
6

Intelligent Off-Road Navigation Algorithms and
Strategies of Team Desert Buckeyes in the
DARPA Grand Challenge ’05

Qi Chen and Ümit Özgüner

Department of Electrical and Computer Engineering, The Ohio State University,
Columbus, Ohio 43210, USA

Summary. This paper describes one aspect of our approach in developing an intel-
ligent off-road autonomous vehicle, the Intelligent Off-road Navigator (ION), as team
Desert Buckeyes from the Ohio State University for the DARPA Grand Challenge 2005.
The real-time navigation is one of the critical components in an autonomous ground
vehicle system. In this paper, we focus on the navigation module, whose main respon-
sibility is to generate smooth and obstacle-free local paths with appropriate speed
setpoints. For the smooth path generation, we introduce a polynomial interpolation
method. To generate obstacle-free paths, a steering controller utilizing a fuzzy obstacle
avoidance algorithm is presented. A speed fuzzy controller is introduced to generate the
speed setpoints. These two fuzzy controllers collaborate with each other to guide our
vehicle ION to the goal safely. The obstacle avoidance algorithm proposed in this paper
was also tested in simulations and on small robots successfully. Other issues related to
the navigation module are discussed in the paper as well, such as the vehicle’s system
structure and its finite state machine. As a result, ION achieved great performance in
the National Qualification Event (NQE), covered about 30miles in the Nevada Desert
with complete autonomous operations, and finished 10th in the Grand Challenge 2005.

Keywords: autonomous ground vehicle, Grand Challenge, real-time, navigation, finite
state machine, obstacle avoidance, fuzzy controller.

6.1 Introduction

This paper describes our approach in developing the navigation module of the
vehicle ION, the Intelligent Off-road Navigator, as team Desert Buckeyes from
the Ohio State University for the DARPA Grand Challenge 2005 (GC05).

GC05 was a competition for off-road autonomous ground vehicles (AGVs).
About three thousands waypoints (GPS coordinates) were provided shortly be-
fore the race, the AGVs were required to follow the waypoints one by one safely,
continuously, smoothly and fast across natural terrain en route to the finish line
without any human interference. The challenge was indeed “grand” because the
AGVs had to respond to the dynamically changing environment in a timely way

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 183–203, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

184 Q. Chen and Ü. Özgüner

Fig. 6.1. Vehicle ION: the Intelligent Off-road Navigator. The vehicle is a 2005 Polaris
Ranger 6x6. It is 120 inches long and 60 inches wide and its height is 78 inches. Drive
by wire capability has been added to the vehicle so that computer control is possible
for throttle, brake, steering control, and transmission gear switching.

and the data acquired was both complex and full of erroneous information. The
total distance in GC05 was about 132miles.

Developing an autonomous vehicle to traverse the desert means solving a se-
ries of problems and developing a series of technologies, such as sensor fusion,
navigation, artificial intelligence, vehicle control, signal processing, drive-by-wire
technology, reliable software and mapping (Toth et al., 2006), etc. ION was de-
veloped in partnership with University of Karlsruhe, which developed the image
processing system (Hummel et al., 2006). ION is a 6 wheeled vehicle with full
drive-by-wire capability. A set of sensors (LIDARs, radars, cameras and ultra-
sonic transducers) and a GPS and IMU, the internal measurement unit, provide
extensive sensing capability, shown in Figure 6.1. A sophisticated sensor fu-
sion system (Redmill, Martin, & Özgüner, 2006) was developed and used with
a complex intelligent analysis, decision and control configuration (ION, 2005).
The overall design was quite similar to the one we developed for TerraMax in
GC04 (Chen, Özgüner, & Redmill, 2004).

In this paper, we focus on the navigation module whose task is to guide ION
toward the goal without colliding with obstacles. Our strategy is to develop
a finite state machine that decides the state of ION so that the proper drive
mode is selected in different situations. By perceiving both nearby environment
and ION’s status, the navigation module generates commands for the low-level
controller. The command can be, for example, a set of GPS route points called
pathpoints and the speed setpoint, or a sequence of motion specifications called
robotic unit operations, or some direct commands such as “stop-and-wait”. The
finite state machine design and the obstacle avoidance algorithm utilizing fuzzy
logic are introduced.

6 Intelligent Off-Road Navigation Algorithms and Strategies 185

As the Desert Buckeyes was the team that developed the sensing and intel-
ligence for the 2004 TerraMax, a number of aspects of ION were descendants
of technology and approaches used in the 2004 Grand Challenge (Chen et al.,
2004), (Yu, Chen, & Özgüner, 2004), (Özgüner, Redmill & Broggi, 2004),
(Chen & Özgüner, 2005). We also have developed autonomous vehicles for
highway driving, which have shown great performance in the structured envi-
ronments. (Özgüner, Hatipoglu, & Redmill, 1997), (Redmill & Özgüner, 1998),
(Hatipoglu, Özgüner, & Redmill, 2003). As far as off-road is concerned, the en-
vironment being unstructured, the navigation module and the obstacle avoid-
ance algorithm proposed in this paper is desired to deal with more complicated
situations.

The remainder of this paper is organized as follows. Section 6.2 briefly de-
scribes our system structure and general bases. The design of the finite state
machine is described in Section 6.3. Section 6.4 introduces navigation module
with the path planning algorithm that generates collision-free paths and ap-
propriate speed set-points for the vehicle. ION’s performances are presented in
Section 6.5. Section 6.6 concludes the paper.

