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Foreword 

At the dawn of the new millennium, robotics is undergoing a major transformation in 
scope and dimension. From a largely dominant industrial focus, robotics is rapidly 
expanding into the challenges of unstructured environments. Interacting with, assist-
ing, serving, and exploring with humans, the emerging robots will increasingly touch 
people and their lives. 

The goal of the new series of Springer Tracts in Advanced Robotics (STAR) is to 
bring, in a timely fashion, the latest advances and developments in robotics on the 
basis of their significance and quality.  It is our hope that the wider dissemination of 
research developments will stimulate more exchanges and collaborations among the 
research community and contribute to further advancement of this rapidly growing 
field. 

The volume edited by Martin Buehler, Karl Iagnemma and Sanjiv Singh presents a 
unique and extensive collection of the scientific results by the teams which took part 
into the DARPA Grand Challenge in October 2005 in the Nevada desert. This event 
reached an incredible peak of popularity in the media, the race of the century like 
someone called it! The Grand Challenge demonstrated the fast growing progress to-
ward the development of robotics technology, as it showed the feasibility of using 
mobile robots operating autonomously in real world scenarios. As such, not only has it 
revealed the great potential for a number of field robotics applications in hostile or 
hazardous environments, but also it has set an unprecedented milestone for competi-
tions and benchmarking which is likely to become a format adopted for future events 
of the same kind in other areas of robotics research. 

The original papers were earlier published in two special issues of the Journal of 
Field Robotics. Our series is very proud to reprise them and offer archival publication 
as a special STAR volume!  

Naples, Italy Bruno Siciliano 
June 2007 STAR Editor 
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Some called it the race of the century.  

The Defense Advanced Research Projects Agency (DARPA) has a rich history of 
pursuing innovative technical ideas that lead to capabilities never before dreamed 
possible. DARPA’s past projects resulted in the ARPANET (which led to the Inter-
net), stealth, and the Predator and Global Hawk unmanned aerial vehicles. 

In 2003, Dr. Tony Tether, DARPA Director, believed the time was right to push 
autonomous ground vehicle technology. The thinking was that if such vehicles were 
possible, they could be used in dangerous military missions and save the lives of 
young American men and women in uniform.   

At that time, many experts believed fully autonomous ground vehicles that could 
travel great distances at speeds important to military operations were not possible 
within any near-term timeline.  Hence, Dr. Tether created the DARPA Grand Chal-
lenge to accelerate autonomous ground vehicle technology as an experiment. The 
expectation was that only a few people would respond, but the Grand Challenge awak-
ened a new surge of creativity among thousands from the United States and other 
countries 

The first Grand Challenge was held in March 2004 and, from an initial field of 
106 applicants, 15 teams competed in the final event. The best vehicle managed to 
travel 5 percent of the route before failing. It was clear then that the challenge was 
indeed “grand.” 

At the 2004 closing ceremony, DARPA announced another competition and dou-
bled the prize to $2 million. October 2005 was chosen for the second competition—a 
mere 18 months from the first event. America’s innovators again rolled up their 
sleeves and got to work.  Eighteen months is not a long time to create technology that 
may change the world.  

DARPA received 197 applications to compete in the 2005 event, and each of the 
23 teams that made it to the final event had a vehicle that proved, through a series of 
difficult qualifying trials, to be better than the best vehicle in the 2004 race.  

The 2005 course was tough: 132 miles of difficult desert roads across Nevada that 
contained a mixture of featureless terrain, dust, global positioning system drop-outs, 
sharp turns, narrow openings, bridges, railroad overpasses, long tunnels, obstacles, 
and a narrow winding mountain road with a 200-foot drop-off.  The actual route was 
kept secret until 2 hours before the start. 

 



 Foreword X 

Remarkably, five teams finished the course, four of them under the 10-hour limit 
and within 37 minutes of the winning time of Stanford’s “Stanley” at 6 hours and 53 
minutes and an average speed of 19.2 miles per hour. In another first for autonomous 
vehicle operations, “Terramax” finished the course on the second day after remaining 
parked overnight in autonomous mode.  The vehicles that did not finish the course 
suffered mechanical, system, or software problems. In the end, 22 of the 23 teams 
traveled farther than the best vehicle did in 2004. By all accounts, Grand Challenge 
2005 was a spectacular success.   

The primary reason for the success of the Grand Challenge lies with the teams—the 
students, engineers, scientists, and backyard mechanics—all inventors who brought 
fresh ideas to solve a very difficult technical problem. They were individuals, but 
learned to work together in teams.  Unlike other prize events, the DARPA Grand 
Challenge set a specific date for the competition, and all the teams spent countless 
long hours overcoming setbacks to be there for the final event.  

The teams accelerated autonomous ground vehicle technology beyond expectation.   
Their vehicles have served to prove the technical feasibility and promote acceptance 
of unmanned autonomous ground vehicles within the Defense community, much as 
unmanned air vehicles have come to be accepted as essential partners in the air.    

DARPA thanks all the Grand Challenge participants for their hard work and will-
ingness to tackle a problem important to the Department of Defense. They proved that 
a challenge can fuel creativity and obtain accomplishments that prove conventional 
wisdom wrong. DARPA also thanks the staff and the many organizations that helped 
make the event a success. The excitement in their eyes often matched that of the  
competitors. 

 
Ron Kurjanowicz 

2005 DARPA Grand Challenge Program Manager 
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On July 30, 2002 the Defense Advanced Research Projects Agency (DARPA) an-
nounced a “Grand Challenge” to robotics researchers, engineers, inventors, and hob-
byists across the country: develop a mobile robot that can autonomously traverse a 
desert route of 140 miles from Barstow, California to Primm, Nevada on Saturday, 
March 13, 2004.  The course would run over dirt roads, trails, lakebeds, rocky terrain, 
and gullies — and the team whose robot completed the course the fastest (within a 10 
hour time limit) would receive 1 million dollars. 

The fact that none of the 15 finalists completed more than 7.4 miles of the course is 
testimony to the difficulty of developing autonomous robots that are robust, percep-
tive, and intelligent enough to travel long distances in unstructured terrain.  The com-
petition also served as a wake-up call to robotics researchers, as it demonstrated that 
algorithms and robot systems that function perfectly in simulations or in the labora-
tory are often less effective in the real world.   

The second DARPA Grand Challenge drew a larger pool of entries. Of the original 
195 applicants, 43 teams were selected to participate in the National Qualification 
Event (NQE) held at California Speedway in Fontana from September 27 through 
October 5, 2004.  Robot performances at the NQE were judged by (1) the elapsed 
time required to complete a short test course; (2) the number of obstacles successfully 
passed without contact; (3) the number of gates successfully passed.  The results of 
the NQE were used to whittle the 43 teams down to 23 finalists to race in the second 
DARPA Grand Challenge. 

On race day, October 8, 2005, the finalists competed on a twisting, unpaved course 
over 132 miles in the high desert near Primm, Nevada.  Although no obstacles were 
placed in the vehicles’ path, the route was often rugged and bumpy, and passed 
through tight tunnels and a narrow, twisting mountain pass.  Remarkably, 22 of the 23 
finalists traveled further than the 7.4 miles traversed by the most successful entry 
from 2004.  Even more remarkably, five vehicles successfully completed the course.  
The Stanford Racing Team was awarded the 2 million dollar prize with a winning 
time of 6 hours, 53 minutes.  Their achievement — and the achievement of all of the 
finalists — marks a significant milestone in robotics technology, and promises a 
bright future for the increased use of mobile robots in real world scenarios. 

This book presents 15 technical papers describing 16 of the 23 vehicles that com-
peted as finalists in the 2005 DARPA Grand Challenge.  These papers originally 
appeared in two special issues of The Journal of Field Robotics, in September and 
October, 2006.  They document the mechanical, algorithmic, and sensory solutions 
developed by the various teams.  Also included is a new picture gallery of the partici-
pating robots, with a description of each team’s race results and (where appropriate) 
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failure descriptions, and a foreword by Ron Kurjanowitz, the DARPA program man-
ager who oversaw the Grand Challenge contest. 

Stanley, the winning robot, is described in the paper by Thrun et al. The Stanford 
team focused on software, applying new and existing machine learning and probabil-
istic techniques for long-range terrain perception, real-time collision avoidance, and 
stable vehicle control on slippery and rugged terrain. An important part of their suc-
cessful strategy was to minimize custom hardware development to achieve robust-
ness: their system was based on off-the-shelf sensors, standard Pentium computers, 
and a Touareg R5 Turbodiesel with support by a dedicated Volkswagen team. 

The next paper, by Urmson et al., is a description of the two Carnegie Mellon ro-
bots that earned second and third place, with finishing times of 7 hours, 5 minutes, 
and 7 hours, 14 minutes — at the heels of Stanley. It describes their hardware, soft-
ware and sensing systems, strategic approaches, vehicles, and testing. A detailed per-
formance description and insightful failure analysis describes what went wrong, and 
more importantly, how the systems performed well despite several problems that 
occurred during the race.  

Team Gray’s entry is described in the paper by Trepagnier et al.  This robot was 
the fourth to successfully complete the course, in a time of 7 hours and 30 minutes—
less than 40 minutes after the winner.  The paper describes practical issues related to 
Team Gray’s vehicle, sensor, and actuator selection, sensor processing algorithms, 
software design, and low-level vehicle control.  Analysis of Team Gray’s field test 
results is also presented. 

With its 30,000 pound weight and twelve cylinder, 425 hp engine, TerraMax was 
the heavy-weight entry in the DGC.  Based on a 27 ft long commercial Oshkosh truck 
and barely fitting through a 9 x 9 ft tunnel, TerraMax was designed for robustness 
rather than speed. The vehicle was one of five to finish the course, after an all-night 
pause. The paper by Braid, Broggi and Schmiedel describes the TerraMax vehicle, its 
computers and sensors, and a rugged implementation of Collin Rockwell’s intelligent 
Vehicle Management System (iVMS). In addition to multiple laser scanners, a for-
ward-looking trinocular vision system provided sensing for obstacle and path detec-
tion. It relied on image disparity to estimate the average terrain slope and compute the 
free space in front of the vehicle. 

The ‘twin contenders’, Cliff and Rocky, are described in a paper by a team of Vir-
ginia Tech engineering students. Both bots were halted by hardware problems after 
traversing approximately 40 miles, to place them at rank 8 and 9. Each implemented a 
different navigation strategy – a reactive one (“Dynamic Expanding Zones”) for Cliff, 
and a more deliberative one (“Non-Uniform Terrain Search”) for Rocky – and the 
pros and cons of each strategy for the DGC are evaluated.  

Team Desert Buckeye’s Intelligent Off-road Navigator (ION) came in 10th. Chen 
and Özgüner’s paper details their integration of sensor fusion, navigation, vehicle 
control, signal processing, drive-by-wire technology, reliable software and mapping. 
ION’s overall behavior was driven by a finite state machine that aimed to accommo-
date all possible situations and state transitions. The navigation module’s main re-
sponsibility was to generate smooth and obstacle-free local paths with appropriate 
speed set points. The obstacle avoidance algorithm employed fuzzy controllers for 
both steering and speed control. 
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The paper by Mason et al. describes the Golem Group / UCLA’s entry into the 
DGC.  This team’s entry was based on a robot from the 2004 Grand Challenge, and 
the paper describes some aspects of the design evolution to the 2005 system.  Simple 
yet effective approaches to obstacle detection and path planning are presented, and a 
state estimation approach is described in detail.  An approach to path detection in off-
road environments is also presented. 

Another second-time contestant, CajunBot, was built on an all-terrain, six-wheeled 
ATV vehicle base. The team’s paper by Lakhotia et al. describes their complete hard-
ware and software systems, including their transformation of an ATV into an AGV. 
The paper also presents an innovative obstacle detection system that took advantage 
of shocks and bumps to improve visibility, and their efficient software implementa-
tion that permitted all code to run on a single Pentium processor. 

SciAutonics / Auburn University’s entry is described in the paper by Travis et al.  
Areas discussed in detail include the team makeup and strategy, vehicle selection, 
software architecture, vehicle control, navigation, path planning, and obstacle detec-
tion.  The team’s results at the National Qualifying Event and Grand Challenge are 
also described. 

Team CIMAR finished eighth in the 2004 Grand Challenge and came back to race 
in 2005 with a completely new NaviGator vehicle. Their paper describes in detail the 
entire system, including the completely custom-built vehicle, a JAUS-based system 
architecture, their modular “Smart Sensor” concept, terrain mapping based on a 
traversability grid, as well as planning, control, perception, and localization methods. 

Princeton University’s entry into the DGC is described in the paper by Atreya et 
al.  The paper describes their robot, Prospect Eleven, which completed 9.3 miles of 
the course on race day and extensive portions of the 2004 and 2005 courses in later 
tests.  Simple approaches to obstacle detection, path planning, and control are de-
scribed.  Interestingly, Prospect Eleven relied solely on stereo vision for perception, a 
unique approach among DGC finalists. 

The paper by Miller et al. describing Cornell University’s system addresses issues 
related to sensor fusion, gimbal pointing, and presents a cubic spline-based path plan-
ner.  The paper also briefly describes their approach to terrain mapping, which is 
further detailed in the next paper (authored by Miller and Campbell).  There, a real-
time terrain mapping and estimation algorithm based on Gaussian mixture models is 
presented, along with experimental results of a simple obstacle detection task. 

Alice is the successor to Bob, Caltech team’s DGC 2004 race vehicle. In their pa-
per, Cremean et al. describe Alice’s complete system, developed by a team of over 50 
undergraduate students. They fused sensor data into speed maps, and employed a 
receding horizon optimization-based trajectory planner. Contingency management 
was emphasized, and they employed a hybrid architecture with a state table and a 
series of rule-based filtering layers. The paper concludes with a description of the 
system’s performance in the qualifying event and the race, a failure analysis and les-
sons learned. 

MITRE’s entry into the 2005 DGC is described in the paper by Grabowski et al.  
The paper presents a high-level description of the vehicle, software architecture, naviga-
tion and planning system, and sensing system.  Descriptions of vehicle field testing and 
performance at the National Qualification Event are presented, as is an analysis of the 
system’s failure at the DGC.  
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Together, the achievements that made this race so successful and exciting demon-
strate how far the academic and industrial robotics communities have come towards 
building robust driverless vehicles.  Successful teams integrated many sophisticated 
components, from sensing and sensor fusion algorithms, to localization methods, 
planning algorithms, failure detection and recovery methods, and vehicle automation 
techniques. Just as important as solving the technical challenges were good team 
management, plenty of testing, sufficient funding, and a healthy dose of good luck. 
The 2005 Grand Challenge was made manageable by removing obstacles from the 
vehicles’ path, and providing dense and precise GPS data of the race route to the 
finalists.  These and other issues will have to be dealt with head-on in the upcoming 
DARPA Urban Challenge, where vehicles will be required to drive autonomously in 
traffic. 

We hope that readers will find this book interesting, useful, and inspiring. As 
autonomous ground vehicles become more advanced and their use more widespread, 
we feel that their study can only grow in importance.   

Finally, we would like to express our gratitude to the many individuals, listed at the 
end of the book, who reviewed these papers for The Journal of Field Robotics. These 
individuals offered expert commentary, often through several drafts, and contributed 
to the papers’ uniformly high quality. 
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Vehicle Name Team Name Miles 
Driven 

Result

Stanley Stanford Racing Team 132 Finished first in 6 h 53 min. 
 

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Sandstorm Red Team 132 Finished second in 7 h 5 min.  

Source: DARPA  

 

 

 

 

 

 

 



                                                                                                   Picture Gallery XVII 

Vehicle 
Name 

Team Name Miles 
Driven 

Result 

H1ghlander Red Team Too 132 Finished third in 7 h 14 min.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

KAT-5 Team Gray 132 Finished fourth in 7 h 30 min.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

TerraMax Team TerraMax 132 Finished fifth in 12 h 51 min.  

Source: DARPA  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



XX Picture Gallery 

Vehicle 
Name 

Team Name Miles 
Driven 

Result 

DEXTER Team ENSCO 81 A tire blew out after going off-course due to a 
network communication failure.   

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Spirit Axion Racing 66 Spirit got hung up on a rock after a mechanical 
failure.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Cliff Virginia Tech Grand 
Challenge Team 

44 Cliff’s drive engine stalled when it briefly slowed 
to an idle.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Rocky Virginia Tech Team 
Rocky 

39 The on-board generator shut down due to a 
suspected false low-oil reading.  

Source: DARPA  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



XXIV Picture Gallery 

Vehicle 
Name 

Team Name Miles 
Driven 

Result 

ION Desert Buckeyes 29 The team suspects that slowness in gear shifting 
gave the impression that ION had come to a halt 
and was terminated. ION was in the middle of 
the road and still drivable.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

‘DAD, Are 
We There 
Yet?’ 

Team DAD (Digital 
Auto Drive) 

26 The mounting for custom LIDAR scanner failed, 
resulting in a disconnected power supply to the 
vehicle navigation system.   

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Desert Rat Insight Racing 26 Desert Rat lost a heading sensor early in the race 
which slowed it down significantly. It continued 
till late in the day when its sensors got blinded by 
the low sun and it got hung up on a berm.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Xboxx Mojavaton 23 After the throttle motor failed, Xboxx dropped to 
3 mph idle speed, and stalled at an uphill grade.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Golem 2 The Golem Group / 
UCLA 

22 The computer crashed due to faulty memory 
management (memory over-allocation). This 
problem did not manifest itself during earlier 
shorter desert runs, and longer, less sensor-rich 
endurance runs on a track. The uncontrolled 
vehicle departed from the course boundaries at 
high speed, crashing through vegetation. The 
DARPA “pause” button was no longer 
functional, since no software was running, and 
the DARPA observers did not press the “disable” 
button in case the vehicle might recover. Golem 
2 hurtled more than half a mile off the course 
before pounding from the rough terrain finally 
shook connectors free from its fuse box, killing 
the engine. 

 

Source: Sanjiv Singh  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

CajunBot Team CajunBot 17 The brake motor burned out when CajunBot was 
paused for about fifty minutes.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

RASCAL SciAutonics / Auburn 
Engineering 

16 The team suspects that the USB hubs lost power 
or overheated, severing the computer’s 
connection to the LIDAR and other sensors.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Desert 
Tortoise 

Intelligent Vehicle 
Safety Technologies 

14 Problems appeared at an intersection just beyond 
mile 12, from a wide (~25 ft) well-defined road 
onto a  narrow (~10 ft) visually-obscured route 
segment. Road following behavior was 
inadvertently left on, causing the left turn to be 
interrupted for approximately 200 ms. The 
vehicle also responded to a false positive from 
the obstacle detection system that blocked the 
nominal path, causing the vehicle to leave the 
road. It drove over extremely rugged terrain at 10 
to 15 mph and, after several attempts, returned to 
the course. However, at this point a navigation 
error caused the vehicle to behave erratically, 
leading to its termination, prior to contact with 
any manmade hazards or obstacles. Post race 
inspections found a lose connector as a possible 
cause for the navigation error, and a misaligned 
main sensor rack.  

 

Source: Sanjiv Singh  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

NaviGATOR CIMAR 14 A 20 ft (6 m) position error made path planning 
based on sensing the road impossible and 
NaviGATOR drove off course into bushes.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Prospect 
Eleven 

Princeton University 9 Due to a software bug in the obstacle tracking 
code, old obstacles weren’t entirely cleared from 
the list of tracked obstacles. This overwhelmed 
the processor, eventually slowing the control 
loop to run at 0.3 Hz instead the nominal 16-20 
Hz. As a result, steering control became unstable, 
and Prospect Eleven was disabled.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Spider Team Cornell 9 State estimation errors (mostly pitch) likely 
caused ground to look like obstacles to the 
LIDAR. Trying to avoid this phantom obstacle 
caused Spider to veer into a concrete wall. 
Backing up was not implemented and Spider 
failed to turn free from the wall.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

Alice Team Caltech 8 Proximity to power lines caused a temporary 
GPS outage. Large localization error after GPS 
re-acquisition caused Alice to veer towards 
concrete barriers. The mid-range sensors to 
detect these entered into error mode early on in 
the race and Alice crashed into the barriers.  

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

JackBot MonsterMoto 7 JackBot was running flawlessly until the steering 
feedback potentiometer came loose from the 
drive mechanism. 

 

Source: DARPA  
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Vehicle 
Name 

Team Name Miles 
Driven 

Result 

The Meteor The MITRE 
Meteorites 

1 Interpreting dust clouds as obstacles, the Meteor 
drove off the road into bushes and tall weeds, 
from where it couldn’t recover. 

 

Source: DARPA  
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Summary. This article describes the robot Stanley, which won the 2005 DARPA
Grand Challenge. Stanley was developed for high-speed desert driving without human
intervention. The robot’s software system relied predominately on state-of-the-art AI
technologies, such as machine learning and probabilistic reasoning. This article de-
scribes the major components of this architecture, and discusses the results of the
Grand Challenge race.

1.1 Introduction

The Grand Challenge was launched by the Defense Advanced Research Projects
Agency (DARPA) in 2003 to spur innovation in unmanned ground vehicle navi-
gation. The goal of the Challenge was the development of an autonomous robot
capable of traversing unrehearsed, off-road terrain. The first competition, which
carried a prize of $1M, took place on March 13, 2004. It required robots to
navigate a 142-mile long course through the Mojave desert in no more than 10
hours. 107 teams registered and 15 raced, yet none of the participating robots
navigated more than 5% of the entire course. The challenge was repeated on Oc-
tober 8, 2005, with an increased prize of $2M. This time, 195 teams registered
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Fig. 1.1. (a) At approximately 1:40pm on Oct 8, 2005, Stanley is the first robot to
complete the DARPA Grand Challenge. (b) The robot is being honored by DARPA
Director Dr. Tony Tether.

and 23 raced. Of those, five teams finished. Stanford’s robot “Stanley” finished
the course ahead of all other vehicles in 6 hours 53 minutes and 58 seconds and
was declared the winner of the DARPA Grand Challenge; see Fig. 1.1.

This article describes the robot Stanley, and its software system in particular.
Stanley was developed by a team of researchers to advance the state-of-the-art
in autonomous driving. Stanley’s success is the result of an intense development
effort led by Stanford University, and involving experts from Volkswagen of Amer-
ica, Mohr Davidow Ventures, Intel Research, and a number of other entities. Stan-
ley is based on a 2004 Volkswagen Touareg R5 TDI, outfitted with a 6 processor
computing platform provided by Intel, and a suite of sensors and actuators for
autonomous driving. Fig. 1.2 shows images of Stanley during the race.

The main technological challenge in the development of Stanley was to build a
highly reliable system capable of driving at relatively high speeds through diverse
and unstructured off-road environments, and to do all this with high precision.
These requirements led to a number of advances in the field of autonomous nav-
igation, as surveyed in this article. New methods were developed, and existing
methods extended, in the areas of long-range terrain perception, real-time colli-
sion avoidance, and stable vehicle control on slippery and rugged terrain. Many
of these developments were driven by the speed requirement, which rendered
many classical techniques in the off-road driving field unsuitable. In pursuing
these developments, the research team brought to bear algorithms from diverse
areas including distributed systems, machine learning, and probabilistic robotics.

1.1.1 Race Rules

The rules [DARPA, 2004] of the DARPA Grand Challenge were simple. Contes-
tants were required to build autonomous ground vehicles capable of traversing
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Fig. 1.2. Images from the race

a desert course up to 175 miles long in less than 10 hours. The first robot to
complete the course in under 10 hours would win the challenge and the $2M
prize. Absolutely no manual intervention was allowed. The robots were started
by DARPA personnel and from that point on had to drive themselves. Teams
only saw their robots at the starting line and, with luck, at the finish line.

Both the 2004 and 2005 races were held in the Mojave desert in the southwest
United States. Course terrain varied from high quality, graded dirt roads to wind-
ing, rocky, mountain passes; see Fig. 1.2. A small fraction of each course traveled
along paved roads. The 2004 course started in Barstow, CA, approximately 100
miles northeast of Los Angeles, and finished in Primm, NV, approximately 30
miles southwest of Las Vegas. The 2005 course both started and finished in
Primm, NV.

The specific race course was kept secret from all teams until two hours be-
fore the race. At this time, each team was given a description of the course
on CD-ROM in a DARPA-defined Route Definition Data Format (RDDF). The
RDDF is a list of longitudes, latitudes, and corridor widths that define the course
boundary, and a list of associated speed limits; an example segment is shown
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Fig. 1.3. A section of the RDDF file from the 2005 DARPA Grand Challenge. The
corridor varies in width and maximum speed. Waypoints are more frequent in turns.

in Fig. 1.3. Robots that travel substantially beyond the course boundary risk
disqualification. In the 2005 race, the RDDF contained 2,935 waypoints.

The width of the race corridor generally tracked the width of the road, varying
between 3 and 30 meter in the 2005 race. Speed limits were used to protect
important infrastructure and ecology along the course and to maintain the safety
of DARPA chase drivers who followed behind each robot. The speed limits varied
between 5 and 50 MPH. The RDDF defined the approximate route that robots
would take, so no global path planning was required. As a result, the race was
primarily a test of high-speed road finding and obstacle detection and avoidance
in desert terrain.

The robots all competed on the same course, starting one after another at 5
minute intervals. When a faster robot overtook a slower one, the slower robot
was paused by DARPA officials, allowing the second robot to pass the first as if
it were a static obstacle. This eliminated the need for robots to handle the case
of dynamic passing.

1.1.2 Team Composition

The Stanford Racing Team team was organized in four major groups. The Vehicle
Group oversaw all modifications and component developments related to the core
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vehicle. This included the drive-by-wire systems, the sensor and computer mounts,
and the computer systems. The group was led by researchers from Volkswagen of
America’s Electronics Research Lab. The Software Group developed all software,
including the navigation software and the various health monitor and safety sys-
tems. The software group was led by researchers affiliated with Stanford Univer-
sity. The Testing Group was responsible for testing all system components and the
system as a whole, according to a specified testing schedule. The members of this
group were separate from any of the other groups. The testing group was led by
researchers affiliated with Stanford University. The Communications Group man-
aged all media relations and fund raising activities of the Stanford Racing Team.
The communications group was led by employees of Mohr Davidow Ventures, with
participation from all other sponsors. The operations oversight was provided by a
steering board that included all major supporters.

1.2 Vehicle

Stanley is based on a diesel-powered Volkswagen Touareg R5. The Touareg has
four wheel drive, variable-height air suspension, and automatic, electronic lock-
ing differentials. To protect the vehicle from environmental impact, Stanley has
been outfitted with skid plates and a reinforced front bumper. A custom inter-
face enables direct, electronic actuation of both throttle and brakes. A DC motor
attached to the steering column provides electronic steering control. A linear ac-
tuator attached to the gear shifter shifts the vehicle between drive, reverse, and
parking gears (Fig. 1.4c). Vehicle data, such as individual wheel speeds and steer-
ing angle, are sensed automatically and communicated to the computer system
through a CAN bus interface.

The vehicle’s custom-made roof rack is shown in Fig. 1.4a. It holds nearly
all of Stanley’s sensors. The roof provides the highest vantage point from the
vehicle; from this point the visibility of the terrain is best, and the access to
GPS signals is least obstructed. For environment perception, the roof rack houses
five SICK laser range finders. The lasers are pointed forward along the driving
direction of the vehicle, but with slightly different tilt angles. The lasers measure
cross-sections of the approaching terrain at different ranges out to 25 meters in
front of the vehicle. The roof rack also holds a color camera for long-range road
perception, which is pointed forward and angled slightly downwards. For long-
range detection of large obstacles, Stanley’s roof rack also holds two 24 GHz
RADAR sensors, supplied by Smart Microwave Sensors. Both RADAR sensors
cover the frontal area up to 200 meter, with a coverage angle in azimuth of about
20 degrees. Two antennae of this system are mounted on both sides of the laser
sensor array. The lasers, camera, and radar system comprise the environment
sensor group of the system. That is, they inform Stanley of the terrain ahead,
so that Stanley can decide where to drive, and at what speed.

Further back, the roof rack holds a number of additional antennae: one for
Stanley’s GPS positioning system and two for the GPS compass. The GPS posi-
tioning unit is a L1/L2/Omnistar HP receiver. Together with a trunk-mounted
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Fig. 1.4. (a) View of the vehicle’s roof rack with sensors. (b) The computing system
in the trunk of the vehicle. (c) The gear shifter, control screen, and manual override
buttons.

inertial measurement unit (IMU), the GPS systems are the proprioceptive sen-
sor group, whose primary function is to estimate the location and velocity of the
vehicle relative to an external coordinate system.

Finally, a radio antenna and three additional GPS antennae from the DARPA
E-Stop system are also located on the roof. The E-Stop system is a wireless link
that allows a chase vehicle following Stanley to safely stop the vehicle in case of
emergency. The roof rack also holds a signaling horn, a warning light, and two
manual E-stop buttons.

Stanley’s computing system is located in the vehicle’s trunk, as shown in
Fig. 1.4b. Special air ducts direct air flow from the vehicle’s air conditioning
system into the trunk for cooling. The trunk features a shock-mounted rack that
carries an array of six Pentium M computers, a Gigabit Ethernet switch, and
various devices that interface to the physical sensors and the Touareg’s actuators.
It also features a custom-made power system with backup batteries, and a switch
box that enables Stanley to power-cycle individual system components through
software. The DARPA-provided E-Stop is located on this rack on additional
shock compensation. The trunk assembly also holds the custom interface to the
Volkswagen Touareg’s actuators: the brake, throttle, gear shifter, and steering
controller. A six degree-of-freedom IMU is rigidly attached to the vehicle frame
underneath the computing rack in the trunk.

The total power requirement of the added instrumentation is approximately
500 W, which is provided through the Touareg’s stock alternator. Stanley’s
backup battery system supplies an additional buffer to accommodate long idling
periods in desert heat.

The operating system run on all computers is Linux. Linux was chosen due to
its excellent networking and time sharing capabilities. During the race, Stanley
executed the race software on three of the six computers; a fourth was used to
log the race data (and two computers were idle). One of the three race computers
was entirely dedicated to video processing, whereas the other two executed all
other software. The computers were able to poll the sensors at up to 100 Hz,
and to control the steering, throttle and brake at frequencies up to 20 Hz.

An important aspect in Stanley’s design was to retain street legality, so that
a human driver could safely operate the robot as a conventional passenger car.
Stanley’s custom user interface enables a driver to engage and disengage the
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computer system at will, even while the vehicle is in motion. As a result, the
driver can disable computer control at any time of the development, and re-
gain manual control of the vehicle. To this end, Stanley is equipped with several
manual override buttons located near the driver seat. Each of these switches
controls one of the three major actuators (brakes, throttle, steering). An addi-
tional central emergency switch disengages all computer control and transforms
the robot into a conventional vehicle. While this feature was of no relevance to
the actual race (in which no person sat in the car), it proved greatly beneficial
during software development. The interface made it possible to operate Stanley
autonomously with people inside, as a dedicated safety driver could always catch
computer glitches and assume full manual control at any time.

During the actual race, there was of course no driver in the vehicle, and
all driving decisions were made by Stanley’s computers. Stanley possessed an
operational control interface realized through a touch-sensitive screen on the
driver’s console. This interface allowed Government personnel to shut down and
restart the vehicle, if it became necessary.

1.3 Software Architecture

1.3.1 Design Principles

Before both the 2004 and 2005 Grand Challenges, DARPA revealed to the com-
petitors that a stock 4WD pickup truck would be physically capable of traversing
the entire course. These announcements suggested that the innovations necessary
to successfully complete the challenge would be in designing intelligent driving
software, not in designing exotic vehicles. This announcement and the perfor-
mance of the top finishers in the 2004 race guided the design philosophy of the
Stanford Racing Team: treat autonomous navigation as a software problem.

In relation to previous work on robotics architectures, Stanley’s software ar-
chitecture is probably best thought of as a version of the well-known three layer
architecture [Gat, 1998], albeit without a long-term symbolic planning method.
A number of guiding principles proved essential in the design of the software
architecture:

Control and data pipeline. There is no centralized master-process in Stan-
ley’s software system. All modules are executed at their own pace, without inter-
process synchronization mechanisms. Instead, all data is globally time-stamped,
and time stamps are used when integrating multiple data sources. The approach
reduces the risk of deadlocks and undesired processing delays. To maximize the
configurability of the system, nearly all inter-process communication is imple-
mented through publish-subscribe mechanisms. The information from sensors to
actuators flows in a single direction; no information is received more than once by
the same module. At any point in time, all modules in the pipeline are working
simultaneously, thereby maximizing the information throughput and minimizing
the latency of the software system.
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State management. Even though the software is distributed, the state of the
system is maintained by local authorities. There are a number of state variables
in the system. The health state is locally managed in the health monitor; the
parameter state in the parameter server; the global driving mode is maintained in
a finite state automaton; and the vehicle state is estimated in the state estimator
module. The environment state is broken down into multiple maps (laser, vision,
and radar). Each of these maps are maintained in dedicated modules. As a result,
all other modules will receive values that are mutually consistent. The exact
state variables are discussed in later sections of this article. All state variables
are broadcast to relevant modules of the software system through a publish-
subscribe mechanism.

Reliability. The software places strong emphasis on the overall reliability of
the robotic system. Special modules monitor the health of individual software
and hardware components, and automatically restart or power-cycle such com-
ponents when a failure is observed. In this way, the software is robust to certain
occurrences, such as crashing or hanging of a software modules or stalled sensors.

Development support. Finally, the software is structured so as to aid develop-
ment and debugging of the system. The developer can easily run just a sub-system
of the software, and effortlessly migrate modules across different processors. To fa-
cilitate debugging during the development process, all data is logged. By using a
special replay module, the software can be run on recorded data. A number of vi-
sualization tools were developed that make it possible to inspect data and internal
variables while the vehicle is in motion, or while replaying previously logged data.
The development process used a version control process with a strict set of rules
for the release of race-quality software. Overall, we found that the flexibility of the
software during development was essential in achieving the high level of reliability
necessary for long-term autonomous operation.

1.3.2 Processing Pipeline

The race software consisted of approximately 30 modules executed in parallel
(Fig. 1.5). The system is broken down into six layers which correspond to the
following functions: sensor interface, perception, control, vehicle interface, user
interface, and global services.

1. The sensor interface layer comprises a number of software modules con-
cerned with receiving and time-stamping all sensor data. The layer receives
data from each laser sensor at 75 Hz, from the camera at approximately 12
Hz, the GPS and GPS compass at 10 Hz, and the IMU and the Touareg
CAN bus at 100 Hz. This layer also contains a database server with the
course coordinates (RDDF file).

2. The perception layer maps sensor data into internal models. The primary
module in this layer is the UKF vehicle state estimator, which determines
the vehicle’s coordinates, orientation, and velocities. Three different mapping
modules build 2-D environment maps based on lasers, the camera, and the
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Fig. 1.5. Flowchart of Stanley Software System. The software is roughly divided into
six main functional groups: sensor interface, perception, control, vehicle interface, and
user interface. There are a number of cross-cutting services, such as the process con-
troller and the logging modules.

radar system. A road finding module uses the laser-derived maps to find the
boundary of a road, so that the vehicle can center itself laterally. Finally, a
surface assessment module extracts parameters of the current road for the
purpose of determining safe vehicle speeds.

3. The control layer is responsible for regulating the steering, throttle, and
brake response of the vehicle. A key module is the path planner, which sets
the trajectory of the vehicle in steering- and velocity-space. This trajectory is
passed to two closed loop trajectory tracking controllers, one for the steering
control and one for brake and throttle control. Both controllers send low-level
commands to the actuators that faithfully execute the trajectory emitted
by the planner. The control layer also features a top level control module,
implemented as a simple finite state automaton. This level determines the
general vehicle mode in response to user commands received through the
in-vehicle touch screen or the wireless E-stop, and maintains gear state in
case backwards motion is required.

4. The vehicle interface layer serves as the interface to the robot’s drive-by-
wire system. It contains all interfaces to the vehicle’s brakes, throttle, and
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Fig. 1.6. UKF state estimation when GPS becomes unavailable. The area covered by
the robot is approximately 100 by 100 meter. The large ellipses illlustrate the position
uncertainty after losing GPS. (a) Without integrating the wheel motion the result is
highly erroneous. (b) The wheel motion clearly improves the result.

steering wheel. It also features the interface to the vehicle’s server, a circuit
that regulates the physical power to many of the system components.

5. The user interface layer comprises the remote E-stop and a touch-screen
module for starting up the software.

6. The global services layer provides a number of basic services for all software
modules. Naming and communication services are provided through CMU’s
Inter-ProcessCommunication (IPC) toolkit [Simmons and Apfelbaum, 1998].
A centralized parameter server maintains a database of all vehicle parame-
ters and updates them in a consistent manner. The physical power of indi-
vidual system components is regulated by the power server. Another module
monitors the health of all systems components and restarts individual system
components when necessary. Clock synchronization is achieved through a time
server. Finally, a data logging server dumps sensor, control, and diagnostic
data to disk for replay and analysis.

The following sections will describe Stanley’s core software processes in greater
detail. The paper will then conclude with a description of Stanley’s performance
in the Grand Challenge.

1.4 Vehicle State Estimation

Estimating vehicle state is a key prerequisite for precision driving. Inaccurate pose
estimation can cause the vehicle to drive outside the corridor, or build terrain maps
that do not reflect the state of the robot’s environment, leading to poor driving de-
cisions. In Stanley, the vehicle state comprises a total of 15 variables. The design
of this parameter space follows standard methodology [Farrell and Barth, 1999,
van der Merwe and Wan, 2004]:

# values state variable
3 position (longitude, latitude, altitude)
3 velocity
3 orientation (Euler angles: roll, pitch, yaw)
3 accelerometer biases
3 gyro biases
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An unscented Kalman filter (UKF) [Julier and Uhlmann, 1997] estimates these
quantities at an update rate of 100Hz. The UKF incorporates observations from
the GPS, the GPS compass, the IMU, and the wheel encoders. The GPS system
provides both absolute position and velocity measurements, which are both in-
corporated into the UKF. From a mathematical point of view, the sigma point
linearization in the UKF often yields a lower estimation error than the lineariza-
tion based on Taylor expansion in the EKF [van der Merwe, 2004]. To many, the
UKF is also preferable from an implementation standpoint because it does not
require the explicit calculation of any Jacobians; although those can be useful
for further analysis.

While GPS is available, the UKF uses only a “weak” model. This model
corresponds to a moving mass that can move in any direction. Hence, in normal
operating mode the UKF places no constraint on the direction of the velocity
vector relative to the vehicle’s orientation. Such a model is clearly inaccurate, but
the vehicle-ground interactions in slippery desert terrain are generally difficult
to model. The moving mass model allows for any slipping or skidding that may
occur during off-road driving.

However, this model performs poorly during GPS outages, however, as the
position of the vehicle relies strongly on the accuracy of the IMU’s accelerom-
eters. As a consequence, a more restrictive UKF motion model is used during
GPS outages. This model constrains the vehicle to only move in the direction
it is pointed. Integration of the IMU’s gyroscopes for orientation, coupled with
wheel velocities for computing the position, is able to maintain accurate pose
of the vehicle during GPS outages of up to 2 minutes long; the accrued error is
usually in the order of centimeters. Stanley’s health monitor will decrease the
maximum vehicle velocity during GPS outages to 10 mph in order to maximize
the accuracy of the restricted vehicle model. Fig. 1.6a shows the result of po-
sition estimation during a GPS outage with the weak vehicle model; Fig. 1.6b
the result with the strong vehicle model. This experiment illustrates the per-
formance of this filter during a GPS outage. Clearly, accurate vehicle modeling
during GPS outages is essential. In an experiment on a paved road, we found
that even after 1.3 km of travel without GPS on a cyclic course, the accumulated
vehicle error was only 1.7 meters.

1.5 Laser Terrain Mapping

1.5.1 Terrain Labeling

To safely avoid obstacles, Stanley must be capable of accurately detecting non-
drivable terrain at a sufficient range to stop or take the appropriate evasive
action. The faster the vehicle is moving, the farther away obstacles must be
detected. Lasers are used as the basis for Stanley’s short and medium range
obstacle avoidance. Stanley is equipped with five single-scan laser range finders
mounted on the roof, tilted downward to scan the road ahead. Fig. 1.7a illus-
trates the scanning process. Each laser scan generates a vector of 181 range
measurements spaced 0.5 degrees apart. Projecting these scans into the global
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Fig. 1.7. (a) Illustration of a laser sensor: The sensor is angled downward to scan the
terrain in front of the vehicle as it moves. Stanley possesses five such sensors, mounted
at five different angles. (b) Each laser acquires a 3-D point cloud over time. The point
cloud is analyzed for drivable terrain and potential obstacles.

coordinate frame according to the estimated pose of the vehicle results in a 3-D
point cloud for each laser. Fig. 1.7b shows an example of the point clouds ac-
quired by the different sensors. The coordinates of such 3-D points are denoted
(X i

k Y i
k Zi

k); here k is the time index at which the point was acquired, and i is
the index of the laser beam.

Obstacle detection on laser point clouds can be formulated as a classification
problem, assigning to each 2-D location in a surface grid one of three possible
values: occupied, free, and unknown. A location is occupied by an obstacle if we
can find two nearby points whose vertical distance |Zi

k − Zj
m| exceeds a critical

vertical distance δ. It is considered drivable (free of obstacles) if no such points
can be found, but at least one of the readings falls into the corresponding grid
cell. If no reading falls into the cell, the drivability of this cell is considered
unknown. The search for nearby points is conveniently organized in a 2-D grid,
the same grid used as the final drivability map that is provided to the vehicle’s
navigation engine. Fig. 1.8 shows the example grid map. As indicated in this
figure, the map assigns terrain to one of three classes: drivable, occupied, or
unknown.

Unfortunately, applying this classification scheme directly to the laser data
yields results inappropriate for reliable robot navigation. Fig. 1.9 shows such an
instance, in which a small error in the vehicle’s roll/pitch estimation leads to a mas-
sive terrain classification error, forcing the vehicle off the road. Small pose errors
are magnified into large errors in the projected positions of laser points because
the lasers are aimed at the road up to 30 meters in front of the vehicle. In our ref-
erence dataset of labeled terrain, we found that 12.6% of known drivable area is
classified as obstacle, for a height threshold parameter δ = 15cm. Such situations
occur even for roll/pitch errors smaller than 0.5 degrees. Pose errors of this magni-
tude can be avoided by pose estimation systems that cost hundreds of thousands
of dollars, but such a choice was too costly for this project.

The key insight to solving this problem is illustrated in Fig. 1.10. This graph
plots the perceived obstacle height |Zi

k − Zj
m| along the vertical axis for a
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Fig. 1.8. Examples of occupancy maps: (a) an underpass, and (b) a road

Fig. 1.9. Small errors in pose estimation (smaller than 0.5 degrees) induce massive
terrain classification errors, which if ignored could force the robot off the road. These
images show two consecutive snapshots of a map that forces Stanley off the road. Here
obstacles are plotted in red, free space in white, and unknown territory in gray. The
blue lines mark the corridor as defined by the RDDF.

collection of grid cells taken from flat terrain. Clearly, for some grid cells the
perceived height is enormous—despite the fact that in reality, the surface is flat.
However, this function is not random. The horizontal axis depicts the time dif-
ference Δt |k − m| between the acquisition of those scans. Obviously, the error
is strongly correlated with the elapsed time between the two scans.

To model this error, Stanley uses a first order Markov model, which models
the drift of the pose estimation error over time. The test for the presence of
an obstacle is therefore a probabilistic test. Given two points (X i

k Y i
k Zi

k)T

and (Xj
m Y j

m Zj
m)T , the height difference is distributed according to a normal
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Fig. 1.10. Correlation of time and vertical measurement error in the laser data analysis

distribution whose variance scales linearly with the time difference |k−m|. Thus,
Stanley uses a probabilistic test for the presence of an obstacle, of the type

p(|Zi
k − Zj

m| > δ) > α (1.1)

Here α is a confidence threshold, e.g., α = 0.05.
When applied over a 2-D grid, the probabilistic method can be implemented

efficiently so that only two measurements have to be stored per grid cell. This
is due to the fact that each measurement defines a bound on future Z-values for
obstacle detection. For example, suppose we observe a new measurement for a
cell which was previously observed. Then one or more of three cases will be true:

1. The new measurement might be a witness of an obstacle, according to the
probabilistic test. In this case Stanley simply marks the cell as obstacle and
no further testing takes place.

2. The new measurement does not trigger as a witness of an obstacle, but in
future tests it establishes a tighter lower bound on the minimum Z-value
than the previously stored measurement. In this case, our algorithm simply
replaces the previous measurement with this new one. The rationale behind
this is simple: If the new measurement is more restrictive than the previous
one, there will not be a situation where a test against this point would fail
while a test against the older one would succeed. Hence, the old point can
safely be discarded.

3. The third case is equivalent to the second, but with a refinement of the upper
value. Notice that a new measurement may refine simultaneously the lower
and the upper bounds.

The fact that only two measurements per grid cell have to be stored renders this
algorithm highly efficient in space and time.
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Fig. 1.11. Terrain labeling for parameter tuning: The area traversed by the vehicle
is labeled as “drivable” (blue) and two stripes at a fixed distance to the left and the
right are labeled as “obstacles” (red). While these labels are only approximate, they
are extremely easy to obtain and significantly improve the accuracy of the resulting
map when used for parameter tuning.

1.5.2 Data-Driven Parameter Tuning

A final step in developing this mapping algorithm addresses parameter tuning.
Our approach, and the underlying probabilistic Markov model, possesses a num-
ber of unknown parameters. These parameters include the height threshold δ, the
statistical acceptance probability threshold α, and various Markov chain error pa-
rameters (the noise covariances of the process noise and the measurement noise).

Stanley uses a discriminative learning algorithm for locally optimizing these
parameters. This algorithm tunes the parameters in a way that maximizes the
discriminative accuracy of the resulting terrain analysis on labeled training data.

Thedata is labeled throughhumandriving, similar in spirit to [Pomerleau, 1993].
Fig. 1.11 illustrates the idea: A human driver is instructed to only drive over
obstacle-free terrain. Grid cells traversed by the vehicle are then labeled as “driv-
able.” This area corresponds to the blue stripe in Fig. 1.11. A stripe to the left and
right of this corridor is assumed to be all obstacles, as indicated by the red stripes
in Fig. 1.11. The distance between the “drivable” and “obstacle” is set by hand,
based on the average road width for a segment of data. Clearly, not all of those
cells labeled as obstacles are actually occupied by actual obstacles; however, even
training against an approximate labeling is enough to improve overall performance
of the mapper.

The learning algorithm is now implemented through coordinate ascent. In the
outer loop, the algorithm performs coordinate ascent relative to a data-driven
scoring function. Given an initial guess, the coordinate ascent algorithm modifies
each parameter one-after-another by a fixed amount. It then determines if the
new value constitutes an improvement over the previous value when evaluated
over a logged data set, and retains it accordingly. If for a given interval size no
improvement can be found, the search interval is cut in half and the search is
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Fig. 1.12. Example of pitching combined with small pose estimation errors: (a) shows
the reading of the center beam of one of the lasers, integrated over time. Some of the
terrain is scanned twice. Panel (b) shows the 3-D point cloud; panel (c) the resulting
map without probabilistic analysis, and (d) the map with probabilistic analysis. The
map shown in Panel (c) possesses a phantom obstacle, large enough to force the vehicle
off the road.

Fig. 1.13. A second example
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continued, until the search interval becomes smaller than a pre-set minimum
search interval (at which point the tuning is terminated).

The probabilistic analysis paired with the discriminative algorithm for param-
eter tuning has a significant effect on the accuracy of the terrain labels. Using
an independent testing data set, we find that the false positive rate (the area
labeled as drivable in Fig. 1.11) drops from 12.6% to 0.002%. At the same time,
the rate at which the area off the road is labeled as obstacle remains approxi-
mately constant (from 22.6% to 22.0%). This rate is not 100% simply because
most of the terrain there is still flat and drivable. Our approach for data acqui-
sition mislabels the flat terrain as non-drivable. Such mislabeling however, does
not interfere with the parameter tuning algorithm, and hence is preferable to
the tedious process of labeling pixels manually.

Fig. 1.12 shows an example of the mapper in action. A snapshot of the vehicle
from the side illustrates that part of the surface is scanned multiple times due
to a change of pitch. As a result, the non-probabilistic method hallucinates a
large occupied area in the center of the road, shown in Panel c of Fig. 1.12. Our
probabilistic approach overcomes this error and generates a map that is good
enough for driving. A second example is shown in Fig. 1.13.

1.6 Computer Vision Terrain Analysis

The effective maximum range at which obstacles can be detected with the laser
mapper is approximately 22 meters. This range is sufficient for Stanley to reliably
avoid obstacles at speeds up to 25 mph. Based on the 2004 race course, the de-
velopment team estimated that Stanley would need to reach speeds of 35 mph in
order to successfully complete the challenge. To extend the sensor range enough
to allow safe driving at 35 mph, Stanley uses a color camera to find drivable sur-
faces at ranges exceeding that of the laser analysis. Fig. 1.14 compares laser and
vision mapping side-by-side. The left diagram shows a laser map acquired during
the race; here obstacles are detected at approximately 22 meter range. The vision
map for the same situation is shown on the right side. This map extends beyond
70 meters (each yellow circle corresponds to 10 meters range).

Our work builds on a long history of research on road finding[Pomerleau, 1991,
Crisman and Thorpe, 1993]; see also [Dickmanns, 2002]. To find the road, the vi-
sion module classifies images into drivable and non-drivable regions. This classi-
fication task is generally difficult, as the road appearance is affected by a number
of factors that are not easily measured and change over time, such as the surface
material of the road, lighting conditions, dust on the lens of the camera, and so
on. This suggests that an adaptive approach is necessary, in which the image
interpretation changes as the vehicle moves and conditions change.

The camera images are not the only source of information about upcoming
terrain available to the vision mapper. Although we are interested in using vision
to classify the drivability of terrain beyond the laser range, we already have such
drivability information from the laser in the near range. All that is required from
the vision routine is to extend the reach of the laser analysis. This is different
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Fig. 1.14. Comparison of the laser-based (left) and the image-based (right) mapper.
For scale, circles are spaced around the vehicle at 10 meter distance. This diagram il-
lustrates that the reach of lasers is approximately 22 meters, whereas the vision module
often looks 70 meters ahead.

Fig. 1.15. This figure illustrates the processing stages of the computer vision system:
(a) a raw image; (b) the processed image with the laser quadrilateral and a pixel
classification; (c) the pixel classification before thresholding; (d) horizon detection for
sky removal

from the general-purpose image interpretation problem, in which no such data
would be available.

Stanley finds drivable surfaces by projecting drivable area from the laser anal-
ysis into the camera image. More specifically, Stanley extracts a quadrilateral
ahead of the robot in the laser map, so that all grid cells within this quadri-
lateral are drivable. The range of this quadrilateral is typically between 10 and
20 meters ahead of the robot. An example of such a quadrilateral is shown in
Fig. 1.14a. Using straightforward geometric projection, this quadrilateral is then
mapped into the camera image, as illustrated in Fig. 1.15a and b. An adaptive
computer vision algorithm then uses the image pixels inside this quadrilateral
as training examples for the concept of drivable surface.
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The learning algorithm maintains a mixture of Gaussians that model the
color of drivable terrain. Each such mixture is a Gaussian defined in the RGB
color space of individual pixels; the total number of Gaussians is denoted n.
The learning algorithm maintains for each mixture a mean RGB-color μi, a
covariance Σi, and a number mi that counts the total number of image pixels
that were used to train this Gaussian.

When a new image is observed, the pixels in the drivable quadrilateral are
mapped into a much smaller number of k “local” Gaussians using the EM
algorithm[Duda and Hart, 1973], with k < n (the covariance of these local Gaus-
sians are inflated by a small value so as to avoid overfitting). These k local Gaus-
sians are then merged into the memory of the learning algorithm, in a way that
allows for slow and fast adaptation. The learning adapts to the image in two
possible ways; by adjusting the previously found internal Gaussian to the ac-
tual image pixels, and by introducing new Gaussians and discarding older ones.
Both adaptation steps are essential. The first enables Stanley to adapt to slowly
changing lighting conditions; the second makes it possible to adapt rapidly to a
new surface color (e.g., when Stanley moves from a paved to an unpaved road).

In detail, to update the memory, consider the j-th local Gaussian. The learning
algorithm determines the closest Gaussian in the global memory, where closeness
is determined through the Mahalanobis distance.

d(i, j) = (μi − μj)T (Σi + Σj)−1 (μi − μj) (1.2)

Let i be the index of the minimizing Gaussian in the memory. The learning
algorithm then chooses one of two possible outcomes:

1. The distance d(i, j) ≤ φ, where φ is an acceptance threshold. The learning
algorithm then assumes that the global Gaussian j is representative of the
local Gaussian i, and adaptation proceeds slowly. The parameters of this
global Gaussian are set to the weighted mean:

μi ←− mi μi

mi + mj
+

mj μj

mi + mj
(1.3)

Σi ←− mi Σi

mi + mj
+

mj Σj

mi + mj
(1.4)

mi ←− mi + mj (1.5)

Here mj is the number of pixels in the image that correspond to the j-th
Gaussian.

2. The distance d(i, j) > φ for any Gaussian i in the memory. This is the case
when none of the Gaussian in memory are near the local Gaussian extracted
from the image, where nearness is measured by the Mahalanobis distance.
The algorithm then generates a new Gaussian in the global memory, with
parameters μj , Σj , and mj . If all n slots are already taken in the memory,
the algorithm “forgets” the Gaussian with the smallest total pixel count mi,
and replaces it by the new local Gaussian.
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Fig. 1.16. These images illustrate the rapid adaptation of Stanley’s computer vision
routines. When the laser predominately screens the paved surface, the grass is not
classified as drivable. As Stanley moves into the grass area, the classification changes.
This sequence of images also illustrates why the vision result should not be used for
steering decisions, in that the grass area is clearly drivable, yet Stanley is unable to
detect this from a distance.

After this step, each counter mi in the memory is discounted by a factor of γ < 1.
This exponential decay term makes sure that the Gaussians in memory can be
moved in new directions as the appearance of the drivable surface changes over
time.

For finding drivable surface, the learned Gaussians are used to analyze
the image. The image analysis uses an initial sky removal step defined in
[Ettinger et al., 2003]. A subsequent flood-fill step then removes additional sky
pixels not found by the algorithm in [Ettinger et al., 2003]. The remaining pixels
are than classified using the learned mixture of Gaussian, in the straightforward
way. Pixels whose RGB-value is near one or more of the learned Gaussians are
classified as drivable; all other pixels are flagged as non-drivable. Finally, only
regions connected to the laser quadrilateral are labeled as drivable.

Fig. 1.15 illustrates the key processing steps. Panel a in this figure shows a
raw camera image, and Panel b shows the image after processing. Pixels clas-
sified as drivable are colored red, whereas non-drivable pixels are colored blue.
The remaining two panels on Fig. 1.15 show intermediate processing steps: the
classification response before thresholding (Panel c) and the result of the sky
finder (Panel d).

Due to the ability to create new Gaussians on-the-fly, Stanley’s vision routine
can adapt to new terrain within seconds. Fig. 1.16 shows data acquired at the
National Qualification Event of the DARPA Grand Challenge. Here the vehicle
moves from a pavement to grass, both of which are drivable. The sequence in
Fig. 1.16 illustrates the adaptation at work: the boxed areas towards the bottom
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Fig. 1.17. Processed camera images in flat and mountainous terrain (Beer Bottle Pass)

of the image are the training region, and the red coloring in the image is the
result of applying the learned classifier. As is easily seen in Fig. 1.16, the vision
module successfully adapts from pavement to grass within less than a second
while still correctly labeling the hay bales and other obstacles.

Under slowly changing lighting conditions, the system adapts more slowly to
the road surface, making extensive use of past images in classification. This is
illustrated in the bottom row of Fig. 1.17, which shows results for a sequence of
images acquired at the Beer Bottle pass, the most difficult passage in the 2005
race. Here most of the terrain has similar visual appearance. The vision module,
however, still competently segments the road. Such a result is only possible
because the system balances the use of past images with its ability to adapt to
new camera images.

Once a camera image has been classified, it is mapped into an overhead
map, similar to the 2-D map generated by the laser. We already encoun-
tered such a map in Fig. 1.14b, which depicted the map of a straight road.
Since certain color changes are natural even on flat terrain, the vision map
is not used for steering control. Instead, it is used exclusively for velocity
control. When no drivable corridor is detected within a range of 40 meters,
the robot simply slows down to 25 mph, at which point the laser range is
sufficient for safe navigation. In other words, the vision analysis serves as an
early warning system for obstacles beyond the range of the laser sensors.

In developing the vision routines, the research team investigated a number of
different learning algorithms. One of the primary alternatives to the generative
mixture of Gaussian method was a discriminative method, which uses boosting
and decision stumps for classification [Davies and Lienhart, 2006]. This method
relies on examples of non-drivable terrain, which were extracted using an al-
gorithm similar to the one for finding a drivable quadrilateral. A performance
evaluation, carried out using independent test data gathered on the 2004 race
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Table 1.1. Road detection rate for the two primary machine learning methods, broken
down into different ranges. The comparison yields no conclusive winner.

Flat Desert Roads Mountain Roads
Discriminative Generative Discriminative Generative

training training training training
Drivable terrain detection rate, 10-20m 93.25% 90.46% 80.43% 88.32%
Drivable terrain detection rate, 20-35m 95.90% 91.18% 76.76% 86.65%
Drivable terrain detection rate, 35-50m 94.63% 87.97% 70.83% 80.11%
Drivable terrain detection rate, 50m+ 87.13% 69.42% 52.68% 54.89%
False positives, all ranges 3.44% 3.70% 0.50% 2.60%

course, led to inconclusive results. Table 1.1 shows the classification accuracy
for both methods, for flat desert roads and mountain roads. The generative mix-
ture of Gaussian methods was finally chosen because it does not require training
examples of non-drivable terrain, which can be difficult to obtain in flat open
lake-beds.

1.7 Road Property Estimation

1.7.1 Road Boundary

One way to avoid obstacles is to detect them and drive around them. This is
the primary function of the laser mapper. Another effective method is to drive
in such a way that minimizes the a priori chances of encountering an obstacle.
This is possible because obstacles are rarely uniformly distributed in the world.
On desert roads, obstacles such as rocks, brush, and fence posts exist most often
along the sides of the road. By simply driving down the middle of the road, most
obstacles on desert roads can be avoided without ever detecting them!

One of the most beneficial components of Stanley’s navigation routines, thus,
is a method for staying near the center of the road. To find the road center,
Stanley uses probabilistic low-pass filters to determine both road sides based
using the laser map. The idea is simple; in expectation, the road sides are parallel
to the RDDF. However, the exact lateral offset of the road boundary to the
RDDF center is unknown and varies over time. Stanley’s low-pass filters are
implemented as one-dimensional Kalman filters. The state of each filter is the
lateral distance between the road boundary and the center of the RDDF. The
KFs search for possible obstacles along a discrete search pattern orthogonal to
the RDDF, as shown in Fig. 1.18a. The largest free offset is the “observation”
to the KF, in that it establishes the local measurement of the road boundary.
So if multiple parallel roads exist in Stanley’s field of view separated by a small
berm, the filter will only trace the innermost drivable area.

By virtue of KF integration, the road boundaries change slowly. As a result,
small obstacles or momentary situations without side obstacles affect the road
boundary estimation only minimally; however, persistent obstacles that occur
over extended period of time do have a strong effect.
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Fig. 1.18. (a) Search regions for the road detection module: the occurrence of obstacles
is determined along a sequence of lines parallel to the RDDF. (b) The result of the
road estimator is shown in blue, behind the vehicle. Notice that the road is bounded
by two small berms.

Based on the output of these filters, Stanley defines the road to be the center
of the two boundaries. The road center’s lateral offset is a component in scoring
trajectories during path planning, as will be discussed further below. In the
absence of other contingencies, Stanley slowly converges to the estimated road
center. Empirically, we found that this driving technique stays clear of the vast
majority of natural obstacles on desert roads. While road centering is clearly
only a heuristic, we found it to be highly effective in extensive desert tests.

Fig. 1.18b shows an example result of the road estimator. The blue corridor
shown there is Stanley’s best estimate of the road. Notice that the corridor is
confined by two small berms, which are both detected by the laser mapper. This
module plays an important role in Stanley’s ability to negotiate desert roads.

1.7.2 Terrain Ruggedness

In addition to avoiding obstacles and staying centered along the road, an-
other important component of safe driving is choosing an appropriate veloc-
ity [Iagnemma et al., 2004]. Intuitively speaking, desert terrain varies from flat
and smooth to steep and rugged. The type of the terrain plays an important
role in determining the maximum safe velocity of the vehicle. On steep terrain,
driving too fast may lead to fishtailing or sliding. On rugged terrain, excessive
speeds may lead to extreme shocks that can damage or destroy the robot. Thus,
sensing the terrain type is essential for the safety of the vehicle. In order to
address these two situations, Stanley’s velocity controller constantly estimates
terrain slope and ruggedness and uses these values to set intelligent maximum
speeds.
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Fig. 1.19. The relationship between velocity and imparted acceleration from driving
over a fixed sized obstacle at varying speeds. The plot shows two distinct reactions to
the obstacle, one up and one down. While this relation is ultimately non-linear, it is
well modeled by a linear function within the range relevant for desert driving.

The terrain slope is taken directly from the vehicle’s pitch estimate, as com-
puted by the UKF. Borrowing from [Brooks and Iagnemma, 2005], the terrain
ruggedness is measured using the vehicle’s z accelerometer. The vertical acceler-
ation is band-pass filtered to remove the effect of gravity and vehicle vibration,
while leaving the oscillations in the range of the vehicle’s resonant frequency.
The amplitude of the resulting signal is a measurement of the vertical shock
experienced by the vehicle due to excitation by the terrain. Empirically, this
filtered acceleration appears to vary linearly with velocity. (See Fig. 1.19.) In
other words, doubling the maximum speed of the vehicle over a section of ter-
rain will approximately double the maximum differential acceleration imparted
on the vehicle. In Section 1.9.1, this relationship will be used to derive a simple
rule for setting maximum velocity to approximately bound the maximum shock
imparted on the vehicle.

1.8 Path Planning

As was previously noted, the RDDF file provided by DARPA largely eliminates
the need for any global path planning. Thus, the role of Stanley’s path planner is
primarily local obstacle avoidance. Instead of planning in the global coordinate
frame, Stanley’s path planner was formulated in a unique coordinate system:
perpendicular distance, or “lateral offset” to a fixed base trajectory. Varying lat-
eral offset moves Stanley left and right with respect to the base trajectory, much
like a car changes lanes on a highway. By changing lateral offset intelligently,
Stanley can avoid obstacles at high speeds while making fast progress along the
course.
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The base trajectory that defines lateral offset is simply a smoothed version of
the skeleton of the RDDF corridor. It is important to note that this base trajec-
tory is not meant to be an optimal trajectory in any sense; it serves as a baseline
coordinate system upon which obstacle avoidance maneuvers are continuously
layered. The following two sections will describe the two parts to Stanley’s path
planning software: the path smoother that generates the base trajectory before
the race, and the online path planner which is constantly adjusting Stanley’s
trajectory.

1.8.1 Path Smoothing

Any path can be used as a base trajectory for planning in lateral offset space.
However, certain qualities of base trajectories will improve overall performance.

• Smoothness. The RDDF is a coarse description of the race corridor and
contains many sharp turns. Blindly trying to follow the RDDF waypoints
would result in both significant overshoot and high lateral accelerations, both
of which could adversely affect vehicle safety. Using a base trajectory that is
smoother than the original RDDF will allow Stanley to travel faster in turns
and follow the intended course with higher accuracy.

• Matched curvature. While the RDDF corridor is parallel to the road in
expectation, the curvature of the road is poorly predicted by the RDDF file
in turns, again due to the finite number of waypoints. By default, Stanley
will prefer to drive parallel to the base trajectory, so picking a trajectory
that exhibits curvature that better matches the curvature of the underlying
desert roads will result in fewer changes in lateral offset. This will also result
in smoother, faster driving.

Stanley’s base trajectory is computed before the race in a four-stage procedure.

1. First, points are added to the RDDF in proportion to the local curvature
(see Fig. 1.20a).

2. The coordinates of all points in the upsampled trajectory are then adjusted
through least squares optimization. Intuitively, this optimization adjusts

Fig. 1.20. Smoothing of the RDDF: (a) adding additional points; (b) the trajectory
after smoothing (shown in red); (c) a smoothed trajectory with a more aggressive
smoothing parameter. The smoothing process takes only 20 seconds for the entire 2005
course.
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each waypoint so as to minimize the curvature of the path while staying
as close as possible to the waypoints in the original RDDF. The resulting
trajectory is still piecewise linear, but it is significantly smoother than the
original RDDF.

Let x1, . . . , xN be the waypoints of the base trajectory to be optimized.
For each of these points, we are given a corresponding point along the orig-
inal RDDF, which shall be denoted yi. The points x1, . . . , xN are obtained
by minimizing the following additive function:

argmin
x1,...,xN

∑
i

|yi − xi|2 − β
∑

n

(xn+1 − xn) · (xn − xn−1)
|xn+1 − xn| |xn − xn−1| +

∑
n

fRDDF(xn) (1.6)

Here |yi − xi|2 is the quadratic distance between the waypoint xi and the
corresponding RDDF anchor point yi; the index variable i iterates over the
set of points xi. Minimizing this quadratic distance for all points i ensures
that the base trajectory stays close to the original RDDF. The second ex-
pression in Eq. (1.6) is a curvature term; It minimizes the angle between
two consecutive line segments in the base trajectory by minimizing the dot
product of the segment vectors. Its function is to smooth the trajectory:
the smaller the angle, the smoother the trajectory. The scalar β trades off
these two objectives and is a parameter in Stanley’s software. The function
fRDDF(xn) is a differentiable barrier function that goes to infinity as a point
xn approaches the RDDF boundary, but is near zero inside the corridor away
from the boundary. As a result, the smoothed trajectory is always inside the
valid RDDF corridor. The optimization is performed with a fast version of
conjugate gradient descent, which moves RDDF points freely in 2-D space.

3. The next step of the path smoother involves cubic spline interpolation. The
purpose of this step is to obtain a path that is differentiable. This path can
then be resampled efficiently.

4. The final step of path smoothing pertains to the calculation of the speed
limit attached to each waypoint of the smooth trajectory. Speed limits are
the minimum of three quantities: (a) the speed limit from corresponding
segment of the original RDDF, (b) a speed limit that arises from a bound
on lateral acceleration, and (c) a speed limit that arises from a bounded
deceleration constraint. The lateral acceleration constraint forces the vehicle
to slow down appropriately in turns. When computing these limits, we bound
the lateral acceleration of the vehicle to 0.75 m/sec2, in order to give the
vehicle enough maneuverability to safely avoid obstacles in curved segments
of the course. The bounded deceleration constraint forces the vehicle to slow
down in anticipation of turns and changes in DARPA speed limits.

Fig. 1.20 illustrates the effect of smoothing on a short segment of the RDDF.
Panel a shows the RDDF and the upsampled base trajectory before smoothing.
Panels b and c show the trajectory after smoothing (in red), for different values
of the parameter β. The entire data pre-processing step is fully automated, and
requires only approximately 20 seconds of compute time on a 1.4 GHz laptop,
for the entire 2005 race course. This base trajectory is transferred onto Stanley,
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and the software is ready to go. No further information about the environment
or the race is provided to the robot.

It is important to note that Stanley does not modify the original RDDF file.
The base trajectory is only used as the coordinate system for obstacle avoidance.
When evaluating whether particular trajectories stay within the designated race
course, Stanley checks against the original RDDF file. In this way, the prepro-
cessing step does not affect the interpretation of the corridor constraint imposed
by the rules of the race.

1.8.2 Online Path Planning

Stanley’s online planning and control system is similar to the one described in
[Kelly and Stentz, 1998]. The online component of the path planner is respon-
sible for determining the actual trajectory of the vehicle during the race. The
goal of the planner is to complete the course as fast as possible while success-
fully avoiding obstacles and staying inside the RDDF corridor. In the absence of
obstacles, the planner will maintain a constant lateral offset from the base tra-
jectory. This results in driving a path parallel to the base trajectory, but possibly
shifted left or right. If an obstacle is encountered, Stanley will plan a smooth
change in lateral offset that avoids the obstacle and can be safely executed. Plan-
ning in lateral offset space also has the advantage that it gracefully handles GPS
error. GPS error may systematically shift Stanley’s position estimate. The path
planner will simply adjust the lateral offset of the current trajectory to recenter
the robot in the road.

The path planner is implemented as a search algorithm that minimizes a
linear combination of continuous cost functions, subject to a fixed vehicle model.
The vehicle model includes several kinematic and dynamic constraints including
maximum lateral acceleration (to prevent fishtailing), maximum steering angle (a
joint limit), maximum steering rate (maximum speed of the steering motor), and
maximum deceleration (due to the stopping distance of the Touareg). The cost
functions penalize running over obstacles, leaving the RDDF corridor, and the
lateral offset from the current trajectory to the sensed center of the road surface.
The soft constraints induce a ranking of admissible trajectories. Stanley chooses
the best such trajectory. In calculating the total path costs, unknown territory is
treated the same as drivable surface, so that the vehicle does not swerve around
unmapped spots on the road, or specular surfaces such as puddles.

At every time step, the planner considers trajectories drawn from a two-
dimensional space of maneuvers. The first dimension describes the amount of
lateral offset to be added to the current trajectory. This parameter allows Stan-
ley to move left and right, while still staying essentially parallel to the base tra-
jectory. The second dimension describes the rate at which Stanley will attempt
to change to this lateral offset. The lookahead distance is speed-dependent and
ranges from 15 to 25 meters. All candidate paths are run through the vehicle
model to ensure that obey the kinematic and dynamic vehicle constraints. Re-
peatedly layering these simple maneuvers on top of the base trajectory can result
in quite sophisticated trajectories.
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Fig. 1.21. Path planning in a 2-D search space: (a) shows paths that change lateral
offsets with the minimum possible lateral acceleration (for a fixed plan horizon); (b)
shows the same for the maximum lateral acceleration. The former are called “nudges,”
and the latter are called “swerves.”

Fig. 1.22. Snapshots of the path planner as it processes the drivability map. Both
snapshots show a map, the vehicle, and the various nudges considered by the planner.
The first snapshot stems from a straight road (Mile 39.2 of the 2005 race course).
Stanley is traveling 31.4 mph, hence can only slowly change lateral offsets due to the
lateral acceleration constraint. The second example is taken from the most difficult
part of the 2005 DARPA Grand Challenge, a mountainous area called Beer Bottle
Pass. Both images show only nudges for clarity.

The second parameter in the path search allows the planner to control the
urgency of obstacle avoidance. Discrete obstacles in the road, such as rocks or
fence posts often require the fastest possible change in lateral offset. Paths that
change lateral offset as fast as possible without violating the lateral acceleration
constraint are called “swerves.” Slow changes in the positions of road bound-
aries require slow, smooth adjustment to the lateral offset. Trajectories with the
slowest possible change in lateral offset for a given planning horizon are called
“nudges.” Swerves and nudges span a spectrum of maneuvers appropriate for
high speed obstacle avoidance: fast changes for avoiding head on obstacles, and
slow changes for smoothly tracking the road center. Swerves and nudges are
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illustrated in Fig. 1.21. On a straight road, the resulting trajectories are similar
to those of Ko and Simmons’s lane curvature method [Ko and Simmons, 1998].

The path planner is executed at 10 Hz. The path planner is ignorant to actual
deviations from the vehicle and the desiredpath, since those are handledby the low-
level steering controller. The resulting trajectory is therefore always continuous.
Fast changes in lateral offset (swerves)will also include braking in order to increase
the amount of steering the vehicle can do without violating the maximum lateral
acceleration constraint.

Fig. 1.22 shows an example situation for the path planner. Shown here is a sit-
uation taken from Beer Bottle Pass, the most difficult passage of the 2005 Grand
Challenge. This image only illustrates one of the two search parameters: the lat-
eral offset. It illustrates the process through which trajectories are generated by
gradually changing the lateral offset relative to the base trajectory. By using the
base trajectory as a reference, path planning can take place in a low-dimensional
space, which we found to be necessary for real-time performance.

1.9 Real-Time Control

Once the intended path of the vehicle has been determined by the path planner,
the appropriate throttle, brake, and steering commands necessary to achieve that
path must be computed. This control problem will be described in two parts:
the velocity controller and steering controller.

1.9.1 Velocity Control

Multiple software modules have input into Stanley’s velocity, most notably the
path planner, the health monitor, the velocity recommender, and the low-level
velocity controller. The low-level velocity controller translates velocity com-
mands from the first three modules into actual throttle and brake commands.
The implemented velocity is always the minimum of the three recommended
speeds. The path planner will set a vehicle velocity based on the base trajectory
speed limits and any braking due to swerves. The vehicle health monitor will
lower the maximum velocity due to certain preprogrammed conditions, such as
GPS blackouts or critical system failures.

The velocity recommender module sets an appropriate maximum velocity
based on estimated terrain slope and roughness. The terrain slope affects the
maximum velocity if the pitch of the vehicle exceeds 5 degrees. Beyond 5 de-
grees of slope, the maximum velocity of the vehicle is reduced linearly to values
that, in the extreme, restrict the vehicle’s velocity to 5 mph. The terrain rugged-
ness is fed into a controller with hysteresis that controls the velocity setpoint
to exploit the linear relationship between filtered vertical acceleration amplitude
and velocity; see Sect. 1.7.2. If rough terrain causes a vibration that exceeds
the maximum allowable threshold, the maximum velocity is reduced linearly
such that continuing to encounter similar terrain would yield vibrations exactly
meeting the shock limit. Barring any further shocks, the velocity limit is slowly
increased linearly with distance traveled.
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Fig. 1.23. Velocity profile of a human driver and of Stanley’s velocity controller in
rugged terrain. Stanley identifies controller parameters that match human driving. This
plot compares human driving with Stanley’s control output.

This rule may appear odd, but it has great practical importance; it reduces
the Stanley’s speed when the vehicle hits a rut. Obviously, the speed reduction
occurs after the rut is hit, not before. By slowly recovering speed, Stanley will
approach nearby ruts at a much lower speed. As a result, Stanley tends to drive
slowly in areas with many ruts, and only returns to the base trajectory speed
when no ruts have been encountered for a while. While this approach does not
avoid isolated ruts, we found it to be highly effective in avoiding many shocks
that would otherwise harm the vehicle. Driving over wavy terrain can be just
as hard on the vehicle as driving on ruts. In bumpy terrain, slowing down also
changes the frequency at which the bumps pass, reducing the effect of resonance.

The velocity recommender is characterized by two parameters: the maximum
allowable shock, and the linear recovery rate. Both are learned from human
driving. More specifically, by recording the velocity profile of a human in rugged
terrain, Stanley identifies the parameters that most closely match the human
driving profile. Fig. 1.23 shows the velocity profile of a human driver in a moun-
tainous area of the 2004 Grand Challenge Course (the “Daggett Ridge”). It also
shows the profile of Stanley’s controller for the same data set. Both profiles tend
to slow down in the same areas. Stanley’s profile, however, is different in two
ways: the robot deceleerates much faster than a person, and its recovery is linear
whereas the person’s recovery is nonlinear. The fast acceleration is by design, to
protect the vehicle from further impact.

Once the planner, velocity recommender, and health monitor have all sub-
mitted velocities, the minimum of these speeds is implemented by the velocity
controller. The velocity controller treats the brake cylinder pressure and throt-
tle level as two opposing, single-acting actuators that exert a longitudinal force
on the car. This is a very close approximation for the brake system, and was
found to be an acceptable simplification of the throttle system. The controller
computes a single error metric, equal to a weighted sum of the velocity error and
the integral of the velocity error. The relative weighting determines the trade-off
between disturbance rejection and overshoot. When the error metric is positive,



1 Stanley: The Robot That Won the DARPA Grand Challenge 31

Fig. 1.24. Illustration of the steering controller. With zero cross-track error, the basic
implementation of the steering controller steers the front wheels parallel to the path.
When cross-track error is perturbed from zero, it is nulled by commanding the steering
according to a non-linear feedback function.

the brake system commands a brake cylinder pressure proportional to the PI
error metric, and when it is negative, the throttle level is set proportional to the
negative of the PI error metric. By using the same PI error metric for both ac-
tuators, the system is able to avoid the chatter and dead bands associated with
opposing, single-acting actuators. To realize the commanded brake pressure, the
hysteretic brake actuator is controlled through saturated proportional feedback
on the brake pressure, as measured by the Touareg, and reported through the
CAN bus interface.

1.9.2 Steering Control

The steering controller accepts as input the trajectory generated by the path
planner, the UKF pose and velocity estimate, and the measured steering wheel
angle. It outputs steering commands at a rate of 20 Hz. The function of this
controller is to provide closed loop tracking of the desired vehicle path, as de-
termined by the path planner, on quickly varying, potentially rough terrain.

The key error metric is the cross-track error, x(t), as shown in Fig. 1.24, which
measures the lateral distance of the center of the vehicle’s front wheels from the
nearest point on the trajectory. The idea now is to command the steering by a
control law that yields an x(t) that converges to zero.

Stanley’s steering controller, at the core, is based on a non-linear feedback
function of the cross-track error, for which exponential convergence can be
shown. Denote the vehicle speed at time t by u(t). In the error-free case, using
this term, Stanley’s front wheels match the global orientation of the trajectory.
This is illustrated in Fig. 1.24. The angle ψ in this diagram describes the ori-
entation of the nearest path segment, measured relative to the vehicle’s own
orientation. In the absence of any lateral errors, the control law points the front
wheels parallel to the planner trajectory.

The basic steering angle control law is given by

δ(t) = ψ(t) + arctan
k x(t)
u(t)

(1.6)
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Fig. 1.25. Phase portrait for k = 1 at 10 and 40 meter per second, respectively, for
the basic controller, including the effect of steering input saturation

where k is a gain parameter. The second term adjusts the steering in (nonlinear)
proportion to the cross-track error x(t): the larger this error, the stronger the
steering response towards the trajectory.

Using a linear bicycle model with infinite tire stiffness and tight steering lim-
itations (see [Gillespie, 1992]) results in the following effect of the control law:

ẋ(t) = −u(t) sin arctan
(

kx(t)
u(t)

)
=

−kx(t)√
1 +

(
kx(t)
u(t)

)2
(1.7)

and hence for small cross track error,

x(t) ≈ x(0) exp−kt (1.8)

Thus, the error converges exponentially to x(t) = 0. The parameter k determines
the rate of convergence. As cross track error increases, the effect of the arctan
function is to turn the front wheels to point straight towards the trajectory,
yielding convergence limited only by the speed of the vehicle. For any value of
x(t), the differential equation converges monotonically to zero. Fig. 1.25 shows
phase portrait diagrams for Stanley’s final controller in simulation, as a function
of the error x(t) and the orientation ψ(t), including the effect of steering input
saturation. These diagrams illustrate that the controller converges nicely for the
full range attitudes and a wide range of cross-track errors, in the example of two
different velocities.

This basic approach works well for lower speeds, and a variant of it can even
be used for reverse driving. However, it neglects several important effects. There
is a discrete, variable time delay in the control loop, inertia in the steering col-
umn, and more energy to dissipate as speed increases. These effects are handled
by simply damping the difference between steering command and the measured
steering wheel angle, and including a term for yaw damping. Finally, to com-
pensate for the slip of the actual pneumatic tires, the vehicle is commanded to
have a steady state yaw offset that is a non-linear function of the path curva-
ture and the vehicle speed, based on a bicycle vehicle model, with slip, that was
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calibrated and verified in testing. These terms combine to stabilize the vehicle
and drive the cross-track error to zero, when run on the physical vehicle. The re-
sulting controller has proven stable in testing on terrain from pavement to deep,
off-road mud puddles, and on trajectories with tight enough radii of curvature
to cause substantial slip. It typically demonstrates tracking error that is on the
order of the estimation error of this system.

1.10 Development Process and Race Results

1.10.1 Race Preparation

The race preparation took place at three different locations: Stanford Univer-
sity, the 2004 Grand Challenge Course between Barstow and Primm, and the
Sonoran Desert near Phoenix, AZ. In the weeks leading up to the race, the team
permanently moved to Arizona, where it enjoyed the hospitality of Volkswagen
of America’s Arizona Proving Grounds. Fig. 1.26 shows examples of hardware
testing in extreme offroad terrain; these pictures were taken while the vehicle
was operated by a person.

In developing Stanley, the Stanford Racing Team adhered to a tight develop-
ment and testing schedule, with clear milestones along the way. Emphasis was
placed on early integration, so that an end-to-end prototype was available nearly
a year before the race. The system was tested periodically in desert environments
representative of the team’s expectation for the Grand Challenge race. In the
months leading up to the race, all software and hardware modules were debugged
and subsequently frozen. The development of the system terminated well ahead
of the race.

The primary measure of system capability was “MDBCF” – mean distance
between catastrophic failures. A catastrophic failure was defined as a condition
under which a human driver had to intervene. Common failures involved software
problems such as the one in Fig. 1.9; occasional failures were caused by the
hardware, e.g., the vehicle power system. In December 2004, the MDBCF was
approximately 1 mile. It increased to 20 miles in July 2005. The last 418 miles
before the National Qualification event were free of failures; this included a single
200-mile run over a cyclic testing course. At that time the system development
was suspended, Stanley’s lateral navigation accuracy was approximately 30 cm.
The vehicle had logged more than 1,200 autonomous miles.

In preparing for this race, the team also tested sensors that were not deployed
in the final race. Among them was an industrial strength stereo vision sensor
with a 33 cm baseline. In early experiments, we found that the stereo system
provided excellent results in the short range, but lacked behind the laser system
in accuracy. The decision not to use stereo was simply based on the observation
that it added little to the laser system. A larger baseline might have made the
stereo more useful at longer ranges, but was unfortunately not available.

The second sensor that was not used in the race was the 24 GHz RADAR
system. The RADAR uses a linear frequency shift keying modulated (LFMSK)
transmit waveform; it is normally used for adaptive cruise control (ACC). After
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Fig. 1.26. Vehicle testing at the Volkswagen Arizona Proving Grounds, manual driving

carefully tuning gains and acceptance thresholds of the sensor, the RADAR
proved highly effective in detecting large frontal obstacles such as abandoned
vehicles in desert terrain. Similar to the mono-vision system in Sect. 1.6, the
RADAR was tasked to screen the road at a range beyond the laser sensors. If a
potential obstacle was detected, the system limits Stanley’s speed to 25 mph so
that the lasers could detect the obstacle in time for collision avoidance.

While the RADAR system proved highly effective in testing, two reasons led
us not to use it in the race. The first reason was technical: During the National
Qualification Event (NQE), the USB driver of the receiving computer repeatedly
caused trouble, sometimes stalling the receiving computer. The second reason
was pragmatical. During the NQE, it became apparent that the probability of
encountering large frontal obstacles was small in high-speed zones; and even if
those existed, the vision system would very likely detect them. As a consequence,
the team felt that the technical risks associated with the RADAR system out-
weigh its benefits, and made the decision not to use RADAR in the race.

1.10.2 National Qualification Event

The National Qualification Event (NQE) took place September 27 through Octo-
ber 5 on the California Speedway in Fontana, CA. Like most competitive robots,
Stanley qualified after four test runs. From the 43 semifinalists, 11 completed
the course in the first run, 13 in the second run, 18 in the third run, and 21
in the fourth run. Stanley’s times were competitive but not the fastest (Run 1:
10:38; run 2: 9:12; run 3: 11:06; run 4: 11:06). However, Stanley was the only
vehicle that cleared all 50 gates in every run, and avoided collisions with all of
the obstacles. This flawless performance earned Stanley the number two start-
ing position, behind CMU’s H1ghlander robot and ahead of the slightly faster
Sandstorm robot, also by CMU.

1.10.3 The Race

At approximately 4:10am on October 8, 2005, the Stanford Racing Team re-
ceived the race data, which consisted of 2,935 GPS-referenced coordinates along
with speed limits of up to 50 mph. Stanley started the race at 6:35am on Oc-
tober 8, 2005. The robot immediately picked up speed and drove at or just
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Fig. 1.27. This map shows Stanley’s path. The thickness of the trajectory indicates
Stanley’s speed (thicker means faster). At the locations marked by the red ’x’s, the race
organizers paused Stanley because of the close proximity of CMU’s H1ghlander robot.
At Mile 101.5, H1ghlander was paused and Stanley passed. This location is marked by
a green ’x’.

below the speed limit. 3 hours, 45 minutes and 22 seconds into the race, at Mile
73.5, DARPA paused Stanley for the first time, to give more space to CMU’s
H1ghlander robot, which started five minutes ahead of Stanley. The first pause
lasted 2 minutes and 45 seconds. Stanley was paused again only 5 minutes and
40 seconds later, at Mile 74.9 (3 hours, 53 minutes, and 47 seconds into the race).
This time the pause lasted 6 minutes and 35 seconds, for a total pause time of 9
minutes and 20 seconds. The locations of the pauses are shown in Fig. 1.27. From
this point on, Stanley repeatedly approached H1ghlander within a few hundred
yards. Even though Stanley was still behind H1ghlander, it was leading the race.

5 hours, 24 minutes and 45 seconds into the race, DARPA finally paused
H1ghlander and allowed Stanley to pass. The passing happened a Mile 101.5;
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Fig. 1.28. Passing CMU’s H1ghlander robot: The left column shows a sequence of
camera images, the center column the processed images with obstacle information
overlayed, and the right column the 2D map derived from the processed image. The
vision routine detects H1ghlander as an obstacle at a 40 meter range, approximately
twice the range of the lasers.
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Fig. 1.29. Laser model of CMU’s H1ghlander robot, taken at Mile 101.5

the location is marked by a green circle in Fig. 1.27. Fig. 1.28 shows processed
camera images of the passing process acquired by Stanley, and Fig. 1.29 depicts
a 3-D model of H1ghlander as it is being passed. Since Stanley started in second
pole position and finished first, the top-seeded H1ghlander robot was the only
robot encountered by Stanley during the race.

As noted in the introduction to this article, Stanley finished first, at an un-
matched finishing time of 6 hours 53 minutes and 58 seconds. Its overall average
velocity was 19.1 mph. However, Stanley’s velocity varied wildly during the race.
Initially, the terrain was flat and the speed limits allowed for much higher speeds.
Stanley reached its top speed of 38.0 mph at Mile 5.43, 13 minutes and 47 sec-
onds into the race. Its maximum average velocity during the race was 24.8 mph,
which Stanley attained after 16 minutes and 56 seconds, at Mile 7.00. Speed
limits then forced Stanley to slow down. Between Mile 84.9 and 88.1, DARPA
restricted the maximum velocity to 10 mph. Shortly thereafter, at Mile 90.6 and
4 hours, 57 minutes, and 7 seconds into the race, Stanley attained its minimum
average velocity of 18.3 mph. The total profile of velocities is shown in Fig. 1.30.

As explained in this paper, Stanley uses a number of strategies to determine
the actual travel speed. During 68.2% of the course, Stanley’s velocity was limited
as pre-calculated, by following the DARPA speed limits or the maximum lateral
acceleration constraints in turns. For the remaining 31.8%, Stanley chose to slow
down dynamically, as the result of its sensor measurements. In 18.1%, the slow-
down was the result of rugged or steep terrain. The vision module caused Stanley
to slow down to 25 mph for 13.1% of the total distance; however, without the
vision module Stanley would have been forced to a 25 mph maximum speed,
which would have resulted in a finishing time of approximately 7 hours and 5
minutes, possibly behind CMU’s Sandstorm robot. Finally, 0.6% of the course
Stanley drove slower because it was denied GPS readings. Fig. 1.31 illustrates
the effect of terrain ruggedness on the overall velocity. The curve on the top
illustrates the magnitude at which Stanley slowed down to accommodate rugged
terrain; the bottom diagram shows the altitude profile, as provided by DARPA.
The terrain ruggedness triggers mostly in mountainous terrain. We believe that
the ability to adapt the speed to the ruggedness of the terrain was an essential
ingredient in Stanley’s success.
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Fig. 1.30. Stanley’s cumulative velocity

Stanley also encountered some unexpected difficulties along the course. Early
on in the race, Stanley’s laser data stream repeatedly stalled for durations of
300 to 1,100 milliseconds. There were a total of 17 incidents, nearly all of which
occurred between Mile 22 and Mile 35. The resulting inaccurate time stamping
of the laser data led to the insertion of phantom obstacles into the map. In four
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Fig. 1.31. This diagram shows where along the race course the road conditions forced
Stanley to slow down. Slow-down predominately occurred in the mountains.

Fig. 1.32. Problems during the race caused by a stalling of the laser data stream. In
both cases, Stanley swerved around phantom obstacles; at Mile 22.37 Stanley drove
on the berm. None of these incidents led to a collision or an unsafe driving situation
during the race.

of those cases, those incidents resulted in a significant swerve. The two most
significant of these swerves are shown in Fig. 1.32. Both of those swerves were
quite noticeable. In one case, Stanley even drove briefly on the berm as shown
in Fig. 1.32a; in the other, Stanley swerved on an open lake bed without any
obstacles, as shown in Fig. 1.32b. At no point was the vehicle in jeopardy, as
the berm that was traversed was drivable. However, as a result of these errors,
Stanley slowed down a number of times between Miles 22 and 35. Thus, the main
effect of these incidents was a loss of time early in the race. The data stream
stalling problem vanished entirely after Mile 37.85. It only reoccurred once at
Mile 120.66, without any visible change of the driving behavior.

During 4.7% of the Grand Challenge, the GPS reported 60 cm error or more.
Naturally, this number represents the unit’s own estimate, which may not nec-
essarily be accurate. However, this raises the question of how important online
mapping and path planning was in this race.

Stanley frequently moved away from the center axis of the RDDF. On average,
the lateral offset was ±74 cm. The maximum lateral offset during the race was
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Fig. 1.33. Sensor image from the Beer Bottle Pass, the most difficult passage of the
DARPA Grand Challenge

Fig. 1.34. Image of the Beer Bottle pass, and snapshot of the map acquired by the robot.
The two blue contours in the map mark the GPS corridor provided by DARPA, which
aligns poorly with the map data. This analysis suggests that a robot that followed the
GPS via points blindly would likely have failed to traverse this narrow mountain pass.

10.7 meters, which was the result of the swerve shown in Fig. 1.32b. However,
such incidents were rare, and in nearly all cases non-zero lateral offsets were the
results of obstacles in the robot’s path.

An example situation is depicted in Fig. 1.33. This figure shows raw laser data
from the Beer Bottle Pass, the most difficult section of the course. An images
of this pass is depicted in Fig. 1.34a. Of interest is the map in Fig. 1.34b. Here
the DARPA-provided corridor is marked by the two solid blue lines. This image
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Fig. 1.35. Histogram of lateral offsets on the beer bottle pass. The horizontal units
are in centimeters.

illustrates that the berm on Stanley’s left reaches well into the corridor. Stanley
drives as far left as the corridor constraint allows. Fig. 1.35 shows a histogram
of lateral offsets for the Beer Bottle Pass. On average, Stanley drove 66 cm to
the right of the center of the RDDF in this part of the race. We suspect that
driving 66 cm further to the left would have been fatal in many places. This
sheds light on the importance of Stanley’s ability to react to the environment in
driving. Simply following the GPS points would likely have prevented Stanley
from finishing this race.

1.11 Discussion

This article provides a comprehensive survey of the winning robot of the DARPA
Grand Challenge. Stanley, developed by the Stanford Racing Team in collabo-
ration with its primary supporters, relied on a software pipeline for processing
sensor data and determining suitable steering, throttle, brake, and gear shifting
commands.

From a broad perspective, Stanley’s software mirrors common methodology in
autonomous vehicle control. However, many of the individual modules relied on
state-of-the-art Artificial Intelligence techniques. The pervasive use of machine
learning, both ahead and during the race, made Stanley robust and precise. We
believe that those techniques, along with the extensive testing that took place,
contributed significantly to Stanley’s success in this race.

While the DARPA Grand Challenge was a milestone in the quest for self-
driving cars, it left open a number of important problems. Most important
among those was the fact that the race environment was static. Stanley is un-
able to navigate in traffic. For autonomous cars to succeed, robots like Stanley
must be able to perceive and interact with moving traffic. While a number of sys-
tems have shown impressive results [Dickmanns et al., 1994, Hebert et al., 1997,
Pomerleau and Jochem, 1996], further research is needed to achieve the level of
reliability necessary for this demanding task. Even within the domain of driv-
ing in static environments, Stanley’s software can only handle limited types of
obstacles. For example, the present software would be unable to distinguish tall
grass from rocks, a research topic that has become highly popular in recent
years [Dima and Hebert, 2005, Happold et al., 2006, Wellington et al., 2005].
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Summary. This article presents a robust approach to navigating at high-speed across
desert terrain. A central theme of this approach is the combination of simple ideas and
components to build a capable and robust system. A pair of robots were developed which
completed a 212 kilometer Grand Challenge desert race in approximately seven hours.
A path-centric navigation system uses a combination of LIDAR and RADAR based per-
ception sensors to traverse trails and avoid obstacles at speeds up to 15m/s. The onboard
navigation system leverages a human based pre-planning system to improve reliability
and robustness. The robots have been extensively tested, traversing over 3500 kilometers
of desert trails prior to completing the challenge. This article describes the mechanisms,
algorithms and testing methods used to achieve this performance.

2.1 Introduction

Autonomously navigating at high-speeds for long distances necessitates a robust
and capable robot. While there have been numerous examples of highly capa-
ble autonomously navigating robots (Kelly & Stentz, 1997), (Coombs, Lacaze,
Legowik & Murphy, 2000), (Wettergreen et al., 2005) none of them have been
able to drive challenging desert roads and trails at high speeds for multiple hours
(Urmson et al., 2004). Achieving this combination of robotic skill and stamina
was a goal of the DARPA Grand Challenge. In meeting the Grand Challenge
two principles emerged as the keys to robustness & success: keep the compo-
nents simple and test as frequently and as aggressively as possible. Sandstorm
and H1ghlander (Figure 2.1) are the embodiment of this strategy.

In simplifying the overall robotic systems, a balanced approach using mechani-
cal and software solutions was adopted to take advantage of existing technologies
where possible. For example, the selection of the High Mobility Multi-purpose
Wheeled Vehicle (HMMWV) & Hummer H1 chassis instead of a more readily
available SUV chassis meant that the onboard navigation software need not be
as sensitive to terrain features (i.e. an H1’s ground clearance is much larger than
that of a conventional SUV and so the perception system can ignore rocks that
are irrelevant to the H1 but would cause significant damage to a smaller vehicle).

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 45–102, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 2.1. Sandstorm and H1ghlander were developed to navigate at high-speed in
desert terrain

Similarly, human input during a pre-planning process is used to reduce the
complexity of the onboard navigation system. While the Grand Challenge pre-
cluded any intervention while robots were operating on a course, the two hours
before the challenge could be leveraged with human input to increase the like-
liness of success. During this time human editors worked to modify the route
to account for dangerous terrain that might be difficult for a robot to detect
in real time. The process provided enough information for preemptive action to
be taken to avoid some dangerous situations and helped reduce the complexity
of the onboard navigation system. By balancing simplicity with the necessary
complexity required to complete the challenge, a robust system was developed.

The development process consisted of short development cycles interleaved
with periods of intensive field testing. While this took a toll on both personnel
and equipment, it enabled the discovery of problems and weaknesses with both
implementations and ideas simultaneously.

2.1.1 Format of the Grand Challenge

The 2005 Grand Challenge was a 212 kilometer race through the Mojave Desert.
To win the challenge, a team’s robot had to complete the course in less time
than any other robot, and do so within 10 hours. Information about the route
and exact distance of the challenge was withheld until two hours prior to race
start, precluding pre-running or recording of the race route.

The route description contained a series of waypoints marking the corridor
and speed limits within which the robots were required to travel. Once away
from the starting line, the robots were required to be completely autonomous.
The only communications allowed to a robot were publicly available GPS signals
and a safety kill system used by challenge personnel to ensure safety.

The Red Team developed two robots and used a combination of autonomous
and human pre-planning to complete the Grand Challenge. Once underway, the
robots used onboard sensors to adjust a pre-planned route, to avoid obstacles
and to correct for errors in position estimation.
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The approach presented in this article proved successful; both Sandstorm and
H1ghlander completed the Grand Challenge and demonstrated a new level of
robust high-speed navigation.

2.1.2 Overview

This article describes the Red Team vehicles, software and testing process in
depth. Section two begins the discussion with a detailed description of the
electro-mechanics that make up both robots, and explains the significant dif-
ferences between them. Section three describes the software architecture and
components that operate onboard the robots including algorithms for percep-
tion, navigation and tracking. Both the benefits and limitations of the utilized
approaches are described. Section four provides a short description of the pre-
planning system while section five provides a detailed discussion of the various
testing processes employed by the team during the development cycle. In chap-
ter six, an analysis of how the Red Team robots performed during the Grand
Challenge event is presented. Chapter seven closes the discussion with a num-
ber of lessons learned and some ideas for future work building from the Grand
Challenge.

2.2 The Robots

Sandstorm and H1ghlander are substantially different robots; each has its own
unique actuation and control challenges. While much hardware and software is
shared between the platforms, each vehicle has distinct performance character-
istics.

The decision to develop two robots was not made lightly. The extra time, effort
and personnel necessary to build and maintain two similar, but not identical
robots represented a significant concern. However, operating two robots provides
two principal advantages. During testing, the potential availability of two robots
helps ensure that there is at least one operational for software testing. Increased
testing time is one of the keys increasing robustness and capability. During the
challenge, two robots provide an increased level of reliability since even if one of
them fails, the other will continue. In the team’s estimation, the advantages of
having two robots for testing and racing outweighed the concerns.

2.2.1 Chassis

Sandstorm is a modified 1986 Model 998 HMMWV. The vehicle has been highly
customized for autonomous control. The roof and passenger compartments have
been removed in favor of a large electronics enclosure. Pictures of Sandstorm
before and after the vehicle modifications are included in figure 2.2. The elec-
tronics box is suspended atop the vehicle platform on twelve coil over damper
struts. Suspension lowers the natural frequency of the electronics enclosure so
that sensors can be rigidly mounted. It also minimizes the shock dose to the
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Fig. 2.2. Sandstorm before and after modifications

computers and electronics so they are protected from severe accelerations. Sand-
storm’s control frame floats with the electronic enclosure, causing the navigation
system to drive the floating electronics box, without having a full understanding
of the position and orientation of the chassis. This is one of the main causes of
Sandstorm’s characteristic smooth, but slightly sloppy driving style.

H1ghlander is built from a 1999 commercial H1 truck chassis with an up-
graded 2001 electrical system. This upgrade includes a new vehicle harness,
engine controller, and transmission controller. These were installed to allow easy
reprogramming of engine and transmission functions. H1ghlander also uses an
upgraded hydraulic steering system which provides quick, high accuracy steer-
ing response. All other vehicle components remain stock with the exception of
a race quality suspension similar to Sandstorms. Unlike Sandstorm, H1ghlander
retains three of its four passenger seats. This allows team members to ride in
the vehicle for development, and also gives other people the unique experience of
riding in an autonomous vehicle. Figure 2.3 shows H1ghlander before and after
its vehicle modifications. Because H1ghlander does not have a floating electron-
ics enclosure, the navigation system has a better estimate of the true pose of the
vehicle. This helps H1ghlander drive more crisply than Sandstorm.

Fig. 2.3. H1ghlander before and after modifications
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2.2.2 Controls Strategy

Throughout the vehicle system, feedback controllers are used in order to regulate
systems and position actuators. In most cases the method used is a variant of
the Proportional Integral Derivative (PID) controller. While PID control is not
always the most accurate or highest performance controller, it is easy to use and
robust. Equation 2.1 represents the general PID controller.

−
++=
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In general, there are not accurate models available (or the time needed to
develop them) for most of the vehicle systems, which makes more complicated
control difficult. All PID algorithms are implemented in discrete-time through
the use of real-time processes running with fixed time steps. The use of a simple,
and easy to tune control strategy across the entire vehicle helped ensure the
reliability and robustness of these systems.

The vehicle electronics systems for both Sandstorm and H1ghlander utilize
multiple ECMs. ECMs are automotive or commercial grade components that
contain one or more embedded processors, including the input/output circuitry,
and memory necessary to carry out a given task or function. ECMs are dis-
tributed throughout the vehicle system, and are inter-connected by a series of
automotive grade data-links.

Each ECM runs a Real Time Operating System (RTOS) in order to ensure
that the different control and communications loops occur at deterministic rates,
and that safety critical tasks are performed reliably. Software routines such as
boot code, communications, and input/output functions were developed using a
combination of hand coded C or assembly language. Control routines were de-
veloped using Simulink models, which were then auto-coded into functions that
were run on the control modules. This allowed rapid development and testing of
controllers in simulation, before auto-coding them to run on the vehicles.

There is a clean break in functionality between vehicle system and naviga-
tion software, which allowed the use of a very simple interface between the two
subsystems. This interface, as shown in Figure 2.4, allows a navigation pro-
cess to command a vehicle velocity and curvature. The vehicle system reacts
to those commands and provides measured velocity and steering position back
to the navigation system. The vehicle system also safeguards the vehicle via
emergency-stop radios and deactivation buttons.

2.2.3 Power and Cooling

One of the significant differences between Sandstorm and H1ghlander is their
power generation and cooling systems. Neither vehicle has the factory alternator
installed, but both require about 4 kW of auxiliary power for all of the necessary
computing, sensing and actuation components. Sandstorm employs an auxiliary
generator mounted on the aft of the vehicle. The 24V generator is turned by
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Fig. 2.4. Vehicle to navigation system interface

a small diesel engine which shares the propulsion engine’s fuel supply. A com-
pressor mounted to the propulsion engine provides cooling for an evaporator
mounted in the electronics enclosure.

H1ghlander’s power system ismore complex. It incorporates a switch-reluctance
generator driven by the main propulsion engine that generates 4 and 7 kW (de-
pending on engine RPM) at 340 VDC. This high-voltage bus is used to efficiently
powerH1ghlander’s electric air conditioning compressor, and is down-converted to
both 12V and 24V in order to supply the necessary vehicle and electronics power.

Both vehicles’ power systems are controlled by Electronic Control Modules
(ECM) which contain embedded processors and input and output circuitry to
monitor and control their respective power components. The power control algo-
rithms are very similar. They use a modulated-voltage to control current tech-
nique that was developed in order to maintain acceptable power levels even at
times when current draw exceeds available power. This control scheme, as out-
lined in figure 2.5, uses predominantly Integral (I) or “follower” control with
offset gains and feedback derived from logic based on measured current and
voltage. The controller is designed to operate with batteries in parallel with the
output voltage busses. A dual/switching controller is needed because at steady
state the generator is able to provide more than enough power to supply the
components, but when the batteries are at a low state of charge, the current
draw required to charge the batteries can exceed the available power, causing
an over-current or “stall” condition at the generator. To compensate for this
condition, the power controller is designed to change the output voltage of the
generator in order to keep the current draw to acceptable levels. By lowering the
voltage difference between the generator and batteries can be decreased. While
in this “max-current” case, the output voltage is modulated to keep current
draw at about 90% of available current. As the batteries charge, the required
current drops and the controller switches to voltage control and maintains an
ideal voltage level. This basic power control method has proven to be robust,



2 A Robust Approach to High-Speed Navigation 51

Fig. 2.5. H1ghlander’s power controller

and has been extended in H1ghlander to control the power consumption of two
down-converters and the cooling unit.

For both Sandstorm and H1ghlander, the power systems are designed to seam-
lessly function through minor power generation glitches. For example, during
testing Sandstorm has traveled over 125 kilometers without any power produc-
tion from the auxiliary generator, demonstrating the robustness of this design.

2.2.4 Steering

Electronic actuation of steering is a fundamental part of autonomous vehicle con-
trol. Sandstorm and H1ghlander have vastly different steering actuation strate-
gies, and in turn have very different steering performance characteristics. In both
cases, the systems respond to steering curvature commands from a tracker in the
navigation software. The commanded curvature is linearly mapped to a steering
angle in the controller, which is then maintained. There is no feedback control
around actual curvature, only around steering angle. This proved a challenge to
the vehicle’s tracking system since it does not account for wheel slip, caused by
differing ground conditions, or mechanical sensor slip which inherently changes
the mapping between curvature and steering angle.

Mechanically, Sandstorm retains its complete stock steering system. To elec-
tronically steer the wheels, a large, driven gear is mounted to the top of the steer-
ing column, behind the steering wheel. A drive gear, attached to a DC motor
and harmonic drive gear-set (shown in Figure 2.6 (a)) is mated with the steering
column gear. The harmonic drive gearing provides a very high gear ratio with
zero backlash and large amounts of torque. The downside of this high-reduction
gearing is that it limits steering speed.

The motor is controlled through a drive amplifier by an ECM, which runs
a closed loop control algorithm around steering angle. Controller feedback is
provided by a rotational sensor mounted to the output shaft of the power-steering
gearbox, which outputs a PWM signal proportional to steering position. For
robustness, there is also a multi-turn sensor that measures position at the motor.
A PID controller is used to maintain wheel steering position by outputting motor
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(a) (b)

Fig. 2.6. (a) Sandstorm’s steering actuator and (b) H1ghlander’s hydraulic steering
actuator

torque and reading steering angle. This steering approach retains a majority
of the stock steering system, which makes the system simple and robust. The
downsides include the limited steering actuation speeds and limited accuracy
due to a large mechanical dead-band in the power steering linkage, which causes
hysteresis in the controller.

H1ghlander employs a different steering strategy; all of the stock steering
components were removed and replaced with a full hydraulic steering system.
The hydraulic system is composed of a dual-cylinder rotary hydraulic actuator
(shown in Figure 2.6 (b)), a fixed displacement hydraulic pump, and an electro-
hydraulic valve to control the hydraulic flow.

Electronics in the valve maintain a closed-loop control of the valve’s spool
position. Spool position is directly proportional to hydraulic flow (which can
be mapped to cylinder velocity) and is commanded by an ECM. Steering angle
is measured in the rotary actuator both by measuring the rotary output shaft
position, and the linear position of one of the hydraulic cylinders. The ECM
reads these positions, selects which one to use for feedback, and outputs a desired
spool position based on a PID control algorithm. The advantage of this steering
strategy is very responsive steering, and the ability to hold a very precise steering
angle. The downside is the complexity of a hydraulic system, which is prone
to leaks, heat, and filtration issues, each of which was encountered during the
development.

Figure 2.7 illustrates the differences in steering response between Sandstorm
and H1ghlander.

2.2.5 Velocity Control

The control of vehicle velocity is an important aspect of high performance driv-
ing. In a racing atmosphere, speed control must be accurate and responsive as
it is constantly being adjusted to ensure vehicle stability. Velocity also poses a
controls challenge, since it involves two different mechanical systems (propulsion
engine and brakes) to maintain speed in any number of environmental conditions.
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Fig. 2.7. Plots of Sandstorm (a) and H1ghlander (b) steering response
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Fig. 2.8. Model of the brake controller

Sandstorm has a mechanically controlled engine. This means that to actuate the
throttle, a valve on the injection pump must be physically turned. To accomplish
this, an automotive-grade throttle body actuatorwas modified and mounted to the
injection pump. The actuator is a simple DC motor with analog position feedback.
An ECM reads this position and runs a PID closed loop control algorithm in order
to command the injection pump to a specific throttle level.

In contrast, H1ghlander’s engine is fully electronically controlled, meaning
that its entire operation, from fuel injection to timing is commanded by an
electronic engine controller. This makes autonomous activation very simple; a
message is sent across a data-link and acted on by the engine controller.

Both Sandstorm and H1ghlander use the stock service brakes to slow the
vehicle. In both cases the service brakes are actuated by an electric motor. Both
motors are three phase brushless design with an integral 50:1 harmonic drive
gear reduction. In Sandstorm’s case the motor is mounted to press on the brake
pedal. This results in a relatively slow braking response but provides significant
mechanical advantage. In H1ghlander the motor is mounted to actuate the brake
master cylinder directly. This mounting achieves quicker response, since less
motor travel accounts for more braking force. In both configurations an ECM
runs a proportional controller to command braking, which effectively provides
torque-based control of the motor. This type of control inherently compensates
for system degradation such as brake wear or different pressure line losses. A
diagram of Sandstorm and H1ghlander’s brake controller is given in figure 2.8.

The speed controller is a piece of embedded software that receives desired
speed from the navigation system and commands the throttle and brakes to
maintain that speed. The speed controller is actually comprised of three con-
trollers: a speed controller using a throttle command, a speed controller using a
brake command, and transition logic to determine which one to use. The control
strategy mimics a layman human driver, where only the engine or the brakes will
be actuated at any time. This is contrary to the driving strategy of most racers,
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Fig. 2.9. Model of the speed controller
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Fig. 2.10. A plot of speed controller performance

who often times actuate the throttle and brakes simultaneously. Figure 2.9 illus-
trates this speed controller graphically. The throttle and brake controllers each
use a PI control scheme. Transition logic integrates the speed error and uses that
as a time-delay switch with limits depending on commanded speed and whether
the system is switching from the throttle to the brakes or vice versa.

This method allows more error at higher commanded speeds to minimize
changeover between throttle and brakes, but also generates a quick response
for sharp deceleration before turns. The speed feedback used in the control al-
gorithms is obtained from the transmission and smoothed using a third-order
Butterworth filter.

The speed controller maintains speed to within 0.5 m/s on average, with a 1-
2 m/s undershoot when braking (response shown in figure 2.10). This undershoot
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is due to a nonconstant contact point in the brake system which causes the
braking force to increase dramatically. The controller does not compensate for
this non-linear braking response since the error was determined to be acceptable.

2.2.6 Perception Sensors

Sandstorm and H1hghlander combine data from a variety of sensors to perceive
the world. In selecting sensors, the team evaluated monocular cameras, stereo
cameras, LIDAR, and RADAR systems to find modalities amenable to generating
terrain evaluations under the difficult conditions of the Grand Challenge. Table 2.1
outlines the sensing modalities considered and the advantages and disadvantages
for this problem.

