1 is done in [7] by means
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Fig. 3. The mitotic oscillator from [4]

Table 1. The evolution rules describing the reactions from Figure 3

r1 : λ → C f1 = vi

r2 : XC → X f2 = vd/kd + c
r3 : C → λ f3 = Kd

r4 : M+C → MC f4 = VM1/(Kc + c)(K1 + m+)
r5 : M → M+ f5 = V2/(K2 + m)
r6 : X+M → XM f6 = V3/(K3 + x+)
r7 : X → X+ f7 = V4/(K4 + x)

Table 2. A non-cooperative system equivalent to the system from Table 1

r1 : λ → C f1 = vi

r′
2 : C → X f2 = vd · x/kd + c

r′′
2 : X → λ f2 = vd · c/kd + c

r3 : C → λ f3 = Kd

r′
4 : C → MC f4 = VM1 · m+/(Kc + c)(K1 + m+)

r′′
4 : M+ → λ f4 = VM1 · c/(Kc + c)(K1 + m+)

r5 : M → M+ f5 = V2/(K2 + m)
r′
6 : X+ → XM f6 = V3 · m/(K3 + x+)

r′′
6 : M → λ f6 = V3 · x+/(K3 + x+)

r7 : X → X+ f7 = V4/(K4 + x)

of a so-called MP-graph, a graph-based formalism for representing bio-chemical
interactions introduced by Verona team and presented/investigated in a series
of papers of this team; we skip the details, technical and bibliographical, and
refer the reader to titles available at [15].)
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Fig. 4. The evolution of the P system from Tables 1, 2

We have here a P system with only one membrane, where objects C,X,M,
X+,M+ evolve according to rules r2, . . . , r7; rule r1 is meant to feed the system
with copies of C, according to the reaction rate indicated by f1.

This system is equivalent (in terms of its evolution in time) with the system
having the non-cooperative rules given in Table 2.

The evolution of this system (simulated by means of a software realized in
Verona by Luca Bianco – see his PhD thesis available at [15]) is given in Figure 4.
The oscillations are rather similar to those found in [4] by means of handling a
system of differential equations.
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Abstract. In 1973 R. Thomas introduced a logical approach to model-
ing and analysis of bioregulatory networks. Given a set of Boolean func-
tions describing the regulatory interactions, a state transition graph is
constructed that captures the dynamics of the system. In the late eight-
ies, Snoussi and Thomas extended the original framework by including
singular values corresponding to interaction thresholds. They showed
that these are needed for a refined understanding of the network dynam-
ics. In this paper, we study systematically singular steady states, which
are characteristic of feedback circuits in the interaction graph, and relate
them to the type, number and cardinality of attractors in the state tran-
sition graph. In particular, we derive sufficient conditions for regulatory
networks to exhibit multistationarity or oscillatory behavior, thus giving
a partial converse to the well-known Thomas conjectures.

1 Introduction

Suggested more than 30 years ago, the logical approach to modeling bioregula-
tory networks has become increasingly popular in the recent past. In the Boolean
setting, components of the networks correspond to variables, which can take the
values 0 and 1. Interactions between the components are described by logical
equations capturing the evolution of the system. R. Thomas contributed a num-
ber of papers on the logical analysis of biological networks, starting with [10].
The distinctive feature of his method is the way he derives a representation of
the dynamics from the given Boolean functions. Rather than executing all indi-
cated changes in the components at the same time, an asynchronous updating
rule is employed to obtain a non-deterministic state transition graph. It has been
shown that this approach captures essential qualitative features of the dynamical
behavior of complex biological networks, see [11] and [12] for an overview.

In the following years the framework was extended to allow not only for
Boolean but multi-valued variables that describe different activity levels of the
regulatory components in the network. Each interaction in the network was as-
sociated with a unique threshold value, which determines when the interaction
becomes effective. Snoussi and Thomas realized that a closer inspection of the
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impact of the threshold values, which they called singular values, would further
improve the understanding of the system’s dynamics. In [8] they introduced the
notion of singular steady states and linked them to feedback circuits in the in-
teraction graph describing the structure of the network. The importance of feed-
back circuits for the analysis of the dynamical behavior has long been recognized.
Thomas conjectured in 1981 that the existence of a positive (resp. negative) cir-
cuit, in the interaction graph is a necessary condition for the existence of two
distinct attractors (resp. a cyclic attractor) in the state transition graph. The
conjectures have been proven in different settings (see e.g. [9], [4] and [5]). In [2]
it is shown, that isolated elementary regulatory circuits result in fundamentally
different dynamics depending on their sign. A positive circuit can be linked to
the occurrence of two stable states, while a negative circuit causes an attractor
comprising dynamical cycles. However, the situation becomes more difficult to
grasp as soon as the circuits are embedded in larger and more complex networks.

When trying to incorporate Snoussi’s and Thomas’ idea of singular states
in a Boolean framework, we are faced with several difficulties. On this level
of abstraction, every interaction is associated with the same threshold value,
a symbolic value between 0 and 1. Thus when crossing the threshold we do
not have the advantage of knowing that one and only one interaction becomes
effective. As a result we cannot link singular states to circuits in the interaction
graph in a non-ambiguous way, while still preserving some essential features
known from the multi-valued setting. Despite those complications and the high
level of abstraction, this paper shows that the introduction of singular states in
the Boolean case is a useful tool for refining our understanding of the relation
between structure and dynamics of bioregulatory networks.

The organization of the paper is as follows. In Section 2 we give a short
overview of the Boolean description of biological networks and introduce the
notion of an attractor of a state transition graph. In Section 3 we extend the
framework by establishing the concept of singular states. We give different char-
acterizations of singular steady states using the notion of circuit characteristic
states and regular adjacent states. In the main section of this paper, we prove
several statements that allow us to derive information on the attractors of the
state transition graph from the existence of singular steady states. Conversely,
we can deduce the existence of a singular steady state if we have specific knowl-
edge about the attractors of the state transition graph. We conclude by outlining
ideas for future work.

2 Structure and Dynamics of Regulatory Networks

In the following we introduce the Boolean formalism of R. Thomas for mod-
eling regulatory networks (see for example [11]). We mainly use the notation
introduced in [1] and [6]. Throughout the text B will denote the set {0, 1}.
Definition 1. An interaction graph (or bioregulatory graph) I is a labeled di-
rected graph with vertex set V := {α1, . . . , αn}, n ∈ IN, and edge set E. Each
edge αj → αi is labeled with a sign εij ∈ {+,−}.
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The only information on a regulatory component we incorporate in the model
for now is whether or not it is active. A vertex αi can be seen as a variable that
adopts values in B, where the value 1 indicates that αi is active. To simplify
notation, we identify each vertex αi with its index i.

An edge αj → αi signifies that αj influences αi in a positive or negative
way depending on the sign εij . For each αi we denote by Pred(αi) the set of
predecessors of αi, i. e., the set of vertices αj such that αj → αi is an edge in E.

We will be mainly interested in the following structures of the interaction
graph. A tuple (αi1 , . . . , αik

) of distinct vertices of I is called a circuit if I
contains an edge from αij to αij+1 for all j ∈ {1, . . . , k − 1} as well as an edge
from αik

to αi1 . The sign of a circuit is the product of the sign of its edges.
Definition 1 captures structural aspects of the network. Now we consider the

corresponding dynamical behavior.

Definition 2. Let I be an interaction graph comprising n vertices. A state of
the system described by I is a tuple s ∈ Bn. The set of (regular) resources
Ri(s) = RI

i (s) of αi in state s is the set

{αj ∈ Pred(αi) | (εij = + ∧ sj = 1) ∨ (εij = − ∧ sj = 0)}.

Given a set
K(I) := {Ki,ω | i ∈ {1, . . . , n}, ω ⊆ Pred(αi)}

of (logical) parameters, which adopt values in B, we define the Boolean function
f = fK(I) : Bn → Bn, s �→ (K1,R1(s), . . . ,Kn,Rn(s)). The pair N := (I, f) is
called bioregulatory network.

The set of resources Ri(s) provides information about the presence of activators
and the absence of inhibitors for some regulatory component αi in state s. It
contains all genes that contribute to an activation of αi in state s. Note that
the absence of an inhibitor is interpreted as an activating influence on the target
gene. The value of the parameter Ki,Ri(s) indicates how the level of activity
αi will evolve. It will increase ( resp. decrease) if the parameter value is greater
(resp. smaller) than si. The activity level stays the same if both values are equal.
Thus, the function f maps a state s to the state the system tends to evolve to.
Snoussi and Thomas posed the following condition on the parameter values of
the systems they considered:

ω ⊆ ω′ ⇒ Ki,ω ≤ Ki,ω′ (1)

for all i ∈ {1, . . . , n}. The condition signifies that an effective activator or a
non-effective inhibitor cannot induce the decrease of the activity level of αi. In
the following we always assume that this condition is valid.

The choice of parameters completes the definition of the model given by the
graph I. Depending on their values, edges in the graph may or may not be
functional in the following sense. Clearly, if there is an edge αj → αi and Ki,M =
Ki,M\{αj} for all M ⊆ Pred(αi), then the edge αj → αi has no influence on
the dynamics of the system. Eliminating this edge from the interaction graph
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α1 α2+

−

+

α1 α2
+ (0, 0) (1, 0)

(1, 1)(0, 1)

(0, 0) (1, 0)

(1, 1)(0, 1)

Fig. 1. Two interaction graphs consisting of a positive resp. a negative circuit. In both
cases we choose K1,{2} = K2,{1} = 1 and K1,∅ = K2,∅ = 0. The state transition graph
corresponding to the positive circuit is in the middle, the one corresponding to the
negative circuit is on the right. Attractors are indicated by colored, fat lines.

does not change the function f . Thus we may assume for every N = (I, f) that
whenever there is an edge αj → αi in I, there exists a set M ⊆ Pred(αi) such
that Ki,M �= Ki,M\{αj}.

To derive the dynamics of the system from the function f we take the following
consideration into account. In a biological system, the time delays corresponding
to changes in the activity level of distinct components will most likely differ. Thus
we may assume that in each state transition at most one component is modified.
This procedure is called asynchronous update in Thomas’ framework. We obtain
the following definition.

Definition 3. The state transition graph SN describing the dynamics of the
network N is a directed graph with vertex set Bn. There is an edge s→ s′ if and
only if s′ = f(s) = s or s′i = fi(s) for some i ∈ {1, . . . , n} satisfying si �= fi(s)
and s′j = sj for all j �= i.

In the following we introduce some basic structures in this graph that are of
biological interest. In addition we use standard terminology from graph theory,
such as paths and cycles.

Definition 4. Let SN be a state transition graph. An infinite path (s0, s1, . . . )
in SN is called trajectory. A nonempty set of states D is called trap set if every
trajectory starting in D never leaves D. A trap set A is called attractor if for
any s1, s2 ∈ A there is a path from s1 to s2 in SN . A state s0 is called steady
state, if s0 is a fixed point of f , that is, if there is an edge from s0 to itself. A
cycle C := (s1, . . . , sr, s1), r ≥ 2, is called a trap cycle if every sj, j ∈ {1, . . . , r},
has only one outgoing edge in SN , i. e., the trajectory starting in s1 is unique.

Thus, the attractors of SN correspond to the terminal strongly connected com-
ponents of the graph. It is easy to see that steady states and trap cycles are
attractors. In Figure 1 we show two simple interaction graphs. The positive cir-
cuit generates a state transition graph with two steady states. The graph derived
from the negative circuit consists of a trap cycle, that is, we find an attractor of
cardinality greater than one. This corresponds to the typical behavior assigned
to positive (resp. negative) circuits mentioned in the introduction.

Attractors represent regions of predictability and stability in the behavior
of the system. It is not surprising that an attractor often has a biological
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interpretation. A fixed point in a gene regulatory network associated with cell
differentiation, for example, may represent the stable state reached at the end
of a developmental process. Attractors of cardinality greater than one imply
cyclic behavior, and thus can often be identified with homeostasis of sustained
oscillatory activity, as can be found in the cell cycle or circadian rhythm.

The following proposition is an easy observation concerning attractors.

Proposition 1. Every state transition graph SN contains at least one attractor.

Proof. For s ∈ Bn we denote by D(s) the set of states reachable from s by a
path in SN . Then D(s) is a trap set for every s ∈ Bn. Fix s ∈ Bn and choose
A ⊆ D(s) a minimal trap set, i. e., every proper subset of A is not a trap set.
Let x, y ∈ A. Then D(x) ⊆ A, since A is a trap set. Since A is minimal, we have
A = D(x). Consequently, there is a path from x to y. Thus, A is an attractor. ��

Note that the above proof shows that for every state in the state transition graph
there is a trajectory leading to an attractor.

The number of states in the state transition graph grows exponentially with
the number of regulatory components in N . Thus our aim is to infer from re-
strictions of f to sets of vertices obtained by considering certain subgraphs of I
as much information on the structure of SN as possible.

3 Singular States

In the following, we incorporate threshold values of interactions into the formal-
ism to get a more complete understanding of the dynamics of the system. We
mainly use the framework introduced in [6].

Definition 5. Set Bθ := {0, θ, 1}, where θ is a symbolic representation of the
threshold value and satisfies the order 0 < θ < 1. We allow each regulatory
component αi to take values in Bθ. The values 0 and 1 are called regular values
and θ is called singular value. The elements of Bn

θ are called states. If a state
comprises only regular components it is called regular state. Otherwise it is called
singular state. For every state s we define J(s) := {i ∈ {1, . . . , n} | si = θ}.
To describe the dynamics of the system we have to extend the definition of
resources.

Definition 6. Let s ∈ Bn
θ . In addition to the set Ri(s) of regular resources

introduced in Definition 2, we define the set Rθ
i (s) of singular resources of αi in

s as the set
Rθ

i (s) := {αj ∈ Pred(αi) | sj = θ}.
The definition of a set of logical parameters K(I) remains the same as in Defi-
nition 2. In particular, the logical parameters can only adopt regular values.

We call |a, b| a qualitative value if a, b ∈ B and a ≤ b. The qualitative value
|0, 0| is identified with the regular value 0, |1, 1| with the regular value 1, and
|0, 1| with the singular value θ. The relations <, >, and = are used with respect
to this identification.
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Definition 7. Let K(I) be a set of parameters. We define

fθ = fK(I),θ : Bn
θ → Bn

θ by fθ
i (s) = |Ki,Ri(s),Ki,Ri(s)∪Rθ

i (s)|

for all i ∈ {1, . . . , n}.

The map fθ is well defined since condition (1) ensures that Ki,Ri(s) ≤
Ki,Ri(s)∪Rθ

i (s) for all i ∈ {1, . . . , n}. Note that whenever s is a regular state,
then fθ(s) is regular, too, since any set of singular resources in a regular state
is empty. We have fθ(s) = f(s) for all s ∈ Bn. Thus the state transition graph
corresponding to N = (I, f) is consistent with fθ. Extending the definition in
the previous section, we call s ∈ Bn

θ a steady state if fθ(s) = s. The notion of
functionality of an edge remains the same as in Section 2. We consider only those
edges that effectively influence the dynamical evolution of the system.

We may relate a singular state s to structures in the interaction graph I by
considering the subgraphs of I induced by the vertices αj with singular values,
that is j ∈ J(s). The following definition proves useful and was first introduced
by E. H. Snoussi in [8], albeit in a different framework. The remainder of this
section adapts ideas presented in [8].

Definition 8. Let C = (αi1 , . . . , αir ) be a circuit in I. A state s ∈ Bn
θ is called

characteristic state of C if sil
= θ for all l ∈ {1, . . . , r}.

A characteristic state of a circuit is not unique unless all the regulatory compo-
nents of the network are contained in the circuit. In this case the state (θ, . . . , θ)
is the unique characteristic state. Obviously, the state (θ, . . . , θ) is characteristic
of each circuit in I.

Another simple observation is the following. Whenever Rθ
j (s) �= ∅ holds for

all singular components j ∈ J(s), the state s is characteristic of some circuit in
I. This is due to the fact that every resource of some regulatory component αi

is a predecessor of αi and that there are only finitely many components in the
network. With that in mind we can easily prove the next statement.

Theorem 1. Every singular steady state is characteristic of some circuit in I.

Proof. Let s be a singular state that is not characteristic of any circuit in I.
Then there is i ∈ {1, . . . , n} such that si = θ and Rθ

i (s) = ∅. It follows that
fθ

i (s) = |Ki,Ri(s),Ki,Ri(s)| = Ki,Ri(s) �= θ = si, since the parameters take only
regular values. Thus s is not a steady state. ��

If the network consists of a single circuit, then the corresponding characteristic
state is always steady under our standard assumption that every edge in the
graph is functional. As mentioned before, such a circuit displays a characteristic
behavior depending on its sign. In general, the existence of a steady characteristic
state of a circuit does not always result in the corresponding dynamical behavior,
as will be illustrated in the next section.

It is possible to give a characterization of the singular steady states using only
regular states and the function f .
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Definition 9. Let s ∈ Bn
θ and k ∈ {1, . . . , n}. Let sk,+ and sk,− be regular states

that satisfy sk,+
i := sk,−

i := si for all i /∈ J(s) and

sk,+
i :=

{
1 , εki = +
0 , εki = − and sk,−

i :=
{

1 , εki = −
0 , εki = + (2)

for all i ∈ J(s) satisfying αi ∈ Rθ
k(s). Then sk,+ and sk,− are called a maximal

resp. minimal adjacent state of s with respect to k.

There are generally many states sk,+, sk,− that satisfy the above conditions.
If the sets Rθ

k(s), k ∈ {1, . . . , n}, are disjoint, then we can define states s+

and s− which are maximal resp. minimal adjacent states of s with respect to
every k ∈ {1, . . . , n}. If, in addition, the union of all sets Rθ

k(s) is equal to the
set {αj ; j ∈ J}, then s+ and s− are unique and are called the maximal resp.
minimal adjacent state of s.

Theorem 2. A state s ∈ Bn
θ is steady iff for all k ∈ {1, . . . , n} there is some

choice of sk,+, sk,− such that fk(sk,+) = sk,+
k = sk,−

k = fk(sk,−), if k /∈ J(s),
and fk(sk,−) < θ < fk(sk,+), if k ∈ J(s).

Proof. We show that Rk(sk,+) = Rk(s) ∪ Rθ
k(s) and Rk(sk,−) = Rk(s) for all

k ∈ {1, . . . , n}. First, let αi ∈ Rk(sk,+). Then αi is a predecessor of αk. If
i /∈ J := J(s), then si = sk,+

i , and thus αi ∈ Rk(s). If i ∈ J , we have si = θ,
and thus αi ∈ Rθ

k(s). Now, let αi ∈ Rk(s) ∪ Rθ
k(s). Again αi ∈ Pred(αk). If

αi ∈ Rk(s), then i /∈ J . It follows that si = sk,+
i , and thus αi ∈ Rk(sk,+). If

αi ∈ Rθ
k(s), then αi ∈ Rk(sk,+) according to (2). Analogous reasoning provides

the second statement.
Now, suppose that the last condition of the theorem is true. Then fθ

k (s) =
|Kk,Rk(s),Kk,Rk(s)∪Rθ

k(s)| = |Kk,Rk(sk,−),Kk,Rk(sk,+)| = |fk(sk,−), fk(sk,+)| for
all k ∈ {1, . . . , n}. According to the assumption we have |fk(sk,−), fk(sk,+)| =
sk,+

k = sk for k /∈ J , and |fk(sk,−), fk(sk,+)| = |0, 1| = sk for all k ∈ J . Thus s is
a steady state. Similar reasoning can be used to show the inverse statement. ��

The theorem and the definition of sk,+ and sk,− imply that whenever every regu-
latory component in the network can be influenced in its behavior by some other
regulatory components, the state containing only singular entries is a steady
state. In other words, if for every αk we have Kαk,∅ = 0 and Kαk,Pred(αk) = 1,
then the state (θ, . . . , θ) is a steady state.

4 Relating Singular Steady States and Attractors

We have seen that singular steady states can be characterized by regular states
and that they are closely related to circuits in the interaction graph. In the
following we show what kind of information on the state transition graph can
be inferred from the existence of a singular steady state. First, we need some
additional notations.
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Let s ∈ Bn
θ be a singular state. Recall that J(s) is the set of indices corre-

sponding to the singular values of s and that we identify each vertex αi with
its index i. With Iθ(s) we denote the graph with vertex set V θ(s) := J(s) and
edge set Eθ(s) consisting of those {αi, αj} with i, j ∈ J(s) such that αi → αj

or αj → αi is an edge in I. The graph Iθ(s) is undirected. It represents the
existence of a dependency between singular components, without specifying the
type of interaction. A (connected) component of Iθ(s) is a maximal connected
subgraph of Iθ(s). By abuse of notation we denote the vertex set of a compo-
nent Z of Iθ(s) also with Z. Vertices of different components of Iθ(s) represent
regulatory components in I that do not influence each other directly. Figure 2
illustrates the concept on a small example. Let C be a circuit composed of ver-
tices in J(s). Then there is a component of Iθ(s) which contains the vertices of
C. We denote this component by JC(s).

The next lemma shows that for a singular steady state s value changes in a
component of Iθ(s) do not influence the image fθ(s) outside that component.
It will play an important role in all the following considerations.

Lemma 1. Let s be a singular steady state, and let Z1, . . . , Zm be the compo-
nents of Iθ(s). Consider a union Z of arbitrary components Zj. Let s̃ ∈ Bn

θ such
that s̃i = si for all i /∈ Z. Then fθ

i (s̃) = fθ
i (s) = si = s̃i for all i /∈ Z.

Proof. For i ∈ J(s)\Z we know that Ri(s) = Ri(s̃) and Rθ
i (s) = Rθ

i (s̃), since no
element of Z is a predecessor of αi. Thus fθ

i (s̃) = fθ
i (s) = si for all i ∈ J(s) \Z.

For i /∈ J(s) we have Ri(s) ⊆ Ri(s̃), since a singular resource of αi may have
turned into a regular resource. In addition, Ri(s̃)∪Rθ

i (s̃) ⊆ Ri(s)∪Rθ
i (s), since

a singular resource of αi might have been eliminated by turning its value to
a regular value not contributing to activation. In summary we obtain Ri(s) ⊆
Ri(s̃) ⊆ Ri(s̃) ∪Rθ

i (s̃) ⊆ Ri(s) ∪Rθ
i (s) and with condition (1) we derive

Ki,Ri(s) ≤ Ki,Ri(s̃) ≤ Ki,Ri(s̃)∪Rθ
i (s̃) ≤ KRi(s)∪Rθ

i (s).

Moreover, Ki,Ri(s) = Ki,Ri(s)∪Rθ
i (s), since fθ

i (s) = si. Thus the above inequality
becomes an equality and fθ

i (s̃) = Ki,Ri(s) = si = s̃i for all i /∈ J(s). ��

The above lemma allows us to focus on the possible dynamical behavior in
the isolated parts of the biological network corresponding to the components
Z1, . . . , Zm and leads us to the following theorem.

Theorem 3. For every singular steady state s there is an attractor A in SN

such that ui = si holds for all u ∈ A and i /∈ J(s).

Proof. Set P := {x ∈ Bn | ∀i /∈ J(s) : xi = si}. Then fi(x) = xi = si for all
i /∈ J(s) according to Lemma 1, i. e., f(x) ∈ P . Thus all successors of x in SN are
also in P . It follows that P is a trap set. Like in the proof of Prop. 1 we deduce
that P contains an attractor A, and ui = si for all u ∈ A and i /∈ J(s). ��

It is not difficult to see that we can derive such an attractor A from attractors
A1, . . . , Ak arising in the system’s dynamical behavior restricted to the compo-
nents Z1, . . . , Zk of Iθ(s). To illustrate this we examine the example given in
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α1 α2

α3

+

−
fθ((θ, θ, 1)) = (θ, θ, 1) =: s

K1,∅ = K2,∅ = K3,∅ = 0
K1,{1} = K2,{2} = 1
K3,{1} = K3,{2} = K3,{3} = 1

+

++

I

α1 α2

Iθ(s)

Fig. 2. An interaction graph I and a specification of the parameters. Missing parameter
values follow from condition (1). The graph Iθ(s) for s := (θ, θ, 1) has two components.

Figure 2. The state (θ, θ, 1) is steady, the components of Iθ(s) are Z1 = {α1}
and Z2 = {α2}. We consider the dynamics restricted to Z1 given by the pro-
jection f (Z1) : B → B, x �→ fθ

1 (x, θ, 1). It generates a state transition graph
that consists of a cycle comprising the states 0 and 1. Thus it has a single
attractor A1 = {0, 1}. The state transition graph corresponding to the anal-
ogously defined function f (Z2) consists of the two attractors A1

2 = {0} and
A2

2 = {1}. According to Lemma 1, the value of the third component of s will
remain fixed, regardless of the values of the first two components. Thus we can
derive two attractors in SN , namely A1 = A1 × A1

2 × {s3} = {(0, 0, 1), (1, 0, 1)}
and A2 = A1 ×A2

2 × {s3} = {(0, 1, 1), (1, 1, 1)}.
We have seen above that we can link a singular steady state to a regular

attractor. However, different singular steady states s1 and s2 may give rise to the
same regular attractor. The above proof shows that this possibility is precluded
if s1 and s2 differ in a component i /∈ J(s1) ∪ J(s2).

A more precise analysis of the correspondence of attractors and singular steady
states is possible if we take into account structural information on the underlying
interaction graph I. In the preceding section we have seen that every singular
steady state s is characteristic of some circuit C of the interaction graph I. If
we know in addition that s is not characteristic of any other circuit in I with
vertices in the connected component JC(s) of Iθ(s), we can derive information
on the singular valued predecessors of vertices belonging to C. This is shown in
the next lemma.

Lemma 2. LetC = (αi1 , . . . , αim) be a circuit in I and let s be a steady character-
istic state of C. Assume that C is the only circuit in I with all its vertices contained
in JC(s). Then Rθ

ij
(s)={αij−1} for all j∈{1, . . . ,m}with indices taken modulo m.

Proof. Set J := J(s) and JC := JC(s). Clearly, αij−1 ∈ Rθ
ij

(s) for all j ∈
{1, . . . ,m}. Assume that there is k ∈ {1, . . . ,m} such that there exists l ∈ J
satisfying αl �= αik−1 and αl ∈ Rθ

ik
(s). Then αl ∈ Pred(αik

) and thus l ∈ JC . If
l = ij for some j �= k − 1, then (αij , αik

, . . . , αij−1 ) is a circuit other than C in
JC . This contradicts the hypothesis. Thus αl is not a vertex of C.

Since s is a steady state, we know that Rθ
j (s) �= ∅ for all j ∈ J . Furthermore,

Rθ
j (s) ⊆ JC for all j ∈ JC . Thus for every j ∈ JC we find i ∈ JC , such that

αi → αj is an edge in I. Since there are only finitely many vertices in JC , there
is a circuit in {αj ∈ JC ; ∃ path from αj to αl in I} that differs from C. Again,
this leads to a contradiction. ��
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Note that there may be vertices in JC(s) that have more than one singular
resource. Lemma 2 allows us to represent JC(s) by a chain of nested sets.

Lemma 3. Under the hypotheses of Lemma 2, there exist sets M1, . . . ,Ml ⊆
JC(s) such that M1 = {i1, . . . , im}, Ml = JC(s), Mi � Mi+1 and Rθ

j (s) ⊆ Mi

for all j ∈Mi+1 and i ∈ {1, . . . , l− 1}.

Proof. Set M1 := {i1, . . . , im}. If JC(s) \M1 �= ∅, then there exists at least one
element j ∈ JC(s)\M1 such that Rθ

j (s) ⊆M1. Otherwise for every j ∈ JC(s)\M1

there is kj ∈ JC(s) \M1 such that αkj is a predecessor of αj in I. That would
imply the existence of a circuit other than C in JC(s), since JC(s) \M1 is finite.
Thus by defining M2 := {j ∈ JC(s) ; Rθ

j (s) ⊆ M1} we obtain a set strictly
containing M1. Since JC(s) is finite, we can repeat the procedure until we get
Ml := {j ∈ JC(s) ; Rθ

j (s) ⊆Ml−1} = JC(s). ��

In the following we make use of the information on the sign of the circuit C.

Theorem 4. Let C be a positive circuit in I and let s be a steady characteristic
state of C. Assume that C is the only circuit in I with all its vertices contained
in JC(s). Then fθ has at least three fixed points.

Proof. Set J := J(s) and JC := JC(s). Without loss of generality we may assume
that C = (α1, . . . , αr) for some r ∈ {1, . . . , n}. We determine states s0, s1 ∈ Bn

θ

by an iterative process such that s, s0 and s1 are fixed points of fθ. Initially, we
set s0

i := s1
i := si for all i /∈ JC and choose the other components of s0 and s1

arbitrary.
From Lemma 1 it follows that fθ

i (s0) = s0
i and fθ

i (s1) = s1
i for all i /∈ JC .

Next, we define the values s0
i and s1

i for i ∈ {1, . . . , r}. We set s0
1 := 0, s1

1 := 1,
and for l ∈ {0, 1}

sl
i+1 :=

{
0 , (sl

i = 0 ∧ εi+1,i = +) ∨ (sl
i = 1 ∧ εi+1,i = −)

1 , (sl
i = 1 ∧ εi+1,i = +) ∨ (sl

i = 0 ∧ εi+1,i = −)

for all i ∈ {1, . . . , r − 1}. This definition amounts to setting sl
i+1 = 1 iff the value

of sl
i characterizes αi as regular resource of αi+1. As is easy to see we also have

sl
i+1 =

{
sl

i , εi+1,i = +
1− sl

i , εi+1,i = − .

It follows for all i ∈ {1, . . . , r − 1} that sl
i+1 = sl

1 if
∏i

j=1 εj+1,j is positive, and
sl

i+1 = sl
1 if

∏i
j=1 εj+1,j is negative. Since C is a positive circuit, the value of sl

1

is consistent with the value we obtain by using the above definition for i = r,
that is we do not contradict the definition of sl if we use the above iterative
formula modulo r. Note that s0

1, s
1
1 and s1 are distinct.

According to Lemma 2 we have Rθ
i (s) = {αi−1} for all i ∈ {1, . . . , r}, indices

again taken modulo r. Thus Rθ
i (s

l) = ∅ for all i ∈ {1, . . . , r}. Moreover, we have

Ri(sl) =
{

Ri(s) , (sl
i−1 = 0 ∧ εi,i−1 = +) ∨ (sl

i−1 = 1 ∧ εi,i−1 = −)
Ri(s) ∪Rθ

i (s) , (sl
i−1 = 1 ∧ εi,i−1 = +) ∨ (sl

i−1 = 0 ∧ εi,i−1 = −)
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for all i ∈ {1, . . . , r}. Since fθ
i (s) = |Ki,Ri(s),Ki,Ri(s)∪Rθ

i (s)| = |0, 1|, it follows
from the definition of sl

i and condition (1) that

fθ
i (sl) = Ki,Ri(sl) =

{
Ki,Ri(s) = 0 , sl

i = 0
Ki,Ri(s)∪Rθ

i (s) = 1 , sl
i = 1 .

Thus, we have fθ
i (s0) = s0

i and fθ
i (s1) = s1

i for all i ∈ {1, . . . , r}, not depending
on the values of the components in JC \ {1, . . . , r}.

Finally, we have to specify sl
i for all i ∈ JC\{1, . . . , r} and l ∈ {0, 1}. According

to Lemma 3 we find sets M1, . . . ,Mk ⊆ JC satisfying M1 = {1, . . . , r}, Mk = JC ,
Mj � Mj+1 and Rθ

i (s) ⊆ Mj for all i ∈ Mj+1 and j ∈ {1, . . . , k − 1}. Thus we
can deduce that αi, i ∈ M2, has no predecessors in JC \M1, since otherwise
they would be in Rθ

i (s). Furthermore, for every i ∈ M2 we have Rθ
i (s

l) = ∅
since all components corresponding to vertices in C have regular values. Now
we set sl

i := Ki,Ri(sl) for all i ∈ M2. Note that this parameter depends only on
components previously specified, i. e., on the values sl

i for i /∈ JC\{1, . . . , r}. Since
αi does not have singular resources in state sl for all i ∈ M2, we have fθ

i (sl) =
Ki,Ri(sl) = sl

i for all i ∈ M2. Because the sets Mj are nested, we can repeat
the above procedure for consecutive sets without encountering contradictions.
Thus we are able to specify all components sl

i for i ∈ JC \ {1, . . . , r}, such that
fθ

i (sl) = sl
i.

We have shown that the resulting states s0 and s1 are fixed points of fθ. Since
s, s0, and s1 are distinct, fθ has at least three fixed points. ��

The proof shows that at least two fixed points of fθ differ in a regular component.
Applying Theorem 3 and the subsequent observations we immediately obtain the
following statement.

Corollary 1. Under the hypotheses of Theorem 4 there are at least two distinct
attractors in the corresponding state transition graph.

The corollary is illustrated in Figure 3 (a) and (c). The singular steady state
(1, θ, 0) is characteristic of the positive circuit comprising α2 and of no other
circuit. The resulting state transition graph shows two distinct attractors. The
importance of the condition concerning the circuit C and the component JC(s)
is demonstrated in Figure 3 (b). The state (θ, θ, θ) is steady and characteristic
of the positive circuit comprising α2. Moreover, the state (θ, 0, θ) is steady and
characteristic of the positive circuit comprising α1 and α3. In both cases the
states are characteristic of further circuits in the same component, and the state
transition graph has only one attractor. Figure 4 shows the importance of C
being the only circuit with vertices in JC(s) for the validity of Theorem 4. The
interaction graph given in (a) contains a positive circuit with characteristic state
s := (θ, θ, θ, θ). Together with the parameters given in (b) it gives rise to a system
that has no regular fixed point. Moreover, from the logical implications in (d)
we can easily deduce that s is the only singular steady state.

The network in Figure 4 (b), together with the parameters given in (c), il-
lustrates that the sufficient condition of Theorem 4 is not necessary. The given
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α1

α2 α3

+

−

−

−
−

−

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

K1,{1,3} = K2,{1,2} = K3,{1,2} = 1

fθ((θ, 0, θ)) = (θ, 0, θ)

fθ((1, θ, 0)) = (1, θ, 0)

K1,{1} = K1,{3} = K1,{1,3} = 1
K2,{1} = K2,{2} = K2,{1,2} = 1
K3,{1,2} = 1

K1,{1,3} = 1
K2,{1} = K2,{2} = K2,{1,2} = 1
K3,{1,2} = 1

fθ((θ, 1, 0)) = (θ, 1, 0)

(a) (b)

(c) (d)

Fig. 3. An interaction graph comprising three components is given in (a). Figures (b)-
(d) show the state transition graphs corresponding to the chosen parameter values. We
only listed the non-zero parameters. Attractors are indicated by colored, fat lines. For
each choice of parameters one singular steady state other than (θ, θ, θ) is given.

system has two regular fixed points, (0,0,0,0) and (1,1,1,1). However, the only
steady characteristic state is s := (θ, θ, θ, θ), as easy to see from the implications
in (d). Its components comprise the vertices of all three cycles of the network.

The next theorem clarifies the impact of a negative circuit.

Theorem 5. Let C be a negative circuit in I and let s be a steady characteristic
state of C. Assume that C is the only circuit in I with all its vertices contained
in JC(s). Then there exists an attractor with cardinality greater than one.

Proof. Again set J := J(s) and JC := JC(s) and assume that C = (α1, . . . , αr)
for some r ∈ {1, . . . , n}. By Pj , j ∈ {1, . . . , r}, we denote the set of all regular
states x satisfying xk = sk for all k /∈ J and

xi+1 =
{

xi , εi+1,i = +
1− xi , εi+1,i = − for all i ∈ {1, . . . , r} \ {j},

with indices i taken modulo r. Choose j ∈ {1, . . . , r} and x ∈ Pj . Lemma 1 im-
plies that fi(x) = si for all i /∈ J . Now set x̃ = f(x) and let i ∈ {1, . . . , r}. Again,
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α1

α2

−
−

Kα1,{α3} = 1
Kα1,{α4} = 1
Kα1,{α3,α4} = 1
Kα2,{α1} = 1
Kα3,{α2} = 1
Kα4,{α2,α3} = 1

α3

α4

+
+

+ +

s singular, fθ(s) = s ⇒ s = (θ, θ, θ, θ)

s1 = θ ⇒ fθ
2 (s) = θ

s1 �= θ ⇒ fθ
2 (s) �= θ

s2 = θ ⇒ fθ
3 (s) = θ, fθ

4 (s) = 0, θ

s2 �= θ ⇒ fθ
3 (s) �= θ

s3 = θ ⇒ fθ
1 (s) = θ, 1, fθ

4 (s) = 0, θ

s4 = θ ⇒ fθ
1 (s) = θ, 1α1

α2

+

+

α3

α4

+
+

+ +

(a)

(b)

(c)
(d)

Fig. 4. Interaction graphs and parameter values of networks with only one singular
steady state. Given are the non-zero logical parameters. For details see the text.

consider indices modulo r. According to Lemma 2 the only singular resource of
αi+1 in s is αi. Furthermore, we know fθ

i+1(s) = si+1 = θ = |0, 1|. Thus, with
reasoning similar to that in the proof of Theorem 4, we can deduce that

x̃i+1 = Ki+1,Ri+1(x) =
{

0 , (xi = 0 ∧ εi+1,i = +) ∨ (xi = 1 ∧ εi+1,i = −)
1 , (xi = 1 ∧ εi+1,i = +) ∨ (xi = 0 ∧ εi+1,i = −) ,

that is

x̃i+1 =
{

xi , εi+1,i = +
1− xi , εi+1,i = − .

Now, if i �= j+1, we can express xi in terms of xi−1, since x is in Pj . Furthermore,
we can then express xi−1 in terms of x̃i according to the observation above, which
is valid for all i ∈ {1, . . . , r}. Some easy substitutions yield firstly

x̃i+1 =
{

xi−1 , (εi+1,i = + ∧ εi,i−1 = +) ∨ (εi+1,i = − ∧ εi,i−1 = −)
1− xi−1 , (εi+1,i = + ∧ εi,i−1 = −) ∨ (εi+1,i = − ∧ εi,i−1 = +) ,

and secondly that x̃i+1 = x̃i, if εi+1,i = +, and x̃i+1 = 1 − x̃i, if εi+1,i = −. It
follows that x̃ = f(x) is an element of Pj+1. Furthermore, in case εi,i−1 = +
and i �= j + 1, we have x̃i = xi−1 as seen above and xi−1 = xi, since x ∈ Pj .
This shows fi(x) = x̃i = xi. The same reasoning leads to fi(x) = x̃i = xi

for εi,i−1 = − and i �= j + 1. It follows that every successor x′ of x in the
state transition graph is either in Pj , in case x′

j+1 = xj+1, or in Pj+1, in case
x′

j+1 �= xj+1. Since our reasoning is true for indices modulo r, we can deduce
that the union P of the sets Pj , j ∈ {1, . . . , r}, is a trap set and thus contains
an attractor A (see the proof of Proposition 1).

Finally, we show that each state in P , and thus in A, has a successor other
than itself. For x ∈ Pj we have

xj =
{

xj+1 , εj+2,j+1 ·. . .· εj,j−1 = +
1− xj+1 , εj+2,j+1 ·. . .· εj,j−1 = − .

Furthermore, we know that x̃j = xj with x̃ := f(x) and x̃ ∈ Pj+1. It follows
that x̃j+1 = xj , if εj+1,j = +, and x̃j+1 = 1− xj , if εj+1,j = −. Thus we obtain

x̃j+1 =
{

xj+1 ,
∏r

k=1 εk+1,k = +
1− xj+1 ,

∏r
k=1 εk+1,k = − ,
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with indices k taken modulo r. Since C is negative, we know
∏r

k=1 εk+1,k = −,
and thus fj+1(x) �= xj+1. Thus x has a successor other than itself in the state
transition graph. It follows that the cardinality of A is greater than one. ��

Figure 3 illustrates the theorem. In (d) we give a parameter specification that
allows the state (θ, 1, 0) to be steady. This state is characteristic of the negative
circuit comprising α1. The resulting state transition graph contains the attrac-
tor {(0, 1, 0), (1, 1, 0)}. As for Theorem 4, Figure 3 (b) illustrates the importance
of C being the only circuit in JC(s). Although (θ, 0, θ) is characteristic of the
negative circuit comprising α1, and (θ, θ, θ) is characteristic of the negative cir-
cuit comprising α1, α2 and α3, the only attractor in the state transition graph
consists of a single state. Figure 4 (a) and (c) specify a system that illustrates
that the sufficient condition in Theorem 5 is not necessary. By calculating the
corresponding state table we can see that there is no regular steady state of the
system. Thus there has to be an attractor with cardinality greater than one.
However, from the logical implications given in (d), it follows easily that the
only singular steady state is (θ, θ, θ, θ), which is characteristic for all circuits in
the interaction graph given in (a).

The proofs of Theorems 4 and 5 show that the situation is easy to grasp in
case that the only components with singular values are those of the circuit C. In
the context of Theorem 4, we then obtain two regular fixed points, that is two
steady states in the state transition graph. Those can be explicitly constructed
as shown in the proof of Theorem 4. If C is a negative circuit, we find a trap
cycle in the state transition graph. It is composed of the states in the set P
introduced in the proof of Theorem 5.

If we detect the above mentioned structures in the state transition graph,
we can conversely derive singular steady states. The proofs of the next two
propositions are omitted for lack of space. They can be found in [7].

Proposition 2. Let x, y ∈ Bn be steady states in the state transition graph SN .
Let I be the set of components i satisfying xi �= yi. Then there exists a singular
steady state s such that si = θ for all i ∈ I.

Proposition 3. Let C := (x1, . . . , xr , x1) be a trap cycle in the state transition
graph SN . Let I be the set of components i such that there exists j1, j2 satisfying
xj1

i �= xj2
i . Then there is a singular steady state such that si = θ for all i ∈ I.

The proofs in [7] show how to derive singular steady states satisfying the state-
ments of Prop. 2 and 3. However, those singular steady states may coincide with
(θ, . . . , θ), even when I �= {1, . . . , n}.

5 Perspectives

We have seen in this paper that it is possible to relate systematically singular
steady states to attractors in the state transition graph. To do so, we often exploit
knowledge about the structure of the associated interaction graph. The results
obtained illustrate the possibilities of studying the dynamical behavior of the
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system without the explicit use of the state transition graph. However, we have
focussed on a coarse description, characterizing state transition graphs by the
number of their attractors, and distinguishing attractors by their cardinality.
In order to tap the full potential of this approach to analyzing the system’s
dynamics, it should be refined further. A promising starting point for future
work is the concept of local interaction graphs introduced in [3]. The authors
associate every state of the system with an interaction graph, the union of which
is the global interaction graph. This approach allows for a better understanding
of what structures in the interaction graph influence the system’s behavior in a
given state. Combining this local view with our understanding of singular steady
states may yield a more detailed description of the resulting dynamical behavior.
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4. Remy, É., Ruet, P., Thieffry, D.: Positive or negative regulatory circuit inference
from multilevel dynamics. In: Positive Systems: Theory and Applications. LNCIS,
vol. 341, pp. 263–270. Springer, Heidelberg (2006)

5. Richard, A., Comet, J.-P.: Necessary conditions for multistationarity in discrete
dynamical systems. Rapport de Recherche (2005)

6. Richard, A., Comet, J.-P., Bernot, G., Thomas, R.: Modeling of biological regula-
tory networks: introduction of singular states in the qualitative dynamics. Funda-
menta Informaticae 65, 373–392 (2005)

7. Siebert, H., Bockmayr, A.: Relating attractors and singular steady states in the
logical analysis of bioregulatory networks. preprint 373, DFG Research Center
MATHEON (2007)

8. Snoussi, E.H., Thomas, R.: Logical identification of all steady states: the concept
of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991 (1993)
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Abstract. Biotechnological innovations which sample gene expressions
allow to measure the gene expression levels of a biological system with
varying degree of accuracy, cost and speed. By repeating the measure-
ment steps at different sampling rates, one can both infer relations among
the genes and define a dynamic model of the underlying biological sys-
tem. When a very large number of genes and measurements are in-
volved, they raise several difficult algorithmic questions, as accurate
model-building, checking and inference tasks. Semi-algebraic hybrid au-
tomata were proposed as a modeling formalism for biological systems
(see, e.g., [17,6]), and demonstrated their abilities to handle complex
biochemical pathways. This paper proposes an automatic procedure to
build semi-algebraic hybrid automata from gene-expression profiles. In
order to reduce the size of the resulting automata and to minimize their
analysis computational complexity, our approach exploits various dimen-
sionality reduction techniques. The paper concludes with several exper-
imental results about peach fruit.

1 Introduction

It is often said that progress in science is characterized by successive steps of
measurement, arithmetization, algorithmization, and algebraization—each step
representing in a succinct manner the intuitions collected in the earlier step. In
biology, various breakthrough in biotechnology, e.g., sequencing, DNA synthe-
sis, DNA amplification with PCR, high-throughput measurement of DNA/RNA
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abundance through real time PCR [5,10,14], SAGE or microarrays [18,12], etc.,
have made it possible to obtain a numerical picture of the transcriptomic state
of a cell at a certain instant and under certain conditions. Equipped with such
a collection of numerical pictures of these states, one may organize them into
a state-diagram for further statistical and algorithmic study of the dynamics
implied by the state-transitions (see, e.g., [3,9,16,4]). Computational systems bi-
ology has come to represent the many varied efforts within this framework, and
yet, it shies away from the final step of the algebraization of biology. It may even
not be clear what such a final step would entail.

Here, we propose a framework for the algebraization of biology, by examin-
ing the question of translating time-course data of numerical biological mea-
surements into the well-studied structures of semi-algebraic hybrid automata
[17,7,6]. We concede that this is a first step in this direction, and would require
much additional collaboration with biologists, algebraists and computer scien-
tists to establish its final theoretical foundation. In particular, we believe that
this new field will need to borrow many ideas originally developed in the con-
text of rate-distortion theory in communication engineering, where the notion
of lossy-compression was rigorously studied by Shannon and Kolmogorov [19].

This paper highlights many such connections and provides several heuris-
tic algorithms that can be used for practical data analysis. It concludes with
a discussion of the possible future paths of the emerging area of “Algebraic
Biology.”

1.1 Semi-algebraic Hybrid Automata

The notion of Hybrid Automata was first introduced [1] as a model and specifi-
cation language for systems with both continuous and discrete dynamics, i.e., for
systems consisting of a discrete program within a continuously changing envi-
ronment. The simplest class of such models studied in computer science was the
class of timed-automata to model asynchronous systems with many local clocks
evolving at different but constant rates, while the system made discrete state
transitions according to the local time. Subsequently, the field has seen many
interesting and nontrivial generalizations (see, e.g., [2,15,7]). Here, we focus on
one that is motivated by our interest in modeling biochemical processes.

First we introduce some notations and conventions. Capital letters Zm, Z ′
m,

where m ∈ IN, denote variables ranging over IR. Analogously, Z denotes the
vector of variables 〈Z1, . . . , Zk〉 and Z ′ denotes the vector 〈Z ′

1, . . . , Z
′
k〉; and Zn

denotes the vector 〈Zn
1 , . . . , Zn

k 〉. The temporal variables T and T ′ model time
and range over IR+. We use the small letters p, q, r, s, . . . to denote k-dimensional
vectors of real numbers. Occasionally, we will use the notation ϕ[X1, . . . , Xm] to
stress the fact that the set of free variables of the first-order formula ϕ, denoted
by Free(ϕ), is included in the set of variables {X1, . . ., Xm}. By extension, if
{X1, . . ., Xn} is a set of variable vectors, ϕ[X1, . . ., Xn] indicates that the free
variables of ϕ are included in the set of components of X1, . . ., Xn. Moreover,
given a formula ϕ[X1, . . ., X i, . . ., Xn] and a vector p of the same dimension
as the variable vector X i, the formula obtained by component-wise substitution
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of X i with p is denoted by ϕ[X1, . . ., X i−1, p, X i+1, . . ., Xn]. If in ϕ the free
variables are just the components of X i, we can compute the truth value of ϕ[p].

We are now ready to formally introduce semi-algebraic hybrid automata al-
ready presented in [17] and further studied in [7,6]. For each node of a graph, we
have an invariant condition and a dynamic law. This dynamic law may depend
on the initial conditions, i.e., on the values of the continuous variables at the
beginning of the evolution in the state. The jumps from one discrete state to
another are regulated by the activation and reset conditions. All these conditions
are defined through first-order formulæ over the reals, i.e., over the first-order
language of (IR, 0, 1,+,×,=, >).

Definition 1 ((Semi-Algebraic) Hybrid Automata - Syntax). A hybrid
automaton H = (Z, Z ′, V, E, Inv, F , Act, Reset) of dimension k consists of
the following components:

1. Z = 〈Z1, . . ., Zk〉 and Z ′ = 〈Z ′
1, . . ., Z

′
k〉 are two vectors of variables ranging

over the reals IR;
2. 〈V, E〉 is a directed graph; the objects, v ∈ V, are called locations;
3. Each vertex v ∈ V is labeled by the formulæ Inv(v)[Z] and Dyn(v)[Z,Z ′, T ];
4. Each edge e ∈ E is labeled by the formulæ Act(e)[Z] and Reset(e)[Z,Z ′].

We say that H is semi-algebraic if the constraints Inv, Dyn, Act, and Reset are
first-order formulæ over the reals (i.e., over (IR, 0, 1,+,×,=, >)).

The semantics of hybrid automata is given in terms of continuous and discrete
transitions.

Definition 2 (Hybrid Automata - Semantics). A state � of H is a pair
〈v, r〉, where v ∈ V is a location and r = 〈r1, . . . , rk〉 ∈ IRk is an assignment of
values for the variables of Z. A state 〈v, r〉 is said to be admissible if Inv(v)[r]
is true.

The continuous reachability transition relations t−→C , where t > 0 is the tran-
sition elapsed time, between admissible states is defined as follows:

〈v, r〉 t−→C 〈v, s〉 ⇐⇒
The equation s = fv(r, t) holds, and for each
t′ ∈ [0, t] the formula Inv(v)[fv(r, t′)] is true.

The discrete reachability transition relation →D between admissible states is
defined as follows:

〈v, r〉 →D 〈u, s〉 ⇐⇒ The relation 〈v, u〉 ∈ E holds, and the formulæ
Act(〈v, u〉)[r] and Reset(〈v, u〉)[r, s] are true.

Building upon continuous and discrete transitions, we can introduce the notions
of trace and reachability. A trace is a sequence of continuous and discrete tran-
sitions. A point s is reachable from a point r, if there is a trace from r and to s.
We use �→ �′ to denote that either �

t−→C �′, for some t, or �→D �′.

Definition 3 (Hybrid Automata - Reachability). Let I be either N or an
initial interval of N. A trace of H is a sequence �0, �1, . . . , �i, with i ∈ I, of
admissible states such that �i−1 → �i holds for each i ∈ I with i > 0 and
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continuous and discrete transitions are alternating. Such a trace is also denoted
by (�i)i∈I . A point r ∈ IRk reaches a point s ∈ IRk (in time t), if there exists
a trace �0, . . . , �n of H such that �0 = 〈v, r〉 and �n = 〈u, s〉, for some v, u ∈ V
(and t is the sum of the elapsed continuous transition times).

In [17] we defined first-order formulæ over the reals which allow one to study the
reachability problem over semi-algebraic hybrid automata. The problem is unde-
cidable in the general case, since it is necessary to consider an infinite number of
formulæ. However, in [7,6] we introduced two classes of semi-algebraic automata
over which we demonstrated the decidability of the reachability problem showing
that it is sufficient to consider a finite number of formulæ. Moreover, we showed
that this decidability result for the reachability problem is also the basis for the
decidability of model checking with other more complex temporal logic formulæ,
which can be used to analyze biochemical pathways.

However, this earlier work was based on the assumption that the hybrid
automaton model was available and accurately captured the dynamics of the
underlying biochemical system. Its means of construction, however, were left
unspecified. Construction of such models from experimental time-course data is
the subject of this paper. Specifically, this paper deals with a suitable approach
for identifying a semi-algebraic hybrid automaton representation of a biochem-
ical dynamic system, where the biochemical system is initially represented as a
matrix of gene expression data sampled at many discrete time instants.

2 From Time-Courses to Semi-algebraic Automata

We would like to capture the activity of a biological system using the formalism
of hybrid automata. Specifically, we aim to represent the concerted activity of
an organism’s gene expression and regulation using the discrete and continuous
dynamics of semi-algebraic hybrid automata as defined above.

One of the main problems that arises when hybrid automata are used to
represent biological systems is that each component (e.g. gene) is modeled with
a continuous variable. As a consequence the resulting automaton has a high
computational complexity. In particular, when first-order formulæ are used to
study reachability, the number of variables occurring in the formulæ are multiples
of the number of continuous variables of the automaton (see, e.g., [7]). Thus, we
would like to reduce the complexity of the system under study by grouping
genes that have similar dynamics together and then considering this compressed
representation when building our automata. Of course, there will be some loss
of information when one clusters the data in such a way, as such, it is important
to handle any data compression in a responsible manner.

When we define an automaton to represent a biological system, another diffi-
culty consists in the identification of the locations. If the system is represented
as a system of differential equations, then we can immediately define a trivial
automaton having just one location whose dynamical law is an algebraic approx-
imation of the solutions to the differential equations. However, this dynamical
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law could be very complex, and it may be convenient to split the single location
into multiple locations in order to get simpler dynamical laws. In our case, the
system is represented as a set of time series data that captures the temporal evo-
lution of the genes’ expression. One would like to find points in time at which
elements in the data substantially change their behavior and then consider loca-
tions that correspond to the intervals of time between these critical time points.
That is, we would like a temporal partition of the time series such that the data
is broken into a number of disjoint temporal windows, each of which represents
some coordinated biological activity, and the boundaries of which correspond to
significant reorganization of gene expression. One could then identify locations
with individual temporal windows, thus building an automata whose discrete
transitions correspond to significant organizational events in the system’s gene
regulation, and whose continuous dynamics correspond to periods of concerted
co-expression. The construction of such an automata requires a long preprocess-
ing or clustering phase which results in an automaton with a number of locations
proportional to the number of distinct temporal windows.

The two problems stated above are both related to the creation of a compact
or compressed representation of the biological system. On the one hand, group-
ing like genes together and considering the collective continuous dynamics of
clusters of co-expressed genes allows one to reduce the complexity of the result-
ing automata by simplifying the dynamical laws. On the other hand, generating
temporal windows allows one to reduce the number of locations from the order
of the number of time points down to the order of the number of time windows.
These considerations are directly related to compressing the original time series
data both in the number of genes and in the number of experiments, and a vari-
ety of bi-clustering techniques have been explored for this purpose [16]. We will
discuss two methods: one directly exploiting correlation among gene expressions
and consecutive time points (through Principal Component Analysis, or PCA),
and the other method emphasizing “lossy compression” of hybrid automata by
building on rate distortion theory and graph search; these approaches show how
one can ultimately go from clustered data of reduced dimension to a “reasonably
faithful” hybrid automata model. First however, we step through a number of
intuitively simple, but successively more complex, examples of representations
of our time series data using hybrid automata. Next, we introduce several key
ideas from information theory as well as our clustering algorithm. Finally, we
will present a hybrid automata constructed from our time series that represents
a significantly compressed version of the original data.

Let M be an m × n matrix of biological time series data, where G1,. . . ,
Gn are the genes under consideration and D1, . . . , Dm are the dates that the
samples were captured on. We can define a semi-algebraic hybrid automaton
H representing M in various ways; we illustrate them in ascending order of
complexity, beginning with a couple of trivial examples.

The most simple way to construct a hybrid automata from our time series
data is to have a single location and a continuous representation of each gene’s
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expression profile. Thus, for our our m×n matrix of expression values, we have n
polynomials, where each of the n genes is represented by a polynomial of degree
m (i.e. the number of time points). In this way we completely capture all of the
information in our expression matrix without loss, in fact we can reconstruct
our matrix of expression measurements exactly from this representation. Note
that in this case we get an automaton without edges, since there is only a single
location. Thus, there are no guard or reset conditions. This construction is close
to the classical approach of using one system differential equations.

Rather than having a single location with polynomial representations of degree
m for each gene, we could instead have m locations, one for each time point,
and each of these could have linear dynamics for each gene. Clearly this is also
completely equivalent to our original data and represents it without loss, in
fact the representation can be seen as a simple distribution of the rows of our
expression data across the m locations. In this case the discrete graph underlying
the automaton is simply a chain and the automaton is linear.

The two examples above either use completely continuous or completely dis-
crete representations of the dynamics, and are incapable of taking advantage of
the hybrid nature of the dynamics, where it exists. Thus, one may be able to avoid
automata of prohibitive complexity, by using a representation that reduces the
dimensionality of the underlying data and yields automata with fewer locations
and simpler dynamical laws. We can progress toward this goal by considering
coordinated genes within suitably sized (initially, uniform length) windows of
time and by letting the number of locations in our automata equal the number
of windows under consideration. Next, we describe such an example with uni-
formly sized time windows; a version with nonuniform adaptively sized windows
will be discussed below.

– the continuous variables are G = 〈G1,. . . ,Gn〉 and G′ = 〈G′
1, . . . , G

′
n〉;

– the directed graph 〈V , E〉 has L = �m
h � locations v1, . . . , vL and its edges are

defined as E = {〈vi, vi+1〉 | 1 ≤ i < L};
– for each vi ∈ V and each ei = 〈vi, vi+1〉 ∈ E we have: Inv(vi)[G] def= true;

Dyn(vi)[G,G′, T ] = ∧n
j=1G

′
j = p(i,j)(T ), where p(i,j) is the polynomial of

degree at most h connecting the values of Gj at Dh∗(i−1)+1, . . . , Dh∗i+1;
Act(ei)[G,G′] = ∧n

j=1Gj = g(i,j), where g(i,j) is the expression level of Gj at
Dh∗i+1; Reset(ei)[G,G′] = ∧n

j=1G
′
j = Gj is the identity.

In the activation conditions we have implicitly assumed that the biological sys-
tem has no memory. In fact, the activation considers only the final values of a
state and not the trajectory which leads to these values. More sophisticated con-
straints are necessary to model systems with memory. The proposed automaton
has a number of locations which depends on the number of dates and on the
degree of the dynamical laws, and a number of variables which is proportional to
the number of genes under consideration. Again, the discrete graph underlying
the automaton is simply a chain, but the automaton is not linear.
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Example 1. Let us consider three genes G1, G2, and G3 for which we have mea-
sured the following expression levels:

D 0 1 2
G1 0.25 0.20 0.42
G2 0.49 0.41 0.80
G3 0.10 0.20 0.30

In Figure 1, we depict the hybrid automaton, built by applying the näıve meth-
ods, described above, with h = 1 and without time windows. The dynamics are
written inside the locations, while the resets and activations are represented on
the edges. The incoming edge on the left provides the initialization conditions
which can be used to obtain the trace which corresponds to the expression levels
measured in the matrix.

G′
1 = −0.05T + G1

∧
G′

2 = −0.08T + G2

∧
G′

3 = 0.10T + G3

G1 = 0.20 ∧G2 = 0.41∧
G3 = 0.20

G′
1 = G1 ∧G′

2 = G2∧
G′

3 = G3

G′
1 = −0.22T + G1

∧
G′

2 = 0.39T + G2

∧
G′

3 = 0.10T + G3

v1 v2

G1 = 0.25
∧

G2 = 0.49
∧

G3 = 0.10

Fig. 1. The automaton of Example 1

Notice, that the fact that we are using only polynomial constraint is not too re-
strictive since: non-polynomial functions can be approximated with polynomials;
polynomials can always interpolate finite sets of data.

In the following sections, we will explore methods to improve the automaton
construction discussed above, by exploiting correlations, performing dimension-
ality reduction via correlation coefficients, Principal Component Analysis (PCA)
[13], information theory [19], and exploiting clustering techniques [11].

2.1 Reductions Via Correlations on Genes

Given a gene expression level matrix M having m rows corresponding to the
dates and n columns corresponding to the genes we can interpret each column
of M as a random variable and compute the correlation coefficients between pairs
of genes. As a result we get an n×n symmetric matrix Corr, such that Corr[i, j]
is the correlation between Gi and Gj ranging in the interval [−1, 1]. We can now
use the absolute values of the elements of Corr as similarity measures (or equiv-
alently set the distance between Gi and Gj to d(Gi, Gj) = 1−|Corr[i, j]|). These
similarity measures can be used to to cluster the genes. There are different clus-
tering techniques which can be used (see, e.g., [11,9]) leading to different results.
However, we do not use clustering techniques to infer properties of the biologi-
cal system under investigation, but only to build a compact hybrid automaton
representing it. The analysis of the automaton will then help us to understand
the system behaviors. Another possibility is that of clustering the genes using
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PCA, i.e., using their correlation coefficients with respect to the new coordinate
system. In both cases we obtain classes of (highly correlated) genes.

In each class of correlated genes we can choose a representative gene which
is closer to all of the elements of the class and construct a hybrid automaton
whose continuous variables are only the representative genes. The values of the
non-representative genes can be approximated at any time from the representa-
tive ones exploiting their linear relationships. Alternatively, we could compute a
cluster average as a continuous variable of a new fictitious representative gene,
and use it to approximate the behavior of the non-representative genes, encoded
through linear relationships. For the sake of simplicity, we focus on the former
representation, here, and relegate the more complex treatment to the full paper.

Example 2. Let us consider the genes G1, G2, and G3 of Example 1. The cor-
relation coefficient of G1 and G2 is 0.99, while G3 is less correlated both with
G1 and G2 (0.74 and 0.75, respectively). If we apply hierarchical clustering on
correlations we obtain a class with G1 and G2 together and another class con-
taining G3 only. Applying a clustering based on PCA in this case we obtain the
same result. Hence, we can construct a hybrid automaton which has only G1

and G3 as continuous variables, i.e., the automaton of Figure 1 with G2 deleted,
and at any time we can infer the value of G2 from G1 (G2 ≈ 2 ∗G1).

2.2 Reductions Via Correlations on Dates

We would next like to exploit dates-correlations to cluster dates, yielding better
adaptive time windows for the construction of our automaton . However, if we
analyze what happens if we transpose our gene expression matrix M , i.e., we
consider the dates as random variables, and compute the correlation coefficients,
we notice that this not only provides a better time segmentation, but also, a
compact symbolic representation of the transcriptomic dynamics of genes.

Considering the dates as random variables means that each observation repre-
sents the values of a gene at each date. We have to imagine a coordinate system
in which each axis corresponds to a date. In this system we can plot a point for
each gene: the coordinates of this point are the expression levels of the gene at
the different dates. When two dates are highly linearly correlated it is sufficient
to know the expression levels of the genes at the first data to approximate the
levels at the second one. If more than two dates are highly correlated, then the
levels at one of them are sufficient to reconstruct the levels at all the other dates.
In particular, if the random variables (dates) Di, . . . , Di+r are highly correlated,
then we can relate them through a linear system of the form⎧⎪⎪⎨

⎪⎪⎩

Ĝ(Di) = f0(q)
Ĝ(Di+1) = f1(q)
. . .

Ĝ(Di+r) = fr(q)

(1)

where Ĝ is a symbolic variable gene expression, q is a parameter and the fj ’s
are linear function in q. If we know that the expression level of the gene Gj at
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Di+s is gs,j, then we can use it to determine the corresponding value of q, i.e.,
qs,j = f−1

s (gs,j). Now by substituting the qs,j to q in the equation corresponding
to the date Du, we can approximate the expression level gu,j of Gj at Di+u, i.e.,
gu,j ≈ fu(qs,j).

Since we are not only interested in the expression levels at the measured data,
but we would like to reconstruct all the genes time evolution, we can apply inter-
polation techniques to obtain a dynamical law. To keep the presentation simple
we discuss here the case of linear interpolation (see [3] for more sophisticated
interpolation methods). We have that the expression level of the gene Gj at time
t, where Di+a ≤ t ≤ Di+a+1, for some a ∈ [0, r − 1] can be approximated with:

fi+a+1(qs,j)− fi+a(qs,j)
Di+a+1 −Di+a

(t−Di+a) + fi+a(qs,j) (2)

Hence, we can construct our hybrid automaton by using a single location for
dates which are highly correlated and in these locations the dynamical laws are
the same for all the genes and are given by system (1) together with expression
(2). This means that our automata will now have a single Ĝ variable able to rep-
resent all the genes. In the case in which there are blocks of non consecutive dates
which are correlated we can still use one location for all of them and introduce
a loop in the discrete topology of the automaton. In order to simplify the nota-
tion we present only the definition for the case of adjacent correlated dates (the
general case is presented in Example 3). Let M be a gene expression matrix of
dimension m×n. Let us assume that we cluster the dates exploiting their corre-
lation coefficients as follows: Cl1 = {D1, . . . , Dd1}, Cl2 = {Dd1+1, . . . , Dd2}, . . . ,
and Clcl = {Dd(cl−1)+1, . . . , Dm}. The dates reduced automaton H representing
M is HD(M) = (G, G′, V , E , Inv , F , Act , Reset), where:

– G = 〈Ĝ〉 and G′ = 〈Ĝ′〉;
– 〈V , E〉 has cl locations v1, . . . , vcl and E = {〈vi, vi+1〉 | 1 ≤ i < cl};
– for each vi corresponding to Cli = {Da, . . . , Db}, where for each a ≤ c ≤ b it

holds Ĝ(Dc) = fc(q) and for each ei = 〈vi, vi+1〉 we have: Inv(vi)[Ĝ] = true,
Act(ei)[Ĝ] = ∨n

j=1Ĝ = M [b, j], Reset(ei)[Ĝ, Ĝ′] = ∨n
j=1(Ĝ = M [b, j] ∧ Ĝ′ =

M [b + 1, j]), and

Dyn(vi)[Ĝ, Ĝ′, T ] =
∨

a≤c<b(Dc −Da ≤ T ≤ Dc+1 −Da∧
Ĝ′ = fc+1(f−1

a (Ĝ))−fc(f
−1
a (Ĝ))

Dc+1−Dc
T + fc(f−1

a (Ĝ)))

In the above automaton we have reduced the states from m to cl without in-
creasing the complexity of the involved formulæ. Notice that since the f ’s are
linear, their inverses, f−1’s, are still linear and the automaton is semi-algebraic.
Moreover, it is important to notice that inside each state/location the continuous
dynamics of the genes are all regulated by a single law. In fact, what changes
from one gene to another is only the value of Ĝ. This drastically reduces the
complexity of the analysis in many cases. Imagine for instance that we wish to
check the following property: Each time a gene reaches an expression level lower
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than low it never increases again enough to reach the expression level low′. In
each state vi we can check this property at the same time for all the genes. We
only have to write a first-order formula representing the values of Ĝ which vio-
late the property, and then check that all the initialization values of the genes
that are outside of this set. In this sense we can say that the reduction based on
dates correlation reduce both the number of states and of variables, which were
our main objectives.

Due to the non-determinism introduced in the discrete jumps the date reduced
automaton H correctly approximates the behaviors observed in M only, provided
that in M there is not a date in which two genes have the same value. This
assumption is not restrictive in the real cases.

Example 3. Let us consider the following transposed gene matrix:

D 0 1 2 3 4 5 6
G1 1 2 3 4 8 4 5
G2 2 3 4 1 2 3 4
G3 3 4 5 3 6 1 2

This is a toy example in which we have a perfect correlation on the dates 0, 1,
2, 5, and 6 and a perfect correlation on the dates 3 and 4. The automaton we
can build generalizing the technique to use also clusters of non adjacent dates
is depicted in Figure 2. We label each edge only with the reset constraint, since
the activation one can be reconstructed from it.

Ĝ′ = T + Ĝ Ĝ′ = ĜT + Ĝ

(
Ĝ′ = 4 ∧ Ĝ = 3

)
∨
(
Ĝ′ = 1 ∧ Ĝ = 4

)
∨(

Ĝ′ = 3 ∧ Ĝ = 5
)

(
Ĝ′ = 4 ∧ Ĝ = 8

)
∨(

Ĝ′ = 3 ∧ Ĝ = 2
)
∨
(
Ĝ′ = 1 ∧ Ĝ = 6

)

Ĝ = 1
∨

Ĝ = 2
∨

Ĝ = 3

v1 v2

Fig. 2. The automaton of Example 3

3 Rate Distortion Theory and Extensions

In the above discussion we considered various ways of reducing the dimension-
ality of the data and deriving an automaton that captured the dynamics of this
new compressed data set. As stated above, this can take the form of clustering
the genes and subsequently using one gene from each cluster to approximate the
others, or of considering windows of time to reduce both the number of locations
and the number of variables in our hybrid automata. Finally, one could also re-
duce the complexity of the model used to represent the continuous dynamics, for
example, one could use lower order polynomials or splines rather than polyno-
mials of high degree. Each of these methods of simplifying our hybrid automata
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results in a distortion or disagreement between our model and the raw data.
For instance, clustering forces us to live with discrepancies between the approxi-
mated profiles and the actual data vectors. What we really desire is a formalism
to represent such distortions precisely, allowing us to specify an objective func-
tion that we can minimize, thus obtaining an optimal partition of our data and a
low complexity automaton. We look to information theory for such a formalism
and find it in the rate distortion theory of Shannon and Kolmogorov [8].

In rate distortion theory, one desires a compressed representation Z of a ran-
dom variable X that minimizes some measure of distortion between the data
elements x ∈ X and their prototypes z ∈ Z. Taking I(Z;X), the mutual in-
formation between Z and X , to be a measure of the compactness or degree of
compression of the new representation, and defining a distortion measure d(x, z)
that measures distance between cluster prototypes and data elements, one can
frame the problem as a trade-off between compression and average distortion.
The main idea is that one balances the desire to achieve a compressed descrip-
tion of the data with the precision of the clustering, as measured by the average
distortion, and finds the appropriate balance that maintains enough information
while eliminating noise and inessential details.

In rate distortion theory, this trade-off is characterized mathematically as an
optimization problem: Fmin = I(Z;X) + β〈d(x, z)〉, where average distortion is
defined as 〈d(x, z)〉 =

∑
x,z p(x)p(z|x)d(x, z) and is simply the weighted sum of

the distortions between the data elements and their prototypes. More recently,
Slonim et al. [20] have discussed a modification to rate distortion clustering for
which only relations between data elements are used in the distortion function,
rather than explicit mention of cluster prototypes. We have used a similar ap-
proach as a component in our graph search based approach to the time course
segmentation problem.

Moving beyond classical rate distortion theory, we will need to generalize the
problem further. In this generalized picture, we are presented with a family of
time-course data all sampled from the same dynamical system; for example, k
matrices of dimension m×n. These matrices may be thought of as describing es-
sentially the same dynamics, but corrupted by measurement noise, or affected by
unmodeled/unmodelable environmental conditions. We may wish to introduce a
notion of “distorted bisimulation”, generalizing the idea of classical bisimulation,
by allowing for certain constraints on allowable bisimulation. In this setting, it
makes perfect sense to ask for a minimal complexity hybrid-automata represen-
tation of the datasets, subject to a constrained “distorted bisimulation”.

This general notion will be explored in more detail in the full paper, but here,
we focus on the most immediate problem of compressing (with loss) a given
time-course data set by means of a semi-algebraic hybrid automaton. Returning
to our earlier discussion, in the specialized setting, we note that the functional
above captures the compression-precision trade-off inherent in the clustering
problem and when combined with a shortest path graph search algorithm (as
described below), it allows one to use an iterative method to find a numerical
solution to the time course segmentation problem. The trade-off is controlled by
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the Lagrange parameter β that mitigates the trade-off between compression and
preservation of relevant information, as β becomes large we focus on precision, as
β tends to zero we focus more on compression. Setting the clustering problem up
in this way allows us to find both an optimal windowing of our data, and optimal
clusters of genes within the windows. From this compressed representation, we
can create a hybrid automaton having minimal disagreement with the original
data.

3.1 Reductions Via Rate Distortion

We would like to cluster our data in both the genes and in time, that is, we
would like a procedure that yields windows in time and that captures intervals
of concerted gene activity in which the genes are clustered into a small number
of groups of co-expressed elements. From such a compressed representation, we
can produce an automaton whose number of locations is the number of time
windows, and for which the dynamical laws are less complex because we derive
our continuous dynamics from the clustered data rather than from individual
genes. We briefly discuss a method that performs this type of compression.

Let D = {D1, D2, . . . , Dm} be the time points at which a given system is
sampled, and lmin and lmax be the minimum and maximum window lengths
respectively. For each time point Da ∈ D, we define a candidate set of windows
starting from Da as SDa = {W b

a |lmin ≤ Db−Da ≤ lmax}, where W b
a is the time

window containing the dates Da, Da+1, . . . , Db. Each of these windows may then
be clustered and labeled with a score based on its length and the cost associated
with the clustering functional defined in (3). Following scoring, we formulate the
problem of finding the lowest cost windowing of our time series in terms of a
graph search problem and use a shortest path algorithm to generate the final set
of (non-overlapping) time windows that fully cover the original series.

To score the windows, we use a variant of rate distortion clustering, using a
distortion function defined between pairs of data elements. We aim to maximize
compression (by minimizing the mutual information between the clusters and
data elements), while at the same time forcing our clusters to have minimal
distortion (as described in [20]). We perform rudimentary model selection by
iterating over the number of clusters while optimizing (line search) over beta.
This procedure, while somewhat expensive, results in a fairly complete sampling
of the rate-distortion curves. Essentially, we trace the various solutions for dif-
ferent model sizes while tuning β, and choose the simplest model that achieves
minimal cost in the target functional. In this way we obtain for each window
a score that is the minimum cost in terms of model size and model fit, based
on the trade-off between compression and precision. This method is computa-
tionally expensive and run times can be substantial, for this reason we have
developed an implementation that can take advantage of parallel hardware.

Once the scores are generated, we pose the problem of finding the lowest
cost tiling of the time series as a graph search problem. We consider a graph
G = (V,E) for which the vertices are time points V = {D1, D2, . . . , Dm}, and the
edges represent windows with associated scores. Each edge eab ∈ E represents
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the corresponding window W b
a from time point Da to time point Db, and has

an initially infinite positive cost. The edges are labeled with the costs for the
windows they represent, each edge eab gets assigned a cost (Fab ∗ length) where
Fab is the minimum cost found by the clustering procedure and length is the
length of the window (b − a). Our original problem of segmenting the time
series into an optimal sequence of windows can now be formulated as finding the
minimal cost path from the vertex D1 to the vertex Dm. The vertices on the path
with minimal cost represent the points at which our optimal windows begin and
end. We use a shortest path algorithm and generate a windowing that segments
our original time series data into a sequence of optimal windows which perform
maximal compression in terms of the clustering cost functional. We are now in
a position to sketch one possible way to construct hybrid automata that have
a compact representation in time and that reflect clusters with respect to gene
expression. Further, we construct our models to have minimal distortion with
respect to the original data. We accomplish this by clustering using the method
just discussed and then building an automata with the same number of locations
as windows and simplified dynamical laws constructed from the clustered genes.

Hence, for each cluster we can choose a representative gene which minimizes
the distance to all of the other genes in the cluster and construct a hybrid au-
tomaton whose continuous variables correspond to those of the representative
genes. Further, our time windows naturally provide a means to simplify the dy-
namics of our model by exploiting correlations in time. Our graph based approach
allows for a convenient method of locating repeated segments in the data that
are correlated, i.e., loops in our automata can be readily located. We will provide
a complete characterization of this construction in the forthcoming paper, but
note that our clustering procedure provides a method to optimally partition the
data such that minimum distortion hybrid automata may be constructed.

4 Experimental Results and Conclusions

We now apply the techniques presented in previous sections to build a simple
model of the metabolism of peach fruit. We measured the expression profiles
of two classes of genes, ARF and RAB, along a period of 42 days, starting 72
days after flowering and sampling the genes every week. Gene expressions pro-
files were collected using real time PCR [5,10,14]. In particular, we considered
13 and 20 genes for the ARF and RAB families, respectively. Each sample con-
sists in the average of 3 measurements normalized with respects to Ubiquitin
Conjugating Enzyme level. We analyze the data applying the techniques de-
scribed in Sections 2.1 and 2.2. A hierarchical clustering based on the function
d(X,Y ) = (1− |Corr(X,Y )|) for ARF genes is reported in Figure 3. We choose
as distance between two clusters, C1 and C2, the minimum distance between
X ∈ C1 and Y ∈ C2. The label of the circle shaped nodes represent the distance
between subgraphs. Requiring a correlation of at least 70% we obtained 3 and
5 gene clusters for ARF and RAB, respectively. Applying the clustering on the
date correlations we noticed a higher correlation: requiring a correlation of at
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Fig. 3. The cluster hierarchy of the ARF gene correlations

least 98% we obtained 1 date cluster for ARF genes, while requiring a correla-
tion of at least 93% for RAB genes, we got 2 date clusters. Hence, in the case of
RAB genes we can built an automaton having just 2 discrete locations and the
variables Ĝ, Ĝ′ and T which represent the evolution along 7 dates of 20 genes.

In conclusion, we emphasize that we have only established the preliminary
foundations of a theory, aiming at the questions of how experimental data col-
lected in biology may be treated rigorously within a semi-algebraic hybrid au-
tomata framework. We have hinted at its deep connection to dimensionality
reduction and classical rate-distortion theory, but have relegated its complete
treatment to the full paper. However, once such a framework has been cre-
ated, it opens the field to many new questions. Namely, the following: How does
one compare the dynamics of several closely related systems, e.g., a wild-type,
mutant and a double-mutant? Can one factor the dynamics so that the final
automaton may be viewed as product of several component automata, where
most of the component modules remain unchanged over evolutionary time? How
can the interaction between two or more biological systems (e.g., host-pathogen,
host-vector-parasite, or an ecology) be modeled as products of hybrid automata
constructed from different datasets?
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The real-time polymerase chain reaction. Mol. Aspects of Medicine 27, 95–125
(2006)

15. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal Hybrid Systems. Mathematics
of Control, Signals, and Systems 13, 1–21 (2000)

16. Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a
survey. IEEE/ACM Trans. on Comp. Biology and Bioinformatics 1, 24–45 (2004)

17. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Al-
gorithmic algebraic model checking i: The case of biochemical systems and their
reachability analysis. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, Springer, Heidelberg (2005)

18. Schena, M., Shalon, D., Davis, R.W.: Quantitative monitoring of gene expression
patterns with a complementary dna microarray. Science 270(5235), 467–470 (1995)

19. Shannon, C.E.: A Mathematical Theory of Communication. The Bell System Tech-
nical Journal 27, 379–423 (1948)

20. Slonim, N., Atwal, G.S., Tkacik, G., Bialek, W.: Information-based clustering. In:
Proc Natl Acad Sci USA (2005)



On Proving the Absence of Oscillations in

Models of Genetic Circuits

François Boulier1, Marc Lefranc2, François Lemaire1,
Pierre-Emmanuel Morant2, and Aslı Ürgüplü1
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Abstract. Using computer algebra methods to prove that a gene regu-
latory network cannot oscillate appears to be easier than expected. We
illustrate this claim with a family of models related to historical examples.

1 Introduction

The authors belong to a pluridisciplinary working group whose goal is to model
the gene regulatory network controlling the circadian clock of a unicellular green
alga [1]. See [2] for a survey on circadian rhythms and [3, Chapter 9] or [4,5] for
more general texts about oscillations in biology. In doing so, they have gained
some experience in designing models of oscillating gene regulatory networks.

One of the main problems faced by our working group can be formulated
as follows: given a system of parametric ordinary differential equations built
using mass action law kinetics, does there exist ranges of values for the model
parameters and variables which are both meaningful from a biological point of
view and where oscillating trajectories, i.e. limit cycles, can be found ?

This issue is theoretically very difficult. It is related to the unsolved Hilbert
sixteenth problem. Indeed, systems of parametric ordinary differential equations
which oscillate may do so only for very restricted ranges of parameters values.
The difficulty is strengthened by the number of parameters arising in biochemical
models, which can quickly become very large.

A related but easier problem consists of searching for the existence of parame-
ter and variable values which are both meaningful from a biological point of view
and give rise to a Hopf (more precisely Poincaré–Andronov–Hopf) bifurcation.
See [6, Chapter 11], [5, Section 3.5] or [7, Section I.16]. In the neighborhood of
a Hopf bifurcation indeed, a stable steady point of the model under study gives
birth to a small stable limit cycle under some general hypotheses. Note that
searching for Hopf bifurcations is not as general as searching for limit cycles:
first, some Hopf bifurcations (e.g. the subcritical ones) do not strictly imply the
existence of stable limit cycles; second, there may exist limit cycles not related to
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Hopf bifurcations; third, a model may involve a Hopf bifurcation for parameters
and variables values which are close to but outside of the biologically meaningful
parameter domain values and generate limit cycles inside this domain.

There exist software packages such as AUTO or XPPAUT [8,9] which locate
Hopf bifurcations by means of numerical calculations. They allow one to evidence
the existence of Hopf bifurcations but not to prove their absence, and thus cannot
be used to discard a model. Theoretically, the existence or the absence of Hopf
bifurcations can be decided algebraically. See e.g. [10,11,12,13]. In particular,
it can be decided by means of computer algebra methods which rely on Sturm
sequences computations and algebraic elimination. Practitioners usually seem
to avoid these methods because of their huge complexity in the worst case. In
particular, we tried1 the QEPCAD [14] package, which is based on quantifier
elimination methods. However, we could not solve the problems addressed in
this paper with it. We did not try the REDLOG package [15] and the software
described in [10] for they rely on QEPCAD for the quantifier elimination process.
An attempt to solve the addressed problem using the RAGLib library [16] is in
progress, with the help of its author.

By comparison, the computer algebra methods described in this paper are
very light. They take advantage of the special structure of the equations and of
the biological constraints. This indicates that if used carefully, computer algebra
methods may apply on more complex examples than one might expect.

In order to illustrate the core ideas of this paper in a simple setting, we do
not study realistic models of circadian clocks but focus on a simple family of
models depending on an integer parameter n and featuring a negative feedback
loop, one of the core ingredients for generating oscillations [3]. These abstract
models are closely related to models studied by Goodwin and Griffith in the
60’s [17,18,19]. In particular, Griffith considered a model of a gene regulated by
a polymer formed of n copies of its own protein. We study the same problem,
but in a slightly more general case, where gene activation is not assumed to be
fast. We conclude with the absence of Hopf bifurcation in our family of models
for n ≤ 8 and their existence for n ≥ 9. Although we do focus here on biology,
it should be stressed that a cooperativity of order 9 is not as unrealistic as
it may seem. In particular, gene regulation by an octamer has been reported
[20]. Moreover, an effective cooperativity of order 9 may also be obtained as a
consequence of reducing a higher-dimensional, more realistic, model to a three-
variable one. Finally, our conclusions are consistent with those of Griffith [3,
Pages 244–246] and of other works devoted to more sophisticated variants of the
Goodwin model [21,22,23], and thus we believe that the interest of the present
paper goes beyond illustrating computer algebra methods. The application of
these methods to more realistic biological models is in progress and is left for a
future paper.

1 QEPCAD was downloaded from www.cs.usna.edu/∼qepcad and installed on a com-
puter endowed with a Pentium 4 and 512 MB of RAM. Tests were performed by
increasing the default number of cells up to its maximal limit: 200 of millions of
cells.

www.cs.usna.edu/~qepcad
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Our paper is organized as follows. Section 2 describes the family of models
we study. Some basic facts about Hopf bifurcations are recalled in section 3.
In section 4, we use computer algebra methods to prove the absence of Hopf
bifurcation in our model for n ≤ 8 and the occurrence of Hopf bifurcations for
n ≥ 9. The methods involved are Gröbner basis theory [24,25] and Descartes’ rule
of signs [26]. Computations are performed using the MAPLE 9 computer algebra
software. Our proofs were constructed after carrying out intensive numerical
simulations which strongly suggested the results.

2 Our Family of Models

Figure 1 displays a gene regulated by a polymer obtained by combining n times
a protein. The model variables are the state G of the gene, the mRNA concen-
tration M and the concentration P of the protein translated from the mRNA.
Greek letters represent parameters. The initial model involves n + 2 differential
equations depending on 2n+5 parameters. By means of a suitable quasi-steady
state approximation, described in section 2.1, one obtains the following reduced
model, involving only three equations:

Ġ = θ (γ0 −G−GPn),
Ṗ = nα (γ0 −G−GPn) + δ (M − P ), (1)
Ṁ = λG + γ0 μ−M.

All variables and parameters are positive apart λ, which is allowed to be negative.
The protein P reacts with itself, forming a polymer. Gene activity is regulated
by the polymer as it binds to the gene promoter. Depending on the sign of λ,
the polymer is an activator or a repressor: if λ < 0 then mRNA transcription

Pn

α

θ

ρf
ρb

δM

P

δP

M

G G

+

P

+
Pn

P
+

P
+

β

Pn−1

P2

Fig. 1. A gene regulated by a polymer of its protein
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is enhanced when polymer is bound to promoter ; if λ > 0 then mRNA tran-
scription is reduced. The G variable takes values in the range [0, γ0] and can be
viewed as an averaged gene activity. The values G = 0 and G = γ0 correspond
repectively to a polymer being bound to the gene promoter or not.

2.1 Model Reduction

The chemical system involves n + 5 reactions, described below. Denote Pi the
polymer obtained by combining i proteins P with the convention P1 = P .

G + Pn

α
⇀↽
θ
G : Pn, G

ρf−→ G + M, G : Pn
ρb−→ G : Pn + M,

M
β−→M + P, M

δM−→ ∅, P
δP−→ ∅, Pi + P

k+
i⇀↽

k−
i

Pi+1 (1 ≤ i ≤ n− 1).

The dynamics of these reactions is governed by the following equations, where
Ai = (1/ε)(k−

i+1 Pi+1 − k+
i+1 Pi P ):

Ġ = θ (γ0 −G)− αGPn,

Ṁ = ρf G + ρb (γ0 −G)− δM M,

Ṗ = βM − δP P + 2A1 + A2 + · · ·+ An−1,

Ṗi = −Ai−1 + Ai (2 ≤ i ≤ n− 1),
Ṗn = −An−1 + θ (γ0 −G)− αGPn

The 1/ε factor is introduced to express the fact that the various steps of protein
polymerization are assumed to be fast compared to other reactions (transcrip-
tion, translation, degradation, binding of polymer to the gene). Eliminating the
Ai by means of quasi steady state assumptions (Ṗ2, . . . , Ṗn are assumed to be
small), one reformulates the third differential equation as:

Ṗ = βM − δP P + n (θ (γ0 −G)− αGPn).

The Pn variable can be reexpressed as

Pn =
k+
1 · · · k+

n−1

k−
1 · · · k−

n−1

Pn + a term multiplied by ε.

Neglecting the term multiplied by ε and introducing a new parameter ᾱ, one is
thereby led to the following system of three differential equations:

Ġ = θ (γ0 −G)− α ᾱGPn,

Ṗ = n θ (γ0 −G)− nα ᾱGPn + βM − δP P,

Ṁ = ρf G + ρb (γ0 −G)− δM M.

The model can now be simplified by rescaling all parameters and indetermi-
nates G, M and P . Since the reduction involves many (easy) intermediate com-
putations, we only sketch it here. First replace α ᾱ by α. Then replace P by
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(θ/α)1/n P . Expand the equation in Ṁ , replace ρf − ρb by λ and ρb γ0 by μ.
This implies that λ may be positive or negative. Then apply rescale time by re-
placing t by δM t. This last transformation simplifies the term −δMM into −M .
At this stage, one gets the following system:

Ġ =
θ

δM
(γ0 −G−GPn), Ṁ =

λ

δM
G +

μ

δM
−M,

Ṗ = n
(α

θ

) 1
n θ

δM
(γ0 −G−GPn) +

(α

θ

) 1
n β

δM
M − δP

δM
P.

Then discard all the δM by replacing β/δM , δP /δM , λ/δM and μ/δM by β, δ, λ
and μ. Then replace αn/θn−1 by α. Then replace θ/δM and α/δM by θ and α.
Using the fact that M occurs only in linear terms, renormalize last M so that
β = δP and update λ and μ. One finally gets our reduced model (1).

Comments. Gene activity is regulated by Pn. The reduced model is designed
so that the steady state depends only on parameters λ, μ and γ0 while θ, α and
δ control time scales. Note that Griffith model is recovered by letting θ and α
tend towards +∞, keeping the ratio θ/α constant. When translation is equal to
degradation i.e. δ = 0, nG − (θ/α)P is constant which expresses the fact that
DNA binding and unbinding do not modify the total quantity of proteins.

3 Hopf Bifurcations

3.1 Hurwitz Determinants

Let ẋ = F (x) be a differential system in m dependent variables. The steady
points of the differential system are the zeros of the system (that we assume to
be polynomial or rational) F (x) = 0. To each steady point, one may associate a
linear system ẋ = J x where J is the m×m jacobian matrix of the differential
system, evaluated over the steady point. The stability of the steady state is de-
termined by the eigenvalues of J . It is stable if and only if all eigenvalues have
negative real parts. Thus to each steady point, one may associate the charac-
teristic polynomial C(σ) = σm + a1 σm−1 + · · · + am (a0 = 1) of J . Thanks to
the Routh-Hurwitz criterion, the stability of the steady points can be studied by
analyzing the sign of the Hurwitz determinants ck,0. These ones can be directly
computed from the coefficients of the characteristic polynomial, as shown below.
Following [7, Section I.13], compute the Sturm sequence:

p0(ω) = �
(
C(i ω)
im

)
, p1(ω) = − 

(
C(i ω)
im

)
(2)

pk+2(ω) = − rem(pk, pk+1, ω) (k ≥ 0).