6.2 System Structure

The system structure of ION is illustrated in Figure 6.2. Environment sensor fu-
sion, vehicle ego-state sensor fusion, high-level controller and low-level controller
are ION’s four major modules. ION is equipped with several cameras, LIDARs,
ultrasonic Sonars and a radar. A sophisticated sensor fusion system generates
a local grid map that moves with the vehicle. The local map contains the sizes
and positions of nearby obstacles. ION’s ego states are fused from a GPS and
an IMU. The navigation module, also called the high-level controller, obtains
information from the sensor fusion modules and generates a series of pathpoints
and a speed set point for the low level controller. In some situations, the nav-
igation module sends direct control command to the low level controller, such
as “Stop” and specific “robotic unit operations”. Obtaining the commands from
the high-level controller, the low-level controller enables ION to follow the given
route defined by a series of pathpoints at the given speed, as has been done in
(Redmill, Kitajima, & Özgüner, 2001).

6.3 Finite State Machine

Since ION was expected to encounter very complicated situations, we developed
a finite state machine (FSM) in ION’s navigation module to deal with difference
situations. Based on the information collected from the sensor fusion modules
and the inner state monitoring, the navigator module determines the right ma-
chine state for ION to activate the corresponding subsystem/algorithm so that
the proper command is generated.

The FSM we implemented in ION is represented conceptually in Figure 6.3 .
There are two major states, the “Path-Point Keeping” state and the “Obstacle

186 Q. Chen and Ü. Özgüner

Central Computer

Vehicle
Ego-state
Sensing

and
Fusion

High Level
Controller

Low Level
Controller

E-STOPExternal
Switches

A/D I/O
Vehicle DBW ECUs

Microcontroller
Throttle Steering

Brake

Transmission

Dead Reckoning

Image Processing
Computer

Environment
Mapping

Obstacle
Preprocess

Sensing Computer

Sensor
Processing
and Drivers

GPS

INS

Compass

Internal
Sensors

Stereo Cameras

Horizontal LIDARs

Vertical LIDARs

Radars

Ultrasonic Sonars

Central Computer

Vehicle
Ego-state
Sensing

and
Fusion

High Level
Controller

Low Level
Controller

E-STOPExternal
Switches

A/D I/O
Vehicle DBW ECUs

Microcontroller
Throttle Steering

Brake

Transmission

Dead Reckoning

Image Processing
Computer

Environment
Mapping

Obstacle
Preprocess

Sensing Computer

Sensor
Processing
and Drivers

GPS

INS

Compass

Internal
Sensors

Stereo Cameras

Horizontal LIDARs

Vertical LIDARs

Radars

Ultrasonic Sonars

GPS

INS

Compass

Internal
Sensors

Stereo Cameras

Horizontal LIDARs

Vertical LIDARs

Radars

Ultrasonic Sonars

Fig. 6.2. The System Structure of ION

Avoidance” state. ION stays in these two states at the most of racing time,
when there are no special events, such as tunnel, sensor failure, and narrow
path, etc, detected. When ION is in one of these two states, the pathpoints are
generated by the path planning algorithms as described in the following section.
The smooth path generation algorithm is for the “Path-Point Keeping” state,
while the obstacle avoidance algorithm is used in the “Obstacle Avoidance” state.

In the FSM, the other states are also very essential for ION to deal with spe-
cial events that the vehicle may encounter. The “Tunnel Mode” state is designed
specifically for the situation when ION is in a tunnel where GPS signals are lost
temporarily. We assume ION encounters no obstacles in the tunnels and the FSM
switches only to the “Path-Point Keeping” state from this state. In the “Tunnel
Mode” state, the distances to both sides of the vehicle are measured by the ultra-
sonic transducers mounted on ION so as to keep the vehicle in the center of the
tunnel. The FSM gets into the “Robotic Operations” state when ION needs to
adjust its heading or position or both, for example, when narrow paths and very
sharp turns, i.e. direct forward path would contact obstacles, are encountered.
In this state, a sequence of back-and-forth operations are executed to adjust the
ION’s status. When there are sensor failures, the FSM transits into the “Alarm”
state to deal with the malfunction. In this state, the navigation module executes
the sensor resetting command to recover the failed sensor or sensors. In the case
that the sensor failure is unrecoverable, a flag is received from the sensor fusion
module and the FSM switches back to the “Path-Point Keeping” state. Carry-
ing these flags, the navigation module reduces the maximum allowed speed to
reduce the risk of collision, and the sensor fusion module adjust the coefficients
correspondingly as well. The “Road Following” state is designed for the situation
when the image processing module detects a road. For the situation when ION

6 Intelligent Off-Road Navigation Algorithms and Strategies 187

Fig. 6.3. ION’s finite state machine of the navigation module

is stuck on the road, the FSM switches to the “Rollback” state. In this state,
ION drives back along the trajectory it records till the point where another path
can be initiated.

We also introduced a watch-dog to prevent the vehicle from being stuck for-
ever. The vehicle might be stuck because the robotic operations couldn’t adjust
vehicle status amidst obstacles in six tries, or false obstacles block the path
totally, or because of some other unexpected events. Anyway, the watch-dog
was not designed to deal with normal situations. When ION’s position does not
change or the FSM rests in a state other than the “Path-Point Keeping” or
“Obstacle Avoidance” state for a certain period of time, the FSM automatically
resets to the “Path-Point Keeping” state and stays in this state regardless of
the obstacles and other events until ION reaches a certain distance. During the
FSM resetting process, a high throttle value is sent to the lower level controller
so that ION can possibly get out of holes or run over some obstacles like small
bushes. With the watch-dog design, ION might be able to get out of stuck in
many cases and gain chances to continue.

6.4 Navigation Module

ION’s navigation module, also called the high level controller, plans or replans
the local path when the machine state is at the “Path-Point Keeping” or “Obsta-
cle Avoidance” state. The navigation module checks the status of the local path,
which consists of 10 pathpoints, at 10Hz. If the path comes across obstacles in
the local map, or ION has reached the 5th point of the local path, or ION is
indicated passing a waypoint, the navigation module then generates a new local
path. Figure 6.4 shows the procedure to generate the local path. There are
two path generation algorithms implemented in the navigation module: the
smooth path generation algorithm and the obstacle avoidance algorithm.