Table 2.1. A qualitative comparison of sensors considered for inclusion in the naviga-
tion system

Sensor Advantages Disadvantages Selected

Conventional 
Camera 

- wide vertical field of view 
- large swath of dense data 

- data quality decreases due to 
lighting changes and glare 
- conventional processing techniques 
are challenged off-road 

No 

Stereo 
Camera  

- wide vertical field of view 
- generates dense three dimensional 
data sets 

- data quality decrease due to lighting 
changes and glare 
- measurement accuracy decreases as 
the square of range  

No 

LIDAR - accurate range measurements 
- straightforward to integrate 
- wide horizontal field of view 

- provides only a single plane of data 
-correlating between line scans may 
be challenging when moving over 
rough terrain 

Yes 

Automotive 
RADAR 

-  commercial grade hardware 
- integrated signal processing to 
identify targets 
- operates through most visual 
obscurants 

- off-road performance is not 
characterized 
- output provides only limited 
information for external processing 

No 

Navigation 
RADAR 

- dense, raw signal strength output 
- operates through most visual 
obscurants  

- understanding raw RADAR signal 
returns is complicated 

Yes 

These considerations led to a perception strategy based on a set of five LIDAR
and a navigation RADAR. Three of the LIDAR operate to characterize terrain,
using overlapping field of view to provide redundancy. The two remaining LIDAR
and the RADAR are used to detect obvious obstacles at long ranges. Figure 2.11
illustrates the sensor fields of views while Figure 2.12 shows the sensor locations
on the robots. This design provides a robust perception suite, with multiple
sensors observing the significant portions of terrain in front of the robots. The
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Table 2.2. Characteristics of Navigation Sensors

Sensor Characteristic 

Narrow field of view  LIDAR Horizontal field of view: 60° 
Instantaneous field of view: 0.17° x 0.17° 
Dots per scan: ~240 
Scan Rate: 50 Hz 
Manufacturer: Riegl 
Model: Q140i 

Wide field of view LIDAR Horizontal field of view: 180° 
Instantaneous field  of view: 0.86° x 0.86° 
Dots per scan: 181 
Scan Rate: 75Hz 
Manufacturer: SICK 
Model: LMS 291 

Navigation RADAR Horizontal field of view: 360° 
Instantaneous field of view: 1.2° x 4.0° 
Measurements per scan: 300 
Scan Rate: 2.5 Hz 
Manufacturer: NavTech 
Model: DS2000 

20 m 40 m
50 m

Shoulder-mounted SICKs
Bumper SICKs
Riegl
Radar

Fig. 2.11. Sandstorm and H1ghlander have multiple sensors with overlapping fields
of view

remainder of this section describes the specifics of the sensors selected for the
robots. Table 2.2 presents the specifications of the sensors used on the robot.
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Riegl LIDAR

Gimbal

SICK LMS LIDAR
(shoulder)

SICK LMS LIDAR
(bumper)

DSC2000 RADAR

Fig. 2.12. H1ghlander (left) and Sandstorm with their sensors labeled

2.2.6.1 LIDAR

A Riegl Q140i scanning laser range finder is used as the primary terrain per-
ception sensor for both robots due to its long sensing range, ease of integration
and few, well understood, failures modes. A limitation of scanned LIDAR is
that it is generally only possible to collect dense point data in a single plane.
Flash LIDAR does not suffer this limitation but is still too range-limited to be
useful at Grand Challenge speeds. Two-axis mechanically-scanned LIDAR have
reasonable range, but cannot scan rapidly in both axes and thus do not provide
significant benefits over a single scanning plane for this application.

In addition to the long range LIDAR, four SICK LMS 291 laser scanners are
used to provide short range supplemental sensing. Two are mounted in the front
bumper, providing low, horizontal scans over a 120◦ wedge centered in front of
the robot. These sensors can be used to detect obvious, large, positive obstacles.
The other two SICK LMS laser scanners are mounted to the left and right of
the vehicle body. These sensors perform terrain classification.

2.2.6.2 RADAR

While LIDAR may have difficulties sensing in dusty environments, RADAR op-
erates at a wavelength that penetrates dust and other visual obscurants but
provides data that is more difficult to interpret. Because of its ability to sense
through dust the NavTech DS2000 Continuous Wave Frequency Modulated
(CWFM) radar was used as a complimentary sensor to the LIDAR devices.

2.2.6.3 Pose Estimation

Reliable and robust position sensing is essential since it central to performing re-
liable control and building usable world models. The implementation of position
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sensing is a major undertaking that can drain valuable development resources. To
avoid this problem, Sandstorm and H1ghlander use an off-the-shelf pose estima-
tion system. The Applanix M-POS provides position estimates by fusing inertial
and differential GPS position estimates through a Kalman filter. The output es-
timate is specified to have sub-meter accuracies, even during extended periods of
GPS dropout. The M-POS system also provides high accuracy angular informa-
tion, through carrier differencing of the signal received by a pair of GPS antennas,
and the inertial sensors. The M-POS system outputs a pose estimate over a high
speed serial link at a rate of 100 Hz. This constant stream of low-latency pose in-
formation simplifies the task of integrating the various terrain sensor data sources.

2.2.6.4 Stabilization and Pointing

The ability to interpret data from long range sensors, such as a Riegl LIDAR scan-
ner, can be severely hampered by pitching and rolling induced by robot motion
over terrain. The performance of the single axis scanning LIDAR is particularly
affected by mechanical excitation in the pitch axis. When sensing at reasonably
long ranges, even small-scale pointing error can result in a dramatic change in
where a sensor’s beam intersects terrain. Because of this, range data associated
with small obstacles or terrain details at distance become ambiguous, and the over-
all perception performance is severely degraded. Active attenuation of the terrain
excitations can reduce this effect, yielding interpretable terrain range data.

The Gimbal sensor mounting design aligns the Riegl LIDAR’s optical aperture
with the center of the gimbal and balances the mass distribution around the
rotational center. Each axis includes minimal-mass components and the simplest
possible gimbal support structure with the design goal of minimizing the moment

Fig. 2.13. Front and back view of the gimbal
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of inertia. By minimizing the moment of inertia, the overall responsiveness of
the gimbal is increased.

Harmonic drive actuators are used to point the gimbal based on feedback
from a combination of incremental and absolute position encoders, and fiber-
optic gyros. Each gimbal axis assembly is designed for electrical and mechanical
simplicity. To achieve this goal common design and components are used on each
of the axes. The aluminum bracket components are designed to have minimal
mass and moment of inertia about their respective rotational axes while still
maintaining sufficient strength and stiffness.

The entire gimbal mechanism is enclosed within a protective carbon fiber shell.
The shell prevents water and dust from damaging the mechanism and electronics
and includes a front window with specially coated optical glass for the sensors to
operate through. The fully assembled gimbal is shown in figure 2.13. Table 2.3
describes the gimbal characteristics while Table 2.4 describes its performance.

Table 2.3. Gimbal Characteristics

Parameter Value 

Payload Compliment High-resolution LIDAR line scanner 

Payload Dimensions 240mm x 250mm x 500mm 

Payload Weight 12+ Kg 

Platform Weight  25Kg 

Peak Power 550 W 

Table 2.4. Gimbal Performance Characteristics

Axis Range of Motion (°) Angular Velocity (°/s) Acceleration (°/s2) 

Pitch ± 40 360 49,500 

Roll  ±40 360 4,200 

Yaw ±90 360 1,450 

2.3 Onboard Navigation Software

Onboard navigation software combines incoming sensor data with a pre-planned
route to generate a new safe and traversable route. In the following sections the ar-
chitecture and algorithms used to drive Sandstorm and H1ghlander are presented.

2.3.1 Architecture

The navigation software-architecture was designed with the infrastructure to sup-
port high-speed navigation while being robust to sensor failures and adaptable
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Fig. 2.14. The path-centric architecture of the onboard navigation software

enough to support a rapid, relatively unstructured development process. These
design goals led to a path-centric navigation architecture, built around a set of
well defined, rigid data interfaces.

In this path-centric architecture (see figure 2.14), the fundamental command
action is to execute a path. This differs from a majority of autonomous naviga-
tion architectures which use an arc as the fundamental action. The path data
structure is pervasive through out this approach; the pre-plan is provided as a
path, path-planning acts as a filter on the path, and the perception system uses
it to steer sensor focus and account for incompletely sensed terrain.

The path-centric architecture has several advantages that improve perfor-
mance and robustness over arc-centric architectures (Simmons et al., 1995),
(Kelly & Stentz, 1997), (Betulla, Manduchi, Matthies, Owens & Ranki, 2000),
(Biesiadecki, Maimone & Morrison, 2001), (Urmson, Dias & Simmons, 2002). It
provides a simple method for incorporating human input through a pre-planned
route. Given a route, planning can be performed in a fixed width corridor around
the pre-planned route, thus reducing the search space for a planning algorithm
from the square of the path length to linear in the path length. The path-centric
approach avoids problems with arc-based arbitration such as discontinuities in
steering commands (due to contradictory information) and jerky control (due to
discrete arc-sets). Furthermore, since the navigation system commands the exe-
cution of paths rather than discrete arcs. This effectively decouples the steering
control frequency from the planning frequency, further increasing the smoothness
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of control. This makes the system insensitive to reasonable amounts of variation
in the planning cycle, further increasing robustness.

To use terrain evaluation data from multiple sources, the architecture uses a
map based data fusion approach. To provide this functionality the architecture
defines a second fundamental data type; the map. In this system, a map is a
rectilinear grid aligned with the world coordinate system and centered on the
robot. Each of the sensor processing algorithms produces its output in the form of
a cost map. Cost maps are a specific map type that represents the traversability
of a cell using a numeric value. In this implementation, the cells have an edge
length of 25cm. Figure 2.15 shows an example cost map.

The path and cost map are two of a handful of fundamental data types (other
examples include vehicle pose and LIDAR line scan data structures) that are
used as the syntax for communication between various data processing modules.
The software implementation uses a communication and infrastructural toolset
that allows algorithm developers to create modules that communicate with the
rest of the system using the specified data types through a set of abstract,
reconfigurable interfaces (Gowdy, 1996). During development and debugging, the
interfaces for an algorithm can be configured to read data from time-tagged files
using a common set of data access tools. As an algorithm matures, the interfaces
are reconfigured to communicate with the rest of the navigation system. This
approach helped reduce the required up-time and availability of the robot.

By using a common set of carefully defined and strictly controlled data types
as the syntax for communication, it is possible to quickly develop new features
for either path or map processing. While the syntax is defined and controlled, the

robot position

low cost terrain

high cost terrain

Fig. 2.15. An example cost map showing low (light) and high (dark) cost terrain
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semantics, or meaning, of the data being passed between modules is free to be
adapted as new ideas evolve and algorithms are developed. This flexibility makes
the overall system robust and adaptable to ever-evolving ideas that develop as
the navigation problem is explored.

2.3.2 Sensor Fusion

The map fusion process is critical to the robustness of the navigation system, as
it enables the system to cope with sensor failures and missing data. To use the
data from the various sensor processing algorithms it is necessary to combine it
into a composite world model (either implicitly or explicitly). In this system the
data is combined in the sensor fusion module by generating a composite map
using a weighted average of each of the input maps.

Each of the processing algorithms specifies a confidence for the output map it
generates. The fusion algorithm then combines the maps with these weightings
to generate the composite expected cost map. This design allows the sensor
processing algorithms to adjust their contribution to the composite map if they
recognize that they are performing poorly. In practice a set of static weights,
based on a heuristic sense of confidence in the algorithms ability to accurately
assess the safety of terrain, worked well. With calibrated sensors, this approach
produces usable composite terrain models. Figure 2.16 shows various input maps
and the resulting, fused composite map.

Fig. 2.16. An illustration of fused sensor maps
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2.3.3 Perception

In this approach to high-speed navigation, three principal risks are considered-
hitting large, obvious obstacles that can destroy a vehicle, driving on avoidable
rough terrain that will damage a vehicle over prolonged periods of time, and dy-
namic effects such as sliding and roll-overs which cause a loss of control and can
also potentially destroy a vehicle. The perception algorithms presented here are
designed to address these risks. The Binary Obstacle LIDAR and RADAR proces-
sors are designed to quickly detect obvious obstacles at range. The Terrain Evalu-
ation LIDAR processor is designed to generate a continuous valued classification
of terrain, ranging from safe and smooth to intraversable. The slope calculations
in this algorithm are used to steer the robot away from terrain with a likelihood
of causing static tip-over, but falls short of estimating dynamic tip-over. Instead,
the risk from dynamic effects is mitigated in a speed planning algorithm.

The various perception algorithms provide an overlapping (both geometrically
and in terms of capability) set of models that reduce the likelihood of missing
the detection of any obstacles while also providing robustness in the face of a
sensor or algorithmic failure.

2.3.3.1 Sensor Pointing

The sensor pointing algorithm uses a pre-planned path as a guide as to where
to point the Riegl LIDAR. A priori knowledge of the path enables the algorithm
to point the sensor around corners, prior to the robot making a turn, and helps
the perception system build detailed models of terrain in situations where the
fixed sensors would generate limited information. A simple algorithm calculates
a look-ahead point along the path given the current pose and speed of the robot.
The look ahead point is then used to calculate the pitch, roll and yaw required
to point at this location. These commands are then passed onto the gimbal. The
data generated by the pointed and fixed shoulder mounted LIDARS is used by
the terrain evaluation LIDAR processing algorithm.

2.3.3.2 Terrain Evaluation LIDAR Processing

Terrain classification and obstacle detection are at the core of high-speed out-
door navigation. The terrain evaluation system borrows ideas from Kelly and
others (Kelly & Stentz, 1997), (Batavia & Singh, 2002), (Kelly et al., 2004) in
performing terrain evaluations within a single line scan to reduce the effects of
imperfect pose estimation.

The terrain evaluation approach is derived from the Morphin algorithm (Sim-
mons et al., 1995), (Golberg, Maimone & Matthies, 2002), (Urmson et al., 2002)
but has been adapted to operate on a single line scan of data instead of a
complete cloud. The algorithm operates by fitting a line to the vertical planar
projection of points in vehicle width segments. The slope and chi-squared error
over this neighborhood of points provide the basis for evaluation. The operation
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is performed at each LIDAR point in a scan. If a point does not have a mini-
mum number of points within a support distance or the surrounding points are
not sufficiently dispersed, the point is not classified. The traversability cost is
calculated as a weighted maximum of the slope and line fit residual.

Once traversability costs have been determined, each point is projected into a
cost map, with independent cost maps maintained for each sensor. The terrain
evaluation from each sensor is periodically combined into a composite output
map. The traversability cost for each cell in the composite map is computed as
the weighted average of the costs from each sensor, with weights proportional to
the number of points used in generating the traversability cost for each sensor
map.

While this basic algorithm works well, it blurs small obstacles over a large
area since it does not separate foreground obstacles from background terrain (see
Figure 2.17). The foreground obstacle pixels cause the line fit for the background
pixels to have significant residual errors. To address this problem, a filter is used
to separate foreground features from background terrain. During the evaluation
process, any point at a significantly shorter range than the point being evaluated
is ignored. This has the effect of removing discrete foreground obstacles (and
their contribution to the line fit residual) from the evaluation of background
terrain, while still correctly detecting obstacles. Figure 2.17 illustrates the effect
of this filtering on a scene consisting of four cones in a diamond configuration.
Without filtering, each of the four cones is represented as obstacles the size of
a car, with the filtering applied the cones are represented as obstacles of the
approximately the correct size.

cone

model blur

Fig. 2.17. Obstacle blur before (left) and after foreground separation filter is applied



66 C. Urmson et al.

Limitations
There are two situations where the terrain evaluation produces incorrect output:
when LIDAR scans graze a surface, and when traveling through narrow tunnels
or canyons.

In grazing scenarios, the algorithm will misclassify grazing returns as obstacle
locations. The grazing returns are classified as obstacles because the shape of
the LIDAR return is indistinguishable from a return with significant obstacles.
Fortunately this occurs rarely and is mitigated through the use of multiple sen-
sors. Applying a nearest neighbor clustering approach (Batavia & Singh, 2002)
may be one solution to this problem.

The second problem of operation in very constrained environments (such as nar-
row tunnels) results in areas with sensor data not being classified. This problem
stems from the requirement that the terrain evaluation only occur at LIDAR that
have neighbors with a minimum dispersion. This requirement causes a half vehi-
cle width of data at each end of the LIDAR scan to be ignored. In normal outdoor
navigation scenarios, this defect is insignificant. In situations where the LIDAR
returns all occur within a narrow area (e.g. a tunnel) important terrain features
are not classified since the points that make up the walls of the tunnel do not have
sufficiently dispersed neighbors. This problem is illustrated in Figure 2.18. Note
that the approach to the tunnel and tunnel walls near the opening are classified
correctly but as soon as the sensor measurements become constrained within the
tunnel, only the center of the tunnel is classified while the outer half vehicle width
on either edge of the scan are not classified, including the walls.

correctly identified
tunnel walls

approximate location
of tunnel walls

region with terrain
evaluation bug

Fig. 2.18. An example of where a constrained environment causes the LIDAR terrain
evaluation algorithm to behave poorly

Both of these shortcomings are mitigated by the combination of the other
terrain evaluation algorithms and the terrain extrapolation modules described
in the following sections.
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2.3.3.3 Binary Obstacle LIDAR Processor

The Binary Obstacle LIDAR Processors is designed to quickly and robustly
detect obstacles by collecting points over short time periods while a vehicle
drives over terrain. The algorithm uses the fact that LIDAR points cluster on
vertical faces to detect obstacles.

Using geometric information to determine a binary measure of traversability is
common and has been a topic of research for decades. Typically this information
is gleaned from images using classification techniques (Ulrich & Nourbakhsh,
2000) or geometric analysis of 3D terrain data (Singh & Keller, 1991), (Talukder,
Manduchi, Rankin & Matthies, 2002). In recent work (Roth, Hammer, Singh &
Hwangbo, 2005) have extended the RANGER algorithm to use LIDAR point
clouds accumulated as a vehicle drives. The algorithm derives roughness, roll,
and pitch by fitting planes to patches of point clouds.

As a LIDAR is moved through space, it sweeps the terrain and a point cloud
representing this terrain is built by registering each scan using the vehicle and
sensor pose. Selected pairs of points from this cloud are compared to compute
the slope and relative height of the terrain.

Traversability is determined by performing a point-wise comparison of points
within a region surrounding the point in question. If the slope and vertical dis-
tance between the two points is determined to be greater than a threshold value,
both points are classified as obstacles. Given two points to compare, slope is
computed as:

)|,(|tan 221 yxz Δ+ΔΔ= −θ (2.2)

If Δz and θ are greater threshold values, an obstacle is inserted into the cost map.
Comparison of full rate LIDAR data is computationally expensive (Lalonde,

Vandapel & Hebert, 2005). To make comparison rates reasonable, points are
binned into 2D (x, y) cells and hashed by 2D cell location. Each hash location
contains a list of all points within a cell. When a new point hashes to a hash
location containing a list of points far from the new point, the list of points is
cleared and the new point is inserted. This data structure allows near constant
time comparison of nearby points by doing a hash lookup in the region of a point
of interest.

With long range sensors, small errors in attitude of the sensor cause large
errors in point registration. The comparison of two measurements of the same
terrain patch from two different view points can falsely generate an obstacle
if the vehicle pose estimate is erroneously pitched or elevated. Furthermore,
the likelihood of inconsistent pose estimates is increase with time and distance
traveled. Thus it is important to delete old points. To accommodate fast deletion,
points are inserted into a ring buffer in the order that they are received. Once
the ring buffer is full each new point overwrites the current oldest point in the
buffer and the hash table.
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Limitations
This algorithm relies on excellent registration of sensors to the world. The cali-
bration of sensors relative to the vehicle center is a significant cause of error when
multiple sensors are compared. Relative errors in pose estimation can cause false
positives between scans of a single sensor. These two considerations limit the
effectiveness of this algorithm at range.

Because of the reliance on registration, sensors that are not rigidly mounted
relative to the vehicle coordinate frame cannot be processed using this algorithm.
On H1ghlander, a considerable amount of capability is gained by comparing the
bumper mounted SICKs. In flat terrain, these sensors can detect large obstacles
(fence posts, large rocks, cliff walls, etc) at up to 50 meters. Because of its floating
electronics box, Sandstorm cannot use the bumper mounted sensors with this
algorithm.

Since this algorithm is designed to complement the LIDAR terrain evaluation
algorithm it is not sensitive to terrain features like roughness and gentle slopes.
The algorithm misses small ruts and washouts and produces false positives when
tuned to attempt to detect such small features.

2.3.3.4 Radar Obstacle Detection

Radar sensing has several advantages for off-highway autonomous driving. It
provides long range measurements and is not normally affected by dust, rain,
smoke, or darkness. Unfortunately, it also provides little information about the
world. Resolution on most small antennas is limited to 1 or 2 degrees in azimuth
and 0.25m in range. Radar scanning is generally performed in 2D sweeps with a
vertical beam height of <5 degrees. More narrowly focused beams are difficult
to achieve and terrain height maps cannot be extracted from so wide a beam
because objects of many heights are illuminated at the same time. This prevents
using geometric or shape algorithms like those commonly used with LIDAR.

Attempts at using electromagnetic effects to gain information, such as corre-
lating polarization with object density, have met with little success (Yamaguchi,
Kajiwara & Hayashi, 1998). This leaves intensity of backscatter returns, binned
by range and azimuth, as the sole identifier. Most previous systems use constant
(Kaliyaperumal, Lakshmanan & Kluge, 2001) or adaptive thresholding (Jiang,
Wu, Wu, & Sun, 2005), but achieve only marginal performance on good paved
roads and are insufficient for offhighway driving. Many obstacles have surfaces
that reflect energy away from the radar antenna, returning very low backscat-
ter returns. Other objects that pose little risk to a large vehicle, such as brush,
gentle inclines, and small rocks have large radar crosssections. Thus, the intensity
of backscatter returns is a poor measure of the risk posed by an object.

Context Filtering
The primary challenge of processing radar data is separating dangerous or inter-
esting objects from pervasive clutter. Early experimentation with thresholding
and energy filtering failed in desert environments, generating too many false
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positives from innocuous objects. Thus another feature was therefore required
for classification.

In the desert, clutter tends to occur over wide areas. Vegetation, inclines, and
rough road sections all produce backscatter returns distributed over a signifi-
cant region. Conversely, obstacles, like telephone poles, fence posts, and cars are
generally isolated from each other and surrounded by road or clear dirt. Smooth
ground such as this is specular because the low angle of radar beam incidence
tends to reflect energy away from the antenna. Therefore, a potential classifica-
tion feature is isolation, or the quality of a moderately low cross-section object of
small footprint surrounded by clear, specular areas. While this limits the class of
obstacles detected, it defines an important class of obstacles that can be detected
with a small rate of false positives.

Fig. 2.19. The kernel used in context filtering. The black pixels are multiplied by
positive one and the white pixels by negative one. The center pixel is set to the sum
of these values.

To implement an algorithm exploiting this classifier, radar data is organized
into a 2D image consisting of range and azimuth bins (Figure 2.19). A kernel
consisting of two radii is convolved with this image. While the kernel is centered
on a pixel, the energy between the inner and outer radii is subtracted from the
energy contained within the inner radius. The value for this pixel is compared
to a threshold and then reported as obstacle or not. The strength of this filter is
dictated by the ratio of negative to positive space, i.e. the ratio of the two radii.
The size of the inner radius determines the footprint size for which the filter is
tuned. Results from a scene in the Nevada desert are presented in Figure 2.20.

Radar Map Hysteresis
As a vehicle drives forward, obstacles drop below the radar beam or become
obscured, causing them to fade in and out of individual radar images. Thus,
some form of memory is required to preserve their size and location. A simple
approach is to add any newly classified obstacle pixel to a map combined with
the previously reported locations of other obstacles. Due to the conversion from
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Unfiltered Radar 
Image

After Context 
Filtering

Gentle uphill inclineVegetation

Person

Hedgehog Tank Trap

Upright barrel

Barrel on side

Two people

Fig. 2.20. Example context-filtered results from a desert scene. White pixels are empty
and darkness represents strength of backscatter return.

polar to Cartesian cost maps, the location and size of an obstacle is refined as a
vehicle approaches it.

Hence, a modification is required to the simplistic method that stores the
union of all reported obstacle pixels. If a new obstacle blob is reported and
overlaps with an old blob, then the old blob is removed and replaced with a
new, more refined model of the obstacle location. This is implemented as a
recursive algorithm that searches the neighboring pixels in Cartesian space to
identify the extent of the old blob.

The results of this hysteresis are shown in Figure 2.21. As the vehicle approaches
a fence post, the reported width is reduced from over 1.5m to a more reasonable
0.5m as better azimuth data becomes available. Obstacles that the vehicle has
already passed are stored in the map even though they are not in the radar
antenna’s 180 degree field of view.

Limitations
The radar system was tested on Sandstorm and H1ghlander for over 3000 kilome-
ters of off-highway driving. It effectively detected the narrow range of obstacles
it was designed to detect, but does not generalize beyond those. As a comple-
ment to the LIDAR processing algorithms, it makes no attempt to detect road
edges or other areas of rough terrain, making radar-only off-highway naviga-
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Fig. 2.21. Two maps recorded driving along a barb-wire fence during the 2005 Grand
Challenge. The left map shows the magnified fence post at 35m range. The right map
shows the same post, this time at 15m range. As the obstacle approaches, its size and
position are refined, while obstacles behind the vehicle and out of the antenna’s field
of view are retained.

tion risky. While limited, this implementation demonstrates that, with proper
scoping, RADAR can provide valuable long-range obstacle data to complement
LIDAR and potentially vision based sensing.

2.3.3.5 Terrain Extrapolation

Perception in high-speed outdoor navigation often suffers from incomplete data
due to a combination of occlusion and vehicle motion which can cause sensors
to skip over terrain. Without a method for inferring reasonable traversability
values for unseen terrain, this problem can result in catastrophic failures, such
as the example illustrated in Figure 2.22. To address this problem, the onboard
navigation system incorporates a Terrain Extrapolation Module (TEM). While
appropriately interpreting the traversability of unsensed terrain is not new, there
is very little published work in the literature (Nabbe, Kumar & Hebert, 2004).

The terrain extrapolation algorithm infers terrain costs based on three as-
sumptions: (1) the characteristics (width, traversability) of a trail or road do
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Fig. 2.22. An example of incomplete data (a) which led to significant damage (b).
The red continuous line represents the pre-planned path. The data shows that the pre-
planned path is on the road edge and veers off the road, which combined with the with
the hill crest to cause the robot to leave the road.

not change rapidly over short distance along a path (2) the cost of traversability
can change rapidly in the direction perpendicular to the path (i.e. trails may be
sharply defined), and (3) the preplanned path is parallel to the actual traversable
path. Figure 2.23(a) gives an example of input cost data for the TEM. As a path
is driven, the algorithm samples a cross-section of costs perpendicular to the pre-
planned path, represented by the black line in Figure 2.23(a). Each sample is
combined with a running, alpha-blended, average of costs from the same lateral
offset. The result is a constantly evolving, “learned” profile of the costs across the
path. The alpha blending average filters out high frequency terrain features such
as perpendicular fences while allowing the TEM to adapt to new trail conditions
over a few tens of meters.

The calculated trail cost-profile is used to generate a “hallucinated” cost map
by painting the profile along the pre-planned route. The map is fused with the
sensor evaluation cost maps with a low confidence. The result is a cost map with
TEM data only in locations in where there is no other available cost data, as
shown in Figure 2.23(b).

Limitations
The primary limitation of the TEM is that it requires the true traversable path
to be approximately parallel to the pre-planned path. Since the profile data
is calculated as cross-sections of the pre-planned path, the profile of the pre-
planned path matches the profile of the traversable path only when the two
paths are approximately parallel, as shown in Figure 2.24(a). If the pre-planned
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Fig. 2.23. (a)Example of typical cost map from H1ghlander. The black line represents
a crosssection sample of costs the TEM uses to produce a cost profile. (b) Same scene
as (a), but with the TEM’s output fused into the upper half of the cost map.

Fig. 2.24. (a) An example of the pre-planned path (light line) running approximately
parallel to the traversable path (dark lines). The black lines are part of the cross-
section sampled by the TEM. In this case the profile generated by the TEM produces
an accurate profile of the path. (b) An example of the pre-planned path not running
parallel to the traversable path. In this case, the cross-sections sampled do not correlate
to the cross-section of the traversable path.

and traversable paths are at significantly different angles, as shown in Figure
2.24(b), the profile generated by the TEM will become blurred as the cross-
sections of the traversable path do not project consistently into the cross-section
of the pre-planned path.
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2.3.4 Planning

The planning portion of the online navigation system is broken into a pair of
modules that adjust the pre-planned path based on terrain evaluation generated
by the perception algorithms. The first stage, the geometric planner, adjusts the
path to avoid obstacles and minimizes the cost of traversability of the terrain the
robot will drive over. The speed planner operates on the output of the geometric
planner and preemptively slows the robot for any sharp turns that may result
when the geometric planner generates a plan to avoid obstacles.

2.3.4.1 Geometric Planning

Trajectory planning algorithms attempt to find an optimal path from a starting
point to a goal point. There has been a tremendous amount of work in this area
ranging from deterministic, heuristic-based algorithms (Hart, Nilsson & Rafael,
1968), (Nilsson, 1980) to randomized algorithms (Kavraki, Svestka, Latombe &
Overmars, 1996),(Lavalle, 1998), (Lavalle & Kuffner, 1999), (Lavalle & Kuffner
2001). There has also been significant research in algorithms to set speeds and
curvatures reactively (Coombs, Lacaze, Legowik & Murphy, 2000), (Roth et al.,
2005), (Shimoda, Kuroda & Iagnemma, 2005). In the Grand Challenge, a pre-
scribed route consisting of a centerline with a set of bounds was provided. The
bounds and centerline did not necessarily define a road, but did constrain where
a robot may travel. While the details of the terrain were unclear, the route guar-
anteed that there was a traversable path within the corridor. This information
can be exploited to significantly reduce the computational requirements of path
planning. While the approach presented here was designed for the Grand Chal-
lenge, there are many scenarios in which an autonomous robot can be given a
reasonable preplan of the route it must traverse.

Conformal Search
Because the path is assumed to be traversable, search can be limited to expansion
near and in the direction of the path. A search graph is constructed relative to
the pre-planned path that conforms to the shape of the path and constrains
the motion of the vehicle. The spacing of the graph along the path is varied to
increase stability as speed increases. The graph is searched using A* and the
nodes comprising the solution are connected by straight-line segments.

Possible expansion nodes are grouped in linear segments, oriented normal to
the direction of travel of the path, similar to railroad ties (Figure 2.25). Nodes
are spread with a fixed spacing across each of the segments. Each node is allowed
to expand to neighboring nodes in the next segment. A node is considered to be a
neighbor of another node if its lateral offset is within one step of the current node.
Expansion opposing the direction of travel or within a segment is disallowed.

The cost at each node is calculated from the composite fused cost map. A
rectangular window is centered on the node and aligned with the direction of
travel of the path. Costs in the cost map within the window are aggregated
using a weighted averaged to produce a C-space expanded estimate of cost of
traversability at that node. To encourage the planner to produce paths which are
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Fig. 2.25. The conformal planner operates between cells on adjacent segments normal
to the preplanned path

shaped like the pre-planned path, traversal cost to the left and right neighbors
is increased by a factor

√
2 .

Each cycle, the graph is regenerated and searched using A* to produce an
optimal path given the most recent sensor data. The search starts at the point
closest to the vehicle on the last path output by the planner. The first few meters
(proportional to speed) of the previous path are used as the starting point to
generate the new path. This starting path is used to account for vehicle motion
during the search.

The raw output path tends to have sharp turns; A* chooses to either maintain
a fixed offset from the pre-planned path or to avoid an obstacle as hard as
possible. These sharp turns slow the vehicle considerably, as the speed planner
will reduce speed to ensure safety. In order to remove these sharp turns, a greedy
smoothing operator is applied to the path. The smoothed path is only accepted
if it has a cost approximately equal to the non-smooth path.

In most cases, the search operates quickly; faster than 20 Hz on the navigation
computers. Occasionally, the search space is too complicated for the search to
complete within a reasonable amount of time. Because the vehicle is a real-time
system traveling at high speed on rough terrain, planner lockup is unquestionably
bad. To prevent lockup, the search times out after a 20th of a second, returning
the best path found at that point. In practice this path has been acceptably
drivable.

Limitations
In situations where sharp turns are required, two of the perpendicular segments
can overlap resulting in path that has a small knot in it. The knots rarely cause
a problem but can cause the tracker to become confused and either reverse or
drive poorly.

The planner does not explicitly consider speed and the speed of the output
path is assumed to be close to the speed of the pre-planned path. While the
speed planner will slow the output path to account for obstacle avoidance, ex-
plicitly reasoning about speed and geometry at the same time could improve
performance and generate safer paths.
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Since this path planner does not reason about reversing and will generate a
route through obstacles if no other path is available, a second level of planning is
necessary to correctly handle some scenarios. For example the existing planner
can not correctly handle a completely blocked road.

2.3.4.2 Speed Planning

The speed planner is responsible for ensuring driving speeds are safe. As vehicle
speed increases, dynamics become important. Speed induces side-slip (Gillespie,
1992) and can cause rollover (Diaz-Calderon & Kelly, 2005) in vehicles with
a high center of gravity. Considerable research has been done to characterize
vehicle performance at low speed (Golda, Iagnemma & Dubowsky, 2004) con-
sidering both roughness (Catelnovi, Arkin & Collins, 2005) and compressibility
(Talukder, 2002) for speed setting and is primarily reactive.

Maximum tractive force is limited by friction, thus speeds must be planned
such that they gradually decrease as turns are approached. While obstacle avoid-
ance and controller error can cause executed curvatures to be larger than the
initial plan calls for, an estimate of maximum safe vehicle speed can be deter-
mined in advance as a function of path curvature and maximum deceleration.

Modeling
The vehicle is modeled as a point mass with rigid wheels on a flat surface.
Mass is equally distributed over the wheels and does not shift. Under these
assumptions, sliding occurs when static friction cannot counter longitudinal or
lateral acceleration.

g
R

v
μ<

2

(2.3)

dv >|| & (2.4)

Where μ is the coefficient of friction, g is gravity, v is the speed of the vehicle,
d is the maximum deceleration of the vehicle, and R is the radius of curvature
of the path. While d is limited by the tire-soil interaction, in practice maximum
deceleration is slightly smaller because the velocity controller does not operate
at the traction limit.

Numerous unmodeled dynamics including suspension effects, changes in fric-
tion and tire stiffness cause inaccuracies in this model. In practice it is important
to incorporate a safety margin, ksafety, to decrease lateral acceleration and max-
imum deceleration.

safetyeff kμμ = (2.5)

safetyeff dkd =  (2.6)

gRv efflat μ<  (2.7)
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Equation (2.4) can be reformulated to represent a maximum speed, vlat of a
point Pi relative to the following point, Pi+1.

vPPPdv iiiefflon .||2 11 ++ +−= (2.8)

Radius of curvature is defined as ds/dθ where dθ is differential heading change
of the path and ds is arc length. Because the path is represented as discrete
points, dθ and ds cannot be measured directly and must be estimated by Δθ
and Δs. For a point Pk, define two headings θ+ and θ− as the heading of two
points, Pk+spacing and Pk−spacing.

−+ −=Δ θθθ  (2.9)

Arc length is approximated by the sum of lengths between the points between
Pi−spacing and Pi+spacing.
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A two pass process is applied to determine a maximum speed at each point
in the path. The first pass walks the path in the forward direction and sets a
maximum speed at each point to the lower of a maximum overall speed for the
vehicle and the result of equation (2.7). The second pass walks the path from
the last point to the first point and limits the change in velocity so that it is
constrained by equation (2.4).

The algorithm runs two ways. Before executing a path, the algorithm processes
the entire path once setting speeds well beyond the sensing horizon of the vehicle.
While the vehicle is driving, the algorithm runs on the output of the planner
(a small subset of the overall path) allowing the vehicle to slow for unexpected
obstacles.

In practice, this algorithm performs well enough to drive safely on desert
trails. As the vehicle approaches turns, it smoothly decelerates to a safe speed.
As the vehicle approaches obstacles, it slows as necessary to swerve around them.

Limitations
Traction is limited by the sum of two vector components: lateral acceleration
required to turn plus longitudinal acceleration of the tires (Gillespie, 1992). Be-
cause this model uses the maximum of each of these components, the maximum
deceleration and coefficient of friction must be tuned for the worst case turning
while decelerating. This results in a slightly lower maximum speed through turns
when the vehicle is not decelerating.

Tires are not rigid and consequently do not suddenly break away as this model
suggests. In reality, as lateral acceleration increases, tires walk sideways inducing
a side slip angle (Gillespie, 1992). The side slip angle is a function of many param-
eters including tire pressure, tire stiffness, and the coefficient of friction. When
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vehicles operate with high slip angles, they are hard to control. Additionally, if
slip angle is not countered by the control layer, it will induce error.

Many effects which are functions of the terrain and environment decrease
tractive force. A wheel bouncing on washboard terrain has less contact with
the ground and as a result cannot apply as much force. On side slopes and
in banked turns, gravity and the “up force” generated by the curvature of the
terrain changes the maximum possible speed before rollover and breakaway.

Additional system effects should also be considered. Controllers have greater
error at high speed. The planner operates poorly when it has very little infor-
mation. An analysis of these errors could provide a function that predicts errors
at particular speeds and curvatures. A cap on these errors would determine
maximum speed through turns and in straights.

2.3.4.3 Path Tracking

At the lowest level of the onboard navigation system a modified conventional
pure pursuit path tracking algorithm (Amidi, 1990), (Coulter, 1992) steers the
vehicle. As is common, the look-ahead distance of the tracker is adjusted dy-
namically based on speed. The control gains are configured to provide a balance
between good performance at both low speed in tight maneuvering situations,
and at high speed on straight-aways and soft corners.

The basic pure pursuit algorithm works well if the output arcs are executed
faithfully by the underlying vehicle controllers. Errors in the mapping between
steering angle and curvature in the low level control scheme induce systematic
tracking errors. For example, the steering angle sensor on Sandstorm would in-
termittently shift relative to its mechanical ground, this resulted in a moving zero
point for the mapping between steering angle and curvature that could not be cor-
rected by the vehicle control system. The effect of this shift was to cause the robot
to track with a significant steady-state lateral offset from a desired path.

To correct for this problem, the basic pure-pursuit tracker is augmented with
an integral correction function. The error term is calculated as proportional to
the lateral offset between the vehicle and the path when the commanded steering
angle is near zero curvature. This causes the integral term to accumulate on
straight-aways, but not in corners where pure-pursuit tracking would normally
have significant errors. The scaled, integrated curvature correction term is then
added to the desired curvature generated by the basic pure-pursuit algorithm
before it is passed on to the vehicle control system.

This solution worked well and effectively removed the tracking bias problems
induced by the shifting steering sensor. The addition of the integral term also
made the vehicle robust to some mechanical damage to the steering system that
would have otherwise degraded driving performance.

2.4 Pre-planning

The pre-planning system creates a path, including its associated speeds and esti-
mated elapsed time, prior to robot operation. It incorporates aspects common to
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mission scaled schedulers and planners for space missions (Tompkins, Stentz &
Whittaker, 2004) and provides the critical input that allows the navigation sys-
tem to make assumptions about the world it is operating in. Pre-planning helps
a robot by allowing it to anticipate and slow down for obstacles and conditions
without sensing them directly. Good human drivers use similar foreknowledge to
adjust radii, favor lanes and set speeds to slow down for harsh terrain features.

Fig. 2.26. An illustration of the pre-planning process

As illustrated in Figure 2.26, the pre-planning system involves the initial gen-
eration of a path using splines to smooth an initially coarse list of waypoints.
The smoothed path is then modified by human editors to widen turns, and
identify high risk areas in the path. In parallel, risk is assessed throughout the
course and an automated speed setter uses this information to achieve a desired
elapsed time. This resulting path is then output in the form of a series of fine
waypoints which are used by the robot to traverse the course. As part of this
process, several rounds of verification are performed, to find and remove prob-
lems with the path. Periodically the current best path is transferred to a robot
to ensure that there is always a route available, in case of some unexpected
failure.

Human editors perform feature extraction that is beyond the state-of-the-
art in automated image understanding. Image extraction algorithms are limited
to items such as road extraction from imagery (Harvey, McGlone, Mckeown &
Irvine, 2004) and object detection and delimiting (Flores-Parra, Bienvenido &
Menenti, 2000) for large scale features such as buildings. Even though delimiting
and detecting objects would be useful for the identification of underpasses, over-
passes and gates, the algorithms are only semiautomated, reducing their value
for this application. Furthermore, even if these technologies were implemented,
they are still unable to detect subtle obstacles such as road washouts which can
be potentially fatal for a robot.
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Fig. 2.27. An example of path detailing: adjusting a turn to achieve a minimum
turning radius

2.4.1 Path Editing

Path editing is a process that transforms a set of coarse waypoints and speed
limits into a pre-planned path with one meter spaced waypoints. The smoothing
process produces a route of curved splines from waypoint to waypoint defined by
a series of control points and spline angle vectors. Human editors can alter splines
by shifting a control points, and spline angle vectors that specify the location
and orientation of a path. The generated splines are constrained to ensure C2
continuity which helps ensure a drivable path.

The human editing process removes unnecessary curvature from the smoothed
path. Smooth paths are also generally faster since decreasing the amount of
curvature in a path reduces concerns for dynamic roll-over and side slip. Figure
2.27 shows an instance where an editor has widened a turning radius in a path.

2.4.2 Speed Setting

During pre-planning, a speed setting process specifies the target speeds for an
autonomous vehicle given a target elapsed time to complete a pre-planned path.
Speed setting is performed by assessing the risk for a given robot to traverse
a section of terrain based on available information. An automated process then
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uses a speed policy generated by combining the risk assessment with any speed
limits imposed on the course to assign speeds to each waypoint in the path.

The risk estimation process discretizes risk into four levels (dangerous, mod-
erate, safe and very safe) in classifying terrain. Each risk level maps to a range of
safe robot driving speeds. Risk is first assigned regionally, over multi-kilometer
scale terrains, using general characteristic of the terrain under consideration.
Once the entire route has risk assigned at a coarse level, a first order approxi-
mation of the ease/difficulty of that route, as well as an estimate of the overall
elapsed time can be generated.

In addition to classifying risk at a macro level, risk is also assigned to local
features of importance. This processing step characterizes and slows the path
down for washouts, overpasses, underpasses, and gates. In this way human editors
provide a robot with a set of “pace notes”, similar to the information used by rally
race drivers. These details allow a robot to take advantage of prior knowledge of
the world to slow preemptively. This is a critical part of the process for increasing
the robustness of the onboard navigation system.

2.4.3 Verification

The verification step helps ensure that each pre-planned route is free from errors
prior to a robot executing it. The verification process is performed in three ways:
(1) in-line as an automated method which operates periodically while the route
is edited, (2) through multiple reviews by human editors, and (3) through an
automated external independent check on the final route.

2.4.3.1 Automated Inline Verification

The inline verification process provides human editors periodic updates of lo-
cations where the path being edited violates any constraints. The specific con-
straints considered are: (1) exceeding of corridors boundaries, (2) path segments
with radii tighter than a robot’s turning radius, and (3) areas where the route
is very narrow and warrants extra attention. Each of these potential problems is
flagged for review by a human editor. These flags are then used as focal points
for interpreting the path.

2.4.3.2 Human Review

Editors review each segment multiple times to ensure the route final route is
safe. While detailing a route, each segment undergoes an initial review by ed-
itors which fixes major problems. The first review looks for any errors in the
output of the automated planner, and attempts to identify areas of high risk for
a robot, such as washouts. These high risk areas are then flagged, to be confirmed
in a second review. A second review takes the output of the first review, and
refines the route, confirming marked “flags” and adding additional “flags” for any
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high risk areas missed in the first review. The expectation is that after completion
of the second review there will be no need for additional editing of the geometry of
the route. In the 3rd and 4th reviews the main focus is to verify that all problems
identified by the automated inline verification process have been cleared, as well
as to confirm that any problems identified by the automated external verification
algorithm are addressed.

2.4.3.3 Automated External Verification

An automated external verification process operates on the final output to the
robot and checks heading changes, turning radius, speeds, and boundary viola-
tions. In addition, the verification process outputs warnings where there are areas
of high slopes and sections of narrow corridors along the path. These warnings are
used to identify areas for the human editors where extra care should be used. The
verification process also produces a number of strategic route statistics such as a
speed histogram for time and distance, a slope histogram, and a path width his-
togram. These statistics are used in determining the target elapsed time for the
route and in estimating the risk for the route. This process is repeated several times
as the path detailing progresses until the route is deemed safe for the robots to use.

2.5 Testing and System Performance

To succeed in the Grand Challenge, robots must demonstrate both performance
and reliability. To achieve these two requirements, the team identified that a sys-
tem of tests and performance milestones were required. Performance milestones
were set to ensure driving skills and reliability would meet near term program
goals such as passing the site visit demonstration, winning pole position at the
National Qualifying Event (NQE) and completing the Grand Challenge. Exam-
ples of performance milestones included, shakedown cruises, NQE skills tests and
race length autonomous runs at race pace and in race environment. In addition to
milestones the team developed test methods that enabled quantitative evaluation
of the effects of changes to the robots’ hardware and software on performance.

2.5.1 Controlled Tests

The impetus for a controlled test methodology was to monitor development
progress and measure driving skill. The team also used the tests to evaluate the
effects of changes in hardware and software on the robots’ overall ability to drive.
The ability to drive was defined as three major skills. The first skill was the ability
of the robots to follow a preplanned path based on position sensing only. The sec-
ond skill was the ability of the robots to track a pre-planned path while assisted
by perception sensors. The third skill was the ability of the robots to dynamically
make significant modifications to a preplanned path to avoid sensed obstacles.
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Fig. 2.28. H1ghlander (and Sandstorm) were tested extensively on desert terrain

2.5.1.1 Test Formulation

There are few, if any, documented standardized tests to measure autonomous
driving skills at speed. A review of technical reports of DARPA Grand Chal-
lenge 2005 finishers Stanford Racing Team (Stanford Racing Team, 2005), Team
Gray (Trepagnierl, Kinney, Nagel, Donner & Pearce, 2005) and Team Terramax
(Oshkosh Truck Corp, 2005) found that they all placed great value on testing
but did not mention specific tests to measure driving skill. While a method for
characterizing tracking performance has been described (Roth & Batavia, 2002),
the authors are unaware of literature that describes a standardized process for
evaluating perception based navigation.

The literature on the subject of automotive dynamic testing includes Interna-
tional Organization for Standardization standard ISO-3888-1, Passenger cars —
Test track for a severe lane-change maneuver Part 1 – Double lane-change
(International Standards Organization, 1999) (Figure 2.29). This test was de-
signed as a means to subjectively evaluate vehicle dynamic performance. The
test is subjective because it only quantifies a small part of a vehicle’s handling
characteristics and is highly dependent on the input from the driver. This de-
pendence on driver skill is what makes the test attractive for adaptation to
autonomous ground vehicle driving skill testing.

15m 30m 25m 25m
30m

A= (1.1 x vehicle width) + .25

B= (1.2 x vehicle width) + .25

3.5

Fig. 2.29. ISO-3888-1 Test track for a severe lane change maneuver
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Table 2.5. Test steps for autonomous ground vehicle path tracking skill assessment

1. Create a route file through the test course. 

2. Create a path definition file for the route created in step 1 setting the corridor width slightly wider 
than the test track’s lane width and the speed to a constant (e.g., 5 meters/sec).  The path definition 
file must include an area before the test course begins for the robot to achieve the required constant
velocity. 

3. Load the path definition file into the robot.  

4. Command the robot to drive the route described in the path definition file.  

5. Record the time the robot is on the test track entry to exit. 

6. Record the number of times the robot touches or exits the test track’s boundaries. 

7. Repeat steps 2 through 6 increasing the speed by an incremental value (e.g., 2 meters/second) until 
the robot can no longer successfully traverse the course or the operation is deemed to be unsafe.  
Multiple runs at each speed increment are required to demonstrate consistency. 

The original ISO-3888-1 course was modified, adding 1.5 meter to lane width
in all sections to account for nominal pose estimator and tracking errors.
This additional lane width enabled a quantitative measurement of performance
considering total system error. Table 2.5 describes the basic steps used in the
autonomous ground vehicle path tracking skills assessment.

2.5.1.2 Blind Path Tracking Test

The blind path tracking test uses the modified ISO-3888-1 to perform a quan-
titative evaluation of path tracking performance. A route file for this test is
created by recording a smooth, “best line” route through the test course. The
recorded path is then transferred to the robot and used as the baseline path to
be tracked. Figure 2.30 is a graphical representation of the path definition file
used in the blind and perception assisted path tracking tests. When conducting
the blind path tracking test the robot is configured such that only the pose sen-
sor is considered in path planning. The absence of all perception sensor input
limits path tracking error to that induced from the pose sensor, path tracking
algorithm and drive by wire actuation control errors.

15m 30m 25m
30m

3.76m

3.94m

4.13m

Path center line along route waypoints

Path corridor boundary

Fig. 2.30. Bind and perception assisted path tracking route through modified ISO-
3888-1 test track
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2.5.1.3 Perception Assisted Path Tracking Test

The perception assisted tracking test is conducted using the same path definition
file used in the blind path tracking test and shown in Figure 2.30. At the entrance
to each lane segment a perpendicular boundary wall has been added to the
original ISO-3888-1 test track. These boundary walls are intended to ensure a
robot will plan a through the desired lanes. While performing this test, robots
are configured to use all of their perception and pose sensor data. The test
measures driving skill when given a nominal path through an area constrained
by boundary obstacles.

2.5.1.4 Perception Planning Test

The perception planning test is conducted on the same modified ISO-3888-1 test
track but uses a route file that follows the center line of the test track (see Figure
2.31). This test measures an autonomous ground vehicle’s ability to significantly
modify the pre-planned path based on perception.

25m15m 30m 25m 30m

3.76m

3.94m

4.13m

Path center line along route waypoints

Path corridor boundary

Fig. 2.31. Perception planning route through the modified ISO-3888-1 test track

2.5.1.5 Test Execution

Field tests were conducted at a brown site in Pittsburgh, Pennsylvania and at
the Nevada Automotive Test Center (NATC) in Silver Springs, Nevada. While
testing at the Pittsburgh site small cardboard boxes wrapped in plastic bags
were used as lane boundaries. As perception capability improved cones were
substituted for lane boundaries and obstacles. Figure 2.32 shows Sandstorm and
H1ghlander operating on the test tracks at LTV Steel and NATC.

During development and testing a full battery of tests was performed on
the modified ISO-3888-1 test track on eight separate occasions. Test personnel
included test conductor, robot operator, chase car driver and timers. In general a
complete set of blind path tracking, perception assisted tracking and perception
planning tests were performed during each session. Table 2.6 is an example of
data collected during a typical test session on the modified ISO-3888-1 test
tracks.

Sessions on the modified ISO-3888-1 track generally started with the blind
path tracking test at an initial speed of 5 meters per second. The team would
execute a minimum of three runs then increase the speed by 2 meters per second.
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Fig. 2.32. Sandstorm (a) and H1ghlander (b) on the LTV and NATC test courses

Table 2.6. Example data collected during testing

Test 
#

TOD Type 200m 
(s)

Speed
(m/s) 

Notes

1 2:35 BT-5 40.98 4.88 Cone 9L brushed 
2 2:40 BT-5 41.20 4.85 Cone 4L brushed 
3 2:44 BT-5 41.13 4.86 Good 
4 2:49 BT-7 29.20 6.85 Cone 4L hit hard 
5 2:52 BT-7 29.45 6.79 Cone 4L hit hard 
6 3:09 BT-7 31.70 6.31 Cone 4L hit more hard 
7 3:12 BT-7 31.67 6.32 Cone 4L hit more hard 
8 3:15 BT-9 ABORT E-stop because robot leaving course at 4L 
9 3:40 PT-5 45.58 4.39 Good 
10 3:58 PT-5 45.26 4.42 Good 
11 4:04 PT-5 43.64 4.58 Good 
12 4:09 PT-7 36.67 5.45 Good 
13 4:11 PT-7 37.29 5.36 Good 
14 4:15 PT-7 38.70 5.17 Cone 7R hit 
15 4:17 PT-9 29.70 6.73 Cone 7R hit 
16 4:21 PT-9 31.27 6.40 Cone 7R hit 
17 4:25 PP-5 45.89 4.36 Center 3rd wall hit 
18 4:28 PP-7 39.72 5.04 Corner 1st wall brushed, 3rd wall corner crushed 
19 4:30 PP-9 37.60 5.32 Corner 1st wall , brushed, 3rd wall corner crushed 
20 4:32 PP-9 N/A 2nd outer and center wall hit, 3rd corner crushed 
21 4:37 PP-9 33.61 5.95 3rd wall corner, 2 wall center punch & corner, 1st wall box crunched 

At each speed increment three runs were executed. Speed was increased until
the vehicle left the course and had to be stopped via the emergency stop link
or the test team deemed operations at higher speeds were unnecessary. The
blind path tracking test was never conducted at speeds above 13 meters per
second. As confidence in the robot’s blind tracking ability increased the number
of blind tracking tests were decreased and eventually were not included in the
test routine. The test was held in reserve for regression testing after hardware or
software changes were made to a robot that would affect the basic path tracking.

Like the blind tracking test, the initial speeds for perception tracking test was 5
meters per second. Multiple runs at the slower speeds were eventually found to be
unnecessary. As in blind path tracking, incremental speed changes were of 2 me-
ters per second and the maximum speed was 13 meters per second. As confidence in
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the perception sensing systems’ ability to correctly sense and localize obstacles
increased, emphasis on conducting perception tracking was diminished.

The perception planning test was performed in the same way as the perception
tracking test with the exception of using a different path.

2.5.1.6 Evaluation

The initial blind tracking test of Sandstorm (see figure 2.33) conducted on June
17, 2005, revealed that the robot did not have a robust path tracking ability. The
observed quality of driving was poor with significant overshoot when cornering.
The path tracking control algorithm was modified, adding an integral term, and
when the test was repeated on August 17, 2005, performance was notably im-
proved. The team was satisfied with Sandstorm’s blind tracking performance at
this point and did not conduct the test on Sandstorm again. Similar performance
improvement trends were observed withH1ghlander as well.
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Fig. 2.33. Blind tracking performance for Sandstorm

Analysis of the data collected during the perception tracking and planning
tests is inconclusive of overall performance gains due to changing hardware and
software configurations but it did help detect system anomalies. As an example,
performance of the vehicles was observed to decline in September after the short
range sensors were removed and replaced during addition of a sensor washing
system. This decline was directly attributable to the lack of adequate calibration
of the sensors for object localization.
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2.5.1.7 Perspectives on Controlled Tests

The blind tracking, perception tracking and perception planning tests are an effec-
tive tool for measuring autonomous ground vehicle driving skill. The tests are rela-
tively easy to set up and inexpensive to conduct. While straight forward, the tests
are an effective means to evaluate hardware and software configuration changes.

The blind tracking test is an excellent tool for measuring an autonomous
ground vehicle’s ability to blindly follow waypoints and is broadly applicable to
all automotive and truck class autonomous ground vehicles.

The perception tracking test is a good tool to measure the effects of percep-
tion on path tracking and also as a subjective qualitative assessment of driving
quality. The perception planning test is a good tool to measure the effectiveness
of an autonomous ground vehicle’s ability to dynamically adapt to obstacles im-
peding the pre-planned path. The perception planning test is limited; while it
measures a robot’s ability to rapidly adapt to obstacles, it does not measure if a
vehicle reacts in a smooth manner. For example, if a human is driving and sees
an obstacle in its path they will generally react as early and smoothly as possible
to change their trajectory to avoid the obstacle. The perception planning test
could be adapted for this purpose by elongating the length of the track segments
between lane change barriers.

2.5.2 End-to-End Tests

Red Team deployed to Nevada in late August of 2005. Once there, the team
began conducting a series end-to-end system tests designed to simulate race day
conditions. These tests followed the following process:

• System test team identifies a route and creates a route data definition file
(RDDF) (This could take several days to complete).

• The RDDF is delivered to the pre-planning team who have 1 hour and 45
minutes to create a path file (Ideally this was accomplished on the morning
of the systems test).

• The path file is reviewed by the field team to ensure it is safe and viable.
• A system test team provides the path file to the robot operators who have 15

minutes to load and launch the robot (This step was timed in order to validate
the operators’ ability to reliably launch the robot in a timely manner).

• Robots were then chased and performance monitored until either run com-
pletion or intervention.

Identifying routes that were race length including a wide collection of terrain
and free from undue risk proved to be a formidable task. No non-looping, race
length route was identified near the test area. Figure 2.34 shows two of the
routes used for systems tests. The “Pork Chop” route is a 48 kilometer loop
featuring pavement, gravel road, dry lake bed, sand, wash out, dirt road/trail,
cattle guard, gates, parallel fences, high voltage power lines, rail road crossings
and elevations ranging from 4300 to 4750 feet. The “Hooten Wells Extended”
route is 85 kilometers one way. This route was looped by adding tight circle
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Fig. 2.34. The “Pork Chop” route is a 48km loop while the “Hooten Wells” route is
85km each way

turns at both ends. The Hooten Wells route features gravel road, dry lake bed,
large wash outs, dirt road/trail, cattle guard, gates, parallel fences, high voltage
power lines, a canyon and elevations ranging from 4000 to 4700 feet.

During tests along these routes Sandstorm and H1ghlander each drove over
1600 kilometers autonomously. Each robot completed challenge length runs at
race pace on routes more difficult than the 2005 DARPA Grand Challenge race
route. Figure 2.35 shows the daily total number of meters driven during testing
at the NATC. The figure shows dates of the three significant failures incurred
during testing: H1ghlander sheering off its front right wheel, Sandstorm being
“clothes lined” by a tree and H1ghlander rolling.

2.5.3 Test Conclusions

Over the course of this development, the technology readiness level (TRL)
(Mankins, 1995) of the robots presented in this paper improved from TRL 3 (an-
alytical or experimental characteristic proof of concept) in the summer of 2003 to
TRL 5 (Technology component demonstration in a relevant environment). This
change in readiness was driven by the rigorous test program. In order to achieve
TRL 9 (actual technology system qualified) a much wider set of systems tests
must be developed. Although the testing described above effectively prepared
Sandstorm and H1ghlander to compete in the DARPA Grand Challenge, it is
not adequate for fielding an autonomous ground vehicle for everyday use.

Standardized tests must be developed that measure a robot’s ability to sense
and accurately localize obstacles of varying size. These tests should account for
differing perception sensing modes. Standard tests that measure an autonomous
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Fig. 2.35. Daily autonomous driving distance during testing at NATC

vehicle’s ability to safely and reliably interact with other vehicles and humans are
needed. These tests and others are required in order to move autonomous ground
vehicles from technological curiosities to common tools used by people everywhere.

2.6 The Grand Challenge

The 2005 DARPA Grand Challenge began at 6:40AM on October 8, 2005 with
H1ghander and Sandstorm departing the starting chutes 1st and 3rd respectively.
Both robots completed the challenge, finishing 3rd and 2nd (Figure 2.36).
Figure 2.37 illustrates the race day route. The route consists primarily of wide,

Fig. 2.36. Sandstorm (a) and H1ghlander (b) cross the Grand Challenge finish line
2nd and 3rd
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Underpass #1 (3h25m)

Underpass #2 (3h50m)

Underpass #3 (5h15m)

Beer Bottle Pass (6h30m)

Start/Finish Area (0h0m, 7h04m)

Fig. 2.37. The 2005 Grand Challenge Route with the approximate times at which
Sandstorm encountered challenging terrain

straight dirt roads. There are a few technical areas including 3 underpasses and
a narrow, winding descent through Beer Bottle canyon. Overall, the route is
less difficult than the system test courses that Sandstorm and H1ghlander had
operated on prior to the grand challenge.

2.6.1 Strategy

To increase the chance of success, the two robots were run with different speed
ranges for each of the risk levels used by the pre-planning system. Table 2.7
describes the speeds used for each risk level. H1ghlander ran at near full speed
while Sandstorm operated with a more conservative speed plan. Both speed
policies were within the operational ranges for which the robots had been tested.
The speed policies resulted in pre-planned expected completion times of six
hours and nineteen minutes for H1ghlander and seven hours and one minute for
Sandstorm.

The dual speed strategy was selected to increase the likelihood of at least one
Red Team robot correctly dealing with some challenging, unforeseen obstacle
on the Grand Challenge route. While the strategy was successful in that both
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Table 2.7. Risk level to speed range mapping during the Grand Challenge

Risk Level Speed Ranges for Sandstorm 
(m/s) 

Speed Ranges for H1ghlander 
(m/s) 

Dangerous 5 5 

Moderate 7.5 7-9 

Safe 10-10.5 10-12 

Very Safe 12 13-13.5 

robots completed the challenge, it limited Sandstorm below its ability and in
retrospect prevented it from winning the Grand Challenge.

2.6.2 Sandstorm

Sandstorm completed the 212 kilometer course in approximately seven hours
and four minutes to finish 2nd, eleven minutes behind the winning team from
Stanford. At approximately 6:50 AM, Sandstorm launched on-time and without
incident. Upon departure all mechanical, sensing, and navigation systems were
operating nominally. In general, Sandstorm drove the route well. It completed the
course within 1% of the prepanned time and came within 11 minutes of winning
the grand challenge. Sandstorm drove cleanly through most of the course, only
touching an obstacle during the tricky Beer Bottle pass descent.

correctly identified
tunnel walls

approximate location
of tunnel walls

region with terrain
evaluation bug

Fig. 2.38. The third underpass and sensor data illustrating the terrain evaluation bug
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approximate 
point of contact

probable incorrectly 
evaluated terrain

Fig. 2.39. Sensor map illustrating the point of contact

Sandstorm cleanly navigated through 3 underpasses. Both underpass 2 and
3 were sufficiently long and constrained that the LIDAR terrain evaluation al-
gorithm failed to detect the walls (see figure 2.38). Fortunately the redundancy
in perception algorithms made the navigation system robust to this failure and
Sandstorm cleanly navigated all three tunnels without contact.

The only contact Sandstorm made with an obstacle during the Grand Chal-
lenge occurred during the descent through Beer Bottle pass. It is impossible to
perform a complete reconstruction of the incident since the log file containing the
pose of the gimbal is corrupt and the documentation camera stopped operating
prior to entering the canyon. Figure 2.39 shows a cost map constructed from
only the shoulder, short range LIDARs, and thus provides an incomplete picture
of what the robot saw. It is likely that the robot attempted to cut close to the
wall to avoid the incorrectly evaluated terrain to the left of the trail. Despite
this minor contact, Sandstorm emerged from the canyon relatively unscathed.

Sandstorm drove well and completed the grand challenge course but was on
average 0.25m/s too slow to claim victory.

2.6.3 H1ghlander

H1ghlander completed the challenge in seven hours and fourteen minutes, 55 min-
utes longer than its intended completion time. This failure to achieve intended
speeds and elapsed time was unprecedented in H1ghlander’s testing history.
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2.6.3.1 Engine Trouble

Figure 2.40 shows predicted progress plotted versus actual progress. The upper
curve shows actual time to reach a given distance while the lower shows predicted
performance. Figure 2.40(a) shows a run of a very challenging course in north-
ern Nevada. In this figure, the predicted and actual curves are almost indistin-
guishable. Figure 2.40(b) shows performance during the Grand Challenge course.
Early in the race (27 kilometers) the predicted progress separates from the actual
progress. The actual progress continues to separate throughout the race.

Figure 2.41 compares velocity controller performance on various grades during
the race and during the last long distance traverse before the race. The pre-race
plot shows a slight decline in performance at higher grades while the in-race plot
shows a significant decline at all speeds.

Analysis of velocity performance shows seven locations where H1ghlander
came to a stop. Two of these stops were on hills where the vehicle rolled back-
wards several times before being able to crest the hills. Significantly degraded
performance is first noticeable after 27 kilometers and continues for the entire
challenge. Onboard audio indicates that the engine was stalling regularly while
H1ghlander drove. Immediately following the race, the engine idle speed was
oscillating violently. Data was logged while this phenomenon was occurring, but
since the race the problem has not reoccurred. Samples of engine and transmis-
sion fluids show no anomalies and the onboard engine diagnostics showed no
faults during and after the race. At this time, the cause for this engine problem
remains unexplained.

2.6.3.2 Gimbal Failure

H1ghlander’s gimbal stopped responding to commands 87 kilometers into the
race, failing after a hard left turn. Examination of vehicle speed indicates that
this is an area where H1ghlander was having engine trouble.

The gimbal is sensitive to power fluctuations, which may have been the cause
of its failure. While H1ghlander’s power is typically stable, the engine conditions
discussed above may have caused significant power generation problems. When
engine RPMs are low, the generator stops producing power and the power system
switches to using batteries. This condition is rare, as engine idle speed is set to be
significantly higher than the generator cutoff speed. Power system switching was
tested repeatedly early in the development of H1ghlander and had not shown
any problems leading up to the race.

It is conjectured that while the engine was not running normally, the generator
shut off temporarily, causing a brown out in the gimbal power system. The gimbal
stopped responding to commands and never recovered. Normally, when processes
fail to respond, they are restarted. In this case, the gimbal control computer
would have also browned out and as there is no capability to restart failed
computers, the restart system did not attempt to restart the gimbal processes.
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Fig. 2.40. A comparison of H1ghlander’s actual and pre-planned distance traveled for
(a) a representative test and (b) during the Grand Challenge
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Fig. 2.41. A comparison of H1ghlander’s ability to maintain commanded speed be-
tween (a) testing and (b) performance during the Grand Challenge
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While this hypothesis seems the most logical explanation for the gimbal failure,
there is insufficient data to determine the root cause of failure as power diagnos-
tics are only logged into a short rolling buffer. Under normal testing conditions,
system failures are examined immediately and information about power and state
of components involved in the failure is recorded. Due to the nature of the race,
the vehicle could not be stopped for examination, thus this data was lost.

Despite these two failures, H1ghlander completed the Grand Challenge, illus-
trating the ability of the robot to survive a number of significant faults.

2.7 Conclusions

Through the application of simple, well implemented ideas, it is possible to
achieve robust, high-speed desert navigation. At each point in the development
process we attempted to use the simplest possible approach, be it the first or-
der approximations of physical constraints in the speed planning algorithm or
the expectation based map merging algorithm. The key to success was perform-
ing testing and analysis to understand where these approaches would fail, and
determining whether a more complex solution was warranted.

The robustness of this approach was clearly demonstrated by Sandstorm and
H1ghlander’s performances at the 2005 Grand Challenge. Despite a failing engine
and the loss of a perception sensor, both robots completed the course within 20
minutes of the winning time. Without the careful design and implementation
of the navigation system, and the selection of a robust vehicle chassis, this feat
would not have been possible.

2.7.1 Next Steps

While the DARPA Grand Challenge represented a significant step forward for
high-speed navigation in desert terrain, the robotic navigation problem is far
from solved. Before it will be possible to deploy, full-autonomous robots, tech-
niques for dealing with dynamic environments must be developed. The Grand
Challenge was carefully designed to keep the competitors separated. Passing in
the challenge was constrained such that slower vehicle were stopped well before,
and throughout the time, faster vehicles encountered them. While this was rea-
sonable for the Grand Challenge, it is not a viable way for robots to deal with
traffic in general.

While the desert provides numerous challenges, the terrain is relatively
straight-forward to model. Most desert terrain is well characterized by its ge-
ometry since there is relatively little vegetation. This simplifies the perception
and terrain evaluation tasks. The same cannot be said for jungles, forests or even
farm land. In these environments, a purely geometric understanding of the world
would be misleading since there is vegetation that can and must be driven over
and through. Completing the same challenge in heavily vegetated terrain would
be a tremendous next step.

The Grand Challenge forced teams to develop reliable, near turn-key solutions
by requiring a long duration performance on a specific day. The race format
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meant it was not possible to develop a technology that worked some of the time,
it was necessary for the robots and supporting systems to work when called on.
While this level of reliability and readiness was met, it was achieved with large
teams with very specialized knowledge and training. To move this technology
from a compelling demonstration to a production ready capability will require
significant effort to both harden and quantify performance.

2.7.2 Lessons for Development of Autonomous Vehicles

While Sandstorm and H1ghlander performed well, and the experience of devel-
oping and testing the robots was rewarding, there is much room for improvement
in both the performance and the process used to develop them. Over the course
of this research we learned several lessons:

System testing is essential but results can be misleading- Testing was critical to
the success of Sandstorm and H1ghlander but at times also provided a false sense
of confidence. Because of the tight development and testing schedule, component
testing was often short and incomplete, due to an emphasis on integrated testing.
Since the overall system was relatively robust to sensor failures and bad data, it
was possible for intermittent and subtle problems to go undetected for long peri-
ods of time. A combination of better unit/component testing or a more in-depth
analytical evaluation of developing algorithms would have reduced this problem.

Reliability is critical, and can be achieved- One of the keys to success in the Grand
Challenge was balancing innovation with engineering. We used a programmatic
approach that effectively annealed ideas to strike this balance. In the first phase we
cultivated a broad set of potentially good ideas, hoping to uncover those thatwould
be the keys to success. In the second phase we focused these ideas while achiev-
ing internally and externally imposed milestones (e.g. complete a 320 kilometer
traverse, or perform obstacle avoidance with a given sensor). These milestones al-
lowed us to judge the viability of competing technical approaches while working to
also increase reliability. In the third and final phase, we accepted only ideas that
were required to fix problems with the existing system. We used a strict process to
report any problems identified during testing and then worked to quickly rectify
them in a way that prevented recurrence of the same fault. During this final phase,
the robots began to realize their potential for reliable operation.

Use commercial, off-the-shelf (COTS) components, but only with support- A com-
mon mantra in developing new systems is to buy not build, and in general this
is true, but, buyer beware. Without support, COTS components can be worse
than in-house, custom built components. With in-house built components there
is at least someone who designed and built the system who can debug it. An
unsupported COTS component that behaves unexpectedly may force a signifi-
cant redesign of a subsystem, potentially incurring more cost and time than if
the component had been in-house custom engineered.

Know the problem- much of the technical approach described in this paper was
excessive given the final form of the Grand Challenge. The groomed roads
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and carefully detailed route provided by the organizers greatly reduced two of
the competitive advantages (namely the H1 & HMMWV chassis and the pre-
planning system) applied by the team. Furthermore, the team put an excess of
wear-and-tear on the vehicles during testing operating on more rugged terrain
than that encountered during the challenge. Had the final race conditions been
known ahead of time, it would have been possible to shed a significant amount
of technical complexity.

Correctly scoping a problem is a key to success- One of the programmatic suc-
cesses was a process to cut technical ideas if they were not progressing or showing
results. This helped keep the team focused on the overall goal of completing the
Grand Challenge rather than chasing after interesting ideas that were irrelevant
to the task at hand. Without this focus we would not have been able to achieve
the reliability and robustness necessary to complete the Grand Challenge.
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Summary. Kat-5 was the fourth vehicle to make history in DARPA’s 2005 Grand
Challenge, where for the first time ever, autonomous vehicles were able to travel through
100 miles of rough terrain at average speeds greater than 15 mph. In this paper, we
describe the mechanisms and methods that were used to develop the vehicle. We de-
scribe the main hardware systems with which the vehicle was outfitted for navigation,
computing, and control. We describe the sensors, the computing grid, and the meth-
ods that controlled the navigation based on the sensor readings. We also discuss the
experiences gained in the course of the development and provide highlights of actual
field performance.

3.1 Introduction

The DARPA Grand Challenge aimed at fostering the development of a com-
pletely full-scale autonomous vehicle that would live up to the challenge of
high-speed navigation through challenging and unknown terrain. Organized by
DARPA (Defense Advanced Research Projects Agency), the Grand Challenge
was first held in 2004, but by the conclusion of the event, no vehicle had com-
pleted more than 7 miles of the prescribed course. Even with such poor results,
DARPA sponsored the Grand Challenge again in 2005. This time their hopes
were justified as not one, but five vehicles finished the 132-mile race. Out of
the original 195 vehicles entered, Team Gray’s Kat-5 was one of five vehicles to
complete the course and one of only four to accomplish this feat within the 10
hour time limit. The vehicle as entered in the race is shown in Figure 3.1.

This paper describes the main challenges posed by this endeavor, and specifi-
cally for Kat-5, the choices that were made and the designs that were developed
to address them.

3.2 Challenges

According to the rules published by DARPA, the autonomous vehicle had to
be able to traverse a route of up to 175 miles across desert terrain in under 10
hours while avoiding ditches, berms, rocks, boulders, fences, and other natural
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Fig. 3.1. Team Gray’s Kat-5 as entered in the 2005 Grand Challenge

or man-made obstacles [DARPA, 2005b]. The route to be followed was unknown
by the team until two hours before the start of the race. It consisted of a series
of GPS waypoints which were an average of 275 feet apart. For each waypoint,
an acceptable lateral boundary around the waypoint was also specified. The
sequence of waypoints and the lateral boundaries specified a corridor that the
vehicle had to stay within or the vehicle could be disqualified by officials (see
Figure 3.2). The route was only given as a sequence of GPS waypoints but
otherwise it was completely unknown; not just unrehearsed. The rules did not
prevent normalization of DARPA’s data before they were fed to the vehicles,
neither did they prevent elevation map databases, however, Kat-5 did not make
use of any information other than its sensor readings and DARPA’s waypoint
data given to it in raw form.

These conditions presented many challenges that needed to be met by innova-
tive hardware and software design. The following subsections present an overview
of each of the main challenges provided by the DARPA Grand Challenge.

3.2.1 Endurance and Reliability

The actual race route was a substantial distance of 132 miles which had to be
completed without refueling or pit stops. Having to endure this length of distance
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Fig. 3.2. The corridor as defined by DARPA. See [DARPA, 2005a].

in rough terrain at relatively high speed is a massive endurance test for any
vehicle, let alone a vehicle operating autonomously. Every piece of hardware on
the vehicle could become a failure point due to the excessive shock and vibration
caused by the rough terrain.

3.2.2 Environment Sensing

All decision making for steering and other controls had to be based solely on the
data collected by the vehicle’s onboard sensors. This introduces a major problem
as collecting and fusing sensor data can be a computationally expensive process
and the sensor data itself can be difficult to interpret [Coombs et al., 2001].
In addition, the vehicle must be able to accurately identify its own position
through an onboard sensor. The data readings then have to be coordinated
with position readings. Timestamping is complicated by delays of the onboard
computer networks.

3.2.3 Artificial Intelligence

Based solely on the sensory data collected, the vehicle needed to independently
decide how to generate control signal sequences for steering, braking, and ac-
celeration so that it could avoid obstacles and stay within the given course. In
addition, it needed to adjust speed to make sure that the vehicle would execute
turns safely.

3.2.4 Control Systems

The combination of all of the aforementioned navigational constraints along with
the requirement for high vehicle speed created the need for a very agile set of
physical actuators and control algorithms. These algorithms and actuators had
to respond to the need for abrupt changes in speed and steering quickly in order
to handle the rapidly changing environment.

In addition to the above, this team had to work on a short development
timeline. Unlike many of the other teams that competed in the 2005 Grand
Challenge, this team entered the competition at a late date. As a result, we
effectively had only six months to create and test the complete autonomous
vehicle.
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3.3 System Design

A 2005 Ford Escape Hybrid was used as the base vehicle platform for the au-
tonomous vehicle. This vehicle contains both a typical four-cylinder gas engine
and a 330-volt electric motor/generator. The hybrid system allows for the ve-
hicle to adapt intelligently to many different driving situations with maximum
efficiency and performance by automatically using a combination of the two.
[Ford Motor Company, 2005]. This ensures maximum fuel economy, but still ac-
ceptable performance. This vehicle was chosen because of the system that it
was already outfitted with in order to power its electric motor. This system was
capable of supplying enough clean power for the additional onboard electron-
ics without an additional alternator or generator. It also had sufficient ground
clearance for rough terrain and a wheel base that offered a good balance between
agile maneuverability and stability.

During this project, the physical vehicle was viewed as a ”black-box” and
was only interfaced with at the highest level. The following sections describe the
hardware components that were used to make the vehicle capable of operating
autonomously and handling the challenges presented in the previous section.
The hardware architecture for Kat-5 is outlined in Figure 3.3.

Fig. 3.3. The communication architecture in Kat-5

3.3.1 Computing Devices

The computing capacity for the autonomous vehicle was provided by a comput-
ing grid consisting of four networked computers. The computers included two
identical marine computers running Linux and two identical Apple Mac Mini
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computers running OS X. Marine computers (made for use on boats) were used
as the two main computers because they would run on 12 volts of direct current
without modifications to their power supplies and also because they already had
integrated shock mounts. One of the marine computers was dedicated to process-
ing data from the sensors, while the other was dedicated to producing navigation
control signals. The Mac Mini performed all of the path planning.

A key challenge associated with the computing devices was making them hard-
ened against shock and vibration. The two marine computers were designed for a
hostile environment, so they came with integrated shock mounts and were capa-
ble of withstanding shocks of up to 30 Gs. Also, each of their connections (both
internal and external) came reinforced with silicon glue and other restraints to
ensure that they could not come loose due to shocks and vibrations encoun-
tered in rough seas. A similar shock mount system was also created in house for
the Mac Minis. An image of the shock mount system is shown in Figure 3.4.
The computing devices were linked together by a rugged Cisco 2955 Catalyst
switch capable of handling shocks of up to 50 Gs. A mix of UDP and TCP
protocols were used for the ethernet communications, with UDP being used for
communications where reliability was not as important as speed and TCP for
communications where reliability was paramount.

Fig. 3.4. The shock mount system for the navigation computer could withstand shocks
of up to 30 Gs

3.3.2 Vehicle Actuators

Interfacing with the primary vehicle controls (steering wheel, accelerator, and
brake) was accomplished by a custom drive-by-wire system designed by Elec-
tronic Mobility Controls (EMC). This is a custom solution designed to outfit
vehicles for handicapped drivers. It consists of actuators and servos mounted on
the steering column, brake pedal, throttle wire, and automatic transmission. It
is primarily controlled by a console with a touch-sensitive screen and an eval-
uator’s console which contains a throttle/brake lever and a miniature steering
wheel. We bypassed these controls and connected the equipment’s wire harness
to a computer via a digital to analog board. Thus, the electrical signals that
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Table 3.1. Input voltages and corresponding digital ranges for interfacing with EMC
equipment

Input Voltage Range Digital Steps Software Range
Steering 0.4V to 4.6V 512 -250 (left lock) to 250 (right lock)
Accelerator/Brake 0.4V to 4.6V 256 -124 (full brake) to 124 (full accel-

erator)

the manual controls would normally produce were actually produced by the
computer (which later will be referred to as the navigation computer). These
electrical signals took the form of the analog voltages shown in Table 3.1.

The EMC equipment was chosen because it inherently satisfied many of the
previously mentioned challenges. Since the equipment is designed for handi-
capped drivers and must meet Department of Transportation standards, it is
fully redundant and very rugged. It also has a very fast reaction time when
given a command, so it can quickly turn the steering wheel or apply the brake
if it needs to. It was also able to be installed and tested very quickly by trained
experts, so our short development timeline was not adversely affected.

After initial testing during a hot summer day, we noticed that the computing
equipment was overheating and then malfunctioning due to the high tempera-
tures in the cabin of the car. This revealed an issue between having proper fuel
efficiency and having an acceptable cabin temperature. If the air conditioner was
kept on its highest setting, the equipment did not overheat, but the resulting
fuel economy was projected to be too low to finish the expected 175 mile race
(projections were based on the fuel economy of the 2005 Ford Escape 4 cylinder
model). This lowered fuel economy was due to the fact that if the air conditon-
ing system on a Ford Escape Hybrid is set to its maximum setting, then the
compressor must run constantly, which causes the gasoline engine to also run
constantly. This defeats the whole fuel efficient design of the hybrid’s engine as
explained previously.

As a result of this problem, we created a simple on/off mechanism for the air
conditioning system that was suited to the cooling needs of the equipment rather
than the passenger’s comfort. The device consisted of a temperature sensor, a
BASIC stamp, and a servo motor. We mounted the servo to the air condition-
ing system’s control knob so that the servo could turn the air conditioner on
and off. The BASIC stamp is a simple programmable micro-controller with 8
bidirectional input and output lines and a limited amount of memory which
can hold a small program. We programmed the BASIC stamp to monitor the
temperature of the cabin near the equipment. If the temperature dropped below
a certain threshold, the air conditioner was turned off. If the temperature rose
above a certain temperature, the air conditioning system was turned to its max-
imum setting. This simple system solved our temperature problems while not
adversely affecting our fuel efficiency, yet still only interfacing with the vehicle
at its highest level.
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3.3.3 Positioning System

The position and pose of the car is reported by an Oxford Technical Solutions
RT3000, an integrated Global Positioning System (GPS) with two antennas
and an Inertial Navigation System (INS). This system ensures that the vehicle
is aware of its position on the Earth with a best-case accuracy of less than
10 centimeters. This accuracy is possible due to its use of the Omnistar High
Performance (HP) GPS correction system. Nominal accuracies of the different
parameters available from the RT3000 are shown in Table (3.2).

Table 3.2. Accuracies of primary vehicle parameters given by the RT3000
[Oxford Technical Solutions, 2004]

Parameter Accuracy
Position 10 cm
Forward Velocity 0.07 km/hr
Acceleration 0.01 %
Roll/Pitch 0.03 degrees
Heading 0.1 degrees
Lateral Velocity 0.2 %

The RT3000 uses a Kalman filter to blend all of its inputs so as to derive
clean unbiased estimates of its state. A Kalman filter is a method of estimating
the state of a system based upon recursive measurement of noisy data. In this
instance, the Kalman filter is able to much more accurately estimate vehicle
position by taking into account the type of noise inherent in each type of sensor
and then constructing an optimal estimate of the actual position [Kelly, 1994]. In
the standard RT3000, there are two sensors (GPS and INS). These two sensors
complement each other nicely as they both have reciprocal errors (GPS position
measurements tend to be noisy with finite drift while INS position measurements
tend to not be noisy but have infinite drift) [Bruch et al., 2002].

The RT3000 also accepts additional custom inputs to reduce drift in its es-
timate of vehicle position when GPS is not available. This is important since
when GPS is not present, the estimate of position will begin to drift due to the
Kalman filter’s heavy reliance on INS measurements. One of these custom in-
puts is a wheel speed sensor which provides TTL pulses based upon an encoder
placed on a single wheel on the vehicle. When a wheel speed sensor is added
to the RT3000, it initially uses GPS data to learn how these TTL pulses corre-
spond to actual vehicle movement. Then when GPS data is not available due to
tunnels, canyons, or other obstructions, the RT3000 is able to minimize the posi-
tional drift by making use of the wheel speed sensor and its latest reliably known
correspondence to the vehicle’s movement. [Oxford Technical Solutions, 2004].

The wheel speed sensor consisted of a digital sensor capable of detecting either
ferrous metal or magnets that are in motion. We mounted it in the wheel well
adjacent to the stock Antilock Brake System (ABS) sensor, which allowed the
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wheel speed sensor to read the same magnets mounted on the wheel that the
ABS sensor did.

This level of accuracy allowed the car to precisely know its location on the
earth, and therefore made the artificial intelligence algorithms much more accu-
rate. Its 100 Hz refresh rate also notified the control systems of positional error
very quickly, which allowed for immediate corrections in course due to bumps
from rough terrain and other sources of error.

3.3.4 Vision Sensors

Two Sick LMS 291 Laser Detecting and Ranging (LADAR) devices provided the
autonomous vehicle with environmental sensing. Each LADAR device scans a
two-dimensional plane using a single pulsed laser beam that is deflected by an
internal rotating mirror so that a fan shaped scan is made of the surrounding
area at half-degree intervals [Sick AG, 2003]. Rather than pointing the LADAR
devices at the ground horizontally, we mounted the LADAR devices vertically.
We chose to align them vertically because it made obstacle detection much easier.
In the simplest case, by analyzing the measurement data beam by beam in
angular order, obstacles were easy to locate as either clusters of similar distance
or gaps in distance [Coombs et al., 2001].

A set of two 12 volt DC batteries connected in series supplied the required
24 volts of DC current required for the two Sick LADAR devices. These two
batteries were then charged by an array of six solar panels that were placed on
the top of the vehicle’s aluminum rack. These solar panels were then divided into
two sets of three panels each, and each set was connected to a solar regulator
which monitored the status of the corresponding battery that it was connected
to, and provided charge when necessary. The solar panels were the only source
of power supplied to the two batteries that comprised the 24 volt power system.

Next, we built a platform that oscillated back and forth, so that the LADAR
units would scan all of the terrain in front of the vehicle repeatedly. To ensure that
we knew the precise angle at which the LADAR devices were pointed at any time,
an ethernet optical encoder from Fraba Posital was placed on the shaft which was
the center of rotation. The optical encoder provided both the current angle and
the angular velocity of the shaft. To decrease the delay between reading a value
from the sensor and reading a value from the encoder, a separate 100 MBit ether-
net connection with its own dedicated ethernet card was used to connect the I/O
computer with the encoder. This delay was assumed to be the result of the TCP
protocol’s flow control algorithms [Jacobson and Karels, 1988] and their handling
of congestion in the ethernet switch. After placing each encoder on its own ded-
icated ethernet connection, communications delays between the encoder and the
I/O computer were relatively consistent at approximately .5 ms.

Testing revealed that the actual LADAR scan was taken approximately 12.5
ms before the data was available at the I/O computer. When this time was
added to the .5 ms of delay from the encoder communications, we had a 13
ms delay from the actual scan to the actual reading of the encoder position
and velocity. To counteract the angular offset this delay created, we multiplied



3 KAT-5: Robust Systems for Autonomous Vehicle Navigation 111

Fig. 3.5. A sample 3D elevation map (a) created by the vision system and the actual
terrain (b) it was created from

the velocity of the encoder times the communications delay of .013 seconds to
calculate the angular offset due to the delay. This angular offset (which was
either negative or positive depending on the direction of oscillation) was then
added to the encoder’s position, giving us the actual angle at the time when
the scan occurred. This extra processing allowed us to accurately monitor the
orientation of the LADAR platform to within .05 degrees.

Although the vehicle’s vision system was only comprised of these two LADAR
devices, their oscillating platforms and vertical orientation allowed them to sense
the environment with very fine detail and as precise an accuracy as possible.
Figure 3.5 shows an actual picture of a parking lot and the resulting maps from
the sensor readings. Several holes are visible in the 3D elevation map, especially
along the right side of the image. These are artifacts created by the fact that the
lasers cannot see behind obstacles. Therefore, the section behind an obstacle will
have no elevation data associated with it. We designed both oscillating mounts
to cover a thirty degree range and mounted each of them on different sides of
the vehicle. This allowed us to have much finer detail in the center of the path,
as both LADAR devices were able to scan this area. It also offered redundant
coverage in the center of the path so that if one sensor failed, the vehicle could
still sense obstacles most likely to be directly in its path.

All sensor readings had to be converted to a common coordinate system, which
was chosen to be the geospatial coordinate system because the GPS reports vehi-
cle position in the geospatial coordinate system. The two Sick LMS 291 LADAR
units captured a two-dimensional scan of the terrain in front of the vehicle along
with the exact time at which the scan took place. Using the highly accurate
data from the RT3000, these two-dimensional scans were then transformed into
the vehicles coordinate frame and then into a geospatial coordinate frame via a
set of coordinate transformation matrices. This is accomplished in two similar
steps. In each step a transformation matrix is defined so that

P2 = T1→2P1 + Δ1 (3.1)

where T1→2 is the transformation matrix for going from coordinate frame 1 to
coordinate frame 2, Δ1 is the vector representing the position of the origin of
coordinate frame 1 with respect to the origin of coordinate frame 2, and P1 and
P2 are the same point in coordinate frames 1 and 2, respectively.
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The first step converts from the sensor coordinate frame to the vehicle’s co-
ordinate frame. The vehicle’s coordinate frame is located on the center of the
rear axle of the vehicle and has the standard X (longitudinal), Y (lateral) , and
Z (vertical) axes orientation. The sensor’s coordinate system is centered on the
sensor with the sensor’s native X, Y, and Z axes. Therefore, the vehicle’s co-
ordinate system is related to the sensor’s coordinate system via rotations and
translation. Thus, a simple linear transformation of the form (3.1) can convert
one to the other. This transformation is defined through a matrix, Ts→v (to be
used in place of T1→2 in Equation (3.1) ), which is defined as

Ts→v =

⎡
⎣ cosψs − sin ψs 0

sinψs cosψs 0
0 0 1

⎤
⎦
⎡
⎣ cos θs 0 sin θs

0 1 0
− sin θs 0 cos θs

⎤
⎦
⎡
⎣ 1 0 0

0 cosφs − sinφs

0 sin φs cosφs

⎤
⎦ (3.2)

where ψs, θs, and φs are the yaw (around the z-axis), pitch (around the y-
axis), and roll (around the x-axis) of the sensor coordinate frame relative to the
vehicle’s coordinate frame. This transformation takes into account deviations in
yaw, pitch, or roll caused by the mounting of the sensor. For example, if the
sensor were mounted pointed slightly downward, it would have a negative pitch
that would need to be countered by setting θs to its inverse (or positive) value.
In addition, the angle of deflection caused by the oscillation is processed here by
adding it to φs.

The same basic transformation and translation was done again in order to
translate from the vehicle’s coordinate system to the common geospatial coor-
dinate system. Yet another transformation matrix, Tv→g, was constructed for
this purpose.

Tv→g =

⎡
⎣ cosψv − sinψv 0

sin ψv cosψv 0
0 0 1

⎤
⎦
⎡
⎣ cos θv 0 sin θv

0 1 0
− sin θv 0 cos θv

⎤
⎦
⎡
⎣ 1 0 0

0 cosφv − sinφv

0 sin φv cosφv

⎤
⎦ (3.3)

where ψv, θv, and φv are the heading (around the z-axis), pitch (around the
y-axis), and roll (around the x-axis) of the vehicle relative to the geospatial
coordinate system. These heading, pitch, and roll values are generated by the
GPS/INS navigation sensor that is mounted on the vehicle.

After taking into account both of these transformation matrices, the full equa-
tion for transformation from sensor coordinate system to geospatial coordinate
system is

Pg = Tv→g(Ts→vPs + Δs) + Δv. (3.4)

where Δs is the vector representing the position of the sensor with respect to the
center of the vehicle and Δv is the vector representing the position of the center
of the vehicle with respect to the center of the GPS/INS navigation sensor.

At this point, each of the measurement values from the LADAR units now
has a latitude, longitude, elevation, and timestamp. These elevation values are
then placed into the same elevation grid, where the number of scans and time
since last scan are used to derive the probability that the vehicle can drive over
that geospatial location. We now describe how this probability is derived.
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The data from the two sensors are correlated by placing data from both sensors
into the same elevation grid (see Figure 3.5 for an example of this). The routines
that this team developed to build internal representations for maps do not need
to account for which sensor saw the obstacle, but only the number of times any
sensor saw the obstacle and how recently did a sensor see the obstacle. As a
result of this, any number of LADAR sensors can be used without having to
change the algorithms at all.

The timestamp is very important to the algorithms due to the fact that
LADAR scan data can have anomalies in it. Highly reflective surfaces can cause
the LADAR devices to register incorrect distances for obstacles. To counteract
these anomalies, scans are only kept in memory for a certain amount of time. Af-
ter that time has passed, if no more obstacles have been registered in that same
area, the obstacle is removed. This also ensures that moving obstacles are han-
dled correctly. If a vehicle or other object crossed the path perpendicular to the
autonomous vehicle, the sensors would effectively register a sequence of obstacles
in front of the autonomous vehicle. These obstacles would appear as a complete
obstruction of the vehicle’s path, forcing the vehicle to immediately stop. After
enough time had passed, the obstacles would expire, and the autonomous vehicle
would be able to start moving again.

A persistent obstacle, on the other hand, will not expire. Consider, for ex-
ample, a large boulder that is located in the center of the path. At a distance
of approximately forty to fifty meters, the LADAR devices will start to register
parts of the boulder. As the autonomous vehicle gets to within ten to twenty
meters of the vehicle, the previous scans would begin to approach the obstacle
expiration time. Since the sensors are still registering the boulder, the previous
scans will not expire. Instead, the previous scans along with the current scans
would all be retained, giving the boulder a higher count for total number of
scans. This high count for the number of scans causes the boulder to have an
extremely high probability of being an obstacle.

3.4 Software Design

Software played a critical role in the design of the autonomous vehicle. Rather
than using the C programming language to build the software for Kat-5 like
virtually all of the other teams competing in the DARPA Grand Challenge, we
decided to use the Java programming language instead. While many detractors
might say that Java offers slower performance and lacks conventional parallel
programming models [Bull et al., 2001], we decided that its benefits outweighed
its deficiencies.

It was imperative in the design of Kat-5 that all systems, physical or software,
be completely modular and independent of platform or peers. This requirement
was met fully from the beginning of development within the software realm by
the use of the Java programming language. Java’s simple language semantics,
platform independence, strong type checking, and support for concurrency have
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made it a logical choice for a high integrity system [Kwon et al., 2003] such as
an autonomous vehicle.

Because of the platform-independance of Java, we were able to use multiple
hardware solutions that fit different niches in our overall design. All of the inter-
face systems were deployed on Linux systems while the math-intensive processing
was performed primarily on Apple systems. Despite this disparity in operating
systems, all computers were given the same exact executables. A block diagram
of our process architecture is shown in Figure 3.6.

Fig. 3.6. The software used in driving the vehicle is a highly modular system
[Trepagnier et al., 2005]

To ensure the quality of our code base, we followed the practices of Test Driven
Development which is a software development practice in which unit test cases are
incrementally written prior to code implementation [George and Williams, 2003].
As a result of this, we created unit tests for all critical software modules on the
vehicle. This allowed us to run the unit tests each time we deployed our code to
detect if we had introduced any bugs. This alone saved us enormous amounts of
time and helped to provide us with the stable code base that allowed us to finish
the Grand Challenge.

For example, geospatial operations such as projecting a point a given distance
along a heading (or bearing) or converting between different coordinate systems
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were some of the most commonly used pieces of code on the vehicle. These
geospatial operations were also consistently modified and improved throughout
development. To ensure that this ongoing development did not introduce errors
into this critical part of the code base, unit tests were created to test each
geospatial operation. These unit tests were created by performing the operations
manually, then using these results to craft a unit test that ensured that the given
operation produced the same results. Each geospatial operation had several of
these tests to ensure complete testing coverage of each operation.

The following subsections describe our use of Java to develop the software
necessary to meet the challenges described in the previous section.

3.4.1 Path Planning and Obstacle Avoidance

Path Planning is accomplished through the use of cubic b-splines [de Boor, 1978]
designed to follow the center of the route while still ensuring that the path they
create is not impossible for the vehicle to navigate. This assurance means that
the curvature at any point along the path is below the maximum curvature that
the vehicle can succesfully follow. In addition, the curvature is kept continuous
so that it is not necessary to stop the vehicle in order to turn the steering wheel
to a new position before continuing.

B-splines were chosen for use in the path planning algorithms primarily be-
cause of the ease in which the shape of their resulting curves can be controlled
[Berglund et al., 2003]. After an initial path is created that follows the center of
the corridor, the path is checked against the obstacle repository to determine if
it is a safe path. If the path is not safe, a simple algorithm generates and adjusts
control points on the problem spots of the curve until the spline avoids all known
obstacles while still containing valid maximum curvature. At this point, the path
is both safe and drivable.

Once a safe path is designed that avoids obstacles and yet remains drivable,
the next step in the planning process is to decide on the speed at which the vehicle
should take each section of the path. The speed chosen is based on the curvature at
that point in the path and upon the curvature further down the path. The speed is
taken as the minimum of speed for the current curvature and the speed for future
path curvature. The future path curvature is defined by a simple function that
multiplies the curvature at a given future point by a fractional value that decreases
towards zero linearly based upon the distance from the current path point to the
given future path point.

3.4.2 Speed Controller

In order to design intelligent controls suitable for a given system, that system, in
this case the car’s engine and the external forces, must be understood. System
identification is a method by which the parameters that define a system can
be determined by relating input signal into a system with the system’s response
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Fig. 3.7. The transfer function developed through system identification is intended to
characterize the reaction of the system to the inputs

[Aström and Wittenmark, 1995]. It is the goal of this method to develop a trans-
fer function that behaves in the same way as the actual system. For instance,
when attempting to control the speed of a vehicle, the inputs are the brake and
accelerator position and the output is the vehicle’s speed (see Figure 3.7). If it
is assumed that the transfer function, H(s), is first-order, it can be written as

y(s) = H(s)u(s) (3.5)

where H(s) is the transfer function of a system, u(s) is the input to the system,
and y(s) is the output from the system. System identification, as described in
[Aström and Wittenmark, 1995], was applied to real world data from the propul-
sion system to come up with the transfer function of the system.

As far as the speed control of the vehicle was concerned, it seemed like a
simple control system could be designed to handle the accelerator and brake.
However, as it turned out, there were many factors in the physical engine sys-
tem that made for a fairly complex transfer function. Being a gas-electric hybrid
engine, the coupling of the two propulsion systems was controlled by an intelli-
gent computer tuned for fuel efficiency, a computer that we had no information
about. In addition, the mapping of the requested pedal position and the ac-
tual position achieved was not linear and had to be remapped in the software
layer.

Itwaseventuallydecidedthatthespeedofthevehiclewouldbecontrolledbyanin-
tegrated proportional-derivative (PD) controller [Aström and Wittenmark, 1995].
This controller bases its output on the previous output and on the current error and
derivative of the error. In the time domain, the controller can be written as

u(t2) = (t2 − t1)(Kpe(t2) + Kde
′(t2)) + u(t1) (3.6)
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where Kp and Kd are tunable coefficients, u(t) is the output of the controller
at time t, and e(t) is the error at time t. The error is defined in a conventional
manner: actual output subtracted from target output. Actual output is reported
by the RT3000 and target speed is derived from the path planning algorithms.
Since the actual output is limited to u(t) ∈ [−1, 1], no windup of the controller
is experienced. There was some overshoot and oscillation inherent in the system
but with tuning it was reduced to a manageable level (see Figure 3.8).

The integrated PD controller was designed and tuned against the transfer
function that we had arrived at through the system identification process men-
tioned above. It was a simple matter to arrive at the weights needed for opti-
mal performance against the computational model; however, the computational
model was a far cry from the true real-world system. The modeled values were
used as a baseline from which to work from when tuning the real controller.

Fig. 3.8. The PID comes very close to matching current speed to target speed during
a run at the NQE

3.4.3 Steering Controller

The steering controller for the vehicle was a lead-lag controller based on the
classical single-track model or bicycle model developed by Riekert and Schunck
[Riekert and Schunck, 1940].
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Table 3.3. Variables used in the steering controller’s vehicle model

Symbol Description
M Vehicle mass
v Vehicle velocity
ψ Vehicle yaw with respect to a fixed inertial coordinate system
Iψ Yaw moment of inertia about vertical axis at CG
lf/r Distance of front/rear axle from CG
l lf + lr
yS Minimum distance from the virtual sensor to the reference path
df Front wheel steering angle
dS Distance from virtual sensor location to CG
cf/r Front/rear tire cornering stiffness
μ Road adhesion factor

The transfer function from steering angle to vehicle lateral acceleration may
be written as

μcfv2 (Mlfds + IΨ ) s2 + μ2cfcrlv (ds + lr) s + μ2cfcrlv
2

IΨMv2s2 + μv
(
IΨ (cf + cr) + M

(
cf l2f + crl2r

))
s + μMv2 (crlr − cf lf ) + μcfcrl2

(3.7)

The introduced variables are defined in Table 3.3.
By applying the Laplace integrator twice we obtain the transfer function from

steering angle df (s) to the lateral displacement yS(s).
The state space representation as found in [Hingwe, 1997] may be written as

ẋ = Ax + Bu (3.8)

where

x =

⎡
⎢⎢⎣

ys

ẏs

Ψ

Ψ̇

⎤
⎥⎥⎦ u = δf (3.9)

and

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0
0 −

(
(φ1 + φ2)

v

)
φ1 + φ2

(
φ1(dS − lf ) + φ2(dS + lr)

v

)
0 0 0 1

0 −
(
2 (lfcf − lrcr)

IΨv

)
2
(

(lfcf − lrcr)
IΨ

)
−2
(

(cf(l2f − lfdS) + cr(l2r − lrdS))
IΨv

)

⎤
⎥⎥⎥⎥⎥⎦

(3.10)

B =

⎡
⎢⎢⎣

0 0

φ1

(
(φ2lr − φ1lf − v2)

v

)
0 0

⎤
⎥⎥⎦ (3.11)
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where

φ1 = 2cf

(
1
M

+
lfdS

IΨ

)
(3.12)

φ2 = 2cr

(
1
M

+
lrdS

IΨ

)
(3.13)

The outputs of the vehicle model as shown in Equation 3.14 are the lateral
error at the virtual sensor and the yaw.

y =
[
1 0 dS 0

]
x (3.14)

Lead and lag compensators are commonly used in control systems. A lead
compensator can increase the responsiveness of a system; a lag compensator can
reduce (but not eliminate) the steady state error [Bernstein, 1997]. The lead-lag
compensator was designed using the frequency response of the system. The lead
compensator used is stated in (3.16) and the lag compensator is stated in (3.15).
The resulting controller is the convolution of the two functions multiplied by the
low frequency gain, which was 0.045. The parameters used in (3.16) and (3.15)
were produced using rough estimates which were then tuned by trial and error.

Flag(s) =
850s + 1
900s + 1

(3.15)

Flead(s) =
2s + 4

0.2s + 1
(3.16)

The step response of the closed-loop system is shown in Figure 3.9.
The input to the controller is defined as [yS] where yS refers to the mini-

mum distance from the virtual sensor to the reference path. The virtual sensor
is a point projected a given distance ahead of the vehicle along the vehicle’s
centerline. This point is commonly referred to as the look-ahead point, and the
distance from the look-ahead point to the RT3000 is referred to as the look-
ahead distance. The output of the controller is the steering angle measured at
the tire with respect to the centerline.

Control gains were not scheduled to the speed of the vehicle. Gain schedul-
ing was evaluated, but not implemented, as the steering controller by itself of-
fered more than enough stability and accuracy. No additional knowledge, such
as whether the vehicle was going straight or in a turn, was given to the steering
controller.

Several assumptions were made in implementing this model. The relationship
between the steering wheel angle and the resulting tire angle was assumed to
be linear. The measurements made of this relationship showed that the actual
variation was negligible. Also, the location of the vehicle’s center of gravity was
assumed to be at the midway point between the front and rear axles.

The steering controller managed to provide incredible accuracy, even at speeds
of over thirty miles per hour. An analysis was made of the steering controller’s
accuracy from the first 28 miles of the 2005 DARPA Grand Challenge. An unfor-
tunate error that is described later in Section V prevented the team from being
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Fig. 3.9. Step response of closed-loop system

Fig. 3.10. The steering controller proved to have an extremely high accuracy during
the 2005 DARPA Grand Challenge. The standard deviation for the 28 miles shown
here was just 5 cm from the desired path.
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Fig. 3.11. The steering controller handled this GPS jump by reducing speed to allow
the vehicle to safely steer back onto the planned path

able to perform an analysis on more data from the Grand Challenge. As shown
in Figure 3.10, the steering controller was able to maintain a standard deviation
of 5 centimeters in regards to the desired path. This is an excellent performance,
especially when considering the roughness of the terrain and a top speed of over
35 mph for Kat-5.

As a measure of safety the magnitude of the ys signal was monitored to prevent
the vehicle from becoming unstable. If ys were ever to cross a given threshold,
meaning the vehicle is severely off path, the speed was instantly reduced to 2
mph. This allowed the vehicle to return onto the desired path and prevented a
possible rollover. The algorithm was repeatedly tested by manually overriding
the steering controller and taking the vehicle off path, then allowing it to regain
control.

This algorithm proved to be very effective. Figure 3.10 shows the path error
from the first 28 miles of the 2005 Grand Challenge, and a 1.5 meter spike at
around the 2000 second mark. At this point, a GPS jump caused a spike in path
error from 5 cm to 1.5 meters in a span of just 10 ms. As shown in Figure 3.11,
the steering controller was able to handle this GPS jump safely and quickly, and
return Kat-5 back to the proper planned path.

3.5 Field Testing

Initial field testing concentrated on improving the accuracy of both the speed
controller and steering controller at low to medium speeds. After extensive test-
ing at these speeds, the team rented out a local racetrack, and proceeded to
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ensure that the vehicle could operate reliably at higher speeds. Throughout this
entire process, both the speed controller and steering controller were progres-
sively tuned, until they both operated with the accuracy required for the Grand
Challenge. During these tests, the accuracy of the steering controller was able
to be increased from over 50 cm to less than 5 cm.

Before taking the vehicle to California for the Grand Challenge National Qual-
ification Event (NQE), the vehicle was put through several strenuous tests de-
signed to test not only hardware and software endurance and reliability, but also
vehicle performance. Throughout this testing, the vehicle was subjected to harsh
terrain, difficult obstacle avoidance scenarios, and long run times. Unfortunately,
due to weather-related circumstances outside of our control (Hurricane Katrina),
the amount of time available for final testing of Kat-5 was severely limited.

The NQE was used by DARPA to pare down the 43 semifinalists to a pool of 23
finalists. At the National Qualification Event which was held at the California
Motor Speedway in Los Angeles, California, Kat-5 ran into several problems
initially which were the result of a lack of thorough testing before the event.
Several quick changes were made to the software and hardware, which allowed
Kat-5 to produce several successful runs at the end of the NQE and advance
to the Grand Challenge Event. The results of Kat-5’s seven qualifying runs are
listed below:

Run 1 – Did Not Finish
At the end of the fast portion of the course, Kat-5’s geospatial system encoun-
tered a failed assertion in its geospatial processing algorithm and shut down.
Without a course to follow, the vehicle continued straight ahead, missing a
right turn and hit the side-wall at approximately 20 miles per hour (8.94 m/s)
causing some damage to the front body, but no major structural damage.
The assertion was caused by a bug in the code that created a composite poly-
gon from the individual polygonal segments of the corridor. Apparently, the
composite polygon created in one section of the NQE course was not a valid
polygon, and this caused a failed assertion error. To get around this bug, the
algorithm was changed to use the individual segments directly rather than
the composite polygon composed of the individual segment polygons.

Run 2 – Did Not Finish
The GPS position of the vehicle was reported as two to three meters north
of its true location. While attempting to enter the tunnel, the vehicle saw
the entrance, but thought that the entrance was off of the course, and thus
it could not navigate so as to enter the tunnel without going out of bounds.
The front left of the vehicle hit the corner of the entrance. Major damage
was done to the front end, but it was repaired quickly. The RT3000 has a
basic GPS component but it is also using a ground OmniStar Correction
Service to further refine the readings of the GPS component and thus pro-
vide finer accuracy than is possible on GPS alone. Upon investigation, it
was discovered that the ground station frequency used by the RT3000 for
OmniStar Correction Service was still set to the one corresponding to the
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eastern United States rather than the western United States and thus during
the previous runs only basic GPS was actually used.

Run 3 – Did Not Finish
After approximately 100 meters, the circuit breaker in the engine compart-
ment of the vehicle overheated and popped open, cutting power to all of the
vehicle’s robotic systems. The drive-by-wire system used its reserve power
to apply the brake and then shut off the vehicle. The circuit breaker was
replaced with a heavy-duty wire and locking disconnect plug.

Run 4 – Finished in 16:42
Kat-5 completed the entire 2.2-mile course. Upon exiting the tunnel, the
vehicle gunned its accelerator causing it to leave the corridor before slamming
on its brakes. After reacquiring a GPS lock, it navigated back onto course
and continued to the end where it finished the course.

Run 5 – Finished in 15:17
Kat-5 had a perfect qualifying run until the very end of the course where it
completely failed to avoid the tank trap. It hit the obstacle, but continued its
forward motion, pushing the tank trap across the finish line. Data analysis
indicated that the position of the sun on the extremely reflective tank trap
caused both LADAR devices to be blinded.

Run 6 – Did Not Finish
Upon exiting the tunnel, the vehicle behaved as it did in run 4, but when
it recovered GPS lock, it began driving in circles. It had to be shut down
remotely. There was a logical error in one of our recovery systems that did
not allow the vehicle to draw a path back onto the course after recovering
from failure in the RT3000. There were several bugs in the RT3000 itself
that caused its integrated INS to lag almost five full seconds behind its
integrated GPS. Although the RT3000 is designed to handle GPS outages
with little performance degradation in normal working conditions, these bugs
created significant problems that caused a drift of over 5 meters when GPS
signal was lost. After an hour of work on-site with engineers from Oxford
Technical Solutions, the problems were quickly diagnosed and fixed, then
incorporated into an upgraded firmware release for the RT3000 by Oxford
Technical Solutions.

Run 7 – Finished in 15:21
Kat-5 completed its first and only perfect run, securing its spot as a finalist.

Several images of the output of the path planning systems during actual runs
from the NQE are shown in Figures 3.12, 3.13, and 3.14. In this visualization,
obstacles are represented by clusters of points and the path is represented by
the sparse sequence of dots.

The Grand Challenge was held on October 8 in Primm, Nevada. Kat-5 was
one of the twenty-three finalists that was able to participate in the race. She left
the starting line with a burst of speed and never looked back. Kat-5 finished the
race in an elapsed time of seven hours and thirty minutes with an average speed
of 17.5 mph to claim fourth place. Several issues were discovered after analyzing
the vehicle during a post-race inspection.
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Fig. 3.12. Kat-5 is planning a path to avoid an obstacle in the center of the path at
NQE. The vehicle is moving towards the top right.

• The vehicle’s steering was severely out of alignment. The team assumed this
was due to Kat-5’s attack of the rough terrain at relatively high speed. Amaz-
ingly, the steering algorithm was able to easily handle this issue, as evidenced
by the fact that Kat-5 was able to complete the race.

• The Antilock Braking System was displaying intermittent failures that caused
the brakes to behave in an erratic fashion. This issue was also assumed to
be the result of the rough terrain. Like the steering controller’s ability to handle
the problem steering alignment, the speed controller also was able to handle
the erratic brakes.

