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Summary. This paper describes the development of an autonomous vehicle system
that participated in the 2005 DARPA Grand Challenge event. After a brief descrip-
tion of the event, the architecture, based on version 3.2 of the Department of Defense
Joint Architecture for Unmanned Systems (JAUS), and the design of the system are
presented in detail. In particular, the “smart sensor” concept is introduced which pro-
vided a standardized means for each sensor to present data for rapid integration and
arbitration. Information about the vehicle design, system localization, perception sen-
sors, and the dynamic planning algorithms that were used is then presented in detail.
Subsequently, testing results and performance results are presented.
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10.1 Introduction

The DARPA Grand Challenge is widely recognized as the largest and most
cutting-edge robotics event in the world, offering groups of highly motivated
scientists and engineers across the U.S. an opportunity to innovate in develop-
ing state-of-the-art autonomous vehicle technologies with significant military and
commercial applications. The U.S. Congress has tasked the military with making
nearly one-third of all operational ground vehicles unmanned by 2015 and The
DARPA Grand Challenge is one in a number of efforts to accelerate this effort.
The intent of the event is to spur participation in robotics by groups of engi-
neers and scientists outside the normal military procurement channels including
leaders in collegiate research, military development, and industry research.
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(a) Team CIMAR’s 2004 DARPA 
Grand Challenge Entry

(b) Team CIMAR’s 2005 DARPA 
Grand Challenge Entry

Fig. 10.1. The NaviGATOR

Team CIMAR is a collaborative effort of the University of Florida Center for
Intelligent Machines and Robotics (CIMAR), The Eigenpoint Company of High
Springs, Florida, and Autonomous Solutions of Young Ward, Utah. The goal
of Team CIMAR is to develop cutting-edge autonomous vehicle systems and
solutions with wide ranging market applications, such as intelligent transporta-
tion systems and autonomous systems for force protection. Team CIMAR fo-
cused on proving their solutions on an international level by participating in
both the 2004 and the 2005 DARPA Grand Challenges.

In 2003, Team CIMAR was one of 25 teams selected from over 100 applicants
nationwide to participate in the inaugural event. Team CIMAR was also one of the
15 teams that successfully qualified for and participated in the inaugural event in
March 2004; and finished in eighth place. Team CIMAR was accepted into the
inaugural DARPA Grand Challenge in late December 2003 and fielded a top-10
vehicle less than three months later. The team learned a tremendous amount from
the initial event and used that experience to develop a highly advanced new system
to qualify for the second Grand Challenge in 2005 (see Figure 10.1).

10.2 System Architecture and Design

The system architecture that was implemented was based on the Joint Architec-
ture for Unmanned Systems (JAUS) Reference Architecture, version 3.2 (JAUS,
2005). JAUS defines a set of reusable components and their interfaces. The
system architecture was formulated using existing JAUS-specified components
wherever possible along with a JAUS-compliant intercomponent messaging in-
frastructure. Tasks for which there are no components specified in JAUS required
the creation of so-called “Experimental” components using “User-defined” mes-
sages. This approach is endorsed by the JAUS Working Group as the best way
to extend and evolve the JAUS specifications.
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Fig. 10.2. The NaviGATOR’s JAUS-compliant architecture

10.2.1 High-Level Architecture

At the highest level, the architecture consists of four fundamental elements,
which are depicted in Figure 10.2:

• Planning Element: The components that act as a repository for a priori
data, including known roads, trails, or obstacles, as well as acceptable ve-
hicle workspace boundaries. Additionally, these components perform offline
planning based on that data.

• Control Element: The components that perform closed-loop control in order
to keep the vehicle on a specified path.

• Perception Element: The components that perform the sensing tasks required
to locate obstacles and to evaluate the smoothness of terrain.

• Intelligence Element: The components that act to determine the “best” path
segment to be driven based on the sensed information.

10.2.2 Smart Sensor Concept

The Smart Sensor concept unifies the formatting and distribution of perception
data among the components that produce and/or consume it. First, a common
data structure, dubbed the Traversability Grid, was devised for use by all Smart
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Fig. 10.3. Traversability grid portrayal

Sensors, the Smart Arbiter, and the Reactive Driver. Figure 10.3 shows the
world as a human sees it in the upper level, while the lower level shows the
Grid representation based on the fusion of sensor information. This grid was
sufficiently specified to enable developers to work independently and for the
Smart Arbiter to use the same approach for processing input grids, no matter
how many there were at any instant in time.

The basis of the Smart Sensor architecture is the idea that each sensor pro-
cesses its data independently of the system and provides a logically redundant
interface to the other components within the system. This allows developers to
create their technologies independent of one another and process their data as
best fits their system. The sensor can then be integrated into the system with
minimal effort to create a robust perception system. The primary benefit of this
approach is its flexibility, in effect, decoupling the development and integration
efforts of the various component researchers. Its primary drawback is that it
prevents the ability of one sensor component to take advantage of the results of
another sensor when translating its raw input data into traversability findings.

The Traversability Grid concept is based on the well-understood notion of an
Occupancy Grid, which is often attributed to Alberto Elfes of Carnegie Mel-
lon University (Elfes, 1989). His work defines an Occupancy Grid as “a proba-
bilistic tesselated representation of spatial information.” Sebastian Thrun pro-
vides an excellent treatise on how this paradigm has matured over the past 20
years (Thrun, 2003). The expansion of the Occupancy Grid into a Traversabil-
ity Grid has emerged in recent years in an attempt to expand the applicability
and utility of this fundamental concept (Seraji, 2003), (Ye & Borenstein, 2004).
The primary contribution of the Traversability Grid implementation devised for
the NaviGATOR is its focus on representing degrees of traversability including
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terrain conditions and obstacles (from absolutely blocked to unobstructed level
pavement) while preserving real-time performance of 20 Hz.

The Traversability Grid design is 121 rows (0 – 120) by 121 columns (0 – 120),
with each grid cell representing a half-meter by half-meter area. The center cell,
at location (60, 60), represents the vehicle’s reported position. The sensor results
are oriented in the global frame of reference so that true north is always aligned
vertically in the grid. In this fashion, a 60m by 60m grid is produced that is able
to accept data at least 30m ahead of the vehicle and store data at least 30m
behind it. To support proper treatment of the vehicle’s position and orientation,
every Smart Sensor component is responsible for establishing a near-real-time
latitude/longitude and heading (yaw) feed from the GPOS component.

The scoring of each cell is based on mapping the sensor’s assessment of the
traversability of that cell into a range from 2 to 12, where 2 means that the
cell is absolutely impassable, 12 means the cell represents an absolutely desir-
able, easily traversed surface, and 7 means that the sensor has no evidence that
the traversability of that cell is particularly good or bad. Certain other values
are reserved for use as follows: 0 → “out-of-bounds,” 1→ “value unchanged,”
13→ “failed/error,” 14→“unknown,” and 15→ “vehicle location.” These dis-
crete values have been color-coded to help humans visualize the contents of a
given Traversability Grid, from red (2) to gray (7) to green (12).

All of these characteristics are the same for every Smart Sensor, making seam-
less integration possible, with no predetermined number of sensors. The grids are
sent to the Smart Arbiter, which is responsible for fusing the data. The arbiter
then sends a grid with all the same characteristics to the Reactive Driver, which
uses it to dynamically compute the desired vehicle speed and steering.