Denote pk(ω) = ck,0 ωm−k + ck,1 ωm−k−2 + ck,2 ωm−k−4 + · · · Observe that
the computation of pk must be performed carefully (e.g. using subresultant se-
quences) to ensure that ck,0 actually is a Hurwitz determinant. See [10]. Indeed,

c0,0 = 1, c1,0 = a1, c2,0 = a1 a2 − a3, . . . , cm,0 = am cm−1,0.
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The two following propositions are well known. The first one is nearly a corollary
to the Routh Theorem [7, Theorem 13.4].

Proposition 1. With the same notations, if all the Hurwitz determinants ck,0

are positive, apart perhaps cm,0, then J has no pure imaginary eigenvalue.

Proof. If all the Hurwitz determinants ck,0 are positive (0 ≤ k < m) then they
are a fortiori nonzero. Assume J has pure imaginary eigenvalues ±i ω̄ (they are
necessarily conjugate). These values ±ω̄ are then common zeros of p0 and p1.
The gcd of p0 and p1 has thus degree greater than or equal to 2. This gcd is the
last nonzero polynomial in the sequence p0, . . . , pm−1. Thus one polynomial pk

with 0 ≤ k < m must vanish identically. Therefore the corresponding Hurwitz
determinant ck,0 must vanish also.

Proposition 2. With the same notations, if all the Hurwitz determinants ck,0

are positive (0 ≤ k ≤ m − 2) and cm−1,0 = 0 and cm−2,1 < 0 then all the
eigenvalues of J have negative real parts except a purely imaginary conjugate
pair.

Proof. The polynomial pm−1 has the special form pm−1 = cm−1,0 ω. We have
cm−1,0 = 0. Then p0 and p1 have a degree two gcd, pm−2, which has the special
form pm−2 = cm−2,0 ω2 + cm−2,1. We have cm−2,1 < 0 and cm−2,0 > 0 thus,
the common roots ±ω̄ of p0 and p1 are real. Therefore J has one pair of purely
imaginary conjugate eigenvalues ±i ω̄. Now, compute the Sturm sequence (2)
over the polynomial C̄(σ) = C(σ)/(σ2 +ω̄2). This Sturm sequence p̄0, p̄1, . . . , p̄m̄

can actually be derived from that of C:

p̄0(ω) =
p0

σ2 + ω̄2
, p̄1(ω) =

p1

σ2 + ω̄2
, . . . , p̄m̄(ω) = cm−2,0.

All the corresponding Hurwitz determinants are positive. According to the Routh
Theorem [7, Theorem 13.4], all the roots of C̄ have negative real parts. This
concludes the proof of the proposition.

For m = 3 we have cm−2,1 = −a3. For m = 4 we have cm−2,1 = −a1 a4.

3.2 Hopf Bifurcations

The differential systems encountered in biological modelling involve parameters.
Let ẋ = F (x, θ) be a differential system in m variables and p parameters θ. If
some real values are assigned to the parameters then one gets a system such as
the one described in section 3.1. If these real values continuously vary then the
steady points and their associated eigenvalues continuously vary also.

Definition 1. With notations as above, a Hopf bifurcation arises for a steady
point when all the eigenvalues associated to the steady point have negative real
parts except one complex conjugate pair, which crosses the imaginary axis because
of a variation in the system parameters.
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3.3 In Computer Algebra

In computer algebra, an important point is to avoid to compute the steady
points, i.e. not to solve the system F (x, θ) = 0. The Hurwitz determinants can
be computed generically. They depend on the system parameters. Their sign is
studied modulo the ideal I generated by the polynomial system F (x, θ) = 0.
The absence of Hopf bifurcation is established, thanks to proposition 1 and def-
inition 1, by proving that the Hurwitz determinants c0,0, . . . , cm−1,0 are positive
for all x and θ, considering that x and θ satisfy F (x, θ) = 0 plus, usually, some
extra (positivity) conditions such as x, θ > 0.

The Hurwitz determinants ck,0 get reformulated by computing their normal
forms c̄k,0 w.r.t. any Gröbner basis of the ideal I. Reference books for the
Gröbner basis theory are [24,25]. Indeed, the difference ck,0 − c̄k,0 belongs to I.
Over any steady point of the differential system, it is thus zero, thus the two
polynomials ck,0 and c̄k,0 have the same value hence the same sign.

In practice moreover, Gröbner bases can be computed in dimension zero. Com-
puting in dimension zero corresponds to some generic computation, which may
be false for particular values of the system variables and parameters. However,
in biological models, parameters (and thus variables) have no accurate values
and zero dimensional computing makes sense.

4 Application to Our Models

To permit the reader to reproduce our computations, we provide the sequence
of MAPLE 9 commands which prove that no Hopf bifurcation may arise in our
models for positive values of the system variables and parameters (apart λ).

The LinearAlgebra package, the Groebner package and the Jacobian function
of the VectorCalculus package are loaded. The list of the model variables is
assigned to vars.

with (LinearAlgebra):
with (VectorCalculus,Jacobian):
with (Groebner):
vars := [G, P, M]:

The list of the right–hand sides of the model equations is assigned to the equilibria
variable. The zeroes of this polynomial system provide the steady points of the
model.

equilibria := [
theta*(gamma0 - G - G*P^n),
n*alpha*(gamma0 - G - G*P^n) + delta*(M-P),
lambda*G + gamma0*mu - M]:

In general, one cannot compute a Gröbner basis of the ideal I generated by
such a system if a symbolic n is left as an exponent. But in our case, generic
Gröbner bases exist, at least w.r.t. some admissible orderings. Let us fix the
pure lexicographical ordering given by λ > M > γ0. The other model variables
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and parameters are considered as algebraically independent elements of the base
field of the equations. The Gröbner basis is thus computed in dimension zero
i.e. in the polynomial ring K[λ, M, γ0] where K denotes the field obtained by
adjoining all the remaining variables and parameters to the field of the rational
numbers. Here are the Gröbner basis elements. The leading terms appear on the
left–hand side of the equations:

γ0 = G + GPn, M = P, λ =
P − μG− μGPn

G
·

Observe that for any particular value of n, the Gröbner basis can be computed
by the following sequence of MAPLE commands (these commands do not permit
to obtain the generic form directly):

ordre := plex (lambda, M, gamma0):
basis := gbasis (equilibria, ordre):
seq (leadterm (basis [i], ordre) =

solve (basis [i], leadterm (basis [i], ordre)),
i = 1 .. nops (basis));

The computed Gröbner basis has two striking properties: its leading terms are
plain variables ; apart for λ which is allowed to be negative, the right–hand
sides of the three other equations of the Gröbner basis are necessarily positive.
The first property implies that the quotient ring is a free algebra: a polynomial
ring. In particular, the product of two normal forms is itself a normal form. The
second property implies that there are no constraints on the values that can
be assigned to the model variables and parameters occuring in the right–hand
sides of the equations since positivity is the only requirement for the values
of γ0 and M . Therefore, to evaluate the Routh–Hurwitz criterion over the model
steady point, it is sufficient to replace each element by its normal form in the
Jacobian matrix J of the model.

J := Jacobian (equilibria, vars):

J :=

⎛
⎝ −θ (1 + Pn) −n θGPn−1 0
−nα (1 + Pn) −n2 αGPn−1 − δ δ

λ 0 −1

⎞
⎠

The generic normal form of J is:

J =

⎛
⎜⎝

−θ (1 + Pn) −n θGPn−1 0
−nα (1 + Pn) −n2 αGPn−1 − δ δ

P − μG− μGPn

G
0 −1

⎞
⎟⎠

From now on, J is assumed to be under normal form. This implies in particular
that all the expressions computed from J are free of the parameter λ. These
expressions thus only involve positive variables. For any particular value of n,
the normal form of the jacobian can be computed by the following command:

J := map (normalf, J, basis, ordre):
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The characteristic polynomial of J writes: σ3 + a1 σ2 + a2 σ + a3. Its coefficients
are stored in indexed variables:

pol := CharacteristicPolynomial (J, sigma):
for i from 1 to nops (vars) do

a[i] := coeff (pol, sigma, nops (vars) - i)
od:

The Hurwitz determinants ck,0 can now be computed from the coefficients ak of
the characteristic polynomial.

c[0,0] := 1:
c[1,0] := a[1]:
c[2,0] := a[1]*a[2]-a[3]:
c[3,0] := a[3]*(a[1]*a[2]-a[3]):

In order to apply propositions 1 and 2, one needs to study the positivity of the
Hurwitz determinants ck,0 for 0 ≤ k ≤ m−1 = 2. The coefficient c0,0 is obviously
positive. So is the coefficient c1,0 (below), for it is generically equal to a sum of
monomials involving positive variables and coefficients:

1 + n2 αGPn−1 + δ + θ + θ Pn

The coefficient c2,0 is more complicated. However it has a very special form. It is
equal to a sum of monomials with positive coefficients minus the single following
monomial: n θ δ Pn+2. Readers who would like to reproduce the computations
may want to use our negterms function, described in section 4.4:

negterms(c[2,0]);

[[−n θ δ Pn+2], []]

4.1 Cases n = 1 and n = 2

Those two cases are easy. Indeed, for these values of n, the negative term in c2,0

is cancelled by another coefficient (namely 2 θ δ Pn+2). This implies that c2,0 is
always positive. Thanks to proposition 1 no Hopf bifurcation may occur.

negterms(subs(n=1, c[2,0]));

[[], []]

negterms(subs(n=2, c[2,0]));

[[], []]

4.2 Cases 3 ≤ n ≤ 8

In these cases, c2,0 is also always positive. The proof here is less straightforward
than above. It relies on Descartes’ rule of signs. See [26].
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Proposition 3. (Descartes’ rule of signs)
Let p = a0 xd + · · · + ad−1 x + ad be a polynomial in one indeterminate x and
real coefficients. Denote r(p) the number of positive real roots of p, counted with
multiplicities, and v(p) the number of sign changes in the sequence a0, . . . , ad (the
zero coefficients must be removed). Then v(p) ≥ r(p). In particular, if v(p) = 0
then r(p) = 0; if v(p) = 1 then r(p) = 1.

To simplify the positivity proof of c2,0, one first cancels all the monomials not
depending on θ, δ and P (i.e. the variables and parameters occuring in the
negative term). One then clears the denominator P 2 out. One is thus led to
prove the positivity of the cond polynomial computed below.

X := indets (c[2,0]) minus indets (negterms (c[2,0]));

X := {α, G, μ}
cond := numer (subs (seq (X[i]=0, i=1..nops(X)), c[2,0]))/P^2:

The polynomial cond is actually a polynomial in Pn. By a change of variables,
one is led to study the positivity of the following degree 2 polynomial in P :

cond := collect (subs (P^n=P, cond), P):

(θ2 δ+θ2) P 2+(2 θ2 δ+θ+2 θ δ+δ2 θ+2 θ2−θ δ n) P +(2 θ δ+δ2 θ+δ2+θ2 δ+θ+δ+θ2)

Let us write cond as AP 2 + B P + C. The coefficients A and C are positive for
they only involve monomials with positive coefficients. Therefore, the conditions
B2 − 4AC ≥ 0 (to ensure the existence of real roots) and B < 0 (to ensure the
existence of positive roots by Descartes’ rule of signs) are necessary and sufficient
to have cond = 0 for P > 0. Condition B2 − 4AC ≥ 0 leads to θ ≤ θ0 where

theta0 := solve (discrim (cond, P) / theta^2, theta):

θ0 :=
δ4 − 2 δ3 n + δ2 n2 − 4 δ2 n + 1− 2 δ2 − 2 δ n

4 δ n (1 + δ)
·

The condition B < 0 leads to θ < θ1, where

theta1 := solve (coeff (cond, P, 1) / theta, theta);

θ1 :=
−1− 2δ − δ2 + δ n

2 (1 + δ)
·

One is thus led to prove that the two conditions

0 < θ ≤ θ0, 0 < θ < θ1 (3)

cannot be satisfied at the same time. One may convince oneself by plotting
curves (see Figure 2). Let us continue the analysis more algebraically. For δ = 0
we have θ1 < 0. Therefore, θ1(δ) > 0 only if δ lies in the interval bounded by
the two real roots of θ1 i.e.

n−
√
n2 − 4n

2
− 1 < δ <

n +
√
n2 − 4n

2
− 1.
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Fig. 2. The curves θ0(δ) and θ1(δ) are not simultaneously positive for n = 7 (left) while
they are simultaneously positive for n = 9 (right). The curve for θ1(δ) starts with a
negative value.

which only holds for n > 4. Hence no Hopf bifurcation may occur for n ≤ 4,
thanks to proposition 1.

To solve the remaining cases 5 ≤ n ≤ 8, it is sufficient to compute a table of
variations. For each value of n, one may isolate the positive real roots of θ0(δ)
and θ1(δ) in arbitrary small intervals, ensuring that all the intervals are disjoint.
Evaluating these two expressions for values of δ outside these intervals, one easily
proves that conditions (3) cannot hold simultaneously. Hence no Hopf bifurcation
may occur for 5 ≤ n ≤ 8. Here is such a table for n = 7:

δ 0.07 0.21 4.79 12.58
θ0 + 0 − − − − − 0 +
θ1 − − − 0 + 0 − − −

The realroot function of MAPLE may be used to isolate the roots, the following
commands show. This function implements the algorithm described in [27]. Its
is based on Descartes’ rule of signs.

readlib (realroot):
realroot (subs (n=7, numer (theta0)), 1e-3);

[[
81

1024
,

41
512

]
,

[
12879
1024

,
805
64

]]

realroot (subs (n=7, numer (theta1)), 1e-3);

[[
213
1024

,
107
512

]
,

[
2453
512

,
4907
1024

]]
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4.3 Case n = 9

Hopf bifurcations may arise for n = 9. One can be found using proposition 2.
Using a table of variations or looking at Figure 2, we see that δ = 1 and θ = 1/10
satisfy conditions (3). Replace α, μ and G, which were set to zero in cond,
by small positive values (say 1/1000). The Hurwitz determinant c2,0 is then a
polynomial in P with real roots. The following commands compute one of them.

vals := n=9,delta=1,theta=1/10,alpha=1/1000,mu=1/1000,G=1/1000:
c20 := normal (subs (vals, c[2,0])):
valP := realroot (c20, 1e-6) [1];

valP =
[
41381
32768

,
1324193
1048576

]

The above values cancel the Hurwitz determinant c2,0. The following command
checks that c1,1 = −a3 < 0. Observe that the computation could be performed
more carefully by means of interval arithmetics.

evalf(subs(vals,P=valP[1],-a[3])), evalf(subs(vals,P=valP[2],-a[3]));

−8.268768356, −8.268823875

According to proposition 2, a Hopf bifurcation should occur. Numerical simula-
tions show that this Hopf bifurcation gives birth to oscillations.

4.4 Comments

A general analysis. It is possible to prove the absence of Hopf bifurcation for
n ≤ 8 without discussing all the cases. The idea, which is only sketched here,
starts by noticing that the real roots of θ0(δ) belong to the range2 ]1/n, n− 2[.

One first computes the resultant w.r.t. δ between θ1(δ) and its first derivative
w.r.t. δ. It vanishes only for n = 8. Thus, apart for this case which may be
handled separately, all the roots of θ1(δ) are simple.

One then proves that θ1(δ) admits one real root in the range ]0, 1/n[. This
can be done by performing a change of variables over θ1(δ), mapping the range
]0, 1/n[ to the range ]0, +∞[ in order to apply Descartes’ rule of signs. Here are
the corresponding MAPLE commands:

z := collect (numer (theta0), delta):
z1 := collect (numer (subs (delta=1/(n*(sigma+1)), z)), sigma);

z1 := n4 σ4 + 2n4 σ3 + (n4 − 4n3 − 2n2)σ2 − (8n3 + 6n2)σ − 4n3 − 4n2 + 1

For any n ≥ 1, the number of changes of signs is equal to 1. By Descartes’ rule of
signs, z1(σ) admits exactly one positive real root whence3 θ1(δ) admits exactly
one positive root smaller than 1/n. Therefore, θ1(δ) < 0 after crossing this root.

2 One denotes ]a, b[ the open interval [a, b].
3 This is the very argument applied by the realroot function!
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Performing similar changes of variables and using Descartes’ rule of signs,
one easily studies the existence of real roots of θ1(δ) in the ranges such ]1/n, 1[
and ]1, n− 2[. The respective changes of variables are:

δ =
n + σ

n (σ + 1)
and δ = 1 +

n− 3
σ + 1

·

Applying Descartes’ rule of signs over the resulting expressions, one concludes
that θ1(δ) has no root located in the range defined by the two real roots of θ0(δ)
for n < 8 and always two roots located in that range for n ≥ 9. This is sufficient
to prove that no Hopf bifurcation occurs for n < 8.

To prove that Hopf bifurcations occur for n ≥ 9 by using proposition 2, one
still needs to prove that c1,1 = −a3 (below) may be negative for all these values.
The variables μ and G may be assigned arbitrary small positive values. Therefore
c1,1 may be negative for each n ≥ 9. This concludes the (sketched) proof that
Hopf bifurcation arise for any n ≥ 9.

θ δ (μG (nPn−1 + nP 2 n−1)− (n + 1)Pn − 1)

The γ0 parameter. It is tempting to avoid the γ0 parameter in the model and
use the value 1 instead. However, over some of the models we tried, the shape
of the Gröbner basis was nicer, naming this 1 and eliminating it.

The Gröbner basis. The choice of the ordering is important. It is at least
necessary to eliminate the problematic λ parameter and, more generally, every
variable or parameter which is allowed to be negative. Other Gröbner bases can
be used to prove that c2,0 is positive over the model steady points (at least for
n ≤ 2). A such example is obtained by replacing γ0 by G in the ordering.

The negterms function. The MAPLE code of the negterms function is pro-
vided here. It gathers as input a rational fraction expr. It returns a pair of lists L1

and L2. The list L1 (resp. L2) is the list of the monomials of the numerator (resp.
denominator) of expr which have negative coefficients.

negterms := proc (expr)
local f, p, koeffs, terms, result;
f := proc (x,y) if x < 0 then x*y else NULL fi end:
result := NULL;
for p in [expand (numer (expr)), expand (denom (expr))] do

if indets (p) <> {} then
koeffs := coeffs (p, indets (p), ’terms’);
result := result, zip (f, [koeffs], [terms])

else
result := result, []

fi;
od;
[result]

end:
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5 Conclusion

We have studied a simple system depending on an integer n, which describes
the regulation of a gene by a polymer of order n of its protein. We have shown
that no Hopf bifurcation may occur for n ≤ 8 and that Hopf bifurcations arise
for n ≥ 9, taking into account that biologically relevant values of most of the
model variables and parameters must be positive. Strictly speaking, this is not
sufficient to prove the absence of limit cycles for n ≤ 8. However, our analysis is
confirmed by extensive numerical simulations.

Our study led us to study the positivity of complicated rational fractions
modulo the ideal I generated by the steady points equations. This problem
is in general a difficult problem in computer algebra though it is theoretically
solved [28]. Our study was however much simplified by the fact that we could
compute a Gröbner basis of the ideal I having a very nice shape and by the fact
that most of model variables and parameters are positive.

We believe that these simplifying properties occur more often that expected
and that they imply that, at least in the domain of biological modeling, computer
algebra methods are not necessarily restricted to academic problems.

Thanks. We would like to thank Thomas Erneux for stimulating discussions
about the Routh–Hurwitz criterion. We would like also to thank all the members
of the circadian rythms working group in Lille.
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Abstract. The classical attenuation regulation of gene expression in
bacteria is considered. We propose to represent the secondary RNA struc-
ture in the leader region of a gene or an operon by a term, and we give a
probabilistic term rewriting system modeling the whole process of such
a regulation.

1 Introduction

Modeling the mechanisms of regulation of gene expression, allowing prediction
of quantitative characteristics of this expression (such as estimation of the level
of expression and concentration of the substrate) is an important research chal-
lenge. In a previous work [LRSP06, LPRS07], a model of one particular kind
of regulation, the classical attenuation regulation, has been suggested. In that
model, the evolution of the secondary RNA structure in the leader region of a
gene, and the progress of the ribosome and the polymerase along the RNA/DNA
strands, are represented by a very special, elaborated in detail, Markov chain.
In this chain the transition probability corresponding to the progress of the ri-
bosome depends on a “control variable” — the concentration of charged tRNA
molecules in the cell. All the other probabilities do not depend on the control
variable, they can be determined from energy-based considerations. Termination
and antitermination (of gene expression) correspond to particular random events
in the Markov chain. In [LRSP06], a Monte-Carlo simulation of this Markov chain
led to biologically realistic dependence of termination probability from the con-
trol variable. Due to a large size and a complex structure of the Markov chain,
its simulation is a heavy computational task, but it was successfully solved, and
a software tool called Rnamodel simulates one trajectory in fractions of a sec-
ond [LRSP06, RNA]. However, the approach based on the direct description of
the Markov chain and its simulation has some limitations, especially for a the-
oretical analysis. Biologically, it would be nice to have a more structured and
compact representation of the Markov chain and its instantaneous probability
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distributions over all states at every instant, or only for sufficiently large time,
or only probabilities of the two biologically important events — termination and
antitermination.

Note that the problem of modeling the classical attenuation regulation, as
stated in [LRSP06] and in the current article, is related to the representation
of the transient behavior of the secondary structure on a sliding window on
the RNA strand between the ribosome and the polymerase (see below for de-
tails). This differs from the kinetics of the secondary RNA structure on a fixed
nucleotide sequence for unlimited time, i.e. unlimited number of steps, investi-
gated in many papers. The structure that appears after a large amount of time
is called equilibrium secondary RNA structure, it corresponds to a minimum of
energy, see e.g. [Zuk03, FFHS00]. The tool Rnamodel has also the function of
determining this equilibrium structure and its energy as a special part of the full
model in [LRSP06]. However, real structures that appear on the RNA strand
during the regulation process are far from the equilibrium and their energies are
far from minimal.

In this article we discover a regular internal structure of the Markov chain de-
scribing the classical attenuation regulation. We show that it can be represented
as a probabilistic term rewriting system for a particular type of terms. The set
of rewriting rules can be large, but all of them are generated by a small set of
(five) metarules. In fact we give the full description of the metarules and explain
how to generate all the rules for the case of classical attenuation regulation.

Potential benefits of such a representation are multiple:

– easier and more precise modeling of regulation mechanisms depending on
the dynamics of the secondary structure;

– compact description of such mechanisms, perhaps in dedicated languages,
and hence a better biological understanding of regulation processes;

– convenient representation of secondary structures by terms;
– specific analysis and simulation methods for rewriting systems.

This article is structured as follows. In section 2 we describe shortly the biolog-
ical phenomenon that we want to model: the mechanism of classical attenuation
regulation (CAR). In section 3 we introduce a class of terms and probabilistic
term rewriting systems. In section 4 we represent a qualitative metamodel of the
biological mechanism of CAR by a term rewriting system. In section 5 we refine
the previous system and decorate its transitions with rates, thus obtaining a
representation of the Markov chain by a probabilistic term rewriting system. In
section 6 we show some simulation results. In section 7 we discuss some related
work on term rewriting and its applications. In section 8 we conclude with a dis-
cussion of perspectives of the rewriting approach to modeling the mechanisms
involving RNA secondary structures, especially regulation.

2 Classical Attenuation Regulation

To begin with, we recall some well-known biological facts about the biological
phenomenon playing the central role in this article.
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The expression of a group of structural genes (that is synthesis of the cor-
responding proteins, which are ferments for a chemical reaction) can be regu-
lated by a sequence of nucleotides placed on the DNA upstream inside the so
called leader region of the genes [SB91]. This subsequence of the leader region
is called the regulatory region. In this article we deal with one particular type of
regulation, classical attenuation regulation (CAR) in bacteria. This regulation
mechanism concerns structural genes (groups of genes — operons) that produce
proteins which catalyze the synthesis of amino acids. The classical attenuation
allows to activate such an operon when the cell contains a small concentration of
the amino acid, to deactivate the operon whenever this concentration increases,
and to do it fast. The mechanism of CAR involves several actors: the regulatory
region on the DNA, its copy on the RNA, the ribosome, and a ferment called
RNA polymerase (see Fig.1).

Rib

Pol str. genesstr. genes DNA

RNA

Q

Q

Q'Q'

Q'Q'

Q"Q"

Q"Q"

Fig. 1. Classical attenuation regulation. The RNA polymerase Pol transcribes the regu-
latory region Q, the ribosome Rib translates the leader peptide gene Q′. The movement
of Rib on regulatory codons Q′′ is controlled by the concentration of charged tRNA.
The secondary RNA structure ω between Rib and Pol brakes Pol and pushes it off
the chain. If Pol reaches the structural genes, then they are expressed, i.e. transcribed
and then translated. Note that in both the DNA and the RNA, we use Q,Q′ and Q′′

to denote the regulatory region, the leader peptide gene, and the regulatory codons,
respectively.

For structural genes to be expressed two concurrent processes should succeed:
the regulatory region Q should be transcribed creating an RNA by RNA poly-
merase. At the same time the ribosome should be bound to the very beginning of
the freshly created segment Q′ (called the leader peptide gene) in the regulatory
region Q on the RNA and starts translation of this leader peptide gene to an
auxiliary protein. The essential part of the regulation process takes place when
the ribosome moves on Q′ on the RNA and the polymerase moves somewhere
downstream of the ribosome on Q on the DNA.

The ribosome moves “rightwards” (formally speaking, in the direction from
the 5′ to the 3′ end) on a segment Q′ of the sequence Q. Its speed is constant
except on a subsequence Q′′ (regulatory codons) where it depends directly on the
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concentration of the amino acid (via charged tRNA concentration). To the right
of the ribosome and independently of it, the polymerase moves rightwards on Q.
Between the ribosome and the polymerase a secondary structure ω is formed on
the RNA. This structure consists in pairing of some nucleotides, and it changes
very fast. An important effect of the secondary structure ω consists in slowing
down the movement of the polymerase. There are two possible scenarios:

– When ω is strong enough, its “braking” action on the polymerase increases,
and moreover, the polymerase can slip off the DNA (this can only happen
on so-called T-rich sequence, where the connection of the polymerase and
the DNA weakens). Such an event is called termination, and in this case
the structural genes are not expressed: the transcription of the regulatory
region is aborted, the structural genes are not transcribed and therefore not
translated.

– Another possibility is that the ribosome moves fast enough to weaken or
partly destroy most of the structure ω. In this case the polymerase safely
traverses the T-rich sequence, and arrives to the end of the leader region Q.
Next, the polymerase enters the structural genes, and their transcription,
followed by translation are unavoidable. This event is called antitermination
and in this case the structural genes are expressed.

In the rest of this article we build a qualitative and a quantitative models of
the regulation process described above.

3 Terms and Rewriting Systems

3.1 Unranked Unordered Terms

Let Σ be a finite set of function symbols and X an enumerable set of variables
(standing for sets of terms). The set TΣ[X ] of terms over Σ and X is the smallest
set that satisfies:

– Σ ⊆ TΣ [X ],
– {f(x) | f ∈ Σ ∧ x ∈ X} ⊆ TΣ[X ],
– if f ∈ Σ and s ⊆ TΣ [X ] is a set of terms, then f(s) is in TΣ[X ].

By definition we also put f(∅) = f for f ∈ Σ. For convenience we write
f(g, h(e)) instead of f({g, h({e})}). However one should remember that the
coma-separated terms are unordered.

Example 1. Let Σ = {e, f, g, h} and X = {x, y, z, . . . }, then the followings are
terms in TΣ[X ]: f(g, h(e)), f(f(x)) and e(g, f).

Note that we consider function symbols of variable arity. TΣ stands for TΣ[∅].
Terms in TΣ are called ground terms. Variables are used only to define substi-
tution and rewriting rules. The “real” terms are ground terms. A substitution σ
is a mapping from X to 2TΣ [X ], written as σ = {x1 → T1, . . . , xn → Tn}, where
Ti, 1 ≤ i ≤ n, is a finite set of terms that substitutes the variable xi. The term
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obtained by applying the substitution σ to a term t is written tσ. We call it an
instance of t.

Let R be a rule of the form l → r, where l and r are terms in TΣ [X ]. For
ground terms t, t′ we write t →R t′ if there exists a substitution σ such that
t′ can be obtained from t by replacing an occurrence of the subterm lσ by rσ.
→R defines a relation between ground terms. Let →∗

R be the reflexive transitive
closure of →R.

Example 2. Let R = l → r with l = f(x, e), r = f(g(x), e) and t = e(f(h, e)),
then t→R t′ where t′ = e(f(g(h), e)).

A term rewriting system (TRS) is a finite set of rules of the form l → r. Given
a TRS R and a set of terms I ⊂ TΣ, the language R∗(I) is defined as the set of
all ground terms that can be obtained from the terms in I by applying a finite
number of times the rules from R, i.e., R∗(I) = {t ∈ TΣ | ∃t′ ∈ I, t′ →∗

R t}.

Example 3. Let R = {f(x) → g(f(x))} and I = {f(e, h)}, then

R∗(I) = {gn(f(e, h)) | n ∈ IN}.

3.2 Probabilistic Term Rewriting Systems

A Continuous Time Markov Chain is a pair (S, ρ), where S is a finite or enu-
merable set of states and ρ : S × S → [0,∞) is the rate matrix. For s, s′ ∈ S,
ρ(s, s′) > 0 means that there is a transition between states s and s′, and that the
probability for moving from s to s′ within t time units is equal to 1− e−ρ(s,s′)·t.
If a state s has more than one outgoing transition (i.e., if there exist more than
one state s′ for which ρ(s, s′) > 0) there exists a race between these transi-
tions and the probability for moving from s to s′ within t time units is equal to
ρ(s,s′)
E(s)

(
1− e−E(s)·t), where E(s) =

∑
s′∈S

ρ(s, s′).

A (continuous time) Probabilistic term rewriting system (PTRS) over Σ ∪ X
is a (finite) set of rules of the form l Λ−−→ r, where l and r are terms in TΣ[X ],
and Λ ∈ (0,∞) is a rate.

A PTRS R over Σ ∪ X defines a continuous time Markov chain on ground
terms M = (TΣ, ρ), where ρ(t, t′) = Λ iff there exists a rule l

Λ−−→ r ∈ R such
that t→R t′, where R is the “non probabilistic” rule l → r.

Remark 1. If there are several rules (or several instances of the same rule) that
lead from t to t′, then ρ(t, t′) =

∑
Λ, where the sum is taken over all such rules

or instances.

4 Metamodel

We want to model the phenomenon of the classical attenuation regulation de-
scribed in section 2.
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We suppose that a regulatory region Q (see Fig. 1) is given and fixed in the
sequel, it is a sequence (word) Q ∈ {A,C,G,T}∗, the letters of this alphabet
are called nucleotides. We denote by |x| the length of any word x and xi the ith
letter of x, so x = x1x2 . . . x|x|. The sequence Q can be folded1 in a way that
some nucleotides of Q are paired: A with T and C with G. The complement of
a nucleotide is written using a bar: A = T, T = A, C = G, G = C. We look in
Q for subwords (“stems”) of the form

QAQA+1 . . .QB and QCQC+1 . . .QD such that
B −A = D − C, A + 3 ≤ B, B + 3 ≤ C (1)
QA = QD, QA+1 = QD−1, . . . QB = QC .

Any pair of such stems forms a hypohelix (see Figure 2, where the labels Ai, Bi, Ci

and Di are positions in the word Q).

1 A1

B1 C1

D1

|Q|

f

Fig. 2. One hypohelix f

We describe a hypohelix f by a tuple of its stems’ extremities f = (A,B,C,D),
and we introduce the following notations:

stem(f) = [A,B] ∪ [C,D], loop(f) = [B + 1, C − 1], supp(f) = [A,D].

There is a ribosome at some position on Q′ and an RNA polymerase somewhere
to the right of it. Both move to the right, in one step the ribosome moves by
three successive nucleotides and the polymerase by one nucleotide. The window
w = (R,P ) represents the segment of RNA from the first position R after the end
of the ribosome to the last position P before the beginning of the polymerase.
In fact the folding of the RNA sequence Q can only happen within the current
window, i.e. between positions R and P . When the ribosome advances to the
right, it can destroy the leftmost hypohelix of a current configuration, because it
consumes the first three letters of the window. On the other hand any polymerase
move adds one new letter to the window.

1 Only on its “active” part called window, as we will see below.
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Formally a window has the form w = (R,P ) with R,P ∈ IN. The following
constraints should be satisfied:

13 ≤ R ≤ P ≤ |Q| (2)

Thus, the window is moving and changing its length.
Let W = {w = (R,P ) | conditions (2) are satisfied} be the alphabet of all

windows. We define

stem(w) = ∅, loop(w) = [R,P ], supp(w) = [R,P ] .

We will write terms over the alphabet Σ of all hypohelices and all windows:

Σ = H ∪W where H = {f = (A,B,C,D) | conditions (1) are satisfied}.

We consider only terms of the form w(. . . ) for some w ∈ W (rooted by some
window w). According to the conditions that we will define next, a symbol
f = (A,B,C,D) can appear in a term w(. . . ) only if R ≤ A and D ≤ P , where
w = (R,P ).

We say that a hypohelix f is embedded in g (which can be a hypohelix or
a window), written f ≺ g, if supp(f) ⊆ loop(g). Two hypohelices f and g are
disjoint, written f �� g, if supp(f) ∩ supp(g) = ∅. We call f and g unknotted if
either one of them is embedded in the other or they are disjoint. We say that
g = (A2, B2, C2, D2) is an extension of f = (A1, B1, C1, D1), denoted f $ g, if
[A1, B1] ⊆ [A2, B2] and B2 − B1 = C1 − C2, hence [C1, D1] ⊆ [C2, D2], and the
pairing in g is an extension of that in f . See Figure 4.

We call a term t over Σ well-formed if it satisfies the following conditions:

(compatibility) any f and g appearing in t are unknotted, in particular any
f can appear at most once,

(ordering) if f and g occur in t, then f ≺ g iff f is in the scope of g.

The combination of two hypohelices in Figure 4 is biologically feasible, but
according to our rules these hypohelices are incompatible. We believe that this
restriction (crucial for representation by terms) does not undermine significantly
the accuracy of the model.

Notice, that a well-formed term of the form w(. . . ) (rooted by some window
w) contains only hypohelices from

Σw = {f ∈ H | f ≺ w}.

This simple observation greatly simplifies the simulation process.
In [LRSP06] an additional maximality condition is imposed. Using the termi-

nology of this article, it requires that no hypohelix f in t can be replaced by its
proper extension without creating an overlapping. Here we do not impose this
restriction.

Each well-formed term represents a possible secondary RNA structure in a
window in Q: the set of hypohelices that are present in this window. It could be



88 E. Asarin et al.

A1

B1

C1

D1

f

A2

B2 C2

D2

g
A2

B2 C2

D2

f

A2

B2 C2

D2

g

Fig. 3. Relative positions of two hypohelices f and g: f ≺ g and f �� g. Here f =
(A1, B1, C1, D1) and g = (A2, B2, C2, D2). On the left B2 < A1 and D1 < C2, on the
right D2 < A2.

A1

B1 C1

D1

A2B2

C2 D2

Fig. 4. Pseudo-knot: A1 < B1 < A2 < B2 < C1 < D1 < C2 < D2. Such configurations
are not allowed in our model.

possible to allow knotted hypohelices, and hypohelices of length less than 3, but
here we do not consider them.

We extend the definitions of �� and ≺: let f be a term and c a set of terms,

c �� f iff ∀g ∈ c (g �� f),
c ≺ f iff ∀g ∈ c (g ≺ f).

In the former case we say that f and c are disjoint, in the latter that c is
embedded into f .

We start from a sequence Q without any pairing of nucleotides, this structure
is described by a term w() — “an empty window”, where w = (13, 13). Our aim
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is to represent the evolution of the secondary structure in the window, as well
as the progress of the ribosome and the polymerase, through rewriting terms
starting from w(). Our rewriting system will generate only well-formed terms.

On the whole, there are five rewriting Meta-rules:

– Binding and decomposition of a hypohelix f :
(
ω = g(c,d)

)
←→

(
ω′ = g(c, f(d))

)
with c �� f, d ≺ f, f ≺ g, (3)

where c and d are sequences of terms. The concrete rewriting rules — and
their rates — depend on c and d, as explained below.

– Extension and reduction of a hypohelix
(
ω = f

)
←→

(
ω′ = g

)
with f $ g. (4)

– The window movement can be described by the following rules, where w =
(R,P ):

(R,P )(ω) −→ (R + 3, P )(ω′) , (5)
(R,P )(ω) −→ (R,P + 1)(ω) , (6)

w(ω) −→ ⊥ . (7)

In the last rule, ⊥ is a special symbol denoting termination. Rules (5) describe
the movement of the ribosome. In these rules, ω′ is obtained from ω by removing
only the possible symbol that is incompatible with the new window (R + 3, P ),
or replacing it by a “shorter” hypohelix. Indeed, if the leftmost hypohelix in ω
starts at a position between R and R + 3, then the movement of the ribosome
by three positions to the right will destroy this hypohelix. More formally, if
ω ≺ (R + 3, P ), then ω′ = ω. Otherwise the ribosome destroys the leftmost
hypohelix. In this case, there is a single symbol f in ω such that f �≺ (R+ 3, P ).
Suppose the subterm rooted by f is f(c). Then, ω′ is obtained by replacing in
ω f(c) by either f ′(c) or c, depending on the size of f , where f ′ $ f .

Rules 6 describe the movement of the polymerase. Note that if the polymerase
reaches a position P +1 where the structural genes are expressed, then we reach
antitermination and the gene is expressed.

5 Quantitative Model

Now, we introduce the rates of the five rewriting rules.
Let h(f1(∗), . . . , fn(∗)) be a term. Then the free loop length of the hypohelix

h in this term is

lh = | loop(h)| −
n∑

i=1

| supp(fi)| .

This numeric characteristic corresponds to the number of nucleotides in the loop
of the hypohelix h that do not participate in inner hypohelices.
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In order to define the rate, we have to consider the concrete rule corre-
sponding to the Metarule (3). For any f, g, c = c1(x1), . . . , cm(xm) and d =
d1(y1), . . . , dn(yn) such that c �� f, d ≺ f, f ≺ g there is a concrete rule

(
ω = g(c1(x1), . . . , cm(xm), d1(y1), . . . , dn(yn))

)
←→

(
ω′ = g(c1(x1), . . . , cm(xm), f(d1(y1), . . . , dn(yn)))

)
(8)

Recall that the subterms are unordered. Similarly the concrete rule correspond-
ing to (4) is

(
ω = a(c1(x1), . . . , cm(xm), f(d1(y1), . . . , dn(yn)))

)
←→

(
ω′ = a(c1(x1), . . . , cm(xm), g(d1(y1), . . . , dn(yn)))

)
(9)

Note that this transformation can change the free loop length of the hypohelix
a. The rate of the rules (8-9) is denoted K(ω → ω′), given by

K(ω → ω′) = κ · exp
(

1
2

(E(ω)− E(ω′))
)

, (10)

where the energy E(ω) = Ghel(ω)+Gloop(ω), κ is a parameter — usually κ = 103

— and

Ghel(ω) =
1

RT
·
∑

h

Eh and Gloop(ω) =
∑

h

1.77 · ln(lh + 1) + B , (11)

and h varies over all hypohelices from ω. Eh represents the total stacking energy
along the hypohelix h. It is the sum of stacking bond energies of the adjacent base
pairs of h. B can take three different values depending on the three possible types
of the loop of the hypohelix g: terminal loop, single-strand bulge and double-
strand bulge.

A codon is a triple of successive nucleotides. For a sequence Q′, each codon
is fixed to be either regulatory or non-regulatory. Analogously, each nucleotide
in Q is fixed to be either non T-rich or T-rich [LRSP06]. Let s0 be the “radius”
of a ribosome — distance from P-site to the end of the ribosome — usually
s0 = 12, and let s1 be the “radius” of a polymerase — distance from the 5′

end of a polymerase to its transcription center — usually s1 = 9. The rate of
the rule (5) is denoted λrib and is constant when R− s0 is a position of a non-
regulatory codon, and otherwise λrib depends on an external parameter c — the
concentration of charged tRNA [SB91]. The rate of the rule (6) is denoted ν and
depends on secondary structure ω in the window. The rule (7) applies only when
P + s1 is a position of a T-rich nucleotide and its rate is denoted μ.

In [LRSP06] the rate of the rule (5) was denoted λrib and

λrib(c) =
45 c

1 + c
. (12)

The rate of the rule (6) was denoted ν and

ν = 40− F (ω) . (13)
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The rate of the rule (7) was denoted μ and

μ =
1
4
F (ω) . (14)

The function F (ω) in (13-14) for ω = f1(∗), . . . , fn(∗) depends only on functional
symbols (hypohelices) f1, . . . , fn, and not on the structure of their arguments
denoted by ∗. More precisely F (ω) = maxi F (fi), where

F (f) =
δ · exp

(
− r(f)

r0

)
(L2)2 · (p(f)− p0)2 + 1

, (15)

with p(f) ≈ π
| supp(f)| , and r(f) the “free distance” from f to the end P of the

window: for f = (A,B,C,D) and w = (R,P ), we have

r(f) = R −D −
∑

i

| supp(fi)| . (16)

Other symbols in equation (15) denote constants: r0 = 1, δ = 30, L2 = 27.1, p0 =
0.18, see [LRSP06].

Note that the rates of the rules depend only on the local configuration as
explained above and not on the outside context. In particular it does not depend
on instantiations of x1, . . . , xm, y1, . . . , yn.

6 Simulation Results

We have adapted the simulator described in [LRSP06] and available at [RNA]
to obtain sequences of terms. As an example in Figure 6 we give one (slightly
shortened and simplified) terminating trajectory of the regulation process for
the trpE genes (responsible for the synthesis of tryptophan) in E. coli. The
regulatory region itself is presented in Figure 5.

atgaaagcaattttcgtactgaaaggttggtggcgcacttcctgaaacgggcagtgt

attcaccatgcgtaaagcaatcagatacccagcccgcctaatgagcgggcttttttttg

Fig. 5. A regulatory region for trpE genes in E. coli

7 Related Work

References to the literature on RNA regulation mechanisms can be found in
[LRSP06, LPRS07].

Term rewriting systems have been used in the so called Regular Model Check-
ing framework [KMM+01, BT02, AJMd02, ALdR05]. They have been success-
fully applied to the analysis of parameterized systems [BT02, AJMd02, ALdR05]
and multithreaded programs [BT02, BT03, Tou05]. However, in the regular
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〈13, 13〉()→〈16, 27〉(a)→〈19, 27〉()→〈40, 50〉(b)→〈40, 51〉(c)→·(b)
∗

→ 〈40, 61〉(c)→·(d)
∗

→ ·(g)→·(f(e))→·(d)→

〈40, 62〉(c)
∗

→ ·(b)→·(b)→〈40, 63〉(b, h)→·(c)
∗

→ ·(h)→·(c, h)→·(c)→〈40, 64〉(c, h)→·(h)→·(b, h)→·(b)
∗

→ ·(g)→

·(f(e))→·(b, h)→〈40, 65〉(h)→·(b)→·(b, h)→〈40, 66〉(h)→·(b)→·(b, i)→·(i)→·(c, i)→·(c, h)→·(c)
∗

→ 〈40, 67〉(c, h)→

·(c, i)→·(c, j)→·(c, k)→·(b)
∗

→ ·(k)→·(f(e))→·(b, h)→·(b, i)→·(b, j)→·(b, k)→·(b, i)→〈40, 68〉(i)→·(b)→·(b, l)→·(b, h)→
·(b, j)→·(b, k)→·(h)→·(b, l(h))→·(k)→·(l(h))→·(l)→·(l(h))→〈40,69〉(h)→·(l)→·(b, l(h))→·(b, h)→·(b, l)→·(b)→

·(l(h))→〈40, 70〉(h)→·(l)→·(b, l(h))→·(b, h)→·(b, l)→·(c, h)→·(m(h))→·(b)→·(b, i)→·(b, j)→·(b, k)→·(m)
∗

→ ·(k)→
·(b, l(h))→〈40, 71〉(l(h))→·(b, h)→·(b, l)→·(h)→·(l)→·(b)→·(b, l(h))→〈40, 72〉(l(h))→·(b, h)→·(b, l)→·(h)→·(l)→

·(b)→·(b, i)→·(b, j)→·(b, n)→·(b, k)→·(b, o)→·(b)→〈40, 73〉(b, l)
∗

→ ·(b, o)→·(l)→·(b, l(h))→·(h)→·(l(h))→·(b, l(h))→
〈40, 74〉(l(h))→·(b, h)→·(b, l)→·(h)→·(l)→·(b)→·(b,h)→〈40, 75〉(h)→·(b)→·(b, l(h))→·(l(h))→·(b, l)→·(l)→·(b, i)→
·(b, j)→·(b, n)→·(b, k)→·(b, o)→·(k)→·(c, h)→·(m(h))→·(c)→·(l(h))→〈40,76〉(h)→·(l)→·(b, l(h))→·(b, h)→·(b, l)→
·(b)→·(b, h, p)→·(h, p)→·(b, p)→·(p)→·(c,h, p)→·(c, p)→·(d, p)→·(f, p)→·(e, p)→·(g, p)→·(b, i)→·(b, j)→·(b, n)→
·(b, q)→·(b, k)→·(b, o)→·(c, h)→·(m(h))→·(b, h, p)→〈40, 77〉(h, p)→·(b, p)→·(b, h)→·(p)→·(b)→·(h)→·(c, h, p)→

·(c, p)→·(d, p)→·(f, p)→·(e, p)→·(g, p)→·(b, l(h))→·(l(h))→·(b, l)→·(l)→·(b, i)
∗

→ ·(b, o)→·(q)→·(l(h))→〈40, 78〉(h)→
·(l)→·(b, l(h))→·(b, h)→·(b, l)→·(c, h)→·(m(h))→·(h,p)→·(m)→·(m(i))→·(m(j))→·(m(k))→·(m(h))→〈40,79〉(h)→
·(m)→·(c, h)→·(b, h)→·(l(h))→·(h, p)→·(l)→·(b, l(h))→·(b, l)→·(b)→·(b, h, p)→·(b, p)→·(p)→·(c,h, p)→·(b, h, p)→
〈40, 80〉(h, p)→·(b, p)→·(b,h)→·(p)→·(h)→·(c,h, p)→·(r(h, p))→·(b)→·(c, p)→·(c, h)→·(c)→·(d, p)→·(r(p))→·(f,p)→

·(e, p)→·(g, p)→·(b, l(h))→·(b, h, p)→〈40, 81〉(h, p)→·(b, p)→·(b, h)→·(p)→·(b)→·(b, l)
∗

→ ·(b, s)→·(h)→·(c, h, p)→
·(r(h, p))→·(b, l(h))→·(l(h))→·(b, h, p)→〈40, 82〉(h, p)→·(b, p)→·(b, h)→·(p)→·(b)→·(c, p)→·(d, p)→·(r(p))→
·(f, p)→·(e, p)→·(g, p)→·(r)→·(r(e, p))→·(r(g, p))→·(r(h, p))→·(r(e))→·(r(h))→·(h)→·(r(m(h)))→·(m(h))→
·(r(m))→·(m)→·(r(m(i)))→·(r(m(j)))→·(r(m(k)))→·(r(m(h)))→〈40, 83〉(m(h))→·(r(h))→·(r(m))→·(r(m(h)))→
〈40, 84〉(m(h))→·(r(h))→·(r(m))→·(r(m(h)))→〈40,85〉(m(h))→·(r(h))→·(r(m))→·(h)→·(r)→·(r(h,p))→·(m)→
·(r(m(i)))→·(r(m(j)))→·(r(m(k)))→·(m(i))→·(r(i))→·(i)→·(r(m(h)))→〈40,86〉(m(h))→·(r(h))→·(r(m))→·(m)→
·(r)→·(r(m(i)))→·(r(m(j)))→·(r(m(k)))→·(r(m(h)))→〈40,87〉(m(h))→·(r(h))→·(r(m))→·(m)→·(r)→·(r(m(i)))→
·(r(m(j)))→·(r(m(k)))→·(m(i))→·(r(i))→·(h)→·(r(h, p))→·(m(j))→·(m(k))→·(r(m(h)))→〈40, 88〉(m(h))→
·(r(h))→·(r(m))→·(h)→·(m)→·(r)→·(r(h,p))→·(h, p)→·(r(p))→·(p)→·(r(e,p))→·(r(g, p))→·(e, p)→·(r(e))→
·(r(m(i)))→·(r(m(j)))→·(r(m(k)))→·(r(m(h)))→〈40, 89〉(m(h))→·(r(h))→·(r(m))→·(h)→·(m)→·(r)→·(r(h, p))→
·(r(m(h)))→〈40, 90〉(m(h))→·(r(h))→·(r(m))→·(m)→·(r)→·(r(m(i)))→·(r(m(j)))→·(r(m(k)))→·(h)→·(r(h, p))→
·(c, h)→·(b, h)→·(t(h))→·(l(h))→·(h, p)→·(h, u)→·(t)→·(t(h,p))→·(t(p))→·(p)→·(t(v(p)))→·(c,h, p)→·(b, h, p)→
·(r(p))→·(r(e, p))→·(r(g, p))→·(r(m(h)))→〈40, 91〉(m(h))→·(r(h))→·(r(m))→·(m)→·(r)→·(r(m(i)))→·(r(m(j)))→
·(r(m(k)))→·(m(i))→·(r(i))→·(h)→·(r(m(h)))→〈40, 92〉(m(h))→·(r(h))→·(r(m))→·(h)→·(m)→·(r)→·(r(m(i)))→
·(r(m(j)))→·(r(m(k)))→·(r(h, p))→·(h, p)→·(r(p))→·(r(m(h)))→〈40, 93〉(m(h))→·(r(h))→·(r(m))→·(r(m(h)))→
〈40, 94〉(m(h))→·(r(h))→·(r(m))→·(h)→·(m)→·(r)→·(r(h, p))→·(r(m(i)))→·(r(m(j)))→·(r(m(k)))→·(r(m(h)))→
〈40, 95〉(m(h))→ ·(r(h))→ ·(r(m))→ ·(h)→ ·(r)→ ·(r(h, p))→ ·(r(m(h)))→〈40, 96〉(m(h))→ ·(r(h))→ ·(r(m))→
·(h)→·(m)→·(r)→·(r(h, p))→·(r(m(i)))→·(r(m(j)))→·(r(m(k)))→·(h,p)→·(r(p))→·(p)→·(c, h, p)→·(b, h, p)→
·(t(h, p))→·(w(h, p))→·(w(p))→·(w(h))→·(w)→·(w(l(h)))→·(w(h,u))→·(w(v(p)))→·(v(p))→·(w(v))→·(w(v(p)))→
〈40, 97〉(v(p))→·(w(p))→·(w(v))→·(p)→·(w)→·(w(h,p))→·(w(v(p)))→〈40,98〉(v(p))→·(w(p))→·(w(v))→·(p)→·(w)→
·(w(h, p))→·(v)→·(w(v(k)))→·(w(v(o)))→·(w(v(s)))→·(w(v(p)))→〈40,99〉(v(p))→·(w(p))→·(w(v))→·(w(v(p)))→
〈40, 100〉(v(p))→·(w(p))→·(w(v))→·(p)→·(w)→·(w(h,p))→·(v)→·(w(v(k)))→·(w(v(o)))→·(w(v(s)))→·(w(v(p)))→
〈40, 101〉(v(p))→·(w(p))→·(w(v))→·(w(v(p)))→〈40, 102〉(v(p))→·(w(p))→·(w(v))→·(w(v(p)))→〈40, 103〉(v(p))→
·(w(p))→·(w(v))→·(w(v(p)))→〈40,104〉(v(p))→·(w(p))→·(w(v))→·(w(v(p)),x)→·(v(p), x)→·(w(p), x)→·(w(v), x)→
·(v)→·(w)→·(w(v(k)))→·(w(v(o)))→·(w(v(s)))→·(p)→·(w(h,p))→·(w(v(p)))→〈40,105〉(v(p))→·(w(p))→·(w(v))→
·(w(v(p)), x)→·(p)→·(w)→·(w(p),x)→·(w(h, p))→·(h, p)→·(w(h))→·(w(h,p), x)→·(v)→·(w(v), x)→·(w(v(k)))→
·(w(v(o)))→·(w(v(s)))→·(v(p),x)→·(p,x)→·(v, x)→·(c, v(p), x)→·(b, v(p), x)→·(d, v(p), x)→·(t(v(p)), x)→·(b, p, x)→
·(b, v, x)→·(b, v(p))→⊥

Fig. 6. A simulation result: one typical terminating trajectory for classical attenua-
tion regulation of trpE genes in E. coli. Notations: → means one rewriting;

∗→ means
several similar rewritings; repeated window positions (e.g. repetitions of 〈40, 51〉)are
replaced by a · symbol; ⊥ means termination. There are 24 helices, denoted by letters
from a to x.

model checking framework, the rewriting rules are not probabilistic. This work
constitutes the first step towards the extension of the regular model checking
framework with probabilistic rewriting rules. This would allow for example the
analysis of probabilistic parameterized systems and probabilistic multithreaded
programs.

Rewriting systems have also been used in articles [BIK06, BCC+03] to model
chemical reactions. Compared to our work, the rewriting systems considered
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in [BIK06, BCC+03] are not probabilistic. Moreover, these works consider the
modeling of chemical reactions whereas we consider modeling of RNA secondary
structure.

Finally, probabilistic term rewriting systems have also been considered in
[BH03, BK02, KSMA03]. But in these works, the symbols are of fixed arities
and the terms are ordered, whereas in our framework, the symbols have arbitrary
arities and the terms are not ordered. Moreover, as far as we know, this is the
first time that probabilistic term rewriting systems are used to model attenuation
regulation.

8 Conclusions and Perspectives

We have established that the framework of probabilistic term rewriting systems
provides compact and structured description of detailed models of RNA regula-
tion.

We intend to continue exploration of this framework. The most important
task consists in the development of adequate data structures and algorithms,
as well as approximation and abstraction methods for analysis of this kind of
models. The next step would be a massive computational experimentation, the
biological interpretation of results and validation of results by real biological
data.
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Abstract. This article presents the H2/H∞ control (disturbance re-
jection LQ method) of the Bergman minimal model [2] for Type1 dia-
betic patients under intensive care using computer algebra. To design
the optimal controller, the disturbance rejection LQ method based on
the minimax differential game is applied. The critical, minimax value of
the scaling parameter γcrit is determined by using the Modified Riccati
Control Algebraic (MCARE) equation employing reduced Gröbner basis
solution on rational field. The numerical results are in good agreement
with those of the Control Toolbox of MATLAB. It turned out, that in
order to get positive definite solution stabilizing the closed loop, γ should
be greater than γcrit. The obtained results are compared with the clas-
sical LQ technique on the original non-linear system, using a standard
meal disturbance situation. It is also demonstrated that for γ 
 γcrit,
the gain matrix approaches the traditional LQ optimal control design
solution. The symbolic and numerical computations were carried out
with Mathematica 5.2, and with the CSPS Application 2, as well as
with MATLAB 6.5.

1 Introduction

Diabetes mellitus is one of the most serious diseases which need to be artificially
regulated. The newest statistics of the World Health Organization (WHO) pre-
date an increase of adult diabetes population from 4% (in 2000, meaning 171
million people) to 5.4% (366 million worldwide) by the year 2030 [35]. This warns
that diabetes could be the “disease of the future”.

In many biomedical systems, external controller provides the necessary input,
because the human body could not ensure it. The outer control might be partially
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or fully automatized. The self-regulation has several strict requirements, but once
it has been designed it permits not only to facilitate the patient’s life suffering
from the disease, but also to optimize (if necessary) the amount of the used
dosage.

The blood-glucose control is one of the most difficult control problems to be
solved in biomedical engineering. One of the main reasons is that patients are
extremely diverse in their dynamics and in addition their characteristics are time-
varying. Due to the inexistence of an outer control loop, replacing the partially or
totally deficient blood-glucose-control system of the human body, patients are
regulating their glucose level manually. Based on the measured glucose levels
(obtained from extracted blood samples), they decide on their own what is the
necessary insulin dosage to be injected. Although this process is supervised by
doctors (diabetologists), mishandled situations often appear. Hyper- (deviation
over the basal glucose level) and hypoglycemia (deviation under the basal glucose
level) are both dangerous cases, but on short term the latter is more dangerous,
leading for example to coma.

Starting from the late Sixties lot of researchers investigate the problem of
the glucose-insulin interaction and control. The closed-loop glucose regulation
as it was several times formulated [13,32,33], requires three components and the
current paper focuses on the last component of them:

– Glucose sensor (already realized even for 10 min. frequent readings: MiniMed
[27], Glucowatch [11]);

– Insulin pump, for insulin injection (MiniMed [28], Disetronic [8]);
– Control algorithm, which based on the glucose measurements, is able to

determine the necessary insulin dosage.

To design an appropriate control, an adequate model is necessary. In the last
50 years several models appeared. The mostly used and also the simplest one
proved to be the minimal model of Bergman, [1,2], but its shortcoming is its
big sensitivity to variance in the parameters. Henceforward, the plasma insulin
concentration must be known as a function of time. Therefore, extensions of this
minimal model have been proposed [24,9,29,7] trying to capture the changes in
patient dynamics of the glucose-insulin interaction, particularly with respect to
insulin sensitivity. Other more general, but more complicated models appeared
in the literature, [15,34].

Regarding the control strategies applied, the palette is very wide [31], start-
ing form classical control strategies like PID control [5], optimal control [17], to
the modern control techniques like adaptive control [24], neuro-fuzzy algorithms
[6,16], model predictive control [13,14,25], but also post-modern control strate-
gies, like H∞ control [32,33,21], H2/H∞ control [22,20], μ-synthesis [18], Linear
Parameter Varying (LPV) technique [19].

The investigations of [13] discourage the use of a low complexity control such
as PID, if high level of performance is desired. However, probably the best way
to approach the problem is to consider the system model and the applied control
technique together [31,26].
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This article presents the H2/H∞ control (disturbance rejection LQ method) of
the Bergman minimal model [2] in symbolic way using Mathematica 5.2 together
with its Control System Professional Suite (CSPS). The paper is structured
firstly of a brief description of the model, which then is reduced to a two-state
model eliminating the unmeasurable slow state variable. Secondly, the LQ and
disturbance rejection LQ (minimax control, LQR) methods are presented and
the symbolic computations are performed to determine a general solution of the
considered model for these control methods. Finally, the obtained results are
compared on a standard meal disturbance situation for the original non-linear
system and checked under MATLAB 6.5 as well.

2 Preliminaries

2.1 Model Equations

Several different models of diabetic systems exist in the literature including, for
example, the very detailed 21st-order metabolic model of Sorensen [34]. However,
to have a system that on one hand, can be readily handled from the point
of view of control design, but on the other hand is able to represent properly
the biological process, we consider the three-state minimal patient model of
Bergman [2]:

Ġ(t) = − p1G(t)−X(t)(G(t) + GB) + h(t),

Ẋ(t) = − p2X(t) + p3Y (t),

Ẏ (t) = − p4(Y (t) + YB) +
i(t)
VL

,

where the three state variables are:

– G(t) - Plasma glucose deviation, [mg/dL];
– X(t) - Remote compartment insulin utilization, [1/min];
– Y (t) - Plasma insulin deviation, [mU/dL].

The control variable (i(t)) is the exogenous insulin infusion rate ([ mU
min ]), while

the disturbance (h(t)) represents the exogenous glucose infusion rate ([ mg
dLmin ]).

The physical parameters are:

– GB - Basal glucose level, [mg/dL];
– YB - Basal insulin level, [mU/dL];
– VL - Insulin distribution volume, [dL].

The model parameters are p1 ( 1
min), p2 ( 1

min), p3 ( dL
mUmin2 ), p4 ( 1

min). The
values of the model and physical parameters are from Furler et al. [10]: p1 =
28

1000
, p2 =

25
1000

, p3 =
13

100000
, p4 =

5
54

, GB = 110, YB = 1.5, VL = 120.
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2.2 Model Reduction

Assuming that the unmeasurable variable X(t), remote compartment insulin
utilization, is a slow variable [23], namely Ẋ(t) ≈ 0, then X(t) =

p3

p2
Y (t) can

be eliminated by substituting it into the first equation. Now our reduced model
becomes:

Ġ(t) = − p1G(t)− p3

p2
Y (t)(G(t) + GB) + h(t),

Ẏ (t) = − p4(Y (t) + YB) +
i(t)
VL

.

2.3 Linearized Model

To design optimal control, the first step is the linearization of the nonlinear
model. In order to linearize our model, the Control System Application of Math-
ematica should be loaded, [30]:

<< ControlSystems‘

The linearization as control object in state space is carried out at the equi-
librium point, namely at (G0, Y0, h0, i0). The obtained linearized model in its
symbolic form is:

ẋ(t) =

⎛
⎝−p1 −

p3Y0

p2
− (G0 + GB)p3

p2

0 −p4

⎞
⎠ x(t) +

⎛
⎝1 0

0
1
VL

⎞
⎠ u(t),

y(t) =
(

1 0
0 1

)
x(t) +

(
0 0
0 0

)
u(t),

where x(t), u(t) and y(t) represent the general state, input and output vectors
of the state-space model.

While the steady state values are h0 = 0, i0 = p4YBVL = 16.667, G0 = 0,
Y0 = 0, the linearized system becomes:

ẋ(t) =

⎛
⎝−p1 −

G0p3

p2

0 −p4

⎞
⎠ x(t) +

⎛
⎝1 0

0
1
VL

⎞
⎠u(t),

y(t) =
(

1 0
0 1

)
x(t) +

(
0 0
0 0

)
u(t).

The linearized system proved to be controllable:

Controllable[ControlObjectSS]

True
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3 Classical LQ Method

It is well-known, that the dynamic of a linear time invariant system can be
described in the following way:

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).

where A, B, C and D are constant matrices.
Using the classical LQ control method, the requirement is to minimize the

following quadratic cost functional:

J(u(t)) =
1
2

∫ ∞

0

yT (t)Qy(t) + uT (t)Ru(t)dt.

In other words, LQ attempts to find an optimal control u∗(t), t ∈ [0,∞] based
on the CARE (Control Algebraic Riccati Equation) such that

J (u∗(t)) ≤ J(u(t))

for all u(t) on t ∈ [0,∞] under properly chosen R and Q matrices.
The first component of input vector u(t), the exogenous glucose (h(t)) stands

for disturbance, therefore its effect on the output should be minimized. Mean-
while, in terms of material, it is cheaper than insulin. As a result the disturbance
(glucose) should be overweighted in the discussion of Q and R matrix (both are
2x2 matrices as the reduced model has two inputs and two outputs), while the
“expensive” insulin should be underweighted. Consequently, R11 should be con-
siderable greater than R22. On the other hand, in the objective function the
portion of the injected insulin is important and the values of the state variables
play not an important role. Therefore, we choose the following matrices:

R =

(
1000 0

0
1

1000

)
, Q =

⎛
⎜⎝

1
1000

0

0
1

1000

⎞
⎟⎠ .

As a result the optimal gain matrix is

KLQ=LQRegulatorGains[ControlObjectSS/.NumericalValues,Q,R]

(
0.0000139581−0.0000560483
−0.467069 2.62107

)
≈

(
0 0

−0.467069 2.62107

)

In order to check this result, the KLQ was calculated with MATLAB (lqr
command) too and the same result was obtained:

(
0 0

−0.4671 2.6211

)
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4 Disturbance Rejection LQ Control (Minimax Control)

The disturbance rejection LQ method represents a generalization of the classical
LQ method and is based on the minimax criteria, where the system dynamics
is generally described as before. However, now the disturbance d(t) is separated
from active control input u(t) and could be considered as unmeasurable, namely:

ẋ(t) = Ax(t) + Bu(t) + Ld(t),
y(t) = Cx(t) + Du(t).

Therefore, in this case the quadratic cost functional will be modified with the
disturbance explicitly [36]:

J(u(t)) =
1
2

∫ ∞

0

yT (t)y(t) + uT (t)ū(t)− γ2dT (t)d(t)dt.

Now, the disturbance, while it appears with negative sign, attempts to max-
imize the cost, while we want to find a control (u)(t) that minimizes the maxi-
mum cost achievable by the disturbance (by worst case disturbance). This is a
case of so-called “worst-case” design and leads to the formulation of a min-max
differential game [3]:

max
d(t)

J (u(t), d(t)) → min
u(t)

J(u(t), d(t))

where u(t) and d(t) are satisfying the state equation. It can be demonstrated that
the unique solution of the differential game, {u∗(t), d∗(t)} exists and satisfies the
saddle point condition,

J (u∗(t), d(t)) ≤ J (u(t), d(t)) ≤ J (u(t), d∗(t))

where u∗(t) is the optimal control and d∗(t) is the worst-case disturbance. These
functions can be computed as:

u∗(t) = −BTPx(t),

d∗(t) =
1
γ2

LTx(t),

where P is the positive definite symmetric solution of the Modified Control
Algebraic Riccati Equation (MCARE):

PA + ATP + CTC − P

(
BBT − 1

γ2
LLT

)
P = 0. (1)

It was demonstrated [36], but also one can easily conclude from (1) that for
big values of γ the disturbance rejection LQ problem becomes the classical LQ
one.
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5 Solution of MCARE Using Computer Algebra

Based on Fig. 1 the input matrix of the system B, should be divided in two
parts: one for the control input, namely the insulin (this will be from now on
the B matrix) and one for the glucose disturbance (L):

B =

⎛
⎝0 0

0
1
VL

⎞
⎠ , L =

(
1 0
0 0

)
.

We are looking for the symmetric solution matrix of the modified Riccati

equations (P ) in the form
(

p1,1 p1,2

p2,1 p2,2

)
. The complete step-by-step solution in

Mathematica notebook form can be found on the Wolfram Research site [30].
Due to the page limitations of this article, we focus only on the main steps.

Due to the fact that the solution matrix of the Riccati equation is a symmetric
matrix, three equations should be solved, where γ represents the parameter:

1− 2p1p1,1 +
p2
1,1

γ2
−

p2
1,2

V 2
L

= 0,

p1,1

(
−GBp3

p2
+

p1,2

γ2

)
− p1,2((p1 + p4)V 2

L ) + p2,2

V 2
L

= 0,

1− 2GBp3p1,2

p2
+

p2
1,2

γ2
− p2,2

(
2p4 +

p2,2

V 2
L

)
= 0.

u
B

u

A

x
C

K
u

yx
.

-

r

-

L

K
d

worst

dist.

d

Fig. 1. General representation of the disturbance rejection LQ (minimax) control
method
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The critical solution of this system belongs to the critical value of the param-
eter γ. Crossing with γ this critical value, the solution which was real becomes
imaginary and vice versa. This critical solution numerically is an ill-conditioned
problem, therefore, the computation was carried out using reduced Gröbner ba-
sis [4] on rational field, which provides solution for the unknown variables with
infinite precision avoiding round-off errors. Substituting the values of the system
parameters in rational form and determining the solution for the p1,1, the result
was obtained as a fourth order monomial with γ as parameter [30]. Creating a
function providing the first root of this monomial, Im(p1,1(γ)), the critical value
is the smallest nonzero positive root, namely

γcrit = min
γ>0

(Im(p1,1(γ)) = 0)

see the corner point on Fig. 2. A lower bound for this critical value can be
computed using NMinimize function of Mathematica:

γcrit = 17.0862,

see from Fig. 2. Then, starting from this lower bound using step size Δ, the
location of critical value can be approximated with error ε ≤ Δ. The critical
value with ten significant digits is:

γcrit = 17.11742594,

see Fig. 3. Employing MATLAB minimax control design, by using the interval
halving technique together with the built-in care() function, we have got the
same result, namely, the optimal, minimal γ, γmin = 17.11743 is equal to the
critical value γcrit computed above. This value of γ means that this is the value
where the effect of the disturbance is maximized, or by other words becomes
the worst-case disturbance. The corresponding controller for this worst-case
(obtained with Mathematica and checked by MATLAB) is:

KLQrej =
(
−0.5785 4.2671
10.4192 −74.5880

)
(2)

This result clearly shows that there is a compensation on the disturbance
(glucose) part too, which in our case has no physical meaning, because in this way
the result can be interpreted as if one improves the glucose control by exhausting
glucose (some kind of negative injection, or glucose extraction form the body)
from the system (see the structure of matrix B in MCARE). In real situation
only insulin injection is possible. Therefore, for the considered application only
the second row of the controller’s matrix can be used.

However, if we are considering as feedback only the control input effect, at
this value γ = γmin = γcrit there is no positive definite solution, namely solving
numerically the Ricatti equation and choosing from the two solutions the one

also chosen by MATLAB, P =
(
−169.446 1249.84
1249.84 −8947.39

)
, the eigenvalues of P are

{−9125.15, 5.05453}.
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Fig. 2. The imaginary part of p1,1 depending on γ
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Fig. 3. Proper solution for γcrit, realizing the worst-case disturbance effect

Although this solution satisfies the modified Riccati equation (the error is
7.404 ∗ 10−16) [30], based on the earlier remarks the gain matrix should be:

KLQrej =
(

0 0
10.4192 −74.5880

)
.

With this controller the system remains an unstable one (the poles are {0.0669,
−0.1062}), demonstrating that in the worst-case the effect of the disturbance
should also be considered. It means that in our case, if we want to control the
system only by the control input (because this is the physiologically interpretable
case), this control is not stabilizing the system. However, let us increasing the
value of γ up to the value providing positive definite solution. In this way we
would like to investigate the situation if in the close neighborhood of the ob-
tained (worst-case) critical γ is there a convenient solution, which also gave us
better results than LQ did and in this case even the physiological case is inter-
pretable. We have obtained that the positive definite solution could be obtained
by increasing somewhat the value of γ by 0.25 % of γcrit, so:

γcrit = 17.1602. (3)

In [30] it is presented how sensitive the solution is. Visually, the two values of
γ are represented by the same point, but in this case the closed-loop system’s
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eigenvalues, {−3.4739,−0.1105}, represent a stable system, where the control
matrix:

KLQrej =
(

0 0
−59.619 415.648

)
(4)

and the modified Ricatti equation is also satisfied (the error is 5.9068 ∗ 10−15).

6 Discussion and Simulation Results

6.1 Comparing Classical LQ and Disturbance Rejection LQ Control
Design

The gain matrix KLQRej, provided by the disturbance rejection LQ design (4),
depends on the actual value of the scaling parameter γ. In case of γ → ∞, we
get the gain matrix designed by LQ method [20,22], namely,

lim
γ→∞KLQrej = KLQ (5)

To demonstrate this we have considered γ = 100γcrit, and we repeated the
computations for solving the Riccati equation

P =
(

13.9606 −56.0634
−59.0634 314.623

)
.

The error in this case is 4.665 ∗ 10−17 and the solution is once again in good
agreement with MATLAB. Having the solution of the Riccati equation, the cor-
responding gain matrix (representing the controller) can be computed as:

KLQ =
(

0 0
−0.4671 2.6218

)
.

This result is very similar to the LQ control solution (see Section 3), demon-
strating the theoretical concepts (5).

6.2 Meal Disturbance

The performance of the control is tested by using a standard meal disturbance
with about six hour duration, modeled by Lehmann and Deutsch [23]. The fol-
lowing data pairs are considered:

time(t)[min] = (0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250,
275, 300, 325, 350, 375, 400, 450, 1000)

glucose(h(t))[mg/(dL min)] = (0, 0.185, 0.495, 0.765, 0.975, 1.15, 1.07, 0.82,
0.575, 0.335, 0.225, 0.145, 0.098, 0.06, 0.035,
0.02, 0.01, 0.005, 0)

The interpolated meal disturbance function can be seen in Fig. 4.
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Fig. 8. The corresponding insulin infusion rate, i(t) in case of disturbance rejection
LQ control

6.3 Simulation Results

Although, the controller design was carried out for the reduced 2-states linear
model described in section 2.2, the system is simulated for the original 3-states
nonlinear model. Comparing the results of the two controls (classical LQ control
(section 3) and minimax control for γcrit corresponding to (3) and controller given
in (4)), it can be seen that even in this considered case, the disturbance rejection
LQ control is more efficient than the classical LQ, Fig. 5 and Fig. 6. However,
just for comparison the best result is obtained in the case when the original,
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“worst-case” controller (given by (2)) is used, Fig. 7, Fig. 8. The considerably
better result is due to that “negative injection” of glucose, what cannot be
physiologically realized.

7 Conclusion

It turned out that the critical value of γ (where the value for imaginary parts of
the solution of MCARE disappear) together with the physically realizable inter-
pretation of a control system, will not ensure automatically a positive definite
solution, if one needs a physically interpretable solution. This means that the
minimax method determines the worst-case solution, but this depends on the
concrete problem if it could be or could be not physically interpreted. However,
even in this case it is possible to obtain a better solution than LQ does.

Furthermore, “blind” numerical solution of minimax problem can be mislead-
ing, and not always a positive definite solution is provided. This problem can be
detected by using symbolic-numeric solution and increasing the value of γ up to
the value, which already ensures positive eigenvalues of the Ricatti matrix. The
other advantage of the symbolic-numeric solution (whenever it is possible) is its
robustness concerning round-off errors.

However, this problem can be avoided by using another numerical technique
for minimax control based on robust control on frequency domain proposed
by Helton [12], and its application for glucose-insulin control [21]. It was also
illustrated, that minimax control could provide better control quality than LQ
does, see Fig. 7. Minimax control is interacting faster as well as employing higher
infusion rate (in the considered case) than the classical control, see Fig. 8.
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in H2 space. In: Proc. of 26th Ann. Int. Conf. of IEEE Eng. in Biomedicine Society
(EMBC’04), pp. 762–765, San Francisco, USA (2004)
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Abstract. The mechanism of Parkinson’s disease can be investigated at the
molecular level by using radio-tracers. The concentration of dopamine in the
brain can be observed by using a radio-tracer, 6-[18F]fluorodopa (FDOPA), with
positron emission tomography (PET), and the dopamine kinetics can be described
as compartmental models for tissues of the brain. The models for FDOPA kinetics
are solved explicitly, but the solution shows a complicated form including several
convolutions over time domain. Owing to the complicated form of the solution,
graphical analyses such as Logan or Patlak analysis have been utilized as conven-
tional methods over past decades. Because some kinetic constants for Parkinson’s
disease are estimated in the graphical analyses with the slope or intercept of the
line obtained under various assumptions, only a limited set of parameters have
approximately been estimated. We have analysed the compartmental models by
using the Laplace transformation of di�erential equations and by algebraic com-
putation with the aid of Gröbner base constructions. We have obtained a rigorous
solution with respect to the kinetic constants over the Laplace domain. Here,
we first derive a rigorous solution for the parameters, together with a discussion
about the merits of the derivation. Next, we describe a procedure to determine the
kinetic constants with the observed time–radioactivity curves. Last, we discuss
the feasibility of our method, especially as a criterion for diagnosing Parkinson’s
disease.

1 Introduction

Radio-tracers are often used to analyse metabolic systems in biomedical research. Usu-
ally the kinetics of metabolism are described as compartmental models, and kinetic
constants are numerically estimated using the measurement of radio-tracers to diagnose
the disease. In particular, the positron emission tomography (PET) has been developed
to measure the details of metabolic events hitherto unavailable, and is especially useful
to determine the kinetic constants to assist the diagnosis of various diseases.

H. Anai, K. Horimoto, and T. Kutsia (Eds.): AB 2007, LNCS 4545, pp. 110–124, 2007.
c� Springer-Verlag Berlin Heidelberg 2007
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Parkinson’s disease, which is due to abnormal levels of dopamine in the brain, is
one of the diseases that can be diagnosed by radio-tracer measurement with PET, and
by determination of kinetic constants in compartmental models for plasma and brain
tissue [12]. There are two approaches to measuring the activity of radio-tracers. One
is a combination of the measurement of a radio-tracer, L-3,4-dihydroxy-6-[18F]fluoro-
phenylalanine (FDOPA) in the brain, and sampling the blood to measure the total ac-
tivity of FDOPA (approach with blood sampling), and the other is the measurement of
the FDOPA activity in two brain tissues (approach without blood sampling). In both ap-
proaches, the kinetics can be described as sets of compartmental models. Fortunately, a
system of di�erential equations in the two sets of models can be solved explicitly , but
unfortunately the solutions for estimating the kinetic constants are highly complicated.
Indeed, the solutions are expressed by a few convolutions of complicated equations.

To overcome analytical diÆculties in determining kinetic constants, there are two
conventional methods of kinetic constant estimation in the compartmental models, Pat-
lak Analysis [18, 19] and Logan Analysis [15]. In both methods, the combination
of some parameters with various approximations is assumed to form a straight line
as metabolism approaches an equilibrium. By plotting the observed data around the
metabolic equilibrium (graphical analysis), the combined parameters can be estimated
using the slope or intercept in the plotted line [14, 18].

By using graphical analysis, Parkinson’s disease has been extensively studied in the
two approaches with and without the blood sampling. In the approach using blood
sampling, the kinetic constants with respect to plasma are calculated from the blood-
sampling data, and then, using these constants, measurements for Parkinson’s disease
such as the constants describing FDOPA kinetics in brain tissue are calculated [10,
11, 12, 20]. In addition, Martin et al. [16] considered L-3,4-dihydroxy-6-[18F]fluoro-3-
O-methylphenylalanine (3-OMFD) in compartmental models for FDOPA metabolism,
because FDOPA is converted to 3-OMFD [1, 17], which has an influence on the to-
tal radioactivity observed in plasma and in the brain tissue by crossing the blood-brain
barrier (BBB). In an approach without blood sampling, using the time–radioactivity
curves of two distinct brain tissues, the constants for Parkinson’s disease diagnosis are
calculated [9, 14].

The diagnosis of Parkinson’s disease with PET depends on graphical analysis, a
simple presentation of the relationships between the kinetic constants of the FDOPA
kinetics. However, the present analyses require further improvement for precise diag-
noses. For example, graphical analysis using blood sampling is cumbersome, partly
because the sampling requires a load to the patients, and partly because the sepa-
rate measurement of radio-tracer from the blood provides an obstacle for the precise
estimation of parameters such as the time delay and contamination of the samples
in the tubing. Graphical analysis without blood sampling produces a highly compli-
cated model and therefore requires various assumptions and approximations to estimate
kinetic constants. Thus, the choice between the two approaches involves a trade-o�
between cumbersome blood sampling and diÆcult eÆcient parameter determination.
Indeed, by considering the pitfalls described above, some methods have also designed
by using di�erent radio-tracers. For instance, Ichise et al. [8] proposed a method with-
out blood sampling by using [123I]iodobenzofuran, and Lammertsma et al. [13] and
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Logan et al. [14] proposed a method without blood sampling by using [11C]raclopride,
in which the cerebellum or cerebral cortex was used as a reference tissue and analysed
as a single-tissue compartment. Although the pitfalls have partially been overcome, a
rigorous solution has not yet been analysed.

In this paper, we propose radical deliverance from the aforementioned diÆculty. We
present an eÆcient method for determining kinetic constants for FDOPA kinetics with
PET using an algebraic approach. The compartmental models are rigorously solved
by the Laplace transformation of di�erential equations into algebraic equations, and
by the following symbolic computation with the aid of Gröbner bases. Such usage of
symbolic computation has overcome the analytical diÆculties in the previous study [6],
where general theory of compartmental models was derived over the Laplace domain
for PET, but the analysis or determination of kinetic constants still required the system’s
equilibrium or steady state. In our method, by contrast, the derivation of a relationship
between the observed concentrations without blood sampling by PET does not need any
approximations and assumptions for the kinetic constants. Here, we first derive rigorous
relationships between the parameters, and we discuss the merits of the derivation, in
comparison with graphical analyses. Second, we describe an eÆcient procedure for
determining the kinetic constants with observed time–radioactivity curves. Last, we
discuss the feasibility of our method, especially as a criterion for diagnosing Parkinson’s
disease.

2 Model and Method

In this section, we introduce three compartmental models to describe the metabolism
of the radio-tracer FDOPA and its metabolites with respect to two brain tissues and
plasma. Di�erential equations corresponding to the kinetic model are derived, and the
equations are transformed into a system of algebraic equations. Surprisingly, the rig-
orous solution is of a simple form over the Laplace domain. Finally, we describe a
procedure to determine the kinetic constants of the models, which is performed over
the Laplace domain.

2.1 Compartmental Model

Compartmental models (A) and (B) are introduced for the radio-tracer FDOPA and its
metabolite 3-OMFD as shown in Figs. 1 (a) and (b). For simplicity, let A- and B-tissues
denote tissues in which the radio-tracer kinetics can be described as shown in Figs. 1
(a) and (b), respectively. In the actual brain, A- and B-tissues correspond to the striatum
(putamen�caudate) and the cerebellum�cerebral cortex in the brain [4, 7]. Furthermore, it
is assumed that the relationships between plasma FDOPA, 3-OMFD, and extra-vascular
3-OMFD can be described as the compartmental model (C) as shown in Fig. 1 (c).

2.2 Kinetic Equations

According to the kinetic model in Fig. 1, the following system of di�erential equations
has been obtained:
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Fig. 1. Compartmental models for describing the radio-tracer kinetics in this paper, which were
originally introduced by Huang et al. [7]. The shaded boxes represent the kinetics in plasma.
(a) Model for A-tissue. Three separate compartments for tissue FDOPA, tissue FDA (and its
metabolites), and tissue 3-OMFD. (b) Model for B-tissue which is the same as (a), except that
there is no compartment for FDA. (c) Model for plasma FDOPA to 3-OMFD in the periphery of
one compartment for plasma 3-OMFD and one for the extra-vascular pool.

Time (A-Tissue)
���������������������������������

dC1

dt
� K1C f d(t � �)�(t � �) � (k2 � k3)C1�

dC2

dt
� k3C1 � k4C2�

dC3

dt
� K5Com f d(t � �)�(t � �) � k6C3�

(1)

Time (B-Tissue)

�����������������

dCp1

dt
� Kp1C f d(t � �)�(t � �) � kp2Cp1�

dCp2

dt
� Kp5Com f d(t � �)�(t � �) � kp6Cp2�

(2)
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Time (C-Blood (Plasma))

�����������������

dCom f d

dt
� kb12C f d � kb2Com f d � kb3Cx�

dCx

dt
� kb2Com f d � kb3Cx�

(3)

In the compartmental model (A), (B), and (C), every one of the initial values is
assumed to be zero because of non-existence of the radio-tracers and their metabolites
at starting time t � 0. However, there exists the time delay � of the observed blood
curve (C) relative to tissue measurements (A) and (B). That is, � designates a di�erence
between the starting times of (A), (B), and (C). This e�ect leads to the terms C f d(t �
�)�(t��) and Com f d(t��)�(t��), where �(t) is the unit step function defined as follows:

�(t) �

�������
0 (t � 0)�

1 (t � 0)�

The di�erential equations describing the A- and B-tissues and the C-blood kinetics
models can be changed into the following equations over the Laplace domain:

Laplace (A)

�������������
sL[C1] � K1e�s�L[C f d] � (k2 � k3)L[C1]�

sL[C2] � k3L[C1] � k4L[C2]�

sL[C3] � K5e�s�L[Com f d] � k6L[C3]�

(4)

Laplace (B)

�������
sL[Cp1] � Kp1e�s�L[C f d] � kp2L[Cp1]�

sL[Cp2] � Kp5e�s�L[Com f d] � kp6L[Cp2]�
(5)

Laplace (C)

�������
sL[Com f d] � kb12L[C f d] � kb2L[Com f d] � kb3L[Cx]�

sL[Cx] � kb2L[Com f d] � kb3L[Cx]�
(6)

where L[ f ] denotes the Laplace transformation of f . Thus, a system of di�erential
equations is transformed into a system of corresponding algebraic equations.

2.3 Rigorous Solution

In the approach without blood sampling, the data observed using PET scanning are
limited to the total radioactivities: Cs(t) � C1(t) � C2(t) � C3(t) and Cc(t) � Cp1(t) �
Cp2(t). Let Cs(s) and Cc(s) denote the Laplace transformations of Cs(t) and Cc(t),
respectively. Then, the solution to the system of algebraic equations of Laplace (A),
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(B), and (C) has been obtained, leading to a rigorous and simple relationship between
Cs(s) and Cc(s) as follows:

Cs(s)
Cc(s)

�

(s � kp2)(s � kp6)

(s � k2 � k3)(s � k4)(s � k6)
� (7)

K5kb12(s � k2 � k3)(s � k4)(s � kb3) � sK1(s � k3 � k4)(s � k6)(s � kb2 � kb3)
Kp5kb12(s � kb3)(s � kp2) � sKp1(s � kb2 � kb3)(s � kp6)

�

Thus, Cs(s)�Cc(s) is a rational function in s to which symbolic methods such as
Gröbner base computations can be applied, resulting in exact and eÆcient parameter
determination.

2.4 Procedure to Determine the Kinetic Constants

Procedure overview. Fig. 2 shows an overview of the present procedure for determin-
ing the kinetic constants from radio-tracer activity data. The procedure is composed of
two parts. First, we fit the observed radioactivity curves by a series of exponentials, and
then the fitted series of exponentials are transformed into the corresponding algebraic
equations by the Laplace transformation. Second, the kinetic constants in the rigorous
equation (7) are determined using an algebraic approach. The details of the above pro-
cedure are described below.

Laplace transformation of the observed data. We need a Laplace transformation of
the observed data because we perform parameter determination over the Laplace do-
main. Let Cso(t) and Cco(t) denote the observed data in A- and B-tissues, respectively.
By using non-linear regression, Cso(t) and Cco(t) are expressed in terms of a series of
exponentials according to [3] as follows:�������

Cso(t) � a1 exp(�m1t) � a2 exp(�m2t) � (a1 � a2 � aa) exp(�m3t) � aa�

Cco(t) � b1 exp(�l1t) � b2 exp(�l2t) � (b1 � b2 � bb) exp(�l3t) � bb�
(8)

where the initial values are assumed to be zero, namely Cso(0) � 0 and Cco(0) � 0
because of non-existence of radio-tracer at t � 0 as mentioned in �2.2. However, this
assumption has an inference on regression of the parameters: ai� bi� aa� bb�mi and li
owing to inaccuracy or noise in the observed data that leads to Cso(0) � 0 or Cco(0) �
0. To avoid this inference, we have adopted an additional value: �. We have firstly fitted
the observed data with Cso(t � �) and Cco(t � �), and then have substituted � with 0,
that is, � has been ignored. Cso(t) and Cco(t) thus fitted are changed into the Laplace-
transformed data as follows:

�����������������

L[Cso(t)] �
a1

s � m1
�

a2

s � m2
�

a1 � a2 � aa
s � m3

�
aa
s
�

L[Cco(t)] �
b1

s � l1
�

b2

s � l2
�

b1 � b2 � bb
s � l3

�
bb
s
�

(9)

where L denotes the Laplace transformation.
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Fig. 2. Overview of the procedure for determining kinetic constants

Algebraic procedure. Without any error, the transformed function of A-tissue data,
L[Cso(t)](s), and that of B-tissue data, L[Cco(t)], would be identical with Cs(s) and
Cc(s), respectively. This fact has led us to the following procedure to determine the
parameters over the Laplace domain.

1. L[Cso(t)]�L[Cco(t)] can be transformed into the form: F(s)�G(s), where F(s) and
G(s) are both fifth-order polynomials in s. It follows from Eq. (7) that �(k2 �

k3)��k4, and �k6 are three of the real roots of G(s). Likewise, �kp2 and �kp6 are
two of the real roots of F(s). It can be proved that both F(s) and G(s) have five real
negative roots in PET experiments as mentioned in Appendix A.

2. Let �ri (1 � i � 5) and �ti (1 � i � 5) denote the real roots of F(s) and G(s),
respectively. From (1), k2 � k3� k4, and k6 are three of ti, e.g., t1� t2, and t3. Likewise,
kp2 and kp6 are, e.g., r1 and r2. The number of assignments of the parameters k2 �

k3� k4� k6� kp2, and kp6 to ri and ti is 1200. We apply these 1200 assignments to the
two procedures below.

3. The remaining parameters, K1�Kp1� K5kb12�Kp1� Kp5kb12�Kp1� k2� k3� kb2, and kb3,
are calculated by solving the following system of algebraic equations:

H(�r3) � H(�r4) � H(�r5) � I(�t4) � I(�t5) � 0� k2 � k3 � t1�

K1�Kp1 � HC(F(s))�HC(G(s))�

where H(s) � K5kb12(s�k2�k3)(s�k4)(s�kb3)�sK1(s�k3�k4)(s�k6)(s�kb2�kb3)�
I(s) � Kp5kb12(s � kb3)(s � kp2) � sKp1(s � kb2 � kb3)(s � kp6), and HC denotes the
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head coeÆcient. To solve the system of algebraic equations above, we have derived
the triangular form with the aid of Gröbner base computations. The third-order
polynomial as the elimination ideal with respect to kb3 is shown in Appendix B.