• The logging system crashed after 28 miles. This unfortunate issue means that
a full analysis of the Grand Challenge for Kat-5 is impossible. The cause for
this crash was apparently a crash of the logging server Java program running
on the logging computer. The root cause of this is currently undetermined,
but the primary suspect is that diagnostic information produced by the error
discussed in the next item caused some piece of executing code to throw
an unchecked exception. This unchecked exception caused the Java Virtual
Machine to exit.
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Fig. 3.13. The path planning algorithms identified an obstacle at NQE and avoided
it. The vehicle is moving towards the top right.

• The only major flaw in Kat-5’s performance on the day of the Grand Chal-
lenge was an error in the path planning algorithms that caused them to
time out when faced with sections of the route with extremely wide lateral
boundaries.

We had anticipated that the path planning algorithms might occasionally
time out, and therefore we had programmed Kat-5 to slow down to 3 mph for
safety reasons until the algorithms had a chance to recover. However, when-
ever Kat-5 encountered sections with an extremely wide lateral boundary,
the algorithms timed out continuously due to the error until a section with a
narrower lateral boundary was encountered. This caused Kat-5 to drive the
dry lake bed sections of the race, which were considered the easiest, at 3 mph
instead of 40 mph. Calculations by both DARPA and Team Gray about the
time lost due to this bug have shown that if this error had not occurred,
Kat-5 would have posted a much better finishing time. This bug has since
been fixed.
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Fig. 3.14. Kat-5 shows that she is capable of planning a path that can handle slaloming
around obstacles. The vehicle is moving towards the top left.

3.6 Conclusion

The recipe of success in this effort was rugged hardware, simple software, and
good teamwork. We chose to use off-the-shelf, proven hardware that we cus-
tomized as needed. This allowed rapid development and also provided a reliable
hardware platform that was not prone to failures. The harsh terrain could easily
dislodge a wire or render a sensor or communications link useless and would
therefore mean the end of the race. This was the motivation for choosing the
EMC drive-by-wire system, the shock resistant equipment mounts, the rugged
50G tolerant Cisco equipment, and all of the other equipment. This was also the
reasoning for choosing the RT3000 which not only was built to provide supreme
accuracy but also was designed to take additional inputs from custom-made sen-
sors and seamlessly incorporate them into its adaptive mechanism. The RT3000
produced better than 10 cm accuracy at an incredibly fast 100 Hz. As an off-
the-shelf, industrial system, it is much more reliable than one that we would
conceivably build ourselves.

The simplicity of the design also resulted in an agile system. The sensor vision
system of the vehicle was just two LADAR devices. All of the I/O bandwidth
of the system was dedicated to reading just these two sensors. So the system
was able to read massive data streams very quickly without much overhead for
synchronization and fusion of the sensor streams. Thus, processing of the data
was efficient and the computation of the control sequences was fast, resulting
in a very agile overall system. While other sensors were considered for inclusion
into the vision system, their contributions were not considered useful enough to
warrant the complications they would have added to the sensor fusion algorithms.

The choice of Java was also a good one since the development, monitoring,
and testing were all profoundly quick and produced code that was thoroughly
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validated before it even went into testing. On another note, because of the porta-
bility of Java byte code, if we had to change our computing grid architecture or
even switch a PC with a Mac or add a new one of either platform to the overall
system it would not be any problem. The choices we made were well validated
since the vehicle endured the entire course well within the time limit and with
only about 7 gallons of gas. We did not win the race but participating in it was
very rewarding as it validated our choices and methods. Indeed, we like to think
that reaching the finish line after 132 miles of autonomous driving in the desert
was not just beginner’s luck but rather the result of our simple design methods,
good decisions, and good system integration.
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Summary. The TerraMax vehicle is based on Oshkosh Truck’s Medium Tactical Ve-
hicle Replacement (MTVR) truck platform and was one of the 5 vehicles able to suc-
cessfully reach the finish line of the 132 miles DARPA Grand Challenge desert race.
Due to its size (30,000 pounds, 27’-0” long, 8’-4” wide, and 8’-7” high) and the narrow
passages, TerraMax had to travel slowly, but its capabilities demonstrated the matu-
rity of the overall system. Rockwell Collins developed, integrated, and installed the
intelligent Vehicle Management System (iVMS), which includes vehicle sensor man-
agement, navigation, and vehicle control systems. The University of Parma provided
the vehicle’s vision system, while Oshkosh Truck Corp. provided project management,
system integration, low level controls hardware, modeling and simulation support and
the vehicle.

4.1 Introduction

TerraMaxTM, a completely autonomous vehicle, was developed by Oshkosh
Truck Corporation in cooperation with its partners Rockwell Collins and Uni-
versity of Parma in response to Congress’ goal that one third of military vehicles
be unmanned by 2015. The Oshkosh TerraMaxTM was one of only five vehi-
cles that successfully completed the 132-mile DARPA Grand Challenge course
in October 2005 (5th place), and it was the only vehicle whose mission is to
provide medium- to heavy-payload logistic support to the battlefield. During
the race, the fully-autonomous vehicle was successful in demonstrating obstacle
avoidance, negotiating tunnels, narrow roads and cliffs, GPS waypoint follow-
ing and 28 hours of non-stop continuous operation - all applicable to military
missions.

4.2 The Vehicle

The TerraMax vehicle shown in Figure 4.1 is based on Oshkosh’s Medium Tac-
tical Vehicle Replacement (MTVR) MK23 truck platform. The MTVR was de-
signed with a 70% off-road mission profile. It can carry a 7-ton payload off-road
or a 15-ton payload on-road. All-wheel drive, TAK-4TM independent suspension,
and central tire inflation make rocks, dips, holes and crevasses easier to handle.

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 129–153, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 4.1. The TerraMax vehicle

And the truck can handle 60% grades and 30% side slopes. A 425-hp Cat C-12
engine powers the truck. This kind of vehicle was chosen for the DARPA Grand
Challenge (DGC) because of its proven off-road mobility, as well as for its direct
applicability to potential future autonomous missions. The TerraMax team par-
ticipated also to the 2004 DARPA Grand Challenge (Ozguner et al., 2004) with
the same vehicle. Two significant vehicle upgrades for the 2005 DGC were the
addition of rear-wheel steering and integrated sensor structure/roll cage. Rear
steer has been added to TerraMax to give it a tighter 29-foot turning radius. Al-
though this allows the vehicle to negotiate tighter turns without needing frequent
back ups, the back up maneuver is required to align the vehicle with narrow pas-
sages. The sensor mounting structure/roll cage provided added protection to the
sensors as well as key vehicle components.

4.2.1 Autonomous System Integration

The Autonomous System consists of Computers, Communication Network, Sen-
sors, Vehicle Control Interface and the supporting mounting and protection
structures. The Autonomous System utilized in the 2004 DGC was completely
removed and upgraded for the 2005 DGC.
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4.2.2 Computers and Communication Network Integration

The Computers and Communication Network hardware was packaged in a mod-
ular shock absorbing rack located inside the base of the passenger seat as shown
in Figure 4.2. The video monitor, keyboard, and mouse were securely mounted
on the dashboard. This arrangement allowed the sensitive computer equipment
to survive the high-G shock and vibration experienced on the trail.

Fig. 4.2. Computers mounted under passenger seat: (a) CAD simulation; (b) real
installation

4.2.3 Sensor Installation

The Sensors were mounted to modular adjustable mounts that were integrated
into the roll cage. The roll cage also serves as a protective conduit, through
which, the vital sensor communication and power cables are routed. The ad-
justable mounts used were selected for their ability to retain the set position
regardless of the pounding taken from the trail. The location of each sensor was
optimized for functionality while maintaining a high level of protection from the
environment i.e. rain, sun, engine heat, brush, and, yes, even bridge supports.
A sensor cleaning system was also developed to keep the lenses of the Terra-
Max sensors free of debris such as dust, water, and mud. The main components
of this system are: Cleaning Controller, Valve Array, and Washer Tank. The
Cleaning Controller controls the sequence and duration the sensors are dusted,
washed, and dried. The Valve Array has electrically controlled valves that pass
pressurized water and air through pattern nozzles to the sensor lenses.

4.2.4 Vehicle Control Actuator Integration

The Vehicle Control Integration was comprised of four key areas: Brake, Throt-
tle, Gear Selection, and Steering. The Brake was controlled via Ethernet by a
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proportional Voltage to Pressure valve. This method was utilized, in-part, be-
cause of safety concerns of mechanical systems interfering with a driver while on
the road. The Throttle was controlled via an I/O card in the Vehicle Manager
computer. A Pulse Width Modulated (PWM) signal allowed precise control of
engine throttle level. The Gear Selection was controlled via a relay card in the
Vehicle Manager computer. A binary pattern applied to the transmission control
harness allowed the ability to select the desired gear required by the trail con-
ditions. The Steering was controlled via serial communications to a servo drive
and motor. The servomotor is connected in parallel with the steering wheel shaft
through a gearbox. The servomotor has an integrated high-resolution encoder
that allows precise control of wheel angle.

4.3 Terramax Modeling and Simulation

Modeling and Simulation efforts supported the controls development by provid-
ing information such as underbody clearance, steer angles and lateral stability.
A full vehicle model of the truck was created in Advanced Dynamic Analysis of
Mechanical Systems (ADAMS) by assembling subsystem models of suspensions,
steering, chassis and tires. A typical NATO Reference Mobility Model (NRMM)
obstacle course with over 70 different obstacles of different sizes and shapes
was used to evaluate the underbody clearance (See Figure 4.3). The results of
this simulation gave an idea about the truck’s capability to maneuver through
different obstacles at low speeds.

Fig. 4.3. ADAMS model of the MTVR negotiating a simulated obstacle

The steering model was used to predict the front and rear steer angles (See
Figure 4.4) for a given steering wheel input. The rear steer model included a
dwell and had different gear ratios than the front.

The lateral stability of the truck was evaluated through constant-radius tests.
Tire forces were monitored to detect tire lift-offs. The results of these simulations
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Fig. 4.4. Steering angle behavior of each wheel end throughout a 360◦ rotation of the
steering wheel originating from a straight ahead position

as shown in Figure 4.5 were used to evaluate the capability of the truck to take
a particular turn at different speeds without rolling-over.

4.4 Vehicle Management System

The Rockwell Collins intelligent Vehicle Management System (iVMS) (Braid et
al. 2006) consists of hardware and software components that together provide
an extensive set of autonomous capabilities. In order to accomplish this, the
iVMS interfaces with the vehicle systems and all onboard sensors. The primary
commands to the vehicle interface are throttle, brake, steering, and transmission.

The general architecture for the iVMS software is a set of applications that
communicate to each other over a 100BaseT Ethernet network utilizing Trans-
mission Control Protocol (TCP) and User Datagram Protocol (UDP) protocols
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Fig. 4.5. Lateral stability simulation of an MTVR traveling on a constant radius path
with increasing speed. Graph depicts weight transfer on each of the six wheel ends.
Simulation was conducted at the maximum gross vehicle weight rating (GVWR) of
58,000 pounds.

and a commercial Ethernet switch. The iVMS software has the key role of per-
forming all autonomous behavior and interfacing to numerous LRUs (Line Re-
placeable Units) and the key vehicle systems. The software applications are as
follows:

• Vehicle control – controls and receives feedback from the throttle, brakes,
and steering in order to control the vehicle while in autonomous mode.

• Real time path planner – computes the real time path utilizing the desired
path while avoiding the obstacles along the desired path

• Obstacle detection – uses LIDAR and Vision to detect positive and negative
obstacles. Obstacle data coming from the various sensors are merged into a
single obstacle database used by the real-time path planner.

• Behavior management – decides what mode the vehicle should be in based
on the current conditions of the other functions

• Navigation – computes present position and provides a dead reckoning
function.

A Graphical User Interface (GUI) provides multiple functions to the user
including data visualization, recording, and playback. The GUI is primarily a
development tool and is not considered to be an integral part of the real-time
iVMS system. Figure 4.6 shows the GUI displayed on a monitor in the cab.

A system management function is also implemented that provides a user in-
terface for execution control and status display for the iVMS applications. Once
the system has been initialized, the system manager performs a health man-
agement function that continuously monitors the status of the application and
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Fig. 4.6. The driving cabin, with the monitor showing the graphical user interface

automatically stops and restarts applications as necessary to maintain normal
functionality. The iVMS can continue to operate normally without the system
manager once initialized so it is not included as one of the iVMS applications.
The system architecture can be viewed in Figure 4.7.

The following sections of this paper will go into further detail on each of the
iVMS functions.

4.4.1 Vehicle Control

The vehicle control function of the iVMS provides the TerraMax control ac-
tions that emulate the actions a human would perform when driving the truck.
The controls provided by the iVMS are steering, throttle, brake, and transmis-
sion control. Steering control is provided through an electronic servo connected
directly to the MTVR steering gearbox. The standard MTVR steering gear-
box has dual inputs so the steering servo for autonomous operation and hand
wheel are both connected to the steering gear allowing the steering control to
be switched between manual and autonomous operations without changing me-
chanical linkages. The steering control function is responsible for providing wheel
angle commands that guide the vehicle to the path defined by the real-time path
planner. This is accomplished by computed deviations from the desired path and
converting the deviations to steer angle commands that are sent to the steer-
ing servo. The steering control uses capture and track steering control modes.
Capture steering control is used for initial course capture and track steering
control is used during normal operation. Capture and track control modes are
automatically selected based on current conditions.
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Fig. 4.7. TerraMax iVMS System Architecture

The capture controller uses course error as the control parameter. The con-
troller creates a steer angle command that aligns the ground track of the vehicle
with the direct bearing to the active (TO - “next”) waypoint. This type of control
is sometimes referred to as homing control since the path followed is uncontrolled
and the path to the TO waypoint may not be a straight line. Capture condi-
tions occur during initial course capture so the capture controller is only active
if certain conditions exist at the time the autonomous mode is first activated.

The track controller uses linear cross track deviation and cross track deviation
rate to align the vehicle’s path along the ground with the active TO waypoint
course. Track angle error and steer angle command limiters are used to limit
the commanded steer angle to values that are achievable by the vehicle. The
command limiters incorporate vehicle dynamic limits with margins built in to
ensure the vehicle does not get into an unsafe condition. This also means that
the vehicle operates at levels below its maximum dynamic capability when in
autonomous mode. Turn anticipation for waypoint sequences is also used so the
transition onto the new course is accomplished without overshoots.

The throttle controller interfaces directly to the electronic engine control unit
(ECU) through a digital PWM interface. The throttle controller is responsible for
controlling the vehicle’s speed to the desired speed specified by the path planner.
This is accomplished primarily through throttle position control but engine and
service brakes are also used in certain situations to manage the speed.
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The throttle position control uses proportional and integral control. Reset
conditions to the throttle position are provided for transmission up shift and
down shift and to activate the engine brake. Engine brakes are activated dur-
ing engine idle so throttle position overrides are used when engine brakes are
required. Throttle position faders are used to reactivate the throttle position
control when the engine brake is disabled. Engine and service brakes are used
primarily to control speed on steep grades and for speed management during
deceleration.

The brake controller provides an analog signal to a pressure actuator con-
nected to the air brake system (service brakes). The throttle and behavior con-
trol functions provide brake actuation parameters to the brake controller and
the brake controller determines the pressure actuator signal. The brake control
parameter provided by the throttle control function is speed deviation which
is used by the brake controller to provide a brake application that is propor-
tional to the speed deviation. Behavior control provides brake override signals
for emergency stop (e-stop), e-stop pause, and other special situations requiring
speed control or position holding. The emergency stop condition results in a full
brake command. Brake modulation to limit slipping in full brake conditions are
provided by the Anti-lock Brake System (ABS) system that is part of the basic
MTVR.

The MTVR has a seven speed automatic transmission. The transmission con-
trol function provides forward, neutral, and reverse gear control for the automatic
transmission. The selection of the transmission gear is through a digital signal
to the transmission control unit. The transmission controller receives a desired
gear signal from the behavior control function and converts the desired gear into
the digital interface to the transmission. Behavior control uses the actual gear
position to determine allowable state transitions and to prevent transmission
faults due to incorrect gear selection sequences.

4.4.2 Real-Time Path Planner

The real-time path planner (See Figure 4.8) is responsible for deriving the desired
trajectory of the vehicle and providing that trajectory to the vehicle control
function. The trajectory includes a desired path along the ground as well as
the desired speeds and boundary area. The desired trajectory is derived using
the path and speed constraints contained in the DARPA Route Data Definition
File (RDDF), which contains a list of waypoints that define a path along the
ground, a path boundary, and maximum speed for each leg of the path. The
real-time path planner provides reactive path corrections to this nominal path
to account for current conditions, such as vehicle dynamic limits, obstacles, road
edges, terrain grade, etc.

The path planner implements a tree algorithm that branches from the base at
the current TO waypoint. Constraints for path boundary and speed are applied
to the tree build function so the tree size is bounded by the constraints. Branches
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Fig. 4.8. iVMS Graphical User Interfaces Depicting Real Time Path Planning Along
a Defined Route

of the tree are computed using a model of the steering system and vehicle dy-
namics to insure that the candidate paths are drivable. The tree algorithm was
derived from the Rapidly-exploring Random Tree (RRT) path planner (Kuffner
and LaValle, 2000) where the growth of the tree was limited to a fixed number
of branches (levels).

Once built, the tree represents a series of candidate paths, one of which is
selected as the path to be used by the vehicle control. Selection of the best path
from the candidate paths is based on a scoring algorithm that considers distance
from the route centerline, path curvature, obstacle avoidance, boundary area
constraints, and other factors. Over 2000 candidate paths are evaluated each
planning cycle to determine the best path.

The real-time path planner also contains a speed management function that
adjusts the speeds as necessary to account for path geometry and current condi-
tions. The initial desired speed is set to the RDDF speed constraint for the leg
and the speed management function reduces the speed as necessary.
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Figure 4.8 shows a graphical representation of the RDDF data and the re-
sulting real-time path generated by the path planner. In the main window of
the illustration, the central box represents TerraMax vehicle, light grey boxes
represent the desired path defined in the RDDF file, and the black numbers
near the center of the boxes represent the real-time path generated by the path
planner. The width of the grey boxes defines the lateral boundary of the path
and the length of the boxes is defined by the waypoints in the file. The short red
lines in the diagram are representations of obstacles that have been detected by
the perception sensors. Dialog boxes along the sides of the main window show
data associated with the path, vehicle state, and control state. As shown in the
example diagram, the real-time path is adjusted to the right of the RDDF path
center in order to avoid the obstacles in the turn.

4.4.3 Obstacle Detection

LIDAR and vision sensors are used to detect obstacles in front of the vehicle.
Obstacles detected by the sensors are registered to the vehicle navigation posi-
tion and stored in an obstacle database. The real-time path planner queries the
database to determine if obstacle collisions occur on the proposed paths.

Several different types of obstacle clearance information are provided to the
path planner to aid in path selection. Obstacle collision information is reported
by the database in terms of the closeness of the object collision to the proposed
path. Buffer regions of various sizes are used to determine the collision proximity
relative to the path.

Bearing and distance to the nearest collision is provided by the obstacle
database that is an indication of the proximity of the obstacles to the proposed
path. Obstacle distance is used primarily in the speed manager function to lower
the speed if an obstacle is in close proximity to the vehicle’s planned path.

Road and cliff edges are handled as special cases by the obstacle database.
Since the consequences to the vehicle of breaching a cliff edge are very severe,
additional weight to negative road/cliff edges are used. The database also reports
if any negative road/cliff edges are in the immediate area that is used by the
speed manager to reduce speeds accordingly.

4.4.4 Behavior Management

The behavior management module is the central “brain” of the system. Its pur-
pose is to monitor and react to dynamically changing conditions. This module
receives input from the real-time path planner, obstacle database, navigation
sensors and the vehicle interface module.

Several behaviors have been designed into the behavior module, using a state
transition architecture. When a specific event or a change from normal operating
conditions is detected, one of the behaviors is activated to handle the situation
at hand. Each behavior executes an ordered list of instructions, providing a set
of commands to the vehicle controller.
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Some of the conditions the behavior module will react to are as follows:

• Transition in E-Stop state: When the e-stop is in Pause mode, a behavior
will command the vehicle to come to a stop. When e-stop transitions to Run,
another behavior is initiated to begin normal operation.

• No valid path ahead: The behavior initiated in this condition commands the
vehicle to come to a stop and wait for a valid path. If no valid path is found,
it will command the vehicle to back up and try again.

• Obstacle detected behind the vehicle while backing up: Another behavior
will stop the vehicle and command it back into normal operation to try to
find a valid path ahead.

• A large course change requiring a backup maneuver: The switchback behav-
ior guides the vehicle around a 3-point turn.

• Narrow tunnel condition: The tunnel behavior will guide the vehicle through
a narrow tunnel, using the LIDAR scan data.

• Stuck between obstacles:

If the vehicle cannot make progress along the route because it continues to
go back and forth, getting stuck between obstacles, the stuck behavior will take
over. It will first try to position the vehicle at different angles to search for a
valid path. If no valid path is found, it then commands the system to ignore low
confidence obstacles, in an attempt to eliminate false obstacles. The last resort
is to go forward toward the DARPA route, ignoring all obstacles.

The real-time path planner, behavior management, and vehicle control func-
tions work together to determine the actual path the vehicle follows. Nominally,
the vehicle follows the path generated by the real-time path planner but that
real-time path can be overwritten by the behavior manager based on the current
conditions. This design approach is similar to the Distributed Architecture for
Mobile Navigation (DAMN) (Rosenblatt, 1997) developed by Carnegie Mellon
University where the behavior management functions as the DAMN Arbiter and
Behaviors. Unlike the DAMN architecture, the behavior manager uses rulesbased
decision logic to determine control behavior modes rather than a voting scheme
to select the control mode. This approach was chosen over the more complex
voting scheme since it is deterministic and more robust, which were considered
to be important attributes given the nature of the competition. This approach
is lends itself to fleet applications, which was also an important consideration in
the iVMS design.

4.4.5 Navigation

Two Oxford Technical Solutions (OXTS) RT3100s (www.oxts.co.uk) supply GPS
position information to the iVMS system. The RT3100 is a combined GPS/IMU
sensor that provides real-time data even in the absence of GPS signal. The high
100 Hz update rate has a very low latency to insure that the system is using
the most accurate position possible. One RT3100 is configured to use DGPS
corrections transmitted via RS-232 from an external GPS receiver subscribed to
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the Omnistar correction service. The other RT3100 is configured to use WAAS
corrections.

In the case of loss of GPS signal, such as driving through a tunnel, the IMU
portion of the RT3100 takes over and begins dead reckoning. In order to aid
the INS solution in dead reckoning mode, a wheel speed sensor on the vehicle
provides input to the RT3100. Tests have shown that the wheel speed input
helps to keep the IMU solution stable and extends the time the RT3100 is able
to dead reckon.

In the case of a failure or short-term loss of the RT3100’s, a second dead reck-
oner is implemented using sensed wheel speed and wheel angle. This represents
an independent backup navigation function. Because of the potentially large er-
rors that can build up when it is in a dead-reckoning mode, the RDDF boundary
area checks in the path planner are disabled so the vehicle can continue navigation
relative to the terrain and terrain obstacles for short periods of time.

The RT3100’s were capable of dead reckoning after loss of GPS using the
IMU but, during field testing, it was found that the error characteristics of the
wheel speed/wheel angle dead reckoner were more desirable than the IMU error
characteristics. The conditions where the dead reckoner was most likely to be
used was while traveling through railroad tunnels and highway overpasses where
the GPS satellite signal would be masked. This meant that the vehicle would
be moving in a straight line and only in the tunnel for a short time (typically
less than 30 seconds). Under these conditions, the wheel speed/wheel angle dead
reckoner was able to maintain a predictable accuracy of less than 1 meter. The
IMU was also capable of similar accuracies but the error characteristics were less
predictable. The predictability of the error was important since the obstacles
while in the tunnel (i.e. the tunnel walls) were very close to the vehicle and
small, abrupt changes in position error caused the collision detection function
to stop the vehicle.

The wheel speed/wheel angle dead reckoner relied on an analytical model to
relate wheel angle and speed to heading (yaw) rate so the accuracy deterio-
rated significantly during turns. The large heading error build up during turns
makes this implementation practical only under a very narrowly defined set of
conditions.

4.5 Sensors

The sensors were carefully selected to provide the required navigation and per-
ception capability. Figure 4.9 shows the sensor locations on TerraMax. The sen-
sors selected for the DARPA Challenge 2005 are as follows:

• Oxford GPS/INS
• Trimble GPS
• Single-plane LIDAR
• Multi-plane LIDAR
• Forward-looking Vision System



142 D. Braid, A. Broggi, and G. Schmiedel

Fig. 4.9. The TerraMax sensor suite: the picture shows the GPS position, the three
front looking cameras, the two SICKs, and the two multiplane laserscanners

4.5.1 Oxford GPS/INS

The OXTS RT3100s are mounted on the floor of the cab on the approximate
centerline of the vehicle. In order to obtain a more accurate position solution
and eliminate any errors over time, the position solutions from the two RT3100s
were averaged together. In the case of a failure of one of the RT3100s, the system
will switch to using the remaining RT3100 as the sole GPS source.

4.5.2 Trimble GPS

The Trimble GPS (www.trimble.com/aggps132.shtml) is an agriculture GPS
unit used to receive differential corrections used by the GPS receivers embedded
in the Oxford RT3100s. The Trimble receiver outputs differential corrections at
1 Hz through RS232. In order to output the differential corrections the Trimble
receiver is placed in base station mode and must also have a subscription.

4.5.3 Single-Plane LIDAR

There are two SICK LMS-291 LIDARs used for positive and negative obstacle
detection (See Figures 4.10 and 4.11). They are mounted on the outermost edges
of the front rollbar. They are pointed 10 degrees down and 25 degrees outward
from the truck so that there is good coverage on extreme turns. The two LIDARs
are configured to scan a 100-degree scan area with a 1-degree resolution.

The orientation of the SICK LIDARs was chosen to gain visibility to posi-
tive obstacles near the vehicle and detect negative road edges. Positive obstacle
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Fig. 4.10. The SICK LIDARs and the cameras are placed on a rigid bar onto the
vehicle hood

Fig. 4.11. iVMS Graphical User Interface depicting SICK obstacles as green and yellow
polygons. In the figure the vehicle is located at waypoint 27 with iVMS calculated
micro-waypoints extending ahead of the vehicle.

detection was accomplished be translating the range returns into local level coor-
dinates and comparing the relative heights of neighboring scan points. A history
of scan returns were maintained that effectively mapped the surface directly in
front of the vehicle. Detection thresholds were set so obstacles below a specific
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height would not be detected as an obstacle. The minimum obstacle height was
set based on the capability of the vehicle. A convex hull algorithm was used to
defined the outermost edge of the obstacle.

Negative road edge detection followed a similar approach as for the positive
obstacle detection. A specific search algorithm was used to find any negative
height discontinuities. Each discontinuity that was detected was further evalu-
ated to determine if the true edge and if that discontinuity was a continuation
of the previously detected edge.

4.5.4 Multi-plane LIDAR

The IBEO ALASCA LIDAR (Lages, 2004) is a 4-plane scanner that is used for
positive obstacle detection. The LIDAR is mounted level in the front bumper
(See Figure 4.12) and has two planes that scan toward the ground and two
planes that scan toward the sky. With a range of 80 meters and a resolution
of 0.25 degrees it can detect obstacles accurately at long and close range. The
170-degree scan area allows seeing obstacles around upcoming turns.

The LIDAR sends scan data via Ethernet to the LIDAR PC via a TCP
connection. An algorithm then transforms the raw scan data into obstacles by
looking for large positive slopes in the scan data (See Figure 4.13).

The IBEO obstacle detection algorithm followed a similar approach as the
SICK obstacle detection algorithms. The scan returns were translated from the

Fig. 4.12. The front of the TerraMax vehicle. Two 4-plane laserscanners are visible;
The one inside the bumper is the one used during the race, the other (over the bumper)
is a backup.
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Fig. 4.13. iVMS Graphical User interface depicting IBEO obstacles as blue lines. In
the figure the vehicle is located at waypoint 162 with iVMS calculated micro-waypoints
extending ahead of the vehicle.

sensor coordinate frame to a local level coordinate frame. The scan returns were
then compared to neighboring returns and discontinuities were detected. Since
the IBEO LIDAR was a multi-planes, the obstacle detection algorithm was able
to compare the scans from each plane to aid in the obstacle detection.

The SICK and IBEO LIDARs were configured so the data provided by the sen-
sors were complementary. The SICK LIDARs were configured to detect obstacles
from 0 to 20 meters in front of the vehicle. The IBEO LIDAR was configured to
detect obstacles from 20 to 60 meters in front of the truck. Obstacles detected from
both sensors were put into the obstacle database and used for path planning.

Field testing indicated that, although the two LIDAR sensors provided simi-
lar data, the characteristics of the data were somewhat different. For example,
the SICK LIDAR data was very consistent but more susceptible to reflections
than the IBEO LIDAR. The IBEO LIDAR provided more accurate data but
would occasionally return spurious data spikes. Putting both sets of data into
the database without prior filter resulted in multiple copies of some obstacles
database. A fusion of the LIDAR sensors to eliminate the multiple copies re-
duced database utilization and sped up the execution of the collision detection
algorithms.

4.5.5 Trinocular Vision System

The vision system is based on multi stereoscopic vision (forward looking trinoc-
ular system). It consists of three identical cameras mounted on a rigid bar on
top of the hood. The two lateral cameras lay at a distance, which is about 1.5
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meters, while the central one is placed asymmetrical at about 0.5 meters from
the right one. Thanks to a precise calibration of the cameras - performed on
a graduated grid- the three degrees of freedom specifying cameras orientation
are fixed to known values, and in particular -in order to ease and speed-up the
subsequent processing- the yaw and roll angles are fixed to zero for all cameras.
The pitch angle is chosen so that the cameras frame a small portion over the
horizon (to limit direct sunlight) and frames the terrain at about 4 meters from
the vehicle.

The trinocular system sends three video streams at 10 Hz (640x480, color with
Bayer pattern) to the vision PC via a firewire connection. The PC selects which
stereo pair to use depending on the speed of the vehicle. Since the baseline of
the stereo vision system influences the depth of view, the large baseline is used
at high vehicle speeds so that a deeper field of view is obtained, the medium
one at medium speeds, and the short baseline is used at low speeds. This is one
of the very few examples of very large baseline stereo systems (1.5 m) used on
rough off-road terrain and delivering a robust environmental perception at more
than 50 m, regardless of terrain slope.

The rationale behind the design is mainly the need for mechanical robustness:
three non-moving cameras have been preferred with respect to a pan-tilt solution
such as the one used by other teams, for example the Red Team (Whittaker,
2005). A few other considerations were the basis for this choice: vision must be
able to sense obstacles at large distances (more than 50 meters away on rough
terrain), therefore a stereo vision system was the only choice. Furthermore, the
baseline (distance between the stereo cameras) had to be large enough to guaran-
tee depth perception at large distances. Systems based on moving cameras when
both stereo and a large baseline are used, are subject to a number of mechanical
problems such as -for example- the non negligible momentum caused by vehicle
vibrations which has to be compensated for. As a result, the experience with
multiple cameras providing different video streams to choose from turned out to
be a winning solution, capable of removing most of the mechanical problems of
a gazing system.

Vision provides sensing for both obstacle detection and path detection (see
Figure 4.14 and 4.15).

1. Image disparity is first used to estimate the average terrain slope in front of
the vehicle (Labayrade et al., 2002). Slope information is then used for both
obstacle detection and path detection. Any significant deviation from the
average smooth slope detected previously is then identified as an obstacle.
The exact location of obstacles is then obtained via stereo triangulation be-
tween the two views of the object. A fairly precise localization is obtained,
but nonetheless it can be further refined via sensor fusion with raw data
coming from the multi-plane lidar. In this way it is possible to detect thin
vertical posts and fence poles. The system is able to detect even small ob-
stacles (Broggi et al., 2005), but -due to both the size and capabilities of the
vehicle and to the team strategy- it was tuned with very high thresholds,
so that the number of false positives was reduced to a minimum. In other
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Fig. 4.14. Images showing left and right images of different situations; on the right
images, colors show the presence of detected obstacles: different colors mean different
distances. The additional horizontal lines represent the 5m, 50m, and horizon position.
Posts and thin poles as well as fences posts are correctly detected.
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Fig. 4.15. Image showing different steps of path detection: first the free-space is de-
termined then the path is localized. Right image (a), warped left image (b), free space
(c), the final result of path detection (d).

words, the capability of detecting small obstacle was traded for a higher
robustness of the detection. Nevertheless, the system was demonstrated to
be able to detect small construction cones used during both the tests and
the qualification runs. Anyway, since the vehicle is able to negotiate 60cm
steps, obstacles smaller than 60 cm needs to be detected primarily for speed
management issues.

2. Image disparity is also used to compute the area in front of the vehicle which
features a smooth slope, the so-called freespace. The free-space is one of the
features that concur to construct a representation of the path to be followed
by the vehicle: also similarity in texture, similarity in color, and shape infor-
mation are taken into account, fused together, and delivered to the following
path planning module. Free space is obtained using a standard image warping
(Bertozzi et al., 1998) in order to localize deviations from a smooth road sur-
face: figure 4.15 shows the right image (a), the warped left image (b), and in
green- the matching cluster representing free space (c). Figure 4.15(d) shows
the final result of path detection. This algorithm also signals the presence of
a straight segment of road, in order to increase vehicle speed. When a curved
path is present (the red dot at the top right of figure 4.15 shows the presence
of a non-straight road), vehicle speed is reduced.

Vibrations are automatically filtered out since the slope detection algorithm
(Broggi et al., 2005), which is the first to be performed, also extracts information
that is used to electronically stabilize the oncoming images. Different light levels



4 The TerraMax Autonomous Vehicle 149

Fig. 4.16. Images captured at sunrise, representing the view with (a) and without
(b) the developed camera gain control scheme; (c) and (d) show the result of obstacle
detection in bad illumination conditions: although a part of the images are oversatu-
rated, the terrain is visible and the algorithm can be run; obstacles can be detected
until they enter the oversaturated area.

are compensated for by an automatic gain control scheme, which allows to sense
the environment even with direct sunlight into the camera. Figure 4.16 shows
some examples of the custom gain control mechanism.

The camera boxes have a sun shade aimed at reducing to a minimum the
quantity of direct sunlight hitting the cover glass, in order to avoid over satura-
tion and reflections due to dirty glass.

The MTVR is a production vehicle with thousands of units produced and
in service with the US Marine Corps, US Navy and other services throughout
the world. Performance of the MTVR was not specifically tracked as part of
the TerraMax development efforts, rather the dynamic capabilities of the vehicle
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were identified through ADAMS simulations and used to define the limits within
which the real time path planner developed alternative paths.

4.6 Vehicle Performance

The vehicle was able to conclude the qualification runs with excellent results,
avoiding obstacles, passing into tunnels, and maneuvering (with back-ups) in
order to align itself with narrow barriers and gates. Figure 4.17 shows some
pictures taken during the qualification phase.

The iVMS development philosophy was to create an autonomous system that
could, in the future, be utilized in military operations. This allowed for a more

Fig. 4.17. Some phases of the qualification runs
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Fig. 4.18. Two pictures taken during the race (courtesy of DARPA)

rugged implementation of the iVMS for real time navigation across unknown
terrain. As a result, Team TerraMax was one of only five teams to traverse the
132-mile course and the only vehicle to overcome an overnight “pause” of the
autonomous system. During the race, TerraMax reached a maximum speed of
42 mph. This is impressive not only due to the size and weight of the TerraMax,
but due to the fact that true obstacle avoidance was achieved at these speeds.

Figure 4.18 shows a few pictures taken during the last part of the race.
During the race the TerraMax was paused 13 times by DARPA officials to

maintain a minimum distance between the competing vehicles or for passing
stopped vehicles. The TerraMax automatically stopped and realigned its path
approximately 52 times during the race. The majority of the path resets occurred
while traversing beer bottle pass where the road was very narrow and the turns
were very tight compared to the size of the vehicle (see figure 4.18).

An automatic reversion mechanism was implemented to manage redundant
sensors. The reversionary logic was activated due to sensor abnormality twice
during the race. The reversionary logic correctly selected the operational sensor
and continued to operate normally after the reversion.

A software application health monitor was implemented to monitor the health
of the system and start and stop applications as necessary to keep the system
executing normally. During the race the health monitor function was activated
and correctly reset applications to keep the system operating normally with
only minor interruptions in service. A periodic database integrity check was also
performed to prevent fatal errors from corrupting the database and to recover
data if a data error was found.

During the race the TerraMax struck the edge of one of the concrete underpass
barriers. The impact of the tunnel caused the IBEO LIDAR and passenger vision
camera to be severely misaligned. The misalignment caused a geo-registration
error of the detected obstacles. This caused the path planner to offset the path
to compensate for obstacles, slowing the progress of the vehicle for the last half
of the race. TerraMax completed the 132-mile race with an official time of 12
hours, 51 minutes and over 28 hours of continuous operation.
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4.7 Conclusions

This technology demonstrated by TerraMax has the potential of improving sol-
dier survivability in the battlefield by removing soldiers from harms way, es-
pecially during convoy operations – the ultimate outcome of the Congressional
goal. The development of fully autonomous systems has allowed Oshkosh and
its partners to fully understand the requirements related to both leader-follower
and autonomous operation. The opportunity exists to develop and deploy this
technology to allow for robotic replacement of convoy personnel, allowing the
personnel to be refocused on more pressing duties, and ultimately reduce the
convoy personnel exposure to enemy threats.

On the technical side, the choice of the (i) sensors suite delivered the sufficient
amount of information for the successful conclusion of the race and demon-
strated to be robust enough to deal with the extreme conditions of a desert
environment in summer. The experience with multiple cameras providing differ-
ent video streams to choose from turned out to be a winning solution, capable
of removing most of the mechanical problems of a gazing system. The 28 hours
of uninterrupted service provided by the (ii) processing systems and software
architecture demonstrated the stability and robustness. Finally the (iii) algo-
rithmic solutions proved to be fast and reliable, reducing the number of wrong
detections to a minimum.

The TerraMax partners of Oshkosh Truck, Rockwell Collins, and University
of Parma have demonstrated the scalability and portability of the autonomous
technology by installing and operating the system on an Oshkosh Palletized
Loading System (PLS). The PLS is a 10 x 10 vehicle with a gross vehicle weight

Fig. 4.19. Palletized Loading System (PLS) operating autonomously near Barstow,
CA
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of 84,000 pounds and is capable of delivering a 33,000 pound payload. The
vehicle was successfully demonstrated at the Yuma Test Center in January 2006,
exhibiting the same autonomous capabilities as the TerraMax. The project was
completed in approximately 75 days. Figure 4.19 shows the PLS vehicle during
an autonomous run.
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Summary. There are two commonly accepted paradigms for organizing intelligence in
robotic vehicles, namely, reactive and deliberative. Although these paradigms are well
known to researchers, there are few published examples directly comparing their devel-
opment and application on similar vehicles operating in similar environments. Virginia
Tech’s participation, with two nearly identical vehicles in the DARPA Grand Challenge,
afforded a practical opportunity for such a case study. The two Virginia Tech vehicles,
Cliff and Rocky, proved capable of off-road navigation, including road following and
obstacle avoidance in complex desert terrain. Under the conditions of our testing, the
reactive paradigm developed for Cliff produced smoother paths and proved to be more
reliable than the deliberative paradigm developed for Rocky. The deliberative method
shows great promise for planning feasible paths through complex environments, but
it proved unnecessarily complex for the desert road navigation problem posed by the
Grand Challenge. This case study, while limited to two specific software implementa-
tions, may help to shed additional light on the tradeoffs and performance of competing
approaches to machine intelligence.

5.1 Introduction

The 2005 DARPA Grand Challenge was a 132 mile race of autonomous ground
vehicles through the Mojave Desert. Virginia Tech produced two off-road au-
tonomous vehicles (Figure 5.1) to compete for the $2 million prize. From an
initial field of 195 teams, both Virginia Tech vehicles passed a series of qualify-
ing events and ultimately qualified for the main Grand Challenge Event, along
with 21 other teams. Although they were built on two similar base vehicle plat-
forms, one vehicle was developed using a reactive paradigm, while the other
vehicle was developed using a deliberative navigation paradigm (Murphy, 2000).
These competing strategies were developed and evaluated independently for the
Challenge. This paper discusses the strategy, capability, and performance of both
of the Virginia Tech Grand Challenge entries.

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 155–182, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 5.1. Virginia Tech’s entries to the 2005 DARPA Grand Challenge, Cliff (left) and
Rocky (right)

5.2 Base Platform

Both Virginia Tech Grand Challenge vehicles were initially designed as inter-
changeable platforms on which to develop two very different navigation strategies.
However, the terrain mapping for Rocky’s deliberative path planning required ad-
ditional terrain mapping LADAR units, resulting in some hardware differences be-
tween the two vehicles. This section includes the details of the base vehicles, power
system, drive-by-wire conversion, and network architecture (Leedy, 2006).

5.2.1 Base Vehicle

The Virginia Tech Grand Challenge base vehicles are Club Car XRT 1500s,
utility vehicles produced by Ingersoll-Rand. This base platform may seem like
an unlikely choice for a desert race due to its diminutive size, but it has proven
to be a capable off-road vehicle. The XRT 1500 is extremely agile with a turning
radius of 3.5 m. The vehicle also provides a top speed of 40 km per hour and
a minimum ground clearance of 16.5 cm under the rear differential skid plate.
Stock vehicle weight is 567 kg with the capability of carrying a 454 kg payload.

Cliff, a redesign of Virginia Tech’s entry to the 2004 DARPA Grand Challenge,
is built on a prototype XRT 1500 which had not yet gone into production at
the time of the vehicle’s donation. An aircooled 20 horse power (hp) Honda
GX620 gasoline engine supplies power to the drive train. The vehicle’s roll cage
was customized to provide protection for electronic equipment located in the
payload area as well as mounting locations for vision and laser sensors.

Rocky’s platform is also a Club Car XRT 1500. However, Rocky is a production
vehicle powered by a Kubota D722 20 hp liquid-cooled diesel engine. The roll cage
on Rocky was replaced with a custom built cage constructed of thicker wall tubing.
Rocky also makes use of Club Car’s optional heavy-duty suspension upgrade.

5.2.2 Drive-by-Wire Conversion

To enable full computer control of the vehicle actuation systems, the throttle,
brake, and steering were converted to drive by wire. The drive-by-wire systems
on Cliff and Rocky are nearly identical. Both vehicles actuate the throttle using
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Fig. 5.2. System-level data flow diagram for Cliff

Fig. 5.3. Novatel Propak LBplus positioning system. This system consists of a Novatel
Propak LBplus GPS receiver (left) and a Honeywell HG1700 IMU in a Novatel IMUG2
enclosure (right).

a dc gear motor with integrated encoder feedback. The throttle cable is wrapped
around a pulley mounted to the output shaft of the motor.

The steering wheel and column were removed from the vehicles to make space
for the drive-by-wire system. Both vehicles use right-angle gear motors fitted
with quadrature encoders to actuate the steering. The output shaft of the right-
angle gear head is directly coupled to the input shaft of the stock steering rack
with a chain coupling.

The drive-by-wire braking is accomplished by replacing the master cylinder
and brake pedal assembly with an electronically controlled hydraulic pump.
The braking system uses a Hydrastar HBA-16 actuator from Carlisle Industrial
Brake. Operator control of this electrohydraulic brake is accomplished using a
Teleflex-Morse ECFP electric foot pedal connected to the vehicle’s Motion Con-
trol computer.

In addition to the drive-by-wire brake, a manual/emergency brake can be
applied by the onboard operator or emergency stop system. The stock parking
brake consists of a pedal assembly that pulls a steel cable directly connected to
the rear brake calipers. After removing the ratcheting mechanism, the modified
parking brake assembly is used as a manual auxiliary brake. This brake is also
automatically activated in the event of a power loss to the vehicle, such as a
DARPA “disable” emergency stop condition. To use this braking system as an
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autoengaging safety brake, an air tank and air actuated piston were installed. Air
hold-off pressure must be applied to the unit to release the brake. In the event
of vehicle power loss, the brakes are engaged when a solenoid valve opens the air
passage and allows the hold-off air to escape from the air-actuated piston. Once
power has been restored to the system, the reserve tank recharges the piston and
disengages the brake.

5.2.3 Computing Architecture

Both vehicles are equipped with National Instruments PXI-8176 controllers.
These controllers are high-performance compact personal computers containing
Pentium processors with up to 1 GB of random access memory. The controllers
can run at speeds ranging from 1.2 to 2.6 GHz. Due to their high shock re-
sistance, the PXI computers are rigidly mounted to the electronics enclosure
without additional shock isolation. The Windows XP operating system provides
a familiar visual user interface.

The three computers on Cliff each perform a specific task: Vision, INS/Path
Planning, and Motion Control. The INS/Path Planning computer determines
Cliff’s current position and target location while monitoring for obstacles in
front of the vehicle. The Vision computer uses monocular vision to look for
roads in the vehicle’s field of view and stereovision to localize points along the
road. The information from the Vision computer is passed to the INS/Path
Planning computer, which determines the appropriate behavior for perceived
orientation and surroundings. The Motion Control computer executes speed and
steering commands from Path Planning by handling the closed-loop control of
all vehicle actuators. Figure 5.2 illustrates the computing architecture of Cliff’s
three computers.

Rocky uses the same basic architecture as Cliff except with four computers:
Vision, Path Planning, INS/Local Mapping, and Motion Control. The INS/
Local Mapping computer creates a map of the perceived obstacles and terrain.
The Vision computer passes a map of perceived roads to the Path Planning
computer. The Path Planning computer then determines the optimal path to
take through the surrounding area using data from local map and road map
data. These decisions are passed to the Motion Control computer and handled
exactly as on Cliff.

5.3 Sensors

Cliff and Rocky both share the same basic sensor suite: GPS/INS for position-
ing, horizontal LADAR for obstacle detection, and stereovision for road fol-
lowing. Rocky is also equipped with a set of two downward-looking scanning
LADAR units for local terrain mapping. These LADAR units are used only with
the map-based deliberative scheme to provide terrain information and to detect
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negative obstacles, such as holes and ditches. This section describes in detail
the physical arrangement, purpose, and data format of the main exteroceptive
sensor components.

5.3.1 Positioning

Both vehicles used Novatel Propak LBplus positioning systems (Figure 5.3) in
the Grand Challenge and in the comparative studies described later in this pa-
per. The system consists of a Novatel Propak LBplus GPS receiver and a No-
vatel IMUG2 enclosure housing a Honeywell HG1700 inertial measurement unit
(IMU). The Propak LBplus unit provides singlepoint position accuracy of 1.5
m CEP. As previously mentioned, this accuracy is increased to 10 cm CEP
by L-band differential corrections through the subscription service, OmniSTAR.
The position, velocity, and heading from the Propak LBplus are collected at the
maximum output rate of 20 Hz. In the event that the global positioning system
(GPS) signal becomes occluded, the inertial measurements from the IMU take
over seamlessly to provide position and heading.

5.3.2 Obstacle Detection

A single SICK LADAR is used to detect obstacles by scanning a horizontal
plane in front of Cliff and Rocky. Anything detected by this scanner is marked
as an obstacle. Unfortunately, this includes false obstacles, such as hills and other
nonobstacle objects that may pass in front of the scanner. The unit is mounted
to the front of each vehicle directly below the brush guard approximately 0.38 m
above the ground. By angling the sensor up approximately 1.5◦ from horizontal,
problems related to false hill detection are minimized. The serial data output
of the LADAR returns a near-instantaneous twodimensional (2D) polar coordi-
nate array of the range and angle to any solid objects in the sensor’s viewing
plane. Only the most recent scan from the LADAR is used for both navigation
strategies.

5.3.3 Vision

The monocular/stereovisionsystem allowsCliff and Rocky to perceive roads ahead
of the vehicle and mark them as preferred areas of travel. The vision system ex-
amines the monocular image of the scene, extracts areas that look like roads, then
finds the relative position of the road areas using the camera’s stereo capabilities.
Finally, it passes the road information to the path planning computer.

For the Grand Challenge Event, it was assumed that most of the competition
course would follow desert service paths and that these roads would be less likely
to contain obstacles than the surrounding terrain. For this reason, a vision system
was designed to identify roads and adjust the path of the vehicle to be down the
center of the road. A Point Grey Bumblebee stereovision camera, mounted to
the top center of the vehicle’s roll cage, is used to observe the area in front of the



160 B.M. Leedy et al.

vehicle. Each of the Bumblebee’s cameras is capable of outputting progressively
scanned 640×480 stereoimages at 30 Hz. The stereoimage processing algorithm
operates at approximately 5 Hz.

Before each image is processed, it undergoes a number of modifications to
reduce processing time. The image resolution is reduced to 160×120 pixels to
lessen the number of recognition operations required on each frame. The im-
age is also converted from the red-green-blue (RGB) image representation to
hue-saturation-luminosity representation. The HSL representation allows sim-
pler color definitions in a variety of lighting conditions.

To further reduce the required processing per image, each frame is run through
a k-clustering (Green, Yao & Zhang, 1998) algorithm that separates every pixel
in each color plane into eight categories defined by the center of the cluster.
This clustering method reduces the colors in an image from 16 million to only
512. Instead of using rigidly defined color windows, this method reduces the
colors using dynamic logical segments. This operation ensures that each pixel
will be converted into colors that are as close to the original color as possible.
The reduced-color image is still stored as a 24-bit image to preserve the original
color differences.

After simplifying the image, the software searches for the basic geometric
characteristics that define a road. This search is done using only one of the
2D images provided by the stereocameras. The software determines if a uniform
texture and color pattern form a shape close to that of a desert road (Rasmussen,
2004). Once a road is found, its color patterns are logged to a color look-up table.
This table correlates a specific color to a road certainty value.

For each subsequent 2D image frame, every pixel is compared to the color
look-up table to create a confidence value for that pixel. This confidence value
represents the level of certainty that the specific pixel is part of a road. To
simplify further processing, the pixels corresponding to the lowest 30% of the
confidence values are removed. Pixels that are not adjacent to or near high confi-
dence value pixels are also removed. Using morphological techniques to connect
and separate the areas of an image, the software attempts to create a single area
of the image that may be a road (Rasmussen, 2004). The suspected road area
must be confirmed as a road by checking its vertical narrowing, edge continuity,
and size relative to the image.

If an area of the 2D image is determined to be a road, the image is sent to the
stereo-processing software where it is combined with its synchronous image to
convert the pixel locations to coordinates in the vehicle reference frame. These
coordinates are rechecked to ensure that there are no discontinuities, and that
they lie on the same plane as the vehicle. If confirmed, the road points are trans-
formed into UTM global coordinates and sent to the Path Planning computer to
be used in the navigation algorithm. The color look-up table for the confirmed
road is averaged with the previous ten tables to form the new table for future
iterations. To ensure that the look-up table contains enough values to operate
accurately, five successful iterations must occur before road points are confirmed
and sent to the Path Planning computer.
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5.4 Motion Control and Vehicle Safety

Although the two vehicles were designed to use different navigation algorithms
and sensor configurations, the drive-by-wire systems were designed to be the
same on both vehicles. This standardization allows any navigational algorithm
to be implemented on either vehicle, as long as it is compatible with the standard
interface. The Motion Control system provides the necessary software to turn
desired steering and speed commands into vehicle movement. The motion of
both Cliff and Rocky is controlled by three actuators: Steering motor, throttle
motor, and brake actuator. The desired commands are generated by the Path
Planning software in autonomous operation or a human driver in manual mode.

5.4.1 Speed Control

The vehicle acceleration is controlled by a closed-loop manipulation of an electric
gear motor attached to the vehicle’s throttle. Since the throttle motor cannot
slow the vehicle, a parallel brake control is needed for controlling the speed
of the vehicle. The braking system uses an open-loop control to translate a
desired reduction in speed to the appropriate brake percent command for the
hydraulic brake driver. If the commanded speed is greater than the current speed,
a proportional integral differential (PID) control loop handles throttle inputs. If
the commanded speed is less than the current speed, brakes are applied based
on the commanded urgency of deceleration. Even though the brake and throttle
control the speed in parallel, the vehicle will never attempt to increase throttle
when braking.

5.4.2 Rollover Prevention and Vehicle Safety

After experiencing two vehicle rollovers, one during Rocky’s DARPA site visit,
attention was focused on preventing another rollover. A simple dynamic model
of the vehicle, that considers gravity and centripetal force, was developed. The
basis for this model is shown in Figure 5.4. To account for the rollover effects of
unpredictable terrain, a factor of safety is implemented in each calculation.

A rollover condition exists when the resultant of the centripetal force and
the weight vector point outside the footprint of the vehicle. Stability can be
achieved by slowing the vehicle’s forward velocity and reducing the magnitude
of the steering angle.

Since the stability calculation depends on velocity and steering angle feed-
back, the stability calculation described above is not foolproof. Rocky’s rollover
in qualifying was due to LABVIEW DataSocket communication failures between
the INS computer and Motion Control computer. When the failure occurred, the
Motion Control computer falsely perceived a zero-speed value from the GPS/INS
DataSocket. When the vehicle attempted to accelerate to the commanded speed,
the GPS/INS feedback speed remained zero. As a result, the PID controller
continued to apply full throttle, and the vehicle rolled in its first turn. The
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Fig. 5.4. Model of the vehicle on a side slope and in a turn

team replaced the less reliable communication with simple UDP messages. In
addition, Motion Control monitors GPS/INS data for communication failures,
ensuring that the data are being updated on every iteration. The software will
pause the vehicle if a failure occurs, which prevents it from driving without
speed feedback. Similar safety systems monitor other potential failures, such as
problems with steering.

5.5 Navigation Strategies

An important objective in developing the two Virginia Tech Grand Challenge
vehicles was to compare the reactive navigation strategy used on Cliff with the
deliberative path planning strategy used on Rocky. These two approaches are
usually considered to be opposite ends of the spectrum of navigation strategies
(Murphy, 2000). Both approaches were given equal attention during the design
and development phase in preparation for the competition. This section provides
an explanation of each of the two navigation strategies.

5.5.1 Reactive Navigation with Dynamic Expanding Zones (DEZ)

Waypoint navigation, road following, and obstacle avoidance on Cliff all use a
reactive scheme (Murphy, 2000). Reactive algorithms only use the most recent
sensor information to make navigational decisions. A technique called the Dy-
namic Expanding Zones algorithm was developed by Virginia Tech as the main
obstacle avoidance strategy for the reactive approach. A set of zones around the
vehicle dictate the behavior that the vehicle will exhibit. If obstacles are not de-
tected within these zones, the vehicle will proceed with waypoint/road following.
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Fig. 5.5. An illustration of the vehicle’s commanded steering angle converging toward
zero during waypoint navigation

Otherwise, the vehicle will take appropriate action to avoid the obstacles. These
zones vary in size and shape, depending on vehicle speed, steering, and sensor
status.

5.5.1.1 Waypoint Navigation

A critical component of the 2005 Grand Challenge Event was successful naviga-
tion through globally defined waypoints. As with all decision-making software on
Cliff, waypoint navigationdoes not generate a planned path to reach a desired way-
point. Instead, an instantaneous steering angle, equal to the difference between the
current heading and direction to the waypoint, is commanded (Figure 5.5). This
waypoint navigation strategy acts as a closed-loop feedback control that requires
very little computation to calculate the commanded steering angle.

The vehicle reaches a desired waypoint when the vehicle enters a radius defined
by the distance between the corridor intersection point and waypoint (Figure 5.6).
Whether the vehicle is saving time or avoiding an obstacle, the waypoint radius
eliminates the need to travel directly over the waypoint. Traveling over a way-
point was not required for the Grand Challenge Event, as long as the vehicle stayed
within the lateral boundary offset (LBO).

5.5.1.2 Road Following

Since roads are generally easier to traverse and have fewer obstacles than un-
structured desert terrain, road following is a desirable behavior. If a road exists
that leads the vehicle in the general direction of the waypoint, the vehicle ignores
waypoint navigation to follow the road. Road data are received from the vision
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Fig. 5.6. A waypoint radius is created using the LBO of the intersecting corridors

Fig. 5.7. An illustration of how a road point is selected from the road point array

computer as an array of perceived road center points. Points outside of the LBO
and points not within 30◦ of the current heading are ignored, and the closest
valid road point is chosen to be the desired road point (Figure 5.7).

Using this desired road point, fuzzy logic control is used to determine if the
road point is in the general direction of the desired waypoints. Fuzzy logic is
able to substitute numerical variables with linguistic variables to solve ill-defined
problems (Zadeh, 1965, 1973). For example, if the vehicle is heading somewhat
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Fig. 5.8. Dynamic Expanding Zone layout

toward the waypoint and away from the corridor boundary, fuzzy control will
determine that road following is appropriate. If road following is desired, Cliff
steers toward the road point in the same manner as waypoint navigation.

5.5.1.3 Obstacle Avoidance

If a perceived obstacle prevents the vehicle from driving directly to a waypoint
or following a road, Cliff ignores the waypoint navigation and road following
behaviors to avoid the obstacle. A reactive obstacle avoidance approach, called
Dynamic Expanding Zones, has been developed for robust obstacle avoidance.
This algorithm is not limited to a specific sensor configuration, and can use
any type of instantaneous obstacle map with Boolean elements (obstacle or no
obstacle).

5.5.1.3.1 Obstacle Zones. The Dynamic Expanding Zones algorithm uses two
zones to determine the avoidance behavior when an obstacle is present (Figure
5.8). The avoidance zone is located directly in front of the vehicle (Reynolds,
1999). If an obstacle is in the avoidance zone, the vehicle must avoid it to continue
safely toward the desired waypoint. This zone has a constant width, slightly
larger than the width of the vehicle, which prevents the vehicle from clipping the
sides of obstacles. The length of the avoidance zone expands dynamically, hence
the name Dynamic Expanding Zones. Dynamic Expanding Zones commands a
steering angle and speed to avoid any obstacles in this zone.

The second zone, the buffer zone, is adjacent to and of the same length as
the avoidance zone. The purpose of the buffer zone is to prevent the vehicle
from turning into an obstacle. It also eliminates oscillatory behavior between
waypoint/road following and obstacle avoidance. For example, if the vehicle at-
tempts to make a turn to the left when there is an obstacle in the left buffer,
Dynamic Expanding Zones will override the turn command. The vehicle will
drive straight forward, until the obstacle exits the buffer zone. Once both the
avoidance and buffer zones are clear, waypoint/road following will resume.

5.5.1.3.2 Dynamic Expanding Capability. The length of the avoidance and
width of the buffer zone are the key factors in the success of this obstacle avoid-
ance algorithm. The length and width of the zones are adjusted based on the



166 B.M. Leedy et al.

current driving conditions. For example, the avoidance zone is shortening when
the vehicle is turning. This keeps it from unnecessarily trying to avoid obstacles
that are straight ahead. It is possible for the vehicle to make an unnecessary
maneuver to avoid an obstacle if the buffers are too wide. For these reasons,
the size of the avoidance and buffer zones are dynamically modified to optimize
navigation for different situations.

The length of the avoidance zone is controlled by the projected clothoid path
and the speed of the vehicle (Shin & Singh, 1990). Using the current steering
angle and steering velocity (assumed to be constant), the corresponding clothoid
path is calculated. The avoidance zone shrinks to the most distant intersection of
this path with the avoidance zone. This means that the length of the avoidance
zone shrinks as the steering angle increases. This length control prevents the
vehicle from reacting to obstacles too far ahead, but ensures that the vehicle
will have ample time to respond as it approaches an obstacle. In addition, as the
vehicle increases its speed, the avoidance zone length must also increase to react
to obstacles in the distance (Putney, 2006).

Similar to the avoidance zone, the buffer is also dynamically controlled based
on the steering angle. Both buffer zones widen symmetrically as the steering
angle increases. A larger steering angle requires the vehicle to look for obstacles
farther away in the lateral direction. Again, this zone expansion ensures that the
vehicle will only avoid the necessary obstacles.

5.5.1.3.3 Commanded Steering Control. Similar to road following, the steering
direction is determined by fuzzy logic control. The controller intelligently decides
a steering direction, which is optimal for both avoiding an obstacle and staying
on course. The fuzzy input variables include distance to obstacles and obstacle
summing, discussed below. When a collision with an obstacle is imminent, the
Dynamic Expanding Zones method uses only obstacle summing to choose a safe
steering direction. For example, if an obstacle is located on the left side of the
avoidance zone near the vehicle, the safest steering direction is to the right.
On the other hand, when the obstacle is farther ahead, the vehicle has more
decision flexibility. As a result, the vehicle can choose a direction that will avoid
the obstacle while keeping the vehicle within the boundaries.

Obstacle summing allows Dynamic Expanding Zones to decide which direction
is optimal given current obstacle data. An obstacle window is a defined area of
interest that encompasses known obstacles in front of the vehicle. The height
and width of the obstacle window is defined by the fixed lengths for lateral
and length expansion. Only obstacles detected in this window are considered in
the obstacle summing calculation. This window allows the vehicle to respond to
multiple objects in close proximity instead of just the closest detected obstacle.
Using the obstacle window, a value is determined by summing the distances from
each of the obstacles to the centerline of the vehicle. Figure 5.9 illustrates how
obstacle summing would work if the obstacle window contained two obstacles.
The negative values, left of the centerline, represent the wall obstacle (sensed as
three points by the laser scanner); while the positive value represents the round
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Fig. 5.9. Example calculation for determining a steering direction based on obstacle
location

obstacle to the right. This example results in a negative obstacle sum; therefore,
a right turn requires a smaller steering maneuver (Putney, 2006).

The magnitude of the commanded steering angle is calculated using the dis-
tance to the closest obstacle within the avoidance zone. The steering angle calcu-
lation is not an attempt to model the vehicle’s actual projected path. Dynamic
Expanding Zones varies this approximate path and steering angle with each it-
eration until the obstacle is avoided. This steering angle calculation eliminates
the need for accurate path calculations on each update, which can be computa-
tionally expensive. As a result, Dynamic Expanding Zones requires minimal pro-
cessing power when compared to many deliberative approaches (Putney, 2006).

Once an obstacle has left the peripheral view of the LADAR, it is no longer
considered by the reactive strategy. This has proven to be a safe assumption,
since only the most extreme maneuvers of the vehicle would cause it to turn
back into an obstacle it has already seen without seeing it again.

5.5.1.3.4 Commanded Speed Control. Speed control is critical for properly avoid-
ing obstacles, staying within boundaries, and preventing rollover. The vehicle will
always attempt to run at its top speed. However, to prevent rollovers, the speed is
limited when the vehicle executes a turn. Though speed control follows the reac-
tive approach, the vehicle can anticipate future maneuvers and take precaution-
ary action. For example, the vehicle slows down when it detects an obstacle in its
avoidance zone. The vehicle also anticipates the turn at a waypoint by slowing to
a safe speed before it reaches the waypoint radius.

5.5.2 Deliberative Strategy

The Deliberative NonUniform Terrain Search (NUTS) algorithm, developed for
Rocky, uses simultaneous sensor fusion and storage to create a homogeneous local
terrain traversibility map. This map contains information on discontinuities in
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terrain height, course boundaries, and roads recognized by the vision system.
The map is scanned by an A* graph search (Hart, Nilsson & Raphael, 1968)
to determine the desired future path of the vehicle. This operation iterates in
real time at a rate of 16 Hz. The goal of the deliberative Terrain Search path
planning strategy is to build a continuously updated best path on which to drive.
The benefits include planned reaction to perceived future obstacles and holistic
driving decisions based on all sensor data (Leedy, 2006).

5.5.2.1 Terrain Mapping

The Terrain search algorithm uses two types of LADAR data to describe the
local terrain and obstacles: A two-and-one-half dimensional geometric terrain
map, and a binary obstacle map. The geometric terrain map is built using two
ground-scanning LADAR units. These can be seen on Rocky in Figure 5.1. The
obstacle map is built using a horizontal scanning, front mounted LADAR.

To detect variations in terrain that might affect the planned path of the
vehicle, two groundscanning LADAR systems are employed. Figure 5.10 shows
the fields of view of Rocky’s sensors.

The ground-scanning LADAR units measure ranges to solid objects in a 100◦

2D swath about the z axes of the sensors. On a perfectly flat surface, this would
allow the scanner beams to reach the ground at a maximum distance of 15 m in
front of the vehicle. As the vehicle approaches an obstacle, the scanners record a
higher altitude at the location the scan plane intersects the object. Tall obstacles
occlude the LADAR; leaving a “shadow” behind the obstacle, which cannot be

Fig. 5.10. Fields of view of Rocky’s ground mapping LADAR, horizontal LADAR,
and camera
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Fig. 5.11. The image on the left shows a parked car from Rocky’s point of view. The
image on the right shows scanned terrain colored black. The position and orientation
of Rocky is denoted by the grey arrow. A parked car blocks LADAR scans, leaving an
unscanned shadow, circled on the right image.

scanned. Figure 5.11 shows the location of scanned points collected as the vehicle
approaches car on the left.

The scan planes of the two scanners overlap in front of the vehicle, giving more
data directly ahead. This extra information can be used to identify potential
obstacles more readily.

Each point collected by the LADAR scanners is transformed from the sensor
coordinate frame to the vehicle reference and then rotated into global UTM
coordinates. This transformation uses the most recent position, attitude, and
heading. The new data are stored as an array of height and position values, then
added to the corresponding location in the local map. The new data overwrite
any older values stored in the same location. The local map is stored as a 2D array
of height values from an arbitrary baseline set at the start of the vehicle’s run.
The map array is aligned with true north-south and east-west, and represents
a 40 m by 40 m field of 20 cm square grid elements. This local terrain map is
continuously updated with new LADAR scans at a rate of 16 Hz. As the vehicle
moves, the LADAR scanners measure the height of solid objects in their scan
plane, and adds these data to the local terrain map, creating a three-dimensional
geometric description of the terrain that has been scanned. The data are always
represented with the vehicle at a fixed location and varying attitudes and the
map grid aligned with the global UTM coordinate frame. This map could readily
accept a priori terrain data, if any were available. Figure 5.12 shows a diagram
of the vehicle on a local terrain map.

In each program iteration, a 12.5 m by 12.5 m rectangular section of the
terrain map is extracted for path planning analysis. This section is transformed
back into the vehicle coordinate frame to another grid of 20 cm×20 cm squares.
This extracted section is processed using the sigma filter method (Murphy, 2000;
Lee, 1984) to find the slope (first derivative) of the perceived terrain. Areas of
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Fig. 5.12. Black areas in the local terrain map (left) indicate scanned points. The local
cost map is extracted from this area (right), and sent to the A* decision algorithm.
On the terrain map, the vehicle is held at a fixed position on the scrolling globally
referenced terrain map, but it may change attitude. The cost map area is held fixed
relative to the vehicle.

Fig. 5.13. The local cost map (top-down view, left) generated by the horizontal
LADAR for a typical scene with obstacles (vehicle view, right)

high slope are considered to be less passable than areas of little or no slope, so
the cost map is scaled by a tuned gain value to return high cost in areas of high
slope and low cost in areas of low slope. This map format allows the grid to be
searched using standard graph-search algorithms.

Horizontal LADAR scan points, which return a range of less than 40 m, are
imported into the local cost map as high-cost obstacles. Any point returned to
the scanner is considered impassible, and is marked with an extremely high cost.
The data from this sensor are refreshed on every program cycle using only the
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most recent scan for the cost map. This treatment of the sensor data provides
easily interpreted high-cost obstacles wherever the horizontal scanning LADAR
detects a solid object. The main drawback of this treatment is the occurrence
of “false positives” when the vehicle pitches momentarily or when it approaches
a hill. This has the effect of slowing the vehicle speed and causing the vehicle
to approach steep hills at an angle. In testing, we found that this rarely created
a situation where the vehicle would veer off course. Figure 5.13 shows a local
cost map generated by the horizontal scanning LADAR beside a photo of the
scene.

Vision Road Mapping – A computer vision road finding algorithm also con-
tributes to the local cost map. The vision processing approach is identical to
the one used by the Dynamic Expanding Zones algorithm with data passed as a
Boolean map of suspected road points. The scene in front of the vehicle is pro-
cessed to find points along the road. Figure 5.14 shows one frame of a stereotest
scene with the map array of the corresponding road map.

The vision road map is passed to the mapbuilding software as a binary array
of the same dimensions as the LADAR local cost maps. If confidence in the
vision-recognized road falls below a specific threshold, a blank map is sent to
the path planning. When received by the map-building software, all areas marked
as road centerline are marked with a lower cost than the surrounding areas. The
difference between road and nonroad cost values was tuned through extensive
field testing.

5.5.2.2 Deliberative Driving Decision

The NUTS deliberative driving paradigm attempts to drive the optimum path
over continuously changing nonuniform terrain perceived by the vehicle. To op-
timize the path based for both the current and intended future position of the
vehicle, the NUTS algorithm computes a new optimum path at each program
iteration using an A* graph search. Figure 5.15 is a flow schematic of a single
iteration of the NUTS program.

Fig. 5.14. The recognized road from the RGB image (left) is translated into a local
road map (right)
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Fig. 5.15. Sensor data for the NUTS algorithm is processed in parallel then combined
in the form of a local cost map for the A* search

To generate the final search map, NUTS overlays the four local cost maps
generated by the sensor cognition components. Figure 5.16 shows an example of
a typical cost map used by NUTS.

Obstacles detected by the horizontal LADAR and areas outside the course
boundary are marked with the highest possible value using the obstacle and
boundary cost maps. Areas with a geometric change in altitude are assigned a
cost based on the “steepness” of the terrain. The road layer adds cost to areas
not believed to be a road. The cost overlay values are weighted such that course
boundaries and obstacles have the greatest influence over driving decisions. Ter-
rain LADAR and road data are used to guide the vehicle through the optimum
path for navigation.

Using the overlaid map, NUTS next attempts to find the best path using an
A* least-cost path search (Hart et al., 1968). If the destination waypoint is on the
cost map, it is taken as the search goal point. If the destination point is out of the
map, NUTS generates a goal point on the border of the map. The path generated
by the A* search is passed to the driving component. The driving component
generates steering and speed commands based on the vehicle’s current pose. This
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Fig. 5.16. Typical LADAR overlay map of sensor data for the Virginia Tech Grand
Challenge A* graph search (right). Dark shades indicate areas of low cost, while light
areas indicate areas of high cost. The area enclosed in the white oval indicated a
significant drop off; the area circled in dashes indicates the trees pictured at left.

is accomplished by selecting a point on the path a certain range from the vehicle.
The vehicle steers using a pure pursuit algorithm (Coulter, 1992) to head toward
the path. Before the steering and speed commands are passed on to the vehicle
motion control system, a final check is performed to ensure that the commands
are safe.

5.6 Comparative Study

In preparation for the DARPA Grand Challenge, Virginia Tech compared the
reactive and deliberative navigation strategies side-by-side. The comparison de-
scribed in this section attempts to capture the data and lessons learned from
applying each navigation strategy. In the future, the team intends to use the
results to improve future designs of hybrid paradigms using the best elements of
both reactive and deliberative path planning. By implementing both strategies
simultaneously with similar developmental teams, this study also sheds light on
the nuances of developing and implementing both types of algorithms.

5.6.1 Performance

At the DARPA site visit to Virginia Tech on May 5, 2005, both the reactive
and the deliberative algorithms demonstrated their ability to navigate global
waypoints, avoid obstacles, and stay within the course boundaries on an off-road
obstacle course. This section discusses the differences in performance of the reac-
tive Dynamic Expanding Zones and deliberative NUTS driving algorithms in the
areas of waypoint following, driving smoothness/efficiency, obstacle avoidance,
and repeatability/reliably.
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Fig. 5.17. The lower Plantation Road test field with the RDDF course centerline
superimposed

To quantify the ability of each strategy to navigate waypoints, GPS/inertial
data were collected during test runs of both vehicles on an open rolling-hill
terrain test course set up at the Plantation Road test facility on the Virginia
Tech campus (Figure 5.17). These initial tests were run with identical route
definition data files (RDDF) paths and with no obstacles to avoid.

Special care was taken to examine the driving algorithms under weather and
terrain conditions that were as similar as possible. All test runs were collected
on the same day in clear weather with alternating reactive and deliberative runs
for measurements at the same speed/weather/lighting combination. All extero-
ceptive sensors except the high-precision Novatel GPS/INS were shut down on
the vehicles. In essence, this test focused on the ability of the algorithm to follow
a given path in the absence of obstacles. Both data sets were collected on the
same vehicle, using the same sensors and peripheral software. Our goal was to
isolate the behavioral differences in the decision-making software.

The RDDF length of this course was 3.173 miles (approximately 5 km) over
open field terrain. Each driving algorithm was tested over five laps at maximum
commanded speeds of 5, 10, and 15 mph. Position, velocity, actuator state, com-
manded vehicle state, and the values of many other parameters were collected
at a rate of 5 Hz during the tests.

The data, summarized in Table 5.1, clearly show an overall performance edge
for the reactive Dynamic Expanding Zones algorithm. Rocky running Dynamic
Expanding Zones averaged significantly higher speeds than the same vehicle
running the deliberative NUTS path planning. Although the vehicle was fully
capable of driving at higher speeds, the rollover safety processes in both algo-
rithms prevented the vehicle from selecting turn/speed combinations that might
put it in jeopardy. At 5 and 10 mph, the Dynamic Expanding Zones algorithm
averaged speeds near the top speed limit imposed on the software. At 15 mph,
however, the serpentine nature of the course triggered safety slowdown proce-
dures for sharp turns, and limited the overall speed.

By attempting to steer a course defined by a square grid, the deliberative
method must make more frequent steering adjustments to follow the desired
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Table 5.1. Overall performance statistics for non-obstacle avoidance test runs

Test Run Overall 

Performance

Top Set Speed  5 mph 10 mph 15 mph 

Top Speed (mph) 6.6 11.4 15.6 
Average Speed (mph) 4.8 7.2 7.9 

Reactive 

(Dynamic Expanding Zones) 

Total Time (s) 2365.2 1568.8 1443.6 
Top Speed (mph) 6.6 10.8 14.4 
Average Speed (mph) 3.5 4.0 4.30 

Deliberative 

(Non-Uniform Terrain Search)

Total Time (s) 3203.6 2829.4 2594.4 

path. The overall course performance highlights one main difference between
the reactive and deliberative paradigms: decisiveness. The reactive Dynamic
Expanding Zones algorithm is less sensitive to subtle changes in the perceived
sensor state. It is important for the vehicle to be flexible and react quickly to
a dynamic environment when selecting a desired path, but subtle errors in the
vehicle position or orientation can cause the deliberative algorithm to reroute
the path, which diminishes the overall performance. While this rerouting may
be desirable for long-term planning, it does not seem to be desirable for simple
waypoint following. As a result, the purely reactive paradigm had better overall
performance on the test course.

Unnecessarily using the steering, brake, or throttle actuators consumes energy
and may degrade the dynamic performance of the vehicle, or even result in a
rollover. This unnecessary actuation may also cause wear on the involved com-
ponents, such as the brake pads and steering rack. Unnecessary actuation also
burdens the vehicle’s power system and reduces the vehicles overall efficiency.
The steering actuator consumes 373 W at peak power, and the electrohydraulic
brakes consume 240 W at peak power. Brake actuation also takes significant ki-
netic energy from the vehicle, and dissipates it as waste heat at the brake pads.
Hence, unnecessary steering and braking can be significant factors in reducing
the efficiency of the vehicle.

While collecting the test run data, it appeared that the reactive algorithm
was able to steer more smoothly and efficiently on the course. To measure the
efficiency and smoothness of steering on the test runs, the percent of the time
the vehicle commands a change in steering angle was examined. The percent
of time spent changing steering angle is an indicator of the driving algorithm’s
smoothness and energy efficiency. If the vehicle constantly seeks a new steering
position, it uses a large amount of energy to drive the steering motors. Contin-
uous steering actuation also indicates more weaving of the vehicle.

Table 5.2 shows the percentage of time the steering actuator was running
for each algorithm on the same course. The reactive algorithm is nearly an
order of magnitude more efficient than the deliberative algorithm under the
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Table 5.2. Steering and braking actuation percentage (no obstacle avoidance)

Steering and Braking 

Actuation 

5 mph 10 mph 15 mph 

Travel Distance (mi) 3.22 3.17 3.17 

% Time Turning 6.3% 9.4% 10.0% Dynamic 

Expanding

Zones % Time Braking 3.6%   10.6% 13.6% 

Travel Distance (mi) 3.24 3.21 3.21 

% Time Turning 54.4% 56.3% 57.2% Non-Uniform 

Terrain

Search % Time Braking 5.1% 10.6% 12.9% 

same conditions. The likely cause of this wide disparity in steering efficiency can
be traced to the means by which each algorithm generates its path. The reactive
driving scheme determines the difference between its current heading and the
heading to the next waypoint. As long as the vehicle is heading toward the
waypoint, no steering adjustments need to be made. The deliberative approach
uses a pure pursuit algorithm to drive the planned path as closely as possible.

In tests with lower maximum speeds, the reactive NUTS algorithm exhibited
slightly more frequent braking than Dynamic Expanding Zones (Table 5.2). As
the maximum speeds increase, the relationship reverses, but these differences
are probably not significant. The Dynamic Expanding Zones algorithm is able to
achieve higher average speeds on the course. If the vehicle is allowed to accelerate
up to full speed in some sections, it will have to brake for turns. On the other
hand, the NUTS algorithm has a high frequency of turning, which means the
vehicle must first to slow to a safe speed to execute the maneuver. These effects
seem to require roughly the same amount of braking effort.

The mission of the Grand Challenge requires the vehicles to navigate reliably
throughout the 134 mile off-road course. To accomplish this reliably, extensive
testing and tuning was performed prior to the event. It was found during testing
that the reactive algorithm was more robust and less sensitive to small varia-
tions in sensor data than the deliberative algorithm. The graphs in Figure 5.18
are overlays of repeated runs on a practice course for the two algorithms. The
reactive algorithm clearly produces more repeatable paths than the deliberative
algorithm at all speeds.

5.6.2 Application

During development of both navigation strategies, the Virginia Tech Grand Chal-
lenge team made several notable observations that provide insight into the prac-
tical application of the reactive and deliberative driving schemes. The vehicle’s
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Fig. 5.18. Overlays of repeated runs for the reactive (left) and deliberative (right) al-
gorithms

reactions to sensor stimuli and errors, such as high grass and error in GPS posi-
tion, show key differences between the strategies. The measures taken to address
these and other issues shed light on the characteristics of development and prac-
tical application of these strategies. Overall, the Virginia Tech Grand Challenge
team found the reactive approach to be the most conducive to upgrades and grad-
ual improvements based on field testing. The “general solution” approach of the
deliberative scheme promises higher intelligence in navigation, but requires fun-
damental changes in navigation strategy to influence small changes in behavior.

5.6.2.1 GPS Error

A common experience for the Virginia Tech Grand Challenge GPS and inertial-
based positioning systems is the “GPS pop” (Figure 5.19). This occurs when, after
running on inertial-only positioning, the GPS/ INS regains the GPS signal. The
perceived position of the vehicle instantaneously jumps from the INS-computed
location to the GPS-based position. This “jump” has been measured as up to 2.5
m, in an arbitrary direction, based on the error in INS and GPS.

The reactive approach handles this type of sensor aberration without issue.
There is no change in obstacle avoidance or waypoint following performance,
except for a small heading adjustment based on the new perceived position with
respect to the waypoint. This adjustment is inversely proportional to the vehicle’s
distance from the waypoint. Because obstacle avoidance is based entirely on the
instantaneous measurement of obstacle position relative to the vehicle, no change
is affected by noise or error in the positioning system.

The deliberative algorithm is significantly more susceptible to problems due
to varying position error. Since the deliberative path planner attempts to drive
a path based on data collected in a previous time period, it will use the most
recent (corrected) position data to drive a path generated using an older, offset
position frame. The now-offset path can potentially carry the vehicle through
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Fig. 5.19. When the GPS/INS reacquires satellites, the system corrects the INS-
computed position

obstacles that were detected, but no longer perceived, in the correct location
relative to the vehicle.

The general direction and shape of the “correct” path is still valid from the
old computed position, but the data are no longer usable for obstacle avoidance.
The long-term general planning capability of the NUTS approach could benefit
from a reactive driver for more reliable close-in obstacle avoidance.

5.6.2.2 Navigation Range

The Dynamic Expanding Zones navigation approach has proven superior to the
NUTS in robustness and reliability for obstacle avoidance in simple situations.
The DARPA Grand Challenge is one such case where intelligent planning of
complex maneuvers is not required. The reactive navigation strategy is superb
at navigation through simple obstacles, such as passing cars and tunnel walls,
but lacks the ability to plan through complex situations (Figure 5.20).

Because of the avoidance zone in front of the vehicle, a vehicle running Dy-
namic Expanding Zones might not be capable of maneuvering through close-
quarters situations. In practice, Dynamic Expanding Zones showed a particular
weakness in the offset-gate configuration of obstacles (Figure 5.21).

The offset-gate obstacle is traversable by the NUTS deliberative strategy, which
is capable of planning a path through any area, regardless of the complexity of the
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Fig. 5.20.Dynamic Expanding Zones does not take the optimum path in some situations

Fig. 5.21. Dynamic Expanding Zones reaction to the offset-gate obstacle

obstacle field (Figure 5.22). This long-range intelligence demonstrates the main
attraction of the deliberative approach: The larger the area and complexity of
data available for path planning, the greater the advantage to the deliberative
approach. The drawback to using this strategy is that, as discussed in this paper,
it lacks the adaptability and smooth obstacle avoiding performance of the reactive
approach.
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Fig. 5.22. NUTS reaction to the offset-gate obstacle

5.6.2.3 Road Following

Another area in which NUTS excels is road following. The data output from
the Virginia Tech Grand Challenge road recognition algorithm to the NUTS is
optimal for map-based path following. Rather than simply steer toward a point
ahead of the vehicle suspected to be a road, NUTS attempts to find the shortest
path onto the low-cost road terrain. Unlike Dynamic Expanding Zones, which
ignores road following data in the presence of an obstacle, NUTS is capable of

Fig. 5.23. In some situations, Dynamic Expanding Zones (left) can lose a road due
to obstacle avoidance while NUTS (right) will maintain the optimal path (aerial photo
from Google Local �)
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intelligently planning a path down a road, around an obstacle, and back onto
the road again given sufficient sensor data (Figure 5.23).

5.7 Grand Challenge Performance

Neither Cliff nor Rocky were able to finish the 132 mile course. Rocky traveled
just over 39 miles along the course, and Cliff traveled just over 44 miles. Both
vehicles failed due to mechanical problems, rather than poor navigation deci-
sions. Cliff’s drive engine stalled when it briefly slowed to an idle, and Rocky’s
on-board generator shut down due to a suspected false low-oil reading. Had the
base platforms not failed, the Virginia Tech Grand Challenge team is confident
that the sensors and navigation systems would have allowed both vehicles to
finish the race in just under the 10 h time limit. From the start, the Virginia
Tech Grand Challenge strategy was to finish the race in the allotted amount
of time and focus on solid navigation rather than higher-speed performance. In
overall distance traveled, Cliff and Rocky finished eighth and ninth, respectively.

5.8 Conclusions

A team of dedicated undergraduate and graduate engineering students built
the Virginia Tech GrandChallenge vehicles as an exercise in engineering design.
Although the conversion to drive-by-wire, power system, motion control, and
computing architecture are nearly identical on Cliff and Rocky, these platforms
are designed to test and run two very different navigation strategies.

Cliff was designed to use the Dynamic Expanding Zones algorithm, a reactive
navigation approach specifically created for the Grand Challenge. This algorithm
consists of a number of variable size zones around the vehicle. In these zones, the
presence or lack of obstacles dictates the behavior of the vehicle. The zones vary
in size depending on the speed and surroundings of the robot in order to only
take in the essential information to avoid obstacles. Rocky uses a deliberative
navigation approach, making use of a terrain map and an A* algorithm to search
through the map for the easiest route to travel. This allows Rocky to navigate
more efficiently than Cliff through complicated terrain.

For the actual Grand Challenge Event and the National Qualifying Event,
the reactive navigation software was used on both Cliff and Rocky. The deliber-
ative software was not used, simply because the implementation was not mature
enough to perform reliably in competition. One of the biggest lessons learned
for implementing a deliberative navigation strategy was that it is essential to
have a way to translate the optimal grid-based path to a path that is smoothly
drivable. Another consideration is the size of terrain data. The deliberative al-
gorithm planned a path from a terrain map of 12.5×12.5 m. This was too small
an area to generate a useful plan.

In summary, the Virginia Tech case study describes and emphasizes some of the
key design considerations for development of deliberative and reactive navigation.
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The reactive strategy is simple and efficient, while the deliberative approach shows
the potential to deliver higher navigational intelligence and planning.
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Summary. This paper describes one aspect of our approach in developing an intel-
ligent off-road autonomous vehicle, the Intelligent Off-road Navigator (ION), as team
Desert Buckeyes from the Ohio State University for the DARPA Grand Challenge 2005.
The real-time navigation is one of the critical components in an autonomous ground
vehicle system. In this paper, we focus on the navigation module, whose main respon-
sibility is to generate smooth and obstacle-free local paths with appropriate speed
setpoints. For the smooth path generation, we introduce a polynomial interpolation
method. To generate obstacle-free paths, a steering controller utilizing a fuzzy obstacle
avoidance algorithm is presented. A speed fuzzy controller is introduced to generate the
speed setpoints. These two fuzzy controllers collaborate with each other to guide our
vehicle ION to the goal safely. The obstacle avoidance algorithm proposed in this paper
was also tested in simulations and on small robots successfully. Other issues related to
the navigation module are discussed in the paper as well, such as the vehicle’s system
structure and its finite state machine. As a result, ION achieved great performance in
the National Qualification Event (NQE), covered about 30miles in the Nevada Desert
with complete autonomous operations, and finished 10th in the Grand Challenge 2005.

Keywords: autonomous ground vehicle, Grand Challenge, real-time, navigation, finite
state machine, obstacle avoidance, fuzzy controller.

6.1 Introduction

This paper describes our approach in developing the navigation module of the
vehicle ION, the Intelligent Off-road Navigator, as team Desert Buckeyes from
the Ohio State University for the DARPA Grand Challenge 2005 (GC05).

GC05 was a competition for off-road autonomous ground vehicles (AGVs).
About three thousands waypoints (GPS coordinates) were provided shortly be-
fore the race, the AGVs were required to follow the waypoints one by one safely,
continuously, smoothly and fast across natural terrain en route to the finish line
without any human interference. The challenge was indeed “grand” because the
AGVs had to respond to the dynamically changing environment in a timely way

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 183–203, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



184 Q. Chen and Ü. Özgüner

Fig. 6.1. Vehicle ION: the Intelligent Off-road Navigator. The vehicle is a 2005 Polaris
Ranger 6x6. It is 120 inches long and 60 inches wide and its height is 78 inches. Drive
by wire capability has been added to the vehicle so that computer control is possible
for throttle, brake, steering control, and transmission gear switching.

and the data acquired was both complex and full of erroneous information. The
total distance in GC05 was about 132miles.

Developing an autonomous vehicle to traverse the desert means solving a se-
ries of problems and developing a series of technologies, such as sensor fusion,
navigation, artificial intelligence, vehicle control, signal processing, drive-by-wire
technology, reliable software and mapping (Toth et al., 2006), etc. ION was de-
veloped in partnership with University of Karlsruhe, which developed the image
processing system (Hummel et al., 2006). ION is a 6 wheeled vehicle with full
drive-by-wire capability. A set of sensors (LIDARs, radars, cameras and ultra-
sonic transducers) and a GPS and IMU, the internal measurement unit, provide
extensive sensing capability, shown in Figure 6.1. A sophisticated sensor fu-
sion system (Redmill, Martin, & Özgüner, 2006) was developed and used with
a complex intelligent analysis, decision and control configuration (ION, 2005).
The overall design was quite similar to the one we developed for TerraMax in
GC04 (Chen, Özgüner, & Redmill, 2004).

In this paper, we focus on the navigation module whose task is to guide ION
toward the goal without colliding with obstacles. Our strategy is to develop
a finite state machine that decides the state of ION so that the proper drive
mode is selected in different situations. By perceiving both nearby environment
and ION’s status, the navigation module generates commands for the low-level
controller. The command can be, for example, a set of GPS route points called
pathpoints and the speed setpoint, or a sequence of motion specifications called
robotic unit operations, or some direct commands such as “stop-and-wait”. The
finite state machine design and the obstacle avoidance algorithm utilizing fuzzy
logic are introduced.
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As the Desert Buckeyes was the team that developed the sensing and intel-
ligence for the 2004 TerraMax, a number of aspects of ION were descendants
of technology and approaches used in the 2004 Grand Challenge (Chen et al.,
2004), (Yu, Chen, & Özgüner, 2004), (Özgüner, Redmill & Broggi, 2004),
(Chen & Özgüner, 2005). We also have developed autonomous vehicles for
highway driving, which have shown great performance in the structured envi-
ronments. (Özgüner, Hatipoglu, & Redmill, 1997), (Redmill & Özgüner, 1998),
(Hatipoglu, Özgüner, & Redmill, 2003). As far as off-road is concerned, the en-
vironment being unstructured, the navigation module and the obstacle avoid-
ance algorithm proposed in this paper is desired to deal with more complicated
situations.

The remainder of this paper is organized as follows. Section 6.2 briefly de-
scribes our system structure and general bases. The design of the finite state
machine is described in Section 6.3. Section 6.4 introduces navigation module
with the path planning algorithm that generates collision-free paths and ap-
propriate speed set-points for the vehicle. ION’s performances are presented in
Section 6.5. Section 6.6 concludes the paper.

6.2 System Structure

The system structure of ION is illustrated in Figure 6.2. Environment sensor fu-
sion, vehicle ego-state sensor fusion, high-level controller and low-level controller
are ION’s four major modules. ION is equipped with several cameras, LIDARs,
ultrasonic Sonars and a radar. A sophisticated sensor fusion system generates
a local grid map that moves with the vehicle. The local map contains the sizes
and positions of nearby obstacles. ION’s ego states are fused from a GPS and
an IMU. The navigation module, also called the high-level controller, obtains
information from the sensor fusion modules and generates a series of pathpoints
and a speed set point for the low level controller. In some situations, the nav-
igation module sends direct control command to the low level controller, such
as “Stop” and specific “robotic unit operations”. Obtaining the commands from
the high-level controller, the low-level controller enables ION to follow the given
route defined by a series of pathpoints at the given speed, as has been done in
(Redmill, Kitajima, & Özgüner, 2001).

6.3 Finite State Machine

Since ION was expected to encounter very complicated situations, we developed
a finite state machine (FSM) in ION’s navigation module to deal with difference
situations. Based on the information collected from the sensor fusion modules
and the inner state monitoring, the navigator module determines the right ma-
chine state for ION to activate the corresponding subsystem/algorithm so that
the proper command is generated.

The FSM we implemented in ION is represented conceptually in Figure 6.3 .
There are two major states, the “Path-Point Keeping” state and the “Obstacle
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Fig. 6.2. The System Structure of ION

Avoidance” state. ION stays in these two states at the most of racing time,
when there are no special events, such as tunnel, sensor failure, and narrow
path, etc, detected. When ION is in one of these two states, the pathpoints are
generated by the path planning algorithms as described in the following section.
The smooth path generation algorithm is for the “Path-Point Keeping” state,
while the obstacle avoidance algorithm is used in the “Obstacle Avoidance” state.

In the FSM, the other states are also very essential for ION to deal with spe-
cial events that the vehicle may encounter. The “Tunnel Mode” state is designed
specifically for the situation when ION is in a tunnel where GPS signals are lost
temporarily. We assume ION encounters no obstacles in the tunnels and the FSM
switches only to the “Path-Point Keeping” state from this state. In the “Tunnel
Mode” state, the distances to both sides of the vehicle are measured by the ultra-
sonic transducers mounted on ION so as to keep the vehicle in the center of the
tunnel. The FSM gets into the “Robotic Operations” state when ION needs to
adjust its heading or position or both, for example, when narrow paths and very
sharp turns, i.e. direct forward path would contact obstacles, are encountered.
In this state, a sequence of back-and-forth operations are executed to adjust the
ION’s status. When there are sensor failures, the FSM transits into the “Alarm”
state to deal with the malfunction. In this state, the navigation module executes
the sensor resetting command to recover the failed sensor or sensors. In the case
that the sensor failure is unrecoverable, a flag is received from the sensor fusion
module and the FSM switches back to the “Path-Point Keeping” state. Carry-
ing these flags, the navigation module reduces the maximum allowed speed to
reduce the risk of collision, and the sensor fusion module adjust the coefficients
correspondingly as well. The “Road Following” state is designed for the situation
when the image processing module detects a road. For the situation when ION
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Fig. 6.3. ION’s finite state machine of the navigation module

is stuck on the road, the FSM switches to the “Rollback” state. In this state,
ION drives back along the trajectory it records till the point where another path
can be initiated.

We also introduced a watch-dog to prevent the vehicle from being stuck for-
ever. The vehicle might be stuck because the robotic operations couldn’t adjust
vehicle status amidst obstacles in six tries, or false obstacles block the path
totally, or because of some other unexpected events. Anyway, the watch-dog
was not designed to deal with normal situations. When ION’s position does not
change or the FSM rests in a state other than the “Path-Point Keeping” or
“Obstacle Avoidance” state for a certain period of time, the FSM automatically
resets to the “Path-Point Keeping” state and stays in this state regardless of
the obstacles and other events until ION reaches a certain distance. During the
FSM resetting process, a high throttle value is sent to the lower level controller
so that ION can possibly get out of holes or run over some obstacles like small
bushes. With the watch-dog design, ION might be able to get out of stuck in
many cases and gain chances to continue.

6.4 Navigation Module

ION’s navigation module, also called the high level controller, plans or replans
the local path when the machine state is at the “Path-Point Keeping” or “Obsta-
cle Avoidance” state. The navigation module checks the status of the local path,
which consists of 10 pathpoints, at 10Hz. If the path comes across obstacles in
the local map, or ION has reached the 5th point of the local path, or ION is
indicated passing a waypoint, the navigation module then generates a new local
path. Figure 6.4 shows the procedure to generate the local path. There are
two path generation algorithms implemented in the navigation module: the
smooth path generation algorithm and the obstacle avoidance algorithm.
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Fig. 6.4. The flow chart for path planning

6.4.1 Smooth Path Generation

A smooth path, whose curvature is continuous, is generated to connect the way-
points. Let {Pi, i = 0, 1, 2, · · · } denote the coordinates of the waypoints, where
Pi := (xi, yi)T ∈ R2. To generate a path, {Pi(s), 0 ≤ s ≤ 1} ⊂ R2, connecting
Pi and Pi+1, a polynomial interpolation is applied:

Pi(s) = A0(s)Pi−1 + A1(s)Pi + A2(s)Pi+1 + A3(s)Pi+2, 0 ≤ s ≤ 1 (6.1)

where Ai(·)’s are scalar polynomial coefficient functions. According to the theory
of planar curves (Hsiung, 1998), for a certain s ∈ [0, 1], the vector tangent to
the curve and associated at the point Pi(s) is defined by

Ti(s) = lim
h→0

1
h

(Pi(s + h) − Pi(s))

=A′
0(s)Pi−1 + A′

1(s)Pi + A′
2(s)Pi+1 + A′

3(s)Pi+2

(6.2)

where A′
i(·) is the derivative of function Ai(·). Define the unit tangent vector as

ui(s) := Ti(s)/‖Ti(s)‖. Ai(·)’s are selected by satisfying⎧⎪⎨
⎪⎩

Pi(0) = Pi

Pi(1) = Pi+1

ui−1(1) = ui(0)
(6.3)

According to (6.1), {Pi(s), 0 ≤ s ≤ 1} is a planar curve determined by four
waypoints (Pi−1, Pi, Pi+1, Pi+2). For curve {Pi−1(s), 0 ≤ s ≤ 1}, it is generated
by (Pi−2, Pi−1, Pi, Pi+1) and connects Pi−1 and Pi. These two curves have one
common point, Pi. By satisfying ui−1(1) = ui(0) in (6.3), the unit tangent vector
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Fig. 6.5. Smooth path generation examples: a) A smooth path generation example: the
curve is generated by equation (6.1) with the coefficient polynomials defined in equation
(6.4); b) An example of smooth path generation: The solid line with dots (red) is the
the planned path that ION generated in the NQE, GC05. The path smoothly connects
the waypoints, which are located at the center of each circle. The solid curve (blue)
is the trajectory that ION traveled by following the planned path. These two curves
almost overlap, which shows ION followed the planned path very well.

of the curve {Pi−1(s)} is the same as that of the curve {Pi(s)} at the point Pi.
We say these two curves are smoothly connected.

In ION, we select Ai(·)’s in (6.1) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0(s) = (−s + 2s2 − s3)/2

A1(s) = (2 − 5s2 + 3s3)/2

A2(s) = (s + 4s2 − 3s3)/2

A3(s) = (−s2 + s3)/2

(6.4)

Applying the coefficient polynomials (6.4) to (6.1), the result satisfies the con-
straints in (6.3) so that the path generated for ION is smooth. For example, given
eight points, {P1, · · · , P8}, arbitrarily in a map, the above method generates a
smooth path connecting them. The result is shown in Figure 6.5(a). In ION, we
use cubic polynomials for Ai(·)’s. The selection of the order of the polynomials is
somewhat arbitrary and a third order polynomial satisfies the given constraints.
With higher order polynomials that satisfy (6.3), we can obtain similar results.
Figure 6.5(b) shows part of the trajectory that ION generated in the NQE and
it followed the smooth path very well.

6.4.2 Obstacle Avoidance

In the case that the smooth path comes across some obstacles, the FSM stays
in the “Obstacle Avoidance” state and a collision-free path is generated by the
obstacle avoidance algorithm.

Since the late 1970s, extensive effort has been exerted to develop obsta-
cle avoidance algorithms, see (Latombe, 1991) and references therein. The
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research can be classified into two major areas: the global path planning
(Kambhampati & Davis, 1986), (Hwang & Ahuja, 1988), (Warren, 1989) and
the real-time local motion planning (Khatib, 1985), (Borenstein & Koren, 1989),
(Adams & Probert, 1990), (Stentz, 1994). In GC04 and GC05, the race routes
were described with road definition data that specified the GPS coordinates,
width and speed limit for each section. The provided data was quite dense and
the global path planning methods were not needed in those events. On the other
hand, the local motion planning methods dynamically guide the AGV according
to the locally sensed obstacles, which requires less prior knowledge about the
environment. The fuzzy controller described in this paper is a real-time local
motion planning method, which is more suitable and practical for ION in the
Grand Challenge events, since ION senses only the nearby obstacles.

Fuzzy logic navigation methods have been studied and implemented in small
robots, rovers and AGVs with small turning radius, see (Saffiotti, 1997),
(Hodge & Trabia, 1999), (Seraji, 2000), (Lee, Lai, & Wu, 2005) and references
therein. As noted by Saffiotti (Saffiotti, 1997), fuzzy logic has the feature to
make it a useful tool to cope with the large amount of uncertainty that is inher-
ent in natural environments. Most of these approaches select the direction by
weighting the effort of target-approach and the need of obstacle-avoidance. How-
ever, few fuzzy logic approaches concern the dynamic and kinematic constraints
of a big AGV like ION. For ION, if the two consecutive steering decisions are
totally opposite, such as left turn and right turn, the steering decisions would
neutralize with each other. Therefore, frequent jumps between two consecutive
steering decisions should be avoided. Also, since the turning radius of ION is
considerably large, it is preferable to respond to obstacles before being too close
to them.

In the remainder of this subsection, we introduce two heterogeneous fuzzy
controllers for ION’s obstacle avoidance path planning system. The steering con-
troller emphasizes goal reaching and plays an important role in obstacle avoid-
ance simultaneously. Fuzzy rules are proposed for ION to approach the goal and
avoid obstacles at the same time. The speed controller prevents collisions with
obstacles. The rules in each fuzzy controller are defined for reacting in different
situations and each rule represents a certain behavior character based on human
drivers’ knowledge. These two fuzzy controllers collaborate to direct ION to the
goal without collision with obstacles.

6.4.2.1 Steering Fuzzy Controller Design

Figure 6.6 shows one example scenario that explains the basic steering rules.
Based on the local sensor ability, only the boundary of the obstacle in the local
sensor region is detectable. The shape and size of the whole obstacle outside of
the sensing region are not known. Practically, we expand the boundary of the
obstacle by half the size of the vehicle so that we can consider the vehicle as
a mass point. The expanded obstacle boundary is called the “real boundary”,
henceforth. Furthermore, to ensure the safety of ION, the obstacles is further
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a. Local navigation scenario

b. The scanning distance to the obstacle’s boundaries at time k

Fig. 6.6. An example scenario. In the figures, [θmin, θmax] is the scanning angle
range of interest; θRD and θSD are the decision angle based on the real boundary and
safe boundary, respectively. D1 is the distance to the obstacle in the current heading
direction. dCR is the criterion distance. dmax is the maximum scanning distance.

enlarged to create a “safe boundary”, so that the real boundaries are enveloped
with the safe boundaries. By the two-step obstacle extension, each obstacle
has two different boundaries, the “real boundary” and the “safe boundary”.
Figure 6.6 illustrates the boundaries and the scanning distances.

The obstacle avoidance algorithm to be presented in this subsection origi-
nates from a heuristic non-fuzzy algorithm which selects the direction based on
the distance to obstacles and the difference to the goal direction. The original
algorithm works well when there are few obstacles in the environment and the
obstacles are all convex-shaped. However, it has deficiencies in some special sit-
uations, such as candidate set being empty, or selecting wide left or right instead
of finding a path in the front, or being stuck at some obstacle compositions, or
the vehicle swinging toward an obstacle.

In order to overcome these shortcomings, four fuzzy rules are developed one by
one and together they work very well. These fuzzy rules are defined to reshape the
scanning distances curve and then the steering strategy is to select the direction



192 Q. Chen and Ü. Özgüner

with the smallest angle difference to the goal direction and enough distance to
the obstacles. The formulas are expressed as follows:

I(k) = {θ|DR(θ) − Δ(θ) > dCR,R(k)}
J (k) = {θ|DS(θ) − Δ(θ) > dCR,S(k)}

dCR,R(k) = min{d0
CR,R, max

θ
{DR(θ) − Δ(θ)} − ε}

dCR,S(k) = min{d0
CR,S , max

θ
{DS(θ) − Δ(θ)} − ε}

(6.5)

and
θRD(k) = argmin

θ∈I
{|θ − φ(k)|}

θSD(k) = argmin
θ∈J

{|θ − φ(k)|}
θD(k) = Select(θRD(k), θSD(k), φ(k))

(6.6)

where I and J are the candidate sets of angles at which the distance to the ob-
stacle is longer than the criterion distance, dCR,R(k) and dCR,S(k), respectively.
Δ(·) reshapes the obstacle scanning distances curves, DR(·) and DS(·), so that
different directions have different priorities to be selected from. The rule that
decides Δ(·), called the the “Focus” rule, is described later. d0

CR,R and d0
CR,S

are design parameters to prevent the algorithm from being sensitive to obstacles
very far away, known as the far-sighted situation, where there may be many
false obstacles. ε is a small positive constant so that the candidate sets are both
nonempty.

Equations (6.5) and (6.6) give the method to find two directions, θRD(k) and
θSD(k), as decisions based on the real boundary and the safe boundary scanning
distances, respectively. Both decisions attempt to reach the goal point and keep
the obstacle away for certain distances, dCR,R(θ, k) and dCR,S(θ, k), respectively.
When ION is far away from the obstacles, dCR,R(k) = d0

CR,R. Otherwise, when
ION is close to the obstacles, the steering controller chooses the direction with
the longest distance to the obstacles. In other words, the direction toward open
space is selected.

A. The Selection Rule

Let θD(k) be the final decision direction at time k. It is selected from either
θSD(k) or θRD(k) by calculating |θSD(k) − θRD(k)| and |θSD(k) − φ(k)|, where
φ(k) is the goal direction. Thus, the steering strategy reaches the goal and avoids
obstacles at the same time. Table 6.1 shows the selection rule noted by “Select”
in (6.6).

The “Small”, “Medium” and “Large” in Table 6.1 are fuzzy descriptions.
The defuzzification function picks either θSD(k) or θRD(k), as the result of
θD(k). This ensures that the result would not be some value between θSD(k)
and θRD(k).

Remark 1. If θSD(k) is chosen to be the steering decision, then there is an
open space in the direction so that vehicle is allowed to pick up a relatively high
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Table 6.1. The selection rule

|θSD(k) − θRD(k)|

|θSD(k) − φ(k)|

θD(k) = Small Medium Large

Small θSD(k) θSD(k) θRD(k)

Medium θSD(k) θRD(k) θRD(k)

Large θSD(k) θRD(k) θRD(k)

speed safely. On the other hand, if θRD(k) is chosen, it can be concluded that
|θSD(k) − θRD(k)| is large, i.e. the θSD(k), presenting the open free space, is in
the other direction, and the chosen direction must be a narrow path. The speed
controller uses this information and sets a relatively low speed setpoint.

B. The Focus Rule

In order to prevent ION from being distracted by side directions and going off
the road, we introduce the “Focus” rules in the steering controller. In the focus
rules, we consider the directions pointing forward and leading to the goal point
to have higher priorities than others.

In (6.5), Δ(·) is introduced to reshape the scanning distances curves, DR(·)
and DS(·). When a direction θ has low priority, the Δ(θ) is then set to a large
value so that the direction θ is less likely to be in the candidate sets, I and J .
By doing so, the steering controller tends to find the path direction with high
priority.

Let Δ1(θ) and Δ2(θ) represent the |θ−θ(k)| and |θ−φ(k)|, respectively, where
θ(k) is the vehicle heading at time k. So, a direction with high priority has a
small values of Δ1 and Δ2. Let (S, MS, M, ML, L) represent (Small, Medium
Small, Medium, Medium Large and Large), respectively. The fuzzy “Focus” rules
that work on the Δ(θ) in the equation (6.5) are as follows:

• If (Δ1 is S) and (Δ2 is S), then (Δ is S): if θ points forward and leads to
the goal direction, then θ has the highest priority to be chosen, i.e. DR(θ) or
DS(θ) has the smallest deduction.

• If ((Δ1 is S) and (Δ2 is M)) or ((Δ1 is M) and (Δ2 is S)) or ((Δ1 is M)
and (Δ2 is M)), then (Δ is MS).

• If ((Δ1 is S) and (Δ2 is L)) or ((Δ1 is L) and (Δ2 is S)), then (Δ is M).
• If ((Δ1 is L) and (Δ2 is M)) or ((Δ1 is M) and (Δ2 is L)), then (Δ is ML).
• If (Δ1 is L) and (Δ2 is L), then (Δ is L): if the angle θ neither points forward

nor leads to the goal direction, it has low priority and the deduction is large.

Figure 6.7 is an example of how the “Focus” rules work. The −Δ(θ) forms a Λ-
shaped curve when θ(k) is close to φ(k). Note that the curve can be an M-shaped
curve when θ(k) is separated away from φ(k). For those θs that Δ(θ) > DR(θ),
we have θ /∈ I ∪ J according to the focus rules. Therefore, these directions are
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Fig. 6.7. The example of the focus rules: The upper left figure is the “real world” and the
upper right figure displays the obstacle boundaries, both real and safe boundaries. The
scanning distances to the boundaries are shown in the middle figure. The dmax −Δ(θ) is
a Λ-shaped curve shown in the figure. The adjusted real distance and safe distance curves
are plotted in the bottom figure. By selecting the direction θD as the steering decision,
the steering controller generates a curve of path points shown in the upper right figure,
following which the AGV avoids the obstacles and approaches the goal point.

excluded from being selected as the decision direction. By doing so, the steering
controller opens a priority window for those directions that point forward and
lead to the goal point. Thus, the steering controller ignores the distractions from
low priority directions. A direction with low priority is selected only when the
directions with higher priority are all blocked by obstacles.

In this fuzzy method, triangle membership functions are used to define the
fuzzy sets for the Δ1 and Δ2, as shown in Figure 6.8. The values assigned to
(S, MS, M, ML, L) determine the height of the hump. The larger the values are,
the higher the hump is. The values of (a, b, c, d) determine the membership func-
tion, consequently determine the width of the hump in the curve of −Δ(θ). if
the values are small, −Δ(θ) is not reduced only in a narrow range of directions.
Thus, the “Focus” effort is enhanced. On the other hand, if the values are large,
then the “Focus” effort is neutralized and the navigator has a wide range of
direction to select from.

C. The Focus vs. Search Rules

The focus rules prevent the distraction by side directions quite well. Neverthe-
less, the focus rules trade the ability in searching the feasible directions for the
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Fig. 6.8. The membership functions for Δ1 and Δ2
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Fig. 6.9. The membership functions for Δ1 and Δ2

distraction prevention. It works well when there are few obstacles in the envi-
ronment. When there are many obstacles in the environment, however, the focus
rules impair the search capability of the navigator. Furthermore, as stated pre-
viously, the values of (a, b, c, d) in the membership function of the fuzzy sets of
Δ1 and Δ2 are important parameters of the focus rules. The smaller values of
(a, b, c, d) correspond to stronger “Focus” and vice versa.

Motivated by this, the “Focus” rules are improved by considering the fuzzy
evaluation of the AGV status. The v(k), the vehicle’s speed, is regarded as the
index of vehicle’s situation: the lower the speed is, the more search capability is
required. Therefore, the equations are:

S(k) = FS(v(k), V0)

[a(k) b(k) c(k) d(k)]T = F (S(k))
(6.7)

where S(k) is the situation classification, a membership function value of the
fuzzy sets: exploring and travelling.

The membership function is shown in Figure 6.9. The rule FS(·) states: When
the v(k)/V0 is small, S(k) is “exploring” (EX). On the other hand, when v(k)/V0
is large, S(k) is “travelling” (TR). The AGV speed, v(k), is classified by com-
paring rather to the base speed than to the absolute values. The base speed, V0,
is provided to the AGV as the current speed limit. In the “Focus vs. Search”
rules, the values of (a, b, c, d) are no longer fixed. The fuzzy rules in (6.7) are as
follows:

• If S(k) is EX , then the values of (a, b, c, d) increases: When the AGV is near-
ing obstacles, we assume that the speed controller slows down the AGV. In
this case, the S(k) becomes more “EX”, and the focus rules are neutralized.
In other words, the “Search” capability is enhanced.