The messaging concept for marshalling grid cell data from sensors to the ar-
biter and from the arbiter to the reactive driver is to send an entire traversability
grid as often as the downstream component has requested it (typically at 20 Hz).
In order to properly align a given sensor’s output with that of the other sensors,
the message must also provide the latitude and longitude of the center cell (i.e.,
vehicle position at the instant the message and its cell values were determined).
An alternative approach for data marshalling was considered in which only those
cells that had changed since the last message were packaged into the message.
Thus, for each scan or iteration, the sending component would determine which
cells in the grid have new values and pack the row, column, and value of that cell
into the current message. This technique greatly reduces the network traffic and
message-handling load for nominal cases (i.e., cases in which most cells remain
the same from one iteration to the next). However, after much experimentation
in both the lab and the field, this technique was not used due to concerns that
a failure to receive and apply a changed cells message would corrupt the grid
and potentially lead to inappropriate decisions, while the performance achieved
when sending the entire grid in each message never became an issue (our con-
cern about the ability of the Smart Sensor computers, or the onboard network,
to process hundreds of full-grid messages per second did not manifest itself in
the field).
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In order to aid in the understanding, tuning, and validation of the Traversabil-
ity Grids being produced, a Smart Sensor Visualizer component was developed.
Used primarily for testing, the SSV can be pointed at any of the Smart Sensors,
the Smart Arbiter, or the Reactive Driver and it will display the color-coded
Traversability Grid, along with the associated vehicle position, heading, and
speed. The refresh rate of the images is adjustable from real time (e.g., 20 Hz)
down to periodic snapshots (e.g., 1 s interval).

10.2.3 Concept of Operation

The most daunting task of all was integrating these components such that an
overall mission could be accomplished. Figure 10.4 portrays schematically how
the key components work together to control the vehicle. Figure 10.4 also shows
how the Traversability Grid concept enables the various Smart Sensors to deliver
grids to the Smart Arbiter, which fuses them and delivers a single grid to the Re-
active Driver. Prior to beginning a given mission, the a priori Planner builds the
initial path, which it stores in a Path File as a series of global positioning system
(GPS) waypoints. Once the mission is begun, the Reactive Driver sequentially
guides the vehicle to each waypoint in the Path File via the Primitive Driver.
Meanwhile, the various Smart Sensors begin their search for obstacles and/or

Fig. 10.4. Operational schematic (including traversability grid propagation)
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smooth surfaces and feed their findings to the Smart Arbiter. The Smart Arbiter
performs its data fusion task and sends the results to the Reactive Driver. The
Reactive Driver looks for interferences or opportunities based on the feed from
the Smart Arbiter and alters its command to the Primitive Driver accordingly.
Finally, the goal is to perform this sequence iteratively on a subsecond cycle
time (10 to 60 Hz), depending on the component, with 20 Hz as the default
operational rate.

10.3 Vehicle Design

The NaviGATOR’s base platform is an all terrain vehicle custom built to Team
CIMAR’s specifications. The frame is made of mild steel roll bar with an open
design. It has 9” Currie axles, Bilstein Shocks, hydraulic steering, and front and
rear disk brakes with an emergency brake to the rear. It has a 150 HP Trans-
verse Honda engine/transaxle mounted longitudinally, with locked transaxle that
drives front and rear Detroit Locker differentials (4 wheel drive, guaranteed to
get power to the road). The vehicle was chosen for its versatility, mobility, open-
ness, and ease of development (see Figure 10.5).

   (a)          (b)

Fig. 10.5. Base mobility platform

The power system consists of two, independent 140A, 28V alternator systems
(Figure 10.5a). Each alternator drives a 2400W continuous, 4800W peak inverter
and is backed up by 4 deep cell batteries. Each alternator feeds one of two au-
tomatic transfer switches (ATS). The output of one ATS drives the computers
and electronics while the other drives the actuators and a 3/4 Ton (approx. 1kW
cooling) air conditioner. Should either alternator/battery system fail the entire
load automatically switches to the other alternator/battery system. Total sys-
tem power requirement is approximately 2200W, so the power system is totally
redundant.

The system sensors are mounted on a rack that is specifically designed for their
configuration and placement on the front of the vehicle (see Figure 10.6). These
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Fig. 10.6. View of sensor cage

sensors include a camera that finds the smoothest path in a scene. Equipped
with an automatic iris and housed in a waterproof and dust proof protective
enclosure, the camera looks through a face that is made of lexan and covered
with a polarizing scratch-resistant film. Also mounted on the sensor cage are
two SICK LADARs that scan the ground ahead of the vehicle for terrain slope
estimation; one tuned for negative obstacle detection and the other for smooth
terrain detection. Also, an additional SICK LADAR aimed parallel to the ground
plane is mounted on the front of the vehicle at bumper level for planar obsta-
cle detection. Additional sensors were mounted on the vehicle for experimental
purposes, but were not activated for the Darpa Grand Challenge (DGC) event.
Each sensor system is described in detail later in this paper.

The computing system requirements consists of high-level computation needs,
system command implementation, and system sensing with health and fault
monitoring. The high level computational needs are met in the deployed system
via the utilization of eight single-processor computing nodes targeted at individ-
ual computational needs. The decision to compartmentalize individual processes
is driven by the developmental nature of the system. A communications protocol
is implemented to allow interprocess communication.

The individual computing node hardware architecture was selected based on
the subjective evaluation of commercial off-the-shelf hardware. Evaluation crite-
ria were centered on performance and power consumption. The deployed system
maintains a homogenous hardware solution with respect to the motherboard,
random access memory (RAM), enclosure, and system storage. The AMD K8 64
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Fig. 10.7. Computer and electronics housing

bit microprocessor family was selected based on power consumption measure-
ment and performance to allow tailoring based on performance requirements
with the objective of power requirement reduction. Currently, three processor
speeds are deployed: 2.0 GHz, 2.2 GHz, and 2.4 GHz. The processors are hosted
in off-the-shelf motherboards and utilize solid-state flash cards for booting and
long-term storage. Each processing node is equipped with 512 to 1028 MB of
RAM. JAUS communication is effected through the built-in Ethernet controller
located on the motherboard. Several nodes host PCI cards for data i/o. Each
node is housed in a standard 1-U enclosure. The operating system deployed is
based on the 2.6 Linux kernel. System maintenance and reliability are expected
to be adequate due to the homogenous and modular nature of the compute
nodes. Back-up computational nodes are on hand for additional requirements
and replacement. All computing systems and electronics are housed in a NEMA
4 enclosure mounted in the rear of the vehicle (see Figure 10.7).

10.4 Route Pre-planning

The DARPA Grand Challenge posed an interesting planning problem given that
the route could be up to 175 miles in length and run anywhere between Barstow,
California and Las Vegas, Nevada. On the day of the event, DARPA supplied a
Route Data Definition File (RDDF) with waypoint coordinates, corridor segment
width, and velocity data. In order to process the a priori environment data and
generate a route through DARPA’s waypoint file, Team CIMAR used Mobius,
an easy to use graphical user interface developed by Autonomous Solutions Inc.
for controlling and monitoring unmanned vehicles. Mobius was used to plan the
initial path for the NaviGATOR in both the National Qualification Event and
the final Grand Challenge Event.
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The route pre-planning is done in three steps: Generate corridor data, import
and optimize the DARPA path, and modify path speeds. A World Model com-
ponent generates the corridor data by parsing DARPA’s RDDF and clipping all
other environment information with the corridor such that only elevation data
inside the corridor are used in the planning process (see Figure 10.8). The RDDF
corridor (now transformed into an ESRI shapefile) is then imported into Mobius
and displayed to the operator for verification.

In the next step, Mobius imports the original RDDF file for use in path gen-
eration. Maximum velocities are assigned to each path segment based on the
DARPA assigned velocities at each waypoint. From here, the path is optimized
using the NaviGATOR’s kinematics constraints and a desired maximum devia-
tion from the initial path. The resultant path is a smooth drivable path, from
the start node to the finish node, that stays inside the RDDF corridor generated
specifically for the NaviGATOR (see Figure 10.9). Mobius is then used to make
minor path modifications where necessary to create a more desirable path.