4. Because the numerator and denominator of Cs(s)�Cc(s) (Eq. (7)) are both sixth-
order polynomials in s while F(s) and G(s) are both fifth-order, the similarity be-
tween Cs(s)�Cc(s) and F(s)�G(s) can be calculated by the di�erence between the
roots of the numerator and denominator of Cs(s)�Cc(s) that do not appear as the
roots of F(s) or G(s). These two roots are calculated by coeÆcient comparison as
follows:

k3�k4�k6�kb2�kb3�K5kb12�K1�(r3�r4�r5)� kb2�kb3�kp6�Kp5kb12�Kp1�(t4�t5)�

We record the di�erence between the above two roots as di�. Notice that the roots of
F(s) and G(s) correspond to the reciprocals of time constants of PET experiments
and that they are distinct from one another.

5. The parameter sets determined above are arranged in ascending order by di�. Fur-
thermore, we remove parameter sets that violate an empirical or physiological law.
In this paper, we have adopted the following law:

kp2 � kp6 and k3 � 1� (10)

The first inequality, kp2 � kp6, designates a di�erent permeability of FDOPA and
3-OMFD, which cross the BBB (blood-brain barrier) [5, 7]. The second inequality,
k3 � 1, is the empirical law.

6. The result of the procedure above is the first parameter set among the sets in as-
cending order by di�.

Using the procedure described above, we can immediately and e�ectively determine
the parameters such that all of them are consistent with PET experiments.

3 Results

We have extracted the observed data of A- and B-tissues from Cumming and Gjedde
[4, p.52, Fig. 4], where A- and B-tissues correspond to the caudate and the cerebral
(occipital) cortex, respectively. First, we have fitted the 18F radioactivity data in A-
and B- tissues of the normal control subject and the patient with Parkinson’s disease
(PD) as a series of exponentials according to Cso(t � �A) and Cco(t � �B) in Eq. (8).
The parameters obtained, ai� bi� aa� bb�mi� li, are represented in Table 1. Figure 3 shows
the fitting of the observed data. As seen in Fig. 3, the estimated curves are fitted from
control and PD patient samples.

By using the parameters in Table 1, we have obtained kinetic constants according to
the algebraic procedure in �2.4. This calculation needed 15 seconds CPU time and 5�5
MBytes memory via Mathematica 5.2 (Wolfram Research, Inc.) with Intel(R) Xeon(R)
CPU 2.33GHz. Table 2 shows almost all kinetic constants of the control and PD patient,
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(a) Caudate – Control
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(b) Caudate – PD patient
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(c) Cortex – Control
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(d) Cortex – PD patient

Fig. 3. Time–radioactivity curves in the occipital cortex and caudate of a patient with Parkinson’s
disease and a normal control subject during 90 min after administration of [18F]fluorodopa. The
circles are the observed data that have been extracted from [4, p.52, Fig. 4], and the solid curves
are fits by a series of exponentials. (a) Radioactivity in caudate of a normal control subject. (b)
Caudate of a patient with Parkinson’s disease. (c) Occipital cortex of the control. (d) Occipital
cortex of the patient.

in comparison with those in the previous estimation [4]. First, we have determined al-
most all values of kinetic constants, while the previous work only partially estimated
the constants, using graphical analysis. Second, the orders of the kinetic constants ob-
tained by our method are similar to those found by the graphical analysis, for both the
control and PD patient. Interestingly, one constant, k4, which is one of the measures
for Parkinson’s disease, was slightly di�erent but consistent in our analysis compared
with that in the previous study. The di�erence�consistency of the constants in the two
studies will be judged from future work where many samples are analysed. At any rate,
we have successfully determined almost all constants without blood-sampling data via
our method.

4 Discussion

We have derived the equation Eq. (7), which enables us to determine rigorously al-
most all of the kinetic constants in the FDOPA model. In contrast, graphical analysis
can only approximately determine the kinetic constants around the equilibrium of the
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Table 1. The obtained parameters by non–linear regression

A-tissue (Cso(t � �A)) a1 a2 aa m1 m2 m3 �A

Control �0�0660074 �4�66107 0�153617 2�31191 0�0399169 0�038911 0�893464
PD patient �0�10455 �3�02326 0�0588441 0�275661 0�0183807 0�0166495 �1�49546

B-tissue (Cco(t � �B)) b1 b2 bb l1 l2 l3 �B

Control �0�0826722 �0�11201 0�058033 1�31972 0�16269 0�021298 0�298255
PD patient �0�0928105 �0�107709 0�0252521 2�05784 0�113904 0�0105398 �0�267787

Table 2. Kinetic constants of control and PD patient in FDOPA model by the procedure in �2.4
without blood–sampling data. The figures in the square bracket denote k4 by Patlak analysis with
blood–sampling data [4].

Kinetic constants k2 k3 k4 k6 kp2 kp6 kb2 kb3

Control 0.0968 0.220 0.00674 [0.011 ± 0.003] 0.0389 0.0213 1.32 0.0525 0.00122
PD Patient 0.000818 0.0176 0.0166 [0.016 ± 0.004] 0.276 0.00231 0.0646 0.0276 0.112

(Continue) K1/Kp1 K5kb12/Kp1 Kp5kb12/Kp1

Control 1.29 0.0466 0.979
PD Patient 0.165 0.291 0.120

system under various assumptions and ignorance [6]. For instance, even the striatum
(corresponding to A-tissue in this paper) was modelled as a single-tissue compartment
[9]. Moreover, replacement with averaged values and ignorance of error terms as a
small value are required for the solution to the equation over time domain because of its
complicated form. Thus, the present method by the algebraic approach has successfully
overcome the diÆculties of graphical analysis.

Apart from graphical analyses, Cobelli et al. [2, 3] have studied the relationship
between the observational parameters and the unknown model parameters over the
Laplace domain. The aim of these works was determination of a model in which, on
the assumption that any noise does not exist, it is determined whether the parameters
can be determined uniquely or non-uniquely. In contrast, in this paper, we have de-
termined parameters from the observed data with noise via the algebraic procedure as
mentioned in �2.4. One of the other procedures to determine parameters from noisy
data is the least squares method. We have attempted the least squares method using the
following equation:

� us

ls

�
Cs(s)L[Cco(t)](s) �Cc(s)L[Cso(t)](s)

�2ds�

Although the selection of interval between ls and us is somewhat ambiguous and it
takes about 2�7 hours for each simulation with AMD Opteron(tm) Processor 2.412GHz,
this method usually brings us the same results as the algebraic procedure and might be
suitable for the equation where blood vessels in tissues are taken into account.

The solution over the Laplace domain is an algebraic equation to which Gröbner base
computations can be applied, resulting in a much simpler form and eÆcient parameter
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determination (about 15 seconds with Intel(R) Xeon(R) CPU 2.33GHz). In fact, the
equivalent equation to Eq. (7) can be described over time domain as follows:

Cs(t) � Cc(t) � Y1(t) � Y2(t)�

with Y1(t) �
(k2 � k3 � kp2)(k2 � k3 � kp6)

(k2 � k3 � k4)(k2 � k3 � k6)
e�(k2�k3)t (11)

�
(k4 � kp2)(k4 � kp6)

(k2 � k3 � k4)(k4 � k6)
e�k4t

�
(k6 � kp2)(k6 � kp6)

(k2 � k3 � k6)(k6 � k4)
e�k6t�

Y2(t) � Extremely complicated formula over time domain

(shown in Supplementary material)�

where � denotes the mathematical operation of convolution. The point is that we have
solved the system of di�erential equations over the Laplace domain. In general, the so-
lution including any external force over time domain (in this paper, C f d in the
C-Blood model is the external force) leads to the mathematical operation of ‘con-
volution.’ Instead, convolution over time domain corresponds to a simpler form of
multiplication over the Laplace domain.

Lastly, we note that the present approach can be applied to more complex compart-
mental models. In compartmental models, the Laplace transformation of di�erential
equations into algebraic equations and the following symbolic computation will reveal
a rigorous relationship between kinetic constants. Furthermore, the algebraic procedure
seems useful for determining constants from data.

5 Conclusion

We have derived a rigorous relationship for the kinetic constants of compartmental mod-
els for FDOPA metabolism, by symbolic computations with the aid of Gröbner bases.
The algebraic procedure has successfully determined almost all constants from the ob-
served radioactivity curves. In particular, the rigorous and simple form of a solution for
the constants relationship brings us eÆcient parameter determination without blood-
sampling data and only from PET scanning data that are dozens of minutes short of the
equilibrium leading to the considerable reduction of PET scanning periods required for
diagnosis.
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Supplementary Material

Hereby, we show Y2(t), which is not shown in Eq. (11), at the following URL:
������������	���
��
�����	�����������
�������������,

where, for instance, Root[k1#1� k2#12 � k3#13� 1] denotes the minimum real root of the
equation [k1x� k2x2 � k3x3 � 0 in x and DiracDelta[t] denotes Dirac delta function Æ(t).

Appendix A: Proof of the Existence of Five Real Negative Roots

We shall prove that both F(s) and G(s) have five real negative roots. From Eq. (9):

F(s) � (s � l1)(s � l2)(s � l3)F1(s)�

G(s) � (s � m1)(s � m2)(s � m3)G1(s)�

where

F1(s) � aa m3(s � m1)(s � m2) � s(�a2(m2 � m3)(s � m1) � a1(m1 � m3)(s � m2))�

G1(s) � bb l3(s � l1)(s � l2) � s(�b2(l2 � l3)(s � l1) � b1(l1 � l3)(s � l2))�

In PET experiments, we can reasonably postulate l1 � l2 � l3 � 0� and, m1 �

m2 � m3 � 0 because the radioactivity eventually approaches an equilibrium (the finite
value). With respect to F1(s), we can see the following relationships:

F1(0) � aa m1m2m3�

F1(�m1) � a1m1(m2 �m1)(m1 �m3)� F1(�m3) � �(a1�a2�aa)m3(m1�m3)(m3 �m2)�

As seen in Fig. 3, aa � 0 because the radioactivity is never negative even when t � �.
Furthermore, the largest and the smallest time constants: 1�m3 and 1�m1 correspond to
the sampling data near the equilibrium and the initial stage, respectively, leading to the
coeÆcient relations of the exponentials, exp(�m3t) and exp(�m1t): �(a1 � a2 � aa) � 0
and a1 � 0, respectively. These facts lead to F1(0) � 0� F1(�m3) � 0 and F1(�m1) � 0,
showing that F1(s) has two real negative distinct roots, and then F(s) has five real
negative roots. Likewise, G(s) has five real negative roots. �
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Appendix B: The Third-Order Polynomial in kb3

In �2.4, we have derived the third-order polynomial by calculating the elimination ideal
w.r.t. kb3. This calculation needed 35�4 hours CPU time and 220 MBytes memory via
Mathematica 5.2 (Wolfram Research, Inc.) with Intel(R) Xeon(R) CPU 2.33GHz. The
calculated polynomial is as follows:

(�r3 � r4)(r3 � r5)(r4 � r5)(t4 � t5)(t1k4(r4 � k6)(r5 � k6)kb3(t24(t5 � kb3 )(t5 � kp2 )� t4(r4(�(kb3kp2)� t5(kb3 � kp2 � kp6))� (�(kb3kp2)� t5(kb3 � kp2))(t5�

kp6)) � (r4 � t5)kb3kp2(t5 � kp6))(t24(t5 � kb3)(t5 � kp2) � t4(r5(�(kb3 kp2) � t5(kb3 � kp2 � kp6)) � (�(kb3 kp2) � t5(kb3 � kp2))(t5 � kp6)) � (r5 � t5)kb3

kp2(t5 � kp6)) � r2
3 (t4(�(kb3kp2) � t5(kb3 � kp2 � kp6)) � kb3kp2(�t5 � kp6))(�(t1k4(r5 � k6)kb3(t24(t5 � kb3 )(t5 � kp2 ) � t4(r5(�(kb3kp2) � t5(kb3 � kp2

� kp6 )) � (�(kb3kp2) � t5(kb3 � kp2 ))(t5 � kp6 )) � (r5 � t5)kb3kp2(t5 � kp6 ))) � r2
4 (t1k4 kb3(t4(kb3kp2 � t5(kb3 � kp2 � kp6)) � kb3kp2(t5 � kp6 )) � r2

5

(�(t24(t5 � kb3)(t5 � kp2 )) � (t5 � t1 � k4 � k6 � kb3)kb3kp2(t5 � kp6) � t4(t25(kb3 � kp2 ) � kb3kp2 (t1 � k4 � k6 � kb3 � kp6) � t5(�(k6 kb3) � k2
b3 � k6 kp2 � 2kb3

kp2 � t1(kb3 � kp2 � kp6) � k4(kb3 � kp2 � kp6) � k6kp6 � kp2kp6))) � r5(t24k6(t5 � kb3)(t5 � kp2 ) � kb3(�(t5k6) � k4kb3 � t1(k4 � kb3))kp2(t5 � kp6) � t4(�

(t25k6 (kb3 � kp2 )) � kb3kp2(k4 kb3 � t1(k4 � kb3) � k6kp6) � t5(k4 kb3(kb3 � kp2 � kp6 ) � t1(k4 � kb3)(kb3 � kp2 � kp6) � k6 (kp2kp6 � kb3(kp2 � kp6))))

)) � r4(t1k4 kb3(�(t24(t5 � kb3)(t5 � kp2)) � (t5 � k6)kb3kp2 (t5 � kp6) � t4(t25(kb3 � kp2) � kb3kp2(�k6 � kp6 ) � t5(�(k6(kb3 � kp2 � kp6)) � kp2kp6 � kb3

(kp2 � kp6)))) � r2
5 (t24k6 (t5 � kb3)(t5 � kp2) � kb3(�(t5k6 ) � k4 kb3 � t1(k4 � kb3))kp2(t5 � kp6) � t4(�(t25 k6(kb3 � kp2)) � kb3kp2(k4kb3 � t1(k4 � kb3) � k6kp6 )

� t5(k4kb3(kb3 � kp2 � kp6) � t1(k4 � kb3)(kb3 � kp2 � kp6 ) � k6 (kp2kp6 � kb3(kp2 � kp6))))) � r5(t24(t5 � kb3)(�(k6kb3) � k4(�k6 � kb3) � t1(k4 � k6�
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Abstract. Haplotype inference from genotype data is a key computa-
tional problem in bioinformatics, since retrieving directly haplotype in-
formation from DNA samples is not feasible using existing technology.
One of the methods for solving this problem uses the pure parsimony cri-
terion, an approach known as Haplotype Inference by Pure Parsimony
(HIPP). Initial work in this area was based on a number of different
Integer Linear Programming (ILP) models and branch and bound algo-
rithms. Recent work has shown that the utilization of a Boolean Satis-
fiability (SAT) formulation and state of the art SAT solvers represents
the most efficient approach for solving the HIPP problem.

Motivated by the promising results obtained using SAT techniques,
this paper investigates the utilization of modern Pseudo-Boolean Opti-
mization (PBO) algorithms for solving the HIPP problem. The paper
starts by applying PBO to existing ILP models. The results are promis-
ing, and motivate the development of a new PBO model (RPoly) for
the HIPP problem, which has a compact representation and eliminates
key symmetries. Experimental results indicate that RPoly outperforms
the SAT-based approach on most problem instances, being, in general,
significantly more efficient.

Keywords: haplotype inference, pure parsimony, pseudo-Boolean opti-
mization.

1 Introduction

The causes of many common human diseases remain, to this day, largely un-
known. Since genetic inheritance is one of the major risk factors for the large
majority of diseases, the study of genetic variation in human populations repre-
sents one of the critical steps towards a better understanding of the mechanisms
of disease.

Although a number of heritable disorders that depend on the variation of one
single location in one single gene are known, common diseases usually depend
on the combined effects of many different factors, in a number of different genes.

The study of the effects of particular variations of genes is simplified by the
fact that, in many cases, there exists a strong correlation between the allele
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present in a particular single nucleotide polymorphism (SNP) and other nearby
sites. A given combination of alleles in one chromosome is termed a haplotype,
and the deviation from independence that exists between alleles is known as
linkage disequilibrium (LD).

For genetic inheritable diseases that are due to a combination of allele values in
nearby loci, identifying common haplotypes in the population represents a key
first step towards the understanding of the pathogenesis of disease. However,
current genotyping methods do not provide haplotype information, which is
essential for detailed analysis of the mechanisms of disease.

At a given position for which an individual is heterozygous (i.e., inherited
different alleles at a given locus), it is technologically not feasible, in general, to
identify the particular chromosome that contains each allele. Additional infor-
mation can be obtained by genotyping the parents, but significant uncertainty
remains. Efficient methods for haplotype inference that can handle large vol-
umes of data are therefore crucial, in order to make adequate use of the results
of ongoing efforts like the HapMap project [17], an effort that aims at mak-
ing available genotype and haplotype information of a significant sample of the
human population.

Although a number of different methods has been proposed for the prob-
lem of haplotype inference, the Pure-Parsimony criterion [6,10,7] represents a
well known approach. Haplotype Inference by Pure-Parsimony (HIPP) aims at
finding a solution to the problem that minimizes the total number of distinct
haplotypes required. The problem of finding such a solution is APX-hard (and,
therefore, NP-hard) [10]. Experimental results [6,18] have shown that the accu-
racy of the HIPP approach is comparable with the one obtained with other ap-
proaches. However, until recently, HIPP inference methods were severely limited
on the size of the problems they could handle. Recently, a SAT based approach
for this problem, SHIPs [11,12], has shown that the use of effective constraint
satisfaction methods leads to an efficient solution of this problem.

Motivated by these results, this paper explores an alternative approach. Ex-
isting ILP models only have Boolean variables and, therefore, can be solved with
Pseudo-Boolean Optimization (PBO) solvers [5,13]. Hence, this paper starts by
considering the utilization of PBO solvers instead of standard ILP solvers. The
results are very promising, being competitive with SHIPs. These results motivate
the development of a new PBO model (RPoly) for the HIPP problem, which is
based on the PolyIP model [1,8] and, in addition, breaks key symmetries and
yields a significantly more compact representation. The results show that RPoly
is, in general, more efficient than SHIPs, and capable of solving more problem
instances in a given time limit.

This paper is organized as follows. First we introduce the haplotype inference
by pure parsimony problem. Afterwards, we describe the two main contributions
of the paper: (1) how to solve HIPP ILP models using PBO and (2) how to
optimize the existing polynomial model. Finally, we conclude and suggest future
research work.
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Fig. 1. Relative performance of HIPP solvers

2 Haplotype Inference by Pure Parsimony

A haplotype is the genetic constitution of an individual chromosome. The un-
derlying data that forms a haplotype is generally viewed as the set of SNPs in
a given region of a chromosome. Normal cells of diploid organisms contain two
haplotypes, one inherited from each parent. The genotype represents the con-
flated data of the two haplotypes. The value of a particular SNP may be A,
B or A/B, depending on whether the organism is homozygous with allele A,
homozygous with allele B or heterozygous.

Starting from a set of genotypes, the haplotype inference by pure parsimony
problem consists in finding a minimum set of haplotypes that can be used to
derive, by pairwise combinations, the given set of genotypes.

Given a set G of n genotypes, each of length m, the haplotype inference
problem consists in finding a set H of 2 · n haplotypes, not necessarily different,
such that for each genotype gi ∈ G there is at least one pair of haplotypes
(hj , hk), with hj and hk ∈ H such that the pair (hj , hk) explains gi. The variable
n denotes the number of individuals in the sample, and m denotes the number
of SNP sites. gi denotes a specific genotype, with 1 ≤ i ≤ n. Furthermore, gij

denotes a specific site j in genotype gi, with 1 ≤ j ≤ m.
Without loss of generality, we may assume that the values of the two possible

alleles of each SNP are always 0 or 1. Value 0 represents the wild type and
value 1 represents the mutant. A haplotype is then a string over the alphabet
{0,1}. Moreover, genotypes may be represented by extending the alphabet used
for representing haplotypes to {0,1,2}. Homozygous sites are represented by the
values 0 or 1, depending on whether both haplotypes have value 0 or 1 at that
site, respectively. Heterozygous sites are represented by value 2.
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Table 1. Classes of instances used: number of SNPs and genotypes

Class # Instances minSNPs maxSNPs minGENs maxGENs

ms 380 4 57 9 94
phasing 329 14 188 34 90
hapmap 24 4 29 5 68
biological 450 4 77 4 49

Total 1183 4 188 4 94

The HIPP problem is to find a minimum-size set H of haplotypes that explain
all genotypes in G. For example, consider the set of genotypes: 2120, 2120 and
1221. There are solutions for this example that use six distinct haplotypes, but
solution 0100/1110, 0100/1101, 1011/1101 uses only four distinct haplotypes.

Two strings (denoting genotypes or haplotypes) are incompatible if and only
if the strings have at least one site where one string has value 1 and the other
string has value 0. Otherwise the strings are said to be compatible.

A comparison of the performance of alternative approaches to the HIPP prob-
lem is summarized in Figure 1. A universe of 1183 problem instances is used,
from which 854 instances were taken from [12] and the remaining (harder) in-
stances are described by Schaffner [15] and correspond to the SU-100kb, SU1,
SU2 and SU3 classes available from http://www.stats.ox.ac.uk/∼marchini/
phaseoff.html. All problem instances were simplified in a preprocessing step,
according to what has been suggested in [2]: duplicated genotypes and sites were
removed, as well as complemented sites. For each class, Table 1 gives the number
of instances, and the minimum and maximum number of SNPs and genotypes,
respectively, after removing duplicated genotypes and duplicated and comple-
mented sites. The ms class includes the uniform and nonuniform classes of in-
stances that have been used in [2] but extended with additional, more complex,
problem instances. The phasing instances correspond to the instances described
in [15] which were generated to evaluate phasing algorithms. The hapmap class
of instances is also the one used in [2]. Finally, the instances for the biological
class were generated from publicly available data (e.g. [14,4,3,9]).

The HIPP solvers RTIP [6], PolyIP [1], HybridIP [2], Hapar [18] and SHIPs
[12] were considered1. The run times for each solver were sorted and plotted,
the cutoff point being 1000 seconds. All results shown were obtained on a 1.9
GHz AMD Athlon XP with 1GB of RAM running RedHat Linux. For the ILP-
based HIPP solvers, the ILP package used was CPLEX version 7.5. As can be
concluded, SHIPs is the HIPP tool capable of solving the largest number of
problem instances. SHIPs aborts 268 problem instances out of 1183 instances,
whereas RTIP aborts 389 instances, Hapar aborts 619 instances, HybridIP aborts
767 instances and PolyIP aborts 771 instances. Nonetheless, we should note that
95% of the problem instances aborted by RTIP were aborted due to memory
exhaustion. Hence, RTIP may be competitive for solving some problem instances
but it is not a robust solver.

1 All results were obtained with the tools provided by the authors.
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3 Solving ILP HIPP Models with PBO

This section reviews existing ILP models for the HIPP problem [7,10]. In addi-
tion, the section includes results using a modern Pseudo-Boolean Optimization
(PBO) solver instead of a standard ILP solver.

In a pseudo-Boolean formula, variables have Boolean domains and constraints
are linear inequalities with integer coefficients,∑

cixi ≥ n ci, n ∈ Z, xi ∈ {0, 1}. (1)

For example, x+2 y−z ≥ 2 is a pseudo-Boolean constraint (also denoted as PB-
constraint). From an ILP point of view, PB-constraints can be seen as a special-
ization of ILP where all variables are Boolean. This problem formulation is also
known as 0-1 integer programming. From a SAT point of view, PB-constraints
can be seen as a generalization of clauses. Furthermore, a pseudo-Boolean for-
mula can be extended with an optimization function.

3.1 Exponential-Size ILP Models

The first ILP model proposed for the HIPP problem, RTIP [6], has linear space
complexity on the number of possible haplotypes and, therefore, it is exponential
on the number of given genotypes.

A Boolean variable yi,u is associated with each pair u of haplotypes that can
explain a given genotype gi, and denotes whether this pair of haplotypes is used
for explaining gi. A cardinality constraint,∑

u

yi,u = 1, (2)

requires that exactly one pair of haplotypes must be used for explaining each
genotype, among all pairs that can explain the genotype. Each candidate haplo-
type is associated with a dedicated variable xv, such that xv = 1 if the haplotype
is used. The utilization of a specific pair of haplotypes for explaining a genotype
(i.e. yi,u = 1) implies the respective xv variable,

yi,u → xv, (3)

for each haplotype in the pair. The cost function is used to minimize the number
of haplotypes used,

minimize
∑

xv. (4)

This model corresponds to the TIP model [6]. The RTIP (Reduced TIP) model
introduces one essential simplification. If the pair of haplotypes for a variable
yi,u is such that they are not part of any other pair of haplotypes, then the yi,u

variable and the related xv variables can be removed from the formulation. A
key drawback of the RTIP model is that the number of candidate haplotypes
grows exponentially with the number of heterozygous sites. Hence, RTIP does
not scale for large problem instances.

The RTIP model inspired a branch-and-bound algorithm to the HIPP prob-
lem, known as Hapar [18].
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3.2 Polynomial-Size ILP Models

A more recent ILP model, PolyIP [1], is polynomial in the number of sites m
and population size n, with a number of constraints and variables, respectively,
in Θ(n2m) and Θ(n2 + nm). The PolyIP model represents the 2 · n candidate
haplotypes as sequences of Boolean variables, and then establishes conditions
for the haplotypes to explain the corresponding genotypes, such that the total
number of distinct haplotypes is minimized. Haplotypes are represented with
Boolean variables yi j , 1 ≤ i ≤ 2n and 1 ≤ j ≤ m, i.e. m variables for each of
the 2 · n candidate haplotypes.

First, the PolyIP model defines conditions on the sites, with 1 ≤ i ≤ n and 1 ≤
j ≤ m,

y2i−1 j = 0 and y2i j = 0, if gij = 0,
y2i−1 j = 1 and y2i j = 1, if gij = 1,

y2i−1 j + y2i j = 1 if gij = 2,
(5)

where gij ∈ {0, 1, 2} denotes the possible values at each site. Second, the PolyIP
model defines conditions for identifying different haplotypes, with 1 ≤ l ≤ i ≤
2n and 1 ≤ j ≤ m. Boolean variable dl i is defined such that dl i = 1 if hi �= hl.
The resulting conditions become

yi j − yl j ≤ dl i,
yl j − yi j ≤ dl i.

(6)

If at least one site of hi and hl differs, then dl i needs to be assigned value 1.
Third, the model introduces the xi variables, denoting whether hi is different

from all previous haplotypes hl, where 1 ≤ l < i, and defines conditions on these
variables. Each Boolean variable xi is defined such that xi = 1 if hi is unique with
respect to the previous haplotypes. Thus, if hi is unique, then

∑i−1
l=1 dl i = i− 1;

otherwise
∑i−1

l=1 dl i < i− 1. As a result, the condition on variable xi becomes

xi ≥ 2− i +
i−1∑
l=1

dl i. (7)

Finally, the cost function minimizes the number of different haplotypes,

minimize
2n∑
i=1

xi. (8)

A number of optimizations have been proposed to the basic PolyIP model [1],
with the purpose of improving the quality of the LP relaxation step of standard
ILP solvers, and therefore pruning the search space to be handled by the ILP
solver.

More recently, the same authors introduced a new polynomial-size formula-
tion, HybridIP [2], representing a hybrid of the RTIP and PolyIP formulations.
Nevertheless, existing experimental results (see Figure 1) suggest that the per-
formance of the two polynomial models does not differ significantly.
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3.3 ILP vs. PBO Solvers

As is clear from the description of the ILP models, all variables are Boolean
and all coefficients are integer. Hence, the HIPP ILP models are also PBO mod-
els, and so PBO solvers can be considered. The results summarized in Figure 1
indicate that the performances of the PolyIP and HybridIP models are sim-
ilar. Moreover, the RTIP model is known to be inadequate for larger problem
instances, due to the exponential growth of the model in the number of heterozy-
gous sites per genotype. As a result, this section only evaluates the performance
of the PolyIP model using a PBO solver (hereafter referred to as PolyPB). The
PBO solver MiniSAT+ [5] is used on all reported PBO results. Although other
PBO solvers analyzed in [13] were considered, MiniSAT+ was by far the most
efficient.

MiniSAT+ handles PB-constraints through translation to SAT without mod-
ifying the SAT procedure itself. In addition, the objective function is satisfied
by iteratively calling the SAT solver where for each new iteration the objec-
tive function is updated until the problem is unsatisfiable. For example, given a
minimization problem with an objective function f(x), MiniSAT+ first runs the
solver on the set of constraints (without considering the objective function) to
get an initial solution f(x0) = k. Then it adds the constraint f(x) < k and runs
the solver again. If the problem is unsatisfiable, then k is the optimum solution.
If not, the process is repeated with the new smaller solution. Observe that trans-
lating to SAT results in an approach that is particularly suited for problems that
are almost pure SAT. Indeed, this is the case for the HIPP problem. Hence, one
may expect to get a faster procedure with MiniSAT+ than by applying a native
PBO solver, not optimized towards propositional SAT.
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Figure 2 compares the PolyIP model using the CPLEX solver, the PolyPB
model using the PBO solver MiniSAT+ and the SHIPs solver on the 1183 prob-
lem instances described in Table 1 for a timeout of 1000 seconds. Clearly, PolyPB
outperforms SHIPs in terms of the number of instances solved. Although both
solvers are able to solve the majority of the 1183 problem instances within 1000
seconds, PolyPB only aborts 100 instances whereas SHIPs aborts 268 instances.
Observe that PolyIP is significantly worse, aborting 771 out of 1183 instances.

In addition, Figure 3 provides a scatter plot with the run time for PolyPB
and SHIPs on each of the problem instances with a timeout of 1000 seconds.
For most problem instances SHIPs is faster than PolyPB; PolyPB is faster than
SHIPs on 454 out of 1183 instances, with many of these instances being solved
in less than one second. Nonetheless, this group of instances for which PolyPB
is faster than SHIPs also includes 184 instances that PolyPB is able to solve and
SHIPs aborts. On the other hand that there are only 16 instances that SHIPs is
able to solve and PolyPB aborts. As a result, we can conclude that PolyPB is
more robust than SHIPs. Finally, there are still 84 instances that both solvers
are unable to solve within 1000 seconds.

4 RPoly: An Optimized PolyPB Model

Although the results shown in the previous section are promising, it is possible
to further optimize the PolyPB model. Indeed, SHIPs is still showing a better
performance in a large number of problem instances, which motivates the in-
corporation of some of the SHIPs model features into the PolyPB model. This
section addresses optimizations to the PolyPB model with the main goal of re-
ducing the run times.
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These optimizations are two-fold: (1) the elimination of key symmetries and
(2) the reduction of the size of the model. It is well-know that the SHIPs model
would not be competitive if it was not for some specific optimizations, which
include breaking key symmetries. Symmetries are broken by adding constraints
to the model. We have also observed that the PBO instances generated with the
PolyPB model are significantly larger than the SAT instances generated with
the SHIPs model. The number of constraints in the PBO model can be up to
an order of magnitude larger than the number of constraints in the SAT model,
whereas the number of variables in the PBO model can be up to a factor of 3
larger than the number of variables in the SAT model.

The resulting model is referred to as Reduced Poly model (RPoly).

4.1 Eliminating Key Symmetries

A key technique for pruning the search space is motivated by observing the
existence of symmetry in the problem formulation. Clearly, given a solution
to a HIPP problem were a genotype gi is explained by the pair of haplotypes
(h2i−1,h2i), the same genotype gi may also be explained by the pair of haplo-
types (h2i,h2i−1). Eliminating this symmetry significantly reduces the number
of solutions and consequently reduces the search space.

In practice, this kind of symmetry is eliminated by adding additional con-
straints to the model, which guarantee that the elements in a pair of haplotypes
are lexicographically ordered. Hence, for each site gij in a genotype gi we must
force the following:

– If gi j = 2 and gi j′ �= 2 (∀j′ : j′ < j), then y2i−1 j − y2i j < 0.

Figure 4 compares the performance of the PolyPB model with and without
symmetry breaking constraints. Clearly, with a few exceptions (72 out of 1183
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instances), eliminating symmetries accelerates the performance of the PBO
solver. The new model is faster than the PolyPB model for 90% of the instances
and up to 2 orders of magnitude. This result comes as no surprise, given the
success of the same technique when implemented in the SHIPs model. This re-
sult is indeed significant, as the new model only aborts 47 instances, whereas
the PolyPB model aborts 100 instances.

4.2 Reducing the Model

The organization of RPoly follows the organization of PolyIP: two haplotypes are
associated with each genotype, and conditions are defined which capture when a
different haplotype is used for explaining a given genotype. However, RPoly has
a few key differences. First, the set of variables is different. Instead of associating
a variable with each site of each haplotype, RPoly only associates variables with
heterozygous sites (since the value of haplotypes in the other sites is known before-
hand, and so can be implicitly assumed). In addition, each used variable describes
the possible pairs of values for the corresponding heterozygous site.

In practice, the model associates two haplotypes, ha
i and hb

i , with each geno-
type gi, and these haplotypes are required to explain gi. Moreover, the model
associates a variable ti j with each heterozygous site (i, j) (i.e. with gi j = 2).
Hence, ti j = 1 indicates that ha

i j = 1 and hb
i j = 0, whereas ti j = 0 indicates

that ha
i j = 0 and hb

i j = 1 2. The value of ha
i and hb

i at homozygous sites j is
implicitly assumed.

This alternative definition of the variables associated with the sites of geno-
types reduces the number of variables by a factor of 2. In addition, the model
only creates variables for heterozygous sites, and, therefore, the number of vari-
ables associated with sites equals the total number of heterozygous sites. As a
result, the conditions provided by expression (5) are eliminated. It should also
be mentioned that this definition of the variables associated with sites follows
the SHIPs model [11,12].

Finally, another key modification is that the candidate haplotypes for each
genotype are related with candidate haplotypes for other genotypes only if the
two genotypes are compatible. Clearly, incompatible genotypes are guaranteed
not to be explained by the same haplotype.

The proposed modification implies the use of two additional sets of variables.
Variable xp q

i1 i2
, with p, q ∈ {a, b} and 1 ≤ i2 < i1 ≤ n, is 1 if the p haplotype

of genotype i1 and the q haplotype of genotype i2 are incompatible. Clearly, if
genotypes i1 and i2 are incompatible, then the value of xp q

i1 i2
is 1 for the four

possible combinations of p and q. Moreover, two genotypes i1 and i2 are related
only with respect to sites j such that either gi1 or gi2 is heterozygous at that
site. In addition, the model uses variables to denote when one of the haplotypes
associated with a given genotype is different from all previous haplotypes. Hence,
up

i , with p ∈ {a, b} and 1 ≤ i ≤ n, is 1 if haplotype p of genotype i is different
from all previous haplotypes.
2 Hence, the symmetry in a pair of haplotypes is broken by considering that tij = 0

for the first heterozygous site gij of each genotype gi.
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The conditions on the up
i variables are based on the conditions for the xi

variables for the PolyIP model,
∧

1≤k<i

(xp a
i k ∧ xp b

i k) → up
i . (9)

The conditions on the xp q
i1 i2

variables are all of the following form, for all
1 ≤ j ≤ m:

¬(R ↔ S) → xp q
i1 i2

, (10)

where the predicates R and S depend on the values of the sites (i1, j) and (i2, j),
and on which of the haplotypes is considered, i.e., either a or b. Observe that
1 ≤ i2 < i1 ≤ n, 1 ≤ j ≤ m, and p, q ∈ {a, b}. Accordingly, the R and S
predicates are defined as follows:

– If gi1 j �= 2, then R = ¬(gi1 j ↔ (q ↔ a)) and S = ti2 j .
– If gi2 j �= 2, then R = ¬(gi2 j ↔ (q ↔ b)) and S = ti1 j .
– If gi1 j = 2 ∧ gi2 j = 2, then R = ¬(p↔ q) and S = ¬(ti1 j ↔ ti2 j).

Finally, the cost function is given by

minimize
n∑

i=1

(ua
i + ub

i). (11)

The proposed modifications result in significantly smaller PBO problem in-
stances. Figure 5 compares the number of terms for the PolyPB and the RPoly
models. The results are consistent and show that the number of terms in RPoly
is a factor of 5 to 10 smaller than in PolyPB. Albeit not shown, the number
of variables in RPoly can be up to a factor of 3 smaller than the number of
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variables in PolyPB. We should note that the phasing class of instances exhibits
a different behavior: most of these instances have around 107 terms in the PBO
model with symmetry breaking. The number of terms in RPoly is not reduced
for a constant factor, as it is for the other classes of instances. These instances
have a higher number of incompatible genotypes when compared with the other
classes of instances. Hence, the impact of the reduced model is much more signif-
icant. For the same reason, the impact on the run times is also more significant
(see Figure 6 where the run time for the phasing instances using the PBO model
with symmetry breaking is around 102 seconds). As a result, for these instances
RPoly can outperform PolyPB by two orders of magnitude.

Finally we evaluate the effect of the reductions described above with respect
to the run times. Figure 6 compares the PolyPB model extended with sym-
metry breaking constraints and the RPoly model, both using the PBO solver
MiniSAT+, on the set of 1183 problem instances and with a timeout of 1000
seconds. With a few exceptions (28 out of 1183 instances), RPoly is consistently
faster than PolyPB, and the speedup can reach 2 orders of magnitude. The few
exceptions where RPoly is slower are explained by the branching heuristics used
by MiniSAT+, which, in some cases, may not select the most adequate variables
to branch on.

4.3 RPoly vs. SHIPs

In this section we measure the progress made with this work, by comparing the
SHIPs model [12] with the RPoly model. The RPoly model is based on the PolyIP
model but uses a PBO solver, MiniSAT+, and introduces key optimizations: the
elimination of symmetries between the elements within a pair of haplotypes and
the reduction on the size of the model.
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Although both RPoly and SHIPs use SAT-based technology, the two ap-
proaches differ. Whereas SHIPs considers an increasing number of haplotypes
until a solution is found, RPoly considers 2 · n haplotypes, where n is the num-
ber of genotypes, and iteratively reduces the number of different haplotypes until
a solution with a minimum number of different haplotypes is found.

Figure 7 compares the RPoly model using the PBO solver MiniSAT+ and
the SHIPs solver. For a small number of problem instances (52 out of 1183)
SHIPs is faster than RPoly, and the speedup can reach 2 orders of magnitude.
However, for most problem instances (1089 out of 1183), RPoly is faster than
SHIPs. It should be observed that SHIPs is, in general, slower on very easy
problem instances, essentially due to the initial setup time [11]. Nevertheless,
the results also clearly show that RPoly is significantly more robust than SHIPs.
RPoly aborts on a significantly smaller number of instances, being able to solve
more than 96% of the problem instances. Finally, observe that only two instances
aborted by RPoly can be solved by SHIPs.

5 Conclusions and Future Work

This paper studies the application of modern PBO solvers to the HIPP prob-
lem. By replacing the CPLEX ILP solver with the PBO solver MiniSAT+ [5],
the existing PolyIP model [1] is shown to be competitive with the state-of-the-art
method, SHIPs [12], being in general more robust. These results motivated the
development of a new ILP model for the HIPP problem, RPoly, which entails
a number of improvements to the basic PolyIP model inspired by SHIPs. The
results for RPoly are significantly more promising than for PolyIP: RPoly is most
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often faster than SHIPs and is also significantly more robust, aborting only on
a small number of problem instances (observe that, with two exceptions, SHIPs
also aborts all of these instances).

The results indirectly suggest that the performance improvements obtained
with SHIPs [11,12] are to a large extent explained by the efficiency of modern
SAT solvers. Indeed, SAT-inspired PBO solvers obtain extremely good results
with PolyIP and with RPoly, which are PBO models that differ significantly from
the SHIPs SAT-based approach. In addition, the different PBO models provide
a new, relevant, and essentially endless, source of challenging real problem in-
stances for PBO solvers.

Despite the promising results obtained using MiniSAT+ with the RPoly
model, several challenges remain. A number of problem instances cannot be
solved by any HIPP solver. In addition, larger HIPP instances are expected to
be significantly more challenging.

Finally, we should mention that having a competitive HIPP solver allows us
to extend the pure parsimony approach with some ideas which are on the basis of
other haplotype inference approaches. This will enable us to develop parsimony-
based methods that explicitly incorporate genetic models (e.g. as in Phase [16]),
with the objective of improving the accuracy of the reconstructed haplotypes.

Acknowledgments. This work is partially supported by Fundação para a
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Abstract. Glass piecewise linear ODE models are frequently used for
simulation of neural and gene regulatory networks. Efficient computa-
tional tools for automatic synthesis of such models are highly desirable.
However, the existing algorithms for the identification of desired models
are limited to four-dimensional networks, and rely on numerical solutions
of eigenvalue problems. We suggest a novel algebraic criterion to detect
the type of the phase flow along network cyclic attractors that is based
on a corollary of the Perron-Frobenius theorem. We show an application
of the criterion to the analysis of bifurcations in the networks. We pro-
pose to encode the identification of models with periodic orbits along
cyclic attractors as a propositional formula, and solving it using state-
of-the-art SAT-based tools for real linear arithmetic. New lower bounds
for the number of equivalence classes are calculated for cyclic attractors
in six-dimensional networks. Experimental results indicate that the run-
time of our algorithm increases slower than the size of the search space
of the problem.

1 Introduction

Many biological models can be formulated as hybrid systems in which the switch-
like behavior of genes is approximated by discontinuous step functions, while the
other state variables still change continuously in time. Piecewise-linear differen-
tial equations (PLDE) were proposed by Glass and Kaufmann as an approxi-
mation for systems in the context of gene regulation [1,2]. These equations are
applied to the analysis of gene regulatory networks [3,4,5,6] and neural net-
works [7,8]. The piecewise linear approach for describing complex nonlinear dy-
namics is actively studied and utilized in control theory, design of electric and
electronic circuits, and embedded software.

The main distinction of biological phenomena is that the interactions are
characterized by very localized coupling of the state variables, unlike complex
couplings in the context of control and electronic circuit problems. In the result-
ing model, interactions between genes are present only in the piecewise constant
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terms of the PLDE [9]. Let n denote the number of genes and xi denote the
concentration of the product of gene i. The vector of the xi-s is denoted by x.
The equations can be written in the form

ẋi = −gi(x) − γixi for 1 ≤ i ≤ n,

where γi > 0 is the degradation rate of xi. The function gi : Rn
≥0 → R≥0

describes the coupling of the variables and is defined as

gi(x) =
∑
l∈L

kilbil(x)

where kil ≥ 0 is a rate parameter, L is a set of indexes, and bil : Rn
≥0 → {0, 1} is a

composition of step functions with the steps located at the prescribed threshold
concentrations xi = θil. The function bil expresses the conditions under which
the gene causes production of the protein at a rate kil. The constant θil denotes
the l-th threshold concentration of the protein encoded by gene i. The thresholds
induce a partitioning of the phase space into a set of n-dimensional boxes. In
each box, the protein concentrations are described by ODEs with a constant
production term μi and a rate parameter γi:

ẋi = μi − γixi for 1 ≤ i ≤ n

The global behavior of PLDE with several thresholds for every continuous vari-
able are actively studied in the context of modeling of gene regulatory net-
works [10] and the qualitative theory of differential equations [11]. If the model
of the gene activity is restricted to on/off expressions and the decay rates are
identical for all reactions, the PLDE system is reduced to a Glass model [12].
The general form of a Glass network is

ẋi = Gi(x̃1, . . . , x̃n)− αxi for 1 ≤ i ≤ n and α > 0.

The protein production rates are defined via the interaction functions Gi, where
x̃i = a if xi < θi, and xi = b if xi > θi with real constants a < b. Using
appropriate scaling of the variables, the PLDE can be transformed into the
system

ẏi = Fi(ỹ1, . . . , ỹn)− yi for 1 ≤ i ≤ n,

where ỹi = 0 if yi < 0, and ỹi = 1 if yi > 0 [12]. The equations describe a
network with all thresholds equal 0 and unit decay rate. The equations can be
easily integrated, and the trajectories are straight lines in every orthant1 Ok, k ∈
{1, 2, 3, . . . , 2n}, of the phase space. The phase flow in each orthant Ok is defined
by its focal point fk= (fk

1 , f
k
2 , . . . , f

k
n) ∈ Rn where fk

i = Fi(ỹ1, ỹ2, . . . , ỹn)|Ok
.

Thus, the Glass network can be specified by a choice of a set of focal points
{f (k)}, k ∈ {1, 2, 3, . . . , 2n}.

The phase flow in Glass networks is studied using a state transition diagram,
which is represented by an n-cube with directed edges. Each orthant of the phase
1 Generalization of a quadrant to the n-dimensional Euclidean space.
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space is associated with a vertex of the n-cube, and each common boundary of
the orthants corresponds to an edge of the cube. The edge is directed according
to the direction of the phase flow across the boundary [13]. Figure 1 illustrates a
phase flow with two trajectories of a two-dimensional Glass network. The state
transition diagram for a 3-dimensional Glass network is shown in Fig. 2. The
vertices of the n-cube are labeled by tuples of n binary variables (ỹ1, ỹ2, . . . , ỹn),
which define a valuation of the network interaction functions Fi. Periodic trajec-
tories of the networks correspond to closed cycles in the transition graphs (e.g.,
see thick line in Fig. 2).
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(1) (1)
1 2( , )f f
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1 2( , )f f

(3) (3)
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Fig. 1. 2-d phase flow
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Fig. 2. 3-d transition diagram

The global phase flow in Glass networks can be quite complex. Oscillations to-
wards equilibrium states, cycles and limit cycles may occur when linear parts of the
trajectories are connected continuously over sequences of orthants [13,14,12,15].
Numerical simulations [13,16] indicate that for dimensions greater than 4, Glass
networks may exhibit aperiodic and chaotic behavior. Studies of the periodic so-
lutions for Glass models show that there are networks that possess a special type
of stable limit cycles: the flow between the orthants along these cycles is unam-
biguous, i.e., for each orthant along the cycle, all trajectories must go to the same
successor. In other words, the basin of attraction of the periodic trajectory is com-
posed of all orthants spanned by the trajectory. Networks with such stable cycles
are called networks with cyclic attractors [13].

Definition 1 (Cyclic Attractor). A cycle in the state diagram is called a
cyclic attractor if a) it is a chord-free simple cycle in the n-cube2, and b) all
edges adjacent to the cycle have to be directed towards the cycle nodes.

As example, the cycle shown in Fig. 2 is a cyclic attractor.
Models for gene regulatory networks with equilibrium states and stable limit

cycles are of special interest in Systems Biology because the models serve for sim-
ulation of cell differentiation processes and variability of cell types [17,18]. The
classification of the cyclic attractors with respect to symmetry transformation of
the n-cube up to dimension 5 has been completed [13]. Numerical studies of the
2 Every edge in the graph that joins two vertices of the cycle is an edge of this cycle.
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3-dimensional cyclic attractor identified unique stable oscillations for the value
of the bifurcation parameter greater than the Hopf bifurcation point [19]. The
network with cyclic attractors was integrated numerically for the 4-dimensional
state space to simulate a neural network [20]. Three stable periodic trajectories
were found by the parametric study of PLDE models, and the period of each
cycle was computed for a set of thresholds θi.

To summarize, the classification of the transition diagrams has been obtained
for Glass networks up to dimension five. Analytical results on phase flow are
presented for three- and four-dimensional networks. The analysis relies on the
integration of PLDE and numerical solutions of eigenvalue problems for the
matrix associated with the Poincaré return map. Models for the simulation of
gene regulatory and neural networks utilize Glass networks with cyclic attractors.
Phase flow along cyclic attractors was proven to admit either a stable periodic
orbit or to converge to the origin. If the focal coordinates {f (k)

i } for the system
with cyclic attractor equal ±1, the flow always is attracted by the unique 1-
period trajectory.

The determination of the parameters of gene regulation models based on ex-
perimental observations is known to be highly desirable [17], and is a computa-
tionally difficult problem [21]. A solution of the inverse problem of 4-dimensional
Glass network reconstruction based on a partial information about the transition
diagram and the signs of focal coordinates is shown in [3]. The objective of this
paper is to suggest an efficient method for the identification of networks with
cyclic attractors that exhibit phase flow of a prescribed type for a given set of
focal point coordinates.

The problem is stated as follows: based on a given sequence of absolute values
of focal point coordinates {|f (k)

i |} and the desired flow type, identify a Glass
network with an attractor that admits the prescribed flow.

As there are straight-forward upper bounds for the length of cyclic attrac-
tors for a given dimension, we propose to use an encoding into propositional
satisfiability (SAT) for the search. There are two contributions we present:

1. We propose an algebraic method for analysis of structural stability of phase
flow for Glass networks with cyclic attractors. Our method utilizes a corollary
of the Perron-Frobenius theorem and gives a criterion for the identification
of the flow type along the cyclic attractors.

2. We propose a scalable SAT-based algorithm for identification of the networks
with cyclic attractors.

Outline. The paper is organized as follows. In Section 2, we extend a sufficient
condition for the identification of networks with cyclic attractors [13] to an al-
gebraic criterion (i.e., necessary and sufficient condition), which is derived from
properties of the state transition diagram of the networks. We also present an
application of the criterion to the analysis of structural stability of the phase flow
as an example, which is useful later on for the construction of the algorithm for
network identification. In Section 3, we introduce an algorithm based on SAT for
the search for cyclic attractors in the state transition diagram. In Section 4, we
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integrate the proposed criterion as a part of the algorithm for the identification
of Glass networks with periodic orbits along cyclic attractors. We also present
experimental results that indicate that the algorithm scales well in the network
dimension.

2 Algebraic Criterion for Flow Identification

The flow along cyclic attractors is known either to converge to the origin or to ad-
mit a unique stable 1-period orbit. The type of the flow is identified by analyzing
a Poincaré plane: the flow with periodic orbit has a unique fixed point, while the
Poincaré map for flows converging to the origin does not have fixed points. Thus,
a criterion for flow identification should distinguish between Poincaré maps with
and without fixed points.

Poincaré return maps of Glass networks can be represented by the composition
of fractional linear maps M (k) : Rn → Rn [13]. Following the notation in [12],
the mapping can be presented as:

y(k+1) = M (k)y(k) = B(k)y(k)/(1 + 〈ψ(k),y(k)〉), (1)

where y(k) is the coordinate vector on the k-th orthant boundary crossed by the
trajectory, and the matrix B(k) is calculated as

B(k) = I − (f (k)eT
j )/f (k)

j (2)

where I is the identity matrix. The focal point f (k) associated with the orthant
being entered is assumed not to lie in that orthant, ej denotes the standard
basis vector in Rn, and the vector ψ(k) is defined to equal −ej/f

(k)
j . The angular

brackets denote the Euclidean inner product. Thus, the return map for a cycle
restricted to the orthant boundary yi = 0 can be written as

My = Ay/(1 + 〈φ,y〉), (3)

where A = ||amp|| is the (n− 1)× (n− 1) matrix obtained by deleting the i-th
column and row of the composition of B(k), and φ is the same reduction of the
composition of ψ(k) [12].

The values of the matrix elements amp depend on the choice of the initial
orthant boundary as well as on the order of enumeration of the variables, and the
prescribed orientation of the basis vectors along the axes. The same N -node cycle
in the state diagram may be represented by N ·n!·2n different matrices. In case of
a cyclic attractor, the matrix can be obtained in such a way that all its elements
are positive [13]. Subsequently, the Perron-Frobenius theorem guarantees that
the flow admits a stable periodic orbit if the dominant eigenvalue r of the positive
matrix A is greater than one, and converges to the origin otherwise. Therefore,
if a cyclic attractor is represented by a positive matrix, the identification of
the flow type does not require the calculation of eigenvalues, but only reasoning
about satisfiability of the inequality r > 1 for positive matrices. For this purpose,
we suggest to utilize a corollary to the Perron-Frobenius theorem. The corollary
asserts [22]:
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Corollary 1. A real number λ is greater then the maximal characteristic value
r of the (non-negative) matrix A if and only if for this value λ all the successive
principal minors of the characteristic matrix λI −A are positive.

If we are only interested in testing r > 1, we need to check the signs of the
determinants of the k by k upper left matrices of A− I being (−1)k. Thus, the
following algebraic criterion for the identification of flows in cyclic attractors can
be used:

Criterion 1. The flow of an n-dimensional cyclic attractor converges to the
origin if and only if the signs of the determinants of the k by k upper left matrices
of A− I are (−1)k for k = 1, 2, . . . , n− 2 and the sign of det(A− I) is (−1)n−1

or det(A − I) = 0, where A is the positive matrix that defines the return map
of the attractor by means of Eq. 3. Otherwise, the phase flow along the cyclic
attractor admits a unique stable 1-period orbit.

The analysis of the generic ways in which stable attractors undergo bifurcations
in Glass networks is an open question listed in [15]. As a simple example of an
application of Criterion 1 to bifurcation analysis, we can consider the structural
stability of phase flow along a cyclic attractor for the 3-dimensional Boolean
Glass network shown in Fig. 2.

First, we have to define the focal point coordinates of the network. Two con-
ditions are assumed throughout the paper: focal points lie inside orthants and
none of them on the orthant boundaries, and the i-th state variable does not
change in sign when crossing an orthant boundary in direction i. The conditions
ensure that the flow is unambiguous [12,11]3. In this case, the focal point for
every orthant of the cycle lies inside the next cycle orthant.

Example 1. The attractor in Fig. 2 is represented by the orthant sequence

(111)→ (011)→ (001)→ (000) → (100)→ (110)

Thus, the sequence of focal points is obtained by applying a one-step cyclic
shift to the sequence of orthants, and replacing all 0-s by −1, and is written as:

(−1, 1, 1)→ (−1,−1, 1)→ (−1,−1,−1)→ (1,−1,−1)→ (1, 1,−1)→ (1, 1, 1)

Let us consider the perturbations of the first focal point when it remains inside
the same orthant (011). The focal point sequence undergoing the perturbations
has the form:

(−ε1, ε2, ε3)→(−1,−1, 1)→(−1,−1,−1)→ (1,−1,−1)→ (1, 1,−1)→ (1, 1, 1),

where ε1 > 0, ε2 > 0, and ε3 > 0 are free parameters of the network. The matrix
A = ||amp|| for the return map is calculated using Equations (1-3):( 8ε2

ε1
+ 5ε3

ε1
8

5ε2
ε1

+ 3ε3
ε1

4

)
.

3 The conditions can be relaxed using set-valued Filippov solutions. The application
of differential inclusions to PLDE is still a current research topic [10], and is not
considered in this paper.
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All elements of the matrix are positive due to the definition of the perturbation
via positive ε-s. Thus, Criterion 1 is applicable to the matrix above, and it asserts
that the cyclic attractor admits the flow converging to the origin if and only if

a11 < 0 ∧ (a11a22 − a21a12 > 0 ∨ a11a22 − a21a12 = 0) . (4)

The corresponding systems of inequalities are written as{ −ε1+8ε2+5ε3
ε1

< 0
4(ε1+2ε2+ε3)

ε1
> 0

or

{ −ε1+8ε2+5ε3
ε1

< 0
4(ε1+2ε2+ε3)

ε1
= 0

Both systems are inconsistent, and therefore, the flow admits a stable periodic
orbit, i.e., the network is stable under any perturbations of the first focal point
that leave the point inside the orthant y1 < 0, y2 > 0, y3 > 0.

The perturbations of any single focal point within the orthants have been found
to preserve the flow type along 3-and 4-dimensional cyclic attractors for Boolean
Glass networks. In contrast, simultaneous perturbation of two coordinates of
different focal points may change the flow from “periodic” to “converging to the
origin”. As an example, consider perturbations of the second coordinate of the
fifth focal point and the third coordinate of the sixth focal point.

Example 2. Let us consider the sequence of the focal points which is written as

(−1, 1, 1)→ (−1,−1, 1)→ (−1,−1,−1)→ (1,−1,−1)→ (1, ε1,−1)→ (1, 1, ε2)

The corresponding positive matrix A is( 5
ε1

+ 3
ε2

+ 5
ε1ε2

3
ε1

+ 2
ε2

+ 3
ε1ε2

3
ε2

+ 5
ε1ε2

2
ε2

+ 3
ε1ε2

)

The system (4) that represents the criterion is simplified by cylindrical decom-
position implemented in Mathematica. The sufficient condition for converging
flow along the cyclic attractor and the bifurcation condition are written as:{

ε1 > 5
ε2 > 7+5ε1

−5+ε1

or
{

ε1 > 5
ε2 = 7+5ε1

−5+ε1

Any solution of this system defines a network with the flow converging to
the origin. As an example of one parametric bifurcation diagram we consider a
solution of the second system with ε1 = 6 and ε2 = 37. In this case, the dominant
eigenvalue r is 1 and the phase flow converges to the origin. The sequence of focal
points with the bifurcation parameter μ is written as:

(−1, 1, 1)→ (−1,−1, 1)→ (−1,−1,−1)
→ (1,−1,−1)→ (1, 6,−1)→ (1, 1, 37− μ)

If μ ≤ 0, the cyclic attractor admits the flow converging to the origin, and if
μ > 0, the location of the fixed point y∗(μ) on the Poincaré plane (y1 > 0, y2 >
0, y3 = 0) is computed as [12]:

y∗(μ) =
(r − 1)v
〈φ,v〉 ,
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where v is the eigenvector corresponding to the dominant eigenvalue r. The
characteristic polynomial for the matrix A is quadratic, and thus, a bifurcation
diagram that represents the fixed point coordinate y∗(μ) can be obtained in a
closed analytical form. The bifurcation diagram was found to be similar to a
Hopf supercritical bifurcation for non-linear ODE (see Fig. 5 in [23]).

Criterion 1 relies on the condition that matrix A is positive, and thus, the first
step of any application of the criterion is to find the sequence of nodes in the
n-cube that determines the cyclic attractors with a positive matrix. Such se-
quences have to satisfy condition (a) of Def. 1, and are called induced cycles.
The problem of finding longest induced paths in graphs is known to be NP-
complete [24], and the problem of detecting longest induced cycles in n-cubes
is open for dimensions greater than 7 [25]. We propose to encode the search for
induced cycles into a satisfiablity (SAT) problem for propositional logic. Thus,
the computationally demanding calculations can be handled by the state-of-the-
art SAT solvers, which are known to be very efficient for problems with large,
tightly constrained search spaces.

3 Computing Induced Cycles

The search for an induced cycle in the network state transition diagram relies
on the identification of a cycle with desired properties on n-cubes. The length
of the cycle N and the dimension n serve as input parameters. We propose to
apply propositional SAT to the search for the attractors.

A state corresponds to a coordinate vector labeling the nodes on the n-cube,
i.e., an n-tuple of Boolean variables. Let si,j with i ∈ {1, . . . , N}, j ∈ {1, . . . , n}
denote the value of bit j in step i. The transitions on the n-cube correspond to
sequences of states that satisfy a Gray code condition: the Hamming distance
between two neighboring states equals one. We write Hα

k,l if the Hamming dis-
tance between the states sk and sl is α. The Gray code condition is then written
as the following conjunction:

Ψgray =
N−1∧
i=1

H1
i,i+1 ∧H1

1,N

The constraints that eliminate the chords from the paths are represented by the
following formula:

Ψ cycle =
∧
i

∧
j

[H1
i,j ⇔ (H0

i−1,j ∨H0
i+1,j)]

The constraints guarantee that the Hamming distance for two of the cycle nodes
equals one if and only if one of the nodes is either the previous or the next in
the cycle with respect to the other one. A satisfying assignment to

Ψ ind = Ψgray ∧ Ψ cycle (5)
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identifies an induced cycle of an n-cube. The set of all attractors is represented
by the set of all satisfying assignments of formula (5).

Due to the symmetries in the n-cube, the set of cycles that corresponds to the
solutions of (5) is highly redundant. Glass proposes equivalence classes that are
defined as sets of induced cycles such that all cycles in every set can be obtained
via n-cube symmetry transformations of any cycle in the set [2]. The classifica-
tion for 5-dimensional networks was obtained by Glass [2] using an enumeration
approach. We utilize (5) to extend the classification to 6-dimensional networks.

The computation of the equivalence classes utilizes coordinate and interval
sequences for Gray codes and paths on n-cubes. The coordinate sequence is a
listing of the coordinates that change as the cycle is traversed. The interval
sequence of a coordinate is a tuple giving the number of coordinates intervening
between each successive appearance of the coordinate in the coordinate sequence.
A necessary but not sufficient condition that two induced cycles are equivalent is
that the set of interval sequences for one cycle are in a one-to-one correspondence
with the set of interval sequences of the second cycle, where the interval sequence
for any one coordinate can be cyclically permuted [2]. We apply the condition
to compute lower bounds for the number of equivalence classes as follows:

1. We obtain the set of induced cycles of a given length N in the n-cube by
computing all satisfying assignments of (5). This is an all-SAT problem.

2. We construct the set of equivalence classes as follows: every satisfying assign-
ment is decoded back to the coordinates of the induced cycle on n-cube that
it represents; if this induced cycle does not belong to any of the computed
classes, it is added to the set as the representative.

The pseudocode for the computation is shown in [23]. The all-SAT problem is
solved using the blocking clause algorithm [26] for the MiniSAT SAT-solver [27].
The algorithm computes a satisfying assignment of the given formula, saves it,
and constructs a clause that eliminates the assignment. The clause is added
to the formula as an additional constraint, and the previous step is repeated
until no satisfying assignment can be found. There are more efficient algorithms
available for the all-SAT problem, but these techniques are beyond the scope of
this paper.

We applied the algorithm to 5- and 6-dimensional cubes (see the results in
Table 1 in [23]). The lower bound for the total number of equivalence classes
for six dimensions has been found to increase from 17 to 3007. The computed
bound for 5-dimensional networks differs from the exact number of classes [2] by
just one class. To the best of our knowledge, these lower bounds for the number
of equivalence classes for dimension 6 are presented for the first time.

The network identification may require the evaluation of all induced cycles,
even if they belong to the same equivalence class (see the example in [23]). The
results of the all-SAT computation indicate that the number of induced cycles
increases rapidly with the network dimension: the total number of cycles is 238
and 706336 for 5- and 6-dimensional networks, respectively. Thus, the search over
the set of cycles becomes computationally demanding with increasing network
dimension.
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The size of the search space grows in the order of 2n·N , i.e., exponentially
in the network dimension and the length of the induced cycle. On the other
hand, the number of induced cycles decreases when the cycle length approaches
its maximum value. These opposite trends compromise the efficiency of any
algorithm if it identifies Glass networks by enumerating cyclic attractors and
applying Criterion 1 subsequently. In the next section, we propose combining
the criterion for the flow detection and the search of induced cycles into an
identification algorithm that efficiently scales with the network dimension.

4 Algorithm for Network Identification

4.1 Implementation Using SMT

An algorithm that simultaneously detects the flow type and identifies the cyclic
attractors is required to conduct a search over both the continuous and discrete
parts of the problem. We propose to utilize solvers for Satisfiability Modulo The-
ories for this problem. Sate-of-the-art solvers for Satisfiability Modulo Theories
(SMT) decide logical satisfiability (or dually, validity) with respect to a back-
ground theory expressed in classical first-order logic with equality. These theories
include real or integer arithmetic, which makes SMT solvers a successful tool for
the analysis of problems that include linear inequalities over reals [28]. We pro-
pose to encode the identification of networks by adding the inequalities that
represent the criterion for flow detection to the propositional formula (5). The
Boolean structure of the inequality system for the three-dimensional network
is defined by formula (4). In case of an arbitrary dimension n, the formula is
written as

Ψcon = Ψ suf ∨ Ψbif ,

where a sufficient condition for the converging flow is defined by

Ψcon = (det(A− I)(1) < 0) ∧ (det(A − I)(2) > 0) ∧ (det(A− I)(3) < 0) ∧ . . .

∧(det(A− I)(n−1) ≷ 0),

and the condition for the bifurcation point is

Ψbif = (det(A− I)(1) < 0) ∧ (det(A− I)(2) > 0) ∧ (det(A− I)(3) < 0) ∧ . . .

∧(det(A − I)(n−2) ≷ 0) ∧ (det(A− I)(n−1) = 0).

Here, det(A − I)(k) denotes the determinant of the upper left k × k matrix of
A− I and ≷ changes accordingly with the sign of (−1)k.

The criterion is applicable if A = ||amp|| is a positive matrix. The following
condition guarantees that the cyclic attractor induces a matrix with positive
entries:

Ψpos =
∧
m

∧
p

(amp > 0).

The matrix elements amp are calculated using (1-3) based on the prescribed
sequence of absolute values {|fk

i |} for the focal point coordinates and a satisfying
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assignment s∗k,i of the propositional formula (5). The assignment defines the signs
in the sequence of focal coordinates {|fk

i |} such that the focal point for every
orthant of the induced cycle is located inside the next orthant along the cycle:

f
(k)
i =

{
−|f (k)

i | : if ¬s∗k−1,i

|f (k)
i | : otherwise

A Glass network with converging flow along the cyclic attractor is identified from
a satisfying assignment for the propositional formula

Ψ ind ∧ Ψpos ∧ Ψcon , (6)

and a network with stable periodic orbit is specified by a satisfying assignment
for the formula

Ψ ind ∧ Ψpos ∧ ¬Ψcon . (7)

An assignment for (6) or (7) solves the corresponding identification problem if
all coordinates {|f (k)

i |} are given as a sequence of positive real numbers. On the
other hand, the formulae allow for an analysis of the structural stability of the
network if one coordinate of the sequence is a positive parameter ε that undergoes
the perturbation. The periodic flow along the cyclic attractor is structurally
unstable if there is a satisfying assignment for the formula

Ψ ind ∧ Ψpos ∧ Ψcon ∧ (ε > 0). (8)

The perturbation of two or more focal coordinates causes the polynomial in-
equalities in the criterion to appear (see the examples in Section 2). Non-linear
inequalities are not supported by any of the existing SMT solvers, and thus, the
calculations are restricted to the case of one parameter. Additional constraints
may be added to limit the analysis of structural stability to a particular equiv-
alence class of the n-cube.

4.2 Experiments

We evaluated the Yices and CVCL SMT solvers [29,30]. Yices won the Satisfi-
ability Modulo Theories competition4 in 2006 in the relevant category. As first
step of the experimental evaluation, we compare the run-time of the search for
a single induced cycle, i.e., checking satisfiability of the purely propositional for-
mula (5) for various instances. The test cases include the search for the induced
cycles of different length in the networks of dimension 4, 5, and 6 (see Table 2
in [23]). A PC with a 1.4 GHz processor and 2 GB RAM was used for the eval-
uation. We also recorded the run-time of MiniSAT on the same instance as a
reference point.

The difference between MiniSAT and the SMT solvers is that MiniSAT accepts
conjunctive normal form (CNF) as input directly, while the SMT solvers use rich
4 Computer-Aided Verification Conference, SMT-COMP, http://www.csl.sri.com/

users/demoura/smt-comp/

http://www.csl.sri.com/users/demoura/smt-comp/
http://www.csl.sri.com/users/demoura/smt-comp/
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input languages that include all Boolean logic operators. The results indicate
that a hand-tuned translation of the propositional formula (5) into CNF may
increase the speed of the SMT solver up to the efficiency of MiniSAT, which
is currently one of the fastest tools for satisfiability analysis of propositional
formulae (see Fig. 6 in [23]).

We chose CVCL over Yices for the evaluation of the identification algorithm
because we found the CVCL language more convenient than that of Yices for
arithmetic expressions that define the elements of matrix A. The benchmark
problem is to identify a Glass model with converging phase flow along cyclic
attractors for the same networks as presented above. The satisfiability of formula
(6) was evaluated for the input sequence of focal points that were specified to
contain only unit coordinates. Such an input restricts the search to Boolean
Glass networks that are known not to have flow converging to the origin. Thus,
the instance is unsatisfiable, i.e., there is no Glass model satisfying the problem
specifications. In this case, the solution requires the evaluation of all induced
cycles of the instance and the run-time provides a conservative estimate of the
efficiency of the algorithm.

The run-time of CVCL for the benchmark increases linearly with the number
of induced cycles in the network (see the solid line in Fig. 3). A linear increase
was also observed when MiniSAT was used to solve the corresponding all-SAT
problems (dashed line in Fig. 3). The same trend indicates that the proposed
network identification algorithm scales in the number of network cycles, just
as MiniSAT scales well for the problem of computing all induced cycles of this
network.

The scalability of the algorithm in the size of search space is estimated using
the least square interpolation of the run-time as a function of the number L
of Boolean variables in the instance. The interpolation using exponential trend
lines is depicted in Fig. 4 by a solid and a dashed line for CVCL and MiniSAT,
respectively. The run-time increases approximately as e0.1L, while the growth of
the size of the search space of a set of L Boolean variables is proportional to
2L = eln(2)L ≈ e0.7L. Thus, the experimental results indicate that the run-time
of our algorithm increases about 7 times more slowly than the volume of the
problem search space.
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5 Conclusion

The proposed algorithm belongs to the methods that utilize propositional logic
for reasoning about properties of ordinary differential equations. Such methods
are widely applied to the analysis of biological networks and hybrid systems. The
existing computational tools, developed for the propositional analysis of biolog-
ical networks, approximate the ODE trajectories using the numerical Runge-
Kutta procedure [31], Taylor series [32], or an approximate partitioning of phase
space of continuous variables [4]. The computation of the reachable states for
hybrid systems also relies on approximations of the PLDE solution [33,34]. We
show that an exact algebraic algorithm can be applied for reasoning about the
phase flow in a subclass of PLDE that is utilized in the Glass model.

The algorithm is applicable in the case when the PLDE system is near a bi-
furcation point, where the approximate methods may be inconclusive. We con-
ducted an analysis of the structural stability of the phase flow for Glass networks
with cyclic attractors. Cylindrical decomposition has been used for the evalu-
ation of the criterion for identification of the phase flow. The flow for Boolean
Glass models has been shown to be stable under the perturbations of any single
focal point along the cyclic attractor. The cylindrical decomposition is known to
be a powerful tool for evaluating the structural stability of partial and ordinary
differential equations [35,36,37]. To the best of our knowledge, the presented
stability analysis is a first attempt to apply cylindrical decomposition for the
identification of bifurcations in Glass networks.

The proposed algorithm has been found to benefit from the scalability of
Bounded Model Checking: new lower bounds for the number of equivalence
classes are calculated for cyclic attractors in 6-dimensional networks. Our ex-
perimental results also indicate that the run-time of our algorithm increases
slower than the size of the search space of the problem.
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Abstract. A network of reactions is a commonly used paradigm for rep-
resenting knowledge about a biological process. How does one understand
such generic networks and answer queries using them? In this paper, we
present a novel approach based on translation of generic reaction net-
works to Boolean weighted MaxSAT. The Boolean weighted MaxSAT
instance is generated by encoding the equilibrium configurations of a re-
action network by weighted boolean clauses. The important feature of
this translation is that it uses reactions, rather than the species, as the
boolean variables. Existing weighted MaxSAT solvers are used to solve
the generated instances and find equilibrium configurations. This method
of analyzing reaction networks is generic, flexible and scales to large mod-
els of reaction networks. We present a few case studies to validate our
claims.

1 Introduction

A network of reactions is a convenient way to represent knowledge about a
biological process. Each reaction converts some reactants into products in the
presence of certain other molecules. There is no single universal meaning, or a
single formal semantics, that can be ascribed to the various reaction networks
and pathways in the literature. Consequently, it is unclear how to build compu-
tational support for understanding and reasoning about large reaction networks.

A reaction network can be interpreted in various ways. They are often mapped
onto a continuous dynamical system, where the dynamics are given by ordinary
differential equations. These differential equations can be generated using dif-
ferent kinetic laws, such as Mass Action and Michaelis-Menten. However, it is
not easy to experimentally determine, especially for biochemical reactions, the
rate constants required to build the continuous dynamical system. As a result,
fully specified and experimentally validated continuous dynamical system mod-
els are rarely available. Moreover, it has also been argued that the assumptions
used to arrive at the differential equations may not be valid inside a biological
compartment, where certain molecules may be few.
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A reaction network can also be interpreted as a dynamical system over a
discrete state space. In this case, the state space consists of mappings from the
set of species to the natural numbers that specifies the number of molecules
of each species. The dynamics over this state space can be defined either in
continuous time (using a stochastic model) as a Chemical Master Equation, or
in discrete time as a (standard or stochastic) Petri net. While such models are
considered to be more accurate, they are difficult to analyze because of the
horrendously huge state space. For example, when analyzing systems containing
just 100 total molecules of 4 different species, the state space size is 4100.

All continuous time models require reaction rates in some form. To overcome
this requirement, discrete time models are considered that abstract time to a
before-after relationship. When considered over the discrete state space men-
tioned above, a reaction network simply maps to a Petri net. Analyzing Petri
nets is not easy. For instance, while Petri net reachability is decidable, there is
no known upper-bound.

To overcome the state space problem, the discrete-time discrete-space models
are further simplified. For instance, boolean models abstract species to being
either present or absent. Other qualitative abstractions, such as absent, present
in low quantities, and present in large quantities are also possible. In the absence
of accurate detailed models, these abstract models have been found to be highly
useful for representing and understanding biological knowledge.

In this paper, we present a new scalable approach for analyzing large reaction
networks interpreted in the discrete-time and abstract discrete-space domain.
There are three main features in our approach. First, it is based on qualitatively
abstracting the reactions into two states–on and off. This is dual to the more
conventional approach where the presence or absence of molecular species, and
not reactions, is used to define the state of the system [4,8,9]. Second, it uses
a boolean MaxSat as its backend engine. There is a generic translation from
reaction networks to boolean MaxSat instances. Third, it is flexible. Clauses and
their weights can be adjusted for reaction networks encoding specific aspects,
such as signaling pathways, or transcriptional regulation.

r4

Mtor-act

r1

Tsc2-deactRheb-act

r3

Mtor

Akt1-act

r2

Tsc2-act

Ampk-act

Rheb-deact

Tsc2

Consider, for example, the very simple
network shown here (not necessarily bio-
logically accurate). This network consists
of 4 reactions:
r1: Tsc2 Akt1-act−→ Tsc2-deact

r2: Tsc2
Ampk-act−→ Tsc2-act

r3: Rheb-act Tsc2-act−→ Rheb-deact

r4: Mtor Rheb-act−→ Mtor-act
We will use this network as a running ex-
ample in the paper.

It is not immediately obvious how to understand even this simple network.
Using the approach described in this paper, all possible “steady-state” behaviors
of the above network can be computed. For this example, the tool computes two
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possible behaviors. Either Akt1-act is present, deactivating Tsc2, while Mtor gets
activated by Rheb-act (Reactions 1 and 4 are “on”); or, Ampk-act is present,
activating Tsc2, which in turn deactivates Rheb-act (Reactions 2 and 3 are
“on”). The important point here is that the steady-state behavior is thought
of a subset of reactions that can be consistently “on”, as opposed to the tradi-
tional viewpoint where steady-state refers to species reaching some equilibrium
concentrations.

As mentioned earlier, our approach is flexible and additional constraints can
be added to specialize the search for certain steady-state configurations. We can
specify an initial dish consisting of some of the species and search for most likely
steady-state configurations resulting from the given initial dish. In the above
example, if the initial dish only contains Tsc2, Ampk-act, Rheb-act and Mtor,
then our tool identifies that the second and third reactions can be “on”, and that
the other option, where reactions 1 and 4 are “on” is less likely. Similarly, target
species can be specified, and the tool will generate paths (scenarios) that produce
the target species. Each such scenario will be assigned a weight indicating its
relative likelihood.

1.1 Motivation

The definition of “steady-state” behavior we use in this paper is nonstandard.
Traditionally, a steady-state refers to all species in the network being at their
equilibrium concentrations. In this paper, a steady-state refers to a subset of
reactions that can be consistently “on”. This new definition is motivated by the
observation that signaling pathways are best understood this way. More than the
individual species concentrations, it is the chain of reactions that captures how
information flows from the cell membrane to effect downstream activities in a
cell. This chain of reactions corresponds directly to the notion of a steady-state
in our approach.

The different reactions in the steady-state chain of reactions will, in reality,
be temporally separated. While certain phosphorylation activity may occur in
a few minutes after a cell is hit by ligands, other downstream activities may
occur much later. In our approach, we identify the whole chain as one possible
steady-state behavior of the reaction network. The complete chain of reactions
may never simultaneously be “on” in reality. However, they are still useful in
understanding the function of a given complex reaction network.

The approach based on translation to MaxSat is motivated by the need for
flexibility. Reaction networks have slightly different meaning in different con-
texts. Metabolic pathways, signaling pathways, and transcriptional regulation
networks work on different notions of species and reactions. Our basic semantics
attempts to capture the minimal common meaning that can be ascribed to any
such network. The weights on the MaxSat instance give flexibility in making
certain constraints harder than others in different contexts.

Finally, it should be mentioned that the technology for solving SAT and
MaxSAT problems has made significant advances in recent years and problems
with thousands of boolean variables and even more clauses are routinely solved
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in a few seconds. We have used our tool on the HumanCyc database of metabolic
pathways (containing over a thousand reactions) and we can answer queries in
a few seconds.

2 Reaction Networks

In this section, we formalize our terminology. A species is a generic name used
to denote any entity, such as a molecule, ion, protein, enzyme, ligand, receptor,
complex, or a postranscriptionally modified form of a protein. We do not differ-
entiate between these different roles and just formally identify a species with a
unique name. The set of all species will be denoted by S. A reaction consists of
a set of reactants, a set of modifiers, and a set of products. Thus, a reaction r is
a 3-tuple 〈R,M,P 〉, where R,M,P are pairwise disjoint subsets of S. Given a
reaction r, we denote its set of reactants, modifiers, and products by R(r), M(r),
and P (r) respectively. Given a species s, the set of reactions in which s occurs
as a reactant (modifier, product) is denoted by R−1(s) (respectively, M−1(s),
P−1(s)).

A network N is a collection of reactions. A network instance is a network
together with an optional set of input species, a set of forbidden species, and a
set of target species.

A pathway is a special kind of network. Informally, a pathway contains a
related set of reactions that can be consistently switched “on”. The following
sections will formally define the constraints we impose to identify pathways.

2.1 Semantics of Reaction Networks

As mentioned in the introduction, motivated by the need to handle unknown
model parameters while maintaining computational feasibility of analysis, we
use a discrete-time abstract discrete-state semantics of reaction networks. The
key aspect of our semantics is that we introduce a boolean variable for each
reaction (and not for each species). Thus, the semantics of a biochemical network
N = {r1, r2, . . . , rn} with n reactions is given as a state transition system defined
over n boolean variables b1, . . . , bn, where the i-th boolean variable bi represents
whether the i-th reaction ri is “on” or “off”.

Let present4i (s, i) denote the formula
∨

rj∈P −1(s) bj ∧
∧

rj∈R−1(s),j 
=i ¬bj ,
which means some reaction that produces s is “on” and every reaction other than
ri that consumes s is “off”. Intuitively, present4i(s, i) represents the availability
of species s for reaction ri. The transitions of the state transition system are given
by nondeterministically applying one of the following 2n guarded commands:

¬bi ∧
∧

s∈R(ri)∪M(ri)

present4i(s, i) −→ b′i := true

bi ∧
∨

s∈R(ri)∪M(ri)

¬present4i (s, i) −→ b′i := false
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The first guarded command says that if a reaction ri is “off”, but each of its
reactants and modifiers is “present” (for ri), then it can be turned “on”. The sec-
ond guarded command says that if a reaction ri is “on”, but one of its reactants
or modifiers is not present (for ri), then it can be turned “off”.

3 Biochemical Networks to Boolean SAT

In this section, we describe the procedure that generates a set of boolean con-
straints from a network. The boolean constraints represent the equilibrium con-
figurations of the network in the semantics given above. Later in this section, we
describe the additional constraints that are generated from a network instance.

An equilibrium state is defined as a state in which none of the 2n guarded
transitions are enabled. Hence, if a state (b1, . . . , bn) is an equilibrium state of
the above state transition system, then it should be the case that, for all i,

¬(¬bi ∧
∧

s∈R(ri)∪M(ri)

present4i(s, i)) ∧ ¬(bi ∧
∨

s∈R(ri)∪M(ri)

¬present4i(s, i))

This is equivalent to saying that for all i,

bi ⇔
∧

s∈R(ri)∪M(ri)

present4i(s, i) (1)

Any boolean assignment that satisfies these constraints is an equilibrium state
of the given reaction network. In the implementation (Section 5), we break up
the constraint in Formula 1 into the following constraints to enable the MaxSat
solver to partially satisfy these constraints.

bi ⇒
∧

s∈R(ri)∪M(ri)

∨
rj∈P −1(s)

bj (2)

bi ⇒
∧

s∈R(ri)

∧
rj∈R−1(s),j 
=i

¬bj (3)

bi ⇒
∧

s∈M(ri)

∧
rj∈R−1(s),j 
=i

¬bj (4)

¬bi ⇒ ¬
∧

s∈R(ri)∪M(ri)

present4i(s, i) (5)

Formula 2 captures the rule that if a reaction is “on”, then each of its reac-
tants and modifiers is produced by some “on” reaction. Formula 3 encodes the
inhibitory effect that a reaction may have on another that shares a reactant with
it by saying that if a reaction is “on”, then none of its reactants is consumed
(used as a reactant) by any other reaction. Formula 4 encodes the competitive
inhibition between reactions through a species that is a reactant in one reaction
and a modifier in another. Note that if two reactions share a modifier, then they
do not inhibit each other. Finally, Formula 5 encodes that if all reactants and
modifiers of a reaction are present, then it should be “on”.
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3.1 Completing the Network

Biological databases of biochemical networks are often incomplete. They often
use species that are not created by any reaction in the network. In the running
example, Tsc2, Akt1-act, Ampk-act, Rheb-act, and Mtor are all species with no
producers. The presence of such species is a problem for our encoding since, to
be “on”, a reaction requires all of its reactants (and modifiers) to be produced by
some other reaction. If there are no producers of certain species, then reactions
using that species can never be turned on.

We solve this problem by adding dummy reactions that create species that
have no producers. Specifically, for each species s such that P−1(s) = ∅, we add
a new reaction r = 〈R,M,P 〉, where R = ∅, M = ∅, and P = {s}. We perform
this step as a preprocessing step. As a result, these additional dummy reactions
are taken into account when the constraints given in Formula 1 are generated.

We also encode the fact that these dummy reactions are different from other
reactions by adding boolean constraints that force these dummy reactions to be
“off”. For each dummy reaction r, if b is the corresponding boolean variable,
then we add the following clause

¬b (6)

This constraint says that the dummy reaction, and hence the corresponding
species, should preferably not be used. In Section 4, we will discuss how this
preference is effected by means of weights.

In the running example, for each of the 5 species that have no producers, we
add one new dummy reaction. Thus, we have new dummy reactions r5, . . . , r9
that respectively produce Tsc2, Akt1-act, Ampk-act, Rheb-act, and Mtor. Thus
the complete network has 9 reactions, and hence, the boolean encoding will be
over 9 boolean variables b1, . . . , b9. The constraints given by Formula 1 will be:

b1 ⇔ (b5 ∧ ¬b2) ∧ (b6) b3 ⇔ (b8) ∧ (b2)
b2 ⇔ (b5 ∧ ¬b1) ∧ (b7) b4 ⇔ (b9) ∧ (b8 ∧ ¬b3)

Additionally, we will also get boolean constraints ¬b5,¬b6, . . . ,¬b9 coming from
Formula 6. Note that Reaction r3 requires the modifier Tsc2-act, which is pro-
duced by Reaction r2. This gets reflected as b3 ⇒ b2 above. As an example of
competitive inhibition, note that Reaction r1 and Reaction r2 share a common
reactant, namely Tsc2. This shows up as b1 ⇒ ¬b2 and b2 ⇒ ¬b1. Similarly,
Reaction r3 and Reaction r4 compete for Rheb-act—Reaction r3 uses it as a
reactant, whereas Reaction r4 requires it as a modifier. This generates the con-
straint b4 ⇒ ¬b3.

3.2 Optional Clauses

In case of analyzing a network instance, we may optionally have additional infor-
mation about the input species, forbidden species, and target species. We now
show how these are incorporated into the constraints.
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Initial Species. The set of species specified as initial are assumed to be present.
If a set of initial species is specified, then the preprocessor adds a dummy reaction
that produces all the initial species. Specifically, if Sinit is the set of initial species,
then the preprocessor will add a dummy reaction r = 〈R,M,P 〉, where R =
M = ∅ and P = Sinit . Furthermore, the boolean variable b corresponding to this
reaction is forced to be “on” by simply adding a clause b in the generated set of
boolean constraints. If some initial species are specified, then the initial dummy
reaction is added to the network before the network is completed (Section 3.1).
Hence, fewer dummy reactions get added in the network completion phase if
some of the species with no producers in the network are assumed to be in the
initial soup.

Target Species. The set of target species is a list of species that should be
present in the equilibrium configurations generated by the tool. If a set of target
species is specified, then the boolean constraint generator adds additional con-
straints that say that for each target species, there is at least one producer of it
turned “on”.

For each species s in the set of target species, we add the constraint,
∨

ri∈P −1(s)

bi (7)

Forbidden Species. The set of forbidden species specifies the set of species that
should not be used in any equilibrium configuration generated by the system. If
this set is provided, then the following additional boolean constraint is generated
for each species s in this forbidden set,

∧
ri∈P −1(s)

¬bi (8)

3.3 Mode Based Constraints

Given the above constraints, we can try to turn “on” as many reactions as
possible, or turn “on” as few reactions as possible. These two possibilities are
encoded as two different sets of constraints.

If we wish to turn “on” as many reactions as possible, then, for each reaction
ri ∈ N , we add the clause

bi (9)

to the set of constraints. This clause simply says that reaction ri is “on”.
If we wish to turn “on” as few reactions as possible (say to find minimal

pathways), then, for each reaction ri ∈ N , we add the clause

¬bi (10)

to the set of constraints.
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4 Biochemical Pathway to Boolean Max-SAT

The constraints outlined above are not all equally important. This is captured
by adding a weight (number) to each constraint that indicates its relative im-
portance.

In particular, constraints obtained by instantiating Formula 2, Formula 3, and
Formula 5 are each given a very large weight W . In the current implementation,
W is equal to the total number of reactions in the completed network. The con-
straint represented in Formula 4 is given weight equal to W/2 since competitive
inhibition between reactions via a species that is a modifier in one reaction and a
reactant in another is intuitively weaker than the inhibition via shared reactants.
The constraint saying that species with no producers should not be used (For-
mula 6) is given intermediate weight (approximately W/(k + 1), where k is the
total number of species with no producers). Whenever present, the constraint
for creation of target species (Formula 7) is given weight W . The constraints
that specify the hints (Formula 9 and Formula 10) are given weight 1.

The choice of weights for each constraint gives additional flexibility that can
be used, in the future, to encode other biologically relevant information that is
not generic to all biochemical processes.

4.1 Weighted MaxSAT

A solution is a mapping from the boolean variables to {true, false}. In our con-
text, a solution maps reactions to either “on” or “off”. Under a given solution,
constraints also evaluate to either true or false.

Each solution can be associated with a weight: the sum of the weights of all
the constraints that are made true by that solution. A weighted MaxSAT solver
finds a solution that has the maximum weight.

In our running example, using the above rule for assigning weights (we do not
break Formula 1 into smaller parts and assign it a weight W = 9 for simplicity
here), we get the following weighted basic constraints:

c1 : b1 ⇔ (b5 ∧ ¬b2) ∧ (b6) w1 = 9 c2 : b3 ⇔ (b8) ∧ (b2) w2 = 9
c3 : b2 ⇔ (b5 ∧ ¬b1) ∧ (b7) w3 = 9 c4 : b4 ⇔ (b9) ∧ (b8 ∧ ¬b3) w4 = 9
c5 : ¬b5 w5 = 1 c6 : ¬b6 w6 = 1
c7 : ¬b7 w7 = 1 c8 : ¬b8 w8 = 1
c9 : ¬b9 w9 = 1 c10 : b1 w10 = 1
c11 : b2 w11 = 1 c12 : b3 w12 = 1
c13 : b4 w13 = 1

Note that the 5 constraints, c5, . . . , c9, encode the fact that the five species with
no producers can be used by paying a small penalty; and the last 4 constraints
say that each reaction should preferably be turned “on”.

For this set of constraints, the solution in which all bi are false has a weight 41
(since only c10, . . . , c13 are violated). The solution b1 = b4 = b5 = b6 = b8 = b9 =
true (and the rest false) has weight 39; and the solution b2 = b3 = b5 = b7 =
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b8 = true has weight 40. These three solutions are the top three maximum weight
solutions. The latter two correspond exactly to the two scenarios described in
Section 1. The first solution captures the scenario where no reaction is “on”,
which can be eliminated by using a nonempty initial set of species that includes
(some of) the 5 species with no producers.

5 Implementation and Case Studies

We have implemented a tool based on the technique described in this paper. As a
backend MaxSAT solver, we use Yices [14,3], which is a more general satisfiability
modulo theory solver. The input format for our tool is a network or network
instance described in a very simple intermediate language. We also have several
front-ends that convert from other formats to our intermediate language format.
For example, we have front-ends for Pathway Logic [12,11] and BioCyc [5,7].

In this section, we describe the results obtained using this tool on some specific
networks.

5.1 Sporulation Initiation in B. Subtilis

Bacillus subtilis is considered a model organism for Gram-positive bacteria and
has been extensively studied in the laboratory. It is an endospore-forming bac-
teria most commonly found in the soil. Endospore formation is initiated when
nutrients become limiting and is an adaptive response of the bacteria to their
environment.

Sporulation is a one-way decision and once the decision is made, the cell
undergoes changes which take 6 to 8 hours in most organisms. If conditions
improve in the meantime, then the cell will be at a disadvantage. Hence the
decision to initiate sporulation is important to the organism and is subject to a
variety of control.