• If S(k) is TR, then the values of (a, b, c, d) reduces: vice versa, the focus rules
are enhanced in this case.
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Fig. 6.10. The example of ION’s path planning in the two-car-passing section at
NQE, GC05. The black stars are the obstacles recovered from ION’s sensor logs. Two
cars were placed in a corridor of 15ft half-width, as shown in the figure. The distance
between the two cars was about 100ft. ION passed the two cars, from left to right in
the figure, at the speed of 10 mph, the highest speed permitted in the section.

By applying the rules in (6.7), the AGV is much less likely to be stuck in front
of the concave-shaped obstacles. When the AGV approaches the obstacles, the
speed is reduced so that the “priority window” is opened up for search and the
“focus” effect is neutralized. The “Search” rules help to prevent the AGV from
being stuck.

D. The Persistence Rules

Because of the existence of false obstacles, some obstacles may popup or disap-
pear suddenly in the local sensor map. This brings a problem that the discontin-
uous outputs from the steering controller causes the oscillation of the vehicle’s
heading. In the worst situation, the two consecutive steering decisions may neu-
tralize each other.

To solve this problem, the value of θD(k − 1) is introduced to adjust Δ(θ) in
the focus fuzzy rules. By doing so, the steering controller adjusts the searching
window and raise the priority of directions near to the former decision, θD(k−1).
Therefore, the steering controller maintains the persistence. The “Persistence”
rules weigh on the last decision and give the controller a characteristic of persis-
tence so that the zigzag performance of the AGV is prevented.

When the decision direction is selected, a sequence of pathpoints is generated
for the low-level controller. Figure 6.10 shows the path planning result of ION in
the two-car-passing section in the NQE, GC05. The dotted lines are the section
boundary, the solid line is the trajectory that ION runs and the dark stars
are the detected obstacles. Three sections of the 10-dot-curve are the planned
path, which avoids the obstacles and stays within the section boundaries. Most
planned paths are not shown in order to make the figure clear. ION’s trajectory
and planned paths almost overlap, which shows that our low level controller
follows the planned path very well.

6.4.2.2 Speed Fuzzy Controller Design

The speed controller’s main aim is to avoid the collision into the obstacles.
Moreover, due to the physical constraint of the vehicle, sharp turning at high
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Fig. 6.11. The membership functions for D1 and D

speed should be avoided to prevent the AGV from rolling over. The velocity
fuzzy controller in ION consists of two sets of rules: the Anti-collision rules and
the Safe-steering rules, shown in the following:

Vs(k) = min[V0, A(D1, D), T (Δθ)]
Δθ = |θD(k) − θ(k)| (6.8)

Where D1 represents the distance to obstacles in the front of vehicle and D
is the value returned from path-planning procedure as in Figure 6.4. Δθ is the
angle difference between the decision angle and current heading. V0 is the speed
limit allowed for ION. The final speed set point value is Vs(k).

A. The Anti-collision Rules

The main purpose of the collision rules is to prevent the collision. Let A represent
the anti-collision rules. The fuzzy rules, A, have two inputs, D1 and D. Let
(S, MS, M, ML, L) have the same meaning as stated above, and let (DA) denote
the fuzzy set of dangerous distance. The rules are stated as follows:

• If (one of (D1, D) is DA), then A is STOP : the vehicle should stop when
the distance to the obstacles is too close and it is dangerous to move on.

• If (D1 is S), then A is S: the vehicle speed should be reduced when it is close
to the obstacles.

• If (D1 is M and D is S), then A is MS.
• If (D1 is M and D is M), then A is M .
• If (one of D1 (D1, D) is L) and (the other is M), then A is ML.
• If (both of (D1, D) are L), then A is L: no obstacle is nearby, the speed is

set to a high value.

The boundaries of the fuzzy set is selected according to the dynamic per-
formance of the vehicle and how much risk you want to take. The membership
functions used in our system are shown in Figure 6.11. The membership functions
for D1 and D are the same in our system, although they could be different in the
boundaries of the fuzzy sets. Note that the Dsafe, the minimum safe distance,
is marked in the figure, which is totally within the fuzzy set DA. Therefore, the
AGV stops before reaching the distance Dsafe so that collisions are prevented.
Should the vehicle be stopped by the rules, for example it is dangerously close
to an obstacle, the machine state would switch to the “Rollback” state and wait
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to be recovered by a sequence of robotic operations. In that case, the vehicle’s
heading is adjusted for the next try.

B. The Safe-Steering Rules

The other issue is the safety in making a turn. If a high speed set point and the
sharp-steering command are sent to the AGV at the same time, it may cause
the AGV to roll over. More importantly, it has been observed in our experiments
that the low level controller would have some overshoot in path following during
sharp turns, thus may cause the collisions with obstacles even if the planned
paths are obstacle-free.

To prevent the danger and reduce the overshoot in path following, the safe-
steering rules, denoted as T , are introduced. We adopt the value of |θD(k)−θ(k)|,
say Δθ, to represent the steering command. The safe-steering rule T says: If (Δθ
is S) then T is L; If (Δθ is M) then T is M ; If (Δθ is L) then S is L. By doing
so, the speed set point of the AGV is reduced when the sharp steering command
occurs.

6.5 Performance of the Navigation Module

A simulator has been built to test the navigation algorithm designed in this
paper. In the simulator environment, the obstacles are already expanded, and
the vehicle is regarded as a point mass. The vehicle model in this simulator is
commonly known as the Dubins’ car model with a minimum turning radius. The
kinematic equations are written as:

ẋ = u cos θ

ẏ = u sin θ

u̇ = a

θ̇ = ω

(6.9)

where x and y are the position coordinates. θ is the yaw angle. u stands for the
linear velocity, which is assumed to be positive. a is the acceleration. The ω is
the angular velocity, a control variable. The model is subject to the constraint:

∣∣∣ω
u

∣∣∣ ≤ 1
R

(6.10)

so that a minimum turning radius R is imposed. In this simulator, we can ran-
domly generate obstacles over a terrain and arbitrarily select a series of check
points. Figure 6.12 shows the AGV trajectory over such a terrain. The trajectory
of the AGV, the smooth (blue) line in the figure, indicates that the AGV followed
the check points, avoided all obstacles and reached the final goal smoothly and
safely in the end. The navigation module has been tested with different obstacle
densities over 100 times and failed in less than five cases and two of which didn’t
have feasible path since the obstacles are generated randomly. In the other three
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Fig. 6.12. The AGV trajectory over the obstacle-occupied terrain. The AGV is shrunk
to a point. The “locally sensed obstacles” are detected by the vehicle and plotted on
the map only when they are in the vehicle’s sensing range. As a consequence, only
those previously unknown obstacles that are near the vehicle trajectory are displayed
in the result map as the “locally sensed obstacles”.

failed cases, the AGV was stuck because the check points misled the AGV into
a wrong fork, which shows that the obstacle avoidance algorithm in this pa-
per is not sufficient in finding a path through a very complicated environment.
Nevertheless, the algorithm is sufficient for the GC events.

Figure 6.13 shows the test on small robots. In the indoor robot test, we put
an obstacle just behind a gate formed by two obstacles. In this case, even if the
obstacles were close to each other, the navigation algorithm was still able to find
a path and navigate the robot along the corridor without touching any obstacles.
We tested the navigation module for over 20 times on small robots with different
obstacles positions and configurations. The small robot failed twice to get to the
goal because of the extreme closeness of certain obstacles.

The performance of the navigator designed in this paper was demonstrated
by ION in the DARPA GC05 event. ION completely traversed the NQE1

course successfully four times2, which fully exhibited the obstacle-avoidance and
goal-approaching capabilities of the navigation module and our AGV system.
Figure 6.14 shows ION successful passing a car in the NQE.
1 The National Qualification Event (NQE) in the 2005 GC was the 2.7 mile test track

DARPA used as the semifinals. The track provided a series of obstacles and the
AGVs are required to go through 51 “gates”. It also had a 100ft metal “tunnel”
where GPS was lost.

2 ION tried the NQE course five times in total and only failed once due to a mechanical
problem.
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Fig. 6.13. Test obstacle avoidance algorithm on small robots. We used an all-terrain-
robot-vehicle (ATRV) for outdoor tests and a PIONEER P3-AT robot for indoor tests.

Fig. 6.14. An example: ION’s passing a car in NQE, GC05

In GC05, the race route was described by a road definition file which consists
of 2935 waypoints in total. Each waypoint was specified by GPS coordinates, the
width and the maximum allowed speed of section. The total route distance was
about 132 mile. Running with complete autonomous operations, ION covered
about 30miles in the Nevada Desert and was terminated at the 576th waypoint
from the start. The maximum speed ION reached in some sections was about
25 mph. During the race, ION experienced twice LIDAR failures and both were
recovered in two minutes. Without the recovery design, ION could not have
reached that far. Also, ION got into the “robotic operation” state twice. In the
first set of robotic operations, ION tried five times back-and-forth operations
before it overcame an obstacle. In the second set of robotic operations, ION
was terminated. However, neither DARPA report nor ION’s race log indicated
that ION had had any collisions or gone off the road in the GC05 race. Also,
ION was still totally driveable and stayed in the middle of the road when it was
terminated. We guess it was because of the slowness in ION’s gear shifting3. Since
3 We were not provided with official reasons of the termination.
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it took up to one minute for ION to shift its gear position in some situations,
which might be intolerably slow, the second set of robotic operations might
present the illusion that ION came to a halt and thus caused the termination.
With the watchdog design in the FSM described in Section 6.3, given more time,
we expect ION could have reached further in GC05 and even had the potential
to finish the whole course.

6.6 Conclusion

ION, the working off-road AGV from team Desert Buckeyes, is a successful in-
tegration of a series of technologies, such as sensor fusion, navigation, vehicle
control, signal processing, drive-by-wire technology, reliable software and map-
ping, etc. According to ION’s performance in GC05, we realize that the robust-
ness design is of great importance since some modules may not work properly
in some situations while being off-road. We have invested extensive effort to im-
prove the robustness of ION, for example, introducing the “Robotic Operation”
and “Alarm” states in the FSM design, realizing the recovery design of sensor
failures, and implementing the watchdog design for the FSM. Without these,
ION could not have reached that far. Nevertheless, ION didn’t finish the race
because of some unexpected events. The second lesson we learn is that practicing
in desert is also important for the race. We have had a lot of off-road practice
yet we tested ION in desert for less than one week. Although this one-week
testing improves the ION’s desert performance greatly, it is still not enough.
Practicing in the similar environment to the race can reduce the uncertainties
and unexpected events.

This paper briefly introduces the system structure of ION and focuses on
ION’s navigation module and the obstacle avoidance algorithm utilizing fuzzy
logic. The steering fuzzy controller, derived from a basic steering strategy, utilizes
several fuzzy rules to deal with complicated situations so that the AGV can reach
the goal point and avoid obstacles. The steering controller deals with the goal
approaching and obstacle avoidance at the same time, which helps the AGV
approach the goal smoothly. The speed controller utilizes fuzzy rules to prevent
the AGV from colliding with obstacles and enhance the vehicle path following
performance. ION’s performance in GC05, both in NQE and the race, justifies
the design of the real-time navigation module described in this paper.
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Summary. This paper presents the Golem Group/UCLA entry to the 2005 DARPA
Grand Challenge competition. We describe the main design principles behind the de-
velopment of Golem 2, the race vehicle. The subsystems devoted to obstacle detection,
avoidance, and state estimation are discussed in more detail. An overview of the vehicle
performance in the field is provided, including successes together with an analysis of
the reasons leading to failures.

7.1 Overview

The Golem Group is an independent team of engineers formed to build a vehicle
for the 2004 DARPA Grand Challenge (DGC). For the 2005 DARPA Grand
Challenge, the Golem Group and UCLA’s Henry Samueli School of Engineering
and Applied Science joined forces to build a second autonomous vehicle, Golem
2. Performance highlights of this vehicle are summarized in Table 7.1.

The novel aspect of the DGC was to require high-speed autonomous driving in
the unstructured or semi-structured environment typical of rough desert trails.
GPS waypoint-following was necessary, but not sufficient, to traverse the route,
which might be partially obstructed by various obstacles. In order to have a good
chance of completing the course, vehicles needed to drive much faster, yet have
a lower failure rate, than previously achieved in an off-road environment with-
out predictable cues. High-speed driving over rough ground posed a vibration
problem for sensors.

7.1.1 Relation to Previous Work

Prior to the DGC, unmanned ground vehicles had driven at very high speeds
in structured, paved environments [Dickmanns, 1997, 2004]. Other vehicles had
operated autonomously in unstructured off-road environments, but generally
not at very high speed. Autonomous Humvees using ladar to detect obstacles
in an off-road environment have been developed at NIST [Coombs et al., 2000,
Hong et al., 2000]. The U.S. Army eXperimental Unmanned Vehicle
[Bornstein and Shoemaker, 2003] also used ladar to detect obstacles and could
navigate unstructured rough ground at somewhat over 6 km/hr. Rasmussen

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 205–243, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Table 7.1. Golem Group / UCLA performance in the 2005 DARPA Grand Challenge

NQE Performance Highlights
9 min 32 sec NQE run clearing
49/50 gates and 4/4 obstacles

Only Stanford, CMU, and IVST made faster runs
clearing all obstacles
Only Stanford and CMU made faster runs clearing
at least 49 gates

12 min 19 sec NQE run clearing
50/50 gates and 5/5 obstacles

Only Stanford, CMU, Princeton, and Cornell
made faster flawless runs

GCE Performance Highlights
Peak speed (controlled driving) 47 mph
Completed 22 race miles in 59 min 28 sec
Anecdotally said to be fastest vehicle reaching 16-mile DARPA checkpoint
Crash after 22 miles due to memory management failure

Fig. 7.1. Golem 2 driving autonomously at 30 miles per hour

[2002] used a combination of ladar and vision to sense obstacles and paths
in off-road environments. The Carnegie Mellon University Robotics Institute
had perhaps the most successful and best-documented effort in the first DGC,
building an autonomous Humvee which was guided by ladar [Urmson, 2005,
Urmson et al., 2004].



7 The Golem Group / UCLA Autonomous Ground Vehicle 207

Fig. 7.2. Golem 1 negotiating a gated crossing in the 2004 DARPA Grand Challenge.
(Photos courtesy of DARPA).

Golem 1, our own first DGC entry, used a single laser scanner for obstacle
avoidance. Golem 1 traveled 5.1 miles in the 2004 Challenge, before stopping on
a steep slope because of an excessively conservative safety limit on the throttle
control. This was the fourth-greatest distance traveled in the 2004 DGC, a good
performance considering Golem 1’s small total budget of $35,000.

Our attempts to improve on the performance of previous researchers were
centered on simplified, streamlined design—initially in order to conserve costs,
but also to enable faster driving by avoiding computational bottlenecks. For
example, we relied primarily on ladar for obstacle avoidance, but unlike the
majority of ladar users, we did not attempt to build a 3D model of the world
per se. Instead we only attempted to detect the most important terrain features
and track the locations of those on a 2D map. Golem 1, with its single ladar
scanner, may have gone too far in the direction of simplicity, and Golem 2
carried multiple ladars to better distinguish slopes and hillsides. Ladar obstacle
detection is further discussed in Section 7.3.

As another example of simplification, our path planning process considers pos-
sible trajectories of the truck as simple smooth curves in the 2D plane, with cur-
vature of the trajectory as a measure of drivability and distance to the curve as
a proxy for danger of collision. We do not consider obstacles in a configuration
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space of three dimensions, much less six dimensions. Our approachmight be inade-
quate for navigating a wholly general,maze-like enviroment, but more importantly
for our purposes, it gives fast results in the semi-structured case of a partially-
obstructed dirt road. Trajectory planning is discussed further in Section 7.4.

We did experiment with some vision systems in addition to ladar. Mobileye
Vision Technologies Ltd. provided Golem 2 with a monocular roadfinding system,
which is discussed in Section 7.6.1 and also in Alon et al. [2006]. This could be
considered as extending the cue-based paved-environment work of Dickmanns,
and of Mobileye, to an unpaved environment. Experiments with a Toshiba stereo
vision system are described in Section 7.6.2.

7.2 Vehicle Design

Each of our vehicles was a commercially-available pickup truck, fitted with
electrically-actuated steering and throttle, and pneumatically-actuated brakes.

We felt it was very important that the robot remained fully functional as a
human-drivable vehicle. Golem 1 seats two people while Golem 2 seats up to five.
A passenger operated the computer and was responsible for testing, while the
driver was responsible for keeping the vehicle under control and staying aware of
the environment. During testing, it was very convenient to fluidly transition back
and forth between autonomous and human control. Individual actuators (brake,
accelerator, steering) can be enabled and disabled independently, allowing isola-
tion of a specific problem. Having a human “safety driver” increased the range
of testing scenarios we were willing to consider. Finally, having a street-legal
vehicle greatly simplified logistics.

Accordingly, a central principle behind actuation was to leave the original
controls intact to as great an extent as possible, in order to keep the vehicle
street legal. The steering servo had a clutch which was engaged by a pushrod
that could be reached from the driver’s seat. The brakes were actuated by a
pneumatic cylinder that pulled on a cable attached, through the firewall, to the
back of the brake pedal. The cable was flexible enough to allow the driver to
apply the brakes at any time. The pressure in the cylinder could be continuously
controlled via a voltage controlled regulator. A servo was attached directly to
the steering column.

A second design aim was to keep the computational architecture as simple as
possible. The core tasks of autonomous driving do not require a large amount
of computational power. We worked to keep the software running on a single
laptop computer. Unburdened by a rack full of computers, we were able to retain
working space in the vehicle, but more importantly, any team member could plug
in their laptop with a USB cable and run the vehicle. A block diagram of the
architecture is shown in Figure 7.3.

7.2.1 Sensors

The sensors mounted on Golem 2 for vehicle state estimation included a Novatel
ProPak LBPlus differential GPS receiver with nominal 14-cm accuracy using
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Fig. 7.3. Block diagram of the Golem vehicle architecture

OmniStar HP correction; a BEI C-MIGITS inertial measurement unit (IMU); a
custom Hall encoder on the differential for odometry with approximately 10-cm
accuracy; and a 12-bit encoder for measuring the steering angle. Vehicle state
estimation is discussed further in Section 7.5.

The sensors used for terrain perception included a Sick LMS-221 ladar, which
swept a 180-degree arc in front of the vehicle measuring ranges up to 80 meters
at 361 samples/sweep, 37.5 sweeps/second, with the samples interleaved 0.5 de-
grees apart. There were also four Sick LMS-291 ladars, similar in most respects
except that they each swept a 90-degree arc while collecting 181 samples/sweep,
75 sweeps/second. The arrangement and function of the ladars is further dis-
cussed in Section 7.3. A monocular camera system from Mobileye, used for road
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finding, was mounted at the “hood ornament” position, while a stereo system
from Toshiba looked out through the windshield.

The On-Board Diagnostics Bus II (OBDII) provided limited access to vehicle
data; it was mainly used to control the vehicle’s horn.

7.2.2 Software

In order for multiple developers to work in parallel, it was plain we needed a
system that would give us the freedom to write code in diverse places like deserts
and stadium parking lots while still maintaining all the features of a revision
control system. We found this in the peer-to-peer revision control system, darcs
[Roundy, 2005], which maintains repositories containing both source code and a
complete history of changes, and allows a developer to push or pull individual
patches from one source repository to another. Using darcs, we achieved a very
tight development-test cycle despite our diverse working environments.

The software ran on a Linux laptop and was divided into two main appli-
cations. The program which made decisions based on sensor input, controlled
the actuators, and recorded events is known as golem. It had no connection to
the visualization software dashboard other than through the log files it created,
which were human-readable plain text. Besides being written to disk, these log
files could be piped directly from golem to dashboard for realtime visualization
or replayed offline by dashboard at a later time.

Commands could be typed directly to golem at the console or received from
dashboard over a UDP port. The commands were designed to be simple and
easily typed while driving in a moving vehicle on a dirt road. While this was
convenient, it might have been even more convenient to be able to use an analog
control or at least the arrow keys to adjust control parameters in real time.

7.2.2.1 Golem

The main software for data capture, planning, and control, golem consisted of
two threads. The main thread was completely reactionary and expected to be
realtime; it took in data from the sensors, processed it immediately, and sent
commands to the actuators. The low level drivers, the state estimators, ladar and
obstacle filters, the road/path follower, the velocity profiler, and the controllers
all ran in this thread. A second planning thread was allowed to take more time
to come up with globally sensible paths for the vehicle, based on snapshots of
the accumulated sensor data received at the time the thread was initiated.

Golem could be driven by realtime sensor data, by a simple simulator, or from
previously recorded log data. The simulator was invaluable for debugging the
high level behaviors of the planner, but its models were not accurate enough to
tune the low level controllers. The replay mode allowed us to debug the ladar
obstacle filters and the state estimators in a repeatable way without having to
drive the vehicle over and over.
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7.2.2.2 Dashboard

Dashboard was created from scratch using C, Gtk+2, and OpenGL, to be an
extensible visualization tool which would allow us to play back our log files and
learn from their contents. A typical screenshot is shown in Figure 7.4.

The core of dashboard consists of a log file parsing library, an OpenGL rep-
resentation of the world, and a replaying mechanism which controls the flow of
time. Dashboard takes as input a log file from disk, standard input, or a UDP
network connection, and uses rules described in a configuration file to convert
human-readable log lines into an internal representation that is easy for other
program components to index and access. Log lines are parsed as soon as they
are available, by the Perl compatible regular expression (PCRE) library. The in-
ternal representation is displayed for the user through the OpenGL window. The
user has the ability to play log files, pause them, rewind, fast-forward, measure
and move around in the rendered world, and selectively view sensor visualizations
they are interested in. This proved indispensable in our development effort.

The data is visualized in a number of different ways, as we found that no
one representation was suitable for all debugging situations. The main section
is a graphical representation of the world which is viewable from a 2d top-down
point of view and also from a 3d point of view. It is rendered using OpenGL.
There is also a section that displays inputs as textual data for precise readings.
Yet another section contains a set of user programmable graphs. Because of
the intentionally generic internal representation, adding a new element to the
visualization, such as data from a new sensor, is a very simple process.

7.3 Ladar Obstacle Detection

We considered a non-traversable obstacle to be an object or ground feature which
(a) represented a rapid apparent change in ground elevation, with slope magni-
tude greater than 30 degrees, or an actual discontinuity in ground surface; (b)
presented a total change in ground height too large for the vehicle to simply roll
over; (c) if discontinuous with the ground, was not high enough for the vehicle
to pass under. This was an adequate definition of “obstacle” for the DARPA
Grand Challenge.1 Since obstacles result from changes of ground elevation, the
most critical information comes from comparisons of surface measurements ad-
jacent in space.

We did not use sensor data integrated over time to build a map of absolute
ground elevation in the world frame, on the hypothesis that this is unnecessarily
one step removed from the real information of interest. Instead, we tried to
directly perceive, or infer from instantaneous sensor data, regions of rapid change
1 Ideally one would like to classify some objects, such as plants, as “soft obstacles”

that can be driven over even if they appear to have steep sides. Other hazards,
such as water or marshy ground, cannot be classified simply as changes in ground
elevation. But this increased level of sophistication was not necessary to complete
the DGC and remains a topic of future work for us.
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Fig. 7.4. Dashboard visualization of Golem 2 entering a tunnel during an NQE run

in ground elevation in the body-fixed frame, and then maintain a map of those
regions in the world frame. We did not concern ourselves with any ground slope
or surface roughness that did not rise to the threshold of making the ground
non-traversable.

7.3.1 Ladar Geometry

We used Sick LMS-291 and LMS-221 laser scanners as our primary means
of obstacle detection. It is interesting that the many DGC teams using two-
dimensional ladars such as these found a wide variety of ways of arranging them.
These ladars sweep a rangefinding laser beam through a sector of a plane, while
the plane itself can be rotated or translated, either by vehicle motion or by ac-
tuating the ladar mount. The choice of plane, or more generally the choice of
scan pattern for any beam-based sensor, represents a choice between scanning
rapidly in the azimuthal direction, with slower or sparser sampling at different
elevation angles, or the reverse.

A ladar scanning in the vertical plane has the significant advantage that the
traversability of the scanned terrain is apparent from a single laser sweep. For
example, it is easily determined from the single vertical-plane scan in Figure 7.5
that the ground is continuous, flat, and traversable from a few feet before the
truck up to the point where there is a non-traversable vertical surface taller than
the vehicle’s wheels.



7 The Golem Group / UCLA Autonomous Ground Vehicle 213

Fig. 7.5. Returns from a ladar oriented in a vertical plane

In our case, a single laser sweep takes 1/75 second and individual sample points
are separated by 1/13575 second. On this time scale it is not likely that motion or
vibration of the vehicle could distort the vertical scan sufficiently to alter this in-
terpretation (make the traversable ground appear non-traversable or vice versa).
Similarly, while small errors in the estimated pitch of the vehicle would induce
small errors in the estimated location of the non-traversableobstacle, it is not likely
that they could cause a major error or prevent the perception of an obstacle in the
right approximate location. Against these advantages is the obvious drawback that
a vertical slice only measures the terrain in a single narrow direction. Even if there
are multiple vertical scanners and/or the vertical plane can be turned in different
directions, the vehicle is likely to have a blinkered view with sparse azimuthal cov-
erage of the terrain, and may miss narrow obstacles.

Conversely, a scan plane which is horizontal or nearly horizontal will provide
good azimuthal coverage, and clearly show narrow obstacles such as fenceposts
and pedestrians, but the interpretation of any single horizontal scan in isolation
is problematic. Lacking measurements at adjacent elevation angles, one cannot
determine if a return from a single horizontal scan is from a non-traversable steep
surface or from a traversable gently sloping one. Therefore the information from
multiple horizontal scans must be combined, but since the crucial comparisons are
now between individual measurements taken at least 1/75 seconds apart instead
of 1/13575 seconds apart, there is a greater likelihood that imperfectly estimated
motion or vibration will distort the data. Small errors in pitch, roll, or altitude
could cause the vehicle to misapprehend the height of a ground contour and lead
to totally erroneous classification of terrain as traversable or non-traversable.

Our approach was to use a complementary arrangement of both vertical and
nearly-horizontal ladars. On the Golem 2 vehicle, there are two nearly-horizontal
ladars and three vertically-oriented ladars mounted on the front bumper. The
idea is that the vertically-oriented ladars are used to form a profile of the general
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Fig. 7.6. Ladars distinguish obstacles from the ground surface

ground surface in front of the truck, in the truck body-fixed frame (as opposed to
a world-fixed frame). The ground model we fit to the data was piecewise linear in
the truck’s direction of motion and piecewise constant in the sideways direction.
The model interpolated the most recent available ladar data. In locations beyond
the available data, the ground was assumed to have constant altitude in the
body-fixed frame.

The apparent altitude of returns from the nearly-horizontal ladars relative to
the ground model was then computed to see if those returns were (a) consistent
with a traversable part of the ground model; (b) consistent with a non-traversable
part of the ground model; (c) apparently from an elevation moderately higher
than the notional ground; or (d) apparently from an object so far above the
notional ground that the vehicle should be able to pass under it. In either case
(b) or (c), the ladar return is classified as arising from a possible obstacle; after
several of these returns are received from the same location at different vantage
points, the presence of an obstacle is confirmed. In practice, an object such as a
parked car will be represented as a cluster of adjacent obstacles.

For example, Figure 7.6 illustrates ladar data from a portion of the NQE course.
The returns from the horizontally-oriented ladars indicated a long straight feature
crossing in front of the vehicle, and two smaller features or clusters of returns. The
three vertical ladars measure the ground profile in three directions and reveal that
the truck is driving towards the foot of an upwards incline. The “long straight
feature” is merely a surface contour of the upward-sloping ground, and therefore,
since the incline is not too steep, should not be considered an obstacle. The two
smaller clusters of returns, however, appear to be at a significant altitude above the
notional ground, and are interpreted as non-traversable obstacles. In fact, these
are traffic cones.
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The entire process is O(n) in the number of ladar measurements n, with a
large array providing O(1) access to accumulated obstacle detections in a given
location. A many-to-one mapping between latitude-longitude coordinates and
cells of the array is needed, with the properties that (a) each connected preimage
of an array cell is at least approximately the same physical size and (b) any
two distinct regions which are mapped to the same array cell are sufficiently
far apart that they will not both need to be considered within the planning
horizon of the vehicle. A simple method, which works everywhere except in the
immediate vicinity of the poles, is to define a latitude-dependent cell size so
that a different integral number of array cells correspond to a fixed extent of
longitude at each latitude. It is acceptable that fewer array cells are needed
further from the equator and therefore some array cells will have more preimage
locations than others. The method could be adjusted to deal with the polar
neighborhoods by exception.

Once confirmed, obstacles persist unless and until a period of time (e.g., one
second) passes with no ladar returns detected from that location, in which case
the obstacle expires. This enables the system to recover from false positive de-
tections and also gives a rudimentary capability to deal with moving obstacles,
since obstacles can disappear from one place and be re-detected somewhere else.
However we did not attempt to form any velocity estimate of moving objects,
and the robot generally operates on the assumption that other objects have zero
velocity in the world frame.

In order to save computational time and memory, we did not wish to track
obstacles which were well outside the DGC course boundaries. Off-course ob-
stacles should be irrelevant to the vehicle’s planning problem, and regularly
checking to see whether they have expired should be a waste of time. Therefore
non-traversable surfaces off the course were not classified as obstacles as long
as the vehicle itself remained on the course. However, sensor measurements in-
dicating off-course obstacles were allowed to accumulate, so that if the vehicle
departed from the course boundaries for any reason, and was required to consider
off-course obstacles as significant, these obstacles would pass the confirmation
threshold very quickly.

7.3.2 Empirical Ladar Detection Results

The NQE obstacle course provided a uniform test environment with well-defined
obstacles, of which many different sensor recordings presumably now exist, so it
may be useful to report our ladar classification results during traversals of this
obstacle course. The ranges at which the intended obstacles (parked cars, tire
stacks, tank traps) were recognized as non-traversable by the vehicle are shown
in Figure 7.7.

DARPA lined the boundaries of the course with traffic cones, which the ve-
hicle, relying on its own GPS localization measurements, might consider cones
to lie either inside or outside the course boundary. Those traffic cones consid-
ered to be on the course were classified as non-traversable at ranges indicated in
Figure 7.8. Of the four outliers on the low end (cones which were not identified
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Fig. 7.7. Histograms of NQE obstacles arranged by range of first detection

until they were within less than twenty meters range), two cones were occluded
from early view by other objects, and two were at the base of an incline and
presumably could not be detected until the vehicle crested the top of the slope
and headed down.

There were zero false negatives. Every intentional obstacle and cone on the
course was correctly classified, and once classified, was persistently regarded as
an obstacle as long as it remained within the 180-degree forward sensor arc of
the vehicle.

There were, however, a considerable number of false positives, classifying ter-
rain which was traversable as non-traversable. If these false obstacles appeared
in the path of the vehicle, the vehicle would of course try to plan a new trajectory
around them, and reduce speed if necessary. However, the false obstacles not did
persist as the vehicle approached. Instead all false obstacles eventually expired,
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Fig. 7.8. Histogram of NQE traffic cones arranged by range of first detection

Fig. 7.9. False positive events in which obstacles were “detected” but subsequently
rejected

leaving the vehicle free to drive over that terrain. The ranges at which false ob-
stacle detections first appeared and then expired are shown in Figure 7.9. The
mean range at first appearance was 30.5 meters; the mean range at expiration
was 20.5 meters.

Some of the false positives coincided with irregularities in the ground surface
or debris strewn on the course. In hindsight, it appears likely that a large percent-
age of the false positives were caused by reflective markings on the edges of the
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speedway track, causing off-axis reflections of the laser beams and confusing the
ladar range measurement. We infer this from the location of the false positives
but have yet to examine the phenomenon through deliberate experiment. Similar
problems occurred with reflective road markers during the GCE.

False positives very seldom occurred when the vehicle was travelling on a
continuous, unmarked road surface, e.g., the asphalt track at the NQE, or a dirt
road in the GCE. The main NQE performance impact of the false positives was
to cause the vehicle to hesitate at transitions crossing the marked edge of the
asphalt. However, the vehicle still managed to maintain a high average speed
and complete the obstacle course in competitive times. (See Table 7.1.)

7.4 Avoider

We accomplished vehicle trajectory planning using a custom recursive algorithm
described in this section. In keeping with the general philosophical approach of
the team, we attempted to design for a minimal computation footprint, taking
strategic advantage of heuristic rules and knowledge implicit in the DARPA-
provided RDDF route. The method bears a resemblance to the generation of
a probabilistic roadmap [Kavraki et al., 1996] or a rapidly-exploring random
tree [Frazzoli et al., 2002, LaValle, 1998], in that we generate a graph of vehicle
configurations connected by smooth trajectories, but instead of generating new
configurations on the boundary of an expanding graph, we recursively generate
trajectory midpoints in search of the best feasible path connecting a start con-
figuration and end configuration.

In our search for high efficiency in practice, we forfeited any guarantee of
the global optimality of our solution paths and even predictable convergence
conditions for the routine. However, we found that in the vast majority of cases,
traversable paths are found rapidly without burdening the processing resources
of the vehicle.

The stage for the planning algorithm is a Cartesian two-dimensional map in the
vicinity of the initial global coordinates of the vehicle, populated with a number
of discrete obstacles. The obstacles are represented as point hazards that must be
avoidedby a particular radius or as line segments that can be crossed in only one di-
rection. Point obstacles are centered on locations in the plane that have been iden-
tified as non-traversable by the ladar system. The buffer radius surrounding each
point obstacle includes the physical width of the vehicle and additionally varies
based on the distance from the vehicle to the hazard. A real object such as a wall
or car is represented by a cluster of such points, each with its associated radius.
Line segment obstacles arise from the Route Definition Data File (RDDF) which
specifies corridor boundaries for the vehicle. The vehicle trajectory is a single curve
describing the motion of the vehicle frame in the plane.

Our task is to find a drivable path from an initial configuration to a desti-
nation configuration that does not encroach on any obstacle.2 The destination
2 At this time, we have no classification of obstacles by importance. All obstacles are

regarded as equally non-traversable and equally to be avoided.
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Fig. 7.10. Visualization of Avoider algorithm at GCE start line

is taken to be the center of the RDDF corridor at some distance ahead of our
sensor horizon. The simplest and presumably most frequently occurring scenario
will require the vehicle to simply drive forward from to without performing any
evasive maneuvers. We represent this scenario with a directed acyclic graph con-
taining two nodes and a single connecting edge. This choice of data structure
later allows us to take advantage of a topographically sorted ordering that en-
ables the least cost traversal of the graph to be found in linear time (ON edges).
Each node in the graph is associated with a possible configuration of the vehicle
and each edge is associated with a directed path connecting a starting config-
uration to a target configuration. At all times, care is taken to maintain the
topological correspondence between the nodes in the graph and the locations in
the local map.

After initialization we enter the recursive loop of the algorithm, which consists
of three stages:

1. Graph Evaluation
2. Path Validation
3. Graph Expansion

This loop is executed repeatedly until a satisfactory path is found from to,
or until a watchdog termination condition is met. Typically we would terminate
the planner if a path was not found after several hundred milliseconds.

Figure 7.10, Figure 7.11, and Figure 7.12 offer a visualization of the path
planning process. Nodes are indicated by bright purple arrows while considered
trajectories are drawn as purple lines.

In Graph Evaluation, trajectory segments and cost factors are computed for all
new edges in the graph. Each trajectory segment is calculated from the endpoint
node configurations that it connects and is afterwards checked for possible ob-
stacle collisions. There may be a large number of different trajectory segments
to check and a large number of obstacles currently being tracked, bearing in
mind that a single real object of any significant horizontal extent will be tracked
as a cloud of smaller obstacles which are close together. In order to efficiently
do collision checking, we use a wavefront propagation method to create a map
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Fig. 7.11. Visualization of Avoider graph as the vehicle navigates around a tank trap
obstacle during the NQE

Fig. 7.12. Visualization of Avoider graph as the vehicle navigates around a parked
car obstacle during the NQE

indicating approximate distance from each point to the nearest obstacle. Once
this map is produced, trajectories can be rapidly checked against it for obstacle
collisions. If no obstacles are intersected, the cost of traversal is generated from
an integral of the instantaneous curvature along the trajectory. In our experience,
the dynamic feasibility of a path can be adequately characterized by this single
value.

The loop continues with Path Validation. The optimal path over the entire
explored graph is found rapidly by reference to the topological sort of the nodes.
If the cost is satisfactory the loop ends and a refinement procedure begins. This
refinement process consists of a number of heuristic modifications that add nodes
and edges to the graph to “smooth” calculated trajectories. As a final step, a
velocity profile is computed along the solution, so that the vehicle’s speed will be
consistent with the curvature of the path and with any DARPA-imposed speed
limits. The planning thread then updates the desired trajectory for the steering
and velocity feedback control system.
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If the total cost of the best graph traversal is too high, we enter the third
phase of the algorithm: Graph Expansion. In this stage, edges that intersect
obstacles are split at the point where a collision would occur. A number of new
nodes are added to the graph for configurations selected according to heuris-
tic avoidance conditions. Unevaluated edges connect these new nodes to the
endpoints of the offending trajectory segment. Trajectory segments for these
new edges are then computed when the recursive loop begins again with Graph
Evaluation.

In the heuristic techniques applied to select good target configurations for ob-
stacle avoidance, the position component of the target configuration is typically
projected perpendicularly out from the obstacle or else interpolated between the
obstacle position and the RDDF boundary. We found that vehicle heading was
similarly best specified as a function of both the heading at the collision point
and the RDDF-defined corridor direction.

7.5 Vehicle State Estimation

The path planning and control subsystems of Golem 2 needed a good estimate
of the latitude, longitude, heading and the velocity of the vehicle, at a level of
accuracy that was beyond that provided by on-board sensors like the C-MIGITS.
Two different state estimators were implemented to carry out this task, as a
means to provide analytic redundancy. The first state estimator used a model
analogous to a bicycle for the vehicle and relied heavily on the history of state.
The second estimator was based on a six-degrees-of-freedom rigid-body model,
with the addition of a “soft” non-holonomic constraint on the vehicle’s velocity
enforced as a virtual heading measurement.

7.5.1 The Bicycle Estimator

In this section we will describe the working of the first estimator, henceforward
referred to as the bicycle estimator. The bicycle estimator was a discrete time
extended Kalman filter [Gelb, 1974, Kalman, 1960, Kalman and Bucy, 1961,
Welch and Bishop, 1995], with the following inputs:

1. Latitude and longitude from a NovAtel GPS sensor at 20Hz.
2. Rear axle velocity at 30Hz from a custom Hall sensor system. A set of 16

magnets was installed on the rear axle. Two detectors were attached to the
vehicle frame and passed a voltage pulse every time one of the magnets went
past them. The two sensors enabled us to have a quadrature encoder, i.e.,
we were able to distinguish between forward and reverse motion. A discrete
time two state Kalman filter used the voltage pulses as input and estimated
the rate of rotation, which in turn was scaled by gear ratio and wheel radius
to infer the velocity of the vehicle.

3. Steering angle from an absolute encoder at 20Hz.
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Fig. 7.13. The “bicycle” model

Rear axle velocity and steering encoder were used as inputs to the bicycle
estimator. The state propagation equations for the bicycle estimator were:

x̃k+1 = x̂k + v̂kΔt
cos(φ̂k + σ̂k)

cos σ̂k

ỹk+1 = ŷk + v̂kΔt
sin(φ̂k + σ̂k)

cos σ̂k

φ̃k+1 = φ̂k +
v̂kΔt

d
tan σ̂k (7.1)

where as described in Figure 7.13, (x, y) are the local cartesian coordinates of
the center of the front axle of the car. The GPS sensor is located at this point.
The angle φ is the heading of the car with respect to the local x axis. The angle
σ is the steering angle of the car as shown in the figure. v is the rear axle velocity
of the car. The quantity d is the distance between the front and rear axle of the
vehicle. A caret over a variable implies that the variable is an estimate, and a
tilde over a variable implies that the variable is predicted or propagated forward.
The time elapsed since the last state update is Δt. The subscripts in the above
equations refer to successive time indices in state propagation.

The bicycle model worked well when the steering angle was small. For large
steering angles however, the model is inaccurate and leads to considerable lag
between the updated state and the GPS measurement. The model was also found
to be inaccurate for high velocities, when the vehicle slips at turns. Thus, the
steering angle, σ, was calculated as:

σ̂k = γ̂k(σmeasured − σ̂bias k) (7.2)
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where γ is the steering calibration factor which tries to compensate for model
inaccuracies. The steering bias estimate σbias is used to compensate for bias in
the measured steering angle. The rear axle velocity, v, was calculated as:

v̂k = Ŝk(vmeasured) (7.3)

where vmeasured is the velocity being input to the bicycle estimator. The slip factor
S compensates for variations in the vehicle’s apparent wheel radius, and for the
fact that the vehicle may be going uphill or downhill, and tries to estimate slip.
However, the slip factor was not able to track consistently long periods of slipping.

The state variables were latitude, longitude (translated to local Cartesian
coordinates x,y), heading φ, slip factor S, and either steering bias σbias or steering
calibration factor γ.

The steering calibration factor γ and the steering bias cannot be estimated
simultaneously as the state variables become unobservable. So, the bicycle esti-
mator was operated in the following 2 modes:

1. When the vehicle was going straight, |σmeasured| < 3◦, σbias was estimated.
2. When the vehicle was turning, |σmeasured| > 3◦, γ was estimated. This en-

abled compensating for model inaccuracies for hard turns.

7.5.2 The Six-Degrees-of-Freedom Estimator

In this section, we describe the design of the six-degree-of-freedom (6DOF) es-
timator. Like the bicycle estimator discussed previously, the 6DOF estimator
is implemented as a discrete-time Extended Kalman Filter. The estimator is
designed using fairly standard techniques for strap-down inertial navigation sys-
tems. Since a detailed model of the vehicle’s dynamics is not available, the filter
relies mainly on the rigid-body kinematic equations. However, due to the absence
of a magnetometer or other means to measure the vehicle’s orientation, and the
need to be able to ensure convergence of the non-linear filter without requiring
a initial calibration procedures, knowledge of the vehicle’s dynamics is exploited
in the form of virtual heading measurements from inertial velocity data.

The vehicle is modeled as a rigid body moving in the three-dimensional space;
the state of the vehicle can hence be described by a position vector p ∈ R

3, repre-
senting the location with respect to an Earth-fixed reference frame of the on-board
Inertial Measurement Unit (IMU), a velocity vector v = dp/dt, and a rotation
matrix R ∈ SO(3), where SO(3) is known as the Special Orthogonal group in the
three-dimensional space, and includes all orthogonal 3 by 3 matrices with determi-
nant equal to +1.The columns of R can be thought of as expressing the coordinates
of an orthogonal triad rigidly attached to the vehicle’s body (body axes).

The inputs to the estimator are the acceleration and angular rate measure-
ments from the IMU, provided at 100 Hz, and the GPS data, provided at about
20 Hz. In addition, the estimator has access to the velocity data from the Hall
sensors mounted on the wheels, and to the steering angle measurement.

In the following, we will indicate the acceleration measurements with za ∈ R
3,

and the angular rate measurements with zg ∈ R
3. Moreover, we will indicate with
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Za the unique skew-symmetric matrix such that Zav = za × v, for all v ∈ R
3.

A similar convention will be used for zg and other three-dimensional vectors
throughout this section.

The IMU accelerometers measure the vehicle’s inertial acceleration, measured
in body-fixed coordinates, minus the gravity acceleration; in other words,

za = RT (a − g) + na,

where a and g are, respectively, the vehicle’s acceleration, and gravity acceler-
ation in the inertial frame, and na is an additive, white Gaussian measurement
noise. Since the C-MIGITS IMU estimates accelerometer biases, and outputs
corrected measurements, we consider na as a zero-mean noise.

The IMU solid-state rate sensors measure the vehicle’s angular velocity, in
body axes. In other words,

zg = ω + ng,

where ω is the vehicle’s angular velocity (in body axes), and ng is an additive,
white Gaussian measurement noise. As in the case of acceleration measurements,
ng is assumed to be unbiased.

The kinematics of the vehicle are described by the equations

ṗ = v,
v̇ = a,

Ṙ = RΩ,
(7.4)

in which Ω is the skew-symmetric matrix corresponding to the angular velocity ω,
and we ignored the Coriolis terms for simplicity. As a matter of fact, this is justified
in our application due to the low speed, relatively short range, and to the fact that
errors induced by vibrations and irregularities in the terrain are dominant with
respect to the errors induced by ignoring the Coriolis acceleration terms.

We propagate the estimate of the state of the vehicle using the following
continuous-time model, in which the hat indicates estimates:

˙̂p = v̂,

˙̂v = R̂za + g,

˙̂
R = R̂Zg.

(7.5)

An exact time discretization of the above, under the assumption that the (iner-
tial) acceleration and angular velocity are constant during the sampling time is:

p+ = p + vΔt + 1
2

(
R̂za + g

)
Δt2,

v+ = v +
(
R̂za + g

)
Δt,

R+ = R exp(ZgΔt).

(7.6)

The matrix exponential appearing in the attitude propagation equation can be
computed using Rodrigues’ formula. Given a skew-symmetric 3 by 3 matrix M ,
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write it as the product M = Ωθ, such that Ω is the skew-symmetric matrix
corresponding to a unit vector ω; then

exp(M) = exp(Ωθ) = I + Ω sin θ + Ω2(1 − cos θ). (7.7)

The error in the state estimate is modeled as a 9-dimensional vector δx =
(δp, δv, δφ), where

p = p̂ + δp,
v = v̂ + δv,

R = R̂ exp(δΦ).
(7.8)

Note that the components of the vector δφ can be understood as the elementary
rotation angles about the body-fixed axes that make R̂ coincide with R; such a
rotation, representing the attitude error, can also be written as δR = exp(δΦ) =
R̂T R.

The linearized error dynamics are written as follows:

d

dt
δx = Aδx + Fn, (7.9)

where

A :=

⎡
⎣ 0 I 0

0 0 −RZa
0 0 −Zg

⎤
⎦ , F :=

⎡
⎣ 0 0

R 0
0 I

⎤
⎦ . (7.10)

When no GPS information is available, the estimation error covariance matrix
P := E[δx(δx)T ] is propagated through numerical integration of the ODE

d

dt
P = AP + PAT + FQFT .

Position data from the GPS are used to update the error covariance matrix and
the state estimate. The measurement equation is simply zgps = p+ngps. In order
to avoid numerical instability, we use the UD-factorization method described in
Rogers [2003] to update the error covariance matrix and to compute the filter
gain K.

Since the vehicle’s heading is not observable solely from GPS data, and we
wished to reduce calibration and initialization procedure to a minimum (e.g., to
allow for seamless resets of the filter during the race), we impose a soft constraint
on the heading through a virtual measurement of the inertial velocity, of the form:

znhc = arctan
(

vEast

vNorth

)
− λσ,

where σ is the measured steering angle, and λ is a factor accounting for the fact
that the origin of the body reference frame is not on the steering axle.

In other words, we effectively impose a non-holonomic constraint on the mo-
tion of the vehicle through a limited-sideslip assumption. This assumption is
usually satisfied when the vehicle is traveling straight, but may not be satisfied
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during turns; moreover, when the vehicle is moving very slowly, the direction of
the velocity is difficult to estimate, as the magnitude of the velocity vector is
dominated by the estimation error. Hence, the virtual measurement is applied
only when the steering angle is less than 10 degrees, and the vehicle’s speed is
at least 2.5 mph (both these values were determined empirically).

The filter described in this section performed satisfactorily in our tests and
during the DGC race, providing the on-board control algorithms with position
and heading estimates that were nominally within 10cm and 0.1◦ respectively.

7.5.3 Modeling System Noise

The state was propagated and updated every time a GPS signal arrived. There
was no noise associated with the state propagation equations (7.1). It was as-
sumed that there was additive white gaussian noise associated with the inputs
(vmeasured and σmeasured for the bicycle model, and za and zg for the six-degrees-
of-freedom model). To efficiently track the constants in the state variables (S,
σbias, γ), it was assumed that there was an additive white gaussian noise term in
their propagation. It was also assumed that the GPS measurement (latitude and
longitude) had some noise associated with it. The variances assigned to the noise
processes described above were tuned to ensure that the innovations3 were un-
correlated, and that the estimator was stable, and converged reasonably quickly.
By tuning the variances, we can alter the “trust” associated with the history of
the vehicle state or with the GPS measurement.

7.5.3.1 Determining the Appropriate GPS Measurement Noise
Variance

The received data from the GPS consisted of the latitude, longitude and an
HDOP (horizontal dilution of precision) value. HDOP is a figure of merit for the
GPS measurement which is directly related to the number of satellites visible to
the GPS antenna. The HDOP value is related to the noise in each measurement.
However, our attempts at mapping the HDOP values to actual variances were
futile as we did not observe a monotonic relationship. It was noticed that an
HDOP of more than 5 usually corresponded to multipath reception in GPS and
consequently, the GPS had an abnormally huge variance in that case. In the
absence of any ad hoc relationship between the HDOP and noise variance, we
opted to keep a constant variance associated with GPS noise if HDOP was less
than 5 and a huge variance otherwise. Also, we noticed that the GPS noise was
highly correlated and not white.

7.5.3.2 Projection of the Innovations

The bicycle estimator is based on a very intuitive model of the vehicle, which
motivates us to consider the GPS innovations in a physically relevant reference
3 Innovation of a measured data is the difference between the estimated and the

measured data.
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frame rather than any arbitrary reference frame. It is insightful to project the
innovations into the local frame of the vehicle: parallel to the heading direction
and perpendicular to it. The parallel and perpendicular body fixed axes are
indicated in Figure 7.13.

For an ideal estimator, the innovations will be uncorrelated with each other.
However, we tuned the estimator to just achieve innovations with zero mean.
While tuning the estimator it was very useful to consider the parallel and per-
pendicular innovations. For example, a DC bias in the parallel innovations im-
plied that we were not tracking the slip factor (S) adequately. Thus, to ensure
a zero mean parallel innovation the variance associated with the propagation of
slip factor should be increased.

7.5.3.3 Adaptive Shaping of the Innovations

The noise in the GPS data was highly correlated and there was very little a priori
knowledge of the variance. Very often, especially when the vehicle would drive
near a wall, or approach a tunnel, there would be highly erratic jumps in the
GPS measurements due to multipath reflections. Without any a priori knowledge
of the variance in such cases, the state estimate would bounce around a lot. This
was undesirable as it would hamper the path planner and the obstacle detection
subroutines in the main program.

To counter these “unphysical” jumps, once the estimator was converged, the
innovations were clipped up to a certain maximum absolute value. For example,
a GPS measurement corresponding to a perpendicular innovation of 2 meters in
0.05 sec while going straight is unphysical and so perpendicular innovation should
be clipped to a nominal value (in our case, six inches). This prevented large jumps
in state estimate, but had a grave disadvantage. It was observed that if the inno-
vations were clipped to a fixed range, then in certain situations, the state estimate
will lag far behind from “good” set of GPS measurements and take a long time
to converge back. To prevent this from happening, the clipping limit of the inno-
vations was determined adaptively as the minimum of either a fixed limit, or the
mean of the innovations in the last two seconds scaled by a numerical factor slightly
greater than unity. The parallel and perpendicular components of the innovation
were clipped separately with different numerical constants used.

7.5.3.4 Countering the Time Delays

There was some finite delay between the time sensor data appeared on the bus
and the time it was processed by the control program. Usually this delay was
nominal (∼50-200 μs), but it was sporadically very large. A large delay in GPS
data manifested in large negative parallel innovation. However, the large inno-
vation was clipped effectively by the method described earlier, and consequently
did not effect the state estimate. In future, we plan to implement a routine which
synchronizes the time between all the serial/USB data sources.

Performance of the state estimator while going under a bridge is shown in
Figure 7.14. “*” represents the GPS data received in a local cartesian cordinate
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Fig. 7.14. Performance of state estimator while going under a bridge

system. “·” represents the estimated location of the truck. Golem2 was moving
from left to right in this figure. Note that the GPS data has a huge variance
due to multipath. Also note that the GPS noise is highly correlated, in this case
the variance is huge in the direction perpendicular to the motion as compared
to the parallel direction. As seen from the figure, the performance of the state
estimator is immune to the large “unphysical” jumps in GPS data. Ocassional
jumps of length ∼ 0.3m are observed in the successive updates of estimated state.
These correspond to a delay in received GPS data and large negative parallel
innovations as discussed in Section 7.5.3.4.

7.5.3.5 Special Modes of Operation

A couple of situations required special handling instructions:

• GPS signal was observed to drift considerably when the vehicle was at rest.
Not only was this unphysical, but it is also detrimental to path planning.
Thus when the vehicle was going considerably slowly or was at rest, the
variance assigned to the GPS measurements was increased significantly. In
such a case, the bicycle estimator essentially worked like an integrator rather
than a filter.



7 The Golem Group / UCLA Autonomous Ground Vehicle 229

• It was observed that the GPS signal would occasionally jump discretely.
These jumps usually corresponded to the presence of a power transmission
line nearby. The difficulty was that the GPS took a while (>2 s) to re-converge
after the jumps. These unphysical jumps were easily detected from the jumps
in the parallel and perpendicular innovations. After the detection of such
jumps, the GPS variance was increased until it was trustworthy again, i.e.,
until the innovations were within a certain limit again.

7.5.3.6 Initialization of the IMU

One advantage of this model was that it converged very fast while going straight,
usually in approximately 5 s. Once the bicycle model converged, the heading
estimate was used to initialize the IMU. While going straight, the performance of
the bicycle estimator was extremely good as the heading estimate was within 0.5◦

of the IMU computed heading. However, on sharp turns, the heading estimate
was up to ∼3◦ from the IMU computed heading. Thus, IMU computed heading
was given more importance especially when GPS signals were bad. In future,
we plan to extend the bicycle model to include the angular rotation and linear
displacement data from the IMU.

7.6 Vision Systems

For computer vision, desert paths present a different challenge from paved roads,
as the environment is far less structured, and less prior information is available to
exploit in constructing algorithms. Our approach was to integrate existing vision
technologies which have been proven to work on-road but have the potential to
be transferred to the off-road domain. These include learning-based road-finding
and binocular stereo reconstruction.

7.6.1 Mobileye Vision System

Golem 2 was equipped with a sophisticated vision system, created by Mobileye
Vision Technologies Ltd., consisting of a single camera and a dedicated pro-
cessing unit. On-road, the Mobileye system can find lane boundaries and detect
other vehicles and their positions in real-time. The system was adapted to the
off-road environment by Mobileye and the Hebrew University of Jerusalem.

The Mobileye system combines region-based and boundary-based approaches
to find path position and orientation relative to the vehicle. The two approaches
complement each other, thus allowing reliable path detection under a wide range
of circumstances. Specifically, we use a variety of texture filters together with a
learning-by-examples Adaboost [Freund and Schapire, 1996] classification engine
to form an initial image segmentation into path and non-path image blocks. In
parallel, we use the same filters to define candidate texture boundaries and a
projection-warp search over the space of possible pitch and yaw parameters in
order to select a pair of boundary lines that are consistent with the texture
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gradients and the geometric model. Both the area-based and boundary-based
models are then combined (weighted by their confidence values) to form a final
path model for each frame.

7.6.1.1 Region-Based Path Detection

The gray-level image is divided into partially overlapping blocks. A filter bank
is applied to all image pixels and a descriptor vector is generated per block. The
descriptor contains the mean and standard deviation of the filter response over
the block for each of the 16 filters. Each entry in the texture descriptor can be
considered a “weak” learner in the sense that it forms class discrimination. The
iterative Adaboost algorithm combines the weak learners to form a powerful
classification engine that assigns a path or non-path label to every block accord-
ing to the training data. The training data was extracted from 200 images that
were gathered on various parts of the 2004 Grand Challenge route. The block
classification by itself is not sufficient for autonomous vehicle path planning be-
cause about 10 percent of the blocks are expected to be misclassified. Filtering
methods are used to clear some of the misclassified blocks, followed by detection
of path boundaries. The path boundaries are derived via a minimal error sep-
arating line on each side of the path. The system confidence is calculated from
the separation quality and the sensing range (the distance to the farthest point
that we can reliably identify as path). Figure 7.15 shows the results of each of
the main parts of the algorithm.

(a) (b) (c)

(d) (e) (f)

Fig. 7.15. In (a) and (d) blocks are classified by texture into path or non-path. In
(b) and (e), sky blocks are removed and three lines, arranged in a trapezoid, are fitted
to the path blocks. The trapezoid is considered to represent the path. Finally, in (c)
and (f) the path boundaries are calculated at a given distance ahead of the vehicle (5
meters in this example) together with the path center and heading angle.
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7.6.1.2 Boundary-Based Path Detection

The boundary-based technique does not rely on prior learned texture information.
Instead, it makes the assumption that the path texture properties are different
than the surrounding non-drivable areas. For this cue to be reliable, we have to
constrain the solution to a strict geometric model where the path boundaries lie
on straight parallel edges. This allows us to reduce the problem of finding a driv-
able path to 4 degrees of freedom: (x, y) position of the vanishing point, and left
and right distance to the edge of the path. The geometric constraints resulting
from assuming a flat world, perspective camera, and parallel path boundaries in
the world suggest the following projection-warp scheme per frame: given a hypoth-
esis of pitch and yaw angles of the camera, the image is warped to form a top view
in world coordinates. In the warped image the path boundaries are supposed to be
parallel vertical lines if indeed the pitch and yaw angles are correct. A projection
of the image texture edges onto the horizontal axis will produce a 1D profile whose
peaks correspond to vertical texture edges in the warped image. We look for a pair
of dominant peaks in the 1D profile and generate a score value which is then max-
imized by search over the pitch and yaw angles via iterating the projection-warp
procedure just described. The search starts with the pitch and yaw angle estimates
of the previous frame followed by an incremental pitch and yaw estimation using
optic-flow and a small motion model:

xwx + ywy = yu − xv (7.11)

where (u, v) are the flow (displacements) of the point (x, y) and wx, wy are the
pitch and yaw angles. The warped image is divided into overlapping 10 × 10
blocks with each pixel forming a block center. Using the same filter bank as in the

(a) (b) (c)

(d) (e)

Fig. 7.16. Projection-Warp Search: (a) original image with the overlaid path boundary
and FOE results. (b) the warped image. (c) texture gradients magnitude. (d) projection:
vertical sum of gradients. (e) projection profile followed by convolution with a box filter.
The two lines on top of the histogram marks the path boundaries.
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region-based method, we estimate the the likelihood e−Δ that the vertical line
passing through the block center forms a texture gradient where Δ is the L1 dis-
tance between the texture vector descriptors of the two respective halves of the
block. To check a hypothesis (for pitch and yaw), we project the horizontal tex-
ture gradients vertically onto the x-axis and look for peaks in this projection. An
example result of this projection is shown in Figure 7.16(d). The path boundaries
and other vertical elements in the image create high areas in the projection, while
low areas are most likely caused by vertical texture gradients that are not continu-
ous and created by bushes, rocks, etc. The peaks in this projection are maximized
when the vanishing point hypothesis is correct and the path edges (and possibly
other parallel features) line up. By finding the highest peaks for these hypothe-
sis, our system is able to find the lateral position of the left and right boundaries.
Figure 7.16(e) shows the “cleaned up” 1D projection profile and the associated
pair of peaks corresponding to the path boundary lines.

7.6.1.3 Performance

The system was implemented on a Power-PC PPC7467 1GHZ running at 20
frames per second. The camera was mounted on a pole connected to the front

Fig. 7.17. The camera is mounted inside a housing atop a pole connected to the front
bumper. This allows a better field of view than mounting the camera on the windshield.
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bumper (Figure 7.17) to allow maximal field of view. We tried both 45-degree
and 80-degree field of view lenses, and found the latter to be more suitable for
autonomous driving where the vehicle is not necessarily centered over the path.
For our applications, the most meaningful overall system performance measure
is to count how often (what fraction of frames) the system produced correct path
edge positions and, where appropriate, heading angles. Furthermore, it is crucial
for the system to know when it cannot determine the path accurately, so that
the vehicle can slow down and rely more on information from the other sensors.
Our results are broken up by different terrain types. For each, representative
challenging clips of 1000 frames were selected and the system performance scored
on these sequences by a human observer. The path edge distance accuracy was
computed by observing the position of the road edge marks approximately 6
meters in front of the vehicle. A frame was labeled incorrect if the path edge
marker at that location appeared to be more then 30 cm (≈ 18 pixels) away from
the actual path boundary. For straight paths the perceived vanishing point of
the path was also marked, and our algorithm’s heading indicator was compared
to the lateral position of this point.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7.18. Sample images and system output from 6 hours of driving in the Mojave
desert. The path is marked by two left-right boundary points and a center point with
heading orientation. The “X” mark in (h) coincides with zero confidence due to short
range of visible path. In (i) the path is detected even though the vehicle is not centered
on the path (a common situation in autonomous driving).
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On relatively straight segments with a comfortably wide path, our system re-
ported availability (high system confidence) 100% of the time while producing
accurate path boundary locations 99.5% of the time. The mean angular devia-
tion of the heading angle from the human marked vanishing point was 1.7 deg.

The second test clip is an example of more uneven terrains with elevation
changes. Here the vehicle passes through a dry river ditch (Figure 7.18(b)) where
both the path texture and scene geometry is difficult. When our vehicle is reach-
ing the crest of the hill (Figure 7.18(h)) only a short segment of road is visible.
In this case, the system reported unavailability (low confidence) 8% of the time.
When available, however, the accuracy in boundary locations was 98%.

The final clip contains a winding mountain pass (Figure 7.18(g)), difficult due
to path curvature as well as texture variation. Despite these, our system was
available throughout the clip and achieved an accuracy of 96% in detecting the
path boundary.

7.6.1.4 Integration

The combination of the learning and geometric approaches yields high quality re-
sults with confidence estimates suitable for integration into our control systems.
Output from the Mobileye system – which included path boundaries, orienta-
tions, and pitch – was integrated into the Golem path planner. Path boundaries
were marked as line obstacles, projected onto the world coordinate frame using
the known transformation between the Mobileye camera, the GPS antenna, and
the road surface. Figure 7.19 shows the detected trail boundary and trail center
relative to the vehicle and to the vehicle’s actual trajectory.

7.6.2 Toshiba Stereo Vision System

The Golem/UCLA Team experimented with a variety of stereo vision systems for
the purposes of obstacle detection, ground-plane registration, and path finding.
Fixed-camera stereo is a well studied problem, and there are a number of aca-
demic and commercial systems of varying quality. Long range sensing is essential
for use in a high-speed automobile since time is of the essence; it is impractical
and sometimes impossible to stop to analyze nearby obstacles. This requirement
translates into a wide baseline separating the stereo cameras, since the maxi-
mum range of the system is determined by this distance. A further performance
constraint is processing time, since latency can introduce dangerous errors in
path planning and control. Toshiba Research in Kawasaki, Japan, developed a
stereo system for on-road driving at high speeds, which we installed on Golem
2. Due to insufficient time, we did not integrate the stereo system into the con-
trol system of the vehicle before the GCE, but there is no doubt that it has a
high potential for successful autonomous driving. In this section we describe the
hardware configuration and implementation details.
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Fig. 7.19. Trail boundaries detected by the Mobileye system

Fig. 7.20. Setup of stereo cameras

7.6.2.1 Hardware Configuration

Figure 7.20 shows the setup of our stereo cameras. Two metal plates sandwich
and rigidly fix the cameras so that they can withstand the strong vibrations
cased by off-road driving. The distance between the two cameras is 1.2m and
each camera is about 1.5m above the ground plane. We use CCD cameras with
7.5mm lenses that have image resolution of 320×240 pixels.

Our stereo system is based on a multi-VLIW processor called Visconti
[Hattori and Takeda, 2005, Tanabe, 2003]. The processor architecture is designed
to ensure efficient performance for general image processing operations while
satisfying several requirements for automotive use, e.g., operating temperature
range −40 to +85◦C, power consumption < 1W@150MHz. Figure 7.21 shows a
prototype of an image processing unit using Visconti. It has three video input
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Fig. 7.21. Prototype processing hardware

Fig. 7.22. Block diagram of Visconti

channels and a VGA video output to display the processing results. Figure 7.22
shows the block diagram of Visconti. The processor includes one image trans-
formation module and three processing modules operating in parallel. Each of
the three processing modules consists of a RISC processor core and a VLIW
coprocessor. Several types of SIMD operations required for stereo computation,
including convolution, accumulation and pixel shift, are supported in the in-
struction set of the coprocessor. Each processing module also has a scratch pad
memory and a DMA controller so that memory access latency is hidden by
double-buffering data translation.

7.6.3 Implementation Details

We adopt sum of absolute differences (SAD) as a matching criterion within a
7 × 7 window as, SAD is less computationally expensive than other measures
such as the sum of squared differences (SSD) and normalized cross correlation
(NCC). We also use a recursive technique for efficient estimation of SAD measures
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 7.23. Input images and their disparity maps. More red intensity indicates larger
disparity values, i.e., nearer regions, and black indicates texture-less regions. Note that
a part of the hood of the vehicle appears on the bottom of input images and these
regions are excluded for the disparity estimation.
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Faugeras et al. [1993], Hattori and Takeda [2005]. In order to compensate for
possible gray-level variations due to different settings of the stereo cameras, the
input stereo images are normalized by subtraction of the mean values of the in-
tensities within a matching window at each pixel. Also, the variance of intensities
at each point is computed on the reference image to identify those regions which
have insufficient intensity variations for establishing reliable correspondences.

As Visconti has one image transformation module and three processing mod-
ules operating in parallel, task allocation for these modules is crucial to real-time
operation. For instance, the stereo rectification is a indispensable process that
transforms input stereo images so that the epipolar lines are aligned with the im-
age scan-lines. The image transformation module carries out the stereo rectifica-
tion, which is difficult to accelerate by SIMD (single-instruction, multiple-data)
operations due to irregular memory access. Also, we divide a pair of images into
three horizontal bands which are allocated to those three processing modules.
Each of three areas has about the same number of pixels so that the computation
cost is equally distributed across the three modules.

Due to the recursive technique for SAD computation, those task allocations and
SIMD instructions, our stereo system is capable of disparity estimation at a rate
of about 30 frames/sec with up to 30 disparity levels and an image input size of
320×240 pixels (QVGA). This performance is higher than that of a 2.0GHz pro-
cessor with SIMD instructions. Figure 7.23 shows several examples of disparity
images. More red intensity indicates larger disparity values which means closer
areas while black indicates texture-less regions. The bottom of input images is ex-
cluded from the stereo computation since it corresponds to a part of the hood of
the vehicle. These input stereo images were taken in the Mojave desert.

7.7 Results

Golem 2’s qualifying runs on the National Qualification Event (NQE) obstacle
course were among the best of the field, as shown in Table 7.1, although we also
failed on two runs for reasons discussed in Section 7.7.1.

Golem 2 raced out of the start chute at the 2005 Grand Challenge Event
(GCE) in the seventh pole position. We knew that Golem 2 was capable of driving
well at high speeds. Our speed strategy was that the vehicle would drive at the
maximum allowed speed whenever this was below 25mph. If the recommended
speed was greater than 25mph (implying that the maximum allowed speed was
50mph) then Golem 2 would exceed the recommended speed, by small amounts
at first, but more and more aggressively as the race continued, until it was
always driving at the maximum legal speed, except, of course, when modulating
its speed during a turn.

As expected, Golem 2 made rapid time on dirt roads and over a dry lakebed.
On a paved bridge, Golem 2’s laser sensors misperceived the reflective “Botts’
dots” in the center of the road as obstacles, which seemed to vanish like a mirage
as the vehicle got closer. (See Figure 7.24.) This caused the vehicle to weave back
and forth on the bridge, alarming the DARPA observers in the chase vehicle.
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Fig. 7.24. Golem 2 misperceives reflective dots on a paved road surface as obstacles

But our vehicle kept going and once it reached dirt road again, it straightened
out and resumed progress at over thirty miles per hour.

The DARPA observers characterized Golem 2 as initially “skittish” and com-
pared it to a teenage driver, but stated that once it left the paved road and
entered the desert, they were impressed by its performance and believed they
had a winner on their hands.

Unfortunately, after driving twenty-two miles in just under one hour, the
computer crashed due to faulty memory management. The uncontrolled vehicle
departed from the course boundaries at high speed, crashing through vegetation.
The DARPA “pause” button was no longer functional, since no software was
running, and the DARPA observers did not press the “disable” button in case
the vehicle might recover. Golem 2 hurtled more than half a mile off the course
before pounding from the rough terrain finally shook connectors free from its
fusebox, killing the engine.

7.7.1 Causes of Failure

Golem 2 crashed on three significant occasions: twice during NQE trials and
once during the GCE. We think that all of these failures should be considered
mere “bugs” rather than fundamental flaws in the design. Nevertheless it may
be interesting to review the causes of these failures.

On its first attempt at the NQE course, Golem 2 immediately veered off to the
right and crashed into one side of a gate intended to simulate a cattle crossing.
It knocked down the fence beside the gate and came to a stop. The primary
cause of this failure was that one of the vertical ladars had been repositioned
and miscalibrated (due to a missing decimal point). Mishandling of the course
start conditions was a contributing factor.
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The sequence of events is illustrated in Figure 7.25. At the 2005 NQE, vehicles
were launched out of start chutes which were located far outside the designated
course boundaries. We should have been prepared for this special case and the
correct procedure was to consider the course boundaries to extend backwards to
the start position. However instead Golem 2 reacted as it would generically re-
act to being far off course, by relaxing the course boundary constraints outward.
In Figure 7.25(a) the vehicle is moving a straight trajectory which is hardly con-
strained by the course boundaries. In Figure 7.25(b), the vehicle has moved back
onto the RDDF course and also detected the gate ahead where the orange circles
indicate obstacles.The planning boundary constraints have contracted inward and
the vehicle has planned a trajectory which is very nearly correct, i.e., a trajec-
tory which passes through the first gate. Unfortunately, the boundary constraints
have not tightened quite enough and the trajectory skirts the right edge of the
RDDF course. In Figure 7.25(c), because of the miscalibrated ladar, the vehicle
has misperceived a cloud of phantom obstacles where no obstacles actually exist,
and planned to swerve around them to the right. In Figure 7.25(d), the vehicle
has perceived that its new trajectory collides with a real obstacle, the fence, but it
cannot find a plan that does not appear to result in collision. In Figure 7.25(e), col-
lision is imminent and the vehicle belatedly attempts to brake. In Figure 7.25(f),
the fence has been knocked down and the vehicle has come to a stop. Although the
vehicle was physically capable of proceding forward over the crushed fence, there
was no “restart” logic enabling the vehicle to begin moving again.

Our reaction to this failure was, of course, to fix the calibration of the vertical
ladar, correctly handle the special case of starting outside the course boundaries,
improve the reaction of the velocity controller to obstacles, and prevent the vehicle
from coming to a permanent stop if not paused. We were able to carry out these
fixes only because of the very useful dashboard visualization tool, shown in Fig-
ure 7.25 and elsewhere, that enabled us to closely examine the results of the failed
run and simulate what would result from changes to the software.

After two very successful completions of the NQE course, Golem 2 crashed
again on the fourth attempt. This time the bug was in the path planner, which
failed to properly validate all the possible candidate trajectories and ended up
selecting a degenerate trajectory containing two sharp 180-degree turns. The
impossibly tight loop in the desired trajectory caused the vehicle to jerk suddenly
into a concrete barrier. This event motivated increased evaluation of candidate
trajectories, and repair and reinforcement of Golem 2’s steering actuator.

Golem 2’s final and most distressing failure occurred during the GCE due
to static memory overallocation. Large amounts of random access memory were
set aside at start time for use in recording obstacles, trajectories, and sensor
history. In fact, the memory was overallocated, but this did not become apparent
until a large sensor history had accumulated, which, because of the mapping
between geographic coordinates and elements of the sensor observation array,
only occurred when a large amount of terrain had been covered. Golem 2 had
made experimental autonomous runs of 10 miles or so, but had never made a
continuous overland journey on the scale of the GCE. Furthermore, an endurance



7 The Golem Group / UCLA Autonomous Ground Vehicle 241
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(d)

(e)

(f)

Fig. 7.25. An initial failure of Golem 2
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trial which consisted of driving for long periods around a track would probably
not have uncovered this bug. Only when Golem 2 had driven across 22 miles of
new terrain did the memory bug manifest itself and crash the control program.

Although the Golem 2 software is inherently memory-intensive in its approach,
it should be able to operate with well under 1 GB of RAM and therefore this
failure was perfectly avoidable in principle.

7.8 Summary and Future Work

Despite occasional problems, the Golem vehicles have demonstrated a high level
of high-speed driving performance and we think that our design approach has
promise. The system managed to negotiate obstacles at speed using a relatively
small amount of computational power (a single 2.2 GHz laptop) and relatively
sparse laser range data.

The key drivers of this economically-promising performance include a sim-
plified computational architecture; using a combination of horizontally- and
vertically-oriented ladars to reliably sense major obstacles while disregarding
inessential details of the terrain; a fast heuristic planner which rapidly finds so-
lutions in typical driving situations; and vehicle state estimation using both an
IMU and physical reasoning about the constraints of the vehicle.

The “false” obstacles sometimes announced by the ladar system were not en-
tirely spurious, but generally represented road markings or minor, traversable
obstacles. Ideally these would neither be ignored nor mistaken for non-traversable
obstacles, but placed in a third category and treated appropriately by the plan-
ning software. A future direction for the sensing software is to improve the han-
dling of these features and also to improve the handling of moving obstacles.
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Summary. CajunBot, an autonomous ground vehicle and a finalist in the 2005
DARPA Grand Challenge, is built on the chassis of MAX IV, a six-wheeled ATV.
Transformation of the ATV to an AGV (Autonomous Ground Vehicle) required adding
drive-by-wire control, LIDAR sensors, an INS, and a computing system. Significant in-
novations in the core computational algorithms include an obstacle detection algorithm
that takes advantage of shocks and bumps to improve visibility; a path planning al-
gorithm that takes into account the vehicle’s maneuverability limits to generate paths
that are navigable at high speed; efficient data structures and algorithms that require
just a single Intel Pentium 4 HT 3.2 Ghz machine to handle all computations and a
middleware layer that transparently distributes the computation to multiple machines,
if desired. In addition, CajunBot also features support technologies such as a simula-
tor, playback of logged data and live visualization on off-board computers to aid in
development, testing, and debugging.

8.1 Introduction

CajunBot is a six-wheeled, skid-steered, Autonomous Ground Vehicle (AGV)
developed to compete in the DARPA Grand Challenge. The vehicle was a finalist
in both the 2004 and 2005 events. In the 2005 final, the vehicle traveled 17 miles,
at which point it did not restart after a prolonged pause. The cause: the motor
controlling its actuator burned out due to excessive current for a long duration.

This paper presents the insights and innovations resulting from the develop-
ment of CajunBot. It is assumed that the reader is familiar with the DARPA
Grand Challenge and technical challenges in developing AGVs. There exists an
extensive body of research in various aspects of AGVs. This paper does not
attempt to provide a survey of the literature; instead it only compares specific
innovations to works that are most closely related.
� Corresponding author.

�� The contents of this paper do not necessarily reflect the official positions of the
authors respective organizations.
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The major innovations in CajunBot have been in its software system, both
on-board and off-board software. The on-board software drives the vehicle
autonomously and the off-board software facilitates development of on-board
software.

• An obstacle detection system that does not require stabilizing of sensors,
rather it takes advantage of bumps in the terrain to see further.

• A local path planning algorithm that fuses discrete and differential algo-
rithms to generate vehicle navigable paths around obstacles. The discrete
component of the algorithm generates costs in a grid world and the differ-
ential component uses these costs to select the best navigable curve from a
pre-computed collection of curves.

• A layer of middleware for communication between processes with specialized
support for fusing data from multiple sensors arriving at varying frequencies
and latencies. The support enables fusion of sensor data based on the time
of production of data, thereby ensuring fusion of mutually consistent data.

• A physics-based simulator that generates a simulated clock that may be used
to synchronize processes on simulation time, thereby providing the capability
to slow down, speed up, and single step the processing in the laboratory
environment.

• Decomposing a visualizer as an independent process, rather than as tradition-
ally maintained as part of the simulator, thereby enabling the same visualizer
to be used for visualizing vehicle state during field-testing, during simulation,
and during post-processing by replaying logged data.

• A software architecture that enables easy replacement of components, thus
making it easy to maintain multiple, competing programs for the same task.

The rest of the paper is organized as follows. Section 2 describes the hardware
of CajunBot, which includes the automotive, electrical, and the electronics. Sec-
tion 3 describes the overall software architecture, and describes the middleware,
simulator, and visualizer modules. Section 4 presents the core algorithms for ob-
stacle detection, local path planning, and control. Section 5 presents some open
problems that are being addressed by the team. Section 6 concludes the paper,
and is followed by acknowledgments and references.

8.2 Hardware: Automotive, Electrical, Electronics

8.2.1 Automotive

The base of CajunBot is a MAX IV all-terrain vehicle (ATV) manufactured by
Recreative Industries. This vehicle was chosen because (1) it can operate on a
variety of terrains, including, road, rough surface, sand, water, and marshy con-
ditions; (2) it has a very small turning radius, about 1.2m, making it extremely
maneuverable; (3) it is not very wide, just about 1.5m; and (4) its mechanics
for throttle and brakes is simple for interfacing with linear actuator and servo
motor. The first property was important, given expected conditions on the GC



8 CajunBot: Architecture and Algorithms 247

Fig. 8.1. CajunBot

Fig. 8.2. Skid Steered Vehicle

route. The next two properties meant that we had more room to play in the
software. The last property made it easy for us to build a drive-by-wire system.

In regards to the drive-by-wire system, it is instructive to know the mechanical
points of contact for throttle, braking, and turning. The throttle on the vehicle
is pulled by a cable, similar to that in a lawn mower or a motor cycle. Being a
skid-steered vehicle, its braking and turning operations are interconnected. The
vehicle turns by braking the wheels on one side, see Figure 8.2. The vehicle has
two levers, with each lever controlling the transmission and brakes of the set
of wheels on one side. Pulling a lever engages the brakes. Releasing the lever
engages the gear. Lastly there is a region in between that represents neutral.
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The choice of a MAX IV had its downsides. The top speed of the vehicle, about
45kph, meant it could not be a serious contender for a speed oriented track. The
vehicle’s five gallon tank was clearly insufficient for a 10+ hours run, and had to
be retrofitted with a larger tank. The vehicle did not have any enclosure or roof,
thus, a frame had to be built to house the electronics and for mounting sensors.
Its power generation capacity was woefully inadequate for our needs requiring
us to add a generator. Finally, absence of air conditioning implied we had to
improvise the cooling system for computers and electronics.

The most significant drawback of a MAX IV is that it lacks any active sus-
pension. Its wheels are its suspension. Any bump or shock not absorbed by the
wheel is transferred to the rest of the body. We used LORD’s center-bonded shock
mounts (CBA 20-300) to provide vibration and shock isolation to the new frame,
and therefore to the sensors mounted on the frame. In addition we used a MIL-spec
Hardigg Case with rack mount to further isolate the computers from shocks.

The shock mounts, however, did not change the fact that the vehicle moves
like a brick on wheels. Any movements felt by its six axles, as the vehicle travels
over bumps, are transferred to the frame. This led to interesting challenges when
processing sensors data, as elaborated later.

8.2.2 Electrical (Power) System

CajunBot requires around 1670W of power for simultaneous peak performance
of all the equipment on board. When operating in the field the necessary power
is generated by a Honda EU2000i generator, fed to a 2200VA UPS unit, which

Fig. 8.3. CajunBot E-Power Subsytem
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then conditions the power, and provides four power supplies - 5VDC, 12VDC,
24VDC and 110VAC, as shown in Figure 8.3. In the lab environment, the power
may be switched to a wall outlet.

8.2.3 Electronics

Figure 8.4 shows a schematic diagram of CajunBot’s electronics, which may be
viewed as being composed of three major systems:

• Sensor Systems
• Drive-By-Wire System
• Computing System

Fig. 8.4. CajunBot Electronic System

8.2.3.1 Sensor Systems

The components shown in the left column of Figure 8.4, identified as INPUT,
constitute CajunBot’s sensor systems. The sensors may be further classified as
those needed for autonomous operation and those for monitoring and emergency
control.

CajunBot uses an INS (Oxford Technology Solutions RT3102) and two LI-
DAR scanners (SICK LMS 291) for autonomous operation. The accuracy of
the INS is enhanced by Starfire differential GPS correction signals provided by a
C&C Technologies C-Nav receiver. The LIDARs are mounted to look at 16m and



250 A. Lakhotia et al.

Fig. 8.5. The Top View of the Top and Bottom LIDAR’s

16.3m in the front of the vehicle, see Figure 8.5. CajunBot also performs well,
albeit at a reduced speed, with only one LIDAR.

The sensors for monitoring and emergency control include the DARPA E-
Stop, when performing in the Grand Challenge; an RC Receiver to communicate
with an RC Controller, used during testing and for moving the vehicle around
when not in autonomous mode; a wireless access point to broadcast data for
real-time monitoring in a chase vehicle; and two kill switches on each side of the
vehicle.

8.2.3.2 Drive-by-Wire System

The box annotated as ‘Control Box’ and the components listed on the right
column, annotated as OUTPUT, in Figure 8.4, constitute the Drive-By-Wire
system.

The Drive-By-Wire System provides (1) an interface for computer control over
the vehicle’s mechanics, i.e., throttle and levers, and signals, i.e., siren, safety
lights, and brake indicators; (2) emergency control of the vehicle in autonomous
mode; and (3) manual control of the vehicle when not in autonomous mode.

Computer control. The drive-by-wire system provides serial communication
interfaces for controlling the vehicle through software. There are five serial in-
terfaces, one each for servo, left lever, right lever, signals, and controls.

The servo interface receives a single byte value representing the position of the
servo connected to the throttle cable of the vehicle. The control box translates
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the value into appropriate servo signals. The interfaces for the left and right lever
also behave similarly, except that a motor controller is used to communicate the
commands to two actuators, one connected to each lever.

The serial interface for signals uses one bit for each of: left and right turn sig-
nals, brake lights, kill lights, strobe lights, and siren. The control box translates
the bits received into an appropriate electrical signal to activate/deactivate a
relay for each device.

While the other interfaces principally receive commands from the comput-
ers, the control interface provides input to the computers. The control interface
currently provides single bit status indicators for pause and kill signals.

Emergency control. The system supports three emergency control operations:
disable, manual override, and pause. The first two operations are implemented
entirely in the Control Box, and override the computers. The vehicle may be
disabled by the kill buttons on the vehicle, DARPA Kill-switch, or kill button
on the RC Controller. When a kill signal is received, the drive-by-wire system
pulls the left and right levers to the brake position, cuts the throttle, kills the
engine, turns on a flashing light, and also turns on the kill signal on the control
interface to inform the control software. For safety reasons when the vehicle goes
outside the RC controller’s range, a kill signal is issued internally, unless the RC
kill is disabled.

The kill signal brings the vehicle to an abrupt halt, which could be detrimental
when a vehicle is traveling at a high speed. Depending on the dexterity of the
operator in the chase vehicle, it may sometimes be preferred to take manual
control of the vehicle, and bring it to a safe state. This is achieved by toggling a
button on the RC controller. The drive-by-wire system then ignores the computer
commands and takes commands from the RC controller.

Finally, there is the pause signal, which is simply passed on to the software,
which then stops the vehicle with maximum safe deceleration. In the pause mode,
both the software and the hardware continue to operate. When the pause mode
is removed, the vehicle resumes autonomous operation.

Manual control. In non-autonomous (or manual) mode the vehicle is operated
using an RC controller. This operation is completely at the hardware level, and
does not require the computers to be turned on.

8.2.3.3 Computing System

The computing system, the collection of four computers as shown in Figure 8.4,
provides the computational power of CajunBot. The computers labeled “Main
Machine” and “Extra Machine” are Dell PowerEdge 750s. CajunBot performed
in the GC with only the main machine. The extra machine was in place if there
was a need to distribute the computation. The other two computers “NTP
Machine” and “Disk Logger Machine” are mini-ITX boards, used because of
their low cost and small physical size. Both the boards are mounted on the same
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1-U case. The computers were mounted on a shock proof MIL-spec Hardigg cases
to dampen the shocks

The NTP Machine provides Network Time Protocol service, a service neces-
sary to synchronize data from multiple sensors and computers. Though NTP is
a light process a separate machine is dedicated to it for pragmatic reasons. To
setup a Linux machine as an NTP server requires applying a PPS patch. The
patch was available for Linux 2.4 Kernel, not for Linux 2.6 Kernel, the base
of Fedora Core 2 OS used on our main computing machines. The Disk Logger
Machine is used for logging data during a run, typically for post analysis. The
logging operation is moved to a separate machine so that a disk failure, a very
likely possibility in a 10 hour run, does not interfere with the autonomous oper-
ation. Using flash media for logging data would have circumvented the need to
have a separate machine for this purpose. However, we were unable to boot the
Dell PowerEdge 750s from flash media, and had to use machines with disks.

Though all the devices could potentially be connected on the same network,
the system is configured with three networks, once again for pragmatic reasons.
The first network, connects all the computers and the control box (via a Digi
Terminal Server) through the 16-port gigabit Ethernet switch. This network
carries data required for distributed processing. The INS is not connected on
the same network because it required a certain network configuration for optimal
performance. Since the INS data is used for all the phases of the processing, a
second network consisting of the INS and all the computational machines is
configured. A third network is configured to support real-time monitoring of the
system from a chase vehicle. This network consists of the Disk Logger Machine
connected to a wireless access point. The access point is not connected to the first
network because the amount of data flowing on it saturates the wireless device,
thus disrupting real-time monitoring. To overcome this problem the Disk Logger
Machine samples the data before broadcasting.

8.3 Software Architecture

Figure 8.6 depicts CajunBot’s software architecture. The system is decomposed
into several components along functional boundaries. Each component, except
the Middleware, runs as an independent process (program). The modules “Ob-
stacle Detection”, “Planner”, and “Navigator” implement the Core Algorithms
for autonomous behavior, and are discussed in the next section. All other mod-
ules are considered Support Modules, and are described in this section along with
the design criteria that influence the software architecture.

The Drivers, Simulator, and Playback modules are mutually exclusive. While
the Drivers module provides an interface to a physical device, the Simulator and
the Playback modules provide virtual devices, as described below. Only one of the
three modules can be active at any time. The mutual exclusion of the three mod-
ules is annotated in the architecture diagram by the walls between these modules,
akin to the ‘|’ symbol used in regular expressions.
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Fig. 8.6. Software Architecture

8.3.1 Design Criteria

The following design criteria influence the software architecture:

Device independence. There are multiple vendors for sensors, such as, GPS,
INS, IMU, LIDARs, and so forth. The core algorithms of the system should
not depend on the specific device. It should be possible to replace an existing
device with another make/model or to introduce a new device while making
only localized changes to the system.

Algorithm independence. Development of the system is an iterative process,
which involves choosing between competing algorithms for the same task.
It should be possible to develop each algorithm in isolation, that is, in a
separate program, and switch the algorithm being used by selecting some
configuration values.

Scalability. The computational requirements of the system may vary as the sys-
tem’s design evolves. For instance, if CajunBot did not perform adequately
with two LIDARs and there was a need to add a third, it would require more
computational power. It should be easy to add additional sensors and also
seamlessly distribute the application on multiple computers.

Off-line Testability. The definitive way to test an AGV is to run it in the field.
However, it is expensive to test each submodule of the system and every
change by running the vehicle in the field. The system should enable off-line
(in the lab) testing of various components and compositions of components.
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Ease of debugging. To debug a system one needs access to internal data of
the system. When debugging an AGV, it is most valuable if the internal
data is available in real-time, when the vehicle is running. Debugging also
requires performing the same operation over and over again, for one may
not observe all the cues in a single run. The system should support (1) real-
time monitoring of internal state of its various components and also (2) the
ability to replay the internal states time-synchronized. The system should
also support (3) presenting the data, which is expected to be voluminous, in
a graphical form to enable ease of analysis.

8.3.2 CajunBot Middleware

The Middleware module, CBWare, provides the infrastructure for communica-
tion between distributed processes (CajunBot programs), such that the pro-
ducers and consumers of data are independent of each other. Except for the
properties of the data written to or read from CBWare, a module in the system
does not need to know anything else about the module that has generated or
will consume the data. This decoupling of modules is central to achieving the
design criteria listed above.

CBWare provides two types of interfaces. A typed queue interface, CBQueues,
for reading and writing messages. And a typed message packet interface, CB-
Packets, for only writing messages. A typed message packet may also find its
way into a queue, from where it may be read.

CBQueues provides distributed queues using a combination of POSIX Shared
Memory [Marshall, 1999] and UDP communication. On an individual machine
the queues are maintained as circular lists in the shared memory. The data
written to a queue is distributed to other computers using a UDP broadcast.
Figure 8.7 depicts how distributed interprocess communication is achieved by
replicating shared memory queues across machines. This feature of CBWare to

Fig. 8.7. Distributed Onboard Software Architecture
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distribute queues over other machines allowed easy porting of programs over to
multiple machines, achieving easy scalability of computational power, one of the
design criteria.

CBQueues imposes an important constraint: each queue can have only one
writer, but there is no limit on the number of readers. The single writer (pro-
ducer) restriction ensures that the data in each distributed queue can be tempo-
rally ordered on the time the data was produced. If multiple producers of similar
type of data exist, such as multiple LIDARs, a separate queue is maintained for
each producer.

Besides providing the usual interfaces to access a queue, CBQueues also pro-
vides an interface to find in a queue two data items produced around a particu-
lar time. This capability, made possible due to temporal ordering of data in the
queues, provides support for fusion of data from multiple sources based on the
time of production. When two sources generate data at different frequencies, it
may not always be appropriate to use the most recent data from both sources.
Doing so may lead to the fusion of mutually inconsistent data. For instance,
when a LIDAR scan is mapped to global coordinates using the INS data, the
resulting coordinates would have significant error if the vehicle experienced a
sharp bump immediately after the scan. In such cases it is better to fuse data in
close temporal proximity. Along the same lines, instead of using the data gen-
erated directly by a source, sometimes it is preferred to interpolate the data for
the specific time when data from another source is produced. In our LIDAR and
INS example, it may be preferred to interpolate the position of the vehicle to
match the time of LIDAR scan.

The CBPackets interface provides support for multiple writers and multiple
readers. However, in so doing it cannot support temporal fusion of data. This
interface is most useful for distributing status, warning, and error messages. Such
messages are used in isolation, that is, they are not fused with other messages,
and are mostly used for monitoring, not control.

CBWare serves the same purpose as NIST’s Neutral Message Language
(NML) [Shackleford et al., 2000], Simmons & Dale’s CMU-IPC [Simmons and
James, 2001], or RTI’s NDDS [Pardo-Castellote and Hamilton, 1999], to cite a
few middleware frameworks for real-time, distributed systems. While CBWare
shares several similarities with each of these systems, such as publish-subscribe
communication, the fundamental, and most crucial, difference is that CBWare
supports fusion of sensor (and other data) based on the time of production. This
support has been an important contributor in CajunBot’s ability to leverage
rough terrain to increase its sensor performance.

8.3.3 Data Logger

The Data Logger is run on the Disk Logger machine. Besides logging the data
on disk, the Data Logger broadcasts data on the wireless network for real-time
monitoring in a chase vehicle. CajunBot communicates with the chase vehicle on
an 802.11G wireless network. The variety of wireless communication equipment
we have tried tends to crash when all data produced in the queues is put in
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the air. This is particularly true when, for the purpose of debugging, the inter-
nal states of Obstacle Detection and Local Planner modules are broadcast. To
accomodate for the shortcomings of the wireless network, the data logger has
provision to sample the data at some prescribed interval. If disk space is an issue,
it also provides support to save only a sample of the data.

8.3.4 Drivers

Device independence is achieved by having a separate program, referred to as
a Driver, to interact with a particular device. The Drivers are divided into two
classes. 1) Sensor drivers, which read input data from sensors, such as the INS
and LIDARs. 2) Control drivers, which control devices, such as throttle, left and
right levers, safety lights, siren, kill lights, brake lights, and indicator lights.

Besides hiding the details of communicating with the device, a driver also
transforms the data to match units and conventions used by the rest of the sys-
tem. For instance, the CajunBot system measures angles in the anti-clockwise
direction, with East as zero. If an IMU or INS uses any other convention for mea-
suring angles, its corresponding device driver transforms angles from the device’s
convention to CajunBot’s convention. Similarly, most GPS and INS equipment
tends to provide vehicle position in latitude/longitude, which is translated by
the driver to UTM coordinates, as used by the CajunBot system.

8.3.5 Simulator

Off-line testability is a direct outcome of device independence. Since the core
algorithms are unaware of the source/destination of the data, the data does
not have to come from or go to an actual device. The algorithms may as well
interact with virtual devices and a virtual world. The Simulator module (and
the Playback module, discussed later) creates a virtual world in which the core
algorithms can be tested in the laboratory.

CajunBot’s Simulator, CBSim, is a physics-based simulator developed using
the Open Dynamics Engine (ODE) physics engine. Along with simulating the
vehicle dynamics and terrain, CBSim also simulates all the onboard sensors.
It populates the same CBWare queues with data in the same format as the
sensor drivers. It also reads vehicle control commands from CBWare queues and
interprets them to have the desired effect on the simulated vehicle.

While CBSim is a physics-based simulator like Stage [Gerkey et al., 2003] and
Gazebo [Vaughan, 2000], it has two interesting differences. First, CBSim does
not provide any visual/graphical interface. The visualization of the world and
the vehicle state is provided by the Visualizer module, discussed later. Second,
CBSim also generates a clock, albeit a simulated one, using the CBWare queues.

The simulated clock helps in synchronizing the distributed programs when
running in a virtual world. The distributed programs of CajunBot have a read-
process-output-sleep loop, as elaborated later. The frequency at which a program
is scheduled is controlled by choosing the duration for which it sleeps. When
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operating in the real-world, the duration of ’sleep’ is measured in elapsed real-
time. However, it is not beneficial to use elapsed real-time to control the sleep
duration of a process when operating in a virtual environment. In particular,
using the real-time for controlling sleep forces the simulation to execute at the
same pace as the real program, even when one may be using faster and better
computers. Thus, when operating in virtual environment we use the elapsed
simulated time to determine how long a processs sleeps.

By maintaining a system wide simulated time, the CajunBot system is able to
create a higher fidelity simulation than that provided by Stage and Gazebo. The
computation in the entire system can be stopped by stopping the clock; and its
speed can be altered by slowing down or speeding up the clock. This also makes
it feasible to run the application in a single step mode, executing one cycle of
all programs at a time, thereby significantly improving testing and debugging.

8.3.6 Playback

Offline-testing and debugging is further aided by the Playback module. This
module reads data logged from the disk and populates CBWare queues associated
with the data. The order in which data is placed in different queues is determined
by the time stamp of the data. This ensures that the queues are populated in
the same relative order. In addition, the Playback module, like the Simulator
module, generates the simulator time queue representing the system-wide clock.

This simple act of playing back the logged data has several benefits. In the
simplest use, the data can be visualized (using the Visualizer module) over and
over again, to replay a scenario that may have occured in the field or the simula-
tor. It offers the ability to replay a run after a certain milestone, such as a certain
amount of elapsed time or a waypoint is crossed. In a more significant use, the
playback module can also be used to test the core algorithms with archived data.
This capability has been instrumental in helping us refine and tune our obstacle
detection algorithm. It is our common operating procedure to drive the vehicle
over some terrain (such as during the DARPA National Qualifying Event), play-
back the INS and LIDAR data, apply the obstacle detection algorithm on the
data, and then tune the parameters to improve the obstacle detection accuracy.

8.3.7 Visualizer

Real-time and off-line debugging is supported by CBViz, the Visualizer module.
CBViz is an OpenGL graphical program that presents visual/graphical views of
the world seen by the system. It accesses the data to be viewed from the CBWare
queues. Thus, CBViz may be used to visualize data live during field tests and
simulated tests, as well as visualizing logged data using the Playback module.

Since communication between processes occurs using CBWare, CBViz can
visualize data flow between processes. We have also found it beneficial to create
special queues in CBWare to provide CBViz with data that is otherwise internal
to a process. This capability has been very effective, and almost essential, in
achieving the Ease of Debugging design criterion as listed above.



258 A. Lakhotia et al.

8.4 Algorithms

This section presents the algorithms underlying CajunBot’s autonomous
behavior.

Figure 8.8 presents the system level data flow diagram. Although CajunBot’s
system uses the blackboard architecture, see Figure 8.6, the system level DFD
of Figure 8.8 shows the actual data flows. Each step in the system level DFD
is implemented by one or more independent programs. Each program has the
following pattern:

while (true) {
read inputs;
perform processing;
generate outputs;
sleep for a specified time

}
The overall steps are depicted in Figure 8.8. The INS data read in Step 1 gives

the vehicle’s state, which includes position in UTM coordinate space, orientations
along the three dimensions (i.e., heading, roll, and pitch), speed over ground, and

Fig. 8.8. System Level Data Flow Diagram
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accelerations along the three dimensions. The LIDAR generates a sequence of
scans, with each scan containing a collection of beams. Each beam is a value
in polar coordinate space. The LIDAR scans are read in Step 2. In Step 3, the
LIDAR scans and vehicle state (at the time of the scan) are used by the Obstacle
Detection Module to create a Terrain Obstacle Map (TOM). The TOM is a map
of obstacles in the vicinity of the vehicle. The Local Path Planner Module (Step
4) uses the TOM and the vehicle’s state to generate a Navigation Plan. This
consists of a sequence of waypoints and the recommended speed along each
segment. The Navigation Plan is used by the Navigator Module, Step 5, to
generate steering and throttle commands. In executing the plan the Navigator
takes into account safety of the vehicle. Finally, the Control Drivers (Step 6)
map the steering and throttle commands to physical devices. This includes the
throttle servo position and actuator positions for brake control. The Pause and
Kill Signals are read by the Signal Driver (Step 7). These signals are used by the
Obstacle Detection and Navigator Modules, as described later. The Navigator
Module also controls the emergency signals, siren and flashing lights.

The system does not use any explicit real-time primitives. Each program runs
in an endless loop, reading from its input CBWare queues and writing to its
output CBWare queues. When explicit syncronization is needed between the
producer and consumer of some data, the consumer uses CBWare primitives
that block it if no new data is available from the respective producer. Further,
the sleep step of each program is tuned to have the program run at a certain
frequency. The rate at which various programs of Figure 8.8 operate are provided
in Table 8.1.

Table 8.1. Operating frequencies of programs of Figure 8.8

Program Frequency (Hz)
INS Driver 100
LIDAR Driver 75
Obstacle Detection 15
Local Planner 5
Navigator 20
Control Drivers 20

The algorithms for the Obstacle Detection, Local Path Planner, and Motion
Controller Modules are key to providing the autonomous behavior and are de-
scribed below.

8.4.1 Obstacle Detection Module

This section summarizes CajunBot’s obstacle detection algorithm and highlights
the specific features that enable it to take advantage of vibrations along the
height axis, i.e., bumps, to improve its ability to detect obstacles.
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8.4.1.1 The Algorithm

The data flow diagram in Figure 8.9 enumerates the major steps of the obstacle
detection algorithm. The algorithm takes as input the vehicle’s state and LI-
DAR scans. The vehicle state data is filtered to attend to spikes in data due to
sensor errors (Step 3.1), and then used to compute the global coordinates for
the locations from which the beams in a LIDAR scan were reflected (Step 3.2).
The global coordinates form a 3-D space with the X and Y axes corresponding
to the Easting and Northing axes of UTM Coordinates, and the Z axis giving
the height above sea level. Virtual triangular surfaces with sides of length 0.20m
to 0.40m are created with the global points as the vertices. The slope of each
such surface is computed and associated with the centroid of the triangle (Step
3.3). A vector product of the sides of the triangle yields the slope. The height
and slope information is maintained in a digital terrain map, which is an infinite
grid of 0.32m × 0.32m cells. A small part of this grid within the vicinity of the
vehicle is analyzed to determine whether each cell contains obstacles (Step 3.4).
This data is then extracted as a Terrain Obstacle Map.

Fig. 8.9. Data Flow Diagram for the Obstacle Detection Module

Figure 8.10 graphically depicts data from the steps discussed above. The figure
presents pertinent data at a particular instant of time. The grey region represents
the path between two waypoints. The radial lines emanating from the lower part
of the figure show the LIDAR beams. There are two sets of LIDAR beams, one
for each LIDAR. Only beams that are reflected from some object or surface are
shown. The scattering of black dots represent the global points, the points where
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Fig. 8.10. Virtual Triangle Visualization

LIDAR beams from some previous iteration had reflected. The figure is scattered
with triangles created from the global points. Only global points that satisfy the
spatio-temporal constraints, discussed later, are part of triangles. There is a lag
in the data being displayed. The triangles shown, the global points, and the
LIDAR beam are not from the same instant. Hence, some points that can make
suitable triangles are not shown to form triangles. The shade of the triangles in
Figure 8.10 represents the magnitude of slopes. The black triangles have high
slope, +/- 90 degrees, and the ones with lighter shades have much smaller slopes.
In the figure, a trash can is detected as an obstacle, as shown by the heap of
black triangles. The data was collected in UL’s Horse Farm, a farm with ungraded
surface. The scattering of dark triangles is a result of the uneven surface.

An obstacle is classified as an obstacle using the following steps. First, a cell
is tagged as a ‘potential’ obstacle if it satisfies one of three criteria. The number
of times a cell is categorized as a potential obstacle by a criterion is counted.
If this count exceeds a threshold–a separate threshold for each criterion–it is
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deemed an obstacle. The criteria used to determine the classification of a cell as
a potential obstacle are as follows:

High absolute slope. A cell is deemed as a potential obstacle if the absolute
maximum slope is greater than 40 degrees. Large objects, such as, cars,
fences, and walls, for which all three vertices of a triangle can fall on the
object, are identified as potential obstacles by this criterion. The threshold
angle of 40 degrees is chosen because CajunBot cannot physically climb
such a slope. Thus, this criterion also helps in keeping CajunBot away from
unnavigable surfaces.

High relative slope. A cell is deemed as a potential obstacle if (1) the maximum
difference between the slope of a cell and a neighbor is greater than 40 degrees
and (2) if the maximum difference between the heights of the cell and that
neighbor is greater than 23cm. This criterion helps in detecting rocks as
obstacles, when the rock is not large enough to register three LIDAR beams
that would form a triangle satisfying the spatio-temporal constraint. The
criterion also helps in detecting large obstacles when traveling on a slope,
for the relative slope of the obstacle may be 90 degrees, but the absolute
slope may be less than 40 degrees. The test for height difference ensures
that small rocks and bushes are not deemed as a potential obstacle. The
height 23cm is 2cm more than the ground clearance of CajunBot.

High relative height. A cell is deemed as a potential obstacle if the difference
between its height and the height of any of its neighbor is greater than
23cm. This criterion aids in detecting narrow obstacles, such as poles, that
may register very few LIDAR hits.

The threshold counts of 5, 5, and 12, respectively, are used for the three criteria
to confirm a potential obstacle as an obstacle.

As a matter of caution, Step 3.3 disables any processing when the Pause Signal
is activated. This prevents the system from being corrupted if someone walks
in front of the vehicle when the vehicle is paused, as may be expected since the
Pause Signal is activated during startup and in an emergency.

8.4.1.2 Utilizing Bumps to Enhance Obstacle Detection Distance

Figure 8.11 presents evidence that the algorithm’s obstacle detection distance
improves with roughness of the terrain (bumps). The figure plots data logged
by CajunBot traveling at 7m/s through a distance of about 640m of a bumpy
section during the 2005 GC Final. The X-axis of the plot represents the absolute
acceleration along the height (Z) axis at a particular time. Greater acceleration
implies greater bumps. The Y-axis represents the largest distance from the vehi-
cle at which an obstacle is recorded in the Terrain Obstacle Map. The plot is the
result of pairing, at a particular instance, the vehicle’s Z acceleration with the
furthest recorded obstacle in the Terrain Obstacle Map (which need not always
be the furthest point where the LIDAR beams hit). The plot shows that the
obstacle detection distance increases almost linearly with the severity of bumps
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Fig. 8.11. Graph Showing Distance to Detected Obstacles Versus Z-Acceleration

experienced by the vehicle. The absolute vertical acceleration was never less
than 0.1 m/s2 because the vehicle travelled at a high speed of 10 m/s on a rough
terrain. That the onboard video did not show any obstacles on the track and
that the obstacle detector also did not place any obstacles on the track leads us
to believe that the method did not detect any false obstacles.

Bumps along the road have impact on two steps of the algorithm, Step 3.2,
where data from the INS and LIDAR is fused and, Step 3.3, when data from
beams from multiple LIDAR scans are collected to create a triangular surface.
The issues and solutions for each of these steps are elaborated below.

In order to meaningfully fuse INS and LIDAR data it is important that the
INS data give orientation of the LIDARs at the time a scan is read. Since it is not
feasible to mount an INS on top of a LIDAR, due to the bulk and cost of an INS,
the next logical solution is to mount the two such that they are mutually rigid,
that is, the two units experience the same movements. There are three general
strategies to ensure mutual rigidity between sensors: (1) Using a vehicle with
a very good suspension so as to dampen sudden rotational movements of the
whole body and mounting the sensors anywhere in the body. (2) Mounting the
sensors on a platform stabilized by a Gimbal or other stabilizers. (3) Mounting
all sensors on a single platform and ensuring that the entire platform is rigid
(i.e., does not have tuning fork effects). Of course, it is also possible to combine
the three methods.

CajunBot uses the third strategy. The sensor mounting areas of the metal
frame we created is rigid, strengthened by trusses and beams. In contrast, most
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other GC teams used the first strategy and the two Red Teams used a combina-
tion of the first two strategies.

Strategy 3 in itself does not completely ensure that mutually consistent INS
and LIDAR data will be used for fusion. The problem still remains that the
sensors generate data at different frequencies. Oxford RT 3102 generates data
at 100Hz, producing data at 10ms intervals, whereas a SICK LMS 291 LIDAR
operates at 75Hz, producing scans separated by 13ms intervals. Thus, the most
recent INS reading available when a LIDAR scan is read may be up to 9ms old.
Since a rigid sensor mount does not dampen rotational movements, it is also
possible the INS may record a very different orientation than the time when the
LMS data is recorded. Fusing these readings can give erroneous results, more so
because an angular difference of a fraction of a degree can result in a LIDAR
beam being mapped to a global point several feet away from the correct location.

The temporally ordered queues of CBWare and its support for interpolating
data help in addressing the issue resulting from differences in the throughput of
the sensors. Instead of fusing the most recent data from the two sensors, Step
3.2 computes global points by using the vehicle state generated by interpolating
the state immediately before and immediately after the time when a LIDAR
scan was read. Robots with some mechanism for stabilizing sensors can fuse a
LIDAR scan with the most recent INS data because the stabilizing mechanism
dampens rotatonal movements, thus ensuring that the sensors will not experience
significantly different orientations in any 10ms period.

Fig. 8.12. LIDAR Beams Scattered Due to Bumps
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Absence of a sensor stabilizer also influences Step 3.3, wherein triangular sur-
faces are created by collecting global points corresponding to LIDAR beams.
Since CajunBot’s sensors are not stabilized, its successive scans do not incre-
mentally sweep the surface. Instead, the scans are scattered over the surface as
shown in Figure 8.12. This makes it impossible to create a sufficient number of
triangular surfaces of sides 0.20m to 0.40m using points from successive scans
(or even ten successive scans). It is always possible to create very large triangles,
but then the slope of such a triangle is not always a good approximation for the
actual slope of its centroid.

If the GPS/INS data were very precise then triangles of desired dimensions
could be created by saving the global points from Step 3.2 in a terrain matrix, and
finding groups of three points at a desired spatial distance. This is not practical
because of Z-drift, the drift in Z values reported by a GPS (and therefore by the
INS) over time. When stationary, a drift of 10 cm - 25 cm in Z values can make
even a flat surface appear uneven.

The Z-drift issue can be addressed by taking into account the time when a
particular global point was observed. In other words, a global point is a 4-D value
(x, y, z, and time-of-measurement). Besides requiring that the spatial distance
between the points of a triangular surface be within 0.20m and 0.40m, Step 3.3
also requires that their temporal distance be under three seconds.

To recap, the following features of the Obstacle Detection Module enables it
to utilize bumps to improve obstactle detection distance.

• A rigid frame for mounting all sensors.
• Fusing mutually consistent LIDAR scan with INS data based on the time of

production of data.
• Using 4-D space and spatio-temporal constraints for creating triangles to

compute the slope of locations in the 3-D world.

8.4.1.3 Performance Evaluation on 2005 GC Data

We now turn to the question of efficiency and scalability of the algorithm. Ta-
bles 8.2 and 8.3 present the following data for a single LIDAR and LIDAR pair
configuration.

CPU Utilization. The average ‘percentage CPU utilization’, as reported by the
Linux utility top, sampled every second.

Increase in CPU. The percentage increase in CPU utilization going from one
LIDAR configuration to a configuration of two LIDARs.

Table 8.2 gives the data when the terrain was not very bumpy, whereas Ta-
ble 8.3 presents data for bumpy terrain in the actual Grand Challenge Final
Run. In both the situations, adding another LIDAR reduces the obstacle detec-
tion time at a higher rate (38-48%) than the increase in the CPU utilization
(22-28%). This implies our algorithm scales well with additional LIDARs, since
the benefits of adding a LIDAR exceeds the costs.
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Table 8.2. Effect of number of LIDARs, with low average bumps: 0.11m/s2

# LIDARs 1 2
CPU Utilization 12.4% 15.9%
Increase in CPU 28.23%

Table 8.3. Effect of number of LIDARs, with high average bumps: 0.24m/s2

# LIDARs 1 2
CPU Utilization 11.2% 13.7%
Increase in CPU 22.32%

Comparing data across the Table 8.2 and Table 8.3 further substantiates that
our algorithm takes advantage of bumps. Compare the data for the single LI-
DAR configurations in the two tables. The CPU utilization is lower when the
terrain is bumpy. The same is true for the dual LIDAR configuration. The more
interesting point is that adding another LIDAR does not lead to the same in-
crease in CPU utilization for the two forms of terrain. For the bumpy terrain the
CPU utilization increased by 22.32%, which is significantly less than the 28.23%
increase for the smoother terrain. The efficient and scalable implementation is
due to two factors. First, in Step 3.3 it is not necessary that the triangles be
created using global points observed by the same LIDAR. The data may be from
multiple LIDARs. The only requirement is that the triangles created satisfy the
spatio-temporal constraints. The second factor is that we utilize an efficient data
structure for maintaining the 4-D space. Though the 4-D space is infinite, an
efficient representation is achieved from the observation that only the most re-
cent three seconds of the space need to be represented. This follows from the
temporal constraint and that one point of each triangle created in Step 3.3 is
always from the most recent scan.