The final step of the pre-planning process is to modify path velocities based
on a priori environment data and velocity constraints of the NaviGATOR itself.
Sections of the path are selected and reassigned velocities. Mobius assigns the
minimum of the newly desired velocity and the RDDF-assigned velocity to the
sections in order to ensure that the RDDF-assigned velocities are never exceeded.
During the DARPA events, the maximum controlled velocity of the NaviGATOR

Fig. 10.8. RDDF corridor (parsed with elevation data)
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was 25 miles per hour so, in the first pass, the entire path was set to a conservative
18 mph except in path segments where the RDDF speed limit was lower. From
there, the path is inspected from start to finish and velocities are increased or
decreased based on changes in curvature of the path, open environment (dry
lake beds), elevation changes, and known hazards in the path (e.g., over/under
passes). After all velocity changes are made, the time required to complete the
entire path can be calculated. For the race, it was estimated that it would take
the NaviGATOR approximately 8 hours and 45 minutes to complete the course.
Finally, the path is saved as a comma-separated Path File and transferred to
the NaviGATOR for autonomous navigation.

10.5 Localization

The NaviGATOR determines its geolocation by filtering and fusing a combina-
tion of sensor data. The processing of all navigation data is done by a Smiths
Aerospace North-finding Module (NFM), which is an inertial navigation system.
This module maintains Kalman filter estimates of the vehicle’s global position
and orientation, as well as linear and angular velocities. It fuses internal ac-
celerometer and gyroscope data, with data from an external NMEA GPS, and
external odometer. The GPS signal provided to the NFM comes from one of
the two onboard sensors. These include a NavCom Technologies Starfire 2050,
and a Garmin WAAS Enabled GPS 16. An onboard computer simultaneously

Fig. 10.9. Mobius screen shot with path optimized for the NaviGATOR. The race
RDDF is shown in the upper left corner and the start/finish area is centered on the screen.
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parses data from the two GPS units and routes the best-determined signal to
the NFM. This is done to maintain valid information to the NFM at times when
only one sensor is tracking GPS satellites. During valid tracking, the precision
of the NavCom data is better than the Garmin, and thus the system is biased
to always use the NavCom when possible.

In the event that both units lose track of satellites, as seen during GPS out-
ages, which occurs when the vehicle is in a tunnel, the NFM will maintain local-
ization estimates based on inertial and odometry data. This allows the vehicle
to continue on course for a period of time; however, the solution will gradually
drift and the accuracy of the position system will steadily decrease as long as
the GPS outage continues. After a distance of a few hundred meters, the error
in the system will build up to the point where the vehicle can no longer continue
on course with confidence. At this point, the vehicle will stop and wait for a GPS
reacquisition. Once the GPS units begin tracking satellites and provide a valid
solution, the system corrects for any off-course drift and continues autonomous
operation.

The Smith’s NFM is programmed to robustly detect and respond to a wide
range of sensor errors or faults. The known faults of both GPS systems, which
generate invalid data, are automatically rejected by the module, and do not
impact the performance of the system, as long as the faults do not persist for
an extended period of time. If they do persist, then the NFM will indicate to a
control computer what the problem is, and the system can correct it accordingly.
The same is true for any odometer encoder error, or inertial sensor errors. The
NFM will automatically respond to the faults and relay the relevant information
to control computers, so the system can decide the best course of action to
correct the problem.

10.6 Perception

This section of the paper discusses how the NaviGATOR collects, processes and
combines sensor data. Each of the sensor components is presented, organized by
type: LADAR, camera, or “pseudo” (a component that produces an output as if
it were a sensor, but based on data from a file or database). Finally, the Smart
Arbiter sensor fusion component is discussed.

10.6.1 LADAR-Based Smart Sensors

There are three Smart Sensors that rely on LADAR range data to produce their
results: the Terrain Smart Sensor (TSS), the Negative Obstacle Smart Sensor
(NOSS) and the Planar LADAR Smart Sensor (PLSS). All three components
use the LMS291-S05 from Sick Inc. for range measurement. The TSS will be
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described in detail and then the remaining two will be discussed only in terms
of how they are different than the TSS.

A laser range finder operates on the principle of time of flight. The sensor
emits an eye-safe infrared laser beam in a single-line sweep of either 180◦ or
100◦, detects the returns at each point of resolution, and then computes single
line range image. Although three range resolutions are possible (1◦, 0.5◦, or
0.25◦) the resolution of 0.25◦ can only be achieved with a 100◦ range scan. The
accuracy of the laser measurement is +/- 50 mm for a range of 1 to 20 m, while
its maximum range is ∼80 m. A high-speed serial interface card is used to achieve
the needed high-speed baud rate of 500 kB.

10.6.1.1 Terrain Smart Sensor

The sensor is mounted facing forward at an angle of 6◦ toward the ground. For
the implementation of the TSS, the 100◦ range with a 0.25◦ resolution is used.
With this configuration and for nominal conditions (flat ground surface, vehicle
level), the laser scans at a distance of ∼20 m ahead of the vehicle and ∼32 m wide.
The TSS converts the range data reported by the laser in polar coordinates into
Cartesian coordinates local to the sensor, with the Z axis vertically downward
and the X axis in the direction of vehicle travel. The height for each data point
(Z component) is computed based on the known geometry of the system and
the range distance being reported by the sensor. The data is then transformed
into the global coordinate system required by the Traversability Grid, where the
origin is the centerline of the vehicle at ground level below the rear axle (i.e.,
the projection of the GPS antenna onto the ground), based on the instantaneous
roll, pitch, and yaw of the vehicle.

Each cell in the Traversability Grid is evaluated individually and classified for
its traversability value. The criteria used for classification are:

1. The mean elevation (height) of the data point(s) within the cell.
2. The slope of the best fitting plane through the data points in each cell.
3. The variance of the elevation of the data points within the cell.

The first criterion is a measure of the mean height of a given cell with respect
to the vehicle plane. Keep in mind that positive obstacles are reported as negative
elevations since the Z-axis points down. The mean height is given as

� =
�Zi

n
, (10.1)

where μ is the mean height, ΣZi is the sum of the elevation of the data points
within the cell, and n is the number of data points.

The second criterion is a measure of the slope of the data points. The equation
for the best fitting plane, derived using the least squares solution technique, is
given as

Soptimum = �GTG�−1GTb , (10.2)
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where:
Soptimum is the vector perpendicular to the best fitting plane,
G is an n × 3 matrix given by

G = �
x1 y1 z1

x2 y2 z2

− − −

xn yn zn

� , (10.3)

b is a vector of length “n” given by

b = �
− D01

− D02

−

− D0n

� . (10.4)

Assuming that D0i is equal to 1, the above equation is used to find Soptimum

for the data points within each cell. Once the vector perpendicular to the best-
fitting plane is known, the slope of this plane in the “x” and “y” directions can
be computed. Chapter 5 of Solanki (2003) provides a thorough proof of this
technique for finding the perpendicular to a plane.

The variance of the data points within each cell is computed as

Variance =
��Zi − ��2

n
. (10.5)

A traversability value between 2 and 12 is assigned to each cell, depending
on the severity values of the mean height, slope, and variance information. A
cell must contain a minimum of three data points or else that cell is flagged
as unknown. This also helps in eliminating noise. Each of the parameters is
individually mapped to a corresponding traversability value for a given cell. This
mapping is entirely empirical and non-linear. A weighted average of these three
resulting traversability values is used to assign the final traversability value.

10.6.1.2 Negative Obstacle Smart Sensor

The NOSS was specifically implemented to detect negative obstacles (although
it can also provide information on positive obstacles and surface smoothness like
the TSS). The sensor is configured like the TSS, but at an angle of 12◦ toward the
ground. With this configuration and for nominal conditions, the laser scans the
ground at a distance of ∼10 m ahead of the vehicle. To detect a negative ob-
stacle, the component analyzes the cases where it receives a range value greater
than would be expected for level ground. In such cases, the cell where one would
expect to receive a hit is found by assuming a perfectly horizontal imaginary
plane. As shown in Figure 10.10, this cell is found by solving for the intersec-
tion of the imaginary horizontal plane and the line formed by the laser beam. A
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Fig. 10.10. NOSS implementation (side view)

traversability value is assigned to that cell based on the value of the range dis-
tance and other configurable parameters. Thus, a negative obstacle is reported
for any cell whose associated range data are greater than that expected for an
assumed horizontal surface. The remaining cells for which range value data is
received are evaluated on a basis similar to the TSS.

