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Summary. There are two commonly accepted paradigms for organizing intelligence in
robotic vehicles, namely, reactive and deliberative. Although these paradigms are well
known to researchers, there are few published examples directly comparing their devel-
opment and application on similar vehicles operating in similar environments. Virginia
Tech’s participation, with two nearly identical vehicles in the DARPA Grand Challenge,
afforded a practical opportunity for such a case study. The two Virginia Tech vehicles,
Cliff and Rocky, proved capable of off-road navigation, including road following and
obstacle avoidance in complex desert terrain. Under the conditions of our testing, the
reactive paradigm developed for Cliff produced smoother paths and proved to be more
reliable than the deliberative paradigm developed for Rocky. The deliberative method
shows great promise for planning feasible paths through complex environments, but
it proved unnecessarily complex for the desert road navigation problem posed by the
Grand Challenge. This case study, while limited to two specific software implementa-
tions, may help to shed additional light on the tradeoffs and performance of competing
approaches to machine intelligence.

5.1 Introduction

The 2005 DARPA Grand Challenge was a 132 mile race of autonomous ground
vehicles through the Mojave Desert. Virginia Tech produced two off-road au-
tonomous vehicles (Figure 5.1) to compete for the $2 million prize. From an
initial field of 195 teams, both Virginia Tech vehicles passed a series of qualify-
ing events and ultimately qualified for the main Grand Challenge Event, along
with 21 other teams. Although they were built on two similar base vehicle plat-
forms, one vehicle was developed using a reactive paradigm, while the other
vehicle was developed using a deliberative navigation paradigm (Murphy, 2000).
These competing strategies were developed and evaluated independently for the
Challenge. This paper discusses the strategy, capability, and performance of both
of the Virginia Tech Grand Challenge entries.
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Fig. 5.1. Virginia Tech’s entries to the 2005 DARPA Grand Challenge, Cliff (left) and
Rocky (right)

5.2 Base Platform

Both Virginia Tech Grand Challenge vehicles were initially designed as inter-
changeable platforms on which to develop two very different navigation strategies.
However, the terrain mapping for Rocky’s deliberative path planning required ad-
ditional terrain mapping LADAR units, resulting in some hardware differences be-
tween the two vehicles. This section includes the details of the base vehicles, power
system, drive-by-wire conversion, and network architecture (Leedy, 2006).

5.2.1 Base Vehicle

The Virginia Tech Grand Challenge base vehicles are Club Car XRT 1500s,
utility vehicles produced by Ingersoll-Rand. This base platform may seem like
an unlikely choice for a desert race due to its diminutive size, but it has proven
to be a capable off-road vehicle. The XRT 1500 is extremely agile with a turning
radius of 3.5 m. The vehicle also provides a top speed of 40 km per hour and
a minimum ground clearance of 16.5 cm under the rear differential skid plate.
Stock vehicle weight is 567 kg with the capability of carrying a 454 kg payload.

Cliff, a redesign of Virginia Tech’s entry to the 2004 DARPA Grand Challenge,
is built on a prototype XRT 1500 which had not yet gone into production at
the time of the vehicle’s donation. An aircooled 20 horse power (hp) Honda
GX620 gasoline engine supplies power to the drive train. The vehicle’s roll cage
was customized to provide protection for electronic equipment located in the
payload area as well as mounting locations for vision and laser sensors.

Rocky’s platform is also a Club Car XRT 1500. However, Rocky is a production
vehicle powered by a Kubota D722 20 hp liquid-cooled diesel engine. The roll cage
on Rocky was replaced with a custom built cage constructed of thicker wall tubing.
Rocky also makes use of Club Car’s optional heavy-duty suspension upgrade.

5.2.2 Drive-by-Wire Conversion

To enable full computer control of the vehicle actuation systems, the throttle,
brake, and steering were converted to drive by wire. The drive-by-wire systems
on Cliff and Rocky are nearly identical. Both vehicles actuate the throttle using
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Fig. 5.2. System-level data flow diagram for Cliff

Fig. 5.3. Novatel Propak LBplus positioning system. This system consists of a Novatel
Propak LBplus GPS receiver (left) and a Honeywell HG1700 IMU in a Novatel IMUG2
enclosure (right).

a dc gear motor with integrated encoder feedback. The throttle cable is wrapped
around a pulley mounted to the output shaft of the motor.

The steering wheel and column were removed from the vehicles to make space
for the drive-by-wire system. Both vehicles use right-angle gear motors fitted
with quadrature encoders to actuate the steering. The output shaft of the right-
angle gear head is directly coupled to the input shaft of the stock steering rack
with a chain coupling.

The drive-by-wire braking is accomplished by replacing the master cylinder
and brake pedal assembly with an electronically controlled hydraulic pump.
The braking system uses a Hydrastar HBA-16 actuator from Carlisle Industrial
Brake. Operator control of this electrohydraulic brake is accomplished using a
Teleflex-Morse ECFP electric foot pedal connected to the vehicle’s Motion Con-
trol computer.

In addition to the drive-by-wire brake, a manual/emergency brake can be
applied by the onboard operator or emergency stop system. The stock parking
brake consists of a pedal assembly that pulls a steel cable directly connected to
the rear brake calipers. After removing the ratcheting mechanism, the modified
parking brake assembly is used as a manual auxiliary brake. This brake is also
automatically activated in the event of a power loss to the vehicle, such as a
DARPA “disable” emergency stop condition. To use this braking system as an
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autoengaging safety brake, an air tank and air actuated piston were installed. Air
hold-off pressure must be applied to the unit to release the brake. In the event
of vehicle power loss, the brakes are engaged when a solenoid valve opens the air
passage and allows the hold-off air to escape from the air-actuated piston. Once
power has been restored to the system, the reserve tank recharges the piston and
disengages the brake.