8.4.2 Local Path Planner Module

The RDDF (route data description format) file provided as input to the vehicle
may be considered a global plan, a plan computed in response to some global
mission. The Local Path Planner Module’s role is to create a navigation plan to
advance the vehicle towards its mission taking into account the ground realities
observed by the sensors. The navigation plan is a sequence of local waypoints
that directs the vehicle towards an intermediate goal, while staying within the
lateral boundary and avoiding obstacles. The intermediate goal–a point on the
RDDF route at a fixed distance away from the vehicle–advances as the vehicle
makes progress. Also associated to each local waypoint is a speed that is within
the speed limits prescribed in the global plan and one that can be safely achieved
by the vehicle.
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Fig. 8.13. Data Flow Diagram for the Navigator Module

Figure 8.13 presents the logical data flow diagram of the local path planner1.
The algorithm maintains two grid representations of the world, a persistent grid
and a temporary grid. The persistent grid uses Easting and Northing coordinates
whereas the temporary grid uses the vehicle’s own coordinate space. As the name
suggests, the persistent grid retains data between iterations of the algorithm,
whereas the temporary grid is created afresh for each iteration. Following is the
explanation of the steps followed by local path planner as shown in Figure 8.13.

Step 4.1 updates ‘assigned costs’ in the Persistent Grid. A cell in the persistent
grid is assigned two types of costs, obstacle cost and boundary cost. The obstacle
cost is based on the proximity of a cell to an obstacle. The boundary cost is based
on its proximity to the boundary. The locations of obstacles are obtained from
the Terrain Obstacle Model. To enable treating the vehicle as a point object,
each obstacle is expanded in two concentric circles, as shown in Figure 8.14. First
the region within the inner circle is called the hard obstacle expansion region.
Each cell inside this circle is assigned an infinite obstacle cost. That the point
vehicle is in this region implies the vehicle has crashed into some object. The
hard expansion indicates the area the vehicle must avoid at any cost. Second,
1 Note that branches in a DFD represent branching of data flow, not of control.
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the region between the inner and the outer circle is called the soft obstacle
expansion region. Cells in this region are assigned a smaller obstacle cost, and
the cost decreases radially outwards. The soft expansion region discourages the
local path planner from picking a path too close to an obstacle, unless it is
absolutely necessary. Cells outside the soft expansion region are assigned a zero
obstacle cost. Figure 8.14 also depicts three types of lateral boundary expansion
region: warning region, soft expansion region, and a hard expansion region. The
warning region is 0.3m wide and about 0.7m distance within the lateral boundary
in the direction towards the center of the track. When the (point) vehicle is in
this region, its wheels will be barely inside the lateral boundary. The cells in the
warning region are given a very small boundary cost, a cost sufficient to keep the
vehicle away from the lateral boundary. The soft expansion region starts outside
of the warning region and extends past the lateral boundary for about 2m. Cells
in this region have a slightly higher boundary cost than those in the warning
region. This cost is intended to ‘aggressively’ prevent the vehicle out from cross
the lateral boundary, and if the vehicle happens to be in the lateral boundary
it aggressively pushes it back. The region outside of the track, further past the
soft expansion region is called the hard expansion region. Cells in this region
are assigned an infinite boundary cost. Like the hard obstacle expansion region,
this region is considered to be unsafe for the vehicle and should be avoided at
any cost. Cells inside the track, between the warning region, are assigned a zero
boundary cost.

Step 4.2 uses the Vehicle State and the Next Global Waypoint information to
create the temporary grid, which involves allocating memory, marking the cells
for the intermediate goal, and marking the position of the vehicle.

Step 4.3 computes the Grid Distance Cost (GDC) [Maida et al., 2006,
Barraquand et al., 1992] for the cells in-between the vehicle and the intermedi-
ate goal on the temporary grid. Each cell of the temporary grid has three costs
associated with it: obstacle cost, lateral boundary cost and cell cost. Obstacle
costs and lateral boundary costs are taken from the corresponding cell of the
persistent grid, computed in Step 4.1. The cell cost represents the cost of trav-
eling from that cell to the goal cell. It includes distance to the goal, penalty for
traveling close to obstacles and lateral boundary.

The following recursive equations describe the relation between the cell cost
C(i) of a cell i and the cell costs of its neighbors nbs(i).

C(i) = 0, i is a goal cell.
C(i) = min{C(j) + T (j, i) | j ∈ nbs(i)}, i is not a goal cell

where T (j, i) = CF (j, i) × (1 + B(j) + O(j)), is the cost of traveling from cell j
to cell i, CF (j, i) is the Chamfer Factor [de Smith, 2004], B(j) is the boundary
cost of cell j, and O(j) is the obstacle cost of cell j.

The fixed point of the above system of equations gives the desired cost. We
use the A* algorithm to efficiently direct the propagation of costs from the goal
towards the vehicle.
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Fig. 8.14. Obstacle and boundary costs

Fig. 8.15. Maneuverable Curves of CajunBot

Step 4.4 overlays on the temporary grid a set of pre-computed curves rep-
resenting acceptable movements of the vehicle. The curves are truncated at
the point where they enter an obstacle cell, or a lateral boundary cell. Fig-
ure 8.15 shows the maneuverable curves in an obstacle free world. The curves
originate at the vehicle and spread out along the orientation of the vehicle.
These curves are pre-computed only once by simulating the vehicle’s steering
control [Scheuer and Xie, 1999, Scheuer and Laugier, 1999]. Unlike curve com-
putations based on Dubin’s car [Dubins, 1957], our collection of curves does not
represent all possible maneuvers that can be made by the vehicle. Instead, as ev-
ident from Figure 8.15, our collection contains straight-line curves, those curves
emanating in the direction of the vehicle’s heading; floral curves, curves that
diverge from the current heading of the vehicle like a floral arrangement; and
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onion curves, the curves that diverge from the straight path and then converge
back, like layers in an onion. A combination of straight-line, floral curves, and
onion-curves is found to be sufficient to go around obstacles and make various
types of turns. This is because the Local Path Planner generates a new navi-
gation plan in every iteration. When an obstacle is first seen, an onion curve
diverts the vehicle away from the obstacle. In a subsequent iteration, a floral
curve brings the the vehicle smoothly back on track.

Step 4.5 uses the temporary grid annotated with the GDC and projected curves
to select the Best Curve. This is done in two steps. First, a set of candidate curves
are selected from the projected curves. Second, a Best Curve is selected from the
candidate curves. Each curve is evaluated on three properties, namely, a) length
of the curve, b) final cost to the goal, i.e., the cell cost of the cell where the curve
terminates, and c) the rate of reduction in the cell cost. The latter is the reduc-
tion in cell cost from the start of the curve to the end of the curve divided by the
cost of traveling through each cell–T (j, i) described earlier–along the curve. The
candidate curves are selected from the projected curves by eliminating curves as
follows. First, all curves that are smaller than a minimum acceptable length are
removed. Next, of the remaining curves the smallest final cost to the goal is found.
All curves whose final cost to the goal is greater than some threshold more than the
smallest final cost are removed. Finally, the highest rate of reduction in cell cost
of the remaining curves is found. Any curve whose rate of reduction is less than
some threshold of the highest is removed. Now, the Best Curve of the set of can-
didate curves is the curve with the end point closest to the centroid of the all the
candidate curves. If the set of candidate curves is empty, the path planner reports
that it cannot generate any path.

Step 4.6 converts the best curve into a sequence of local waypoints. This step
also annotates each waypoint with a recommended speed, which is computed
using the RDDF speed, distance to the nearest obstacle, and amount of turn to
make at that waypoint.

The key innovation of our algorithm is that it is a hybrid of discrete and dif-
ferential algorithms (see [LaValle, 2006] for a comprehensive survey on planning
algorithms). Step 4.3, the discrete part of the algorithm, computes GDC with-
out taking into account the vehicle’s state. Steps 4.4 and 4.5, the differential
components of the algorithm, take the vehicle’s state and its maneuverability
into account to pick the Best Curve. By combining discrete and differential al-
gorithms, we are able to get the best of both worlds. The discrete algorithm is
fast and efficient, and hence can be used for planning over a large area. The
differential component computes a path only in the vicinity of the vehicle. But,
since the path selected is based on GDC, the curve chosen may be influenced
by terrain conditions much further away. Thus, the navigation plan created is
maneuverable within the vicinity of the vehicle and also brings the vehicle to a
position close to an optimal path.

There are other non-trivial and interesting aspects of the algorithm that are
worthy of explanation: 1) representation of the goal; and 2) representation of
robot and obstacles to aid in creation of navigable paths.
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Representation of goal. The size and shape of the goal has very significant
effect on the paths created by the algorithm. If the goal is a point object on
the center line, and there is an obstacle near the goal, the path generated will
hug the boundaries of the obstacle even if there is a large amount of free space
on the track. If the goal is a straight line encompassing the whole segment,
perpendicular to the direction of motion, then the path may hug the corners
after a turn, since that will be the shortest path.

We use a V-shaped goal, with an angle of about 150 degrees at the vertex.
When there are no obstacles on the track, the tip of the V-goal smoothly brings
the vehicle to the center of the track. However if there is an obstacle on the
center lane of the track, the path generated will smoothly deflect away from the
obstacle aiming for some other point on the V-shaped goal.

Representation of robot and obstacles. The classical approach to path
planning for a circular robot with unlimited mobility is to model the robot as a
point object and to expand an obstacle cell in a circle the same dimension as the
robot [Feng et al., 1990, Stentz and Hebert, 1995]. Whether the robot placed in
a particular cell will collide with an obstacle can be determined by checking if
the cell falls in the expansion region of an obstacle. This model of robot and
obstacle leads to a very efficient test for collision.

We extend the above approach for the AGV domain. The Local Path Planner
represents the vehicle as a point object and expands an obstacle cell in two
concentric circles. The inner circle is called the hard expansion and is considered
a hard obstacle. Presence of the (point) vehicle in a hard expansion cell implies
imminent collision. This is encoded by associating an extremely high cost for
being in that cell. The ring between the inner and outer circle is called the soft
expansion. It is an area that is not very desirable for the vehicle to be in, unless
there is no other option. The inner cells of the soft expansion are considered as
far less desirable than the outer cells. This is encoded by using a higher cost for
the inner cells than the outer cells.

CajunBot is 1.5m wide, that is, 0.75 m wide from center of the body to a side.
Hence the hard expansion radius is set to 1m, giving an extra distance of 0.25m
for sensor and vehicle control inaccuracies. The soft expansion radius is set to
2.5m. The combination of hard and soft expansion ensures that the path chosen
using the discrete algorithm is navigable by CajunBot even though the vehicle
is rectangular, and not circular.

8.4.3 Navigator

The Navigation Module is responsible for executing the plan generated by the
Local Path Planner taking into account the vehicle’s dynamics. As shown in
Figure 8.8, the module takes as input the Navigation Plan, the Vehicle State
and Safety Signals, and generates Vehicle Control Commands for the Control
Drivers Module and the Next Waypoint (index to next global path waypoint)
for the Local Path Planner Module.
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It is the Navigation Module’s responsibility to make the vehicle drive smoothly
even when successive straight-line segments in the input plan are at sharp angles
and have different speed limits. To provide such a driving experience, the Navi-
gation Module performs four tasks: instantaneous steering guide, instantaneous
speed guide, steering controller, and speed controller, as elaborated below.

Instantaneous Steering Guide. The instantaneous steering guide determines
the desired heading for the vehicle in order to follow the Navigation Plan pro-
vided by the Local Path Planner. If the vehicle is not on the path suggested in
the Navigation Plan, the instantaneous steering guide computes the instanta-
neous desired heading to smoothly bring the vehicle back on to the path. It is
the task of the steering controller to achieve the instantaneous desired heading
so computed.

The instantaneous desired heading is computed using a variation of the follow-
the-carrot method [Hebert et al., 1997]. The vehicle’s position is projected on the
segment of the Navigation Plan being executed (see Figure 8.16). A carrot point
is marked along this segment at a look-ahead-distance away from the vehicle’s
projected position. The orientation of the line joining the vehicle and the carrot
point gives the instantaneous desired heading. Our method is different from
follow-the-carrot in that carrot point is marked at a look-ahead-distance on the
current segment, not at a distance on the path. If the length of the segment is
shorter than the look-ahead-distance we extend the segment for the purpose of
placing the carrot point. In contrast, the follow-the-carrot method, travels along
the path to find the carrot point.

Fig. 8.16. Steering Guide

Instantaneous Speed Guide. The instantaneous speed guide computes the
desired speed that vehicle should try to achieve based on the present speed, the
vehicle’s kinematic limits, and the safe speed limit. The safe speed limit depends
on the track speed given in the Navigation Plan, the safe speed for making turns
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ahead, and, if the pause signal is activated then, the safe speed to bring the
vehicle to a stop.

Steering Controller. The responsibility of the steering controller is to ensure
that the vehicle maintains the desired heading. It generates low level steering
commands for the left and right brakes in order maintain this desired heading.
The low level steering commands are generated as a floating point value between
-1 and 1. A negative value refers to amount of the left brake to apply and positive
value refers to the amount of the right brake to apply.

The controller uses an incremental PID to generate steering commands by
using the difference between the desired heading and the present vehicle heading
as error input. The controller uses different PID constants at different speeds, as
CajunBot, a skid steered vehicle shows varying steering responsiveness for same
steering commands at different speeds.

Speed Controller. The speed controller is responsible for achieving the desired
speed suggested by the instantaneous speed guide. The speed controller emits a
floating point value in the range of -1 to +1, where a negative value represents
amount of brakes to apply and a positive value represents the amount of throttle
to give. Thus, the controller will never try to perform both active braking and
throttling at the same time. The speed controller is also a classic incremental
PD controller that uses the difference between desired speed and present vehicle
speed as error input.

8.5 Field Experience

This section summarizes Team CajunBot’s experience during the NQE (National
Qualifying Event) and the 2005 GC Final.

The primary goal of the team was to be amongst the GC finalists and travel
over 11.8km (over 7.3 miles), the distance traveled by Red Team’s Sand Storm
in 2004 GC. Due to its inherent low maximum speed 10.35m/s (23 miles/hr),
CajunBot was never a contender to win the race based on the speed against the
faster competitors like Sandstorm and Stanley. Further, the Max IV ATV, the
underlying vehicle, is not normally used to transport for very long distances,
running continuously for hours. So we were unsure if the vehicle’s mechanics
would hold together for the entire run. However, we were assured by the manu-
facturer and the dealer that the vehicle was rugged enough to last that far. In
any case, the team felt that the core problems to be solved were in software,
and that our ability to solve them could be amply demonstrated by successfully
completing the NQE and traveling a significant distance in the final.

Indeed during the NQE and GC, CajunBot demonstrated the ability to navi-
gate the course, control speed, and detect and avoid obstacles at reasonable speeds.
In the GC final CajunBot started at the 21st position and covered about 28.324km
(17.6miles) before it was killed due to a mechanical failure. CajunBot was placed
15th on the basis of the distance covered. Along the way it overtook two vehicles
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that were still in the running, achieved its maximum speed of 10.35 m/s, and cov-
ered the 28.324km distance at an average speed of 4.95m/s (11 miles/hr).

8.5.1 National Qualifying Event (NQE)

Of the six NQE runs, CajunBot completed two runs (Runs 4 and 5), ran into
the last car on the final stretch in Run 6, did not compete in Run 3 because of
a mechanical failure, suddenly stopped after going through the tunnel due to a
GPS/INS related failure in Run 2, and climbed the hay bails when approaching
the tunnel due to a rounding error in the path planner in Run 1.

Run 1: In the first run of the qualification round, CajunBot started well passing
through the gates and cones, going up the slope, and, through the speed section.
The next part of the course was a narrow section bounded by hay bails which
lead to the tunnel. While going through this section CajunBot made a sudden
left turn to avoid the hay bails on the right, and in so doing climbed up on the
bails on the left. All three wheels on left side of CajunBot were off-ground as
the vehicle tried to climb the hay bail. Ironically, bringing the vehicle back on
the track required spinning the wheels which were in the air and thus without
traction. This was the first time we experienced the limitation of skid-steering.
CajunBot had to be taken off the track.

Of course, the incident would not have happened if CajunBot had chosen a
straight path along the center of the route. We were puzzled why it did not do
so. The reason turned out to be a rounding error in the mapping of a curve
path to the grid cell. The effect of the rounding error was magnified because the
location that was rounded off was very close to the vehicle, leading to a very high
change in instantaneous heading. Ironically, again, the rounding error was not
a complete oversight. The single line of faulty code was annotated as ‘FIX ME’
for later. The approximate calculation was put in place, to be corrected when
other pieces were completed. Addressing the ‘FIX ME’ never became a priority
because it never led to any failure until that NQE Run.

Run 2: Very much like the first run, for the second NQE run, CajunBot started
confidently, avoiding the initial set of obstacles, passing through the gates and
the slope. In the speed section the vehicle reached its top speed of 23 miles/hr.
As expected from our testing in the simulator, CajunBot followed a straight-
line path through the narrow section bounded by hay bails and the tunnel that
followed. It avoided the tires, stationary cars and went swiftly through the gravel
section. The navigation system was impeccable as it made a smooth curve by the
wall, passing through the narrow section between the cones and the wall. And
then CajunBot simply stopped. After waiting for about 10 minutes, the vehicle
was manually driven off the track.

The analysis of the logged data revealed a sudden change in the GPS height
value in the region where the vehicle stopped. The height value (Z) had jumped
by 30 meters in a fraction of a second causing the software to detect a wall-like
obstacle in front of the robot. The entire region was filled with the obstacles,
forcing the navigation software to stop giving paths.
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The reason for the spike in Z value turned out to be due to loss of GPS signal
in the tunnel. After the GPS signal was lost the INS started using ded-reckoning
to estimate change in its position. Even after passing through the tunnel and
regaining the GPS signal, the INS continued ded-reckoning, or so we understand.
At some point it switched from ded-reckoning to using the Z-value reading from
the GPS. But by then ded-reckoning errors had accumulated and we experienced
a sudden spike in the data.

A median filter was added to the software, which monitors the data from the
GPS/INS. The filter discards the data if any unreasonable rate of change in the
height and position information of the GPS/INS data was detected. Also, upon
detecting a spike in data, the obstacle detection module also flushes its spatio-
temporal data to ensure that the data before and after the spike are not mixed
during analysis.

Run 3: As CajunBot was being brought for the third run, it was observed
that the vehicle steering incorrectly while been driven using the RC control. The
reason turned out to be a broken transmission. We had to forgo this run as the
vehicle was not in operational condition.

This was a good lesson about the consequences of using an uncommon vehicle.
The nearest dealer of Max ATVs was about 320km (200miles) away. We were
extremely lucky that “2 The Max ATV” dealer was very magnanimous. She was
willing to bring a brand new Max IV ATV to us, and allow us to scavenge it for
spares, at no additional cost but to replace the parts when we were done. The
team changed the entire transmission of the vehicle in less than seven hours and
was ready for the fourth run the next morning.

Run 4: The fourth run was the first successful run for CajunBot at the NQE.
The vehicle started smoothly, detected and avoided every obstacle, and success-
fully completed the run.

For the fourth run, the speed section was shifted to a more bumpy stretch
as compared to the earlier runs. The logged data showed that CajunBot saw a
line of false obstacles a couple of times when the vehicle was at its maximum
speed on a considerably bumpy track. The sensors were pointing way far apart.
The top LIDAR was aimed at 25m in front of the robot whereas the bottom
LIDAR was aimed at 7m in front of the robot. During testing a few days before
the NQE the configuration of the sensors was changed from the one described
in Figure 8.5. The bottom LIDAR was reoriented to reduce the blind spots at
turns. This change had the unintended consequence of increasing false obstacles
in rough conditions. The configuration of Figure 8.5 was chosen to ensure rapid
creation of triangles that satisfied the spatio-temporal constraints. With only
0.3m separation in their range, triangles of Figure 8.10 could be created using
the global points resulting from the most recent scans of the two LIDARs. In-
creasing the separation in their range to 18m significantly decreased the chances
of grouping beams from the most recent scans from the two LIDARs. When the
global points from the two LIDARs were grouped, they would be expected to be
temporally a part, and therefore the triangles were prone to errors. By increasing
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the number of such triangles, we increased the chances of detecting false obsta-
cles. We could address the problem by reverting the sensor configuration. But
doing so implied more risk since we did not have the time to test the effect of
the change. Hence, the team decided not to make any changes and live with the
consequences.

Run 5: The fifth run was also a successful run, with the only difference that
the vehicle could not detect the lower leg of the tank trap, placed in the extreme
end of the run. It brushed the tank trap on its way to the end of the course.

Low data density on the lower leg of the tank trap caused the software not to
detect it as an obstacle. A solution for this was to increase the time for which the
LIDAR data is used to from the triangles or to point the LIDAR’s more closer
such that there is more data density. The first option was ruled out as the GPS
signal was not reliable after the vehicle passes through the tunnel. Increasing the
time might have led to an increase in false obstacles. The second option was not
tested in the recent past, hence, the team decided to keep the same configuration
for the rest of the runs.

Run 6: The final run of the NQE, the run 6, was a near perfect run until
the very last part. The last 200m of the track had two cars and a tank trap
as obstacles in the path. CajunBot detected and avoided the first car perfectly.
However, while trying to avoid the second car it hit the car in the corner. Like
the first run, CajunBot’s left wheels were in the air and it needed to spin those
wheels to turn right. CajunBot had to be taken off the track.

Based on the analysis of the logged data, as CajunBot turned to avoid the
first car, the second car was in the blind spot of the top LIDAR. By the time the
bottom LIDAR could detect the car as an obstacle, CajunBot was dangerously
close to it. The delay in detecting the obstacle did not give enough time for the
local path planner to steer the vehicle around the obstacle. The vehicle hit the
right rear end of the car while trying to steer away from it.

Having completed two runs successfully and one near successful run, CajunBot
was selected as one of the 23 finalists to compete in the DARPA Grand Challenge
2005. The team and the bot moved to Primm, Nevada.

In the time between the NQE and the GC final, we were afforded a window
of opportunity to fix the configuration of our LIDARs. We reverted the LIDARs
to the configuration given in Figure 8.5 and tested it near Slash X, the starting
point of the 2004 Grand Challenge.

8.5.2 DARPA Grand Challenge Final Run

On the grand finale, CajunBot was the 21st robot to start. She was flagged off
at 8:30am. Just about that time the weather took a turn. The winds picked
up, blowing through the dry lake bed and causing a big sand storm. In no
time, CajunBot was out of sight, in the thick of the storm. We knew that the
LIDARs could not see through the sand, and were pretty nervous. To our relief
the DARPA scoreboard showed CajunBot was still moving. It took about an
hour for CajunBot to complete the 12.874km (8 mile) loop and pass the spectator
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stand. By then the weather had settled and she was moving really well. For the
next hour, CajunBot passed several disabled vehicles and two vehicles still in
the run. We were pleased that she was going strong. It was now poised to enter a
region that was also part of the tail end of the course. The leading bots, Stanley,
Sandstorm, and Highlander, were about to enter this region. To give precedence
to the leading bots, CajunBot was paused. It took about 45 minutes for the lead
bots to clear that path. When CajunBot was un-paused, she simply failed to
start. After attempting to restart for 20 minutes, the vehicle was disabled.

The reason why CajunBot failed to restart turned out to be very mundane,
and related to the transmission failure before Run 3. The transmission has two
plungers that connect to two levers. One lever is for braking the left wheels or
engaging the left transmission. The second one is for the right side. We control
each lever using a lead-screw linear actuator. The actuators consume current
when the lead screw is tightened to pull a load. However, if power is cut-off
it stays locked in a position. We map the thrust of the actuator to a range
from 0 to 1, to correspond to the maximum desired movement of the levers.
After the transmission failure, we did not calibrate the actuators correctly. Its
‘1’ was mapped to a position that the transmission could not physically reach.
When the vehicle was put in to pause mode, to engage the brakes the levers
had to be moved to ‘1’. However, this position could not be reached and the
motor controller continued to attempt to move it. In the process, for 45 minutes
the motor was fed its peak current, a current it can withstand only for short
duration. That caused the motors on the actuators to burn out.

Further analysis of the logged data revealed how CajunBot weathered the
sand storm. The on-board video show CajunBot completely engulfed in the
sand. That led it to see ’false obstacles’, forcing it to go out of the track to avoid
them. When the vehicle strays too far outside the lateral boundary we disable
path planning and force it back to the track. Once it was back on track it would
repeat the same behavior, thus appearing as though it is wandering aimlessly.
However, after the sand storm cleared, the video shows CajunBot running very
much along the middle of the track, and passing stalled or stopped vehicles. The
logged data shows absolutely zero false obstacles throughout the run after the
storm, even in areas where the vehicle experienced severe bumps.

Regardless of the outcome of the race, Team CajunBot came away with a
much better understanding of autonomous navigation. We are very confident
that, but for the mechanical failures, the vehicle would have completed the track,
especially since there was no weather related disturbance in the later part of the
day. The team is looking forward for the next challenge and is working on the
new proposed entry, the RaginBot - a 2004 Jeep Rubicon.

8.6 Future Work

Our experience suggests that field testing is one of the most expensive parts of
developing an AGV. To field test, one must have a fully operational vehicle, a
field for testing it, correct weather conditions, and a significant size staff. Unless
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the procedures for bringing the vehicle to the field are very well-defined, small
issues, such as insufficient gas in the generator, can consume significant time.

Having a fully operational vehicle is no small requirement, given that an
AGV has linear dependencies between the automotive, the electromechanical
components, the electrical, electronics, sensors, and the software. Failure in any
one of the components can hold back the testing.

Yet testing in the current generation of simulation environments, such as CB-
Sim, Stage [Gerkey et al., 2003] and Gazebo [Vaughan, 2000] are quite limited.
While these environments are good for doing integration testing, their simula-
tion abilities are quite limited providing information about how the vehicle may
perform in the real-world, such as, in different terrain and weather conditions.

We are working on developing a higher fidelity simulation and visualization
of the real-world and the vehicle. The environment will utilize a cluster of com-
puters and a 6-surface cave to create an immersive visualization of real-time
simulation.

There is another aspect of field testing that can be improved. How does one
evaluate the performance of a vehicle in the field? A report of observations by
the testing team while useful leaves room for subjectivity and human error. A
10 hour run can be pretty long for someone to correctly recount and to pay
attention for taking notes.

There is ongoing work in our lab to develop automated, objective methods to
analyze logged data from a field run and to evaluate a vehicle’s performance.

In addition we are also working on improving the system further, such as, to
introduce camera vision capability; improve reliability by introducing the ability
to restart individual software components or the whole system; and porting the
system to a completely new vehicle, Ragin’Bot, a 4x4 Jeep Wrangler.

8.7 Conclusion

Participating in the DARPA Grand Challenge has been an intense experience,
unlike anything we have experienced during normal research. The most sig-
nificant difference was to have an end-to-end system that would perform in a
real-world situations, and in the course of the development solve some significant
research problems.

The requirement to develop an end-to-end system implied we could not have
tunnel vision and get carried away improving only one component of the system.
That the vehicle would perform in real-world situations required us to consider
solutions for a multitude of scenarios, rather than be content with developing
solutions for some simplified scenarios.

This paper presents the overall hardware and software architecture of the
CajunBot. More importantly, it highlights the specific innovations resulting from
the effort. It is hoped that these innovations in some small way help in advancing
the overall field of AGV.
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Summary. This paper presents a summary of SciAutonics-Auburn Engineering’s ef-
forts in the 2005 DARPA Grand Challenge. The areas discussed in detail include the
team makeup and strategy, vehicle choice, software architecture, vehicle control, navi-
gation, path planning, and obstacle detection. In particular, the advantages and com-
plications involved in fielding a low budget all-terrain vehicle are presented. Emphasis
is placed on detailing the methods used for high-speed control, customized naviga-
tion, and a novel stereo vision system. The platform chosen required a highly accurate
model and a well-tuned navigation system in order to meet the demands of the Grand
Challenge. Overall, the vehicle completed three out of four runs at the National Qual-
ification Event and traveled 16 miles in the Grand Challenge before a hardware failure
disabled operation. The performance in the events is described, along with a success
and failure analysis.

9.1 Introduction

The 2005 DARPA Grand Challenge was a competition to spur the development
of autonomous ground vehicle capabilities. It consisted of a 132 mile course that
had to be completed in less than 10 h by vehicles with no human interven-
tion. The course was mostly desert terrain including dry lake beds, rough roads,
long tunnels and underpasses, and numerous obstacles. Initially, 195 teams en-
tered the Challenge; 43 were invited to the National Qualification Event (NQE).
SciAutonics-Auburn Engineering was one of 23 teams chosen from these semifi-
nalists to compete in the final 132 mile course.

SciAutonics formed to compete in the initial DARPA Grand Challenge in
2004. The core technical team was initially comprised mainly of engineers at
Rockwell Scientific Corporation (RSC) and received a large portion of its fund-
ing from RSC. ATV Corporation donated the vehicle platform and a second
test vehicle, and provided continual technical support throughout the project.
Auburn University joined the team to develop the vehicle control and navigation

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 281–309, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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aspects of the system (Behringer, Gregory et al., 2004). In 2005, the team name
changed to SciAutonics- Auburn Engineering, and more collaborators joined to
complement the existing expertise. Seibersdorf Research provided a stereo vision
system for object detection and road segmentation. The City of Thousand Oaks
was also a partner, providing an area of land for performing vehicle tests and
the required DARPA site visit.

This paper discusses the SciAutonics-Auburn Engineering effort in the DARPA
Grand Challenge 2005. In particular, it covers both the components that com-
prised the entry vehicle and the strategies that allowed the team to compete
successfully in the Challenge. Particular emphasis is placed on the localization,
obstacle detection, and vehicle control algorithms.

9.1.1 System Development Strategy

A system that exhibits autonomous driving capability is, by its very nature,
quite complex and consists of subsystems with a high degree of interdependence.
Since the team was mostly a volunteer effort comprised of people working on this
project in their spare time, it was a challenge to map the system structure onto
the various team members in a way that was efficient and could allow the team
members to work on subtasks independently.

The vehicle team initially set up the hardware: Vehicle components and the
lowest level actuation controllers. This could be done relatively independently
as other subteams addressed different technical challenges. As the hardware im-
plementation progressed, the work on the control system became more relevant.
Two students from Auburn University worked remotely on identifying the vehi-
cle model for throttle and steering control, as well as the navigation algorithm.
The sensor team addressed the feasibility of sensor systems and performed inde-
pendent sensor tests and characterization in desert conditions. ATV Corporation
gave the team access to a second vehicle, which had the same driving character-
istics but was not equipped with any means for automatic driving. This vehicle
served as a platform for mounting and testing sensors while not removing the
capability to manually drive. The software team built the framework for com-
munication, sensor data acquisition, and processing. The intelligent behavior
subteam addressed the issues related to the design of the autonomous concept,
such as path planning and obstacle avoidance.

The team met regularly on evenings and weekends to test, implement, and
integrate the different modules in the complete system context. Trials were per-
formed at the Lang Ranch area, where the City of Thousand Oaks had given
permission to conduct these tests.

9.1.2 Entry Vehicle

A small All Terrain Vehicle (ATV) platform (Figure 9.1) was chosen for the
entry vehicle due to its size, agility, and ruggedness (Behringer, Sundareswaran
et al., 2004). The Prowler by ATV Corp. is an ATV modified for military use
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Fig. 9.1. RASCAL

that is equipped with a 660 cc Yamaha engine, enhanced suspension, full roll
cage, run-flat tires, and cargo rack. This combination of power, ruggedness, and
useable space proved to be an excellent foundation for an off-road autonomous
vehicle. The 1,000 lb payload capacity and heavy duty suspension handled the
multitude of motors, sensors, and computers that were mounted on the cargo
rack and in the roll cage. The independent suspension with 8-9 in. of travel, and
high 12.5 in. ground clearance, allowed the vehicle to traverse difficult terrain
with relative ease.

Modifications were made to the ATV, dubbed RASCAL (Robust Autonomous
Sensor Controlled All terrain Land vehicle), for automation. A servomotor was
installed in the engine bay and attached to the steering system to actuate the
front wheels. The motor output, 6.5 ft lb of torque, was fed into a 14:1 gearbox,
placing a total of 90 ft lb of torque on the steering rack. The throttle, brake,
and gear were controlled with smaller servos, which output 27 ft lb. All of the
servos were directed by microcontrollers, which communicated with a computer
via serial ports. An emergency stop mechanism, with ultimate authority over
the microcontrollers, was wired in series to the vehicle’s power and the brake
and throttle servos to eliminate the possibility of losing control of the vehicle in
the event of a software or hardware failure. Two 15 gallon gas tanks were added
to the side of the ATV and gave RASCAL more than enough fuel to finish the
course. Two 2,000 W generators provided additional power needed to operate the
on-board electronics. An enclosure mounted in the rear contained the delicate
hardware.
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9.2 Software Architecture

9.2.1 Autonomous System Concept

One of the main ideas in the autonomous system was the modularity of the
architecture (Behringer et al., 2005). The vehicle control and GPS/INS navi-
gation were the core modules providing the basic autonomous functions. The
other modules were “optional add-ons” (Figure 9.2). They provided information
about the environment, as well as objects to be avoided. If these modules were
disconnected or failed, the core vehicle control still continued to operate using
solely GPS and inertial input for computing the control output. Of course, in
this mode, the vehicle operated blindly; therefore, the maximum speed was re-
duced to 2 m/s, a compromise between avoiding heavy damage in a collision and
being able to continue driving to fulfill the given mission.

Fig. 9.2. System architecture for autonomous driving on RASCAL

9.2.2 Software Structure

The software was structured to allow easy partitioning among physical cen-
tral processing units (CPUs) and offline debugging. The overall structure of the
software was a collection of modules running as independent processes in the
Linux operating system. The modular design allowed fault isolation and paral-
lel development of the modules. A network was set up to allow communication
between the modules, via a user datagram protocol (UDP) (Postel, 1980) with
timeouts for detecting fault conditions, but no acknowledgements. Running each
module as a process provided CPU and memory usage isolation, as well as easy
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partitioning among the physical processing units. This was important as the CPU
utilization of each module was not known in advance. The easy partitioning also
allowed all modules to be run on a single system for debugging, or any one
module to be run on a debug system on or off the vehicle, as long as it was on
the vehicle network. For the events, two laptops were used to run the vehicle.

Linux was chosen as the operating system for a number of reasons. It provided
acceptable real-time behavior; while the default 2.6 kernel is certainly not a hard
real-time kernel, it provided consistent cycle times for control loops and good
isolation of the processes from one another. Linux could also be run on developer
desktops, as well as the actual vehicle, which improved development efficiency.
With the use of the Gazebo simulator (Koenig & Howard, 2004) and tools for
playing back recorded vehicle data, much of the debugging and development
could be carried out on individual laptops; so development work could continue
when the vehicle was not available. During vehicle test sessions, results from one
run could be analyzed and changes could be made, while a different set of tests
were running on the vehicle.

The real-time nature of the vehicle did result in some challenges, and high-
lighted some of the limitations of Linux for this application. In some cases, code
modules would go into tight loops due to bugs. This would cause other modules
running on the same CPU to get insufficient processor time. In other cases, too
many modules or overly complex algorithms were run, again using too many
CPU cycles. The control loops, starved of cycles, would either timeout or in
borderline cases not behave as desired. A more interesting case was when one of
the CPUs would reduce its frequency based on temperature limits. The behavior
would be correct in most cases; but for this application, the system would not
have enough CPU cycles to complete all tasks. A hard real-time operating sys-
tem would limit the impact of these issues to only one process. However, if that
process was a key process (as it often was) the vehicle would still be disabled.
Debugging these issues required looking at the timestamps of messages passed
between the modules.

9.3 Localization

9.3.1 Hardware

RASCAL contained a variety of sensors to determine states critical to the vehicle
controller, such as position, heading, and speed. A strategy of redundancy was
employed to provide measurements from some sensors when others were not
available or in the event of the failure of a particular sensor.

The cornerstone of vehicle localization was a single antenna Navcom differen-
tial global positioning system (DGPS) receiver with Starfire corrections broadcast
by Navcom. It generated unbiased measurements of position (north and east),
velocity (north, east, and up), and course at 5 Hz. It is important to note that
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vehicle course is the angle from north created by the vehicle’s velocity vector, not
the vehicle’s pointing vector. With the corrections broadcastby Navcom, this GPS
receiver is capable of producing position measurements accurate to less than 10
cm. However, the output rate of the receiver was too low to adequately control the
vehicle.

An inertial measurement unit (IMU) was used to obtain high update rate
measurements. A Rockwell Collins GIC-100 tactical-grade six degrees of freedom
IMU measured translational accelerations and angular rates at 50 Hz. These
measurements, however, were inherently corrupted with biases and noise. Dead
reckoning with the unit provided acceptable results for a short period of time if
the initial biases were eliminated. However, the biases did not remain constant
and therefore had to be continually updated and removed from the measurement
to provide a reliable navigation solution.

The ATV’s onboard speedometer was used as an additional speed sensor. The
output rate of this sensor was dependent upon vehicle speed, so compensation
was needed to provide a more consistent measurement to the controller. In addi-
tion, the measurement was corrupted by wheel slip, which appeared as a sudden
large change in the bias. The sensor also contained a calibration error that would
corrupt the speed estimate during a GPS outage.

Magnetometers are often used in aerial applications to provide orientation
information. They sense the earth’s magnetic field, thus all measurements are
referenced from magnetic north and not true north. This difference can easily
be calibrated and remains fairly constant if the sensor remains in a region near
its calibration point. RASCAL utilized two magnetometers to measure the ve-
hicle’s heading, roll, and pitch angles. A TCM2 magnetometer provided 16 Hz
measurements that contained high noise, but a slow bias drift rate. A Micros-
train 3DM-GX1 IMU and magnetometer provided 50 Hz measurements that
had very little noise, but the bias drifted quickly (the IMU was not used). It
was discovered that the magnetometers could help initialize the navigation al-
gorithm, but once the vehicle started moving they were of little use because
the magnitude and drift rate of their biases were greater than that of the other
sensors.

9.3.2 Algorithms

Kalman filtering is a proven method for blending measurements to eliminate
various sensor deficiencies while utilizing the strengths of each sensor by sta-
tistically weighting each measurement. The localization algorithm used was an
extended Kalman- Bucy filter (EKF), outlined in detail by Stengal (1994). This
algorithm handled the system nonlinearities by continuously propagating the
system model to calculate the time update, and discretely propagating the mea-
surement update. The EKF combined the bias-free low update GPS measure-
ments with the other measurements to produce a bias-free high update (50 Hz)
navigation solution. An EKF is as accurate and less computationally intensive
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Table 9.1. Variable definitions

V  – Velocity ],,[rb  – Rate gyro bias (yaw, roll, pitch) 

 – Heading 
]2,1][,,[Mb  – Magnetometer bias 

(heading, roll, pitch) 
(TCM2,Microstrain) 

 – Roll g  – Gravity 
 – Pitch and longitudinal accelerometer 

bias xa  – Measured longitudinal acceleration 

N  – North r  – Measured yaw rate 
E  – East meas  – Measured roll rate 
g  – Road Grade 

meas  – Measured pitch rate 

as some higher-order filters if the sample rate is high enough (St. Pierre &
Gingras, 2004). This efficiency was an advantage with the algorithm because
the 16 element state vector already imposed a moderate computational burden.
GPS and inertial measurements were loosely coupled, meaning the inertial errors
were corrected with a computed GPS solution. A tightly coupled system, where
the GPS pseudo-range measurements amend the IMU errors (Farrell & Barth,
1999), was considered, but due to time constraints and the overall satisfaction
with the loosely coupled system, it was not constructed.

The estimated states were chosen to provide the vehicle controller with the
necessary position, velocity, and heading data; to fully orient the vehicle; and
to calculate sensor biases. The nonlinear differential equations of the states are
listed below [Eq. (9.1)], and the variable definitions are described in Table 9.1:

(9.1)

;

;

0;

cos( );
sin( );

x g

r

r

V a g g
r b

b
N V
E V

;

0;

;

0;

0;

meas

meas

g

b

b

b

b

1

1

1

2

2

2

0;

0;

0;

0;

0;

0;

M

M

M

M

M

M

b

b

b

b

b

b

These equations were continuously integrated in the time update of the EKF.
Noise terms do not appear in Eq. (9.1) because they are included in the time
update of the EKF by utilizing the process noise covariance matrix. Methods
defined by Bevly (2004) were used to derive these equations of motion. The
coordinate frame used is depicted in Figure 9.3.

The bias states have no dynamic response according to the equations of motion,
but in actuality, biases randomly drift over time. The process noise covariance
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Fig. 9.3. Vehicle body coordinates and reference frame

Table 9.2. Process noise statistics

2 20.65az dt 2 20.038129r dt 2 1010br
2 20.17851 dt

2 1010b
2 20.088147 dt 2 810b

2 20.000001N dt
2 20.000001E dt 2 710

gb
2 4

1 10bM
2 6

1 10bM

2 8
1 10bM

2
2 0.01bM

2
2 0.1bM

2
2 0.1bM

matrix included values for the bias states to account for this random bias walk.
These were used as tuning parameters for the EKF because they directly influ-
enced the amount of filtering on the estimated states. The other entries in the
matrix captured the system noise, which was determined during static tests. The
process noise covariance matrix is a diagonal matrix with the covariances in Table
9.2. The time update in the EKF requires this matrix to be continuous; there-
fore, the measured discretized values are multiplied by the sample rate (dt) as
presented by Stengal (1994). This discrete to continuous conversion is only valid
for very small sample rates.

The discrete measurement update in the EKF utilized statistically weighted
measurements, from the sensors listed in Section 9.3.1, to overcome integration
errors. The measurement matrix was adjusted accordingly depending upon the
availability of the different measurements. Two calculations were included in
addition to the raw sensor measurements. GPS forward and vertical velocities
were used to solve for road grade [Eq. (9.2)], and linear equations of vehicle roll
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Table 9.3. Measurement noise statistics

2 20.05V
2 20.3VWS

2
2 V

V
2 20.1N

2 20.1E

2
2
g

V
V

2 20.08135
calc

2 2
1 0.19995M

2 2
1 0.024445M

2 2
1 0.036297M

2 2
2 0.003M

2 2
2 0.003M

2 2
2 0.003M

as a function of lateral acceleration were derived using knowledge of the vehicle’s
dynamics [Eq. (9.3)]:

(9.2)1tan GPSup GPSup
g

GPS x GPS x

V V
V V

(9.3)
1

y ra V r b
g

Using these two measurements, the magnetometer roll and pitch biases were
observable. It should be noted that the roll estimate contained the lateral
accelerometer bias because of the method defined in Eq. (9.3). With the ex-
isting sensor suite, there was no measurement available to observe and remove
the lateral accelerometer bias.

Noise statistics were found by recording long periods of static data. The co-
variance values shown in Table 9.3 were loaded into the diagonal measurement
noise covariance matrix for use in the measurement update.

9.3.3 Experimental Validation

The algorithm’s performance was evaluated based on the amount of error during
a simulated GPS outage. Two reasons for this evaluation method are as follows:
First, when enough satellites are in view and the receiver is outputting valid
messages, the EKF successfully tracks the GPS measurements; and second, a real
GPS outage would eliminate the truth measurement, degrading the accuracy of
the error analysis. Figure 9.4 is a plot of GPS and estimated position during a
test run. The circles signify the beginning and end of the outage, starting before
the first turn and concluding at the end of the straight section.

Clearly, error growth occured at the onset of the outage. Figure 9.5 is a plot
displaying the magnitude of the error. Over the 25 s outage, the vehicle was
traveling 3.2 m/s. The maximum error for this period of time at this speed was
slightly over 1.5 m. Since the vehicle was required to remain in a 10 m corridor,
this level of error was acceptable.

The IMU and speedometer biases had the most negative impact on the nav-
igation solution. As stated earlier, the magnetometers were not of much use
during a run, and were statistically weighted out of the EKF after initialization.
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Fig. 9.4. Position estimation during an artificial GPS outage

Fig. 9.5. Position error growth during a GPS outage

The tactical-grade IMU contained mechanical rate gyros with a bias drift rate
of less than 1◦ per square-root-h, so the bias error over this period of time is 1
min. The speedometer contained a nonlinear scale factor that could be estimated
as a bias. However, when GPS was lost, bias states were held constant because
they were nonobservable. If the vehicle slightly changed speeds during an outage,
this bias estimate would have been incorrect. This specific algorithm without the



9 SciAutonics-Auburn Engineering’s Low Cost High Speed ATV 291

Fig. 9.6. Vehicle heading and discrepancies due to sideslip

estimated bias state was compared with another that included this bias state.
It was determined there was no benefit to including the bias state, because the
errors in both algorithms grew similarly. The leading error source during this
run was due to the incorrect scale factor on the speedometer.

Another source of navigation error is vehicle slip. Vehicle slip can disrupt a
navigation algorithm even in the presence of GPS. Longitudinal and lateral slip
occur on moving ground vehicle’s. Longitudinal slip is generated by a difference
in the vehicle’s velocity and the wheel’s velocity, and lateral slip is created when
the vehicle translates laterally. Wheel slip can corrupt the speedometer mea-
surement by causing a sudden jump in the estimated bias (if the modeled bias
dynamics have a high enough bandwidth). In addition, it reports a false speed
value to the Kalman filter, which can directly inject error into the speed and
position estimates. Sideslip also leads to a less accurate estimate, because GPS
and integrated IMU measurements differ. The GPS course measurement and
an integrated yaw rate gyroscope are typically used to estimate the vehicle’s
heading. In reality, the sensors are providing two different measurements; the
measurements just happen to be similar for the majority of the time on ground
vehicles. GPS course (ν) is the direction of the vehicle’s velocity vector, while
an integrated yaw gyro is the direction of the vehicle’s pointing vector (ψ) when
roll and pitch angles are absent. Evidence of sideslip-induced error can be seen
in Figure 9.5 when the vehicle enters a turn. Figure 9.6 is a plot of the estimated
heading when GPS is available. A discrepancy due to sideslip can be seen be-
tween estimated heading and GPS course. The error caused by vehicle slip is
seen on multiple estimated states and is influenced by the initial tuning of the
EKF. This phenomenon is discussed more in depth by Travis (2006).
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9.4 Obstacle Detection

One of the key tasks for RASCALwas to remain in the predefined corridor while
choosing the fastest and/or easiest path through the corridor. Five sensors were
used to search for obstacles within the corridor: The stereo vision system (SVS)
from Seibersdorf Research and four SICK LMS-221 light detection and ranging
device (LIDAR) units as shown in Figure 9.1.

9.4.1 Stereo Vision

9.4.1.1 Hardware

A high-performance embedded platform was chosen as the processing unit for the
vision system. A sealed camera box, hardwareplatform, and pair of cameraswith a
300 mm fixed baseline were the three main components comprising the embedded
vision system. Figure 9.7 shows the system mounted on RASCAL during test runs
in the desert. Two communication types were necessary for operation. One was the
communication with RASCAL, especially with the path planner software module,
and the other was communication with the cameras. The communication of the
stereo sensor system with RASCAL was carried out using 100 mbits Ethernet; the
messageswere sent via UDP packets.The cameraswere controlledwith the DCAM
standard 1.31 using the IEEE1394a FireWire bus. The images acquired from the
cameras were also transferred using the FireWire bus.

Fig. 9.7. The stereo vision system mounted on RASCAL

9.4.1.2 Algorithms

The obstacle detection algorithm detected relevant objects within the field of
view. It used a predictive variant of the V-disparity algorithm (Labayrade,
Aubert & Tarel, 2002), which provided a coarse grid for searching the disparity
space efficiently based on prior knowledge about vehicle state and road geom-
etry. This met real-time constraints with a processing time of about 20 ms for
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two images of 640 X480 pixels. The algorithm consisted of two modules: Pitch
determination and obstacle detection. First, the pitch was determined from the
vertical movements of far objects. Second, the ground plane was determined us-
ing this pitch information. Third, obstacles were detected that were above the
ground plane and met constraints of width and height. Hence, this method com-
bined dynamic pitch determination based on image features and the detection
of obstacles near the ground plane.

9.4.1.2.1 Pitch Determination

Vehicle pitch was defined with respect to world coordinates. For obstacle detec-
tion, the relative pitch with respect to the road surface was relevant, not the abso-
lute pitch. Since the relative pitch depends on the scene in front of the vehicle, it
cannot be determined from vehicle dynamics or GPS data only. An algorithm was
developed to determine relative pitch from the image sensor by tracking vertical
changes of image features for a specified region of interest (ROI).

The relative pitch was defined by the vertical angular difference between the
optical axis, i.e., the axes perpendicular to the image plane and the track to
be followed on the terrain in front of the vehicle. As the relative pitch was
defined with respect to the elevation of the track to be followed, it could be
shown that the long-term average relative pitch for reaching a point is zero.
In fact, for RASCAL, changes in pitch (absolute or relative) were dominated
by angular vibrations of the vehicle itself. These changes included the camera
system with respect to the wheels due to a vibration isolation system. Such
system vibrations were typically periodic and corresponded primarily to changes
in velocity. Figure 9.8 shows an example of the change of the estimated pitch,
which was dominated by the vehicle dynamics. The solid line indicates the change

Fig. 9.8. Pitch determination with stereo vision cameras
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of pitch during a typical test that included velocity variations; the dashed line
indicates the average. As seen in Figure 9.8, pitch varied around a constant
equilibrium position, depending only on the camera mount.

Assuming planar terrain geometry and change in pitch due to vehicle vibra-
tions, the relative pitch could be determined by summing changes in the relative
pitch and correcting it with its long-term average. The pitch determination mod-
ule was implemented by choosing a ROI in the center of the field of view, which
predominantly consisted of objects near the horizon or the horizon itself. In the
case of high obstacles and terrain elevations at about camera height, the change
in vertical position due to the vehicle movement in the forward direction was
given by the following:

(9.4)vehicle
zz f
x

where zvehicle was the vertical change of objects in image coordinates and f
was the focal length in pixels. z and x were the vehicle coordinates as shown in
Figure 9.3. zvehicle could be calculated as follows:

(9.5)

2 1
1 1

vehiclez f Hz z
x x x

xf H
x x x

where H was the camera height above the ground plane and Δx was the forward
change in position of the vehicle; z1 and z2 were positions of an obstacle at
t=1 and t=2, respectively. For this region, the horizontal edges were determined
using a gradient filter, and for three horizontally divided subregions, a vector was
determined with the edge density as a function of the vertical image position.
For each region, these vectors were matched between two subsequent frames and
the total vertical shift was given by

vehicle pitch

pitch

z z z
z z (9.6)

where zpitch was the vertical shift of image features due to the pitch change
between two subsequent frames. The relative pitch was determined by integrating
z over time and each 10 frames correcting with the average value of the previous

30 frames.

9.4.1.2.2 Obstacle Recognition

It was assumed the path trajectory basically followed a drivable track or road.
Obstacles that would naturally block the trajectory, such as ravines, rock faces,
or landslides, were not to be expected. Expected obstacles included objects, nat-
ural or not, which were put there by man. Such obstacles, consisting of boxes,
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vehicle tires, traffic cones, trunks, etc., were of limited size and shape, i.e., arti-
ficial to their surroundings.

Compactness, together with positioning, described the size and position of the
evaluation window. Typical object sizes were 75×75 cm, positioned on the ground
plane. Using the epipolar geometry and assuming a minimal detection range of 10
m and a minimal window size of 10×10 pixels in the image, relevant disparities
ranged from a 26 down to 4 pixel shift between the left and right images.

The pronouncement of objects was given by the strengths of its edges. For
the matching of images with a horizontal baseline, only vertical edges were rele-
vant; the horizontal edge strength was omitted. Edges were determined using a
gradient filter, as with the pitch determination. For each time instance, t, and
evaluation window, the correlation between the left and right edge image was
determined, providing a matrix Ct(y, d) consisting of 114×23 elements, for each
horizontal image position (y) and disparity value (d).

The object stability was determined by tracking different modes in Ct−2(y, d),
Ct−1(y, d) and Ct(y, d), considering a constant velocity, and the reciprocal rela-
tion between the distance and disparity value. Objects, whose summed correlation

Fig. 9.9. Left and right camera images (top) with correlation magnitude (bottom)
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exceeded an adaptive threshold, were included as obstacles. Figure 9.9 shows the
left and right images with three obstacles, and the projected horizon from pitch
determination (horizontal line). Each of the three obstacles within range was de-
tected, as indicated with dashed rectangles in the right image of Figure 9.9. The
lower plot is an example of the correlation magnitude for 2,622 image regions at
different disparity values; between 4 (far end) and 26 (near end). A dark color in-
dicates a high correlation result for the specific window.

9.4.2 LIDAR

9.4.2.1 Hardware

A LIDAR sends pulses of infrared light and records the reflection time and
intensity to measure the distance and angle to an object. The scans range from
0◦ to 180◦ at 75 Hz to produce a two-dimensional image of the environment in
polar coordinates. The range of the scan is adjustable in software, and can reach
80 m if desired.

Two of the LIDARs were mounted above the front tires to scan vertically,
one was mounted on RASCAL’s “hood” so that the scanned line was parallel to
the ground (horizontal LIDAR), and one was mounted below the hood so that
the scanned line intersected the ground at approximately 5 m in front of the
vehicle. Each sensor data set was processed by an algorithm specialized to that
sensor/orientation, and the processed data were sent to the path planner.

9.4.2.2 Algorithms

The horizontal LIDAR was processed to filter out grass and weeds while still de-
tecting actual obstacles. This was done based on three principles. First, weeds did
not present a consistent surface as an obstacle or berm. Within a LIDAR scan
line, the points could be checked if the distances for adjacent points were within
a threshold of one another. Second, the LIDAR image of the weeds varied as the
vehicle moved. A solid object provided a consistent LIDAR return from scan to
scan while weeds varied dramatically as different stalks were hit based on the an-
gle. By comparing multiple consecutive scans, weeds could be differentiated from
real obstacles based on the correlation between scans. Third, weeds (at least small
ones) tended to be narrow while obstacles (fence posts, trees, telephone polls, cars,
berms, etc.) were wide. LIDAR scans that showed very narrow obstacles (< 5cm)
were considered weeds. While the techniques were quite effective, it was important
to be aware of the limitations. A thin steel pole (0.7 cm in diameter), as used for an
electric fence, would be considered a weed. In this application, driving over a steel
pole would not harm RASCAL; but in other applications, knocking down fences
that may contain livestock would be discouraged.

Figure 9.10 shows an obstacle map on a section of a test track with and
without weed filtering. The only real obstacles on the course are the cylinders
seen in the photo.The arrow on the graphs indicates the direction of the vehicle;
the circles represent the cylinders.



9 SciAutonics-Auburn Engineering’s Low Cost High Speed ATV 297

0 5 10 15 20 25 30

10

15

20

25

30

East (m)

N
or

th
 (

m
)

Unfiltered

0 5 10 15 20 25 30

10

15

20

25

30

East (m)

N
or

th
 (

m
)

Filtered

Fig. 9.10. Filtered and unfiltered LIDAR data (top) of obstacles (bottom)

When RASCAL pitched up, the downwardfacing LIDAR was processed as
if it were a horizontal LIDAR. Normally, the downward-facing LIDAR saw the
ground approximately 5 m in front of RASCAL, and was processed to reject
debris thrown up by the front wheels and to detect berms or dropoffs on the edges
of the road. The vertical LIDARs were similarly processed to detect obstacles
and dropoffs in front of the vehicle.

9.4.3 Experimental Validation

The obstacle detection systems were evaluated in many stand-alone tests; how-
ever, the real testing and experimental verification of robust and correctly working
algorithms could only be carried out during realistic trials. The NQE (described
below) offered the opportunity to verify the obstacle detection in real-world sce-
narios. Under these conditions, there were several differences between the detec-
tion capabilities of the LIDAR and stereo vision systems.

Figure 9.11 shows the tunnel section and the detected obstacles of the NQE.
Obstacles that were detected by the stereo vision sensor are represented by light
dashes, and the obstacles detected by the LIDAR are shown with dark lines.
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Fig. 9.11. Section with the tunnel from NQE Run 3

Pictures captured by a webcam mounted in front of RASCAL, are also depicted.
Picture No. 1 shows the hay bales; these obstacles were only seen by the SVS
because they were too low for the LIDAR to perceive. The SVS was able to
detect the hay bales if they had any vertically edges in their textures. The left
(lower) hay bale border had a long consistent shadow; therefore, detection was
not consistent. However, on the right side, more visible transitions between the
hay bales existed, and thus more obstacles were detected. Picture No. 2 shows
the tunnel entry, which was only seen by the LIDARs. The stereo vision sensor
was not able to detect this as an obstacle, because the algorithm was configured
to detect obstacles with a width less than 1 m. Picture No. 3 shows the inside of
the tunnel, and picture No. 4 displays the exit point of the tunnel. In the tunnel,
the stereo vision sensor detected a “ghost obstacle.” This happened because
of the sunbeams that shone through a crack in the tunnel. In picture No. 5,
the two detected cones that were placed on the exit of the tunnel can be seen.
The repeated detection of cones (more than one line per cone) was due to the
vibrating sensor head. The vibrating differences between the left and the right
cameras created differences in distance calculations.

9.5 Path Planning

9.5.1 Initial Path

The initial route definition data file (RDDF) given to the team by DARPA,
had points spaced variably from a few meters out to hundreds of meters. The
control algorithms needed more consistent information than this offered. Two
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approaches were used to generate the nominal path that the vehicle would fol-
low through DARPA’s corridor: Speed optimization and map tuning. The speed
optimization worked on the principle of maximizing the attainable speed, while
staying within the corridors defined by DARPA. To this end, a path made up
of a series of lines and arcs was generated. This path took into account the
turning capability, acceleration, deceleration, and maximum speed of RASCAL
to minimize the time through the course. Each line/arc segment included in-
formation about allowable speed, as well as position. The mapping team then
adjusted the path based on map data, such as location of roads, cliffs, etc. The
map tuning also included modifications of allowable speed to account for such
factors as passing through and exiting tunnels, etc. As the vehicle traversed the
course, this initial path was modified to take into account previously unknown
obstacles.

9.5.2 Path Regeneration

The processed output of the five obstacle detection sensors was used to modify
the initial path as RASCAL drove. The processed output of each sensor was a
set of obstacles and a weight associated with each obstacle. That weight was an
indication of how likely it was that RASCAL would need to avoid the obstacle.
For example, in the LIDAR weed filtering, items that passed the filter were given
a high weight, while items categorized as weeds were given a very low weight.
The intent was to always avoid real obstacles, but not to drive through weeds if
a perfectly clear path was also available.

The currently planned path was then compared against the list of obstacles.
This list contained a global map of the obstacles currently in sight, as well as past
obstacles that had moved out of view. If RASCAL was on a path that would in-
tersect an obstacle, a new path was produced. A number of alternative paths were
generated using several different methods. One method generated the sharpest
possible turns based on the current velocity and deceleration capability of the ve-
hicle. This allowed the vehicle to avoid near obstacles in the shortest distance pos-
sible. Other alternative paths were generated that gradually shifted the current
path to the left and right, again taking into account the vehicle velocity.

The alternative paths and the original path were then scored. Paths that would
certainly take RASCAL out of bounds were eliminated. Since the position is not
known precisely, paths that might have taken RASCAL out of bounds, or nearly
out of bounds, were penalized based on an estimated position error, i.e., paths
that came closer to the corridor boundary were penalized. Paths that would
have taken longer to traverse the same distance were penalized. Paths that went
through low probability obstacles were penalized. Paths that intersected high
probability obstacles were rejected. All of the paths were then ranked, and the
best was chosen. If no path was found that was above a threshold, the current
path was held and velocity was reduced to 1 m/s. RASCAL would then continue
to look for alternative paths, while traveling at a safe speed. This fall-back state
was incorporated to handle false obstacles, so that RASCAL could continue even
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with uncertain sensor data. Further work was planned to integrate ultrasonic
and contact sensors to discriminate between false and real obstacles, but was
not implemented.

9.6 Vehicle Control

The vehicle control module consisted of three parts: Path interface, speed control,
and heading control. The path interface took the path segment from the path
planner module, and determined where the vehicle should drive based on the
vehicle’s position, orientation, and speed. The speed and heading control then
took this information and determined what throttle and steering inputs to apply
to the vehicle.

9.6.1 Path Interface

The path planner module sent a series of waypoints to the vehicle controller.
Each waypoint contained a position and desired speed. The vehicle’s current
position was known from the navigation solution. Using the current position
and path segment, a waypoint to drive toward was chosen. The waypoint chosen
had to meet two conditions, illustrated in Figure 9.12. First, it had to be in
front of the vehicle, and second it had to be at least a given distance from the
vehicle. If no waypoints satisfied these two criteria, RASCAL slowly circled to
find a valid point. This distance increased with speed and made the steering
smoother by effectively adding damping to the heading controller. Humans have
a similar response: At low speeds, focus is near the front of the vehicle; as the
speed increases, however, it becomes necessary to look further ahead.

Once the point was chosen, a heading error was computed as the angle between
the vehicle heading and the line from the vehicle to the chosen waypoint. Speed
error was also computed as the difference in the desired and actual speed. These
errors were fed to the speed and heading controllers.

This method of path following (waypoint tracking) does have limitations. In
particular, because of the necessity to look ahead to upcoming points, it can turn
too tightly on corners, particularly tight ones, causing oscillations as the error is
reduced. The fact that the look ahead distance is reduced with speed mitigates
this problem to a large degree; for tight corners, the car is already moving slowly,
thus not looking ahead much, and not cutting the corner. Another problem may
arise if the vehicle is significantly off the path. In this situation, the controller
tends to drive straight toward the nearest point on the path, instead of smoothly
merging onto the path, possibly leading to oscillation about the desired path.
However, this method of designating the path allows the steering controller to be
much more robust to uncertainties or changing parameters in the vehicle model.

9.6.2 Speed Controller

The speed controller set the throttle position to drive the speed error to zero.
Braking was also used to slow the vehicle; however, because the brakes were
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either on or off (not progressive), they were only used in more extreme situations.
The dynamics, from throttle position to vehicle speed, are generally modeled as a
first-order lag described by a DC gain and a time constant. The time constant was
identified by performing step inputs into the system; from a stop, the throttle was
set to a known position, and the time to reach a percentage of the steady-state
speed was recorded. In general, this method should also identify the DC gain of
the system, but the drive train of RASCAL contained a continuously variable
transmission (CVT) making the DC gain variable. The CVT, along with other
engine/vehicle dynamics, make the time constant also somewhat dependent on
speed.

Once a rough time constant and DC gain were identified, the controller was
designed to obtain a smooth yet responsive reaction to disturbances or changes
in desired speed. The controller was a PI type. The integrator was needed to
counteract the uncertainty in the DC gain. Special care was taken to ensure the
integrator did not wind up and harm the engine or drive train. In particular, a
limit was placed on the integrated error, and the error did not accumulate unless
the actual vehicle speed was within a bound of the desired speed. This bound
was tuned based on the uncertainty in the DC gain.

9.6.3 Heading Controller

The heading controller was more complicated than the speed controller. The
complication was due to the dynamics between steer angle (δ) and yaw rate
(r); heading (ψ) simply added an integrator to the system (Figure 9.3). The

Fig. 9.12. Vehicle control waypoint selection geometry
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Fig. 9.13. RASCAL open loop steering response

simplest model that captures all of the important lateral vehicle dynamics is a
second-order model with one zero as shown below:

(9.7)2 22 n n

r k s n
s s

The coefficients in the transfer function needed to be identified through dy-
namic testing. To capture the full range of the vehicle’s response, a wide range
of frequencies needed to be applied as inputs; a chirp signal was used to meet this
requirement. To fit the data, an ARMAX model (Ljung, 1999) produced the least
residual errors. One frequency response, along with its fit, is shown in Figure 9.13.
The small gain is due to the steer angle input being in counts applied to the servo;
32,000 counts were approximately 30◦ at the tire. The chirp signal stopped at 7 Hz,
meaning the experimental data above this frequency are not valid. A higher-order
model could fit the data better; particularly, the higher frequencies. However, in
order to keep the controller simple, the fit was left as second order.

Terrain and other varying parameters could also create inaccuracies in the
identified model. In general, the parameters that capture vehicle models, tire
cornering stiffness, in particular, are assumed to be terrain independent. The
tire saturation force is variable, but this does not become a factor, except in
extreme cases (Gillespie, 1992).

One characteristic of vehicles is that the lateral dynamic characteristics change
with speed, so the chirp input and fit were performed over a range of constant
speeds. The identified parameters as functions of speed are shown in Figure 9.14.
A curve fit was applied to each of the identified parameters. These curve fits were
then used to design the steering controller. It is interesting to note that the trend
of these parameters with velocity did not follow that of typical models for ground
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Fig. 9.14. Steering parameters behavior with speed

vehicles, in particular the bicycle model (Gillespie, 1992). The most likely cause
was the size of the vehicle. The natural frequency was higher than that of most
ground vehicles (2 Hz as opposed to 1 Hz); this meant that other typically ignored
factors, such as tire dynamics, were affecting the system response.

A PD controller was used to drive the heading error to zero. As was previ-
ously mentioned, the transfer function from steer angle to heading is given by
Eq. (9.7) with an additional integrator, making it third order. Two states were
fed back; heading error and yaw rate error; therefore, two closed-loop poles could
be chosen for the system. Over the identified range, the PD gains were scheduled
with velocity, based on the parameter curve fits, to keep these closed-loop poles
constant. The third closedloop pole was floating; it was checked to guarantee sta-
bility for the entire range of speeds. To account for any model inaccuracies, the
controller gains were conservatively designed. This also necessitated the simpler
path structure discussed earlier.

9.6.4 Experimental Validation

Figure 9.15 shows the response of the vehicle and throttle controller to steps
in the reference speed. In general, the controller performed well; the error is
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Fig. 9.15. Controlled speed response

Fig. 9.16. Waypoint tracking response

typically around 0.1 m/s. It is interesting to note that the initial step (to 2.5
m/s) is overdamped, while the other two (to 4 and 5.5 m/s) are underdamped.
The difference is due to the unmodeled dynamics moving the effective closed-
loop pole and the fact that the integrator is switching on and off based on the
magnitude of the speed error. The controller was tested at much higher speeds
(up to 18 m/s) and still performed with no noticeable degradation.
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Figure 9.16 shows a portion of the path created for the application video re-
quired by DARPA, along with laps run by RASCAL around this path. There are
some areas where RASCAL does not exactly follow the desired path; after one
particularly tight high-speed corner, the error was 1 m. This error was mostly
due to look ahead in the steering controller as discussed above. It could have
been reduced with a higher fidelity controller/vehicle model at the expense of
robustness; however, with the parameters defined by DARPA (i.e., typical corri-
dor width), the error was deemed acceptable. The pass-to-pass repeatability was
quite accurate; typically around 20 cm. RASCAL’s response to a given situation
was very predictable.

While the vehicle was at Auburn University, the controllers were also stress
tested for over 100 miles at high speeds; between 25 and 40 mph. For a vehicle the
size of an ATV, these speeds were significant, as they corresponded to a sports
utility vehicle traveling at highway speeds. These tests were conducted without
the obstacle detection algorithms in order to concentrate on the behavior of the
navigation and control modules alone. The error grew as the speed increased,
reaching 2 m at 40 mph; some of this was due to an incorrect calibration in the
steering servo. However, at these speeds, RASCAL would have been on a wide
road during the Grand Challenge, and that amount of error was acceptable.

9.7 Results

9.7.1 The National Qualification Event

The NQE was the final measure for entry in the Grand Challenge. Of the 195
initial entrants, 43 teams successfully completed a preselection qualification and

Fig. 9.17. Aerial picture of an NQE obstacle course
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Table 9.4. RASCAL NQE results

 NQE1 NQE2 NQE3 NQE4 
Time Did not finish 16min 14min 14min 

Passed Gates 22/50 46/50 48/50 48/50 
Passed

Obstacles 1/4 4/4 4/5 5/5 

participated at the NQE. After the NQE, the best 23 teams got the opportunity
to start the Grand Challenge. The main goal of the NQE was to complete four
different tracks, each approximately 2.5 miles long. Figure 9.17 shows an aerial
picture of an NQE track. In these tracks, DARPA officials composed courses
with different sets of obstacles that could be found in the desert. Each track
consisted of a small hill, a high-speed section, a tunnel where the GPS signal
was blocked, gates, and several manmade obstacles. The four tracks differed in
types and location of obstacles. A run consisted of 50 gates, a tunnel section,
and four or five obstacles. As presented in Table 9.4, RASCAL completed three
of the four runs in the NQE. This success rate allowed RASCAL to be one of
ten teams selected for early qualification.

The initial run ended soon after the tunnel; Figure 9.18 shows the cause of the
failure. The light thin line indicates the estimated position from the localization
algorithm, and the light dots represent the recorded GPS position. As expected,
RASCAL lost GPS immediately upon entering the tunnel and began to dead
reckon to estimate position. The dead reckoning worked exceptionally well for 2
min, during which time RASCAL avoided several obstacles. GPS measurements
were reacquired as RASCAL was initiating its obstacle avoidance procedure to
avoid a parked car. The GPS receiver incorrectly reported its measurements
valid to within 10 cm. Instead, the position measurement was off by 10 m to
the north and east, and the velocities were reported as pure zeros causing the
localization algorithm to crash. The addition of a few simple lines of code ignored
these false messages, at the expense of having to dead reckon for approximately
4 min after a GPS outage. Once this fix was applied, the remaining NQE runs
were successfully completed.

Fig. 9.18. Dead reckoning through NQE Run 1
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9.7.2 DARPA Grand Challenge

RASCAL was the tenth vehicle to start the 2005 Grand Challenge. It efficiently
negotiated the first segments of the course, passing two competitor vehicles
within the first few miles. The initial portion of the course was smoothly tra-
versed with no difficulty. However, problems developed and officials had to stop
RASCAL because of severe performance degradation 16 miles into the course.
For the duration of the run, the vehicle traveled an average of 4.6 m/s, and
reached maximum speeds of 11.5 m/s. Although the vehicle was capable of op-
erating at higher speeds, the obstacle detection system could not process the
data reliably beyond 11 m/s. Figure 9.19 displays the whole course, along with
a closeup of the portion RASCAL completed.

After an analysis of the recorded data, the cause of failure is fairly certain.
Shortly before RASCAL went off road, it lost all LIDAR data. Soon thereafter,
it lost all vehicle state data. The LIDAR and the internal sensors were connected
via USB hubs to the processing computers. Speculation is that one of the follow-
ing faults occurred and ended RASCAL’s day: USB hubs lost power terminating
the connection between the computer and sensors, or the USB hubs overheated
and ceased to function.

Fig. 9.19. Grand Challenge race course
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9.8 Conclusion

SciAutonics-Auburn Engineering, along with Seibersdorf Research, managed to
build a strong contender for the DARPA Grand Challenge 2005. A team of
volunteer engineers with limited resources managed to stay competitive among
teams with more time, money, and resources. Out of 195 initial entrants, 23
teams started at the DARPA Grand Challenge, and five teams finished the race.
The 16 mile effort by RASCAL was the 16th longest run among the remaining
entrants. The vehicle successfully demonstrated the cohesive hardware and soft-
ware integration at the NQE, but minor events harmed the vehicle’s endurance
and ended its run in the 2005 Grand Challenge.

The key to the Grand Challenge was not necessarily the incredibly accurate
sensing technology or immense amounts of computing power. RASCAL was able
to detect and avoid the same obstacles as teams with twice the number of sensors
and considerably more than twice the computing power. With intelligent yet
efficient algorithms and a few key sensors, these hurdles could be overcome.
The failure that finally disabled RASCAL was a simple hardware connection
malfunction. More time needed to be spent by the team to harden the vehicle.
RASCAL’s concept was validated by its showing in the Grand Challenge; with
more time, the realization of its potential would also have been reached.
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Summary. This paper describes the development of an autonomous vehicle system
that participated in the 2005 DARPA Grand Challenge event. After a brief descrip-
tion of the event, the architecture, based on version 3.2 of the Department of Defense
Joint Architecture for Unmanned Systems (JAUS), and the design of the system are
presented in detail. In particular, the “smart sensor” concept is introduced which pro-
vided a standardized means for each sensor to present data for rapid integration and
arbitration. Information about the vehicle design, system localization, perception sen-
sors, and the dynamic planning algorithms that were used is then presented in detail.
Subsequently, testing results and performance results are presented.

Keywords: DARPA Grand Challenge, autonomous navigation, path planning, sensor
fusion, world modeling, localization, JAUS.

10.1 Introduction

The DARPA Grand Challenge is widely recognized as the largest and most
cutting-edge robotics event in the world, offering groups of highly motivated
scientists and engineers across the U.S. an opportunity to innovate in develop-
ing state-of-the-art autonomous vehicle technologies with significant military and
commercial applications. The U.S. Congress has tasked the military with making
nearly one-third of all operational ground vehicles unmanned by 2015 and The
DARPA Grand Challenge is one in a number of efforts to accelerate this effort.
The intent of the event is to spur participation in robotics by groups of engi-
neers and scientists outside the normal military procurement channels including
leaders in collegiate research, military development, and industry research.

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 311–347, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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(a) Team CIMAR’s 2004 DARPA 
Grand Challenge Entry

(b) Team CIMAR’s 2005 DARPA 
Grand Challenge Entry

Fig. 10.1. The NaviGATOR

Team CIMAR is a collaborative effort of the University of Florida Center for
Intelligent Machines and Robotics (CIMAR), The Eigenpoint Company of High
Springs, Florida, and Autonomous Solutions of Young Ward, Utah. The goal
of Team CIMAR is to develop cutting-edge autonomous vehicle systems and
solutions with wide ranging market applications, such as intelligent transporta-
tion systems and autonomous systems for force protection. Team CIMAR fo-
cused on proving their solutions on an international level by participating in
both the 2004 and the 2005 DARPA Grand Challenges.

In 2003, Team CIMAR was one of 25 teams selected from over 100 applicants
nationwide to participate in the inaugural event. Team CIMAR was also one of the
15 teams that successfully qualified for and participated in the inaugural event in
March 2004; and finished in eighth place. Team CIMAR was accepted into the
inaugural DARPA Grand Challenge in late December 2003 and fielded a top-10
vehicle less than three months later. The team learned a tremendous amount from
the initial event and used that experience to develop a highly advanced new system
to qualify for the second Grand Challenge in 2005 (see Figure 10.1).

10.2 System Architecture and Design

The system architecture that was implemented was based on the Joint Architec-
ture for Unmanned Systems (JAUS) Reference Architecture, version 3.2 (JAUS,
2005). JAUS defines a set of reusable components and their interfaces. The
system architecture was formulated using existing JAUS-specified components
wherever possible along with a JAUS-compliant intercomponent messaging in-
frastructure. Tasks for which there are no components specified in JAUS required
the creation of so-called “Experimental” components using “User-defined” mes-
sages. This approach is endorsed by the JAUS Working Group as the best way
to extend and evolve the JAUS specifications.
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Fig. 10.2. The NaviGATOR’s JAUS-compliant architecture

10.2.1 High-Level Architecture

At the highest level, the architecture consists of four fundamental elements,
which are depicted in Figure 10.2:

• Planning Element: The components that act as a repository for a priori
data, including known roads, trails, or obstacles, as well as acceptable ve-
hicle workspace boundaries. Additionally, these components perform offline
planning based on that data.

• Control Element: The components that perform closed-loop control in order
to keep the vehicle on a specified path.

• Perception Element: The components that perform the sensing tasks required
to locate obstacles and to evaluate the smoothness of terrain.

• Intelligence Element: The components that act to determine the “best” path
segment to be driven based on the sensed information.

10.2.2 Smart Sensor Concept

The Smart Sensor concept unifies the formatting and distribution of perception
data among the components that produce and/or consume it. First, a common
data structure, dubbed the Traversability Grid, was devised for use by all Smart
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Fig. 10.3. Traversability grid portrayal

Sensors, the Smart Arbiter, and the Reactive Driver. Figure 10.3 shows the
world as a human sees it in the upper level, while the lower level shows the
Grid representation based on the fusion of sensor information. This grid was
sufficiently specified to enable developers to work independently and for the
Smart Arbiter to use the same approach for processing input grids, no matter
how many there were at any instant in time.

The basis of the Smart Sensor architecture is the idea that each sensor pro-
cesses its data independently of the system and provides a logically redundant
interface to the other components within the system. This allows developers to
create their technologies independent of one another and process their data as
best fits their system. The sensor can then be integrated into the system with
minimal effort to create a robust perception system. The primary benefit of this
approach is its flexibility, in effect, decoupling the development and integration
efforts of the various component researchers. Its primary drawback is that it
prevents the ability of one sensor component to take advantage of the results of
another sensor when translating its raw input data into traversability findings.

The Traversability Grid concept is based on the well-understood notion of an
Occupancy Grid, which is often attributed to Alberto Elfes of Carnegie Mel-
lon University (Elfes, 1989). His work defines an Occupancy Grid as “a proba-
bilistic tesselated representation of spatial information.” Sebastian Thrun pro-
vides an excellent treatise on how this paradigm has matured over the past 20
years (Thrun, 2003). The expansion of the Occupancy Grid into a Traversabil-
ity Grid has emerged in recent years in an attempt to expand the applicability
and utility of this fundamental concept (Seraji, 2003), (Ye & Borenstein, 2004).
The primary contribution of the Traversability Grid implementation devised for
the NaviGATOR is its focus on representing degrees of traversability including
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terrain conditions and obstacles (from absolutely blocked to unobstructed level
pavement) while preserving real-time performance of 20 Hz.

The Traversability Grid design is 121 rows (0 – 120) by 121 columns (0 – 120),
with each grid cell representing a half-meter by half-meter area. The center cell,
at location (60, 60), represents the vehicle’s reported position. The sensor results
are oriented in the global frame of reference so that true north is always aligned
vertically in the grid. In this fashion, a 60m by 60m grid is produced that is able
to accept data at least 30m ahead of the vehicle and store data at least 30m
behind it. To support proper treatment of the vehicle’s position and orientation,
every Smart Sensor component is responsible for establishing a near-real-time
latitude/longitude and heading (yaw) feed from the GPOS component.

The scoring of each cell is based on mapping the sensor’s assessment of the
traversability of that cell into a range from 2 to 12, where 2 means that the
cell is absolutely impassable, 12 means the cell represents an absolutely desir-
able, easily traversed surface, and 7 means that the sensor has no evidence that
the traversability of that cell is particularly good or bad. Certain other values
are reserved for use as follows: 0 → “out-of-bounds,” 1→ “value unchanged,”
13→ “failed/error,” 14→“unknown,” and 15→ “vehicle location.” These dis-
crete values have been color-coded to help humans visualize the contents of a
given Traversability Grid, from red (2) to gray (7) to green (12).

All of these characteristics are the same for every Smart Sensor, making seam-
less integration possible, with no predetermined number of sensors. The grids are
sent to the Smart Arbiter, which is responsible for fusing the data. The arbiter
then sends a grid with all the same characteristics to the Reactive Driver, which
uses it to dynamically compute the desired vehicle speed and steering.

The messaging concept for marshalling grid cell data from sensors to the ar-
biter and from the arbiter to the reactive driver is to send an entire traversability
grid as often as the downstream component has requested it (typically at 20 Hz).
In order to properly align a given sensor’s output with that of the other sensors,
the message must also provide the latitude and longitude of the center cell (i.e.,
vehicle position at the instant the message and its cell values were determined).
An alternative approach for data marshalling was considered in which only those
cells that had changed since the last message were packaged into the message.
Thus, for each scan or iteration, the sending component would determine which
cells in the grid have new values and pack the row, column, and value of that cell
into the current message. This technique greatly reduces the network traffic and
message-handling load for nominal cases (i.e., cases in which most cells remain
the same from one iteration to the next). However, after much experimentation
in both the lab and the field, this technique was not used due to concerns that
a failure to receive and apply a changed cells message would corrupt the grid
and potentially lead to inappropriate decisions, while the performance achieved
when sending the entire grid in each message never became an issue (our con-
cern about the ability of the Smart Sensor computers, or the onboard network,
to process hundreds of full-grid messages per second did not manifest itself in
the field).
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In order to aid in the understanding, tuning, and validation of the Traversabil-
ity Grids being produced, a Smart Sensor Visualizer component was developed.
Used primarily for testing, the SSV can be pointed at any of the Smart Sensors,
the Smart Arbiter, or the Reactive Driver and it will display the color-coded
Traversability Grid, along with the associated vehicle position, heading, and
speed. The refresh rate of the images is adjustable from real time (e.g., 20 Hz)
down to periodic snapshots (e.g., 1 s interval).

10.2.3 Concept of Operation

The most daunting task of all was integrating these components such that an
overall mission could be accomplished. Figure 10.4 portrays schematically how
the key components work together to control the vehicle. Figure 10.4 also shows
how the Traversability Grid concept enables the various Smart Sensors to deliver
grids to the Smart Arbiter, which fuses them and delivers a single grid to the Re-
active Driver. Prior to beginning a given mission, the a priori Planner builds the
initial path, which it stores in a Path File as a series of global positioning system
(GPS) waypoints. Once the mission is begun, the Reactive Driver sequentially
guides the vehicle to each waypoint in the Path File via the Primitive Driver.
Meanwhile, the various Smart Sensors begin their search for obstacles and/or

Fig. 10.4. Operational schematic (including traversability grid propagation)
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smooth surfaces and feed their findings to the Smart Arbiter. The Smart Arbiter
performs its data fusion task and sends the results to the Reactive Driver. The
Reactive Driver looks for interferences or opportunities based on the feed from
the Smart Arbiter and alters its command to the Primitive Driver accordingly.
Finally, the goal is to perform this sequence iteratively on a subsecond cycle
time (10 to 60 Hz), depending on the component, with 20 Hz as the default
operational rate.

10.3 Vehicle Design

The NaviGATOR’s base platform is an all terrain vehicle custom built to Team
CIMAR’s specifications. The frame is made of mild steel roll bar with an open
design. It has 9” Currie axles, Bilstein Shocks, hydraulic steering, and front and
rear disk brakes with an emergency brake to the rear. It has a 150 HP Trans-
verse Honda engine/transaxle mounted longitudinally, with locked transaxle that
drives front and rear Detroit Locker differentials (4 wheel drive, guaranteed to
get power to the road). The vehicle was chosen for its versatility, mobility, open-
ness, and ease of development (see Figure 10.5).

   (a)          (b)

Fig. 10.5. Base mobility platform

The power system consists of two, independent 140A, 28V alternator systems
(Figure 10.5a). Each alternator drives a 2400W continuous, 4800W peak inverter
and is backed up by 4 deep cell batteries. Each alternator feeds one of two au-
tomatic transfer switches (ATS). The output of one ATS drives the computers
and electronics while the other drives the actuators and a 3/4 Ton (approx. 1kW
cooling) air conditioner. Should either alternator/battery system fail the entire
load automatically switches to the other alternator/battery system. Total sys-
tem power requirement is approximately 2200W, so the power system is totally
redundant.

The system sensors are mounted on a rack that is specifically designed for their
configuration and placement on the front of the vehicle (see Figure 10.6). These
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Fig. 10.6. View of sensor cage

sensors include a camera that finds the smoothest path in a scene. Equipped
with an automatic iris and housed in a waterproof and dust proof protective
enclosure, the camera looks through a face that is made of lexan and covered
with a polarizing scratch-resistant film. Also mounted on the sensor cage are
two SICK LADARs that scan the ground ahead of the vehicle for terrain slope
estimation; one tuned for negative obstacle detection and the other for smooth
terrain detection. Also, an additional SICK LADAR aimed parallel to the ground
plane is mounted on the front of the vehicle at bumper level for planar obsta-
cle detection. Additional sensors were mounted on the vehicle for experimental
purposes, but were not activated for the Darpa Grand Challenge (DGC) event.
Each sensor system is described in detail later in this paper.

The computing system requirements consists of high-level computation needs,
system command implementation, and system sensing with health and fault
monitoring. The high level computational needs are met in the deployed system
via the utilization of eight single-processor computing nodes targeted at individ-
ual computational needs. The decision to compartmentalize individual processes
is driven by the developmental nature of the system. A communications protocol
is implemented to allow interprocess communication.

The individual computing node hardware architecture was selected based on
the subjective evaluation of commercial off-the-shelf hardware. Evaluation crite-
ria were centered on performance and power consumption. The deployed system
maintains a homogenous hardware solution with respect to the motherboard,
random access memory (RAM), enclosure, and system storage. The AMD K8 64



10 Team CIMAR’s NaviGATOR: An Unmanned Ground Vehicle 319

Fig. 10.7. Computer and electronics housing

bit microprocessor family was selected based on power consumption measure-
ment and performance to allow tailoring based on performance requirements
with the objective of power requirement reduction. Currently, three processor
speeds are deployed: 2.0 GHz, 2.2 GHz, and 2.4 GHz. The processors are hosted
in off-the-shelf motherboards and utilize solid-state flash cards for booting and
long-term storage. Each processing node is equipped with 512 to 1028 MB of
RAM. JAUS communication is effected through the built-in Ethernet controller
located on the motherboard. Several nodes host PCI cards for data i/o. Each
node is housed in a standard 1-U enclosure. The operating system deployed is
based on the 2.6 Linux kernel. System maintenance and reliability are expected
to be adequate due to the homogenous and modular nature of the compute
nodes. Back-up computational nodes are on hand for additional requirements
and replacement. All computing systems and electronics are housed in a NEMA
4 enclosure mounted in the rear of the vehicle (see Figure 10.7).

10.4 Route Pre-planning

The DARPA Grand Challenge posed an interesting planning problem given that
the route could be up to 175 miles in length and run anywhere between Barstow,
California and Las Vegas, Nevada. On the day of the event, DARPA supplied a
Route Data Definition File (RDDF) with waypoint coordinates, corridor segment
width, and velocity data. In order to process the a priori environment data and
generate a route through DARPA’s waypoint file, Team CIMAR used Mobius,
an easy to use graphical user interface developed by Autonomous Solutions Inc.
for controlling and monitoring unmanned vehicles. Mobius was used to plan the
initial path for the NaviGATOR in both the National Qualification Event and
the final Grand Challenge Event.
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The route pre-planning is done in three steps: Generate corridor data, import
and optimize the DARPA path, and modify path speeds. A World Model com-
ponent generates the corridor data by parsing DARPA’s RDDF and clipping all
other environment information with the corridor such that only elevation data
inside the corridor are used in the planning process (see Figure 10.8). The RDDF
corridor (now transformed into an ESRI shapefile) is then imported into Mobius
and displayed to the operator for verification.

In the next step, Mobius imports the original RDDF file for use in path gen-
eration. Maximum velocities are assigned to each path segment based on the
DARPA assigned velocities at each waypoint. From here, the path is optimized
using the NaviGATOR’s kinematics constraints and a desired maximum devia-
tion from the initial path. The resultant path is a smooth drivable path, from
the start node to the finish node, that stays inside the RDDF corridor generated
specifically for the NaviGATOR (see Figure 10.9). Mobius is then used to make
minor path modifications where necessary to create a more desirable path.

The final step of the pre-planning process is to modify path velocities based
on a priori environment data and velocity constraints of the NaviGATOR itself.
Sections of the path are selected and reassigned velocities. Mobius assigns the
minimum of the newly desired velocity and the RDDF-assigned velocity to the
sections in order to ensure that the RDDF-assigned velocities are never exceeded.
During the DARPA events, the maximum controlled velocity of the NaviGATOR

Fig. 10.8. RDDF corridor (parsed with elevation data)
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was 25 miles per hour so, in the first pass, the entire path was set to a conservative
18 mph except in path segments where the RDDF speed limit was lower. From
there, the path is inspected from start to finish and velocities are increased or
decreased based on changes in curvature of the path, open environment (dry
lake beds), elevation changes, and known hazards in the path (e.g., over/under
passes). After all velocity changes are made, the time required to complete the
entire path can be calculated. For the race, it was estimated that it would take
the NaviGATOR approximately 8 hours and 45 minutes to complete the course.
Finally, the path is saved as a comma-separated Path File and transferred to
the NaviGATOR for autonomous navigation.

10.5 Localization

The NaviGATOR determines its geolocation by filtering and fusing a combina-
tion of sensor data. The processing of all navigation data is done by a Smiths
Aerospace North-finding Module (NFM), which is an inertial navigation system.
This module maintains Kalman filter estimates of the vehicle’s global position
and orientation, as well as linear and angular velocities. It fuses internal ac-
celerometer and gyroscope data, with data from an external NMEA GPS, and
external odometer. The GPS signal provided to the NFM comes from one of
the two onboard sensors. These include a NavCom Technologies Starfire 2050,
and a Garmin WAAS Enabled GPS 16. An onboard computer simultaneously

Fig. 10.9. Mobius screen shot with path optimized for the NaviGATOR. The race
RDDF is shown in the upper left corner and the start/finish area is centered on the screen.
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parses data from the two GPS units and routes the best-determined signal to
the NFM. This is done to maintain valid information to the NFM at times when
only one sensor is tracking GPS satellites. During valid tracking, the precision
of the NavCom data is better than the Garmin, and thus the system is biased
to always use the NavCom when possible.

In the event that both units lose track of satellites, as seen during GPS out-
ages, which occurs when the vehicle is in a tunnel, the NFM will maintain local-
ization estimates based on inertial and odometry data. This allows the vehicle
to continue on course for a period of time; however, the solution will gradually
drift and the accuracy of the position system will steadily decrease as long as
the GPS outage continues. After a distance of a few hundred meters, the error
in the system will build up to the point where the vehicle can no longer continue
on course with confidence. At this point, the vehicle will stop and wait for a GPS
reacquisition. Once the GPS units begin tracking satellites and provide a valid
solution, the system corrects for any off-course drift and continues autonomous
operation.

The Smith’s NFM is programmed to robustly detect and respond to a wide
range of sensor errors or faults. The known faults of both GPS systems, which
generate invalid data, are automatically rejected by the module, and do not
impact the performance of the system, as long as the faults do not persist for
an extended period of time. If they do persist, then the NFM will indicate to a
control computer what the problem is, and the system can correct it accordingly.
The same is true for any odometer encoder error, or inertial sensor errors. The
NFM will automatically respond to the faults and relay the relevant information
to control computers, so the system can decide the best course of action to
correct the problem.

10.6 Perception

This section of the paper discusses how the NaviGATOR collects, processes and
combines sensor data. Each of the sensor components is presented, organized by
type: LADAR, camera, or “pseudo” (a component that produces an output as if
it were a sensor, but based on data from a file or database). Finally, the Smart
Arbiter sensor fusion component is discussed.

10.6.1 LADAR-Based Smart Sensors

There are three Smart Sensors that rely on LADAR range data to produce their
results: the Terrain Smart Sensor (TSS), the Negative Obstacle Smart Sensor
(NOSS) and the Planar LADAR Smart Sensor (PLSS). All three components
use the LMS291-S05 from Sick Inc. for range measurement. The TSS will be
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described in detail and then the remaining two will be discussed only in terms
of how they are different than the TSS.

A laser range finder operates on the principle of time of flight. The sensor
emits an eye-safe infrared laser beam in a single-line sweep of either 180◦ or
100◦, detects the returns at each point of resolution, and then computes single
line range image. Although three range resolutions are possible (1◦, 0.5◦, or
0.25◦) the resolution of 0.25◦ can only be achieved with a 100◦ range scan. The
accuracy of the laser measurement is +/- 50 mm for a range of 1 to 20 m, while
its maximum range is ∼80 m. A high-speed serial interface card is used to achieve
the needed high-speed baud rate of 500 kB.

10.6.1.1 Terrain Smart Sensor

The sensor is mounted facing forward at an angle of 6◦ toward the ground. For
the implementation of the TSS, the 100◦ range with a 0.25◦ resolution is used.
With this configuration and for nominal conditions (flat ground surface, vehicle
level), the laser scans at a distance of ∼20 m ahead of the vehicle and ∼32 m wide.
The TSS converts the range data reported by the laser in polar coordinates into
Cartesian coordinates local to the sensor, with the Z axis vertically downward
and the X axis in the direction of vehicle travel. The height for each data point
(Z component) is computed based on the known geometry of the system and
the range distance being reported by the sensor. The data is then transformed
into the global coordinate system required by the Traversability Grid, where the
origin is the centerline of the vehicle at ground level below the rear axle (i.e.,
the projection of the GPS antenna onto the ground), based on the instantaneous
roll, pitch, and yaw of the vehicle.

Each cell in the Traversability Grid is evaluated individually and classified for
its traversability value. The criteria used for classification are:

1. The mean elevation (height) of the data point(s) within the cell.
2. The slope of the best fitting plane through the data points in each cell.
3. The variance of the elevation of the data points within the cell.

The first criterion is a measure of the mean height of a given cell with respect
to the vehicle plane. Keep in mind that positive obstacles are reported as negative
elevations since the Z-axis points down. The mean height is given as

� =
�Zi

n
, (10.1)

where μ is the mean height, ΣZi is the sum of the elevation of the data points
within the cell, and n is the number of data points.

The second criterion is a measure of the slope of the data points. The equation
for the best fitting plane, derived using the least squares solution technique, is
given as

Soptimum = �GTG�−1GTb , (10.2)
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where:
Soptimum is the vector perpendicular to the best fitting plane,
G is an n × 3 matrix given by

G = �
x1 y1 z1

x2 y2 z2

− − −

xn yn zn

� , (10.3)

b is a vector of length “n” given by

b = �
− D01

− D02

−

− D0n

� . (10.4)

Assuming that D0i is equal to 1, the above equation is used to find Soptimum

for the data points within each cell. Once the vector perpendicular to the best-
fitting plane is known, the slope of this plane in the “x” and “y” directions can
be computed. Chapter 5 of Solanki (2003) provides a thorough proof of this
technique for finding the perpendicular to a plane.

The variance of the data points within each cell is computed as

Variance =
��Zi − ��2

n
. (10.5)

A traversability value between 2 and 12 is assigned to each cell, depending
on the severity values of the mean height, slope, and variance information. A
cell must contain a minimum of three data points or else that cell is flagged
as unknown. This also helps in eliminating noise. Each of the parameters is
individually mapped to a corresponding traversability value for a given cell. This
mapping is entirely empirical and non-linear. A weighted average of these three
resulting traversability values is used to assign the final traversability value.

10.6.1.2 Negative Obstacle Smart Sensor

The NOSS was specifically implemented to detect negative obstacles (although
it can also provide information on positive obstacles and surface smoothness like
the TSS). The sensor is configured like the TSS, but at an angle of 12◦ toward the
ground. With this configuration and for nominal conditions, the laser scans the
ground at a distance of ∼10 m ahead of the vehicle. To detect a negative ob-
stacle, the component analyzes the cases where it receives a range value greater
than would be expected for level ground. In such cases, the cell where one would
expect to receive a hit is found by assuming a perfectly horizontal imaginary
plane. As shown in Figure 10.10, this cell is found by solving for the intersec-
tion of the imaginary horizontal plane and the line formed by the laser beam. A
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Fig. 10.10. NOSS implementation (side view)

traversability value is assigned to that cell based on the value of the range dis-
tance and other configurable parameters. Thus, a negative obstacle is reported
for any cell whose associated range data are greater than that expected for an
assumed horizontal surface. The remaining cells for which range value data is
received are evaluated on a basis similar to the TSS.

10.6.1.3 Planar LADAR Smart Sensor

The sensor is mounted 0.6 m above the ground, scanning in a plane horizontal to
the ground. Accordingly, the PLSS only identifies positive obstacles and renders
no opinion regarding the smoothness or traversability of areas where no positive
obstacle is reported. For the PLSS, the 180◦ range with a 0.5◦ resolution is used.
The range data from the laser is converted into the Global coordinate system and
the cell from which each hit is received is identified. Accordingly, the “number of
hits” in that cell is incremented by one and then, for all the cells between the hit cell
and the sensor, the “number of missed hits” is incremented by one. Bresenham’s
line algorithm is used to efficiently determine the indices of the intervening cells.

A traversability value between 2 and 7 is assigned to each cell based on the
total number of hits and misses accumulated for that cell. The mapping algo-
rithm first computes a score, which is the difference between the total number
of hits and a discounted number of misses in a cell (a discount weight of 1/6 was
used for the event). This score is then mapped to a traversability value using
an exponential scale of 2. For example, a score of 2 or below is mapped to a
traversability value of “7,” a score of 4 and below is mapped to a “6,” and so on,
with a score greater than 32 mapped to a “2.” The discounting of missed hits
provides conservatism in identifying obstacles, but does allow gradual recovery
from false positives (e.g., ground effects) and moving obstacles.

10.6.1.4 Field Testing

The parameters of the algorithm that affect the output of the component are
placed in a configuration file so as to enable rapid testing and tuning of those



326 C.D. Crane III et al.

parameters. Examples of these tunable parameters for the TSS and NOSS com-
ponents are the threshold values for the slope, variance, and mean height for
mapping to a particular traversability value. For the PLSS, these parameters
include the relative importance of the number of hits versus misses in a given
cell, and a weighting factor to control how much any one scan affects the final
output.

By making these parameters easy to adjust, it was possible to empirically
tune and validate these components for a wide variety of surroundings such as
a steep slopes, cliffs, rugged roads, small bushes, and large obstacles, like cars.
This approach also helped to configure each component to work in the most
optimum way across all the different surroundings. Finally, it helped in deciding
on the amount of data/time the component required to build confidence about
an obstacle or when an obstacle that was detected earlier has now disappeared
from view (e.g., a moving obstacle).

10.6.2 Camera-Based Smart Sensor

The Pathfinder Smart Sensor (PFSS) consists of a single color camera mounted
in the sensor cage and aimed at the terrain in front of the vehicle. Its purpose
is to assess the area in the cameras scene for terrain that is similar to that on
which the vehicle is currently traveling, and then translate that scene information
into traversability information. The PFSS component uses a high-speed frame-
grabber to store camera images at 30 Hertz.

Note that the primary feature used for analytical processing is the red, green
and blue (RGB) color space. This is the standard representation in the world of
computers and digital cameras, and is therefore often a natural choice for color
representation. Also, RGB is the standard output from a CCD-camera. Since
roads typically have a different color than nondrivable terrain, color is a highly
relevant feature for segmentation. The following paragraphs describe the scene
assessment procedure applied to each image for rendering the Traversability Grid
that is sent to the Smart Arbiter.

10.6.2.1 Preprocess Image

To reduce the computational expense of processing large images, the dimensions
of the scene are reduced from the original digital input of 720 × 480 pixels to a
320×240 reduced image. Then, the image is further preprocessed to eliminate the
portion of the scene that most likely corresponds to the sky. The segmentation of
the image is based simply on the physical location within the scene (tuned based
on field testing), adjusted by the instantaneous vehicle pitch. This very simplistic
approach is viable because the consequences of inadvertently eliminating ground
are minimal due to the fact that ground areas near the horizon will likely be
beyond the 30 m planning distance of the system. The motivation for this step
in the procedure is that the sky portion of the image hinders the classification
procedure in two ways. First, we considered that the sky portion slows down the
image processing speed by spending resources evaluating pixels that could never



10 Team CIMAR’s NaviGATOR: An Unmanned Ground Vehicle 327

be drivable by a ground vehicle. Second, there could be situations where parts
of the sky image could be misclassified as road.

10.6.2.2 Produce Training and Background Data Sets

Next, a 100 × 80 sub-image is used to define the drivable area, and two 35 × 50
sub-images are used to define the background. The drivable sub-image is placed in
the bottom-center of the image, while the background sub-images are placed at the
middle-right and middle-left of the image, which is normally where the background
area will be found, based on experience (Lee, 2004) (see Figure 10.11). When the
vehicle turns, the background area that is in the direction of the turn will be reclas-
sified as a drivable area. In this case, that background area information is treated
as road area by the classification algorithm.

Fig. 10.11. Scene segmentation scheme

10.6.2.3 Apply Classification Algorithm

A Bayesian decision theory approach was selected for use, as this is a fundamen-
tal statistical approach to the problem of pattern classification associated with
applications such as this. It makes the assumption that the decision problem is
posed in probabilistic terms, and that all of the relevant probability values are
known. The basic idea underlying Bayesian decision theory is very simple. How-
ever, this is the optimal decision theory under Gaussian distribution assumption
(Morris, 1997).

The decision boundary that was used is given by

1
�2��d/2��1�1/2 exp�−

1
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�x − �1�T�1
−1�x − �1��

=
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−1�x − �2�� , (10.6)
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(a) (b)

Fig. 10.12. Processed images

where μ1 and
∑

1 are the mean vector and covariance matrix of the drivable-area
RGB pixels in the training data, μ2 and

∑
2 are those of the background pixels,

and x contains RGB values of the entire image.
The decision boundary formula can be simplified as

�x − �1�T�1
−1�x − �1� = �x − �2�T�2

−1�x − �2� . (10.7)

A block-based segmentation method is used to reduce the segmentation pro-
cessing time. 4 × 4 pixel regions are clustered together and replaced by their
RGB mean value, as follows:

��x,y�
L =

1
N2	

i=1

N

	
j=1

N

P�i,j�
L , (10.8)

where μ(x, y) is the new pixel mean value for the 4 × 4 block, P is the raw
pixel data, (i, j) is the raw pixel orientation, (x, y) is the new pixel orientation,
Lε{1, 2, 3} for RGB, and N is the block size.

The clusters, or blocks, are then segmented, and the result, as shown in Figure
10.12(a), has less noise compared with pixel-based approaches, Figure 10.12(b).
Also, the segmentation process is accomplished faster than pixel-based classifi-
cation. A disadvantage, however, is that edges are jagged and not as distinct.

10.6.2.4 Transform to Global Coordinate System

After processing the image, the areas classified as drivable road are converted by
perspective transformation estimation into the global coordinates used for the
Traversability Grid (Criminisi, 1997). The perspective transformation matrix is
calculated based on camera calibration parameters and the instantaneous vehicle
heading. Finally, the PFSS assigns a value of 12 (highly traversability) to those
cells that correspond to an area that has been classified as drivable. All other cells
are given a value of 7 (neutral). Figure 10.13 depicts the PFSS Traversability
Grid data after transformation into global coordinates.
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Fig. 10.13. Transformed image

10.6.3 Pseudo Smart Sensors

There are two Smart Sensors that produce Traversability Grids based on stored
data: The Boundary Smart Sensor (BSS) and the Path Smart Sensor (PSS).

The BSS translates boundary knowledge, defined as boundary polygons prior
to mission start, into real-time Traversability Grids, which assures that the vehi-
cle does not travel outside the given bounds. The BSS is responsible for obtaining
the boundary information from a local spatial database. The BSS uses these data
to determine the in-bounds and out-of-bounds portions of the traversability grid
for the instantaneous location of the vehicle. The BSS also has a configurable
“feathering” capability that allows the edge of the boundary to be softened,
creating a buffer area along the edges. This feature provides resilience to un-
certainties in the position data reported by the GPOS component. Figure 10.14

Fig. 10.14. Traversability Grid showing boundary data
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Fig. 10.15. Traversability Grid showing a priori path data

shows a typical grid output from the BSS indicating the vehicle’s location within
the grid, and the drivable region around it. By clearly demarking areas of the
grid as out-of-bounds, the BSS allows the Smart Arbiter to summarily dismiss
computation of out-ofbounds grid cells and the Reactive Driver to prune its
search tree of potential plans.

The PSS translates the a priori path plan, stored as a “path file” prior to mis-
sion start, into real-time Traversability Grids. The PSS uses these path data to
superimpose the originally planned path onto the traversability grid based on the
instantaneous location of the vehicle. The PSS has a configurable “feathering” ca-
pability that allows the width of the path to be adjusted and the edges of the path
to be softened. This feature also allows the engineer to select how strongly the
originally planned path should be weighted by setting the grid value for the cen-
terline. A 12 would cause the Arbiter and Planner to lean toward following the
original plan even if the sensors were detecting a better path, while a 10, which
is what was used at runtime, would make the original plan more like a suggestion
that could be more easily overridden by sensor findings. Figure 10.15 shows a typ-
ical grid output from the PSS indicating the vehicle’s location within the grid and
the feathered a priori planned path flowing through the inbounds corridor.

10.6.4 Sensor Fusion

With the Traversability Grid concept in place to normalize the outputs of a wide
variety of sensors, the data fusion task becomes one of arbitrating the matching
cells into a single-output finding for that cell for every in-bounds cell location in
the grid.

10.6.4.1 Grid Alignment

First, the Smart Arbiter must receive and unpack the newest message from
a given sensor and then adjust its center-point to match that of the Arbiter
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(assuming that the vehicle has moved between the instant in time when the
sensor’s message was built and the instant in time when the arbitrated output
message is being built). This step must be repeated for each sensor that has sent
a message. The pseudo-code for this process is:

Determine current location of vehicle,
Adjust centerpoint of Smart Arbiter Grid to match current location
For each active Smart Sensor:

Adjust centerpoint of Smart Sensor Grid to match current location.

At this point, all input grids are aligned and contain the latest findings from
its source sensor. To support the alignment of Traversability Grids with current
vehicle position, a so-called “torus buffer” object was introduced. This allows
the system to use pointer arithmetic to “roll the grid” (i.e., change the row and
column values of its center-point) without copying data.

10.6.4.2 Data Arbitration

Now the Smart Arbiter must simultaneously traverse the input grids, cell-by-cell,
and merge the data from each corresponding cell into a singleoutput value for
that row/column location. Once all cells have been treated in this fashion, the
Smart Arbiter packs up its output grid message and sends it on the Reactive
Driver.

For early testing, a simple average of the input cell values was used as the
output cell value. Later work investigated other algorithms, including heuristic
ones, to perform the data fusion task. The Smart Arbiter component was de-
signed to make it easy to experiment with varying fusion algorithms in support
of on-going research. The algorithm that was used for the DGC event entailed
a two-stage heuristic approach. Stage 1 is an “auction” for severe obstacles for
the cell position under consideration. Stage 2 then depends on the results of the
“auction”. If no sensor “wins” the auction, then all of the input cells at that
position are averaged, including the arbiter’s previous output value for that cell.
The pseudo-code for this algorithm is:

For each cell location:

IF any sensor reported a “2,”
THEN decrement the Arbiter’s output cell by decr (min=2),

ELSE, IF any sensor reported a “3,”
THEN decrement the Arbiter’s output cell by decr/2 (min=3),

ELSE
Arbiter’s output cell= Average(input cells+ Arbiter’s prior output cell),

where decr is a configurable parameter (= 2 for the Grand Challenge Event).
Thus, a sensor must report a severe obstacle for several iterations in order for

the arbiter to lower its output value, thus providing a dampening effect to help
circumvent thrashing due to a sensor’s output values. The averaging of input
values along with the arbiter’s previous output value also provides a dampening
effect.
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The Smart Arbiter, using the algorithm described here, was able to achieve its
specified processing cycle speed of 20 Hz. The premise used for all algorithms that
were explored was to keep the arithmetic very simple and in-place since the data
fusion task demands can reach 2 million operations per second just to process
the algorithm (7 grids/cycle * 14,641 cells/grid * 20 cycles/second). Thus, com-
plex probabilistic-based and belief-based approaches were not explored. How-
ever, adding highly traversable cells to the auction (i.e., 11’s and 12’s) and
post-processing the output grid to provide proximity smoothing and/or obsta-
cle dilation were explored, but none of these alternatives provided any better
performance (in the sense of speed or accuracy) than the one used for the event.

10.7 Real-Time Planning and Vehicle Control

The purpose of online planning and control is to autonomously drive the Navi-
GATOR through its sensed environment along a path that will yield the greatest
chance of successful traversal. This functionality is compartmentalized into the
Reactive Driver (RD) component of the NaviGATOR. The data input to this
component include the sensed cumulative traversability grid, assembled by the
Smart Arbiter component, vehicle state information, such as position and veloc-
ity, and finally the a priori path plan, which expresses the desired path for the
vehicle to follow sans sensor input. Given this information, the online real-time
planning and control component, seeks to generate low-level actuator commands,
which will guide the vehicle along the best available path, while avoiding any
areas sensed as poorly traversable.

10.7.1 Receding Horizon Controller

The objective of the RD component is to generate an optimized set of the ac-
tuator commands (referred to as a “wrench” in JAUS), which drives the vehicle
through the traversability grid and brings the vehicle to a desired goal state. The
NaviGATOR accomplishes this real-time planning and control simultaneously,
with the application of an innovative heuristic-based receding horizon controller.

Receding horizon is a form of model predictive control (MPC), an advanced
control technique, used to solve complex and constrained optimization prob-
lems. In this case, the problem is to optimize a trajectory through the localized
traversability space, while adhering to the nonholonomic dynamics constraints
of the NaviGATOR. An in-depth explanation and analysis of the technique is
provided in (Mayne, 2000), and the application of suboptimal MPC to nonlinear
systems is given in (Scokaert, 1999). This method was selected because it unifies
the higher-level planning problem with the lower-level steering control of the
vehicle. Separate components are not needed to plan the geometry of a desired
path, and then regulate the vehicle onto that path.

The controller attempts to optimize the cost of the trajectory by employing
an A∗ search algorithm (Hart, 1968). The goal of the search is to find a set of
open-loop actuator commands that minimizes the cost of the trajectory through
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the traversability space, and also bring the vehicle to within a given proximity
of a desired goal state. The goal state is estimated as the intersection of the a
priori path with the boundary of the traversability grid. As the vehicle nears the
end of the path, and there is no longer an intersection with the grid boundary,
the desired goal state is simply the endpoint of the last a priori path segment.