The formation of spores in Bacillus subtilis is a developmental process under
genetic control. The decision to either grow vegetatively or sporulate is regulated
by the state of phosphorylation of the Spo0A transcription factor [10,6]. Spo0A
obtains its phosphate through a phosphorylation pathway (see Figure 1), the
so-called phosphorelay, in which at least three histidine protein kinases transfer
phosphate to the relay protein, Spo0F, then to Spo0B, and finally to Spo0A
(represented by ReactionIDs r17, r19, and r20 in Table 1). In addition, the
phosphorylation state of Spo0A is modulated by specific phosphatases, such as
Spo0E, which dephosphorylates Spo0A-P, and RapA, which dephosphorylates
Spo0F-P (ReactionIDs r18, r21).

The SinI and SinR pair is a regulatory operon in the sporulation initiation
network. While SinR is a transcriptional regulator that represses spo0A tran-
scription, SinI disrupts the SinR tetramer through the formation of a SinI-SinR
heterodimer. This aspect, along with the logic regulating SinI transcription, is
encoded in ReactionIDs r1, r2, r3, and r4.

The activity of protein RapA is modulated by quorum sensing, the process
of sensing activity in neighboring cells and reacting in a cell-density-specific
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Fig. 1. Selected reactions from the sporulation initiation network of B. Subtilis. The
reactions are represented using standard Petri net notation and show the main phos-
phorelay.

fashion. Under high population density, RapA is inhibited by PhrA pentapeptide
(not modeled in the reactions). These aspects are captured in ReactionIDs r13,
r15. The protein kinase KinA is a sensor that initiates the phosphorelay and is
modeled here by ReactionIDs r16, r17. Most of the remaining reactions encode
transcriptional regulation logic for different proteins.

On this simplified model of sporulation initiation, the tool implementing the
approach described in this paper can find possible stable behaviors of the net-
work. These behaviors are found as subsets of reactions in the network that can
be consistently “on”. The tool finds 3 different possibilities for the model above.

– SinI is produced, and it binds to SinR, thus preventing it from repressing
spo0A. RapA is converted to RapAPep5, thus preventing it from dephos-
phorylating Spo0A-P. In the presence of stress signals, KipI is prevented
from inhibiting KinA from self-kinasing. The self-kinasing of KinA triggers
the phosphorelay, which leads to production of Spo0A-P, a precursor for
sporulation.

– In the second stable state scenario, RapA dephosphorylates Spo0F-P, thus
breaking the phosphorelay chain. Thus, there is no production of Spo0A-P.

– The third stable state scenario is similar to the first, except that Spo0E de-
phosphorylates the produced Spo0A-P, thus using up the produced
Spo0A-P.

The three stable scenarios each make different assumptions about the environ-
ment. In our case, the environment consists of the species that are not created
by any of the reactions in the network. In the network above, HighCellDensity,
and NoFood, are two examples of input species.

The tool can also be used in the mode in which a desired target set of species
is specified (for example, Spo0A-P). In this case, the tool will generate the first
stable scenario above to show how Spo0A-P could be produced.
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Table 1. The list of reactions modeling the sporulation initiation network

ID Reactants +Modifiers −→Products

r1 +(Spo0AP, NoSinR4) −→SinI
r2 +(Spo0AP, NoAbrB6, NoHpr)−→SinI
r3 SinI, SinR4 + −→SinISinR, NoSinR4
r4 SinR + −→SinR4
r5 +(NoSinR4, sigmaH, NoSoj) −→Spo0A
r6 +(NoAbrB6) −→Spo0E
r7 AbrB, AbrB6 +(Spo0AP) −→NoAbrB6
r8 +(NoSpo0AP) −→AbrB
r9 +(NoAbrB6) −→AbrB
r10 AbrB, NoAbrB6+ −→AbrB6
r11 NoHpr +(AbrB6) −→Hpr
r12 Hpr +(NoAbrB6) −→NoHpr
r13 +(ComAP) −→RapA
r14 RapA +(Spo0AP, Hpr) −→
r15 RapA +(HighCellDensity) −→RapAPep5
r16 KinA +(NoKipI) −→KinAP
r17 KinAP, Spo0F + −→Spo0FP, KinA
r18 Spo0FP, RapA + −→Spo0F
r19 Spo0FP, Spo0B + −→Spo0BP, Spo0F
r20 Spo0A, Spo0BP+(NoSoj) −→Spo0AP, Spo0B
r21 Spo0AP, Spo0E + −→Spo0A, NoSpo0AP
r22 +(sigmaH, sigmaA) −→Spo0F
r23 +(sigmaA) −→Spo0B
r24 KipI +(NoFood, NoNitrogen) −→NoKipI

5.2 MAPK Signaling Network

The Mitogen-Activated Protein kinase (MAPK) network regulates several cellu-
lar processes, including the cell cycle machinery. The MAPK cascade communi-
cates signals from growth factors that bind receptor kinases to transcription and
other cellular processes [2]. A simplified model of this network, taken from [2],
can be encoded in our notation as shown in Table 2. The tool finds two stable
sets of behavior for this network.

– The positive feedback loop is active. In this case, either Grb2, Sos1, or PKC*
turns on Ras. This causes, in steps, the phosphorylation of Raf, MEK, and
Erk. Activated Erk causes production of AA*, which stimulates PKC.

– The negative feedback loops are active. In this case, protein phosphatase 2A
(PP2A) dephosphorylates both Raf* and Mek*, and MKP dephosphorylates
Erk*. MKP is created by transcription of MKP gene, and this is promoted
by Erk*.

The two stable solutions clearly identify the positive cycle and the multiple
negative cycles that break the positive cycle. The overall system behavior is
seen to be a result of the close interaction between the positive and negative
cycles.
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Table 2. The list of reactions modeling the MAPK signaling network

ID Reactants+Modifiers −→Products

r1 Ras +(Grb2, Sos1) −→Ras*
r2 Ras +(PKC*) −→Ras*
r3 Raf +(Ras*) −→Raf*
r4 Raf* +(PP2A) −→Raf
r5 Mek +(Raf*) −→Mek*
r6 Mek* +(PP2A) −→Mek
r7 Erk +(Mek*) −→Erk*
r8 Erk* +(MKP) −→Erk
r9 +(Erk*, MKPgene)−→MKP
r10 AA +(Erk*, Ca) −→AA*
r11 PKC +(DAG, Ca, AA*) −→PKC*

We also used the detailed model of the MAPK signaling network from [1].
The total running time on the full network is of the order of a few seconds.

5.3 EGF Stimulation Network

In the Pathway Logic project [12,11], a model of Egf stimulation is being devel-
oped by curating a network of biochemical reactions involved in mammalian cell
signaling from the literature. When a cell is stimulated by Egf, certain species
are experimentally observed to be present in the cell after its initial stimulation.
These observations can be used to validate the model by checking whether the
model predicts the observations. To carry out the validation, we started with a
network of about 400 reactions and created a network instance by adding ini-
tial and target species. Specifically, we started with a set of about 250 initial
species and 62 target species that are experimentally observed in response to
EGF stimulation.

When this network instance is analyzed by our tool, our tool attempts to
find a set of reactions that will create each of the target species using the initial
species and the reactions in the network. A “–no-assume” option tells the tool
to not assume any species not already specified in the initial set. (Recall that,
by default, species that have no producers can be assumed, with a moderate
penalty.)

The output of the tool indicated that it was not possible to find a solution
without violating one Type 3 and one Type 4 competitive inhibition constraints.
Specifically, the species (Frap1:Lst8)-CLc 1 is a reactant in two different reactions
that are both required to be “on” to create the target species. This causes a
Type 3 constraint to be violated. The Type 4 constraint that is violated is
caused by the species Src-CLi, which is used as a reactant in a reaction to create
Src-act-CLi, and it is also used as a modifier in the reaction that creates Cbl-
Yphos-CLi. This violation pointed out a typing error in specifying the reaction
1 A complex containing Frap1 and Lst8 located in the cytoplasm, CLc.
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Fig. 2. A simple network with competing rules

rules which has been corrected. Figure 2 shows the pathways competing for
(Frap1:Lst8)-CLc in the context of the larger network.

Using our tool provided two valuable forms of feedback to the model devel-
oper. One was a form of meta analysis or type-checking that detected syntactic
problems with the model. (The first pass detected a number of inconsistencies
that were easily repaired.) The second was the identification of the point of
competition. Using the Pathway Logic Assistant [13] one can check whether a
given set of observations is predicted, singly or jointly. However if a prediction
fails there is no feedback as to the cause of failure. Using MaxSAT, candidate
conflicting constraints can be identified to guide the modeler.

Starting with the discovered Type 3 violation and studying the subnetwork
connected to this reaction lead to two hypotheses: (1) (Frap1:Lst8)-CLc splits
into two populations one for each of the two competing reactions; (2) there is
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a feedback loop that can reset the state of (Frap1:Lst8)-CLc and the system
oscillates between the two pathways. Experiments are ongoing to test these hy-
potheses.

6 Related Work

We compare here with work that is closer in spirit to our work, and do not men-
tion all the literature devoted to building various kinds of models and improving
understanding of specific biological phenomena, such as sporulation and MAPK
signaling.

Senachak et al. [8] give a generic interpretation to a reaction network by
translating it to a graph. Strongly-connected components of the graph are related
to the pathways. The construction of the graph has some unusual steps, such
as cascading, that arise primarily because the authors use species as defining
the nodes of the graph. The main difference in our approach is that, in our
approach, the boolean variables correspond to reactions in the network. We
believe this leads to a much simpler and natural encoding of the “cascading”-
style constraints of [8].

7 Conclusion

We presented a new approach for analyzing biochemical reaction networks using
MaxSAT. The novelty here is that we make reactions central to the notion of a
steady-state behavior. A steady-state behavior is a subset of reactions that can
be mutually and consistently “on”.

The attractiveness of our approach is that it is generic and applies to net-
works coming from different kinds of biological networks. Additionally, it is also
flexible and allows encoding of knowledge specific to certain kinds of networks
via suitable manipulation of the weights on the generic constraints.

The analysis approach is promising. Even for the largest networks we have
studied, the analysis takes at most a few seconds to compute answers.

Possible future work include studying quantitative variants of the boolean
constraints. Fortunately, our backend tool, Yices, supports reasoning over linear
arithmetic constraints. We can replace the use of boolean MaxSAT with MaxSAT
over arbitrary combination of boolean and linear arithmetic constraints.

Acknowledgments. We thank the referees for helpful suggestions.
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Abstract. A series of papers, all under the title of Algorithmic Algebraic Model
Checking (AAMC), has sought to combine techniques from algorithmic alge-
bra, model checking and dynamical systems to examine how a biochemical hy-
brid dynamical system can be made amenable to temporal analysis, even when
the initial conditions and unknown parameters may only be treated as symbolic
variables. This paper examines how to specialize this framework to metabolic
control analysis (MCA) involving many reactions operating at many dissimilar
time-scales. In the earlier AAMC papers, it has been shown that the dynamics
of various biochemical semi-algebraic hybrid automata could be unraveled using
powerful techniques from computational real algebraic geometry. More specifi-
cally, the resulting algebraic model checking techniques were found to be suit-
able for biochemical networks modeled using general mass action (GMA) based
ODEs. This paper scrutinizes how the special properties of metabolic networks–
a subclass of the biochemical networks previously handled–can be exploited to
gain improvement in computational efficiency. The paper introduces a general
framework for performing symbolic temporal reasoning over metabolic network
hybrid automata that handles both GMA-based equilibrium estimation and flux
balance analysis (FBA). While algebraic polynomial equations over Q[x1, . . ., xn]
can be symbolically solved using Gröbner bases or Wu-Ritt characteristic sets,
the FBA-based estimation can be performed symbolically by rephrasing the al-
gebraic optimization problem as a quantifier elimination problem. Effectively, an
approximate hybrid automaton that simulates the metabolic network is derived,
and is thus amenable to manipulation by the algebraic model checking techniques
previously described in the AAMC papers.

1 Introduction

Recently, several biologists have convincingly argued for a systems level analysis, as
opposed to the traditional reductionist approach of molecular biology [13,7,12]. When
aimed at understanding the holistic properties of the dynamics of biochemical networks,
this approach could not only lead to giant leaps in our elucidation of the basic sci-
ence of biology, but could also contribute more directly to many practical applications,
e.g., the drug and vaccine discovery process, diagnosis, agricultural and manufactur-
ing technologies, and synthetic biology of the future. Algebraic analysis may hold the
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key to success of this venture, as it enables obtaining richer answers to deeper ques-
tions, even when both initial conditions and rate parameters can only be presented as
symbolic variables. It is hoped that this methodology will expose important algebraic
functional relationships among the emergent phenomena, the kinetic parameters and the
initial conditions, thus revealing many fundamental unifying principles of biology. The
starting point for this approach is the fundamental general mass action (GMA) law of
chemical kinetics, which supplies a system of ordinary differential equations (ODEs)
governing the rate of change of the concentrations of interacting biochemicals. Let kis
denote the rate constants, nis the number of molecules that appear in the reactions,
and Wjs their concentrations. Then, the continuous dynamics within each state may be
described through the GMA-based ODEs [11,28,58]:

Ẇh = +{Σ j∈h+n jk jΠ j
i Wi}−{Σ j∈h−n jk jΠ j

i Wi}. (1)

Each equation above is an algebraic differential equation consisting of two affine sum-
mation terms: a positive term representing synthesis (all processes producing Wh) and
a negative term representing degradation (all processes consuming Wh). The number of
Wjs (an integer) multiplied in each term is equal to the number of molecules of reactants
(and similarly, products) in that reaction (e.g., higher order terms like 100kW3

i W 10
j W 5

k

are possible1).
For tools analyzing GMA ODEs, their ability to handle unknown parameters or un-

certainties in their estimates becomes crucial as kinetic parameters are seldom mea-
sured under ideal conditions [14]. In response to this challenge, we have extended the
GMA models to the algebraic domain, by developing decidable and approximable tech-
niques for symbolic temporal analysis within our Algorithmic Algebraic Model Check-
ing (AAMC) framework, described in a series of publications [46,42,41,6,40,39]. In
this framework, the process of numerically integrating the differential equations and
extracting a simpler examinable representation is substituted with an algebraic proce-
dure (based on Computational Real Algebraic Geometry [37,15,38]) that can answer
complex queries about the symbolic states of the system.

In this paper, we specialize this approach to metabolism, which is comprised of the
complex enzyme-catalyzed pathways (excluding signal transduction and genetic regu-
lation) that produce and consume the “metabolites” in any living cell. The system of
ODEs for metabolic networks lends itself to simplification and efficient analysis be-
cause of three key properties [17]: (1) A subset of the metabolites interact with each
other through reactions much faster than the rest of the system; (2) These fast reac-
tions always reach a quasi-equilibrium state, which is local (involving only this subset
of metabolites) and momentary (it is modulated by the slower reactions in the rest of
the system); (3) Mass is conserved during such equilibrium recomputation, and the
equilibrium configuration is completely determined by the total concentration of the
metabolites. Powerful computational methods have emerged to exploit this structure
of metabolic networks; in these methods, only the dynamic GMA simulation of the
slow reactions are performed, while, under the assumption that the fast reactions re-
spond quickly, the equilibria of the fast reactions are recomputed at each time-step. A

1 Though negative and real exponents can be indirectly handled, we restrict our analyses to terms
with non-negative integer exponents.
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list of the most prominent methods that venture in this direction would include the fol-
lowing: tendency modeling [57], dynamic flux balance analysis [33], hybrid static +
dynamic simulation [65], intrinsic low dimensional manifolds [52] and singular pertur-
bation analysis [19,32]. This paper builds upon several concepts from the earlier studies
to arrive at a trichotomic characterization of the metabolites – the slow irreversible dy-
namic reactants X , the fast reversible quasi-equilibrium reactants Y and the interface
reactants Z. Their properties are elaborated below:

1. Dynamic Reactants: All the reactions involving these metabolites (denoted by X)
are modeled using detailed general mass action-based differential equations. Typi-
cally, these reactions are understood to be slow and irreversible, with dynamics of
the form: Ẋ = F(X ,Z,K), where K are the symbolic (rate) parameters.

2. Quasi-Equilibrium Reactants: All the reactions involving these metabolites (de-
noted by Y ) are modeled in terms of their dynamic equilibria alone. They always
participate in at least one reaction as a substrate and in at least one reaction as a
product. Typically, these reactions are understood to be fast and reversible, with
dynamics of the form: Ẏ = G(Y,Z,K).

3. Interface Reactants: These reactants (denoted by Z) interact with both the dy-
namic reactants and the quasi-equilibrium reactants. Thus, their general mass ac-
tion based flow equations (from slow reactions) are modified because of the fast
reactions with the quasi-equilibrium reactants, giving rise to dynamics of the form:
Ż = D(X ,Z,K)+ P(Y,Z,K).

Example 1. Consider a simple metabolic network composed of just two reactions: a

slow irreversible reaction A + B
ks→ R + S, and a fast reversible reaction E + S

kf
�
kr

C.

This reaction could describe an enzymatic process involving, say, an enzyme (E) and
substrate (S) interacting to produce the enzyme substrate complex (C). We wish to
study how an external slow reaction producing the substrate can control the equilib-
rium configuration. Let us denote the metabolite concentrations, [E], [S], [C], by the
letters e, s, and c, respectively. The dynamic reactants X are A, B and R. The quasi-
equilibrium reactants Y are E and C. The interface reactant Z is S. Their flow equations
are: ȧ = ḃ =−ṙ =−ksab, ė =−ċ = krc−k f es and ṡ = ksab+krc−k f es. The dynamics
are often rephrased using the flux variables U1 = ksab, U2 = krc and U3 = k f es. �

The existing tools [59] for metabolic networks are all structured primarily on analyses
that use numerical simulation, numerical perturbation, random sampling and parameter
sweeping techniques. A list of tools in this category includes: Gepasi [35], Systems Bi-
ology Workbench [23], E-Cell [54] and BioSpice [29]. Conclusions about the behavior
of the network are often made by alternating between (a) tracing specific trajectories
over a suitable time frame and then (b) verifying temporal logic properties such as
reachability or safety [56,8,2]. The slow reactions in metabolic networks are typically
modeled and analyzed as per this approach. The fast reaction systems are typically
subject only to a quasi-equilibrium characterization with minimal dynamic character-
ization. Some of the popular techniques following this strategy are: Metabolic Con-
trol Analysis (MCA) [21], Metabolic Flux Analysis (MFA) [31], Flux Balance Anal-
ysis (FBA) [27], Cybernetic approaches [43] and Metabolic Pathway Analysis (MPA)
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[49]. While the algebraic estimation of the equilibrium concentrations has been studied
extensively [8,36,64,3], in contrast, a directed effort to handle both GMA-based sim-
ulation and direct equilibrium estimates (via GMA or FBA) algebraically seems con-
spicuously absent.

Rather than pursuing the traditional numerical simulation based analysis, this paper
suggests an entirely symbolic algorithmic algebraic framework for the unified analysis
of metabolic networks. It proceeds by first mathematically characterizing the hybrid dy-
namical system to which metabolic networks correspond, and then integrating general
mass action [11] and flux balance analysis [27] based equilibrium estimation. Next the
paper shows that the algebraic equilibrium description is decidable, both using GMA
and FBA. Our proof of the decidability of the algebraic approach are based on the
well-established Gröbner basis and characteristic set techniques [5,47,62,18] for solv-
ing polynomial equations, and the decidability of semi-algebraic2 optimization using
real quantifier elimination [55]. The paper then examines how to move from the equi-
librium description to its derivative (rate of change), which can then be combined with
the ODEs of the slow reactants to complete an algebraic description of the metabolic
network. These steps directly lead to efficient algebraic model-checking, since, at this
point, they have ensured that all the interactions operate at roughly the same time scale.
Hence a bigger time-step suitable for the slow interactions is sufficient (as opposed to
the smaller time-step that would have been necessary for the fast reactions), be it for
simulation or algebraic temporal logic analysis, based on the techniques described in
the earlier AAMC papers.

2 Preliminaries: Algebraic Analysis of a Biochemical Hybrid
System

Biochemical systems are conveniently approximated as hybrid automata operating in
one of many discrete states (or modes). In each state, the continuous evolution of dif-
ferent chemicals, reactions, assumptions and ODEs predominate, with discrete transi-
tions to other states possible under certain guard conditions, leading to the variables
being reassigned as per the reset relations. Within each state, the temporal properties of
the network of interacting biochemicals are captured algebraically by the flow relation
(from GMA-based ODEs) that relates two neighboring system-states at time instants
t and t + h, and the biochemical interactions (synthesis, degradation, multimerization,
etc.) that occur in that short time interval h.

In the Algorithmic Algebraic Model Checking approach [46,42,41,6,40,39], it was
shown how most temporal logic query-answering can be expressed as a series of quan-
tifier elimination problems over the reals. The resulting mathematical problem has been
known to be decidable [55] and elementarily computable (e.g., using Qepcad [22] or
Redlog [16]), though computationally expensive – time complexity, unfortunately, still
remains doubly exponential in the number of variables. For such analyses to be possi-
ble, each discrete state should have only polynomial ODEs, with the guard, reset and

2 Unquantified first-order formulæ over the theory of reals (i.e., over (R,+,×,=,<)); see
[37,15,38] for details.
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invariant relations also being semi-algebraic (Boolean combinations of polynomial
equations and inequalities), thus yielding a new class of hybrid systems, as defined
below:

Definition 1. Semi-Algebraic Hybrid Automata: [46,42] A k-dimensional hybrid au-
tomaton is a septuple, H = (W, V, E, Init, Inv, Flow, Jump), consisting of the following
components:

– W = {W1, . . . , Wk} and W ′ = {W ′
1, . . . , W ′

k} are two finite sets of variables ranging
over the reals R;

– (V,E) is a directed graph of discrete states and transitions;
– Each discrete state v∈V is labeled by “Init”(initial), “Inv”(invariant) and “Flow”

labels of the form Initv[W ], Invv[W ], and Flowv[W,W ′, t,h]
– Each edge e ∈ E is labeled by a “Jump” condition of the form Jumpe[W,W ′] ≡

Guarde(W ) ∧ Resete(W,W ′)
– Init, Inv, Flow, and Jump are all semi-algebraic. �

Within each state of a biochemical hybrid dynamical system, the network of interacting
biochemicals is modeled using variables that represent their concentrations (see Eqn. 1).
The semi-algebraic hybrid automaton structure requires that the continuous dynamics
of each discrete state v be captured in the flow relation Flowv[W,W ′,t,h] that connects
the symbolic state W of the system at time t with the symbolic state W ′ at time t +h. To
derive an approximate flow relation, the polynomial differential equations describing the
continuous evolution are integrated using one of the symbolic schemes (e.g., the Taylor
series, the linear Euler or the higher degree Runge-Kutta). The error is controlled by an
upper bound on the time spent in one continuous step, as we aim for over- or under-
approximating the flow equations (also see [30]). Thus, we can write the flow equations
for the biochemical dynamical system as shown here3:

Flowv[W,W ′,t,h] ≡ {W ′ = W + hẆ(W,K)}.

Here, W represents the vector of concentrations at time t, Ẇ is the vector of first tem-
poral derivatives (from the GMA-based ODEs) expressed as a polynomial in W and
the rate constants K (and t, if necessary as with many time-variant systems), and W ′ is
the approximate value of W (t + h) (with O(h2) error, in the case of the Euler forward
integration). Note that the incompleteness that results from following the biochemical
traces using a fixed time step (chosen based on the desired integration error bound) that
plagues numerical methods is not alleviated in the algebraic procedure detailed here.

Since the guard, resets and invariants are also restricted to be Boolean combinations
of polynomial equations and inequalities, the complete transition relation (see Defn. 3 –
Semantics of Hybrid Automata in [42]) of the biochemical hybrid dynamical system can
be written in terms of a semi-algebraic expression. Once such a relation is derived, tem-
poral logic analysis can be performed to algebraically characterize global and emergent
dynamical properties of the biochemical network (for example, see the analysis of the
Delta-Notch pathway using Timed Computation Tree Logic in the tool Tolque [42]).

3 Without loss of generality, in this paper, we will adopt the Euler forward symbolic integration
scheme [42] to compute the trajectories of the metabolic reactions.
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3 Algebraic Analysis of Metabolic Hybrid Systems

The basic outline of our algebraic procedure is as follows:

1. Start with a complete general mass action based hybrid automaton model of the
entire metabolic network, with symbolic variables (parameters) substituted in place
of unknowns.

2. Within each discrete state:
(a) Identify sub-networks of reversible fast reactions (using information from bio-

chemistry literature).
(b) Compute the dynamic equilibrium concentrations and fluxes of the fast sub-

networks. This step can be performed accurately over the GMA model using
the Gröbner basis and Wu-Ritt characteristic set techniques (see Sec. 3.1). Sim-
ilar analysis can also be obtained from the FBA approach, using algebraic op-
timization (see Sec. 3.2). Irrespective of which algorithm is used, we formulate
an algebraic description of the equilibrium state of the reactants participating
in fast reactions. (In some cases, this equilibrium description might yield dif-
ferential equations – see Defn. 5 and Note 1)

3. Now the entire hybrid system is ready to be simulated or analyzed using a time-
step appropriate for the slow biochemical reactions, with the fast reactants in each
discrete state updated as determined by the equilibrium relations (or in some cases,
the new differential equations) derived in Step 2(b).

Steps 1, 2(a) and 3 are part of the standard procedure [57,33,65], and there is no need
for a new algebraic version. This paper provides the necessary mathematical details for
Step 2(b), where we wish to symbolically characterize the momentary quasi-equilibria
that the fast variables (interface and quasi-equilibrium metabolites) reach in response
to a change in the slow interactions (dynamic reactants) at each time-step. We first
formally capture the dynamical system to which the subclass of metabolic networks
corresponds, as constrained by our assumptions (see Sec. 1 for details).

Definition 2. Metabolic Dynamics: A metabolic network comprises the slow irre-
versible dynamic reactants X, the fast reversible quasi-equilibrium reactants Y , the in-
terface reactants Z that participate in both slow and fast reactions, and symbolic (rate)
parameters K, such that the following differential algebraic equations hold:

Ẋ = F(X ,Z,K) , Ẏ = G(Y,Z,K) , Ż = D(X ,Z,K)+ P(Y,Z,K). �

As before, let X , Y and Z be the concentrations of the dynamic, quasi-equilibrium and
interface metabolites respectively, at time t — the start of the integration step. The goal
is to derive the Flow({X ,Y,Z},{X ′,Y ′,Z′},h,K) relation (in each discrete state4 of the
semi-algebraic hybrid automaton of the metabolic network) that expresses the algebraic
values of the concentrations X ′, Y ′ and Z′ at time t +h in terms of their concentrations at
time t, the small time-step h and the rate parameters K (and time t, if required to capture

4 The subscript v denoting the discrete state and the explicit time variable t are dropped for
clarity from the Flowv notation.
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some other external aspects of the dynamics). The flow equations of the dynamic reac-
tants X do not involve any simplification and are directly given by the Euler forward
approximation as X ′ = X + hF(X ,Z,K). Thus,

Flow({X ,Z,Y},{X ′,Z′,Y ′},h,K) ≡
{ X ′ = X + hF(X ,Z,K) ∧ Flow({Z,Y},{Z′,Y ′},h,K).

Thus, the essence of the problem is the expression of Flow({Z,Y},{Z′,Y ′},h,K) — the
flow of the quasi-equilibrium and interface reactants, algebraically. As a result of the
way we have formulated the problem, the complete set of constraints, which must be
true to achieve quasi-equilibrium are given by:

Definition 3. Quasi-Equilibrium Relation:

E (Z,Y,K) ≡ {P(Z,Y,K) = 0 ∧ G(Y,Z,K) = 0} �

GMA follows the straightforward approach of solving the quasi-equilibrium equations
to obtain the exact concentrations. FBA instead guesses what the equilibrium fluxes
must be by optimizing some function, without using the kinetic parameters K; the exact
concentrations are then obtained by substituting the concentration terms for the flux
variables. The algebraic versions of the two procedures and their mathematical details
are further elaborated below.

3.1 General Mass Action Based Approximation

Since the quasi-equilibrium characterization (see Defn. 3) involves only equalities, the
relation E is effectively just a system of polynomial equations, which needs to be solved
for Z and Y . The issue of simultaneous solution of polynomial equations, especially in
the context of biochemical networks, has been addressed before [4,8,36]. The well-
established methods for solving such systems of simultaneous multivariate polynomial
equations with symbolic parameters are to be found in the Gröbner Basis algorithm [5]
and the Wu-Ritt characteristic set [47,62] algorithm. Their many implemented forms
include PoSSo [10], CoCoA [9] and Macaulay-2 [20].

In the case of metabolic dynamical systems, the system of polynomial equations can
be solved more easily by exploiting the fact that the concentration of each chemical
form of a metabolite at pseudo-equilibrium is dictated by the total concentration of its
different chemical forms. In other words, each substrate of each reaction involving at
least one interface metabolite (Z) also as a substrate, is associated with a mass conserva-
tion equation. As suggested in the literature [57,33,65], the total concentration of these
substrate metabolites in their many chemical forms at equilibrium is captured using
equilibrium pool variables T . The mass conservation equations T = M (Z,Y ) have the
form: Ti = Σ j∈PooliWj, where Pooli represents the set of the different chemical forms
Wj, in which the i-th substrate metabolite exists. Effectively, as a result of the struc-
ture of metabolic pathways, the equilibrium concentrations of Z and Y are expressible
in terms of the equilibrium pool concentrations T . The simplified GMA equilibrium
relation may thus be expressed as:
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Definition 4. GMA Equilibrium Relation:

EGMA(Z,Y,T,K)≡ {Z = EZ(T,K) ∧ Y = EY (T,K)},

where EZ and EY represent the solutions obtained using the Gröbner basis technique
over {P(Z,Y,K) = 0 ∧ G(Y,Z,K) = 0 ∧ T = M (Z,Y )}. �
We are now ready to construct Flow({X ,Y,Z,T},{X ′,Y ′,Z′,T ′},h,K) – the continuous
flow expression, which connects the state of the system {X ,Y,Z,T} at time t and the
state of the system {X ′,Y ′,Z′,T ′} at time t + h. During the quasi-instantaneous recom-
putation of the equilibrium point, the total concentrations of the pool variables T can be
assumed to remain unchanged. This assumption is justifiable because the time required
for re-establishing the equilibrium is negligible compared to the time-step used for sim-
ulating the slow reactions. Consequently, the change in the concentrations attributed to
the slow reactions is negligible compared to the effect of the equilibrium recomputa-
tion (which only redistributes the metabolites among the different chemical forms being
added in each equilibrium pool variable). Thus, the ODEs for Z and Y can be directly
approximated from EZ and EY by differential calculus:

Ż ≈ dEZ(T,K)
dt

=
∂EZ(T,K)

∂T
.
dT
dt

=
∂EZ

∂T
H,

where Ṫi = Σ j∈PooliẆj = Hi(X ,Y,Z,K). The same applies to Y as well. Thus we have
our final result:

Definition 5. GMA-Approximated Metabolic Dynamics:

FlowGMA({X ,Y,Z,T},{X ′,Y ′,Z′,T ′},h,K) ≡
{(X ′ = X + hF(X ,Z,K)) ∧ (T ′ = T + hH(X ,Y,Z,K) ∧

(Z′ = Z + hŻ(T,X ,Y,Z,K) ∧ (Y ′ = Y + hẎ(T,X ,Y,Z,K))},
where : Ẋ = F(X ,Z,K) , Ṫ = H(X ,Y,Z,K),

Ż(T,X ,Y,Z,K)≈ ∂EZ

∂T
H & Ẏ (T,X ,Y,Z,K)≈ ∂EY

∂T
H �

3.2 Flux Balance Analysis Based Approximation

Flux Balance Analysis [27] aims to estimate the steady-state flux distribution using the
stoichiometric matrix and the input and output fluxes of the system to constrain the so-
lution space, without relying on any kinetic parameters. Since the number of fluxes is
always greater than the number of metabolites, the system of linear flux equations is
under-determined. FBA overcomes this hurdle by assuming that the biochemical net-
work would have so evolved as to optimize certain physiologically important functions
such as growth. Thus, the essence of flux balance analysis is optimizing a function under
the set of equilibrium and other external constraints.

The general optimization (in its maximization formulation) problem can be
rephrased as follows: for all values U that differ from the optimal value Ǔ and still
satisfy the constraints C (U,V ) involving parametric variables V (not being optimized),
the value of the function F (U,V ) is, by definition, less than F (Ǔ ,V ). This step imme-
diately leads to the following characterization of {Ǔ ,V}:
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Definition 6. Optimization Relation: Optimize(Ǔ ,F (U,V ),C (U,V )) ≡ C (Ǔ ,V )∧{∀U, (U �= Ǔ ∧ C (U,V ))⇒ (F (U,V ) < F (Ǔ ,V )) } �

If C is semi-algebraic and F is polynomial, then Optimize(Ǔ ,F (U,V ),C (U,V )) is
a quantified semi-algebraic set. Gröbner bases or characteristic sets cannot be used to
solve this optimization problem as they can handle only equations and not inequality
relations. Instead, the general technique of real quantifier elimination [55] has to be
employed to perform the algebraic optimization [1]. In addition to quantifier elimination
tools like Qepcad [22] and Redlog [16], specialized systems such as the Maple-based
Symbolic-Numeric toolbox for Real Algebraic Constraints (SyNRAC) [63] could also
be exploited for performing algebraic optimization.

Unlike the GMA-based approach which uses concentrations to describe the dynam-
ics, FBA uses the flux variables: Uj ≡ n jk jΠ j

i Wi. For metabolic networks, the flux vari-
ables may be divided into Uzx ≡Uz∪Ux ∪Uz∧x and Uzy ≡Uz∧y∪Uy based on whether
the reactions are fast or slow5: reactions in which only Zis and/or Xis participate con-
tribute the slow flux terms Uzx; reactions in which Zis and Yis interact and those in which
only Yis interact contribute the fast flux terms Uzy. Thus the metabolic dynamics (see
Defn. 2) may be rephrased as:

Ẋ = FU(Uzx) , Ẏ = GU(Uzy) , Ż = DU(Uzx)+ PU(Uzy).

Let C (Uzy,Uzx) represent the semi-algebraic constraints on the kinetic parameters, rates
of change, bounds on parameters, energy balance equations, etc. Let F (Uzy,Uzx) rep-
resent the function that the metabolic network is assumed to be optimizing. Thus, the
complete set of equations and inequalities that needs to be true at the equilibrium pre-
dicted by FBA may be represented thus:

Definition 7. FBA Equilibrium Relation:

EFBA(Ǔzy,Uzx) ≡ { Optimize(Ǔzy,F (Uzy,Uzx),C (Uzy,Uzx)) ∧
GU(Ǔzy) = PU(Ǔzy) = 0 }. �

Consistent with the static optimization based dynamic flux balance analysis approach
[33], it is assumed that at the beginning of each small time interval h, the fast reactions
optimize growth (or some other physiological function) by re-establishing equilibrium
(Uzy) based on the current concentrations of the fast and dynamic reactants (Uzx). The
slow reactions are then integrated assuming that these fluxes stay constant over that time
period h. Thus, the FBA-based dynamics can now be characterized algebraically as:

Definition 8. FBA-Approximated Metabolic Dynamics:

FlowFBA({X ,Y,Z},{X ′,Y ′,Z′},h,K) ≡
{EFBA(Uz′′y′ ,Uzx) ∧ X ′ = X + hF(X ,Z′′,K) ∧ Z′ = Z′′+ hD(X ,Z′′,K)}

where Ui ≡ nikiΠ i
jWj. �

5 Note that since X and Y do not interact, there are no Ux∧z terms.
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Remark 1. Alternatively, one could perform FBA using the concentration variables
themselves. Let C (Z′,Y ′,Z,Y,K) represent the semi-algebraic constraints on the ki-
netic parameters, rates of change, bounds on parameters, energy balance equations, etc.
Let O(Z′,Y ′,Z,Y ) represent the function6 that the metabolic network is assumed to
be optimizing. Since FBA assumes that the kinetic parameters K are unavailable, the
effective set of constraints over which the optimization must be performed may be ob-
tained by eliminating K from the accurate equilibrium relation E (see Defn. 3). Note
that if K is not eliminated, the equilibrium is exactly defined by the relation E ; hence
there is no room for optimization. Further, the existential quantifier captures the as-
sumption that there exist some kinetic parameters (involved in the genetic variation,
and discovered during evolution via natural selection) for which the network optimizes
the physiologically relevant function (i.e., its “fitness” function). Thus, the dynamics
may be approximated thus:

O(Z′,Y ′,Z′′,Y ) ≡ ∃K,{C (Z′,Y ′,Z′′,Y,K) ∧ E (Z′,Y ′,K)},
EFBA(Z′′,Y,Z′,Y ′) ≡ Optimize({Z′,Y ′},F (Z′,Y ′,Z′′,Y ),O(Z′,Y ′,Z′′,Y )) &

FlowFBA({X ,Y,Z},{X ′,Y ′,Z′},h,K) ≡
{(X ′ = X + hF(X ,Z,K)) ∧ (Z′′ = Z + hD(X ,Z,K)) ∧ EFBA(Z′′,Y,Z′,Y ′)}.

The validity and utility of this approach need to be investigated further.

Note 1. In some cases, the solution after optimization and substitution with the con-
centration variables might be a set of polynomial equations, which can then be solved
(by Gröbner basis like methods, say) to yield the general solution

FlowFBA({Y,Z},{Y ′,Z′},h,K) ≡ {Z′ = EZ(Z,Y,T,K) ∧ Y ′ = EY (Z,Y,T,K)}.

Then, we can write:

Ż =
∂EZ

∂Z
Ż +

∂EZ

∂Y
Ẏ +

∂EZ

∂T
Ṫ , Ẏ =

∂EY

∂Z
Ż +

∂EY

∂Y
Ẏ +

∂EY

∂T
Ṫ .

By solving these two equations, one can obtain the general solution:

Ẏ =

∂ EY
∂ Z

∂ EZ
∂ T

1− ∂ EZ
∂ Z

+ ∂EY
∂T

1−
∂ EY
∂ Z

∂ EZ
∂Y

1− ∂ EZ
∂ Z

− ∂EY
∂Y

Ṫ , Ż =
∂EZ
∂Y Ẏ + ∂EZ

∂T Ṫ

1− ∂EZ
∂Z

.

Also note that {Ż = ∂EZ
∂T Ṫ , Ẏ = ∂EY

∂T Ṫ} derived in the GMA based approximation is

just a special case where ∂E
∂Y = ∂E

∂Z = 0.

4 Example

Our approach is now illustrated on the Example 1 introduced earlier. Recall that X =
{A,B,R}, Y = {E,C} and Z = {S}.

6 The primed variables may be necessary to capture relations involving the rate of change of
concentrations.
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4.1 GMA-Based Approximation

The only reaction with an interface metabolite as a substrate is E + S
kf
�
kr

C. The mass-

conservation equations can be written for the two substrates E and S as eT = e + c and
sT = s + c, where eT and sT are the new equilibrium pool variables. At equilibrium,
E ({s},{e,c},K)≡ {(k f es− krc = 0)}, i.e., k f es = krc. Rewriting in terms of the equi-
librium pool variables, we get k f (eT − c)(sT − c) = krc. Let k = k f /kr. In the general
case, we would solve these equations using the Gröbner basis technique. Here, these
quadratic equations can be solved directly, under the constraint that all concentrations
are non-negative, leading to the solution:

EGMA ≡ {c =
(sT + eT + 1/k)−

√
(sT + eT + 1/k)2−4(sT + eT )

2
∧

e = eT − c ∧ s = sT − c}.

Observe that Ṫ is: {ṡT = ṡ+ ċ = ksab, ėT = ė+ ċ = 0}. Thus,

ˆ̇c =
∂c
∂T

Ṫ =
∂c

∂ sT
ṡT =

1
2
(1− 2(sT + eT + 1/k)−4

2
√

(sT + eT + 1/k)2−4(sT + eT )
)ksab

ˆ̇e = −ċ , ˆ̇s = ksab− ċ. Thus, we get :

FlowGMA ({{a,b,r},{s},{e,c},{eT ,sT }},
{{a′,b′,r′},{s′},{e′,c′},{e′T ,s

′
T }},h,k)≡

{(a′ = a + hȧ) ∧ (b′ = b + hḃ) ∧ (r′ = r + hṙ) ∧ (s′ = s+ h ˆ̇s) ∧
(e′ = e + h ˆ̇e) ∧ (c′ = c + h ˆ̇c)∧ (e′T = eT + hėT )∧ (s′T = sT + hṡT )}.

4.2 FBA-Based Approximation

Observe that Uzx = Uz∧x = {U1} and Uzy = Uz∧y = {U2,U3}. Let C ({U2,U3},{U1})
represent the external constraints under which the network is assumed to be optimizing
the function F ({U2,U3},{U1}). Thus, the equilibrium may be characterized as:

EFBA({Ǔ2,Ǔ3},{U1}) = C ({Ǔ2,Ǔ3},{U1}) ∧
{∀U2,U3, (U2 �= Ǔ2 ∨ U3 �= Ǔ3) ∧ C ({U2,U3},{U1})
⇒ F ({U2,U3},{U1}) < F ({Ǔ2,Ǔ3},{U1})}
∧ Ǔ2 = Ǔ3.

This leads to the complete flow characterization:

FlowFBA ({{a,b,r},{s},{e,c}},
{{a′,b′,r′},{s′},{e′,c′}},h,{ks,k f ,kr}) ≡
{EFBA({U2,U3},{U1}) ∧
a′ = a + hȧ ∧ b′ = b + hḃ ∧ r′ = r + hṙ ∧ s′ = s′′+ hṡ},

where U1 = ksab, U2 = k f e′s′′, U3 = krc′, ȧ = ḃ = −ṙ = −ksab, and ṡ = ksab + krc′ −
k f e′s′′.
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5 Discussion

Several extensions of the mathematical theory [37,15] are necessary for the approach
to be more practical and useful. To improve computational complexity, it is necessary
to develop more efficient, albeit less general, techniques for equilibrium estimation: for
instance, applications of the Wu-Ritt characteristic set algorithm [34], resultant compu-
tation followed by eigen decomposition [60], and heuristics for choosing among them
[45]. To reduce the computational overload due to the algebraic optimization involved in
FBA, some less universal quantifier elimination approaches may be used [61,26]. More
recent efforts at efficient optimization include the following: constraint logic program-
ming with first-order constraints CLP(RL) [53] based on Redlog [16], systems theoretic
algebraic optimization [25], and semidefinite programming [44].

In additional to the purely algebraic research described previously, several Systems
Biology extensions and applications also necessitate further investigation. For instance,
the relative merit of flux-based and concentration-based characterization of dynamics
(see Remark 1) has to be further investigated, in terms of both the complexity gain and
the repertoire of constraints that can be handled (such as Minimization of Metabolic
Adjustment (MOMA) [50] and Regulatory On-Off Minimization (ROOM) [51]). Sim-
ilarly, an integration with singular perturbation analysis-like methods [52,19,32] can
potentially help automate the classification of the metabolic system interactions as fast
and slow, and the decomposition into sub-modules of a large network. Other approxi-
mate methods to estimate the equilibrium fluxes (e.g., cybernetic modeling [43]) may
also become more powerful when extended into the algebraic domain. Another impor-
tant perspective comes from the mathematically rigorous approaches being developed
in non-linear Control Theory [24,48]. A related thorny problem that remains to be prop-
erly addressed is the semi-automatic (approximate) translation of a one-state biochem-
ical dynamical system into a multi-state hybrid system.

In summary, we have exploited techniques from the AAMC approach to enable effi-
cient analysis of metabolic networks. This paper shows how the numerical procedure for
exploiting the inherent multi-time-scale quasi-equilibrium structure of metabolic net-
works could be extended to the algebraic domain, using techniques from Computational
Real Algebraic Geometry: namely, real quantifier elimination, Gröbner bases, Wu-Ritt
Characteristic sets, and algebraic optimization. Our approach is thus an algebraic gen-
eralization of numerical approaches, as typified by tendency modeling [57], dynamic
flux balance analysis [33] and hybrid static + dynamic simulation [65]. The more gen-
eral mathematical approaches [52,19,32] make fewer assumptions about the structure
of metabolic networks, and can be incorporated into the proposed framework. Further,
the paper provides a uniform algebraic framework to handle two distinct approaches for
equilibrium estimation: (i) solving the general mass action-based polynomial equations
and (ii) optimizing the flux distribution using flux balance analysis. Thus, the paper
demonstrates how a standard biochemistry problem description can be automatically
transformed into an entirely algebraic dynamical system specification. This algebraic
framework can potentially elicit a powerful symbolic functional description of the dy-
namical behavior of the metabolic network, in terms of the quasi-equilibrium states of
its fast reversible sub-networks. This algebraic approach is to be contrasted with the
conventional analysis, which involves performing numerical integration of the ordinary
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differential equations (ODEs), time-course data assimilation, visualization and model-
checking of concentration-traces.

In conclusion, we note the success of Algorithmic Algebraic Model Checking
project, which was initiated to integrate relevant theory in dynamical systems, model
checking, hybrid automata and systems biology, in an effort to establish a sound and rig-
orous procedure for symbolic temporal reasoning over biochemical networks. While, in
terms of building a suitable theoretical foundation, it has been successful, it has also
pointed to newer theoretical and pragmatic problems that were unforeseen at the out-
set. One apparent shortcoming of our approach is its computational complexity; but it
is hoped that this hurdle could be overcome, when the different avenues of extending
these ideas are explored in the theoretical and practical realms.
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Abstract. We introduce a novel model construction, cascaded games,
that is intended to allow us to study the notion of steady states alge-
braically and structurally. The model construction is inspired by the
chemical underpinning and the prevailing conceptualisation of mitogen-
activated protein kinase (MAPK) cascades. To analyse the models, we
use the recent notion of change-of-mind equilibria. We exemplify our pro-
posal with gene regulation and MAPK cascades, capturing basic as well
as advanced issues such as prophage induction and tauopathy causation.

1 Introduction

The core contribution of this paper is conceptual and formal support for feasible,
i.e., sub-exponential, steady-state analysis. Steady-state analysis is based on the
idea that an autonomous system is most likely to be found in certain configura-
tions (that we shall attempt to characterise abstractly) and not in others, and
that an analysis therefore may serve to predict (emergent) behaviour. In the
biological sciences, the idealised form of this idea is that life itself is a reflection
of the possible steady states of the involved system constituents, along with pro-
voked transitions between the steady states. One of the best known qualitative
steady-state analysis is due to Kauffman [17] and Thomas [37]. The concrete
insight behind their analysis is that understanding whether genes influence each
other’s expression positively or negatively suffices to identify the expression con-
figurations that are characteristic of the organism’s main functionality. This may
be as concrete as the ways in which an organism may replicate, see Section 4.

In earlier work [5], we showed that Kauffman/Thomas steady-state analysis
is a concrete use of a recent notion of dynamic Nash equilibria, called change-
of-mind equilibria [32]. Nash equilibria are known for making reliable real-life
predictions based on mathematical models in a range of situations [15]. Change-
of-mind equilibria are seemingly the first adaptation of the technology that allows
us to address dynamic stability, e.g., in the form of homeostasis [4]. As implied by
the name, the concepts behind cascaded games come from MAPK cascades and
game theory. Cascaded games are not inherently about either but both types of
considerations are directly identifiable at the technical level of our construction,
e.g., by incentives having first-class status and, indeed, being pivotal.
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One widely understood problem with Kauffman/Thomas analysis is that it
involves the construction of an exponential-sized state-space graph and that the
analysis therefore does not scale. Cascaded games are explicitly constructed to
contain only as many nodes as appear to be warranted by the complexity (in a
sense we make precise) of the considered system and will typically have a poly-
nomial upper-bound; in fact, the models appear to be much smaller than their
upper-bounds in most situations. Conceptually speaking, we pursue a structural
line of thinking by identifying points of interaction, and not merely influences,
between the objects and let the involved catalysts determine what possibili-
ties/graph edges to consider. We focus on catalysts because they alter the affinity
(i.e., the chemical incentives) between the involved compounds, typically lead-
ing to an increase in reaction kinetics by a factor of 106 to 1012 [40]. Pursuant
to the construction, the identified equilibria are different in nature than those
of Kauffman/Thomas analysis (structural vs functional) and the fact that they
appear to be directly comparable is of independent interest [13], see Conclusion.

Following preliminaries in Section 2, we define cascaded games and the ab-
stract formalism they apply to, viz auto-regulating systems, in Section 3. In
Section 4, we show how to apply the technology to gene-regulation analysis and
in Section 5 we go into details with the subtle and not-so-subtle issues that cas-
caded games allow us to address in a complete account of mammalian MAPK.

The Cascaded Game tool is available through the corresponding author’s
homepage or directly at http://cascade.jaist.ac.jp/.

2 Preliminaries

In this section, we briefly review basic game theory, the theory behind change-
of-mind equilibria, and Kauffman/Thomas gene-regulation analysis.

2.1 Abstract Nash Equilibria

A Nash equilibrium is a game situation in which no agent who can move away
wants to do so. The notion makes sense in many different concrete classes of
games. Abstractly speaking, the notion of Nash equilibrium is definable using
only the following four concepts, aka conversion/preference (C/P) games.
Definition 1 (C/P Games [32]). Gcp are 4-tuples 〈A,S, ( ��

a)a∈A, (�a)a∈A〉:
– A is a non-empty set of agents.
– S is a non-empty set of synopses (i.e., game situations).
– Each ��

a is a binary conversion relation on S.
– Each �a is a binary preference relation on S.

A strategic-form game [24,26] is a C/P game where S is an A-indexed Cartesian
product and each ��

a allow for free movement in the a-dimension of a synopsis.

Definition 2 ([32]). Synopsis s is an (abstract) Nash equilibrium for Gcp if

EqaN
Gcp(s) � ∀a ∈ A, s′ ∈ S . s ��

a s′ ⇒ ¬(s �a s′)

Nash equilibria can also be viewed in direct graph-theoretic terms.

http://cascade.jaist.ac.jp/
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Definition 3 ([32]). The (free) change-of-mind relation for agent a is →a

� ��
a ∩�a. Let → �

⋃
a∈A →a and let →∗ be the reflexive, transitive closure

of →.

Nash equilibria are exactly the terminal nodes of→ and thus, modulo reflexivity:

EqaN
Gcp(s) ⇔ ∀s′ ∈ S . s→∗s′ ⇔ s = s′ (1)

2.2 Compromises

Games cannot in general be guaranteed to have Nash equilibria. Exceptions (with
a guarantee) include i) extensive-form games with perfect information [19,39] and
ii) C/P games with S a non-empty, convex, compact subset of Euclidian space
and with preference relations that allow for a continuous synchronised update
function [24,26]. Nash’s Theorem uses the fact that the latter class includes the
probabilised version of any finite strategic-form game with preferences induced
from real-valued payoffs. Our alternative starting point is the observation that
(1) can be naturally relaxed to address the absence of unexpected updates.

Definition 4 ([32]). Let S→ � → ∩ (S × S), viz the sub-graph induced by syn-
opses S. For Gcp and non-empty S, S→ is a change-of-mind equilibrium if

Eqcom
Gcp (

S→) � ∀s ∈ S, s′ ∈ S . s→∗s′ ⇔ s′ ∈ S

Note that a pure Nash equilibrium is a static change-of-mind equilibrium, and
vice versa. The main theorem and the supporting theory reads as follows.

Theorem 5 ([32]). In any finite Gcp there is a (non-empty) S ⊆ S such that
Eqcom( S→). More, for given finite Gcp, all such S can be found in |S|2.
Lemma 6 ([32]). For any Gcp and S, the following are equivalent.1

1. Eqcom
Gcp ( S→)

2. EqaN
�Gcp�(S), where )Gcp* is Gcp’s shrunken game (i.e., with change-of-mind

given as the shrunken graph over the strongly connected components of →).
3. S is a least, non-empty fixed point of U (S) �

⋃
s∈S{s′ | s→∗s′}.

Following Nash [24], the lemma says that our compromises, 1., are Nash equi-
libria in a derived game, 2., as well as fixed points of an update function, 3.
Crucially, our approach admits i) a direct characterisation of the identified com-
promises, through the notion of change-of-mind equilibrium, which is what makes
our equilibria dynamic in nature and ii) an algorithm for computing all equilib-
ria as the terminal strongly connected components of the change-of-mind graph
in linear time in the number of nodes plus the number of edges [35]. Nash’s
probabilistic and our dynamic compromises can seemingly not be quantitatively
distinguished, e.g., in terms of size, expected/average payoff, or even in terms of
what parts of games can be involved in that the two can be identical, disjoint,
subsume each other, and can overlap non-trivially [32].
1 We shall revisit the three in Section 5 and see what they mean for Systems Biology.



188 J. Senachak, M. Vestergaard, and R. Vestergaard

2.3 Kauffman/Thomas Gene-Regulation Analysis

The starting point of Kauffman/Thomas gene-regulation analysis is a so-called
influence graph, indicating regulatory influences between considered objects. The
analyses of Kauffman and Thomas differ in two main regards. One is that Kauff-
man assumes that objects are either being expressed or not, while Thomas allows
for genes to be expressed at several levels. For example, in case of Thomas:

cI cro 2

The graph shows how the cI and cro genes are influenced by each other and the
context in bacteriophage lambda, whether positively: →, or negatively: + [36,5].
The gene cI is able to assume two states, say 0, 1, and cro is able to assume
three states, say 0, 1, 2. An influence (i.e., an arrow out of a gene) may take place
when the gene is on (i.e., in state 1, or above), unless annotated differently. For
example, cro auto-represses in state 2, while it represses cI in states 1 and 2.
The influences are translated into the associated state space by evaluating them
against each state. Thomas considers the likely move of each gene out of each
state, see below, while Kauffman lets all genes make a synchronous move.

〈cI 0, cro0〉
〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉
〈cI 0, cro2〉 〈cI 1, cro2〉

The translation is not unambiguous and so-called K functions are typically used
to resolve joint positive and negative influences into one polarity. We shall return
to this point in Section 4. For now, and from our perspective, we note that the
above is a change-of-mind graph (that is underpinned by natural conversion
and preference relations for agents that in general can be chosen variably) [5].
The considered game therefore has two change-of-mind equilibria: (the static)
〈cI 1, cro0〉 and the (dynamic) cycle between 〈cI 0, cro1〉 and 〈cI 0, cro2〉. This
is interesting because the former is characteristic of λ-phage’s lysogenic way of
getting replicated by a bacteria host while the latter is its lytic way [41].

3 Auto-regulating Systems and Cascaded Games

We are interested in the likely observable behaviours of what we call auto-
regulating systems, i.e., arbitrary 4-ary relations over sets of some set of objects.

Definition 7. For set O, let ARSO � 22O×2O×2O×2O
.

The intended semantics is that, for a specific relationship, the first component,
the substrates, can turn into the second component, the products, when the third
component, the catalysts, is present and the fourth component, the inhibitors, is
absent.
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Definition 8. For r ∈ rs ∈ ARS, with r = Ss
Cs−→
Is

Ps, let

πs(r) � Ss πp(r) � Ps πc(r) � Cs πi(r) � Is

Let πx[rs] �
⋃

r∈rs πx(r), for x ∈ {s, p, c, i}.
The word ‘auto-regulating’ refers to the fact that all four components come from
the same O, thereby allowing for co-regulation between objects.

3.1 MEK, ERK Cascade

An ARS may express chemistry when each of the considered relationships obey
stoichiometric laws, i.e., when the relationships indicate chemical reactions.

MEK.P + ATP
c-Raf∗
−→ MEK.PP + ADP MEK.PP + H2O

Pase2−→ MEK.P + Pi

ERK + ATP
MEK.PP−→ ERK.P + ADP ERK.P + H2O

Pase3−→ ERK + Pi

ERK.P + ATP
MEK.PP−→ ERK.PP + ADP ERK.PP + H2O

Pase3−→ ERK.P + Pi

The above reactions are “triggered” by c-Raf∗ in a kinase-role, i.e., as an enzyme
that phosphorylates a protein, i.e., that catalyses the affixation of a phosphate
group, P, from the “energy molecule” ATP. With two phosphate groups affixed,
also the targeted MEK becomes a kinase (aka is activated) and may double-
phosphorylate ERK. The right column of reactions are deactivations, aka de-
phosphorylations catalysed by phosphatases. This kind of “rolling” activation of
proteins is what is referred to as (kinase) cascading.

3.2 State-Space Analysis

In terms of the Kauffman/Thomas technology discussed in Section 2.3, the above
reactions amount to the following influence graph over the potentially regulat-
ing/regulatable objects, i.e., over the proteins. (As part of our modelling abstrac-
tion, we assume that non-proteins are freely available, meaning in particular that
we are assuming that we are considering a cell with normal metabolism.)

c-Raf∗ MEK{P,PP}� ERK{�,P,PP}�

Pase2 Pase3

PP

The possible states (and their ordering) of each protein is superscripted. For
simplicity, we consider only one implicit (active) state for each of c-Raf∗, Pase2,
Pase3. In order to apply Kauffman/Thomas to the current non DNA-bound
(read: free-flowing) situation, as frequently claimed possible, we have introduced
a special state, � or ‘absent’, for MEK and ERK, which we subscript to indicate
that it is non-regulatable. The induced state space has 12 nodes (3 MEK-states, 4
ERK-states) and 16 edges. The resulting change-of-mind equilibria are as follows.

[ERK.#, MEK.#][ERK. , MEK.#]

[ERK.#, MEK.PP][ERK.#, MEK.P]
[Pase2.]

[c-Raf.*]

[ERK. , MEK.P]

[ERK. , MEK.PP]

[c-Raf.*]

[ERK.P, MEK.P]
[Pase3.]

[ERK.P, MEK.PP]

[c-Raf.*]

[ERK.PP, MEK.P]
[Pase3.]

[ERK.PP, MEK.PP]

[c-Raf.*] [Pase2.]

[MEK.PP]

[Pase2.]

[Pase3.]

[MEK.PP]

[Pase2.]

[Pase3.]
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Note the stand-alone MEK.P, MEK.PP loop with absence of ERK (to cascade onto),
and the singleton ERK corresponding to the absence of (catalysing) MEK.PP. Note,
also, the repeated use of the MEK.P, MEK.PP loop inside the loops for ERK. Finally,
note that without � we would observe just one equilibrium, namely the one with
6 nodes. (Following Kauffman, we could also have constructed the state space
with, e.g., MEK.P and MEK.PP taken as different objects and states ‘present’,
‘absent’. The state-space graph is bigger than above in this case, 32 nodes and
78 edges, but the equilibria turn out to be exactly the same).

3.3 Cascaded Games

Cascaded games are based primarily on the second issue noted above. More
precisely, it is our observation that the exponential granularity of state spaces
typically is not taken advantage of. In our first definition of cascaded games, we
shall, for simplicity, consider only ARSs of the form 2O×O×O⊥, with O⊥ meaning
one or none. (But, we retain set notation.) Such relationships involve exactly one
substrate, one product, at most one catalyst, and no inhibitor. To start, note
that the example (with non-proteins suppressed) amounts to a labelled graph.

MEK.P MEK.PP

ERK ERK.P ERK.PP

c-Raf∗

Pase2
MEK.PP

Pase3

MEK.PP

Pase3

To avoid the inherent exponential blow-up in a state-space graph, the cascaded
game for this example will be constructed roughly by collapsing MEK.PP and ERK.

MEK.P
MEK.PP
ERK

ERK.P ERK.PP

c-Raf∗

Pase2

MEK.PP

Pase3

MEK.PP

Pase3

Formally, we first identify the reactions that can be cascaded onto as follows.

Definition 9. For rs ∈ 2O×O×O⊥, r ∈ rs is a cascadee if

Cascdee(r) � πc(r) ∩ πp[rs] �= ∅
∧ (∀r′ . r′ �= r ⇒ ¬(πp(r′) = πs(r) ∧ πc(r′) = πc(r)))

The lower conjunct says that the MEK.PP-reaction from ERK.P to ERK.PP is not
a cascadee because the MEK.PP-reaction from ERK to ERK.P is an invalidating r′.

Observation 10. We do not identify either B-reaction below as a cascadee.

A B

C D

⊥
B

B
We could, of course, make Definition 9 more complex but we shall not need to
address any situations with cyclic catalysis by one and the same object.

As seen, catalysts that are not produced anywhere do not have their regulative
role regulated by another object and we will assume they are freely available.
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Definition 11 (Cascaded Players). For r ∈ rs ∈ 2O×O×O⊥, let

Ars �
⋃

πc[rs]⊥ πc(r)⊥ � πc(r) ∩ πp[rs]

The definition implies that our equilibrium analysis will be over the catalytic/re-
gulatory effects (read: incentives) of those objects (read: players, Ars) that may
themselves be regulated upon. We define the nodes of the graph to be analysed in
a similar manner, namely as the potential points of interaction without explicitly
listing all the contexts that a considered interaction may take place in. If a
reaction is a cascadee, we create a node containing the substrate(s) of the reaction
and any catalyst that is involved in cascading. If the reaction is not a cascadee,
we create a node with just the substrate(s). In particular, if a reaction is not a
cascadee for the reason that the MEK.PP-reaction from ERK.P to ERK.PP is not a
cascadee above, we shall consider the catalyst(s) to be only implicitly present.

Definition 12 (Cascaded Synopses). For rs ∈ 2O×O×O⊥, let

Spoi
rs �

⋃
r∈rs{πs(r) ∪ πc(r)⊥ | Cascdee(r)} ∪

⋃
r∈rs{πs(r) | ¬Cascdee(r)}

Srs � Spoi
rs ∪

⋃
r∈rs{πp(r) | ∀n ∈ Spoi

rs . πp(r) �⊆ n}

The full set of situations we are interested in consists of all points-of-interaction,
as well as (singleton) nodes for products that are not involved in any interaction.
The latter set of objects are candidates for deadlocked situations or, more tech-
nically speaking, may be static change-of-mind equilibria, aka Nash equilibria.
(An example is λ-phage’s lysogenic state, see Sections 2.3 and 4).

When it comes to the conversion and preference parts of cascaded games,
we note that their intersection, i.e., the change-of-mind relation, is already the
de facto object of study in chemistry. The natural conversion relation is simply
that of stoichiometric laws. In particular, the conversion relation is shared by
all objects and is reversible (in principle). Catalysts alter the involved affinities,
typically resulting in an increase in the observable difference of the two directions
of a reaction by a factor of 106 to 1012 [40], which gives rise to the relevant notion
of preference for the catalysts. In other words, when we see an oriented chemical
reaction with a catalyst annotated, we are actually seeing the induced change-
of-mind relation. We follow suit and treat change-of-mind as primitive.

Having identified the relevant points-of-interaction for a given ARS, insert-
ing edges/change-of-mind is almost as straightforward as going from substrate
and (non-suppressed) catalyst to product and (non-suppressed) catalyst. First,
though, we note that the catalyst will be consumed in case of self-catalysis.

Definition 13. For r ∈ rs ∈ 2O×O×O⊥, the perfect-match start, end would be:

S(r) � πs(r) ∪ πc(r)⊥ E(r) � πp(r) ∪ (πc(r)⊥ \ πs(r))

Secondly, we note that we have not explicitly created a product-catalyst node for
each reaction, and substrate-catalyst nodes have only been created for cascadees.
Perfect-match nodes may have been created by another reaction and, so, edge
insertions go between perfect nodes if they exist and, otherwise, between any
nodes that contain the substrate and product. Exceptionally, though, we note
that a suppressed catalyst amounts to it being freely available. Also, we only
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allow reflexive ARS-steps to result in reflexive edges (note, though, that reflexive
steps may have resulted in nodes that might not otherwise have been created).

Definition 14 (Cascaded Change-of-Mind). For rs ∈ 2O×O×O⊥×2O
, let2

→rs�
⋃

r∈rs

⋃
s,e∈Srs

{〈s, e, πc(r)⊥〉 | (πc(r)⊥ �= ∅ ∧ S(r) ∈ Srs

⇒ s = S(r) ‖ s ⊇ πs(r))
∧ (πc(r)⊥ �= ∅ ∧ E(r) ∈ Srs

⇒ e = E(r) ‖ e ⊇ πp(r))
∧ πi(r) ∩ s = πi(r) ∩ e = ∅
∧ πs(r) = πp(r) ⇒ s = e}

We write P ⇒ Q ‖R to mean (P ⇒ Q) ∧ (¬P ⇒ R).

Definition 15 (Cascaded Games). are defined, for given rs ∈ 2O×O×O⊥, as

Gcasc
rs � 〈Ars,Srs,→rs〉

See Definitions 1, 3, 11, 12, 14 for more details.

As defined, cascaded games have at most |O|2 many nodes, seeing that no node
contains more than two objects, and a naive implementation and equilibrium
analysis will take time |O|9 (|O|3 × (|O|2)3), see Definition 14 and Theorem 5.3

3.4 The General Case

Cascaded games can be applied to all ARSs as it stands, not just to 2O×O×O⊥,
but the required discussions and analyses to address the appropriateness of doing
so are sufficiently subtle and open-ended to warrant maturation of the technology
before being undertaken. Some conditions may need to be stated in ways that
are equivalent for 2O×O×O⊥ but behave differently elsewhere. We are confident
that cascaded games will scale to multiple catalysts, substrates, and products
but extensive experimentation is needed to understand how to deal with first-
class inhibition. The main challenge is to identify what nodes to construct. The
naive approach is to construct a collapsed node involving every object that is
not an inhibitor but, as we shall see in Section 4, this is merely one particu-
lar possibility that, in fact, is not guaranteed to be the right thing to do in all
circumstances. While the trade-off may appear to exclusively be between (the
asymptotic) number of nodes and the ability to distinguish different situations,
we will make two possibly surprising observations in Section 4. Firstly, not mak-
ing certain distinctions can bring out issues that are not brought out, e.g., in
the exponential Kauffman/Thomas models, see Section 4.3. Secondly, for certain
types of inhibition, the right thing to do is seemingly to not have the inhibitors
impact the nodes we construct, see Section 4.1. See also the Conclusion.
2 The explicit treatment of inhibition at this point is intentional, see Section 3.4.
3 Our actual implementation avoids replication of work and has an |O|8 upper-bound

in general, with an upper-bound of |O|5 for all but exotic ARSs.
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3.5 Cascaded MEK, ERK

The cascaded game, Definition 15, for the MEK, ERK cascade ARS in Section 3.1
(without non-proteins) has one change-of-mind equilibrium, see Theorem 5.4

[MEK.P]

[ERK., MEK.PP]
[]

[MEK.PP]

[]

[]
[ERK.P]

[MEK.PP]

[]

[]
[ERK.PP]

[MEK.PP]
[]

We see that the MEK.P, MEK.PP loop corresponding to the absence of ERK is
retained, alongside the cascaded-onto double-phosphorylation of ERK by MEK.PP.
In this analysis, there is no duplication, in part at the cost of ERK existing only in
a collapsed configuration with the triggering MEK.PP. The graph makes it clear
that a double-phosphorylating phosphate group arriving to MEK.P either initiates
double-phosphorylation for an ERK in sufficiently close physical proximity or, in
the alternate case, is simply released in short order by a phosphatase. We shall
see in Section 5 how this process is used by cells to eliminate the need for proteins
carrying a “signal” to a cell to be allowed to penetrate the cell membrane. Indeed,
MAPK cascades, of which MEK, ERK are part, serve to transduce such signals into
a phosphate-group form that autopoietically [22] can target the nucleus.

4 Cascaded Gene-Regulation Analysis

As implied by our discussions, influence graphs (for gene expression) may be
translated into ARS-form. We considered the reverse translation in Section 3.2,
and we shall now formalise the forward direction. The translation will be exem-
plified with bacteriophage lambda, and we will compare the information that
can be gained with our and the Kauffman/Thomas approaches.

4.1 Influence Graphs as Auto-regulating Systems

The arrows in an influence graph are different from but related to the arrows in
an ARS. Take, for example, this situation from Section 2.3.

cI cro cI .1 cro.1−→ cI .0 cI .1 cro.2−→ cI .0

The influence graph, left, says that cro in states 1, 2 represses cI , which amounts
to the ARS-steps on the right. While the steps do not obey stoichiometric laws
they are nonetheless expressing (high-level) chemical changes, namely in terms of
how the protein that is synthesised, e.g., from cro.1 regulates the transcription
of cI . When there is no ambiguity between positive and negative influences,
this translation is straightforward. In case of conflicts, we use inhibition with
the stronger influence to make the weaker influence assume a secondary role.
According to the disambiguating K functions for bacteriophage lambda [5], for
example, the above repression of cI by cro is stronger than cI ’s auto-activation.
4 The complete model construction and equilibrium analysis (excluding file I/O) takes

around 0.05 seconds, using a naive Java implementation running on a laptop.
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cI cro cI .1
cI .1−→

cro.1,cro.2
cI .1

The chemical justification for prioritising the influences is that each of them is
associated with a kinetics and what concerns us in our discrete presentation is
the net effect of combining them. The above description of our translation of
influence graphs into ARSs is essentially complete, with only a few caveats.

– Influences may have identical priority, with neither inhibiting the other.
– Influences without an influencer are not annotated with a catalyst.
– Multiple catalysts would be needed, e.g., if gene g is influenced by g1, g2, g3,

with g1, g2 positive and g3 negative, and with g3’s influence stronger than
g1, g2 separately but weaker when both positive influences are on jointly.

– Cascaded games treat catalysts and inhibitors conjunctively: each catalyst
must be present (modulo free availability) and each inhibitor must be absent.
Disjunction is via multiple steps, i.e., ARSs are disjunctive normal forms.

– We use reflexive steps for both activation and repression, e.g., cI .1 cro.1−→ cI .1.
– We do not allow multiple states of an object to co-exist in one node, e.g.,

cro.1 cro.2−→ cro.0 is suppressed (but cro.1 −→ cro.2, cro.1 −→
cro.2

cro.0 are not).
– We suppress inhibitor states that occur in the product (unless they also occur

in the substrate). For example, the cro.2-inhibition of cro.1 −→
cI .1,cro.2

cro.2 is
suppressed (i.e., we consider cro.1 −→

cI .1
cro.2 instead), in order to allow for

the temporal delay in the creation of the inhibitor in the product.

Proposition 16. Lambda-phage’s influence graph, see Section 2.3, is this ARS.

cI .1
cro.1−→ cI .0 cI .0 −→

cro.1,cro.2
cI .1 cro.2

cI .1−→ cro.1 cro.0 −→
cI .1

cro.1

cI .0
cro.1−→ cI .0 cI .1

cI .1−→
cro.1,cro.2

cI .1 cro.1
cI .1−→ cro.0 cro.1 −→

cI .1
cro.2

cI .1
cro.2−→ cI .0 cro.0

cI .1−→ cro.0

cI .0
cro.2−→ cI .0 cro.2

cro.2−→ cro.1

(We note that the K functions could also be transliterated into ARSs. K functions
indicate the likely next state of each gene for each combination of influences
and transliteration would annotate all possible influences on a particular gene
to its ARS-steps. The influencer of an influence that is on would go into the
catalysts, with the others becoming inhibitors. We refer to Sections 3.4, 4.3, and
the Conclusion for discussions of why we do not pursue transliteration here.)

4.2 “Catalysed State-Space” for Bacteriophage Lambda

Using a construction in the style of Definition 14 on the ARS in Proposition 16
and a state-space set of nodes results in the following (non-cascaded) graph.

[cI.0, cro.1]

[cro.1]

[cI.0, cro.2]
[~cI.1]
[cro.2]

[cro.2]

[cI.1, cro.0]

[cI.1]

[cI.1, cro.2] [cro.2]

[cI.1, cro.1][cI.1]
[cro.1]

[cI.1]

[cI.0, cro.0] [~cI.1]

[~cro.2&~cro.1]
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Other than the reflexive steps, the annotations on the arrows, and the boxes in-
dicating the change-of-mind equilibria/steady states, it is identical to the Thomas
graph for lambda phage in Section 2.3. The arrows in a Thomas graph are implic-
itly annotated with the gene whose state-change the arrow captures. Our arrows
are annotated with the influences that facilitate the change, along with ∼-prefixed
annotations of the inhibitors. The node for cI .0, cro.0 makes explicit the retro-
spectively obvious fact that re-activation is driven by the context when both genes
are off, seeing that neither out-going arrow has a catalyst annotation.

4.3 Cascaded Bacteriophage-Lambda Analysis

The cascaded game built from lambda-phage’s ARS, see Proposition 16, looks
as follows.5 The solid boxes are the change-of-mind equilibria; they coincide
with the established Thomas steady states (that correspond to lambda-phage’s
lysogenic and lytic states). The dashed boxes are strongly connected components
that are not terminal but have only inhibited arrows out of them, i.e., they
are pre-equilibria, whose collapse are preventable. (Hollow heads indicate multi-
arrows, with comma-separations of their annotations.)

[cro.0]

[cI.1]

[cro.1]
[~cI.1]

[cro.2]
[~cI.1]
[cro.2]

[cI.1, cro.1]

[cI.1]

[cI.0]

[cro.1] [cro.2, cro.1]

[cI.1]
[~cro.2&~cro.1]

[cI.1, cro.2]

[cI.1]

[cro.2]

[cI.1&~cro.2&~cro.1]

Our graph has seemingly more nodes than the (Kauffman/Thomas) state space.
However, this is due to the context influences being explicit for us but implicit in
Kauffman/Thomas’ K functions. The full state space would have 24 nodes. More
subtly, we note that the lysogenic state (lower solid box) is characterised by gene
cI being on and the reflexive arrow makes it clear that this can be sustained as
long as gene cro is not expressed. The top dashed box is the dual view on this
situation, saying that cI can keep cro off as long as the cI -expressed protein is not
depleted. In case the protein is depleted, our analysis predicts that the observed
lysogenic state (top dashed box) would collapse to lambda-phage’s lytic cycle
(top solid box). In the Thomas graph in Section 4.2, this information is implicit
in the cI .0, cro.0 node, along with what is for us the analogous situation for the
lower boxes. The Thomas graph and the cascaded game have similar layouts and
our dashed boxes are superficially in the same positions as the Thomas steady-
states in the state space. In the first instance this means that we in principle
could have done the analysis with just four nodes. On the other hand, the out-
going arrows from the dashed boxes are undeniable chemical possibilities.

Prophage Induction. The arrow out of the top dashed box is readily observ-
able. It is referred to as prophage (or lysogen) induction and serves as a sort
5 The complete model construction and equilibrium analysis (excluding file I/O) takes

around 0.05 seconds, using a naive Java implementation running on a laptop.

~
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of panic button for the bacteria-infecting lambda-phage virus. Lysogenic repli-
cation is relatively slow. Conversely, lytic replication is relatively fast but leads
to lysis, i.e., bursting of the host and, with it, the release of approximately 100
lambda phages [2]. Prophage induction (out of slow lysogenic and into fast but
destructive lytic replication) has been observed in lambda-phages under attack
by the host, e.g., with cI being stimulated into auto-proteolysis by the host DNA
repair protein RecA responding to UV-radiation damage to the DNA [11].

Integrated View on Bacteriophage-Lambda Gene Regulation. Contrary
to prophage induction, the arrow out of the lower dashed box does not appear to
have been observed in nature. While it may in theory be possible for either cI or
cro to activate when both are off, the present integrated analysis suggests that
cro always is faster than cI . We therefore propose to suppress cI .0 −→

cro.1,cro.2
cI .1 in

the ARS for lambda-phage, see Proposition 16. The similarly-adjusted influence
graph reads as follows (with the Thomas-steady states remaining unchanged.)

cI cro 2

The cascaded game analysis for the adjusted lambda-phage ARS is as follows.6

[cro.0]

[cI.1]

[cro.1]
[~cI.1]

[cro.2]
[~cI.1]
[cro.2]

[cI.1, cro.2]

[cI.1, cro.1]
[cI.1]

[cI.0]
[cro.2]

[cI.1]

[cro.1]
[cro.2, cro.1]

[cI.1]

[cI.1&~cro.2&~cro.1]

This version predicts lysogenic replication (stand-alone box), prophage induction
(dashed box), and dual sustainability of lytic replication through i) alternating
state-change for cro (right box) and ii) unwavering repression of cI (lower box).
It is our contention that the absence of a location in the state-space graph from
which lysogenic induction may explicitly be seen to take place is a shortcoming.
Further to Definitions 12 and 14, the problem is related to the functional/non-
structural view on the cI .0, cro.0 gene configutation in the state-space approach.

5 MAPK Cascaded Signal Transduction

This section returns to the eponymous application of cascaded games, namely
MAPK cascades, and addresses in some detail the game-theoretic foundation of
the technology. In particular, we shall consider separately the three alternative
views on change-of-mind equilibria in Lemma 6 and highlight what they mean
in terms of biochemistry and systems biology. In order, the three amount to
sustainability, inevitability, and atomicity of the equilibria [32].

6 The complete model construction and equilibrium analysis (excluding file I/O) takes
around 0.05 seconds, using a naive Java implementation running on a laptop.
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5.1 Sustainability, Signal Transduction in the Chemistry of MAPK

An elaborate system of proteins, from trans-membrane receptor proteins via cy-
tosolic proteins to target proteins in the nucleus, enable the cell to respond to
a particular signal in a specific manner. Responses include cell growth, survival,
apoptosis, differentiation and proliferation [1,27]. Intracellular proteins include
kinases, phosphatases and GTP-binding proteins (GTPases). Studies have shown
that cells respond to external stimuli using clearly defined signalling pathways
[1]. These encompass all the biochemical phenomena that start with perception
of an extracellular signalling molecule (aka ligand) to the response of the cell.
MAPK signal transducted pathways are among the most widespread in eukary-
otes [18]. In mammalian systems, five distinguishable MAPK pathways have
been identified so far: extracellular signal-regulated kinases 1 and 2 (ERKs 1/2),
c-Jun N-terminal kinases 1,2 and 3 (JNK 1/2/3), p38 (α/β/γ/δ), ERKs 3/4 and
ERK 5 [31]. The most widely studied, in vertebrates, are ERKs 1/2, JNK and
p38 [21]. ERKs 1/2, preferentially regulate cell growth and differentiation whilst
JNK and p38 are strongly activated by stress and inflammatory cytokines [31,6].
MAPK cascaded signal-transduction systems have remained unchanged during
the course of evolution and currently exist in virtually identical form in a wide
range of species. Chemically, they are triggered by a receptor protein on the
cell membrane (without penetration) and transduces the received signal by the
transfer of phosphate groups. We have created an ARS compendium of all chem-
ical reactions said to be involved in MAPK cascades in [3,7,16,18,25,29,30,38],
see [34]. The compendium contains 109 reactions and 21 proteins, each with 2 or
3 states, for a total of 53 (= 3× 11 + 2× 10) distinct objects/protein states and
thus an upper-bound of 2809 (= 532) cascaded nodes. The resulting cascaded
game has:7

– 15 cascaded players/co-regulating enzymes, see Definition 11,
– 71 cascaded synopses/points-of-interaction, see Definition 12,
– 207 cascaded changes-of-mind/edges (with multiplicity), see Definition 14,
– 2 change-of-mind equilibria, covering the whole cascaded game.

Further to the last point, we see that the chemical underpinning of MAPK cas-
cades is sustainable, i.e., the cascades can keep running with no other support
than a functioning metabolism: they are autopoietic [22]. In other words, MAPK
cascades are ideal building blocks for a fundamental biological process that is
expected to operate within the confines of a membrane-protected part of a liv-
ing organism, which is what signal transduction systems do. One change-of-mind
equilibrium is as follows; it is the ERK pathway [33]. (See also Section 5.3).

[ERK.PP][ERK.P]
[]

[MEK.PP]
[ERK.1, MEK.PP] []

[MEK.P]

[MEK.PP]

[c-Raf.*, b-Raf.*]

[c-Raf.*, b-Raf.*]

[c-Raf.*, MEK.1]
[]

[MEK.1, b-Raf.*]

[]
[]

[MEK.PP]
[]

[c-Raf.*] [c-Raf.1][]
[]

[]
[c-Raf.*]

[]

[b-Raf.*]
[b-Raf.1] []

[]

[b-Raf.*] []
[]

7 The complete model construction and equilibrium analysis (excluding file I/O) takes
around 0.4 seconds, using a naive Java implementation running on a laptop.
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Although all MAPK-transducted pathways have their own unique properties,
they share a number of characteristics. They, e.g., comprise three kinases: MAP-
KKK (MAPK kinase kinase), MAPKK (MAPK kinase), MAPK. These can be
recognised (in order) in the equilibrium: Rafs, MEK, ERK, with the latter sitting
close to the nucleus physically, conceptually, and graphically [33].

5.2 Inevitability and Pathologies in the Chemistry of MAPK

The MAPKs we consider multi-phosphorylate tau as target protein at serine
and threonine sites, with phosphorylated tau binding together other proteins. If
tau becomes fully saturated the result is a condition called hyperphosphorylation
in which insoluble neurofibrillary tangles of the tau-bound proteins are created
[14,8]. This phenomenon has been implicated in several diseases, the most com-
mon of which are tauopathies such as Alzheimer’s disease (AD), Pick’s disease
(PiD), and Parkinson’s disease (PD) [10,12]. One of the enzymes that dephos-
phorylates ERK.PP and other active MAPKs is PP2A. Inhibition of PP2A seems
to be minimally counter-acted by other Pase3s [28]. Re-analysing our MAPK
compendium with Pase3 knocked-out results in the following six change-of-mind
equilibria.8

[ERK.PP] [JNK.PP] [p38a.PP] [p38b.PP] [p38d.PP] [p38g.PP]

All six are activated MAPKs and the fact that our analysis predicts that they
are the inevitable outcomes of Pase3-inhibited MAPK suggests that PP2A
inhibition could cause tau hyperphosphorylation. This prediction is validated by
recent work [28]. Indeed, transgenic mice exhibit increased expression of JNK
and p38 in AD and PiD (i.e., tauopathic) individuals [9].

5.3 Atomicity vs. Cross-Talk in the Chemistry of MAPK

The change-of-mind equilibrium that we did not discuss in Section 5.1 consists of
60 cascaded synopses/points-of-interaction. As seen in Section 5.2, the involved
MAPK proteins are JNK and different isoforms of p38. In other words, and as
can be checked on closer inspection, the equilibrium comprises the JNK- and p38-
pathways [34]. The atomicity property of change-of-mind equilibria therefore
correctly predicts that there is cross-talk between these pathways. Although
we do not discuss it here, it is possible and feasible to (semi-automatically) run
our analysis several times with different proteins suppressed to identify the cross-
talking points-of-interactions, in order to understand the nature of the cross-talk
and possibly how to regulate it [34].

5.4 State-Space Analysis

We briefly attempted to analyse our whole MAPK compendium using a Kauff-
man/Thomas state-space graph. Further to Sections 3.2 and 3.5, our expectation
8 The complete model construction and equilibrium analysis (excluding file I/O) takes

around 0.4 seconds, using a naive Java implementation running on a laptop.
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is that the result will be compatible with the above analyses. However, even an
SGI Altix 3700 with 768GB physical memory failed to build the required graph
within a 24 hour period. Of course, this is not surprising as the state space has
around 250 billion (= (3 + 1)11 × (2 + 1)10) nodes in the considered case.9

6 Conclusion

Based mainly on game-theoretic considerations, we have introduced the novel
notion of cascaded games that can be used to analyse the potential steady states
of what we call auto-regulating systems. In analogy with Kauffman/Thomas
analysis, steady states are captured formally as change-of-mind equilibria. Unlike
Kauffman/Thomas analysis, however, our analysis is typically of polynomial
complexity and, by virtue of our model construction using points-of-interaction
between co-regulating objects, is structural in nature. Although seemingly closely
related to Kauffman/Thomas steady states, our results may be substantially
different. One difference in the analysis of bacteriophage lambda is our explicit
identification of prophage induction. In the case of MAPK cascades, our analysis,
e.g., proves the cascades to be sustainable, captures known causes of tauopathies,
and avoids large-scale duplication to the tune of using a 71-node graph to analyse
what Kauffman/Thomas analysis would need 250 billion nodes for. Indeed, all
the cascaded-game analyses we undertake here take less than half a second.
Current work is addressing, e.g., ARSs with multiple objects in each reaction and
is looking at large-scale data sets. Theoretically, one of the most interesting issues
that our work has opened up is the mathematical comparison of our structural
equilibria (aka autopoiesis) with the functional equilibria (aka homeostasis) of
Kauffman/Thomas. As far as we can tell, this issue is emerging as a major future
challenge, seeing that “the form that provides better functionality is likely to be
selected [in evolution]” [13]. More to the point, “[i]f form follows function, then we
should be able to infer systems function and evolution, as well as their interplay,
from the architecture of complex biochemical networks” [13] and, in addition to
mathematical results, we are therefore also looking at conceptually clearer ways
of reading the various equilibria and of relating them to real-life situations.

Acknowledgements. This work has benefitted from discussions with Jérôme
Puisségur on specificity of MAPK cascades.
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Abstract. Monitoring and control of anaerobic digestion of organic
wastes by microorganisms are parts of actual world efforts to preserve
environment. The anaerobic digestion is a biochemical process in which
microorganisms (or bacteria) biodegrade organic matters into biogas
(methane and carbon dioxide). Given the complexity of biochemical pro-
cesses going on in such a bioreactor, control models are almost exclusively
written in terms of mass balances of various species of interest. Such
models are highly nonlinear and may contain many parameters which
need to be identified. But the most challenging part of this estimation
work concerns the online estimation of a key variable named the specific
growth rates of microorganisms. It is invoked in most mass balance mod-
els. There is no devices to measure it so as techniques of estimation are
very welcome in this field. The communication presents how differential
algebraic decision methods can help find partial answers to the problem
of online estimation of biomass specific growth rates based upon easily
available measurements.

Keywords: Differential algebra, Differential algebraic decision methods,
Characteristic set, Observability, Software sensors, Dynamic systems.

1 Introduction

The anaerobic digestion is a biochemical process in which microorganisms (or
bacteria) biodegrade organic matters into biogas (methane and carbon dioxide).
This process is interesting in 2 aspects: depollution (the biodegradation of some
organic wastes) and production of biogas from domestic, agriculture and indus-
trial wastes. In order to efficiently control this process the first task is modeling.
Given the complexity of biochemical processes going on in such a bioreactor, con-
trol models are almost exclusively written in terms of mass balances of various
species of interest [12,4,6]. Such models are highly nonlinear and may contain
many parameters which need to be identified [12,6]. But the most challenging
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part of this estimation work concerns the online estimation of a key variable
named the specific growth rate of microorganisms. It is invoked in most mass
balance models. There is no devices to measure it so as techniques of estimation
are very welcome in this field.

The differential algebraic approach of general observation problems is used
to investigate the identification and observation of some of the most popular
models of these processes.

The so-called one-stage model is first considered. It results from the assump-
tion that the biogas is produced by only one type of microorganism species.
Then it is shown that

– the specific growth rate of microorganisms is not observable according to the
differential algebraic approach;

– but, with the help of differential algebraic decision methods, a special differ-
ential equation involving the specific growth rate of microorganisms and the
supposedly online measured quantities is obtained and used as a software
sensor for the growth rate of such species.

Next, a more elaborate model, namely the three-stage model, is considered. It
results from the assumption that the biogas is produced at a third stage by
a type of microorganisms which, at a second stage, are given by another type
of bacteria which, at first stage, have started the process through a well-known
model due to Hill & Barth [8]. It is then shown that the previous two conclusions
of the study of estimation problems of the one-stage model are still valid. Turning
to even more elaborate models of the anaerobic digestion, a five-stage model is
considered. Here the authors were not able to draw the same conclusions as for
the previous two simpler models.

The differential algebraic approach of observation problems dates back to late
eighties and early nineties with works of [11,5,7,3]. See [2] for a recent survey. The
main point of this approach, as first clarified in [3], is that a quantity, say z, of a
system is observable with respect to some other one, say w (which is supposed to
be available in some time interval), if each component of z is a solution of a (non
differential) algebraic equation with coefficients eventually depending on w and
finitely many of its time derivatives. The theory applies to models of systems in
terms of differential algebraic equations only but which may be implicit in the
variables to be observed.

It is a matter of fact that biotechnological process models are often described
in terms of differential algebraic equations. The only non polynomial expressions
that enter these models are often rational expressions. But, as argued in [2], the
basic differential algebraic approach may handle such rational expressions. In
summary, the differential algebraic approach to nonlinear observability can tackle
the identifiability and observability questions which arise in biotechnological
processes. The main limitations that may be encountered when following this
approach are the availability of computation resources which are enough to carry
over all the suggested calculations.
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The differential algebraic approach is among the rare ones which provide
explicit tests of observability. There are many such differential algebraic decision
methods. The most attractive one uses Joseph F. Ritt’s notion of characteristic
set. The observability of a variable z with respect to a supposedly measured
variable w is verified by running characteristic set algorithms through the system
equations relatively a ranking which orders w and all its derivatives before z and
all its derivatives, and any derivative of these two variables before any potentially
remaining variable of the system.

The rest of this communication is organized as follows. The differential alge-
braic approach which is used in these studies is first presented very briefly in
Section 2. In Section 3 the one-stage model is considered, and the observabil-
ity of the biomass specific growth rate is discussed. In Section 4 the three-stage
model is considered and it is shown how the conclusions of the one-stage model
studies are ascertained. In Section 5 the five-stage model is considered and it is
shown how far the previous conclusions can be carried out.