188 Q. Chen and Ü. Özgüner

Fig. 6.4. The flow chart for path planning

6.4.1 Smooth Path Generation

A smooth path, whose curvature is continuous, is generated to connect the way-
points. Let {Pi, i = 0, 1, 2, · · · } denote the coordinates of the waypoints, where
Pi := (xi, yi)T ∈ R2. To generate a path, {Pi(s), 0 ≤ s ≤ 1} ⊂ R2, connecting
Pi and Pi+1, a polynomial interpolation is applied:

Pi(s) = A0(s)Pi−1 + A1(s)Pi + A2(s)Pi+1 + A3(s)Pi+2, 0 ≤ s ≤ 1 (6.1)

where Ai(·)’s are scalar polynomial coefficient functions. According to the theory
of planar curves (Hsiung, 1998), for a certain s ∈ [0, 1], the vector tangent to
the curve and associated at the point Pi(s) is defined by

Ti(s) = lim
h→0

1
h

(Pi(s + h) − Pi(s))

=A′
0(s)Pi−1 + A′

1(s)Pi + A′
2(s)Pi+1 + A′

3(s)Pi+2

(6.2)

where A′
i(·) is the derivative of function Ai(·). Define the unit tangent vector as

ui(s) := Ti(s)/‖Ti(s)‖. Ai(·)’s are selected by satisfying⎧⎪⎨
⎪⎩

Pi(0) = Pi

Pi(1) = Pi+1

ui−1(1) = ui(0)
(6.3)

According to (6.1), {Pi(s), 0 ≤ s ≤ 1} is a planar curve determined by four
waypoints (Pi−1, Pi, Pi+1, Pi+2). For curve {Pi−1(s), 0 ≤ s ≤ 1}, it is generated
by (Pi−2, Pi−1, Pi, Pi+1) and connects Pi−1 and Pi. These two curves have one
common point, Pi. By satisfying ui−1(1) = ui(0) in (6.3), the unit tangent vector

6 Intelligent Off-Road Navigation Algorithms and Strategies 189

0 50 100 150
0

20

40

60

80

100

120

140

P1

P2

P3 P4

P5

P6

P7

P8

a) b)

Fig. 6.5. Smooth path generation examples: a) A smooth path generation example: the
curve is generated by equation (6.1) with the coefficient polynomials defined in equation
(6.4); b) An example of smooth path generation: The solid line with dots (red) is the
the planned path that ION generated in the NQE, GC05. The path smoothly connects
the waypoints, which are located at the center of each circle. The solid curve (blue)
is the trajectory that ION traveled by following the planned path. These two curves
almost overlap, which shows ION followed the planned path very well.

of the curve {Pi−1(s)} is the same as that of the curve {Pi(s)} at the point Pi.
We say these two curves are smoothly connected.

In ION, we select Ai(·)’s in (6.1) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0(s) = (−s + 2s2 − s3)/2

A1(s) = (2 − 5s2 + 3s3)/2

A2(s) = (s + 4s2 − 3s3)/2

A3(s) = (−s2 + s3)/2

(6.4)

Applying the coefficient polynomials (6.4) to (6.1), the result satisfies the con-
straints in (6.3) so that the path generated for ION is smooth. For example, given
eight points, {P1, · · · , P8}, arbitrarily in a map, the above method generates a
smooth path connecting them. The result is shown in Figure 6.5(a). In ION, we
use cubic polynomials for Ai(·)’s. The selection of the order of the polynomials is
somewhat arbitrary and a third order polynomial satisfies the given constraints.
With higher order polynomials that satisfy (6.3), we can obtain similar results.
Figure 6.5(b) shows part of the trajectory that ION generated in the NQE and
it followed the smooth path very well.

6.4.2 Obstacle Avoidance

In the case that the smooth path comes across some obstacles, the FSM stays
in the “Obstacle Avoidance” state and a collision-free path is generated by the
obstacle avoidance algorithm.

Since the late 1970s, extensive effort has been exerted to develop obsta-
cle avoidance algorithms, see (Latombe, 1991) and references therein. The

190 Q. Chen and Ü. Özgüner

research can be classified into two major areas: the global path planning
(Kambhampati & Davis, 1986), (Hwang & Ahuja, 1988), (Warren, 1989) and
the real-time local motion planning (Khatib, 1985), (Borenstein & Koren, 1989),
(Adams & Probert, 1990), (Stentz, 1994). In GC04 and GC05, the race routes
were described with road definition data that specified the GPS coordinates,
width and speed limit for each section. The provided data was quite dense and
the global path planning methods were not needed in those events. On the other
hand, the local motion planning methods dynamically guide the AGV according
to the locally sensed obstacles, which requires less prior knowledge about the
environment. The fuzzy controller described in this paper is a real-time local
motion planning method, which is more suitable and practical for ION in the
Grand Challenge events, since ION senses only the nearby obstacles.

Fuzzy logic navigation methods have been studied and implemented in small
robots, rovers and AGVs with small turning radius, see (Saffiotti, 1997),
(Hodge & Trabia, 1999), (Seraji, 2000), (Lee, Lai, & Wu, 2005) and references
therein. As noted by Saffiotti (Saffiotti, 1997), fuzzy logic has the feature to
make it a useful tool to cope with the large amount of uncertainty that is inher-
ent in natural environments. Most of these approaches select the direction by
weighting the effort of target-approach and the need of obstacle-avoidance. How-
ever, few fuzzy logic approaches concern the dynamic and kinematic constraints
of a big AGV like ION. For ION, if the two consecutive steering decisions are
totally opposite, such as left turn and right turn, the steering decisions would
neutralize with each other. Therefore, frequent jumps between two consecutive
steering decisions should be avoided. Also, since the turning radius of ION is
considerably large, it is preferable to respond to obstacles before being too close
to them.

