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Summary. This paper describes two implementations of a potential field sharing
multi-robot system which we term as pessimistic and optimistic. Unlike other multi-
robot systems in which coordination is designed explicitly, it is an emergent property
of our system. The robots perform no reasoning and are purely reactive in nature.
We extend our previous work in simulated search and rescue where there was only
one target to the search for multiple targets. As in our previous work the sharing
systems with six or more robots outperformed the equivalent non-sharing system.
We conclude that potential field sharing has a positive impact on robots involved in
a search and rescue problem.
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2.1 Introduction

Potential fields [11] have been used in robot navigation [17] for a number of
years, despite a number of well known issues [13]. An example of such a diffi-
culty includes oscillation near obstacles and in narrow passages. Modifications
to the potential field algorithm have been proposed [19] to overcome these
challenges. Other approaches to potential fields include that of Reif et al. [18]
in which an individual agent’s motion is a result of an artificial force imposed
by other agents and components of the system. Damas et al. [7] modified
potential fields to enhance the relevance of obstacles in the direction of the
robot’s motion. Howard et al. [10] divided their potential field into two compo-
nents, a field due to obstacles and a field due to other robots. Pathak et al. [17]
stabilised their robot within a surrounding circular area (‘bubble’) using two
potential field controllers. The ROBOT was centred within a bubble and then
its orientation was corrected.

In our approach, a robot’s motion is a result of the force imposed by
obstacles. In addition, a local group of robots share information on common
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potential field regions so that a robot’s motion can be a result of obstacles
not perceived by the individual robot. The concept of a local group is simi-
lar to that of dynamic robot networks [5]. However, instead of broadcasting
trajectories and plans of robots, in our system the potential field information
is broadcast. To the best of our knowledge, no previous research using poten-
tial fields has incorporated the concept of sharing potential field information
amongst robots.

Unlike perception–reasoning–execution architectures [14] the system pre-
sented in this chapter does not reason about its environment. We describe our
system as a reactive system [1]. Motion is based purely on the potential field
created by the sensor data in real-time. There is no concept of teamwork [6]
or role selection [20] in that each robot performs actions as an individual.
Robots are not aware that they are part of a collective; co-ordination becomes
an emergent property of the system through the implicit sharing of potential
fields by the robots.

In this chapter, we extend our previous work [2] by using a potential field
based architecture to search for two targets in an unknown environment. We
largely reproduce the problem description in Sect. 2 from [2] for completeness.
Although this is a specific problem instance, we believe our system may be
applied to many other problems such as robotic soccer [7, 12], the coverage
problem [10] and robotic hunting [3].

In the rest of this chapter, Sect. 2.2 describes the potential field based
implementation, Sect. 2.3 describes the experiments undertaken, Sect. 2.4 out-
lines the results from the experiments and, finally, Sect. 2.5 is a discussion of
the results observed and possible future work.

2.2 Potential Field Implementation

Before a description of the sharing robots is given, the individual robot sys-
tem will be summarised, as the sharing robots are based upon this individual
robot system and they are compared against it during the experimentation
described in Sect. 2.3.

The individual robot system is made up of a number of robots which
attempt to solve a task individually without any communication or
co-ordination with one another. The system is implemented using a model
based upon Coulomb’s law of electrostatic force (as described in [4]). The
system is composed of positively charged particles, which are used to calculate
the field by the inverse square law below (2.1):

F =
q1q2

r2
(2.1)

where q1 and q2 represent the charges of two particles and r is the distance
between them. The resultant force, F , either repels or attracts the particles
to one another. Using (2.1), we calculate eight individual forces, f1− f8; r is
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Fig. 2.1. Action selection: (a) the robot calculates the minimum force (f3), (b) the
robot rotates towards the minimum force, (c) the robot moves forwards (towards
the minimum force)

the range to an object (in metres) obtained from an ultrasonic sensor reading
(see Fig. 2.1a), q1 is the charge of the robot and q2 is the charge of the object.
For simplicity, all objects are represented by a positive unit charge.

Rather than formally resolving into a single force, the robot’s motor control
is a simple action selection of either move forward or rotate. When moving for-
ward, the speed of the robot is proportional to the force acting upon it. When
rotating, the angular speed is 0.5 rad s−1 and the forward speed is 0.025 m s−1.
The robot calculates the minimum F (Fmin) and rotates in the direction of
Fmin. If the direction of the robot equals the direction of Fmin then the robot
moves forwards (see Fig. 2.1).