2 On the Differential Algebraic Approach

The reader is referred to [2] for details and references on this approach. Here are
the main lines of the application of this theory to anaerobic digestion models.
First note that the theory applies to systems which are described by differential
polynomials with coefficients which are meromorphic functions of the time. The
theory may be extended to include descriptions involving differential rational
fractions. Then one needs to consider differential equations and inequations (the
sign �=). In summary, in order to check the observability of a latent variable z
with respect to, say u and y, of a system

Pi(u, u̇, . . . , y, ẏ, . . . , z, ż, . . . , ξ, ξ̇, . . . ) = 0

(i = 1, 2, . . .) one computes the characteristic set of the previous set of differential
polynomials with respect to a ranking

{{u, y}, {z}, {ξ}} .

This notation of rankings is very intuitive. It says that all derivatives of u and
y are lower than z, and all derivatives of z are lower than ξ. The characteristic
set is merely a set A of differential polynomials each one being led by one (and
only one) of the variables (at some derivative order). The testing device then
reads as: z is observable with respect to u and y if, and only if, each component
of z leads (i.e., is the highest variable derivative according to the ranking which
appears in A) one differential polynomial in A.

The examples in this communication all have been computed by a REDUCE
package called astb based upon Kolchin’s revisit of Ritt’s characteristic set algo-
rithm. astb follows the account in [1]. The reader who is familiar with differential
algebraic decision methods knows that a practical and complete effective algo-
rithm is still lacking. The package astb will fail to yield a characteristic set of
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systems in many circumstances due to factorization issues for instance. But when
astb exhibits a differential polynomial then of course the latter is consequence
of the system’s equations.

3 The One-Stage Model

The following model of the anaerobic digestion process [12]:
⎧⎨
⎩

Ẋ = μX −DX ,

Ṡ = −K1 μX + D (Sin − S) ,
Q = K2 μX .

(1)

is first considered. It is a mass-balance model. The first equation describes the
growth and changes of the biomass X consuming the appropriate substrate S.
The first term in the right hand side reflects the growth of the bacteria and
the second one reflects the effluent flow rate of liquid. The mass balance for
the substrate is described by the second equation, where the first term reflects
consumption by the bacteria, the second term reflects the influent flow rate
of liquid with concentration of the inlet diluted organics Sin. The last equa-
tion in system (1) describes the formation of biogas with flow rate Q. In sys-
tems terms the dilution rate D is the control input, the output is the biogas
flow rate Q, and Sin is a disturbance. The quantities K1 and K2 are constant
parameters.

The specific growth rate of bacteria μ is a quite complex function of the
process variables. It is standard in the anaerobic digestion control literature to
approximate μ by an empirical function of X and S. The most popular among
these growth rate empirical models are the following three nonlinear expressions
(respectively known as Monod, Contois and Haldane models) [12,6]:

μ =
μmax S

KS + S
, (2)

μ =
μ0 S

Km X + S
, (3)

μ =
μ0 Ki S

KS Ki + Ki S + S2
. (4)

In the model (1) and (2) K1 and K2 are yield coefficients, and KS is a kinetic co-
efficient. In practical applications most of the coefficients are not exactly known.

The choice of such a model however usually is difficult and is done on the
basis of an expert’s knowledge [12]. That is why μ is preferably assumed to be
unknown and to be reconstructed via estimation techniques [6].
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3.1 Observability of the Specific Growth Rate of Bacteria

The decision on the observability of the biomass specific growth rate with re-
spect to D, Q, Sin (and possibly K1 and K2) can be made on the basis of a
characteristic set of the following set of differential polynomials

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ẋ − μX + DX ,

Ṡ + K1 μX −D(Sin − S) ,
Q−K2 μX ,

K̇1 ,

K̇2 ,

with respect to the ranking

{{D,Q, Sin,K1,K2}, {μ}, {X,S}} .

Using astb the following set of differential polynomials
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̇1 ,

K̇2 ,

Q μ̇ + Qμ2 − Q̇ μ−DQμ ,

−K2 μX + Q ,

K2Ṡ + K2 DS −K2 DSin + K1 Q .

(5)

is obtained. It indicates that μ is not observable with respect to D, Q, Sin, K1

and K2 since the differential polynomial which introduces μ (namely the third
line of (5)) is of order 1 (and not 0) in μ.

As the output of astb was not proved to be, in general, a characteristic set
of its input, it is left to verify that the μ is not observable with respect to D, Q,
Sin, K1 and K2. Here are the main arguments of the proof.

Observability of μ with respect to D, Q, Sin, K1 and K2 means the existence
of a (nondifferential) polynomial m in one indeterminate and with coefficients
depending on D, Q, Sin, K1 and K2 and such that m(μ) = 0. Given the first
equation in (1) that observability of μ would imply that the biomass concentra-
tion dynamics depends only on D and Sin, and is free of the concentration S of
the substrate, which is nonsense. The following lemma is thus obtained.

Lemma 1. The biomass specific growth rate μ of anaerobic digestion when the
latter process evolves according to model (1) is not observable with respect to D,
Q, Sin, K1 and K2. Moreover a differential equation (in one indeterminate and
with coefficients depending on derivatives of D, Q, Sin, K1 and K2) of lowest
order satisfied by μ is given by

Q μ̇ + Qμ2 − Q̇ μ−DQμ = 0 . (6)
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A consequence of this lemma is that it is not possible to devise an estimator
for μ which is based upon online measurements of D, Q and Sin only, and with
freedom to choose its speed of convergence. The next section provides a closer
look on equation (6) yielding an estimator for μ but with a speed of convergence
totally depending on D.

Assuming μ to be estimated the way indicated in the next section the new
situation then raises the following question: are X and S observable with respect
to D, Q, Sin, K1, K2 and μ?

Concerning X the answer is positive and is directly given by the fourth poly-
nomial in (5). The answer for S is negative as suggested by the last differential
polynomial in (5). To prove this it is necessary to refer to [1] or § IV.9 of [10]
where it is indicated that in order to ascertain the output of astb factorization
must be undertaken. But the last differential polynomial in (5)

Ṡ + DS −DSin +
K1

K2
Q

is of the form
Ṡ + P0

with P0 = DS + P ∗
0 where P ∗

0 does not involve S. It cannot be factored in the
form

(Ṡ + P1) (1 + P2)

with P1 and P2 two (nondifferential) polynomials in S (with coefficients depend-
ing on derivatives of D, Q, Sin, K1, K2 and μ); that would contradict the fact
that P0 is of degree 1 in S. This proves the following lemma.

Lemma 2. The biomass concentration X of anaerobic digestion when the latter
process evolves according to model (1) is observable with respect to D, Q, Sin,
K1, K2 and μ. But the substrate concentration S is not observable with respect
to D, Q, Sin, K1, K2 and μ.

3.2 Estimation of the Specific Growth Rate of Bacteria

The differential polynomial introducing μ is next examined

Q μ̇ + Qμ2 − Q̇ μ−DQμ = 0 . (6)

Rewriting this equation as follows

Q̇ μ−Q μ̇ = −DQμ + Qμ2 ,

then in time intervals where μ is not identically zero, it may be put in the
following form

(
Q

μ

).
= −D

(
Q

μ

)
+ Q . (7)
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Given the constant sign of D and Q the quantity

z =
Q

μ

can thus be estimated thanks to the exponential stability of the previous dynamic
equation. The biomass specific growth rate is estimated by merely simulating the
following dynamics using online measurements D and Q:⎧⎪⎨

⎪⎩
ż = −D z + Q ,

μ̂ =
Q

z
,

(8)

This dynamics is better initialized with z(t0) = z0 =
Q(t0)
D(t0)

. This estimation

scheme for μ works as long as none of D and Q vanishes.

4 The Three-Stage Model

The model is as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ0 = −DS0 − βX1S0 + DYpSin ,

Ẋ1 = (μ1 − k1 −D)X1 ,

Ṡ1 = −DS1 + β X1 S0 − μ1
X1

Y1
,

Ẋ2 = (μ2 − k2 −D)X2

Ṡ2 = −DS2 + Yb μ1 X1 − μ2
X2

Y2
,

Q = Ygμ2X2 ,

(9)

where the S are the organic matter concentrations and the X are the microor-
ganisms concentrations at the respective three stages of the process.

4.1 Observability of the Growth Rates

All constant parameters are supposed to be identified by ad-hoc methods, and
the estimation of the growth rates is considered with respect to dynamic vari-
ables, namely D, Q and S2.

The decision on the observability of the growth rates μ1 and μ2 with respect
to D, Q and S2 is made on the characteristic set of system (9) with respect to
the ranking

{{D,Q, Sin, β, k1, k2, Y1, Y2, Yb, Yg, Yp, S2}, {μ1, μ2}, {X1, X2, S0, S1}} .

Using astb the following three differential polynomials

−k1 Y2 Yg Ṡ2 μ1 − k1 Y2 Yg DS2 μ1 + Y2 Yg Ṡ2 μ̇1 + Y2 Yg DS2 μ̇1

+Y2 Yg Ṡ2 μ2
1 + Y2 Yg S2 Dμ2

1 − Y2 Yg S̈2 μ1 − 2 Y2 Yg D Ṡ2 μ1

−Y2 Yg Ḋ S2 μ1 − Y2 Yg D2 S2 μ1 − k1 Qμ1 + Q μ̇1 + Qμ2
1

−Q̇ μ1 −DQμ1 = 0 ,

(10)
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−k2 Dμ2 + Q μ̇2 + Qμ2
2 − Q̇ μ2 −DQμ2 = 0 . (11)

(Y2 Yb Yg μ1) X1 = Q + Y2 Yg DS2 + Y2 Yg Ṡ2 . (12)

Again, astb being not a complete algorithm for characteristic set computation
it remains here to verify that equations (10) and (11) are the lowest order ones
(in μ1 and μ2, respectively) that are consequences of system (9). This is still an
open problem.

4.2 Estimation of the Growth Rates

Equation (11) is readily recognized as very similar to equation (6). The sole
difference is the appearance of the term −k2 Dμ2 in (11). The same manipula-
tions as those which were done on equation (6) are repeated for equation (11)
to obtain the following estimation scheme for μ2:⎧⎪⎨

⎪⎩
ż2 = −(D + k2) z2 + Q ,

μ̂2 =
Q

z2
.

(13)

As for equation (10) a careful examination of it shows that it can be rewritten
as follows(

Q + Y2 Yg DS2 + Y2 Yg Ṡ2

μ1

).

=

−
(
D + k1

)(Q + Y2 Yg DS2 + Y2 Yg Ṡ2

μ1

)
+ Q + Y2 Yg DS2 + Y2 Yg Ṡ2 .

(14)

yielding the following estimation scheme for μ1⎧⎪⎪⎨
⎪⎪⎩

ż1 = −(D + k1) z1 + Q + Y2 Yg DS2 + Y2 Yg
̂̇S2 + Y2 Yg DS2 ,

μ̂1 =
Q + Y2 Yg DS2 + Y2 Yg

̂̇S2 + Y2 Yg DS2

z1
.

(15)

In order to implement this estimation scheme one needs to estimate Ṡ2. This is
done using regularized numerical differentiation.

Assuming μ1 and μ2 thus estimated, X1 and X2 can be estimated through
equation (12) for X1 and through the biogas flaw rate equation in system (9).

5 The Five-Stage Model

The following model is a modification of known ones [12,13] with additional
two specific biochemical reactions participating in the anaerobic biodegradation,
namely the syntrophic acetate oxidation and hydrogenotrophic methanogenesis.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ0 = − β X1 S0

S2 + Ki,acet
+ Ye DS0in −DS0 ,

Ẋ1 = μ1 X1 −DX1 ,

Ṡ1 = −Yglu/X1
μ1 X1 +

βS0X1

S2 + Ki,acet
−DS1 ,

Ẋ2 = μ2X2 −DX2 ,

Ṡ2 = Yacet/X1
μ1 X1 − Yacet/X2

μ2X2 − Yacet/X3
μ3X3 −DS2 ,

Ẋ3 = μ3X3 −DX3 ,

Ṡ3 = YH2/X1
μ1 X1 + YH2/X3

μ3X3 − YH2/X4
μ4X4 −KH2S3 −DS3 ,

Ẋ4 = μ4X4 −DX4 ,

Ṡ4 = YCO2/X1
μ1 X1 + YCO2/X2

μ2X2 + YCO2/X3
μ3X3

−YCO2/X4
μ4X4 −KCO2S4 −DS4 ,

Q = YCH4/X2
μ2X2 + YCH4/X4

μ4X4 + KCO2S4 .

(16)

5.1 Observability with Respect to D, Q, S2, S3 and S4

Not only yield coefficients are all assumed constant and known but organic sub-
strate concentrations S2, S3 and S4 are also supposed to be measured online.
The soluble organics concentration, S0, and the substrate concentration S1 are
not assumed measured.

As for the previous simpler models the observability of the biomass specific
growth rates μ1, μ2, μ3 and μ4 with respect to the yield coefficients and S2,
S3 and S4 is again decided through the characteristic set of system (16) with
respect to a ranking similar to the previously used ones for the one- and three-
stage models:
{
{KH2,KCO2 , Yacet/X1

, Yacet/X2
, Yacet/X3

, YH2/X1
, YH2/X3

,

YH2/X4
, YCO2/X1

, YCO2/X2
, YCO2/X3

, YCO2/X4
, YCH4/X2

, YCH4/X4
, Ye, β,

D,Q, S2, S3, S4}, {μ1, μ2, μ3, μ4}, {S0, S1, X1, X2, X3, X4}
} (17)

The resulting differential polynomials for the specific growth rates are of the
following form

μ̇i + μ2
i + fiμi = 0 (18)

where the fi are functions of S2, S3, S4 and their derivatives, D and Q.
This partial result lets think that the specific growth rates are again not

observable with respect to measured variables.
Moreover, the fundamental exponential stability property which made

equations (6), (10) and (11) very interesting for the estimation of specific growth
rates does not appear in (18). In other words, not only the specific growth rates
are probably not observable but there does not appear any clue on how to esti-
mate them on the basis of online measurements of D, Q, S2, S3 and S4.
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5.2 Estimation with Respect to D, Q, S2, S3 and S4

For the five-stage model (16), in the absence of specific growth rates estima-
tion schemes with respect to easily measured variables, one of the last resorts
are standard empirical methods such as Monod, Contois, Haldane models (2),
(3), (4). Assuming specific growth rates to be identified as functions of the Si’s
and Xi’s it is often interesting to answer to the question: can the biomass con-
centrations be estimated based upon these empirical models?

Momentarily assuming the specific growth rates to be available online it is
found that the expressions of the biomass concentrations are as follows

a μi Xi = bi i = 1, 2, 3 or 4 (19)

where

bi = ci1Q + ci2DS2 + (ci3 + ci4D)S3 + (ci5 + ci6D)S4 + ci7Ṡ2 + ci8Ṡ3 + ci9Ṡ4 .

The quantities a, and the ci j ’s are functions of the process constant parameters
only. Their expressions are appended to the end of this paper. It is also noticeable
that the bi’s depend on the supposedly measured variables: D, Q, S2, S3 and
S4, only.

Remark 1. Note that the relations (19) for i = 2 and i = 4 are valid if

−Yacet/X3
YCH4/X4

YCO2/X2
− Yacet/X3

YCH4/X2
YCO2/X4

+Yacet/X2
YCH4/X4

YCO2/X3
�= 0 ,

(20)

and the relation (19) for i = 3 assumes

YCO2/X4
YH2/X3

− YCO2/X3
YH2/X4

�= 0 . (21)

to be true.

The most important information revealed by the previous equations is the fact
that each biomass concentration Xi depends only on specific growth rate μi and
not on μj , j �= i.

Now according to [9] the specific growth rates may be empirically identified
as follows ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1 = μ1max
S1

KS1 + S1
,

μ2 = μ2max

Ki,NH+
4

Ki,NH+
4

+ SNH+
4

S2

KmX2 + S2
,

μ3 = μ3max
S2

KS3 + S2
,

μ4 = μ4max
S3

KS4 + S3

S4

KS4 + S4
.
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If the yield coefficients in the preceding empirical models of the specific growth
rates are identified through ad-hoc methods then, with the help of formulae
(19), the biomass concentrations X3 and X4 may be estimated from the online
measurements of D, Q, S2, S3, and S4 (and the process parameters). Concerning
X2, here is its expression:

(
μ2max

Ki,NH+
4

Ki,NH+
4

+ SNH+
4

aS2 −Kmb2

)
X2 = b2 S2 ,

which holds if (20) is satisfied. Therefore, in all time intervals where the quan-
tity between parentheses in the preceding formula is not too small X2 may be
estimated from the measurements.
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Abstract. NMR is important for the determination of protein struc-
tures, but the usual NOE distance constraints cannot capture large struc-
tures. However, RDC experiments offer global orientation constraints for
the H–N backbone vectors. Our first application validates local structure
from 3 RDC values, by solving an elliptical equation. Second, we model
the protein backbone by drawing upon robot kinematics, and compute
the relative orientation of consecutive pairs of peptide planes; we ob-
tain a unique orientation by considering also NOE distances. Third, we
present a novel algebraic method for determining the relative orientation
of secondary structures, a crucial question in fold classification. The ori-
entation of the magnetic vector relative to the secondary structures is
determined using two media, leading to a rotation matrix mapping one
molecular frame to the other. A unique solution is obtained from RDC
data, with no NOE constraints. Our algorithms use robust algebraic op-
erations and are implemented in MAPLE.

Keywords: Inverse kinematics, MAPLE implementation, polynomial
equations, protein fold, protein kinematics, RDC data, Saupe tensor,
secondary structure.

1 Introduction

The functional properties of proteins depend upon their three-dimensional struc-
tures. The latter arises as sequences of amino acids in polypeptide chains fold to
compact domains with specific three-dimensional structure. The folded domains
can serve as modules for building up large assemblies or can provide specific
catalytic or binding sites. Until 1984 structural information could only be deter-
mined by X-ray diffraction techniques.

Nuclear magnetic resonance (NMR) has made it possible to obtain structures
in a solution environment that is much closer to that in a living being. The
NMR method is based on the variation of the resonance frequencies of nuclear
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spins in an external magnetic field [6]. This interaction depends on the chem-
ical structure, the conformation of the molecule, and the solvent environment.
NMR yields a wealth of indirect structural information from which the three-
dimensional structure can be obtained by extensive calculations. The method of
distance geometry was used first for protein structure calculation. This method
finds molecular configurations that satisfy a network of interatomic NOE (Nu-
clear Overhauser Effect) distance measurements. However, NOE measurements
correspond to short-range distance constraints, thus they have limitations in the
extended biomolecules.

More recent methods utilize the partial alignment of biomolecules in liquid
crystal media [10] where interactions such as the dipole-dipole couplings (Resid-
ual Dipolar Coupling - RDC) are not averaged to zero as is the case in isotropic
solutions. These interactions can be observed in spectra as splittings or contri-
butions of splittings. RDC depends on the angle between an internuclear vector
and the magnetic field. Thus RDC can provide valuable structural constraints
on the relative orientation of even spatially remote parts of biomolecules.

One of the usual approaches for the study of protein conformation with RDC
is to look for fragments of the protein backbone that have rigidity and known
geometry. Such fragments can be a peptide plane, a secondary structure or even
a protein domain. We use the RDC orientational constraints for each fragment
in order to find their relative orientation. In particular, we treat the molecule
or molecular fragment as a rigid body containing a number of dipolar interac-
tion vectors with known geometric relationships between them, e.g. as with the
1H− 15N RDC interaction vectors of protein backbone in an α-helix. An arbi-
trary coordinate system, fixed within the molecule, allows the description of the
vectors’ orientation within the molecular frame, e.g. the orientation of 1H− 15N
unit vector is described by angle φi relative to molecular frame axis i, where
i ∈ x, y, z, as in Fig. 1.

Fig. 1. Molecular frame

The overall orientation of a molecular frame relative to the magnetic unit
vector in the laboratory frame is described by Saupe’s tensor (Sij), a traceless,
symmetric 3 × 3 matrix with five independent elements. The experimentally
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measured RDC of an internuclear vector, denoted by D, is described by the
following RDC equation:

D = Dmax

∑
i,j∈x,y,z Sij cosφi cosφj =

(
cosφx cosφy cosφz

)
⎛
⎝Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎞
⎠

⎛
⎝ cosφx

cosφy

cosφz

⎞
⎠ = vTSv . (1)

where v is an unit vector relative to the molecular frame. The five independent
elements of the Saupe matrix are determined by solving a linear system of RDC
equations of the form Ax = b. Matrix A contains the direction cosines of unitary
internuclear vectors, x is the vector of five independent Saupe elements and b
is the vector of RDC measurements [5,1]. Later we explain how we utilize the
RDC equation (1) to obtain structural information.

Previous work. In [5], an overdetermined system of linear equations was set
up by RDC interaction data within a structurally well defined fragment of a
molecule. The system was solved by Singular Value Decomposition and the Saupe
order tensor was determined. The method was illustrated on a two-domain frag-
ment of the barley lectin protein and a Sauson-Flamsteed projection map was
used for the determination of the relative orientation of the two domains.

The above method was also applied in [8], where RDC data were used for
the orientation of helical segments of proteins with PDB codes ACP and NodF.
For the determination of the Saupe matrix, they assumed helical segments to
be idealized polyalanine α-helices using standard backbone torsional angles. The
Sauson-Flamsteed plots depicted qualitatively the 4 relative orientations of each
pair of fragments. The 4-fold degeneracy was resolved by the software POSE us-
ing a small set of NOE and van der Waals constraints. In [2], a procedure based on
Saupe tensors was developed that completely removes the 4-fold relative orien-
tation degeneracy, by combining RDC measurements from two alignment media.
The solution was found by a Sauson-Flamsteed map depicting the orientations
of molecular fragments of the zinc rubredoxin protein.

Another approach has been implemented in [12], where exact solutions from
analytic expressions compute the directions of a NH vector and φ, ψ angles for
a single residue using only NH RDCs in two media. A backbone structure can
be computed by a systematic search to find the best conformation out of a
finite number of all possible conformations. The Saupe tensors for secondary
structures are computed after refinement from ideal secondary structures built
with the average PDB1 φ, ψ angles. The degeneracy of the relative orientations
between secondary structures is resolved by using 4 NOE constraints.

Main contributions. We illustrate the power of RDC measurements, and re-
move the need for NOE distances for most applications we consider, since these
are not reliable for extended proteins. We also avoid the use of graphics quali-
tative procedures, thus making our methods general and robust. Moreover, we

1 Protein Data Bank: www.rcsb.org/pdb/home/home.do
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exploit the veracity and rigour of algebraic methods and show that for structural
problems of reasonable size, computer algebra offers a very attractive alternative
to numerical approximation methods.

First, we apply the RDC equation in a peptide plane which is a rigid struc-
ture with known geometry since bond lengths and bond angles are known. In
particular, we take a peptide plane from ubiquitin protein which is deposited
in PDB. We determine the Saupe tensor by solving a system of linear equa-
tions. We confirm the coordinates of 13C− 15N internuclear vector by restrain-
ing with the 15N− 1H vector. We solve a polynomial equation and find that one
of the 4 solutions is in agreement with the experimentally observed 13C− 15N
vector.

Next, we consider two consecutive pairs of peptide planes. This time we as-
sume that we do not know the atom coordinates but we know certain φ, ψ, and
bond angles. From the system of RDC equations of each pair we determine the
Saupe tensor. This tensor specifies the orientation of each pair relative to a com-
mon laboratory frame. We determine the values of φ, ψ angles of the residue that
connects these pairs by solving a polynomial system. Next, we examine the ef-
fect of NOE distance constraints, and we show that trigonal distance constraints
give unique solutions for the φ, ψ angles. Our numerical results are sufficiently
accurate for biological applications.

Finally, we propose an algebraic method for the computation of the relative
orientation between two secondary structures from RDC measurements only.
Structural genomics projects do not target all proteins in the genome, but at-
tempt to produce representative structures in each protein fold family. The aim
of RDC experiments is to speed up the classification of proteins into structural
and operational protein families. Previous work [8] dealt with this problem using
a minimal set of NOE distance constraints together with a qualitative graph-
ics method. Our approach removes the need of NOE information and relies on
rigorous algebraic operations instead of graphics methods.

We calculate the coordinates of the magnetic unit vector relative to a fixed
molecular frame on each secondary structure. Then, we find a rotation matrix
that transforms the coordinates of the magnetic unit vector from one molecular
frame to the other. We use RDC values from two anisotropic media and formulate
a system of 3 polynomial equations with 3 unknowns. The true solution will
be the one with the minimum RDC error and consistent with the orientations
calculated from a third secondary structure.

The rest of the paper is organized as follows. Section 2 describes an algebraic
methodology for the validation of coordinates of a backbone vector of ubiquitin.
Section 3 models a protein backbone fragment as a macroscopic robot mechanism
with revolute joins. By solving algebraic equations we find the conformation of
consecutive peptide pairs. Section 4 formulates an inverse kinematics problem
to find the relative orientation of secondary structures. Section 5 summarizes
the main ideas and methods we have applied for the determination of protein
conformation using RDC data.
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2 Structure Validation Using RDC Data

We sample one internuclear vector from a peptide plane of ubiquitin (1D3Z) and
confirm its coordinates from RDC data. We determine the Saupe parameters and
solve for a vector from its RDC equation and its constraint with another vector.
This is also the approach of [13]. But in our approach, measurements of the axial
and rhombic Saupe tensor elements are not required. We determine the Saupe
parameters of RDC equations with an algebraic method, similar to [5,1].

Specifically, we consider the PDB coordinate system of ubiquitin as the molec-
ular frame of peptide plane (residues 24-25). From BMRB2 (Biological Mag-
netic Resonance Data Bank) [4], we use the RDC values of 13Cα

24 − 13C24,
13C24 − 15N25, 15N25 − 1H25 vectors (see Fig. 2) and formulate the linear system
of Ax = b, where

A=

⎛
⎝ cos2φ1

y−cos2φ1
x cos2φ1

z−cos2φ1
x 2 cosφ1

xcosφ
1
y 2 cosφ1

xcosφ
1
z 2 cosφ1

ycosφ
1
z

cos2φ2
y−cos2φ2

x cos2φ2
z−cos2φ2

x 2 cosφ2
xcosφ

2
y 2 cosφ2

xcosφ
2
z 2 cosφ2

ycosφ
2
z

cos2φ3
y−cos2φ3

x cos2φ3
z−cos2φ3

x 2 cosφ3
xcosφ

3
y 2 cosφ3

xcosφ
3
z 2 cosφ3

ycosφ
3
z

⎞
⎠,

x =

⎛
⎜⎜⎜⎜⎝

Syy

Szz

Sxy

Sxz

Syz

⎞
⎟⎟⎟⎟⎠ , b =

⎛
⎝DCαC24

DCN25

DNH25

⎞
⎠ . (2)

We solve the linear system with the method of least squares as implemented on
the computer algebra system MAPLE3 and determine the 5 independent ele-
ments (vector x) of the Saupe order matrix. The molecular frame is transformed
to the principle order frame (POF) by an orthogonal matrix transformation
which diagonalizes the Saupe matrix. Thus, the RDC equation of 13C− 15N
vector is converted to

D = SxxP
2
x + SyyP

2
y + SzzP

2
z . (3)

where P = (Px, Py, Pz) is the unitary 13C− 15N vector relative to POF (see
Fig. 2) and P 2

x + P 2
y + P 2

z = 1. By eliminating Px from (3), the RDC equation
is transformed to an elliptical one:

P 2
y

D−Sxx
Syy−Sxx

+
P 2

z
D−Sxx
Szz−Sxx

= 1. (4)

where a2 = (D−Sxx)/(Syy−Sxx), b2 = (D−Sxx)/(Szz−Sxx) are the semi-axes
of the ellipse, and (4) is written in parametric form as expression (5), provided
that 0 < a2, b2 < 1:

Py = a cosω, Pz = b sinω, Px = ±
√

1− P 2
y − P 2

z . (5)

2 http://www.bmrb.wisc.edu/
3 http://www.maplesoft.com
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Fig. 2. Peptide plane of residues 24-25

Now, we constrain the solutions of vector P with the angle θ = 119.70o to the
known 15N25 − 1H25 bond vector, such that PxVx + PyVy + PzVz = cos(180− θ)
and solve the trigonometric equation:

P 2
x + P 2

y + P 2
z = 1, (6)

Py = a cosω,

Pz = b sinω,

Px = (cos(180− θ)− Vya cosω − Vzb sinω)/Vx.

Using the change of variables cosω = (1− u2)/(1 + u2) and sinω = 2u/(1 + u2)
in (6) we solve with MAPLE the following equations:

104.33258 u4 −70.8993u3− 31.36879u2 + 13.91787u+ 3.69760 = 0,
u = tan(ω/2).

The calculated coordinates for the 13C24 − 15N25 unit vector are:⎛
⎝ 0.984843436073204904

0.138817009304170570
−0.103986754507100265

⎞
⎠ ,

⎛
⎝ 0.217333787120009752
−0.470787629256483209
0.855058497069312584

⎞
⎠ ,

⎛
⎝ −0.329176754687332318
−0.0208926352387638904
0.944037163115530320

⎞
⎠ ,

⎛
⎝ 0.428406582542063984

0.880300095194688659
−0.203812501026730070

⎞
⎠ .

The second solution agrees up to 4 decimal digits with the experimentally ob-
served 13C24 − 15N25 vector:⎛

⎝ 0.217338329640301086
−0.470774374930192863
0.855064639449899966

⎞
⎠ .

This is very accurate for biological applications.
The analytic expression used above may be employed to explore all possible ori-

entations of the backbone internuclear vectors relative to POF and, together with
other experimental or geometric constraints, we may devise ways to limit the size
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of our solutions. No other experimental parameters are necessary besides the RDC
measurements, while the Saupe parameters are computed by linear algebra.

3 Relative Orientation of Peptide Planes Using RDCs

We use RDC orientational constraints to find the φ, ψ angles of consecutive
peptide pairs. We model the backbone as a robot mechanism with revolute joints
and attach to every atom a right-handed orthogonal coordinate system [11,14]
(see Fig. 3). Thus, the problem is reduced to a set of polynomial equations that
determine the Saupe matrix and the φ, ψ angles. Complementarily to RDC, NOE
constraints are added to reduce the set of solutions. Our numerical results are
sufficiently accurate for biological applications.

We have seen that the RDC equation (1) relates a measured RDC value with
the coordinates of an internuclear vector relative to a fixed molecular frame. In
the previous application we placed the molecular frame in the PDB coordinate
system and we assumed that the coordinates of the internuclear vectors were
known. In this application we go a step further and place the molecular frame
on a molecular fragment of known geometry. This allows us to calculate the
coordinates of internuclear vectors relative to the fixed molecular frame. Thus,
the Saupe matrix can be determined by at least 5 internuclear vectors together
with their corresponding RDC values solving a linear system Ax = b where
A, x, b are defined in expression (2). The Saupe matrix expresses the orientation
of the molecular frame relative to the laboratory frame. The problem is reduced
to a system of two polynomial equations.

We demonstrate our method by choosing the well studied protein structure
of ubiquitin (1D3Z – 5th model). We take the first two pairs of peptide planes
of α-helix and calculate the φ, ψ angles of the 26th residue. In particular, we
consider as known the bond angles of peptide planes within the residues 24-
26 and 26-28, as well as the φ, ψ angles of residues 25 and 27. We attach to
every atom of the backbone a right handed coordinate system and define the
molecular frames MF1,MF2 to be on the 15N atoms of residues 25 and 27 as
illustrated in Fig. 3. For each peptide plane pair, we calculate the coordinates of

Fig. 3. Peptide planes of 24-28 residues of 1D3Z
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13Cα − 13C, 13C− 15N, 15N− 1H, 13Cα − 1Hα internuclear unit vectors relative
to the molecular frame as follows:⎛

⎝ cosφx

cosφy

cosφz

⎞
⎠ = MFTJ

⎛
⎝1

0
0

⎞
⎠ . (7)

where MFTJ transforms local coordinate system J to the molecular frame. Matrix
T is the product T1 · T2 · · ·Tn, each Ti corresponding to a stepwise coordinate
transformation along the bond path. The RDC values and the coordinates of the
above internuclear vectors form a linear system of 7 equations with 5 unknowns.
This system is solved with least squares implemented on MAPLE.

Fig. 4. Transformation matrices of molecular frames

Next, we transform the coordinate system of molecular frame to POF such
that the Saupe matrix becomes diagonal. We treat the diagonal Saupe matrix
as the orientation of POF to laboratory frame (LABTPOF). The transformation
of POF2 to the laboratory frame is equal to the product of two transformation
matrices, one from POF2 to POF1 and one from POF1 to the laboratory frame
as depicted in Fig. 4. Thus, we obtain the following equation:

LABTPOF1
POF1TPOF2 = LABTPOF2 . (8)

where transformation matrix POF1TPOF2 depends on the angles φ, ψ of the 26th
residue. We transform the trigonometric equations of matrix elements (2,2) and
(3,3) into polynomial equations and derive 4 solutions for φ, ψ angles. However,
we have to take into account the orientational degeneracy of the POF axes
relative to the magnetic unit vector [9]. We choose one orientation for the first
molecular frame and consider the 4 possibilities for the second molecular frame
as in Fig. 5 (as seen in [9]).

The expressions that describe the orientational degeneracy of POF2 are:

LABT 1
POF2 = LABTPOF2,

LABT 2
POF2 = LABTPOF2Rx(180o), (9)

LABT 3
POF2 = LABTPOF2Rx(180o)Ry(180o),

LABT 4
POF2 = LABTPOF2Ry(180o) .
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Fig. 5. Orientational degeneracy of molecular frames

We substitute all the transformation matrices of (9) in (8) and obtain 4 sets
of solutions. Only LABT 3

POF2 gives φ, ψ values near the experimentally observed
ones. The calculated angles are:

(φ, ψ) = ((−76.34232842o,−38.09716745o), (−71.21931380o, 61.72378527o),
(26.06896998o,−62.93116277o), (37.52245783o, 31.28649670o)) .

The calculated pair (−76.34232842o,−38.09716745o) is nearest to the experi-
mentally observed values (−62.94o,−43.73o). This accuracy is considered suffi-
cient for all biological applications.

To constrain the number of the above solutions we need to use NOE distance
constraints. The question we need to answer is how many NOE distances would
be sufficient in order to find a unique solution for φ, ψ. We focus on the smallest
(proton) distance constraints between 1H atoms in consecutive peptide planes
which can be expressed as a function of φ, ψ. Let d(HN

i ,Hα
i ) be the measured

distance between nuclei within residue i, and let d(Hα
i ,H

N
i+1) be the measured

nuclei distance between residues i and i + 1 (see Fig. 6).

Fig. 6. NOE distance constraints in consecutive peptide planes
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The calculated distance of 1H atoms relative to frame J of residue i, denoted
by ‖HN − JTJ+1Hα‖, is a function of angle φ (see [7]). Thus, we obtain:

‖HN − JTJ+1Hα‖2 = d2(HN
i ,Hα

i ) . (10)

Accordingly, the calculated distance of 1H atoms between residues i and i + 1
relative to frame J + 1, denoted by ‖Hα − J+1TJ+3HN‖, is a function of angle
ψ. Thus, we obtain the equation:

‖Hα − J+1TJ+3HN‖2 = d2(Hα
i ,H

N
i+1) . (11)

We use the 26th residue of ubiquitin to demonstrate the above equations. By
solving (10) for φ we obtain the values −168.43o,−62.89o and by solving (11) for
ψ we obtain the values −80.9o,−43.08o. From all possible pairs of φ, ψ values,
only (−62.89o, 43.08o) satisfies the observed distance d(HN

i ,HN
i+1)

The above method exploits the known geometry of peptide planes by modeling
the backbone structure as a robot kinematic mechanism. The problem has been
formulated as a polynomial system, where exact solutions are obtained, without
the need of an iterative method.

4 Relative Orientation of Secondary Structures

Relative orientation of secondary structures determines the protein fold which
is fundamental for the classification of proteins into structural and operational
protein families. Previous works [2,5,8], that deal with the determination of
molecular fragments relative orientation, are not sufficiently general. They re-
quire either a graphics qualitative procedure or use a (minimal) number of NOE
distance constraints, which is hard to obtain for extended proteins.

We propose a new algebraic method that solves a system of polynomial equa-
tions using only 15N− 1H RDC data of a protein dissolved in two different me-
dia. Since we know the orientation of the magnetic vector relative to secondary
structures, the problem is reduced to an inverse kinematics problem. We find
a rotation matrix which maps the coordinates of the magnetic vector from one
molecular frame to the other. In the following paragraphs we present an ana-
lytic expression that computes a number of orientations of the unitary magnetic
vector, relative to a molecular frame, and we show an algorithm for restricting
their number.

According to (1), we can choose a global molecular frame that makes the
Saupe tensor diagonal and we call this frame Principal Alignment System (PAS)
[9]. Then, the RDC equation is expressed as

D = uTSu . (12)

where u is an internuclear unit vector relative to PAS and S is the diagonalized
molecular alignment tensor. Without loss of generality, we may assume that
the magnetic vector is collinear with the Z principle axis of PAS, cf. [3]. In
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each submolecular structure (e.g. secondary structures, domains) we can assign
a submolecular coordinate system (POF) which will make the corresponding
Saupe tensors diagonal. We may find a transformation matrix where its columns
are the unitary vectors that define the x, y, z axes of POF to the X,Y, Z axes of
PAS such that u = (PASTPOF)v where v are the internuclear unit vectors relative
to POF. Thus, (12) becomes

D = uT · S · u = vT(POFTPAS · S · PASTPOF)v . (13)

where the tensor s = POFTPAS · S · PASTPOF can be computed in the same way
as in Sect. 2 (see also [5]). Thus, we obtain the following expression

POFTT
PAS(s)

POFTPAS = S . (14)

where the SZZ element of molecular alignment tensor S is given by

− (μoh/16π3)SγNγHr−3
NHSZZ = Da . (15)

where Da is the experimental value of the tensorial axial component, γ the
gyromagnetic ratio, rNH the distance between nuclei, and S the generalized order
parameter which falls between 0.85 to 0.95, cf. [15]. Thus, from (14) we obtain
the following

SZZ = x2sxx + y2syy + z2szz,

S
′

ZZ = x
′2
s

′

xx + y
′2
s

′

yy + z
′2
s

′

zz, (16)

1 = x2 + y2 + z2 .

where B = (x, y, z), B
′

= (x
′
, y

′
, z

′
) are the coordinates of the magnetic unit

vector relative to the POF and POF
′
in the first and second alignment medium

respectively. We set B
′
= POF

′
TPOFB where POF

′
TPOF = MFT−1

POF′
MFTPOF and

obtain from (16) at most 8 magnetic vectors.
Let us focus on the problem of finding the relative orientation between two

secondary structures. We attach to each secondary structure a fixed molecular
frame in a way that diagonalizes the corresponding Saupe tensors (see Fig. 7).

Since we know the coordinates of B in each molecular frame, we need to
specify a matrix which rotates one molecular frame to the other. This is an
inverse kinematics problem where we have 3 equations with 9 unknowns. To
reduce the number of unknowns we factor the requested rotational matrix as a
product of 3 Euler angles and we obtain the following equation:

⎛
⎝x1

y1

z1

⎞
⎠ = Rz(α)Ry(β)Rz(γ)

⎛
⎝x2

y2

z2

⎞
⎠ , (17)

where POF1B = (x1, y1, z1) and POF2B = (x2, y2, z2) are the coordinates of the
unitary magnetic vector relative to the POFs of two secondary structures and
α, β, γ are the unknown Euler angles.
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Fig. 7. The magnetic unit vector relative to molecular frames

Next we describe an algorithm for finding the relative orientation between
two secondary structures:

1. For each secondary structure assign a fixed molecular frame coincident with
the POF. Obtain a second set of POFs from measurements in a second
medium.

2. Solve (16) and find one set of magnetic vector coordinates relative to the
POF of the first secondary structure and another set of vectors relative to
the POF of the second secondary structure.

3. Use all the possible magnetic vector pairs in (17) and solve for the relative
orientation between the two POFs.

4. Use the POF of the first secondary structure and calculate a new Saupe
matrix for the complex of the two secondary structures using the 15N− 1H
RDC vectors and the relative orientations from step 3.

5. Filter the relative orientations of the previous step and obtain only those
that have calculated RDC error less than 5%.

6. Use a third secondary structure and apply the steps 1 to 5.
7. The minimum norm of the difference between the relative orientations of the

original pair of secondary structures and the relative orientations we obtain
via the third one will be the criterion for finding the true solution.

Now we illustrate the above procedure by using the well studied NMR structure
of human ubiquitin (1D3Z – 5th model) [4]. We attach a molecular frame to
the 29th, 14th, 67th backbone 15N atom of α-helix (residues 25 to 33), second
β-strand (residues 11 to 17) and fifth β-strand (residues 65 to 70). Then, with
at least 5 15N− 1H RDC values and their known PDB internuclear vector coor-
dinates we calculate the Saupe matrices for each molecular frame. After Saupe
matrix diagonalization, reattach the molecular frames to POFs.

We use the alignment media DMPC/DHPC and DMPC/DHPC/CTAB with
Da values −9.15Hz and −15.51Hz respectively [4,16]. Thus, the SZZ, S

′

ZZ values
of (16) are −0.00081036, −0.001373627 where S = 0.9.
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Next, to find the relative orientation between the α-helix and the second β-
strand it is sufficient to find the relative orientation of the corresponding POFs
(POF1TPOF2) (see Fig. 7 ). We apply steps 1 to 5 of the above algorithm and we
obtain 2 orientations with RDC error less than 5%. Next, calculate the orien-
tation of the second and fifth β−strand (POF2TPOF3) and obtain 4 orientations
with RDC error less than 5%. Eventually, calculate the orientation between the
first and fifth β−strands (POF3TPOF1)and obtain 4 orientations with RDC error
less than 7%.

Obtaining the 32 possible orientations of the three secondary structures we
select the one which satisfies the minimum norm (min ‖ 2T1− 2T3

3T1 ‖), where
jTi stands for POFjTPOFi . The best solution (norm 0.15) is also the true solution
in comparison with the observed relative orientations below

1TCalc
2 =

⎛
⎝−.8324 .5501 .067
−.5542 −.8263 −.1006

0 −.1209 .9927

⎞
⎠ , 1TObs

2 =

⎛
⎝−.8605 .5090 −.0194
−.5071 −.8597 −.0617
−.0481 −.0433 .9979

⎞
⎠ .

2TCalc
3 =

⎛
⎝ .9999 −.0037 .0001
−.0037 −.9996 .029

0 −.029 −.9996

⎞
⎠ , 2TObs

3 =

⎛
⎝ .9869 .1512 −.0558

.1521 −.9882 .0121
−.0533 −.0205 −.9984

⎞
⎠ .

3TCalc
1 =

⎛
⎝−.8708 −.4873 −.0646
−.4835 .8728 −.0662
.0887 −.0264 −.9957

⎞
⎠ , 3TObs

1 =

⎛
⎝−.7708 −.6278 −.1073
−.6328 .7742 .015
.0736 .0795 −.9941

⎞
⎠ .

One additional feature of the above algorithm is that once we know the true
orientation in one place of the cycle of Fig. 7, then it propagates the true solution
to the neighbor substructures.

The above ideas can be extended as follows. The calculation of Saupe tensors
assumed that the protein backbone conformation is known. However, we might
calculate an initial Saupe tensor assuming the average φ, ψ, and bond angles of
secondary structures and then follow an iterative process of fitting the calculated
RDCs in with the observed ones as it has been implemented in [12].

To summarize the benefits of our method we have to take into account that
we formulate the protein fold problem with analytic algebraic equations. Their
special form makes them easy to solve. The runtime of our algorithm was about
7min for computing the relative orientation of 3 secondary structures, imple-
mented in MAPLE 9 on an Intel Pentium 2.5GHz PC. Furthermore, with these
analytic expressions, we are able to explore all possible solutions and deter-
mine the orientation of molecular fragments quantitatively, without a graphics
qualitative method [2].

5 Conclusion

In this section we summarize the main ideas for the problems of protein struc-
ture validation, peptide planes conformation and protein fold. In all cases, our
methods offer sufficient accuracy for biological applications, coupled with the
rigor and robustness of algebraic methods.
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In our first application (Sect. 2), we showed that an RDC equation of an
internuclear vector in a peptide plane can be expressed in an elliptic parametric
form. Constraining the solutions with a known geometric relation, we obtain 4
distinct solutions one of which is in agreement with the experimental results. The
accurate results of our method imply that a reliable protein structure may be
determined very fast using the analytic expressions of RDC equations together
with other experimental constraint measurements.

In our second application (Sect. 3) we explored the relative orientation of two
consecutive pairs of peptide planes of ubiquitin. Each pair was considered as
a rigid body of known geometry; we attached to each a molecular frame. The
relative orientation of the two molecular frames should confirm the experimen-
tal φ, ψ angles of the intermediate residue. We formulate an inverse kinematics
problem and obtain 4 sets of solutions. We showed that trigonal precise exper-
imental NOE distances in consecutive peptide pairs lead to a unique solution
for φ, ψ. The NOE constraint has to be considered as an upper distance bound
between protons.

In our last application (Sect. 4), RDCs determine the orientation of the labora-
tory magnetic unit vector relative to a molecular frame. We find a transformation
matrix that maps the magnetic vector from one molecular frame into the other.
The method uses only RDC constraints from two media and is applicable even
in cases where NOE distances are not available. Such cases are proteins with
extended molecular fragments where their remote parts are not connected with
NOE. In this way, we answer a crucial question in the problem of protein fold.
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Abstract. We present SpiCO, a new modeling and simulation language
for systems biology. SpiCO is based on the stochastic π-calculus. It
supports higher level modeling via multi-profile concurrent objects with
static inheritance. We present a semantics for SpiCO in terms of con-
tinuous time Markov chains, and show how to compile SpiCO back into
the biochemical stochastic π-calculus while preserving semantics.

1 Introduction

A central objective of systems biology is the investigation of the dynamics in liv-
ing cells, that arises from interactions between its molecular components. Mod-
eling and simulation increasingly complement knowledge acquisition through
experimentation. Discrete event based approaches are advantageous with respect
to detailed cellular control by small numbers of molecular actors. Deterministic
approaches offer benefits when modeling large populations.

Regev and co-authors [22] proposed to apply the stochastic π-calculus as a
modeling language for systems biology, based on Priami’s [20] refinement of
the synchronous π-calculus [17] by a notion of time. Expression in the π-calculus
then abstract chemical solutions, in which molecules interact concurrently. As for
earlier stochastic process algebras [9], stochastic parameters impose exponential
distributions of waiting times on reaction. Thus π-calculus expressions give rise
to continuous time Markov chains (CTMCs). Their execution yields stochastic
simulation, based on Gillespie’s algorithm [7].

Both existing simulation engines for the (biochemical) stochastic π-calculus–
SPiM [19] and BioSpi [22] – have been applied in case studies of small to medium
size [11,15,16]. Alternative modeling languages as BioCham [4] or SBML [10]
directly specify systems of chemical reaction rules. This approach is simpler, yet
seems less expressive with respect to concurrent control, i.e. intricate conditions
for rule application.

From the modeling perspective in systems biology, the minimality of the
π-calculus is sometimes unfortunate. Concurrent control soon requires sophis-
ticated protocols [11], tricky to both design and understand. Such protocols are
at a low level and must be adapted upon model extension. This constitutes a
major obstacle to up-scaling models.
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In this paper we present SpiCO, a new modeling language for systems biology
extending on a stochastic π-calculus for concurrent objects. SpiCO was indeed
developed concomitantly with modeling case studies [12,13]. The main insight
behind SpiCO is that concurrent objects (as in programming languages) appro-
priately represent interacting molecules for systems biology. Object interfaces
avoid communication protocols, while object inheritance renders models more
extensible. The technical contributions can be summarized as follows:

1. We present Core SpiCO, a novel stochastic π-calculus with input patterns,
that originate from the distributed programming language TyCO [18,25]
for typed concurrent objects in the asynchronous π-calculus. SpiCO assigns
stochastic rates to pairs of channel and function names.

2. We define a stochastic semantics assigning CTMCs to SpiCO’s process ex-
pressions, carefully distinguising timed and instantaneous reactions. Techni-
cally, this is the most difficult part of the paper. Previous semantics for the
stochastic π-calculus do not define CTMCs at all [19,22], or disregard imme-
diate reactions [20] essential for expressiveness and modeling. Experiments
with SPiM confirm a correct treatment in implementations nevertheless.

3. We identify multi-profile objects with expressions in Core SpiCO. Each pro-
file comes with its own interface, similarly as TyCO’s non-uniform objects
[23]. Beyond these, multi-profile objects allow choice with mixed input and
output on possibly different channels and synchronous communication.

4. We define a notion of inheritance for multi-profile objects that is compiled
into the core of SpiCO. We present a module system for SpiCO providing
syntax for definitions of objects with inheritance.

5. We discuss a programming technique to model mutual exclusion of molecular
events, as frequently encountered in cellular regulation. Its essence lies in
escaping inconsistent intermediate states by immediate reactions, that are
applied before timed ones. This solves tedious atomicity problems, without
introducing transactions [5].

6. We encode SpiCO back into the biochemical stochastic π-calculus, so that
we can run SpiCO programs in SPiM or BioSpi. The main challenge is to
encode input patterns, while preserving the stochastic semantics.

In previous work we proposed a first ad hoc abstraction of interacting molecules
as objects that switch between discrete states [6]. How to explicitely support ob-
jects with multiple profiles in a more conservative language with proper syntax
and semantics remained open.

Other languages for systems biology were recently proposed. Beta binders [21]
are inspired by the π-calculus, but enable interactions by type coincidence rather
than channel name equality. Others [3,24] adress spatial aspects at membranes.

Outline. The core of SpiCO is introduced in Section 2 and illustrated for model-
ing molecular binding at overlapping sites in Section 3. SpiCO’s multi-profile ob-
jects with inheritance are discussed in Section 4. CTMCs for chemical reactions in
Section 5 motivate the stochastic semantics of SpiCO in Section 6. In Section 7,
we show how to encode input patterns by a naming discipline. For space consid-
erations, the proofs are not included here but can be found in [14].



234 C. Kuttler, C. Lhoussaine, and J. Niehren

2 A Stochastic Pi-calculus with Input Patterns

The core of SpiCO (Core SpiCO) consists in a novel stochastic π-calculus with in-
put patterns, a linguistic feature introduced by Vasconcelos and Tokoro for typed
concurrent objects in the asynchronous π-calculus (TyCO) [18,25]. Input pat-
terns are motivated by pattern matching in functional programming languages of
the ML family. In TyCO, they are closely tied to communication: objects only
receive tuples if they provide a matching input pattern.

Core SpiCO’s vocabulary consists in an infinite set of channel names N =
{x, y, z, . . .}, a set of process names A, and a set of function names f ∈ F . Process
and function names have fixed arities. We write A/n or f/n for a symbol of arity
n ≥ 0. In order to account for stochastic rates, the vocabulary comprises functions
ρ : F →]0,∞] to define stochastic rates for every channel. If some function ρ is
assigned to x then ρ(f) is the rate of the pair (x, f).

Table 1 defines the syntax of Core SpiCO. We write x̃ for finite, possibly empty
sequences of channels x1, . . . , xn where n ≥ 0. When using tuples f(x̃) or terms
A(x̃) the number of arguments (the length of x̃) is assumed equal to the respec-
tive arity of f or A. Process expressions are ranged over by P . The only atomic
expression (not decomposable into others) is the guarded choice of length n = 0
that we write as 0. Expressions P1|P2 denote the parallel composition of processes
P1 and P2. A term new x:ρ. P introduces a new channel x scoping overP ; the rate
function ρ fixes stochastic rates ρ(f) for all pairs (x, f) where f ∈ F . We can omit
rate functions ρ in the declaration of a channel x if all reactions on x are instan-
taneous, i.e. ρ(f) = ∞ for all f ∈ F . An expression A(x̃) applies the definition of
a parametric process A with actual parameters x̃.

A sum of guarded processes C1 + . . . + Cn offers a choice between n ≥ 0 com-
munication alternatives C1, . . . , Cn. A guarded input x?f(ỹ) describes a commu-
nication act, ready to receive over x a tuple constructed by f . The channels ỹ in
input guards serve as pattern variables; these bound variables are replaced by the
channels received as input. An output guarded process x!f(ỹ).P describes a com-
munication act willing to send tuple f(ỹ) over channel x and continue as P .

A definition of a parametric process has the formA(x̃) � P where A is a process
name with x̃ as formal parameters - that is, a sequence of bound channels. For
modeling convenience, we permit free channel names in P besides the parameters

Table 1. Syntax of Core SpiCO

Processes P ::= P1 | P2 parallel composition
| new x:ρ. P channel creation
| C1 + . . . + Cn sum (n ≥ 0)
| A(x̃) application

Guarded processes C ::= x?f(ỹ).P pattern input
| x!f(ỹ).P tuple output

Definitions D ::= A(ỹ) � P
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Table 2. Axioms of the structural congruence

(P1|P2)|P3 ≡ P1|(P2|P3) P1|P2 ≡ P2|P1

. . . + C1 + C2 + . . . ≡ . . . + C2 + C1 + . . . P |0 ≡ P
new x:ρ. (P1|P2) ≡ P1| new x:ρ. P2 if x /∈ fv(P1) P1 ≡ P2 if P1 ≡α P2

new x1:ρ1. new x2:ρ2. P ≡ new x2:ρ2. new x1:ρ1. P if x1 �= x2

Table 3. Reduction relation for a finite set of definitions Δ

Communication, choice, and pattern matching:

x!f(ỹ).P1 + . . . | x?f(z̃).P2 + . . . → P1 | P2[z̃ �→ ỹ] if z̃ free for ỹ in P2

Application of definitions:

A(x̃) → P [ỹ �→ x̃] if A(ỹ) � P in Δ, and ỹ free for x̃ in P

Context and congruence closure:

P → P ′

new c:ρ. P → new c:ρ. P ′
P → P ′

P | Q → P ′ | Q

P ≡ P ′ P ′ → Q′ Q ≡ Q′

P → Q

in x̃. The set of free channel names for processes P and guarded processes C are
denoted by fv(P ) and fv(C) respectively. There are three scope baring constructs:
new binder new x:ρ. P , input patterns ?f(x̃).P , and definitions A(x̃) � P .

We define an (non-stochastic) operational semantics for the π-calculus in terms
of a binary relation between expressions, the so called (one step) reduction. We will
later refine it to a ternary relation adding stochastic labels. The reduction relation
is closed under the usual structural congruence (Table 2) between expressions.

Table 3 defines the reduction relation. The first axiom tells how to interpret
choices; it comprises channel communication and pattern matching. It applies to
two complementary matching alternatives in parallel choices, an output alterna-
tive x!f(ỹ).P1 willing to send a term f(ỹ) and an input pattern x?f(z̃).P2 on the
same channel x; this pattern matches in that it is built using the same function
symbol f . Reduction cancels all other alternatives, substitutes the pattern’s vari-
ables z̃ by the received channels ỹ in the continuation P2 of the input, and reduces
the result in parallel with the continuation of the output P1.

Only matching tuples can be received over a channel. Other sending attempts
suspend until a suitable input pattern becomes available. This fact proves ex-
tremely useful for concurrent modeling. Upon reception, tuples are immediately
decomposed, in contrast to the π-calculus with data terms [1].

The application axiom unfolds one of the definitions of the parametric processes
in a given set Δ. An application A(ỹ) reduces in one step to definition P in which
the formal parameters ỹ were replaced by the actual parameters x̃. Parametric
definitions may be recursive, e.g. A may occur in P . Reduction can be applied in
arbitrary contexts, however not under choices or in definitions.

The syntax of the biochemical stochastic π-calculus is the same as ours ex-
cept for function names, and our more flexible assignment of stochastic rates. We
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can express polyadic input and output by using dummy function names uniti for
all arities i ≥ 0 in following shortcuts for all sequences ỹ of channel names of
length i:

x?(ỹ).P =def x?(uniti(ỹ)).P and x!(ỹ).P =def x!(uniti(ỹ)).P

3 Molecular Binding at Overlapping Sites

We illustrate the modeling power of SpiCO by a frequent control mechanism be-
tween molecular interactions, as binding of molecules: mutual exclusion [11,12].
Consider overlapping sites allowing for a unique visitor at a time - i.e. overlapping
semaphores.

Figure 1(a) illustrates two such overlapping sites s and s’. Each can be either
free, bound, or blocked. Only a free site can become bound by a visitor - while
blocking the peer. We model sites as multi-profile object with three profiles
Site free, Site bound, and Site blocked. Figure 2 presents their definitions in the
π-calculus. Beside of its own identity me, a site is parametrized by the identity
of the other overlapping site. The defining sums specify interfaces for profiles, i.e.
which functions are offered or applied and on which channels. Profile Site free for
instance, offers functions bind and block by which it can become bound or blocked,
and can apply function unblock of the other site.

Multi-profile objects yield an elegant solution to express semaphores (sites with
at most one visitor). A visitor can only bind to free sites since no other profile offers
the bind function. This exploits the clever coupling between pattern matching and
synchronization by input patterns.

The most tedious aspect of overlapping sites is to keep states consistent. When-
ever a site gets bound, its overlappingpeer must immediatelybecome blocked, i.e.
without any elapse of simulated time. The actor Site bound(me,other) enforces this
by applying function block on its peer. The stochastic rate of this function needs
must thus be∞. This technique works only if immediate transitions have priority
over time-consuming ones, and under the assumption that function block is im-
mediate. Highest priority of immediate transitions is guaranteed by the stochas-
tic semantics to come (see rule (sum) in Table 4). This way, we solve a tedious
atomicity problems while avoiding heavier extensions of the π-calculus by trans-
actions [5].

(a) unbound state

Site(s,s’) Site(s’,s) interaction delay

free free s.bind() timed
bound free s’.block() immediate
bound blocked s.unbind() timed
free blocked s’.unblock() immediate
free free

(b) Sample execution

Fig. 1. Overlapping sites located at s and s’
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module ’ o v e r l a p p i n g s i t e s ’
export S i t e with b ind /0 , unb ind/0
de f ine

S i t e (me , o t h e r ) � S i t e f r e e (me , o t h e r )
S i t e f r e e (me , o t h e r ) �

. me? b ind ( ) . S i t e bound (me , o t h e r ) // t imed
+ me? b lock ( ) . S i t e b l o c k e d (me , o t h e r ) // immediate
+ o t h e r ! unb lock ( ) . S i t e f r e e (me , o t h e r ) // immediate

S i t e bound (me , o t h e r ) �
me? unb ind ( ) . S i t e f r e e (me , o t h e r ) // t imed

+ oth e r ! b l ock ( ) . S i t e bound (me , o t h e r ) // immediate
S i t e b l o c k e d (me , o t h e r ) �

me? unb lock ( ) . S i t e f r e e (me , o t h e r ) // immediate

Fig. 2. Overlapping sites module

Table 4. Timed transitions of Core SpiCO with respect to a set Δ of definitions in
prenex normal form, and a global assignment 
 of channels to rate functions

Labeled reduction steps

(com)

Cj1
i1

= x?f(z̃).new x̃1:ρ1. Q1 Cj2
i2

= x!f(ỹ).new x̃2:ρ2. Q2

Πn
i=1

∑mi
j=1 Cj

i

�(x)(f)−−−−−−→
i1,j1,i2,j2

{
new x̃1:ρ1. new x̃2:ρ2.

(Q1[z̃ �→ ỹ] | Q2 | Πn
i=1,i�=i1,i2

∑mi
j=1 Cj

i )

where Q1, Q2 have no top-level new-binders and
1 ≤ i1 �= i2 ≤ n, 1 ≤ j1 ≤ mi1 , 1 ≤ j2 ≤ mi2

(app)
Pi1 = A(ỹ) A(x̃) � new z̃:ρ. Q in Δ

Πn
i=1Pi

∞−→
i1

new z̃:ρ. (Q[x̃ �→ ỹ] | Πn
i=1,i�=i1Pi)

where Q has no top-level new-binders and 1 ≤ i1 ≤ n

(new)
P

s−→
w

Q 
(x) = ρ

new x:ρ. P
s−→
w

new x:ρ. Q
where s ∈ R+ ∪ {∞}, w ∈ N ∪ N4

Time consuming transitions (r, r′ ∈ R+, w ∈ N4)

(sum)

P ≡ P ′ r =
∑

P ′ r′−→
w

Q′≡Q

r′ �= 0 ¬∃R∃w′ ∈ N ∪ N4. P ′ ∞−→
w′

R

P
r−→ Q

Immediate transitions

(count)
P ≡ P ′

n = �{w ∈ N ∪ N4 | P ′ ∞−→
w

Q′ ≡ Q} �= 0

m = �{w ∈ N ∪ N4 | P ′ ∞−→
w

Q′′}

P
∞(n/m)−−−−−→ Q
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module ’ v i s i t o r s f o r s i t e s s or s ′ ’
pub l i c s s ′

export V i s i t o r
de f ine

V i s i t o r ( ) � V i s i t o r f r e e ( )
V i s i t o r f r e e ( )� s ! b ind ( ) . V i s i t o r a t ( s )

+ s ′ ! b ind ( ) . V i s i t o r a t ( s ′ )
V i s i t o r a t ( s i t e ) � s i t e ! unb ind ( ) . V i s i t o r f r e e ( )

Fig. 3. Visitors module for sites s and s’

One possible sequence of state changes is given in Figure 1(b). Initially, we as-
sume a parallel composition of two free sites and two free visitors. The first pa-
rameter of Site free refers to its identity and the second to its peer’s:

Site free(s,s′) | Site free(s′,s) | Visitor free | Visitor free
−→ Site bound(s,s′) | Site free(s′,s) | Visitor free | Visitor at(s)
�−→ Site bound(s,s′) | Site bound(s′,s) | Visitor at(s) | Visitor at(s′)

The first reduction step is an application of function bind of s by the second
Visitor free defined in Figure 3, which consumes time. Now Site free(s’,s) has a po-
tential choice between a time consuming transition where function bind of s’ is
applied by the first Visitor free, and an immediate transition applying function
block of s’ by Site bound(s,s’). Priority is given to immediate transitions, so only
the latter function can be applied.

∞−→ Site bound(s,s′) | Site blocked(s′,s) | Visitor at(s) | Visitor free

Thereby, it becomes impossible to enter into an erroneous configuration in which
both Sites are bound.

4 Multi-profile Objects with Inheritance

The full SpiCO language features multi-profile objects with static inheritance. In
this section, we define these concepts formally and show how to compile them to
Core SpiCO.

SpiCO supports the paradigm of “molecules as concurrent objects” a refine-
ment of the paradigm “molecules as processes” by Regev and Shapiro. Object
classes correspond to species of molecules. A class of a multi-profile object is a
set of definitions by sums, each of which defines a profile.

Obj p1(x̃1) � C1
1 + . . . + C1

n1

. . .

Obj pm(x̃m) � Cm
1 + . . . + Cm

nm

A major advantage of object-orientation for biological systems is model
extensibility by object inheritance. Numerous examples are elaborated in [12]. A
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module ’ r e p r e s s i b l e promoter ’
import S i t e from ’ o v e r l a p p i n g s i t e s ’

export
Promoter extends S i t e by i n i t i a t e /0

de f ine
Promoter bound (me , o t h e r ) extended by

me? i n i t i a t e ( ) . P r omo t e r f r e e (me , o t h e r )

Fig. 4. Promoters inherit from overlapping sites

simpler case is given in Figure 4. This is a promoter, a Dna region controlling
transcription initiation, which overlaps with an operator region. A promoter
is thus like an overlapping site, except that it can initiate transcription when
bound by a polymerase. This new functionality is added by inheritance. We next
define inheritance for multi-profile objects. We extend class Obj to Obj2 as follows:

Obj2 extends Obj
Obj2 p1 ( z̃1 ) extended by C1

k1+1 + . . . + C1
l1

. . .
Obj2 pn ( z̃n ) extended by Cn

kn+1 + . . . + Cn
ln

This specification with inheritance can be compile into definitions of Core SpiCO:

Obj2 p1 ( z̃1 ) � C1
1 + . . . + C1

l1 [ Obj �→ Obj2 ]
. . .

Obj2 pn ( z̃n ) � Cn
1 + . . . + Cn

ln [ Obj �→ Obj2 ]

The substitution renames all recursive calls to profiles Obj pi into recursive calls
to Obj2 pi for 1 ≤ i ≤ n.

SpiCO provides a module system for grouping sets of definitions together so
that they can be extended by multiple inheritance. Modules import definitions
from others as usual. Such module dependencies can be resolved statically, as long
as they remain acyclic, which SpiCO assumes. The details of the module systems
are out of the scope of this paper.

5 Markov Chains for Chemical Reactions

The stochastic semantics of our π-calculus is guided by the analogy to continuous
time Markov chains (CTMCs) for chemical reactions.

We first recall CTMCs with countably infinite state spaces. We assume a count-
able set S called the state space. A continuous time stochastic process with states
q ∈ S is a family {Xt | t ∈ R+} of random variables with values in S. These de-
fine probabilities Pr(Xt ∈ S′) for all subsets S′ ⊆ S, i.e. the probability that the
process is in some state of S′ at time t.

A continuous time Markov chain (CTMC) is a continuous time stochastic
process (CTSP), with memoryless sojourn times for all states. More formally, a
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CTMC over S is a CTSP {Xt | t ∈ R+} with states in S, that satisfies the Markov
property, i.e. for all q0, . . . , qn+1 ∈ S and all time points 0 ≤ t0 < . . . < tn+1:

Pr(Xtn+1 = qn+1 | Xtn = qn, . . . , Xt0 = q0) = Pr(Xtn+1 = qn+1 | Xtn = qn)
The probabilistic behavior of a CTMC is determined by the distribution of its

initial states (at time 0) and its transition rates. The transition rate r from state
q to state q′ is a value that “scales how the (one step) transition probability be-
tween q and q′ increases with time” [8]. We write q

r−→ q′ in this case. For simplic-
ity, we consider CTMCs with a single initial state. These can be identified with
a Markovian transition system (S, ( r−→)r∈R+ , q0) where q0 ∈ S is the initial state
and r−→ ⊆ S × S are transition relations for all r ∈ R+, such that for all q, q′ ∈ S
there exists at most one r ∈ R+ satisfying q

r−→ q′.
The stochastic time evolution of a CTMC can be computed by Gillespie’s first

reaction method (1976) [7] if each state permits only a finite number of transitions,
as we assume in the sequel. At time 0 the process starts in state q0. Suppose that
the process has moved to state q at time point t and let q{ ri−→ qi}i be all (finitely
many) transitions starting in q. Draw delays ti > 0 for all i from an exponential
distribution with rate ri. Draw with equal probability some j, with minimal tj .
Move to state qj at time point t + tj .

Gillespie’s direct method equivalently determines the stochastic behavior of a
CTMC [7]. In state q at time t it first computes the delay until the next transition
(called sojourn time), by drawing a number from the exponential distribution with
rate ↓ s =def

∑
q

ri−→qi

ri. Second, the state qj to go to is drawn with probability

Pr(q −→ qj) =def rj/
∑

q
r′−→q′

r′ if q
rj−→ qj and 0 otherwise.

We next illustrate CTMCs for systems of chemical reaction rules. We start from
a set of chemical speciesX,Y, Z and a set of chemical reaction rules of the following
form, where r ∈ R+, reserving the symbol + for choice:

X | Y r−→ Z1 | . . . | Zk

Chemical solutionsP are multisets of species, where each occurrence in the mul-
tiset represents a molecule of the species. Chemical rules as above apply as follows
to a chemical solution P . Each pair of molecules of species X and Y can interact
at rate r, yielding one molecule of each of the species Z1, . . . , Zk. The solution
obtained is P − {| X,Y |} ∪ {| Z1, . . . , Zk |}. According to the Chemical Law of
Mass Action, the speed of a chemical reaction in a solution is proportional to the
number of possible interactions of its reactants in the solution. It is distributed
exponentially, and defines a CTMC with chemical solutions as states and the fol-
lowing transitions:

P
n·r−−→

{
P − {| X,Y |}
∪{| Z1, . . . , Zk |}

where n =

⎧⎨
⎩

�(X ∈ P )× �(Y ∈ P ) if X �= Y(
�(X ∈ P )

2

)
else

The expression
(

m
2

)
= 1

2 m (m − 1) counts the number of two-element subsets

in sets of cardinality m.
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6 Stochastic Semantics of Core SpiCO

We define the stochastic semantics of Core SpiCO by associating a π-calculus
process with a CTMC. The states of this Markov chain are the (countably infi-
nite) set of congruence classes of π-calculus processes with respect to structural
congruence. This differs from [20] where two congruent processes are associated
with two different states. Since congruent processes are behaviorally equivalent
we believe that their associated stochastic states should not be distinguished nei-
ther. Moreover, in [20], the author proposes a labeled semantics where labels are
so-called proof terms, i.e. (possibly long) strings used to localize interacting sub-
terms. Those labels are necessary to properly calculate interaction rates. We in-
stead propose a reduction semantics, a style for defining semantics known to be
more intuitive and elegant. Still, we temporarily use labels but in a much simpler
form: a label is an integer or a tuple of four integers. Finally, and contrary to [20],
our semantics takes into account immediate transitions of which we emphasized
the importance in the biological example in section 3. Such transitions require
specific consideration: we show how they can be removed in order to obtain an
equivalent Markovian transition system. The theorem 1 states the correctness of
this transformation.

6.1 Transition Relations

We first consider the fragment of the π-calculus without proper summation, para-
metric processes, infinite rates, and new-binders. The remaining processes are
parallel compositions C1 | . . . | Cn. The structural congruence turns them
into multisets of guarded processes, i.e. into chemical solutions whose species are
guarded processes.

Suppose we know the rate functions !(x) for all channels x. The π-calculus with
input patterns then defines the following chemical reaction rule:

x?f(z̃).Q1 | x!f(ỹ).Q2
�(x)(f)−−−−−→ Q1[z̃ �→ ỹ] | Q2

This defines a CTMC. For example, assume n molecules of a first species x!f().P1

and m of another different one x!f().P2, which all want to react with a single
molecule of a third kind x?f().P . The Markovian transitions are:

n∏
i=1

x!f().P1 |
m∏

i=1

x!f().P2 | x?f().P

⎧⎨
⎩

n×�(x)(f)−−−−−−−→
∏n−1

i=1 x!f().P1 |
∏m

i=1 x!f().P2 | P

m×�(x)(f)−−−−−−−→
∏n

i=1 x!f().P1 |
∏m−1

i=1 x!f().P2 | P

We first discuss time consuming transitions P r−→ P ′ where r ∈ R+. These cap-
ture everything, except parametric process unfolding and invocation of functions
of rate ∞.

We first define labeled reduction steps P
s−→
w

Q where P and Q are in prenex
normal form, that is a parallel composition of sums where restrictions have been
pushed ahead and in which bound variables are renamed apart. The rate function
!(x) is then read off from the quantifier prefix in rule (new).



242 C. Kuttler, C. Lhoussaine, and J. Niehren

Definition 1. P is in prenex normal form (pnf for short) iff P = new x̃:ρ. (P1 |
. . . | Pm) where each Pi either is an application A(ỹ), or a sum C1 + . . . + Cn

where each Cj is in pnf, or a guarded process x?f(ỹ).Q or x!f(ỹ).Q where Q is in
pnf. Moreover, a definition A(ỹ) � P is in pnf iff P is in pnf.

What remains from pnfs after removing top-level new-binders are multisets of
sums and applications. All applications must have been reduced before time con-
suming transitions can apply, so we have a multiset of sums. Each sum is like a
molecule, except that each of its choices offers its own interactions.

In x?f().0 + x?f().0 | x!f().0 there are two possible interactions with rate
r = !(x)(f) leading to the same state. We can think of x?f().0 + x?f().0 as a
protein with two identical domains, complementary to one domain of some other
protein represented by x!f().0. The overall rate of the interaction thus doubles:

x?f() .0 + x?f().0 | x!f() .0 r−−−−→
1.1.2.1

0

and x?f().0 + x?f() .0 | x!f() .0 r−−−−→
1.2.2.1

0

sums up to x?f().0 + x?f().0 | x!f().0 2r−→ 0

Rule (com) defines labeled reductions P
r−−−−−−→

i1,j1,i2,j2
Q that distinguish commu-

nication actions with identical reactants and results, while using different occur-
rences of choice alternatives in sums. Those occurrences are identified by labels in
N4 that specify the numbers of the reacting sums (i1, i2) and the reacting choices
(j1, j2). Rule (sum) defines transitions P

r−→ Q by summing up all rates of all dif-
ferent interactions leading from P to Q. These reduction rules are defined with
care, so that corresponding interactions in structurally congruent processes are
not counted twice.

We next turn to immediate transitions P
∞(p)−−−→ Q, where p ∈ [0, 1] is a proba-

bility. Rule (sum) ensures that time consuming transitions apply only after all im-
mediate have been reduced. In this case, all calls A(ỹ) on top level must have been
reduced before. Note that this order is important for a proper count of the possible
interactions. Indeed, if an application hides an interaction on some pattern, the
application unfolding changes the rate of the action involving this pattern. Imme-
diate transitions can be licensed by communication (com), or by applications of
parametric process definitions (app). Their labels are in N ∪ N4. Note that the
labeled reduction is independent of the choice of the pnf.

We merge labeled immediate transitions with rule (count). Although being
immediate we want to associate probabilities, which characterize the number
of immediate interactions leading to a common state with respect to the total
number of enabled immediate interactions. For instance, let !(x)(f) = ∞, in
x?f().P + x?f().P | x?f().Q | x!f().0, for some P �≡ Q, the associated prob-
abilities reflect that 2 out of 3 interactions lead to P , and 1 out of 3 to Q:

x?f().P + x?f().P | x?f().Q | x!f().0
∞(2/3)−−−−−→ P

x?f().P + x?f().P | x?f().Q | x!f().0
∞(1/3)−−−−−→ Q
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Table 5. Elimination of immediate transitions and merging timed transitions

(elim1)
P

∞−→
w

Q n = �{w′ ∈ N ∪ N4 | P
∞−→
w′

Q′}

P
∞(1/n)−−−−−→

w
Q

w ∈ N ∪ N4

(elim2)
P

r−→
w

Q Q
∞(p1)−−−−→

w1
. . .

∞(pn)−−−−→
wn

Qn � ∞−→

P
rp1...pn=⇒

ww1 ...wn

Qn

r ∈ R+

(elimsum)
P ≡ P ′ r =

∑
P ′ r′

=⇒
w1...wn

Q′≡Q
r′

P
r

=⇒ Q

6.2 CTMCs with Immediate Reactions

In the presence of immediate transitions, the reduction relation r−→ does not de-
fine a Markovian transition system (in which all rates are finite). To capture the
stochastic dynamics of processes, we instead define the sojourn time parameters
(i.e. the parameter of an exponentially distributed probability which determine
the sojourn time in a given state) and the probabilities of state changes for all
P,Q as follows1:

↓ P =

{
∞ if P

∞(p)−−−→ Q,∑
P

r−→Q
r otherwise.

Pr(P −→ Q) =

⎧⎪⎨
⎪⎩

r/
∑

P
r′−→Q′

r′ if P r−→ Q

p if P
∞(p)−−−→ Q

0 otherwise

We are now giving an interpretation of the reduction semantics with immediate
transitions in terms of CTMCs for processes that can not exhibit infinite sequences
of immediate transitions. The Markovian transition system deriving statements
P

r=⇒ Q is defined in Table 5. The idea is quite similar to that of [2]: the transi-
tions are obtained by integrating immediate transitions into time consuming tran-
sitions. An example for this transformation is as follows:

P

⎧⎪⎨
⎪⎩

r1−→ Q1 � ∞−→
r2−→ Q2

{ ∞(p)−−−→ Q21 � ∞−→
∞(1−p)−−−−−→ Q22 � ∞−→

becomes P

⎧⎪⎨
⎪⎩

r1=⇒ Q1
r2p
=⇒ Q21

r2(1−p)
=⇒ Q22

In general, a sequence of reductions P
r−→ P1

∞(p1)−−−−→ . . . Pn
∞(pn)−−−−→ Q � ∞−→

reduces to P
rp1...pn=⇒ Q. However, we must beware of merging initially distinct

states. Indeed, in the previous example, if Q22 ≡ Q1 then the CTMC should have

transitions P
r1+r2(1−p)

=⇒ Q1 and P
r2p
=⇒ Q21. In order to infer these transitions

correctly, the elimination procedure defines labeled transitions r=⇒
w

with labels w ∈
(N ∪N4)� representing paths in the labeled derivation trees of r−→.

1 We assume if X is exponentially distributed with parameter ∞ then Pr(X = 0) = 1.



244 C. Kuttler, C. Lhoussaine, and J. Niehren

For any P such that P � ∞−→, (P/≡, ( r=⇒)r∈R+ , P/≡) is a Markovian transition
system2 with sojourn time parameters and transition probabilities:

⇓ P =
∑

P
r

=⇒Q

r and Pr(P ⇒ Q) =

{
r/

∑
P

r′
=⇒Q′

r′ if P r=⇒ Q

0 otherwise

In order to show that this defines a Markovian model for the reduction seman-
tics with immediate transitions, we show that their dynamics coincide, that is: the
sojourn time parameters and the transition probabilities with respect to r−→ are
identical to those of r=⇒. However, transition probabilities can be compared only
for processes performing timed transitions. We thus define a suitable transition
probability Pr(P � Q) for P � ∞−→ and Q � ∞−→, that is the probability to reach Q
from P by a sequence of transitions made of one timed transition and possibly
several intermediate immediate transitions. Formally, Pr(P � Q) is the sum of
the probabilities of all such sequences:

Pr(P � Q) =
∑

P
r−→Q1

∞(p1)−−−−→...Qn

∞(pn)−−−−→Q
 ∞−→

(
Pr(P −→ Q1)×

∏n
i=1 pi

)

Theorem 1. IfP � ∞−→ and if no infinite sequence of immediate transitions is reach-
able from P , then

– (Timed correctness) ↓ P = ⇓ P ,
– (Probabilistic correctness) Pr(P � Q) = Pr(P ⇒ Q).

7 Encoding Input Patterns

We now encode SpiCO back into the stochastic π-calculus. The latter can be iden-
tified as the special case with a unique function name per arity (we assume arities
bounded by some max): F ′ = {uniti | 0 ≤ i ≤ max}. In what follows, we write
unit instead of uniti.

We assume a total ordering < on a finite set of function names F . This means
that F has a unique representation F = {f1, . . . , fn} with f1 < . . . < fn. Our
encoding uses channel names from the set N ×F . We denote elements (x, f) of
this set by xf . For each channel x we define a sequence of n channels xF as follows:
xF =def xf1 , . . . , xfn . Channels in the target language are associated a rate (that
may be infinite) by means of the encoding of ! defined as �!�(xf ) = !(x)(f). We
write x̃, ỹ for the concatenation of two sequences x̃ and ỹ. If x̃ = x1, . . . , xn then
we let x̃F =def x1F , . . . , xnF . The encoding is given in Table 6.

The following theorem states the correctness of our encoding. It allows us to run
simulations of models expressed in SpiCO, via an implementation of the original
stochastic π-calculus, as implemented in the SPiM system [19].

2 For P
∞−→ it suffices to start with a process Q = x!f().0 | x?f().P such that


(x)(f) = 1 in order to obtain a set of initial processes together with an initial prob-
ability distribution of those processes rather than a single initial process.
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Table 6. Encoding of input patterns

�new x:ρ. P � =def new xf1 :ρ(f1). · · · .new xfn :ρ(fn). �P �
�P1 | P2� =def �P1� | �P2� �A(ỹ)� =def A(ỹF)

�C1 + · · · + Cn� =def �C1� + · · · + �Cn� �A(x̃) � P � =def A(x̃F) � �P �
�x?f(ỹ).P � =def xf?(ỹF).�P � �x!f(ỹ).P � =def xf !(ỹF ).�P �

Theorem 2. The encoding defines a stochastic bisimulation: for all processes P,Q
and finite sets of definitions Δ, and all rates s ∈ R+ ∪ {∞(p) | p ∈]0, 1]} it holds
that P s→ Q relative to Δ if and only if �P �

s→ �Q� relative to �Δ�.

The statement P
s→ Q relative to Δ means that there exists some function ! :

N → F → (R+ ∪ {∞}) such that P
s→ Q relative to Δ and !. The values !(x)

will be the rate ρ assigned to x in the declaration new x:ρ. It holds for all ρ and
x that !(x) = ρ iff �!�(xf ) = ρ(f) for all f ∈ F .

The statement �P �
s→ �Q� relative to �Δ� means that there exists some function

!′ : {xf | f ∈ F , x ∈ N } → (R+ ∪ {∞}) such that �P �
s→ �Q� relative to �Δ�

and !′. The situation differs in that there exists only a single function unit for all
arities. We are a little sloppy in identifying a constant function with its constant
value, i.e. !′(xf ) = !′(xf )(unit).

8 Conclusion and Future Work

We presented SpiCO, a novel higher-level modeling language for systems biol-
ogy. SpiCO provides multi-profile objects with static inheritance. It supports the
paradigm of modeling “molecules as concurrent objects”. The core of SpiCO is
a novel stochastic π-calculus with input patterns. We presented its stochastic se-
mantics in terms of CTMCs and showed how to compile it into the biochemical
stochastic π-calculus, so that the semantics is preserved. In future work, we plan
to finalize SpiCO’s language specification and to provide an implementation.
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Abstract. We investigate the modeling of biological systems with static
compartments through Beta-binders, a recently developed process calcu-
lus. Biological entities are represented as bio-processes and the calculus
is extended with the notion of compartment. Entities can either be in-
ternal to compartments or reside on compartment borders. Movement
in and out of compartments is requested by internal objects and me-
diated by border objects. The extended calculus is equipped with the
notion of locality, and various kinds of relations between actions are de-
fined. Moreover, we compare our proposal with similar formalisms and
we show how to use the proposed calculus for modeling and analyzing
the cAMP-signaling pathway in OSNs.

1 Introduction

Compartments are present in all biological systems: a cell is a compartment,
which in turn contains other compartments (the most important of which is the
nucleus). Compartments are fundamental for the evolution of biological systems,
because they provide a means for isolating their content from the external envi-
ronment, still allowing some exchange of information, mainly through membrane
proteins.

Several languages have been proposed to model biological compartments (e.g.
Brane calculi [1], BioAmbients [2] and Beta-binders [3,4]). All of them have some
differences in the considered notion of compartment and in the kinds of opera-
tions allowed (see Sect. 6 for a discussion). We focus here on Beta-binders, a pro-
cess calculus with a two level syntax. The main objects, called bio-processes, are
boxes with typed interfaces and whose behavior is driven by simplified π-calculus
[5] like processes that they enclose.

In Beta-binders the nesting of boxes is not allowed, but typed interfaces ensure
that a virtual form of nesting can be represented. Modeling complex hierarchies,
however, is quite a difficult task that is simplified by our current proposal. We
rely on a general interpretation of bio-processes as structured communicating
objects and we propose an extension with the notion of static compartments, that
permits an intuitive representation of hierarchical structures, still forbidding the
explicit nesting of boxes.
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The structure of compartments and boxes allows us to consider spatial rela-
tions between events, e.g. the location where a protein-protein interaction occurs.
Therefore, we enrich the calculus with some locality relations, both on compart-
ments and on boxes. We adopt the transition system-based technique used in
[6,7] to define a locality relation for the π-calculus. Examples of use of locality
relations in modeling biochemical systems are in [8].

In the next section we briefly describe a slight variant of Beta-binders. In
Sect. 3 we introduce the notion of compartments and in Sect. 4 we present the
labeled semantics of Beta-binders; in Sect. 5 some locality relations are defined.
In Sect. 6 we compare our proposal with some existing works, while the appli-
cation of our proposal to a model of the cAMP-signaling pathway in OSNs is
shown in Sect. 7. Finally some concluding remarks are presented.

2 Beta-binders

Beta-binders [3,4] is a bio-inspired process calculus developed to better adhere
to the structure and dynamics of biological systems. By introducing the concept
of affinity, the calculus relaxes the key-lock model of interaction, commonly
assumed in classical process calculi, and hence it permits us to model more
correctly domains and interactions between enzymes and small molecules based
on their types and affinities. In Beta-binders, pi-processes are encapsulated into
boxes with interaction capabilities, also called bio-processes. Like the π-calculus,
Beta-binders is based on the notion of naming. Thus, we assume the existence
of a countably infinite set N of names (ranged over by lower-case letters).

The pi-processes wrapped into boxes are given by the following context free
grammar:

P ::= nil | π. P | P |P | !π.P

π ::= x(y) | x〈y〉 | expose(x, Γ ) | hide(x) | unhide(x) .

The π-calculus syntax is enriched by the last three prefixes for π to manipulate
the interaction sites of the boxes. The object y in the input prefix x(y) as well
as the object x in expose(x, Γ ) prefix act as binding occurrences. Hence we can
define free fn and bound bn names as usual. Bio-processes are defined as pi-
processes prefixed by specialized binders that represent interaction capabilities.
An elementary beta binder has the form β(x : Γ ) (active) or βh(x : Γ ) (hidden)
where the name x is the subject of the beta binder and Γ represents the type of
x. With β̂ we denote either β or βh. A well-formed beta binder (ranged over by
B, B1, B′, · · · ) is a non-empty string of elementary beta binders whose subjects
and types are all distinct. The function sub(B) returns the set of all the beta
binder subjects in B. Moreover, B∗ denotes either a well-formed beta binder or
the empty string. The function α(Δ,Γ ) → IR returns the affinity of the types
Δ and Γ . Types are any algebraic structure for which there exists a decidable
equality procedure. Hereafter, we also assume that substitution is not defined
over the elements in a type. Note also that we do not have restriction in pi-
processes and ! is guarded. This choice is done to adhere to the implementation
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of the language developed so far [9], but the general case works perfectly with
the following development in this paper.

Bio-processes (ranged over by B, B1, B′, · · · ) are generated by the following
context free grammar:

B ::= Nil | B[ P ] | B ‖ B.

The system is a parallel composition of bio-processes that can be either the
deadlock bio-process Nil or the elementary bio-process B[ P ]. The semantics of
bio-processes is given in [3] in terms of a reduction relation (−→), which uses a
structural congruence relation (≡). We postpone the formal definitions of these
relations to the next sections. For their standard definitions, see [3].

3 Compartments

The way in which a biological system is modeled here with Beta-binders is as a
composition of boxes, where each box represents a biological entity. Although the
nesting of boxes is forbidden, the typing for sites and the operational semantics
ensures that a virtual form of nesting can be represented [4]. This model might be
too abstract, but it has been chosen to keep the formalism as simple as possible.

Consider for example the system

S = B ‖ B′ ‖ B′′

where B = β(s : Δ2) [ s(v) . R ], B′ = β(x : Δ0) [ x〈z〉 . hide(x) . P ] and B′′ =
β(y : Δ1) [ y(v) . Q ] and where α(Δ0, Δ1) > Th ∧ α(Δj , Δ2) < Th with j ∈
{0, 1}.1 The affinity between the types exposed by the boxes could give us an idea
of how the boxes are grouped in compartments. In fact, we could imagine that
the first and the second boxes are in the same compartment and that the third
box is in another one. However, this kind of virtual nesting is ambiguous and for
each defined system several different hierarchical structures can be deduced. In
fact, all the following three compartmentalization would be valid.

Moreover, consider the movement of objects across compartments. Since types
encode compartments, moving an object from a compartment to another one
means changing the types of the sites properly, using sequences of hide, unhide
and expose operations. As the complexity of the model grows, the number of
necessary actions makes this approach not practical and difficult to manage.

1 The value Th represents a context dependent threshold over which two types are
considered compatible.
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For these reasons we decided to introduce a finer and more explicit notion
of compartments. Since we do not want to diverge from the original language,
we decided to maintain the representation of systems as parallel composition
of bio-processes, enriching them statically with labels acting as unique names
which specify their location.

3.1 The Abstraction

Our goal is to provide a simple framework for modeling systems with static com-
partments and movements of components across compartments. A component is
a structured object that can interact with other components through an affinity
interaction model. Moreover, the movement of components between compart-
ments is mediated by other components lying on compartment borders. From a
biological point of view this can be seen as a system where molecules and com-
plexes can change compartment through interaction with transmembrane pro-
teins. However, since compartmentalization and movement of components across
compartments play a critical role in computational systems, our approach can
be applied in different contexts and at different levels of abstraction.

3.2 Static Compartment Hierarchy

Consider the system represented in Fig. 1(a). There is an outside compartment (S)
that represents the whole system. The system contains three sub-compartments
(A,B,C). Moreover, the compartmentB contains another compartment (D). The
rectangles and the triangles represent the components of the system. In particu-
lar, rectangles are components internal to compartments, while triangles are com-
ponents that reside on compartment borders. We call i-components the internal
components and b-components the border ones. We introduce the distinction be-
tween i- and b-components to be closer to real biological systems, in which objects
residing on membranes and objects residing inside compartments have different
and specific functions.

Fig. 1. (a) System with static compartments; (b) The tree representation of the hier-
archical structure of the compartments
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The static hierarchical structure of the system can be seen as a tree (Fig. 1(b))
where the nodes represent the compartments, and the numbers on the edges
represent the numbering of the children.