Special consideration was given to formulating the units of cost (c) for the
search. An exponential transformation of the traversability grid value (t), multi-
plied by distance traveled (d) was found to work best. The cost equation is given
here, where the exponent base is represented by (b):

c = dbt. (10.9)

Thus, the cost of traversing a grid cell scales nonlinearly with its corresponding
traversability value. An intuitive comparison is best to describe the effect of this
transformation and why it works well: With a linear transformation, the cost of a
path traveling through a traversable value of two is only twice as high as the same
path through a value of one. (Note, these values are just given for the purpose
of an example and are not actually encountered in the NaviGATOR system.)
Therefore, the search would possibly choose a path driving through up to twice
as much distance in the value of one, rather than a much shorter path driving
through a value of two. Whereas, an exponential transformation ensures that
there is always a fixed ratio between neighboring integer traversability values.
Thus, this ratio can be used as a tuning parameter to allow the algorithm to
achieve the desired tradeoff between the length and cumulative traversability
cost of a selected path. Conveniently, the ratio used for tuning is equal to the
base of the exponent given in the cost equation.

Closed-loop control with the receding horizon controller is achieved by repeat-
ing the optimization algorithm as new traversability data are sensed and vehicle
state information is updated. Thus, disturbances, such as unanticipated changes
in traversability or vehicle state, are rejected by continually reproducing a set of
near optimal open-loop commands at 20 Hz, or higher.

The search calculates different trajectories by generating input commands and
extrapolating them through a vehicle kinematics model. The cost of the resulting
trajectory is then calculated by integrating the transformed traversability value
along the geometric path that is produced through the grid. The search continues
until a solution set of open-loop commands is found that produce a near-optimal
trajectory. The first command in the set is then sent to the actuators, and the
process is repeated. A typical result of the planning optimization is shown in
(Figure 10.16, where the dark line is the final instantaneous solution).

Rather than plan through the multidimensional vector of inputs, i.e., steering,
throttle, and brake actuators, the search attempts to optimize a one dimensional
set of steering commands at a fixed travel speed; the control of the desired
speed is handled separately by a simple proportional integral differential (PID)
controller. Since it may be necessary to change the vehicle’s desired speed in
order to optimize the planned trajectory through the search space, extra logic is
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Fig. 10.16. Sample planning result through traversability grid

included in the search to either speed up or slow down the vehicle according to
the encountered data.

10.7.2 Vehicle Model

The kinematics model used for response prediction of an input command to the
system is that of a front-wheel steered rear-wheel-drive vehicle. The input signals
to this model are the desired steering rate (u), and linear vehicle velocity (v).
The model states include the vehicle Cartesian position and orientation (x, y, θ)
and the angle of the front steering wheels (ϕ) with respect to the vehicle local
coordinate frame. The kinematics equation is given here, where (b) represents
the wheel base of the vehicle:
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In the algorithm implementation, additional constraints were added to the
model to limit the maximum steering rate, and also the maximum steering
angle. These values were determined experimentally and then incorporated into
the software as configurable parameters. Also, due to the complex nature these
system dynamics, obtaining a solution to the differential equations is not fea-
sible; therefore, a series of simplifications and assumptions were made to allow
for fast computation of future state prediction. The underlying assumption is
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that, since the resolution of the traversability grid is relatively low (0.5 m), very
accurate estimates for the vehicle’s predicted motion are not necessary. The as-
sumptions made were that for a short period of time or traveled distance, the
curvature of the path that the vehicle followed was near constant, and this con-
stant curvature could be taken as an average over the predicted interval. Thus,
the predicted path trajectory was simply a piece-wise set of short circular arcs.
An implementation of Bresenham’s algorithm (Bresenham, 1977) was used to
integrate the traversability grid value along the determined arcs.

As an additional measure for vehicle stability, a steering constraint was added
to limit the maximum steering angle as a function of speed (v) and roll angle (Φ)
(due to uneven terrain). The goal of this constraint was to limit the maximum
lateral acceleration (ny) incurred by the vehicle due to centripetal acceleration and
acceleration due to gravity (g). Thus, if the vehicle were traveling on a gradient
that caused it to roll toward any one direction, the steering wheels would be limited
in how much they could turn in the opposite direction. Additionally, as the vehicle
increased in speed, this constraintwould restrict turns that could potentially cause
the NaviGATOR to roll over. This constraint is given by the following equation:

kmax =
±nymax + g sin���

v2 . (10.11)

The value for maximum lateral acceleration was determined experimentally
with the following procedure. A person driving the NaviGATOR would turn
the wheels completely to one direction, and then proceed to drive the vehicle
in a tight circle slowly increasing in speed. The speed in which the driver felt
a lateral acceleration that was reasonably safe or borderline comfortable was
recorded, and the acceleration value was calculated. This was done for both left
and right turns, and the minimum of the two values were taken for conservatism.
The value found to be a reasonable maximum was, 4 mps2, and was hard coded
as a constraint to the vehicle model.

10.7.3 Desired Speed Logic

The determination of the commanded and planned vehicle speed is derived from
many factors. The RD receives several sources of requested speed, calculates its
own maximum speed, and then chooses the minimum of these to compute the
throttle and brake commands to the vehicle. Each of the input speed commands
was calculated or originated from a unique factor of the vehicles desired behav-
ior. At the highest level, vehicle speed was limited to a maximum value that
was determined experimentally based on the physical constraints of the Navi-
GATOR platform. The next level of speed limiting came from the a priori path
data, which itself was limited to the speeds provided by the RDDF corridor.
Additionally, the speed provided by the path file can be assessed to see if a
slower desired speed is approaching ahead of the vehicle. Therefore, if it is about
to become necessary to slow down the vehicle, the RD can allow for natural
deceleration time. Also, desired speed as a function of pitch was added to slow
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down the vehicle on steep ascents or descents. This ensures that the NaviGATOR
does not drive too fast while encountering hilly terrain.

Another important speed consideration resides with the planning search. Em-
bedded in the search itself is the ability to slow the vehicle down in the cases
where the desired trajectory comes within proximity to poorly traversable grid
cells. The planner uses a look-up table that enumerates all of the maximum
speeds that the vehicle is allowed to drive while traveling through areas of low
traversability. Thus, if the vehicle attempts to avoid an obstacle or travel down
a narrow road with hazardous terrain to either side, it is commanded to slow
down, thus providing a lower risk while allowing for a more comprehensive search
to find the best course of action. Also, if the search was unable to find a reason-
able solution (i.e., only a solution that goes through very poor areas was found),
then the desired speed is lowered. In its next iteration, the RD attempts to find
a better solution at that slower speed. This approach is reasonable because the
vehicle has greater maneuverability at low speed, and therefore the planner has
a better chance of finding a less costly route to its goal.

Additional speed control is provided by a Situation Assessment component
consisting of a Long Range Obstacle Specialist and a Terrain Ruggedness Spe-
cialist. The Long Range Obstacle Specialist uses a data feed from the PLSS
LADAR to determine whether the space directly in front of the vehicle is free
of obstacles beyond the 30 m planning horizon (i.e., 30 m out to the 80 m range
limit of the LADAR). The Terrain Ruggedness Specialist uses the instantaneous
pitch rate and roll rate of the vehicle (provided by the Velocity State Sensor) to
classify the current terrain as “Smooth,” “Rugged,” or “Very Rugged.” Based on
the Long Range Obstacle State and Terrain Ruggedness State, with appropriate
hysteresis control and dampening, the permitted speed of the vehicle is selected
and sent to the RD. For example, if the terrain is Smooth and no Long Range
Obstacles are detected, then the RD is permitted to drive the vehicle up to its
highest allowable speed and thus faster than an empirically derived Obstacle
Avoidance speed of 7.2 mps (16 mph).

10.7.4 Controller Fault Detection

There are four faults that the RD is capable of detecting during normal operation
of the vehicle. They are the cases where the NaviGATOR has: become blocked,
become stuck, collided with an obstacle, or gone out of the bounds of the RDDF.
In each of these scenarios, it is possible for the system to take corrective action.
The most commonly found of these errors is the blocked condition. In this case,
there is no viable path planning solution, even when the search is attempting to
plan a trajectory at the vehicle’s most maneuverable speeds. It was determined
through analysis of the collected data that this case was most often occurring
due to sensor misclassifications. The corrective action in these scenarios is to
simply wait a short period of time for the sensor data to correct itself, allowing
the planner to find a solution. Sometimes, the data will not correct without the
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vehicle changing its position, therefore an active correction is taken to auto-
matically “nudge” the vehicle forward after a brief wait, and continue with the
planned path once the blockage is clear.

10.8 Testing and Performance

This section of the paper summarizes the testing and performance that occurred
at each of several key venues. This section is supplemented by a video depicting
the NaviGATOR operating in each of these venues (see multimedia).

10.8.1 The CIMAR Lab

Testing began with the JAUS messaging system on the ten computers that would
drive the NaviGATOR. The JAUS messaging would need to be capable of send-
ing up to 500 messages per second per node for over 14 hours. On race day, over
20 million JAUS messages were actually sent and received. Next, initial testing
of the individual JAUS components, discussed in this paper, took place in the
spring of 2005 primarily in the CIMAR lab at the University of Florida. The goal
was to get each component working by itself, “on the bench” in a controlled lab-
oratory environment. To support bench testing, a simple vehicle simulator com-
ponent was devised that sends out position- and velocity-related JAUS messages
as if the vehicle were moving through an RDDF corridor. Once each individual
component had been successfully tested and declared operational, then various
combinations of components were integrated and tested together as the system
began to take shape. The base vehicle platform had been assembled during the
same period of time as the various JAUS components were being bench tested.
With both the vehicle assembled and the JAUS components operational, the
various JAUS components were then mounted in the NaviGATOR.

10.8.2 The Citra Test Site

Next, it was time to take the system to the field. On 20 April 2005, a test site
was designed and constructed at the University of Florida’s Plant Science Unit
located in Citra, Florida. The course was laid out in an open field and consisted
mainly of a figure eight, an oval, and several left and right sharp turns (see
Figure 10.17). Various segments were added to this course to replicate terrain
that was expected in the desert. While this course had a few tough obstacles, it
was basically the “safest” place to test. This was Team CIMAR’s main test site
and was used for extensive development of the system as well as the location
where the DARPA site visit took place on 6 May 2005. On 20 May 2005, the
NaviGATOR was put into a 1/2 mile loop, and it ran for 12 miles before stopping
due to a minor problem. This was the furthest it would run prior to heading west
in September, as it spent the next three months undergoing major upgrades to
both hardware and software.
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Fig. 10.17. The Citra test site

       (a)    (b)

Fig. 10.18. PLSS testing images

Part of the Citra testing effort was devoted to the initial tuning of the sen-
sors. Figures 10.18 and 10.19 depict scenes of the terrain at Citra and the ac-
companying Smart Sensor output, as captured during the sensor tuning process.
Figure 10.18(a) shows evenly spaced orchard poles, while Figure 10.18(b) shows
a snapshot of the PLSS Traversability Grid while traveling on the graded road in
which the poles have been clearly detected and scored as impassable obstacles.
This area was specifically chosen to assure that the output of the PLSS accu-
rately maps obstacles onto the grid. Note that the PLSS algorithm has been
tuned to accurately locate the poles, even though most of them are occluded for
periods of time as the vehicle moves past them. Figure 10.19(a) shows a road-
way with rough terrain appearing to the left of the vehicle when traveling in the
indicated direction. Figure 10.19(b) shows a snapshot of the TSS Traversability
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      (a)    (b)

Fig. 10.19. TSS testing images

Grid for that same section of road, having scored the rough area as somewhat
undesirable, but not absolutely blocked (i.e., 4’s, 5’s and 6’s).

By 20 August 2005, the major hardware and software upgrades were complete
and the system was ready for one last round of testing at the Citra site prior to
heading west. On 25 August 2005, however, while performing a high-speed radar
test, the vehicle suffered a serious failure. One of the rear shocks snapped and
the engine and frame dropped onto the rear drive shaft and odometer gear. The
sudden stop also caused the front sensor cage struts to snap and the sensor cage
collapsed forward. The causes of the failures were determined and the system was
re-designed and re-built in approximately one week. With the damage repaired,
the NaviGATOR returned to Citra for several days to verify that the system
was operational and ready to graduate to the desert for a more serious round of
testing.

10.8.3 The Stoddard Valley OHV Area

On 11 September 2005, the NaviGATOR headed west to the Stoddard Valley Off
Highway Vehicle (OHV) Area near Barstow, California (see Figure 10.20). The
team first attempted some short test runs to ensure system operation. This also
marked the first times the team had run the NaviGATOR with a chase vehicle
setup (see Figure 10.21(a)). These system tests were done in the OHV area of Stod-
dard Valley (marked 1 in Figure 10.20). This test route is approximately 4 miles
long and included the first serious autonomous uphill and downhill climbs, allow-
ing the team to evaluate the performance of the system during both accent and
decent maneuvers. Speeds during these tests stayed in the 10 mph range. Overall,
the system showed an almost surprising ability to handle the terrain, prompting
the team to accelerate their efforts in finding more challenging test paths. Follow-
ing these successful tests, the team moved the vehicle on to Slash X.
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Fig. 10.20. Stoddard Valley OHV test sites

Fig. 10.21. Testing in the Stoddard Valley OHV area

Slash X was the site of the start of the DARPA Grand Challenge 2004
(DGC04) event and during their time there, Team CIMAR shared the area
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with several other DARPA Grand Challenge 2005 teams. First, the team ran
the start and first mile of the DGC04 route (site 2 in Figure 10.20). This allowed
the team to test and tune the sensors specifically against the barbed wire fence
that was the downfall of the 2004 NaviGATOR. This path also provided a good
place to test higher speed navigation. Between path 2 and an open area behind
Slash X, the team was able to test and tune the NaviGATOR up to 30 mph,
with an empirically determined obstacle avoidance speed of 16 mph.

Sunday 18 September 2005 turned out to be a historic day for Team CIMAR.
Team TerraMax graciously gave us one of their RDDFs through the desert (la-
beled site 3 in Figure 10.20). The team took the file and after several false starts
finally launched the vehicle at 4 pm. Path 3 is approximately 20 miles each way
(with a built-in turnaround). The speed testing had not yet been completed and
the first test was done at a cap of 10 mph. The team had never seen nor traversed
this path prior to this first test. Not knowing exactly where they were going, the
NaviGATOR led the way (see Figure 10.21(b)). Surprising even the team mem-
bers, the NaviGATOR successfully navigated the entire 20 mile distance on the
first try, stopping only to give its human handlers time to drink and rest.

Over the following week, the team tested the NaviGATOR several more times
on this course, reaching speeds of 25 mph and completing the entire 40-mile
course several times. The path included long straight roads, a mountain climb,
and areas covered by power lines; all terrain the team expected to encounter
during the DARPA Grand Challenge event.

The last significant area of testing in Stoddard Valley (marked 4 in Figure 10.20)
was another portion of the DGC04 event. Known as Daggett Ridge, this was the
area that the farthest teams had reached during the previous event and consisted
of very dangerous mountain switchbacks and drop-offs of hundreds of feet. The
sensor team made several trips with the vehicle to tune and test the sensor suite on
the path during manual drive, especially focusing on detecting negative obstacles
(in the form of cliffs and washouts).

During two weeks of dawn-to-dusk testing in the Stoddard OHV area, the
NaviGATOR went from a personal best of 12 miles in a 1/2-mile circuit to 40-
mile runs across miles of desert terrain. The team was able to scale the system
quickly, going from 10 mph runs to 25 mph with reliable obstacle avoidance
at speeds up to 16 mph, along with tuning and validating the software that
dynamically determines which speed should be used. That time in the desert was
perhaps the best time spent testing during the entire DARPA Grand Challenge
project, both in progress for the vehicle and the team members. While more
testing time would have been very useful, on 27 September 2005 the team left
for the California Speedway and the National Qualification Event.

10.8.4 The National Qualification Event

Immediately following the opening ceremony, the NaviGATOR was the fourth
team in line for the first qualification run. The qualification course is shown in
Figure 10.22. It consisted of a 2.3 mile long path with three parked cars, a rough
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Fig. 10.22. Qualification course at the California Speedway

Fig. 10.23. NaviGATOR at NQE

terrain section, a simulated mountain pass, a tunnel, and finally a wooden “tank
trap” obstacle.

The NaviGATOR completed the entire course on the first attempt. Figure 10.23
depicts the NaviGATOR on the NQE course. However, three lane-marking cones
had been hit and the tank trap obstacle at the end of the course had been slightly
brushed. Two changes were made to the NaviGATOR for the second run. The de-
sired speed on the high-speed section of the course was increased from 16 mph to 20
mph and the dilated size of the perceived obstacles was increased in an attempt to
completely miss the tank trap obstacle. During the second run, the NaviGATOR
began oscillating and became unstable on the high-speed section and the run was
aborted. The problem was that the high-speed section of the qualification course
was on pavement whereas all high-speed testing had been conducted off-road. The
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disturbances caused by the constant four-wheel drive on pavement were responsi-
ble for the oscillation.

For the third run on the qualification course, all parameters were reset to those
used during the first run. All went well until the vehicle scraped the concrete wall
in the mountain pass section of the course, snapping the front steering linkage.
The vehicle was quickly repaired. For future runs, the path centerline as reported
by the PSS was shifted 12 in. away from the wall in the mountain pass section.
After this, the qualification course was successfully completed two more times. In
summary, the NaviGATOR completed the entire qualification course three out of
five times, and the team was selected by DARPA to compete in the desert race.

10.8.5 The Race

The team received the RDDF containing the coursewaypoints in the earlymorning
of 8 October 2005.Two hourswere allocated for processing the data, which primar-
ily consisted of setting desired speeds for each section of the course. The path file
was then uploaded to the vehicle and by 9:30 a.m. the NaviGATOR was off. After
leaving the start gate, the NaviGATOR headed off into the desert and then circled
around past the crowd at about the eight-mile mark. The NaviGATOR headed
past the spectators at approximately 24 mph, performing very well at this point in
the race (see Figure 10.24). After following the dirt road a bit further, the NaviGA-
TOR encountered a paved section of the course and started to oscillate. It stopped
and did a couple of turns, criss-crossed the road, and then regained its composure

Fig. 10.24. NaviGATOR passing the stands at the 2005 DARPA Grand Challenge
Event
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and headed back in the right direction. As during the second qualification run, the
desired speed was set too high for operation on pavement.

The NaviGATOR next flawlessly traversed a bridge over a railroad track and
disappeared into the brown desert haze. Shortly before 11 a.m., the team received
word from the chase truck that was following NaviGATOR that the vehicle had
inexplicably run off the road and stopped. NaviGATOR appeared reluctant to
move forward into and out of low brush in front of it, although its off-road ca-
pabilities would have easily carried it through. After several attempts to pause
and restart the NaviGATOR, the driver called back to say the vehicle was mov-
ing, but slowly and still off the road. After about one-half of a mile of starting,
stopping, and driving very slowly over brush, it regained the road and took off
again at high speed following the road perfectly. However, after about another
mile, the vehicle again went off the road and this time stopped in front of a bush.
This time, DARPA officials quickly declared the NaviGATOR dead. The time
was shortly before noon, and NaviGATOR had traveled past the 24-mile marker.
NaviGATOR placed 18th among the 23 finalists. A total of five teams actually
completed the entire course, with Stanford’s Stanley taking the $2 million prize
for the shortest time of six hours, 53 minutes and 58 seconds.

10.8.6 What Stopped the NaviGATOR?

Team members went out on the course the day after the race and found the
NaviGATOR tire tracks at the two locations where the vehicle went off the right
side of the road. From this information and data that were logged on the vehicle,
it appears that the calculated GPS position drifted by approximately twenty feet
causing the vehicle to want to move to the right of the actual road. From the tire
tracks and from the traversability grid (see Figure 10.25), it was apparent that
the vehicle wanted to move to the right, but the obstacle avoidance sensors were

Fig. 10.25. Traversability Grid (during time of position system drift)
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Fig. 10.26. Location where NaviGATOR veered off the course and was stopped

detecting the bushes and berms on the right side of the road. From the vehicle’s
perspective (see Figure 10.25) it appeared that the corridor was littered with
objects and the best it could do was to travel along the left side of the corridor
on the verge of going out of bounds on the left. In reality, the vehicle was hugging
the right side of a very navigable dirt road, however most of the open road was
being classified as out of bounds.

Both times that the vehicle went off course were due to the fact that the right
side became free of obstacles and the vehicle attempted to move to the center of its
incorrect corridor. Figure 10.26 shows the location where the NaviGATOR moved
off the course for the second time whereupon DARPA officials stopped it. In sum-
mary, a twenty-foot position error caused a corresponding shift of the boundary
smart sensor that eliminated the actual sensed road as an option to the planner.

10.9 Conclusion

Overall the team was very pleased with the NaviGATOR system. The base vehicle
is very capable and has excellent mobility in very rough terrain. The obstacle and
terrain detection sensors, and sensor integration approach, worked very well as
did the reactive planner module. Overall, the control loop (from sensed objects
to determination of vehicle actuation parameters) operated at a rate of over 20
Hz. Also, a significant contribution of the effort was to show that JAUS could be
used successfully in a situation such as this, and that the standardized messaging
system defined by JAUS could greatly simplify the overall integration effort.
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There are four key areas that are currently being pursued by the team. The
first two of these focus on resolving specific issues encountered while competing
at the Grand Challenge event. The other two are improvements that will make
the NAVIGATOR system more resilient to such problems when they occur.

1. Stability. The stability of the controller can be improved simply by putting
additional time into getting the control parameters properly tuned. The goal
is to achieve stable control at 25 mph on pavement and 30 mph on dirt in
the near future.

2. Position System. We are currently improving the accuracy of the position
system’s estimate of error so that when the output of the system is degraded,
it can inform the rest of the system appropriately. A better version of the
GPS switching code is being implemented that will allow the system to decide
which GPS to use as the input to the NFM, the NavCom or the Garmin,
based on which is better at the time. At the same time, NavCom and Smiths
Aerospace are working together to further improve the overall accuracy of
the system.

3. Dynamic BSS and PSS. As discussed earlier, the reason the NaviGATOR
got stuck off the road in the race was due to a position error causing the
Boundary Smart Sensor to shift the drivable corridor off the road. To prevent
this from happening in the future, the width of the corridor created by the
BSS will be made a function of the position system root mean square error
(RMS). For example, if the position RMS is good then the BSS corridor in the
grid will be correspondingly tight; but when the position RMS degrades, then
the BSS will stroke a correspondingly wide corridor through its traversability
grid. In this way, the BSS will no longer eliminate the road as an option, thus
allowing the sensors to find the road off to the side. Similarly, the weight of
the PSS can be adjusted such that its recommended path is painted with
tens when the position RMS is good, but only sevens or eights when the
position RMS degrades, thus reducing its influence accordingly.

4. Adaptive Planning Framework. A more extensive implementation of the
situation assessment specialists and high-level decision-making capabilities
is currently underway. This will allow the NaviGATOR to do such things as
determine when it has become blocked and decide how to best fix the prob-
lem, such as backing up and re-planning. Other examples include altering the
aggressiveness of the plan (risk) based on mission parameters and altering
the contribution of a given sensor based on the environmental situation.

The first three items on this list are relatively short term and should be
completed before this paper is published. With a tuned controller, the position
system upgraded, and the BSS and PSS dynamically adjusting to the position
RMS, the NaviGATOR should be capable of completing the 2005 DARPA course
in under 10 hours. The maturation of the Adaptive Planning Framework will
likely continue into the future for some time.

In retrospect, the team would have benefited from more testing time in the
California desert. The issues associated with the positioning system and the high-
speed control on pavement could have been resolved. However, the project was
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very successful in that an entirely new vehicle system was designed, fabricated,
and automated in a nine-month period, ready to compete in the 2005 DARPA
Grand Challenge. This was a monumental effort put on an aggressive time and
resource schedule.
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Summary. This paper describes Princeton University’s approach to the 2005 DARPA
Grand Challenge, an off-road race for fully autonomous ground vehicles. The system,
Prospect Eleven, takes a simple approach to address the problems posed by the Grand
Challenge including obstacle detection, path planning, and extended operation in harsh
environments. Obstacles are detected using stereo vision, and tracked in the time do-
main to improve accuracy in localization and reduce false positives. The navigation
system processes a geometric representation of the world to identify passable regions
in the terrain ahead, and the vehicle is controlled to drive through these regions. Perfor-
mance of the system is evaluated both during the Grand Challenge and in subsequent
desert testing. The vehicle completed 9.3 miles of the course on race day, and extensive
portions of the 2004 and 2005 Grand Challenge courses in later tests.

11.1 Background

Prospect Eleven was Princeton University’s entry in the 2005 DARPA Grand
Challenge, a competition for autonomous vehicles held on October 8, 2005 on an
off-road course in the vicinity of Primm, Nevada. The race was organized by the
Defense Advanced Research Projects Agency (DARPA) to promote research in
autonomous ground vehicles. This was the second instance of the race, the first
having been held a year earlier. Princeton University did not participate in the
first race, and no entrants completed the course that year.

The Princeton team consisted entirely of undergraduates under the direc-
tion of Prof. Alain Kornhauser. Among Prospect Eleven’s unique features are
its inexpensive and simple design and its reliance on stereo vision as its only
means of obstacle detection. What follows is a high-level description of Prospect
Eleven’s main systems, the lessons learned while developing these systems, and
a discussion of the vehicle’s accomplishments to date.

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 349–361, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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11.2 Mechanical Systems

The Princeton University team received a stock 2005 GMC Canyon truck to
serve as a development platform. The throttle, braking, and steering systems
were modified to allow for drive-by-wire operation.

Like many modern cars, the gas pedal in the Canyon is fully electronic so
it was not necessary to establish a mechanical linkage to the engine throttle.
Instead, a computer-generated voltage simulates the behavior of the physical
pedal. The brake pedal is mechanically controlled by two independent systems:
a custom-built linear ball-screw actuator used under normal operation, and a
pneumatic piston capable of applying 670 N of force for emergency use. These are
connected to the brake pedal with sheathed steel cable, and either system may
be in operation without preventing the operation of the other. An inline tension
sensor is used to measure the degree of brake application. Steering control is
accomplished via a DC motor mounted under the steering column and attached
to the steering wheel with a set of gears. An optical rotary encoder, also attached
to the steering wheel, provides precise position feedback.

11.3 Vehicle Control

The vehicle’s steering wheel angle and vehicle speed are maintained with mod-
ified Proportional, Integral, Derivative (PID) control loops. During normal au-
tonomous operation, each of the PID controllers runs at approximately 20 Hz.

Fig. 11.1. Speed Control Functional Block Diagram

Steering control uses the optical encoder as input and controls the steering mo-
tor as needed. A two-layer system of PID controllers regulates Prospect Eleven’s
speed. In the first PID control layer, the reference input is the car’s velocity and
the output is a throttle voltage if the output is positive, or a desired brake tension
if negative. The desired brake tension is then monitored by the second PID con-
troller. This controller takes the current brake tension as input and controls the
braking motor. Figure 11.1 depicts the speed control block diagram. Figure 11.2
shows desired and actual velocity duringProspect Eleven’s first run at the National
Qualification Event (NQE).



11 Prospect Eleven: Princeton University’s Entry 351

Fig. 11.2. Speed vs. Time at start of NQE Run 1

11.4 Computing

All computing is performed by two standard desktop computers. These are
mounted in a shock-isolated rackmount case behind the passenger seat. The
rack sits on four fluidic shock mounts designed to attenuate the high-frequency
vibrations which can cause hard drive failure. To provide further protection,
each computer has a RAID array which mirrors the contents of the primary
hard drive.

Vision processing and obstacle detection algorithms were written in C++.
All other car control, data acquisition, and decision making control systems
were implemented in C# (“C-sharp”) on the other computer. Both systems run
Microsoft Windows. The C# language proved particularly effective as a devel-
opment platform; the extensive Microsoft .NET libraries and intuitive object-
oriented structure allowed rapid debugging while permitting the implementation
of advanced functionality such as multithreading and low-level I/O.

11.5 Stereo Vision

Prospect Eleven relied solely on stereo vision to detect and range obstacles. In
doing so, it was unique among the contestants present at the Grand Challenge
finals.

Obstacle detection using stereo vision can be broken down into three prob-
lems: (1) obtaining an accurate depth map of the scene ahead from pixel dis-
parities between the two cameras, (2) identifying obstacles in the scene, and (3)
calculating the range of detected obstacles so they can be avoided.

This process is susceptible to many environmental sources of error, including
unfavorable lighting conditions and irregular terrain. Central to the approach
of this paper is the assumption that most of this error is random, and hence
can be averaged out by filtering many measurements of obstacle position over a
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period of time. This approach suggests simple and fast algorithms, so that many
samples may be obtained.

A Point Grey Research (Vancouver, Canada) Bumblebee, a commercially-
available stereo camera pair, captures simultaneous images from two black and
white CCDs. The baseline separation is 12 cm. The included libraries process
images from the camera by comparing each pixel in one image to the corre-
sponding feature in the other image. The difference in pixel location (disparity)
is inversely proportional to the pixel’s depth in the scene. From this, a depth
map is calculated. A depth map is simply an image in which each pixel value cor-
responds to the disparity value of that pixel in the scene. The included software
libraries perform validation of the depth map. In order to simplify the overall
algorithm and ensure fast performance, subpixel interpolation is not used. As a
result, disparities may only take on integer values. For example, at a range of 20
m, the difference in range between two adjacent disparity values is 3 m.

Several strategies were found to be effective in improving the number of accu-
rate and validated matches—particularly in poor lighting conditions. Red pho-
tographic filters mounted in front of each lens were used to increase contrast by
blocking blue light and reducing UV haze, mitigating problems such as CCD
“bleeding” on bright days and boosting the brightness of the ground—the area
of interest in each frame. Results were further improved by custom camera gain
control which was designed to optimize the exposure in the ground plane at the
expense of the upper half of the frame.

11.5.1 Obstacle Detection

As mentioned, it is important that Prospect Eleven range an obstacle many
times such that many measurements may be filtered to increase accuracy. This
is only possible with a fast obstacle detection algorithm. This section presents
an algorithm which is very fast and well-suited for heavily quantized data. When
faced with conditions like those encountered on the Grand Challenge course, the
system performs sufficiently well for obstacle avoidance.

Several authors have also examined the problem of fast obstacle detection. One
approach, adopted by Matthies and Grandjean (1994), is to consider the slope of
a pixel relative to a ground plane. It is supposed that a significant obstacle will
have slope greater than some threshold. Similarly, Broggi, Caraffi, Fedriga, and
Grisleri (2005) simply search each column in the depth map for large intervals at
similar disparities. Indeed, for a camera mounted nearly parallel to the ground
plane, as was the case for Prospect Eleven and Broggi et al., this approach
approximates thresholding vertical slope over some window. The algorithm in
this paper parallels that of Broggi et al.

Were disparity values not so heavily quantized, a logical measure of similarity
might be variance. However, as a result of quantization, the algorithm simply
looks for a contiguous span within the column for which the disparity is the
same value throughout the span. Such spans occur in flat scenes in the image,
so it must be required that they be of at least a certain length l to be classified
as an obstacle. In contrast to Broggi et al., this paper’s approach is to make
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l dependent on the extent to which the current interval is above the row-wise
median disparity. The justification for this is simple: for a relatively flat scene,
the disparity of a pixel which belongs to an obstacle should be above the median
disparity in its row. Setting l to be lower for pixels above the median enables
information from the entire image to be considered while detecting obstacles in
a single column. We set l to be 12 for pixels which are above the median by 2,
20 for pixels above the median by 1, and 35 for pixels at the median disparity
value. Use of the median may not be effective in unstructured environments, but
since the Grand Challenge course was graded, it was assumed that most rows
would be roughly homogeneous over the traversable region.

The algorithm can be structured as a finite state machine which scans each
column from top to bottom and has states IN OBSTACLE and NOT IN OBSTACLE.
When the state is NOT IN OBSTACLE, the code simply looks for an interval sat-
isfying the above criteria. In state IN OBSTACLE, it grows the interval downward
until it first fails to meet a slightly weaker form of the above criteria. The weaker
form differs only in the constants used, and is employed because the base of an
obstacle is more similar to the background than the top. Figure 11.3 shows a
scene image, with obstacle pixels highlighted, as well as the corresponding depth
map. One column in Figure 11.3a is highlighted. Figure 11.4 shows depth values
and the algorithm’s output on this highlighted column.

Fig. 11.3. (a) Sample scene image, with detected obstacle pixels highlighted and
sample column outlined, as analyzed in Figure 11.4. (b) The corresponding disparity
map.

The time complexity of the algorithm is linear. Each pixel need only be exam-
ined once, and median calculation can be performed efficiently using a radix sort.
Figure 11.5 shows the computation times of 193 images at 640x480 resolution
versus the proportion of pixels in the image which were identified as obstacles.

Once each pixel is classified as being an obstacle or not an obstacle, bound-
ing boxes are constructed around each connected obstacle region. In doing so,
a central point and width are computed for each box. A confidence measure is
computed based on the detected size of the obstacle and the similarity of dispar-
ity values within the obstacle. A box is classified as an obstacle if its confidence
measure exceeds a threshold. Table 11.1 gives the performance of this algorithm
on several obstacles at various distances. A ✓ indicates successful detection, and
an ✕ indicates that the obstacle was not detected.
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Fig. 11.4. Disparity values and obstacle detection in the highlighted column of Figure
11.3a. The shaded region is detected as an obstacle.

Fig. 11.5. Computation time versus proportion of obstacle pixels over 193 640x480
images

Table 11.1. Detection of objects at various ranges (in m)

Object 4.5 6 7.5 9 10.5 12 13.5 15 16.5

Downturned cinderblock �19.5 cm� ✓ ✓ ✓ × × × × × ×
Upright cinderblock �40 cm� ✓ ✓ ✓ ✓ ✓ × × × ×
Shelves �65 cm� ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×
Trashcan �69 cm� ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

Note: ✓=Successful detection; ×=Obstacle not detected.

As can be seen, the range at which short obstacles can be reliably detected
is quite limited. Fortunately the primary function of obstacle detection during
the Grand Challenge was to detect graded berms on either side of the course.
Data recorded during the Grand Challenge indicates that Prospect Eleven was
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able to do so at ranges of approximately 8 m, which was adequate for navigation
during the race. The limited detection distance for small but dangerous obstacles
capped the vehicle’s maximum speed.

11.5.2 Tracking in the Time Domain

Detected obstacles are tracked in the time domain to improve accuracy in po-
sitioning and limit false positives. When a new image is processed, the list of
obstacles from that image is compared to the list of currently tracked obstacles.
Each new obstacle is matched to the closest existing one, or declared a new ob-
stacle if no suitable match exists. A confidence measure is maintained for each
obstacle, based on the aforementioned confidence of each detection, number of
frames in which it was detected, and the number of frames in which it was not
detected despite being in detection range. Only obstacles whose confidence mea-
sure exceeds a threshold are used in path planning. A Kalman filter maintains
the estimate of the obstacle’s location.

Matching is effective in improving localization, particularly for obstacles at
ranges above 8 m. The measurement error for localization decreases quadrati-
cally as a function of range. Though ground-truth data is not available, a direct
approach to obstacles at randomized positions is simulated with a wide variety of
parameters. Figure 11.6 gives the mean precision of localization at various ranges
over 10,000 simulations. Values simulated include vehicle speeds in the range 6
m/s to 13 m/s, minimum detection ranges between 1.5 m and 5 m, maximum
detection ranges between 15 m and 20 m, detection frequencies between 6 Hz and
10 Hz, and disparity calculations with unbiased Gaussian error with σ2 between
0.05 pixels and 0.5 pixels. The error model assumes that error is caused entirely
by miscalculation and quantization of disparity values. The periodic behavior of
the measurement error is a result of quantization: for ranges which correspond
to a nearly integer disparity value, quantization causes very little error. Though
there are certainly many more sources of error than those modeled, and actual
error is much greater, the simulation demonstrates that tracking is effective at
reducing error in localization.

11.6 Navigation

The choice of navigation scheme was governed by the specific structure of the
competition. DARPA’s rules and a review of the 2004 competition suggested the
following:

1. DARPA would provide a high level, high detail GPS path from start to finish
2. A traversable path would exist within course boundaries
3. The course would be narrow and lie on desert roads

An algorithm which chooses a steering angle at each instant without pre-
planning a path ahead is sufficient for the Grand Challenge. Global convergence
problems are largely mitigated due to the provided GPS path. This path per-
forms the function of a high-level planned path. For these reasons, the navigation
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Fig. 11.6. Error in localization versus range in meters

software implements a reactive algorithm that processes a region limited to the
detection range of the stereo vision system.

The algorithm implemented is a Nearness Diagram (ND) approach (Minguez
and Montano, 2004) modified to suit the structure of the competition. The ND
navigation scheme as implemented by Minguez and Montano begins by forming
a polar plot of the distance from the vehicle to the nearest obstacle at each angle.
This plot is manipulated to identify available gaps in the obstacles surrounding a
robot, and a control vector is selected from among five different control strategies
based on the particular structure of available openings.

Our implementation differs by (1) changing the gap calculation to accommo-
date road boundaries, (2) changing the gap representation from angular width to
physical end points and width in meters, and (3) utilizing the physical dimensions
of the gap to collapse ND’s five control schemes into one. These modifications
adapt the ND approach to travel along roads.

11.6.1 World Representation

The navigation system maintains an internal model of the world composed of
the DARPA defined GPS course and detected obstacle locations. The model is
a Cartesian plane with the origin located at the first course waypoint. Terrain
elevation is neglected. Approximating the globe as a plane was found to be
sufficient throughout the race. The course representation was geometric, with
course segments represented as rectangles capped with semicircles and obstacles
represented as circles of varying diameter and location. Approximating obstacles
as circles leads to inaccuracies in representing planar obstacles, such as when
walls appear as a string of small circles. However, the nature of the competition
lessened the impact of this shortcoming as frequently-encountered objects like
gate posts, tank traps, and bushes are all well-approximated by circles.

This internal representation stands in contrast to cost map approaches. The
geometric model requires less memory than large cost maps, and in general can
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calculate intersections and other quantities analytically. However, a drawback of
this method is that its obstacle representation is binary—space must either be
fully traversable or blocked. Given that the stereo vision system cannot distin-
guish between obstacles of different severity, for example rocks one would prefer
to avoid versus a parked car one must avoid, the binary representation was not
a limitation.

11.6.2 Gap Calculation

The central task of the navigation system is to extract the location of “gaps” in
the terrain in front of the vehicle, where gaps are defined as physical openings
wide enough for the vehicle to travel through. The first step in locating these
is the construction of a polar tube plot, which closely parallels the nearness di-
agram. Whereas the nearness diagram graphs distance to the nearest obstacle
in an angular sector, the tube plot graphs the distance to the nearest obsta-
cle in a rectangular region (a tube) extending at a given angle off of the car’s
heading (Figure 11.7). Using tubes instead of sectors preserves the actual width
of gaps at different distances from the vehicle. Next, discontinuities in the plot

Fig. 11.7. (a) A sample world configuration consisting of GPS course boundaries, a
circular obstacle, and the vehicle. Projected tubes are shown in gray. (b) The resulting
polar tube plot.

Fig. 11.8. Corridor gap geometry. Black ✕’s mark unpaired endpoints, gray ✕’s mark
corridor endpoints, and braces show the resulting corridor gaps.



358 A.R. Atreya et al.

are identified, and gaps are formed from a pair of adjacent left and right end-
points. Because road borders are continuous lines, no discontinuities are present
to form appropriate gaps between road edges and obstacles. Another mechanism
was developed to achieve suitable gap formation on roads or in corridors. Ad-
ditional “corridor” gaps are formed between an unpaired endpoint and a point
along the adjacent corridor boundary. The appropriate contact point along the
boundary is taken to be the point of intersection of the boundary with a line
passing through the unpaired endpoint perpendicular to the vehicle’s direction
of travel (Figure 11.8).

11.6.3 Control Action Selection

A control action comprising desired heading and speed is calculated based on the
available gaps. First, a target gap is selected based upon width and angle from the
vehicle’s heading. Wider gaps are more desirable, as are those which require the
least deviation from current heading. Once chosen, a gap is biased to be targeted
in subsequent time steps to prevent alternating between gaps. This is a serious
problem, because such indecision effectively takes the average between the two
gaps, where an obstacle lies. Next, a pursuit point along the course centerline
is selected. In the absence of obstacles, aiming at this pursuit point will guide
the vehicle along the GPS course. To cause the vehicle to dodge obstacles by
a margin of d where possible, the target gap endpoints are each moved toward
each other by d + w

2 , where w is the width of the vehicle. If the gap is too narrow
to move each endpoint the required distance, both endpoints are placed at the
middle of the gap, so the vehicle will still pass through narrower openings if d is
unavailable. Desired heading is calculated to be the heading within the narrowed
target gap closest to the heading of the pursuit point. This method allows the
vehicle to dodge obstacles by precise distances.

Desired speed is computed as the minimum of three terms: (1) the DARPA
mandated speed limit, (2) a safety speed limit based on the average curvature of
the track ahead of the car, and (3) a reactive term proportional to the length of
the tube projected from the front of the vehicle. This last term slows the vehicle
while dodging obstacles.

11.7 Results

11.7.1 Site Visits

To earn an invitation to the National Qualification Event (NQE) in Fontana,
California, teams had to demonstrate basic GPS-following and obstacle avoid-
ance capabilities during a site visit by DARPA officials. During the first site visit
in May, Prospect Eleven failed to evade several trashcans, and was not originally
placed in the top 40 contestants. However our team did earn a second site visit
in June, and performed well enough to earn an invitation to the NQE as one of
three alternates.
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11.7.2 National Qualification Event

The NQE consisted of 5 runs over a 3.5 km course. The course included a 100-ft
tunnel under which robots lost GPS fix, rumble strips, four parked cars, a tank
trap, hay bales, a simulated mountain pass, and tire stacks. Each run was judged
on time, evasion of obstacles, and completion of course gates. Though Prospect
Eleven performed admirably on three runs, its poor performance on the other
two demonstrated serious software reliability issues. Table 11.2 shows the results
of the five NQE runs. During runs 1-3, the vehicle’s GPS system was misaligned.
Despite this, during runs 1 and 3 the vision system was able to keep Prospect
Eleven within boundaries by detecting physical course markings. In run 2, the
misalignment caused Prospect Eleven to collide with the first obstacle. During
run 4, slow software performance resulted in unstable steering control. This
was a result of several extraneous processes left running on the vehicle, as well a
systemic software bug, discussed in the next section. The fifth run was essentially
perfect and within two minutes of the course record.

Table 11.2. Results at the National Qualification Event. ”DNF” denotes ”did not
finish.”

Result Run 1 Run 2 Run 3 Run 4 Run 5

Obstacles avoided �of 5� 5 0 5 2 5
Gates passed �of 50� 48 0 50 8 50
Time 13:03 DNF 12:34 DNF 12:11

Note: DNF=did not finish.

11.7.3 Grand Challenge Event

The top twenty-three robots from the NQE were invited toparticipate in the
Grand Challenge Event on October 8, 2005 in Primm, Nevada. Prospect Eleven
was seeded tenth. The race started smoothly, and Prospect Eleven appeared on
schedule at the eight mile mark. Shortly thereafter, at approximately 9.4 miles,
steering control became unstable. The DARPA chase vehicle disabled Prospect
Eleven, and Prospect Eleven’s race was over.

Analysis of the logs made it clear that the culprit was again slow software
performance. Normally, Prospect Eleven’s control loops run at 16-20 Hz, however
at the time the vehicle was disabled they were only running at 0.3 Hz. Further
analysis revealed that this was caused by a bug in the obstacle tracking code,
as obstacles were never entirely cleared from the list of tracked obstacles when
passed. Tracking the position of thousands of irrelevant obstacles overwhelmed
the processor, and starved critical code.

11.7.4 Post-grand Challenge

In order to evaluate Prospect Eleven’s performance without this software bug,
the course was attempted once more on October 31, 2005. By this point course
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conditions had changed considerably from the day of the Grand Challenge: Sev-
eral formerly dry lake beds had been filled with rain in the intervening weeks.
Also, the heavy rains cut a number of deep washouts across the path. In addition,
some parts of the course had been altered following the Grand Challenge, with
ramps bulldozed and a short stretch of track deliberately rendered impassable. In
all of the above cases, Prospect Eleven was removed from autonomous operation
and manually driven around the impasse. In addition, Prospect Eleven suffered
a communications failure between the GPS unit and the guidance computer just
before Beer Bottle Pass, a mountain pass near the end of the course, that would
have ended a fully autonomous attempt. This was fixed en route. Nevertheless,
Prospect Eleven drove the rest of the course autonomously, successfully navi-
gating two tunnels, multiple gates, and descending winding Beer Bottle Pass at
night without any intervention.

To assess repeatability, Prospect Eleven ascended and descended Beer Bottle
Pass again the following day. Although traversal of the pass itself was uneventful,
the vehicle blew out its left front tire at the base of the pass on the descent,
following a collision with a small, sharp rock. The front wheels were also jarred
out of alignment. This failure demonstrates a limit of the vehicle’s stereo vision
technology, which could not detect small but crucial features of this size. The
descent occurred at night. The vehicle headlights provided sufficient illumination
for robust obstacle detection.

As a final test, Prospect Eleven attempted the 2004 Grand Challenge course
backward, from Primm, NV to Barstow, CA. Again, the vehicle was unable to
complete a fully autonomous traversal of the course due to environmental factors.
Manual control had to be taken back a number of times to guide the vehicle
around washouts, and in one case to divert the vehicle around an underpass
that had filled with silt. Also, three hardware failures would have ended a fully
autonomous attempt of the course: a communications cable came loose, the
steering position encoder became jammed with sand, and the vehicle’s spare tire,
installed to replace the old left front tire, was eventually destroyed by the terrain.
The failure of the spare was expected due to the misalignment of the wheels
after the previous collision. Despite these issues, Prospect Eleven navigated a
substantial distance autonomously. The vehicle traversed the three mountain
passes of the course without incident, including a descent of Daggett Pass in
total darkness.

11.8 Conclusion

Over the course of the Grand Challenge qualification, competition, and subse-
quent testing, Prospect Eleven performed well. Though the system was designed
to exploit the specific structure of the Grand Challenge race, it showed the capa-
bility to perform in some environments more complicated than those originally
envisioned. This demonstrates the promise of a simple approach to autonomous
systems. Though it is useful to consider implementation as a system of intercon-
nected modules, each of which may be individually optimized, Prospect Eleven



11 Prospect Eleven: Princeton University’s Entry 361

shows that overall performance relies on carefully considering the integration of
components in the system as a whole. For instance, the use of a binary obstacle
representation, though in itself suboptimal, contains all information the stereo
vision system can provide and more accurately reflects the limitations of the
detector. Prospect Eleven shows the feasibility of a simple autonomous design
that can operate effectively in difficult environments.
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Summary. The 2005 DARPA Grand Challenge required teams to design and build
autonomous off-road vehicles capable of handling harsh terrain at high speeds while
following a loosely-defined path. This paper discusses the critical subsystems of Cornell
University’s entry, an autonomous Spider Light Strike Vehicle. An attitude and position
estimator is presented with modifications for specific problems associated with high-
speed autonomous ground vehicles, including GPS signal loss and reacquisition. A novel
terrain estimation algorithm is presented to combine attitude and position estimates
with terrain sensors to generate a detailed elevation model. The elevation model is
combined with a spline-based path planner in a sensing / action feedback loop to
generate smooth, human-like paths that are consistent with vehicle dynamics. The
performance of these subsystems is validated in a series of demonstrative experiments,
along with an evaluation of the full system at the Grand Challenge.

12.1 Introduction

Field robotics has grown substantially in the past few decades, but a divide still
remains between theoretical systems realized in ideal environments and those
that must contend with the real world. The DARPA Grand Challenge sought to
bridge this gap with a number of demanding technical and physical tasks, where
only platforms robust both in theory and construction could hope to compete.
The difficulty of the Grand Challenge spurred many unique approaches to the
problem, each largely shaped by its team’s technical, intellectual, and financial
resources.

Cornell University entered the Grand Challenge in the summer of 2004 as a new
team composed largely of undergraduate students and a few faculty advisors from
the Cornell schools ofMechanical and AerospaceEngineering, Electrical Engineer-
ing, and Computer Science. The addition of Singapore Technologies Kinetics as a
primary sponsor in the fall provided the necessary financial support to make Cor-
nell’s entry a serious competitor. In the beginning, Team Cornell divided its work
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among three main sub teams: a vehicle sub team, a sensing sub team, and an artifi-
cial intelligence sub team. As integration problems emerged between the three sub
teams, however, a more goal-oriented approach was necessary. The final solution
divided the team according to four general goals: building a mobile hardware plat-
form, determining the platform’s orientation and location, sensing its surrounding
environment, and planning a path through that environment.

This paper presents Cornell University’s approach to accomplish each of these
four goals, expanding on the high-level overview presented in Team Cornell’s
DARPA Grand Challenge technical report (Team Cornell, 2005). First, section
12.2 presents a block diagram of Cornell’s approach that outlines the critical
subsystem as well as information flow between them. The subsequent sections
present each subsystem in turn. Section 12.3 discusses the capabilities of Cor-
nell’s hardware platform, the Spider Light Strike Vehicle, and its actuation for
drive-by-wire capabilities. Section 12.4 discusses the approach used to fuse iner-
tial and navigation information to estimate the Spider’s position, velocity, and
orientation, with considerations for improving the robustness of the system in
autonomous ground vehicles. Section 12.5 presents a novel terrain estimation
algorithm that utilizes attitude and position estimates and terrain sensors to
generate a dense elevation model, along with a representation of uncertainty, for
path planning without explicit obstacle identification. Section 12.6 presents a
method for controlling the terrain sensors to improve the utility of data entering
the terrain estimator. Section 12.7 presents a cubic spline-based path planner
that utilizes terrain estimates and physical constraints to determine the final
path traversed by the vehicle. Section 12.8 concludes with a performance anal-
ysis of Cornell’s entry in the 2005 Grand Challenge.

12.2 System Subdivision and Information Flow

Cornell’s approach to the Grand Challenge divides the problem into four sepa-
rate goals: developing a robust platform, estimating the orientation and position
of that platform, sensing its surroundings, and planning a path through its en-
vironment. The advantage of dividing the problem in this particular manner is
that sub teams can work on these goals independently using either simulated
or logged data from other sub teams. This structure allowed the entire team to
work under a common architecture without integration bottlenecks.

Figure 12.1 shows the relation between the four components of Cornell’s so-
lution. The heart of the solution is the attitude and position estimator, which
provides the other three subsystems with the Spider’s current position, velocity,
and orientation via direct serial connection, as well as a serial timing pulse for
synchronization. The terrain estimator combines that information with terrain
sensors to form a map of the world, which it sends to the path planner over
a dedicated gigabit Ethernet connection. The path planner combines the envi-
ronment map with the vehicle’s state to generate a path, which it converts to
a desired steering angle and speed. It then sends the desired steering angle and
speed to the Spider’s microcontroller directly over a 500 kbps controller area
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Fig. 12.1. System division in Cornell’s Spider. Each block uses separate computational
resources and communicates to other blocks via serial, Ethernet, or controller area
network (CAN) connections.

network (CAN) bus. This low level microcontroller then generates the steering,
brake, throttle, and transmission commands necessary to control the Spider.

12.3 Hardware and Actuation

12.3.1 The Spider Light Strike Vehicle

Cornell’s Grand Challenge entry is based on a Spider Light Strike Vehicle, man-
ufactured by Singapore Technologies Kinetics (STK), shown in Figure 12.2. The
Spider, nominally an off-road 6-passenger military vehicle, is better suited to
carry computers across harsh environments than a commercial sports utility
vehicle or truck. Its fully-independent suspension and 35-inch Goodyear Max-
imum Traction radial tires give it more than 16 inches of ground clearance,
and its heavy-gauge steel tube-frame chassis, roll cage, and full underbody skid

Fig. 12.2. Cornell’s Modified Spider Light Strike Vehicle
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plate allow it to safely traverse desert brush and small ditches that would stop
a standard commercial vehicle. The Spider’s unequal-length double A-arm front
suspension design is ideal for protecting its payload, as it generates negative
camber gain during chassis roll to aid vehicle stability. The rear suspension is
a semi-trailing arm design pre-loaded with spring blades bolted to each trail-
ing arm. Both front and rear suspensions are equipped with nitrogen gas shock
absorbers and two boilover spring / shock absorber pairs to further isolate the
chassis.

The Spider is powered by a VM Motori 2.8 Liter, 4 cylinder common-rail diesel
engine with a maximum output of 163 horsepower and 295 ft-lbs of torque. The
engine is coupled to an Audi 3-speed semi-automatic transmission and configured
for 4-wheel drive, with a locked 1 : 1 front to rear output ratio. With a top
speed of 50 miles per hour off-road and the ability to traverse grades of nearly
60%, the Spider’s factory configuration is well-equipped to drive the nominal
Grand Challenge route and also to tolerate mistakes made by its autonomous
components (Singapore Technologies Kinetics, 2006).

The Spider’s electric components are run from three separate power buses:
12 and 24 V DC sources, and a 110 V AC source, for design flexibility and
compatibility with off-the-shelf automotive and computer components. The pre-
installed 24 V source, which powers the Spider’s actuators, sensors, gimbal, and
emergency stop, is reinforced with two Optima deep-cycle car batteries charged
by an engine-driven alternator. The 12 V source, powered from the 24 V source
via DC-to-DC converter, is used to accommodate the standard automotive siren,
engine control unit, and gauges, which are only available in 12 V configurations.
A fuel-injected 5.5 kW Onan Commercial Mobile series generator provides 110 V
AC power for the Spider’s computers, which require clean, uninterrupted power
even during sharp turns or when the Spider’s engine is off. Five APC Smart-
UPS 1000 VA units provide approximately 10 minutes of reserve power to the
AC source, allowing time for the generator to be automatically restarted if it
stalls.

12.3.2 Design for Drive-by-Wire Operation

The Spider’s steering, throttle, brake, and transmission are all actuated for com-
puter control and drive-by-wire operation. Of these four actuated components,
throttle control is the most straightforward. The Spider is wired at the factory
for electronic throttle control through the engine control unit, so no additional
work is necessary. For steering, where accurate tracking, no slip, and human
drivability are all important design requirements, The Spider’s steering column
is directly actuated with a 1.1 hp MOOG 6000 series AC brushless motor and a
pair of 1 : 1 spur gears that can be disengaged for human operation. A Celesco
CLP-200 linear potentiometer is also installed directly on the tie rod for absolute
steering angle measurements independent of the MOOG’s encoders.

Like the steering system, the Spider’s hydraulic disc brakes are actuated at
the brake pedal to preserve human operability. The brake pedal is pulled toward
the Spider’s floor by a Maxon RE 40 brushed DC motor with a 43 : 1 GP 42C
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planetary gear head and sheet metal spool. This gear and spool system is capable
of delivering 72 lbs. force to the brake pedal, but more importantly, it can only
pull the brake pedal downward. It therefore does not resist human operation,
and it cannot be driven in reverse. The system is also equipped with a HEDS
5540 500 count-per-turn digital optical encoder on the planetary gear head for
feedback.

The final actuated component enables gear selection on the Spider’s transmis-
sion. Like the other three actuation schemes, the primary consideration in design
of the transmission actuator is to preserve human operability. In the Spider, the
transmission shifter has been modified to a single-axis shift pattern so it can be
directly driven by a Maxon EPOS 70-4 rotary motor. This Maxon is equipped
with the same model optical encoder as the brake actuator for position feedback.

Commands are issued to each of these actuators through a Motorola HCS12
16-bit microcontroller over the CAN bus. The HCS12 acts as the interface be-
tween the Spider’s hardware and its computer payload, running 150 Hz pro-
portional, integral, derivative (PID) loops to convert computer-supplied steering
angle and speed commands into brake, throttle, and steering wheel commands
(Franklin, Powell, & Emami-Naeini, 2002). This configuration allows the hard-
ware interface to be completely transparent to the computers, so path planning
and hardware development can take place simultaneously.

The HCS12 also monitors vehicle health to keep the Spider running in several
contingency situations. It has a direct interface to the Spider’s engine control
unit, so it can detect engine stalls and restart the Spider if necessary. It also
monitors the generator’s output to restart it if it stalls. Finally, the HCS12
timestamps the commands received from the path planning computer. If these
commands are ever interrupted, the HCS12 centers the Spider’s wheel and brings
it to a stop while the path planner restarts.

12.4 Attitude and Position Estimation

Because the Grand Challenge route is specified as a set of absolute latitudes and
longitudes, it is necessary for each Grand Challenge vehicle to be able to local-
ize and orient itself with respect to the Earth. At first glance, both these tasks
can be accomplished using one or more off-the-shelf Global Positioning System
(GPS) receiver to measure vehicle position, velocity, and heading. Slow update
rates, errors in the navigation solution, and signal interruptions, however, make
it difficult for even the best differential GPS receivers to consistently localize a
vehicle to sub-meter accuracy required to avoid obstacles. Early obstacle detec-
tion is also difficult without accurate position and orientation, as an obstacle
detected at 20 m with ±5o heading uncertainty has at least ±2 m uncertainty
in location just due to heading uncertainty alone.

The above considerations make a more accurate system necessary for long-
horizon planning and robust path tracking. The system must be more than accu-
rate, however; it must also be smooth and consistent. A proven solution to such
requirements is the combination of GPS with a ‘strapdown’ inertial navigation
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system (INS), where absolute GPS measurements are fused with vehicle acceler-
ations and rotation rates measured at high frequency by an inertial measurement
unit (IMU) (Ohlmeyer et al., 1997). The strapdown INS is self-contained and
platform-independent, so it may be ‘strapped down’ at any location on any rigid
body to estimate its position and orientation. This flexibility is an important
benefit in the Spider’s design, where space is limited. It also facilitates easy
transfer between multiple test beds without the need for vehicle-specific dynam-
ics models.

Although several off-the-shelf positioning systems are available, team Cornell
opted to design its own for several reasons. First, off-the-shelf models are black
boxes, so system faults arising from these systems are difficult to pinpoint. Sec-
ond, high accuracy off-the-shelf models are expensive, whereas the team could
obtain each individual sensor from sponsors cheaply. Finally, building the po-
sitioning system in house allowed it to be specialized for autonomous ground
vehicle operation, thereby improving fault detection and recovery.

12.4.1 Sensors for Inertial Navigation

The Spider’s fused position and orientation estimates are provided by three
sensors: a Litton LN-200 inertial measurement unit (IMU), a Trimble Ag252
GPS receiver, and a vehicle speed sensor. Each of the three sensors affects the
capabilities of the positioning system differently, and fusing them together brings
the best qualities of each sensor to bear on the problem. The sensors are discussed
below in turn.

The first, the LN-200 IMU, is a set of three-axis rate sensors and three-axis
accelerometers. It provides measurements of vehicle accelerations and rates of ro-
tation relative to an inertial frame. These measurements permit dead reckoning:
numerical integration of accelerations and rates to obtain changes in position,
velocity, and orientation. The IMU’s 400 Hz-configured output makes it more
than twice as fast as any other sensor on the Spider, and its tactical grade fiber
optic rate sensors and silicon accelerometers have biases stable to within 10o/hr
and 3 mg, respectively (Northrop Grumman Navigation Systems Division, 2000).
These capabilities help the positioning system generate smooth outputs at high
rates.

The second sensor, a Trimble AgGPS 252 GPS receiver, provides absolute
position and velocity measurements so the vehicle may be localized on the surface
of the Earth. The Trimble boasts a number of important features, including dual
frequency carrier phase filtering and ionospheric corrections, OmniSTAR high
precision (HP) differential corrections, and multipath mitigation. These combine
for position accuracy within 10 cm and velocity accuracy within 5 cm/s when
tracking the OmniSTAR signal, and sub-meter accuracy without it (Trimble,
2004). Although the Trimble only provides measurements at 10 Hz, its absolute
measurements keep numerical integration errors bounded.

The final sensor, a speed sensor (SBS), is mounted directly to the Spider’s
transmission. The SBS primarily serves to augment the inertial sensors in the
absence of GPS signals, where it slows the growth rate of numerical integration
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Fig. 12.3. Errors between the Spider’s speed sensor (SBS) and the magnitude of GPS
velocity in ideal GPS signal conditions

errors. This sensor was pre-installed on the Spider, so its characteristics were
determined by experimentation. Figure 12.3 compares the most current SBS
speed to the magnitude of GPS velocity during a field test in the presence of
the OmniSTAR HP signal. Fortunately, the errors between the two signals are
statistically unbiased, with an experimental mean of −0.0465 m/s in the data set
of Figure 12.3. The standard deviation in the error signal, 0.1531 m/s, also gives
an indication of the quality of the SBS measurements for tuning the positioning
system.

12.4.2 Positioning System Equations of Motion

12.4.2.1 Attitude Dynamics

The attitude of a positioning system can be represented by one of several different
sets of variables: Euler angles, quaternions, or a direction cosine matrix (DCM).
The Cornell implementation uses a triad of ZY’X” Euler angles: yaw ψ, pitch φ,
and roll θ, to represent the orientation of the Spider with respect to an East North
Up (ENU) reference frame at the Spider’s current latitude and longitude. The
Euler angles are chosen over quaternions or a DCM for two reasons: they have
an intuitive physical interpretation for quick debugging, and they are a minimal
set of parameters. The latter point is important for Cornell’s estimators, which
cannot provide state estimates if the covariance matrix P is never invertible.
The dynamic relations for the Euler angles defined for this problem are given
below (Savage, 1998), (Triantafyllou & Hover, 2004):⎛
⎝ ψ̇

φ̇
θ̇

⎞
⎠ =

⎛
⎝ 0 sθ/cφ cθ/cφ

0 cθ −sθ
1 sθtφ cθtφ

⎞
⎠ ·

[
ωB

IMU − bB
rg − ηB

rg
− ωB

E − eB
R × vB

R

]
(12.1)

using the abbreviations s· = sin(·), c· = cos(·), and t· = tan(·), and letting su-
perscripts denote the coordinate frame in which a particular vector is expressed.
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In equation 12.1, ωB
IMU is the vector of IMU rates, bB

rg is the vector of rate sensor
biases, ηB

rg
is a zero mean, white noise process, ωB

E is the Earth’s angular veloc-
ity, eB

R is a unit vector from the center of the Earth toward the vehicle expressed
in body coordinates, vB is the vehicle’s velocity relative to the spinning Earth
expressed in body coordinates, and R is the vehicle’s distance from the center of
the Earth. Intuitively, the bracketed vector term is the angular velocity of the
vehicle relative to the ENU reference frame and expressed in the vehicle body
(B) frame. This quantity is obtained from the IMU rate sensors by correcting
for the rotation of the Earth and ENU frame, as well as bias and sensor noise.
Note equation 12.1 defines rate gyro errors in terms of additive biases brg and
white noise η

rg
. The additive biases are modeled as random walk processes:

ḃrg = nrg (12.2)

where nrg is a zero mean, white noise process. Other gyro errors, such as g-
sensitivity, scale factor, and misalignments, are not included in this model to
improve computational speed. Despite these exclusions, it is shown below that
the filter is still statistically significant, due in part to the quality of the fiber
optic gyros.

12.4.2.2 Position and Velocity Dynamics

Like attitude, the position and velocity dynamics of a positioning system
have several different representations, including latitude, longitude and altitude
(LLA), Earth-Centered Inertial (ECI) coordinates, Earth-Centered Earth-Fixed
(ECF) coordinates, and East North Up (ENU) coordinates. This implementation
tracks vehicle position and velocity in ECF coordinates relative to the rotating
Earth, primarily due to the simplicity of the dynamics equations. The position
and velocity dynamics for this coordinate frame can be derived from the vec-
tor equations of velocity and acceleration relative to a moving coordinate frame
(Moon, 1998), (Savage, 1998):

ṗECF = vECF (12.3)

v̇ECF = aECF
IMU −bECF

a −ηECF
a

+gECF −(ωECF
E × ωECF

E × ReECF
R

)−2
(
ωECF

E × vECF
)

(12.4)

where bECF
a is a vector of accelerometer biases, ηECF

a
is a vector of zero mean

white noise, gECF is the gravity vector, and the final two terms correct for
centripetal and coriolis accelerations, respectively. Note equation 12.4 specifies
an accelerometer error model consisting only of biases bECF

a and white noise
ηECF

a
. Like the rate gyro biases, the accelerometer biases are modeled as random

walk processes:
ḃa = na (12.5)
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Other error terms, such as scale factors and misalignments, are not modeled.
As with the rate gyros, it is shown below that statistical significance is still
maintained within the filter. Gravity is also defined using a simple ellipsoidal
model:

gECF = −9.8 ·
(

px py
a2
e

b2e
pz

)T

√
p2

x + p2
y + (a4

e/b4
e)p2

z

(12.6)

where ae and be are the lengths of the semimajor and semiminor axes of the
WGS-84 ellipsoid model of the Earth, and px, py, and pz are the three compo-
nents of the ECF position of the vehicle. It is shown below that the filter can
be made statistically significant despite the gravity model. A more complicated
spherical harmonic expansion was therefore not tried.

12.4.3 Fusing the Inertial Navigation Sensors

The three sensors discussed in section 12.4.1 are fused into an estimate of the
Spider’s position, velocity, and attitude using an extended Kalman Filter (EKF).
The filter operates in two steps: a prediction and an update (Bar-Shalom,
Rong Li, & Kirubarajan, 2001). In the prediction step, the estimates of atti-
tude, position, velocity, and bias are integrated across one IMU sample interval
(dt = 0.0025s) according to equations 12.1, 12.2, 12.3, 12.4, and 12.5 to make an
a priori prediction of the estimates at the next time step. Because equations 12.1
and 12.4 have no general closed-form solution, a fourth order Runge-Kutta nu-
merical integration is performed in place of an exact integration (Battin, 1999).
During each numerical integration, the IMU accelerations and rates of rotation
are assumed constant.

The filter also maintains an estimate of its estimation error covariance, P (k)
at each time index k. During the prediction step, the estimated error covari-
ance is advanced in time to form an a priori estimate P̄ (k + 1) of the state
error covariance. Because the attitude and velocity dynamics are nonlinear, a
linearization and discretization of the continuous dynamics is made at each time
step (Bar-Shalom et al., 2001):

P̄ (k + 1)≈F (k)P (k)FT (k) + Γ (k)Q(k)Γ T (k)

F (k)= I + dt · Jx(k) +
1
2
dt2 · J2

x(k) +
1
6
dt3 · J3

x(k)

Γ (k)=
(

dt · I +
1
2
dt2 · Jx(k) +

1
6
dt3 · J2

x(k) +
1
24

dt4 · J3
x(k)

)
Jv(k) (12.7)

where Jx(k) and Jv(k) are the Jacobians of equations 12.1, 12.2, 12.3, 12.4, and
12.5 with respect to the state and noise inputs, respectively, evaluated at their
current estimates, and Q(k) is a matrix of white noise intensities assigned to the
noise inputs during filter tuning.

In the update step, the predicted state x̄(k + 1) and its covariance P̄ (k + 1)
are combined with sensor measurements z(k+1) of certain elements of the state
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in a linear minimum mean square estimator to form a posteriori state estimates
x̂(k + 1) and their updated error covariance P (k + 1) (Bar-Shalom et al., 2001):

z(k + 1) = H(k + 1)x(k + 1) + w(k + 1)
S(k + 1) = H(k + 1)P̄ (k + 1)HT (k + 1) + R(k + 1)

W (k + 1) = P̄ (k + 1)HT (k + 1)S−1(k + 1)
x̂(k + 1) = x̄(k + 1) + W (k + 1)ν(k + 1)
P (k + 1) = P̄ (k + 1) − W (k + 1)S(k + 1)WT (k + 1) (12.8)

where w(k+1) is a vector of zero mean white measurement noise with covariance
intensity R(k), set during filter tuning, and ν(k+1) = z(k+1)−H(k+1)x̄(k+1)
is called the ‘innovation.’

The measurements z used in the update step are extracted from the three sen-
sors that make up the positioning system. Position, velocity, and yaw (heading)
are reported directly by the GPS receiver. Speed is reported by the SBS sensor,
and a full ECF vector velocity measurement is created from it using vehicle atti-
tude as an exogenous input. Pitch and roll measurements can also be extracted
if the vehicle is at rest by using the accelerometers to measure the direction
of the gravity vector in the body frame eB

g and comparing it to a theoretical
downward-pointing eB

g :

eB
g =

⎛
⎝ sφ

−sθcφ
−cθcφ

⎞
⎠ ≈ aB

IMU (12.9)

from which pitch φ and roll θ can be extracted, assuming −π
2 < φ < π

2 . If
the vehicle is moving, a similar calculation can be done using equation 12.4 to
solve for gECF , with v̇ECF approximated by a finite difference of GPS velocity.
The moving calculation is noisier, however, as it depends on existing attitude
estimates to transform gECF into gB.

While many EKF implementations use a single filter to estimate attitude,
position, and velocity together, Cornell uses a pair of filters to estimate attitude
and position / velocity separately. That is, one filter fuses equations 12.1 and
12.2 with measurements of yaw, pitch, and roll to estimate attitude states, and
a second filter fuses equations 12.3, 12.4, and 12.5 with position and velocity
measurements to estimate position and velocity states. To do so, the attitude
estimator treats position and velocity as exogenous noisy inputs, and the position
/ velocity filter treats attitude as an exogenous noisy input. The motivation
for this structure is computational: decoupling the states cuts the sizes of the
matrices in equations 12.7 and 12.8 almost by a factor of four, enabling 400
Hz predictions on the 3.4 GHz Pentium IV attitude computer equipped with
Windows Server 2003 that match the IMU rates.

The EKFs in Cornell’s implementation are both Square Root Information
Filters (SRIFs), a numerically robust implementation of the Kalman Filter al-
gorithm (Bierman, 1977). The SRIF has two main advantages over standard KF
implementations. First, matrix computations in the SRIF are performed using
square root versions of the KF matrices, so numerical precision is effectively



12 Cornell University’s 2005 DARPA Grand Challenge Entry 373

double that of the standard Kalman Filter. Second, computations are performed
using the inverse of the covariance matrix, which allows a numerically-correct
representation of infinite covariance during filter initialization. Bierman (1977)
describes the SRIF in detail.

12.4.4 Filter Tuning and Verification

Although the main goal of the filters is to estimate the Spider’s attitude, position,
and velocity, a second goal of equal importance is to evaluate the accuracy of
those estimates. That accuracy, stored in the state error covariance matrix P (k),
is essential for calculating correct filter updates (Bar-Shalom et al., 2001). In
addition, accurate estimates of error statistics are necessary for identifying and
localizing terrain in a probabilistically rigorous manner, which serves as the
foundation of the Spider’s terrain estimation algorithm.

One traditional method for evaluating the estimators’ validity and statistical
significance is to perform consistency tests (Bar-Shalom et al., 2001). These are
statistical hypothesis tests of the assumptions made by the filters: whether the
linearizations are valid, the dynamics and sensor error models are correct, and
the reported covariance accurately describes the error statistics of the estimators.
If these filter assumptions are correct, one consequence is that the innovations
ν(k) will be zero mean and white, with covariance S(k) given in equation 12.8. A
consistency test statistic for these hypotheses is based on the observed sequence
of innovations:

ε̄ν =
1
N

ko+N−1∑
k=ko

ν(k)T S−1(k)ν(k) (12.10)

If the filter assumptions are valid, the test statistic follows a Chi-Square
distribution:

ε̄ν ∼ χ2
N ·nz (12.11)

where nz is the length of the measurement vector z(k) (Bar-Shalom et al., 2001).
The statistical significance, correctness, and consistency of the Cornell fil-

ters are tested using observed innovation vectors taken during a test run in a
parking lot. The values of the test statistics for the attitude filter are plotted
in Figure 12.4 (left) and (right) for N = 1 and N = 100. Experimentally, ap-
proximately 84.7% of the test statistic values lie in the 95% interval for N = 1,
suggesting that the attitude filter makes accurate assumptions and reports sta-
tistically significant estimates and covariances for the majority of the test run.
The filter shows limitations for the more stringent N = 100 test, however, where
only 21.4% of the values lie in the 95% interval. The attitude filter is therefore
overconfident on average, but consistent for each individual measurement. Time
constraints in the Grand Challenge prevented further experimentation to reduce
the filter’s overconfidence, though the time-correlations of the test statistic in
Figure 12.4 (right) suggest the white noise assumption in GPS-derived attitude
measurements might be to blame.

The values of the test statistic for the position / velocity filter are plotted in
Figure 12.5 (left) and (right) for N = 1 and N = 100. The results are similar to
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Fig. 12.4. (Left) Consistency test statistic ε̄ν and 95% confidence bounds for a cal-
ibration run of the attitude estimator, with N = 1. (Right) ε̄ν and 95% confidence
bounds during the same trial with N = 100.
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Fig. 12.5. (Left) Consistency test statistic ε̄ν and 95% confidence bounds for a cal-
ibration run of the position / velocity estimator, with N = 1. (Right) ε̄ν and 95%
confidence bounds during the same trial with N = 100.
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those of the attitude estimator. With the N = 1 single measurement test, 78.4%
of the test statistic values lie in the 95% interval. In the N = 100 averaged
measurement test, only 21.6% of the test statistic values lie in the 95% interval.
The results show the position / velocity filter to report valid covariance matrices
in most iterations, though it is overconfident on average.

The statistical consistency test described above is also used to tune the Cornell
filters. That is, the process and measurement noise covariance matrices Q(k) and
R(k) from equations 12.7 and 12.8 are tuned using test runs until the filter is
as consistent as possible. The fact that the Cornell filters can be tuned to be
consistent means simultaneously that the modeling approximations are valid, the
filters are tuned properly, and they report accurate covariance matrices P (k).
Once tuned correctly, the covariance matrices in the Cornell filters typically
report RMS errors of 0.02m in each axis in position, 0.05m/s in each axis in
velocity, and 0.2o in heading in the presence of the OmniSTAR signal, making
them competitive with many off-the-shelf positioning systems available.

12.4.5 Special Filtering Considerations

Despite filter correctness and consistency, Cornell encountered two field events
requiring special consideration: loss and reacquisition of the GPS signal. In prin-
ciple, filtering theory has no difficulty handling these situations, as the IMU and
speed sensor are used for repeated prediction steps until the GPS signal is reac-
quired. From a practical point of view, however, these events generate difficulties.
In particular, numerical integration errors in the absence of a GPS signal grow in
time without bound (Sukkarieh, Nebot, & Durrant-Whyte, 1999). With no prior
information about the course and no absolute measurements during GPS black-
outs, Cornell relies on the quality of the inertial sensors to keep estimation errors
small. Figure 12.6 shows the errors accumulated by dead reckoning with the IMU
and speed sensor during an artificially-created GPS blackout. Position errors
reach only 4.8 m after a 60 s blackout, and the rate of growth is approximately

Fig. 12.6. Position errors from dead reckoning with Cornell’s IMU and wheel speed
sensor during an artificially-created GPS blackout starting at t = 140 s
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constant. With the open desert environment, an average corridor width of more
than 6.5 m, and average speeds nearing 9 m/s, this level of blackout tolerance is
sufficient for blackout situations likely to be encountered in the Grand Challenge.

While GPS signal blackouts cause errors that grow over time, a more acute
event occurs when the GPS signal is reacquired. The problem lies in the fact
that the filter update step of equation 12.8 produces discontinuous jumps in
state estimates, particularly position. Although these discontinuities are consis-
tent with Kalman Filtering theory, they cause the vehicle to turn sharply if fed
back in a path tracking controller. To limit the size of these discontinuities, a
‘rate limiting’ modification is performed in the position filter update step. The
strategy works as follows:

1. Calculate the position and velocity discontinuities during a position filter
update:

ΔpECF (k) = p̂ECF (k) − p̄ECF (k)
ΔvECF (k) = v̂ECF (k) − v̄ECF (k) (12.12)

Also calculate the magnitude dp of the position discontinuity.
2. If dp is larger than some tolerable position jump dmax, calculate the discount

factor co = dmax
dp

.
3. Calculate the rate limited measurement update to limit the position discon-

tinuity: (
p̂ECF (k)
v̂ECF (k)

)
=
(

p̄ECF (k) + co · ΔpECF (k)
v̄ECF (k) + co · ΔvECF (k)

)
(12.13)

4. Calculate the rate limited filter covariance:

P (k) = [I − co · W (k)H(k)] P̄ (k) [I − co · W (k)H(k)]T +c2
o·W (k)R(k)W (k)T

(12.14)
This rate limited covariance update must be used instead of equation 12.8
when position and velocity are rate limited if the filter is to be kept accurate
and consistent (Bar-Shalom et al., 2001).

This rate limiting strategy modifies the filter gain W (k) to ensure smooth
reacquisition of GPS signals. It also allows the filter to be tuned to the vehicle
controller, as the rate limiting threshold dmax may be set to ensure the maximum
distance discontinuity per second does not exceed typical vehicle speeds. Figure
12.7 shows the effects of rate limiting on reacquisition after an artificially-created
GPS blackout. Without the rate limiting, the position estimate undergoes an in-
stantaneous jump of more than 5m for this example. In the field, a discontinuous
jump of that magnitude would cause the vehicle to swerve and possibly roll. The
rate limited position estimate, in contrast, smoothly converges toward the accu-
rate GPS signal. The uncertainty in the estimate also decreases slowly.

Although effective at solving the GPS reacquisition problem, the rate limit-
ing strategy has several drawbacks. First, the rate limited updates are not true
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Fig. 12.7. (Left): Without rate limiting, the position estimate makes a discontinuous
jump of more than 5 m during one GPS signal reacquisition. (Right): Rate limiting
causes the position estimate and its uncertainty to converge smoothly.
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minimum mean squared error (MMSE) estimates, even for estimation on a lin-
ear system. Second, the more computationally expensive equation 12.14 must
be used to update filter covariance during rate limiting, as the update of equa-
tion 12.8 is not valid for arbitrary filter gains (Bar-Shalom et al., 2001). Finally,
rate limiting has the potential to smear any absolutely-mapped objects. How-
ever, because equation 12.14 maintains accurate filter covariance matrices, the
uncertainty in these objects decreases slowly as they converge to more accurate
estimates. Without rate limiting, any absolutely-mapped objects make large dis-
continuous jumps on reacquisition of a GPS signal. Such discontinuities violate
the slowly-changing world assumption required by Cornell’s path planner, re-
sulting in indecision and crashes during testing.

12.5 Terrain Sensing and Mapping

The 2005 DARPA Grand Challenge places great emphasis on the vehicles’ ability
to detect unsafe regions and unplanned obstacles inside the route boundaries. To
distinguish between safe and unsafe regions of the route, each vehicle must be
equipped with terrain sensors or obstacle detectors and an algorithm to localize
the vehicle with respect to the sensed objects. Historically there have been a
wide variety of approaches to this mapping problem, including maps of discrete
obstacles or landmarks, grid-based approaches, statistical and stochastic models,
and even polygonal object representations (Thrun, 2002).

Cornell’s terrain representation is grid-based, similar to the representation
in Olin and Tseng (1991). That is, terrain is divided into 40cm × 40cm grid
cells in a local ENU plane, with the data in each cell describing that cell’s
elevation. However, unlike Olin and Tseng (1991), Cornell uses a novel statistical
terrain estimation algorithm to generate minimum mean squared error (MMSE)
terrain estimates within each grid cell. This approach generates not only terrain
estimates in real-time, but also their uncertainties, enabling paths to be selected
based on statistical statements of traversability.

12.5.1 Terrain Sensors

Sensed terrain data for the terrain estimator is provided by three SICK LMS
291 laser rangefinders (LIDARs). Each of these LIDAR units scans along a single
line and is configured to return 181 ranges spaced at half-degree increments over
a 90o field of view, all at 75 Hz (SICK, 2003). Each LIDAR returns data via 500
kbps serial connection to the terrain computer, an AMD 2 GHz quad Opteron
846 server running Windows Server 2003, where the data is fused into terrain
estimates. Figure 12.8 shows the three LIDAR units, each mounted to the hood
of the Spider. The outer two LIDARs are mounted rigidly using a turnbuckle
and rod ends to allow their pitch to be set without inducing yaw or roll. Both
LIDARs face in the direction of vehicle travel; one is pitched at approximately
4o to scan 15 m in front of the vehicle, and the other is pitched at approximately
6o to scan the ground at 20 m. The central LIDAR sits on a two-axis gimbaled
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Fig. 12.8. The Spider’s sensor platform and two-axis gimbal

platform. The platform is actuated in the yaw and pitch axes with two MAXON
EPOS 70-4 rotary motors and separate Harmonic Drive gear trains, allowing the
gimbaled LIDAR to be aimed by the path planner.

Cornell’s sensor orientation is driven by two factors: budget constraints and
terrain representation. Budget constraints limited the team to three LIDAR
units, so each unit is positioned to sense terrain without risking damage upon
collision. For this reason, the LIDARs are all mounted on the hood of the vehi-
cle rather than near the ground. The LIDARs are aimed downward to provide
the most useful information for the terrain estimation algorithm, which fuses
data from all three LIDARs into a single persistent map. Because the LIDARs
reinforce each other in their measurements of the terrain in front of the vehicle,
the system is less sensitive to false obstacles than one in which each LIDAR is
positioned to sense only one type of obstacle, such as an obstacle in the path of
one of the vehicle’s wheels.

12.5.2 Terrain Estimation Algorithm

The goal of the terrain estimation algorithm is to produce an elevation esti-
mate within each grid cell, optimal in the sense of minimum mean-squared error
(MMSE). Three steps are performed to generate these terrain estimates. First,
a statistical representation of each sensor measurement is formed to account for
multiple sources of error in a probabilistically rigorous manner. Second, each
measurement is probabilistically assigned or ‘associated’ to one or more terrain
cells in which it is likely to belong. Finally, the measurements assigned to each
cell are fused in real-time into a single MMSE estimate of the elevation within
each cell. These three steps are discussed in turn below.
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12.5.2.1 Statistical Treatment of Sensor Measurements

The first step in the terrain estimation algorithm is to form a statistical rep-
resentation of each LIDAR measurement to account for different errors in the
sensing path. These errors include those due to the LIDAR itself, errors due to
sensor orientation, errors due to the attitude estimator, and errors due to the
position / velocity estimator (Huising & Pereira, 1998). The first of these error
types are due to the LIDAR itself, and include range errors and errors due to
expansion of the LIDAR beam. Range errors add directly to the ranges reported
by the LIDAR, and have typical accuracy of ±5 cm out to a range of 80 m when
the LIDAR is configured in centimeter mode (SICK, 2003). Beam expansion er-
rors, in contrast, are errors in detection angle due to the fact that LIDAR ranges
are generated from reflections of a beam of light that expands as it travels from
the LIDAR. Beam expansion accounts for approximately ±0.24o detection angle
error for each LIDAR measurement (SICK, 2003).

The second source of sensing error is uncertainty in the sensors’ orientations.
For fixed sensors, this type of uncertainty can be eliminated by offline calibration
routines against objects of known location. However, for the gimbaled LIDAR,
orientation errors arise due to inaccuracies in the angle encoders on the MAXON
motors actuating the gimbal. These errors affect the localization of measurements
in the vehicle body frame.

The third and fourth sources of sensing error are uncertainty due to the atti-
tude and position estimators. While these errors do not affect the sensor readings
themselves, they introduce error in locating measurements on an absolute map.
The statistical properties of these errors are captured by the attitude and posi-
tion estimates x̂(k) and their covariances P (k) from equation 12.8.

In order to understand in a statistical sense how these four types of error affect
each LIDAR measurement, it is first necessary to define the transformation in
which they play a part. For this task, each valid sensor measurement is combined
with the sensor’s orientation, the vehicle’s orientation, and the vehicle’s location
to express the measurement in the fixed ENU coordinates of the terrain map:

rENU = (EENU NENU UENU )T = f
(
p, r
)

(12.15)

with:

p = ( LT
i , xT

a , xT
p )T

r = ( ρ, θD )T (12.16)

where Li is a vector of parameters describing the location and orientation of the
ith LIDAR with respect to the vehicle body frame, xa is the vehicle’s attitude at
the time of measurement, xp is the vehicle’s position at the time of measurement,
ρ is a range returned by the LIDAR, and θD is the scalar angle of the measurement
within the LIDAR’s scanning plane. Intuitively, these parameters are divided into
the vector p of LIDAR orientation parameters, and a measurement r. Note in gen-
eral the transformation function f (·) of equation 12.15 is a nonlinear function of
these parameters. For the Cornell implementation, it is constructed from a set of
4 × 4 matrix transformations, with each matrix a function of one parameter as
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in Murray, Li, and Sastry (1994) and Moon (1998). A sample sequence of these
transformations is as follows:

1. Rotate the coordinate frame about its Z axis by −θD to express the mea-
surement ( ρ 0 0 1 )T in LIDAR-centered coordinates, where ρ is a range
reported by the LIDAR and θD is its detection angle.

2. Rotate the coordinate frame by −Sθ about its X axis, where Sθ is the LI-
DAR’s roll angle with respect to the Spider.

3. Rotate the coordinate frame by −Sφ about its Y axis, where Sφ is the LI-
DAR’s pitch angle with respect to the Spider.

4. Rotate the coordinate frame by −Sψ about its Z axis, where Sψ is the LI-
DAR’s yaw angle with respect to the Spider.

5. Translate the origin of the coordinate frame by (−Sx −Sy −Sz )T , where
Sx, Sy, and Sz represent the location of the LIDAR with respect to the
vehicle body origin, centered at the IMU.

6. Rotate the coordinate frame by −θ about its X axis, where θ is the vehicle’s
roll angle.

7. Rotate the coordinate frame by −φ about its Y axis, where φ is the vehicle’s
pitch angle.

8. Rotate the coordinate frame by −ψ about its Z axis, where ψ is the vehicle’s
yaw angle.

9. Translate the origin of the coordinate frame by (−Ox −Oy −Oz )T , where
Ox, Oy , and Oz represent the location of the vehicle with respect to the fixed
ENU origin.

To augment each LIDAR measurement with an expression of its uncertainty,
each of the parameters is modeled as corrupted by an additive measurement
noise:

p = p̂ + δp
r = r̂ + δr (12.17)

where p̂ and r̂ are the measured values of p and r, and δp and δr are measurement
noise, assumed to be zero mean, Gaussian, and mutually uncorrelated. Using this
representation, the terrain measurement rENU can be written:

rENU = f
(
p̂ + δp, r̂ + δr

)
(12.18)

A typical linearization can then be made to characterize the true measurement
and the statistics of its uncertainty (Bar-Shalom et al., 2001):

rENU ≈ f
(
p̂, r̂
)

+ Jp

(
p̂, r̂
)
δp + Jr

(
p̂, r̂
)
δr (12.19)

where Jp(·) and Jr(·) are the Jacobians of the transformation f (·) with respect
to the orientation parameters and measurement, respectively:

Jp

(
p̂, r̂
)

=
∂f

∂p

∣∣∣∣
p=p̂,r=r̂

Jr

(
p̂, r̂
)

=
∂f

∂r

∣∣∣∣
p=p̂,r=r̂

(12.20)
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Taking the expectation of equation 12.19 gives an approximate MMSE estimate
of the terrain detection, accounting for all modeled sources of error in the sensing
path (Bar-Shalom et al., 2001):

r̂ENU = ( ÊENU N̂ENU ÛENU )T = f
(
p̂, r̂
)

(12.21)

and the estimate has the associated mean squared error matrix:

PENU = JpQpJ
T
p + JrQrJ

T
r (12.22)

where Qp and Qr are the covariance matrices of the orientation parameters’
noise δp and the measurement’s noise δr, respectively. Note PENU is effectively
an ENU covariance matrix for the LIDAR measurement estimate, taking into
account the modeled sources of error in the sensing path.

12.5.2.2 Measurement Association

The second step in the terrain estimation algorithm is to assign each estimated
terrain measurement r̂ENU to one or more grid cells from which it is likely to
have originated. To accomplish this, the probability that each measurement be-
longs to each cell must be computed. Because each measurement’s mean r̂ENU

and covariance matrix PENU are available from equations 12.21 and 12.22, the
joint ENU probability density Pr̂(E, N, U) of the measurement can be approxi-
mated as a multivariate Gaussian with vector mean r̂ENU and covariance PENU .
The probability that the measurement belongs in a particular cell can then be
evaluated by marginalizing the density with respect to U and integrating the
resulting EN density P r̂(E, N) over the area of the cell. This integral can be
approximated as the area of a single Riemann square:

p
(
r̂ENU ∈ CELL

)
≈ (Ef − Eo) · (Nf − No) · Pr̂

(
1
2
(Ef + Eo),

1
2
(Nf + No)

)
(12.23)

for the cell defined by Eo ≤ E ≤ Ef and No ≤ N ≤ Nf . This gives the
desired association probability pi that the ith LIDAR measurement estimate
r̂ENU

i belongs in a particular cell.

12.5.2.3 In-Cell Terrain Measurement Fusion

The final step in the terrain estimation algorithm is to fuse all measurements
assigned to a particular cell into an estimate of the elevation distribution within
that cell. First, each ENU measurement r̂ENU

i = ( ÊENU
i N̂ENU

i ÛENU
i )T

assigned to a cell is transformed into a posterior estimate of the cell’s elevation
Ûi by conditioning the measurement on the EN location of the cell (Bar-Shalom
et al., 2001):

Ûi = ÛENU
i +

(
PEN,U

i

)T (
PEN

i

)−1
[
1
2

(
Ef + Eo

Nf + No

)
−
(

ÊENU
i

N̂ENU
i

)]
(12.24)
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with associated conditional variance:

σ2
Û ,i

= PU
i −

(
PEN,U

i

)T (
PEN

i

)−1
PEN,U

i (12.25)

where the ith measurement’s covariance matrix PENU
i has been divided up into

a 2×2 block PEN
i , a 1×1 block PU

i , a 2×1 block
(
PEN,U

i

)T

, and a 1×2 block

PEN,U
i :

PENU
i =

(
PEN

i

(
PEN,U

i

)T

PEN,U
i PU

i

)
(12.26)

With this, the task of fusing terrain measurements has been reduced to deter-
mining the univariate distribution of elevations within each cell. In this problem,
each measurement Ûi is effectively a terrain detection: an estimate of a piece of
the terrain within a cell. From here it is convenient to assume that each of these
measurement estimates corresponds to a different patch of terrain within the
cell, so that no two measurements occur at precisely the same location. This
assumption is justified by the fact that the terrain is continuous, the location of
the terrain sensed by each measurement is uncertain, and the sensing platform is
moving. Additionally, each terrain measurement is assumed equally likely; that
is, there is no a priori terrain information. Finally, each cell is assumed to have
one correct or ‘dominant’ elevation to be estimated, and that elevation is repre-
sented within the set of terrain measurements assigned to the cell. Under these
assumptions, the posterior elevation distribution within the cell is a Gaussian
sum or ‘Gaussian mixture’ constructed from the elevation estimates (Bar-Shalom
et al., 2001), (Bishop, 1995):

P(U |R̂ENU
) =

∑M
i=1 piN

(
Ûi, σ

2
Û ,i

)
∑M

i=1 pi

(12.27)

where R̂
ENU

is the set of all LIDAR measurements made so far, Ûi from equation
12.24 is the ith elevation measurement estimate assigned to the cell, σ2

Û ,i
from

equation 12.25 is its associated conditional variance, pi is the probability that the
measurement belongs in the cell, and M is the number of measurement estimates
assigned to the cell.

The distribution in equation 12.27 is the desired data-driven elevation distri-
bution in the cell that takes into account all sources of uncertainty within the
sensing path. However, the model is in general not computationally feasible, be-
cause the Gaussian mixture stored in each cell grows with the number of sensor
measurements assigned to that cell. For real-time terrain estimates, an approxi-
mate model using a small set of information about each cell is desired: a set of
data descriptive enough to be useful but small enough to be computationally fea-
sible. It is proposed that the mean and variance of the elevation distribution are
used. The expected value of the Gaussian mixture elevation distribution yields
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an approximate MMSE estimate of the characteristic or ‘dominant’ elevation of
the jth cell:

ÛGM,j =
∑M

i=1 piÛi∑M
i=1 pi

≈ E
[
Uj |R̂ENU

]
(12.28)

by the linearity of the expectation operator. Note this expectation is conditioned
upon all the information available, as the elevation distribution itself is condi-
tioned upon those measurements. Similarly, the second central moment of the
Gaussian mixture gives the conditional mean square error of the estimate within
the jth cell:

σ2
GM,j =

∑M
i=1 pi(Û2

i + σ2
Û ,i

)∑M
i=1 pi

− Û2
GM,j (12.29)

Equations 12.28 and 12.29 give the first two moments of the Gaussian mixture
elevation distribution of the jth cell. Physically, equation 12.28 gives an esti-
mate of the average or characteristic elevation of the cell with respect to the
ENU reference origin derived from the available measurements. Mathematically,
equation 12.28 is an approximate MMSE estimate of the elevation of the jth

cell when taken with the assumptions discussed above. Equation 12.29, in con-
trast, may be interpreted as a measure of the roughness or spread of elevations
within the cell, though it also stores information about the confidence of the
mean elevation estimate. Equation 12.29 gives the second central moment of the
measured elevations, effectively condensing the cell’s elevation distribution into
a Gaussian distribution with first and second moments matching those of the
mixture model. The estimates of cell mean and variance can be used to make
statistical statements about the elevations in the cell, taking into account all the
noise present in the sensing path.

12.5.3 Terrain Estimator Performance

Cornell’s terrain estimation algorithm has several unique advantages over tra-
ditional mapping strategies. First, the variance estimate within each cell gives
information about the spread of elevations in that cell, allowing confidence in-
tervals to be created over elevations in that cell. These confidence intervals hold
more information than the standard binary obstacle representation of Martin and
Moravec (1996), for example, without requiring the additional post-processing
and interpolation of elevation-based terrain representations presented, for exam-
ple, in Lohmann, Koch, and Schaeffer (2000) and Arakawa and Krotkov (1992).

A second advantage of this terrain model is that it can be generated and main-
tained in real-time. Recall from Section 12.5.2.2 that each measurement estimate
is assigned to each cell according to the probability that the measurement lies
in that cell. For finite numerical precision, however, only cells near the nominal
measurement location derived from r̂ENU

i will be affected by that measurement
estimate. As a result, each measurement estimate need only be applied to cells
in a small neighborhood of the nominal measurement. This places limits on the
number of cells to which each measurement can be applied, so the computational
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complexity is reduced to O(k · N) for N LIDAR measurements, each applied to
a maximum of k terrain cells. Furthermore, if only the first two moments of
the elevation distribution are retained, then each measurement can easily be
fused with previous measurements. In fact, only the following four quantities are
required for each cell:∑M

i=1 pi,
∑M

i=1 piÛi,
∑M

i=1 piÛ
2
i ,

∑M
i=1 piσ

2
Û ,i

where each of these quantities is itself a scalar. Also, because fusing a new mea-
surement with the measurement history only requires knowledge of these four
variables, the computational complexity and memory requirements of maintain-
ing each cell are O(1). That is, once sensor measurements have been used to
update the terrain model, the original measurements can be discarded. The en-
tire terrain map can therefore be maintained without storing a measurement
history.

Fig. 12.9. Sample ÛGM +2σGM elevation map (in meters) resulting from the Spider’s
terrain estimation scheme. Warmer colors represent higher elevations.

Figure 12.9 shows a sample terrain map generated from LIDAR measurements
as the Spider approaches several objects. In this example, the ÛGM + 2σGM

elevations from equations 12.28 and 12.29 (in meters) are plotted relative to an
arbitrary ENU origin selected near the test site. These elevations are plotted
across a color spectrum, and the axes in Figure 12.9 are to scale. The ÛGM

elevations for the cells near the 0.8 m tall trash cans are approximately 0.45 m
higher than surrounding cells, and the ÛGM elevations for the cells near the 0.46
m traffic cones are approximately 0.25 meters. These low elevation estimates
reflect the fact that the cells containing these objects also contain some exposed
portions of the ground plane. The uncertainties, however, are appropriately large
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Fig. 12.10. (Left) Final ÛGM map near the two 0.8 m tall trash cans. (Right) Final
σGM map near the two 0.8 m tall trash cans.

for these cells: σGM ≈ 0.35 m for the cells near the trash cans and σGM ≈ 0.17
m for the cells near the traffic cones. Figure 12.10 shows the estimated elevation
ÛGM and estimation uncertainty σGM near the trash cans in greater detail.
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Fig. 12.11. (Left) Total association probability and ÛGM ± 2σGM bounds over time
for a particular terrain cell containing a portion of a trash can. (Right) Vehicle ground
track during real-time terrain experiment. The vehicle intersects the line connecting
the trash cans at t ≈ 2358, 2374, and 2395 seconds.

Figure 12.11 (left), in contrast, shows the evolution of the terrain estimate
for one cell near one of the trash cans. Figure 12.11 (right) shows that during
this test, the Spider passes near the trash cans three times: once with the trash
cans in the periphery of the sensors’ footprints at t ≈ 2358 seconds, and twice
directly between the two trash cans at t ≈ 2374 and 2395 seconds. Figure 12.11
(left, top) shows the total association probability sum

∑
pi accumulated for the

cell over time. Figure 12.11 (left, bottom) shows the terrain elevation estimate
ÛGM and the ±2σGM bounds for the same cell. Note that the elevation estimate
for the terrain is relative to an arbitrary ENU origin, not the ground plane, as
the location of the ground plane is unknown at the outset of the experiment.
Figure 12.12 shows vehicle speed and heading during the test.

The elevation estimate in the particular cell shown in Figure 12.11 (left, bot-
tom) fluctuates over time as more measurements are applied to it: some measure-
ments, from the near-vertical face of the trash can, tend to increase the elevation
estimate upward. Others, from the surrounding flat ground, tend to decrease the
elevation estimate. These different measurements also affect the cell’s variance: it
is much higher than in surrounding cells, indicating rough terrain or obstacles,
and it increases throughout the experiment. Finally, notice that the elevation
estimate changes most on the Spider’s first pass by the trash can, and that
subsequent passes do not cause a substantial increase in total association proba-
bility of measurements assigned to that cell. The algorithm is therefore capable
of producing accurate estimates in real-time, at reasonable speeds, and without
revisiting old terrain.
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Fig. 12.12. (Left) Vehicle speed during real-time terrain experiment. (Right) Vehicle
heading during real-time terrain experiment.
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Additional information can be found in the accompanying video files, which
show the ÛGM + 2σGM elevation map generated as the terrain estimation algo-
rithm fuses LIDAR data in real-time. The elevations in these video files are in
meters, and the colors have the same scale as in Figure 12.9. Notice that the
algorithm produces relatively smooth and dense terrain estimates; this occurs
because individual sensor measurements are applied in more than one cell as per
equation 12.27. This smoothed and correlated terrain model arises naturally from
the estimation algorithm and the continuous posterior distribution of the errors
in the sensors. It contrasts sharply with other terrain estimation algorithms that
make use of multiple passes or recursion on the terrain estimate to smooth it out,
such as those of Olin and Tseng (1991), Arakawa and Krotkov (1992), Hähnel,
Burgard, and Thrun (2004), and Weingarten and Siegwart (2005).

12.6 Gimbal Aiming and Control

As discussed in section 12.5.1 and depicted in Figure 12.8, one of the Spider’s
terrain sensors is a two-axis actuated gimbal platform supporting a LIDAR unit.
This gimbaled LIDAR is the Spider’s most valuable terrain sensor, as it can
scan in any direction. When combined in a feedback loop with the Spider’s path
planner, the gimbaled LIDAR is used to gather data along potential paths as
they are generated. In order to point the LIDAR in a desired direction, however,
a kinematic relationship must be derived between the actuated gimbal axes and
the LIDAR’s Earth-referenced orientation. This kinematic relationship can then
be used for active gimbal control while simultaneously canceling motion of the
vehicle.

To derive this kinematic relationship between gimbal yaw, pitch, and LIDAR
orientation, it is first necessary to define a gimbal reference frame. This frame
is defined by letting the X-axis of the gimbal frame point in the direction of the
LIDAR’s central measurement, letting the Y-axis be the gimbal pitch axis, and
letting the Z-axis complete the right-handed coordinate system. In general, the
vehicle body frame axes (B) may be rotated to the gimbal frame axes (G) by
applying the following transformations:

1. Rotate by ψg, the gimbal yaw, about the Z-axis of the body frame.
2. Rotate by φg, the gimbal pitch, about the new Y-axis.

Next, define the LIDAR pointing direction eG
l as the unit vector pointing

along the X-axis of the gimbal coordinate system. Using the definitions of the
gimbal coordinates (G) and the vehicle body coordinates (B), this unit vector el

has the following representation in vehicle body coordinates:

eB
l =

⎛
⎝ cos(ψg)cos(φg)

sin(ψg)cos(φg)
−sin(φg)

⎞
⎠ (12.30)

This unit vector eB
l can then be compared to a unit vector ed that represents the

desired LIDAR pointing direction. The vector ed may in general be constructed
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in ENU coordinates as a unit vector that points from the vehicle to some target
of interest. When this vector is then expressed in vehicle body coordinates (B),
define it to have the components eB

d = ( eB
x eB

y eB
z )T . In order to point the

gimbaled LIDAR in the desired direction ed, choose ψg and φg such that eB
l = eB

d :⎛
⎝ cos(ψg)cos(φg)

sin(ψg)cos(φg)
−sin(φg)

⎞
⎠ =

⎛
⎝ eB

x

eB
y

eB
z

⎞
⎠ (12.31)

With the constraint −π
2 < φg < π

2 , equation 12.31 has a unique solution:

ψg = tan−1

(
eB

y

eB
x

)

φg = sin−1(−eB
z ) (12.32)

Setting ψg and φg according to equation 12.32 aims the center of the gimbaled
LIDAR in the desired direction ed. Because this solution accounts for the Spider’s
position and orientation, it also cancels the effects of vehicle motion.

In addition to canceling the motion of the Spider, this approach is also used by
the Spider’s path planner to gather terrain data about the path the Spider plans
to traverse. The algorithm first walks forward from the Spider along the current
planned path to some desired range Rd to select a point ( EC NC UC )T of
interest. Because the algorithm may not know the elevation UC at ( EC NC )T ,
the Spider’s current elevation is used. The desired pointing direction ed is then
computed by normalizing the vector from the LIDAR to this point of interest,
and the gimbal control angles are then calculated using equation 12.32. A feed-
back loop is applied to the point of interest in subsequent iterations to ensure
that the central measurements returned by the gimbaled LIDAR are near Rd:

UC(k + 1) = UC(k) + K1(Rd − R) − K2N (12.33)

where UC(k + 1) is the elevation of the point of interest at the next iteration,
UC(k) is the elevation at the current iteration, R is the range measured at the
center of the gimbaled LIDAR, N is the number of ‘infinite’ ranges reported
by the LIDAR, and K1 and K2 are control gains. The K1 term ensures data is
gathered at the desired range Rd by adjusting the commanded elevation until
it matches the terrain elevation at the desired range. The K2 term is added to
prevent the gimbaled LIDAR from aiming above the horizon, where it returns
no terrain measurements. The form of the control law in equation 12.33 allows
the gimbaled LIDAR to track the top of the terrain at the desired range along
the currently planned path.

An example of the feedback loop’s tracking capabilities is given in Figure 12.13,
which shows the average of the central 20 ranges R measured by the gimbaled LI-
DAR plotted against a sinusoidal commanded range Rd as the Spider drives on
a paved surface. The system tracks the commanded ranges accurately up to 25
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meters, the approximate range limit of the LIDAR on pavement. Beyond this
threshold the LIDAR typically returns ranges of infinity when measuring pave-
ment, so the K2 term of equation 12.33 causes the gimbal to pitch down. The LI-
DAR also occasionally receives one or two measurements from an object at a great
distance; these objects cause the LIDAR to pitch down rapidly due to the K1 term.
The total effect of the K1 and K2 terms cause the gimbaled LIDAR to spend most
of its time measuring the dense, informative terrain in front of the vehicle. In con-
trast, little time is spent aiming above the horizon or gathering sparse data far
from the vehicle.

Fig. 12.13. Measured and commanded range of the center 20 measurements of the
gimbaled LIDAR

Figure 12.13 also shows that the tracking loop has a significant time lag be-
tween the desired range and the measured range. This lag is not due to actuator
dynamics: a first order lag is placed on the controller outputs to create smooth
gimbal motion. Although the gimbal actuators are capable of tracking ranges at
a higher bandwidth, it was found that higher frequency tracking induced vibra-
tions in the sensor platform that produced invalid measurements from the other
LIDAR units.

12.7 Robust Grid-Based Path Planning

One of the most difficult tasks for any autonomous ground vehicle is integrating
vehicle capabilities, actuator states, position and orientation information, and
sensed terrain maps to plan a path to traverse. The time-limited format of the
Grand Challenge makes the task especially difficult, because critical path deci-
sions must be made on-the-fly in unknown obstacle fields at average speeds of
7 m/s or more. To function under these constraints, a good path planner must
have an efficient data representation, and it must be able to strike a balance
between path quality and reaction time.
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These two design attributes, data representation and search preference, gen-
erally categorize the behavior of path planners. The first attribute, data rep-
resentation, describes how a path planner ranks potential paths. Existing path
planners generally fall between two extremes: cost-based representations, and
constraint-based representations. Cost-based representations, such as the one
used in Stentz (1994), integrate all environment information into a scalar cost
value for each potential path. Constraint-based representations, such as the one
used in Spenko, Iagnemma, and Dubowsky (2004), store environment informa-
tion as a set of constraints that must be satisfied for a path to be selectable.
The other attribute, search preference, describes the types of paths a planner
investigates. Global planners, such as the approach presented in Stentz (1994),
choose paths over the entire course to be traversed. Local or reactive planners,
in contrast, may select circular arcs or cubic splines that are only a few meters
in length (Rosenblatt, 1997), (Urmson et al., 2004).

Cornell’s Grand Challenge entry lies in between the extremes for each of these
two attributes. Terrain information is represented as a scalar cost, while vehicle
capabilities, position, and orientation are combined in a physics-based skidding
constraint. Paths considered are cubic splines approximately 15 to 80 meters in
length; they direct the Spider from its current location to a point that smoothly
connects with the nominal route, beyond the Spider’s sensor horizon. In practice
these design choices allow the Spider’s path planner to react quickly to obstacles,
yet the paths selected are smooth and human-like.

12.7.1 Cost Representation for Path Planning

The terrain estimation algorithm from section 12.5 provides two pieces of en-
vironment information for path planning: elevation estimates μGM , and uncer-
tainties σGM for each 40 cm ×40 cm grid cell of terrain. In the Cornell planner,
this terrain data is used to assign a measure of traversability, in the form of
a scalar cost, for each cell. The grid-based storage scheme and dense elevation
and uncertainty estimates of the terrain estimation algorithm are ideal for eval-
uating the traversability of pieces of terrain according to the Spider’s physical
capabilities. In particular, the elevation estimates can be used to calculate finite
difference gradients ∇μGM,i for the ith cell:

|∇μGM,i| ≈ maxj∈N(i) (|μGM,i − μGM,j |)
dx

(12.34)

where N(i) is the set of cells neighboring cell i, and dx is the width of the cell.
These cell gradients are then converted to a gradient cost C∇ for the ith cell
based on the Spider’s physical limits:

C∇,i = 32000 ·
( |∇μGM,i|

∇Umax

)2

(12.35)

where ∇Umax = 1.095 is the Spider’s maximum safe traversable gradient, calcu-
lated as an elevation change of 0.43 m across a single 0.4 m cell. The gradient
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cost in each cell is also multiplied by a scaling factor 32000 and converted to an
integer to avoid additional floating point operations during path evaluations.

The uncertainty in each cell’s elevation is also used to calculate a component
of cost based on the Spider’s physical limits:

Cσ,i = 2000 ·
(

σ2
GM,i

σ2
max

)2

(12.36)

where σmax = 0.2 m is chosen so the 2σGM elevation uncertainty in each cell
is penalized if it exceeds the Spider’s maximum traversable obstacle height of
40 cm. As with the gradient cost, the uncertainty cost is also multiplied by a
scaling factor 2000 and converted to an integer.

Fig. 12.14. Sample cost map generated from the parking lot elevation estimates from
Figure 12.9 near the large trash cans and smaller traffic cones. Warmer colors indicate
higher cost.

Figure 12.14 shows a cost map calculated from the sum of the gradient and
uncertainty costs of the elevation estimates generated in Figure 12.9. This sum
is used as a measure of the traversability of each cell, with less traversable or
more uncertain cells having amplified costs. In addition, the quadratic form of
equations 12.35 and 12.36 help attune gradients and uncertainty due to sensor
noise. In the Cornell planner, these costs are used both to eliminate intraversable
paths and to establish preferences if multiple paths are traversable.
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12.7.2 Searching Preference in Path Planning: the Cubic Planner

While grid-based terrain estimates fit naturally into a cost framework, the re-
mainder of the Spider’s environment, including hardware constraints and vehicle
position, velocity, and orientation, are not well-represented as costs. It is possi-
ble, for example, to penalize paths that violate vehicle constraints, turn sharply,
or decelerate rapidly. These cost penalties do not guarantee compliance, how-
ever, so paths chosen to minimize this cost may not be physically realizable.
Furthermore, with the cost function changing as fast as the vehicle’s position,
velocity, and orientation, the lowest-cost path may change drastically from one
planning iteration to the next. In high-speed, high-dynamics tasks like the Grand
Challenge, however, it is more desirable to find near-optimal local solutions that
are consistent with vehicle dynamics. These points motivate Cornell’s planner,
which generates path segments from a small set of cubic splines.

Cornell’s cubic planner uses several simplifying assumptions to generate a rich
variety of paths using only three free parameters. First, it is noted that the Grand
Challenge course is often narrow with respect to vehicle size, allowing little lateral
motion. Second, the course must be drivable by commercial vehicles, so there is
guaranteed to be a path from the start of the course to its end (DARPA, 2004).
These two assumptions impose basic constraints on the radius of curvature and
space required by candidate paths. These constraints can be checked in real-time
with approximations to vehicle physics, allowing many candidate paths to be
eliminated without lengthy numerical simulation. As a result, this verification-
based technique can search among complicated paths that are more likely to
be traversable over long distances. Figure 12.15 shows some of these candidate
paths considered by the Cornell cubic planner.

Fig. 12.15. Candidate cubic paths generated for various turns. The paths are con-
structed from pairs of control points at the beginning and end of the path. Families of
cubics are generated by varying the spacing of the two center control points.