10.6.1.3 Planar LADAR Smart Sensor

The sensor is mounted 0.6 m above the ground, scanning in a plane horizontal to
the ground. Accordingly, the PLSS only identifies positive obstacles and renders
no opinion regarding the smoothness or traversability of areas where no positive
obstacle is reported. For the PLSS, the 180◦ range with a 0.5◦ resolution is used.
The range data from the laser is converted into the Global coordinate system and
the cell from which each hit is received is identified. Accordingly, the “number of
hits” in that cell is incremented by one and then, for all the cells between the hit cell
and the sensor, the “number of missed hits” is incremented by one. Bresenham’s
line algorithm is used to efficiently determine the indices of the intervening cells.

A traversability value between 2 and 7 is assigned to each cell based on the
total number of hits and misses accumulated for that cell. The mapping algo-
rithm first computes a score, which is the difference between the total number
of hits and a discounted number of misses in a cell (a discount weight of 1/6 was
used for the event). This score is then mapped to a traversability value using
an exponential scale of 2. For example, a score of 2 or below is mapped to a
traversability value of “7,” a score of 4 and below is mapped to a “6,” and so on,
with a score greater than 32 mapped to a “2.” The discounting of missed hits
provides conservatism in identifying obstacles, but does allow gradual recovery
from false positives (e.g., ground effects) and moving obstacles.

10.6.1.4 Field Testing

The parameters of the algorithm that affect the output of the component are
placed in a configuration file so as to enable rapid testing and tuning of those
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parameters. Examples of these tunable parameters for the TSS and NOSS com-
ponents are the threshold values for the slope, variance, and mean height for
mapping to a particular traversability value. For the PLSS, these parameters
include the relative importance of the number of hits versus misses in a given
cell, and a weighting factor to control how much any one scan affects the final
output.

By making these parameters easy to adjust, it was possible to empirically
tune and validate these components for a wide variety of surroundings such as
a steep slopes, cliffs, rugged roads, small bushes, and large obstacles, like cars.
This approach also helped to configure each component to work in the most
optimum way across all the different surroundings. Finally, it helped in deciding
on the amount of data/time the component required to build confidence about
an obstacle or when an obstacle that was detected earlier has now disappeared
from view (e.g., a moving obstacle).

10.6.2 Camera-Based Smart Sensor

The Pathfinder Smart Sensor (PFSS) consists of a single color camera mounted
in the sensor cage and aimed at the terrain in front of the vehicle. Its purpose
is to assess the area in the cameras scene for terrain that is similar to that on
which the vehicle is currently traveling, and then translate that scene information
into traversability information. The PFSS component uses a high-speed frame-
grabber to store camera images at 30 Hertz.

Note that the primary feature used for analytical processing is the red, green
and blue (RGB) color space. This is the standard representation in the world of
computers and digital cameras, and is therefore often a natural choice for color
representation. Also, RGB is the standard output from a CCD-camera. Since
roads typically have a different color than nondrivable terrain, color is a highly
relevant feature for segmentation. The following paragraphs describe the scene
assessment procedure applied to each image for rendering the Traversability Grid
that is sent to the Smart Arbiter.

10.6.2.1 Preprocess Image

To reduce the computational expense of processing large images, the dimensions
of the scene are reduced from the original digital input of 720 × 480 pixels to a
320×240 reduced image. Then, the image is further preprocessed to eliminate the
portion of the scene that most likely corresponds to the sky. The segmentation of
the image is based simply on the physical location within the scene (tuned based
on field testing), adjusted by the instantaneous vehicle pitch. This very simplistic
approach is viable because the consequences of inadvertently eliminating ground
are minimal due to the fact that ground areas near the horizon will likely be
beyond the 30 m planning distance of the system. The motivation for this step
in the procedure is that the sky portion of the image hinders the classification
procedure in two ways. First, we considered that the sky portion slows down the
image processing speed by spending resources evaluating pixels that could never



10 Team CIMAR’s NaviGATOR: An Unmanned Ground Vehicle 327

be drivable by a ground vehicle. Second, there could be situations where parts
of the sky image could be misclassified as road.

10.6.2.2 Produce Training and Background Data Sets

Next, a 100 × 80 sub-image is used to define the drivable area, and two 35 × 50
sub-images are used to define the background. The drivable sub-image is placed in
the bottom-center of the image, while the background sub-images are placed at the
middle-right and middle-left of the image, which is normally where the background
area will be found, based on experience (Lee, 2004) (see Figure 10.11). When the
vehicle turns, the background area that is in the direction of the turn will be reclas-
sified as a drivable area. In this case, that background area information is treated
as road area by the classification algorithm.

Fig. 10.11. Scene segmentation scheme

10.6.2.3 Apply Classification Algorithm

A Bayesian decision theory approach was selected for use, as this is a fundamen-
tal statistical approach to the problem of pattern classification associated with
applications such as this. It makes the assumption that the decision problem is
posed in probabilistic terms, and that all of the relevant probability values are
known. The basic idea underlying Bayesian decision theory is very simple. How-
ever, this is the optimal decision theory under Gaussian distribution assumption
(Morris, 1997).

The decision boundary that was used is given by
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(a) (b)

Fig. 10.12. Processed images

where μ1 and
∑

1 are the mean vector and covariance matrix of the drivable-area
RGB pixels in the training data, μ2 and

∑
2 are those of the background pixels,

and x contains RGB values of the entire image.
The decision boundary formula can be simplified as

�x − �1�T�1
−1�x − �1� = �x − �2�T�2

−1�x − �2� . (10.7)

A block-based segmentation method is used to reduce the segmentation pro-
cessing time. 4 × 4 pixel regions are clustered together and replaced by their
RGB mean value, as follows:
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L , (10.8)

where μ(x, y) is the new pixel mean value for the 4 × 4 block, P is the raw
pixel data, (i, j) is the raw pixel orientation, (x, y) is the new pixel orientation,
Lε{1, 2, 3} for RGB, and N is the block size.

The clusters, or blocks, are then segmented, and the result, as shown in Figure
10.12(a), has less noise compared with pixel-based approaches, Figure 10.12(b).
Also, the segmentation process is accomplished faster than pixel-based classifi-
cation. A disadvantage, however, is that edges are jagged and not as distinct.

10.6.2.4 Transform to Global Coordinate System

After processing the image, the areas classified as drivable road are converted by
perspective transformation estimation into the global coordinates used for the
Traversability Grid (Criminisi, 1997). The perspective transformation matrix is
calculated based on camera calibration parameters and the instantaneous vehicle
heading. Finally, the PFSS assigns a value of 12 (highly traversability) to those
cells that correspond to an area that has been classified as drivable. All other cells
are given a value of 7 (neutral). Figure 10.13 depicts the PFSS Traversability
Grid data after transformation into global coordinates.
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Fig. 10.13. Transformed image

10.6.3 Pseudo Smart Sensors

There are two Smart Sensors that produce Traversability Grids based on stored
data: The Boundary Smart Sensor (BSS) and the Path Smart Sensor (PSS).