In the remainder of this subsection, we introduce two heterogeneous fuzzy
controllers for ION’s obstacle avoidance path planning system. The steering con-
troller emphasizes goal reaching and plays an important role in obstacle avoid-
ance simultaneously. Fuzzy rules are proposed for ION to approach the goal and
avoid obstacles at the same time. The speed controller prevents collisions with
obstacles. The rules in each fuzzy controller are defined for reacting in different
situations and each rule represents a certain behavior character based on human
drivers’ knowledge. These two fuzzy controllers collaborate to direct ION to the
goal without collision with obstacles.

6.4.2.1 Steering Fuzzy Controller Design

Figure 6.6 shows one example scenario that explains the basic steering rules.
Based on the local sensor ability, only the boundary of the obstacle in the local
sensor region is detectable. The shape and size of the whole obstacle outside of
the sensing region are not known. Practically, we expand the boundary of the
obstacle by half the size of the vehicle so that we can consider the vehicle as
a mass point. The expanded obstacle boundary is called the “real boundary”,
henceforth. Furthermore, to ensure the safety of ION, the obstacles is further

6 Intelligent Off-Road Navigation Algorithms and Strategies 191

a. Local navigation scenario

b. The scanning distance to the obstacle’s boundaries at time k

Fig. 6.6. An example scenario. In the figures, [θmin, θmax] is the scanning angle
range of interest; θRD and θSD are the decision angle based on the real boundary and
safe boundary, respectively. D1 is the distance to the obstacle in the current heading
direction. dCR is the criterion distance. dmax is the maximum scanning distance.

enlarged to create a “safe boundary”, so that the real boundaries are enveloped
with the safe boundaries. By the two-step obstacle extension, each obstacle
has two different boundaries, the “real boundary” and the “safe boundary”.
Figure 6.6 illustrates the boundaries and the scanning distances.

The obstacle avoidance algorithm to be presented in this subsection origi-
nates from a heuristic non-fuzzy algorithm which selects the direction based on
the distance to obstacles and the difference to the goal direction. The original
algorithm works well when there are few obstacles in the environment and the
obstacles are all convex-shaped. However, it has deficiencies in some special sit-
uations, such as candidate set being empty, or selecting wide left or right instead
of finding a path in the front, or being stuck at some obstacle compositions, or
the vehicle swinging toward an obstacle.

In order to overcome these shortcomings, four fuzzy rules are developed one by
one and together they work very well. These fuzzy rules are defined to reshape the
scanning distances curve and then the steering strategy is to select the direction

192 Q. Chen and Ü. Özgüner

with the smallest angle difference to the goal direction and enough distance to
the obstacles. The formulas are expressed as follows:

I(k) = {θ|DR(θ) − Δ(θ) > dCR,R(k)}
J (k) = {θ|DS(θ) − Δ(θ) > dCR,S(k)}

dCR,R(k) = min{d0
CR,R, max

θ
{DR(θ) − Δ(θ)} − ε}

dCR,S(k) = min{d0
CR,S , max

θ
{DS(θ) − Δ(θ)} − ε}

(6.5)

and
θRD(k) = argmin

θ∈I
{|θ − φ(k)|}

θSD(k) = argmin
θ∈J

{|θ − φ(k)|}
θD(k) = Select(θRD(k), θSD(k), φ(k))

(6.6)

where I and J are the candidate sets of angles at which the distance to the ob-
stacle is longer than the criterion distance, dCR,R(k) and dCR,S(k), respectively.
Δ(·) reshapes the obstacle scanning distances curves, DR(·) and DS(·), so that
different directions have different priorities to be selected from. The rule that
decides Δ(·), called the the “Focus” rule, is described later. d0

CR,R and d0
CR,S

are design parameters to prevent the algorithm from being sensitive to obstacles
very far away, known as the far-sighted situation, where there may be many
false obstacles. ε is a small positive constant so that the candidate sets are both
nonempty.

Equations (6.5) and (6.6) give the method to find two directions, θRD(k) and
θSD(k), as decisions based on the real boundary and the safe boundary scanning
distances, respectively. Both decisions attempt to reach the goal point and keep
the obstacle away for certain distances, dCR,R(θ, k) and dCR,S(θ, k), respectively.
When ION is far away from the obstacles, dCR,R(k) = d0

CR,R. Otherwise, when
ION is close to the obstacles, the steering controller chooses the direction with
the longest distance to the obstacles. In other words, the direction toward open
space is selected.

A. The Selection Rule

Let θD(k) be the final decision direction at time k. It is selected from either
θSD(k) or θRD(k) by calculating |θSD(k) − θRD(k)| and |θSD(k) − φ(k)|, where
φ(k) is the goal direction. Thus, the steering strategy reaches the goal and avoids
obstacles at the same time. Table 6.1 shows the selection rule noted by “Select”
in (6.6).

The “Small”, “Medium” and “Large” in Table 6.1 are fuzzy descriptions.
The defuzzification function picks either θSD(k) or θRD(k), as the result of
θD(k). This ensures that the result would not be some value between θSD(k)
and θRD(k).

Remark 1. If θSD(k) is chosen to be the steering decision, then there is an
open space in the direction so that vehicle is allowed to pick up a relatively high

6 Intelligent Off-Road Navigation Algorithms and Strategies 193

Table 6.1. The selection rule

|θSD(k) − θRD(k)|

|θSD(k) − φ(k)|

θD(k) = Small Medium Large

Small θSD(k) θSD(k) θRD(k)

Medium θSD(k) θRD(k) θRD(k)

Large θSD(k) θRD(k) θRD(k)

speed safely. On the other hand, if θRD(k) is chosen, it can be concluded that
|θSD(k) − θRD(k)| is large, i.e. the θSD(k), presenting the open free space, is in
the other direction, and the chosen direction must be a narrow path. The speed
controller uses this information and sets a relatively low speed setpoint.