5.2.3 Computing Architecture

Both vehicles are equipped with National Instruments PXI-8176 controllers.
These controllers are high-performance compact personal computers containing
Pentium processors with up to 1 GB of random access memory. The controllers
can run at speeds ranging from 1.2 to 2.6 GHz. Due to their high shock re-
sistance, the PXI computers are rigidly mounted to the electronics enclosure
without additional shock isolation. The Windows XP operating system provides
a familiar visual user interface.

The three computers on Cliff each perform a specific task: Vision, INS/Path
Planning, and Motion Control. The INS/Path Planning computer determines
Cliff’s current position and target location while monitoring for obstacles in
front of the vehicle. The Vision computer uses monocular vision to look for
roads in the vehicle’s field of view and stereovision to localize points along the
road. The information from the Vision computer is passed to the INS/Path
Planning computer, which determines the appropriate behavior for perceived
orientation and surroundings. The Motion Control computer executes speed and
steering commands from Path Planning by handling the closed-loop control of
all vehicle actuators. Figure 5.2 illustrates the computing architecture of Cliff’s
three computers.

Rocky uses the same basic architecture as Cliff except with four computers:
Vision, Path Planning, INS/Local Mapping, and Motion Control. The INS/
Local Mapping computer creates a map of the perceived obstacles and terrain.
The Vision computer passes a map of perceived roads to the Path Planning
computer. The Path Planning computer then determines the optimal path to
take through the surrounding area using data from local map and road map
data. These decisions are passed to the Motion Control computer and handled
exactly as on Cliff.

5.3 Sensors

Cliff and Rocky both share the same basic sensor suite: GPS/INS for position-
ing, horizontal LADAR for obstacle detection, and stereovision for road fol-
lowing. Rocky is also equipped with a set of two downward-looking scanning
LADAR units for local terrain mapping. These LADAR units are used only with
the map-based deliberative scheme to provide terrain information and to detect
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negative obstacles, such as holes and ditches. This section describes in detail
the physical arrangement, purpose, and data format of the main exteroceptive
sensor components.

5.3.1 Positioning

Both vehicles used Novatel Propak LBplus positioning systems (Figure 5.3) in
the Grand Challenge and in the comparative studies described later in this pa-
per. The system consists of a Novatel Propak LBplus GPS receiver and a No-
vatel IMUG2 enclosure housing a Honeywell HG1700 inertial measurement unit
(IMU). The Propak LBplus unit provides singlepoint position accuracy of 1.5
m CEP. As previously mentioned, this accuracy is increased to 10 cm CEP
by L-band differential corrections through the subscription service, OmniSTAR.
The position, velocity, and heading from the Propak LBplus are collected at the
maximum output rate of 20 Hz. In the event that the global positioning system
(GPS) signal becomes occluded, the inertial measurements from the IMU take
over seamlessly to provide position and heading.

5.3.2 Obstacle Detection

A single SICK LADAR is used to detect obstacles by scanning a horizontal
plane in front of Cliff and Rocky. Anything detected by this scanner is marked
as an obstacle. Unfortunately, this includes false obstacles, such as hills and other
nonobstacle objects that may pass in front of the scanner. The unit is mounted
to the front of each vehicle directly below the brush guard approximately 0.38 m
above the ground. By angling the sensor up approximately 1.5◦ from horizontal,
problems related to false hill detection are minimized. The serial data output
of the LADAR returns a near-instantaneous twodimensional (2D) polar coordi-
nate array of the range and angle to any solid objects in the sensor’s viewing
plane. Only the most recent scan from the LADAR is used for both navigation
strategies.

5.3.3 Vision

The monocular/stereovisionsystem allowsCliff and Rocky to perceive roads ahead
of the vehicle and mark them as preferred areas of travel. The vision system ex-
amines the monocular image of the scene, extracts areas that look like roads, then
finds the relative position of the road areas using the camera’s stereo capabilities.
Finally, it passes the road information to the path planning computer.

For the Grand Challenge Event, it was assumed that most of the competition
course would follow desert service paths and that these roads would be less likely
to contain obstacles than the surrounding terrain. For this reason, a vision system
was designed to identify roads and adjust the path of the vehicle to be down the
center of the road. A Point Grey Bumblebee stereovision camera, mounted to
the top center of the vehicle’s roll cage, is used to observe the area in front of the
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vehicle. Each of the Bumblebee’s cameras is capable of outputting progressively
scanned 640×480 stereoimages at 30 Hz. The stereoimage processing algorithm
operates at approximately 5 Hz.

Before each image is processed, it undergoes a number of modifications to
reduce processing time. The image resolution is reduced to 160×120 pixels to
lessen the number of recognition operations required on each frame. The im-
age is also converted from the red-green-blue (RGB) image representation to
hue-saturation-luminosity representation. The HSL representation allows sim-
pler color definitions in a variety of lighting conditions.

To further reduce the required processing per image, each frame is run through
a k-clustering (Green, Yao & Zhang, 1998) algorithm that separates every pixel
in each color plane into eight categories defined by the center of the cluster.
This clustering method reduces the colors in an image from 16 million to only
512. Instead of using rigidly defined color windows, this method reduces the
colors using dynamic logical segments. This operation ensures that each pixel
will be converted into colors that are as close to the original color as possible.
The reduced-color image is still stored as a 24-bit image to preserve the original
color differences.

After simplifying the image, the software searches for the basic geometric
characteristics that define a road. This search is done using only one of the
2D images provided by the stereocameras. The software determines if a uniform
texture and color pattern form a shape close to that of a desert road (Rasmussen,
2004). Once a road is found, its color patterns are logged to a color look-up table.
This table correlates a specific color to a road certainty value.

For each subsequent 2D image frame, every pixel is compared to the color
look-up table to create a confidence value for that pixel. This confidence value
represents the level of certainty that the specific pixel is part of a road. To
simplify further processing, the pixels corresponding to the lowest 30% of the
confidence values are removed. Pixels that are not adjacent to or near high confi-
dence value pixels are also removed. Using morphological techniques to connect
and separate the areas of an image, the software attempts to create a single area
of the image that may be a road (Rasmussen, 2004). The suspected road area
must be confirmed as a road by checking its vertical narrowing, edge continuity,
and size relative to the image.