The BSS translates boundary knowledge, defined as boundary polygons prior
to mission start, into real-time Traversability Grids, which assures that the vehi-
cle does not travel outside the given bounds. The BSS is responsible for obtaining
the boundary information from a local spatial database. The BSS uses these data
to determine the in-bounds and out-of-bounds portions of the traversability grid
for the instantaneous location of the vehicle. The BSS also has a configurable
“feathering” capability that allows the edge of the boundary to be softened,
creating a buffer area along the edges. This feature provides resilience to un-
certainties in the position data reported by the GPOS component. Figure 10.14

Fig. 10.14. Traversability Grid showing boundary data
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Fig. 10.15. Traversability Grid showing a priori path data

shows a typical grid output from the BSS indicating the vehicle’s location within
the grid, and the drivable region around it. By clearly demarking areas of the
grid as out-of-bounds, the BSS allows the Smart Arbiter to summarily dismiss
computation of out-ofbounds grid cells and the Reactive Driver to prune its
search tree of potential plans.

The PSS translates the a priori path plan, stored as a “path file” prior to mis-
sion start, into real-time Traversability Grids. The PSS uses these path data to
superimpose the originally planned path onto the traversability grid based on the
instantaneous location of the vehicle. The PSS has a configurable “feathering” ca-
pability that allows the width of the path to be adjusted and the edges of the path
to be softened. This feature also allows the engineer to select how strongly the
originally planned path should be weighted by setting the grid value for the cen-
terline. A 12 would cause the Arbiter and Planner to lean toward following the
original plan even if the sensors were detecting a better path, while a 10, which
is what was used at runtime, would make the original plan more like a suggestion
that could be more easily overridden by sensor findings. Figure 10.15 shows a typ-
ical grid output from the PSS indicating the vehicle’s location within the grid and
the feathered a priori planned path flowing through the inbounds corridor.

10.6.4 Sensor Fusion

With the Traversability Grid concept in place to normalize the outputs of a wide
variety of sensors, the data fusion task becomes one of arbitrating the matching
cells into a single-output finding for that cell for every in-bounds cell location in
the grid.

10.6.4.1 Grid Alignment

First, the Smart Arbiter must receive and unpack the newest message from
a given sensor and then adjust its center-point to match that of the Arbiter
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(assuming that the vehicle has moved between the instant in time when the
sensor’s message was built and the instant in time when the arbitrated output
message is being built). This step must be repeated for each sensor that has sent
a message. The pseudo-code for this process is:

Determine current location of vehicle,
Adjust centerpoint of Smart Arbiter Grid to match current location
For each active Smart Sensor:

Adjust centerpoint of Smart Sensor Grid to match current location.

At this point, all input grids are aligned and contain the latest findings from
its source sensor. To support the alignment of Traversability Grids with current
vehicle position, a so-called “torus buffer” object was introduced. This allows
the system to use pointer arithmetic to “roll the grid” (i.e., change the row and
column values of its center-point) without copying data.

10.6.4.2 Data Arbitration

Now the Smart Arbiter must simultaneously traverse the input grids, cell-by-cell,
and merge the data from each corresponding cell into a singleoutput value for
that row/column location. Once all cells have been treated in this fashion, the
Smart Arbiter packs up its output grid message and sends it on the Reactive
Driver.

For early testing, a simple average of the input cell values was used as the
output cell value. Later work investigated other algorithms, including heuristic
ones, to perform the data fusion task. The Smart Arbiter component was de-
signed to make it easy to experiment with varying fusion algorithms in support
of on-going research. The algorithm that was used for the DGC event entailed
a two-stage heuristic approach. Stage 1 is an “auction” for severe obstacles for
the cell position under consideration. Stage 2 then depends on the results of the
“auction”. If no sensor “wins” the auction, then all of the input cells at that
position are averaged, including the arbiter’s previous output value for that cell.
The pseudo-code for this algorithm is:

For each cell location:

IF any sensor reported a “2,”
THEN decrement the Arbiter’s output cell by decr (min=2),

ELSE, IF any sensor reported a “3,”
THEN decrement the Arbiter’s output cell by decr/2 (min=3),

ELSE
Arbiter’s output cell= Average(input cells+ Arbiter’s prior output cell),

where decr is a configurable parameter (= 2 for the Grand Challenge Event).
Thus, a sensor must report a severe obstacle for several iterations in order for

the arbiter to lower its output value, thus providing a dampening effect to help
circumvent thrashing due to a sensor’s output values. The averaging of input
values along with the arbiter’s previous output value also provides a dampening
effect.
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The Smart Arbiter, using the algorithm described here, was able to achieve its
specified processing cycle speed of 20 Hz. The premise used for all algorithms that
were explored was to keep the arithmetic very simple and in-place since the data
fusion task demands can reach 2 million operations per second just to process
the algorithm (7 grids/cycle * 14,641 cells/grid * 20 cycles/second). Thus, com-
plex probabilistic-based and belief-based approaches were not explored. How-
ever, adding highly traversable cells to the auction (i.e., 11’s and 12’s) and
post-processing the output grid to provide proximity smoothing and/or obsta-
cle dilation were explored, but none of these alternatives provided any better
performance (in the sense of speed or accuracy) than the one used for the event.

10.7 Real-Time Planning and Vehicle Control

The purpose of online planning and control is to autonomously drive the Navi-
GATOR through its sensed environment along a path that will yield the greatest
chance of successful traversal. This functionality is compartmentalized into the
Reactive Driver (RD) component of the NaviGATOR. The data input to this
component include the sensed cumulative traversability grid, assembled by the
Smart Arbiter component, vehicle state information, such as position and veloc-
ity, and finally the a priori path plan, which expresses the desired path for the
vehicle to follow sans sensor input. Given this information, the online real-time
planning and control component, seeks to generate low-level actuator commands,
which will guide the vehicle along the best available path, while avoiding any
areas sensed as poorly traversable.

10.7.1 Receding Horizon Controller

The objective of the RD component is to generate an optimized set of the ac-
tuator commands (referred to as a “wrench” in JAUS), which drives the vehicle
through the traversability grid and brings the vehicle to a desired goal state. The
NaviGATOR accomplishes this real-time planning and control simultaneously,
with the application of an innovative heuristic-based receding horizon controller.

Receding horizon is a form of model predictive control (MPC), an advanced
control technique, used to solve complex and constrained optimization prob-
lems. In this case, the problem is to optimize a trajectory through the localized
traversability space, while adhering to the nonholonomic dynamics constraints
of the NaviGATOR. An in-depth explanation and analysis of the technique is
provided in (Mayne, 2000), and the application of suboptimal MPC to nonlinear
systems is given in (Scokaert, 1999). This method was selected because it unifies
the higher-level planning problem with the lower-level steering control of the
vehicle. Separate components are not needed to plan the geometry of a desired
path, and then regulate the vehicle onto that path.

The controller attempts to optimize the cost of the trajectory by employing
an A∗ search algorithm (Hart, 1968). The goal of the search is to find a set of
open-loop actuator commands that minimizes the cost of the trajectory through
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the traversability space, and also bring the vehicle to within a given proximity
of a desired goal state. The goal state is estimated as the intersection of the a
priori path with the boundary of the traversability grid. As the vehicle nears the
end of the path, and there is no longer an intersection with the grid boundary,
the desired goal state is simply the endpoint of the last a priori path segment.

Special consideration was given to formulating the units of cost (c) for the
search. An exponential transformation of the traversability grid value (t), multi-
plied by distance traveled (d) was found to work best. The cost equation is given
here, where the exponent base is represented by (b):

c = dbt. (10.9)

Thus, the cost of traversing a grid cell scales nonlinearly with its corresponding
traversability value. An intuitive comparison is best to describe the effect of this
transformation and why it works well: With a linear transformation, the cost of a
path traveling through a traversable value of two is only twice as high as the same
path through a value of one. (Note, these values are just given for the purpose
of an example and are not actually encountered in the NaviGATOR system.)
Therefore, the search would possibly choose a path driving through up to twice
as much distance in the value of one, rather than a much shorter path driving
through a value of two. Whereas, an exponential transformation ensures that
there is always a fixed ratio between neighboring integer traversability values.
Thus, this ratio can be used as a tuning parameter to allow the algorithm to
achieve the desired tradeoff between the length and cumulative traversability
cost of a selected path. Conveniently, the ratio used for tuning is equal to the
base of the exponent given in the cost equation.