B. The Focus Rule

In order to prevent ION from being distracted by side directions and going off
the road, we introduce the “Focus” rules in the steering controller. In the focus
rules, we consider the directions pointing forward and leading to the goal point
to have higher priorities than others.

In (6.5), Δ(·) is introduced to reshape the scanning distances curves, DR(·)
and DS(·). When a direction θ has low priority, the Δ(θ) is then set to a large
value so that the direction θ is less likely to be in the candidate sets, I and J .
By doing so, the steering controller tends to find the path direction with high
priority.

Let Δ1(θ) and Δ2(θ) represent the |θ−θ(k)| and |θ−φ(k)|, respectively, where
θ(k) is the vehicle heading at time k. So, a direction with high priority has a
small values of Δ1 and Δ2. Let (S, MS, M, ML, L) represent (Small, Medium
Small, Medium, Medium Large and Large), respectively. The fuzzy “Focus” rules
that work on the Δ(θ) in the equation (6.5) are as follows:

• If (Δ1 is S) and (Δ2 is S), then (Δ is S): if θ points forward and leads to
the goal direction, then θ has the highest priority to be chosen, i.e. DR(θ) or
DS(θ) has the smallest deduction.

• If ((Δ1 is S) and (Δ2 is M)) or ((Δ1 is M) and (Δ2 is S)) or ((Δ1 is M)
and (Δ2 is M)), then (Δ is MS).

• If ((Δ1 is S) and (Δ2 is L)) or ((Δ1 is L) and (Δ2 is S)), then (Δ is M).
• If ((Δ1 is L) and (Δ2 is M)) or ((Δ1 is M) and (Δ2 is L)), then (Δ is ML).
• If (Δ1 is L) and (Δ2 is L), then (Δ is L): if the angle θ neither points forward

nor leads to the goal direction, it has low priority and the deduction is large.

Figure 6.7 is an example of how the “Focus” rules work. The −Δ(θ) forms a Λ-
shaped curve when θ(k) is close to φ(k). Note that the curve can be an M-shaped
curve when θ(k) is separated away from φ(k). For those θs that Δ(θ) > DR(θ),
we have θ /∈ I ∪ J according to the focus rules. Therefore, these directions are

194 Q. Chen and Ü. Özgüner

Fig. 6.7. The example of the focus rules: The upper left figure is the “real world” and the
upper right figure displays the obstacle boundaries, both real and safe boundaries. The
scanning distances to the boundaries are shown in the middle figure. The dmax −Δ(θ) is
a Λ-shaped curve shown in the figure. The adjusted real distance and safe distance curves
are plotted in the bottom figure. By selecting the direction θD as the steering decision,
the steering controller generates a curve of path points shown in the upper right figure,
following which the AGV avoids the obstacles and approaches the goal point.

excluded from being selected as the decision direction. By doing so, the steering
controller opens a priority window for those directions that point forward and
lead to the goal point. Thus, the steering controller ignores the distractions from
low priority directions. A direction with low priority is selected only when the
directions with higher priority are all blocked by obstacles.

In this fuzzy method, triangle membership functions are used to define the
fuzzy sets for the Δ1 and Δ2, as shown in Figure 6.8. The values assigned to
(S, MS, M, ML, L) determine the height of the hump. The larger the values are,
the higher the hump is. The values of (a, b, c, d) determine the membership func-
tion, consequently determine the width of the hump in the curve of −Δ(θ). if
the values are small, −Δ(θ) is not reduced only in a narrow range of directions.
Thus, the “Focus” effort is enhanced. On the other hand, if the values are large,
then the “Focus” effort is neutralized and the navigator has a wide range of
direction to select from.

C. The Focus vs. Search Rules

The focus rules prevent the distraction by side directions quite well. Neverthe-
less, the focus rules trade the ability in searching the feasible directions for the

6 Intelligent Off-Road Navigation Algorithms and Strategies 195

Fig. 6.8. The membership functions for Δ1 and Δ2

0

1

1

S(k)

0.5 0.85

EX TR

v(k)/V0

0

1

1

S(k)

0.5 0.85

EX TR

v(k)/V0

Fig. 6.9. The membership functions for Δ1 and Δ2

distraction prevention. It works well when there are few obstacles in the envi-
ronment. When there are many obstacles in the environment, however, the focus
rules impair the search capability of the navigator. Furthermore, as stated pre-
viously, the values of (a, b, c, d) in the membership function of the fuzzy sets of
Δ1 and Δ2 are important parameters of the focus rules. The smaller values of
(a, b, c, d) correspond to stronger “Focus” and vice versa.

Motivated by this, the “Focus” rules are improved by considering the fuzzy
evaluation of the AGV status. The v(k), the vehicle’s speed, is regarded as the
index of vehicle’s situation: the lower the speed is, the more search capability is
required. Therefore, the equations are:

S(k) = FS(v(k), V0)

[a(k) b(k) c(k) d(k)]T = F (S(k))
(6.7)

where S(k) is the situation classification, a membership function value of the
fuzzy sets: exploring and travelling.

The membership function is shown in Figure 6.9. The rule FS(·) states: When
the v(k)/V0 is small, S(k) is “exploring” (EX). On the other hand, when v(k)/V0
is large, S(k) is “travelling” (TR). The AGV speed, v(k), is classified by com-
paring rather to the base speed than to the absolute values. The base speed, V0,
is provided to the AGV as the current speed limit. In the “Focus vs. Search”
rules, the values of (a, b, c, d) are no longer fixed. The fuzzy rules in (6.7) are as
follows:

• If S(k) is EX , then the values of (a, b, c, d) increases: When the AGV is near-
ing obstacles, we assume that the speed controller slows down the AGV. In
this case, the S(k) becomes more “EX”, and the focus rules are neutralized.
In other words, the “Search” capability is enhanced.

• If S(k) is TR, then the values of (a, b, c, d) reduces: vice versa, the focus rules
are enhanced in this case.