If an area of the 2D image is determined to be a road, the image is sent to the
stereo-processing software where it is combined with its synchronous image to
convert the pixel locations to coordinates in the vehicle reference frame. These
coordinates are rechecked to ensure that there are no discontinuities, and that
they lie on the same plane as the vehicle. If confirmed, the road points are trans-
formed into UTM global coordinates and sent to the Path Planning computer to
be used in the navigation algorithm. The color look-up table for the confirmed
road is averaged with the previous ten tables to form the new table for future
iterations. To ensure that the look-up table contains enough values to operate
accurately, five successful iterations must occur before road points are confirmed
and sent to the Path Planning computer.
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5.4 Motion Control and Vehicle Safety

Although the two vehicles were designed to use different navigation algorithms
and sensor configurations, the drive-by-wire systems were designed to be the
same on both vehicles. This standardization allows any navigational algorithm
to be implemented on either vehicle, as long as it is compatible with the standard
interface. The Motion Control system provides the necessary software to turn
desired steering and speed commands into vehicle movement. The motion of
both Cliff and Rocky is controlled by three actuators: Steering motor, throttle
motor, and brake actuator. The desired commands are generated by the Path
Planning software in autonomous operation or a human driver in manual mode.

5.4.1 Speed Control

The vehicle acceleration is controlled by a closed-loop manipulation of an electric
gear motor attached to the vehicle’s throttle. Since the throttle motor cannot
slow the vehicle, a parallel brake control is needed for controlling the speed
of the vehicle. The braking system uses an open-loop control to translate a
desired reduction in speed to the appropriate brake percent command for the
hydraulic brake driver. If the commanded speed is greater than the current speed,
a proportional integral differential (PID) control loop handles throttle inputs. If
the commanded speed is less than the current speed, brakes are applied based
on the commanded urgency of deceleration. Even though the brake and throttle
control the speed in parallel, the vehicle will never attempt to increase throttle
when braking.

5.4.2 Rollover Prevention and Vehicle Safety

After experiencing two vehicle rollovers, one during Rocky’s DARPA site visit,
attention was focused on preventing another rollover. A simple dynamic model
of the vehicle, that considers gravity and centripetal force, was developed. The
basis for this model is shown in Figure 5.4. To account for the rollover effects of
unpredictable terrain, a factor of safety is implemented in each calculation.

A rollover condition exists when the resultant of the centripetal force and
the weight vector point outside the footprint of the vehicle. Stability can be
achieved by slowing the vehicle’s forward velocity and reducing the magnitude
of the steering angle.

Since the stability calculation depends on velocity and steering angle feed-
back, the stability calculation described above is not foolproof. Rocky’s rollover
in qualifying was due to LABVIEW DataSocket communication failures between
the INS computer and Motion Control computer. When the failure occurred, the
Motion Control computer falsely perceived a zero-speed value from the GPS/INS
DataSocket. When the vehicle attempted to accelerate to the commanded speed,
the GPS/INS feedback speed remained zero. As a result, the PID controller
continued to apply full throttle, and the vehicle rolled in its first turn. The
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Fig. 5.4. Model of the vehicle on a side slope and in a turn

team replaced the less reliable communication with simple UDP messages. In
addition, Motion Control monitors GPS/INS data for communication failures,
ensuring that the data are being updated on every iteration. The software will
pause the vehicle if a failure occurs, which prevents it from driving without
speed feedback. Similar safety systems monitor other potential failures, such as
problems with steering.

5.5 Navigation Strategies

An important objective in developing the two Virginia Tech Grand Challenge
vehicles was to compare the reactive navigation strategy used on Cliff with the
deliberative path planning strategy used on Rocky. These two approaches are
usually considered to be opposite ends of the spectrum of navigation strategies
(Murphy, 2000). Both approaches were given equal attention during the design
and development phase in preparation for the competition. This section provides
an explanation of each of the two navigation strategies.

5.5.1 Reactive Navigation with Dynamic Expanding Zones (DEZ)

Waypoint navigation, road following, and obstacle avoidance on Cliff all use a
reactive scheme (Murphy, 2000). Reactive algorithms only use the most recent
sensor information to make navigational decisions. A technique called the Dy-
namic Expanding Zones algorithm was developed by Virginia Tech as the main
obstacle avoidance strategy for the reactive approach. A set of zones around the
vehicle dictate the behavior that the vehicle will exhibit. If obstacles are not de-
tected within these zones, the vehicle will proceed with waypoint/road following.
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Fig. 5.5. An illustration of the vehicle’s commanded steering angle converging toward
zero during waypoint navigation

Otherwise, the vehicle will take appropriate action to avoid the obstacles. These
zones vary in size and shape, depending on vehicle speed, steering, and sensor
status.

5.5.1.1 Waypoint Navigation

A critical component of the 2005 Grand Challenge Event was successful naviga-
tion through globally defined waypoints. As with all decision-making software on
Cliff, waypoint navigationdoes not generate a planned path to reach a desired way-
point. Instead, an instantaneous steering angle, equal to the difference between the
current heading and direction to the waypoint, is commanded (Figure 5.5). This
waypoint navigation strategy acts as a closed-loop feedback control that requires
very little computation to calculate the commanded steering angle.

The vehicle reaches a desired waypoint when the vehicle enters a radius defined
by the distance between the corridor intersection point and waypoint (Figure 5.6).
Whether the vehicle is saving time or avoiding an obstacle, the waypoint radius
eliminates the need to travel directly over the waypoint. Traveling over a way-
point was not required for the Grand Challenge Event, as long as the vehicle stayed
within the lateral boundary offset (LBO).