Closed-loop control with the receding horizon controller is achieved by repeat-
ing the optimization algorithm as new traversability data are sensed and vehicle
state information is updated. Thus, disturbances, such as unanticipated changes
in traversability or vehicle state, are rejected by continually reproducing a set of
near optimal open-loop commands at 20 Hz, or higher.

The search calculates different trajectories by generating input commands and
extrapolating them through a vehicle kinematics model. The cost of the resulting
trajectory is then calculated by integrating the transformed traversability value
along the geometric path that is produced through the grid. The search continues
until a solution set of open-loop commands is found that produce a near-optimal
trajectory. The first command in the set is then sent to the actuators, and the
process is repeated. A typical result of the planning optimization is shown in
(Figure 10.16, where the dark line is the final instantaneous solution).

Rather than plan through the multidimensional vector of inputs, i.e., steering,
throttle, and brake actuators, the search attempts to optimize a one dimensional
set of steering commands at a fixed travel speed; the control of the desired
speed is handled separately by a simple proportional integral differential (PID)
controller. Since it may be necessary to change the vehicle’s desired speed in
order to optimize the planned trajectory through the search space, extra logic is
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Fig. 10.16. Sample planning result through traversability grid

included in the search to either speed up or slow down the vehicle according to
the encountered data.

10.7.2 Vehicle Model

The kinematics model used for response prediction of an input command to the
system is that of a front-wheel steered rear-wheel-drive vehicle. The input signals
to this model are the desired steering rate (u), and linear vehicle velocity (v).
The model states include the vehicle Cartesian position and orientation (x, y, θ)
and the angle of the front steering wheels (ϕ) with respect to the vehicle local
coordinate frame. The kinematics equation is given here, where (b) represents
the wheel base of the vehicle:
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ẏ

�̇

�̇
� = �

cos � 0

sin � 0

1
b

tan � 0

0 1
��v

u � . (10.10)

In the algorithm implementation, additional constraints were added to the
model to limit the maximum steering rate, and also the maximum steering
angle. These values were determined experimentally and then incorporated into
the software as configurable parameters. Also, due to the complex nature these
system dynamics, obtaining a solution to the differential equations is not fea-
sible; therefore, a series of simplifications and assumptions were made to allow
for fast computation of future state prediction. The underlying assumption is
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that, since the resolution of the traversability grid is relatively low (0.5 m), very
accurate estimates for the vehicle’s predicted motion are not necessary. The as-
sumptions made were that for a short period of time or traveled distance, the
curvature of the path that the vehicle followed was near constant, and this con-
stant curvature could be taken as an average over the predicted interval. Thus,
the predicted path trajectory was simply a piece-wise set of short circular arcs.
An implementation of Bresenham’s algorithm (Bresenham, 1977) was used to
integrate the traversability grid value along the determined arcs.

As an additional measure for vehicle stability, a steering constraint was added
to limit the maximum steering angle as a function of speed (v) and roll angle (Φ)
(due to uneven terrain). The goal of this constraint was to limit the maximum
lateral acceleration (ny) incurred by the vehicle due to centripetal acceleration and
acceleration due to gravity (g). Thus, if the vehicle were traveling on a gradient
that caused it to roll toward any one direction, the steering wheels would be limited
in how much they could turn in the opposite direction. Additionally, as the vehicle
increased in speed, this constraintwould restrict turns that could potentially cause
the NaviGATOR to roll over. This constraint is given by the following equation:

kmax =
±nymax + g sin���

v2 . (10.11)

The value for maximum lateral acceleration was determined experimentally
with the following procedure. A person driving the NaviGATOR would turn
the wheels completely to one direction, and then proceed to drive the vehicle
in a tight circle slowly increasing in speed. The speed in which the driver felt
a lateral acceleration that was reasonably safe or borderline comfortable was
recorded, and the acceleration value was calculated. This was done for both left
and right turns, and the minimum of the two values were taken for conservatism.
The value found to be a reasonable maximum was, 4 mps2, and was hard coded
as a constraint to the vehicle model.

10.7.3 Desired Speed Logic

The determination of the commanded and planned vehicle speed is derived from
many factors. The RD receives several sources of requested speed, calculates its
own maximum speed, and then chooses the minimum of these to compute the
throttle and brake commands to the vehicle. Each of the input speed commands
was calculated or originated from a unique factor of the vehicles desired behav-
ior. At the highest level, vehicle speed was limited to a maximum value that
was determined experimentally based on the physical constraints of the Navi-
GATOR platform. The next level of speed limiting came from the a priori path
data, which itself was limited to the speeds provided by the RDDF corridor.
Additionally, the speed provided by the path file can be assessed to see if a
slower desired speed is approaching ahead of the vehicle. Therefore, if it is about
to become necessary to slow down the vehicle, the RD can allow for natural
deceleration time. Also, desired speed as a function of pitch was added to slow
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down the vehicle on steep ascents or descents. This ensures that the NaviGATOR
does not drive too fast while encountering hilly terrain.

Another important speed consideration resides with the planning search. Em-
bedded in the search itself is the ability to slow the vehicle down in the cases
where the desired trajectory comes within proximity to poorly traversable grid
cells. The planner uses a look-up table that enumerates all of the maximum
speeds that the vehicle is allowed to drive while traveling through areas of low
traversability. Thus, if the vehicle attempts to avoid an obstacle or travel down
a narrow road with hazardous terrain to either side, it is commanded to slow
down, thus providing a lower risk while allowing for a more comprehensive search
to find the best course of action. Also, if the search was unable to find a reason-
able solution (i.e., only a solution that goes through very poor areas was found),
then the desired speed is lowered. In its next iteration, the RD attempts to find
a better solution at that slower speed. This approach is reasonable because the
vehicle has greater maneuverability at low speed, and therefore the planner has
a better chance of finding a less costly route to its goal.

Additional speed control is provided by a Situation Assessment component
consisting of a Long Range Obstacle Specialist and a Terrain Ruggedness Spe-
cialist. The Long Range Obstacle Specialist uses a data feed from the PLSS
LADAR to determine whether the space directly in front of the vehicle is free
of obstacles beyond the 30 m planning horizon (i.e., 30 m out to the 80 m range
limit of the LADAR). The Terrain Ruggedness Specialist uses the instantaneous
pitch rate and roll rate of the vehicle (provided by the Velocity State Sensor) to
classify the current terrain as “Smooth,” “Rugged,” or “Very Rugged.” Based on
the Long Range Obstacle State and Terrain Ruggedness State, with appropriate
hysteresis control and dampening, the permitted speed of the vehicle is selected
and sent to the RD. For example, if the terrain is Smooth and no Long Range
Obstacles are detected, then the RD is permitted to drive the vehicle up to its
highest allowable speed and thus faster than an empirically derived Obstacle
Avoidance speed of 7.2 mps (16 mph).

10.7.4 Controller Fault Detection

There are four faults that the RD is capable of detecting during normal operation
of the vehicle. They are the cases where the NaviGATOR has: become blocked,
become stuck, collided with an obstacle, or gone out of the bounds of the RDDF.
In each of these scenarios, it is possible for the system to take corrective action.
The most commonly found of these errors is the blocked condition. In this case,
there is no viable path planning solution, even when the search is attempting to
plan a trajectory at the vehicle’s most maneuverable speeds. It was determined
through analysis of the collected data that this case was most often occurring
due to sensor misclassifications. The corrective action in these scenarios is to
simply wait a short period of time for the sensor data to correct itself, allowing
the planner to find a solution. Sometimes, the data will not correct without the
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vehicle changing its position, therefore an active correction is taken to auto-
matically “nudge” the vehicle forward after a brief wait, and continue with the
planned path once the blockage is clear.