Instead of using specific labels (e.g. S, A, ...) we can identify each compartment
of the system with a sequence of natural numbers representing the position of the
compartment inside the tree structure of the system, similarly to the Dewey’s
indexes. Thus, the compartments of the system in Fig. 1 can be identified with
the following sequences:

S → 0 A→ 0, 0 B → 0, 1 C → 0, 2 D → 0, 1, 0.

Since each component of the system is represented by a bio-process and resides
in a particular compartment, we modify the syntax of Beta-binders by labeling
bio-processes with the identifier of the compartment in which the bio-process re-
sides. Moreover, to distinguish between components lying inside a compartment
and components lying on compartment borders, we add to each bio-process a
special marker representing the component type. Formally, the definition of bio-
processes is modified as follows:

B ::= Nil | B[P ]
κ

s | B ‖ B κ ::= n | κ, n
where n ∈ IN specifies the position in the static structure and s ∈ {i, b} denotes
whether the component is an internal or a border one. As an example, a compo-
nent lying on the border of the compartment D is represented with a bio-process
B = B[P ]

0,1,0

b .

3.3 Movements Across Compartments

An i-component can move across a compartment border only through the inter-
action with a b-component residing on that border. This assumption mimics the
role of transmembrane proteins in biological compartments. Since the calculus
is based on a binary synchronous communication model, we still use affinity to
mediate movement. Therefore, we modify the syntax of Beta-binders by adding
the following new complementary prefixes:

π ::= · · · | move(x) | in(x) | out(x)

where x ∈ N . The move action synchronizes with in or out actions, thus giving
to i-components the ability to move across compartment borders, and b-compo-
nents the ability to control the flow direction. As an example, consider the system
in Fig. 2(a), described in Beta-binders by the bio-process

S = (B1 = B1[P1 ]
0

i
) ‖ (B2 = B2[ P2 ]

0,0

b
) .

Intuitively, B1 can move into the sub-compartment interacting through a com-
plementary move(x)/in(y) action with B2, where x and y are subjects of binders
with affine types. The new configuration of the system (Fig. 2(b)) after the
movement of B1, is described in Beta-binders by the bio-process

S′ = (B′
1 = B1[P ′

1 ]
0,0

i ) ‖ (B′
2 = B2[ P ′

2 ]
0,0

b ) .

The detailed semantics is presented in the next section.
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Fig. 2. Example of movement across compartment

4 Labeled Semantics

To introduce locality relations we first enrich the language and its semantics
with labels that allow us to uniquely identify the location of bio-processes and
compartments.

We define ϑ ∈ {‖0, ‖1}∗ and we use it to label bio-processes. We statically
replace each bio-process B[ P ]

κ

s with a labeled process ϑB[P ]
κ

s (where ϑ pro-
vides a linear encoding of the syntactical location of the sub-tree of B[ P ]

κ

s in the
syntax tree of the whole system). We chose this approach to take advantage of
the syntax of the calculus and ease the implementation of the naming structure.
We could have used any unique name generator just to distinguish the locations
of bio-processes.

For instance, the bio-process βh(y : Σ)[P0|P1 ]
κ0

s0
‖ β(z : Σ) [Q0|Q1 ]

κ1

s1
is

mapped to ‖0 βh(y : Σ)[ P0|P1 ]
κ0

s0
‖ ‖1 β(z : Σ) [Q0|Q1 ]

κ1

s1
.

Each transition is labeled by a pair φ = 〈θ;κ〉, where κ is defined as in Sect. 3.2
and θ is defined by the following BNF-like grammar:

θ ::= ϑμ | ϑρ | ϑ〈x(w), x〈z〉〉 | ϑ〈‖jϑ0
′x(w)�, ‖1−jϑ1

′y〈z〉�〉 |
ϑ 〈‖0ϑ0joinP0, ‖1ϑ1joinP1〉 | ϑ〈‖jϑ0ψ, ‖1−jϑ1 move(x)〉

where μ ::= a|c|d (with a ::= expose(x, Γ ) | hide(x) | unhide(x), c ::= x(w) | x〈y〉,
and d ::= ′x(w)� | ′x〈y〉�), ρ ::= split〈P0, P1〉 | joinP and ψ ::= in(x) | out(x).

Table 1. Laws for structural congruence

(a) Pi-processes (b) Boxes and bio-processes

B[ P1 ] ≡ B[ P2 ] provided P1 ≡ P2

P1 ≡ P2, provided P1 α-converse of P2 B∗β̂(x : Γ )[ P ] ≡ B∗β̂(y : Γ )[ P{y/x} ]
provided y fresh in the system

P1|(P2|P3) ≡ (P1|P2)|P3 B1B2[ P ] ≡ B2B1[ P ]
B1 ‖ B2 ≡c B2 ‖ B1

P1|P2 ≡ P2|P1 B1 ‖ (B2 ‖ B3) ≡c (B1 ‖ B2) ‖ B3

B ‖ Nil ≡c B

P | nil ≡ P ϑB1[ P1 ]
κ

s
≡c ϑB2[ P2 ]

κ

s

provided B1[ P1 ] ≡ B2[ P2 ]
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Table 2. Axioms and rules for the reduction relation

(intra)
P ≡ x(w) . P0| x〈z〉 . P1|P2

ϑB[ P ]
κ

s

〈ϑ〈x(w),x〈z〉〉;κ〉−→ ϑB[ P0{z/w}|P1|P2 ]
κ

s

(inter)
P ≡ x(w) . P1|P2 Q ≡ y〈z〉 . Q1|Q2

, where

X
〈ϑ〈‖jϑ0

′x(w)�,‖1−jϑ1
′y〈z〉�〉;κl〉−→ Y

X = ϑ‖jϑ0 β(x : Γ )B∗
0[ P ]

κ0

s0
‖ ϑ‖1−jϑ1 β(y : Σ)B∗

1[ Q ]
κ1

s1
,

Y = ϑ‖jϑ0 β(x : Γ ) B∗
0[ P1{z/w}|P2 ]

κ0

s0
‖ ϑ‖1−jϑ1 β(y : Σ)B∗

1[ Q1|Q2 ]
κ1

s1

provided α(Γ, Σ) ≥ Th and (κl = κ1−l ∨ (κl = κ1−l, n ∧ sl = b ∧ s1−l = i))

(expose)
P ≡ expose(x, Γ ) . P1|P2

, y fresh in the system
ϑB[ P ]

κ

s

〈ϑ expose(x, Γ );κ〉−→ ϑBβ(y : Γ ) [ P1{y/x}|P2 ]
κ

s

(hide)
P ≡ hide(x) . P1|P2

ϑB∗ β(x : Γ ) [ P ]
κ

s

〈ϑ hide(x);κ〉−→ ϑB∗ βh(x : Γ )[ P1|P2 ]
κ

s

(unhide)
P ≡ unhide(x) . P1|P2

ϑB∗ βh(x : Γ )[ P ]
κ

s

〈ϑ unhide(x);κ〉−→ ϑB∗ β(x : Γ ) [ P1|P2 ]
κ

s

(join) ϑϑ0B0[ P0 ]
κ

s
‖ ϑϑ1B1[ P1 ]

κ

s

〈θ;κ〉−→ ϑϑ0B[ P0σ0|P1σ1 ]
κ

s
‖ ϑϑ1 Nil

where θ = ϑ 〈ϑ0join P0, ϑ1join P1〉, ϑ0 = ‖0ϑ′
0, ϑ1 = ‖1ϑ′

1
provided fjoin(B0, B1, P0, P1) = (B, σ0, σ1)

(split) ϑB[ P0|P1 ]
κ

s

〈ϑ split〈P0,P1〉;κ〉−→ ϑ‖0B0[ P0σ0 ]
κ

s
‖ ϑ‖1B1[ P1σ1 ]

κ

s

provided fsplit(B, P0, P1) = (B0, B1, σ0, σ1)

(in)
P ≡ in(x) . P1|P2 Q ≡ move(x) . Q1|Q2

, where

X
〈ϑ〈‖jϑ0 in(x),‖1−jϑ1 move(x)〉;κ,n〉−→ Y

X = ϑ‖jϑ0 β(x : Γ )B∗
0[ P ]

κ,n

b
‖ ϑ‖1−jϑ1 β(y : Σ)B∗

1[ Q ]
κ

i
,

Y = ϑ‖jϑ0 β(x : Γ ) B∗
0[ P1|P2 ]

κ,n

b
‖ ϑ‖1−jϑ1 β(y : Σ)B∗

1[ Q1|Q2 ]
κ,n

i

provided α(Γ, Σ) ≥ Th

(out)
P ≡ out(x) . P1|P2 Q ≡ move(x) . Q1|Q2

, where

X
〈ϑ〈‖jϑ0 out(x),‖1−jϑ1 move(x)〉;κ,n〉−→ Y

X = ϑ‖jϑ0 β(x : Γ )B∗
0[ P ]

κ,n

b
‖ ϑ‖1−jϑ1 β(y : Σ)B∗

1[ Q ]
κ,n

i
,

Y = ϑ‖jϑ0 β(x : Γ ) B∗
0[ P1|P2 ]

κ,n

b
‖ ϑ‖1−jϑ1 β(y : Σ)B∗

1[ Q1|Q2 ]
κ

i

provided α(Γ, Σ) ≥ Th

(redex)
B

φ−→ B
′

B ‖ B
′′ φ−→ B

′ ‖ B
′′

(struct)
B1 ≡c B′

1 B′
1

φ−→ B2

B1
φ−→ B2
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The first pair of labels is used to denote intra-communications (communica-
tions within one bio-process), while the second one is used to denote inter-
communications (communications between different bio-processes); the third and
the fourth ones are used to denote join and movement operations, respectively.
Note that the definition of d allows us to distinguish between the input/output
actions used in intra-communications (x(w) / x〈y〉) and the ones used in inter-
communications (′x(w)� / ′x〈y〉�).

We introduce two new sets of labels, with metavariable γ and δ respectively,
that will be useful in the following:

γ ::= a | 〈c0, c1〉 δ ::= d | ψ | move(x) .

Definition 1. The structural congruence over pi-processes, denoted by ≡, is
the smallest relation which satisfies the laws in Table 1(a). The structural con-
gruence over bio-processes is identified by two relations, denoted respectively by
≡ and ≡c, that are the smallest ones which satisfy the laws in Table 1(b).

Definition 2. The reduction relation −→ is the smallest relation over bio-
processes defined by the axioms and rules in Table 2.

As in [3], fjoin and fsplit functions are user defined λ-calculus functions which
describe the aggregation and disaggregation of boxes and depend on the structure
of bio-processes.

5 Locality Relations

To define some locality relations on Beta-binders transitions we first need two
auxiliary functions for each transition φ: act(φ) specifies the action executed,
and comp(φ) specifies the compartment in which the action is executed.

act(〈θ, κ〉) = θ comp(〈θ, κ〉) = κ .

We first define some relations concerning compartments (i.e. the compart-
ments in which the actions triggering the transitions occur). Finally, we consider
the level of bio-processes (i.e. the bio-processes involved in the transitions).

Based on the definition of localities described in [10], compartments are static
localities: they do not change dynamically during execution, and hence they
represent the sites at which events occur. Therefore, the relations introduced in
the next section refer to the relative positions of the considered transitions. ϑ
labels of bio-processes are, instead, dynamical localities: in fact they are built
incrementally when actions are performed (actually, only split operations modify
the labels by adding sublabels to the labels of the created bio-processes), and
hence they represent, for each action, the ones that locally precede it.

5.1 Compartments Locality Relations

In this section a set of significant locality relations between transitions is defined,
assuming a computation B0

φ0−→ B1
φ1−→ · · · φn−→ Bn+1, according to the relative
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position of the compartments in which the transitions occur. We end this section
by discussing how our relations can be useful in biological systems.

Definition 3 (Same-compartment relation). We say that φn has a same-
compartment dependency on φh (denoted with φh 0 φn) if h < n and comp(φh)=
comp(φn).

With this relation we underline the fact that the two actions φh and φn occur
in the same compartment.

Definition 4 (Son-father relation). We say that φn has a son-father depen-
dency on φh (denoted with φh � φn) if h < n and (comp(φn),m) = comp(φh)
(m ∈ IN).

This means that the compartment in which the action φh occurs is the son of
the compartment in which the action φn occurs.

Definition 5 (Father-son relation). We say that φn has a father-son depen-
dency on φh (denoted with φh 	 φn) if h < n and (comp(φh),m) = comp(φn)
(m ∈ IN).

In this case, the compartment in which the action φh occurs is the father of the
compartment in which the action φn occurs.

Son-father and father-son relations can be easily generalized to sub-com-
partment and super-compartment relations respectively, by considering their
transitive closures.

Definition 6 (Sub-compartment and super-compartment relations).
Let 
 � (�)∗ be the transitive closure of �. We say that φn has a sub-compart-
ment dependency on φh if φh 
 φn.

Let � � (	)∗ be the transitive closure of �. We say that φn has a super-
compartment dependency on φh if φh � φn.

The relation 
 means that the compartment in which the action φh occurs is
a sub-compartment of the compartment in which the action φn occurs, and �
means that the compartment in which the action φn occurs is a sub-compartment
of the compartment in which the action φh occurs.

Note that φh 
 φn ⇒ h < n and (comp(φn), κ) = comp(φh), and that φh � φn

⇒ h < n and (comp(φh), κ) = comp(φn).
In the area of dynamical modeling of biological systems, locality relations can

be useful for analyzing the spatial distribution of entities. For example, when
observing transitions originated by an interesting event, we could be interested in
investigating what happened in the same compartment previously. The relation
0 can be used for that. Similarly, we could use the other relations to study what
happened in super- or sub-compartments.

5.2 Inter-box Locality Relation

In this section we define the inter-box locality relation between pairs of transi-
tions in a computation: an inter-box locality relation exists between an activity



256 M.L. Guerriero, C. Priami, and A. Romanel

A and an activity B, if A and B are executed by pi-processes in the same bio-
process. Our labels can be used as unique names for the transitions as they are
linearizations encoding the position of the prefixes and processes originating the
transitions in the syntax tree.

Definition 7 (Direct inter-box locality relation). Given a computation

B0
φ0−→ B1

φ1−→ · · · φn−→ Bn+1, we say that φn has a direct inter-box locality
dependency on φh if h < n and act(φh) � act(φn) can be derived by repeated
applications of the following rules, where j ∈ {0, 1}.

1. ‖jθ � ‖jθ
′ if θ � θ′

2. γ � γ′

3. 〈‖jϑ0δ0, ‖1−jϑ1δ1〉� 〈‖lϑ
′
0δ

′
0, ‖1−lϑ

′
1δ

′
1〉

if ((‖jϑ0 = ‖lϑ
′
0 ∧ ‖1−jϑ1 = ‖1−lϑ

′
1) ∨ (‖jϑ0 = ‖1−lϑ

′
1 ∧ ‖1−jϑ1 = ‖lϑ

′
0)) .

The rules listed above are applied recursively to a pair of actions θh, θn in order
to verify whether there is an inter-box locality dependency between them. Since
inter-box locality only concerns the bio-processes (and not their internal struc-
ture), the recursive step is implemented by removing the common prefixes of θh

and θn through rule 1, as long as they are relative to the labels of bio-processes
(‖0 and ‖1). Then, at the end of the recursive steps (i.e. if θh and θn refer to
the same bio-process), either rule 2 or rule 3 could be applied. Rule 2 states
that actions on beta binders (i.e. expose, hide and unhide) and communications
have an inter-box locality dependence on other actions on beta binders and other
communications executed by pi-processes in the same bio-process. Rule 3 states
that inter-communications and transport operations have an inter-box locality
dependence on other inter-communications and other transport operations if
both operations are between the same bio-processes (i.e. each partner of one
operation is executed by the same bio-process of one of the partners of the other
operation).

Note that our mechanism is not affected by the associativity and commuta-
tivity of ‖, because the ϑ labels are attached statically to processes and updated
in the operational semantics by the rules that affect the structure of the system.

The definition of the inter-box locality relation between two transitions of
a computation is obtained by taking into account the transitive closure of the
direct inter-box locality relation.

Definition 8 (Inter-box locality relation). Let < � (�)∗ be the transitive

closure of �. Then, given a computation B0
φ0−→ B1

φ1−→ · · · φn−→ Bn+1, we say
that φn has an inter-box locality dependency on φh if act(φh) < act(φn).

From a biological point of view, when observing an action performed by a bio-
process, we could be interested in investigating other actions performed previ-
ously by the same bio-process. The relation < can be used for that. Inter-box
relation, together with compartments locality relations, can be useful for ana-
lyzing the spatial distribution of the actions executed by a bio-process.
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6 Related Works

Several languages have been proposed to model biological compartments; the
most common ones are Brane calculi [1] and BioAmbients calculus [2].

Differently from these calculi, the main aim of our work is to represent static
compartments and movements of objects across them; hence, we give merely an
informal comparison on the usability of the languages with respect to different
biological domains.

6.1 Brane Calculi

The main feature of Brane Calculi is that membranes are considered active ele-
ments, and hence the whole computation happens on membranes: they can move,
merge, split, enter in and exit from other membranes. A system is represented as
a set of nested membranes, and a membrane as a set of actions; actions carry out
the mentioned membrane transformations. The main events that can be directly
modeled are phagocytosis (the engulfment of a membrane by another one) and
exocytosis (the expulsion of a membrane by another one). Moreover, operations
such as mitosis (the splitting of one membrane in two membranes) and mat-
ing (the merging of two membranes) can also be described. On-membrane and
cross-membrane communications can also be modeled.

Being Brane Calculi primarily concerned on membrane interaction, it per-
mits to easily model membrane operations; on the other hand, it does not take
the internal structure of membrane-bound compartments into account, there-
fore it is not easy to describe events such as protein activation, phosphorylation,
etc. Beta-binders, instead, is primarily focused on interaction between internal
processes, hence compartments are used to describe the relative positions of
the interacting bio-processes and to forbid interactions between processes which
are in different compartments; hence, compartments (i.e. compartmental mem-
branes) are static containers (it is not possible to create, destroy, or merge them)
and bio-processes (i.e. proteins) can move across their borders. Therefore, oper-
ations involving membrane fusion, such as phagocytosis, exocytosis, mitosis and
mating, cannot be modeled in Beta-binders by operations on compartments. For
example, if compartments represent cells, it is not possible to merge compart-
ments to model cell mating; however, we point out that it is sufficient to change
the level of abstraction, i.e. to represent cells with bio-processes and use fjoin and
fsplit functions to model such operations. Events that are not directly related to
cellular membranes (e.g. phosphorylation) can easily be modeled by standard
Beta-binders communications and operations on bio-processes interfaces.

Finally, in Brane Calculi everything is interpreted as a membrane, which
means that membrane-bound cellular compartments (e.g. cells and organelles)
and molecular compartments (e.g. proteins) are modeled in the same way: this
seems strange from a conceptual point of view. The proposed Beta-binders ex-
tension, instead, provides a double layer of compartmentalization (bio-processes
and compartments), which permits a clear distinction between the two com-
partments types: when modeling cellular processes, cellular compartments are
represented by compartments, while proteins are represented by bio-processes.
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6.2 BioAmbients

BioAmbients calculus is an extension of the work described in [11], enriched with
a concept of compartments similar to the one of Ambient calculus [12]. A system
is represented as a set of nested ambients, and an ambient is a bounded com-
partment containing processes whose actions specify the evolution of the system.
Ambients can enter in and exit from other ambients (phagocytosis and exocyto-
sis) and they can merge together (mating). π-calculus-style communications can
occur within an ambient, between sibling ambients, and between father-child
ambients.

Similarly to membranes in Brane calculi, ambients are used to represent both
membrane-bound cellular compartments and molecular compartments (proteins
and protein complexes). Moreover, BioAmbients does not provide an explicit way
to model membrane proteins (they are implicitly considered by the primitives
through which an ambient can allow another one to enter, exit or merge with).
Hence, it is not easy to model complex interactions between membrane proteins
and internal proteins: the movement of an ambient in or out of another one is
obtained by complementary actions executed by the two ambients. For example,
there is no way to describe the expulsion of a molecule (an ambient “m”) from
a cell (an ambient “c” containing “m”), mediated by a membrane protein (an
ambient “p” lying inside “c”). This, instead, can be easily done in Beta-binders.
Finally, in BioAmbients it is not possible to move processes which are not lying
in some ambient; hence, in order to describe the movement of small molecules
across cellular membranes, they need to be enclosed within an ambient.

As previously stated, operations involving membrane fusion cannot be mod-
eled in Beta-binders by operations on compartments (though they can be mod-
eled by operations on bio-processes). In BioAmbients, instead, it is easy to model
them (except mitosis, whose description in BioAmbients is not straightforward).

Entities in the same compartment can interact in BioAmbients though a local
communication on a channel. In Beta-binders, interaction is also done through
inter-communications if the interfaces of the two entities are compatible.

Finally, it is not easy to model in BioAmbients events such as protein activa-
tions (in particular multi-step chains of proteins activations), whereas this can
easily be done in the proposed Beta-binders extension (as shown in the example
described in the following section).

7 Example: The cAMP-Signaling Pathway in OSNs

In this section we present how the extended Beta-binders formalism can be used
for modeling a biological system that includes membranes and membrane proteins.
In particular, we model the cAMP-signaling pathway in olfactory sensory neurons
(OSNs). The pathway describes how G protein-coupled receptors indirectly mod-
ulate the activity of ion channels via the action of second messengers (Fig. 3).

An odorant ligand O can bind with an odorant receptor OR through the re-
versible reaction r1, activating it. The active OR stimulates (r2) the G-protein
GDPαβγ (denoted with GDPabg), causing the dissociation of the trimer in two
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Fig. 3. The cAMP-signaling pathway in OSNs

active subunits GTPa and bg. At this point, GTPa can either hydrolyze (r3), re-
turning GDPa, or activate the adenylyl cyclase (AC), his target protein (r5). If the
reaction r3 takes place, the subunit GDPa reassociates with the subunit bg (r4).
If, instead, the reaction r5 takes place, the activation of AC produces, through the
synthesis of ATP (r8), an increase in the concentration of the second messenger
cAMP. A cAMP molecule can open, through a reversible binding (r9), the ion-
channel IC, allowing Na+ and Ca2+ molecules to enter. However, the hydrolysis
of GTP to GDP causes GTPa to dissociate from AC and reassociate with bg. For
a more detailed description of the pathway we refer the reader to [13].

Table 3. Specification of the model

O = x〈z〉 . x(z) .O AC = y(z) .AC
OR = x(z) . unhide(y) . hide(y) . x〈z〉 .OR cAMP = x〈z〉 . x(z) .cAMP
A = y〈z〉 .A IC = x(z) . unhide(y) . hide(y) . x〈z〉 .IC
GDP = x(z) .GTP M = in(y) .M
GTP = y(z) .GDP Na+ = move(x) .Na+

Pα = y〈z〉 .Pα Ca2+ = move(x) .Ca2+

BO = ‖0 β(x : Δ0)[O]0i BATP = ‖4
1‖0 β(x : Δ3) β(y : Δ2)[y〈z〉 .cAMP]0,0

i
BOR = ‖1‖0 β(x : Δ0) βh(y : Δ1)[OR|A]0,0

b BIC = ‖5
1‖0 β(x : Δ3) βh(y : Δ4)[IC|M]0,0

b
BG = ‖2

1‖0 β(x : Δ1)[GDP|Pα|Pβγ ]0,0
b BNa+ = ‖6

1‖0 β(x : Δ5)[Na+]0i
BAC = ‖3

1‖0 βh(y : Δ2)[AC]0,0
b BCa2+ = ‖7

1 β(x : Δ6)[Ca2+]0i

fsplitG(B, P0, P1) = fsplitAC(B, P0, P1) =

if(B[P0|P1] ≡ β(x : Δ1)[(GTP|Pα)|Pβγ ]) if(B[P0|P1] ≡ βh(x : Δ1) β(y : Δ2)[(GDP|Pα)|AC]

then(βh(x : Δ1), βh(x : Δ1), id, id) then(βh(x : Δ1), βh(y : Δ2), id, id)
else ⊥ else ⊥

fjoinG(B0, B1, P0, P1) = fjoinAC(B0, B1, P0, P1) =

if(B0[P0] ≡ βh(x : Δ1)[GDP|Pα]∧ if(B0[P0] ≡ βh(x : Δ1)[GTP|Pα]∧
B1[P1] ≡ βh(x : Δ1)[Pβγ ]) B1[P1] ≡ βh(y : Δ2)[AC])

then(β(x : Δ1), id, id) then(βh(x : Δ1) β(y : Δ2), id, id)
else ⊥ else ⊥
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Table 3 shows the specification of the Beta-binders model of the presented
pathway.2 Moreover, α(Δk, Δj) > Th iff (k = j) ∨ (k = 4 ∧ j ∈ {5, 6}). The
parallel composition of all the defined bio-processes

S = BO ‖ BOR ‖ BG ‖ BAC ‖ BATP ‖ BIC ‖ BNa+ ‖ BCa2+

represents the initial configuration of the system, denoted with S. All the com-
munications enabled by the bio-processes represent the reactions r1, · · · , r11
shown in Fig. 3, and all the intermediate configurations that the system S can
reach through the execution of communications represent all the possible con-
figurations of the biological system.

Now consider one of the possible computations, in which, starting from the
initial configuration S, the ion-channel IC is activated, causing the entrance of
a Ca2+ molecule:

φ1 : 〈〈‖1‖0
′x(z)�, ‖0

′x〈z〉�〉; 0〉 φ6 : 〈‖2
1〈‖2

0
′y(z)�, ‖1‖0

′y〈z〉�〉; 0, 0〉

φ2 : 〈‖1‖0 unhide(y); 0, 0〉 φ7 : 〈‖4
1〈‖0

′x〈z〉�, ‖1‖0
′x(z)�〉; 0, 0〉

φ3 : 〈‖1〈‖0
′y〈z〉�, ‖1‖0

′x(z)�〉; 0, 0〉 φ8 : 〈‖5
1‖0 unhide(y); 0, 0〉

φ4 : 〈‖2
1‖0 split〈GTP | Pα, Pβγ〉; 0, 0〉 φ9 : 〈‖5

1〈‖0 in(y), ‖2
1 move(x)〉; 0, 0〉 .

φ5 : 〈‖2
1 〈‖2

0join GTP | Pα, ‖1‖0join AC〉; 0, 0〉

By analyzing the computation with the locality relations previously defined,
we can observe, for example, that φ4 has a father-son dependency on φ1 (denoted
with φ1 	 φ4), while φ6 has a same-compartment dependency on φ9 (denoted
with φ6 0 φ9).

From a biological point of view, these relations state that a spatial relation
	 and a spatial relation 0 exist, respectively, between the dissociation of the
G-protein GTPαβγ and the activation of the receptor OR, and between the
entrance of a Ca2+ molecule and the activation of the target protein AC.

8 Conclusions and Further Work

We extend Beta-binders with compartments and localities. Since the nesting of
boxes is forbidden, modeling hierarchies of compartments in the standard version
of the calculus is not primitive. We overcome this limitation by introducing
the concept of static compartments. Compartments allow the representation of
operations such as the movement of objects across compartment borders and the
communication between internal and border objects.

Finally, some locality definitions have been introduced (both on compartments
and on bio-processes/boxes) which can be useful when studying the spatial dis-
tributions of objects (and events) in complex systems.

2 With ‖n
k we indicate the sequence ‖k · · · ‖k︸ ︷︷ ︸

n

.
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Many further extensions are possible. One is to differentiate the various types
of border objects: transmembrane proteins and those lying on the internal/
external side of the membrane. The definition of the calculus should be slightly
modified in order to take those differences into account. In addition to this,
most proteins cannot move freely on the membrane, hence interactions between
proteins on the same membrane are not always possible: the position of the
proteins is important. This could be considered by introducing additional con-
straints, based on the position of bio-processes, which permits interactions only
between “near” (according to some definition of distance) bio-processes.

A simulator for the extended calculus is under development. This will allow
us to test our framework on large scale biological problems.
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3 Dipartimento di Scienze dei Linguaggi, Università di Sassari, Italia
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Abstract. We show how a symbolic approach to the semantics of process alge-
bras can be fruitfully applied to the modeling and analysis of partially unspecified
biological systems, i.e., systems whose components are not fully known, cannot
be described entirely, or whose functioning is not completely understood. This
adds a novel deductive perspective to the use of process algebras within systems
biology: the investigation of the behavioural or structural properties that unspeci-
fied components must satisfy to interact within the system. These can be compu-
tationally inferred, extending the e�ectiveness of the in silico experiments. The
use of the approach is illustrated by means of case studies.

1 Introduction and Motivations

The convergence of mathematical, technical and natural sciences yields multidisci-
plinary approaches that can help in better understanding biological phenomena. The
formal modeling of such phenomena has recently gained a lot of attention, see e.g.
[31,34,20,21,17]. Among these approaches, process algebras provide expressive de-
scriptions, enjoy friendly syntax, compositionality and generally support software sim-
ulation. To some extent, they appear as easily accessible formalisms, particularly suited
for such interdisciplinary research, that favor cross-fertilisation between the two fields:
existing calculi have been sometimes applied rather directly, like in the case of stochas-
tic semantics for the Pi-calculus [27,29], while in other cases new language primitives
have been specifically designed to capture molecular and biological interaction, like the
explicit treatment of membrane nesting [30], membrane activity [7], probability-based
reactions [25], active sites in a protein [11] and structure-determined reactions [28,12].
These linguistic abstractions are generally complemented with suitable formal seman-
tics that may describe system behaviour both qualitatively and quantitatively, e.g., in
terms of happening reactions and their dynamic constants (i.e., stochastic semantics
[26,32] based on Gillespie’s algorithm [16]). Often, executable counterparts are pro-
vided so that system properties can be both assessed theoretically and verified by means
of in silico simulations. Encouraging results, e.g. in terms of the coherence between in
silico and in vitro experiments, have been obtained [22,4,10].
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Within this line of research, that exploits the analogy between biological and soft-
ware systems, we address the problem of dealing with qualitative analysis of open sys-
tems. In the context of computer science open systems account for components that are
not fully specified or may dynamically join the system at a later stage, such as appli-
cations that access services on the network, or proprietary software components. In the
biological setting open systems may play the part of not fully understood cellular and
chemical compounds.

Here we apply symbolic transition systems [2,3], originally developed for software
open systems, to the modeling and analysis of biological systems. We aim to show
that: (i) the symbolic model adds a deductive dimension to the in silico experiments,
allowing one to derive the (most general) features that unknown components exhibit
when interacting within a system, and (ii) the framework is language-independent, in
the sense that it applies to a variety of di�erent modeling problems at di�erent levels of
abstraction.

The main ingredients of the approach are an algebraic syntax, an operational se-
mantics in terms of suitable labelled transitions and the possibility to deal uniformly
with open and closed systems. The approach will be exemplified on a few case studies,
related to di�erent levels of abstractions, granularity, and aspects of interest.

Next, we give an informal account of the modeling of a small scenario comprising a
virus v and a cell c. Take the (closed) system

E � v[in c� rna] � c[open v� (prot � rna�)] (1)

On the biological side, terms like v[� � � ] can be understood as membraned components,
while action prefixes like in c model reaction capabilities. The name of the membrane
identifies the kind of the component. For instance, the virus v is ready to sequentially
execute the actions in c and rna, modeling, respectively, the capability to enter a cell of
kind c and then to communicate some RNA information. The cell c “reacts” and opens
the membrane of v (action open v, i.e., the system comprises some sort of location-
awareness by means of membrane names).

The evolution of the system is modeled via labeled transitions from one configuration
to the next. The labels record events that are visible to an external observer. The special
label � is used when the corresponding event is an internal reaction, transparent to the
outside. In our example, the virus can enter the cell, the membrane v is opened and
the RNA interaction takes place: the compound prot � rna� interacts, without further
consequences in this example, with the virus RNA by means of the complementary
action rna� (prot information is disregarded by the virus).

E �� c[v[rna] � open v�(prot � rna�)] �� c[rna � prot � rna�] �� c[prot] (2)

The infinite set of transitions relative to all the terms of the calculus can be finitely
specified by a set of structured operational semantics (���) rules. For instance, all the
transitions about a membraned component m[in n�Q � R] entering the membrane n[P],
or a component open n�Q destroying the membrane of n[P] are respectively modelled
by rules (in) and (open) in Fig. 1, valid for all m, n, P, Q, R. Analogously, if any
two components P1 and P2 can exhibit complementary actions � and ��, then by rule
(comm) their reaction generates a � transition.

Imagine that the content of the virus cannot be fully characterised, e.g., because not
fully understood. In this case we regard E as an environment: an open biological system
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m[in n�Q � R] � n[P] �� n[m[Q � R] � P]
(in)

n[P] � open n�Q �� P � Q
(open)

P1 �� Q1 P2 ��� Q2

P1 � P2 �� Q1 � Q2
(comm)

Fig. 1. Rules for membraned components

modeled as a term with place-holders X, whose unknown components could be dis-
closed only dynamically (e.g. when they react to certain stimuli) or where components
(i.e., closed systems) or other sub-environments can be dynamically plugged in. That is

E[X] � v[ X ] � c[open v�(prot � rna�)] (3)

One possibility is to study the closures E[p] of E[X] w.r.t. all the possible closed
components p. When simulation is attempted in silico, then infinitely many p must
be considered. Moreover, conceptually, this approach prevents the dynamic disclosure
of environments to be considered, since they are fully exposed at the beginning.

Symbolic transition systems (���) allow environments as states and logic formulae as
transition labels. They exploit the idea that the behaviour of E[X] depends on the appli-
cable semantic rules, which can be partly determined by means of the known structure
of E[X] itself, and may, in turn, impose a requirement over X in order make the rule
applicable. The formulae of ��� transitions, which annotate unknown components with
their relevant behavioural or structural requirements, can be composed throughout an
execution trace of the environment and represent the “inferred” constraints that an un-
known component must fulfill to drive the system to a given state. This allows us to
attack problems like predicting the environmental conditions that let a virus reproduce.
For instance, the open system E[X] can evolve via suitable “abstractions” of the transi-
tions in (2) for the closed E:

E[X]
in c�Y �Z
�� � c[v[Y � Z] � open v�(prot � rna�)]

Y�Z
��� c[Y � Z � prot � rna�]

�rnaW�Z
�� c [W � Z � prot]

(4)

The first one exhibits the formula in c�Y � Z: the unspecified component X should
“at least” be able to perform in c (hence X must “know” c) and then behave as Y � Z,
as required by rule (in). The second one imposes no constraints since the environment
evolves autonomously, the third one requires on Y the capability to interact by means
of rna.

Composition of formulae is relevant for the analysis of the evolution of partially
specified bio-environments. Indeed, the formula in c�(�rna�W � Z), obtained by com-
posing the formulae along the execution trace, generalises the capabilities required to
X in order to carry on the overall interaction within the environment (and it is satisfied
by the component p � in c�rna � in c�(rna�0 � 0 ) that instantiates E[X] to E[p] � E).

Synopsis. In � 2 we recall the basics of ���. The framework for the analysis of bio-
processes is illustrated in � 3 by discussing, in two examples, how it can be used to
reason with incomplete information. The first example is based on an original formali-
sation of the life cycle of the �-phage virus in BioAmbients. The second example deals
with a model of viral cell infection, originally from [1] and used in [7] to introduce
Brane Calculi. Concluding remarks and future perspectives are in � 4.
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2 Symbolic Operational Semantics

This section recalls the key definitions about symbolic transition systems (see [2,3] for
a more comprehensive formal presentation).

Definition 1 (Symbolic Transition System). A symbolic transition system (���) � is a
set of transitions

C[X1� � � � � Xn]
(�1������n )
�� a D[Y1� � � � �Ym]

where C[X] and D[Y] are environments, a an action label and �i are formulae over
variables �Y1� � � � � Ym� (in a suitable logic, as defined below).

Informally, a symbolic transition represents the fact that the environment C[X] can
exhibit an action a and evolve to D[Y] whenever the holes X are filled with any com-
ponents satisfying �. The label � should encode the “least necessary” conditions that
components should fulfill for properly taking part to the transition. For the sake of this
presentation, following [2], we exploit the ��� logic SL, defined below, with action and
structural modalities in the style of the ambient logic [9]. However, di�erent choices
are conceivable, depending on the calculus of interest.

Spatial modalities emerge when, in order to perform a transition, an environment
E[X] must match the left-hand side of the conclusion of a rule. This may require a cer-
tain structure to the components that may possibly be plugged in, hence requiring the
constructors of the calculus, like � or n[ ], to appear as terms of the logic, which we
call spatial operators. Furthermore, the premises of the matched rule must be satisfi-
able. Such premises may typically require each plugged component to be able to exhibit
some behaviour, as in rule (comm). Hence, the logic also includes modal operators �a
expressing the capability to perform an action a. A formula which does not impose any
constraint on the component is represented as a logical variable X, called the residual
placeholder.

Definition 2 (SL). The formulae of the ��� logic SL are

� ::� X � �a� � f (�1� � � � � �n)

where X is a residual pleaceholder, a is an action and f is a spatial operator. A compo-
nent p satisfies the formula �, if p �� � holds according to the following rules:

p �� X
p �� f (�1� � � � � �n) if �p1� � � � � pn� p � f (p1� � � � � pn) 	 
 i� pi �� �i

p �� �a� if �q� p �a q 	 q �� �

For example, the component p � c�� 0 � a� b� 0 satisfies the formula �a X, namely
p �� �a X, because p �a c�� 0 � b� 0 (since a� b� 0 �a b� 0) and c�� 0 � b� 0 �� X.

Given a formula � and n components q1, . . . , qn, we write �[q1�X1� � � � � qn�Xn] for the
formula obtained from � by replacing variables Xi with components qi. Analogously,
we denote by �[�1�X1� � � � � �n�Xn] the formula obtained from � by replacing variables
Xi with formulae �i. Variables in formulae stand for the residual q of p, after that p has
exhibited the capabilities and�or the structure imposed by the formula.
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Definition 3 (Satisfaction with residuals). Let p be a component, q � q1� � � � � qn a tu-
ple of components and � 	 SL a formula whose variables are contained in �X1� � � � � Xn�.
Then, we say that p satisfies � with residuals q1, . . . , qn, written p �� �; q, whenever
p �� �[q1�X1� � � � � qn�Xn].

For example, if p � n[a�� 0 � a� b� 0] and � � n[�a� X1 � a�X2], then trivially p �� �,
and if q1 � 0 and q2 � b� 0 then p �� �; (q1� q2). We shall write p �� �; q where
� � �1� � � � � �k and p � p1� � � � � pk are tuples of formulae and components, respectively,
obviously meaning that pi �� �i[q1�X1� � � � � qn�Xn]� 
 i 	 �1� � � � � k�.

The proper correspondence between the transitions of environments and those of
their closed instances, i.e. components, is established by suitable soundness and com-
pleteness properties (see [2,3] for their formal definition). Notably, some sort of “stan-
dard” sound and complete ��� can be derived for a large class of process calculi (whose
semantics is given by ��� rules in suitable formats [3]). Such ��� can be constructed by
means of a unification-based procedure. All the symbolic transitions spawn from E[X]
in (3) are sound.

3 Reasoning with Incomplete Information

We apply now the ��� framework to two case studies (the Appendix reports the tran-
sitions of their closed specifications). The first one is an original formalization of a
pattern of protein interaction relative to the ��phago virus. Starting from an incomplete
BioAmbients specification of the system, the behaviour of one of the proteins can be
inferred by reasoning symbolically on the dynamics of the system. The second exam-
ple, split in two parts, consists of the symbolic reading of biological interaction, also
used to introduce the Brane Calculi in [7]. Here, pretending that cell reactions to viruses
are not fully understood, we infer the same behaviour described in the original exam-
ple. Moreover, without changing the experiment, we additionally deduce the (known)
mechanisms allowing a given protein to block the virus. These examples are aimed at
illustrating the applicability of our approach to di�erent levels of abstraction, and its
versatility in supporting the right representation language according to the problem at
hand.

3.1 Protein Interaction: �-Phage Life-Cycle

�-phage simplified life cycle. We consider a simplified representation of the �-phage
virus. This virus replicates by binding with the E�coli bacterium and injecting its DNA
into the bacterium cell. Then, either the virus replicates in several copies until the bac-
terium membrane is destroyed and the copies released (lytic pathway), or the virus DNA
merges into the bacterium DNA, the infected bacterium cell multiplies, and its o�spring
may themselves eventually end up in a lytic pathway (lysogenic pathway). The pathway
selection is determined by the interaction of the CRO, CI, CII, CIII and HFL proteins
in the bacterium cell.

We study the system assuming the following knowledge (see Fig. 2). A high concen-
tration of CI determines the lysogenic cycle, its absence the lytic one. The production
of CI is promoted by CII, if it is not inhibited. The role of the bacterial protein HFL is
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HFL CII ��
�������� CI CRO

low��

high
������� LYSO

CIII

high ������
CI LISI

Fig. 2. Hypothesis on inhibition and activation roles of CRO and CIII proteins

[VIRUS] � [merge� virus.([C3] � [C2] � [C1] � [CRO]) � [DNA�]]

C3 � l c3!.0 � accept h c3. pro c2!.0 C2 � pro c2?. pro c1!.0 � enter c2.0

C1 � pro c1?.( h cro?. lysi!.0 � l cro?. lyso!.0) CRO � l cro!.0 � h cro.0

DNA� � (lyso?.enter dnae.0) � lysi?.(�[exit newph.VIRUS] � expel newph)

[ECOLI] � [merge�virus � Dnae [accept dnae] � [HFL]] HFL � enter h c3.0 � X

Fig. 3. Partial specification of [VIRUS] and [ECOLI]

not fully understood, but we know that it can be inhibited by a high concentration of
CIII. Moreover, a low concentration of CRO directly stimulates the production of CI,
while a high concentration of it destroys CI. Hence, the lysogenic cycle (top row) can
be characterised as low CRO and high CIII concentrations, while the lytic one (bottom
row) seems to depend on high CRO, exclusively.

BioAmbients uncomplete specification. Under the above hypotheses, the virus and
the bacterium can be naturally represented in the BioAmbient calculus as two mem-
braned systems, as shown in Fig. 3 (for a formal description of the BioAmbient cal-
culus we refer the reader to [30]). Proteins are represented as membranes (written
[� � � ]) “delimiting” the behaviour they can express. They interact at the same level
of nesting: activation is modeled as communication (input�output pairs of actions
[��pro c2?��]�[��pro c2!��]) and inhibition as encapsulation (1[��enter a��]� 2[��accept a��]
that evolves in 2[��1[��]��]), since this technically blocks the capability of the enclosed
protein to communicate in its original environment. The virus consists of the capability
to penetrate a suitable membraned environment ([merge� virus��]), i.e., the bacterium
cell ([merge� virus��]), and then expose its DNA and express proteins. CIII can either
signal a low concentration or enclose HFL (or any compatible protein) then activating
CII by means of a suitable communication. Once activated, CII promotes CI. Moreover,
the possibility of CII being itself inhibited has also been modeled (enter c2). Sensitivity
to high or low concentrations of CRO, modeled by means of suitable communications,
causes CI to emit either the lysogenic or the lytic activation signal. This is received by
the virus DNA which, accordingly, either enters the bacterium DNA, or expels into the
bacterium cell a copy of the virus. The bacterium is modeled as a membrane that can
be injected by a virus and contains membraned DNA, which can be accessed by other
suitable DNA, and the HFL protein. Importantly, this is represented as a partially speci-
fied component, which, as we know, can be inhibited by CIII (enter h c3) but also could
alternatively exhibit a behaviour we are not able to specify at the present, represented
as variable X.
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Ecoli[([C3] | [C2] | [C1] | [CRO])|[DNAλ] |Dnae [accept dnae] | [enterh c3.0 + X]]
(l c3?.Y1+Y2)|Y3
−−−−−−−−−−−→Ecoli [CIII[0] | [C2] | [C1] | [CRO])|[DNAλ] | Dnae [accept dnae] | hfl[Y1 | Y3]]

(Y4+accept c2.Y5 |Y6),Y3
−−−−−−−−−−−−−−−−→Ecoli [(CIII[0] | [C1] | [CRO])|[DNAλ] |Dnae [accept dnae] | hfl[CII[0]|(Y5 | Y6) | Y3]]

(Y7+lysi!.Y8),Y6,Y3
−−−−−−−−−−−−−→Ecoli [(CIII[0] | [C1] | [CRO])|[λ[exit newph.VIRUS] | expel newph] |

Dnae [accept dnae] |h f l [CII[0]|(Y8 | Y6) | Y3]]
Y8 ,Y6 ,Y3
−−−−−−→Ecoli [(CIII[0] | [C1] | [CRO])|λ[VIRUS] |Dnae [accept dnae] |h f l [CII[0]|(Y8 | Y6) | Y3]]

Fig. 4. A symbolic trace for �[VIRUS ] � Ecoli[ECOLI]

HFL CII ��
�������� CI CRO

low��

high
�						 LYSO

CIII

high ������� low �� HFL


CII CI LISI

Fig. 5. Full specification of the inhibition and activation schema in Fig. 2

Symbolic transition system. We study the possible evolutions of the open system
�[VIRUS ] � Ecoli[ECOLI] (bio-ambients are sometimes labeled for clarity) in order to
understand the possible interactions of HFL within it. In the corresponding ��� we can
find the trace reported in Fig. 4. (As mentioned in � 2, the labels can be automatically
constructed on the basis of the BioAmbient proof rules, while the logic simply consists
of the modal operator � , which stands for the possibility of performing an unlabelled
transition, and of the spatial operators deriving from the syntax of the calculus). The
composition of the formulae over the trace yields an interesting characterisation of the
behaviour of HFL:

(l c3?�(Y4 � accept c2(Y7 � lysi!�Y8) � Y6) � Y2) � Y3

It is possible to see that this is a correct abstraction of the actually known HFL (see
(10) in Appendix A) and the symbolic trace in Fig. 4 is an abstraction of the corre-
sponding ground trace (see (12)-(16) in Appendix A). Finally, the picture of protein
interactions of Fig. 2 can be completed with the relation between low CIII, HFL and
CII, as shown in Fig. 5, although the partial specification adopted did not have any
information about this specific point.

3.2 Cellular Interaction: Membrane Trepassing

We model an abstraction of a virus replicating its RNA by exploiting a host cell (this has
been more exhaustively treated in [7]). The virus membrane complex contains the cap-
sid, another membrane complex, which encloses the nucleocapsid, i.e. the cytoplasme
containing the viral RNA. Here we model the endocytic pathway: the virus penetrates
the cell membrane.

We assume that the behaviour of the virus membrane is not known and we deduce
it from the operational rules describing the behaviour of the cell. We use fBC, a sim-
plified version of the Brane Calculi, which more suitably models this example. Indeed,
fBC focuses on membrane interactions, within the scope of this section, and molecular
interactions in the next one. Brane Calculi are intended to model biological interac-
tions inspired by endocytosis�exocytosis, indicated in [7] as bitonal interactions, since,
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P�Q ::� � � �[P] � P Æ Q � r �� �� � ::� 0 � a�� � ��� � � � �

r� s ::� � � m Æ r a ::� pn� p�
n (�)� en� e�n �mn� m�

n � � �

pn�� � �0 [P] Æ p�
n (�)�� � �0 [Q] � � � �0 [� [� ��0 [P]] Æ Q]

(phago)

e�n �� � �0 [en�� � �0 [P] Æ Q] � P Æ � � �0 � � � �0 [Q]
(exo)

mn����0[P] Æ m�
n ����0[Q] � ���0����0[P Æ Q]

(mate)
P � Q

P Æ R � Q Æ R
(par)

r1 Æ r1(r2)� s1(s2)�� � �0[r2 Æ P] � s1 Æ � � �0[s2 Æ P]
(b&r)

P � Q
� [P] � � [Q]

(mem)

Fig. 6. Syntax and operational semantics of fBC

informally speaking, they preserve a periodicity between inner and outer areas of mem-
branes.

The calculus fBC (see Fig. 6) can be understood as an extension of BioAmbients,
where membranes exhibit themselves a behaviour. The basic membrane complex �[P]
consists of an active external membrane layer � and of complex P inside the membrane
(� is the null membrane complex). Other complexes can be obtained by the composition
of P and Q, written P Æ Q, or as a multiset of molecules, m1 Æ � � � Æ mk. Interaction
between membrane complexes happens through the active membrane layer �, which
can be halted 0, an action prefixed to an active layer a�� and the parallel composition of
active layers ���. Membranes behave as follows. �[P] can enter �[Q], if � can execute a
pn action and � the corresponding coaction p�n (	) (with the same n) and�[P] is enclosed
within the active membrane 	, according to the spirit of bitonal reactions (phago). In
�[�[P]ÆQ] the subsystem P can leave the �[� � � ] membrane complex if � and � are ready
to execute, respectively, en and e�n (exo). Finally, �[P] and �[Q] merge in ���[P Æ Q] if
the membranes can execute mn and m�

n respectively (mate).

fBC formalisation. Via a phagocytosis the virus enters the cell wrapped by a mem-
brane. Then, the external membrane of the virus merges with a component of the cell,
the endosome. Finally, through an exocytosis, the viral nucleocapsid, and the viral RNA
it contains, is released directly in the cytosol of the cell (a possible formalisation in fBC
is reported in Appendix B).

Let us suppose now that the mechanisms in the virus membrane are not very well
understood. We represent this with the following partial specification, having variable
Y in place of the virus membrane.

virus �Y[ nucap ] nucap�capsid [ vRNA ] capsid� pb � bud � disasm

cell� p�
a (ma) � e�b [ cytosol ] cytosol�endosome Æ CC endosome�m�

a � e�a [ � ]

The virus content nucap is known and it will take part to later stages. It consists of a
membrane complex, which contains the RNA and whose active part, capsid, is ready to
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� ::� X � �[�] � � Æ � � � � � 	 (complexes) � ::� Y � ��� � 
�� (membranes)

 ::� pn � p�

n (�) � en � e�n � ; 	(	)� 	(	) (actions) 	 ::� Z � m � 	�	 (molecules)

Fig. 7. The logic associated to the calculus fBC

execute a phago action pb, a disasm set of actions that will be defined later, and a bud
action that is not relevant here. The cell membrane is ready for a phago p�a (ma) and an
exo e�b action (for the reproduced virus eventually leaving the cell). Its content, cytosol,
consists of a part, denoted CC, here not relevant, and the endosome, i.e. a membrane
complex that can merge m�

a with what has been phago-ed and it can uncoat its content
e�a , in case a suitable coaction can be provided, possibly by the virus.

Symbolic transition system. Also in this example, the associated logic is straight-
forwardly induced by the syntax of fBC, as shown in Fig. 7. Note that, being fBC se-
mantics unlabelled, the modality � 
 simply stands for the capability of executing any
action (e.g., as it may be required by the (mem) rule, see Fig. 6). Then, we study the
environment:

F[Y] � Y[ nucap ] Æ p�
a (ma)�e�b [ cytosol ]

where Y stands for the unknown virus membrane. A possible symbolic trace of the ���

of F[X] is:

F[Y]
pa�Y1 �Y2
�� e�b [ ma[Y1�Y2[nucap]] Æ m�

a � e�a [ � ] Æ CC ]] (5)
Y1�Y2
�� e�b [ e�a [ Y1�Y2[ nucap ]] Æ CC] (6)

ea �Y3 �Y4�Y2
�� e�b [ Y3�Y4�Y2[�] Æ nucap ÆCC] (7)

The first symbolic transition (5) constrains the virus membrane to be able to perform
a phago pa action in order to enter the cell via endocytosis, Y � pa�Y1 � Y2. The re-
quirement is specific for the action o�ered by the cell membrane. The second symbolic
transition (6) does not involve the virus membrane, since the nucap of the virus can
merge with the cytosol of the cell without imposing any further condition on the viral
membrane. The formula hence reverts to identity Y1� Y2: no requirements over the un-
specified components, since the rest of the system is able to evolve autonomously. The
last transition (7) requires ea�Y3�Y4� Y2, i.e. the (current state of the) virus membrane
should be able to exhibit an action ea in order to uncoat its content nucap via exocy-
tosis. The constraint Y1 � ea�Y3�Y4 is the most general, coherently with the semantic
rules.

Inferred information about the unknown components, when they contribute to the
overall system behaviour, can be gathered by composing the logical formulae used as
labels: any virus whose membrane satisfies 
��� � pa� (ea�Y3�Y4)� Y2 will be able to enter
in the cell and release its nucap. Note that 
��� characterises a general class of compo-
nents which allow for the interaction of interest. For instance, not only the membrane
of the virus pa�ea [ nucap ] but also the membranes pa�(ea � pa�ea) or mn � pa�ea satisfy

��� and, once plugged in Y, are suÆcient to drive the system through the same kind of
behaviour (and maybe others).
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3.3 Biochemical Interaction: Viral RNA Replication

Once inside the cell, the virus capsid is removed (uncoating process) and the virus RNA
replicates. Besides this process, also discussed in [7], we address virus neutralisation by
the cell. Here, we assume that the mechanisms in the cell content are not fully under-
stood and we show how information about the cell content, relevant for virus replication
or neutralisation, can be inferred.

The fBC calculus, in order to express biochemical phenomena, includes a bind and
release action (b�r) to let membranes interact with molecules. The action, denoted
r1(r2) � s1(s2), can be executed by a membrane if the molecules r2 are contained
in the membrane complex and the molecules r1 are present outside it. Its e�ect is to
substitute the molecules r1 with the molecules s1 outside, and r2 with the s2 inside.

We study again a partially specified cell, and then we show how the inferred con-
straints are coherent with actual components that can reasonably play the part of the
unspecified ones.

Virus replication. We assume that the virus pa�ea [ nucap ], which fulfills
the characterisation inferred in � 3.2, has entered the cell, reaching the state
e�b [ pb�bud�disasm[vRNA] Æ CC] (a coherent instance of the one in (7)). The ac-
tion disasm, responsible of uncoating the vRNA, is specified as a b&r action ac-
tivated by the presence of an outer trigger. It moves the inner vRNA outside:
disasm � disT rg(vRNA)� vRNA(�)� Moreover, we suppose that the remaining cell con-
tent CC is not fully understood, i.e. we focus on the environment

G[X] � e�b [pb � bud � disT rg(vRNA)� vRNA(�)[vRNA] Æ X]

A possible symbolic trace of G[X] is the following:

G[X]
disT rg Æ X0
�� e�b [pb � bud[�] Æ vRNA Æ X0]

�

�� e�b [pb�bud[�] Æ Z2 Æ Y4�Y5[Z3 Æ X6] Æ X7] (8)

The applicable (b&r) rule justifies the first symbolic transition with a spatial constraint
requiring that X contains at least a disTrg molecule in order to trigger the removal of
the viral capsid. The second symbolic transition is justified by the vRNA molecule,
now free within the cell, used as a trigger for another application of (b&r), where � �

vRNA(Z1) � Z2(Z3)� Y4�Y5[Z1 Æ X6] Æ X7. The formula � implies that, triggered by the
outer presence of vRNA, a set of molecules Z2 can be released within the cell, so that
vRNA replication can be supported by the cell. The composition of the formulae in (8)
yields

���� � disT rg Æ vRNA(Z1)� Z2(Z3)�Y4�Y5[Z1 Æ X6] Æ X7

As expected, ���� characterises the mechanisms of virus replication as modeled in [7],
which we are following. There, CC is read as providing the suitable triggering and
replication (two vRNA released) capability:

CC � disT rg Æ vRNArepl Æ CC� vRNArepl � vRNA(�)� vRNA Æ vRNA(�) [�]

Importantly, the above definition satisfies the characterisation ���� obtained by reason-
ing symbolically, i.e., CC �� ���� (where Z2 stands for vRNA Æ vRNA, Z1� Z3� X6� X7

for �, and Y4� Y6 for 0). Moreover, the behaviour of G[CC] comprises a trace that is
an instance of the symbolic (8), leading, as expected, to a state where vRNA has been
replicated: e�b [ pb � bud[�] Æ vRNA Æ vRNA Æ CC� ].
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Virus neutralisation. It is interesting to observe another possible evolution of G[X],
justified in the corresponding ��� by a (phago) rule

G[X]
	

�� e�b [Y2�Y3[ Y1[ bud � disasm[vRNA] ] Æ X4]] (9)

with 
 � p�b (Y1)�Y2�Y3[X4]. In this case the pb action of the virus membrane has been
exploited to trap the virus nucap within a membraned complex (Y1[ ]).

This evolution, not considered in [7], mimics the presence of a Mx-like protein in
the cell that inhibits the replication of the virus. This type of proteins seems to play an
antiviral activity by trapping the viral capsid and moving it in a location of the cell where
the mechanism for the generation of new virus particles becomes unavailable [18]. The
simplest representation of the Mx protein can be drawn from 
 as Mx � p�b (0)[�]:
by means of p�b (0) the viral nucap is trapped within an empty membrane. Mx seems
to be a coherent simplification of the actual known behaviour of the protein, while

 � p�b (Y1)�Y2�Y3[X4] characterises the cell components (including the protein Mx,
but possibly others) capable of trapping the virus within a membrane. Adding the Mx
protein to a cell with the RNA replication mechanism determines a trace reaching a
state where the virus has been phago-ed in a membrane where it can not reproduce (the
Mx membrane has been annotated for readability):

e�b [ 0 [ 0[ bud � disasm[vRNA] ] ] Æ RC ]�

While the behaviour of Mx proteins has been studied elsewhere, it is worth noting
that here it has been inferred from the general rules defining the calculus and an incom-
plete initial specification. The same specification has led to the inference of the virus
replication mechanism. This experiment shows how symbolically reasoning appears as
a deductive mechanism, suitable to infer unknown information.

3.4 Discussion

We have presented two proof of concept examples of the application of ��� to biological
problems. The former is an original formulation of biological interaction that highlights
the problem of understanding the interplay of a protein network. The latter is a paradig-
matic example of the interaction between a virus and its host cell. These examples have
illustrated how, reasoning in presence of incomplete specifications, it has been possible
to deduce new knowledge about the studied systems, like

– the emergence of unspecified interactions between bio-components, e.g. the possi-
bility of a HFL-like protein to determine the lytic or lysogenic cycle in the ��phage
virus life-cycle;

– the constraints over the behaviour and the structure of bio-components needed to
participate to the evolution of a system, e.g. the need of the cell content to provide
a trigger for vRNA replication;

– the discovery of possible components or behaviour not explicitly foreseen in the
initial specification of the system under analysis, e.g. the existence and behaviour
of an Mx-like protein blocking virus replication.
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This poses the problem of characterising the (reachability of) relevant states and evo-
lution traces of the partially specified bio-environments, and, analogously, of proving
bio-system properties. For instance one might want to exploit the synthesized ��� for
the automated state-space exploration in order to characterise “unknown” dangerous
bioagents that can compromise the regular activity of a cellular system. An interesting
approach in this sense is the definition of a modal logic and a model checking algorithm
for Brane Calculi [24] (along the line of Ambient Logic [9]), which defines spatial and
temporal properties on membrane systems. Similarly, [13,14,35] exploit Pathway logic
and matching algorithms for model checking the evolutions of biological systems. How-
ever, beyond similarities, e.g. formulas as labels and unification�matching algorithms,
our theoretical framework poses the problem of model checking open-ended systems.
This is an interesting problem under investigation, whose scope is beyond this paper.

Formulae relative to traces play the part of (minimal) necessary conditions that un-
specified components must fulfill to possibly drive the system through the trace. Triv-
ially, if p �� 
 and q �� 
 then p � q satisfies both of them and can lead the system
through possibly completely unrelated evolutions. This suggests, in general, the diÆ-
culties in associating processes to desired behaviours. Besides, while p � q is definitely
a process in abstract terms, it might not be feasible in biological terms, so that pro-
cess characterisation could also require domain specific solutions. This issue is under
investigation.

4 Concluding Remarks and Future Work

We have proposed the application of a symbolic approach to the modeling of open
biological processes, where some components or features are unknown. An open bio-
logical system is seen as a partially specified process of a given calculus tailored to bi-
ological processes. Its semantics is given in terms of symbolic transition systems (���),
whose transitions are labeled with logical formulae that express the structural and�or
behavioural requirements over the unknown components that let the system evolve.
��� can be e�ectively generated from the ��� rules of the process calculus by using a
unification-based approach, supporting in silico analysis of complex biological systems.
Overall, this provides a formal and computational framework capable to infer informa-
tion about components that are not fully understood beforehand, and that permits the
choice of the more appropriate representation language.

To the best of our knowledge, our open-ended and inferential modeling is original
in the context of bio process algebras. Indeed, in the literature, simulations and analy-
sis have been carried out starting from completely specified models. Hence, no further
information about the behaviour of the system can be inferred, in the sense we do it. A
related approach, but in a di�erent perspective, can be [6], where temporal logic is taken
as a specification language and machine learning techniques are used to revise the re-
action rules initially (fully) available. Another way to deal with incomplete information
are discrete approximations, as claimed in [5], but in the significantly di�erent context
of the numerical approaches. An analogous unification-based semantics construction
is given in [36], in the di�erent context of model-checking for nominal calculi, where
unknown can be the communication network.
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Beyond the discussed ongoing extensions, a challenging major direction to extend
our approach is the use of quantitative and stochastic information, e.g. probabilities and
rate constants of reactions, as in [27,29].

Acknowledgments. We are grateful to Pierpaolo Degano and Corrado Priami whose
comments have helped us in improving the content and presentation of this paper.
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A �-Phage Life Cycle

We report three traces, starting from the completely specified model of the �-phage life
cycle. They express three pathways illustrated in [37], which lead to the lysogenic and
lytic cycles. We assume the behaviour of HFL to be:

HFL � enterh c3�0 � l c3?�acceptc2�lysi!�0 (10)
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All executions are preceded by the initial phase of virus injection: the two reduc-
tions in (11) concerning the merging of the virus and the bacterium membranes. For
readability we use the abbreviation: DNAe � accept dnae�0.

�[VIRUS ] �Ecoli [ECOLI] �Ecoli [([C3] � [C2] � [C1] � [CRO])�[DNA�] � [DNAe] � [HFL]] (11)

In case of a low concentration of CIII the simulation starts at (12):

Ecoli[([C3] � [C2] � [C1] � [CRO])�[DNA�] � [DNAe] � [HFL]] (12)

�Ecoli [CIII[0] � [C2] � [C1] � [CRO])�[DNA�] � [DNAe] � hfl[accept c2�lysi!�0]] (13)

�Ecoli [([0] � [C1] � [CRO]) � [DNA�] � [DNAe] � hfl[CII[0]�lysi!�0]] (14)

�Ecoli [([0] � [C1] � [CRO])�[�[exit newph�VIRUS] � expel newph] � [DNAe] �h f l [CII [0]�0]] (15)

�Ecoli [([0] � [C1] � [CRO])��[VIRUS] � [DNAe] �h f l [ CII [0]�0]] (16)

A high concentration of CIII and a low of CRO leads the system to lysogeny, the simu-
lation starts at (17):

Ecoli[([C3] � [C2] � [C1] � [CRO])�[DNA�] � [DNAe] � [HFL]] (17)

�Ecoli [CIII[pro c2!�0� HFL[]] � [C2] � [C1] � [CRO])�[DNA�] � [DNAe]] (18)

�Ecoli [([0� HFL[0]] � [pro c1�0] � [C1] � [CRO]) � [DNA�] � [DNAe]] (19)

�Ecoli [([0� HFL[0]] � [0] � [high cro?�lysi!�0 � l cro?�lyso!�0] � [CRO]) � [DNA�] � [DNAe]] (20)

�Ecoli [([0� HFL[0]] � [0] � [lyso!�0] � [0]) � [DNA�] � [DNAe]] (21)

�Ecoli [([0� HFL[0]] � [0] � [0] � [0]) � [enter dnae�0] � [DNAe]] (22)

�Ecoli [( CIII[0� HFL[0]] � CII[0] � CI[0] � CRO[0]) �� Dnae [ Dna� [0]]] (23)

Finally, a high concentration of CRO leads the system to lysis, even with a high con-
centration of CIII, simulation starts at (24), continuing from (20):

Ecoli[([0� HFL[0]] � [0] � [high cro?�lysi!�0 � l cro?�lyso!�0] � [CRO]) � [DNA�] � [DNAe]] (24)

�Ecoli [([0� HFL[0]] � [0] � [lysi!�0] � [0]) � [DNA�] � [DNAe]] (25)

�Ecoli [([0� HFL[0]] � [0] � [0] � [0]) � [ �[exit newph�VIRUS] � expel newph] � [DNAe]] (26)

�Ecoli [([0� HFL[0]] � [0] � [0] � [0]) � �[VIRUS ] � [DNAe]] (27)

B Virus Entering a Cell

We report the fully specified model of the virus entering a cell.

virus � pa�ea [ nucap ] nucap �capsid [ vRNA ] capsid � pb � bud � disasm

cell � p�
a (ma) � e�b [ cytosol ] cytosol�endosome Æ CC endosome�m�

a � e�a [ � ]

The initial configuration of the system gives origin to the following simulation that
exhibits the expected behaviour:

pa�ea[ nucap ] Æ p�
a (ma)�e�b [ m�

a � e�a [ � ] Æ CC ] (28)

� e�b [ ma[ ea[nucap] ] Æ m�
a � e�a [ � ] ÆCC ] (29)

� e�b [ e�a [ea[nucap]] ÆCC] � e�b [ 0[�] Æ nucap Æ CC] (30)
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Abstract. Lie group theory states that knowledge of a m-parameters
solvable group of symmetries of a system of ordinary differential equa-
tions allows to reduce by m the number of equations. We apply this
principle by finding some affine derivations that induces expanded Lie
point symmetries of considered system. By rewriting original problem in
an invariant coordinates set for these symmetries, we reduce the number
of involved parameters. We present an algorithm based on this stand-
point whose arithmetic complexity is quasi-polynomial in input’s size.

1 Introduction

Before analysing a biological model described by an algebraic system, it is useful
to reduce the number of relevant parameters that determine the dynamics.

Example 1. In order to give an example of such a reduction, let us consider the
following Verhulst’s logistic growth model with linear predation (see § 1.1 in [1]):

ẋ = (a− bx)x− cx, ȧ = ḃ = ċ = 0, ṫ = 1. (1)

Assuming that a �= c and b �= 0, one can represent the flow (t, x) of (1) using
parameterization:

t = t/(a− c), x = (a− c)x/b, (2)

where (t, x) is the flow of the following simpler differential equation:

ẋ = (1− x)x. (3)

In this formulation of (1), parameters a and c were lumped together into a− c
and its state variables x and t were nondimensionalise.

Usually, presentation of this kind of simplification relies on rules of thumbs (for
example, the knowledge of units in which is expressed the problem when dimen-
sional analysis is used) and thus, there is—up to our knowledge—no complexity
results on these kind of reduction methods (see [2] and references therein).

However, these reductions are generally based on the existence of Lie point
symmetries of the considered problem (for reduction based on dimensional anal-
ysis, see § 1.2 in [3] and Theorem 3.22 in [4]).

H. Anai, K. Horimoto, and T. Kutsia (Eds.): AB 2007, LNCS 4545, pp. 277–291, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Example 1 (continued). The following continuous groups of transformations:

Tλ : t → t ,
x → x ,

a → a − λ,
b → b,
c → c − λ,

S(μ,ν) : t → t/ν,
x → μx ,

a → νa,
b → νb/μ,
c → νc,

(4)

leave invariant system (1) and its solutions. These symmetries are called ex-
panded because they act on the expanded space of variables that includes the
system parameters in addition to independent and dependent variables.

The system (3) is obtained by factoring out the actions of the symmetries (4)
of the original system (1) and thus, it is invariant under these actions. The
relations (2) parameterize the solutions of the original system (1) in function of
the solution (t, x) of invariant system (3) and of the free parameters a, b, c; they
are defined by the composition (S(a/b,a) ◦ Tc)(t, x, a, b, c).

The aim of this note is to show how Lie theory unifies and extends the classical
methods (exact lumping, dimensional analysis, etc.) used to simplify paramet-
ric algebraic (differential) systems. We adopt a presentation based on algebraic
tools closer to the actual computations (mainly Jordan normal form and linear
algebra) on which are based our reduction process.

1.1 Related Works

The literature on investigation of the invariants of Lie group action and their
applications to algebraic systems is far too vast to be reviewed properly here.
Nevertheless, let us notice that some simplification process (dimensional analysis
for example) are known to be based on classical Lie theory (see § 1.2 in [3] and
Theorem 3.22 in [4]) but, to the best of our knowledge, the use of more general
transformations than scaling (and their application to simplification of algebraic
parametric systems) are not described elsewhere in the literature.

The book [5] shows various applications of invariants in the study of dynamical
systems under a computer algebra viewpoint. Section 4.1 for example, shows how
the knowledge of invariants of a given dynamical system could simplify further
computation on it by reducing the degree of involved polynomial expressions.
In [6] authors show, given a rational group action, how to compute a complete
set of its invariants.

We adopt the same general philosophy—determine some system’s symmetries
and use their invariants—but our purposes are more to reduce the number of
variables involved in these expressions than their degrees (that is for us only
a byproduct). Furthermore, while the symmetries considered in [5,6] are quite
general—and thus, their computation of invariants are exclusively done using
Gröbner bases computations—we restrict ourselves to the use of affine Lie sym-
metries and thus, the required operations are restricted to linear algebra over a
number field and univariate polynomial factorization.

1.2 Main Steps and Tools of the Reduction Process

Let us present now our simplification process through our introducing example:
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Example 1 (continued). Reduction of Example 1 is classically done as follow

Step 1. Determine affine infinitesimal generators that induce expanded Lie sym-
metries of the considered system. If there is no such derivations, our
reduction process stops. In our example 1, they are:

δ1 := ∂
∂a + ∂

∂c , δ2 := x∂
∂x − b∂

∂b , δ3 := a∂
∂a + b∂

∂b + c∂
∂c − t∂

∂t . (5)

The section 3.1 describes the required computations and shows that
their complexity is quasi-polynomial in input size.

Step 2. Choose a generator that is a symmetry of the others (above infinitesimal
generators form a solvable Lie algebra and our reduction process have
to take this property into account by computing associated structure
constants). As [δ1, δ2] = [δ2, δ3] = 0 and [δ1, δ3] = δ1, we could choose δ1

or δ2. Determine a preprincipal element (! := b) associated with a prin-
cipal element (ρ := ln b) of this last generator i.e. an element defining
a coordinates set in which the derivation δ2 is rectified (equal to the
translation ∂/∂ρ).

Step 3. The chosen principal element induces an invariantization of the consid-
ered system i.e. the system ẋ = (a− x)x− cx which is the intersection
of the original system with the algebraic hyperplane defined by the rela-
tion !− 1 = 0; the resulting system is invariant under the action
Sμ : x → μx , b → b/μ of the one-parameter group of symmetry induced
by δ2. The solution x of the original system is then by Sb(x) where x is a
solution of the invariantized system and b is a free parameter.

Step 4. Repeat Step 1 (supplementary affine symmetries could appear after
Step 3).

Let us stress that it is generally hard to find a general infinitesimal generator
of a system’s symmetry (Step 1) and to give an explicit representation of an
invariant coordinates set (Step 2) for it. Thus, we restrict ourself to Lie symme-
tries associated to affine infinitesimal generators (whose coefficients are linear
functions) for which invariant coordinates computation is easy (for general case
see [6] and references therein). Hence, we do not follow methods developed for
general cases because their complexity are likely exponential in input’s size while
we focus our attention to method of quasi-polynomial complexity.

To conclude, remark that this reduction process works also for purely algebraic
system (describing fixed point of a dynamical system for example).

Outline. In the next section, we recall some basic definitions concerning con-
sidered systems and related derivations. Then, we present the notion of principal
element and show how it could be used in order to define a rectifying coordinates
set for general derivations. In the second part of this note, we focus our atten-
tion on affine Lie point symmetries in order to propose a probabilistic strategy to
compute them and their associated principal elements. We show how previously
introduced notions are used in the reduction process by considering invarianti-
zation of purely algebraic (resp. differential) system and their parameterization.
Finally, in conclusion we make some remarks and suggest possible further works.
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2 Considered Systems and Associated Derivations

2.1 Some Algebraic Systems Used in Analysis of Biological Model

Note 2. Notations — Hereafter, we consider an explicit algebraic ordinary dif-
ferential system Σ bearing on n state variables X := (x1, . . . , xn) and depending
on � parameters Θ := (θ1, . . . , θ�):

Σ

{
Ẋ = F (t,X,Θ),
ṫ = 1, Θ̇ = 0.

(6)

Denoting the set {1, . . . , n} by N , the letter Ẋ stands for first order derivatives
of state variables (ẋj | j ∈ N) w.r.t. time t and F := (fj | j ∈ N) is a finite subset
of K(t,X,Θ) where K is a subfield (Q for example) of C. In order to determine
the qualitative properties of the dynamical system (6), it is usual to consider the
following systems for various subset J of N :

ΣJ

⎧⎨
⎩

ẋj = fj(t,X,Θ), ∀j ∈ J,
ẋı = fı(t,X,Θ) = 0, ∀ı ∈ N \ J,
ṫ = 1, Θ̇ = 0,

(7)

in which some state variables are considered as parameters. In fact, for ı in N ,
the system Σ{ı} defines the so-called xı-nullcline of Σ and the purely algebraic
system Σ∅ defines its fixed points (see examples of applications in [1]).

Remark 3. In the sequel, we are going to avoid—as much as possible—any dis-
tinction between time, state variables and parameters i.e. we work in an ex-
panded state space (see [7] for another application of this standpoint); hence, let
us denote the set (t,X,Θ) by Z := (zı | 1 ≤ ı ≤ 1 + � + n) and its cardinal by m.

2.2 Infinitesimal Generators, Associated Flows and Their
Rectification

First let us recall some basic facts about derivations.

Definition 4. Given a polynomial algebra K[Z], a derivation of K[Z] with con-
stant field K is an additive mapping δ : K[Z] → K[Z] that satisfies Leibniz rules:

∀(f1, f2) ∈ K[Z]2, δ(f1f2) = f1δf2 + f2δf1, (8)

and have K in its kernel. We denote by DerKK[Z] the set of all such derivations.
The Lie bracket is defined by the K-bilinear map:

[ , ] : DerKK[Z]×DerKK[Z] → DerKK[Z],
(δ1, δ2) → δ1δ2 − δ2δ1.

(9)

This map is skew-symmetric and satisfies the following Jacobi identity:

∀ (δ1, δ2, δ3) ⊂ DerKK[Z], [δ1, [δ2, δ3]] + [δ2, [δ3, δ1]] + [δ3, [δ1, δ2]] = 0. (10)

The set DerKK[Z] is a K vector-space spanned by the set of canonical deriva-
tions {∂/∂z1, . . . , ∂/∂zm}. It is also a Lie algebra with Lie bracket as product.
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Remark 5. An algebraic system ΣJ defined by (7) could be seen as a derivation:

DJ := ∂
∂t +

∑
j∈J fj

∂
∂xj

, (11)

associated to the algebraic relations {fı = 0, ∀ı ∈ N \ J}.

Derivations considered as infinitesimal generators. The exponentiation
of a derivation δ induces several morphisms as shown by following definitions:

Definition 6. Given a derivation δ and τ one of its constant (δτ = 0), one
can define the exponential map eτδ :=

∑
ı∈N

τ ıδı/ı! from K[Z] into the alge-
bra K[[τ, Z]] of power series in the indeterminates (τ, Z).

1. This map is a morphism that associates to any f in K[Z] its Lie series defined
by the formal power series

∑
ı∈N

τ ıδıf/ı!.
2. The derivation δ is called the infinitesimal generator of eτδ.
3. The formal power series eτδZ are solutions of the vector field associated to δ.

These series form the formal flow of δ; this derivation induces an infinites-
imal transformation from K×Km into Km that associates, under suitable
condition of convergence, the evaluation (eτδZ)(V) to any parameter τ in K
and any initial point V in Km; this map is the action of the flow eτδ on Km.

Example 7. Hence, the C(x)-morphism στ : x→ eτx could be defined by the
exponential map στ := eτδ where δ denotes the derivation x∂/∂x acting on the
field C(x). The set {στ | τ ∈ C} is a one-parameter group of automorphisms.

Lemma 8. Given two derivations ∂ and δ, the Baker Campbell Hausdorff for-
mula states that the relation e∂eδ = eδe∂e[∂,δ] holds.

The next section presents how some derivations could be expressed as translation
in a suitable coordinates set.

Some Algebraic Tools for Rectification of an Infinitesimal Generator

Principal element. Forthcoming manipulations are based on the existence of
a special element that behaves as a time variable for considered derivation as
shown by the following definition:

Definition 9. An ρ element in an algebra A is principal for a derivation δ
acting on A if the relation δρ = 1 holds.

To determine a principal element ρ of a derivation δ, one could solve the follow-
ing partial differential equation δρ = 1. As this is not a trivial task and as not
every derivation has such an element, we are going in the sequel to restrict our
manipulation to the following kind of principal elements:

Lemma 10. Given a derivation δ of K[Z], if there exists an element ! in K[Z],

1. such that the relations δ! �= 0 and δ2! = 0 hold, then the fraction ρ := !/δ!
2. and a constant λ of δ such that the relation δ! = λ! holds, then for any

constant c of this derivation, the transcendental element ρ := log(c!)/λ
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is a principal element ρ of δ. The element ! is called the preprincipal element
of δ associated to ρ.

Remark 11. As we adopt an algebraic standpoint in this note, this lemma re-
quires to consider in the sequel the localization K[ρ, Z](℘) of K[ρ, Z] at the mul-
tiplicative closed set ℘ := {(δ!)ı | ı ∈ N} (resp. ℘ := {!ı | ı ∈ N}). In fact, given
any canonical derivation ∂/∂z of K[Z], there exists one, and only one, canonical
derivation of K[ρ, Z](℘) extending ∂/∂z and such that the following usual re-
lations ∂ρ/∂z = ∂!/∂z − (ρ/(δ!)2)∂δ!/∂z (resp. ∂ρ/∂z = (1/!)∂!/∂z) are well
defined in K[ρ, Z](℘) (for the sake of simplicity, we use the same notation for
derivations acting on K[Z] and their extension to derivation acting on K[ρ, Z](℘)).
This shows that the Lie algebra DerKK[ρ, Z](℘) is well defined.

Example 12. For any element h in K(Z), we consider the logarithm log h i.e a
transcendental field extension K(Z, log h) and the associated derivation exten-
sion such that δ log h = δh/h. Hence, the derivation δ := x∂/∂x acting on C(x)
has a unique extension to a derivation δ acting on C(x, log(x)) such that the
relation δ log(x) = 1 holds.

Construction of a rectifying coordinate ring. Principal elements of a derivation δ
allow to construct a rectifying field in which δ acts as a simple translation.

Lemma 13. Given a derivation δ and one of its principal element ρ, let us
define the following formal operator:

πδ,ρ :=
∑
ı∈N

(−ρ)ı δ
ı

ı!
. (12)

As δ is a derivation, this operator induces a homomorphism and the following
exact sequence:

0 → kerπδ,ρ → K[ρ, Z](℘)

πδ,ρ−→ K[[ρ, Z]](℘) → K[ζ] → 0 (13)

where the variables set ζ denotes the set πδ,ρZ of formal power series.

Remark 14. To prove that the map πδ,ρ is a homomorphism, one can use the
same argument then whose used in the proof stating the same property for the
exponential map eδ. By construction πδ,ρρ is equal to 0. Thus, the kernel kerπδ,ρ

contains the ideal ρK[ρ, Z](℘) and is not trivial (see also Proposition 30).
Using exact sequence (13), we could define a coordinate ring K[ζ] that is

isomorphic to the quotient algebra K[ρ, Z](℘)/(kerπδ,ρ)K[ρ, Z](℘) and a rectifying
ring K[ζ, ρ] that is its finitely generated extension. To explain this terminology,
first remark that the derivation δ acting on K[ρ, Z](℘) could be easily extended
to a derivation acting on K[[ρ, Z]](℘) and thus to K[ρ, ζ]. The following lemma
states that the derivation δ is rectified when we consider its action on K[ρ, ζ]:

Lemma 15. With previously introduced notations, the following relations hold:

δρ = 1, δζ = 0. (14)
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Sketch of proof. The first relation is the definition of a principal element. Ele-
ments ζ are defined by the series

∑
ı∈N

(−ρ)ıδıZ/ı!. By Leibniz’ rule, we have:

∀ı ∈ N, δ
(
(−ρ)ı δı

ı!

)
= (−1)i

(
ρı δı+1

ı! + ρı−1 δı

(ı−1)!

)
, (15)

and thus, derivation’s linearity proves the last relations.

The morphism πδ,ρ induces a coordinates change allowing to express the deriva-
tion δ as a simple translation ∂/∂ρ in this new coordinates set. We do not
describe further this coordinates change, because we are just going to use some
of its properties and not its exact formulation. Forthcoming considerations are
based on the fact that the relations δζ = 0 imply that the relations eτδζ = ζ
hold. Thus, the morphism πδ,ρ maps the coordinate ring K[Z] of the ambient
space Km onto a coordinate ring invariant under the action of the flow eτδ.

2.3 Expanded Lie Point Symmetries and Their Determining System

Let us define now the derivations used in the sequel.

Definition 16. Given a derivation δ, an algebraic system ΣJ and the associated
derivation DJ , δ is an infinitesimal generator of an expanded Lie point sym-
metry of ΣJ if there exists a constant λ in K such that the following relations
hold:

DJδ(t) =
∂δ(t)
∂t

+
∑
j∈J

fj
∂δ(t)
∂xj

= −λ, (16)

∑
z∈Z

δ(z)
∂fı

∂z
− ∂δ(xı)

∂t
−

∑
j∈J

fj
∂δ(xı)
∂xj

= λfı, ∀ı ∈ J, (17)

δfı =
∑
z∈Z

δ(z)
∂fı

∂z
= λfı, ∀ı ∈ N \ J, (18)

DJδ(θ) =
∂δ(θ)
∂t

+
∑
j∈J

fj
∂δ(θ)
∂xj

= 0, ∀θ ∈ Θ. (19)

These relations form the determining system ofΣJ expanded Lie point symmetries.

Remark 17. Solution space structure — Derivations δ satisfying (16) – (19) form
a Lie sub-algebra of DerKK[Z] denoted by LieSym(Σ). Furthermore, if J1 is a
subset of J2, the Lie algebra LieSym(ΣJ1) is a sub-algebra of LieSym(ΣJ2).

Remark 18. Considered Lie symmetries vs general Lie symmetries — The defi-
nition 16 is designed for our algebraic purposes but is only a restriction of the
general definition of Lie point symmetries (see [4]). In fact, remark that if the
considered algebraic system ΣJ is

– a vector field (J = N), this definition reduces to the classical one of Lie point
symmetries based on the Lie bracket i.e. [D, δ] = λD with the restriction
that λ is not a general constant of the derivation D but a constant in K;
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– a purely algebraic system (J = ∅), this definition is much more restrictive
than the classical definition presented in Section 2.1 of [4]. In fact, let us con-
sider the system f1 := x1

2 + y1
2 − 1, f2 := x2

2 + y2
2 − 1, f3 := x2y1 − y2x1

and the derivation δ := x2∂/∂y1 − y2∂/∂x1 + x1∂/∂y2 − y1∂/∂x2. The rela-
tions δf1 = 2f3, δf2 = −2f3, δf3 = f1 − f2 show that the derivation δ leaves
invariant the ideal spanned by {f1, f2, f3} and thus according to [4], δ is the
infinitesimal generator of a one-parameter group of Lie symmetry (a family
of morphism eτδ parameterized by a constant τ) that leaves the variety asso-
ciated to {f1, f2, f3} invariant (eτδf1 = f1 cos2 τ + f2 sin2 τ + 2f3 cos τ sin τ).
But δ does not satisfy Definition 16. This kind of derivations are not taken
into account in this note because the general definition of a Lie point sym-
metry for an algebraic system F = 0 implies that we must perform our com-
putations in the quotient algebra K[Z]/FK[Z]; as this task is not in the
complexity class considered here, we made a first restriction to the set of Lie
symmetry used in our work by only considering solution of system (16) – (19).

Furthermore, there is little hope to solve the general partial differential prob-
lem (16) – (19); thus, we restrict our solution space to affine infinitesimal gen-
erators for which the associated determining equations form a linear system.

3 Affine Derivation and Associated Invariantization

Definition 19. Let us denote by AffDerKK[Z] the following set of derivations:{
δ =

∑
z∈Z

δ(z)
∂

∂z

∣∣∣ δ(z1) := bz1+
∑
z2∈Z

az1z2z2,
(
bz1 , az1z2 | z2 ∈ Z

)
∈ Km+1

}
.

(20)

Note 20. Notation — Given a derivation δ in AffDerKK[Z], we are going in the
sequel to consider Z as a vector and use the following matricial notations:

Aδ = (az1z2)(z1,z2)∈Z2 , Bδ = (bz)z∈Z , δZ = AδZ + Bδ. (21)

3.1 Determining System Defining Affine Infinitesimal Generators

Lemma 21. For an affine infinitesimal generator δ in AffDerKK[Z], the asso-
ciated determining system (16) – (19) reduces to the following linear system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0
∂f1
∂z1

· · · ∂f1
∂zm

...
...

∂fn

∂z1
· · · ∂fn

∂zm

0 · · · 0
...

...
0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(AδZ + Bδ)−Aδ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
f11l1∈J

...
fn1ln∈J

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
f1

...
fn

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22)

where 1lı∈J is equal to 1 if the index ı is in J and 0 otherwise.
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Remark 22. Probabilistic resolution of determining system defining affine deriva-
tion — The system (22) could be rewritten in a the more convenient matricial
notation M(Z)K = 0 where M(Z) is a m× (m + 1)m matrix with coefficients
in K[Z] and K is a vector whose (m + 1)m coefficients are the coefficients of Aδ

and Bδ. Affine derivations that are solution of this determining system, are given
by the kernel of M(Z) in a field K. Kernel computation could be done by the fol-
lowing probabilistic method. Indeterminates Z are specialized in matrix M(Z)
to some random value in Km in order to obtain a matrix M1 over the field K; the
resulting linear system M1K could be underdetermined and thus, several spe-
cializations should be considered in order to obtain a linear system Lı defined
by M1K = · · · = MıK = 0. The rank rı of Lı increases with ı and the special-
ization process could be stopped when rj = rj+1; the considered system Lj could
then be solved using a numerical method. The specialization set for which this
process fails to find a correct solution is a zero-dimensional algebraic variety and
thus, its probability of failure is low.

However, there is an infinite way to choose a basis of the kernel computed
above. But, one can use Lenstra, Lenstra and Lovász’ basis reduction algorithm
in order to obtain a reduced basis in the sense that less variables are involved in
each infinitesimal generators definition.

To conclude, remark that some solutions of system (22) are spurious for our
purposes since they describe the same flow and should be discarded. In fact, con-
sider the problem Σ defined by ẋ = θx: the base field of LieSym(Σ) is the con-
stant field of the derivation D := ∂/∂t + θx∂/∂x; thus, as ∂/∂t is in LieSym(Σ)
and θ is a constant of D, θ∂/∂t is another infinitesimal generators representing
the same Lie symmetry then ∂/∂t. These two derivations define the same Lie
symmetry but are given by two different solutions of system (22).

3.2 Principal Element Computation for Affine Derivation

Lemma 23. Given a derivation δ in AffDerKK[Z]. If there exits a vector of δ’s
constants denoted by C := (c1, . . . , cm) such that the relations

1. tCAδ = 0 and tCBδ �= 0 hold, then the fraction tCZ/
(
tC · (AδZ + Bδ)

)
2. tAδC = λC and δλ = 0 hold, then the element

(
log

(
tC · (Z + Bδ/λ)

))
/λ

is a principal element of δ.

Sketch of proof. 1) Consider the polynomial tCZ denoted by !. Using nota-
tion (21), remark that δ! is equal to the linear combination tC(AδZ + Bδ).
Thus, the conditions on C given in the first item show that δ! is a constant
different of 0 and thus δ2! is equal to 0. The first assertion of Lemma 10 is
sufficient to conclude in that case. 2) Consider the polynomial tC(Z +Bδ/λ) de-
noted by !. With the hypothesis of the second item, the element δ! is equal to λ!
and thus, the second assertion of lemma 10 is satisfied and the transcendental
element log(!)/λ is a principal element of δ.
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Remark 24. Computational strategy — This lemma shows that in order to find
a principal element for a derivation δ in AffDerKK[Z], one have first to check
condition 1) and if it is not satisfied, one have to find an eigenvector of Aδ.

3.3 Flow of a Affine Derivation and Resulting Quotient Space

Finding a coordinates change required to place a given derivation in rectified
form is essentially the same problem as solving it in the first place. This could
be easily done for affine derivation using the Jordan normal form.

Remark 25. Jordan normal form — Given a m×m-matrix Aδ associated to
a derivation δ, if its minimal polynomial p(ξ) is

∏w
ı=1 pı with pı = (ξ − λı)αı

and
∑w

ı=1 αı = m, then there exists a change of coordinates P such that:

Aδ = P

⎛
⎜⎜⎜⎜⎝

J1 0 · · · 0

0 J2
. . .

...
...

. . . . . . 0
0 · · · 0 Jw

⎞
⎟⎟⎟⎟⎠P−1, with Jı := λıIdαı×αı +

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1
0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(23)

if λı is different from 0 and Jı := λıIdαı×αı otherwise; the symbol Idαı×αı denotes
the identity αı×αı-matrix. This canonical form and Lemma 23 allow to compute
preprincipal and associated principal element for any affine derivation δ.