5.5.1.2 Road Following

Since roads are generally easier to traverse and have fewer obstacles than un-
structured desert terrain, road following is a desirable behavior. If a road exists
that leads the vehicle in the general direction of the waypoint, the vehicle ignores
waypoint navigation to follow the road. Road data are received from the vision
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Fig. 5.6. A waypoint radius is created using the LBO of the intersecting corridors

Fig. 5.7. An illustration of how a road point is selected from the road point array

computer as an array of perceived road center points. Points outside of the LBO
and points not within 30◦ of the current heading are ignored, and the closest
valid road point is chosen to be the desired road point (Figure 5.7).

Using this desired road point, fuzzy logic control is used to determine if the
road point is in the general direction of the desired waypoints. Fuzzy logic is
able to substitute numerical variables with linguistic variables to solve ill-defined
problems (Zadeh, 1965, 1973). For example, if the vehicle is heading somewhat
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Fig. 5.8. Dynamic Expanding Zone layout

toward the waypoint and away from the corridor boundary, fuzzy control will
determine that road following is appropriate. If road following is desired, Cliff
steers toward the road point in the same manner as waypoint navigation.

5.5.1.3 Obstacle Avoidance

If a perceived obstacle prevents the vehicle from driving directly to a waypoint
or following a road, Cliff ignores the waypoint navigation and road following
behaviors to avoid the obstacle. A reactive obstacle avoidance approach, called
Dynamic Expanding Zones, has been developed for robust obstacle avoidance.
This algorithm is not limited to a specific sensor configuration, and can use
any type of instantaneous obstacle map with Boolean elements (obstacle or no
obstacle).

5.5.1.3.1 Obstacle Zones. The Dynamic Expanding Zones algorithm uses two
zones to determine the avoidance behavior when an obstacle is present (Figure
5.8). The avoidance zone is located directly in front of the vehicle (Reynolds,
1999). If an obstacle is in the avoidance zone, the vehicle must avoid it to continue
safely toward the desired waypoint. This zone has a constant width, slightly
larger than the width of the vehicle, which prevents the vehicle from clipping the
sides of obstacles. The length of the avoidance zone expands dynamically, hence
the name Dynamic Expanding Zones. Dynamic Expanding Zones commands a
steering angle and speed to avoid any obstacles in this zone.

The second zone, the buffer zone, is adjacent to and of the same length as
the avoidance zone. The purpose of the buffer zone is to prevent the vehicle
from turning into an obstacle. It also eliminates oscillatory behavior between
waypoint/road following and obstacle avoidance. For example, if the vehicle at-
tempts to make a turn to the left when there is an obstacle in the left buffer,
Dynamic Expanding Zones will override the turn command. The vehicle will
drive straight forward, until the obstacle exits the buffer zone. Once both the
avoidance and buffer zones are clear, waypoint/road following will resume.

5.5.1.3.2 Dynamic Expanding Capability. The length of the avoidance and
width of the buffer zone are the key factors in the success of this obstacle avoid-
ance algorithm. The length and width of the zones are adjusted based on the
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current driving conditions. For example, the avoidance zone is shortening when
the vehicle is turning. This keeps it from unnecessarily trying to avoid obstacles
that are straight ahead. It is possible for the vehicle to make an unnecessary
maneuver to avoid an obstacle if the buffers are too wide. For these reasons,
the size of the avoidance and buffer zones are dynamically modified to optimize
navigation for different situations.

The length of the avoidance zone is controlled by the projected clothoid path
and the speed of the vehicle (Shin & Singh, 1990). Using the current steering
angle and steering velocity (assumed to be constant), the corresponding clothoid
path is calculated. The avoidance zone shrinks to the most distant intersection of
this path with the avoidance zone. This means that the length of the avoidance
zone shrinks as the steering angle increases. This length control prevents the
vehicle from reacting to obstacles too far ahead, but ensures that the vehicle
will have ample time to respond as it approaches an obstacle. In addition, as the
vehicle increases its speed, the avoidance zone length must also increase to react
to obstacles in the distance (Putney, 2006).

Similar to the avoidance zone, the buffer is also dynamically controlled based
on the steering angle. Both buffer zones widen symmetrically as the steering
angle increases. A larger steering angle requires the vehicle to look for obstacles
farther away in the lateral direction. Again, this zone expansion ensures that the
vehicle will only avoid the necessary obstacles.

5.5.1.3.3 Commanded Steering Control. Similar to road following, the steering
direction is determined by fuzzy logic control. The controller intelligently decides
a steering direction, which is optimal for both avoiding an obstacle and staying
on course. The fuzzy input variables include distance to obstacles and obstacle
summing, discussed below. When a collision with an obstacle is imminent, the
Dynamic Expanding Zones method uses only obstacle summing to choose a safe
steering direction. For example, if an obstacle is located on the left side of the
avoidance zone near the vehicle, the safest steering direction is to the right.
On the other hand, when the obstacle is farther ahead, the vehicle has more
decision flexibility. As a result, the vehicle can choose a direction that will avoid
the obstacle while keeping the vehicle within the boundaries.

Obstacle summing allows Dynamic Expanding Zones to decide which direction
is optimal given current obstacle data. An obstacle window is a defined area of
interest that encompasses known obstacles in front of the vehicle. The height
and width of the obstacle window is defined by the fixed lengths for lateral
and length expansion. Only obstacles detected in this window are considered in
the obstacle summing calculation. This window allows the vehicle to respond to
multiple objects in close proximity instead of just the closest detected obstacle.
Using the obstacle window, a value is determined by summing the distances from
each of the obstacles to the centerline of the vehicle. Figure 5.9 illustrates how
obstacle summing would work if the obstacle window contained two obstacles.
The negative values, left of the centerline, represent the wall obstacle (sensed as
three points by the laser scanner); while the positive value represents the round
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Fig. 5.9. Example calculation for determining a steering direction based on obstacle
location

obstacle to the right. This example results in a negative obstacle sum; therefore,
a right turn requires a smaller steering maneuver (Putney, 2006).