10.8 Testing and Performance

This section of the paper summarizes the testing and performance that occurred
at each of several key venues. This section is supplemented by a video depicting
the NaviGATOR operating in each of these venues (see multimedia).

10.8.1 The CIMAR Lab

Testing began with the JAUS messaging system on the ten computers that would
drive the NaviGATOR. The JAUS messaging would need to be capable of send-
ing up to 500 messages per second per node for over 14 hours. On race day, over
20 million JAUS messages were actually sent and received. Next, initial testing
of the individual JAUS components, discussed in this paper, took place in the
spring of 2005 primarily in the CIMAR lab at the University of Florida. The goal
was to get each component working by itself, “on the bench” in a controlled lab-
oratory environment. To support bench testing, a simple vehicle simulator com-
ponent was devised that sends out position- and velocity-related JAUS messages
as if the vehicle were moving through an RDDF corridor. Once each individual
component had been successfully tested and declared operational, then various
combinations of components were integrated and tested together as the system
began to take shape. The base vehicle platform had been assembled during the
same period of time as the various JAUS components were being bench tested.
With both the vehicle assembled and the JAUS components operational, the
various JAUS components were then mounted in the NaviGATOR.

10.8.2 The Citra Test Site

Next, it was time to take the system to the field. On 20 April 2005, a test site
was designed and constructed at the University of Florida’s Plant Science Unit
located in Citra, Florida. The course was laid out in an open field and consisted
mainly of a figure eight, an oval, and several left and right sharp turns (see
Figure 10.17). Various segments were added to this course to replicate terrain
that was expected in the desert. While this course had a few tough obstacles, it
was basically the “safest” place to test. This was Team CIMAR’s main test site
and was used for extensive development of the system as well as the location
where the DARPA site visit took place on 6 May 2005. On 20 May 2005, the
NaviGATOR was put into a 1/2 mile loop, and it ran for 12 miles before stopping
due to a minor problem. This was the furthest it would run prior to heading west
in September, as it spent the next three months undergoing major upgrades to
both hardware and software.
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Fig. 10.17. The Citra test site

       (a)    (b)

Fig. 10.18. PLSS testing images

Part of the Citra testing effort was devoted to the initial tuning of the sen-
sors. Figures 10.18 and 10.19 depict scenes of the terrain at Citra and the ac-
companying Smart Sensor output, as captured during the sensor tuning process.
Figure 10.18(a) shows evenly spaced orchard poles, while Figure 10.18(b) shows
a snapshot of the PLSS Traversability Grid while traveling on the graded road in
which the poles have been clearly detected and scored as impassable obstacles.
This area was specifically chosen to assure that the output of the PLSS accu-
rately maps obstacles onto the grid. Note that the PLSS algorithm has been
tuned to accurately locate the poles, even though most of them are occluded for
periods of time as the vehicle moves past them. Figure 10.19(a) shows a road-
way with rough terrain appearing to the left of the vehicle when traveling in the
indicated direction. Figure 10.19(b) shows a snapshot of the TSS Traversability
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      (a)    (b)

Fig. 10.19. TSS testing images

Grid for that same section of road, having scored the rough area as somewhat
undesirable, but not absolutely blocked (i.e., 4’s, 5’s and 6’s).

By 20 August 2005, the major hardware and software upgrades were complete
and the system was ready for one last round of testing at the Citra site prior to
heading west. On 25 August 2005, however, while performing a high-speed radar
test, the vehicle suffered a serious failure. One of the rear shocks snapped and
the engine and frame dropped onto the rear drive shaft and odometer gear. The
sudden stop also caused the front sensor cage struts to snap and the sensor cage
collapsed forward. The causes of the failures were determined and the system was
re-designed and re-built in approximately one week. With the damage repaired,
the NaviGATOR returned to Citra for several days to verify that the system
was operational and ready to graduate to the desert for a more serious round of
testing.

10.8.3 The Stoddard Valley OHV Area

On 11 September 2005, the NaviGATOR headed west to the Stoddard Valley Off
Highway Vehicle (OHV) Area near Barstow, California (see Figure 10.20). The
team first attempted some short test runs to ensure system operation. This also
marked the first times the team had run the NaviGATOR with a chase vehicle
setup (see Figure 10.21(a)). These system tests were done in the OHV area of Stod-
dard Valley (marked 1 in Figure 10.20). This test route is approximately 4 miles
long and included the first serious autonomous uphill and downhill climbs, allow-
ing the team to evaluate the performance of the system during both accent and
decent maneuvers. Speeds during these tests stayed in the 10 mph range. Overall,
the system showed an almost surprising ability to handle the terrain, prompting
the team to accelerate their efforts in finding more challenging test paths. Follow-
ing these successful tests, the team moved the vehicle on to Slash X.
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Fig. 10.20. Stoddard Valley OHV test sites

Fig. 10.21. Testing in the Stoddard Valley OHV area

Slash X was the site of the start of the DARPA Grand Challenge 2004
(DGC04) event and during their time there, Team CIMAR shared the area
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with several other DARPA Grand Challenge 2005 teams. First, the team ran
the start and first mile of the DGC04 route (site 2 in Figure 10.20). This allowed
the team to test and tune the sensors specifically against the barbed wire fence
that was the downfall of the 2004 NaviGATOR. This path also provided a good
place to test higher speed navigation. Between path 2 and an open area behind
Slash X, the team was able to test and tune the NaviGATOR up to 30 mph,
with an empirically determined obstacle avoidance speed of 16 mph.

Sunday 18 September 2005 turned out to be a historic day for Team CIMAR.
Team TerraMax graciously gave us one of their RDDFs through the desert (la-
beled site 3 in Figure 10.20). The team took the file and after several false starts
finally launched the vehicle at 4 pm. Path 3 is approximately 20 miles each way
(with a built-in turnaround). The speed testing had not yet been completed and
the first test was done at a cap of 10 mph. The team had never seen nor traversed
this path prior to this first test. Not knowing exactly where they were going, the
NaviGATOR led the way (see Figure 10.21(b)). Surprising even the team mem-
bers, the NaviGATOR successfully navigated the entire 20 mile distance on the
first try, stopping only to give its human handlers time to drink and rest.

Over the following week, the team tested the NaviGATOR several more times
on this course, reaching speeds of 25 mph and completing the entire 40-mile
course several times. The path included long straight roads, a mountain climb,
and areas covered by power lines; all terrain the team expected to encounter
during the DARPA Grand Challenge event.

The last significant area of testing in Stoddard Valley (marked 4 in Figure 10.20)
was another portion of the DGC04 event. Known as Daggett Ridge, this was the
area that the farthest teams had reached during the previous event and consisted
of very dangerous mountain switchbacks and drop-offs of hundreds of feet. The
sensor team made several trips with the vehicle to tune and test the sensor suite on
the path during manual drive, especially focusing on detecting negative obstacles
(in the form of cliffs and washouts).

During two weeks of dawn-to-dusk testing in the Stoddard OHV area, the
NaviGATOR went from a personal best of 12 miles in a 1/2-mile circuit to 40-
mile runs across miles of desert terrain. The team was able to scale the system
quickly, going from 10 mph runs to 25 mph with reliable obstacle avoidance
at speeds up to 16 mph, along with tuning and validating the software that
dynamically determines which speed should be used. That time in the desert was
perhaps the best time spent testing during the entire DARPA Grand Challenge
project, both in progress for the vehicle and the team members. While more
testing time would have been very useful, on 27 September 2005 the team left
for the California Speedway and the National Qualification Event.

10.8.4 The National Qualification Event

Immediately following the opening ceremony, the NaviGATOR was the fourth
team in line for the first qualification run. The qualification course is shown in
Figure 10.22. It consisted of a 2.3 mile long path with three parked cars, a rough
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Fig. 10.22. Qualification course at the California Speedway

Fig. 10.23. NaviGATOR at NQE

terrain section, a simulated mountain pass, a tunnel, and finally a wooden “tank
trap” obstacle.