Hypotheses 1. From now, we suppose that the base field K is C in order to
contain all eigenvalues of the matrix Aδ and to define the quantities related to
principal elements (exponentials and logarithms).

Given an affine derivation δ, one of its preprincipal element ! and the associated
principal element ρ, let us interpret geometrically the manipulation done in
section 2.2.

Flow associated to a derivation and induced equivalence classes. To do
so and following Definition 6-3, we consider the application defined by the linear
system of ordinary differential equations associated to our affine derivation δ:

Ψ : K×Km → Km,
(τ,W) →

(
eτδZ

)
(W) = exp(τAδ)W +

∫ τ

0 exp
(
(τ − s)Aδ

)
Bδds .

(24)

this application could be computed numerically or using the following relations:

exp(τJı) = exp(τλı)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 τ τ2

2 · · · ταi−1

(αi−1)!

0 1 τ
. . .

...
...

. . . . . . τ2

2
...

. . . τ
0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)
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Note 26. Orbits of the flow — The image of K×W by Ψ constitutes an orbit of
the flow eτδ. This standpoint induces an equivalence relation ∼ among the point
of Km, with V1 being equivalent to V2 if these points lie in the same orbit of Ψ .
Let us denotes by Hδ the set of equivalence classes a.k.a. the set of orbits. In the
sequel, we suppose for the sake of conciseness that all the orbits have the same
dimension i.e. we implicitly exclude from our statements the lower-dimensional
orbits associated to the variety in Km defined by the ideal {δ(z) = 0 | z ∈ Z}.
All forthcoming manipulations rely on the following remark:

Remark 27. Invariantization — Any object (algebraic relations, derivations,
etc.) that is invariant under the action of the flow eτδ will have a counterpart on
the lower-dimensional variety Hδ whose representation—the invariantization of
the considered object—completely characterize the original object.

Note 28. As a first illustration, let us remark that any function f : Km → K
invariant for the flow eτδ is invariant along its orbits and therefore there is a well-
defined induced function f̃ : Hδ → K; conversely, given a function f̃ : Hδ → K,
there is an invariant function f : Km → K defined by the relation f(V) := f̃(h)
if V is in the orbit h. Hence, we obtain the following result:

Lemma 29. There is a one-to-one correspondence between (polynomial) func-
tions on Km invariant under the action of the flow eτδ and arbitrary (polynomial)
functions on Hδ.

In order to represent Hδ, one can first find an algebraic representation of the
orbits of the flow and then use a cross section of these orbits (see [6] and refer-
ences therein for more details). This general approach is based on Gröbner basis
computation and treats general problems that exceed the scope of this note.
Instead, we are going to use Lemmas 13 and 29 in order to give an algebraic
description of Hδ whose computation is based mainly on Jordan decomposition.

Algebraic representation of Hδ. Consider the formal operator πδ,ρ intro-
duced in Lemma 13. Lemma 15 implies that the image of πδ,ρ is invariant under
the action the flow eτδ. Thus, by describing the kernel of πδ,ρ, we obtain an alge-
braic description of functions on Km invariant under the action of the flow eτδ.
Lemma 29 shows that this description induces an algebraic representation of Hδ.
The following lemma recapitulates these points when δ is an affine derivation:

Proposition 30. Given an affine derivation δ, one of its preprincipal element !
and the associated principal element ρ, one can define a homomorphism πδ,ρ on
an algebra of constants K[ζ] of δ using the formal operator (12) as follow:

0 → qρK[Z](℘) → K[Z](℘)

πδ,ρ−→ K[ζ] → 0
p(Z) −→ p(ζ)

(26)

where ζ is equal to πδ,ρZ and qρ is equal to tCZ if the preprincipal element !
is defined by the case 1) in Lemma 23 and to tC(Z + Bδ/λ)− 1 otherwise. The
set of equivalence classes Hδ could be identify with the hyperplane V (qρ) of di-
mension m− 1 defined in Km by the linear form qρ. Furthermore,
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1. the map πδ,ρ induces a projection that associates to any point V in Km

s.t. ℘(V) �= 0, the point (πδ,ρZ)(V) :=
∑

ı∈N
((−ρ(Z))ı(δıZ)/ı!)(V) of V (qρ).

2. the points composing an orbit of eτδ are projected to a single point in V (qρ).
3. the orbit of eτδ passing through a point in V (qρ) is projected on this point.

Sketch of proof. Consider a principal element ρ of δ and its defining preprin-
cipal element ! such that δ! = μ! (resp. δ! �= 0 and δ2! = 0). Then, the rela-
tion πδ,ρ! = !e− log(�) (resp. πδ,ρ! = 0) holds and thus πδ,ρ! is equal to 1 (resp. 0)
(to be more precise ∂πδ,ρ!/∂z is equal to 0 for all z in Z and thus πδ,ρ! is in K).
If we denotes !− 1 (resp. !) by qρ, the ideal qρK[Z](℘) is include in ker πδ,ρ.
Furthermore, as we suppose that the flow eτδ acts regularly, its orbits have the
same dimension 1 and thus, the associated invariant coordinates ring K[ζ] is of
dimension m− 1. Hence, the quotient algebra K[Z](℘)/qρK[Z](℘) is an algebraic
description of K[ζ]. The assertion 1) is the definition of a projection on V (qρ).
2) As the flow eτδ is an homomorphism and relation eτδδ = δeτδ holds, we
have ρ(eτδZ)ı(δıeτδZ) = ρ(eτδZ)ı(eτδδıZ) = eτδ (ρ(Z)ıδıZ) for all integer ı. In
order to show that the relation ρ(eτδZ) = eτδρ(Z) holds, remark that as eτδ

is a homomorphism, !(eτδZ) is equal to eτδ!(Z). If the principal element ρ is
equal to log(!)/λ (resp. !/δ!) with δ! = λ! (resp. δ! �= 0 and δ2! = 0) then
the transcendental element log(eτδ!)/λ (resp. eτδ(!/δ!)) is equal to log(!eτλ)/λ
(resp. (! + τδ!)/δ(! + τ)) and thus, ρ(eτδZ) is equal to ρ + τ which is also equal
to eτδρ. Above relations show that (πδ,ρe

τδZ)(V) is equal to (eτδπδ,ρZ)(V). As
the flow leaves the image of πδ,ρ invariant (i.e. eτδπδ,ρZ = πδ,ρZ), this quantity is
equal to (πδ,ρZ)(V). Hence, two points V and (eτδZ)(V) in the same orbit of eτδ

are projected onto the same point of V (qρ). 3) If W is in V (qρ) then qρ(W)
and ρ(W) are equal to 0. Thus, by construction (πδ,ρZ)(W) is equal to W .

Remark 31. The orbits of eτδ cross the hyperplane V (qρ) transversally (δqρ �= 0).
But, this hyperplane is not a generic cross-section of these orbits. The derivation
y∂/∂x− x∂/∂y is an infinitesimal generators of a Lie symmetry of the algebraic
variety V (f) defined by the polynomial f : x2 + y2 − 1 = 0. The preprincipal
element described in Proposition 30 is x− Iy (see Hypothesis 1) and thus the
intersection of the hyperplane V (x− Iy − 1) with V (f) is the point x = 1, y = 0
while a generic linear cross section intersects V (f) at 2 points.

In the sequel, we denote the hyperplane V (qρ) by Hδ (it is a covering algebraic
variety of the invariants). Let us show now how works our reduction process.

3.4 Reduction Process: Invariantization and Parameterization

Algebraic systems. Consider the variety V (F ) in Km defined by the ideal
spanned by F in K[Z](℘) (for the sake of simplicity, we suppose that F is prime).
Parameterization of an algebraic variety invariant under the action of eτδ. If δ
is an affine derivation such that the relation δF = λF holds, it is an infinitesimal
generator of a Lie symmetry eτδ that leaves the variety V (F ) invariant as shown
by the following relations holding for all W in Km,

V :=
(
eτδZ

)
(W), F (V) :=

(
F
(
eτδZ

))
(W) =

(
eτδF (Z)

)
(W) = eτλF (W). (27)
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As shown by Proposition 30, the hyperplane Hδ is a linear cross-section of the
orbit of eτδ i.e. a variety that intersects these orbits in a single point. Further-
more, there is a variety W induced by V (F ) in Hδ such that the variety V (F )
is the image of K×W by the action of the flow eτδ. Let us described now W .
Invariantization of purely algebraic systems. The variety W is defined by the
intersection V (F mod qρ) ∩Hδ (if qρ(W) and (F mod qρ)(W) are equal to zero,
then the relations F (W) = 0 hold). As qρ is linear, a description of W is obtained
by a simple substitution in the equations describing V (F ) (compare with the
replacement invariant studied in [6]) as shown by the following example:
Example 32. Let us consider the following purely algebraic system:

Σ : (y − b)2 + a2 = l2/4, (x− a)2 + b2 = l2/4, x2 + y2 = l2. (28)

Using results of Section 3.2, we determine its expanded affine Lie symmetries:

δ1 := x∂
∂x +y ∂

∂y +a∂
∂a +b∂

∂b +l ∂
∂l , δ2 := −y ∂

∂x +x∂
∂y +(b−y)∂

∂a +(x−a)∂
∂b . (29)

As l is a preprincipal element of δ1, the solutions Z of system (28) are represented
by the parameterization Z = eτδ1Z1 where Z1 are the solutions of an invariant
system obtained by the intersection of (28) with the hyperplane l = 1:

∀z ∈ {x, y, a, b, l}, z = eτ z1,
l1 = 1,

⎧⎨
⎩

(y1 − b1)2 + a1
2 = 1/4,

(x1 − a1)2 + b1
2 = 1/4,

x1
2 + y1

2 = 1.
(30)

As δ1 and δ2 form an abelian Lie algebra, this last derivation is an infinitesimal
generators of a Lie symmetry of δ1; it could be used to reduce further the sys-
tem (30) (the Lie algebra spanned by δ1 and δ2 is abelian and thus solvable). In
fact, the linear form a− Ib− x is a preprincipal element of δ2 associated to the
principal element log(a− Ib− x)/I. Using symmetry δ2, solutions of system (30)
could be represented as follow:

∀z1 ∈ {x1, y1, a1, b1}, z1 = eτδ2z2,
x2 = a2 − Ib2 − 1,

⎧⎨
⎩

(y2 − b2)2 + a2
2 = 1/4,

(1 + Ib2)2 + b2
2 = 1/4,

(a2 − Ib2 − 1)2 + y2
2 = 1.

(31)
As noticed in remark 31, the cross-section V (a1 − Ib1 − x1 − 1) is not generic;
while a linear generic cross section defines 4 points, its intersection with the vari-
ety defined by equations (30) reduces to the point b2 =3I/8, a2=−5/8, y2=3I/4
of multiplicity 2. In this example, the variety associated to (28) is represented

– by a zero-dimensional algebraic system (31) that furnishes initial values Z2

– to an explicit linear differential system whose solutions are Z1 = eτδ2Z2 (this
system associated to the derivation δ2 is simple enough to be explicitly solved
in closed form but in more complicated cases it could also be considered as
a black box representation solved by purely numerical methods);

– these values Z1 constitute an initial condition set of the linear differential
system—induced by the derivation δ1—such that resulting solutions Z pa-
rameterize the variety defined by system (31).

We show now that the same type of results exists for differential systems.
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Differential Systems

Hypotheses 2. Restriction on symmetries specific to differential case — Lie sym-
metries of a given vector field D acting only on its state variables (ż �= 0) could
be used for Lie based integration but not for the previous reduction process.
Thus, we suppose that D have an expanded Lie symmetry that acts at least on
one of its parameter (Dz = 0) and that there is an associated principal elements
such that the associated linear form qρ satisfies the relation Dqρ = 0.

Invariantization of an infinitesimal generator. Given any derivation D acting
on K[Z], the sequence (26) induces a derivation D acting on K[ζ] such that the
relation πδ,ρ ◦D = D ◦ πδ,ρ holds. The exponentiation of D (see Definitions 6)
induces a flow eτD on the hyperplane Hδ that is the invariantization of the
flow eτD acting on Km. Under above hypotheses, the flow eτD is just the restric-
tion of eτD on Hδ; in fact, as Dqρ = 0 the relation eτDqρ = qρ holds and thus,
the flow eτD maps any point of Hδ to another point of this hyperplane. The set
of orbits of eτD in Km is projected onto the set of orbits of eτD in Hδ. Let us
see now the condition on δ and D that allows to parameterize the set of orbits
of eτD in Km by the set of orbits of eτD in Hδ and the map eτδ.

Parameterization of vector field D invariant under the action of the flow eτδ.
If δ is the infinitesimal generator of a symmetry of derivation D, according to
Definition 16, the relation [D, δ] = λD holds. The Baker Campbell Hausdorff
formula (Lemma 8) shows that the relation eτ1δe(1+τ1λ)τ2De−τ1δ = eτ2D holds.
This implies that any orbit of eτD in Km is the image of an orbit of eτD in Hδ by
the flow eτδ. Let us explicit all the process described above through an example.

Example 33. Consider a FitzHugh Nagumo model (see § 7 in [1]):

ȧ = ḃ = ċ = ḋ = 0, ẋ = (x− x3/3− y + d)c, ẏ = (x + a− by)/c. (32)

The derivation δ := ∂/∂y + b∂/∂a + ∂/∂d is an infinitesimal generator of the
following one-parameter group y → y + λ, a→ a + bλ, d→ d + λ that is com-
posed of symmetries of the system (32). As the relation δd = 1 holds, d is a
(pre)principal element of δ and the solutions Z := {x, y, a, b, c, d} of system (32)
are described by the parameterizations Z = edδZ where Z are solutions of a dif-
ferential system on the hyperplane V (d); hence, Z are given by the equations:

y = y + d, a = a− bd, ẋ =
(
x− x3/3− y

)
c, ẏ = (x + a− by)/c. (33)

4 Conclusion

In this note, we consider the computation of affine expanded Lie symmetries
of a given algebraic system and show how this system could be rewrite in an
invariant coordinates set for these symmetries in order to reduce the number
of involved parameters. As this process is based on the computation of Jordan
normal form and numerical linear algebra, its complexity is quasi-polynomial in
input’s size and likely polynomial for the great majority of practical cases.
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Extension of the reduction process to more general types of derivations. The
manipulation presented in previous sections for affine derivations could be used
for non-affine symmetries that occurs in practice as shown below.
Example 34. Let us consider the following algebraic system:

f1 : 6(z− y)− yz = 0, f2 : 3(z−x)− 2xz = 0, f3 : 2(y−x)− yx = 0, (34)

in order to illustrate the limitation of our approach. The infinitesimal generator

δ := x2∂/∂x + y2∂/∂y + z2∂/∂z,

(δf1 = (z + y)f1, δf2 = (z + x)f2, δf3 = (x + y)f3) ,
(35)

is associated to the following one-parameter group of automorphisms:

eτδ : x→ x
1−xτ , y → y

1−yτ , z → z
1−zτ , (36)

that is a one-parameter group of Lie point symmetries of the system (34). Remark
that ρ := −3xyz/(xz + xy + yz) is a principal element of (35) (δρ = 1) and thus,
all that we have done previously could be repeated. The invariant coordinate set:

πδ,ρx = 3xyz
(xy−2yz+zx) , πδ,ρy = 3xyz

(xy+yz−2zx) , πδ,ρz = 3xyz
(2xy−yz−zx) , (37)

satisfies the relation πδ,ρxπδ,ρy + πδ,ρy πδ,ρz + πδ,ρz πδ,ρx = 0 and allows to rep-
resent the solutions set (x, y, z) of (34) by the 0 dimensional variety defined
by the relations f1(x, y, z) = f2(x, y, z) = f3(x, y, z) = xy + yz + zx = 0 and the
parameterizations x = eτδx, y = eτδy, z = eτδz defined by the flow eτδ of δ.

The results presented here could likely be extended for more general types of
derivations but we do not know if the associated computations are feasible.

Acknowledgments. The author is grateful to G. Renault, É. Schost, and M.
SafeyEl Din for many pleasant and useful discussions related to this note.
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Abstract. Given a permutation π, the application of prefix reversal f (i)

to π reverses the order of the first i elements of π. The problem of Sorting
By Prefix Reversals (also known as pancake flipping), made famous by
Gates and Papadimitriou (Bounds for sorting by prefix reversal, Discrete
Mathematics 27, pp. 47-57), asks for the minimum number of prefix re-
versals required to sort the elements of a given permutation. In this paper
we study a variant of this problem where the prefix reversals act not on
permutations but on strings over a fixed size alphabet. We determine the
minimum number of prefix reversals required to sort binary and ternary
strings, with polynomial-time algorithms for these sorting problems as a
result; demonstrate that computing the minimum prefix reversal distance
between two binary strings is NP-hard; give an exact expression for the
prefix reversal diameter of binary strings, and give bounds on the prefix
reversal diameter of ternary strings. We also consider a weaker form of
sorting called grouping (of identical symbols) and give polynomial-time
algorithms for optimally grouping binary and ternary strings. A number
of intriguing open problems are also discussed.

1 Introduction

For a permutation π = π(0)π(1) . . . π(n−1) the application of prefix reversal f (i),
which we call flip for short, to π reverses the order of the first i elements: f (i)(π) =
π(i − 1) . . . π(0)π(i) . . . π(n − 1). The problem of Sorting By Prefix Reversals
(MIN-SBPR), popularised by Gates and Papadimitriou [11] and often referred
to as the pancake flipping problem, is defined as follows: given a permutation π
of {0, 1, . . . , n − 1}, determine its sorting distance i.e. the smallest number of
flips required to transform π into the identity permutation 01 . . . (n− 1).1

MIN-SBPR arises in the context of computational biology when seeking to
explain the genetic difference between two given species by the most parsimo-
nious (i.e. shortest) sequence of gene rearrangements. It is one of a family of

� This research has been funded by the Dutch BSIK/BRICKS project.
1 We adopt the convention of numbering from 0 rather than 1.

H. Anai, K. Horimoto, and T. Kutsia (Eds.): AB 2007, LNCS 4545, pp. 292–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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genome rearrangement operations that also includes arbitrary (substring) rever-
sals [13], transpositions (where two adjacent substrings are swapped) [6], and
translocations (whereby, in the context of multiple chromosomes, the exchange
of chromosome-ends is simulated) [2]. To extend biological relevance it is now
commonplace that these operations are studied not only in isolation but also in
(weighted) combination with each other [1]; MIN-SBPR is arguably most bio-
logically applicable in the context of such weighted combinations. MIN-SBPR
also has relevance in the area of efficient network design [14,16].

The computational complexity of MIN-SBPR, however, remains open. A re-
cent 2-approximation algorithm [8] is currently the best-known approximation
result2. Indeed, most studies to date have focused not on the computational com-
plexity of MIN-SBPR but rather on determining the worst-case sorting distance
wc(n) over all length-n permutations i.e. the “worst case scenario” for length-n
permutations. From [11] and [14] we know that (15/14)n ≤ wc(n) ≤ (5n+ 5)/3.

A natural variant of MIN-SBPR is to consider the action of flips not on
permutations but on strings over fixed size alphabets. This shift is inspired by
the biological observation that multiple “copies” of the same gene can appear
at various places along the genome, although this does not lead to the bounded
size alphabets that we will study here. The shift from permutations to strings
alters the problem universe somewhat. With permutations, for example, the
distance problem, i.e. given two permutations π1 and π2, determine the smallest
number of flips required to transform π1 into π2, is equivalent to sorting, because
the symbols can simply be relabelled to make either permutation equal to the
identity permutation. For strings like 101, such a relabelling is not possible.
Thus, the distance problem on string pairs appears to be strictly more general
than the sorting problem on strings, naturally defined as putting all elements in
non-descending order.

Indeed, papers by Christie and Irving [4] and Radcliffe, Scott and Wilmer [17]
explore the consequences of switching from permutations to strings; they both
consider arbitrary (substring) reversals and transpositions. It has been noted
that, viewed as a whole, such rearrangement operations on strings have bearing
on the study of orthologous gene assignment [3], especially where the level of
symbol repetition in the strings is low. There is also a somewhat surprising link
with the relatively unexplored family of string partitioning problems [12]. To
put our work in context, we briefly describe the most relevant (for this paper)
results from [4] and [17].

The earlier paper [4], gives, in both the case of reversals and transpositions,
polynomial-time algorithms for computing the minimum number of operations
to sort a given binary string, as well as exact, constructive diameter results on
binary strings. Additionally, their proof that computing the reversal distance
between strings is NP-hard, supports the intuition that distance problems are
harder than sorting problems on strings. They present upper and lower bounds
for computing reversal and transposition distance on binary strings.

2 Although not explicitly described as such, the algorithm provided ten years earlier
in [5] is a 2-approximation algorithm for the signed version of the problem.
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The more recent paper [17] gives refined and generalised reversal diameter
results for non-fixed size alphabets. It also gives a polynomial-time algorithm
for optimally sorting a ternary (3 letter alphabet) string with reversals. The
authors refer to the prefix reversal counterparts of these (and other) results as
interesting open problems. They further provide an alternative proof of Christie
and Irving’s NP-hardness result for reversals, and sketch a proof that computing
the transposition distance between binary strings is NP-hard. As we later note,
this proof can also be used to obtain a specific reducibility result for prefix
reversals. They also have some first results on approximation (giving a PTAS - a
Polynomial-Time Approximation Scheme - for computing the distance between
dense instances) and on the distance between random strings, both of which
apply to prefix reversals as well.

In this paper we supplement results of [4] and [17] by their counterparts on
prefix reversals. In Section 3 (Grouping) we introduce a weaker form of sorting
where identical symbols need only be grouped together, while the groups can
be in any order. For grouping on binary and ternary strings we give a complete
characterisation of the minimum number of flips required to group a string, and
provide polynomial-time algorithms for computing such an optimal sequence
of flips. (The complexity of grouping over larger fixed size alphabets remains
open but as an intermediate result we describe how a PTAS can be constructed
for each such problem.) Grouping aids in developing a deeper understanding of
sorting which is why we tackle it first. It was also mentioned as a problem of
interest in its own right by Eriksson et al. [7]. Then, in Section 4 (Sorting), we
give polynomial-time algorithms (again based on a complete characterisation)
for optimally sorting binary and ternary strings with flips. (The complexity of
sorting also remains open for larger fixed size alphabets. As with grouping we
thus provide, as an intermediate result, a PTAS for each such problem.) In
Section 5 we show that the flip diameter (i.e. the maximum distance between
any two strings) on binary strings is n−1, and on ternary strings (for n > 3) lies
somewhere between n− 1 and (4/3)n, with empirical support for the former. In
Section 6 we show that the flip distance problem on binary strings is NP-hard,
and point out that a reduction in [17] also applies to prefix reversals, showing that
the flip distance problem on arbitrary strings is polynomial-time reducible (in an
approximation-preserving sense) to the binary problem. We conclude in Section 7
with a discussion of some of the intriguing open problems that have emerged
during this work. Indeed, our initial exploration has identified many basic (yet
surprisingly difficult) combinatorial problems that deserve further analysis.

2 Preliminaries

Let [k] denote the first k non-negative integers {0, 1, ..., k − 1}. A k-ary string
is a string over the alphabet [k], while a string s is said to be fully k-ary, or to
have arity k, if the set of symbols occuring in it is [k].

We index the symbols in a string s of length n from 1 through n: s =
s1s2 . . . sn. Two strings are compatible if they have the same symbol frequencies
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(and hence the same length), e.g. 0012 and 1002 are compatible but 0012 and
0112 are not. For a given string s, let I(s) be the string obtained by sorting
the symbols of s in non-descending order e.g. I(1022011) = 0011122. The pre-
fix reversal (flip for short) f (i)(s) reverses the length i prefix of its argument,
which should have length at least i. Alternatively, we denote application of
f (i)(s) by underlining the length i prefix. Thus, f (2)(2012) = 2012 = 0212 and
f (3)(2012) = 2012 = 1022. The flip distance d(s, s′) between two strings s and s′

is defined as the smallest number of flips required to transform s into s′, if they
are compatible and ∞ otherwise. Since a flip is its own inverse, flip distance is
symmetric.

The flip sorting distance ds(s) = d(s, I(s)) of a string s is defined as the
number of flips of an optimal sorting sequence to transform s into I(s). An
algorithm sorts s optimally if it computes an optimal sorting sequence for s.

In the next two sections we consider strings to be equivalent if one can be
transformed into the other by repeatedly duplicating symbols and eliminating
one of two adjacent identical symbols. As representatives of the equivalence
classes we take the shortest string in each class. These are exactly the strings
in which adjacent symbols always differ. We express all flip operations in terms
of these normalized strings. E.g. we write f (3)(2012) = 2012 = 102. A flip that
brings two identical symbols together, thereby shortening the string by 1, is
called a 1-flip, while all others, that leave the string length invariant, are called
0-flips.

We follow the standard notation for regular expressions: Superindex i on a
substring denotes the number of repetitions of the substring, with ∗ and + de-
noting 0-or-more and 1-or-more repetitions, respectively, ε denotes the empty
string, brackets of the form {} are used to denote that a symbol can be exactly
one of the elements within the brackets, and the product sign

∏
denotes con-

catenation of an indexed series. For example
∏3

i=1(10i2) = 102100210002, and
{1, 01}∗{ε, 0} denotes the set of binary strings with no 00 substring.

3 Grouping

The task of sorting a string can be broken down into two subproblems: grouping
identical symbols together and putting the groups of identical symbols in the
right order. Notice that first grouping and then ordering may not be the most
efficient way to sort strings. Although grouping appears to be slightly easier
than the sorting problem, essentially the same questions remain open as in sort-
ing. Grouping binary strings is trivial and in Section 3.1 we give the grouping
distances of all ternary strings. As a result we give polynomial time algorithms
for binary and ternary grouping. For larger alphabets the grouping problem re-
mains open; as an intermediate result we describe in Section 3.2 a PTAS for each
such problem. While the problems of grouping and sorting are closely related for
strings on small alphabets, the problems diverge when alphabet size approaches
the string length, with permutations being the limit.
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Recall that we consider only normalized strings, as representatives of equiva-
lence classes. The flip grouping distance dg(s) of a fully k-ary string s is defined
as the minimum number of flips required to reduce the string to one of length k.

3.1 Grouping Binary and Ternary Strings

Lemma 1. dg(s) ≥ n− k for any fully k-ary string s of length n.

Proof. The proof follows from the observations that, after grouping, fully k-ary
string s has length k and that each flip can shorten s by at most 1. �

Lemma 2. dg(s) ≤ n− 2 for any fully k-ary string s of length n.

Proof. Consider the following simple algorithm. If the leading symbol occurs
elsewhere then a 1-flip bringing them together exists, so perform this 1-flip. If
not, then we use a 0-flip to put this symbol in front of a suffix in which we
accumulate uniquely appearing symbols. Repeat until the string is grouped.

Clearly no more than n− k 1-flips will be necessary. Also, no more than k− 2
0-flips will ever be necessary, because after k − 2 0-flips the prefix of the string
will consist of only two types of symbol, and the algorithm will never perform a
0-move on such a string. Thus at most (n − k) + (k − 2) = n − 2 flips in total
will be needed. �

As a corollary we obtain the grouping distance of binary strings.

Theorem 1. dg(s) = n− 2 for any fully binary string s of length n. �

We will now define a class of bad ternary strings and prove that these are the
only ternary strings that need n− 2 rather than n− 3 flips to be grouped.

Definition 1. We define bad strings as all fully ternary strings of one of the
following types, up to relabeling:

I. strings of length greater than 3, in which the leading symbol appears only
once: 0(12)≥2 and 02(12)+

II. strings having identical symbols at every other position, starting from the
last: ({0, 1}2)+ and (2{0, 1})+2

III. odd length strings whose leading symbol appears exactly once more, at an
even position, and both occurrences are followed by the same symbol:
0(21)+02(12)∗

IV. the following strings:
X1 = 210212, X2 = 021012, X3 = 0120212, X4 = 1201212, X5 = 02101212,
X6 = 20210212, X7 = 020210212, X8 = 120120212.

All other fully ternary strings are good. Strings of type I, II and III, shortly I-,
II-, and III-strings, respectively, are called generically bad, or g-bad for short.

Lemma 3. dg(s) = n− 2 if ternary string s of length n is bad.
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Proof. Because of Lemmas 1 and 2, it suffices to show that in each case a 0-flip is
necessary: I-strings admit only 0-flips. A 1-flip on a II-string leads to a II-string
and eventually to a I-string. Any III-string admits only one 1-flip leading to a II-
string. For IV-strings it is easy to check that each possible 1-flip leads to either a
shorter IV-string, or to a I-,II-, or III-string. A full proof can be found in [15]. �

Lemma 4. dg(s) = n− 3 if ternary string s of length n is good.

Proof. The proof is by induction on n. The induction basis for n = 3 is trivial.
We show the statement for strings of length n + 1 by showing that if a bad
string s′ of length n can be obtained through a 1-flip from a good (parent)
string s of length n + 1, then s admits another 1-flip which leads to a good
string. Note that a 1-flip f (i)(s) = s′ brings symbols s1 and si+1 together, hence
s1 = si+1 �= si = s′1 which shows that the symbol deleted from parent s differs
from the leading symbol of child s′. We enumerate all possible bad child strings
s′ and distinguish cases based on the leading symbol of good parent s.

For IV-strings, Table 1 lists all parents with, for each good parent, a 1-flip
to a good string. It remains to prove that for each g-bad string all parents are
either bad or have a g-1-flip, defined as a 1-flip resulting in a string that is not
g-bad (i.e. either good or of type IV).

Type I, odd: 0(12)≥2 has possible parents starting with:
1: 1(21)i012(12)j with i + j > 0:

If i > 0 there is a g-1-flip 121(21)i−1012(12)j = (21)i012(12)j;
If i = 0 and j > 0 there is a g-1-flip 1012(12)j = 210(12)j;

2: 21(21)i02(12)j with i + j > 0.
If i > 0 there is a g-1-flip 21(21)i02(12)j = 1(21)i02(12)j;
If i = 0 and j > 1 there is a g-1-flip 210212(12)j−1 = 120(12)j;
If i = 0 and j = 1 the parent is 210212 = X1.

Type I, even: these strings are also of type II, see below.
Type II, odd: (2{0, 1})+2 has only parents of type II.
Type II, even: 02({0, 1}2)∗ has possible parents starting with:

2: 2({0, 1}2)∗ is of type II;
1: 12({0, 1}2)∗012({0, 1}2)∗ with three cases for a possible third 1:

None: parent is 12(02)∗012(02)∗, which is of type III;
Before 01: then there is a g-1-flip

12({0, 1}2)∗12({0, 1}2)∗012({0, 1}2)∗

= 2({0, 1}2)∗12({0, 1}2)∗012({0, 1}2)∗;
After 01: then there is a g-1-flip

12({0, 1}2)∗012({0, 1}2)∗12({0, 1}2)∗

= 2({0, 1}2)∗102({0, 1}2)∗12({0, 1}2)∗.
Type III: 0(21)+02(12)∗ has possible parents starting with:

1: (12)i01(21)j02(12)k with i > 0:
If i > 1 there is a g-1-flip

12(12)i−101(21)j02(12)k = 2(12)i−101(21)j02(12)k;
If i = 1, j > 0 there is a g-1-flip

120121(21)j−102(12)k = 21021(21)j−102(12)k;
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If i = 1, j = 0, k > 0 there is a g-1-flip 120102(12)k = 20102(12)k;
If i = 1, j = k = 0 then the parent is 120102 = X2 (relabelled);

1: (12)+0(12)+0(12)+: there is a g-1-flip
(12)+0(12)+0(12)+ = 0(21)+20(12)+;

2: 2(12)∗0(21)+02(12)∗: there is a g-1-flip
2(12)∗0(21)+02(12)∗ = 0(12)+0(21)∗2;

2: (21)i20(12)j02(12)k with j > 0:
If i = 0, j = 1 then the parent is 210212 = X1;
If i + j > 1 then (21)i2012(12)j−102(12)k = 102(12)i+j−102(12)k is a

g-1-flip. �

Table 1. Type IV strings, their parents, and for each good parent, a 1-flip to a good
string

IV-String Parents

X1 = 210212 1210212, 0120212 = X3, 1201212 = X4

X2 = 021012 2021012, 1201012, 1012012, 2010212

X3 = 0120212 10120212, 21020212, 20210212 = X6, 12021012, 20212012

X4 = 1201212 21201212, 02101212 = X5, 21021212, 21210212

X5 = 02101212 202101212, 120101212, 101201212, 210120212, 121012012,
202010212

X6 = 20210212 020210212 = X7, 120210212, 012020212, 120120212 = X8

X7 = 020210212 2020210212, 2020210212, 1202010212, 2012020212,
1201202012, 2021021212

X8 = 120120212 2120120212, 0210120212, 2102120212, 0210210212,
2021021212, 2120210212

The following theorem results directly from the above lemmas.

Theorem 2. dg(s) = n−2 if and only if fully ternary string s of length n is bad
and dg(s) = n−3 otherwise. Moreover, there exists a polynomial time algorithm
for grouping ternary strings with a minimum number of flips.

Proof. The first statement is direct from Lemmas 3 and 4. In case string s is
bad, which by Definition 1 can be decided in polynomial time, the algorithm
implicit in the proof of Lemma 2 shows how to group s optimally in polynomial
time. Otherwise, we repeatedly find a 1-flip to a good string as guaranteed by
Lemma 4. The time complexity is O(n3), since grouping distance, number of
choices for a 1-flip, and time to perform a flip and test whether its result is good
are all O(n). �

3.2 Grouping Strings over Larger Alphabets

Lemmas 1 and 2 say that n − k ≤ dg(s) ≤ n − 2 for any fully k-ary string s.
For any k there are fully k-ary strings that have flip grouping distance equal to
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n− 2. For example the length n = 2(k − 1) string 1020 . . . (k − 1)0 requires for
every 1-flip to bring a 0 to the front first and hence we need as many 0-flips
as 1-flips, and dg(1020 . . . (k − 1)0) ≥ 2(k − 2) = 2k − 4 = n − 2. Computer
calculations suggest that for k = 4 and k = 5, for n large enough, the strings
with grouping distance n−2 are precisely those having identical symbols at every
other position, starting from the last (i.e. type II of Definition 1). Proving (or
disproving) this statement remains open, as well as finding a polynomial time
algorithm for grouping k-ary strings for any fixed k > 3. We do, however, have
the following intermediate result:

Theorem 3. For every fixed k there is a PTAS for grouping k-ary strings.

Proof. Follows from the algorithm in the proof of Lemma 2. We defer the details
to a full version of the paper [15]. �

Clearly, there is a strong relationship between grouping and sorting. Understand-
ing grouping may help us to understand sorting, and lead to improved bounds
(especially as the length of strings becomes large relative to their arity), because
for a k-ary string s, we have dg(s) ≤ ds(s) ≤ dg(s) + wc(k), with wc(k) the flip
diameter on permutations with k elements, as defined before.

Also dg(s) = min{ds(t) : t a relabeling of s}, which gives (for fixed k) a
polynomial time reduction from grouping to sorting. Thus every polynomial
time algorithm for sorting by prefix reversals directly gives a polynomial time
algorithm for the grouping problem (for fixed k).

4 Sorting

In this section we present results on sorting similar to those on grouping in
the previous section. Also flip sorting distance remains open for strings over
alphabets of size larger than 3. As an intermediate result we thus provide at the
end of this section a PTAS for each such problem.

Again a 1-flip brings identical symbols together and thus shortens the repre-
sentative of the equivalence class under symbol duplication. But since symbol
order matters for sorting, relabelled strings are no longer equivalent. As in group-
ing, sorting of binary strings is straightforward:

Theorem 4. ds(s) = n−2 for every fully binary string s of length n with sn = 1,
and ds(s) = n− 1 otherwise.

Proof. Exactly n− 2 1-flips suffice and are necessary to arrive at length 2 string
01 or 10. If the last symbol is 0 an additional 0-flip is necessary putting a 1 at
the end. All these flips can be f (2). �

From Lemma 1 we know that dg(s) ≥ n − 3 and hence ds(s) ≥ n − 3 for every
ternary string s of length n. In the upper bound on ds(s) we derive below we
focus on strings s ending in a 2 (sn = 2), since sorting distance is invariant under
appending a 2 to a string. It turns out that, when sorting a ternary string ending
in a 2, one needs at most one 0-flip, except for the string 0212.
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Lemma 5. ds(s) ≤ n−2 for every fully ternary string s of length n with sn = 2,
except 0212.

Proof. It is easy to check that 0212 requires 3 flips to be sorted. By induction
on n we prove the rest of the lemma. The basis case of n = 3 is trivial. For a
string s of length n > 3 we distinguish three cases:

– sn−1 = 0: If s = 20102 it is sorted in 3 flips: 20102 → 0102 → 102 → 012.
Otherwise, by induction and relabeling 0 ↔ 2, the string s1 . . . sn−1 can be
reduced to 210 in n − 3 flips (to 20 or 10 by Theorem 4 if s1 . . . sn−1 has
only two symbols), and one more flip sorts s to 012.

– sn−1 = 1, s1 = 0 and appears only once: Thus s = 0(12)≥2 or s = 02(12)≥2.
Then s can be sorted with only one 0-flip: 0(12)+12 → 1(21)+02 → . . . →
2102 → 012 or, respectively, 02(12)≥2 → 20(12)+12 → (12)+102 → . . . →
2102 → 012.

– sn−1 = 1, s1 not unique:
If s = 12012 then 3 flips suffice: 12012 → 21012 → 1012 → 012.
Otherwise, since the other 2 parents of 0212 can flip to 1202, there is a 1-flip
to a string �= 0212 to which we can apply the induction hypothesis. �

As in Section 3, we characterise the strings ending in a 2 that need n− 2 rather
than n− 3 flips to sort.

Definition 2. We define bad strings as all fully ternary strings ending in a 2
of the types:

I. 0(12)≥2

II. ({0, 1}2)+ and 2({0, 1}2)+

III. ({1, 2}0)+2 and 0({1, 2}0)+

IV. ({1, 2}0)+12 and (0{1, 2})+012 with at least two 2s.
V. (01)∗0212 and (10)+212

VI. 1(20)+1(20)∗2 and 0(21)+0(21)∗2
VII. 1(02)+1(02)+

VIII. 1(02)+12
IX. 77 strings of length at most 11, shown in Table 2.

All other fully ternary strings ending in a 2 are good strings. Strings of type
I-VIII (I-strings ... VIII-strings for short) are called generically bad, or g-bad
for short.

This definition makes 0212 a bad string as well. From Lemma 5 we know that
0212 is the only ternary string ending in a 2 with sorting distance n− 1.

Theorem 5. String 0212 has sorting distance 3. Any other fully ternary string
s of length n with sn = 2 has prefix reversal sorting distance n − 2 if it is bad
and n− 3 if it is good. A fully ternary string s ending in a 0 or 1 has the same
sorting distance as s2.



Prefix Reversals on Binary and Ternary Strings 301

Table 2. Type IX strings

Y1 = 210212 Y17 = 10210212 Y33 = 12120102 Y48 = 010210212 Y63 = 1021201012
Y2 = 021012 Y18 = 21021212 Y34 = 12010212 Y49 = 010210202 Y64 = 1020210212
Y3 = 212012 Y19 = 02102012 Y35 = 12010202 Y50 = 010212012 Y65 = 1010210202
Y4 = 120102 Y20 = 02101212 Y36 = 20120102 Y51 = 202010212 Y66 = 0202010212
Y5 = 201202 Y21 = 10212012 Y37 = 12012012 Y52 = 121202012 Y67 = 2120202012
Y6 = 0210202 Y22 = 02121012 Y38 = 021021202 Y53 = 121201202 Y68 = 2120102012
Y7 = 1021202 Y23 = 02120102 Y39 = 102120102 Y54 = 201021202 Y69 = 2021021212
Y8 = 0212012 Y24 = 10102102 Y40 = 102010212 Y55 = 120212012 Y70 = 2010212012
Y9 = 2120102 Y25 = 02010212 Y41 = 021202012 Y56 = 012021212 Y71 = 1201021202
Y10 = 0102102 Y26 = 21202012 Y42 = 021201012 Y57 = 120102012 Y72 = 1201202012
Y11 = 1212012 Y27 = 21201012 Y43 = 020210212 Y58 = 201202012 Y73 = 10202010212
Y12 = 2010212 Y28 = 21201202 Y44 = 101020212 Y59 = 120120212 Y74 = 02120102012
Y13 = 0120212 Y29 = 20210212 Y45 = 020212012 Y60 = 201201012 Y75 = 02021021212
Y14 = 1201012 Y30 = 01021202 Y46 = 212010202 Y61 = 0210212012 Y76 = 21201202012
Y15 = 1201212 Y31 = 01020212 Y47 = 212012012 Y62 = 1021202012 Y77 = 12120202012
Y16 = 2012012 Y32 = 20212012

Proof. Directly from Lemmas 6 and 7 below. Note that every sorting sequence
for s sorts s2 as well while every sorting sequence for s2 can be modified to avoid
flipping the whole string and thus works for s as well. �
Lemma 6. ds(s) = n− 2 for every bad ternary string s �= 0212 of length n.

Proof. Since ds(s) ≥ n − 3 and any 1-flip decreases the length of the string by
1, Lemma 5 says it suffices to show that for each type in Definition 2 a 0-flip is
necessary.

– For I-strings only 0-flips are possible.
– A 1-flip on a II- or III-string leads to a string of the same type, so that

eventually no 1-flip is possible.
– A 1-flip on a IV-string leads either again to a IV-string or (when destroying

the 12 suffix) to a III-string.
– A 1-flip on a V-string leads either again to a V-string or (when destroying

the suffix with a . . . 0212 flip) to a IV-string. Flips . . . 0212 and . . . 0212 are
not possible for lack of more 2’s.

– For strings of VI-, VII- and VIII-strings only one 1-flip is possible, leading
to II-, III- and IV-strings respectively.

– For IX-strings it is easy (although time consuming) to check that every 1-flip
either leads to a shorter IX-string or to a string of type I-VIII [15]. �

Lemma 7. ds(s) = n− 3 for every good ternary string s of length n.

Proof. The proof is by induction on n and is similar to the proof of Lemma 4.
We defer the details to a full version of the paper [15]. �
Theorem 6. There exists a polynomial time algorithm for optimally sorting
ternary strings.

Proof. Follows rather easily from Theorem 5. �
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Finally, in light of the fact that the complexity of the sorting problem on quater-
nary (and higher) strings remains open, the following serves as an intermediate
result:

Theorem 7. For every fixed k there is a PTAS for sorting k-ary strings.

Proof. The proof is very similar to that used in Theorem 3. The details are again
deferred to a full version of the paper [15]. �

5 Prefix Reversal Diameter

Let S(n, k) be the set of fully k-ary strings of length n. We define δ(n, k) as
the largest value of d(s, t) ranging over all compatible s, t ∈ S(n, k). The value
δ(n, k) is called the prefix reversal diameter of fully k-ary, length-n strings.

Theorem 8. For all n ≥ 2, δ(n, 2) = n− 1.

Proof. To prove δ(n, 2) ≥ n − 1, consider compatible s, t ∈ S(n, 2) with s =
(10)n/2 in case n even and s = 0(10)(n−1)/2 in case n odd and in both cases
t = I(s) i.e. t is the sorted version of s. By Theorem 4, d(s, t) ≥ n− 1.

The proof that δ(n, 2) ≤ n− 1, for all n ≥ 2 is by induction on n. The lemma
is trivially true for n = 2. Consider two compatible binary strings of length n:
s = s1s2 . . . sn and t = t1t2 . . . tn. If sn = tn then by induction d(s, t) ≤ n − 2.
Thus, suppose (wlog) sn = 0 and tn = 1. If t1 = 0 then f (n)t and s both end with
a 0, and using induction and symmetry d(s, t) ≤ 1+d(f (n)t, s) ≤ n−2+1 = n−1.
An analogous argument holds if s1 = 1.

Remains the case s1 = sn = 0 and t1 = tn = 1. First, suppose tn−1 = 0.
Since s and t are compatible, there must exist index i such that si = 0 and
si+1 = 1. Hence, f (n)(f (i+1)(s)) ends with 01 like t and by induction d(s, t) ≤
2 + d(f (n)(f (i+1)(s)), t) = 2 + n− 3. Analogously, we resolve the case sn−1 = 1.

Finally, suppose s = 0...00 and t = 1...11. If s contains 11 as a substring, then
flipping that 11 (in the same manner as above) to the back of s using 2 flips,
gives two strings that both end in 11. Alternatively, if s does not contain 11 as
a substring then s has at least two more 0’s than 1’s, which implies that t must
contain 00 as a substring. In that case two prefix reversals on t suffice to create
two strings that both end with 00. In both cases, the induction hypothesis gives
the required bound. �

Note that, trivially, d(s, t) ≤ 2n for all compatible s, t ∈ S(n, k), for all k,
because two prefix reversals always suffice to increase the maximal common
suffix between s and t by at least 1. The following tighter bound gives the best
bound known on the diameter of ternary strings.

Lemma 8. For any two compatible s, t ∈ S(n, k), for any k, let a be the most
frequent symbol in s and α its multiplicity. Then d(s, t) ≤ 2(n− α).

Proof. We prove the lemma, by induction on n. The lemma is trivially true for
n = 2. Consider s, t ∈ S(n, k). If sn = tn = a then s1s2 . . . sn−1 and t1t2 . . . tn−1
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are compatible length-(n− 1) strings where the most frequent symbol occurs at
least α−1 times. Thus, by induction d(s, t) ≤ 2((n−1)− (α−1)) = 2(n−α). In
case sn = tn �= a induction even gives d(s, t) ≤ 2((n− 1)− (α)) = 2(n− α)− 2.
Thus, suppose sn �= tn implying (wlog) that tn = b �= a. Suppose si = b; after
two flips s′ = f (n)(f (i)(s)) has b at the end; s′n = tn. Moreover the length n− 1
suffixes of s′ and t still contain α a’s. Hence by induction d(s, t) ≤ 2 + d(s′, t) ≤
2 + 2((n− 1)− α) = 2(n− α). �

Lemma 9. For all n > 3, n− 1 ≤ δ(n, 3) ≤ (4/3)n.

Proof. Since in any ternary case α ≥ �n/3�, Lemma 8 implies δ(n, 3) ≤ (4/3)n.
To prove δ(n, 3) ≥ n− 1 we distinguish between n is odd and n is even. For odd
n = 2h + 1, let s be 2(01)h, and for even n = 2h let s = 01(21)h−1. In both
cases we let t = I(s). We observe that, in the even and in the odd case, s2 is a
bad I-string and a bad IV-string, respectively, in the sense of Definition 2. Thus,
by Theorem 5 we have that d(s, t) = d(s2, t2) = (n + 1)− 2 = n− 1. (Here s2,
respectively t2, refers to the concatenation of s, respectively t, with an extra 2
symbol.) �

Brute force enumeration has shown that, for 4 ≤ n ≤ 13, δ(n, 3) = n− 1. (Note
that δ(3, 3) = 3 because d(021, 012) = 3.) Proving or disproving the conjecture
that δ(n, 3) = n− 1 for n > 3 remains an intriguing open problem3.

6 Prefix Reversal Distance

We show that computing flip distance is NP-hard on binary strings. We also
point out, using a result from [17], that computing flip distance on arbitrary
strings is polynomial-time reducible (in an approximation-preserving sense) to
computing it on binary strings.

Theorem 9. The problem of computing the prefix reversal distance of binary
strings is NP-hard.

Proof. We prove NP-completeness of the corresponding decision problem:
Name: binary-PD (2PD shortly)
Input: Two compatible strings s, t ∈ S(n, 2), and a bound B ∈ Z+.
Question: Is d(s, t) ≤ B?
2PD∈NP, since a certificate for a positive answer consists of at most B flips4. To
show completeness we use a reduction from 3-Partition [10] (cf. [4] and [17]).
Name: 3-Partition (3P shortly)
Input: A set A = {a1, a2, ..., a3k} and a number N ∈ Z+. Element ai has size
r(ai) ∈ Z+ satisfying N/4 < r(ai) < N/2, i = 1, . . . , 3k, and

∑3k
i=1 r(ai) = kN .

3 Interestingly, initial experiments with brute force enumeration have also shown that,
for 4 ≤ n ≤ 10, δ(n, 4) = n, and for 5 ≤ n ≤ 9, δ(n, 5) = n.

4 Recall that for all compatible strings s, t ∈ S(n, 2), trivially d(s, t) ≤ 2n.
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Question: Can A be partitioned into k disjoint triplet sets A1, A2, ..., Ak such
that

∑
a∈Aj

r(a) = N , j = 1, . . . , k?

Given instance I = (A,N, r) of 3P, we create an instance of 2PD by setting
B = 6k and building two compatible binary strings s and t:

s =
( ∏

1≤i≤3k

0001r(ai)

)
000 t = 03(3k+1)−k(01N )k

This construction is clearly polynomial in a unary encoding of the 3P instance;
we use the strong NP-hardness of 3P [10]. We claim that I = (A,N, r) is a
positive instance of 3P if and only if d(s, t) ≤ 6k. We defer the proof to a full
version of the paper [15]. �

For studying problems on arbitrary strings, let X and Y be two compatible,
length-n strings, where we assume (wlog) that each of the symbols from X and
Y are drawn from the set {0, 1, ..., n − 1}. We define D(X,Y ) as the smallest
number of flips required to transform X to Y . The arity of the strings X and
Y does not need to be fixed, and symbols may be repeated. Hence, sorting of
a permutation by flips (MIN-SBPR), and the flip distance problem over fixed
arity strings, are both special cases of computing D. Given that computing
D is a generalisation of computing distance d of binary strings, immediately
implies that it is NP-hard. However, an approximation-preserving reduction in
the other direction is possible, meaning that inapproximability results for one of
the problems will be automatically inherited by the other.

Theorem 10. Given two compatible strings X and Y of length n with each
symbol from X and Y drawn from {0, 1, ..., n− 1}, it is possible to compute in
time polynomial in n two binary strings x and y of length polynomial in n such
that D(X,Y ) = d(x, y).

Proof. This result follows directly from work by Radcliffe, Scott and Wilmer
[17]. The proof is deferred to a full version of the paper [15]. �

7 Open Problems

In this study we have unearthed many rich (and surprisingly difficult) com-
binatorial questions which deserve further analysis. We discuss some of them
here. The main unifying, “umbrella” suggestion is that, to go beyond ad-hoc
(and case-based) proof techniques, it will be necessary to develop deeper, more
structural insights into the action of flips on strings over fixed size alphabets.

Grouping and sorting on higher arity alphabets. We have shown how
to group and sort optimally binary and ternary strings, but characterisations
and algorithms for quaternary (and higher) alphabets have so far evaded us.
As observed in Section 3.2, it seems that for k = 4, 5 and for sufficiently long
strings, the strings with grouping distance n−2 settle into some kind of pattern,
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but this has not yet offered enough insights to allow either the development of a
characterisation or of an algorithm. Related problems include: for all fixed k, are
there polynomial algorithms to optimally sort (optimally group) k-ary strings? Is
grouping strictly easier than sorting, in a complexity sense? How does grouping
function under other operators e.g. reversals, transpositions? An upper bound
on the grouping transposition distance has been presented in [7].

Diameter questions. Proving or disproving that δ(n, 3) = n − 1 for n > 3
remains the obvious open diameter question. Beyond that, diameter results
for quaternary and higher arity alphabets are needed. How does the diameter
δ(n, k) grow for increasing k? (At this point we conjecture that, for sufficiently
long strings, the diameter of 3-ary, 4-ary and 5-ary strings is n − 1, n, and n
respectively.)

The suspicion also exists that, for all k and for all sufficiently long n, there
exists a length-n fully k-ary string s such that d(s, I(s)) = δ(n, k). In other
words, the set of all pairs of strings that are δ(n, k) flips apart includes some
instances of the sorting problem. It should be noted however that, following
empirical testing, it is apparent that there are also very many pairs of strings
s, t with s �= I(t) and t �= I(s) that are δ(n, k) flips apart.

It also seems important to develop diameter results for subclasses of strings,
perhaps (as in [17]) characterised by the frequency of their most frequent sym-
bol. It may be that such refined diameter results for k-ary alphabets provide
information that is important in determining δ(n, k + 1).

Note finally that the diameter of strings over fixed size alphabets, i.e. δ(n, k),
is always bounded from above by the diameter of permutations. This is because
the distance problem on two length-n, fixed size alphabet strings s, t can easily
be re-written as a sorting problem on a length-n permutation π, such that a
sequence of prefix reversals sorting the permutation also suffices to transform s
into t. Indeed, because of this relabelling property, the flip distance between two
fixed size alphabet strings can be viewed as being equal to the minimum per-
mutation sorting distance, ranging over all such relabellings into a permutation.
Can this relationship between the fixed size alphabet and permutation world be
further specified and exploited?

Signed strings. The problem of sorting signed permutations by flips (the burnt
pancake flipping problem) is well known [5] [11] [14], but in this paper we have
not yet attempted to analyse the action of flips on signed, fixed size alphabet
strings. Obviously, analogues of all the problems described in this paper exist
for signed strings.

Complexity/approximation. In the presence of hardness results (e.g. The-
orem 9) it is interesting to explore the complexity of restricted instances, and
to develop algorithms with guaranteed approximation bounds. For example, [17]
gives a PTAS for dense instances. The development of approximation algorithms
is also a useful intermediate strategy where the complexity of a problem remains
elusive. In particular, this requires the development of improved lower bounds.
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Abstract. We address the problem of studying the toric ideals of phylo-
genetic invariants for a general group-based model on an arbitrary claw
tree. We focus on the group Z2 and choose a natural recursive approach
that extends to other groups. The study of the lattice associated with
each phylogenetic ideal produces a list of circuits that generate the corre-
sponding lattice basis ideal. In addition, we describe explicitly a quadratic
lexicographic Gröbner basis of the toric ideal of invariants for the claw
tree on an arbitrary number of leaves. Combined with a result of Sturm-
fels and Sullivant, this implies that the phylogenetic ideal of every tree
for the group Z2 has a quadratic Gröbner basis. Hence, the coordinate
ring of the toric variety is a Koszul algebra.

1 Introduction

Phylogenetics is concerned with determining genetic relationship between species
based on their DNA sequences. First, the various DNA sequences are aligned,
that is, a correspondence is established that accounts for their differences. As-
suming that all DNA sites evolve identically and independently, the focus is
on one site at a time. The data then consists of observed pattern frequencies
in aligned sequences. This observed data are used to estimate the true joint
probabilities of the observations and, most importantly, to reconstruct the an-
cestral relationship among the species. The relationship can be represented by
a phylogenetic tree.

A phylogenetic tree T is a simple, connected, acyclic graph equipped with
some statistical information. Namely, each node of T is a random variable with
k possible states chosen from the state space S. Edges of T are labeled by
transition probability matrices that reflect probabilities of changes of the states
from a node to its child. These probabilities of mutation are the parameters for
the statistical model of evolution, which is described in terms of a discrete-state
continuous-time Markov process on the tree. Since the goal is to reconstruct
the tree, the interior nodes are hidden. The relationship between the random
variables is encoded by the structure of the tree. At each of the n leaves, we can
observe any of the k states; thus there are kn possible observations. Let pσ be
the joint probability of making a particular observation σ ⊂ Sn at the leaves.
Then pσ is a polynomial in the model parameters.
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A phylogenetic invariant of the model is a polynomial in the leaf probabilities
which vanishes for every choice of model parameters. The set of these polynomials
forms a prime ideal in the polynomial ring over the unknowns pσ. The objective
is to compute this ideal explicitly. Thus we consider a polynomial map φ : CN →
Ckn

, where N is the total number of model parameters. The map depends only
on the tree T and the number of states k; its coordinate functions are the kn

polynomials pσ. The map φ induces a parametrization of an algebraic variety.
The study of these algebraic varieties for various statistical models is a central
theme in the field of algebraic statistics ([11]). Phylogenetic invariants are a
powerful tool for tree reconstruction ([2], [3], [7]).

There is a specific class of models for which the ideal of invariants is particu-
larly nice. Let Me be the k × k transition probability matrix for edge e of T . In
the general Markov model, each matrix entry is an independent model parame-
ter. A group-based model is one in which the matrices Me are pairwise distinct,
but it is required that certain entries coincide. For these models, transition ma-
trices are diagonalizable by the Fourier transform of an abelian group. The key
idea behind this linear change of coordinates is to label the states (for example,
A,C,G, and T ) by a finite abelian group (for example, Z2 × Z2) in such a way
that transition from one state to another depends only on the difference of the
group elements. Examples of group-based models include the Jukes-Cantor and
Kimura’s one-parameter models used in computational biology.

Sturmfels and Sullivant in [11] reduce the computation of ideals of phyloge-
netic invariants of group-based models on an arbitrary tree to the case of claw
trees Tn := K1,n, the complete bipartite graph from one node (the root) to n
nodes (the leaves). The main result of [11] gives a way of constructing the ideal
of phylogenetic invariants for any tree if the ideal for the claw tree is known.
However, in general, it is an open problem to compute the phylogenetic invari-
ants for a claw tree. We consider the ideal for a general group-based model for
the group Z2. Let qσ be the image of pσ under the Fourier transform. Assuming
the identity labeling function and adopting the notation of [11], the ideal of phy-
logenetic invariants for the tree Tn is the kernel of the following homomorphism
between polynomial rings:

ϕn : C[qg1,...,gn : g1, . . . , gn ∈ G] → C[a(i)
g : g ∈ G, i = 1, . . . , n + 1]

qg1,...,gn �→ a(1)
g1

a(2)
g2

. . . a(n)
gn

a
(n+1)
g1+g2+···+gn

, (*)

where G is a finite group with k elements, each corresponding to a state. The
coordinate qg1,...,gn corresponds to observing the element g1 at the first leaf of T,
g2 at the second, and so on. The phylogenetic invariants form a toric ideal in the
Fourier coordinates qσ, which can be computed from the corresponding lattice
basis ideal by saturation. The main result of this paper is a complete description
of the lattice basis ideal and a quadratic Gröbner basis of the ideal of invariants
for the group Z2 on Tn for any number of leaves n.

Our paper is organized as follows. In section 2 we lay the foundation for our
recursive approach. The ideal of the two-leaf claw tree is trivial, so we begin
with the case when the number of leaves is three. Sections 3 and 4 address the
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problem of describing the lattices corresponding to the toric ideals. We provide
a nice lattice basis consisting of circuits. The corresponding lattice basis ideal is
generated by circuits of degree two and thus in particular satisfies the Sturmfels-
Sullivant conjecture.

The ideal of phylogenetic invariants is the saturation of the lattice basis ideal.
However, we do not use any of the standard algorithms to compute saturation
(e.g. [8], [10]). Instead, our recursive construction of the lattice basis ideals can
be extended to give the full ideal of invariants, which we describe in the final
section. The recursive description of these ideals depends only on the number of
leaves of the claw tree and it does not require saturation. Finally, and possibly
somewhat surprisingly, we show that the ideal of invariants for every claw tree
admits a quadratic Gröbner basis with respect to a lexicographic term order.
We describe it explicitly.

Combined with the main result of Sturmfels and Sullivant in [11], this implies
that the phylogenetic ideal of every tree for the group Z2 has a quadratic Gröbner
basis. Hence, the coordinate ring of the toric variety is a Koszul algebra. In
addition, the ideals for every tree can be computed explicitly. These ideals are
particularly nice as they satisfy the conjecture in [11] which proposes that the
order of the group gives an upper bound for the degrees of minimal generators of
the ideal of invariants. The case of Z2 has been solved in [11] using a technique
that does not generalize. We hope to extend our recursive approach and obtain
the result for an arbitrary abelian group.

For a detailed background on phylogenetic trees, invariants, group-based mod-
els, Fourier coordinates, labeling functions and more, the reader should refer to
[1], [6], [9], [11].

2 Matrix Representation

Fix a claw tree Tn on n leaves and a finite abelian group G of order k. Soon we
will specialize to the case k = 2. We want to compute the ideal of phylogenetic
invariants for the general group-based model on Tn. After the Fourier transform,
the ideal of invariants (in Fourier coordinates) is given by In = kerϕn , where
ϕn is a map between polynomial rings in kn and k(n+1) variables, respectively,
defined by (*). In order to compute the toric ideal In, we first compute the
lattice basis ideal ILn ⊂ In corresponding to ϕn as follows. Fixing an order on
the monomials of the two polynomial rings, the linear map ϕ can be represented
by a matrix Bn,k that describes the action of ϕ on the variables. Then the lattice
Ln = ker(Bn,k) ⊂ Zkn

determines the ideal ILn . It is generated by elements of
the form (

∏
qg1,...,gn)v+ − (

∏
qg1,...,gn)v−

where v = v+ − v− ∈ Ln. We will give
an explicit description of this basis and, equivalently, the ideals ILn .

Hereafter assume that G = Z2. For simplicity, let us say that Bn := Bn,2.
To create the matrix Bn, first order the two bases as follows. Order the a

(i)
g

by varying the upper index (i) first and then the group element g: a(1)
0 , a(2)

0 , . . . ,
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a
(n+1)
0 , a

(1)
1 , . . . , a

(n+1)
1 . Then, order the qg1,...,gn by ordering the indices with

respect to binary counting:

q0...00 > q0...01 > · · · > q1...10 > q1...1.

That is, qg1...gn > qh1...hn if and only if (g1 . . . gn)2 < (h1 . . . hn)2, where

(g1 . . . gn)2 := g12n−1 + g22n−2 + · · ·+ gn20

represents the binary number g1 . . . gn.
Next, index the rows of Bn by a

(i)
g and its columns by qg1,...,gn . Finally, put 1

in the entry of Bn in the row indexed by a
(i)
g and column indexed by qg1,...,gn if

a
(i)
g divides the image of qg1,...,gn , and 0 otherwise.

Example 1. Let n = 2. Then we order the qij variables according to binary
counting: q00, q01, q10, q11, so that

ϕ : C[q00, q01, q10, q11] → C[a(1)
0 , a

(2)
0 , a

(3)
0 , a

(1)
1 , a

(2)
1 , a

(3)
1 ]

q00 �→ a
(1)
0 a

(2)
0 a

(3)
0+0

q01 �→ a
(1)
0 a

(2)
1 a

(3)
0+1

q10 �→ a
(1)
1 a

(2)
0 a

(3)
1+0

q11 �→ a
(1)
1 a

(2)
1 a

(3)
1+1.

Now we put the a
(j)
i variables in order: a(1)

0 , a(2)
0 , a(3)

0 , a(1)
1 , a(2)

1 , a(3)
1 . Thus

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The tree Tn−1 can be considered as a subtree of Tn by ignoring, for example,
the leftmost leaf of T . As a consequence, a natural question arises: how does Bn

relate to Bn−1?

Remark 1. The matrix Bn−1 for the subtree of Tn with the leaf (1) removed
can be obtained as a submatrix of Bn for the tree Tn by deleting rows 1 and
(n + 1) + 1 and taking only the first 2n−1 columnns. Divide the n-leaf matrix
Bn into a 2× 2 block matrix with blocks of size (n + 1)× 2n−1:

Bn =
[
B11 B12

B21 B22

]
.

Then, grouping together B11, B21 without the first row of each Bi1, we obtain the
matrix Bn−1. This is true because rows 1 and (n+1)+1 represent the variables
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a
(1)
g for g ∈ G associated with the leaf (1) of Tn. Note that the entries in row

a
(n+1)
g remain undisturbed as the omitted rows are indexed by the identity of

the group.

Example 2. The matrix B2 is equal to the submatrix of B3 formed by rows
2,3,4,6,7,8, and first 4 columns.

Remark 2. Fix any observation σ = g1, . . . , gn on the leaves. Clearly, at any
given leaf j ∈ {1, . . . , n}, we observe exactly one group element, gj . Since the
matrix entry b

a
(j)
gj

,qσ
in the row indexed by a

(j)
gj and column indexed by qσ is 1

exactly when a
(j)
gj divides the image of qσ, one has that

∑
gj∈G

b
a
(j)
gj

,qσ
= 1

for a fixed leaf (j) and fixed observation σ. Note that the formula also holds if
j = n+1 by definition of a(n+1)

gn+1 = a
(n+1)
g1+···+gn

. In particular, the rows indexed by

a
(j)
gj for a fixed j sum up to the row of ones.

3 Number of Lattice Basis Elements

We compute the dimension of the kernel of Bn by induction on n. We proceed
in two steps.

Lemma 1 (Lower bound)

rank(Bn) ≥ rank(Bn−1) + 1.

Proof. First note that rank(Bn) ≥ rank(Bn−1) since Bn−1 is a submatrix of
the first 2n−1 columns of Bn. In the block

[
B11, B12

]T , the row indexed by a
(1)
1

is zero, while in the block
[
B21, B22

]T , the row indexed by a
(1)
1 is 1. Choosing

one column from
[
B21, B22

]T provides a vector independent of the first 2n−1

columns. The rank must therefore increase by at least 1. �

Lemma 2 (Upper bound)

rank(Bn) ≤ n + 2.

Proof. Bn has 2(n+1) rows. Remark 2 provides n independent relations among
the rows of our matrix: varying j from 1 to n + 1, we obtain that the sum of
the rows j and n + 1 + j is 1 for each j = 1, . . . , n + 1. Thus the upper bound is
immediate. �

We are ready for the main result of the section.
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Proposition 1 (Cardinality of lattice basis)
Let n ≥ 2. Then there are 2n − 2(n + 1) + n elements in the basis of the lattice
Ln corresponding to Tn. That is,

dim ker(Bn) = 2n − 2(n + 1) + n.

Proof. We show rank(Bn) = 2(n+1)−n. It can be checked directly that B2 has
full rank. Assume that the claim is true for n− 1. Then by Lemmae (1) and (2),

2(n + 1)− n ≥ rank(Bn) ≥ rank(Bn−1) + 1 = 2n− (n− 1) + 1,

where the last equality is provided by the induction hypothesis. The claim follows
since the left- and the right-hand sides agree. �

4 Lattice Basis

In this section we describe a basis of the kernel of Bn := Bn,2, in which the
binomials corresponding to the basis elements satisfy the conjecture on the de-
grees of the generators of the phylogenetic ideal. In particular, since the ideal is
generated by squarefree binomials and contains no linear forms, these elements
are actually circuits. By Proposition 1, we need to find 2n − (n + 2) linearly
independent vectors in the lattice. The matrix of the tree with n = 2 leaves has
a trivial kernel, so we begin with the tree on n = 3 leaves. The dimension of the
kernel is 3 and the lattice basis is given by the rows of the following matrix:

⎡
⎣0 0 1 −1 −1 1 0 0
0 1 0 −1 −1 0 1 0
1 0 0 −1 −1 0 0 1

⎤
⎦ .

In order to study the kernels of Bn for any n, it is useful to have an algorithmic
way of constructing the matrices.

Algorithm 1. [The construction of Bn]
Input: the number of leaves n of the claw tree Tn.
Output: Bn ∈ Z2(n+1)×2n

.
Initialize Bn to the zero matrix.
Construct the first n rows:
for k from 1 to n do:
for c from 0 to 2k − 1 with c ≡ 0 mod 2 do:
for j from c2n−k + 1 to (c + 1)2n−k do: bk,j := 1.

Construct row n + 1:
if n ≡ (

∑n
r=1 br,j) mod 2, then bn+1,j := 1.

Construct rows n + 2 to 2(n + 1):
for i from 1 to n + 1 do:
for j from 1 to 2n do: bn+1+i, j := 1− bi,j.
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One checks that this algorithm gives indeed the matrices Bn as defined in
Section 3.

The (n + 1 + i)th row rn+1+i of Bn is by definition the binary complement of
the ith row ri of Bn. Suppose that ri ·k = 0 for some vector k. Since all entries of
Bn are nonnegative, a subvector of k restricted to the entries where ri is nonzero
must be homogeneous in the sense that the sum of the positive entries equals the
sum of the negative entries. But since the ideal ILn itself is homogeneous ([10]),
the same must be true for the subvector of k restricted to the entries where ri

is zero. Hence rn+1+i · k = 0. Therefore, it is enough to analyze the top half of
the matrix Bn when determining the kernel elements.

Remark 3. There are n copies of Bn−1 inside Bn. By deleting one leaf at a time,
we get n copies of Tn−1 as a subtree of Tn. Suppose we delete leaf (i) from Tn to
get the tree T

(i)
n on leaves 1, 2, . . . , i−1, i+1, . . . , n. Ignoring the two rows of Bn

that represent the leaf (i) and taking into account the columns of Bn containing
nonzero entries of the row indexed by a

(i)
0 (that is, observing 0 at leaf (i)) gives

precisely the matrix Bn−1 corresponding to T
(i)
n . Note that the entry indexed

by a
(n+1)
g , for any g ∈ G, will be correct since we are ignoring the identity of the

group, as in Remark 1.

This leads to a way of constructing a basis of ker(Bn) from the one of ker(Bn−1).
Namely, removing leaf (1) from Tn produces dim(ker(Bn−1)) = 2n−1−n−1 inde-
pendent vectors in ker(Bn). Let us name this collection of vectors V1. Removing
leaf (2) produces a collection V2 consisting of dim(kerBn−1)− dim(kerBn−2) =
2n−2 − 1 vectors in ker(Bn). V2 is independent of V1 since the second half of
each vector in V2 has nonzero entries in the columns of Bn where all vectors in
V1 are zero, a direct consequence of the location of the submatrix corresponding
to T

(2)
n . Finally, removing any other leaf (i) of Tn produces a collection Vi of

as many new kernel elements as there are new columns involved (in terms of
the submatrix structure); namely, 2n−i new vectors. Note that every vector in
V2 has a nonzero entry in at least one new column so that the full collection is
independent of V1.

Using the above procedure, we have obtained

(2n−1 − n− 1) + (2n−2 − 1) + (2n−3) + · · ·+ 2n−n

independent vectors in the kernel of Bn. This is exactly one less than the desired
number, 2n − n − 2. Hence to the list of the kernel generators we add one
additional vector v that is independent of all the Vi, i = 1, . . . , n as it has a
nonnegative entry in the last column. (Note that no v ∈ Vi has this property by
the observation on the column location of the submatrix associated with each
T

(i)
n .) In particular, v = [0, . . . , 0, 1, 0, 0,−1,−1, 0, 0, 1] ∈ ker(Bn). To see this,

we simply notice that the rows of the last 8-column block of Bn are precisely the
rows of the first 8-column block of Bn up to permutation of rows, which does
not affect the kernel.
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The lattice basis we just constructed is directly computed by the following
algorithm.

Algorithm 2. [Construction of the lattice basis for Tn]
Input: the number of leaves n of the claw tree Tn.
Output: a basis of kerBn in form of a (2n − n− 2)× 2n matrix Ln.

Let L3 :=

⎡
⎣0 0 1 −1 −1 1 0 0
0 1 0 −1 −1 0 1 0
1 0 0 −1 −1 0 0 1

⎤
⎦.

Set k := 4.
The following subroutine lifts Lk−1 to Lk:
WHILE k ≤ n do:{
Initialize Lk to the zero matrix.
For i from 1 to k do:

cols(i) := {1..2k−i, (2)2k−i + 1..(3)2k−i, . . . , (2i − 2)2k−i + 1..(2i − 1)2k−i}.
Denote by Lk,j [cols(i)] the jth row vector of Lk restricted to columns cols(i).
Set i := 1:

for j from 1 to 2k−1 − k − 1 do: Lk,j [cols(i)] := Lk−1,j .
Set i := 2:

for j from 1 to 2k−2 − 1 do :
Lk,(2k−1−k−1)+j [cols(i)] := Lk−1,(2k−1−k−1)−(2k−2−1)+j .

For i from 3 to k do:
for j from 1 to 2k−i do:
Lk,(2k−2k+1−i−k−2)+j [cols(i)] := Lk−1,(2k−1−k−1)−(2k−i)+j .

Finally, Lk,2k−k−2[2k − 7..2k] := [1, 0, 0,−1,−1, 0, 0, 1].
RETURN Lk. }

Example 3. Consider the tree on n = 4 leaves. Then

B4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The lattice basis is given by the rows of the following matrix:

L4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0

1 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0

1 0 0 −1 0 0 0 0 −1 0 0 1 0 0 0 0

0 1 0 0 0 −1 0 0 −1 0 0 0 1 0 0 0

1 0 0 0 0 −1 0 0 −1 0 0 0 0 1 0 0

1 0 0 0 0 0 −1 0 −1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 −1 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The lattice vectors correspond to the relations on the leaf observations in the nat-
ural way; namely, the first column corresponds to q0,...,0, the second to q0,...,0,1,
and so on. Therefore, the lattice basis ideal for T4 in Fourier coordinates is

IL4 = (q0010q0101 − q0011q0100, q0001q0110 − q0011q0100, q0000q0111 − q0011q0100,

q0010q1001 − q0011q1000, q0001q1010 − q0011q1000, q0000q1011 − q0011q1000,

q0001q1100 − q0101q1000, q0000q1101 − q0101q1000,

q0000q1110 − q0110q1000, q1000q1111 − q1011q1100).

This ideal is contained in the ideal of phylogenetic invariants I4 for T4. In the
next section, we compute explicitly the generators of the ideal of invariants for
any claw three Tn and the group Z2.

5 Ideal of Invariants

We show that the lattice basis ideals provide basic building blocks for the full
ideals of invariants, as expected. However, instead of computing the ideal of in-
variants as a saturation of the lattice basis ideal in a standard way (e.g. [8],[10]),
we use the recursive constructions from the previous section on the saturated ide-
als directly. We begin with the ideal of invariants for the smallest tree, and build
all other trees recursively. The underlying ideas for how to lift the generating
sets come from Algorithm 2.

We will denote the ideal of the claw tree on n leaves by In = kerϕn. As we
have seen, the first nontrivial ideal is I3.

5.1 The Tree on n = 3 Leaves

Claim. The ideal of the claw tree on n = 3 leaves is

I3 = (q000q111 − q100q011, q001q110 − q100q011, q010q101 − q100q011).
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This can be verified by computation. In particular, this ideal is equal to the
lattice basis ideal for the tree on three leaves; IL3 is already prime in this case.

Let <:=<lex be the lexicographic order on the variables induced by

q000 > q001 > q010 > q011 > q100 > q101 > q110 > q111.

(That is, qijk > qi′j′k′ if and only if (ijk)2 < (i′j′k′)2, where (ijk)2 denotes the
binary number ijk.)

Remark 4. The three generators of I3 above are a Gröbner basis for I3 with
respect to <, since the initial terms, written with coefficient +1 in the above
description, are relatively prime so all the S-paris reduce to zero.

Remark 5. Write the quadratic binomial q = q+ − q− as

q
g
(1)
1 g

(2)
1 g

(3)
1

q
g
(1)
2 g

(2)
2 g

(3)
2
− q

h
(1)
1 h

(2)
1 h

(3)
1

q
h
(1)
2 h

(2)
2 h

(3)
2

.

Then q ∈ I3 if and only if the following two conditions hold:

1. Exchanging the roles of q
h
(1)
1 h

(2)
1 h

(3)
1

and q
h
(1)
2 h

(2)
2 h

(3)
2

if necessary,

g
(1)
1 + g

(2)
1 + g

(3)
1 = h

(1)
1 + h

(2)
1 + h

(3)
1

and
g
(1)
2 + g

(2)
2 + g

(3)
2 = h

(1)
2 + h

(2)
2 + h

(3)
2 ,

2. g
(i)
1 + g

(i)
2 = 1 = h

(i)
1 + h

(i)
2 for 1 ≤ i ≤ 3 = n.

Note that the second condition holds since otherwise the projection of q obtained
by eliminating the leaf (i) at which the observations g

(i)
1 and g

(i)
2 are both equal

to 0 or to 1 produces an element q′ in the kernel of the map ϕ2 of the 2-leaf tree,
which is trivial.

5.2 The Tree on an Arbitrary Number of Leaves

Let us now define a set of maps and a distinguished set of binomials in In.

Definition 1. Let πi(q) be the projection of q that eliminates the ith index of
each variable in q.

For example,

π4(q0000q1110 − q1000q0110) = q000q111 − q100q011.

Definition 2. Assume that n ≥ 4.
Let Gn be the set of quadratic binomials q ∈ In that can be written as

q = q+ − q− = q
g
(1)
1 ...g

(n)
1

q
g
(1)
2 ...g

(n)
2
− q

h
(1)
1 ...h

(n)
1

q
h
(1)
2 ...h

(n)
2

such that one of the two following properties is satisfied:
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Property (i): For some 1 ≤ i ≤ n, j ∈ Z2,

g
(i)
1 = g

(i)
2 = j = h

(i)
1 = h

(i)
2 (1)

and
πi(q) ∈ In−1. (2)

Property (ii): For each 1 ≤ k ≤ n,

g
(k)
1 + g

(k)
2 = 1 = h

(k)
1 + h

(k)
2 (3)

and
πk(q) ∈ In−1. (4)

Example 4. Let n = 4. The set of elements q ∈ Gn with Property (i) consists of
those for which j = 0:
q0000q0111 − q0100q0011, q0001q0110 − q0100q0011, q0010q0101 − q0100q0011,
q0000q1011 − q1000q0011, q0001q1010 − q1000q0011, q0010q1001 − q1000q0011,
q0000q1101 − q1000q0101, q0001q1100 − q1000q0101, q0100q1001 − q1000q0101,
q0000q1110 − q1000q0110, q0010q1100 − q1000q0110, q0100q1010 − q1000q0110;
and those for which j = 1:
q1000q1111 − q1100q1011, q1001q1110 − q1100q1011, q1010q1101 − q1100q1011,
q0100q1111 − q1100q0111, q0101q1110 − q1100q0111, q0110q1101 − q1100q0111,
q0010q1111 − q1010q0111, q0011q1110 − q1010q0111, q0110q1011 − q1010q0111,
q0001q1111 − q1001q0111, q0011q1101 − q1001q0111, q0101q1011 − q1001q0111.

The set of elements q ∈ Gn with Property (ii) are:
q0000q1111 − q1001q0110, q0001q1110 − q1000q0111, q0011q1100 − q1001q0110,
q0010q1101 − q1000q0111, q0101q1010 − q1001q0110, q0100q1011 − q1000q0111.

Proposition 2. For n ≥ 4, the set of binomials in Gn generates the ideal In.
That is,

In = (q : q+ − q− ∈ Gn).

In addition, this set of generators can be obtained inductively by lifting the gen-
erators corresponding to the various phylogenetic ideals on n− 1 leaves.

Proof. Condition (3) is simply the negation of (1). Condition (1) can be restated
as follows: for some 1 ≤ i ≤ n and a fixed j,

(a(i)
j )2|ϕn(q+) and (a(i)

j )2|ϕn(q−).

Therefore, Property (i) translates to having an observation j fixed at leaf (i) for
each of the variables in q. On the other hand, condition (3) means that for any k,
not all the kth indices are 0 and not all are 1. Thus Property (ii) means that no
leaf has a fixed observation, and can be restated as follows: for every 1 ≤ i ≤ n,

a
(i)
0 a

(i)
1 |ϕn(q+) and a

(i)
0 a

(i)
1 |ϕn(q−). (5)

By definition, the ideal In is toric, so it is generated by binomials. In fact, it is
generated by homogeneous binomials, because each row of the matrix Bn used
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for defining it has row sum n + 1 ([10], chapter 4). In addition, Sturmfels and
Sullivant in [11] have shown that the ideal In is generated in degree 2. Hence
it suffices to consider homogeneous quadratic binomials. Let q = q+ − q− be a
binomial in In of degree 2. Then clearly either (1) or (3) holds; that is, either
the index corresponding to one leaf is fixed for all the monomials in q, or none
of them are.

In the former case, for the index i from equation (1),

q ∈ In ⇐⇒ ϕn(q+) = ϕn(q−)

⇐⇒ ϕn−1(πi(q+)) = ϕn−1(πi(q−)) ⇐⇒ πi(q) ∈ In−1,

where the first statement holds by definition of ϕn and the second by definition
of the projection πi.

In the latter case, for each i with 1 ≤ i ≤ n,

q ∈ In ⇐⇒ ϕn(q+) = ϕn(q−)

⇐⇒ ϕn−1(πi(q+)) = ϕn−1(πi(q−)) ⇐⇒ πi(q) ∈ In−1,

where the second statement holds by definition of πi and (5). It follows that
In = (q : q ∈ Gn).

In particular, the set of generators for In with Property (i) can be obtained
from those of In−1 by inserting first 0 at the ith index position for each monomial
of q ∈ Gn−1 and then repeating the same process by inserting 1. This operation
corresponds to lifting to all the possible preimages of πi(q) that satisfy Prop-
erty (i) for each 1 ≤ i ≤ n and every q ∈ Gn−1. The set of generators for In

with Property (ii) can be obtained from those of In−1 by a similar lifting to all
preimages of πi(q) for each q ∈ Gn−1 in such a way that Property (ii) is satisfied.
Namely, for every q = q+−q− ∈ Gn−1 with Property (ii), one inserts 0 at the ith

index position for one monomial of q+ and for one monomial of q−, and inserts 1
at the ith index position for the remaining monomials of q+ and q−. In addition,
by definition of Property (ii), it suffices to lift to the preimages of πn(q) only. �

Remark 6. A different recursion has been proposed by Sturmfels and Sullivant
in [12].

Recall ([10]) that a binomial q = q+ − q− ∈ I is said to be primitive if there
exists no binomial f = f+ − f− ∈ I with the property that f+|q+ and f−|q−.
A circuit is a primitive binomial of minimal support.

Remark 7. The binomials in Gn are circuits of In, since the ideal is generated
by squarefree binomials and contains no linear forms.

In general, we can describe the generators of In as follows: given n, begin by
lifting G3 recursively to produce Gn−1; that is, until the number of indices of
each generator reaches n − 1. Next, lift Gn−1 n times so that Property (i) is
satisfied for one of the n index positions. For example,

q := q0000q1111 − q1001q0110 ∈ G4
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can be lifted to a generator of I5 in ten different ways: by lifting to preimages of
π1, . . . , π5 so that Property (i) is satisfied with either a 0 or a 1:

π−1
1 (q) = {q00000q01111 − q01001q00110, q10000q11111 − q11001q10110},

π−1
2 (q) = {q00000q10111 − q10001q00110, q01000q11111 − q11001q01110},

and so on. This will be the set of binomials in Gn with Property (i). Clearly,
some generators will repeat during the recursive lifting: lifting by inserting 0 at
position (i) allows the 0 to occur at the previous i− 1 positions. Also, fixing 1
at any leaf allows 0 to appear on any of the other leaves.

To construct q+ − q− with Property (ii), we need not proceed inductively,
as all projections of binomials that satisfy this property must satisfy it, too.
Instead, we consider two cases corresponding to the parity of n. Namely, recalling
the definition of Property (ii), first we fix q− in such a way to ensure that
in<lex

(q) = q+.
Suppose n is odd. Fix q− by taking

q− = q01...1q10...0

with n indices in each of the two variables. Then n− 1 being even provides that
a
(n+1)
0 a

(n+1)
1 |ϕn(q−). Thus every choice of q+ must satisfy the same. To find q+,

we need to choose pairs of n-digit binary numbers with digits complementary
to each other, and thus there are 2n−1 − 1 choices for q+. Specifically, listing
the smallest 2n−1− 1 n-digit binary numbers and pairing them with the largest
2n−1−1 n-digit binary numbers in reverse order produces all choices for q+, and
we have a complete list of generators. For example, the first such generator in
the list would be q0...0q1...1 − q01...1q10...0.

If n is even, then we can create q− such that (a(n+1)
0 )2 or (a(n+1)

1 )2 divides
ϕn(q−) and ϕn(q+). Namely, the two choices for q− are

q− = q01...1q10...0 and q− = q01...10q10...01.

The list of all possible q+ is obtained in the manner similar to the case when n
is odd, except that the odd pairs in the list receive the first choice of q−, while
the even pairs receive the second. The number of such generators q+ − q− is
2n−1−2, since there are 2n n-digit binary numbers and thus half as many pairs,
and 2 choices are taken by the q−.

In summary, the number of generators of In that satisfy Property (ii) is
(2n−1 − 2) + (n mod 2).

Next we strengthen Proposition (2).

Proposition 3. The set Gn is a lexicographic Gröbner basis of In, for any n ≥ 4.

Proof. For the case n = 3 this is already shown. Let n > 3. Then we can partition
the set of q ∈ Gn into those satisfying Property (i) or (ii). Note that In is prime
by definition, and thus radical. Also, Proposition (2) shows it is generated by
squarefree quadratic binomials. These facts are used in what follows.
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Let qi,qj ∈ In. If (q+
i , q+

j ) = 1, the S-pair S(qi, qj) reduces to zero. Also, if
q−i and q−j are not relatively prime, the cancellation criterion provides that the
corresponding S-pair also reduces to zero. Therefore we consider f := S(qi, qj) ∈
In with (q+

i , q+
j ) �= 1 and (q−i , q−j ) = 1. In particular, deg(f) = 3. Let us write

qi = qg1qg2 − qh1qh2 and qj = qg1qg3 − qh3qh4 . Then

f = qg3qh1qh2 − qg2qh3qh4 ∈ In.

Case I. Suppose qi satisfies Property (i) and qj satisfies Property (ii). Then
there exists a k such that πk(qi) ∈ In−1. Furthermore, Property (ii) implies that
πk(qj) ∈ In−1. A very technical argument shows that

πk(f) ∈ In−1

and furthermore, this projection preserves the initial terms. In summary, to
check that πk(f) ∈ In−1, it suffices to ensure that a

(n)
s |ϕn−1(πk(qg3qh1qh2)) if

and only if a
(n)
s |ϕn−1(πk(qg2qh3qh4)), where s is the sum of the observations on

the leaves of the (n − 1)-leaf tree obtained from T by deleting leaf (k). There
are two cases corresponding to the parity of n. If n is odd, there are additional
subcases determined by the correspondence of the images of the variables in the
two monomials of f under ϕn−1. The facts that qi and qj satisfy Properties (i)
and (ii), respectively, play a crucial role in the argument. Checking all the cases
then shows that πk(f) ∈ In−1 and that initial terms are preserved under this
projection.

Applying the induction hypothesis then finishes the proof.

Case II. Suppose both qi and qj satisfy Property (i). Then there is a qk ∈ Gn

satisfying Property (ii) where both S(qi, qk) and S(qj , qk) reduce to zero. The
three-pair criterion ([8]) provides the desired result.
Case III. If both qi and qj satisfy Property (ii), then it can be seen from the con-
struction preceding this Proposition that the initial terms are relatively prime,
so their S-polynomial need not be considered. �

Proposition 3 has important theoretical consequences. Let S be a polynomial
ring over the field K. Recall ([4]) that S/I is Koszul if the field K has a linear
resolution as a graded S/I-module:

· · · → (S/I)β2(−2)→ (S/I)β1(−1)→ S/I → K → 0.

An ideal I ⊂ S is said to be quadratic if it is generated by quadrics. S/I is
quadratic if its defining ideal I is quadratic, and it is G-quadratic if I has a
quadratic Gröbner basis. It is known (e.g. [4]) that if S/I is G-quadratic, then it
is Koszul, which in turn implies it is quadratic. The reverse implications do not
hold in general. We have just found an infinite family of toric varieties whose
coordinate rings S/I are G-quadratic.

Corollary 1. The coordinate ring of the toric variety whose defining ideal is In

is Koszul for every n.
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The approach developed here produces the list of generators for the kernel of
Bn all of which are of degree two. In addition, by constructing the toric ideals of
invariants inductively, we are able to explicitly calculate the quadratic Gröbner
bases. In light of the conjecture posed in [11] that the ideal of phylogenetic
invariants for the group of order k is generated in degree at most k, we are
working on generalizing the above approach to any abelian group of order k. In
particular, we want to give a description of the lattice basis ideal ILn and the
ideal of invariants I for G = Z2×Z2 with generators of degree at most 4. These
phylogenetic ideals are of interest to computational biologists.

Acknowledgment. The authors would like to thank Uwe Nagel for introducing
us to the field of phylogenetic algebraic geometry and for his continuous support,
motivation and guidance.
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Abstract. The mirror tree is a method to predict protein-protein inter-
action by evaluating the similarity between distance matrices of proteins.
It is known, however, that predictions by the mirror tree method include
many false positives. We suspected that the information about the evo-
lutionary relationship of source organisms may be the cause of the false
positives, because the information is shared by the distance matrices.
Therefore, we excluded the information from the distance matrices and
evaluated the similarity of the residuals as the intensity of co-evolution.
We developed two different methods with a projection operation and par-
tial correlation coefficient. The number of false positives were drastically
reduced by our methods.

Keywords: protein-protein, co-evolution, projection operation, partial
correlation coefficient.