The magnitude of the commanded steering angle is calculated using the dis-
tance to the closest obstacle within the avoidance zone. The steering angle calcu-
lation is not an attempt to model the vehicle’s actual projected path. Dynamic
Expanding Zones varies this approximate path and steering angle with each it-
eration until the obstacle is avoided. This steering angle calculation eliminates
the need for accurate path calculations on each update, which can be computa-
tionally expensive. As a result, Dynamic Expanding Zones requires minimal pro-
cessing power when compared to many deliberative approaches (Putney, 2006).

Once an obstacle has left the peripheral view of the LADAR, it is no longer
considered by the reactive strategy. This has proven to be a safe assumption,
since only the most extreme maneuvers of the vehicle would cause it to turn
back into an obstacle it has already seen without seeing it again.

5.5.1.3.4 Commanded Speed Control. Speed control is critical for properly avoid-
ing obstacles, staying within boundaries, and preventing rollover. The vehicle will
always attempt to run at its top speed. However, to prevent rollovers, the speed is
limited when the vehicle executes a turn. Though speed control follows the reac-
tive approach, the vehicle can anticipate future maneuvers and take precaution-
ary action. For example, the vehicle slows down when it detects an obstacle in its
avoidance zone. The vehicle also anticipates the turn at a waypoint by slowing to
a safe speed before it reaches the waypoint radius.

5.5.2 Deliberative Strategy

The Deliberative NonUniform Terrain Search (NUTS) algorithm, developed for
Rocky, uses simultaneous sensor fusion and storage to create a homogeneous local
terrain traversibility map. This map contains information on discontinuities in
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terrain height, course boundaries, and roads recognized by the vision system.
The map is scanned by an A* graph search (Hart, Nilsson & Raphael, 1968)
to determine the desired future path of the vehicle. This operation iterates in
real time at a rate of 16 Hz. The goal of the deliberative Terrain Search path
planning strategy is to build a continuously updated best path on which to drive.
The benefits include planned reaction to perceived future obstacles and holistic
driving decisions based on all sensor data (Leedy, 2006).

5.5.2.1 Terrain Mapping

The Terrain search algorithm uses two types of LADAR data to describe the
local terrain and obstacles: A two-and-one-half dimensional geometric terrain
map, and a binary obstacle map. The geometric terrain map is built using two
ground-scanning LADAR units. These can be seen on Rocky in Figure 5.1. The
obstacle map is built using a horizontal scanning, front mounted LADAR.

To detect variations in terrain that might affect the planned path of the
vehicle, two groundscanning LADAR systems are employed. Figure 5.10 shows
the fields of view of Rocky’s sensors.

The ground-scanning LADAR units measure ranges to solid objects in a 100◦

2D swath about the z axes of the sensors. On a perfectly flat surface, this would
allow the scanner beams to reach the ground at a maximum distance of 15 m in
front of the vehicle. As the vehicle approaches an obstacle, the scanners record a
higher altitude at the location the scan plane intersects the object. Tall obstacles
occlude the LADAR; leaving a “shadow” behind the obstacle, which cannot be

Fig. 5.10. Fields of view of Rocky’s ground mapping LADAR, horizontal LADAR,
and camera
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Fig. 5.11. The image on the left shows a parked car from Rocky’s point of view. The
image on the right shows scanned terrain colored black. The position and orientation
of Rocky is denoted by the grey arrow. A parked car blocks LADAR scans, leaving an
unscanned shadow, circled on the right image.

scanned. Figure 5.11 shows the location of scanned points collected as the vehicle
approaches car on the left.

The scan planes of the two scanners overlap in front of the vehicle, giving more
data directly ahead. This extra information can be used to identify potential
obstacles more readily.

Each point collected by the LADAR scanners is transformed from the sensor
coordinate frame to the vehicle reference and then rotated into global UTM
coordinates. This transformation uses the most recent position, attitude, and
heading. The new data are stored as an array of height and position values, then
added to the corresponding location in the local map. The new data overwrite
any older values stored in the same location. The local map is stored as a 2D array
of height values from an arbitrary baseline set at the start of the vehicle’s run.
The map array is aligned with true north-south and east-west, and represents
a 40 m by 40 m field of 20 cm square grid elements. This local terrain map is
continuously updated with new LADAR scans at a rate of 16 Hz. As the vehicle
moves, the LADAR scanners measure the height of solid objects in their scan
plane, and adds these data to the local terrain map, creating a three-dimensional
geometric description of the terrain that has been scanned. The data are always
represented with the vehicle at a fixed location and varying attitudes and the
map grid aligned with the global UTM coordinate frame. This map could readily
accept a priori terrain data, if any were available. Figure 5.12 shows a diagram
of the vehicle on a local terrain map.

In each program iteration, a 12.5 m by 12.5 m rectangular section of the
terrain map is extracted for path planning analysis. This section is transformed
back into the vehicle coordinate frame to another grid of 20 cm×20 cm squares.
This extracted section is processed using the sigma filter method (Murphy, 2000;
Lee, 1984) to find the slope (first derivative) of the perceived terrain. Areas of
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Fig. 5.12. Black areas in the local terrain map (left) indicate scanned points. The local
cost map is extracted from this area (right), and sent to the A* decision algorithm.
On the terrain map, the vehicle is held at a fixed position on the scrolling globally
referenced terrain map, but it may change attitude. The cost map area is held fixed
relative to the vehicle.

Fig. 5.13. The local cost map (top-down view, left) generated by the horizontal
LADAR for a typical scene with obstacles (vehicle view, right)

high slope are considered to be less passable than areas of little or no slope, so
the cost map is scaled by a tuned gain value to return high cost in areas of high
slope and low cost in areas of low slope. This map format allows the grid to be
searched using standard graph-search algorithms.

Horizontal LADAR scan points, which return a range of less than 40 m, are
imported into the local cost map as high-cost obstacles. Any point returned to
the scanner is considered impassible, and is marked with an extremely high cost.
The data from this sensor are refreshed on every program cycle using only the
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most recent scan for the cost map. This treatment of the sensor data provides
easily interpreted high-cost obstacles wherever the horizontal scanning LADAR
detects a solid object. The main drawback of this treatment is the occurrence
of “false positives” when the vehicle pitches momentarily or when it approaches
a hill. This has the effect of slowing the vehicle speed and causing the vehicle
to approach steep hills at an angle. In testing, we found that this rarely created
a situation where the vehicle would veer off course. Figure 5.13 shows a local
cost map generated by the horizontal scanning LADAR beside a photo of the
scene.