The NaviGATOR completed the entire course on the first attempt. Figure 10.23
depicts the NaviGATOR on the NQE course. However, three lane-marking cones
had been hit and the tank trap obstacle at the end of the course had been slightly
brushed. Two changes were made to the NaviGATOR for the second run. The de-
sired speed on the high-speed section of the course was increased from 16 mph to 20
mph and the dilated size of the perceived obstacles was increased in an attempt to
completely miss the tank trap obstacle. During the second run, the NaviGATOR
began oscillating and became unstable on the high-speed section and the run was
aborted. The problem was that the high-speed section of the qualification course
was on pavement whereas all high-speed testing had been conducted off-road. The
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disturbances caused by the constant four-wheel drive on pavement were responsi-
ble for the oscillation.

For the third run on the qualification course, all parameters were reset to those
used during the first run. All went well until the vehicle scraped the concrete wall
in the mountain pass section of the course, snapping the front steering linkage.
The vehicle was quickly repaired. For future runs, the path centerline as reported
by the PSS was shifted 12 in. away from the wall in the mountain pass section.
After this, the qualification course was successfully completed two more times. In
summary, the NaviGATOR completed the entire qualification course three out of
five times, and the team was selected by DARPA to compete in the desert race.

10.8.5 The Race

The team received the RDDF containing the coursewaypoints in the earlymorning
of 8 October 2005.Two hourswere allocated for processing the data, which primar-
ily consisted of setting desired speeds for each section of the course. The path file
was then uploaded to the vehicle and by 9:30 a.m. the NaviGATOR was off. After
leaving the start gate, the NaviGATOR headed off into the desert and then circled
around past the crowd at about the eight-mile mark. The NaviGATOR headed
past the spectators at approximately 24 mph, performing very well at this point in
the race (see Figure 10.24). After following the dirt road a bit further, the NaviGA-
TOR encountered a paved section of the course and started to oscillate. It stopped
and did a couple of turns, criss-crossed the road, and then regained its composure

Fig. 10.24. NaviGATOR passing the stands at the 2005 DARPA Grand Challenge
Event
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and headed back in the right direction. As during the second qualification run, the
desired speed was set too high for operation on pavement.

The NaviGATOR next flawlessly traversed a bridge over a railroad track and
disappeared into the brown desert haze. Shortly before 11 a.m., the team received
word from the chase truck that was following NaviGATOR that the vehicle had
inexplicably run off the road and stopped. NaviGATOR appeared reluctant to
move forward into and out of low brush in front of it, although its off-road ca-
pabilities would have easily carried it through. After several attempts to pause
and restart the NaviGATOR, the driver called back to say the vehicle was mov-
ing, but slowly and still off the road. After about one-half of a mile of starting,
stopping, and driving very slowly over brush, it regained the road and took off
again at high speed following the road perfectly. However, after about another
mile, the vehicle again went off the road and this time stopped in front of a bush.
This time, DARPA officials quickly declared the NaviGATOR dead. The time
was shortly before noon, and NaviGATOR had traveled past the 24-mile marker.
NaviGATOR placed 18th among the 23 finalists. A total of five teams actually
completed the entire course, with Stanford’s Stanley taking the $2 million prize
for the shortest time of six hours, 53 minutes and 58 seconds.

10.8.6 What Stopped the NaviGATOR?

Team members went out on the course the day after the race and found the
NaviGATOR tire tracks at the two locations where the vehicle went off the right
side of the road. From this information and data that were logged on the vehicle,
it appears that the calculated GPS position drifted by approximately twenty feet
causing the vehicle to want to move to the right of the actual road. From the tire
tracks and from the traversability grid (see Figure 10.25), it was apparent that
the vehicle wanted to move to the right, but the obstacle avoidance sensors were

Fig. 10.25. Traversability Grid (during time of position system drift)
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Fig. 10.26. Location where NaviGATOR veered off the course and was stopped

detecting the bushes and berms on the right side of the road. From the vehicle’s
perspective (see Figure 10.25) it appeared that the corridor was littered with
objects and the best it could do was to travel along the left side of the corridor
on the verge of going out of bounds on the left. In reality, the vehicle was hugging
the right side of a very navigable dirt road, however most of the open road was
being classified as out of bounds.

Both times that the vehicle went off course were due to the fact that the right
side became free of obstacles and the vehicle attempted to move to the center of its
incorrect corridor. Figure 10.26 shows the location where the NaviGATOR moved
off the course for the second time whereupon DARPA officials stopped it. In sum-
mary, a twenty-foot position error caused a corresponding shift of the boundary
smart sensor that eliminated the actual sensed road as an option to the planner.

10.9 Conclusion

Overall the team was very pleased with the NaviGATOR system. The base vehicle
is very capable and has excellent mobility in very rough terrain. The obstacle and
terrain detection sensors, and sensor integration approach, worked very well as
did the reactive planner module. Overall, the control loop (from sensed objects
to determination of vehicle actuation parameters) operated at a rate of over 20
Hz. Also, a significant contribution of the effort was to show that JAUS could be
used successfully in a situation such as this, and that the standardized messaging
system defined by JAUS could greatly simplify the overall integration effort.
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There are four key areas that are currently being pursued by the team. The
first two of these focus on resolving specific issues encountered while competing
at the Grand Challenge event. The other two are improvements that will make
the NAVIGATOR system more resilient to such problems when they occur.

1. Stability. The stability of the controller can be improved simply by putting
additional time into getting the control parameters properly tuned. The goal
is to achieve stable control at 25 mph on pavement and 30 mph on dirt in
the near future.

2. Position System. We are currently improving the accuracy of the position
system’s estimate of error so that when the output of the system is degraded,
it can inform the rest of the system appropriately. A better version of the
GPS switching code is being implemented that will allow the system to decide
which GPS to use as the input to the NFM, the NavCom or the Garmin,
based on which is better at the time. At the same time, NavCom and Smiths
Aerospace are working together to further improve the overall accuracy of
the system.

3. Dynamic BSS and PSS. As discussed earlier, the reason the NaviGATOR
got stuck off the road in the race was due to a position error causing the
Boundary Smart Sensor to shift the drivable corridor off the road. To prevent
this from happening in the future, the width of the corridor created by the
BSS will be made a function of the position system root mean square error
(RMS). For example, if the position RMS is good then the BSS corridor in the
grid will be correspondingly tight; but when the position RMS degrades, then
the BSS will stroke a correspondingly wide corridor through its traversability
grid. In this way, the BSS will no longer eliminate the road as an option, thus
allowing the sensors to find the road off to the side. Similarly, the weight of
the PSS can be adjusted such that its recommended path is painted with
tens when the position RMS is good, but only sevens or eights when the
position RMS degrades, thus reducing its influence accordingly.

4. Adaptive Planning Framework. A more extensive implementation of the
situation assessment specialists and high-level decision-making capabilities
is currently underway. This will allow the NaviGATOR to do such things as
determine when it has become blocked and decide how to best fix the prob-
lem, such as backing up and re-planning. Other examples include altering the
aggressiveness of the plan (risk) based on mission parameters and altering
the contribution of a given sensor based on the environmental situation.

The first three items on this list are relatively short term and should be
completed before this paper is published. With a tuned controller, the position
system upgraded, and the BSS and PSS dynamically adjusting to the position
RMS, the NaviGATOR should be capable of completing the 2005 DARPA course
in under 10 hours. The maturation of the Adaptive Planning Framework will
likely continue into the future for some time.

In retrospect, the team would have benefited from more testing time in the
California desert. The issues associated with the positioning system and the high-
speed control on pavement could have been resolved. However, the project was
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very successful in that an entirely new vehicle system was designed, fabricated,
and automated in a nine-month period, ready to compete in the 2005 DARPA
Grand Challenge. This was a monumental effort put on an aggressive time and
resource schedule.
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