1 Introduction

Information about protein–protein interactions in living cells provides deep in-
sight into the biological functions of proteins at the cellular level. The devel-
opment of large-scale experimental analyses, such as the yeast 2-hybrid system
[7,21] and pull-down method [3,6], has facilitated understanding the protein–
protein interaction network in cells. However, such experimental approaches have
problems in coverage and accuracy [20,22]. Following the trend, the prediction of
protein–protein interactions has become one of the major issues in bioinformat-
ics. The predicted protein–protein interactions can provide complementary or
supporting evidence to the large-scale experimental studies on protein–protein
interactions although computational analyses also have the same drawbacks as
experimental studies, that is, low coverage and low accuracy.
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Various computational methods to predict protein–protein interactions have
been developed until today. Co-evolutionary behavior between interacting pro-
teins provides useful information for the prediction of protein-protein interac-
tion. The mirror tree method [15] and the in silico 2-hybrid system method [14]
are two representative methods to predict protein-protein interaction with co-
evolutionary information. In this paper, we explain our studies [18,19] aiming at
improvement of the mirror tree method. The mirror tree method was developed
by Pazos and Valencia [15], although there are several preceding works, such
as Goh et al. [5]. The mirror tree method predicts protein–protein interactions
under the assumption that the interacting proteins show similarity in molecular
phylogenetic tree because of the co-evolution through the interaction. To avoid
the difficulty to evaluate the similarity between a pair of phylogenetic trees,
however, the mirror tree method compares a pair of distance matrices. Consider
two proteins, proteins A and B. The orthologous amino acid sequences of pro-
tein A are collected from n species. The n sequences of protein A are aligned
and the distance matrix, DA, is calculated. The size of DA is n × n, and each
row or column of the matrix corresponds to a species under consideration. An
element of the matrix, DA(i, j), represents the genetic distance between species
i and j, which is calculated by comparing the amino acid sequences of protein
A between the two species. A distance matrix is symmetric, and only the upper
or lower half of the matrix includes sufficient information for tree construction.
Likewise, the orthologous amino acid sequences of protein B are collected from
the same n species, and the distance matrix, DB, is calculated. The intensity of
co-evolution between proteins A and B is evaluated as Pearson’s correlation coef-
ficient, ρMIRROR

AB , between the distance matrices DA and DB, which is calculated
as follows:

ρMIRROR
AB =

n−1∑
i=1

n∑
j=i+1

(DA(i, j)−Ave(DA))(DB(i, j)−Ave(DB))
√

Var(DA)Var(DB)
, (1)

where Ave and Var represent the average and the variance of the upper (or lower)
half elements of a distance matrix. High correlation between the distance matri-
ces indicates the resemblance of the corresponding phylogenetic trees. Therefore,
a pair of proteins are predicted to interact with each other, when the distance
matrices of the proteins show high correlation. Because of the simplicity, modi-
fication and improvement have been introduced into the mirror tree method by
several groups [4,9,16]. On the other hand, it has been recognized that the mirror
tree predictions include many false positives. That is, even protein pairs that are
known not to interact often show high correlation coefficients. Then, such pairs
are predicted to interact in error. The abundance of false positives in the mirror
tree prediction reduces the reliability of the method in actual applications. We
suspected that the cause of the false positives is the information about the evo-
lutionary relationship among the source organisms of the collected orthologous
sequences. The distance matrices of orthologous proteins from the same set of n
source organisms are compared in the mirror tree method. Therefore, all of the
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distance matrices of the proteins are considered to include the same information
about the evolutionary relationships among the same n sources. The information
shared by the distance matrices would generate high correlation even between
the matrices of non-interacting proteins. If our hypothesis is correct, the number
of false positives in the predictions could be reduced by excluding such informa-
tion from the distance matrices. We developed two different methods to exclude
the information from the distance matrices for the prediction of protein-protein
interaction. One of them uses a projection operator, whereas the other is based
on multiple regression. The two methods were applied to physically contacting
proteins, to evaluate their performances. Then, it was found that our methods
drastically reduced the number of false positives in the predicted protein–protein
interactions as expected.

2 Material and Method

2.1 Data Preparation

13 pairs of Escherichia coli proteins that are physically in contact were selected
from the Database of Interacting Proteins (DIP) [17]. The pairs are listed in
the legend for Table 1. Each pair was selected so that neither of the interacting
proteins participated in the remaining 12 pairs of interacting proteins. Then,
(putative) orthologues corresponding to the 26 proteins were collected from 40
different bacterial species, according to the KEGG KO database [10]. We as-
sumed that a pair of proteins, which are orthologous to the interacting proteins
of E. coli, are also physically in contact.

2.2 Multiple Sequence Alignment and Distance Matrix

A multiple alignment of each set of orthologous amino acid sequences was made
with the alignment software MAFFT [11]. A distance matrix for the orthologous
sequences was calculated from the multiple alignment. A genetic distance be-
tween every pair of aligned sequences was calculated as a maximum likelihood
estimate using the PROTDIST in the PHYLIP package [2]. JTT model [8] was
used as a model for the amino acid substitution for the estimation.

2.3 Transformation from Distance Matrix to Phylogenetic Vector
[19]

The distance matrix was transformed into a vector. The upper or lower half
of the non-diagonal elements of the distance matrix was arranged as a one-
dimensional array of the numerical values in a certain order. All of the matrices
were transformed into vectors with the same arrangement of the elements. When
the matrix has a size of n × n the dimension of the vector is n(n − 1)/2. The
vector is hereafter referred to as a ’phylogenetic vector’. The dimension of the
phylogenetic vector is 820, because n is 41. Consider a pair of phylogenetic
vectors, which are transformed from distance matrices Di and Dj . The subscripts
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i and j indicate different sets of orthologues, that is, different proteins. Then,
the elements of each vector are normalized with the average and the standard
deviation of the elements as follows:

∣∣∣ν#
i

〉
=
|νi〉 − |μ〉√

Var(νi)
, (2)

where |μ〉 is a vector with the same dimension as |νi〉. All the elements of |μ〉
are constant, and are equal to the arithmetic average over the elements of |νi〉.
Var(νi) is the variance over all the elements of |νi〉. The superscript # in

∣∣∣v#
i

〉
indicates that the vector is normalized. Then, the inner product between a pair of
normalized vectors is the Pearson’s correlation coefficient used for the mirror tree
method, which is defined by formula (1). Hereafter, the correlation coefficient by
the mirror tree method is denoted as ρMIRROR

ij .

ρMIRROR
ij = 〈ν#

i |ν
#
j 〉. (3)

2.4 First Method with Projection Operator [19]

Consider an n(n − 1)/2-dimensional unit vector |u〉, which represents the evo-
lutionary relationship of the source species under consideration. Given such a
vector, following projection operator P can be defined:

P = I − |u〉 〈u| . (4)

The projection operator is a matrix with the size of n(n−1)/2×n(n−1)/2. The
method to obtain |u〉 is explained below. I represents an identity matrix with
the size of n(n− 1)/2× n(n− 1)/2. By applying the projection operator (4) to
a phylogenetic vector, say, |νi〉, the component within |νi〉, which is orthogonal
to |u〉, is generated:

|εi〉 = P |νi〉 = |νi〉 − |u〉 〈u|νi〉 . (5)

|εi〉 is a residual vector obtained by excluding the information about the evolu-
tionary relationship from the phylogenetic vector . The same projection operator
was applied to all of the phylogenetic vectors under consideration. Each of the
residual vectors was then normalized with the average and the standard devia-
tion of the elements. The inner product between the two residual vectors

∣∣∣ε#
i

〉

and
∣∣∣ε#

j

〉
represents the Pearson’s correlation coefficient between the residual

vectors:
ρPROJECTION

ij = 〈ε#
i |ε

#
j 〉 (6)

was used as a new measure to evaluate the intensity of co-evolution between
proteins i and j.
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In order to obtain the unit vector representing the phylogenetic relationship
of the source organisms, three different methods were considered. In the first
method, 16S rRNA was used for the calculation. Basically, at least one copy
of the 16S rRNA gene is encoded by each genome. Therefore, the distance ma-
trix or the phylogenetic vector of the 16S rRNAs is considered to represent the
evolutionary relationship among the source organisms. The nucleotide sequences
of rRNA were collected from the same sources as the proteins under considera-
tion according to the KEGG GENES database [10] and the Ribosomal Database
Project-II Release 9 [1]. The nucleotide sequences of the 16S rRNA were aligned,
and the distance between every pair of the aligned nucleotide sequences was cal-
culated by using the F84 model [12] with the DNADIST in the PHYLIP package
[2]. The distance matrix was then transformed into a phylogenetic vector |ν16S〉.
Then, a unit vector |u16S〉 was obtained as |ν16S〉/‖ν16S‖.

In the second method, all of the phylogenetic vectors of proteins under con-
sideration were normalized so that the size of the elements in each protein was
’1’ at first. Then, they were averaged as

|νAVE〉 =
1
m

m∑
i=1

|νi〉
‖νi‖

, (7)

where m is the number of proteins. So, m was 26 here. The second unit vector
|uAVE〉, was obtained as |νAVE〉/‖νAVE‖.

In the third method, the phylogenetic vectors were used again. Let X be a
matrix of n(n− 1)/2×m in which the i-th column corresponds to a normalized
phylogenetic vector of protein i. Then, a correlation coefficient matrix Y of
m × m was calculated as XTX . The superscript T indicates the transpose of
a matrix. The principal component analysis for the data corresponding to X is
equivalent to solving the eigenvalue problem of Y . Then, |νPC1〉 was obtained
as |νPC1〉 = X |z1〉, where |z1〉 is a vector corresponding to the first principal
component axis. Then, |νPC1〉/‖νPC1‖ generated the third unit vector, |uPC1〉.

The Pearson’s correlation coefficients between the residual vectors for a pair of
proteins i and j, which were generated by the projection operations constructed
with |u16S〉, |uAVE〉 and |uPC1〉, were represented by ρ16S

ij , ρAVE
ij and ρPC1

ij . The
type of correlation coefficient is collectively represented by ρ∗ without the sub-
scripts, i and j where the superscript indicates the type of correlation coefficient.

2.5 Second Method with Multiple Regression [18]

Suppose that m proteins are given and we want to predict interacting pairs from
them. Consider multiple regressions of |νi〉 and |νj〉 with (m − 2) phylogenetic
vectors:

|νi〉 = α0 +
m∑

k 
=i,j

αk|νk〉+ |δi〉, (8)

|νj〉 = β0 +
m∑

l 
=i,j

βl|νl〉+ |δj〉, (9)
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where αi and βj are parameters. The residual vectors, |δi〉 and |δj〉, are expected
to lack the evolutionary information of the source organisms. Note that |νj〉 is
excluded from the summation on the right side of the equation (8). Likewise,
|νi〉 is excluded from the summation on the right side of the equation (9). The
similarity between the two residual vectors is considered to indicate the intensity
of co-evolution between proteins i and j. To evaluate the similarity between
the residual vectors, the Pearson’s correlation coefficient between |δi〉 and |δj〉
was calculated. As described above, the inner product between the normalized
residual vectors is equivalent to the Pearson’s correlation coefficient between
them:

ρPARTIAL
ij = 〈δ#

i |δ
#
j 〉. (10)

The correlation coefficient is called the partial correlation coefficient between
|νi〉 and |νj〉. In actual practice, the following formula was used to obtain the
partial correlation coefficient, instead of performing multiple regression.

ρPARTIAL
ij =

−(R−1)ij√
(R−1)ii

√
(R−1)jj

, (11)

where R is the correlation coefficient matrix whose (i, j)-th element is ρMIRROR
ij ,

and the superscript −1 indicates inverse. ρPARTIAL without subscripts, i and j,
collectively represents that the type is partial correlation coefficient.

3 Results and Discussions

We calculated five types of correlation coefficients, ρMIRROR, ρ16S, ρAVE, ρPC1

and ρPARTIAL, for all of the possible pairs of 26 proteins, that is, 325 pairs
of proteins. The performance of each correlation coefficient was evaluated with
specificity and sensitivity. Out of the 325 pairs, the interactions of 13 pairs
have been experimentally identified. Only top 20 of the five types of correlation
coefficients are shown in Table 1, where the actually interacting pairs are high-
lighted with circles. As shown in the table, the top ranks of ρ16S, ρAVE, ρPC1

and ρPARTIAL were occupied by pairs of actually interacting proteins. In contrast,
non-interacting proteins were present within the top ranks of ρMIRROR. The de-
creasing patterns of the five correlation coefficients are seen in this table. The
decrease of ρMIRROR was quite slow, whereas ρAVE, ρPC1 and ρPARTIAL decreased
rapidly. The rate of the ρ16S decrease was rather moderate. The decreasing pat-
terns shown in Table 1 clearly demonstrates the problem of the original mirror
tree method. Even if a high value, e.g. 0.9, is used as a threshold for the cor-
relation coefficient to predict a protein–protein interaction, ρMIRROR produces
many pairs with high correlation, including non-interacting pairs, which likely
lead to the generation of many false positives. However, the occupation of the
top ranks by interacting proteins and the rapid decreases of ρ16S, ρAVE, ρPC1

and ρPARTIAL guarantee the specificity of prediction, if the threshold is set at a
sufficiently high value.
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The unit vector |u〉 seems to be a crucial factor for the prediction of a protein–
protein interaction when a projection operator is used. Therefore, we exam-
ined the relationships among |u16S〉, |uAVE〉 and |uPC1〉 by calculating absolute
value of Pearson’s correlation coefficients |r| among them. |r| between |u16S〉
and |uAVE〉 was 0.947, whereas |r| between |u16S〉 and |uPC1〉 was 0.946. The
highest correlation, |r| = 0.998, was observed between |uAVE〉 and |uPC1〉. The
high correlation between |u16S〉 and the other unit vectors suggests that the in-
formation except for the evolutionary relationship of source organisms can be
approximately canceled out by the average operation or principal component
analysis.

The ρ16S, ρAVE, ρPC1 and ρPARTIAL seem to outperform the ρMIRROR. That
is, the exclusion of the information about the evolutionary relationships among
the source organisms from the distance matrices is effective to reduce the num-
ber of the false positives from the mirror tree predictions. The specificities and
the sensitivities of the five types of correlation coefficients under four different
threshold values, 0.9, 0.8, 0.7 and 0.6, are shown in Table 2. When a pair of pro-
teins had a correlation coefficient greater than the threshold the proteins were
predicted to interact with each other. Three types of correlation coefficients,
ρAVE, ρPC1 and ρPARTIAL, showed high specificity under any threshold value,
whereas ρ16S showed high specificity only when threshold was 0.9 or 0.8. The
high specificities of ρ16S, ρAVE, ρPC1 and ρPARTIAL mean the drastic reduction of
false positives, compared with ρMIRROR [18,19]. Recently, Pazos et al. [13] have
independently developed a method to exclude the information of evolutionary
relationship among the source organisms by using 16S rRNA. They adjust the
scale of the distance matrix of rRNA to that of the distance matrix of a protein,
and simply subtract the former from the latter. Then, correlation coefficient is
calculated between the sets of residual elements. Improvement in specificity is
also observed by their operation, although the mathematical framework of their
method is different from those of ours.

Table 2. Specificity and Sensitivity of the prediction

Method Specificity Sensitivity
0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6

ρMIRROR 13.79 6.21 4.96 4.17 61.54 84.62 100.00 100.00
ρ16S 100.00 75.00 28.57 24.32 7.14 21.43 42.86 64.29
ρAVE 100.00 100.00 100.00 85.71 7.14 7.14 14.29 42.86
ρPC1 100.00 100.00 100.00 100.00 7.14 7.14 14.29 28.57

ρPARTIAL – 100.00 100.00 100.00 0.00 7.14 14.29 21.43

Specificity =
true positive

(true positive + false positive)
× 100%,

Sensitivity =
true positive

(true positive + false negative)
× 100%.

When threshold was set to 0.9, no interacting pair was predicted with ρPARTIAL, and
specificity was not calculated in the case.
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Despite the improvement described above, the sensitivities of ρ16S, ρAVE, ρPC1

and ρPARTIAL were lower than that of ρMIRROR. This means that a pair of pro-
teins i and j did not always show high ρ16S

ij , ρAVE
ij , ρPC1

ij and ρPARTIAL
ij even when

proteins, i and j, interact with each other. In other words, the number of false
negatives increased when our methods were used, compared with the original
mirror tree method. Here, we calculated the intensity of co-evolution between
a pair of proteins as the correlation coefficient after excluding the information
about the evolutionary relationship among the source organisms from the phy-
logenetic vectors. However, the pairs may also interact with other proteins. If
such proteins exist, it would be difficult to detect the interaction with the pair,
because the co-evolution with the other partners may function as noise for the
prediction of interaction of a pair. To examine this hypothesis, we investigated
the relationship between the multiplicity of the interaction [19] and the correla-
tion coefficient (Fig 1). The multiplicity, or a modified Jaccard coefficient, is a
measure defined between a pair of interacting proteins. Consider an interacting
pair of proteins A and B. Let M and N be the sets of interaction partners of
proteins A and B. The information about the interaction partners were obtained
from the DIP database [17]. Protein B belongs to M, whereas N includes protein
A. The multiplicity between proteins, A and B, is defined as follows:

Multiplicity (modified Jaccard coefficient) =
|M ∩N|+ 1
|M ∪N| − 1

. (12)

When proteins A and B interact each other without other interaction partners,
multiplicity takes a value 1. When proteins A and B have other interaction
partners, the multiplicity decreases. However, when proteins A and B share the
other interaction partners, the multiplicity takes a value close to 1. In contrast,
when proteins A and B have their own interaction partners respectively, the
multiplicity is close to 0. As shown in Fig. 1, the intensities of co-evolution
calculated by any method show positive correlation with the multiplicity. That is,
the intensities of co-evolution were high when proteins A and B formed a complex
without other interaction partners or share the other interaction partners. When
proteins A and B had their own interaction partners, that is, the multiplicity was
low, the intensities of co-evolution were low. The observation suggests that the
false negatives are generated by the presence of unshared interaction partners.
Further accumulation of experimental knowledge is required to ascertain this
hypothesis.

4 Conclusion

The mirror tree method is a simple approach for the prediction of protein–
protein interactions. Here, we reviewed our methods to improve the performance
of the original mirror tree method. In the experiment, we confirmed that our
methods could drastically reduce the number of false positives in the prediction.
Our method, however, generated more false negatives than the original mirror
tree method. Our analysis suggested that the presence of unshared interaction
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partners may be the cause of the false negatives. However, if we select protein
pairs with a high correlation coefficient, e.g. > 0.8, by any one of our methods,
we can predict interacting protein pairs with high reliability.
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Abstract. This paper surveys the field of automated reasoning, giving some his-
torical background and outlining a few of the main current research themes. We
particularly emphasize the points of contact and the contrasts with computer al-
gebra. We finish with a discussion of the main applications so far.

1 Historical Introduction

The idea of reducing reasoning to mechanical calculation is an old dream [75]. Hobbes
[55] made explicit the analogy in the slogan ‘Reason [. . . ] is nothing but Reckoning’.
This parallel was developed by Leibniz, who envisaged a ‘characteristica universalis’
(universal language) and a ‘calculus ratiocinator’ (calculus of reasoning). His idea was
that disputes of all kinds, not merely mathematical ones, could be settled if the parties
translated their dispute into the characteristica and then simply calculated. Leibniz even
made some steps towards realizing this lofty goal, but his work was largely forgotten.

1.1 The Characteristica Universalis

The dream of a truly universal language in Leibniz’s sense remains unrealized and prob-
ably unrealizable. But over the last few centuries a language that is at least adequate for
(most) mathematics has been developed.

Boole [11] developed the first really successful symbolism for logical and set-
theoretic reasoning. What’s more, he was one of the first to emphasize the possibility of
applying formal calculi to several different situations, and doing calculations according
to formal rules without regard to the underlying interpretation. In this way he antic-
ipated important parts of the modern axiomatic method. However Boole’s logic was
limited to propositional reasoning (plugging primitive assertions together using such
logical notions as ‘and’ and ‘or’), and it was not until the much later development of
quantifiers that formal logic was ready to be applied to general mathematics.

The introduction of formal symbols for quantifiers, in particular the universal quan-
tifier ‘for all’ and the existential quantifier ‘there exists’, is usually credited indepen-
dently to Frege, Peano and Peirce. Logic was further refined by Whitehead and Russell,
who wrote out a detailed formal development of the foundations of mathematics from
logical first principles in their Principia Mathematica [109]. In a short space of time,
stimulated by Hilbert’s foundational programme (of which more below), the usual log-
ical language as used today had been developed.

H. Anai, K. Horimoto, and T. Kutsia (Eds.): AB 2007, LNCS 4545, pp. 334–349, 2007.
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English Symbolic Other symbols
false ⊥ 0, F
true � 1, T
not p ¬p p, −p, ∼ p
p and q p ∧ q pq, p&q, p · q
p or q p ∨ q p + q, p | q, p or q
p implies q p ⇒ q p → q, p ⊃ q
p iff q p ⇔ q p = q, p ≡ q, p ∼ q
for all x, p ∀x. p (x)p
there exists x such that p ∃x. p (Ex)p

At its simplest, one can regard this just as a convenient shorthand, augmenting the
usual mathematical symbols with new ones for logical concepts. After all, it would seem
odd nowadays to write ‘the sum of a and b’ instead of ‘a+b’, so why not write ‘p∧q’ in-
stead of ‘p and q’? However, the consequences of logical symbolism run much deeper:
arriving at a precise formal syntax means that we can bring deeper logical arguments
within the purview of mechanical computation.

1.2 Hilbert’s Programme

At various points in history, mathematicians have become concerned over apparent
problems in the accepted foundations of their subject. For example, the Pythagoreans
tried to base mathematics just on the rational numbers, and so were discombobulated by
the discovery that

√
2 must be irrational. Subsequently, the apparently self-contradictory

treatment of infinitesimals in Newton and Leibniz’s calculus disturbed many, as later did
the use of complex numbers and the discovery of non-Euclidean geometries. Later still,
when the theory of infinite sets began to be pursued for its own sake and generalized,
mainly by Cantor, renewed foundational worries appeared.

Hilbert [53] suggested an ingenious programme to give mathematics a reliable foun-
dation. In the past, new and apparently problematic ideas such as complex numbers and
non-Euclidean geometry had been given a foundation based on some well-understood
concepts, e.g. complex numbers as points on the plane. However it hardly seems fea-
sible to justify infinite sets in this way based on finite sets. Hilbert’s ingenious idea
was to focus not on the mathematical structures themselves but on the proofs. Given a
suitable formal language, mathematical proofs could themselves become an object of
mathematical study — Hilbert called it metamathematics. The hope was that one might
be able to show in this way that concrete conclusions reached using some controversial
abstract concepts could nevertheless be show still to be valid or even provable without
them.

1.3 The Calculus Ratiocinator

Gödel’s famous incompleteness theorems [40,98,37] show that formal systems for de-
ducing mathematics have essential weaknesses. For example, his first theorem is that
any given formal system of deduction satisfying a few natural conditions is incomplete
in the sense that some formally expressible and true statement is not formally provable.
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It is generally agreed that Gödel’s results rule out the possibility of realizing Hilbert’s
programme as originally envisaged, though this is a subtle question [65,96]. What is
certainly true is that Gödel’s theorem was the first of a variety of ‘impossibility’ results
that only really become possible when the notion of mathematical proof is formalized.

Inspired by techniques used in Gödel’s incompleteness results, Church [23] and Tur-
ing [106] proposed definitions of ‘mechanical computability’ and showed that one fa-
mous logical decision question, Hilbert’s Entscheidungsproblem (decision problem for
first-order logic) was unsolvable according to their definitions. Although this showed
the limits of mechanical calculation, Turing machines in particular were an important
inspiration for the development of real computers. And before long people began to
investigate actually using computers to formalize mathematical proofs.

In the light of the various incompleteness and undecidability results, there are es-
sential limits to what can be accomplished by automated reasoning. However, Gödel’s
results apply to human reasoning too from any specific set of axioms, and in principle
most present-day mathematics can be expressed in terms of sets and proven from the ax-
ioms of Zermelo-Fraenkel set theory (ZF). Given any conventional set of mathematical
axioms, e.g. a finite set, or one described by a finite set of schemas, such as ZF, there is
at least a semi-decision procedure that can in principle verify any logical consequence
of those axioms. Moreover many suitably restricted logical problems are decidable.
For example, perhaps the very first computer theorem prover [29] could prove formu-
las involving quantifiers over natural numbers, but with a linearity restriction ensuring
decidability [85].

2 Theorem Provers and Computer Algebra Systems

Before we proceed to survey the state of automated reasoning, it’s instructive to con-
sider the similarities and contrasts with computer algebra, which is already an estab-
lished tool in biology as in many other fields of science. In some sense theorem provers
(TPs) and computer algebra systems (CASs) are similar: both are computer programs
to help people with formal symbolic manipulations. Yet there is at present surprisingly
little common ground between them, either as regards the internal workings of the sys-
tems themselves or their respective communities of implementors and users. A theorem
prover might be distinguished by a few features, which we consider in the following
sections.

2.1 Logical Expressiveness

The typical computer algebra system supports a rather limited style of interaction [27].
The user types in an expression E; the CAS cogitates, usually not for very long, before
returning another expression E′. The implication is that we should accept the theorem
E = E′. Occasionally some slightly more sophisticated data may be returned, such as a
set of possible expressions E′

1, . . . , E
′
n with corresponding conditions on validity, e.g.

√
x2 =

{
x if x ≥ 0
−x if x ≤ 0
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However, the simple equational style of interaction is by far the most usual. By con-
trast, theorem provers have the logical language available to express far more sophisti-
cated mathematical concepts such as the ε− δ definition of continuity:

∀x ∈ R. ∀ε > 0. ∃δ > 0. ∀x′. |x− x′| < δ ⇒ |f(x)− f(x′)| < ε

In particular, the use of a full logical language with quantifiers often unifies and
generalizes existing known concepts from various branches of mathematics. For in-
stance, the various algorithms for quantifier elimination in real-closed fields starting
with Tarski’s work [103] can be considered a natural and far-reaching generalization
of Sturm’s algorithm for counting the number of real roots of a polynomial. At the
same time, quantifier elimination is another potentially fruitful way of viewing the no-
tion of projection in Euclidean space. Chevalley’s constructibility theorem in algebraic
geometry ‘the projection of a constructible set is constructible’, and even some of its
generalizations [45], are really just quantifier elimination in another guise.

2.2 Clear Semantics

The underlying semantics of expressions in a computer algebra system is often unclear,
though some are more explicit than others. For example, the polynomial expression
x2 + 2x + 1 can be read in several ways: as a member of the polynomial ring R[x]
(not to mention Z[x] or C[x] . . . ), as the associated function R → R, or as the value
of that expression for some particular x ∈ R. Similarly, there may be ambiguity over
which branch of various complex functions such as square root, logarithm and power
is considered, and it may not really be clear in what sense ‘integral’ is meant to be un-
derstood. (Riemann? Lebesgue? Just antiderivative?) Such ambiguities are particularly
insidious since in many situations it doesn’t matter which interpretation is chosen (we
have x2 + 2x+ 1 = (x+ 1)2 for any of the interpretations mentioned above), but there
are situations where the distinction matters.

By contrast, theorem provers usually start from a strict and precisely defined logical
foundation and build up other mathematical concepts by a sequence of definitions. For
example, the HOL system [42] starts with a few very basic axioms for higher-order logic
and a couple of set-theoretic axioms, and these are given a rather precise semantics in
the documentation. From that foundation, other concepts such as natural numbers, lists
and real and complex numbers are systematically built up without any new axioms.

2.3 Logical Rigour

Even when a CAS can be relied upon to give a result that admits a precise mathematical
interpretation, that doesn’t mean that its answers are always right. With a bit of effort,
it’s not very hard to get incorrect answers out of any mainstream computer algebra
system. Particularly troublesome are simplifications involving functions with complex
branch cuts. It’s almost irresistible to apply simplifications such as log(xy) = log(x)+
log(y) and

√
x2 = x, and many CASs will do this kind of thing freely. Although

systematic approaches to keeping track of branch cuts are possible, most mainstream
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systems don’t use them. For example, using the concept of ‘unwinding number’ u(z)
[28], we can express rigorously simplification rules such as:

w �= 0 ∧ z �= 0 ⇒ log(wz) = log(w) + log(z)− 2πiu(log(w) + log(z))

Most users probably find such pedantic details as branch cut identification a posi-
tively unwelcome distraction. They often know (or at least think they know) that the
obvious simplifications are valid. In any case, if a CAS lacks the expressiveness to
produce a result that distinguishes possible cases, it is confronted with the unpalatable
choice of doing something that isn’t strictly correct or doing nothing. Many users would
prefer the former.

By contrast, most theorem provers take considerable care that all alleged ‘theorems’
are deduced in a rigorous way, and all conditions made explicit. Indeed, many such
as HOL actually construct a complete proof using a very simple kernel of primitive
inference rules. Although nothing is ever completely certain, a theorem in such a system
is very likely to be correct.

2.4 What’s Wrong with Theorem Provers?

So far, we have noted several flaws of the typical computer algebra systems and the
ways in which theorem provers are better. However, on the other side of the coin, CASs
are normally easier to use and much more efficient. Moreover, CASs implement many
algorithms useful for solving real concrete problems in applied (and even pure) math-
ematics, e.g. factoring polynomials and finding integrals. By contrast, theorem provers
emphasize proof search in logical systems, and it’s often non-trivial to express high-
level mathematics in them. Thus, it is not surprising that CASs are more or less main-
stream tools in various fields, whereas interest in theorem provers is mainly confined to
logicians and computer scientist interested in formal correctness proofs for hardware,
software and protocols and the formalization of mathematics.

Since the strengths and weaknesses of theorem provers and CASs are almost per-
fectly complementary, a natural idea is to somehow get the best of both worlds. One
promising idea [50] is to use the CAS as an ‘oracle’ to compute results that can then be
rigorously checked in the theorem prover. This only works for problems where check-
ing a result is considerably easier than deriving it, but this does take in many important
applications such as factoring (check by multiplying) and indefinite integration in the
sense of antiderivatives (check by differentiating).

3 Research in Automated Reasoning

We can consider various ways of classifying research in automated reasoning, and per-
haps some contrasts will throw particular themes into sharp relief.

3.1 AI Versus Logic-Oriented

Some researchers have attacked the problem of automated theorem proving by attempt-
ing to emulate the way humans reason. Crudely we can categorize this as the ‘Artificial
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Intelligence’ (AI) approach. For example in the 1950s Newell and Simon [81] designed
a program that could prove many of the simple logic theorems in Principia Mathemat-
ica [109], while Gelerntner [38] designed a prover that could prove facts in Euclidean
geometry using human-style diagrams to direct or restrict the proofs. A quite different
approach was taken by other pioneers such as Gilmore [39], Davis and Putnam [31],
and Prawitz [84]. They attempted to implement proof search algorithms inspired by re-
sults from logic (e.g. the completeness of Gentzen’s cut-free sequent calculus), often
quite remote from the way humans prove theorem.

Early indications were that machine-oriented methods performed much better. As
Wang [107] remarked when presenting his simple systematic program for the AE frag-
ment of first order logic that was dramatically more effective than Newell and Simon’s:

The writer [...] cannot help feeling, all the same, that the comparison reveals a
fundamental inadequacy in their approach. There is no need to kill a chicken
with a butcher’s knife. Yet the net impression is that Newell-Shore-Simon
failed even to kill the chicken with their butcher’s knife.

Indeed, in the next few decades, far more attention was paid to systematic machine-
oriented algorithms. Wos, one of the most successful practitioners of automated reason-
ing, attributes the success of his research group in no small measure to the fact that they
play to a computer’s strengths instead of attempting to emulate human thought [111].

Today, there is still a preponderance of research on the machine-oriented side, but
there have been notable results based on human-oriented approaches. For example
Bledsoe attempted to formalize methods often used by humans for proving theorems
about limits in analysis [10]. Bledsoe’s student Boyer together with Moore developed
the remarkable NQTHM prover [13] which can often perform automatic generaliza-
tion of arithmetic theorems and prove the generalizations by induction. The success of
NQTHM, and the contrasting difficulty of fitting its methods into a simple conceptual
framework, has led Bundy [20] to reconstruct its methods in a general science of rea-
soning based on proof planning. Depending on one’s point of view, one can regard the
considerable interest in proof planning as representing a success of the AI approach, or
the attempt to present aspects of human intelligence in a more machine-oriented style.

3.2 Automated vs. Interactive

Thanks to the development of effective algorithms, some of which we consider later,
automated theorem provers have become quite powerful and have achieved notable suc-
cesses. Perhaps the most famous case is McCune’s solution [76], using the automated
theorem prover EQP, of the longstanding ‘Robbins conjecture’ concerning the axioma-
tization of Boolean algebra, which had resisted human mathematicians for some time.
This success is just one particularly well-known case where the Argonne team has used
Otter and other automated reasoning programs to answer open questions. Some more
can be found in the monograph [77].

However, it seems at present that neither a systematic algorithmic approach nor a
heuristic human-oriented approach is capable of proving a wide range of difficult math-
ematical theorems automatically. Besides, one might object that even if it were possible,
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it is hardly desirable to automate proofs that humans are incapable of developing them-
selves [35]:

[...] I consider mathematical proofs as a reflection of my understanding and
‘understanding’ is something we cannot delegate, either to another person or
to a machine.

A more easily attained goal, and if one agrees with the sentiments expressed in that
quote perhaps a more desirable one, is to create a system that can verify a proof found
by a human, or assist in a more limited capacity under human guidance. At the very
least the computer should act as a humble clerical assistant checking the correctness
of the proof, guarding against typical human errors such as implicit assumptions and
forgotten special cases. At best the computer might help the process substantially by
automating certain parts of the proof. After all, proofs often contain parts that are just
routine verifications or are amenable to automation, such as algebraic identities. This
idea of a machine and human working together to prove theorems from sketches was
already envisaged by Wang [107]:

[...] the writer believes that perhaps machines may more quickly become of
practical use in mathematical research, not by proving new theorems, but by
formalizing and checking outlines of proofs, say, from textbooks to detailed
formalizations more rigorous than Principia [Mathematica], from technical pa-
pers to textbooks, or from abstracts to technical papers.

The idea of a proof assistant began to attract particular attention in the late 1960s,
perhaps because the abilities of fully automated systems were apparently starting to
plateau. Many proof assistants were based on a batch model, the machine checking in
one operation the correctness of a proof sketch supplied by a human. But a group at
the Applied Logic Corporation who developed a sequence of theorem provers in the
SAM (Semi-Automated Mathematics) family made their provers interactive, so that the
mathematician could work on formalizing a proof with machine assistance. As they put
it [46]:

Semi-automated mathematics is an approach to theorem-proving which seeks
to combine automatic logic routines with ordinary proof procedures in such
a manner that the resulting procedure is both efficient and subject to human
intervention in the form of control and guidance. Because it makes the math-
ematician an essential factor in the quest to establish theorems, this approach
is a departure from the usual theorem-proving attempts in which the computer
unaided seeks to establish proofs.

In 1966, the fifth in the series of systems, SAM V, was used to construct a proof
of a hitherto unproven conjecture in lattice theory [19]. This was certainly a success
for the semi-automated approach because the computer automatically proved a result
now called “SAM’s Lemma” and the mathematician recognized that it easily yielded a
proof of the open conjecture. Not long after the SAM project, the AUTOMATH [32,33],
Mizar [104,105] and LCF [43] proof checkers appeared, and each of them in its way has
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been profoundly influential. Many of the most successful interactive theorem provers
around today are directly descended from one of these.

Nowadays there is active and vital research activity in both ‘automated’ and ‘inter-
active’ provers. Automated provers for first-order logic compete against each other in
annual competitions on collections of test problems such as TPTP [102], and the Vam-
pire system has usually come out on top for the last few years. There is also intense
interest in special provers for other branches of logic, e.g. ‘SAT’ (satisfiability of purely
propositional formulas), which has an amazing range of practical applications. More
recently a generalization known as ‘SMT’ (satisfiability modulo theories), which uses
techniques for combining deduction in certain theories [80,93], has attracted consider-
able interest. Meanwhile, interactive provers develop better user interfaces and proof
languages [48], incorporate ideas from automated provers and even link to them [58],
and develop ever more extensive libraries of formalized mathematics. For a nice survey
of some of the major interactive systems, showing a proof of the irrationality of

√
2 in

each as an example, see [110].

3.3 Proof Search vs. Special Algorithms

Right from the beginning of theorem proving, some provers were customized for a par-
ticular theory or fragment of logic (such as Davis’s prover for linear arithmetic [29]),
while others performed general proof search in first-order logic from a set of axioms.
The explicit introduction of unification as part of Robinson’s resolution method [88]
made it possible for the machine to instantiate variables in an entirely algorithmic way
which nevertheless has an almost “intelligent” ability to focus on relevant terms. This
gave a considerable impetus to general first-order proof search, and for a long time spe-
cial algorithms were subordinated to resolution or similar principles rather than being
developed in themselves. There are numerous different algorithms for general proof
search, such as tableaux [7,54], model elimination [70] as well as resolution [88] and
its numerous refinements [64,71,72,34,87,97]. Despite the general emphasis on pure
first-order logic, there has also been research in automating higher-order logic [1],
which allows quantification over sets and functions as part of the logic rather than via
additional axioms.

However, there have been some successes for more specialized algorithms. In par-
ticular, there has always been strong interest in effective algorithms for purely equa-
tional reasoning. Knuth-Bendix completion [63] led to a great deal of fruitful research
[3,4,56]. Automated proof of geometry problems using purely algebraic methods has
also attracted much interest. The first striking success was by Wu [108] using his spe-
cial triangulation algorithm, and others have further refined and applied this approach
[22] as well as trying other methods such as resultants and Gröbner bases [61,89]. Inci-
dentally Gröbner bases [16,17] are more usually considered a part of computer algebra,
but as a tool for testing ideal membership they give a powerful algorithm for solving
various logical decision problems [95,60].

4 Applications of Automated Reasoning

At present there are two main applications of automated reasoning.
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4.1 Formal Verification

One promising application of formalization, and a particularly easy one to defend on
utilitarian grounds, is to verify the correct behaviour of computer systems, e.g. hard-
ware, software, protocols and their combinations. We might wish to prove that a sorting
algorithm really does always sort its input list, that a numerical algorithm does return
a result accurate to within a specified error bound, that a server will under certain as-
sumptions always respond to a request, etc.

In typical programming practice, programs are usually designed with clear logical
ideas behind them, but the final properties are often claimed on the basis of intuitive un-
derstanding together with testing on a variety of inputs. As programmers know through
bitter personal experience, it can be very difficult to write a program that always per-
forms its intended function. Most large programs contain ‘bugs’, i.e. in certain situations
they do not behave as intended. And the inadequacy of even highly intelligent forms of
testing for showing that programs are bug-free is widely recognized. There are after all
usually far too many combinations of possibilities to exercise more than a tiny fraction.
The idea of rigorously proving correctness is attractive, but given the difficulty of get-
ting the formal proof right, one might wish to check the proof by machine rather than
by hand.

Formal verification first attracted interest in the 1970s as a response to the perceived
“software crisis”, the fundamental difficulty of writing correct programs and delivering
them on time, as well as interest in computer security; see [74] for a good discussion.
But over the last couple of decades there has been increased interest in formal ver-
ification in the hardware domain. This is partly because hardware is usually a more
amenable target for highly automated techniques. Such techniques include SAT (propo-
sitional satisfiability testing), using new algorithms or high-quality implementations of
old ones [14,100,92,79,41], sophisticated forms of symbolic simulation [15,91], and
temporal logic model checking [24,86,25]. Also, hardware verification is particularly
attractive because fixing errors is often invasive and potentially expensive. For exam-
ple, in response to an error in the FDIV (floating-point division) instruction of some
early Intel® Pentium® processors in 1994 [83], Intel set aside approximately $475M
to cover costs.

Since the 1980s there has been extensive research in formal verification of micro-
processor designs using traditional theorem proving techniques [57,26,44,59,99]. Gen-
erally there has been more emphasis on the highly automated techniques like model
checking that lie somewhat apart from the automated reasoning mainstream. However,
recently there has been something of a convergence, as interest in SMT (satisfiabil-
ity modulo theories) leads to the incorporation of various theorem-proving methods
into highly automated tools. There has also been renewed interest in applications to
software, particularly partial verification or sophisticated static checking rather than
complete functional verification [5]. And for certain applications, especially implemen-
tations of mathematically sophisticated algorithms, more general and interactive theo-
rem proving is needed. A particularly popular and successful target is the verification
of floating-point algorithms [78,90,82,49].



A Short Survey of Automated Reasoning 343

4.2 The Formalization of Mathematics

The formalizability in principle of mathematical proof is widely accepted among pro-
fessional mathematicians as the final arbiter of correctness. Bourbaki [12] clearly says
that ‘the correctness of a mathematical text is verified by comparing it, more or less
explicitly, with the rules of a formalized language’, while Mac Lane [73] is also quite
explicit (p377):

As to precision, we have now stated an absolute standard of rigor: A Mathe-
matical proof is rigorous when it is (or could be) written out in the first-order
predicate language L(∈) as a sequence of inferences from the axioms ZFC,
each inference made according to one of the stated rules. [. . . ] When a proof
is in doubt, its repair is usually just a partial approximation to the fully formal
version.

However, before the advent of computers, the idea of actually formalizing proofs had
seemed quite out of the question. (Even the painstaking volumes of proofs in Principia
Mathematica are for extremely elementary results compared with even classical real
analysis, let alone mathematics at the research level.) But computerization can offer
the possibility of actually formalizing mathematics and its proofs. Apart from the sheer
intellectual interest of doing so, it may lead to a real increase in reliability. Mathematical
proofs are subjected to peer review before publication, but there are plenty of well-
documented cases where published results turned out to be faulty. A notable example is
the purported proof of the 4-colour theorem by Kempe [62], the flaw only being noticed
a decade later [51], and the theorem only being conclusively proved much later [2]. The
errors need not be deep mathematical ones, as shown by the following [69]:

Professor Offord and I recently committed ourselves to an odd mistake (Annals
of Mathematics (2) 49, 923, 1.5). In formulating a proof a plus sign got omit-
ted, becoming in effect a multiplication sign. The resulting false formula got
accepted as a basis for the ensuing fallacious argument. (In defence, the final
result was known to be true.)

A book written 70 years ago by Lecat [68] gave 130 pages of errors made by major
mathematicians up to 1900. With the abundance of theorems being published today, of-
ten emanating from writers who are not trained mathematicians, one fears that a project
like Lecat’s would be practically impossible, or at least would demand a journal to it-
self! Moreover, many proofs, including the modern proof of the four-colour theorem [2]
and the recent proof of the Kepler conjecture [47], rely on extensive computer checking
and it’s not clear how to bring them within the traditional process of peer review [66].

At present we are some way from the stage where most research mathematicians
can pick up one of the main automated theorem provers and start to formalize their
own research work. However, substantial libraries of formalized mathematics have been
built up in theorem provers, notably the mathematical library in Mizar, and a few quite
substantial results such as the Jordan Curve Theorem, the Prime Number Theorem and
the Four-Colour Theorem have been completely formalized. As mathematical libraries
are further built up and interactive systems become more powerful and user-friendly,
we can expect to see more mathematicians starting to use them.
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5 Conclusion

Automated reasoning is already finding applications in formal verification and the for-
malization of mathematical proofs. At present, applications to mainstream applied
mathematics are limited, and so it may be premature to seek applications in compu-
tational biology. However, theorem proving has sometimes been applied in unexpected
ways. For instance, many combinatorial problems are solved better by translating to
SAT than by customized algorithms! Perhaps this short survey will lead some readers
to find applications of automated reasoning in the biological sciences. In any case, we
hope it has given some flavour of this vital and fascinating research field.
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98. Smullyan, R.M.: Gödel’s Incompleteness Theorems. Oxford Logic Guides, vol. 19. Oxford

University Press, Oxford (1992)
99. Srivas, M.K., Miller, S.P.: Applying formal verification to the AAMP5 microprocessor: A

case study in the industrial use of formal methods. Formal Methods in System Design 8,
31–36 (1993)
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Abstract. Recently we developed a graphical chain modeling procedure
to infer a network from expression profiles between different stages, ac-
cording to the natural order. In this study, this procedure was applied
to 796 gene expression profiles of cell-cycle related genes, which were
experimentally identified to be transcribed among five cell-cycle phases.
These phases were well characterized by the inferred network. In the G1
and S phases, almost all of the genes were related among them, even
though limited numbers of genes were related to each other in the other
phases. Furthermore, the inferred network indicated that some genes in
the former phases have long-distance regulation throughout the cell cy-
cle; however, the main regulatory system in the cell cycle occurred step
by step in a manner. This approach provides us a comprehensive analysis
of serial gene regulation in the cell cycle system.

Keywords: graphical chain modeling, cell cycle, gene expression profile.

1 Introduction

The cell cycle is a fundamental system for the proliferation of eukaryotes [1], and
it is known to be regulated at multiple levels. Among the regulatory systems,
gene transcriptional control is one of the most important regulatory processes
for cell cycle progression [2], and periodic transcription seems to be a univer-
sal feature of cell cycle regulation [2,8]. This periodic transcription of genes is
required for the onset of S phase [3], which is the important phase for DNA
synthesis. The onset of S phase is considered to be regulated by transcription
factors in G1 phase, and these genes are activated earlier in G1 phase, so S phase
can begin. Hundreds of genes with periodic transcription have been identified by
recent genome-wide studies of cells undergoing growth and division [4,5]. Fur-
thermore, some transcription factors are known to regulate a small set of cell
cycle-dependent genes [2,6]. To reveal the transcriptional control in the cell cy-
cle, extrapolation of the regulatory relationships between transcription factors
and other cell cycle-dependent genes is a critical subject [1].

In budding the yeast Saccharomyces cerevisiae, the expression profiles of the
cell cycle-dependent genes demonstrated that approximately 800 genes are tran-
scribed periodically during the five phases in the cell cycle [4,5]. This work has led
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to the proposal of that serial regulation of cell cycle-dependent genes, whereby
the expression of the genes in one cell cycle phase regulates the gene expression
in the next phase [7,8]. Thus, the expression profiles analyzed by computational
methods have made it possible to define the global manner of transcriptional
control in the cell cycle.

To reveal the regulatory networks from genome-wide expression profile data,
we have developed an approach in combination with graphical Gaussian mod-
eling (GGM) and hierarchical clustering [9,10]. Among the graphical models,
GGM is the simplest structure in a mathematical sense; only the inverse of the
correlation coefficient between the variables is needed. GGM infers only the undi-
rected graph, instead of the directed graph showing the causality in the Boolean
and Bayesian models, and therefore, GGM can be easily applied to a wide vari-
ety of data. Our method provides a framework of gene regulatory relationships
by inferring the relationships between the clusters [9,10,11], and provides clues
toward estimating the global relationships between genes on a genomic scale.

In the present study, we applied the graphical chain modeling (GCM) to the
expression profiles related to cell cycle regulation. In a previous study, GCM
was useful for analyzing a limited set of profiles of cell-cycle related genes [11].
Here, we have analyzed a full set of cell-cycle-related gene profiles, to reveal
the entire regulatory network of the cell cycle. In the present study, the data are
composed of 796 gene profiles in five cell phases, while 619 profiles in four phases
were analyzed in the previous study. The newly discovered linkages between the
phases with the full set of profiles will provide novel insights of into the global
system of cell cycle regulation.

2 Material and Methods

2.1 Graphical Gaussian Model

The concept of conditional independence is fundamental to graphical Gaussian
modeling. The conditional independence structure of the data is characterized by
a conditional independence graph. In this graph, each variable is represented by
a vertex, and two vertices are connected by an edge if there is a direct association
between them. In contrast, any pair of vertices that are not connected in the
graph is conditionally independent.

In the procedure for applying the GGM to the profile data [12], a graph,
G = (V,E), is used to represent the relationship among the M clusters, where
V is a finite set of nodes, each corresponding to the M clusters, and E is a finite
set of edges between the nodes. E consists of the edges between cluster pairs
with averaged expression levels that are conditionally dependent, given the rest.
The conditional independence is estimated by the partial correlation coefficient,
expressed by

rij|rest = − rij

√
rii
√
rjj
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where rij|rest is the partial correlation coefficient between variables i and j, given
the rest, and rij is the (i, j) element in the reverse of the correlation coefficient
matrix.

In order to evaluate which pair of clusters is conditionally independent, we
applied the covariance selection [13], which was attained by the stepwise and
iterative algorithm developed by Wermuth and Scheidt [14]. When the partial
correlation coefficient for a cluster pair is equal to 0, the cluster pair is condi-
tionally independent, and the relationship is expressed as no edge between the
nodes corresponding to the clusters in the independence graph. In other words,
the graph represents the gene systems network of the M clusters.

2.2 Graphical Chain Model

The graphical chain model is one of the probability models for multivariate ran-
dom observations, in which the independence of the structure can be represented
by a graph. The graph Γ = (V,E) consists of a set of vertices V , representing
the variables, and a set of edges E, representing the associations between pairs
of variables. The chain graph is based on the partitioning of V into disjointed
subsets: V = V1 ∪ V2∪, · · · ,∪VT . The subsets are called blocks or chain compo-
nents. Edges within blocks are undirected, reflecting the systematic associations,
and the edges between blocks are arrows pointing from blocks with lower index
numbers to those with higher indices A graphical chain model displays the in-
dependence between variables conditioned on all of the other variables in the
current and previous blocks. In a graphical chain model, any direct association
between two variables in the same block is assumed to be non-causal, and is rep-
resented by an undirected edge (line) in a graph. Any direct association between
two variables from different blocks is assumed to be potentially causal, and is
represented by a directed edge (arrow). The absence of a line or arrow between
two variables in the graph indicates that there is no direct association between
the variables, i.e, the variables are independent, after controlling for all of the
other variables in the same and previous blocks.

The graphical chain model is fitted in a number of stages. When fitting a
graphical chain model, the first step is to partition the variables into a number
of ordered blocks. Then, the significant direct associations between the variables
in the first block are determined. For each pair of variables, the null hypothesis
when tested shows that the variables are independent, given all of the other
variables in the first block, and the deviance statistics in graphical Gaussian
modeling is used [15,16,17], as described below. The maximized log likelihood
under the full model and that under a reduced model for the samples with a
multivariate normal distribution are

l̂f = −Nq ln(2π)/2− n ln |Ŝ|/n−Nq/2

and
l̂r = −Nq ln(2π)/2− n ln |Σ̂|/n−Nq/2
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where N , q, Ŝ, and Σ̂ are the number of samples, the sum of the diagonal
elements of a square matrix (tr(Σ−1Ŝ) = tr(Σ−1Σ̂), the covariance matrix of
the full model, and that of the reduced model. Then, the deviance of the model
is thus given by

G2 = 2(l̂f − l̂r) = N ln |Σ̂/Ŝ|

and the deviance difference for M1 ⊆M0 by

d = N ln |Σ̂0/Σ̂1|

where Σ̂0 and Σ̂1 are the estimates of Σ under M0 and M1, respectively. Under
M1, d has an asymptotic χ2 distribution of freedom, given as the difference in
the number of free parameters ( number of edges) between M0 and M1.

Next, the significant direct associations between the variables in the second
block and between the first and second blocks are determined. For each pair of
variables, the null hypothesis when tested shows that the variables are indepen-
dent, given all of the other variables in the first and second blocks, and again the
deviance statistics is used. The fitting continues, block by block, by determin-
ing all of the significant direct associations between the variables in the current
block and between all of the variables in the current and previous blocks. The
null hypothesis is now independence, given the other variables in the current and
previous blocks, and again the deviance statistics is used. All of these tests were
carried out at the 5% level, using the χ2 distribution in deviance statistics.

2.3 Application of the Graphical Chain Model to Gene Expression
Profiles

The block in the graphical chain model simply corresponds to the cell cycle
phase that is defined by biological information, which is used in the present
study. By the intact correspondence to graphical chain modeling, the variable
is the gene that has an expression profile with numerical values. However, since
the expression profiles often show similar patterns, the genes are highly related
to one another. Thus, hierarchical clustering is performed for the genes within
each block as a preprocessing for the graphical chain modeling, and then, each
gene cluster corresponds with the variable in the present procedure. The details
of the procedure are as follows.

(a) The genes within each block are grouped into some clusters. Since the metrics
and the techniques in the clustering depend on the data and interests [18], the
pair of the metric and the distance in hierarchical clustering for these expression
profiles was determined in our previous study. The pair of Euclidean distance
between correlation coefficients and Ward’s method seems to be suitable for the
hierarchical clustering of the present data. Ward’s method is summarized as
follows. If two groups, Gi and Gj , amalgamate to form a new group, then the
dissimilarity between this group and any other group can be expressed by

dk(i,j) = αidki + αjdkj + βdij + γ|dki − dkj |
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where αi(j), β, and γ are parameters specifying the particular clustering strategy
employed: αi(j) = ((ni(j)) + nk)/(ni + nj + nk) and β = −nk/(ni + nj + nk).
(b) The cluster numbers are estimated in the dendrograms in four blocks, which
are constructed in (a), respectively. In the estimation, the variance inflation fac-
tor (VIF) is adopted as a stopping rule for the hierarchical clustering of expres-
sion profiles [19]. The VIF is utilized to diagnose the variables that are involved
in the multicollinearity in the multiple regression analysis, and is defined by

VIF i = r−1
ii

where r−1
ii is the ith diagonal element of the inverse of the correlation coefficient

matrix (CCM) between explanatory variables [20]. In a CCM for m explanatory
variables, therefore, m VIF’s are calculated. The VIF is applied to estimate the
cluster boundaries in the expression profile data. When the explanatory vari-
ables in the above equation correspond to the gene profiles, the VIF expresses
the degree of linear relationship between the profiles. In the diagnosis of multi-
collinearity, the popular cutoff value of 10.0 [20] was adopted as a threshold in
the present analysis: when V IFi is larger than 10.0, the linear relationship of
the ith variable exists. The m VIF’s are assessed with the following condition:

maxVIF i ≤ 10.0 for i = 1, 2, · · · ,m

If the condition is satisfied, then no linear relationship exists in the m sets of
profiles. In contrast, if the condition is not satisfied, then the linear relationship
still exists in the profiles. Thus, the maximum number of clusters with no linear
relationship is searched along the dendrogram. As a result, in this step, we obtain
clusters in each block, and the clusters are regarded as the variables in the blocks
for further analyses.
(c) The average expression profiles are calculated over the members of each
cluster in the respective blocks, according to the cluster estimation in (b). Then,
the average correlation coefficient matrix between the clusters in all blocks is
calculated from the average profiles.
(d) The average correlation coefficient matrix between the clusters is subjected
to the graphical chain modeling. In the chain modeling, the association of the
variables (clusters) within and between blocks is inferred by the covariance se-
lection in the graphical Gaussian modeling.

All of the calculations for the clustering, the estimation of cluster number,
and the graphical Gaussian modeling were performed by our ASIAN site (web
http://eureka.cbrc.jp/asian) [10].

2.4 Rearrangement of the Inferred Graph

In the examples of the application of GGM to actual profiles, the intact networks
by GGM showed complicated forms with many edges [9,12]. Actually, many edges
also remained among the clusters in the present study. Since drawing all of the
associations produces a messy pattern, rearrangement of the inferred graph with
significant strong associations is useful to clarify the a graph. In the graphical
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chain modeling, the magnitude of the partial correlation coefficient indicates
the strength of association between clusters. Thus, the intact network can be
rearranged according to the partial correlation coefficient value, to interpret the
association between clusters. The strength of the association can be assigned by
the t test for the partial correlation coefficient [21]. In the present study, the
significance levels in the t test were set to 5 %.

2.5 Expression Profile Data

We used the expression profiles of 796 genes measured under 77 conditions [4],
which were identified as an objective minimum criterion for cell cycle regulation.
In the present analysis, the 796 genes are divided into 298 in G1 phase, 71 in S
phase, 120 in SG2 phase, 195 in G2M phase, and 112 in MG1 phase. These genes
have a periodic expression pattern, and the peaks of expression were specific to
each phase.

3 Results and Discussion

3.1 Clustering of Genes in Five Phases

The cell cycle related genes were classified into 66 clusters by hierarchical clus-
tering, as a preprocessing step for the network inference by GCM. The number
of clusters in each phase is: 20 clusters in G1 phase, 13 clusters in S, 17 clusters
in SG2 phase, 6 clusters in G2M phase, and 10 clusters in MG1 phase. Table 1
shows the number of genes included within each cluster in each phase. In this
Table, the number of clusters in each phase is independent from the number of
genes within the phase. Indeed, the smallest number of clusters is for the genes
within G2M phase, although the number of genes in G2M phase is not the small-
est. On the other hand, the number of genes in S phase is the smallest in the five
phases, but the number of clusters in S phase is not the smallest. This feature
reveals that the decision of the cluster numbers for each phase is not dependent
on the number of genes.

The decision of the number of clusters is related to gene expression, and in
general, gene expression is controlled by transcription factors. Therefore, the
decision of the number of clusters in each phase is considered to be related to
transcription factors. The numbers of transcription factors are similar among the
five phases, even though the numbers of genes differ among the five phases. The
number of transcription factors within each cluster is indicated in parentheses
in Table 1.

To estimate the relationship between the number of transcription factors and
the number of clusters in each phase, the fraction of transcription factors and
the average number of genes included in the clusters were calculated in each
phase.

Fig.1 shows the relationship between the fraction of transcription factors and
the average number of genes included in the clusters in each phase. This figure
shows that the fraction of transcription factors is related to the average number
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Table 1. The number of genes in each cluster

Phase
Cluster G1 S SG2 G2M MG1

1 19 3 8(1) 6 12(1)
2 20(3) 2 5 27(4) 16
3 11 2 3 43(1) 5(2)
4 19 6 3 36(2) 5
5 10(1) 7 7(1) 48(4) 7
6 10(1) 4(1) 4 35(4) 13
7 5(2) 96 15(3)
8 10 4(2) 7(1) 15(1)
9 12 6(1) 1 11(1)
10 8 3 13(2) 13(1)
11 30(5) 13(1) 7
12 25 3 14(3)
13 23(1) 9(9) 10
14 25 11(2)
15 12 3
16 17 12(1)
17 10 6(1)
18 14(1)
19 9
20 9

Sum 298(14) 71(15) 120(12) 195(15) 112(9)

of genes included in the clusters. There is a tendency for a high fraction of
transcription factors to occur with a low average number of genes in the clusters.
Indeed, the fraction of transcription factors is the highest in S phase(0.21), where
the average number of genes in clusters is the lowest(5.46).

The low average number of genes in the clusters means that there is a large
number of clusters in the phase, since the number of clusters is derived from the
number of genes in each phase and the average number of genes in the clusters.
Thus, the relationship between the fraction of transcription factors and the av-
erage of the numbers of genes in clusters also indicates the relationships between
the fraction of transcription factors and the number of clusters in each phase.

3.2 Functional Category Estimation with a Significant Probability

To evaluate the results of the hierarchical clustering of the genes, the correspon-
dence between the members of each cluster and the biological information of the
gene function was obtained. To determine the cluster function from the compo-
nent genes, each member of the cluster was mapped to 161 functional categories
at the second level in the Comprehensive Yeast Genome Database(CYGD). The
chance probability for observing the frequencies of genes in particular functional
categories within a cluster was estimated with the use of the hypergeometric
distribution [26].
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Fig. 1. Relationship between the fraction of transcription factors per phase and the
decision of the number of clusters in each phase

(The fraction of transcription factors per phase is plotted on the vertical axis. The
average numbers of cluster members per phase are plotted on the horizontal axis. The
number of clusters in each phase can be calculated from the number of genes and the
average number of cluster members in each phase. The fraction of transcription factors
indicates a low average number of cluster members, which means a large number of
clusters.)

The details of the clusters that were significantly enriched for genes with sim-
ilar functions are shown in Table 2. The features, which were extracted from
Table 2, are consistent with the general cell cycle information. First, the gene
groups that are related to the cell cycle or DNA processing were found in ev-
ery phase. Second, the characteristic functions were found at specific parts of
the cell cycle. The functions related to metabolism or transcription were found
in the earlier phases, such as G1 and S and SG2. This feature is consistent
with known biological information. In general, DNA synthesis is the main event
of the earlier phases in the cell cycle, and thus these phases are considered
to be related to transcription and metabolism, to produce energy for DNA
synthesis. The other functions, which are related to cellular transport or cell
differentiation, were found in the latter phases, such as G2M and MG1. The
latter phases in the cell cycle involve mitotic division, and thus these phases are
considered to be related to intracellular transport and differentiation. The re-
sults of the hierarchical clustering are quite consistent with the known biological
information.
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Table 2. The clusters with statistically significant functional category enrichment in
each phase

3.3 Overview of the Inferred Network

To apply GCM for inferring serial regulation during the cell cycle, the linear
order of the five phases was determined. In general, the cell cycle works as a
circuit, and the natural order of the five phases during this circuit mechanism is
known. To infer the network by GCM, the circuit mechanism should be opened,
to create a linear mechanism. Basically, the start of DNA replication is decided
during G1 phase, and this point is called START in the cell cycle. Thus, G1
phase is considered as the first phase. On the assumption that G1 phase is the
first of the 5 phases, MG1 is considered to be the last phase during the cell cycle.

The inferred associations between the 66 clusters are schematically shown
in Fig.2. In this figure, a closed cell indicates an inferred association between
clusters. In GCM, the inferred associations between the variables within the
same phase have no direction, even though the inferred associations between
the different phases have direction. In Fig.2, the inferred associations between
the clusters within the phase have no direction, while on the other hand, the
inferred associations between the different phases have direction, from the former
phase to the latter phase.
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Fig. 2. Overview of the inferred network by GCM

(Overview of the inferred associations between the clusters. The connections between
clusters are shown in the 66 clusters: 20 in G1 phase, 13 in S phase, 17 in SG2 phase,
6 in G2M phase and 10 in MG1 phase. Open and closed cells indicate the significant
associations and non-significant associations between the clusters, respectively. Each
phase is divided with lines.)

In Fig.2, 310 associations remained with significant probability from the 2145
available connections among the 66 clusters. The fraction of inferred associa-
tions is 0.1445(310/2145). The inferred associations between the clusters within
the phases showed that the fraction of associations remaining within the same
phase is 0.2475(114/464). On the other hand, the fraction of inferred associations
between the different phases is 0.1166(196/1681). The fraction of inferred asso-
ciations within the same phase is at least two-fold higher than that between the
different phases. Therefore, the interactions between the gene expression mainly
occurred within the phases during the cell cycle.

3.4 Inferred Network Within the Phase

The inferred associations among the clusters within each phase int Fig.2 revealed
that all of the clusters had some associations with the other clusters in G1 and
S. On the other hand, a limited number of clusters had associations within
the same phase in SG2, G2M and MG1. In this study, the number of inferred
associations indicates the complexity of the cooperation or the regulation of the
gene expression within the phase. Thus, the cooperation or regulation of the
gene expression in G1 and S phase is more complicated than those of the other
phases.
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The consideration of the complexity of gene expression within the phase is
related to the general events that occur during the cell cycle. The inferred com-
plex cooperation or regulation of gene expression occurred during the event of
DNA replication. This complexity of gene expression is quite consistent with
the biological information, since many genes are expressed and multiple systems
function during DNA replication.

Furthermore, the sparseness of cooperation or regulation of the gene expres-
sion at SG2, G2M and MG1 is considered to be related to the events of mitotic
division, such as the transport of cellular components or the monitoring of repli-
cated DNA. Actually, the clusters related to transport or differentiation, which
were estimated in the former section, have some associations with the other clus-
ters in our study. The specific genes are considered to interact with each other
to operate the intracellular components during mitotic division.

3.5 Inferred Network Between the Different Phases

To reveal the main regulatory system during the cell cycle, the fractions of the
inferred associations to the number of all combinations between the clusters
between the phases were obtained. The fractions of the inferred associations
between the phases are shown in Table 3. For example, the number of inferred
associations between G1 and S is 30, and the number of all combinations between
G1 and S is 260. Thus, the fraction of inferred associations between G1 and S was
0.115(30/260). The obtained fractions of inferred associations between the phases
indicate the majority of regulation between the phases for cell cycle control.

Table 3. The fractions of inferred associations between the five phases

G1 S SG2 G2M MG1
G1 0.205

S 0.115 0.218
SG2 0.041 0.054 0.066

G2M 0.017 0.013 0.049 0.133
MG1 0.135 0.092 0.029 0.000 0.267

The fractions of inferred associations between the different phases displayed
in Table 3 show that almost all of the fractions between the neighbor phases are
higher than those between the non-neighbor phases. For example, the fractions
of inferred associations between G1 and the other phases are: 0.115 with S phase,
0.041 with SG2 phase and 0.017 with G2M phase. A high fraction of the inferred
association indicates the high density of regulation between phases. Thus, this
feature provide us with the insight that the cell cycle is mainly controlled by
serial regulation, depending the distance between the two phases.

The inferred association between the different phases by GCM indicates the
regulatory relationship from the former phase to the latter phase. A look at the
regulation from the first three phases to the latter phases revealed that some
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clusters had remarkable features. Some clusters regulated only neighbor phases
(neighbor regulation clusters), even though some other clusters regulated only
non-neighbor phases (non-neighbor regulation clusters). The details of these
specifically regulated clusters are shown in Table 4. The numbers of neighbor
regulation clusters are: 4 in G1 phase, 6 in S phase, and 4 in SG2 phase. On
the other hand, the numbers of non-neighbor regulation clusters are: 3 in G1
phase, 3 in S phase, and 2 in SG2 phase. A comparison between the numbers of
these specific regulation clusters shows that the numbers of neighbor regulation
clusters are larger than those of non-neighbor regulation clusters in all phases.
Furthermore, the numbers of genes included in the neighbor regulation clusters
were also larger than those in the non-neighbor regulation clusters.

Table 4. The fractions of inferred associations between the five phases

Num. of Num. of Num. of Fraction of
clusters genes (a) TFs (b) TFs (b/a)

G1
Neighbor 4 82 3 0.03
Non-neighbor 3 38 4 0.11

S
Neighbor 6 24 2 0.08
Non-neighbor 3 22 10 0.45

SG2
Neighbor 4 30 1 0.03
Non-neighbor 2 17 3 0.17

An analysis of the fraction of transcription factors included in the specific
regulation clusters generates the opposite feature. Table 4 shows the numbers
of transcription factors and the fraction of transcription factors in those specific
regulation clusters. Interestingly, the number of transcription factors included in
the non-neighbor regulation clusters are larger than those in the neighbor regu-
lation clusters in each phase. Furthermore, the fractions of transcription factors
in the non-neighbor regulation clusters are higher than those in the neighbor
regulation clusters. This table shows that the long-distance regulation working
in the cell cycle system is controlled by transcription factors.

To reveal the effects of this specific regulation on the other phases, the cell cy-
cle is distinguished as three known cycles. The cell cycle includes three minor cy-
cles, such as the Chromosome cycle, the Cytoplasmic cycle, and the Centrosome
cycle, and some phenomena were published about these three cycles [22,23,24].
These phenomena are observed at specific phases during the cell cycle, and thus
the control mechanisms of these phenomena are considered to be related to the
specific regulation between the phases. To reveal the relationships between the
specific regulation clusters and the biological phenomena, the fractions of the
three cycle-related genes, which are included in the specific regulation clusters,
were obtained.

Fig. 3 demonstrates the fractions of the genes related with the three minor
cycles in each phase. The fractions of the three cycle-related genes at neighbor
regulation clusters are indicated in Fig. 3A, and those at non-neighbor regu-
lation clusters are indicated in Fig. 3B. Fig. 3A shows that the fractions of
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Fig. 3. Comparison between the different phase regulation and the fraction of three
minor cycle-related genes

(The fraction of three cycle-related genes in neighbor regulation clusters (A). The frac-
tion of three cycle-related genes in non-neighbor regulation clusters (B). The fraction of
chromosome-cycle related genes, cytoplasmic cycle-related genes and centrosome cycle-
related genes are indicated by circles, rectangles and triangles, respectively. Among the
neighbor regulation clusters, the fractions of all 3 cycle-related genes become lower in
S phase.)

three cycle-related genes become lower especially at S phase. This means that
a small number of genes related with the three cycles is included in the neigh-
bor regulation cluster in S phase. This feature is consistent with some biological
phenomena. In each cycle, the biological phenomena were observed at early S
phase [22,23,25], but no phenomena were observed at late S and the next G2
phase. These observations are considered to be related to the small fraction of
three cycle-related genes in the neighbor regulation clusters in S phase.

There is a remarkable feature in Fig.3b. The fraction of chromosome cycle-
related genes is especially higher in S phase. Actually, many histone-related genes
are included in the non-neighbor regulation clusters in S phase. In the chromo-
some cycle, the replication of the spindle pole body(SPB) and the SPB separation
are known to occur during S phase [25], and the next observed phenomenon is
the separation of the nucleus during M phase. Indeed, the chromosome cycle
phenomena are only observed at the non-neighbor phase in S phase, and this
observation is considered to reflect the high fraction of chromosome cycle-related
genes, which are included in the non-neighbor regulation clusters in S phase.

To application of the GCM to whole cell cycle-related genes provides us with
the main scheme of cell cycle regulation. First of all, the inferred network in
our study is consistent with the general biological information about the cell
cycle. Since the analyzed expression profiles do not include some known cell
cycle-related genes, some known regulations between the genes were not iden-
tified in our inferred network. The cell cycle system has been extensively and
many genes are known to be related to this system. The genes analyzed in our
study are considered to represent a portion of all cell cycle-related genes. Thus,
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our inferred network is considered to reconstruct part of the cell cycle regula-
tory mechanism. To reveal the complete mechanism of the cell cycle system,
comprehensive analysesof different empirical data will be required.
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Abstract. Whenever a programmer writes a loop, or a mathematician
does a proof by induction, an invariant is involved. The discovery and
understanding of invariants often underlies problem solving in many do-
mains. I discuss in this tutorial powerful invariants in some problems
relevant to biology and medicine. In the process, we learn several ma-
jor paradigms (invariants, emerging patterns, guilt by association), some
important applications (active sites, key mutations, origin of species, pro-
tein functions, disease diagnosis), some interesting technologies (sequence
comparison, multiple alignment, machine learning, signal processing, mi-
croarrays), and the economics of bioinformatics.

1 Introduction

The frontier of biological and medical sciences is exciting and full of opportu-
nities today, due to the accumulation of huge amount of biomedical data and
the imminent need to turn such data into useful knowledge [31]. There are nu-
merous techniques for dealing with each of the broad spectrum of bioinformatics
problems that have emerged, and more are being proposed everyday. There have
been a number of useful reviews and tutorials written on various bioinformat-
ics problems. In general, these reviews and tutorials are focused on a specific
bioinformatics problem [5], or on a specific technology [19], or both [16].

In this tutorial, I do not focus on a single problem or a single technology. In-
stead, I present a large varieties of problems and techniques, and try to highlight
a fundamental property that is common to all of them. Specifically, I observe
that these problems are characterized by invariants that emerge naturally from
the causes and/or effects of these problems, and show that the techniques for
their solutions are essentially exploitation of these invariants.

Before I provide more detail, let me first use an example to illustrate the
concept of invariants. We are given a bag of x red beans and y green beans.
We are to repeatedly remove two beans from the bag. If both beans are red, we
discard both of them. If both beans are green, we discard one and return the
other one to the bag. If one is green and one is red, we discard the green bean
and return the red bean to the bag. Suppose there is a single bean left in the
bag at the end of this process. Can we predict the color of this last remaining
bean? The solution is simple: This last remaining bean is red if and only if x is
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odd. The simplicity of this solution arises from a property of the process: The
parity of the red beans is preserved—i.e., invariant—at each step of the process.
We thus see that invariants are fundamental properties of a problem and can be
exploited to provide surprisingly simple solutions to the problem.

As mentioned earlier, the problems presented in this tutorial are all manifes-
tations of invariants. Specifically,

– Section 2 and Section 3 look at the problems of recognizing the active sites
of an enzyme, finding the mutations that reduces the efficiency of a pro-
tein function, and determining the origin of Polynesians. These problems
are manifestations of invariants in the process of Evolution—in particular,
sequence features that are conserved during evolution.

– Section 4 looks at the problem of protein function prediction. The process
of Evolution has also preserved and/or imposed a number of invariant char-
acteristics on proteins with different functions. The invariant characteristics
of a protein is naturally useful for prediction of its function.

– Section 5 looks at the problem of disease subtype diagnosis. Each disease
and its various subtypes have their underlying causes. The causes are of-
ten difficult to decipher due to the complexity of molecular circuitries and
gene-environment interactions. Nevertheless, different causes have different
invariant down-stream effects that are useful as diagnostic indicators.

I also show that the techniques for their solutions are essentially exploitation of
these invariants.

2 Invariants in Evolution

Let me begin with the problem of finding active sites of an enzyme. An “active
site” is a region of an enzyme that a substrate binds to, so that a biochemical
reaction can occur. Such sites must be conserved through the evolution process,
because the function of the enzyme would be disabled, severely reduced, or
completely changed if the physico-chemical properties of the amino acid sequence
at these sites were changed. That is, the physico-chemical properties of the amino
acid sequence required at these sites are the invariants of the enzyme that must
be preserved during the evolution process in order for the protein to retain its
specific enzyme function.

Figure 1 illustrates the evolution of a hypothetical enzyme. The function f of
ancestor enzyme #1 is characterized by active site “A”. Enzyme #2 is evolved
from enzyme #1 by having a different physico-chemical property “a1” at the site
“A”; thus it no longer has function f . Enzyme #3 is also evolved from enzyme
#1, but by having a different physico-chemical property at site “B”; thus it may
have a new function g in additional to f . Enzymes #4, #5, #6, and #7 are
similarly evolved. It is clear that “A” is the only property common between all
enzymes that have function f . Similarly, “A” and “B” are the only properties
common between all proteins that have both functions f and g.



Manifestation and Exploitation of Invariants in Bioinformatics 367

Fig. 1. The evolution of a hypothetical enzyme

The effect of this type of requirement is that the amino acid sequence at these
sites is also under pressure to be invariant. This invariant is an indirect and im-
perfect one, because a limited amount of changes at the amino acid level is per-
missible as different amino acid sequences can result in very compatible physico-
chemical properties. In spite of its indirectness and imperfect conservation, it
gives rise to the simplest computational solution—multiple alignment [29]—to
the problem of finding the active sites of an enzyme.

A multiple alignment can be thought of as a way of writing two or more se-
quences across the page. Some gaps may be inserted into the sequences in such
a way that the number of columns having characters that are identical or that
are representing similar physico-chemical properties is maximized. The positions
corresponding to these columns are called “conserved positions”. The most con-
served positions in a multiple alignment are good candidates of active sites of
the enzyme, provided the sequences used in the multiple alignment are from
suitably diverged species. That is, the sequences should be sufficiently diverged
so that enough mutations have accumulated in positions that do not correspond
to active sites. At the same time, the sequences should not be so wildly diverged
that they no longer have the required enzyme function. Figure 2 shows a multi-
ple alignment of several protein tyrosine phosphatase sequences. The candidate
active sites are the conserved consecutive positions indicated by “*” and “.”.

3 A Couple of Interesting Twists

An interesting twist in the tale of active sites is the problem of finding key
mutations that cause a protein to reduce the efficiency of its function. Here, one
of the ancestor proteins with a function f has a mutation in one of its active
sites for function f . This mutation reduces the efficiency of the protein. The
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Fig. 2. A snapshot of a multiple alignment of several protein sequences

mutation is passed to a group of descendant proteins with function f at a lower
efficiency, and becomes an invariant of this group.

Thus, to find key mutations that reduce the efficiency of a protein for function
f , we proceed as illustrated in Figure 3. We first identify a group D1 of proteins
having function f at the normal level of efficiency. Then we identify a group
D2 of proteins having function f at the reduced level of efficiency. Then we
identify a common active site in two groups of proteins so that two different
invariants—one for each of the groups—are observed at the site. That is, the
change in efficiency is traced to mutations in specific active sites in the first
group which are inherited and conserved in the second group. This takes us
from the concept of invariants to the concept of emerging patterns—patterns
which are invariant in one group and are changed in a contrast group [12,8]. A
beautiful illustration of this logical solution can be found in the study of protein
tyrosine phosphatases [15].

Fig. 3. The site “B” is consistently conserved in the D1 group of sequences, but is
not consistently mutated in the D2 group. It is thus not a likely cause of D2’s reduced
efficiency; otherwise, the second sequence in the D2 group which has an unmutated
site “B” should have normal efficiency. The site “A” is consistently conserved in the
D1 group, and is consistently mutated in the D2 group. Thus it is a possible cause of
D2’s reduced efficiency.

An important invariant of mutations underlies the twist in the tale of active
sites above: Mutations are cumulative. That is, a mutation is passed on to future
generations unless there is another mutation at the same site that replaces it.
This invariant can be exploited in problems concerning the origin of species. The
human mitochondrial control region accumulates about 1 mutation every 10,000
years [27]. Given the short length of human history, the length of the mitochon-
drial control region, and each position in it has an equal chance to mutate, it
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is reasonable to assume that any position has a negligible likelihood of being
mutated twice. In other words, a mutation in the mitochondrial control region
that is observed in all instances of the ancestor species must also be observed
in descendant species. Thus a link from an ancestor species to its descendant
species can be traced.

A beautiful illustration of this idea can be found in the story of the origin
of Polynesians [27], depicted in Figure 4. All indigenous Taiwanese have two
mutations referred to as #189 and #217 in their mitochondrial control region.
Indigenous Solomon Islanders have mutations #189, #217, and #261. Thus, we
conclude that an indigenous Taiwanese or his descendant with the #261 muta-
tion somehow travelled to the Solomon Islands, and all indigenous Solomon Is-
landers are his descendants. All Rarotongans have mutations #189, #217, #261,
and #247. Similarly, we infer that a Solomon Islander or his descendant with
the #247 mutation somehow reached Rarotonga, and present-day Rarotongans
are his descendents.

Fig. 4. Origin of Polynesian. Image credit: Sykes [27].

4 Invariants in Protein Function

There are two main invariants that determine the function of a protein: The
three-dimensional conformation of the protein and the environment the protein
is in. These invariants impose important constraints on the amino acid sequence
of protein. For example, mutations in the sequence may completely change the
three-dimensional conformation of the sequence. Thus the sequence of the pro-
tein is also under pressure to be invariant. However, this invariant is indirect and
does not have to be perfect. For example, a limited amount of changes at the
amino acid level is permissible without severely affecting the three-dimensional
conformation of the protein. Nevertheless, one can perform an abductive infer-
ence to predict that two proteins that exhibit a high level of sequence similarity
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are likely to have the same or similar function. This is the so-called “guilt by as-
sociation” of similarity of sequences, exemplified by the classic paper of Doolittle
and others [9].

The procedure of “guilt by association” is depicted in Figure 5. We compare
the sequence of the unknown protein T with a database of protein sequences
with known functions. Those proteins in the database that have high sequence
identities or sequence alignment scores when compared to T are predicted to be
homologs of T ; and T is predicted to have functions identical or similar to those
of these homologous proteins. A pairwise alignment algorithm [20,25] should
be used for sensitive search of homologs. Due to the rapid increase in sequence
database sizes, it is also common to sacrifice some amount of sensitivity in favour
of significantly increased speed by first using short perfect matches to select likely
candidate sequences before performing pairwise alignments [1].

Fig. 5. Protein function prediction using “guilt by association” of sequence similarity

However, there are many protein sequences that have very low sequence simi-
larity to all proteins of known functions. In such a situation, we have to appeal to
additional consequences of the two invariants of three-dimensional conformation
and operating environment required for a protein function. I describe one such
consequence below.

The invariant on a protein sequence, though indirect and imperfect, has an in-
teresting and subtle consequence. Proteins exhibiting a function f , proteins
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exhibiting a different function g, and proteins exhibiting a function h have dif-
ferent three-dimensional conformations and possibly operate in different environ-
ments. So the sequences of these three groups of proteins have distinct invariant
compositional characteristics. However, the differences of the invariant composi-
tional characteristics of any two proteins of functions f and g are very likely to be
very similar to the differences of the invariant compositional characteristics of any
other two proteins of functions f and g! On the other hand, these differences are
very likely to be very different from the differences of the invariant compositional
characteristics of two proteins of functions f and h, or of functions g and h.

In short, the differences of the invariant characteristics of one group of proteins
compared to another group are also invariant, and are emerging patterns when
contrasted with the differences compared to a third group. This logic is best
illustrated by the comparison of apples to oranges and bananas in Figure 6,
where the fruit X is deduced as an apple because its differences with orange1,
banana1, and other fruits are identical to that of apple1.

orange1 banana1 · · ·
apple1 color=red vs orange color=red vs yellow · · ·

skin =smooth vs rough skin=smooth vs smooth · · ·
shape=round vs round shape=round vs oblong · · ·

orange2 color=orange vs orange color=orange vs yellow · · ·
skin =rough vs rough skin=rough vs smooth · · ·
shape=round vs round shape=round vs oblong · · ·

fruit X color=red vs orange color=red vs yellow · · ·
skin =smooth vs rough skin=smooth vs smooth · · ·
shape=round vs round shape=round vs oblong · · ·

· · · · · · · · · · · ·

Fig. 6. Comparing apples vs oranges vs bananas. The fruit X is likely to be an apple
because its differences with orange1, banana1, etc. are identical to that of apple1.

To wit, we can associate two proteins as having the same or similar function
by the similarity of the differences of their sequences compaired to all other
sequences. This is precisely the strategy followed by SVM Pairwise [14]. Here, a
feature vector is generated for each protein by recording its pairwise alignment
score with each sequence in the database. To create a classifier for distinguishing
proteins of function f from the rest, the feature vectors are divided into f vs non-
f , and a support vector machine classifier is then trained. Given a new unknown
protein, a feature vector is first generated by recording its pairwise alignment
score with each sequence in the database. The feature vector is then given to the
classifier for prediction. SVM Pairwise has much greater sensitivity and precision
than the more direct guilt by association of sequence similarity described earlier.
SVM Pairwise succeeds for two main reasons. Guilt by association of sequence
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similarity cannot be applied if a sequence has low similarity with the database
and it does not make use of contrast groups. In contrast, SVM Pairwise does not
care about the level of sequence similarity, so long as the sequence alignment
scores have consistent differences between f vs non-f .

5 Invariants in Diseases

One of the popular problems in bioinformatics is the analysis of gene expres-
sion profiles for disease subtype diagnosis. Each disease and its various subtypes
have their underlying causes. The causes are often difficult to decipher due to
the complexity of molecular circuitries and gene-environment interactions. Nev-
ertheless, different causes have different invariant down-stream effects that are
useful as diagnostic indicators. These invariant down-stream effects are often–
but not always—manifested as consistent gene expression profile differences in
a large number of target genes over the different disease subtypes.

This type of invariant down-stream effects can be discovered in a variety of
ways [18]. For example, in an unsupervised setting, one discards those genes with
low variants, performs a bi-clustering of the remaining genes vs patient samples,
and identifies the invariant gene expression profiles for each disease subtype. As
another example, in a supervised setting, one groups the patient samples based on
disease subtypes, computes a test statistics such as χ2 for each gene to determine
how well it separates one disease subtype from the rest, and identifies those genes
that best distinguishes a subtype. Figure 7 is a beautiful illustration based on the
gene expression profiles of childhood acute lymphoblastic leukemia samples [33].

Childhood acute lymphoblastic leukaemia (ALL) is the most common form of
childhood cancer. It has as many as 6 different subtypes with differing treatment
outcome. To avoid under-treatment, which causes relapse and eventual death, or
over-treatment, which causes severe long-term side effects, accurate diagnostic
subgroup must be assigned upfront so that the correct intensity of therapy can
be delivered to ensure that the child is accorded the highest chance for cure [22].
Contemporary approaches to the diagnosis of childhood ALL require an extensive
range of procedures including morphology, immunophenotyping, cytogenetics,
and molecular diagnostics [22]. Such a multi-specialist expertise requirement
is generally unsatisfiable in developing countries. Thus, even though childhood
ALL is a great success story of modern cancer therapy with survival rates of
75–80% in major advanced hospitals [23], it is still a fatal disease in developing
countries with survival rates of 5–20%.

Our microarray gene expression profiling followed by computational analy-
ses described above accurately identifies each of the known clinically important
subgroups of childhood ALL [33]. We achieve an exceedingly accurate overall
diagnostic accuracy of 96% in a blinded test set illustrating the robustness of
the invariants identified.

It is worth noting that about 2000 new cases of childhood ALL are diagnosed
in ASEAN countries each year. About 50% of these cases need low-intensity
therapy, 40% need intermediate intensity, and 10% need high intensity. This is a
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Fig. 7. Gene expression profiles of childhood ALL. Each row is gene. Each column is
a patient. Image credit: Yeoh and others [27].

disease with a cure rate of >75% in Singapore. But in ASEAN countries, except
Malaysia and Singapore, childhood ALL patients have a dismal 5–20% cure rates.
This is mainly due to these countries’ inability to deliver the correct intensity of

Treatment Cost–new cases Cost–relapses Total cost

Low-intensity treat-
ment for everyone

$36K * 2000 $150K * 1000 $222M

Intermediate-
intensity treatment
for everyone

$60K * 2000 $150K * 200 $150M and 50%
of patients have
side effects

High-intensity treat-
ment for everyone

$72K * 2000 $0 $144M and 90%
of patients have
side effects

Risk-stratified treat-
ment; viz., low inten-
sity to 50%, inter-
mediate intensity to
40%, high intensity to
10%

$36K * 1000 +
$60K * 800 +
$72K * 200

$0 $98M

Fig. 8. Costs of treatment options for childhood ALL in ASEAN countries
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therapy. Treatment for childhood ALL over 2 years for intermediate-risk costs
US$60k, good-risk costs US$36k, and high-risk costs US$72k. Treatment for
relapse cases costs US$150k. As the less developed ASEAN countries generally
lack the ability to diagnose the subtypes of their childhood ALL patients, the
treatment for intermediate risk case is conventionally applied for everyone, as it
maximizes the expected benefit in such a situation; see Figure 8. If our single-
test platform becomes broadly available, they can then adopt a more accurate
risk-stratified treatment strategy. As shown in Figure 8, this can result in savings
of US$52M a year yet with better cure rates and much reduced side effects, as
the correct intensity of therapy is applied upfront.

6 Remarks

Let me now summarize the key learnings of this tutorial.
I have considered several common bioinformatics applications such as recog-

nizing active sites and key mutations, determining the origin of Polynesians,
predicting the function of proteins, and diagnosing a disease and optimizing its
treatment. We have seen that there are invariants underlying these problems,
and the exploitation of such invariants and/or their consequences yield logical
solutions to these problems.

I have used three paradigms in the exploitation of invariants here. The first
paradigm is a direct search of an invariant in a group. An example of such a direct
search is the application of finding active sites with the use of a multiple alignment
algorithm. The second paradigm is a search of “emerging patterns”, where we look
for patterns that are invariant in one group but are changed in a contrast or control
group. The use of a contrast group helps isolate invariants that are fundamental to
the target group, as opposed to invariants that are observed in a general popula-
tion. An example of a search for emerging patterns is the application of finding key
mutations that cause a group of proteins to reduce the efficiency in their function.
The third paradigm is the concept of “guilt by association”, where we deduce that
two objects belong to the same type if they exhibit specific common invariants as-
sociated with that type. An example of this is the inference of protein function.
These three paradigms are also used in combination. An example is the identifica-
tion of gene expression profiles for diagnosing childhood ALL subtypes. Here, we
look for gene expression profiles as emerging patterns that distinguish one ALL
subtype from the other subtypes, and use such gene expression profiles to classify
patients into the associated ALL subtypes.

I have also discussed the softer but still very important aspect of economics
of bioinformatics. This is illustrated in the treatment optimization of childhood
ALL. In particular, we have explained why the intermediate-intensity treatment
is conventionally applied if the ALL subtype cannot be applied, and why a risk-
stratified treatment based on bioinformatics analysis is a superior strategy.

I have briefly mentioned four kinds of computational techniques here. The first
kind is that of multiple sequence alignment, where we determine how to best
match up several sequences, as illustrated in the application of finding active
sites. The second kind is that of sequence comparison, where we determine if
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two sequences are sufficiently similar, as illustrated in the application of protein
function inference. The third and fourth kinds are those of statistical testing and
machine learning, as illustrated in the analysis of childhood ALL gene expression
data.

Paper length constraints do not allow a more detailed exposition of the above.
The reader is encouraged to consult the following articles and references therein
for more information. In particular, for sequence comparison, Waterman [30]
provides an excellent theoretical background, Gusfield [10] provides an excellent
algorithmic background, and Li et. al. [13] present the exciting recent develop-
ment of using spaced seeds for extremely sensitive and efficient sequence compar-
ison. For multiple sequence alignment, Thompson et. al. [29,28] describe one of
the most popular multiple alignment tool packages, and Chin et. al. [6] present
a recent improvement in efficient multiple sequence alignment with performance
guarantee. For protein function prediction, Altschul et. al. [1] describe the ex-
tremely popular BLAST approach to guilt by association of sequence similarity,
Bateman et. al. [2] describe guilt by association of domain similarity as embodied
in PFAM domains, Liao and Noble [14] describe guilt by association of similarity
of dissimilarities as embodied in SVM Pairwise, Wu et. al. [32] describe guilt by
association of similarity of phylogenetic profiles, Ma et. al. [17] describe guilt
by association of secondary structures, Kung et. al. [11] describe guilt by asso-
ciation of similarity in gene expression profiles, and Chua et. al. [7] present the
exciting recent development of guilt by association of similarity of interaction
partners. For gene expression analysis, Slonim et. al. [24] is the classic paper
that started the field, Miller et. al. [18] is an excellent overview of the issues and
techniques, Broberg [4] is a good discussion on several popular test statistics,
Breitling and Herzyk [3] describe new rank-based test statistics, Niijima and
Kuhara [21] describe new kernel subspace methods for multiclass classification,
and Subramanian et. al. [26] present the exciting recent development of the gene
set enrichment analysis approach.
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