Vision Road Mapping – A computer vision road finding algorithm also con-
tributes to the local cost map. The vision processing approach is identical to
the one used by the Dynamic Expanding Zones algorithm with data passed as a
Boolean map of suspected road points. The scene in front of the vehicle is pro-
cessed to find points along the road. Figure 5.14 shows one frame of a stereotest
scene with the map array of the corresponding road map.

The vision road map is passed to the mapbuilding software as a binary array
of the same dimensions as the LADAR local cost maps. If confidence in the
vision-recognized road falls below a specific threshold, a blank map is sent to
the path planning. When received by the map-building software, all areas marked
as road centerline are marked with a lower cost than the surrounding areas. The
difference between road and nonroad cost values was tuned through extensive
field testing.

5.5.2.2 Deliberative Driving Decision

The NUTS deliberative driving paradigm attempts to drive the optimum path
over continuously changing nonuniform terrain perceived by the vehicle. To op-
timize the path based for both the current and intended future position of the
vehicle, the NUTS algorithm computes a new optimum path at each program
iteration using an A* graph search. Figure 5.15 is a flow schematic of a single
iteration of the NUTS program.

Fig. 5.14. The recognized road from the RGB image (left) is translated into a local
road map (right)
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Fig. 5.15. Sensor data for the NUTS algorithm is processed in parallel then combined
in the form of a local cost map for the A* search

To generate the final search map, NUTS overlays the four local cost maps
generated by the sensor cognition components. Figure 5.16 shows an example of
a typical cost map used by NUTS.

Obstacles detected by the horizontal LADAR and areas outside the course
boundary are marked with the highest possible value using the obstacle and
boundary cost maps. Areas with a geometric change in altitude are assigned a
cost based on the “steepness” of the terrain. The road layer adds cost to areas
not believed to be a road. The cost overlay values are weighted such that course
boundaries and obstacles have the greatest influence over driving decisions. Ter-
rain LADAR and road data are used to guide the vehicle through the optimum
path for navigation.

Using the overlaid map, NUTS next attempts to find the best path using an
A* least-cost path search (Hart et al., 1968). If the destination waypoint is on the
cost map, it is taken as the search goal point. If the destination point is out of the
map, NUTS generates a goal point on the border of the map. The path generated
by the A* search is passed to the driving component. The driving component
generates steering and speed commands based on the vehicle’s current pose. This
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Fig. 5.16. Typical LADAR overlay map of sensor data for the Virginia Tech Grand
Challenge A* graph search (right). Dark shades indicate areas of low cost, while light
areas indicate areas of high cost. The area enclosed in the white oval indicated a
significant drop off; the area circled in dashes indicates the trees pictured at left.

is accomplished by selecting a point on the path a certain range from the vehicle.
The vehicle steers using a pure pursuit algorithm (Coulter, 1992) to head toward
the path. Before the steering and speed commands are passed on to the vehicle
motion control system, a final check is performed to ensure that the commands
are safe.

5.6 Comparative Study

In preparation for the DARPA Grand Challenge, Virginia Tech compared the
reactive and deliberative navigation strategies side-by-side. The comparison de-
scribed in this section attempts to capture the data and lessons learned from
applying each navigation strategy. In the future, the team intends to use the
results to improve future designs of hybrid paradigms using the best elements of
both reactive and deliberative path planning. By implementing both strategies
simultaneously with similar developmental teams, this study also sheds light on
the nuances of developing and implementing both types of algorithms.

5.6.1 Performance

At the DARPA site visit to Virginia Tech on May 5, 2005, both the reactive
and the deliberative algorithms demonstrated their ability to navigate global
waypoints, avoid obstacles, and stay within the course boundaries on an off-road
obstacle course. This section discusses the differences in performance of the reac-
tive Dynamic Expanding Zones and deliberative NUTS driving algorithms in the
areas of waypoint following, driving smoothness/efficiency, obstacle avoidance,
and repeatability/reliably.
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Fig. 5.17. The lower Plantation Road test field with the RDDF course centerline
superimposed

To quantify the ability of each strategy to navigate waypoints, GPS/inertial
data were collected during test runs of both vehicles on an open rolling-hill
terrain test course set up at the Plantation Road test facility on the Virginia
Tech campus (Figure 5.17). These initial tests were run with identical route
definition data files (RDDF) paths and with no obstacles to avoid.

Special care was taken to examine the driving algorithms under weather and
terrain conditions that were as similar as possible. All test runs were collected
on the same day in clear weather with alternating reactive and deliberative runs
for measurements at the same speed/weather/lighting combination. All extero-
ceptive sensors except the high-precision Novatel GPS/INS were shut down on
the vehicles. In essence, this test focused on the ability of the algorithm to follow
a given path in the absence of obstacles. Both data sets were collected on the
same vehicle, using the same sensors and peripheral software. Our goal was to
isolate the behavioral differences in the decision-making software.

The RDDF length of this course was 3.173 miles (approximately 5 km) over
open field terrain. Each driving algorithm was tested over five laps at maximum
commanded speeds of 5, 10, and 15 mph. Position, velocity, actuator state, com-
manded vehicle state, and the values of many other parameters were collected
at a rate of 5 Hz during the tests.

The data, summarized in Table 5.1, clearly show an overall performance edge
for the reactive Dynamic Expanding Zones algorithm. Rocky running Dynamic
Expanding Zones averaged significantly higher speeds than the same vehicle
running the deliberative NUTS path planning. Although the vehicle was fully
capable of driving at higher speeds, the rollover safety processes in both algo-
rithms prevented the vehicle from selecting turn/speed combinations that might
put it in jeopardy. At 5 and 10 mph, the Dynamic Expanding Zones algorithm
averaged speeds near the top speed limit imposed on the software. At 15 mph,
however, the serpentine nature of the course triggered safety slowdown proce-
dures for sharp turns, and limited the overall speed.