12.7.2.1 Spline Construction

The Cornell path planner uses two-dimensional cubic Bézier curves to represent
its candidate paths. Two-dimensional cubic Bézier curves are defined by four
‘control points’ {A, B, C, D}; see, for example, Weisstein (1999). Useful proper-
ties of the cubic Bézier for path planning are as follows:

1. The Bézier always passes through its first control point A. This point is set
to the center of the Spider’s back axle to represent the current planning
origin.
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2. The Bézier always ends at its last control point D. Point D therefore repre-
sents the end of the cubic spline, and it should be inside the course boundary
at all times.

3. The Bézier is always tangent to the line segment AB at point A. Line segment
AB is therefore set in the current direction of motion, according to the
Spider’s yaw angle ψ. Control point B is therefore fully-defined by a scalar
distance: the forward distance from A in the direction of travel.

4. The Bézier is also always tangent to the line segment CD at point D. The
Cornell planner chooses the line segment CD such that it is parallel to the
DARPA-specified path at the end of the cubic Bézier. As a result, control
point C, like B, is entirely specified by a single parameter: its distance from
D toward the vehicle.

With these constraints, the cubic search space is fully defined by five pieces of
information: the vehicle’s current location, its current yaw angle ψ, the location
of the terminal point D, the offset of control point B from A in the direction
of vehicle travel, and the offset of the control point C from point D backward
toward the vehicle. Note that of these five parameters, only the two scalar offset
lengths and the path termination point are free parameters.

In Cornell’s implementation, the location of the terminal point D is deter-
mined by selecting a look-ahead distance along the nominal DARPA route based
on desired vehicle velocity. The look-ahead distance is set at a minimum distance
of 15 m so the vehicle does not consider a turn it cannot achieve. The terminal
point D is then generated by projecting the vehicle’s location onto the nominal
DARPA route and walking forward by the look-ahead distance. In this implemen-
tation, four additional terminal points are also created from equidistant lateral
projections off the original terminal point. An example of paths generated to
each of these five lateral offsets is shown in Figure 12.16.

In addition, more complicated paths can be created by varying the locations
of points B and C by changing the ‘offset lengths’: the lengths of segments AB
and CD. Intuitively, changing the offset length of the control point B determines
when and how severely the vehicle reacts as it approaches a turn, as shown in

Fig. 12.16. The five lateral offsets considered for a single terminal point
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Fig. 12.17. (Left): Variations in the B offset affect the lag in the start of a turn.
(Right): Variations in the C offset affect the duration of a turn.
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Figure 12.17 (left). In contrast, Figure 12.17 (right) shows that changing the
offset length of the control point C affects the duration of a turn. In the Cornell
planner, three B offsets, four C offsets, and five terminal points are considered
at each planning cycle, for a total of 60 paths.

12.7.2.2 Path Evaluation and Selection

In order to select a final path, the planner determines the best candidate spline
in a thresholding step and an ordering step. The first step, thresholding, applies
cost and physics-based constraints to eliminate infeasible paths. The planner
applies cost constraints by walking each candidate spline in the cost grid, com-
puting a line integral CLI of cost and eliminating any path traversing impassable
obstacles. For the remaining candidates, the planner evaluates four potential ve-
hicle speeds vdes: emergency deceleration (vdes = vcur − 6m/s), gradual decel-
eration (vdes = vcur − 3m/s), no change (vdes = vcur), and gradual acceleration
(vdes = vcur + 3m/s). The paths and speeds are then evaluated using a lateral
skidding test, which imposes a minimum curvature constraint based on speed
(Spenko et al., 2004):

min(Rc) >
v2

des

μg
(12.37)

where min(Rc) is the smallest radius of curvature along the path, μ is the coef-
ficient of friction, and g is the acceleration of gravity. Although equation 12.37
approximates lateral skidding assuming constant vehicle speed and turning an-
gle, it is inexpensive to test. In particular, the path’s radius of curvature can be
evaluated in each grid cell it crosses at the same time the cost line integral is cal-
culated, so the computational expense of applying both cost and physics-based
constraints grows linearly with the length of the path. In practice, the 60 paths
and 4 speeds evaluated in each iteration of the Cornell planner are completed
in less than 40 ms on the path planning computer equipped with dual 1.8 GHz
AMD Opteron 244 processors and Windows Server 2003.

The skidding constraint of equation 12.37 is used to remove paths that are in-
traversable due to sharp turns. It also affects the Spider’s macroscopic preference
toward smoother, straighter, and more human-like paths. The Cornell implemen-
tation uses a conservative μ = 0.15, for example, to discourage last-minute turns
to avoid obstacles.

After all intraversable paths have been eliminated, the final selection is made
by optimizing a performance metric over the remaining traversable paths. First,
the Cornell planner retains only the fastest traversable speed for each cubic path,
as finishing time is most important when all paths are traversable. The remaining
paths are then ranked according to a weighted combination CLI +600ΦLI of total
cost CLI and total steering effort ΦLI , calculated during the cost line integral
as the 1-norm of changes in steering wheel angle from cell to cell along the
path. The final path chosen minimizes this weighted combination, representing
a balance between avoiding small changes in cost and preferring paths with less
steering effort. If no paths are deemed traversable, the Cornell planner chooses
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Fig. 12.18. Speed selection on a simulated course. The bottom plot shows desired
vehicle speed selected by the path planner, in m/s. Note how the Spider decelerates
slowly for the soft turn in the beginning and faster for the two sharp turns later on.

the path with the least worst cost while performing a sharp deceleration. This
contingency behavior permits the Spider to gather more terrain data, so a better
path can be found in the next planning cycle.

Examples of the path planner’s final speed selections are shown in Figure 12.18
for a simulated course. Notice that the planner slows the vehicle down while
taking turns, picking up speed as the vehicle exits the turn. Although speeds
are tested in discrete 3 m/s increments, Figure 12.18 shows that they form a
feedback loop with the Spider. Sudden speed changes are effectively smoothed
out by the 10 Hz replan rate of the path planner and the lag in the Spider’s
engine.

12.8 Grand Challenge Performance and Failure Analysis

The Spider began the 131.8-mile Grand Challenge course along with the other
competitors in Primm, Nevada, in the morning of October 8, 2005. Team Cornell
faced several mechanical difficulties just in bringing the Spider to the starting
line, including a failing torque converter and a generator that broke its bearings
the day before. The Spider made a successful start despite the mechanical dif-
ficulties, traveling 9.0 miles before hitting a concrete wall on an overpass. The
vehicle was subsequently stopped by DARPA officials. Figure 12.19 (left) shows
the total Grand Challenge course, with the Spider’s path marked.

Figure 12.19 (right) shows a magnified view of the Grand Challenge course
and the Spider’s path as it drifted from the center of DARPA’s route into the
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Fig. 12.19. (Left) Grand Challenge course, with the Spider’s final progress marked.
(Right) Magnified view of the Spider’s point of failure.

concrete wall. This reveals two odd features of the Spider’s final moments in
the race. First, the solution reported by the GPS receiver experienced a jump
of approximately 2m, and thereafter it reported an apparent error of more than
1m until the Spider hit the wall. This offset is evident from the fact that the
Spider’s filtered position closely followed the center of DARPA’s route, which was
confirmed by the GPS solution prior to the anomaly. A further inspection of race
data reveals that the GPS jump was due to reacquisition of the OmniSTAR HP
signal, which the Spider had lost approximately 175 seconds earlier. Rate limiting
was in effect, however, so the Spider did not swerve to follow the incorrect HP
signal. In fact, the Spider turned gently as the rate-limited filter converged to
the HP signal.
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Fig. 12.20. (Left) Several minutes before it failed in the Grand Challenge, the Spider
developed significant errors in its altitude estimate. (Right) The altitude errors are
believed to have been caused by four instances of significant pitch error at t = 1440,
1540, 1655, and 1735 seconds into the race, just prior to the Spider’s failure.

The second anomaly at the Spider’s point of failure is the fact that it chose
to turn into the wall. The only explanation for such behavior is that the Spi-
der detected an obstacle in front of it, though post-race investigation revealed
no obstacles on the overpass. This behavior suggests obstacle detection errors,
and Figure 12.20 reinforces that conclusion. Figure 12.20 (left) shows that the
Spider developed nearly 8m of error in its altitude estimate over the last few
minutes leading up to its decision to hit the wall. Figure 12.20 (right) shows
the likely cause with a comparison of the attitude estimator’s pitch estimate to
pitch derived from GPS velocity. The difference between these two signals shows
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four neighboring instances just prior to the Spider’s failure during which pitch
error consistently strayed outside the ±2σ line for a short period of time: at 1440
seconds, 1540 seconds, 1655 seconds, and 1735 seconds into the race. The first
two of these instances occurred in the presence of the OmniSTAR HP signal,
while the last two occurred after the Spider lost the signal. The fact that these
four instances are spaced so closely together suggests the pitch estimate became
incorrect during this time interval. This conclusion also explains the Spider’s de-
cision to stray from the center of the DARPA route, because pitch errors would
cause the Spider to localize LIDAR measurements incorrectly: even flat terrain
in the center of the route would appear as obstacles. This problem could have
been mitigated either through online hypothesis testing of GPS measurements as
in Sukkarieh et al. (1999), online estimator health monitoring as in Bar-Shalom
et al. (2001), or by implementing the mapping algorithm of section 12.5 relative
to the vehicle and independent of absolute position. Unfortunately, the problem
did not manifest itself with such severity until the Grand Challenge itself, where
it could not be repaired.

The location of the Spider’s failure was unfortunate. Reverse driving was not
implemented due to time constraints, so the Spider could not recover from its
collision. Instead, it was disabled as it struggled to turn free from the wall. If
it had chosen to turn in a place where there were no concrete walls, it would
have recovered without problem. Even if it strayed from the course boundary,
the DARPA officials may have let it continue.

12.9 Conclusion

This paper has presented a detailed overview of Cornell University’s entry in
the 2005 DARPA Grand Challenge. Cornell’s approach to the Grand Challenge
divided the problem into four main tasks: designing and building a robust plat-
form, localizing the platform, sensing its environment, and navigating through
that environment. This approach had the benefit that each subsystem could be
developed independently once the information flow between them was defined.

Cornell’s entry in the Grand Challenge was based upon a Spider Light Strike
Vehicle, a robust military platform able to tolerate mistakes made by its au-
tonomous components. The platform was localized with dual square root infor-
mation filters for attitude and position / velocity that fused separate inertial and
navigation sensors. This filtering scheme was shown to be as accurate as many
of the more expensive off-the-shelf positioning systems. A rate limiting scheme
was also presented to handle GPS signal loss and reacquisition, two difficult sit-
uations for path tracking and obstacle detection in autonomous ground vehicles.
A novel terrain estimation algorithm was also presented to combine the Spider’s
three laser rangefinders into accurate terrain estimates and their uncertainties.
This terrain estimate provided a real-time statistical interpretation of the Spi-
der’s environment, permitting robust path planning without heuristic obstacle
identification. A method for creating a feedback loop between these terrain es-
timates and the path planner was presented, and the feedback loop was shown
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to be able to gather terrain data at the desired range along the planned path.
A cubic spline-based path planner was also presented to utilize these dense ter-
rain estimates to generate paths consistent with the physical capabilities of the
Spider. It was shown that simple path constraints based on skidding, radius of
curvature, and terrain gradient macroscopically affected the final path chosen,
making the resulting path smoother and more human-like.

Cornell’s Spider was one of the 195 original entrants into the Grand Challenge,
and one of only 23 to make it to the starting line of the final Grand Challenge
event. Despite experimental validation of each subsystem and the fully-integrated
vehicle, the Spider’s performance in the Grand Challenge was disappointing.
Last-minute generator and torque converter failures tested the reliability of the
system, while faulty navigational estimates in a highly-constrained portion of
the course ultimately brought about the Spider’s failure in the Grand Challenge.
These failures stress the importance of additional online health monitoring and
contingency behaviors that would have been added to the Spider if there were
more time.
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A Mixture-Model Based Algorithm for
Real-Time Terrain Estimation

Isaac Miller� and Mark Campbell��

Sibley School of Mechanical and Aerospace Engineering
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Summary. A real-time terrain mapping and estimation algorithm using Gaussian sum
elevation densities to model terrain variations in a planar gridded elevation model is
presented. A formal probabilistic analysis of each individual sensor measurement allows
the modeling of multiple sources of error in a rigorous manner. Measurements are as-
sociated to multiple locations in the elevation model using a Gaussian sum conditional
density to account for uncertainty in measured elevation as well as uncertainty in the
in-plane location of the measurement. The approach is constructed such that terrain
estimates and estimation error statistics can be constructed in real-time without main-
taining a history of sensor measurements. The algorithm is validated experimentally on
the 2005 Cornell University DARPA Grand Challenge ground vehicle, demonstrating
accurate and computationally feasible elevation estimates on dense terrain models, as
well as estimates of the errors in the terrain model.

13.1 Introduction

A problem of critical importance to modern robotics and remote sensing alike is
mapping: the task of constructing a computational representation of an environ-
ment from available sensor data. These data-driven environment maps have a
number of classical applications, including robot localization, exploration, target
tracking, and planning (Thrun, 2002). Continued improvements in sensor accu-
racy and computational power have also spurred the use of automated mapping
techniques for non-traditional applications, including aerial surveying, recon-
naissance, and model generation (Ackermann, 1999), (NIMA, 2000), (Arakawa
& Krotkov, 1992), (El-Hakim, Whiting, Gonzo, & Girardi, 2005).

The mapping approaches adopted for these applications are as diverse as
the applications themselves. In the robotics field, common approaches include
tracking features or beacons, building belief maps or evidence grids of obstacles,
building 2 1

2D elevation grids, and building Monte-Carlo sampled environments
(Thrun, 2002), (Martin & Moravec, 1996), (Pagac, Nebot, & Durrant-Whyte,
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1998), (Olin & Tseng, 1991), (Lacroix et al., 2002), (Leal, 2003). These ap-
proaches are generally constructed in real-time for robotic navigation, and they
make tradeoffs between the richness of their models and computational time.
Beacon-based representations provide statistically rigorous map estimates, for
example, but the maps are not dense. Occupancy grid approaches are dense, but
they are fundamentally limited to binary obstacle identification. Monte-Carlo
and elevation grid approaches generate dense maps, but they must either re-
sample or perform heuristic interpolations to avoid computational bottlenecks.
Initial research in representing robotic sensor data using true three dimensional
terrain maps has recently been investigated (Thrun, Burgard, & Fox, 2000),
(Hähnel, Burgard, & Thrun, 2004), (Weingarten & Siegwart, 2005). These ap-
proaches either maintain large histories of sensor measurements or attempt to
identify planar structures within their sensor data. They are currently limited
to structured environments or constrained sensor geometries.

Mapping techniques associated with the remote sensing field, in contrast, are
used to build digital elevation models for accurate surveying and geographical
studies. These techniques often consist of a data collection phase with significant
post processing to generate maps offline (Axelsson, 1999), (Ackermann, 1999),
(Lohmann, Koch, & Schaeffer, 2000), (Satale & Kulkarni, 2003). Uncertainty
in these digital elevation models is typically characterized in terms of errors
sampled from a known set of reference survey points; therefore, this type of
model fundamentally cannot be generated or maintained in real-time. Instead,
these techniques are most commonly used for generating extremely precise digital
elevation models for land surveying purposes.

While a unified mapping approach across these diverse applications is al-
most never adopted, an increasing interest in autonomous vehicle navigation
and real-time reconnaissance suggests the merits of such an approach to a real-
time terrain model. This paper presents one such possibility, using Gaussian
sum representations of terrain uncertainty to generate and maintain an accurate
and statistically rigorous real-time elevation model. The approach is unique in
several regards. First, error transformation techniques are used to treat sensor
measurements with a statistical model rather than as point clouds or inputs to
an interpolation scheme. This allows the terrain estimation algorithm to handle
multiple sources of uncertainty during data collection rigorously. It also allows
estimates of the errors in the terrain map to be generated on the fly rather than
in post processing steps. In addition, the Gaussian sum representation allows the
full terrain model to be built, stored, and maintained cheaply in real-time using
a standard desktop computer. The specific case of generating an elevation model
from a ground vehicle and laser rangefinders is presented, though the approach is
general to all navigation problems such as airborne platforms and other sensors.

The work that follows derives the Gaussian sum algorithm for real-time ter-
rain estimation along with experimental results obtained in a practical setup.
Section 13.2 describes the terrain estimation problem and derives the Gaussian
sum algorithm for terrain estimation, including steps for rigorous statistical anal-
ysis of terrain sensor measurements and assigning measurement locations within
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the terrain model. Section 13.3 gives a one-dimensional simulated example of
the terrain estimation algorithm to describe its behavior. Section 13.4 presents
experimental results of applying the algorithm on a full-sized ground vehicle
operating at realistic speeds.

13.2 Terrain Estimation Algorithm

In representing terrain or digital elevation models, one common approach is to
store terrain data as a ‘Cartesian height map’ or ‘raster grid’, where a region of
the Earth’s surface is parameterized by a location in the XY plane and an asso-
ciated elevation relative to an origin of interest (Olin & Tseng, 1991), (Stoker,
2004). This same parameterization is used to store elevation maps in this study.
That is, it is assumed there exists an origin of interest, described according to
its latitude, longitude, and altitude (LLA) with respect to the WGS-84 ellipsoid
model of the Earth (Kaplan, 1996). The reference plane for this study is then
calculated as an East-North-Up (ENU) plane tangent to this ellipsoid model
at the origin of interest, where the X-axis points East along a line of latitude,
the Y-axis points North along a line of longitude, and the Z-axis completes the
coordinate frame. This reference plane is divided into Nc grid cells, with the jth

cell extending in the East direction from Ej− to Ej+ and in the North direction
from Nj− to Nj+. The goal is to develop an algorithm to estimate the elevations
of each of these grid cells in real-time in the presence of multiple sources of noise.
More specifically, the goal is to develop elevation estimates in real-time that are
optimal in the sense of the minimum mean square error (MMSE).

The proposed terrain estimation algorithm has three separate steps to accom-
plish this goal. First, a statistical representation of each sensor measurement is
formed, in order to account for multiple sources of sensing error in a probabilisti-
cally rigorousmanner. Second, each sensormeasurement is assigned or ‘associated’
to one or more grid cells to which it is likely to correspond. Finally, the measure-
ments assigned to each grid cell are fused in real-time into an optimal elevation
estimate for that grid cell. These three steps are discussed in turn below.

13.2.1 Statistical Treatment of Sensor Measurements

The first step of the terrain estimation algorithm is to form a statistical rep-
resentation of each sensor measurement in order to account for all sources of
sensor error. These sensor errors are commonly due to four general sources: 1)
errors due to the sensor itself, 2) errors due to uncertainty in the sensor’s ori-
entation and location on the sensing platform, 3) errors due to uncertainty in
the orientation of the sensing platform itself, and 4) errors due to uncertainty
in the location of the sensing platform (Huising & Pereira, 1998). The first type
of error, due to the sensor itself, describes the sensor’s accuracy. This type of
error is a function of the method by which the sensor makes measurements, and
it is generally independent of the sensor’s orientation. The second type of error,
sensor orientation and location error, arises because the terrain map is often not
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built in a sensor-centric coordinate frame. As a result, the sensor measurements
must be transformed to other coordinate frames, and these transformations may
introduce errors. For rigidly-mounted sensors, these errors can be approximately
eliminated or reduced to inconsequential values with offline calibration against
objects of known location. For actuated sensors or sensors subject to platform
vibration, however, these errors must be considered as statistical quantities. The
third and fourth types of errors are due to imperfect knowledge of the orien-
tation and position of the sensing platform. For moving platforms, these errors
may be reported by an inertial navigation system or another position estimation
scheme. The statistical contributions of platform orientation and location errors
affect all sensors on the platform in an identical manner.

In order to understand in a statistical sense how these four sources of error
affect each sensor measurement, it is first necessary to transform each sensor
measurement and its uncertainties into a common coordinate frame for terrain
estimation. To begin, each raw sensor measurement r is expressed in the fixed
ENU coordinate frame of the terrain map:

rENU =

⎛
⎜⎝

E
N
U
1

⎞
⎟⎠ = f

(
p, r
)

(13.1)

where r is the raw sensor measurement, p is the set of parameters that describe
the sensor’s orientation with respect to the ENU map frame, and f (·) is the
function that transforms the raw measurement into the ENU frame. Note that
rENU is expressed as a four-element vector. The fourth element of each measure-
ment, always 1, permits the use of 4 × 4 rotation and translation matrices to
express the transformation function f (·) as a series of matrix multiplications
(Moon, 1998), (Murray, Li, & Sastry, 1994). Although other representations of
the transformation may be used, the sequential matrix representation will be
shown to be particularly useful for real-time implementations.

Each transformed measurement rENU is a terrain detection generated from a
single raw measurement. Each terrain detection gives a measurement of the ele-
vation and location of a small patch of terrain near the sensing platform. These
elevation measurements are built up from both the original raw sensor measure-
ment r and the sensor’s orientation parameters p at the time the measurement
was produced. As discussed previously, the orientation parameters p and raw
measurement r are uncertain; they are more accurately modeled using estimates
of their true values with associated errors:

p = p̂ + δp
r = r̂ + δr (13.2)

where p and r are the true orientation parameters and noise free measurement, p̂
and r̂ are the values of the parameters reported by the sensors or state estimators,
and δp and δr are the errors in those reported values. Under this formulation,
the values δp and δr can be due to any of the four error sources discussed in the
beginning of section 13.2. It is important to note that the values p and r are not
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known perfectly unless there are no sources of error in any aspect of the sensing
system. In general, only p̂ and r̂ are known.

To form a statistical representation taking into account all errors δp and δr,
equation 13.2 is substituted into equation 13.1. This expresses the true measure-
ment in terms of the available sensor and estimator outputs:

rENU = f
(
p̂ + δp, r̂ + δr

)
(13.3)

Notice that equation 13.3 accounts for any potential sources of error arising
either from the sensor or from the transformation to the ENU frame. If the
elements of p and r fully describe the transformation from sensor measurements
to terrain detections, equation 13.3 takes into account all sources of error.

To continue, a Taylor expansion of equation 13.3 is made about the observed
measurement and orientation parameters. Then, assuming the estimation errors
are small, the expansion is truncated at first order to make the expression more
tractable:

rENU ≈ f
(
p̂, r̂
)

+
∂f

∂p

∣∣∣∣
p=p̂,r=r̂

δp +
∂f

∂r

∣∣∣∣
p=p̂,r=r̂

δr

= f
(
p̂, r̂
)

+ Jp

(
p̂, r̂
)
δp + Jr

(
p̂, r̂
)
δr (13.4)

where Jp (·) and Jr (·) are the Jacobians of the transformation function f (·) with
respect to the sensor orientation parameters and raw measurement, respectively.
Additionally, assume the parameter estimates p̂ and raw measurement r̂ are both
unbiased and conditioned upon all available orientation and sensor information
I. Under these assumptions, a posterior estimate of the terrain detection may be
formed by taking the expectation of equation 13.4 conditioned on all available
information (Bar-Shalom, Rong Li, & Kirubarajan, 2001):

r̂ENU ≡

⎛
⎜⎝

ê
n̂
û
1

⎞
⎟⎠ = E

[
rENU

∣∣∣I] ≈ f
(
p̂, r̂
)

(13.5)

Note that if some elements in the parameter estimates p̂ and r̂ are biased, the
biases enter into the value of r̂ENU when taking the expectation of equation 13.4.
In general, however, such biases can be removed through more refined calibration
procedures. After such procedures the residual measurement errors will have a
bias that is statistically indistinguishable from zero.

Continuing with the error analysis, the mean square error (MSE) matrix of
the posterior measurement estimate yields the desired statistical measure of the
measurement’s uncertainty. Note this uncertainty takes into account all sources
of error contained in the estimates p̂ and r̂:

Pr̂ = E
[
(rENU − r̂ENU)(rENU − r̂ENU)T

∣∣∣I]
≈ Jp

(
p̂, r̂
)
E
[
δp · δpT

∣∣∣I]JT
p
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p̂, r̂
)
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QrJ
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(13.6)
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where Qp and Qr are the mean square error matrices for the estimators used in
determining p̂ and r̂. This representation includes the statistical effects of the ori-
entation and sensor errors up through their second moments, mapped through a
linear approximation of the actual transformation. These approximate linearized
statistical techniques are common and work well in nonlinear estimation prob-
lems (Bar-Shalom et al., 2001). Techniques that preserve higher order statistical
effects through nonlinear transformations, such as the Unscented transform or
Monte Carlo methods, could also be used (Julier & Uhlmann, 1996), (Arulam-
palam, Maskell, Gordon, & Clapp, 2002). These are ignored in the present study,
however, due to higher computational costs.

Notice the structure of equation 13.6 assumes the sensor orientation errors and
raw measurement errors are uncorrelated. If that is not the case, it is straight-
forward to account for cross correlation by creating a stacked vector s of all
uncertain parameters and their errors:

s =
(

p
r

)
=
(

p̂ + δp
r̂ + δr

)
= ŝ + δs (13.7)

The MSE matrix Pr̂ is now defined as:

Pr̂ = Js (ŝ)QsJ
T
s (ŝ) (13.8)

where Qs is a covariance matrix with Qp and Qr as its diagonal blocks and any
cross correlations between δp and δr as its off-diagonal blocks.

Two additional comments about this statistical representation are in order.
First, the analysis is only affected by elements of p and r that are uncertain. Any
known elements in these vectors have no statistical variance and no correlation
with any other elements of p or r, so the rows of the Jacobian matrices correspond-
ing to any known parameters have no effect on Pr̂. Second, the analysis is also in-
dependent of the lengths of p and r; the MSE matrix Pr̂ is always 4×4. It is noted,
however, that the MSE matrix Pr̂ will not be full rank unless the Jacobian matrix
and covariance matrix that comprise it both have a rank of at least 4.

With the posterior measurement estimate r̂ENU defined in equation 13.5, equa-
tion 13.6 gives its 4 × 4 mean square error matrix Pr̂. This matrix describes the
relative size and correlation of the terrain measurement errors in the elements of
r̂ENU and behaves as a covariance matrix. The useful partition of the matrix Pr̂

is the upper-left 3 × 3 block PENU , which contains the ENU mean square errors
and cross correlations for the measurement r̂ENU . The remaining elements of the
matrix, which involve correlations with the always-unity fourth term of r̂ENU , are
not used. That is,

PENU = ( I3×3 03×1 ) · Pr̂ ·
(

I3×3
01×3

)
(13.9)

Equations 13.5 and 13.9 model each measurement as a nominal terrain mea-
surement r̂ENU with uncertainty characterized by ellipsoidal equiprobability sur-
faces. This strategy is itself an atypical representation of sensor measurements
in remote sensing applications, where they are typically modeled only as discrete
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points with no associated error (Stoker, 2004). Horizontal and vertical errors are
instead computed in post-processing validation against truth models (Huising &
Pereira, 1998). In addition, errors in sensor orientation or sensor platform posi-
tion and orientation are commonly treated as constants using offline calibration
techniques (Morin, 2002).

More recently, Ref. (Stoker, 2004) suggested representing each sensor mea-
surement as a voxel, a three-dimensional pixel with volume characterized by its
error along three directional axes. However, this representation cannot support
cross-correlation between coordinate axes, so it must necessarily make conser-
vative error estimates to capture uncertainty. In contrast, the benefit of the
statistical representation of equations 13.5 and 13.9 over typical representations
is that it is dynamical: the error in each measurement is estimated in real-time
based on the current accuracy of all the systems used to generate p̂ and r̂.

13.2.2 Measurement Association

The second step of the terrain estimation algorithm is to use the statistical anal-
ysis of section 13.2.1 to assign each terrain measurement to one or more grid cells
from which it is likely to have originated. This problem of determining which mea-
surements belong in each cell arises only because the full uncertainty in the mea-
surements is considered during processing. That is, measurement correspondence
on a cell-by-cell basis is uncertain due to the uncertainty in each measurement’s
in-plane location as well as its elevation. This problem is similar to the problem of
association in target tracking literature such as (Bar-Shalom, Kirubarajan, & Lin,
2003) and (Kirubarajan & Bar-Shalom, 2004). The technique used here to assign
measurements to cells is similar to those discussed in (Bar-Shalom et al., 2003) for
assigning measurements to a single target. The present application is significantly
different from traditional target tracking, however, because all measurements cor-
respond to some portion of the fixed terrain map.

For this step of the terrain estimation algorithm, it is assumed that sensor
measurement data has been processed according to equations 13.5, 13.6, and 13.9
to generate a set of N measurement estimates r̂ENUi = ( êi n̂i ûi )T and their
associated MSE matrices PENU

i for i ∈ [1, . . . , N ]. To begin, this information is
used to calculate the probability that the ith measurement rENUi belongs in a
cell of interest. Assuming the ENU probability distribution Pi (E, N, U) of the
measurement is known, the probability can be evaluated explicitly by integrating
over the area covered by the cell. First, the vertical coordinate is integrated out
to yield the in-plane marginal distribution:

Pi (E, N) =
∫ ∞

−∞
Pi (E, N, U) dU (13.10)

This in-plane distribution of the measurement can then be integrated over the
area of the jth cell to yield the probability that the measurement corresponds
to that cell:

P (r̂ENUi ∈ j) =
∫ Ej+

Ej−

∫ Nj+

Nj−
Pi (E, N) dNdE (13.11)
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where the jth cell is defined by the rectangle Ej− ≤ E ≤ Ej+ and Nj− ≤
N ≤ Nj+. To complete this integral, the posterior measurement r̂ENUi and its
associated MSE matrix PENU

i are used to approximate the joint ENU distribution
as a multivariate Gaussian:

Pi (E, N, U) ≈ N (r̂ENUi , PENU

i ) (13.12)

This distribution is exact for the case of linear transformations, Gaussian noise
sources, and unbiased estimates of the sensor orientation parameters and raw
measurements. The Gaussian approximation is also commonly made for nonlin-
ear, non-Gaussian cases using either the linearization presented above or the first
and second moments implied by the Unscented Transform (Julier & Uhlmann,
1996). Applying the Gaussian transform, the EN joint probability distribution
can be written in closed form:

Pi (E, N) = N (r̂ENi , PEN

i ) (13.13)

where r̂ENi is the first two components of the measurement estimate r̂ENUi and
PEN

i is the upper left 2 × 2 EN block of the MSE matrix:

PENU

i =
(

PEN

i PEN,U

i

PU,EN

i PU

i

)
(13.14)

Using the given measurement estimate and its MSE matrix, the integral of equa-
tion 13.11 can now be computed. For real-time computational purposes, this
integral is approximated as a single Riemann square (Marsden & Weinstein,
1985):

pi ≡P (r̂ENi ∈ j) ≈ (Ej+−Ej−)(Nj+−Nj−)·Pi

(
1
2
(Ej+ + Ej−),

1
2
(Nj+ + Nj−)

)
(13.15)

which gives the approximate probability pi that the measurement belongs to the
jth cell. Equation 13.15 can then be used with equation 13.13 to approximate the
probability pi that a measurement estimate r̂ENUi corresponds to a particular cell.

13.2.3 In-Cell Terrain Measurement Fusion

The final step of the terrain estimation algorithm is to fuse all the terrain mea-
surements into an optimal terrain estimate. Because the measurements are as-
signed to grid cells according to the probability that they belong to those cells,
this task is equivalent to determining the distribution of elevations in each cell
given all measurements assigned to it. There are, however, two competing objec-
tives in this task. First, a more accurate representation of the elevation distri-
bution creates a better estimate within each cell. With this objective, ideally all
individual measurements are retained separately to preserve the full set of data
reported by the sensors. The tradeoff with this type of accurate representation is
a second competing objective: computational feasibility. Memory and computa-
tional requirements scale worst case as O(Nc ·N) with Nc the number of cells and
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N the number of individual measurements retained, so it very quickly becomes
infeasible to retain all measurements separately for any reasonably-sized terrain
grid. As a result, a more compact representation is desired, one that yields useful
terrain information without sacrificing computational feasibility.

To develop this computationally tractable, real-time representation, recall
that the original measurement estimates r̂ENUi are uncertain in three axes: East,
North, and Up. What is desired in the adopted grid representation, however, is
the univariate distribution of elevations in a particular cell at a particular East
and North location. This knowledge can be used to form a posterior univariate
elevation estimate Ûi = E

[
ûi

∣∣E, N
]

for the ith measurement by conditioning on
the East and North location of the jth cell (Bar-Shalom et al., 2001):

Ûi = ûi + PU,EN

i (PEN

i )−1 ·
[
1
2

(
Ej+ + Ej−
Nj+ + Nj−

)
−
(

êi

n̂i

)]
(13.16)

where (E N ) = 1
2 (Ej+ + Ej− Nj+ + Nj− ) is the center of the jth cell. This

estimate Ûi has conditional variance:

σ2
Ûi

= PU

i − PU,EN

i (PEN

i )−1
PEN,U

i (13.17)

In forming this elevation estimate Ûi and its variance σ2
Ûi

for association to
the jth cell, each measurement is assumed to originate from the center of that

cell, 1
2

(
Ej+ + Ej−
Nj+ + Nj−

)
, as per equation 13.16. This approximation approaches

the exact continuous-terrain solution as cell size decreases, presenting a tradeoff
between terrain map resolution and computational feasibility. Experimentally, it
is found that cell size is commensurate to the smallest terrain features that can
be detected.

Each of the measurements Ûi is effectively a terrain detection: a measurement
of a piece of the terrain within a particular cell. It is convenient to assume that
each of these measurements corresponds to a different patch of terrain within
the cell, so that no two measurements occur at precisely the same location. This
assumption is justified by the fact that the terrain is continuous, the location
of the terrain sensed by each measurement is uncertain, and often the sensing
platform is moving. Two other assumptions are also made. First, each terrain
measurement is assumed equally likely; that is, there is no a priori terrain in-
formation. This uniform, uninformative prior is adopted for convenience, as the
uniform prior acts as a constant removed by normalization in the final distribu-
tion. Second, it is assumed that each cell has one correct or ‘dominant’ elevation
to be estimated, and that elevation is represented within the set of terrain mea-
surements obtained.

Several conclusions follow from these assumptions. First, the likelihood of
each elevation measurement Ûi is dependent only on the set of sensor orien-
tation parameters p̂

i
and raw sensor measurement r̂i used to generate it. In

particular, the likelihood of each elevation estimate conditioned on all measure-
ments made so far is just equal to the likelihood of that elevation estimate
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conditioned on only the parameters used to generate it. Second, the likelihood
of each measurement being a measure of the correct elevation for a particular
cell is equal to the probability that the measurement came from that cell, i.e.
its association probability pi. Third, because the a posteriori distributions of
the elevation measurements are all Gaussian, the elevation distribution within
the jth cell P

(
Uj |p̂1...M

, r̂1...M

)
conditioned on the full set of measurements

p̂
1...M

=
{
p̂
1
, p̂

2
, . . . , p̂

M

}
and r̂1...M = {r̂1, r̂2, . . . , r̂M} is a Gaussian sum or

‘Gaussian mixture’ constructed from the elevation estimates (Bar-Shalom et al.,
2001):

P(Uj |p̂1...M
, r̂1...M ) =

∑M
i=1 piN

(
Ûi, σ

2
Ûi

)
∑M

i=1 pi

(13.18)

where Ûi from equation 13.16 is the ith elevation measurement estimate, σ2
Ûi

from
equation 13.17 is its associated conditional variance, pi from equation 13.15 is
the probability that the elevation measurement belongs in the cell, and M is the
number of measurements assigned to the cell.

Equation 13.18 represents a desired data driven elevation distribution in the
cell which takes into account all sources of uncertainty present in the system.
However, the model is not computationally feasible, because the Gaussian mix-
ture stored in each cell grows with the number of sensor measurements assigned
to that cell. For real-time terrain estimation, a smaller set of information about
each cell is desired. This set of data must be descriptive enough to exceed raw
measurements in usefulness but small enough to be computationally feasible. The
mean and variance of the elevation distribution satisfy both these requirements.
Taking the expected value of the elevation distribution yields an approximate
MMSE estimate of the characteristic or ‘dominant’ elevation of the jth cell:

ÛGM,j =
∑M

i=1 piÛi∑M
i=1 pi

≈ E
[
Uj |p̂1...M

, r̂1...M

]
(13.19)

by the linearity of the expectation operator. Similarly, the second central moment
of the elevation distribution gives the mean square error of the elevation estimate
within the jth cell (Bar-Shalom et al., 2001):

σ2
GM,j = E

[
(Uj − ÛGM,j)2|p̂1...M

, r̂1...M

]
= E

[
U2

j |p̂
1...M

, r̂1...M

]
− Û2

GM,j

=

∑M
i=1 pi(Û2

i + σ2
Ûi

)∑M
i=1 pi

− Û2
GM,j (13.20)

Equations 13.19 and 13.20 give the first two moments of the elevation distribu-
tion of the jth cell. Physically, equation 13.19 is an estimate of the characteristic
elevation of the cell. Mathematically, it is an approximate MMSE estimate of
the elevation of the jth given the assumptions discussed above. Equation 13.20
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may be interpreted as a measure of the roughness or spread of elevations within
the cell, though it also stores information about the confidence of the mean el-
evation estimate. The estimates of cell mean and variance can be used to make
statistical statements about the elevations in the cell, taking into account the
noise present in the entire system.

13.2.4 Algorithm Benefits and Real-Time Implementation

The proposed statistical representation of the terrain has several unique ad-
vantages over more traditional mapping strategies. First, the variance estimate
within each cell gives information about the spread of elevations likely to be en-
countered within that cell, enabling real-time statements of elevation confidence
intervals. These confidence intervals arise naturally as part of the estimation
process, because the terrain estimation algorithm includes error estimates. The
error estimates thus represent a richer set of information and physical mean-
ing than standard binary obstacle detection algorithms without requiring the
additional post processing of typical surveying representations.

A second advantage of this terrain model is that it can be generated and
maintained in real-time. Recall from sections 13.2.2 and 13.2.3 that each mea-
surement estimate is assigned to each cell according to the probability that the
measurement lies in that cell. For practical implementations with finite numeri-
cal precision, however, only cells near the nominal in-plane measurement location
derived from r̂ENUi are affected by that measurement estimate. As a result, each
measurement estimate need only be applied to cells in a small neighborhood of
the nominal measurement. To counteract this issue, measurements can also be
thresholded based on the probability that they belong to a particular cell to
provide further reduction in computational complexity. These steps place lim-
its on the number of cells to which each measurement can be applied, so the
computational complexity is reduced from O(C ·N) spent applying N raw mea-
surements to all C cells in the entire terrain map, to O(k · N) spent applying
each measurement to a maximum of k terrain cells. Furthermore, if only the first
two moments of the elevation distribution are desired, then each measurement
can easily be fused with previous measurements. In fact, only the following four
quantities are required for each cell:∑M

i=1 pi,
∑M

i=1 piÛi,
∑M

i=1 piÛ
2
i ,

∑M
i=1 piσ

2
Ûi

where each of these quantities is itself a scalar. Also, because fusing a new mea-
surement with the measurement history only requires knowledge of these four
variables, the computational complexity and memory requirements of maintain-
ing each cell are O(1). This makes it possible to fuse measurements from many
sensors at once in a distributed multithreaded architecture built from standard
desktop computers, all while maintaining the terrain map in real-time. Finally,
it is important to note that once sensor measurements have been used to update
the appropriate cells in the terrain model, the original measurements can be dis-
carded. In other words, the entire terrain map can be maintained without storing
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any measurement history. This makes it possible to maintain a full terrain map
over many square miles of terrain in memory on a standard desktop computer.

Further computational savings can also be made in the measurement and
MSE transformations of equations 13.5 and 13.6. In general, both transforma-
tions require a large number of multiplications and trigonometric evaluations.
However, the transformation function f (·) from equation 13.1 can be written as
a series of matrix multiplications, as suggested above:

f
(
p̂, r̂
)

= Tn

(
p̂[n]

) · . . . · T2
(
p̂[2]
) · T1

(
p̂[1]
) · R (r̂) (13.21)

where p̂[l] is the lth element of p̂, T (·) is a 4×4 transformation matrix, and R (r̂)
is a matrix representation of the raw sensor measurement r̂. This matrix-based
representation is useful because each transformation matrix Ti (·) is a function
of only one orientation parameter. Many of these orientation parameters are
common to more than one measurement or constant in time. As a result, many
of the matrix multiplications can be precomputed once and cached for future
measurements.

The Jacobian calculations of equation 13.6 can also be computed efficiently
by utilizing the structure of equation 13.21. In general calculating the Jacobians
Jp (·) and Jr (·) of the transformation function require repeated application of
the chain rule. However, because each independent orientation parameter ap-
pears in only one matrix in equation 13.21, the chain rule is not necessary. With
this representation, each element of the Jacobian matrices is reduced to matrix
multiplications and the differentiation of a single matrix. The matrix multipli-
cations can be cached in the manner described above to reduce the expense of
calculating the Jacobians. In essence, the algorithm benefits from the fact that
many measurements share all but one or two orientation parameters.

13.3 A Simple Example

The behavior and mechanics of the terrain estimation algorithm presented in
section 13.2 are best illustrated with a simple example. Consider a cart moving
forward at constant speed of 5 m/sec along one dimension. The cart is equipped
with a typical rangefinder that returns noisy ranges between it and the terrain
below. The rangefinder is mounted on a platform elevated 1.5 m above the bot-
tom of the vehicle wheels. Furthermore, the rangefinder is pitched forward by an
approximate angle of 5◦ with respect to the horizontal. That is, the rangefinder
is angled down to scan along the ground as the vehicle moves forward. Figure
13.1 shows the hypothetical setup for this one-dimensional simulated vehicle.

The rangefinder is modeled after a SICK LMS 291 laser rangefinder or ‘LI-
DAR’ (LMS 200, LMS 211, LMS 220, LMS 221, LMS 291 Laser Measurement
Systems Technical Description, 2003). In this simple one-dimensional example,
the sensor returns one range per scan and scans at 75 Hz. The LIDAR is modeled
with three sources of noise: raw ranging error due to sensor noise, uncertainty
in sensor pitch due to encoder noise, and uncertainty in vehicle location due to
GPS noise. These three sources of noise are specific instances of uncertainty of
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Fig. 13.1. Problem geometry of the simulated one-dimensional cart and rangefinder

types 1, 2, and 4 from section 13.2.1. The first noise source, raw ranging error
due to sensor noise, is assumed corrupted by additive Gaussian noise so that the
measured ranges are:

r̂ = r + δr (13.22)

where r is the true range and δr ∼ N (
0, σ2

r

)
is the additive Gaussian noise. The

other uncertainties, pitch and vehicle position, are incorporated into the sensor
orientation parameters p,

p =
(

φ
x

)
(13.23)

where φ is the sensor’s pitch angle downward from horizontal, and x is the vehi-
cle’s position relative to the arbitrarily-set origin. These parameters are assumed
corrupted by additive Gaussian noise:

p̂ = p + δp (13.24)

with δp ∼ N
(
0, diag

[
σ2

φ, σ2
x

])
, where σ2

φ is the variance in the sensor’s pitch

measurements and σ2
x is the variance in the vehicle’s position measurements. The

noise sources are set according to typical accuracy of a LIDAR, angle encoder,
and differential GPS receiver:

3σr = 0.1m
3σφ = 0.5◦

3σx = 0.6m (13.25)

The simulation is constructed from a true terrain model entered at the program’s
start. Ranges are calculated according to truth values, and then the ‘measured’
values of the range, sensor pitch, and vehicle location are corrupted with appro-
priate noise for use in the terrain estimation algorithm. To proceed, note the
transformation f (·) to produce the terrain measurement is:

r̂ENU = r̂ ·
(

cos(φ̂)
− sin(φ̂)

)
+
(

0
1.5

)
+
(

x̂
0

)
(13.26)
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where r̂ENU is a two-element vector estimate of the in-plane location of the mea-
surement as well as the elevation of the measurement itself. The Jacobian ma-
trices also have a particularly simple representation:

Jp

(
p̂, r̂
)

=
(−r̂ · sin(φ̂) 1

r̂ · cos(φ̂) 0

)

Jr

(
p̂, r̂
)

=
(

cos(φ̂)
− sin(φ̂)

)
(13.27)

Using the transformation and Jacobian matrix from equations 13.26 and 13.27,
the computations proceed as described in section 13.2. The only caveat is that
the equations are modified from a full three-dimensional East-North-Up rep-
resentation to a two-dimensional East-Up representation. In addition, nominal
measurement locations Ê are rounded to the nearest cell center for simplicity.
The terrain is divided into 1 m grid cells, and measurements are applied up to
3 cells away from their nominal location.

The simulation features a hypothetical ground with flat terrain (0 ≤ x < 100),
a small bump (100 ≤ x < 150), a small ditch (150 ≤ x ≤ 155), a large verti-
cal face (155 < x ≤ 170), and a plateau (170 < x ≤ 200). Figure 13.2 shows the
true ground surface along with the estimated elevation ÛGM and its associated
±2σGM bounds, in 1 m increments. The terrain estimation algorithm reveals sev-
eral points of interest. First, grid cells 1 to 13 have no terrain estimate because
the vehicle starts at x = 0 and the rangefinder is angled such that no data
is ever gathered near these cells. Figure 13.3 (left) gives the total association
probability and number of measurements assigned to each cell to confirm sen-
sor measurement density in more detail. Figure 13.3 (left) also shows that more

Fig. 13.2. True terrain, terrain estimate ÛGM , and ±2σGM bounds for a one-
dimensional terrain example with cart moving at 5 m/s
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Fig. 13.3. (Left) Terrain estimate measurement probability mass levels and number
of measurements assigned for one-dimensional terrain example. High probability mass
in this example indicates the presence of a vertical or near-vertical face. (Right) Ter-
rain estimate measurement probability mass level and total number of measurements
accumulated over time for terrain cell j = 50.

measurements are assigned to cells near j = 100, 155, and 170, which contain
near-vertical faces. Cells near j = 150 receive less measurements, in contrast,
because a portion of the ditch is occluded. A second feature of the terrain estima-
tion algorithm is that it estimates the sensed portions of the terrain accurately.
Figure 13.4 (left) shows the terrain estimate for grid cell j = 50 (on the flat
ground) as it evolves during the simulation. The estimate is observed to have no
information until t ≈ 5.85 seconds, when the first measurements are applied to
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Fig. 13.4. (Left): True terrain, terrain estimate ÛGM,j , ±2σGM,j bounds, and minimum
and maximum measurements accumulated over time for terrain cell j = 50 with vehicle
moving at 5 m/s. (Middle): The same quantities with vehicle moving at 0.5 m/s.
(Right): The same quantities with vehicle moving at 25 m/s.

this particular cell. From t ≈ 5.85 → 7.33 seconds, the rangefinder continues to
sweep over the cell, delivering new measurements to the terrain estimation algo-
rithm. During this time, the terrain estimate is refined, and the variance within
the cell fluctuates based on the quality of the measurements received. Because
the terrain is flat and the measurements are not particularly noisy, the variance
for this cell is dominated by the variances of the individual measurements as-
signed to it. Figure 13.3 (right) shows the level of probability mass

∑
pi of the

estimate of cell j = 50 as the simulation progresses. The approximately linear
increase in probability mass / time is characteristic of a rigid sensor mounting
and constant vehicle speed. A third point to note about the simulation is that
the estimation errors σGM are smaller for the top of the plateau than they are
for the bottom. This is a consequence of sensor geometry: the elements of the
Jacobian matrix in equation 13.27 that map sensor pitch error into vertical ter-
rain uncertainty are smaller when the true ranges r are smaller, which occurs for
taller terrain relative to the sensor. This particular point emphasizes the effects
of the statistical representation over ad hoc approaches, as it utilizes geometrical
relationships to improve estimation accuracy where appropriate.

The vertical face present in the terrain in cell j = 170 is also estimated ap-
propriately. Figure 13.2 shows that the estimated elevation of the cell is approxi-
mately half the elevation of the plateau, though the variance of the estimate near
these cells is quite large. In these cells, the variance is dominated by the spread
of the terrain measurements, which are taken all along the vertical face of the
plateau. In addition, the probability mass along the vertical face of the plateau
is significantly higher than at any other point in the simulation, as shown in
Figure 13.3 (left). This property is particularly useful for gathering information
about objects protruding from the natural ground plane.

As a point of reference, the terrain estimation algorithm is compared against
a näıve algorithm that simply reports the maximum and minimum elevation
measurement assigned to each cell. Note this näıve algorithm is effectively a
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Fig. 13.5. (Left): True terrain, terrain estimate ÛGM,j , ±2σGM,j bounds, and minimum
and maximum measurements near a simulated ditch with vehicle moving at 5 m/s.
(Middle): The same quantities with vehicle moving at 0.5 m/s. (Right): The same
quantities with vehicle moving at 25 m/s.

Fig. 13.6. (Left): True terrain, terrain estimate ÛGM,j , ±2σGM,j bounds, and minimum
and maximum measurements near a simulated wall with vehicle moving at 5 m/s.
(Middle): The same quantities with vehicle moving at 0.5 m/s. (Right): The same
quantities with vehicle moving at 25 m/s.

convolution using both a maximum and minimum operator over the same ranges
of cells considered by the statistical algorithm. The maximum and minimum
measurement lines for the näıve algorithm are plotted in dotted green in Figure
13.4(left) for terrain cell j = 50. For 5 m/s cart speeds and standard flat terrain
like cell j = 50, the näıve approach behaves similarly to the ±2σGM,j elevation
bounds. This supports the use of the terrain estimation algorithm for statements
of statistical confidence about the terrain. However, Figure 13.4 (left) shows
that the statistical algorithm requires fewer measurements to converge to its
final uncertainty σGM,j , because it considers each measurement as a statistical
quantity. The näıve approach, in general, requires larger sample sizes to establish
reasonable minimum and maximum elevation bounds.

A second simulation, performed on the same terrain but with a cart speed
of 0.5 m/s, is shown in Figure 13.4 (middle). In this simulation the cart moves
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much slower, so there are a larger number of measurements assigned to each
cell. Figure 13.4 (middle) shows that the terrain estimation algorithm makes use
of the extra data to generate smoother estimates and uncertainties. The näıve
algorithm produces worse terrain estimates with the extra data, however, as
its minimum and maximum estimates reflect the outliers in the sensed terrain
data. In this sense the minimum and maximum measurements in the näıve algo-
rithm diverge monotonically from each other, regardless of sensor measurement
statistics. The statistical algorithm, in contrast, provides a well-defined frame-
work for statements of statistical confidence about the terrain model.

A third simulation, performed on the same terrain with a vehicle speed of
25 m/s, is shown in Figure 13.4 (right). In this simulation the cart moves very
fast, so very few measurements are gathered in each cell. In this case the esti-
mates from the statistical terrain algorithm are not as smooth as they were in
the cases with more data. They do, however, still report uncertainties similar
to those reported in the previous examples. The output of the näıve algorithm
is not as stable as the amount of data changes. In Figure 13.4 (right), for ex-
ample, the näıve algorithm consistently reports bounds that are smaller than
the bounds reported in the previous two simulations. The statistical algorithm
generates accurate terrain uncertainties after only one measurement, while the
näıve algorithm consistently underestimates uncertainty. This simulation shows
the robustness of the statistical terrain estimation algorithm even with much
less data than in the other simulations. The näıve algorithm is much worse: it
produces optimistic estimates from a small number of measurements, and pes-
simistic estimates as more data is gathered.

Figures 13.5 and 13.6 show magnified views of the final terrain estimates near
the ditch and wall, respectively. These Figures support the robustness of the
terrain estimation algorithm in comparison to the näıve algorithm. In Figure
13.5, for example, the näıve algorithm blurs over the small ditch at each sim-
ulated cart speed. These estimates could be improved in the näıve algorithm
at slow speeds by only applying a measurement in its nominal cell. At faster
speeds this will reduce the näıve algorithm’s performance, however, due to the
decreased number of measurements in each cell. The statistical algorithm, which
uses association weights to form optimal estimates, suffers from neither of these
problems. The statistical terrain estimates remain accurate at all speeds, and
improve as the amount of data increases.

A similar comparison can be seen in Figure 13.6, which shows a magnified view
of the final terrain estimates near the wall. As before, the näıve algorithm grows
the boundaries of the wall due to its ad hoc method of applying measurements to
cells. Figure 13.6 (middle) shows the näıve algorithm counterintuitively produces
worse terrain estimates as the number of measurements increases, as it is sensitive
to outliers. Figure 13.6 (right) also confirms that the algorithm produces overly
optimistic estimates as the number of measurements decreases. The statistical
algorithm, in contrast, produces consistent estimates across all the simulated
cart speeds.
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13.4 Real World Application: A Moving Ground Vehicle
Equipped with Multiple Sensors

The terrain estimation algorithm described in section 13.2 is capable of generat-
ing and maintaining a terrain model with confidences in real-time. In this section,
the capabilities of the terrain estimation algorithm are applied to a more chal-
lenging and realistic problem: constructing and maintaining a real-time terrain
map using multiple sensors in a dynamical environment. In particular, this sec-
tion tests the algorithm on Cornell University’s 2005 DARPA Grand Challenge
autonomous ground vehicle (Team Cornell, 2005).

In the DARPA Grand Challenge and the National Qualifying Event, the ter-
rain estimation algorithm provided estimates to a path planner, which used
the terrain estimates to determine traversable areas of the course. In both the
Grand Challenge and the National Qualifying Event, the algorithm helped the
vehicle successfully distinguish traversable flat ground, speed bumps, and shal-
low inclines from intraversable features such as rocks, large vegetation, and tank
traps. Miller et al. (2006) discusses the method by which the terrain estimates
were used for autonomous path planning, which will not be addressed further
in this paper. In the present study, the Cornell vehicle is used as a means to
validate the terrain estimation algorithm against a known, surveyed landscape.
To begin, the Cornell vehicle is built upon a ‘Spider Light Strike Vehicle’ from
Singapore Technologies Kinetics, shown in Figure 13.7.

Fig. 13.7. The Spider Light Strike Vehicle used to test the terrain estimation algorithm

The Spider is equipped with a Trimble Ag252 GPS receiver and an inertial
navigation system for attitude and position determination, as well as three SICK
LMS 291 LIDARs for terrain estimation. All three LIDAR units are fixed to the
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Fig. 13.8. The Spider’s three laser rangefinders (LIDARs) and two-axis gimbal
platform

front hood of the Spider, as shown in Figure 13.7. The left and right LIDARs
are mounted rigidly and pitched to intersect the ground plane approximately 15
m and 20 m in front of the vehicle. The center LIDAR is mounted on a two-axis
gimbal, with yaw and pitch actuated by a pair of MAXON EPOS 70-4 rotary
motors and Harmonic Drive gear boxes. Figure 13.8 shows the Spider’s actuated
gimbal and LIDAR units.

All types of error discussed in section 13.2.1 are modeled in this experiment.
Individual LIDAR errors are modeled as ranging error with a typical accuracy of
±5 cm, and an angular error with coning angle of ±0.24◦ due to the expansion
of the detecting light pulse (LMS 200, LMS 211, LMS 220, LMS 221, LMS
291 Laser Measurement Systems Technical Description, 2003). These two error
sources affect terrain measurements differently: the range error yields uncertainty
in the sensing direction regardless of detection range, while the angular error
term yields higher uncertainty at longer ranges for this problem geometry. The
second type of error, sensor orientation error, is modeled as error up to ±0.7◦

on the yaw and pitch angles reported by the gimbal encoders. This term only
affects the gimbaled LIDAR; the two fixed LIDARs’ orientation parameters are
determined via offline calibration against the gimbaled LIDAR. The third and
fourth sources of sensing error are due to the attitude and position estimator.
Orientation errors of less than 0.2◦ and position errors of less than 0.2m are
common in this system, though the exact MSE matrices used are those reported
by the estimators in real-time.

The statistical analysis and Jacobian transformations discussed in section
13.2.1 are easily applied to the sensors on the Spider to model these four sources
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Fig. 13.9. Example sensor axes and ENU reference axes that determine the transfor-
mation from sensor to terrain measurements

of error. To begin, each raw LIDAR range measurement r is defined in its own
measurement axes:

r =

⎛
⎜⎜⎝

ρ · cos
(
θD
)

ρ · sin (θD)
0
1

⎞
⎟⎟⎠ (13.28)

where ρ is a scalar range reported by the LIDAR and θD is the reported de-
tection angle. In this measurement frame, the x-axis is chosen to point out the
front of the LIDAR, the z-axis is chosen perpendicular to the LIDAR detection
plane, and the y-axis completes the right-handed coordinate system. The origin
of the coordinate axis is the origin of the measurement: the point at which ρ = 0.
From here, the measurement is transformed into a terrain detection in the ENU
reference frame. These two coordinate axes are represented graphically in Fig-
ure 13.9. Mathematically, the transformations are performed using 12 separate
orientation parameters for each LIDAR:

1. LIDAR Euler angles Sψ, Sφ and Sθ with respect to the vehicle body.
2. LIDAR position elements Sx, Sy, and Sz with respect to the inertial navi-

gation system.
3. Vehicle Euler angles ψ, φ, and θ with respect to the ENU reference frame.
4. Vehicle position Ox, Oy, and Oz with respect to the ENU reference origin.

The vector p of sensor orientation parameters for this particular application
is therefore:

p = (Sψ Sφ Sθ Sx Sy Sz ψ φ θ Ox Oy Oz )T (13.29)

where all elements of this vector except for Sx, Sy, and Sz are modeled as
uncertain.

These parameters are used along with the raw range measurement from equa-
tion 13.28 to generate measurements and an associated mean square error (MSE)
matrix as described in section 13.2.1. All uncertain orientation parameters are
treated as corrupted with additive zero mean, Gaussian white noise. The maxi-
mum magnitude of each error source, discussed in the beginning of section 13.4,
is taken as its 3σ value. The exceptions are the attitude and position covari-
ance matrices, which are taken from the attitude and position estimator as the
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algorithm runs. The covariance matrices Qp and Qr for the experimental setup
are block diagonal:

Qp = diag
[
σ2

Sψ
, σ2

Sφ
, σ2

Sθ
, σ2

Sx , σ
2
Sy , σ

2
Sz , Pψφθ, Pxyz

]
Qr = diag

[
σ2

ρ, σ2
θD

]
(13.30)

where Pψφθ and Pxyz are the attitude and position MSE matrices reported by
the attitude and position estimators at the time each measurement is taken.

The remainder of the sensor fusion algorithm was implemented according to
sections 13.2.2 and 13.2.3. A list of algorithm steps is given below:

1. Obtain current encoder, attitude, and position measurements to construct p̂.
2. Obtain a scan line of raw measurements r̂i from a LIDAR.
3. Construct and cache the transformation and Jacobian matrices for the mea-

surements in the obtained scan line.
4. For each raw measurement r̂i:

• Calculate a terrain measurement estimate r̂ENUi and MSE matrix PENU

i us-
ing equations 13.5 and 13.6 and the cached transformation and Jacobian
matrices.

• For each cell (up to k) near the nominal measurement r̂ENUi :
– Calculate the association probability pi for this measurement in this

applied to the cell using equation 13.15.
– Calculate a posterior elevation measurement Ûi and variance σ2

Ûi
from

r̂ENUi for the cell, using equations 13.16 and 13.17.
– Fuse Ûi, σ2

Ûi
, and pi with existing measurements in the cell by updat-

ing the 4 numbers discussed in section 13.2.4 stored for the cell.
5. When elevation and uncertainty estimates are desired, calculate them using

equations 13.19 and 13.20.

For this particular implementation, grid cells were set to be 40 cm by 40 cm
squares. This cell size was motivated by the size of the Spider’s wheels and the
desired resolution of the landscape’s features (Miller et al., 2006). An arbitrary
latitude and longitude near the experiment were chosen as the reference ori-
gin. For simplicity, the nominal East - North location of each measurement was
rounded to the nearest cell center.

To ensure computational feasibility, measurements were applied to cells at
most 2 m from the nominal measurement location. This threshold was used
because the measurement MSE matrix PENU , when accounting for all sources
of error, yielded no significant effect in cells farther than 2 m from the nominal
measurement. In addition, a probability threshold of pi ≥ 10−4 was also enforced,
so measurements were applied only to cells in which they were likely to belong.
While this did not reduce the computational search space of this particular
implementation, it did tend to eliminate the effects of rare faulty measurements.

The entire terrain estimation algorithm was implemented on a commercial
four-processor server running Microsoft Windows Server 2003. Each processor in
the server was a 2.0 GHz AMD Opteron 846. Each of the three rangefinders was
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Fig. 13.10. Sample ÛGM + 2σGM elevation map resulting from the Spider’s sensor
fusion scheme

run on its own event-driven reader thread at the LIDARs’ scanning frequency
of 75 Hz. Data from each LIDARs was read across a 500 kbps serial connection.
LIDAR scans were queued for sequential fusion into the terrain map, so that a
full scan from each LIDAR was processed before moving on to the next. Each
LIDAR measurement was transformed to a terrain detection using all 12 LIDAR
orientation parameters. Transformation matrices common to a particular LIDAR
scan were computed once per scan and applied to all measurements in that scan.
Common components of the Jacobian matrices were also computed once per
scan. These optimizations enabled the Spider to process all 40725 measurements
per second delivered by the 3 LIDARs using less than 10% of a single processor’s
computing resources. These results suggest the algorithm could be run on a much
smaller processor, or scaled across a parallel architecture for a large number of
distributed sensors. The algorithm required storage space linear in the number
of cells: only 4 floating point numbers per cell. It could thus maintain many miles
of mapping regions in active memory. In contrast, a system retaining the same
measurements without a fusion scheme would require storage space of nearly
0.95 Mb per second.

Figure 13.10 shows a sample terrain model generated from the terrain estima-
tion algorithm as the Spider approaches several objects in an experimental run.
In this example, the ÛGM + 2σGM elevations from equations 13.19 and 13.20 (in
meters) are plotted relative to an arbitrary ENU origin selected near the test
site. These elevations are plotted across a color spectrum, and the axes in Figure
13.10 are to scale. Like the example in section 13.3, the algorithm generates valid
estimates and accurate confidence bounds. For example, the ÛGM elevations for
the cells near the 0.8 m tall trash cans are approximately 0.45 m higher than
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Fig. 13.11. (Left) Final ÛGM map near the two 0.8 m tall trash cans. (Right) Final
σGM map near the two 0.8 m tall trash cans.

surrounding cells, and the ÛGM elevations for the cells near the 0.46 m traffic
cones are approximately 0.25 meters. These lower elevation estimates reflect the
fact that the cells containing these objects also contain some exposed portions of
the ground plane. The uncertainties, however, are appropriately large for these
cells: σGM ≈ 0.35 m for the cells near the trash cans and σGM ≈ 0.17 m for the
cells near the traffic cones. Figure 13.11 shows the estimated elevation ÛGM and
estimation uncertainty σGM near the trash cans in greater detail.

Figure 13.12 (left), in contrast, shows the evolution of the terrain estimate for
one cell near one of the trash cans. Figure 13.12 (right) shows that during this
test, the Spider passes near the trash cans three times: once with the trash cans
in the periphery of the sensors’ footprints at t ≈ 2358 sec., and twice directly
between the two trash cans at t ≈ 2374 sec. and t ≈ 2395 sec. Figure 13.13 shows
vehicle speed and heading during the test. Notice that the average speed of 5.4
m/s is comparable to speeds at which a human drives, confirming the real-time
capabilities of the algorithm. Figure 13.12 (left, top) shows the total associa-
tion probability sum

∑
pi accumulated for the cell over time. Only points at

which the probability increases are included. Notice that most of the association
probability is assigned on the Spider’s first pass by the trash can, suggesting
that repeated passes by the trash can are not necessary for the algorithm to
generate accurate results in real-time. The bottom left subplot of Figure 13.12
shows the terrain elevation estimate ÛGM and the ±2σGM bounds for the same
cell. Note that the elevation estimate for the terrain is relative to an arbitrarily-
set ENU origin, not the ground plane, so the absolute elevation scale on the
vertical axis is non-intuitive. The variance in this particular cell is also much
higher than in surrounding cells, indicating the presence of variegated terrain
or obstacles in comparison with other nearby cells. The elevation estimate in
this cell also fluctuates over time as more measurements are applied to it: some
measurements, from the near-vertical face of the trash can, tend to increase the
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Fig. 13.12. (Left) Total association probability and ÛGM ± 2σGM bounds over time
for a particular terrain cell containing a portion of a trash can. (Right) Vehicle ground
track during real-time terrain experiment. The vehicle intersects the line connecting
the trash cans at t ≈ 2358 sec., t ≈ 2374 sec. and t ≈ 2395 sec.

elevation estimate upward. Others, from the surrounding flat ground, tend to de-
crease the elevation estimate. The effect of these different measurements is also
seen in the cell’s variance, which increases throughout the experiment. Finally,
notice that the elevation estimate changes most on the Spider’s first pass by the
trash can, and that subsequent passes do not cause a substantial increase in to-
tal association probability of measurements assigned to that cell. The algorithm
is therefore capable of producing accurate estimates in real-time, at reasonable
speeds, and without revisiting old terrain. Notice that the algorithm produces
relatively smooth and dense terrain estimates; this occurs because individual
sensor measurements are applied in more than one cell as per equation 13.18.
This smoothed and correlated terrain model arises naturally from the estimation
algorithm and the continuous posterior distribution of the errors in the sensors.
It contrasts sharply with other terrain estimation algorithms that make use of
multiple passes or recursion on the terrain estimate to smooth it out (Olin &
Tseng, 1991), (Arakawa & Krotkov, 1992), (Hähnel et al., 2004), (Weingarten &
Siegwart, 2005).

While this algorithm produces relatively consistent estimates, it does have
several drawbacks. First, it is not integrated with the attitude and position esti-
mator, so it is directly subject to incorrect attitude and position estimates. For
example, large discontinuous jumps resulting from update steps in an Extended
Kalman Filter produce ‘phantom’ walls and obstacles due to incorrectly-placed
LIDAR scans. These types of phantom walls can also arise from unmodeled
timing delays and inaccurate noise models, depending on the severity of the
modeling error. Figure 13.14 shows a sample phantom obstacle resulting from a
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Fig. 13.13. (Left) Vehicle speed during real-time terrain experiment. (Right) Vehicle
heading during real-time terrain experiment.

mismodeled noise source. This result was generated in a second driving exper-
iment in which the gimbaled LIDAR was set to a sinusoidal pitching pattern,
suggesting that mismodeled noise in the gimbal encoders may be the cause. In
general these anomalies can be fixed or minimized with the addition of more
accurate models of the offending sources of error. Error checks can also be per-
formed to determine whether entire LIDAR scans are likely to be faulty.

A second drawback of this and other terrain estimation schemes is that all
the sensors must be calibrated correctly. Such a task is particularly difficult with
LIDAR units mounted on a vehicle, as precise positions and orientation angles
are very difficult to measure. For this implementation, Cornell’s Grand Challenge
team used the Spider’s attitude and position estimator along with a section of flat
airplane runway to calibrate the gimbaled LIDAR with respect to the ground.
Then, the fixed LIDAR orientations were found in software through a greedy
search over their orientation angles by comparing their terrain estimates to those
produced by the gimbaled LIDAR (Russell & Norvig, 2003). This automatic
calibration technique produced terrain estimates consistent to within one or two
centimeters between the LIDAR units.

A final drawback of this terrain estimation scheme is the fact that only the
first two moments of each terrain cell are retained. As a result, the algorithm
can give misleading terrain estimates inside tunnels, or in cells in which there
are distinct clusters of elevations such as tree canopies. These arise because
the algorithm makes no attempt to characterize or classify macroscopic features
of the terrain, such as vegetation or terrain solidity, across multiple cells. One
alternative explored in the literature is the idea of expanding the terrain esti-
mate to a 3D set of binary obstacle / no-obstacle evidence grid cells (Martin
& Moravec, 1996). However, computational resources tend to limit the practi-
cality of such 3D grids. Furthermore, path searches through a 3D environment
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Fig. 13.14. ‘Phantom’ walls in the ÛGM + 2σGM map arising from high variance due
to incorrectly-modeled gimbal encoder noise

take large amounts of time, especially considering the vehicle is effectively con-
strained to the ground. The given approach instead attempts to concentrate on
representations that preserve the computational efficiency and searchability of
the 2D framework without sacrificing the richness of the representation.

13.5 Conclusions

This paper presents a real-time terrain mapping and estimation algorithm using
Gaussian sum height densities to model terrain variations in a planar gridded el-
evation model problem. Techniques for statistical analysis and estimation of each
individual sensor measurement are used to account for multiple sources of error
in the transformation from sensor measurements to terrain detections in a rigor-
ous manner. Linearization techniques are used to approximate the uncertainty
of each sensor measurement with a nominal measurement and a joint Gaussian
distribution in the physical East, North, and Up directions. Measurements are
associated to multiple locations in the elevation model using a Gaussian sum
conditional density to account for uncertainty in measured elevation as well as
uncertainty in the in-plane location of the measurement.

The accuracy and interpretation of the algorithm is evaluated using a simple
one-dimensional example with a hypothetical range sensor. Results show accu-
rate statistics as the vehicle traveled over a bump, ditch, large vertical face, and
plateau. Consistent statistical estimates were also verified across a range of vehi-
cle velocities. Straightforward use of minimum / maximum elevations measured
directly from the sensors produced comparatively inconsistent results, with de-
grading performance as the number of sensor measurements increased.
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The algorithm was demonstrated in a practical application of real-time map-
ping with multiple sensors on a platform moving at realistic speeds. The vehicle,
Cornell’s DARPA Grand Challenge entry, included multiple LIDAR sensors,
GPS, and attitude sensors. The algorithm was shown capable of producing sta-
tistically accurate and computationally feasible elevation estimates on dense ter-
rain models, as well as estimates of the errors in the terrain model. This type of
dense terrain map holds more information than traditional real-time mapping
approaches, and it has the potential to be useful in a number of autonomous or
remote mapping applications.
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Summary. This paper describes the implementation and testing of Alice, the Cal-
ifornia Institute of Technology’s entry in the 2005 DARPA Grand Challenge. Alice
utilizes a highly networked control system architecture to provide high performance,
autonomous driving in unknown environments. Innovations include a vehicle archi-
tecture designed for efficient testing in harsh environments, a highly sensory-driven
approach to fuse sensor data into speed maps used by real-time trajectory optimiza-
tion algorithms, health and contingency management algorithms to manage failures at
the component and system level, and a software logging and display environment that
enables rapid assessment of performance during testing. The system successfully com-
pleted several runs in the National Qualifying Event, but encountered a combination
of sensing and control issues in the Grand Challenge Event that led to a critical failure
after traversing approximately 8 miles.

14.1 Introduction

Team Caltech was formed in February of 2003 with the goal of designing a vehi-
cle that could compete in the 2004 DARPA Grand Challenge. Our 2004 vehicle,
Bob, completed the qualification course and traveled approximately 1.3 miles of
the 142-mile 2004 course. In 2004-05, Team Caltech developed a new vehicle to
participate in the 2005 DARPA Grand Challenge. Through a Caltech course in
multi-disciplinary project design, over 50 undergraduates participated in con-
ceiving, designing, implementing and testing our new vehicle, named “Alice”
(Figure 14.1). The team consisted of a broad range of students from different
disciplines and at different skill levels, working together to create a sophisti-
cated engineering system. The final race team completed the implementation
and optimization of the system over the summer as part of the Caltech Summer
Undergraduate Research Fellowship (SURF) program.

Alice’s design built on many standard techniques in robotics and control,
including state estimation using Kalman filters, sensor-based terrain estimation
and fusion, optimization-based planning through a “map” of the terrain, and
feedback control at multiple levels of abstraction. A novel aspect of the design

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 437–482, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 14.1. Caltech’s 2005 DARPA Grand Challenge Entry, Alice

compared with many robots built prior to the grand challenge was the high-
speed nature of the system: Alice was designed to travel through unstructured
environments at speeds of up to 15 m/s (35 mph) using multiple cameras and
LADARs across a network of high performance computers. The raw data rates
for Alice totaled approximately 350 Mb/s in its race configuration and plans
were computed at up to 10 Hz. This required careful attention to data flow
paths and processing distribution, as well as the use of a highly networked control
architecture. In addition, Alice was designed to operate in the presence of failures
of the sensing and planning systems, allowing a high level of fault tolerance.
Finally, Alice was designed to allow efficient testing, including the use of a street
legal platform, rapid transition between manual and autonomous driving and
detailed logging, visualization and playback capabilities.

This paper describes the overall system design for Alice and provides an analysis
of the system’s performance in desert testing, the national qualification event, and
the 2005 Grand Challenge race. We focus attention on three aspects of the system
that were particularly important to the system’s performance: high-speed sensor
fusion, real-time trajectorygeneration and tracking, and supervisory control.Data
and measurements are provided for a variety of subsystems to demonstrate the
capabilities of the component functions and the overall system.

Alice’s design built on many advances in robotics and control over the past
several decades. The use of optimization-based techniques for real-time trajec-
tory generation built on our previous experience in receding horizon control for
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motion control systems (Milam, 2003; Murray et al., 2003) and extended that
work to include efficient methods for cost evaluation along a terrain with some-
times sparse data (Kogan, 2005). Our sensor fusion architecture and the use
of speed maps built on work at JPL (Goldberg et al., 2002) and we benefited
greatly from the work of Dickmanns (Dickmanns, 2004). The supervisory control
architecture that we implemented also relied heavily on concepts developed at
JPL (Rasmussen, 2001).

The design approach for Alice was shaped by the lessons learned from fielding
a team for the 2004 Grand Challenge race, and by the shared experiences of
other teams in that event, notably the technical report published by the Red
Team (Urmson, 2005; Urmson et al., 2004) and the relative overall success of
path-centric versus behavior-based approaches.

The deliberative approaches to solving the Grand Challenge centered on build-
ing a grid-based or obstacle-based map of the environment, and performed a
search through that map for an optimal path. The field of finalists for the
2005 race partially reflected a convergence of system-level architectures to this
approach; 17 of the 23 team technical papers (including those from the five
vehicles that completed the course) describe various deliberative implementa-
tions (Defense Advanced Research Projects Agency, 2005).

Based on the technical papers, three teams (Axion, Virginia Tech’s Cliff, and
IVST) implemented a primarily behavior-based navigation architecture, and
Princeton University implemented a purely reactive architecture. These alter-
native approaches are a source of valuable experience and experimental data,
and might provide some insight into the relative merits of different approaches.

The description of Caltech’s approach proceeds as follows: Section 14.2 de-
scribes our system architecture, from the vehicle and associated hardware to the
software design. Section 14.3 details the specifics of the vehicle actuation and
trajectory-following controller. Our mapping and planning algorithms are ex-
plained in Sections 14.4 and 14.5, and our higher-level control and contingency
management is described in Section 14.6. Experimental results that illustrate
the performance of our system are presented in Section 14.7.

14.2 System Architecture

Caltech’s 2004 entry in the DARPA Grand Challenge utilized an arbiter based
planning architecture (similar to that in Rosenblatt (1998)) in which each terrain
sensor “voted” on a set of steering angles and speeds, based on the goodness
determined by those sensors. These votes were then combined by an arbiter,
resulting in a command-level fusion. This approach had advantages in terms of
development (each voter could be developed and tested independently), but it
was decided that this approach would not be able to handle complex situations
involving difficult combinations of obstacles and terrain Cremean (2006). Hence
a more sophisticated architecture was developed for the 2005 race, based on
optimization-based planning. In addition, a high level system specification was
used to guide the operation of each component in the system.
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14.2.1 System Specification

Team Caltech’s strategy for the race was embedded in its overall system specifi-
cation, which described the performance characteristics for Alice and the team’s
operations. This system specification was used to drive the specifications for
individual components. The final system specification contained the following
requirements:

• (S1) 175 mile (282 km) range, 10 hours driving, 36 hours elapsed (with
overnight shutdown and restart).

• (S2) Traverse 15 cm high (or deep) obstacles at 7 m/s, 30 cm obstacles at 1
m/s, 50 cm deep water (slowly), 30 cm deep sand and up to 15 deg slopes.
Detect and avoid situations that are worse than this.

• (S3) Operate in dusty conditions, dawn to dusk with up to 2 sensor failures.
• (S4) Average speed versus terrain type:

Terrain type Distance (%) Speed (mph) Expected Time (hr)
Min Max Min Max Exp mi %

Paved road 1 10 20 40 30 18 10% 0.6
Dirt road 40 60 10 40 25 132 75% 5.3
Trails 20 30 5 15 10 18 10% 1.8
Off-road 5 20 1 5 5 5 3% 1
Special n/a n/a 2 2 2 2 1% 1
Total 1 40 25 175 100% 9.7

• (S5) Safe operation that avoids irreparable damage, with variable safety factor.
• (S6) Safety driver w/ ability to immediately regain control of vehicle; 20 mph

crash w/out injury.
• (S7) Commercially available hardware and software; no government sup-

ported labor.
• (S8) $120K total equipment budget (excluding donations); labor based on

student enrollment in CS/EE/ME 75abc (multi-disciplinary systems engi-
neering course) and 24 full-time SURF students.

• (S9) Rapid development and testing: street capable, 15 minute/2 person
setup.

The speed versus terrain type specification (S4) was updated during the course
of development. Expected mileages by terrain type were updated from analyses
of the 2004 Grand Challenge course, and expected speeds were selected to find
a “sweet spot” that balances the trade-off between chance of completing the
course (whose trend generally decreases with increased speed, and favors lower
speeds) and minimizing completion time (which favors higher speeds).

One of the most important specifications was the ability to do rapid develop-
ment and testing (S9). This was chosen to to take advantage of being within a
few hours drive of desert testing areas: our goal was to test as much as possible
in race-like conditions. Our vehicle from the 2004 Grand Challenge, Bob, had to
be towed by trailer to and from test sites. We had also removed Bob’s steering
wheel, which meant that he had to be driven using a joystick. This added unnec-
essary complication and effort to the testing process. With Alice, the transition
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(a) (b)

Fig. 14.2. Vehicle features: (a) front differential, suspension, and front bumper/LADAR
mount and (b) the rear workstation area with server array visible (as viewed through the
rear doors)

from a human driving to autonomous testing only required the operator to in-
sert a single pin to engage the brake mechanism and then flip a few switches to
turn on the other actuators. This meant that we could transition from human
driving to an autonomous test in only 5 minutes. Alice also supports a comple-
ment of four connected but independent interior workstations for development
and testing, a vast improvement over Bob’s design.

14.2.2 Vehicle Selection

To help achieve ease of development, a Ford E350 van chassis was obtained and
modified for off-road use by Sportsmobile West of Fresno, CA. A diesel engine,
augmented by a 46-gallon fuel tank, was selected since it was well suited to the
conventional operating envelope of generally slow speeds and long idle times
during periods of debugging.

Sportsmobile’s conversion is primarily intended for a type of driving known as
rock-crawling: low-speed operation over very rough terrain. A four-wheel-drive
system distributes power through a geared transfer case (manufactured by Ad-
vanced Adapters, Inc.) and the suspension rests in deep compression, allowing
the unsprung components to drop very quickly over negative terrain discontinu-
ities (see Figure 14.2(a)). Another key suspension feature is the use of a reverse
shackle design in the implementation of the front leaf spring suspension. As op-
posed to traditional designs, the reverse shackle method places the extensible end
of the leaf spring toward the rear of the vehicle. This provides better tracking
at speed. The high-knuckle front axle design decreases minimum turning circle
by 6% to 45 feet in diameter.

The vehicle was purchased as a “stripped chassis,” which means that the
vehicle was bare behind the front seats. This allowed a custom interior design
that included a central enclosure for the server array and four racing seats, two
of which replaced the stock Ford captain’s chairs in the front of the cabin. A
removable table was placed in front of the two rear seats, and five terminals were
positioned throughout the vehicle: one for each seat and one at the side door,
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accessible from outside the vehicle. Figure 14.2(b) shows a view of the interior
of Alice from the rear. Thus equipped, the vehicle is capable of supporting three
developers and safety driver while mobile, or four developers while stationary.

The electrical system consists of a 3 kilowatt generator mounted to the rear
of the vehicle, producing 120 VAC. This power is directed to two 1500 watt
inverter/chargers. Power is passed through these inverters directly to the loads
without loss when the generator is running, with the remaining power being
diverted to charge the auxiliary battery bank. The battery bank consists of
four 12 volt marine gel cell batteries rated at 210 amp-hours each, positioned
beneath the floor at the rear of the vehicle to keep the center of gravity low.
Power from the charged gel cell batteries is diverted back through the inverters to
power AC loads when the generator is not functioning, or to the 12 volt systems
powering the LADARs, IMU, GPS and actuators. The power system was tested
and verified to operate in high-shock, high-vibration environments for up to 22
hours between generator refuelings.

14.2.3 Computing and Networking

One of the initial specifications for Team Caltech’s second vehicle was to be
able to survive the failure of one or more computers. The design of the vehicle
computing and networking systems was developed based on this specification,
even though this functionality was not implemented during the race (due to
shortness of time and the strong reliability of the hardware in testing).

The computing platform consisted of 6 Dell PowerEdge 750 servers with 3
GHz, Pentium 4 processors and a single IBM eServer 326 with dual 2.2 GHz dual-
core AMD 64 processors. All machines were configured to run Linux; the Gentoo
distribution (Vermeulen et al., 2005) was selected based on performance testing
early in the system design. Each machine had two 1 Gb/s Ethernet interfaces,
although only one interface is used in the race configuration. Originally a serial
device server was used to allow any machine to talk to any actuator (all of which
had serial interfaces), but the serial device server had reliability problems and
was eventually removed from the system. A wireless bridge and wireless access
point were also used in the system during testing to allow remote access to the
vehicle network.

To allow software components to communicate in a machine-independent fash-
ion, a custom messaging and module management system called “Skynet” was
developed. Skynet was specified to provide inter-computer communication be-
tween programs on different computers or on the same computer completely
transparently. The code run on Alice is therefore broken down into discrete func-
tional modules, each derived from a Skynet class to allow Skynet to start and
stop modules. This is required because Skynet was also designed be able to start,
stop, and redistribute modules between computers based on computational re-
sources available, assuming hardware failures of any type were possible. Skynet’s
communication capabilities are built on top of the Spread group communication
toolkit (Amir et al., 2004).
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In the race configuration, the ability to redistribute and run modules on dif-
ferent computers was not implemented and module restart was accomplished
using runlevel functionality provided by Linux (Vermeulen et al., 2005). A cus-
tom runlevel was created to put each computer into race-ready mode upon entry,
by running a series of scripts to start the modules appropriate for each machine.
Should a given module exit or die for any reason, it is immediately restarted
using the respawn setting in /etc/inittab. Paired with other scripts for recom-
piling and distributing our modules and configuration files, this proved to be
an extremely efficient way of upgrading software and switching to autonomous
operations during development and testing.

14.2.4 Software Architecture

A diagram of our general system architecture is shown in Figure 14.3. Environ-
mental sensors (stereo vision and LADAR) are used to create an elevation map
of the terrain around the vehicle. Our range sensor suite consisted of multiple
LADAR units and stereo camera pairs. The data from these sensors, in combi-
nation with our state estimate, creates an elevation map in the global reference
frame. The elevation map consists of a grid of cells, centered on the vehicle,
where the value of each cell corresponded to the elevation of that cell. The map
moves along with the vehicle, so as cells move some distance behind us, new cells
are created in front of the vehicle.

Fig. 14.3. Overall System Architecture for Alice

This elevation map is then converted into a cost map by considering aspects
such as elevation gradient, quality of data in that cell, etc. The cost map es-
tablishes a speed limit for each location in the terrain around the vehicle. In
addition to terrain data, the speed limits set in the Route Definition Data File
(RDDF) and information from road finding algorithms (Rasmussen and Korah,
2005) are integrated at this point. The speed limit-based cost map allows the
vehicle to traverse rough sections of the terrain (slowly) and insures that the
vehicle attempts to make forward progress unless there was an insurmountable
obstacle (speed = 0) in its path. The elevation and cost mapping algorithms are
discussed in more detail in Section 14.4.
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Once the cost map is generated, it was passed onto the planner where a time-
optimal path is created that satisfies vehicle and map speed constraints (Kogan,
2005). This path is sent onto the path follower, which in turn computes and sends
appropriate actuation commands (brake, throttle, and steering) to the vehicle
actuation system. The vehicle control systems are discussed in Section 14.3 and
the path planning algorithm is discussed in Section 14.5.

The supervisory control module serves to detect and manage higher-level sys-
tem faults that other individual modules cannot. This includes scenarios such
as losing and reacquiring GPS, and being stuck on an undetected obstacle. The
supervisory control module is also responsible for maintaining forward progress
in unusual conditions, such as the case of running up against barbed wire (the
failure mode for Team Caltech’s 2004 entry). This system is described in more
detail in Section 14.6.

14.3 Control System Design

The lowest level of the vehicle control system consists of the vehicle’s actuation
system, its state sensing hardware and software, and the trajectory tracking
algorithms. Like many teams in the Grand Challenge, these systems were custom
designed based on commercially available hardware. This section describes the
design decisions and implementation of the control system for Alice.

14.3.1 Vehicle Actuation Systems

There are five components critical to the control and operation of any vehicle:
steering, acceleration control (throttle), deceleration control (braking), engine
start and stop (ignition) and gear change (transmission). Two auxiliary compo-
nents, emergency stop and on-board diagnostics round out the control interfaces
in use on Alice. Team Caltech developed actuators and interfaces to meet each
of the aforementioned needs. Each actuator was designed with safety and per-
formance in mind. To this end, in the case of electrical, mechanical or software
failure, critical actuation subsystems automatically bring the vehicle to a quick
stop without needing external commands. To achieve the desired overall perfor-
mance, each actuator is designed by specification to be able to react at least as
fast as a human driver.

Each actuator uses its own RS-232 serial interface to communicate with the
computing system. The original specification required the ability to survive one
or more computer failures which dictated that any actuator had to be available
to at least two computers at any time. This led to the use of an Ethernet enabled
serial device server. However, through testing it was determined the mean time
between failures for the serial device server was shorter than other components
in the actuator communication chain. As a result the specification was dropped
and direct serial connections were made to the computers.

Each actuation subsystem is controlled through individual switches accessible
to a safety driver sitting in the driver’s seat (Figure 14.4(a)). This configuration
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(a) (b)

Fig. 14.4. Vehicle actuation systems: (a) dashboard controls and (b) pneumatic brak-
ing system

allows a great deal of flexibility in testing, including allowing the safety driver
to control some functionality of the system while the software controlled other
functions. The dashboard controls are also used to allow the safety driver to take
over control of the vehicle during testing.

Steering Actuator. The steering system used on Alice was originally developed
for Bob and used during the 2004 Grand Challenge. It was adapted and improved
for use in the 2005 competition and proved to be a highly reliable component.
The basis of this system is a Parker-Hannefin 340 volt servo motor and a GV-
6UE controller interfaced to the computing cluster via RS-232. This servo-motor
is capable of providing 8 Nm of torque while moving and up to 14 Nm stall
torque. Attached to this motor is a 3:1 single stage planetary gearbox which
is attached to the steering column by means of steel chain providing a further
1.8:1 reduction. The result is a system capable of providing a continuous torque
of more than 40 Nm to the steering column, which is sufficient to turn the wheels
should the power steering system of the vehicle fail. The variable speed motor is
tuned to allow the wheels to traverse from one end of travel limit to the other in
approximately 1.5 seconds, which is slightly faster than is possible for a human.
Higher speeds were tested, but despite the reduced delay, they were found to
contribute to an overly aggressive behavior in the vehicle control system, as well
as causing heavier wear on all components.

Brake Actuator. Following Team Caltech’s less than satisfactory experience
with electrical linear actuators for braking in the 2004 Grand Challenge, a pneu-
matic actuation system was chosen for use this year. This choice provided a
faster response while still providing enough force to bring the vehicle to a com-
plete stop. The five piston mechanical portion of the actuator was designed and
implemented by Chris Pederson of competing team A. I. Motorvators. As shown
in Figure 14.4(b), the actuator consists of five pistons of incrementally increas-
ing bore arrayed in parallel with their piston rods acting in tension attached
to a single pivot point. A one-to-one ratio pivot positioned beneath the driver’s
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seat changes the retracting motion of the pistons to a compressive motion ap-
plied to the brake pedal by means of a removable pushrod. Four primary pistons
are used for articulate control of braking pressure during autonomous operation.
Each piston may be applied and released independently by means of 5 volt active
solenoid control valves, each of which is in turn controlled by solid-state relays
linked to an Atmel AVR microprocessor, interfaced to the control computer. In
case of electrical or air compressor failure, the fifth cylinder is automatically de-
ployed using a separate air reserve. The entire system runs on 70 psi compressed
air provided by two 2.4 cfm, 12 volt air compressors. Air is compressed, piped
to a reservoir, and then distributed to the brake and sensor cleaning systems. A
pressure switch located at the main manifold will close and deploy the reserve
piston if the main air system pressure falls below a safe level.

Throttle Actuation. Caltech’s 2005 E-350 van shipped with a 6.0L Power-
stroke diesel engine that is entirely electronically controlled, including control of
engine acceleration, referred to here as “throttle”. The accelerator pedal in this
vehicle is simply an electrical interface to the Powertrain Control Module (PCM),
which is the Ford vehicle computer. Using specifications provided by engineers
from Ford, an interface was designed that closely approximates the response of
the accelerator pedal. Using a microcontroller and digital to analog converters,
the accelerator pedal was replaced with an effective interface that was controlled
via RS-232. The stock pedal was left in the vehicle, and can be used by flipping a
switch to disable the aftermarket actuator. Unfortunately, the throttle actuation
solution was not perfect. The PCM requires that three sampled input lines agree
to within 2.1% otherwise an error condition is declared. In this case the PCM
puts the vehicle into a mode called “Limited Operating System” which restricts
the engine to idle. The only method to clear the LOS condition is to restart
the engine, which requires ignition actuation. Despite these minor problems, the
throttle actuation performed admirably, exhibiting no measurable delay between
command and actuation, as well as a high degree of operational robustness.

Ignition and Transmission Actuation. Ignition and transmission actuation,
while two completely separate sub-systems on the vehicle, were bundled together
in one actuator controller out of convenience, as neither required high commu-
nication bandwidth nor was processing intensive for a microcontroller. Ignition
control was achieved through the use of three 50 amp solid state relays to control
three circuits: powered in run, powered in start, or powered in run and start. The
ignition actuator as developed is tri-state: Off, Run or Start. The vehicle pro-
tects the ignition system so that the starter motor cannot operate if the engine
is already running, and so that the engine cannot be started unless the vehicle
is in park or neutral.

Transmission actuation was achieved through the use of an electronic linear
actuator connected to the transmission by means of a push-pull cable. A four
position controller was used to provide automated shifting into Park, Reverse,
Neutral or Drive. The ignition and transmission can also be controlled by a hu-
man in one of two ways. Included in the actuator design is a control box that
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allows the human driver to take control and operate the vehicle by means of
a push-button ignition system and a multi-position switch knob for transmis-
sion control. Alternatively each can be controlled manually after disabling the
actuators.

On Board Diagnostics. To gather additional real-time data about the vehicle’s
performance, Alice’s CAN bus was accessed using a commercial OBD II reader.
Data values such as wheel speed, throttle position, transmission position, and en-
gine torque are gathered to providemore information for contingency management
and state estimation. However the data had a large amount of latency due to poor
interfaces, with overhead on the order of 10 times the data throughput. To allevi-
ate the bandwidth limitations, asymmetric polling methods are implemented. By
prioritizing how often data fields are polled, performance was increased from 0.5
Hz updates to 2 Hz for the time critical value of vehicle speed, which is still signif-
icantly less than the desired 10 Hz. Data rates for other fields have been decreased
to as slow as once every 8 seconds for the lowest priority information.

Emergency Stop. Critical to the safety of operators and observers is a method
to stop the vehicle when it is autonomous. DARPA provided the basis for this re-
mote safety system in the form of an “E-Stop” system consisting of a transmitter-
receiver pair manufactured by Omnitech Robotics. Using a 900 MHz transmitter,
an operator outside the vehicle and up to 11 miles (line of sight) away can send
one of three commands: RUN, PAUSE, or DISABLE. RUN allows normal opera-
tion of the vehicle, PAUSE brings the vehicle to a full and complete stop with all
components still functioning, and DISABLE powers down the throttle, turns off
the engine, and deploys full braking pressure. The receiver inside the vehicle is
connected to a microcontroller interfaced to the computing cluster. This device
also takes input from several PAUSE and DISABLE switches located throughout
the vehicle, and then passes the most restrictive state to the vehicle interface,
called Adrive, which is described in the next section. This system is built with
many failsafes to ensure safe operation over a variety of failure modes, including
loss of power and communication. The emergency stop system is designed so
that even in the event of a full computing system or failure, the vehicle can be
remotely brought to a safe stop.

14.3.2 Vehicle Interface

A software module, called Adrive, was specified to provide an abstracted network
interface between all the vehicle actuators and computer control. The primary
role for the module was to listen for commands on the network then execute them
within 50 ms. The second role was to report regularly each actuator’s current
state (status and position). And a third role of the abstraction was to protect
the vehicle from being damaged by control logic or system failures.

All the current state data as well as configuration settings were contained
in a hierarchical data structure. Adrive used a multi-threaded design to allow
multiple interrupt driven tasks, such as serial communication, to operate con-
currently. For optimal performance the command threads would only execute
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on new commands when the actuator is ready, instead of queuing commands.
This allows subsequent commands to have less lag. The maximum delay of the
caching system is only

Max Delay = 1/factuator + 1/fcommand,

versus the minimum possible delay

Optimal Delay = 1/factuator,

where factuator is the frequency of the actuator update and fcommand is the
frequency of the incoming command. So as long as fcommand is much larger than
factuator this approach approximates optimal.

Within Adrive, two levels of fault tolerance were implemented. At the com-
mand level every incoming command was run through a set of rules to determine
if the command was safe to execute. For example, when the vehicle is in park
and command is received to accelerate, the command will not be executed. In
addition to physical protection these low level of rules also encompassed the
procedures for PAUSE and DISABLE conditions.

At the actuator level there was a supervisory thread which periodically checks
each of the actuators for reported errors or failure to meet performance speci-
fications. If the error occurred on a critical system the supervisory thread will
automatically PAUSE the vehicle and attempt to recover the failed subsystem.
This can be seen in the case where the engine stalls. The OBD-II will report the
engine RPM is below a threshold. The supervisory thread will detect the low
RPM as below acceptable and put the vehicle into PAUSE mode, which imme-
diately stops the vehicle. The command will then be sent to restart the engine.
When the OBD-II reports the RPM above the threshold the PAUSE condition
will be removed and operation will return to normal.

The use of Adrive to abstract simultaneous communication between multiple
software modules and multiple actuators worked well. The computer resources
required are usually less than 1% CPU usage and required less 4MB of memory.
Response times range from 10 ms to 100 ms. However the maximum bandwidth
of approximately 10 Hz is limited by the serial communications. The final struc-
ture proved to be a relatively adaptable and scalable architecture to allow many
asynchronous control interfaces accessible to multiple processes across a network.

14.3.3 State Sensing

The estimate of vehicle state (X) is made up of the vehicle’s global position
(northing, easting, altitude), orientation (roll, pitch, yaw), both the first and
second derivatives of these values, as well as the precise time-stamp for when
this measurement was valid. The requirements and specifications of tolerances
for planning, trajectory tracking and sensor fusion dictate how timely and accu-
rate estimation of Alice’s state needs to be. The main specification we believed
necessary for “safe driving” was to be able to detect a 20 cm obstacle at 80 m.
Doing so requires our system to estimate the terrain with no more than 10 cm of
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relative error over 80 m of travel, and orientation estimates accurate to within
0.001 radians (based on the approximation arctan(0.1/80) ≈ 0.001).

We chose to approach the state estimation problem by combining the outputs
of an inertial measurement unit (IMU), global positioning system (GPS), and
on-board velocity measurement (OBD II). The output of the IMU (Zimu) is
integrated forward from the current position estimate according to the standard
inertial navigation equations:

X imu
t+1 = Nav(Xt, Z

imu
t+1 ).

Unfortunately, while the IMU provides smooth relative position that is accurate
over a short time, errors in the initial estimate, IMU biases, and scale factors
lead to a solution that drifts from the true position quadratically.

A measurement of the true position or velocity (Ztrue) can be read directly
from the GPS unit or OBD II system. In the case of OBD II velocity, time
delays are such that only the stationary condition is used, still allowing us to
eliminate drift when stationary, even in the absence of a GPS signal. By taking
the difference between our IMU and GPS or OBD II based state estimates, we
arrive at a measurement of our error (ΔX):

ZΔX
t = X imu

t − Ztrue
t .

We then use an extended Kalman filter to estimate ΔX , using the self-reported
covariance of the GPS measurement as the covariance of ZΔX . ΔX is propagated
forward in time according to a linearization of the equations of motion being inte-
grated in the inertial solution, and an estimate of the errors in the IMU readings.
Corrections are then applied to the true state estimate by subtracting these esti-
mated errors from the inertial solution, effectively zeroing out the error values:

Xt = X imu
t − ΔXt

ΔXt = 0.

An additional constraint largely influencing the construction of the state es-
timator was the fact that our maps are built in a global reference frame. The
problem is that previous state errors are cemented into the regions of the map
where we are not getting new terrain measurements. This has large ramifications
on correcting position errors, since updating our state to the correct location cre-
ates a jump discontinuity, which in turn creates a sharp, spurious ridge in the
map. As such, there was a trade-off to be made between reporting the most
accurate state at a given time, and the most “useful” estimate of state from the
point of view of the other modules.

We took two approaches to solving this problem. One solution is to smooth the
applied corrections. Rather than applying a correction all at once, a fraction of
the correction is applied at each time step, leading to a smoothed out exponential
decay in error rather than a sharp discontinuity:

Xt = X imu
t − cΔXt

ΔXt = (1 − c)ΔXt.
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Fig. 14.5. Vehicle state estimate: (a) smoothing of small GPS signal and (b) sample
GPS “jump”: the trace shows the estimated vehicle state, with a correction while the
vehicle is stopped (from second NQE run, just after the tunnel)

For small jump-discontinuities this is sufficient to avoid problems with disconti-
nuities, but increases the amount of tracking error, as shown in Figure 14.5(a).

However, occasionally, when new GPS satellites are picked up or lost (such
as when going through a tunnel, or under power-lines), the GPS reading itself
can jump by many meters. To deal with this problem we pre-process the GPS
data to determine when it is “safe” to incorporate new measurements. As long as
the effective jump is below a threshold, GPS data can be continuously applied,
making small corrections and keeping the state estimate from ever drifting. If
the GPS jumps by a large enough amount (2 meters in the race configuration),
we temporarily ignore it, assuming it is more likely a glitch in GPS. During
this time, however, the covariance in positional error begins to grow. If the
covariance crosses an empirically determined threshold, we deem it necessary to
start incorporating GPS measurements again, and bring the vehicle to a pause
while we apply the new corrections. The vehicle is allowed to return to forward
motion when the state estimator indicates that the estimate has converged, as
determined by looking at the magnitude of the differences between subsequent
state estimates. Because of the use of a global representation for the cost map
(and hence the implicit location of obstacles), the elevation and cost maps for
the system are cleared at this point. This “jump” functionality is implemented
through the use of a supervisory control strategy as described in Section 14.6.
A sample state jump is shown in Figure 14.5(b).

14.3.4 Trajectory Tracking

The design specification for the trajectory tracking algorithm is to receive a
trajectory from a planning module and output appropriate actuator commands
to keep Alice on this trajectory. The inputs to the algorithm are the current state
of the vehicle (position and orientation, along with first and second derivatives)
and the desired trajectory (specified in northing and easting coordinates, with
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their first and second derivatives). From these inputs, the algorithm outputs
steering and brake/throttle commands to Adrive. Goals for accuracy were +0/-
10% for velocity tracking, and ±20 cm perpendicular y-error at 5 m/s, with
larger errors allowable at higher speeds. These performance criteria needed to
be met on any terrain type found in the system specifications, at speeds up to
15 m/s.

System Characterization. Before designing the controller, it was necessary
to characterize the open-loop dynamics of the system. With this characteriza-
tion, a mapping from actuator positions to accelerations was obtained. They
showed that Alice understeers, and allowed the determination of safe steering
commands at various speeds, such that the vehicle would remain in the linear
response region. In this region, the feedforward term will be reasonable, and pos-
sibly dangerous roll angles/sliding are avoided. Additionally, system delays were
determined by examination of the time between commands leaving this module
and the resulting vehicular accelerations.

Control Law Design. Although not entirely independent, the lateral and lon-
gitudinal controllers are treated separately in the system design. Longitudinal
(throttle and brake) control is executed by a feedback PID loop around error in
speed plus a feedforward term based on a time-averaged vehicle pitch, to reduce
steady-state error when traveling up or down hills.

The trajectories received as input to the trajectory follower encoded first
and second derivative data as well as geometry of the path, so that desired
velocity and acceleration are encoded. For the longitudinal controller, we decided
not to use a feedforward term associated with acceleration based on the input
trajectory. This was determined by experience, as there were occasions where
the feedforward term would overpower the feedback, and simultaneous tracking
of speed and acceleration was not achievable. For example, the vehicle might
not correct error associated with going slower than the trajectory speed if the
trajectory was slowing down.

The lateral control loop includes a feedforward term calculated from curvature
of the path along with a PID loop around a combined error term.

The error for the lateral PID is a combination of heading and lateral errors:

Cerr = αỸerr + (1 − α)θerr,

where Ỹerr is the lateral position error (saturated at some maximum value Ymax),
θerr is the heading error and β is a scale factor. This form was motivated by a
desire to obtain stability at any distance from the path. Using this error term, the
(continuous) vector field in the neighborhood of a desired path will be tangent to
the path as Yerr → 0 and will head directly toward the path at distances greater
than Ymax away from the path.

Note that the use of this error term requires an accurate estimate of the vehicle
heading. Systematic biases in this estimate will result in steady-state error from
the desired path.
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The lateral feedforward term is generated by determining the curvature re-
quired by the input trajectory, and applying the mapping for steering position
to curvature, which yields

φFF = arctan

(
L

ṄË − ĖN̈

(Ṅ + Ė)
3
2

)
, (14.1)

where N is the northing position, E is the easting position and L is the distance
between front and rear wheels. For this calculation, it is assumed that Alice
behaves as described by the bicycle model (McRuer, 1975).

To avoid oscillations, an integral reset was incorporated in both the lateral
and longitudinal controllers, when the relevant error was below some acceptable
threshold. In testing, the lateral integral term rarely built up to any significant
amount, since performance of the system maintained modest errors comparable
to the threshold. For the longitudinal controller, resetting helped to alleviate the
overshoot associated with transferring from hilly to flat ground.

To compensate for system delays, a lookahead term was added. This chose
the point on the trajectory that lateral feedforward and longitudinal feedback
would be computed from.

System Interfacing. Many of the difficulties in implementing the tracking con-
troller were due not to the actual control algorithm but to interface issues with the
trajectory planner and the state estimation software. The controller is relatively
simple, but has to make certain assumptions about the data and commands it is
receiving from the other modules. Working out these interfaces made the most dif-
ference in performance. The trajectory tracking module (trajFollower) interfaced
with three other modules: the trajectory planner (plannerModule), the state esti-
mator (Astate) and the software that directly controlled the actuators (Adrive).

Since the planner has no concept of the actual topography of the area, a
feasibility evaluator was implemented to check final commands against vehicle
state. This is broken down into two components: a “bumpiness” sensor (DBS)
and a dynamic feasibility estimator (DFE). The DBS algorithm analyzes the
frequency components of the state signal to determine how rough the road is,
and adjusts the reference velocity accordingly. In testing on dirt trails, this com-
ponent choose speed limits comparable to a human’s judgment (within 1 m/s).
The DFE algorithm places hard limits on safe steering angles, dependent on our
speed. These limits were chosen based on where Alice began to understeer.

In the final implementation, the quality of the state estimate provides the most
variability in trajectory following performance. Small jumps in state are detrimen-
tal to stability, as they lead to an immediate jump in proportional error, and thus
steering command. More problematic are the intermittent difficulties with poor
heading estimates, which lead to constant y errors in tracking the trajectory.

The interface between the planner and trajectory following has to make as-
sumptions about how aggressive trajectories may be and what type of continuity
they possess. Obviously, the sequential plans need to be continuous for the con-
troller to be stable. However, this leaves open the question of what they are
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continuous with respect to. Initially the plans originated from the current vehi-
cle state, but this led to oscillations due to the similarity of the rates between
the two loops (and the consequent phase delays in the loop transfer function).
Instead, the final race configuration used the planner to update plans based on
new terrain, and information continuity was then established with the initial
portion of the previous trajectory, both in space and in time. One side effect
of this approach is that it is possible for situations to occur where the vehicle
physically cannot do what is commanded. To handle these cases, it is necessary
for the planner to reset and replan from vehicle state whenever thresholds for
position or velocity errors are exceeded.

Tracking Performance. Figure 14.6 shows representative results of the perfor-
mance of the trajectory tracking algorithms for longitudinal and lateral motion.
The algorithm was tested extensively prior to the qualification event and demon-
strated excellent performance in testing and during the multiple qualifying event
runs.
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Fig. 14.6. Trajectory tracking results: (a) longitudinal control and (b) lateral control.
The resetting of the error at the end of the trajectory is due to the planner replanning
from current vehicle state when the vehicle was externally paused.

14.4 Sensing and Fusion

Alice uses a sensor suite of an IMU, GPS, range sensors and monocular vision to
perceive its own state and that of the environment around it (see Table 14.1 for
the full list). Obstacle detection is performed using a combination of several SICK
and Riegl LADAR units, as well as two pairs of stereovision cameras. Figure 14.7
shows Alice’s sensor coverage. This combination of disparate sensors was chosen
to allow Alice to be robust to different environments as well as to multiple sensor
failures—a critical requirement in our specification for autonomous desert driving.

To accurately navigate through its environment, it is necessary to provide
Alice with a method of fusing the sensor data from its range sensors into a single
representation of its environment that can capture information concerning both
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Table 14.1. Sensors used on Alice

Fig. 14.7. Alice’s sensor coverage. Black dotted lines indicate the intersection of
LADAR scan planes with the ground, the shorter, wider cone indicates ground covered
by the short-range stereovision pair, and the longer, narrower cone indicates coverage
by the long-range stereovision pair. The box to the left is Alice, for scale.
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Fig. 14.8. The sensor fusion framework

where it would be safest and fastest for it to drive. The decision of what sort
of representation to use was driven primarily by the requirements of the path-
planning software: it expected as its input a speed limit map, where each cell
in the map contained a maximum speed intended to limit the speed at which
the vehicle could drive through that cell. The problem of sensor fusion is thus
naturally broken down into two sub-problems: how the incoming sensor data
should be fused, and how the speed limit data should be generated from the raw
sensor data. The resulting algorithm involves three basic steps (Figure 14.8):

1. For every range sensor, incoming data is transformed into global coordinates
(UTM for x and y, and altitude in meters for z) using the vehicle’s state
estimate, and then averaged into the map along with any existing data from
that sensor. This creates several individual elevation maps (one per sensor).

2. For every elevation map, a conversion is performed to transform the elevation
data into speed limit data, based on a set of heuristic measures of goodness.

3. Matching cells from all of the speed limit maps are averaged together to
produce a single speed limit map, which is passed to the path-planning soft-
ware.

A more detailed description of each stage of the process, as well as an analysis
of some of the strengths and weaknesses of our approach, is given below.

14.4.1 Map Data Structure

The map data structure we use is a simple 2.5D grid with fixed cell length and
width (40 cm per side for short-range sensors, 80cm for long-range sensors),
as well as fixed overall map length and width (200 m per side for all sensors).
The map is referenced using global coordinates (UTM coordinates for x and y,
altitude for z), and is scrolled along with the vehicle’s movement such that the
vehicle always remained at the center of the map. The data structure of the map
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itself was made flexible, so that cells could contain whatever information was
deemed necessary.

The first step of the sensor fusion algorithm is to use the incoming range data,
as well as the vehicle’s state estimate, to create an individual digital elevation
map (DEM) for each sensor. After performing the appropriate coordinate trans-
form on the range data, a simple averaging approach is used to integrate new
measurements with old ones, using the equation:

zij ← (zij + zm)/(nij + 1)
nij ← nij + 1,

(14.2)

where zij corresponds to the estimate of the height of a given cell in the grid, nij

is a count of the number of measurements that fall into the cell i, j, and zm is a
new height measurement for that cell. Due to time constraints, we were not able
to take into account error models of either the range sensors or the state estimates
when creating our elevation maps. This is one of the reasons we chose to perform
sensor fusion in the speed limit domain: it dramatically reduced the sensitivity
of the system to cross-calibration errors in the range sensors. Measurements are
fused by the system as they come in, and after each scan (or frame) the resulting
changes are sent on to the next stage of the algorithm.

14.4.1.1 Elevation to Speed Limit Conversion
In the next stage of the algorithm, the system needs to convert elevation data
into speed limit data. We use two independent measures for this task. The first
measure is the variance in elevation of the cell: the larger the variance, the larger
the spread in elevation measurements that fall into that cell, the more likely that
cell contains some sort of vertical obstacle, and thus the more dangerous the cell
is to drive through. If the variance is greater than a certain threshold, the cell
is identified as an obstacle, and the speed limit s1 of that cell is set to zero.1

Otherwise, the speed limit is set to some maximum value. Thus the variance
acts as a very rough binary obstacle detector, able to detect obstacles that are
completely contained within a single cell (e.g., a fence post, which is thinner
than a cell width or length, but certainly tall enough to pose a danger to the
vehicle).

The second measure we use for determining the speed limit of a cell is a
discrete low-pass filter over a window surrounding that cell. The precise equation
for the low-pass filter for a cell at row r and column c is

l(r, c) =
1
n

K∑
i=−K

i
=0

K∑
j=−K

j 
=0

|(zr+i,c+j − zr,c) ∗ Gi,j(σ)| (14.3)

where K is the half-width of the window (e.g., the window has 2K + 1 cells per
side), zr,c is the elevation of the cell at row r and column c, n is the number of cells
1 In fact, a small non-zero value is used to avoid numerical difficulties in the path

planner.
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used within the window (at most (2K+1)2), and Gi,j(σ) corresponds to the value
at cell i, j of a discrete Gaussian centered at the origin with standard deviation
σ. In essence then, the filter acts as a Gaussian weighted average of the difference
in height between the central cell and its neighbors within the window described
by K. Of course, not all of the neighboring cells necessarily have an elevation
estimate. For example, a large obstacle may cast a range shadow, blocking the
sensor from making measurements behind the obstacle. When such a cell is
encountered in the sum, it is discarded and n is reduced by one. Thus we have
n = (2K + 1)2 − 1 − m, where m is the number of cells without elevation data
inside the window. Additionally, if n is smaller than some threshold, then the
output of the filter is not computed, based on the principle that the system did
not have enough information about the neighborhood surrounding the center
cell to make a reasonable estimate of the area’s roughness.