Using this conceptually simple algorithm, the robot moves away from areas
of positive charge (obstacles). As a target is indistinguishable from an obstacle
to an ultrasonic sensor, a camera is used to differentiate between obstacles
and targets using blob detection (targets are non-black obstacles). However,
rather than giving the target a negative unit charge (−1), the task is said to
be complete once the target has been found (this is a simplification due to
the nature of the task described in Sect. 2.3). The orientation of the camera
is fixed to the forward orientation of the robot (see Fig. 2.1a).

2.2.1 Potential Field Sharing

As noted earlier, the sharing robots are identical to the individual robots but
implicitly share their potential field information with other robots within a
local group. Therefore, by knowing only the relative positions (based upon
odometric readings and the initial location of all robots) of other robots in
the system, robots can assign themselves to a local group (the range of the
local group catchment radius is set to an arbitrary value).

The world is represented as a two-dimensional plane. Simple geometric
calculations (the intersection of circles and the intersection of lines and circles)
are used to decide which of the ultrasonic sensors are likely (see Fig. 2.2a) to
share information.
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Fig. 2.2. (a) Likely sharing: The circles represent the local catchment areas of each
robot. Lines A, B, C and D are the lines representing the ultrasonic sensors. Line E
is the line intersecting the points of intersection of the two circles. (b) Two robots:
The large circles represent the range of the robot’s sensors and thus the grey square
is an obstacle only observed by robot A. The white square represents what robot B
would ‘see’ if the pessimistic system was implemented. The dashed line represents
potential field information that is not shared

If any of these lines intersect, the line joining the points of intersection of
each robot’s local group catchment radius (line E in Fig. 2.2a). The intersec-
tions of lines are used to determine which lines (representing the direction of
ultrasonic sensors) from any robot (within the local group radius) intersect
any of the lines of another robot. Then the potential field information of the
involved robot’s ultrasonic sensors is shared. An example is given in Fig. 2.2b.
Note that line D in Fig. 2.2a never needs to be considered, since it is parallel
to line E. This process is repeated for all robots within the local catchment
radius.

We describe two types of sharing systems. They are referred to as pes-
simistic and optimistic in the context of sensor noise. Consider, for example,
the situation as in Fig. 2.2b in which robot A detects an obstacle that is
not within robot B’s sensor range. As they both belong to the same local
group, a shared potential field is constructed. Robot A would suggest a high
charge, whereas robot B would suggest a low charge. In the pessimistic sys-
tem, the highest charge is selected and so an obstacle outside its own sensor
range repulses robot B. In the optimistic system, the lowest charge is se-
lected and thus the obstacle initially detected by its sensors no longer repulses
robot A.

The advantage of the pessimistic system is that robots are less vulnerable
to false negatives (and so avoid obstacles that they have not detected due
to sensor noise), but the disadvantage is that they are more susceptible to
false positives (and so avoid obstacles they do not need to). The advantage of
the optimistic system is that robots are less vulnerable to false positives but
are more susceptible to false negatives. Note that not all potential field infor-
mation is shared amongst robots within the same local group, see Fig. 2.2b.
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2.3 Experiments

As with our previous work [2], all experiments were conducted using the
player/stage [8] simulator and the robots modeled in the simulator were
Miabot Pros [15], with an ultrasonic range finder and avr-cam modules. The
ultrasonic range finder is composed of eight ultrasonic sensors that give a
360◦ field of view with a range of 3 cm−1 m. The avr-cam has a field of view
of 30◦ and can track up to eight blobs at the same time. The local group
catchment radius is set to double the sonar range of 1 m. The simulated envi-
ronment has approximately the same dimensions (5× 3 m2) as our real robot
arena. As an extension of our previous work [2], the simulated robots have
the task of discovering two targets in an unknown environment. Once both
targets are found, the task is complete. The environment consists of obstacles,
robots, a deployment zone and targets. Obstacles were generated within the
environment (world) randomly; the size of the obstacle, its position and its
orientation all varied. The positions of the targets and the deployment zone
for the robots were also generated randomly. However, these positions were
fixed throughout the experiments. The only difference between each experi-
mental run is the noise within the simulation in the form of bad data. For
example, sonar passing through obstacles. The deployment zone is a position
in the world that all the robots start in (evenly spaced 0.1 m from one another
in concentric circles starting from this initial position, where obstacles allow).