By attempting to steer a course defined by a square grid, the deliberative
method must make more frequent steering adjustments to follow the desired
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Table 5.1. Overall performance statistics for non-obstacle avoidance test runs

Test Run Overall 

Performance

Top Set Speed  5 mph 10 mph 15 mph 

Top Speed (mph) 6.6 11.4 15.6 
Average Speed (mph) 4.8 7.2 7.9 

Reactive 

(Dynamic Expanding Zones) 

Total Time (s) 2365.2 1568.8 1443.6 
Top Speed (mph) 6.6 10.8 14.4 
Average Speed (mph) 3.5 4.0 4.30 

Deliberative 

(Non-Uniform Terrain Search)

Total Time (s) 3203.6 2829.4 2594.4 

path. The overall course performance highlights one main difference between
the reactive and deliberative paradigms: decisiveness. The reactive Dynamic
Expanding Zones algorithm is less sensitive to subtle changes in the perceived
sensor state. It is important for the vehicle to be flexible and react quickly to
a dynamic environment when selecting a desired path, but subtle errors in the
vehicle position or orientation can cause the deliberative algorithm to reroute
the path, which diminishes the overall performance. While this rerouting may
be desirable for long-term planning, it does not seem to be desirable for simple
waypoint following. As a result, the purely reactive paradigm had better overall
performance on the test course.

Unnecessarily using the steering, brake, or throttle actuators consumes energy
and may degrade the dynamic performance of the vehicle, or even result in a
rollover. This unnecessary actuation may also cause wear on the involved com-
ponents, such as the brake pads and steering rack. Unnecessary actuation also
burdens the vehicle’s power system and reduces the vehicles overall efficiency.
The steering actuator consumes 373 W at peak power, and the electrohydraulic
brakes consume 240 W at peak power. Brake actuation also takes significant ki-
netic energy from the vehicle, and dissipates it as waste heat at the brake pads.
Hence, unnecessary steering and braking can be significant factors in reducing
the efficiency of the vehicle.

While collecting the test run data, it appeared that the reactive algorithm
was able to steer more smoothly and efficiently on the course. To measure the
efficiency and smoothness of steering on the test runs, the percent of the time
the vehicle commands a change in steering angle was examined. The percent
of time spent changing steering angle is an indicator of the driving algorithm’s
smoothness and energy efficiency. If the vehicle constantly seeks a new steering
position, it uses a large amount of energy to drive the steering motors. Contin-
uous steering actuation also indicates more weaving of the vehicle.

Table 5.2 shows the percentage of time the steering actuator was running
for each algorithm on the same course. The reactive algorithm is nearly an
order of magnitude more efficient than the deliberative algorithm under the
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Table 5.2. Steering and braking actuation percentage (no obstacle avoidance)

Steering and Braking 

Actuation 

5 mph 10 mph 15 mph 

Travel Distance (mi) 3.22 3.17 3.17 

% Time Turning 6.3% 9.4% 10.0% Dynamic 

Expanding

Zones % Time Braking 3.6%   10.6% 13.6% 

Travel Distance (mi) 3.24 3.21 3.21 

% Time Turning 54.4% 56.3% 57.2% Non-Uniform 

Terrain

Search % Time Braking 5.1% 10.6% 12.9% 

same conditions. The likely cause of this wide disparity in steering efficiency can
be traced to the means by which each algorithm generates its path. The reactive
driving scheme determines the difference between its current heading and the
heading to the next waypoint. As long as the vehicle is heading toward the
waypoint, no steering adjustments need to be made. The deliberative approach
uses a pure pursuit algorithm to drive the planned path as closely as possible.

In tests with lower maximum speeds, the reactive NUTS algorithm exhibited
slightly more frequent braking than Dynamic Expanding Zones (Table 5.2). As
the maximum speeds increase, the relationship reverses, but these differences
are probably not significant. The Dynamic Expanding Zones algorithm is able to
achieve higher average speeds on the course. If the vehicle is allowed to accelerate
up to full speed in some sections, it will have to brake for turns. On the other
hand, the NUTS algorithm has a high frequency of turning, which means the
vehicle must first to slow to a safe speed to execute the maneuver. These effects
seem to require roughly the same amount of braking effort.

The mission of the Grand Challenge requires the vehicles to navigate reliably
throughout the 134 mile off-road course. To accomplish this reliably, extensive
testing and tuning was performed prior to the event. It was found during testing
that the reactive algorithm was more robust and less sensitive to small varia-
tions in sensor data than the deliberative algorithm. The graphs in Figure 5.18
are overlays of repeated runs on a practice course for the two algorithms. The
reactive algorithm clearly produces more repeatable paths than the deliberative
algorithm at all speeds.

5.6.2 Application

During development of both navigation strategies, the Virginia Tech Grand Chal-
lenge team made several notable observations that provide insight into the prac-
tical application of the reactive and deliberative driving schemes. The vehicle’s



5 Virginia Tech’s Twin Contenders 177

Fig. 5.18. Overlays of repeated runs for the reactive (left) and deliberative (right) al-
gorithms

reactions to sensor stimuli and errors, such as high grass and error in GPS posi-
tion, show key differences between the strategies. The measures taken to address
these and other issues shed light on the characteristics of development and prac-
tical application of these strategies. Overall, the Virginia Tech Grand Challenge
team found the reactive approach to be the most conducive to upgrades and grad-
ual improvements based on field testing. The “general solution” approach of the
deliberative scheme promises higher intelligence in navigation, but requires fun-
damental changes in navigation strategy to influence small changes in behavior.

5.6.2.1 GPS Error

A common experience for the Virginia Tech Grand Challenge GPS and inertial-
based positioning systems is the “GPS pop” (Figure 5.19). This occurs when, after
running on inertial-only positioning, the GPS/ INS regains the GPS signal. The
perceived position of the vehicle instantaneously jumps from the INS-computed
location to the GPS-based position. This “jump” has been measured as up to 2.5
m, in an arbitrary direction, based on the error in INS and GPS.