Assuming the output is computed, however, we still need to transform it into
a speed limit. To accomplish this transformation, we pass the output through a
sigmoid of the form

s2 = h ∗ tanh(w ∗ (l(r, c) − x)) + y, (14.4)

where l(r, c) is the response of the low-pass filter given above, and the parameters
h, w, x, and y are tuned heuristically by comparing sample filter responses to the
real-life situations to which they corresponded. Then, to compute the final speed
sf , we simply take the minimum of s1, the speed generated using the variance,
and s2, the speed generated using this roughness filter.

Of course, the computations described here are not computationally trivial;
to do them every time a single new elevation data point is generated would be
infeasible given that some of the sensors are capable of generating hundreds of
thousands of measurements per second. Additionally, over a small time interval
(e.g., less than one second) measurements from a sensor will frequently fall into
a small portion of the entire map. To take advantage of this redundancy, and to
increase the computational speed of the algorithm, speed limits are generated
at a fixed frequency instead of on a per-measurement basis. At some predefined
interval the algorithm sweeps through the map, regenerating the speed limit of
any cell whose elevation value has changed since the last sweep. Additionally, any
cells whose neighbors have changed elevation values are also re-evaluated, as the
response of the roughness filter could be different. To speed this process up, the
algorithm uses a dynamic list to keep track of which specific cells have changed.
Any time a cell receives a new measurement, the algorithm adds that cell to
the list of cells to update during the next sweep (if the cell has not been added
already). The result is an algorithm that takes advantage of the redundancy of
subsequent measurements from a single sensor to transform a digital elevation
map into an accurate speed limit map quickly and efficiently.

14.4.2 Speed Limit-Based Fusion

After computing a separate speed limit map for each sensor, all that remains
is to fuse these different maps together into a single final speed limit map. We
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Fig. 14.9. The disappearing obstacle problem

chose to use a simple weighted average, using heuristics to determine the weights
for each sensor. Thus the equation for determining the final fused speed limit
s(r, c) of a cell at row r and column c is

s(r, c) =

∑
i

si(r, c) ∗ wi∑
i

wi
, (14.5)

where si(r, c) is the speed limit of the corresponding cell in the speed limit map
of sensor i, and wi is the weight associated with the sensor i. However, this
algorithm has a serious flaw: obstacles occasionally disappear and then reappear
as they entered the range of each sensor (see Figure 14.9). This phenomenon is
due to the weights used for fusing the sensors: sensors that are pointed closer to
the vehicle have higher weights than sensors that are pointed further away, on
the principle that the closer a sensor is pointed, the less susceptible its output
is to synchronization errors between range measurements and the vehicle’s state
estimate. As a result, a chain of events can occur in which:

1. Sensor A, a long-range sensor, picks up measurements from an obstacle and
assigns the cells that contain it a low speed.

2. The very bottom of the obstacle comes into the view of sensor B, a short-
range sensor.

3. The cell containing the leading edge of the obstacle is set to a higher speed
than was there before because: sensor B sees only the part of the obstacle
near to the ground; seeing only the part near the ground, sensor B perceives
only a very small obstacle (if it detects one at all); and finally, sensor B has
a higher weight than sensor A.
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Fig. 14.10. Example input speed limit maps and a final output map. In each case, the
small rectangle to the left is the vehicle (which is traveling from right to left) and the
line extending behind it is its previous path. (For scale, the grid lines are 40 m apart.)
From bottom-left, moving clockwise: speed limit map generated by a midrange LADAR;
speed limit map generated by a short-range LADAR; speed limit map generated by a
second midrange LADAR; the combined speed limit map. The combined speed limit
map has also taken into account information about the race corridor.

4. Sensor B sees the entirety of the obstacle, and the cell containing the obstacle
is once again set to a low speed. At this point, it is usually too late for the
vehicle to react, and a collision occurs.

To solve this problem, we introduce an additional term into the weighted
average that served to favor cells that have more measurements (and thus were
more complete). The equation becomes

s(r, c) =
∑

i si(r, c) ∗ wi ∗ ni(r, c)∑
i wi ∗ ni(r, c)

, (14.6)

where ni(r, c) is the number of measurements by sensor i that were contained in
the cell at (r, c). As with the cost-generation algorithm, cost-fusion is done at a
fixed frequency instead of on a per-cell basis, and only cells whose speed limits
have changed since the last sweep are updated.
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(a) (b)

(c) (d)

Fig. 14.11. Sample road follower output on test run: (a) computed road direction and
Alice direction (image projections of diagonal, vertical lines, respectively, in (d)); (b)
dominant orientations ([0, π] angle proportional to intensity); (c) vanishing point votes
IVP ; (d) overhead view of estimated road region (green/lightly shaded area): Alice
is the rectangle, bumper LADAR returns are the scattered points, LADAR-derived
obstacle function h(x) is shown in at bottom.

14.4.3 Additional Information: Roads, RDDF Corridors, and No
Data

Although the sensor fusion problem makes up the bulk of the work, additional
information is available for integration into the final speed limit map.

Road Following. Alice’s road following algorithm (Rasmussen, 2006) uses a
single calibrated grayscale camera and a bumper-mounted SICK LADAR. The
best-fit vanishing point of the road ahead is repeatedly extracted from the pat-
tern of parallel ruts, tracks, lane lines, or road edges present in the camera image,
yielding a target direction in the ground plane. This visual information is aug-
mented with estimates of the road width and Alice’s lateral displacement from
its centerline, derived from the LADAR returns, to populate a “road layer” in
the combined cost map used by the planner. Additionally, a failure detection pro-
cess classifies images as road or non-road to appropriately turn off the road layer
and monitors for sun glare or excessive shadow conditions that can confuse the
vanishing point finder. Figure 14.11 illustrates the operation of the algorithm.

To obtain the road vanishing point, the dominant texture orientation at each
pixel of a downsampled 80 × 60 image is estimated by convolution with a bank
of 12 × 12 complex Gabor wavelet filters over 36 orientations in the range [0, π].
The filter orientation θ(p) at each pixel p which elicits the maximum response
implies that the vanishing point lies along the ray defined by rp = (p, θ(p)). The
instantaneous road vanishing point for all pixels is the maximum vote-getter in
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a Hough-like voting procedure in which each rp is rasterized in a roughly image-
sized accumulation buffer IVP . Using IVP as a likelihood function, we track the
road vanishing point over time with a particle filter.

The road region is computed by projecting LADAR hit points along the vision-
derived road direction onto a line defined by Alice’s front axle, deweighting more
distant points, to make a 1-D “obstacle function” h(x). The middle of the gap in
h(x) closest to the vehicle’s current position marks Alice’s lateral offset from the
road midpoint; it is tracked with a separate particle filter. If sufficient cues are
available, this road-finding system is able to identify a rectangular section of the
area in front of Alice as a road. Using the assumption that roads are generally
safer to drive on (and thus the vehicle should drive faster on them), this data
is integrated into the existing speed limit map using a heuristic algorithm as a
speed bonus. As a result, roads appear as faster sections in the map, enabling
the path-planning algorithm to keep Alice on roads whenever possible.

RDDF Corridor. The final (and perhaps most important) piece of information
that is incorporated is the race corridor. Incorporating this information into the
map is trivial: if a given cell falls inside the race corridor, then the value of that
cell is set to be the minimum of the corridor speed limit and the terrain and road-
based speed limit. If a cell falls outside the corridor, its speed is set to zero. In
effect, the race corridor acts simply as a mask on the underlying terrain data: no
inherent assumptions are made in the mapping software that rely on the corridor
information. In fact, testing was frequently performed in which the corridor speed
limit was essentially set to infinity, and the corridor’s width was set to be dozens of
meters wide. Even with these loose bounds, the mapping software was easily able
to identify drivable areas and generate accurate speed limit maps.

No-Data Cells. One final topic that we have alluded to, but not covered in de-
tail, is what we call the no-data problem: in many cases, not all of the cells in a
given area of the map will contain elevation measurements. For example, no range
measurements will be returned when a sensor is pointed off the side of a cliff, or
from behind an obstacle that is obstructing the sensor’s field of view. This problem
can be partially alleviated by making some assumptions about the continuity of
the terrain in the environment, and interpolating between cells accordingly. Our
software performs some interpolation (by filling in small numbers of empty cells
based on the average elevation of surrounding cells that did have data). Despite
this, there are still situations where large patches of the map simply have no data,
and interpolating across them could lead to incorrect estimates of the nature of
the surrounding terrain. The question, then, is how the mapping software should
treat those areas: should it be cautious and set them to have a low speed limit?
Or should it make assumptions about the continuity of the surrounding terrain
and set them to have a high speed limit? We found that for robust performance,
a compromise between these two extremes was necessary.

Clearly, setting no-data cells to a high speed limit would be inviting trouble.
For example, the vehicle may decide it prefers to drive off a cliff because the open
area beyond the cliff is a high-speed no-data region. However, setting no-data cells
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(a) (b)

Fig. 14.12. Example no-data problem. (a) As the vehicle crests the hill, its sensors will
detect the bushes lining the road before they detect the road itself. (b) A corresponding
sample no-data map (with the vehicle traveling from left to right). If area I is no-data,
and is a lower speed than area II (corresponding to obstacles) and area III (corresponding
to flat terrain), then the vehicle may prefer to drive in no-data areas (I) instead, even if
they correspond to dangerous obstacles.

to a speed limit of zero can also result in undesirable behavior. Consider a set of
steep rolling hills with a dirt road down the center, and bushes or boulders lining
the sides. As the vehicle crests a hill, the first thing its sensors will detect are the
bushes lining the side of the road (Figure 14.12(a)). In particular, these bushes may
be detected and placed into the map prior to the vehicle detecting the dirt road
below, resulting in a speed limit map that looks something like Figure 14.12(b).
In this situation, if the no-data speed is set too low (that is, lower than the speed
assigned to the cells containing the bushes) the vehicle may prefer to drive through
the bushes instead of stay on the road. Clearly this is undesirable—as a result, a
compromise must be made where the no-data speed is low (so as to avoid the vehi-
cle barreling across uncharted terrain at high speed) but not lower than the speed
associated with most obstacles. The interpretation of no-data cells is performed
by the path planning module, described in the next section.

14.5 Navigation and Planning

The navigation system for Alice was designed as two discrete components: a
planner that generates trajectories for the vehicle to follow, and a controller that
follows those trajectories. The controller was described in Section 14.3.4; this
section will describe the design and implementation of the trajectory planner.

14.5.1 Planner Approach

The top level design goal of the planning system is to be able to traverse the
DARPA-specified course while satisfying DARPA’s speed limits and avoiding
obstacles. An ideal planner will produce trajectories that are “best,” in some
sense. Thus a numerical optimization method lies at the core of Alice’s planning
system. Since the DGC race is over 100 miles long, it is both computationally
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Fig. 14.13. An illustration of the receding horizon framework. A very inaccurate (but
easily computable) path is used as the global plan. Here this is a spline based on the
trackline. The solver that produces a higher-quality plan performs its computation
to reach a point on the lower quality path, some distance ahead. In this figure, that
distance (the horizon) is set to the range of the sensors of the vehicle.

prohibitive and unnecessary to plan the vehicle’s trajectory to the finish line.
An appropriate solution to deal with this problem is to run the planner in a
receding horizon framework. A receding horizon scenario is one where plans are
computed not to the final goal, but to a point a set horizon (spatial or temporal)
ahead on some rough estimate of the path towards the goal (Figure 14.13).

The vehicle model used by the planning system is a rear-centered, kinematic
model:

Ṅ = v cos θ

Ė = v sin θ

v̇ = a

θ̇ =
v

L
tan φ,

(14.7)

where N , E are Cartesian spatial coordinates, θ is yaw (measured from north
to east), v is the scalar speed, a is the vehicle acceleration, L is the vehicle
wheelbase and φ is the steering angle.

To apply a numerical optimization scheme to the path planning problem, we
have to represent the space of all potential trajectories as a vector space. To cut
down on the dimensionality of this vector space, we represent the spatial part of
the trajectory as a quadratic spline of θ(s) where s is length along the trajectory
normalized to the total length of the trajectory, Sf , and the temporal part as a
linear spline of v(s). With this representation, we can represent all variables in
the system model (14.7) as functions of derivatives of θ(s), v(s), Sf :

N(s) = N0 + Sf

∫ s

0
cos(θ(s))ds

E(s) = E0 + Sf

∫ s

0
sin(θ(s))ds

Ṅ(s) = Sf cos(θ(s))v(s)

Ė(s) = Sf sin(θ(s))v(s)

a =
v

Sf

dv

ds

θ̇ =
v

Sf

dθ

ds

tan φ =
L

Sf

dθ

ds

φ̇ =
LSf

d2θ
ds2

S2
f +

(
L dθ

ds

)2 .

(14.8)
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To pose the planning problem as an optimization problem, we need an objec-
tive to optimize and constraints to satisfy, all functions of some state vector. Our
state is Sf and the spline coefficients of θ(s) and v(s). We try to find trajectories
that are fastest, while keeping the steering and acceleration control effort low.
Thus our objective function is

J = Sf

∫ 1

0

1
v(s)

ds + k1

∥∥∥φ̇(s)
∥∥∥2

2
+ k2 ‖a(s)‖2

2 . (14.9)

Besides the initial and end condition constraints, we also satisfy dynamic
feasibility constraints:

Speed limit : v < vlimit
Acceleration limit : amin < a < amax
Steering limit : −φmax < φ < φmax

Steering speed limit : −φ̇max < φ̇ < φ̇max

Rollover constraint : − gW
2hcg

< v2 tan φ
L < gW

2hcg
.

(14.10)

In the rollover constraint expression, W is the track of the vehicle (distance
between left and right wheels), hcg is the height of the center of gravity of the
vehicle above ground, and g is the acceleration due to gravity. This expression
is derived from assuming flat ground and rollover due purely to a centripetal
force. In reality, on many surfaces sideslip will occur much before rollover, so
this constraint has an adjustment factor.

Obstacle avoidance enters into the problem as the speed limit constraint, with
the RDDF and terrain data processed to produce a combined, discrete map that
represents a spatially dependent speed limit. What this means is that the areas
outside of the RDDF and those that lie inside obstacles have a very low speed
limit, and thus any trajectory that goes through those areas is not explicitly
infeasible, but is suboptimal. This representation allows the obstacle avoidance
and quick traversal conditions to be cleanly combined.

The processing of vlimit from the discrete map generated from the sensors
as described in Section 14.4, to a C1 surface was a nontrivial matter. A lot of
thought went into the design of this component, but its details are beyond the
scope of this paper. More information is available in (Kogan, 2006).

Since the numerical optimizer is only locally optimal, and the problem is only
locally convex, choosing a good seed for the solver is an important prerequisite
to a successful solution cycle. The seeding algorithm used for Alice’s planner
consists of a coarse spatial path selector, planning several times beyond Alice’s
stopping distance. This approach evaluates quickly, introduces a needed element
of long-term planning, and works well to select a good local basin of attraction.

14.5.2 System Interfacing

During the development of the planning system the challenges were not limited to
the planning system itself: a substantial amount of effort went towards interfacing
the planner with the other system components.
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One issue that needed to be addressed was the interaction of the controller
and the planner, and the location of the feedback loop. If a feedback loop is con-
tained in both the controller (through tracking error feedback) and the planner
(by planning from the vehicle state), these two feedback loops interact unfavor-
ably and produce spurious oscillations in the closed loop system performance.
Since these two feedback loops work on the same time scale, these interactions
are natural, and one of the feedback loops has to be eliminated to address the
problem. The controller feedback can be eliminated by using only feedforward
control input. This creates a very clean system, but requires relatively quick re-
planning, and a high fidelity model for the trajectory generation. Since there are
no theoretical guarantees for the numerical optimizer convergence, this option
was rejected in favor of moving all of the feedback into the controller: the con-
troller feeds back on its tracking errors, and the planner plans from a point on
its previously computed plan. In this way, the vehicle motion does not directly
affect the planner’s operation, and the oscillations are eliminated. This can re-
sult in a potential issue of runaway poor tracking. To address this concern, the
planner does plan from the vehicle’s state if the tracking errors grow beyond
some predefined threshold.

An issue observed during the testing of the planner was an indecisiveness
about which way to go to avoid a small obstacle. The local optimality of the
planner could repeatedly change the avoidance direction between planning cy-
cles, resulting in an ungraceful, late swerve to avoid an obstacle that has been
detected long before. Since the seeding algorithm chooses the basin of attraction,
the fix was placed there. By adding a slight element of hysteresis to the seeding
algorithm to lightly favor solutions close to the previous solution, the balance
between the two avoidance directions was broken, and a consistent direction was
favored.

A third interaction challenge that was discovered during the planner devel-
opment was the treatment of no-data cells in the map. This issue was briefly
mentioned in Section 14.4, but the planning-side issues are described here. While
all map cells that the planner gets from the mapping components represent a
specific speed limit that the planner should satisfy, this is not as clear for no-data
cells. To avoid being overly cautious, or overly brazen around no-data, a dual
interpretation of no-data was adopted. First, a threshold distance is computed as
the larger of twice the stopping distance or 10 m. Then, any no-data cell closer
than the threshold distance to the vehicle is treated as a very slow cell, while no-
data beyond the threshold distance is treated as twice-the-current-speed. This
representation attempts to avoid or slow down through no-data cells where they
could be dangerous (at the vehicle), but does not let no-data negatively influence
long-term navigation decisions.

14.5.3 Planner Results

With these issues taken care of, the planning problem was solved by an off-the-
shelf numerical optimizer, SNOPT. This optimization-based approach provides
a very clean planning solution, and avoids most heuristic aspects of the planners
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Fig. 14.14. Non-consecutive planner iterations showing Alice avoid a car at the NQE.
The vehicle is traveling east. The planner seed is the lighter, long path and the final
solution the darker (and shorter) path. Grayscale colors are the speed limits in the
map, with hashed regions representing no-data. Cars south and straight ahead of the
vehicle are visible, along with the sensor shadow of no-data for the vehicle straight
ahead. We can see distant no-data being treated favorably. We can also see a change
of plans to avoid the newly detected second car.

that were so ubiquitous in the planning systems of most other teams. Opti-
mizer convergence speed is a potential issue, but on Alice’s 2.2 GHz Opteron,
an average rate of 4.28 plans/second was achieved during the race. Further, this
system produces very drivable and precise trajectories, which allows for very
tight obstacle avoidance in potentially difficult situations (more than sufficient
for the DGC). Some planner performance from the National Qualifying Event is
illustrated in Figure 14.14.

14.6 Contingency Management

Experience has shown that a major challenge in the successful deployment of
autonomous systems is the development of mechanisms to allow these systems
to continue to operate in unanticipated (non-nominal) conditions. An important
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subset of these non-nominal conditions is system-level faults. These are situations
in which all the individual components of the system are operating correctly, that
is to say as detailed in their specifications, yet the system as a whole is unable
to achieve its stated goals.

In small-scale, comparatively simple systems, a state machine is often used
as the system level controller. The principal advantages of this approach are the
ability of the designer to specify through a state-table exactly how the system
can evolve so that it responds effectively to the specific faults they envisage. As
the state-table defines exactly how the system can evolve, only the stability of the
system in the scenarios described by the state table need be considered, reducing
the scale of the robustness problem and typically leading to a comparatively
short development time. However the state machine approach does not scale
well with system complexity or size, and as it cannot execute multiple states
simultaneously is not suited to situations in which multiple connected faults
may have occurred.

A recent approach combining state-feedback with multiple rule-based filtering
stages is demonstrated in JPL’s Mission Data System (MDS) (Rasmussen, 2001).
MDS seeks to provide a very flexible and expandable architecture for large and
complex systems, such as unmanned space missions, that is capable of managing
multiple faults simultaneously. However, the disadvantages of this approach are
the absence of a known method to verify system stability and robustness, hence
significant time is required to develop or enhance the system while maintaining
previous empirically proven system robustness.

14.6.1 Problem Specification

The primary objective of the supervisory controller, SuperCon, is to ensure that
where physically possible Alice continues to make forward progress along the
course as defined by the RDDF. In situations where forward progress is not
immediately possible (e.g., intraversible obstacle in front of Alice’s current po-
sition), SuperCon should take all necessary action to make it possible. This
objective encompasses the detection, and unified response to, all system-level
faults from which it is possible for the system to recover given its designed func-
tionality, performance, constraints and assumptions. SuperCon is not required to
consider specific responses to hardware failure since these are handled at a lower
level. It should also be noted that Alice does not carry any backups for its actu-
ators. It is however a requirement of the mapping software that it be resistant
to up to two sensor failures. In addition, Alice’s computer cluster is configured
such that in the event that any machine powers down it will restart (if physically
possible), and if any module crashes it will be immediately restarted.

The secondary objective of SuperCon is to modify the overall system configu-
ration/status if required by a module under certain conditions and manage the
effects of these changes upon the different components of the system. SuperCon
should also verify its own actions, and make decisions based on the accuracy of
the information available to it. SuperCon must also be stable, robust, easy to
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expand to respond to new issues as they are discovered through testing, fast to
test and verify and quick to initially assemble.

In essence the presence of SuperCon should only increase the performance,
functionality, stability and robustness of the complete system and so increase Al-
ice’s chances of winning, it should never lead to a decrease in system performance
by impeding correct operation.

14.6.2 Hybrid Architecture

The hybrid architecture developed has a state table and a series of rule-based
filtering layers that are re-evaluated each cycle and stored in a diagnostic table.
The resulting framework shares the general characteristics with MDS, described
above. The state machine is composed of ten strategies, each of which consists
of a sequence of stages to configure the system to achieve a specified goal (e.g.,
reversing requires changing gear in addition to the reconfiguration of several
affected software modules). Each stage is composed of a series of conditional
tests that must be passed in order for the (single) SuperCon action (e.g., change
gear) to be performed, and hence the stage to be marked as complete. If a stage is
not completed, and the current strategy is not updated, the next time the state
machine steps forward it will re-enter the (same) stage. This allows the state
machine to loop until conditions are met while always using the current version
of the diagnostic table. If the test was a transition condition (which determines
whether SuperCon should move to another strategy) and evaluates to true, the
corresponding strategy change is made, for execution in the next cycle of the
state machine.

Half of the strategies are stand-alone strategies that are responsible for man-
aging Alice’s response to special case scenarios (e.g., the safe reincorporation of
GPS after a sustained signal outage). The other half form an interconnected ring
that can be used to identify and then resolve any identified scenarios in which
Alice would be unable to make forward progress along the course. The hybrid
architecture effectively expands the capabilities of the state machine approach
through rule-based filtering, and a strategy-driven approach making it easier to
design for large, complex systems while retaining its desirable robustness and
ease of expansion properties.

The SuperCon hybrid structure consists of two permanent threads, the state
update thread maintains the live version of the state table that holds the cur-
rent and selected history data for all SuperCon state elements and is purely
event-driven (by the arrival of new messages). The deliberation thread by con-
trast is prevented from executing above a defined frequency (10Hz) to prevent
unnecessary processor loading.

The SuperCon state machine only attempts to complete one stage each time it
“steps forwards”. Once it has finished processing a stage (regardless of whether it
was successfully completed) the state machine suspends execution and requests
a new copy of the state table. Once the new copy of the state table has been
received, and the diagnostic rules table has been re-evaluated, the state machine
takes another step forward.
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A significant advantage of the hybrid approach detailed above is that as it
is modular, it is comparatively easy to test as the components can be verified
independently in sequence.

In order to make SuperCon robust, every time the SuperCon state machine
takes an action (e.g., sends a request to change gear), before any additional
action is taken SuperCon verifies that any action associated with the previous
stage has been successfully completed. Each of these verification stages has an
associated time-out. If the time-out is exceeded then SuperCon assumes a fault
has occurred, and reverts to the Nominal strategy, from which SuperCon is reset
and can re-evaluate which strategy should be active and then transition to it.

14.6.3 Strategies

The role of the strategies is to create a logical structure that can fulfill the
primary and secondary objectives for SuperCon. Corresponding to the primary
objective, to ensure that Alice always continues to make forward progress along
the RDDF where possible, a list of possible scenarios (from experience and anal-
ysis) that could prevent such progress was produced. By definition, this list was
coined as No Forward Progress (NFP) scenarios. Analysis of the list produced
five distinct families of NFP scenarios, prototypical examples for each of which
are shown in Figure 14.15.

Fig. 14.15. Diagram showing prototypical examples of the five general NFP (No
Forward Progress) scenarios identified

Due to the limited perceptive and cognitive abilities of our system (as com-
pared to a human) it is often not initially possible to distinguish between the
five groups shown in Figure 14.15. Hence in order for SuperCon to be robust an
integrated array of strategies that can identify and resolve any arbitrary scenario
from any of the groups is required.

After extensive analysis of the responses that a human would take to attempt
to resolve the prototypical examples (assumed to be at least on average the best
response) and the information they used to do so, the NFP Response Cycle shown
in Figure 14.16 was produced. The cycle consists of five strategies including the
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Fig. 14.16. No-Forward-Progress (NFP) Response Cycle, showing the constituent
strategies and purposes of each of the interconnections between them to produce the
cycle response effect. Note that the general conditions under which a transition between
strategies occurs (colored arrows) is described by the text of the same color as the
arrow. Specific details of individual transitions are given in black text associated with
the relevant arrow.

nominal strategy, which the system should remain in or revert to if no fault
conditions are detected. The following strategies are used in the NFP Response
Cycle:

Nominal. No system faults/requests detected and the current plan does not
pass through any obstacles. Verify that the system is correctly configured for
nominal operation (gear = drive etc) and correct any exceptions found.

Slow Advance. The planner’s current plan now passes through an obstacle (ter-
rain or SuperCon, including outside the RDDF corridor) when it did not pass
through any obstacles previously (nominal strategy). Hence limit the max speed
to ensure the sensors can accurately scan the terrain ahead, but allow Alice to con-
tinue along the current plan, whose speed profile will bring Alice to a stop in front
of the obstacle if it is not cleared from the map by new sensor data.

Lone Ranger. The planner’s current plan passes through a terrain obstacle,
which has not been cleared by subsequent sensor data, even after Alice has
driven up to it. As Alice would always avoid any terrain obstacles if there was
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a way to do so (that did not pass through SuperCon obstacles), verify that the
terrain obstacle really exists by attempting to push through it.

Unseen Obstacle. Alice is stationary when it does not intend to be (TrajFol-
lower’s reference speed less than minimum maintainable speed), its engine is on
and it is actively attempting to move forwards (positive accelerator command
and zero brake command) yet an external (assumed) object in front of it is pre-
venting it from doing so. Hence mark the terrain directly in front of its current
position as a SuperCon obstacle, as it has been investigated and found to be
intraversible.

L-turn Reverse. The planner’s current plan passes through a SuperCon obsta-
cle, these are avoided in preference of all other terrain where possible and indicate
areas that have been verified as intraversible (or are outside the RDDF). Hence
reverse along the previous path (trail of state data points) until the current plan
passes through no obstacles, up to a maximum of 15 m (the distance required
for Alice to perform a 90-degree left/right turn plus an error margin) per call of
the L-turn reverse strategy. If the current plan passes through terrain obstacles
after reversing for 15 m then go forwards and investigate them to verify their
existence. If it still passes through SuperCon obstacles then recall L-turn Reverse
and hence initiate another reversing action.

A significant benefit of the NFP response cycle design is that it only requires
a very small amount of additional information to be computed on top of what is
already available in the system (prior to SuperCon). The main piece of informa-
tion used is the value of the speed limit in the lowest speed cell (evaluated over
Alice’s footprint) through which the current plan evaluated through the most
recent version of the cost map speed-layer passes, referred to as the minimum
speed cell (MSC). The current plan is defined as the plan currently being followed
by the TrajFollower. The planner that Alice uses (as detailed in Section 14.5)
is a non-linear optimizer. As a result, it is not necessary for SuperCon to know
the location at which the minimum speed cell occurs, as the plan is optimal
for the cost function it represents and the best option available in terms of its
obstacle avoidance. There are three ranges (of values) in the speed layer of the
cost map: no-obstacle, terrain obstacle and SuperCon obstacle and outside the
RDDF. The range that the current minimum speed cell value belongs to is used
by SuperCon when determining what action (if any) to take. There is a funda-
mental difference between what is known about terrain and SuperCon obstacles.
Terrain obstacles are identified by the sensor suite as having an elevation, and/or
gradient outside of Alice’s safe limits. SuperCon obstacles represent areas where
Alice attempted to drive through (irrespective of whether they were identified
as terrain obstacles) and was unable to do so. As such SuperCon obstacles are
verified terrain obstacles. Note that all “obstacles” are theoretically intraversible
by definition.

The process is analogous to a typical feedback controller, where the planner
is the process whose output is the minimum speed cell value, SuperCon is the
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Fig. 14.17. Example of Alice resolving a dead-end scenario fault, showing the events
and strategy transitions at each point
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Fig. 14.18. Strategies used during NQE Run #1. The GPS re-acquisition intervals
are execution of the design requirement to safely stop the vehicle in the face of large
corrections of state estimate errors.

controller and the reference signal is the range of obstacle-free terrain values.
The error signal then becomes non-zero when the current plan passes through
an obstacle, which prompts SuperCon to take corrective action through the use
of the NFP response cycle.

Figure 14.17 shows an example of the NFP response cycle enabling Alice to
successfully navigate its way out of a dead end scenario, listing the actions taken
by SuperCon at each stage, and indicating when each strategy is active. Stages
2–4 in the response are repeated until SuperCon obstacles have been placed as
shown in stage 5 (assuming the terrain dead-end obstacle really exists). Note that
the RDDF border on the right hand-side of Alice does not need to be verified, as
outside the RDDF the terrain is equivalent to an SuperCon obstacle by default.
A miniaturized version of the NFP response cycle is also shown for each stage,
with the current strategy highlighted in red (darker shading), and the next in
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green (light shading). In case 5, blue (upper center state) is used to denote the
most probable current strategy at the start of the stage).

Figure 14.18 depicts the evolution of SuperCon strategies that enabled the
forward progress made during Alice’s first NQE run.

14.7 Experimental Results

In the previous six sections we have described in detail Team Caltech’s approach to
designing its unmanned ground vehicle, Alice. Unfortunately, due to the nature of
the Grand Challenge, very few controlled experiments were performed on the ve-
hicle as a whole. Although many subsystems were individually tested to make sure
they met certain specifications, the measure of success for the end-to-end system
was a more qualitative one, focused on making sure that the vehicle could drive
autonomously in a wide variety of situations including open desert, parking lots,
rainy and wet conditions, dirt roads of varying degrees of roughness, rolling hills,
winding roads and mountain passes. The following sections describe the nature
and results of the testing of Alice leading up to the National Qualifying Event, for
the National Qualifying Event itself, and in the Grand Challenge Event. Although
the data presented is somewhat qualitative, we believe it makes clear Alice’s ca-
pabilities (and weaknesses) as an autonomous vehicle.

Fig. 14.19. A compilation of several RDDFs used during testing within the Stoddard
Wells area of the Mojave Desert. The grid lines are 10 km apart. The RDDF leaving
the top of the figure is the 2004 race RDDF, and the line cutting across the top right
corner is the boundary of the no-go zone given by DARPA. These RDDFs covered a
wide variety of desert terrains, including dirt roads, rocky hills, dry lake beds, bumpy
trails, smooth pavement, and mountain passes. During the majority of testing the
RDDF speed limit over the entire RDDF was set to be unlimited, and the vehicle’s
speed was chosen automatically as it traveled.
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14.7.1 Desert Testing

Team Caltech documented over 300 miles of fully autonomous desert driving with
Alice from June 2005 to the National Qualifying Event in Fontana in September,
all in the Mojave Desert. Figure 14.19 shows some of the RDDFs used during
testing.

Approximately 33 of these miles were driven on the 2004 Grand Challenge
race route during the week of June 13th, 2005. Alice traversed these miles with
a testing team of four people inside, scrutinizing its performance and making
software improvements and corrections. Over the course of three days, Alice
suffered three flat tires including a debilitating crash into a short rocky wall
that blew out the inside of its front left tire and split its rim into two pieces.
This crash was determined to be caused primarily by a lack of accurate altitude
estimates when cresting large hills. Along with several related bug fixes, an
improved capability to estimate elevation was added to the state estimator.

The majority (approximately 169 miles) of autonomous operation for Alice
took place in the two weeks leading into the National Qualifying Event. This
operation included a full traversal of Daggett Ridge at 4 m/s average speed, and
significant operation in hilly and mountainous terrain (see Figure 14.20). The
top speed attained over all autonomous operations was 35 mph. The longest
uninterrupted autonomous run was approximately 25 miles.

Fig. 14.20. A sample speed limit map taken in Daggett Ridge during testing on the
2004 Grand Challenge course. For scale, the grid lines are 40m apart. The light-colored
areas along the sides of the corridor are obstacles (cliff-faces taller than the vehicle,
or berms about 0.5m high), the actual road is the darker area in the center, and the
confetti-like coloring of some parts of the road indicates bumpier sections. Despite the
narrowness of the corridor (around 3-4m wide) and the difficulty of the terrain, Alice
(the rectangle near the top of the figure) was able to pick out a safe course (the line
extending back down the figure and to the left) at an average speed of 4m/s.
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14.7.2 National Qualifying Event

As one of 43 teams at the California Speedway in Fontana, Alice successfully
completed three of its four qualifying runs. Several of its runs were characterized
by frequent stopping as a result of the performance of the state estimator under
conditions of intermittent GPS. Specifically, under degraded GPS conditions its
state estimate would drift considerably, partially due to miscalibration of IMU
angular biases (especially yaw) and partially due to lack of odometry inputs to
the state estimator. However, zero-speed corrections were applied to the Kalman
filter when Alice was stopped, which served to correct errors in its state estimate
due to drift quite well.

During Alice’s first NQE run, zero-speed corrections were not applied in the
state estimator. Accordingly, drift accumulating in the state estimator was not
corrected adequately when Alice stopped. Travel through the man-made tunnel
produced drift substantial enough for Alice’s estimate to be outside the RDDF,
which at the time resulted in a reverse action. Alice performed a series of reverse
actions in this state, going outside the actual corridor, and resulting in DARPA
pause and the end of its first run.

Zero-speed corrections were added to the state estimator after Alice’s first run,
enabling it to successfully complete all subsequent runs, clearing all obstacles
and 137 out of a total 150 gates. Completion times were slow for runs 2, 3 and
4 partially due to frequent stopping as a result of state estimator corrections.
Figure 14.21 provides a summary of Alice’s NQE run performances. Figure 14.22
shows a snapshot of Alice’s map and followed paths during the third NQE run.

Alice was one of only eleven teams to complete at least three of four NQE
runs. As a result of Alice’s performance at the NQE, it was preselected as one
of ten teams to qualify for a position on the starting line in Primm, Nevada.

14.7.3 Grand Challenge Event

When Alice left the starting line on October 8th, 2005, all of its systems were
functioning properly. However, a series of failures caused it to drive off course,
topple a concrete barrier and disqualify itself from the race as a result. Although

Fig. 14.21. Alice on the National Qualifying Event course (left). Table of results from
Alice’s four runs at the NQE (right).
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Fig. 14.22. A sample speed limit map taken during the third NQE run. For scale,
the grid-lines are 40m apart. The solidly-colored areas in the center are the intended
corridor, the lighter areas above and below the central section are lines of hay bales
(around 0.5m tall), and the small spots near those hay bales are additional obstacles
laid out by DARPA for Alice to avoid (such as wooden planks and tires). Alice (the
rectangle to the left) was easily able to detect and avoid the obstacles (even though it
likely could have traversed them easily)—the line extending from Alice to the right of
the figure is the path that was followed. (Direction of travel is from right to left.)

as mentioned above, the system we have described performed well over the course
of hundreds of miles of testing in the desert prior to the Grand Challenge, we
believe the pathological nature of this particular failure scenario demonstrates
a few of the more important weaknesses of the system and exemplifies the need
for further ongoing research. We will begin by providing a brief chronological
timeline of the events of the race leading up to Alice’s failure, followed by an
analysis of what weaknesses contributed to the failure.

Alice’s timeline of events in the Grand Challenge is as follows:

• Zero minutes into the race, Alice leaves the starting line with all systems
functioning normally.

• Approximately four minutes into the race, two of its midrange LADARs enter
an error mode from which they cannot recover, despite repeated attempts by
the software to reset. Alice continues driving using its long and short-range
sensors.

• Approximately 30 minutes into the race, Alice passes under a set of high-
voltage power lines. Signals from the power lines interfere with its ability to
receive GPS signals, and its state estimate begins to rely heavily on data
from its Inertial Measurement Unit (IMU).

• Approximately 31 minutes into the race, Alice approaches a section of the
course lined by concrete barriers. Because new GPS measurements are far
from its current state estimate, the state estimator requests and is granted
a stop from supervisory control to correct approximately 3 meters of state
drift. This is done and the map is cleared to prevent blurred obstacles from
remaining.

• GPS measurements report large signal errors and the state estimator con-
sequently converges very slowly, mistakenly determining that the state has
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Fig. 14.23. (a) Alice’s estimated heading and yaw, both measured clockwise from
north, in its final moments of the GCE. Yaw is from the state estimator and heading
is computed directly as the arctangent of the easting and northing speeds of the rear
axle. The times at which the state estimator requests a vehicle pause (A), the map is
cleared and pause is released (B), Alice speeds up after clearing a region of no data
(C) and impact (D) are shown. Between A and B the direction of motion is noisy as
expected as Alice is stopped. Between B and D the state estimate is converged around
180 degree yaw, which we know to be about 8 degrees off leading into the crash. (b)
The supervisory controller mode (strategy) during the same period.

converged after a few seconds. With the state estimate in an unconverged
state, Alice proceeds forward.

• A considerable eastward drift of the state estimate results from a low con-
fidence placed on the GPS measurements. This causes the velocity vector
and yaw angle to converge to values that are a few degrees away from their
true values. Based on the placement of the north-south aligned row of K-
rails in the map by the short-range LADAR (see Figure 14.24(a)), Alice’s
actual average yaw for the 5 or so seconds leading into the crash—between
times C and D on Figure 14.23—appears to be about 8 degrees west of south
(−172 degrees). For the same period, our average estimated yaw was about
−174 degrees and our average heading (from Ṅ , Ė) was about −178 degrees.
Roughly, as Alice drives south-southwest, its state estimate says it is driving
due south, straight down the race corridor (Figure 14.24(a)).

• Alice’s long-range sensors detect the concrete barriers and place them im-
properly in the map due to the error in state estimate. Alice’s mid-range
sensors are still in an error mode. Alice picks up speed and is now driving at
10–15 mph.

• At 32 minutes, because it is not driving where it thinks it is, Alice crashes
into a concrete barrier. Its short-range sensors detect the barrier, but not
until it is virtually on top of it (Figure 14.24(b) and Figure 14.25).

• Almost simultaneously, DARPA gives an E-Stop pause, the front right wheel
collides with the barrier, the power steering gearbox is damaged, and the
driving software detects this and executes its own pause also, independent of
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Fig. 14.24. Alice’s speed limit maps over the last few seconds of the race, with notation
added. (For scale, the grid lines are 40m apart.) For all three diagrams, the center dark
area is the road, the light vertically-oriented rectangular areas are the concrete barriers,
the hollow rectangle is Alice (traveling downward on the page), and the light-colored
line is its perceived yaw (direction of travel). The color-bar on the right indicates the
speed limit that was assigned to a given cell, where brown is highest and blue is lowest.
The leftmost diagram indicates Alice’s expected yaw and Alice’s actual yaw during the
last few seconds of the race. The center diagram is Alice’s speed limit map less than
one second before it crashed, indicating the differing placement of the obstacles by
the short and long-range sensors—indicated as two parallel lines of concrete barriers
(light-colored rectangles). In fact, there was only a single line of them, and that line
went directly north-south, not angled as Alice perceived. The rightmost diagram is
Alice’s final estimate of its location: accurate, but thirty seconds too late.

that from DARPA. The strong front bumper prevents Alice from suffering
any major damage as it drives over the barrier.

• Once Alice has come to a stop, the state-estimation software once again
attempts to re-converge to get a more accurate state estimate—this time
it corrects about 9.5 meters and converges close to the correct location,
outside the race corridor. Alice is subsequently issued an E-Stop DISABLE
(Figure 14.24(c)).

Figure 14.23(b) shows the SuperCon state during this final segment, including
a Slow Advance through some spurious obstacles, a brief Lone Ranger push to
clear them, the GPS reacquisition while stopped, and the final Slow Advance
only after Alice has picked up speed and is near to crashing.

It is clear that while Alice’s ultimate demise was rooted in its incorrect state
estimates (due to poor GPS signals), other factors also contributed to its failure,
or could conceivably have prevented it. These include the mid-range LADAR
sensor failures, the lack of a system-level response to such failures, and the high
speeds assigned to long range sensor data even in the face of state uncertainty.
Additionally, in race configuration the forward facing bumper LADAR sensor
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Fig. 14.25. Alice as it “clears” a concrete barrier during the GCE

was only used to assist in detection of the boundaries of the roads for the road
following module. This could have helped in assigning appropriate speeds in the
map for the row of K-rails.

14.8 Lessons Learned and Future Work

Even after many miles of desert testing and satisfactory performance at the NQE,
Alice was not able to demonstrate its full capabilities in the race. Despite this
failure, the full capabilities of the system provide an excellent testbed for future
research and there are many open challenges that remain to be addressed. Ac-
complishments of the team include demonstration of a highly networked vehicle
architecture with large amounts of sensor data, an optimization-based planner
capable of rapid computation of feasible trajectories that maximize speed along
the course, and a supervisory control layer capable of aggressively maintaining
forward motion in the presence of complex driving conditions.

A critical short term need is to improve the state estimation capability in
the presence of noisy signals. While other teams did not appear to have prob-
lems with state estimation, the combination of Alice’s reliance on accurate state
estimates (for placing obstacles) and supervisory logic for maintaining fault tol-
erance made it susceptible to poor GPS quality. These problems did not surface
during desert testing since most testing was done in the open desert, away from
the types of electromagnetic interference experienced at the NQE and the race.
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The mapping system was also partly to blame for Alice’s “grand finale.” One of
the major shortcomings that contributed to the failure was that the algorithm did
not factor in any measure of confidence in the state estimate when determining
the locations of obstacles. This is a major source of error because the state esti-
mate must be used to place the sensor measurements, which are taken in a local
coordinate frame, into the map, which is in a global coordinate frame. Thus, when
the state estimate is very inaccurate (as was the case in the situation described
above) the resulting map is also inaccurate. If the algorithm had made a proba-
bilistic estimate of the location of obstacles instead of a hard estimate, then it is
likely that the resulting map would have made the concrete barriers seem much
larger than they were. (This is because the low confidence in the state estimate
would have propagated down to become a low confidence in their placement in
the map, which would in turn have caused them to occupy a greater portion of the
map.) Had this been the case, the vehicle might have avoided a collision.

The second shortcoming of the mapping system was that it did not factor
in any measure of the confidence in the sensor measurements when determining
the speed of a given cell in the map. In other words, although one sensor was
able to outweigh another when placing data, the map still did not reflect which
sensor took a given measurement, and how accurate (or inaccurate) that sensor
was when it made that measurement. As a result, the map did not reflect that
two of the midrange sensors (which usually performed the bulk of the mapping)
were inoperative. Instead, the map was filled with semi-inaccurate data from
the long-range sensor, which was not differentiated from any other data that
might have been present (such as more accurate data from the midrange sensors,
had they been functioning correctly). As a result, the path-planning algorithm
commanded a speed of between 10 and 15 mph, which prevented the vehicle
from reacting in time when the obstacles were more accurately placed by the
short-range sensor.

Team Caltech’s experience indicates the need for future research in construct-
ing efficient, timely, reliable and actionable models of the world from a rich sensor
suite. Of particular interest are ideal sensor coverage algorithms and proper high-
level response to loss of particular regions of sensor coverage,as well as formal anal-
ysis of the interplay between sensor data longevity (for more complete maps) and
degradation of the state estimate (which tends to produce misregistered maps).

Ongoing work on Alice includes demonstration of more sophisticated sensor
fusion techniques (Gillula, 2006), a networked architecture of combining sensors
for state sensors without the need for offline calibration (Leibs, 2006), and model-
based road following using LADAR data (Cremean, 2006; Cremean and Murray,
2006). Alice will also be used during the summer of 2006 for additional SURF
projects in autonomous systems.
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MITRE Meteor: An Off-Road Autonomous
Vehicle for DARPA’s Grand Challenge

Robert Grabowski, Richard Weatherly, Robert Bolling, David Seidel,
Michael Shadid, and Ann Jones

The MITRE Corporation, 7525 Colshire Drive, McLean VA, 22102

Summary. The MITRE Meteor team fielded an autonomous vehicle that competed
in DARPA’s 2005 Grand Challenge race. This paper describes the team’s approach to
building its robotic vehicle, the vehicle and components that let the vehicle see and
act, and the computer software that made the vehicle autonomous. It presents how the
team prepared for the race and how their vehicle performed.

15.1 Introduction

In 2004, the Defense Advanced Research Projects Agency (DARPA) challenged
developers of autonomous ground vehicles to build machines that could complete
a 132-mile off-road course. 195 teams which applied – only 23 qualified to com-
pete. Qualification included demonstrations to DARPA and a ten-day National
Qualifying Event (NQE) in California. The race took place, on October 8 and
9, 2005 in the Mojave Desert, over a course containing gravel roads, dirt paths,
switchbacks, open desert, dry lakebeds, mountain passes, and tunnels.

The MITRE Corporation decided to compete in the Grand Challenge in
September 2004 by sponsoring the Meteor team. They believed that MITRE’s
work programs and military sponsors would benefit from an understanding of
the technologies that contribute to the DARPA Grand Challenge.

This paper describes the MITRE Meteor team’s approach to building its
robotic vehicle, the resulting vehicle and associated sensors and systems, and
the results of their efforts in the Grand Challenge race.

15.2 Approach

The Meteor team first decided on some underlying approaches to building the
robot:

• Create a robot that could act as a test vehicle for missions, such as con-
voy leader/ following (Cheok, Smid, Kobayashi, Overholt & Lescoe, 1997),
surveillance (Saptharishi, Bhat, Diehl, Dolan & Khosla, 2000), unmanned
transport (Sotelo, Rodriguez & Magdalen, 2000), and cooperative robot mis-
sions (Sato et al., 2004).

M. Buehler, K. Iagnemma, and S. Singh (Eds.): DARPA’05, STAR 36, pp. 483–516, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 15.1. The MITRE Meteor starting the finals of the 2005 DARPA Grand Challenge

• Create a robot that represents an affordable solution for sponsors, such as
the Department of Defense and Department of Homeland Security.

• Remember that the robot must be built and tested in less than ten months.
• Focus on the most challenging aspect of the race – sensing and maneuvering.
• Employ COTS solutions wherever possible don’t create where commercial

solutions suffice.
• Use an incremental model-simulate-test approach. Build a model suitable to

the current task. Verify and tune the model using simulation and replay.
Test the model and system in real situations, and then use the results of the
testing to adjust the model as necessary.

• Actively manage risk. Fundamentally, the challenge is straightforward and
does not require a complex solution. Rather, the contest exposes the need to
manage interdependencies among multiple systems.

15.3 Vehicle

The first step in producing a rugged autonomous vehicle is platform selection.
Several vehicle types were considered: Racing buggy, all-terrain vehicle, four-
wheel drive (4WD) sports-utility vehicle, and 4WD pickup. Investigation of the
2004 Grand Challenge results pointed to a platform capable of off-road travel,
able to support multiple sensors and processors, and able to withstand desert
temperatures.

The vehicle should also be easy to transport and operate. To reduce the cost
of deployment, it should be drivable by a human operator. To improve safety
during testing, a human operator should be able to override computer controls.

A commercially available vehicle that could be retrofitted with drive-by-wire
capabilities was preferred – this would let the team focus more quickly on relevant
issues. Similarly, a solution that could be adapted to any vehicle with drive-by-
wire capability (such as, Humvees or tracked vehicles) was preferred.
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The team chose a 2004 Ford Explorer Sport Trac pickup from a local dealer
(Figure 15.1). It has reasonable off-road capability and a sufficiently cooled inte-
rior for computing equipment. Ford was selected because it is most understood
by the selected drive-by-wire vendor.

15.3.1 Vehicle Modifications

The Grand Challenge required three major modifications to the vehicle: A drive-
by-wire capability, an expanded electrical power system, and a chassis lift.

The Electronic Mobility Controls Corporation (EMC) designed and installed
the drive-by-wire capability. They modified the transmission and steering column
(Figure 15.2). A servo, mounted inline with the steering wheel, accomplishes
turning. A second servo, attached to the firewall, controls the throttle and brakes.
The installation also included an electrical override console with controls for the
steering, throttle, and brake. Using this, a human safety operator can take control
of the vehicle with the touch of a button. The capability also provides a safety
override so that an operator in the driver’s seat can always operate the brakes
manually.

The second modification was installing a heavyduty 220-A alternator and
power bus. This eliminated the need for additional batteries or an external gen-
erator, and easily handled the load of the sensors and processors. Power passes
from the alternator to the rear processing rack via a high-current dc bus. A 3000
W dc-to-ac converter provides 120 V for computers and sensors.

The last major modification was the installation of a lift kit on the vehicle.
An analysis of the 2004 route raised concerns about whether the vehicle could
clear moderate-sized rocks and debris (Urmson et al., 2004; Ozguner, Redmill &

Fig. 15.2. EMC provided the drive-by-wire capability using a steering servo, a throt-
tle/brake servo, a control console, two servo computers, a battery backup, and a manual
override
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Broggi, 2004). So, a 4 in. suspension lift was donated by SuperLift, an off-road
retrofitter. Additionally, four 30 in., offroad Super Swamper tires were installed
to increase traction in rugged terrain.

By employing these COTS components, the team was able to start testing on
a reliable platform within two months.

15.3.2 Sensor and Processor Suite

Similarly, the team selected COTS sensors and computers. The sensing centers
around eight laser sensors were oriented in different directions and mounted on
the top and front of the vehicle (Figure 15.3). Laser range finders provide a two-
dimensional range/distance map out to 40 m with a 100◦ field of view. These
lasers are the staple of the robotics community and were used by almost every
entrant in the Grand Challenge. Meteor utilized two models of the laser sensor
from SICK; one operating at 5 scans per second, the other at 75 scans per second.

The laser range finders were divided into classes based on their orientation.
Two vertically mounted lasers provide information about the ground plane.
Three lasers, mounted horizontally at different angles, provide both short- and
long-range detection of road obstacles. A sixth horizontal laser is mounted on
gimbals, and points dynamically to compensate for vehicle pitch and terrain vari-
ations. Finally, two downward-looking lasers are mounted on the roof to detect
road characteristics.

Two sensor racks were built to mount the sensors to the outside of the vehicle.
The largest sensor rack is mounted on top of the vehicle. It provides the platform
for mounting the global positioning system (GPS) receivers, inertial navigation
system (INS), and magnetic compass. This positioning allows the greatest visi-
bility to satellites and moves the sensors away from vehicle noise. Additionally,
the two down-looking lasers are mounted at the front of the rack to give them
the greatest clearance and visibility of small ground obstacles near the vehicle.
The rack is held to the roof struts using four U-bolts, so that the entire assembly
can be removed and stored in the vehicle cargo bay during shipping.

A second sensor rack utilizes a grill extension. Shelves added to the front-grill
guard house the horizontal and vertical obstacle and road scanners. The rack is
mounted rigidly a few inches in front of the grill to allow engine air flow. The
headlight guards were removed to prevent misalignment in the event of collision.
The headlights were expendable and the sensor system should prevent a head-on
collision.

The processing infrastructure is mounted in the cabin of the vehicle. The rear
passenger seat was partially removed, and a rack assembly was built to hold
the processing and display components. The entire rack is shockmounted in five
places. The computing infrastructure is a multiboard militaryhardened VME
computer array of 1.8 GHz Pentium processor boards, connected by a gigabit
Ethernet network, and mounted in a 19 in. rack. Only four of the available nine
slots were needed for the competition. One additional card was dedicated solely
to logging and display during testing. The rear passenger area also contains a
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Fig. 15.3. MITRE Meteor layout. Meteor has an array of COTS components. Posi-
tioning is by three GPS units, an INS unit and a compass on the roof. Four horizontal
lasers detect road obstacles. Two vertically-mounted lasers provide terrain informa-
tion. Two down-looking lasers detect small objects and negative spaces. A computer
assembly is in the back seat.

rack-mounted monitor, keyboard, and mouse, to permit an observer to oversee
and interact with the system during testing.

15.4 Software Architecture

Experience shows that software evolves continually until it is retired. Charac-
terizing axes of change reveals what can and cannot be specified by software
architecture. For this effort, two axes of change were clear: (1) The controller
would have a number of quasi-independent activities, whose algorithms could
change during the development process, and (2) the population and relationship
between these activities would evolve. Therefore, an agent-based architecture
(Minsky, 1985) was chosen.

Experience also shows that building the software scaffolding (test harnesses,
stubs for yet-to-be-built components, verifiers, etc.) surrounding a software prod-
uct can be time consuming. To reduce this overhead cost, two themes were ap-
plied to the design: Location transparency and employment transparency. That
is, use the same piece of code in as many different places as makes sense, and
for as many different purposes as is reasonable.
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Fig. 15.4. Basic agent makeup. Lookout agents manage sensors, and convert raw
sensor information into system messages. Watch Officers process and fuse sensor data
from Lookouts into higher-order information. Executives use Watch Officer products
to make decisions that ultimately control the actions of the Meteor.

15.4.1 Agent-Based Approach

The entire software architectures consists of agents that receive state infor-
mation, add value to that input, and pass it to the remainder of the system
(Figure 15.4). Agents are of three basic types: “Lookouts,” “Watch Officers,”
and “Executives.” Lookout agents manage sensors and convert raw sensor infor-
mation into system messages. Watch Officers process and fuse sensor data from
one or more Lookouts to provide higher-level information, such as vehicle pose,
obstacle definitions, and ground plane estimates. Executives use Watch Officer
products to make decisions that ultimately control the actions of Meteor.

Specialized “executives” in the program map the vehicle state to motion
(Figure 15.5). A “Captain” takes the provided Route Definition Data File
(RDDF) and generates a lane in which the vehicle can operate. A “Naviga-
tor” takes the lane and obstacles and generates a viable path. It then uses the
path to determine a desired speed and direction based on the vehicles current
state. Desired speed and direction are passed to a “Helmsman” which converts
these parameters into commands that adjust the two voltages that drive the
EMC system. An “Admiral” agent gives a final go/no-go signal based on the
state of the emergency stop system. While components within this architecture
evolved, the basic architectural design remained unchanged.

15.4.2 Location Transparency

Vehicle control is achieved by agents that communicate with each other using
UDP messages. Raw sensor input and aggregate state are manipulated as Java
classes, serialized for transmission as messages, and then shared between com-
puters via a fast Ethernet switch. The agent state is mirrored on each computer
and kept current through a constant assertion methodology. The vehicle state,
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Fig. 15.5. Software architecture implementation. An agent-based architecture converts
raw sensor information into voltages to drive the robot. “Lookouts” convert raw sensor
data into system messages. “Watch Officers” turn raw information into information,
such as, obstacles and position. The “Captain” takes the RDDF and defines the next
achievable point and the lane in which the vehicle can operate. The “Planner” uses
the lane and obstacles generated by the lasers to generate a plan. The “Navigator”
determines desired speed and direction based on the plan and the vehicle’s state. The
“Helmsman” converts the speed and direction into commands that cause the EMC
system to produce motion. The “Admiral” monitors the E-Stop radio and gives the
master-go signal.

sensor values, and obstacle inventory are calculated and reported periodically.
The advantage of employing a message transfer protocol is that agents can be
located anywhere without modifying the agent code. This permits load balanc-
ing among multiple computers. Initially, all of the components required to drive
the vehicle ran on a single laptop computer. As functionality was added, agents
were distributed among several computer boards. High demand agents, such as
the occupancy map Watch Officer, were allocated their own computers. The
motion model and obstacle filters require less computation and share the same
computer. One of the biggest processor loads is the graphical display software
used by the operator to monitor progress during development — it was allocated
its own computer.

15.4.3 Employment Transparency

A unique feature of this architecture is that it is insensitive to the source of in-
put. Because the system state is continuously shared, the system behaves nearly
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identically whether driven by simulation, replay, or live data. During testing, all
sensor data and interagent messages are recorded. Posttest analysis examines
performance in replay, and observes system behavior. By filtering selected mes-
sages, it is also possible to exploit real-world data to evaluate modifications to
existing algorithms while in the lab. For example, by filtering out path messages,
a new planner agent can generate live plans based on the information generated
from a previous test.

The system can also be driven completely from simulated sources (Figure
15.6). Simulated sensors produce raw information from external sources, such as
a ground truth map. These signals are passed through the system producing the
same control voltage messages. These control voltage messages are passed to a
simulated vehicle model, that in turn generates messages that feed back into the
system, such as vehicle location, steering angle, and encoder values.

Because the operational software functions in the same way in simulation,
replay, or actual use, each of these modes can support the other. As new agents
were developed, they were first run in the simulator. When behavior was accept-
able, they were tested in the field. Data from live runs were used to tune the
agents and simulation models.

Location and employment transparency reduced testing time by recording
all aspects of a run, evaluating the results, and testing resultant changes in
simulation. Even though only 10 days of desert testing was conducted, the design
permitted significant improvements to the system.

15.4.4 Development Environment

The software was developed for the Fedora Core 3 Linux operating system using
the Java 5 programming language. The development environment employed Sun

Fig. 15.6. Employment transparency. Employment transparency means that the sys-
tem is unaware of whether it is being driven by real, simulated, or replay data. Here,
a simulated vehicle model adds a feedback mechanism to allow simulation of events.
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JDK 1.5, Subversion, Ant, and Eclipse. Each of these technologies, is proven,
readily available, and carries a low maintenance and registration overhead.

15.5 Maneuvering and Navigation

The most rudimentary task facing a vehicle in the Grand Challenge is the abil-
ity to follow a series of waypoints. DARPA defined the route for the race as a
series of about 3,000 connected latitude/longitude positions that wind through
the desert. DARPA specified that the points would define a path with no in-
tervening impassable features. They also defined the maximum lane width and
maximum safe speed for each segment. Each vehicle then needed to compute its
own position, the position of the next point, and a strategy for getting there.

15.5.1 GPS Positioning

Positioning for Meteor is accomplished by three GPS units. The primary GPS
receivers are two Trimble AgGPS132 differential GPS units with differential
corrections from the Omnistar subscription service. With proper sky visibility,
the Omnistar service improves position accuracy to within 5-10 centimeters at
a rate of ten times per second.

Each Trimble unit reports signal strength and signal-to-noise ratio. These
measurements determine whether a GPS unit is reporting accurate readings.
Testing showed that the units were not consistent with one another; so to ac-
cept positions as valid, both measurements were required to be above a chosen
threshold. In most cases, the measurements dropped quickly enough to indicate
a loss of valid position before the system has deviated too far.

Figure 15.7(a) shows the GPS signal-to-noise and signal strength measure-
ments for a run during the NQE. Here, the GPS dropped below threshold many
times along the track, with the tunnel being the longest. Circles correspond to
the five selected points (pluses) in the data with the second being immediately
before the tunnel. The chosen threshold for the signal-to-noise ratio was 9 and
the signal strength was 110. During the NQE, both values were raised slightly.

The GPS units seemed reliable during testing up to the NQE, including testing
in the deserts of Yuma and Primm. However, after anomalies during the first
NQE run, their output was re-examined. During practice testing and replay
of the first run, the vehicle position jumped a few meters and returned even
when the vehicle was stopped. Between Runs 1 and 2, static GPS tests were
conducted. Figure 15.7(b) (top) shows the results of taking 2,500 GPS samples
with the vehicle stationary. Instead of positions randomly centered about the
origin of the robot, several correlated clusters formed a pattern about the origin
(dotted circles). Moreover, the plotted histories of the pattern (Figure 15.7(b)
bottom) showed that, instead of being randomly distributed, they dwelled at one
point before jumping to the other. When running, the vehicle had enough time
between jumps to try to compensate for the new errors. The vehicle appeared
to jog in and out of the lane as it was driving.
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Fig. 15.7. GPS verification. GPS reliability is determined by assessing signal strength
and signal-to-noise ratio reported by GPS units. If the ratios drop below a set threshold,
their reported positions are not trusted, and Meteor is guided by a dead reckoning
model. (a) Signal-to-noise ratio and signal strength plots during a run at the NQE.
Circles correspond to selected points on the plots. Note the complete drop out inside
the tunnel. (b) 2,500 GPS readings taken while the robot was stopped during testing
at the NQE. Note the apparent spatial periodicity implying multipath. Below is the
same series as a function of time and displacement.

The regular pattern of clusters suggested a strong influence from multipath,
perhaps from metal structures, such as, fences and bleachers that surrounded
the NQE. The other interesting phenomenon was the correlation between read-
ings within the clusters. Even with multipath, the readings should have been
random about a point. Instead, they seemed smeared along a line oriented in a
south/south east direction. No explanation was discovered for this behavior.

A third GPS is a MIDG-2 INS. This GPS unit is augmented by an internal
inertial measurement unit that maintains some location ability during GPS out-
ages. If both Trimble GPS units are above their threshold, the MIDG GPS unit
serves as a tiebreaker. Tiebreaking prevents arbitrarily jumping back and forth
between units. Even though both are accurate, they differ slightly and jumping
back and forth introduces high-frequency position noise.

Heading is determined by comparing successive positions. This method proved
to be very accurate at speeds above 3 miles per hour, but ineffective at lower
speeds. Initially, a Honeywell magnetic compass provided an alternative source of
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heading. However, it was abandoned because it required calibration in different
locations (Nevada and California), had high latency (degrees per minute), and
drifted as much as 10◦ with the vehicle stopped.

15.5.2 Motion Model

Even with differential GPS in wide-open spaces, GPS experienced periodic and
sometimes sustained losses. To overcome these losses, a simple bicycle model was
used to predict the vehicles’ location.

Vehicle displacement is measured via a multielement quadrature shaft en-
coder, mounted directly to the vehicle drive shaft. We assume no differential slip
or tire slip. A similar encoder is mounted to the steering column, and provides
steering wheel angle. This is input to a lookup table that maps steering column
angle to turn radius. The table was populated experimentally. The turn radius
and displacement measurements are passed to the bicycle model, which produces
a new position estimate. Since the bicycle model is described in many robotic
papers, we omit it here.

If either Trimble GPS unit produces a valid reading (above the detection
threshold), the deadreckoning position is not needed, and its current estimate
is set to the measured GPS position. If no valid GPS reading is available, the
dead-reckoning model becomes the position provider.

Testing showed that, for most of the surfaces, the dead-reckoning model could
run for about 100 meters without a GPS lock and keep the vehicle within the
boundaries of a road. This distance drops quickly if the vehicle must perform
many turns. While not sufficient to track position for a long distance, the model
was sufficient for the types of GPS losses expected in the course.

15.5.3 Steering Gain

Once the vehicle is able to determine its own position, it has a context to follow a
route. A popular approach for route following is to continuously point the vehicle
toward the next waypoint in the route definition. This approach has subtle but
significant drawbacks. The error between the actual steering angle (the way the
vehicle is pointing) and the derived steering angle (the angle to the waypoint)
increases as the vehicle nears the waypoint. This effect, termed as steering gain
by the team, can lead to oscillations when the vehicle is close to a waypoint. The
phenomenon is exacerbated by small perturbations in reported vehicle position.
Instability increases quickly with speed and can lead to unsettling performance
above 20 mph. Steering instabilities can lead to other effects, such as excessive
roll, which can lead to errors in obstacle detection.

To address this, a “carrot” mechanism was introduced to regulate the steering
gain of the robot (Figure 15.8a). The carrot acts as a virtual waypoint that moves
back and forth along the intended path of the robot. Instead of steering toward
the next waypoint, the vehicle steers toward the carrot. Since steering gain is
a function of vehicle speed, carrot distance is a function of vehicle speed. As
vehicle speed increases, the carrot moves farther from the vehicle. As the vehicle
slows, the carrot moves closer.
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Fig. 15.8. Carrot maneuvering. Steering stability is achieved using a carrot and potato.
(a) The carrot maintains its distance in front of the vehicle based on vehicle speed.
Maximum vehicle speed is a function of path visibility and is determined by the potato.
The potato defines visibility, the carrot follows the path, and the vehicle follows the
carrot. (b) A curve mapping the distance to the potato to maximum vehicle speed. (c)
A curve mapping actual vehicle speed to carrot distance. (d) An example where a large
carrot distance can cause a slight shaving of the defined route.

The carrot mechanism provides stable steering across the range of vehicle
speeds but does not determine target speed. This is accomplished by the “potato”
which, like the carrot, is a point that moves along the intended path of the robot.
The potato stays ahead of the vehicle on the path at a point that represents the
limit of vehicle path visibility. The term path visibility captures the notion of
how far the vehicle can see down a 2-dimensional pipe defined by the intended
path. Notwithstanding the effect of obstacles, the vehicle sets its speed based
on the distance to the potato (Figure 15.8b). If the path is long and straight,
the potato is far away and the vehicle can travel swiftly. If the path is windy or
contains a sharp curve, the potato is close and the vehicle slows.

Path visibility distance is determined by summing the distance along the
path starting from the vehicle, while simultaneously summing the absolute an-
gle between those segments. When the absolute sum of the angles exceeds a
threshold, path distance summation stops. The summation method accounts for
sharp curves, as well as the cumulative effect of shallow curves.

The functions that map vehicle speed to carrot distance (Figure 15.8c) and
potato distance to target vehicle speed are constructed of linear segments. These
mappings were determined first in the system simulator and then experimentally
on a dry lakebed in Nevada. For a given speed, the carrot distance was manually
adjusted out until the vehicle steering stability (degree of overshoot under a
perturbation) was satisfactory. Next, the potato speed mapping was adjusted to
assure that the vehicle slowed properly when approaching a turn. Aside from
traction problems, entering a turn too fast forces the carrot around the corner
too soon and causes the vehicle to shave the inside of the turn (Figure 15.8d).

The biggest advantage of using path visibility is that the vehicle naturally
slows as it approaches large turns, and then speeds up as it passes through the
turn. Note that this path is generated by the planner (discussed later), and not
the path given by the route definition (RDDF file).
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15.5.4 Additional Speed Limiting

In addition to path geometry, several additional mechanisms regulate vehicle
speed. While speed is important for competing in the Grand Challenge, it in-
creases risks inherent in a large moving vehicle (Gillula, 2005). Simply increasing
the speed without addressing safety, stability, and sensor range fails to recognize
the dangers inherent in large robots. Higher speed reduces the distance avail-
able to react to an obstacle, decreases sensor fidelity as samples are taken over
a larger area, and consequently decreases confidence in a selected action. At
higher speeds, vehicles are more likely to tip over or swerve off the road from an
unexpected steering correction. In the event of a collision, higher speed increases
the momentum of a vehicle; increasing the likelihood of damage. This is evident
from the damage to the parked cars at the NQE from robots colliding with them
at low speeds. DARPA defined the maximum safe speed for each segment of the
route. The team chose to respect this value.

As discussed above, path visibility is the primary factor for setting the speed
along a segment. It determines speed based on how far it can “see” along the
geometry of the path and slows the vehicle before entering sharp curves or a
complex calculated path.

Another speed consideration is congestion where the vehicle slows when it
perceives that it is entering an area with high density of objects, even if it has
determined a clear path through it. The robot should not drive through an ob-
stacle field at high speeds, but should anticipate danger and react appropriately.
Congestion is calculated by summing the number of occupied cells (discussed in
Section 15.7.2) about a narrow rectangular space along the path in front of the
vehicle. If the path is congested, the vehicle slows.

A similar safety mechanism slows the vehicle if it senses excessive vibration.
Not only can excessive vibration damage sensitive components, such as computer
disk drives and connectors, but it can also increase stopping distance and add
steering instabilities. Moreover, vibration can be a precursor to other dangers.
Testing in the desert showed that seemingly small desert shrubs could accumulate
large amounts of dirt at their base. Meteor hit one at 25 mph and the resultant
jolt broke off one of the shock mounts and forced the vehicle several meters
off the road. Thus, vehicle speed is reduced based on frequency and magnitude
measurements from the INS vertical accelerometers. Like many such mappings, a
transfer function was defined and tuned based on driving over a range of different
road conditions in the desert.

The last speed control mechanism is engaged by the reactive system. Normally,
the vehicle follows a path generated by the planner, and speed is based on path
visibility and congestion. However, a reactive system engages when the planner
misses an obstacle and it endangers the hull. The reactive systems steers the
vehicle away from the obstacle along the nearest open path. At the same time,
it slows the vehicle to provide a better opportunity to maneuver. When the
reactive system engages, it slows the vehicle to 4 mph until it has cleared the
obstacle. A small dead band and hysteresis prevents premature triggering and
release.
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These methods of reducing speed in anticipation of danger cause the robot to
err on the side of caution. Because of limited development time and access to
desert terrain, speed control mechanisms were only roughly tuned. As a result,
the vehicle was able to achieve its maximum speed only few times during the
NQE and race. However, these speed mechanisms were the likely reason that the
vehicle suffered no major incidents or collisions during testing and competition.

15.6 Obstacle Processing

The primary function of the laser rangefinders is to detect obstacles that lie
directly in the path of the vehicle. Initially three fixed lasers were mounted on
the front at slightly different angles to determine obstacles immediately in the
path of the robot (Figure 15.9a). One laser pointed directly out while the other
two were oriented about 3 degrees above and below the horizon. Different angles
were selected to maintain acceptable sensing distances even as the vehicle was
driving over and down elevated terrain. Early tests showed that the small pitches
in terrain could cause the laser to miss obstacles as large as trashcans as it passed
over the object or struck the ground just before it. Just before deployment, a
steerable laser was developed that could scan up and down, reducing the need
for fixed lasers. However, time constraints prevented comparison between the
two approaches and both were used.

15.6.1 Obstacle Generation

Each laser produces a series of 400 range readings with an angle increment of
0.25 degrees. With four lasers reporting at 5 times a second and the remaining

Fig. 15.9. Sensor types. (a) Meteor carries four classes of laser sensors. Three fixed
horizontal lasers mounted at slightly different angles detect obstacles directly in front of
the vehicle. A gimbaled horizontal laser tracks the horizon providing the greatest sens-
ing distance. Two vertically-mounted lasers detect road terrain and provide dynamic
range gating to the horizontal lasers. Two down-looking lasers detect small ground
obstacles and negative terrain. (b) Line objects generated by each laser are displayed
during testing. This is a view of Meteor as it is about to pass through the first gate at
the NQE.
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four reporting at 75 times a second, raw message traffic is large. To reduce mes-
sage traffic, each laser scan is converted to a series of line segments before being
passed through the system. Conversion from raw laser data to line segments
provides a more compact representation - generally less than 10 segments per
scan. This representation also reduces the processing complexity of downstream
agents analyzing these segments. In fact, it increased the performance of occu-
pancy map generation by an order of magnitude. Reducing the fidelity of laser
scans also reduces the detail and look of the generated map, but it had little
effect on the ability to represent traversable terrain.

Objects detected by lasers fit into three categories – point obstacles, line
obstacles, and vistas. Objects are generated during each pass of a laser scan by
clustering continuous readings together using a simple state machine. Contiguous
readings that are less than the maximum range are clustered into obstacles and
represent solid obstacles. Contiguous readings that are all at maximum range
are clustered as vistas and represent open space.

A post-scan filter was also added to remove some objects based on their
projected size. That is, small line and point obstacles close to the vehicle indicate
objects that are only a few centimeters in width and are more likely to be noise
or debris like falling leaves.

Figure 15.9b shows the line obstacles and vistas produced by each of the
lasers as Meteor passes between two gates at the beginning of the NQE. Each is
coded based on their source. This instantaneous view suggests how the vehicle is
responding to the most current event and is an essential tool for understanding
and development.

15.6.2 Vertical Lasers and Dynamic Range Gating

A complication of mounting horizontal sensors low in front of the vehicle is that
the sensor scan might hit the ground. A horizontal laser pointing downward will
probably return non-maximal readings across the entire scan making it difficult
to distinguish between an obstacle and the ground. If uncorrected, the robot
would always try to avoid the ground in front of it. A naive model would assume
that the world was flat and horizontal then calculate where the laser would
intersect the ground and reject all readings greater than that value. However,
this assumption limits the terrain where the vehicle could operate. Small crests
or depressions would produce unwanted results. Moreover, passing over rough
terrain could introduce large perturbations in pitch and roll which have a similar
effect to changing terrain for the laser scanners.

To compensate for the effects of non-flat terrain, two lasers were mounted
vertically to the front grill (Figure 15.10d). Each vertical laser produces a scan
that starts from directly beneath the vehicle and scans outwards along its major
axis (Figure 15.10e left). In the absence of obstacles, the scan represents the
contour of the ground directly in front of the vehicle (Figure 15.10c).

The vertical scan is used by the horizontal lasers to generate a range gate – a
single value that represents the distance from that sensor to the ground plane. Hor-
izontal range values beyond the range gate are likely to be caused by intersection
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Fig. 15.10. Vertical lasers. (a) Meteor travels down a steep hill at the NQE. (b) A
slope filter removes obstacle readings from the vertical scan based on the slope change
between readings to generate a ground plane estimate for range gating. (c) A projection
of the filtered ground plane just before Meteor begins to drive down the hill. Note that
the cone at the bottom of the hill (dotted ellipse) has been removed from the scan.
(d) The physical mounting of the lasers. A vertical laser collinear to the horizontal
lasers it services. This alignment makes the range gate a simple geometric lookup in
the vertical scan. (e) Raw vertical laser scan (left pane, shaded) and projected ground
plane (bowed line). Raw range scans from two horizontal lasers (center and left pane
shaded). The crossing lines are the dynamic range gate. Note that the cones on either
side of the bottom of the hill are visible as gaps in the raw scans, and are starting to
show up as obstacles in two of the horizontals.

with the ground and are rejected (Figure 15.10e right). Those shorter than the
range gate are likely to be the result of a true obstacle. Since both the vertical and
horizontal lasers are mounted rigidly and the vertical lasers are mounted beside the
corresponding horizontal lasers, the dynamic range gate is insensitive to whether
the changing profile is caused by terrain changes or vehicle transients. Moreover,
by mounting them collinear to one another, range gate calculations are reduced
to a simple index lookup and make fewer assumptions about the geometry of the
vehicle.

To provide an accurate range gate, the vertical laser must filter out any obsta-
cles that lie directly along the axis of the vehicle. Without this filter, the obstacles
would be incorporated into the ground plane estimate, and could result in an
erroneous range gate that blinded the horizontal scans of true obstacles.
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Obstacles are rejected by looking at the rate at which the ground plane height
(a function of range) changes over the scan (Figure 15.10b). If the height changes
by a large amount, it is probably an obstacle. If the rate change is small, it is likely
the road contour. Based on experiments in the desert, a rate change was selected
that corresponds to a road slope of 15 degrees (the largest test measurement of
road slope was 9 degrees).

To reduce computational complexity and latency, this rate change is expressed
in terms of the previous range value and current sweep angle. If the scan is
started from close to the vehicle, the road profile is always monotonic. This
allows filtering to be accomplished in a single pass as the laser scan is read.
We calculate the minimum range reading by applying the Law of Sines (Figure
15.10b, Equation 15.1).
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If there are no obstacles on the road, each successive range reading should ex-
ceed this minimum threshold. If the threshold is not met, the ground plane is esti-
mated (Equation 15.2). Since no information about the terrain behind an obstacle
is available, the ground shadowed by any obstacles is assumed horizontal.
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Since an obstacle may shield many points, the estimate will continue until a
valid ground measurement is obtained. However, since the ground could have
continued to rise in this shielded region; the acceptable threshold is slowly in-
creased to allow it to deal with rising terrain beyond the obstacle. However, this
too was tempered. For example, at the NQE the first series of gates shadowed a
large region beyond the vertical lasers as it passed over them. The next readings
that were not shadowed were from the bottom of the bleachers directly behind
the gates (another obstacle). These points were low enough that they could be
mistaken for a slow rise starting at the gates and cause an erroneous indication
of ground plane. To alleviate this situation, the ability to recapture the ground
plane beyond large occlusions was limited.

Figure 15.10 shows the vertical lasers in action as the vehicle is about to travel
down the steep hill just before entering the hay bales (Figure 15.10a). Figure
15.10c shows the projection of both vertical laser scans reaching below and out-
ward from the vehicle. The dots projecting away from the vehicle show the points
accepted as part of the ground plane except those in the dashed circle that were
rejected as an obstacle. In this view, the reading was taken at the top of the
hill looking down about 5 meters from the bottom at a slight angle to the road
path. The vertical scan passed across one of the cones. Because the instantaneous
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ranges to these points do not increase fast enough, they were rejected. The solid
line projecting out of the robot represents the horizontal lasers and shows where
they intersect the ground plane. Figure 15.10e (left) shows the raw scan from one
of the vertical lasers (light shade) and the corresponding ground plane estimation
(darker line). Figure 15.10e (center and right) shows two of the raw horizontal
scans (shaded) with the corresponding range gate drawn as a solid black curve
across the scan. Note that the range gate is just above the main part of the scan
effectively eliminating all the ground readings but is low enough to indicate the
presence of the two cones located at the bottom of the hill on either side of the
lane.

15.6.3 Scanning Laser

An articulated laser, called the Gnomon, was developed that could scan up and
down using a simple 4-bar mechanism. The articulated laser could be adjusted
to point up or down 10 degrees about the horizontal.

To maximize sensing distance, the Gnomon was pointed just above the hori-
zon. The Gnomon agent determines the horizon by scanning the ground plane
developed by the vertical lasers to find the point where the range readings reach
their maximum. Since the ground plane reading is filtered, this maximal reading
represents the farthest point in front of the vehicle. The Gnomon is then steered
a few degrees above that number to clear any ground clutter.

Steering to the horizon is not always the best action for a laser. As the robot
enters a large valley, the horizon may actually be on the opposite crest. If the
laser is pointed toward the horizon, it could miss an obstacle on the road at the
bottom. However, the vehicle is also equipped with multiple fixed lasers that
protect the vehicle. Future work will explore the addition of a maximal height
filter to limit the degree of scan based on the maximum distance of its laser plane
with the ground plane. This work could reduce the number of lasers needed on
the front of the vehicle.

A drawback to a mechanical steering device is rapid transient response. Most
terrain that the robot must traverse has a slow rate changes with respect to
the Gnomon speed (full range deflection of -10 degrees to +10 degrees in about
250ms). However, as the vehicle travels over rougher terrain, the pitches and rolls
can require compensation that exceeds the Gnomon’s ability to react. Since the
range gate produced by the vertical sensors is much quicker than the mechanical
reaction time, it corrects for range errors introduced by the transient.

15.6.4 Down-Looking Lasers

While horizontal lasers are good at detecting large objects in front of the vehicle,
they are not oriented to detect objects that lie close to the ground. Several teams
addressed this issue by mounting horizontal lasers low to the ground where they
are more susceptible to fouling and damage from low-lying obstacles and debris.
Even so, horizontally mounted lasers are inadequate for detecting large holes or
drop-offs in the terrain. Reports from the previous year (Urmson et al., 2004)
and testing in the desert proved the need to detect these low-lying and negative
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Fig. 15.11. Down looking. (a) Meteor travels down the center of low-lying hay bales.
(b) Line segments generated by the down-looking lasers clearly show hay bales. Note
Meteor correcting slightly right. (c) Down-looking lasers mounted to the top of the roof
rack. (d) Occupancy map generated in the middle of the hay bales. The lane crosses
the center image and narrows from right to left. Light areas indicate open space, dark
segments are obstacles. Note that hay bales do not show up in the occupancy map.
(e) Like the vertical lasers, the down-looker ground plane filter is based on the law of
sines. (f) The raw output of a down-looking laser (shaded). The dark line riding on
top of the raw readings is the horizontal ground plane. The hay bales are clearly seen
in the scan. The ground plane shows that Meteor slowly rolled to the left.

obstacles. Roads in the mountains of the desert southwest are dominated by
narrow paths with occasional 30-meter drop offs. They are also littered with
large boulders (Figure 15.15d). Even in the relatively flat terrain of a lakebed,
desert shrubbery can trap mounds of dirt.

To address these concerns, two additional lasers were mounted to the roof
of the vehicle pitched down at 10 and 11 degree angles (Figure 15.11c). This
down-looker scanned the road 10-15 meters in front of the vehicle. Using two
scanners with slightly different angles increased the likelihood of seeing narrow
obstacles in the road. The heightened roof position provided a better scan angle
for sweeping across the ground. Lower positions would have required a shallower
scan angle and would have made the scan distance highly dependent on vehicle
pitch.
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Like the horizontal lasers, the down-looking lasers rely on vertical lasers to
provide an initial ground plane estimate for filtering out ground strikes. However,
the vertical lasers only give an accurate sense of the terrain directly in front
of the vehicle and do not accurately represent the terrain to either side. To
overcome this limitation, the down-looking lasers employ their own rate change
filter similar to the vertical lasers (Figure 15.11e). Both look at the change in
slope of the ground and eliminate any ranges that change too quickly. This
process is applied to the sweep starting at the center of the scan radiating out
and uses the ground plane estimate of the verticals as a seed. This form of
filtering is robust to the roll of the vehicle and rapidly changing terrain on either
side.

A filter insensitive to terrain changes, pitch, and roll can be tuned very closely
to the actual ground plane allowing detection of obstacles lying low to the
ground. On relatively flat surfaces, such as parking lots and roads, the system
can detect positive and negative obstacles as small as 6 inches above and below
the ground plane. However, to be less sensitive to large vehicle perturbations
(off-road terrain), the threshold was set to 10 inches. Vehicle ground clearance
and large tires handle everything below that threshold.

Because the down-looking lasers point so sharply downward, they only see an
obstacle as it passes in front of the vehicle once the scan moves past an obstacle,
it is no longer visible. However, the vehicle still needs to account for its location
to avoid steering into it. To maintain persistence, 3-dimensional line segments
are generated to represent scanned obstacles and placed on a structure similar
in concept to a conveyor belt.

Since the primary consumer of down-looker obstacles is the reactive system
(discussed in Section 15.7.3), down-looker obstacles are represented in a relative
coordinate system with respect to the front of the vehicle. As a consequence, this
representation must be modified to account for movement. At each time step,
obstacles placed on the conveyor belt are translated and rotated (about the nose
of the vehicle) opposite to its motion to give their new positions relative to the
vehicle. When obstacles clear the rear axle, they are removed from the conveyor
belt.

Unlike objects generated by the horizontal lasers, once a down-looker passes
over an obstacle, that obstacle is not sensed again. If the obstacle is sensed
correctly, there is no issue. However, if the obstacle is incorrectly generated from
noise or a ground strike, there is no mechanism for correcting it. The robot will
try to avoid it and if no path is found, may stop completely.

To prevent oversensitivity to these kinds of failures, two mechanisms clear the
conveyor belt. First, it is cleared whenever the robot is stopped. This assumes
that obstacles at issue are small with respect to the path, and is consistent with
the purpose of the reactive system. However, this means that if the robot were to
approach a large drop-off across the road, it would first stop and then probably
continue. This failure mode is outside the scope of the Grand Challenge.

The second mechanism is to react only to objects that are moving towards
the vehicle head on. The down looker lasers scan directly in front of the vehicle
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but also scan several meters to either side. If the vehicle is headed into a turn,
this means that one side of the laser scan is running directly along the path
instead of across it. As the vehicle then turns along that curve, it is looking at
the previous obstacle from a poor perspective that may not clearly represent
a true ground obstacle. To resolve this phenomenon, obstacles on the conveyor
belt that must be rotated about the nose of the vehicle more than 45 degrees
are removed.

The down-looking lasers proved themselves in the hay bale maze at the NQE.
Just before the tunnel, two rows of hay bales about 50m long were placed on
the either side of a narrowing lane. As the lane got closer to the tunnel, the lane
boundaries shrank from 30m to 10m. Unless the GPS units were performing
extremely well, it was difficult to travel down the center of the hay bale corridor
without sensing them. As several teams discovered, it is extremely difficult to
steer if a hay bale is lodged under a wheel.

Figure 15.11a shows the view from a camera mounted on top of Meteor as it
enters the narrowing section of the hay bale maze just before reaching the tunnel.
Figure 15.11f shows the raw output of the down-looker polar plot. The three
parallel curved lines represent the uncorrected ground plane from the vertical
laser and the dead band used to determine positive and negative obstacles. The
dark line riding on top of the raw measurements is the lateral ground plane
generated by the down-looker filter. The shape of the ground plane shows that
the vehicle was rolling slightly to the left. Objects that exceeded 10 inches above
this ground plane were treated as an obstacle. Depressions sensed below were
treated as negative obstacles. In this plot, the hay bales on either side are evident
whereas the occupancy map generated by the horizontal lasers does not show
any hay bales (Figure 15.11d).

Figure 15.11b shows the down-looker obstacles that have been placed on the
conveyor belt as the vehicle moves through the maze. The dotted lines show the
boundaries defined by the route definition. The darker segments are obstacles from
the current down-looker scan and the lighter segments are obstacles that are being
retained and managed by the conveyor belt. Figure 15.11d shows the correspond-
ing occupancy map generated by the horizontal lasers. Most hay bales do not show
up in the occupancy map. Without the down-looking lasers, it is likely that the ve-
hicle would not have stayed centered within the hay bale rows. As it turned out,
the vehicle was able to navigate the hay bales without collision or incident.

15.7 Planning and Reactive Layers

Meteor employs a three-layer approach to maneuvering and navigation: way-
point following, path planning and hull protection. Waypoint following consists
of mechanisms for determining speed and steering commands based on the de-
fined route and was discussed in section 15.5. Path planning modifies the path
of the vehicle based on a perceived obstacle field. Hull protection protects the
hull of the vehicle whenever the path planning fails. These layers balance making
progress down the road with avoiding collision and damage.
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15.7.1 Occupancy Map

To effectively plan through an obstacle field, a robot must have a representation
that shows obstacle locations and a safe passage between them. It must be
able to accept and fuse information from sensors operating at different rates
and restrictions. Moreover, since the vehicle is moving down a road, most of
the sensors point forward and have a limited sensor footprint. Without a world
representation, the vehicle may attempt to turn into objects that are present
but no longer seen by the sensors.

Meteor uses an occupancy map a tessellation of space into equally sized grid
cells. Each cell represents the likelihood that the corresponding space is either
occupied or open on a continuous scale between 0 and 1. 0.0 represents open
space with full confidence, 1.0 represents an obstacle with full confidence. 0.5
indicates no bias either way. Given no a priori information, cells of the map are
initialized to 0.5. Figure 15.9d shows a typical occupancy map. The dark areas
represent detected obstacles. The lighter areas represent open space. Uncertain
space is the shade between.

Through a corresponding sensor model, each participating sensor can update
cell probabilities based on how it perceives occupancy. For lasers, the sensor
model is a triangular wedge that couples the defined line segment to the source
of the laser that generated it. Two types of laser objects are fused into the
map: line obstacles that represent solid objects and vistas that represent open
space. Cells in the occupancy map that lie directly along the line segment of a
line obstacle are updated to indicate a greater likelihood of being occupied. All
cells that lie within the interior of the wedge are less likely to be occupied and
are updated accordingly. A vista is similar to a line object except that only its
interior is updated.

Occupancy maps have the ability to correct and arbitrate between inconsistent
readings based on confidence. Sensors may erroneously report the presence of
obstacles due to noise or an erroneous range gate. Those errors are projected
onto the map to indicate impassible regions. However, new evidence from other
readings is constantly fused into the map. As more correct readings appear,
errors are reduced. If there is more confidence in a sensor reading, the correction
occurs more quickly. Because the sensors report more false positives (obstacles
that are not present) than false negatives (missing a real object), the sensor
model is biased toward clearing the map more quickly than populating it.

To minimize processor load and complexity, a 2-dimensional occupancy map
represents the terrain that the vehicle must pass through. Though lasers are 2-
dimensional scans through a 3- dimensional space, their results can be projected
onto a 2-dimensional map. However, each scans at a different angle and not all
obstacles are the same height. As a result, a laser pointing slightly up might
miss an object where another might see it. That puts the fusion mechanism in a
dilemma since the confidence of both is high. This problem increases when one
laser is updating at 75 times per second and the other at 5 times a second. The
higher rate laser would dominate.
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Fig. 15.12. Planning. (a) An occupancy map composed of multiple layers and summed.
The structure is set up as a torus in that as Meteor moves, new information is added
on one end and dropped from the other. (b) Laser information is converted to line
segments and coded based on their source. (c) Meteor passes between two parked cars
at the NQE. (d) The occupancy map produced while driving between the cars. The
light areas are open space, the darker segments are obstacles, unknown space is the
shade between. The route crosses through the center of the map. The line emanating
from Meteor is its derived path around the car. The wedge is the congestion region.
Note the two cars are shown in the lanes.

To solve this issue, projections are summed rather than projecting the sums.
That is, the world is represented by multiple occupancy maps, one for each
participating laser (Figure 15.12a bottom). Each laser builds its own map, fusing
laser readings over time at its own rate. All maps are fused together 10 times
per second to build a composite representation of the environment.

Another limitation of the occupancy map is the number of cells needed to
represent an environment. The first year of the Grand Challenge spread over
a large area and would have required a very large grid and memory footprint
(Urmson et al., 2004). This storage problem was solved by building an occupancy
map that acts like a moving window in space. As the vehicle moves, information
behind the vehicle is shifted off the map and lost. Since the vehicle can shift in
both x and y, the map can be envisioned as a large toroidal data structure (Figure
15.12a top). This representation has a fixed size and computational complexity.
We chose 360 x 360 cells with each cell spanning 0.25m. That occupancy map
provided a radial sensing distance of 45m. The dimensions of the map were
a balance between processor load, memory footprint and the smallest size of
obstacle it could represent. With these parameters, the occupancy map could be
updated 10 times per second with a 30% processor load.
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15.7.2 Route Projection

One of the difficulties of route following is deciding when a vehicle has reached
one waypoint and should go towards the next. Because of obstacles or position
error, a vehicle rarely reaches a waypoint exactly. When it recognizes this, it
might circle back to try to get there exactly. Accommodations like expanding
the radius of a point fail when waypoints are spaced closely together.

Since DARPA specified location and width of path positions, defining a lane, it
was decided to optimize progress down the lane rather than determining whether
Meteor reached a waypoint. Therefore, the route definition lane is projected and
a plan is sought within it. This freedom eliminates many issues in deciding
whether a waypoint was reached. Here the planner need only make continuous
progress along the lane. Figure 15.12c shows an example of a lane projected into
occupancy space.

A drawback to this method is that it does not guide the robot towards the
center of the lane. On narrow segments, there is little room to wander, but in
the event of a location offset, the method prevents the vehicle from trying to
regain what it thinks is the center of a lane but is actually the edge. On wider
segments, such as an open lakebed, the robot could wander several meters to
either side of the route. Normally, this is not a concern because those routes
tend to be wide open. To reduce wandering, projected lane widths were limited
to 20 meters.

15.7.3 Planning and Verifying

Planning finds a viable path through occupancy space. The planner must select
a route that not only avoids colliding with an obstacle but also respects the
width of the vehicle and is resilient to changes.

Meteor employs an iterative greedy planner. The planner builds a plan in
steps of 1.5 meters. At each planning step, it evaluates and selects the best next
step from the end of the existing plan from choices fanned out in fixed angle
increments. Each segment is verified by testing pixels adjacent to either side of
the segment equivalent to the width of the vehicle along its length. If no obstacles
are present, the segment is viable. For each planning iteration, the segment that
makes the farthest progress down the lane is chosen. With no obstacles present,
the selected segment is always the one parallel to the path. If the plan remains
valid, it grows to the maximum range of the sensors: 40m. As the vehicle moves
forward, the path shrinks and the planner builds it back up.

In addition to generating new segments, the planner also verifies the entire
length of the existing plan 10 times per second. Though laser range finders can
see beyond 30 meters, noise and geometry degrade the reliability of open and
closed space calculations. As the vehicle gets closer to an object, the existing
path might pass through an obstacle. Rather than invalidate the entire plan, the
plan is truncated to a point just before the anomaly and is regrown from that
point. The effect of this process looks like a snake constantly moving in front of
the vehicle and around obstacles.
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Figure 15.12d shows an example of planning through occupancy space. The
wide line running down the center from left to right represents the lane defined
by the route definition and restricts the planning space. The vehicle (center) is
passing between the two parked cars in the later part of an NQE run (Figure
15.12c). The line extending from the vehicle toward the right is the current plan
showing the individual planning segments. The two dark objects in the center
of the lane (both front and back) are parked vehicles. Clearly, the planner has
detected the second vehicle and has planned around it. The white dot along the
path in front of the robot is the carrot. The thinner line extending behind the
robot is the path the robot followed to this point and was added for illustration.

Finally, the planner provides a mechanism to feed congestion back to the
speed regulator to slow the vehicle around obstacles. Testing showed that the
vehicle moved up to a field of obstacles at full speed and attempted to quickly
zigzag between them. Congestion represents the density of the obstacle field in
the region in front of and to the sides of the current plan. It is measured by
summing the number of obstacle pixels in a wedge-shaped region in front of the
vehicle centered about the carrot. If the count exceeds a threshold, the robot
is commanded to slow. The relationship was empirically determined through
testing.

15.7.4 Reactive Approach

Maneuvering and navigation are primarily accomplished by planning a path
through occupancy space. However, this has some drawbacks. First, fusion and
integration of multiple sensor readings introduces latency in identification of
obstacles. Several scans may be required for an object to reach the planner’s
obstacle threshold. In other cases, the object may lie on the inside of a turn and
might not be seen until the vehicle is very close. This is especially bad if the
space was reported as open or closed. Testing showed that an obstacle might
not be detected until the vehicle is less than 10 meters away. In these cases, the
planner would attempt to re-plan but the vehicle could not execute the new plan
fast enough to avoid collision. One test site had a rapid drop immediately after
one of the turns. Obstacles strategically placed just below this turn did not show
up in the sensor sweeps until the vehicle had made the turn and was dropping
into the depression. The vehicle often collided with these suddenly discovered
obstacles. Though the elevation issue was solved by adding sensors, several cases
remain where a similar phenomenon could occur.

A second complication results from heading and location error on the accu-
rate integration of multiple sensor readings over space and time. When GPS is
unreliable, a dead reckoning model is adequate to make vehicle progress but its
fidelity is insufficient to maintain accuracy in the occupancy map. Laser mea-
surements cannot be reliably correlated and so a blurred map and a less reliable
plan result. This is especially true when the GPS signal does not completely
drop out but degrades slowly over time.

Testing in desert terrain called for a more reactive mechanism to protect the
nose of the vehicle. A purely reactive system does not rely on derived position or
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Fig. 15.13. Reactive. (a) Laser line obstacles generated as the vehicle passes through
the tunnel. A mismatch in heading shows the vehicle thinking it is about to collide
on the left. (b) Instantaneous lasers represented in polar coordinates with respect to
vehicle centerline. The vehicle finds a steering correction angle that will guide the
vehicle reactively and avoid obstacles. This representation shows the vehicle is closer
to the right wall. (c) The vehicle as it enters the tunnel at the NQE. The tunnel is
lined with metal sheets to block all GPS signals.

heading but instead creates its information directly from raw sensor data. Since
the sensors themselves move with the vehicle, they provide a natural, vehicle
centric-view of the world.

Meteor’s reactive system, named Pelorus, receives inputs from the horizontal
lasers and the down-lookers. The results are combined to produce a composite
polar map of the open space in front of the vehicle. Pelorus is shown as an
overlay of laser measurements plotted as angle vs. range in Figure 15.13b. The
evenly-spaced, horizontal lines represent the projection of the vehicle in polar
coordinates with respect to the front of the vehicle. This projection looks like the
stem of an inverted wine glass. The shaded area represents the region Pelorus is
protecting and moves up and down the stem as the speed of the vehicle changes.
When the vehicle moves faster, the shaded region extends farther up the stem
protecting a larger region in front of the vehicle.

If the space immediately in front of the vehicle is open, Pelorus is inactive
and the planner controls. If an obstacle violates this space, Pelorus takes over
and maneuvers the vehicle to avoid collision. When activated, a command is
also passed to the speed controller to slow the vehicle. This shrinks the area
that Pelorus protects and gives the vehicle more space to maneuver. If no viable
openings can be found, the reactive system stops the vehicle.

The purpose of the reactive system is to prevent damage to the hull from
obstacles that were not detected until too close to the vehicle. However, this
reactive mode facilitates passing through a tunnel where GPS signals are lost.
Figure 15.13 shows results from the reactive system as it passes through a tunnel
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at the NQE during the third run. Figure 15.13a shows the vehicle about to
collide with the tunnel wall on the left. Actually, the vehicle is traveling down
the center of the tunnel (Figure 15.13c). The error is the result of a poor heading
estimate as GPS degraded during entry into the tunnel. Figure 15.13b shows the
instantaneous laser readings being reported from the reactive system in polar
coordinates with respect to the center of the vehicle. These sensor readings do
not rely on reported position and heading and show the tunnel is actually closer
on the right and that the vehicle is well aligned. If the vehicle followed the
plan, it would collide as it steered it farther to the right. Instead, the reactive
system engaged to protect the vehicle and guided it the rest of the way through
the tunnel. When the vehicle emerged, the GPS signal was recovered and the
vehicle relied on planning again.

Competent navigation is a balance between directed motion based on a plan-
ning and dynamic steering correction based on a reactive protection system.
Based on the terrain from last year’s race, Meteor placed more weight on pro-
tecting the vehicle.

15.8 Developmental Approach and Field Testing

MITRE decided to enter the Grand Challenge in October of 2004. That left
eleven months to create a vehicle that could operate autonomously in desert
terrain. To achieve this goal required a solid plan, rigorous development and
testing, and considerable discipline.

The team laid out a series of goals in one to two month intervals. Each of the
goals involved a series of tests culminating in a demonstration. Engineers from
outside the team were routinely invited to observe these demonstrations and
assist with ideas and suggestions. Most testing was conducted in an abandoned
parking lot (Figure 15.14a).

• November. Have a vehicle that could be driven under computer control. This
was achieved by purchasing goods and services from Electronic Mobility Cor-
poration.

• December. Drive autonomously from waypoint to waypoint. That was
achieved with initial versions of a simulator, vehicle throttle and brake con-
trollers, data loggers, data replayers, map display tools, and other software
architectural components.

• January. Follow multiple waypoints with horizontal obstacle avoidance. By
starting with a simple configuration [one GPS, one laser measurement sensor
(LMS), and a laptop], end-to-end capability was demonstrated.

• March. Drive autonomously for five miles, using sensor data from multiple
sources for obstacle avoidance while operating on varied terrain. Early speed
and distance tests were performed at a farm in northern Virginia (Figure
15.14b). These long-distance tests forced resolution of sensor fusion, maneu-
vering near obstacles, advanced vehicle performance, and speed control.

• May. Prepare for a DARPA site visit. Testing had moved from obstacle avoid-
ance to finding a balance between speed, planning, and reaction time. At this
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point, sensing strategies were unresolved with stereo vision, radar, and ma-
chine vision for road detection under consideration. The site visit required
completing a 200m course while avoiding placed obstacles (trashcans). The
primary focus during this period was to minimize the number of trashcans
we crushed. The site visit was successful (missing five of six trashcans).

• July. Take the complete system to the Nevada desert and test on the 2004
Grand Challenge route (Figure 15.14c). This was critical preparation for the
race. Finding adequate, available test environments for regression testing was
difficult. Emulating a desert in urban Virginia was a challenge. Out of ten
months of testing, ten days were outside a parking lot. These ten days were
extremely valuable and played a large part in getting to the finals.

The desert provided a larger and longer testing space, permitting speed
tuning in the flats of a wide-open lakebed and navigating trails bounded
by large desert shrubs. It also provided an opportunity to test navigation
through and around obstacles like cattle guards, switchbacks, and tunnels
(Figure 15.14c). It demonstrated the hazards of the desert terrain including
how radically and quickly the terrain could drop off and the size of the
boulders (Figure 15.14d).

July was also a self-imposed deadline for integrating new systems. While
several months remained until the race, the systems needed to be rigorously
tested and tuned to be successful. The sensor suite was finalized based on ex-
isting performance. Systems that were not sufficiently trusted were dropped.

July saw evaluation of the effect of environment on sensors and processors.
Heat was a concern but testing in 130-degree temperatures showed that the
vehicle’s air conditioning system was adequate to maintain cabin tempera-
tures. Sensor fouling was also a concern. Desert dust is dry and fine-grained.
It builds a small charge that causes it to stick to almost everything. Repeated
experiments showed that the sensors worked without degradation, leading to
the conclusion that this issue could be ignored.

The team traveled to the Yuma Proving Grounds in Arizona as a graduation
exercise to test the entire system on an off-road test course (Figure 15.14e).

15.8.1 The National Qualifying Event

The National Qualifying Event (NQE) was the final DARPA evaluation before
the big race. It was designed to test vehicle capabilities over a 10-day period
at the California Speedway and to determine which vehicles should participate
in the Challenge race. The course contained two large gates, several hills, hay
bales, a tunnel, a debris field, a mock switchback, several parked cars, rumble
strips, and a tank trap. Runs were evaluated based on the number of obstacles
avoided and the time to complete the course. Each team had up to six attempts
to complete the course — three complete runs were necessary to pass.

Meteor was one of the first teams to compete on day 1. It left the starting
gate and headed for the first obstacle, two large, shiny gates positioned on either
side of the route. Meteor made the turn, started to point between the gates, and
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Fig. 15.14. Testing. a) Most vehicle testing occurred in an empty parking lot in
McLean, Virginia. Here Meteor passes through a mock tunnel constructed from wood
and weather tarps. b) Testing at local sites including a farm and an off-road facility.
Note deep ruts that proved hazardous to low lying sensors. c) Six days of testing in
129 degree heat of Primm Nevada in July. Here Meteor successfully exits a tunnel and
passes through cattle guards. d) Testing along the 2004 route included driving in rough
mountain terrain. Note the size of the boulders left of Meteor. e) Testing on an off-road
autonomous vehicle test course at the Yuma Proving Grounds a week before the race.

then veered away (Figure 15.15a) when DARPA stopped it. Figure 15.15b shows
the Meteor view. Even though the gates appeared to lie slightly inside the route
(probably due to GPS error), the vehicle should have been able to pass through
them. After reviewing data logs, it was apparent that Pelorus did not think there
was enough room for the vehicle to fit through the gate. The safety margin (1m)
on either side of the vehicle was discovered to be too large. After folding the
rear-view mirrors to reduce vehicle width, the safety margin was reduced to a
few inches.

Run 2 did not go well. Meteor left the starting gate, traveled about 40 meters,
and veered to the right. It continued its slow loop backwards and as it approached
the outer barriers, DARPA officials stopped it. The system generated empty log
files, which prevented analysis of the anomaly. Despite the lack of log data, the
GPS multipath issue was discovered (see section 15.5.1) between runs 2 and 3.

Meteor entered run 3 with the same parameter set as Run 2. During this run,
it passed through the first gates, traversed a grassy area including a slight incline
and decline down to an asphalt road and into the hay maze. Figure 15.15e shows
it navigating through the hay bales leading to the tunnel. Meteor entered the
tunnel where it veered left and stopped after nudging the left tunnel wall. Log
data showed that upon entering the tunnel the transition from GPS to motion
model was not quick enough. Just before the motion model engaged, the GPS
error produced a large heading discrepancy and Meteor veered left too quickly for
Pelorus to react. Figure 15.15f shows the final resting place of Meteor. Though
the angle is shallow, Pelorus did not think there was enough room to maneuver
out of it. Replay of the data exposed the failure mode. Over the next few days,
handoff between the GPS and motion model was tested. The team built a mock-
up of a large tunnel. Figure 15.16g shows Meteor passing into the mock tunnel.
GPS loss was induced by placing a ball cap covered with tin foil over the GPS
unit, effectively killing its signal (the other GPS was turned off).
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Fig. 15.15. NQE. Each team had six chances to complete the course. a,b) Meteor’s
first run ends as it fails to pass through the first gates. c,d) Meteor veers off course
before reaching the gates. e,f,g) During the third run, Meteor clears the gate, rounds
a steep hill and traverses a hay bale maze, but stops in the tunnel. Testing corrected
this discrepancy. h-m) Meteor completes runs 4, 5 and 6 without incident, including
avoiding several parked cars, a debris field, a mock mountain pass and a tank trap.
Completing three runs qualified Meteor for the finals.

Testing showed the problem was the hand-off from planning and to reactive
modes. Parameters were tweaked that make the GPS receiver threshold more
sensitive causing transition to occur sooner and more often. The new parameters
required a higher GPS confidence to stay in planning mode.

Once these issues were addressed, Meteor completed the next three runs with
slow but repeatable times of 27 minutes each. Figures 15.15h-15.15m shows
Meteor successfully avoiding obstacles at different parts of the 2.7-mile course.
Figure 15.15h and 15.15j show Meteor driving around obstacles. Figure 15.15i
shows Meteor driving over several small tires and 4x4s with no trouble. Figure
15.15k shows Meteor posed near the mock mountain pass. Barriers on the right
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and a large drop off on the left simulated terrain found on a switch back. As
with the hay bales, the down-lookers kept Meteor on the path driving between
positive and negative obstacles. Figure 15.16m shows the last obstacle, rumble
strips a few feet before a tank trap to see how vehicles sensed in rough terrain.
In all runs, Meteor avoided the tank trap and crossed the finish line.

15.8.2 The Finals

Of the 152 teams that participated in the site visit and the 43 teams that com-
peted in the NQE, only 23 qualified to race in the finals. The Meteor team was
extremely pleased to compete in such a challenging event.

Because Meteor was slowest to complete the NQE, it was last to start the
finals. As the day wore on, the winds grew stronger. By the time Meteor started,
there was a steady breeze with periodic gusts. Meteor left the gate, traveled by
the crowd and headed out to the desert. About thirty meters before entering
the dry lakebed, it encountered a large dust cloud and stopped in a field of tall
weeds and bushes.

During testing in the desert before the race, occasional dust clouds appeared
as winds raised fine layers of desert dust. Laser scanners detected the translucent
cloud and treated it as a transient obstacle. After the dust blew beyond the range
of the lasers, the offending obstacle cleared and Meteor continued. Figure 15.16b
shows a dust clouds as it passed Meteor from back to front in the race. Clouds
were also generated by Meteor and the chase vehicle. Figure 15.16a is an overhead
reconstruction of Meteor reacting to one of these clouds. The wide line running

Fig. 15.16. The race. (a) Meteor approaches, slows, and attempts to avoid passing a
dust cloud that periodically plagued it during its brief run. This sequence shows one
of the many dust clouds as seen by the laser scanners. The thin lines are laser scans
that hit the ground. The thicker lines are cause by dust. (b) A dust cloud passing in
front of and away from the Meteor.
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Fig. 15.17. The 2005 MITRE Meteor team. (Left to right) Frank Carr, Bob Bolling,
Bob Grabowski, Richard Weatherly, Dave Smith, Ann Jones, Tiffani Horne, Mark
Heslep, Keven Ring, Kevin Forbes, Mike Shadid, Laurel Riek, Alan Christiansen, and
Sarah O’Donnell (inset).

through each segment is the lane defined by the route definition. Meteor is in the
middle. The thin lines are laser scans that terminate at the range gate (hit the
ground). The darker points are readings from perceived obstacles (Figure 15.16a
middle).

The pictures start on the left where Meteor is moving on the course (as seen
by the separation between laser scans). As the cloud reaches Meteor, it triggers
the reactive system that forces it to veer and then stop. In most cases, as the
dust clouds passed, Meteor would slow or stop and then continue along its path
when the clouds cleared. This occurred 10 to 20 times during the run. The road
started to turn left, so these clouds appeared to be coming from the right. The
new angle pushed Meteor toward the outside of the road. Figure 15.16c shows one
of these diversions. This occurred several times and ultimately pushed Meteor far
enough off course that larger weeds and shrubs made the route look impassable.
Since the lasers could not differentiate between weeds and large rocks, Meteor
stopped just 1.1 miles from the starting gates and less than thirty meters from
the wide-open expanses of the dry lakebed.

15.9 Conclusion

Although the MITRE Meteor team did not win the Grand Challenge, it did
achieve its goals. MITRE’s Grand Challenge experience validated three philoso-
phies: Reliance on COTS, software location and employment transparency, and
the model-build-test cycle. Purchasing COTS equipment and services focused
project energy on autonomous robot control. Good examples are the installa-
tion of a COTS steering and propulsion servo control system and the vehicle
suspension modification. Many teams did poorly at NQE when their homemade
solutions failed.

A disciplined approach to software construction let good ideas accumulate
without the system becoming fragile. One way to increase confidence in code is
to employ it for as many purposes as appropriate. For the Grand Challenge, the
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same body of code was used to operate the robot, run non-real time laboratory
simulations, and study logs recorded in the field. This transparency of employment
exposed problems in the lab before they could waste field-testing time.

The model-build-test cycle accumulated experience in a tangible and persis-
tent way. When a problem was found or a new phenomenon identified, it was
first modeled in the simulation environment. With a simulation of the problem
or new phenomenon in hand, the body of operational code was adjusted to deal
with it. Once proven in simulation, the robot was fieldtested to evaluate the
changes and improvements were fed back to the model. A result of the model-
build-test approach was that the model grew in fidelity and became a lasting
repository of project experience. More importantly, this experience proved that
testing in real environments is the key to success.

The experience gained by taking a vehicle to the Grand Challenge, though
basic in nature, is a valuable asset to many Department of Defense and civilian
missions. These lessons continue to equip MITRE to help our clients succeed in
their robotic endeavors.
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