196 Q. Chen and Ü. Özgüner

Fig. 6.10. The example of ION’s path planning in the two-car-passing section at
NQE, GC05. The black stars are the obstacles recovered from ION’s sensor logs. Two
cars were placed in a corridor of 15ft half-width, as shown in the figure. The distance
between the two cars was about 100ft. ION passed the two cars, from left to right in
the figure, at the speed of 10 mph, the highest speed permitted in the section.

By applying the rules in (6.7), the AGV is much less likely to be stuck in front
of the concave-shaped obstacles. When the AGV approaches the obstacles, the
speed is reduced so that the “priority window” is opened up for search and the
“focus” effect is neutralized. The “Search” rules help to prevent the AGV from
being stuck.

D. The Persistence Rules

Because of the existence of false obstacles, some obstacles may popup or disap-
pear suddenly in the local sensor map. This brings a problem that the discontin-
uous outputs from the steering controller causes the oscillation of the vehicle’s
heading. In the worst situation, the two consecutive steering decisions may neu-
tralize each other.

To solve this problem, the value of θD(k − 1) is introduced to adjust Δ(θ) in
the focus fuzzy rules. By doing so, the steering controller adjusts the searching
window and raise the priority of directions near to the former decision, θD(k−1).
Therefore, the steering controller maintains the persistence. The “Persistence”
rules weigh on the last decision and give the controller a characteristic of persis-
tence so that the zigzag performance of the AGV is prevented.

When the decision direction is selected, a sequence of pathpoints is generated
for the low-level controller. Figure 6.10 shows the path planning result of ION in
the two-car-passing section in the NQE, GC05. The dotted lines are the section
boundary, the solid line is the trajectory that ION runs and the dark stars
are the detected obstacles. Three sections of the 10-dot-curve are the planned
path, which avoids the obstacles and stays within the section boundaries. Most
planned paths are not shown in order to make the figure clear. ION’s trajectory
and planned paths almost overlap, which shows that our low level controller
follows the planned path very well.

6.4.2.2 Speed Fuzzy Controller Design

The speed controller’s main aim is to avoid the collision into the obstacles.
Moreover, due to the physical constraint of the vehicle, sharp turning at high

6 Intelligent Off-Road Navigation Algorithms and Strategies 197

Fig. 6.11. The membership functions for D1 and D

speed should be avoided to prevent the AGV from rolling over. The velocity
fuzzy controller in ION consists of two sets of rules: the Anti-collision rules and
the Safe-steering rules, shown in the following:

Vs(k) = min[V0, A(D1, D), T (Δθ)]
Δθ = |θD(k) − θ(k)| (6.8)

Where D1 represents the distance to obstacles in the front of vehicle and D
is the value returned from path-planning procedure as in Figure 6.4. Δθ is the
angle difference between the decision angle and current heading. V0 is the speed
limit allowed for ION. The final speed set point value is Vs(k).

A. The Anti-collision Rules

The main purpose of the collision rules is to prevent the collision. Let A represent
the anti-collision rules. The fuzzy rules, A, have two inputs, D1 and D. Let
(S, MS, M, ML, L) have the same meaning as stated above, and let (DA) denote
the fuzzy set of dangerous distance. The rules are stated as follows:

• If (one of (D1, D) is DA), then A is STOP : the vehicle should stop when
the distance to the obstacles is too close and it is dangerous to move on.

• If (D1 is S), then A is S: the vehicle speed should be reduced when it is close
to the obstacles.

• If (D1 is M and D is S), then A is MS.
• If (D1 is M and D is M), then A is M .
• If (one of D1 (D1, D) is L) and (the other is M), then A is ML.
• If (both of (D1, D) are L), then A is L: no obstacle is nearby, the speed is

set to a high value.

The boundaries of the fuzzy set is selected according to the dynamic per-
formance of the vehicle and how much risk you want to take. The membership
functions used in our system are shown in Figure 6.11. The membership functions
for D1 and D are the same in our system, although they could be different in the
boundaries of the fuzzy sets. Note that the Dsafe, the minimum safe distance,
is marked in the figure, which is totally within the fuzzy set DA. Therefore, the
AGV stops before reaching the distance Dsafe so that collisions are prevented.
Should the vehicle be stopped by the rules, for example it is dangerously close
to an obstacle, the machine state would switch to the “Rollback” state and wait

198 Q. Chen and Ü. Özgüner

to be recovered by a sequence of robotic operations. In that case, the vehicle’s
heading is adjusted for the next try.

B. The Safe-Steering Rules

The other issue is the safety in making a turn. If a high speed set point and the
sharp-steering command are sent to the AGV at the same time, it may cause
the AGV to roll over. More importantly, it has been observed in our experiments
that the low level controller would have some overshoot in path following during
sharp turns, thus may cause the collisions with obstacles even if the planned
paths are obstacle-free.

To prevent the danger and reduce the overshoot in path following, the safe-
steering rules, denoted as T , are introduced. We adopt the value of |θD(k)−θ(k)|,
say Δθ, to represent the steering command. The safe-steering rule T says: If (Δθ
is S) then T is L; If (Δθ is M) then T is M ; If (Δθ is L) then S is L. By doing
so, the speed set point of the AGV is reduced when the sharp steering command
occurs.