The reactive approach handles this type of sensor aberration without issue.
There is no change in obstacle avoidance or waypoint following performance,
except for a small heading adjustment based on the new perceived position with
respect to the waypoint. This adjustment is inversely proportional to the vehicle’s
distance from the waypoint. Because obstacle avoidance is based entirely on the
instantaneous measurement of obstacle position relative to the vehicle, no change
is affected by noise or error in the positioning system.

The deliberative algorithm is significantly more susceptible to problems due
to varying position error. Since the deliberative path planner attempts to drive
a path based on data collected in a previous time period, it will use the most
recent (corrected) position data to drive a path generated using an older, offset
position frame. The now-offset path can potentially carry the vehicle through
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Fig. 5.19. When the GPS/INS reacquires satellites, the system corrects the INS-
computed position

obstacles that were detected, but no longer perceived, in the correct location
relative to the vehicle.

The general direction and shape of the “correct” path is still valid from the
old computed position, but the data are no longer usable for obstacle avoidance.
The long-term general planning capability of the NUTS approach could benefit
from a reactive driver for more reliable close-in obstacle avoidance.

5.6.2.2 Navigation Range

The Dynamic Expanding Zones navigation approach has proven superior to the
NUTS in robustness and reliability for obstacle avoidance in simple situations.
The DARPA Grand Challenge is one such case where intelligent planning of
complex maneuvers is not required. The reactive navigation strategy is superb
at navigation through simple obstacles, such as passing cars and tunnel walls,
but lacks the ability to plan through complex situations (Figure 5.20).

Because of the avoidance zone in front of the vehicle, a vehicle running Dy-
namic Expanding Zones might not be capable of maneuvering through close-
quarters situations. In practice, Dynamic Expanding Zones showed a particular
weakness in the offset-gate configuration of obstacles (Figure 5.21).

The offset-gate obstacle is traversable by the NUTS deliberative strategy, which
is capable of planning a path through any area, regardless of the complexity of the
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Fig. 5.20.Dynamic Expanding Zones does not take the optimum path in some situations

Fig. 5.21. Dynamic Expanding Zones reaction to the offset-gate obstacle

obstacle field (Figure 5.22). This long-range intelligence demonstrates the main
attraction of the deliberative approach: The larger the area and complexity of
data available for path planning, the greater the advantage to the deliberative
approach. The drawback to using this strategy is that, as discussed in this paper,
it lacks the adaptability and smooth obstacle avoiding performance of the reactive
approach.
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Fig. 5.22. NUTS reaction to the offset-gate obstacle

5.6.2.3 Road Following

Another area in which NUTS excels is road following. The data output from
the Virginia Tech Grand Challenge road recognition algorithm to the NUTS is
optimal for map-based path following. Rather than simply steer toward a point
ahead of the vehicle suspected to be a road, NUTS attempts to find the shortest
path onto the low-cost road terrain. Unlike Dynamic Expanding Zones, which
ignores road following data in the presence of an obstacle, NUTS is capable of

Fig. 5.23. In some situations, Dynamic Expanding Zones (left) can lose a road due
to obstacle avoidance while NUTS (right) will maintain the optimal path (aerial photo
from Google Local �)
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intelligently planning a path down a road, around an obstacle, and back onto
the road again given sufficient sensor data (Figure 5.23).

5.7 Grand Challenge Performance

Neither Cliff nor Rocky were able to finish the 132 mile course. Rocky traveled
just over 39 miles along the course, and Cliff traveled just over 44 miles. Both
vehicles failed due to mechanical problems, rather than poor navigation deci-
sions. Cliff’s drive engine stalled when it briefly slowed to an idle, and Rocky’s
on-board generator shut down due to a suspected false low-oil reading. Had the
base platforms not failed, the Virginia Tech Grand Challenge team is confident
that the sensors and navigation systems would have allowed both vehicles to
finish the race in just under the 10 h time limit. From the start, the Virginia
Tech Grand Challenge strategy was to finish the race in the allotted amount
of time and focus on solid navigation rather than higher-speed performance. In
overall distance traveled, Cliff and Rocky finished eighth and ninth, respectively.

5.8 Conclusions

A team of dedicated undergraduate and graduate engineering students built
the Virginia Tech GrandChallenge vehicles as an exercise in engineering design.
Although the conversion to drive-by-wire, power system, motion control, and
computing architecture are nearly identical on Cliff and Rocky, these platforms
are designed to test and run two very different navigation strategies.

Cliff was designed to use the Dynamic Expanding Zones algorithm, a reactive
navigation approach specifically created for the Grand Challenge. This algorithm
consists of a number of variable size zones around the vehicle. In these zones, the
presence or lack of obstacles dictates the behavior of the vehicle. The zones vary
in size depending on the speed and surroundings of the robot in order to only
take in the essential information to avoid obstacles. Rocky uses a deliberative
navigation approach, making use of a terrain map and an A* algorithm to search
through the map for the easiest route to travel. This allows Rocky to navigate
more efficiently than Cliff through complicated terrain.

For the actual Grand Challenge Event and the National Qualifying Event,
the reactive navigation software was used on both Cliff and Rocky. The deliber-
ative software was not used, simply because the implementation was not mature
enough to perform reliably in competition. One of the biggest lessons learned
for implementing a deliberative navigation strategy was that it is essential to
have a way to translate the optimal grid-based path to a path that is smoothly
drivable. Another consideration is the size of terrain data. The deliberative al-
gorithm planned a path from a terrain map of 12.5×12.5 m. This was too small
an area to generate a useful plan.

In summary, the Virginia Tech case study describes and emphasizes some of the
key design considerations for development of deliberative and reactive navigation.
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The reactive strategy is simple and efficient, while the deliberative approach shows
the potential to deliver higher navigational intelligence and planning.
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