For these experiments, three worlds were generated (see Fig. 2.3). For
each world, all three of the systems (individual, pessimistic and optimistic)

Fig. 2.3. (a) Simulated world 1. (b) Simulated world 2. (c) Simulated world 3.
The group of eight squares are the simulated robots. The two lone squares are the
targets. The rectangles are the obstacles
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Table 2.1. Mean completion (seconds) for each system in each world for 2–8 robots,
to one decimal place

2 3 4 5 6 7 8

world 1
ind 300.0 195.0 284.0 241.1 189.2 250.0 163.3
pes 184.5 183.5 104.8 135.1 126.3 165.0 104.0
opt 195.0 188.5 149.5 117.7 85.0 138.9 139.1
world 2
ind 123.3 127.1 85.0 73.9 25.9 37.1 26.7
pes 70.2 48.5 53.8 62.3 37.7 28.0 25.4
opt 76.5 68.6 52.4 45.7 42.2 38.4 40.6
world 3
ind 249.0 173.2 163.3 104.6 170.3 198.5 103.5
pes 116.2 94.5 135.7 114.5 98.8 103.6 83.3
opt 135.4 110.0 163.6 111.8 118.6 76.3 75.4

attempted 20 runs that were repeated for groups of 2–8 robots. The time
recorded for both targets to be discovered was the metric recorded. Failure to
complete the task within 300 s resulted in a score of 300 s. The means of the
results are provided in Table 2.1.

2.4 Results

As in our previous work [2], two statistical tests were chosen to analyse the
data. The Kruskal-Wallis test was chosen, as it is useful in detecting a differ-
ence in the medians of distributions. The Friedman test was chosen to detect
the existence of association between characteristics of a population. Details of
these tests are given in [9].

In world 1, both the pessimistic and the optimistic system perform signifi-
cantly better than the individual system in all but one case (3 robots). There
is no significant difference between the two sharing systems. In world 2, the
pessimistic system significantly outperforms the individual system in the 2
and 3 robot cases. The optimistic system significantly outperforms the indi-
vidual system in the 2, 3 and 5 robot cases. Again, there is no significant
difference between the two sharing systems. In world 3, both the sharing sys-
tems significantly outperformed the individual system in the 2 and 7 robot
cases and there was no significant difference between the sharing systems. The
individual system performed better with 6 or more robots in worlds 1 and 2.
The pessimistic system results suggest that there was no significant advantage
gained by increasing the number of robots. The optimistic system performed
best with 6 or more robots in worlds 1 and 2.
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2.5 Discussion

The results show that the sharing systems perform significantly better than
the individual system. The observation that there is no significant difference
between the performance of the pessimistic and optimistic systems is also
interesting as this implies that the ability to detect more obstacles has the
same benefit as the ability to ignore more sonar noise. We believe that this may
be due to the fact that there is a limited amount of noise within the simulation
and the differences in the sharing systems’ performance will be more apparent
in the real world. The observation that both the individual and the optimistic
system perform better with six or more robots makes sense as, in the case
of the individual system, more robots in the world results in a greater area
coverage. In the case of the optimistic system, as well as having the same
benefits of the individual system, more robots result in more information
being shared and so each robot can make better decisions. The observation
that the pessimistic system did not benefit from an increased number of robots
was not expected and requires further research.

A major limitation of the pessimistic and optimistic systems is their
reliance upon accurate odometric readings. In the experiments carried out
in this chapter, it was assumed that no errors occurred. In the real world,
errors occur frequently due to wheel slippage. This will have to be accounted
for in real world experiments.

Future work includes adapting the multi-robot systems to include group
member recognition in order to improve robot dispersal. We also intend to
investigate the effect of the local group radius (both increasing and decreasing
its size). Other possible future work includes, applying this research to a
very large-scale robotic system (hundreds of robots) [18] and implementing
the sharing robots in other common problems such as robotic soccer [7, 12],
formation control [16], the coverage problem [10] and hunting [3]. It is hoped
that the work in this chapter can form a basis for future work on real robots.
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