6.5 Performance of the Navigation Module

A simulator has been built to test the navigation algorithm designed in this
paper. In the simulator environment, the obstacles are already expanded, and
the vehicle is regarded as a point mass. The vehicle model in this simulator is
commonly known as the Dubins’ car model with a minimum turning radius. The
kinematic equations are written as:

ẋ = u cos θ

ẏ = u sin θ

u̇ = a

θ̇ = ω

(6.9)

where x and y are the position coordinates. θ is the yaw angle. u stands for the
linear velocity, which is assumed to be positive. a is the acceleration. The ω is
the angular velocity, a control variable. The model is subject to the constraint:

∣∣∣ω
u

∣∣∣ ≤ 1
R

(6.10)

so that a minimum turning radius R is imposed. In this simulator, we can ran-
domly generate obstacles over a terrain and arbitrarily select a series of check
points. Figure 6.12 shows the AGV trajectory over such a terrain. The trajectory
of the AGV, the smooth (blue) line in the figure, indicates that the AGV followed
the check points, avoided all obstacles and reached the final goal smoothly and
safely in the end. The navigation module has been tested with different obstacle
densities over 100 times and failed in less than five cases and two of which didn’t
have feasible path since the obstacles are generated randomly. In the other three

6 Intelligent Off-Road Navigation Algorithms and Strategies 199

Fig. 6.12. The AGV trajectory over the obstacle-occupied terrain. The AGV is shrunk
to a point. The “locally sensed obstacles” are detected by the vehicle and plotted on
the map only when they are in the vehicle’s sensing range. As a consequence, only
those previously unknown obstacles that are near the vehicle trajectory are displayed
in the result map as the “locally sensed obstacles”.

failed cases, the AGV was stuck because the check points misled the AGV into
a wrong fork, which shows that the obstacle avoidance algorithm in this pa-
per is not sufficient in finding a path through a very complicated environment.
Nevertheless, the algorithm is sufficient for the GC events.

Figure 6.13 shows the test on small robots. In the indoor robot test, we put
an obstacle just behind a gate formed by two obstacles. In this case, even if the
obstacles were close to each other, the navigation algorithm was still able to find
a path and navigate the robot along the corridor without touching any obstacles.
We tested the navigation module for over 20 times on small robots with different
obstacles positions and configurations. The small robot failed twice to get to the
goal because of the extreme closeness of certain obstacles.

The performance of the navigator designed in this paper was demonstrated
by ION in the DARPA GC05 event. ION completely traversed the NQE1

course successfully four times2, which fully exhibited the obstacle-avoidance and
goal-approaching capabilities of the navigation module and our AGV system.
Figure 6.14 shows ION successful passing a car in the NQE.
1 The National Qualification Event (NQE) in the 2005 GC was the 2.7 mile test track

DARPA used as the semifinals. The track provided a series of obstacles and the
AGVs are required to go through 51 “gates”. It also had a 100ft metal “tunnel”
where GPS was lost.

2 ION tried the NQE course five times in total and only failed once due to a mechanical
problem.

200 Q. Chen and Ü. Özgüner

Fig. 6.13. Test obstacle avoidance algorithm on small robots. We used an all-terrain-
robot-vehicle (ATRV) for outdoor tests and a PIONEER P3-AT robot for indoor tests.

Fig. 6.14. An example: ION’s passing a car in NQE, GC05

In GC05, the race route was described by a road definition file which consists
of 2935 waypoints in total. Each waypoint was specified by GPS coordinates, the
width and the maximum allowed speed of section. The total route distance was
about 132 mile. Running with complete autonomous operations, ION covered
about 30miles in the Nevada Desert and was terminated at the 576th waypoint
from the start. The maximum speed ION reached in some sections was about
25 mph. During the race, ION experienced twice LIDAR failures and both were
recovered in two minutes. Without the recovery design, ION could not have
reached that far. Also, ION got into the “robotic operation” state twice. In the
first set of robotic operations, ION tried five times back-and-forth operations
before it overcame an obstacle. In the second set of robotic operations, ION
was terminated. However, neither DARPA report nor ION’s race log indicated
that ION had had any collisions or gone off the road in the GC05 race. Also,
ION was still totally driveable and stayed in the middle of the road when it was
terminated. We guess it was because of the slowness in ION’s gear shifting3. Since
3 We were not provided with official reasons of the termination.

6 Intelligent Off-Road Navigation Algorithms and Strategies 201

it took up to one minute for ION to shift its gear position in some situations,
which might be intolerably slow, the second set of robotic operations might
present the illusion that ION came to a halt and thus caused the termination.
With the watchdog design in the FSM described in Section 6.3, given more time,
we expect ION could have reached further in GC05 and even had the potential
to finish the whole course.

6.6 Conclusion

ION, the working off-road AGV from team Desert Buckeyes, is a successful in-
tegration of a series of technologies, such as sensor fusion, navigation, vehicle
control, signal processing, drive-by-wire technology, reliable software and map-
ping, etc. According to ION’s performance in GC05, we realize that the robust-
ness design is of great importance since some modules may not work properly
in some situations while being off-road. We have invested extensive effort to im-
prove the robustness of ION, for example, introducing the “Robotic Operation”
and “Alarm” states in the FSM design, realizing the recovery design of sensor
failures, and implementing the watchdog design for the FSM. Without these,
ION could not have reached that far. Nevertheless, ION didn’t finish the race
because of some unexpected events. The second lesson we learn is that practicing
in desert is also important for the race. We have had a lot of off-road practice
yet we tested ION in desert for less than one week. Although this one-week
testing improves the ION’s desert performance greatly, it is still not enough.
Practicing in the similar environment to the race can reduce the uncertainties
and unexpected events.

This paper briefly introduces the system structure of ION and focuses on
ION’s navigation module and the obstacle avoidance algorithm utilizing fuzzy
logic. The steering fuzzy controller, derived from a basic steering strategy, utilizes
several fuzzy rules to deal with complicated situations so that the AGV can reach
the goal point and avoid obstacles. The steering controller deals with the goal
approaching and obstacle avoidance at the same time, which helps the AGV
approach the goal smoothly. The speed controller utilizes fuzzy rules to prevent
the AGV from colliding with obstacles and enhance the vehicle path following
performance. ION’s performance in GC05, both in NQE and the race, justifies
the design of the real-time navigation module described in this paper.

Acknowledgement

A large group of researchers and students participated in ION’s development.
We acknowledge Dr. Keith Redmill, John Martin, Dr. Charles Toth, Matthew
Knollman, George McWilliams and Rong Xu for their insightful discussions,
valuable suggestions and contributions. We thank the Ohio State University for
all their support and assistance. We also acknowledge the contribution of our
partners, the team from University of Karlsruhe, which developed the image
processing system.

202 Q. Chen and Ü. Özgüner

References

Adams, M., & Probert, P. (1990, Jul.). Towards a Real-Tme Navigation Strategy for a
Mobile Robot. Paper presented at the IEEE International Workshop on Intelligent
Robots and Systems (IROS ’90), Tsuchiura, Japan.

Borenstein, J., & Koren, Y. (1989). Real-time Obstacle Avoidance for Fast Mobile
Robots. IEEE Transactions on Systems, Man and Cybernetics, 19(5), 1179-1187.

Chen, Q., Özgüner, Ü., & Redmill, K. (2004). The Ohio State University Team at
the Grand Challenge 2004: Developing A Completely Autonomous Vehicle. IEEE
Intelligent Systems, 19(5), 8-11.

Chen, Q., & Özgüner, Ü. (2005, Jun.). Real-time navigation for autonomous vehicles:
a fuzzy obstacle avoidance and goal approach algorithm. Paper presented at the
American Control Conference (ACC ’05), Portland, OR.

Hatipoglu, C., Özgüner, Ü., & Redmill, K. (2003). Automated lane change controller
design. IEEE Transactions on Intelligent Transportation Systems, 4(1), 13-22.

Hodge, N., & Trabia, M. (1999, May). Steering Fuzzy Logic Controller for an
Autonomous Vehicle. Paper presented at the IEEE International Conference on
Robotics and Automation, Detroit, MI.

Hsiung, C. (1998). First Course in Direrential Geometry. Springer, New York (USA),
1998.

Hummel, B., Kammel, S., Dang, T., Duchow, C., & Stiller, C. (2006, Jun.). Vision-
based Path Planning in Unstructured Environments. Paper presented at the IEEE
Intelligent Vehicle Symposium (IV ’06), Tokyo, Japan.

Hwang, Y., & Ahuja, N. (1988, Apr.). Path planning using a potential field repre-
sentation. Paper presented at the IEEE International Conference on Robotics and
Automation, Philadelphia, PA.

Team Desert Buckeyes. (2005). Team Desert Buckeyes Technical Paper.
http://www.darpa.mil/grandchallenge/TechPapers/DesertBuckeyes.pdf.

Khatib, O. (1985, Mar.). Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. Paper presented at the IEEE International Conference on Robotics and
Automation, St. Louis, MO.

Kambhampati, S., & Davis, L. (1986). Multiresolution path planning for mobile robots.
IEEE Journal on Robotics and Automation, 2(3), 135-145.

Latombe, J.-C. (1991). Robot motion planning. Boston MA: Kluwer Academic Pub-
lishers.

Lee, T., Lai, L., & Wu, C. (2005, May). A fuzzy algorithm for navigation of mobile
robots in unknown environments. Paper presented at the IEEE International Sym-
posium on Circuits and Systems 2005 (ISCAS ’05), Kobe, Japan.

Özgüner, Ü., Hatipoglu, C., & Redmill, K. (1997, Nov.). Autonomy In A Restricted
World. Paper presented at the IEEE Conference on Intelligent Transportation Sys-
tem (ITSC ’97), Boston, MA.

Özgüner, Ü., Redmill, K., & Broggi, A. (2004, Jun.). Team TerraMax and the DARPA
Grand Challenge: A General Overview. Paper presented at the IEEE Intelligent
Vehicles Symposium (IVS ’04), Parma, Italy.

Redmill, K., Kitajima, K., & Özgüner, Ü. (2001, Aug.). DGPS/INS integrated posi-
tioning for control of automated vehicle. Paper presented at the IEEE Conference
on Intelligent Transportation System (ITSC ’01), Oakland, CA.

Redmill, K., & Özgüner, Ü. (1998, Feb.). The Ohio State University Automated High-
way System Demonstration Vehicle. Paper presented at the 1998SAE International
Congress and Exposition (SAE Paper 980855), Detroit, MI.

6 Intelligent Off-Road Navigation Algorithms and Strategies 203

Redmill, K., Martin, J., & Özgüner, Ü. (2006, Jun.). Sensing and Sensor Fusion for
the 2005 Desert Buckeyes DARPA Grand Challenge Offroad Autonomous Vehicle.
Paper presented at the IEEE Intelligent Vehicle Symposium (IV ’06), Tokyo, Japan.

Saffiotti, A. (1997). The uses of fuzzy logic in autonomous robot navigation. Journal
of Soft Computing, 1(4), 180-197.

Seraji, H. (2000). Fuzzy Traversability Index: A new concept for terrain-based naviga-
tion. Journal of Robotic Systems, 17(2), 75-91.

Stentz, A. (1994, May). Optimal and Efficient Path Planning for Partially-Known
Environments. Paper presented at the IEEE International Conference on Robotics
and Automation (ICRA’94).

Toth, C., Paska, E., Chen, Q., Zhu, Y., Redmill, K., & Özgüner, Ü. (2006) Mapping
Support for the OSU DARPA Grand Challenge Vehicle. Paper submitted to the
IEEE Conference on Intelligent Transportation System (ITSC ’06), Toronto, Canada.

Warren, C. (1989, May). Global Path Planning Using Artificial Potential Fields. Pa-
per presented at the IEEE International Conference on Robotics and Automation,
Scottsdale, AZ.

Yu, H., Chen, Q., & Özgüner, Ü. (2004, Jul.). Control System Architecture for Terra-
Max - The off-road intelligent navigator. Paper presented at the 5th IFAC/EURON
Symposium on Intelligent Autonomous Vehicles, Lisboa, Portugal.

