
14

An Evolutionary Approach to Crowd
Simulation

Tsai-Yen Li and Chih-Chien Wang

Computer Science Department
National Chengchi University
li@nccu.edu.tw, g9022@cs.nccu.edu.tw

Summary. In previous work, virtual force has been used to simulate the motions
of virtual creatures, such as birds or fish, in a crowd. However, how to set up the
virtual forces to achieve desired effects remains empirical. In this work, we propose
to use a genetic algorithm to generate an optimal set of weighting parameters for
composing virtual forces according to the given environment and desired movement
behaviour. A list of measures for composing the fitness function is proposed. We have
conducted experiments in simulation for several environments and behaviours, and
the results show that compelling examples can be generated with the parameters
found automatically in this approach.

Keywords: Crowd simulation, Genetic algorithm, Robot formation, Multiple
robot system.

14.1 Introduction

Formation control for multi-robot systems is a classical robotic problem that
has attracted much attention in the literature [1]. In recent years, the tech-
niques of simulating virtual crowd also have created potential applications in
contexts such as a virtual mall, digital entertainment, transportation and ur-
ban planning. Most of the current systems for crowd simulation adopt a local
control approach. One of the common approaches to this problem in computer
animation adopts the virtual force model [10], whereby the movement of each
robot is affected by virtual forces computed according to its spatial relation
between itself and other robots or objects in the environment. However, de-
signers still need to face the problem of how to choose the most appropriate
forces and select the best weights. In addition, there is no objective way to
evaluate the result.

Crowd motions can be generated by simulation or by planning. In this
work, we focus on the approach of simulation. Bouvier [2], Brogan and Hodgins
[3] used a physical-based particle system to simulate a crowd of athletes such as

T.-Y. Li and C.-C. Wang: An Evolutionary Approach to Crowd Simulation, Studies in Compu-

tational Intelligence (SCI) 76, 119–126 (2007)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

120 T.-Y. Li and C.-C. Wang

runners or bikers competing in a field. Reynold [10,11] sought to apply virtual
forces to individual robots to create steering behaviours for the whole crowd.
Tu and Terzopoulos [4] used rule-based finite-state machine to construct a
cognitive model of fish and succeeded in creating several interesting behaviours
including flocking. Muse and Thalmann [9] used behaviour rules to design
virtual characters and used scripts to construct complex social interactions.

In this chapter, we propose to model the problem of generating good ex-
amples of the movement of crowds by designing an appropriate parameteri-
zation and evaluation mode and adopt the genetic algorithm [7] to search for
an optimal set of parameters. The parameterized virtual-force model is then
evaluated by an array of measures to describe the desired crowd behaviours.
We have also conducted experiments to generate parameter sets for several
common crowd behaviours in various environments consisting of different spa-
tial structures. The considered materials are derived from [6] where they were
first presented and discussed.

14.2 Design of Movement Model and Virtual Forces

In this work, we have adopted the virtual force model proposed in [10] as the
way to affect the movement of each individual robot. We assume that the
robots move under the influence of virtual forces proposed in [11], and that
they must respect maximal speed limits in both translation and rotation. In
addition, a robot is given a view angle of 330 and a constant view distance
that is 20 times the size of the robot. Because the virtual forces are computed
locally for each robot, only the robots or obstacles that are within the range
of view have effect on the computation of the virtual forces for the robot.
The computed forces are used to update the next configuration of the robot.
However, if the new configuration is in-collision, the system makes use of
various local strategies to avoid such a collision.

The motions of the crowd in our simulation system are driven by five
types of virtual forces: separation, alignment, cohesion, following and colli-
sion. First, the separation force (Fsep) is a repulsive force computed propor-
tional to the distance between the robot and other neighbouring robots within
the range of view. The resultant force is the summation of all of the forces
exerted by each individual robot. The effect of the force is to maintain a safe
distance between the robots. Second, the alignment force (Falign) is used by
a robot to align its velocity and orientation with other neighbouring robots.
An average velocity for the robots within the range of view is computed first.
The alignment force is then computed according to how the velocity of the
current robot deviates from the average one. Third, the cohesion force (Fcoh)
is computed according to the difference vector between the current position of
the robot and the centre of the neighbouring robots within the range of view.
Fourth, the following force (Ffol) is an attractive force that drives the crowd
to its goal. This force is computed according to the distance from the goal,

14 An Evolutionary Approach to Crowd Simulation 121

which could also be moving. We have adopted the model proposed in [5] to
compute a collision-free following path by making the robot head to a point
along the trace of the leader that does not cause collisions with obstacles.
Finally, the collision force (Fcol) is a repulsive force exerted by the environ-
mental obstacles when a condition of collision is predicted after certain period
of time.

Our system uses a linear combination of the normalized component forces
described above to compute the final virtual force as shown in (14.1).

F = s1 ∗ Fsep + s2 ∗ Falign + s3 ∗ Fcoh + s4 ∗ Ffol + s5 ∗ Fcol (14.1)

The set of weights s = (s1, s2, s3, s4, s5) determines how the forces are
composed to affect the behaviour of the robot. The appropriate setting of the
weights remains as an empirical problem for the designer, which is the reason
that we propose to automate the search process for an optimal solution with
the genetic algorithm described in the next section.

14.3 Evolution of Motion Behaviour of Crowd

In a crowd simulation, the trajectory of the crowd may vary greatly according
to the scenario and the environment in which the crowd is situated. There-
fore, the designer is required to tune the weights of the component forces in
order to achieve the results desired within the framework of virtual forces.
The complexity of the parameter space and the time-consuming process of
developing the simulation make it a difficult optimization problem for human
or for machine. Therefore, we propose to solve the problem by using a genetic
algorithm, commonly used to solve the problem of searching for an optimal
solution in a large search space [7].

In our problem, the set of weights described in the previous section are used
as the genes for encoding. Each of genes is encoded into a bit string of length
10. Since we have five parameters (genes) in our system, the total length of
the chromosome is 50 bits. In the current system, the population is set to 200.
We have chosen the roulette wheel selection mechanism to select the samples
that will survive in the next generation. Sample points are randomly selected
in the wheel for the one-point crossover operation. In each generation, we also
perform the mutation operation (switching a random bit) on samples selected
with the probability of 0.01.

The desired fitness function in our experiments may also be different for
different scenes and different types of behaviours. Instead of designing a spe-
cific fitness function for each type of behaviour, we designed several elementary
fitness functions that can be used to compose the final fitness function of a be-
haviour. Most of the elementary fitness functions are computed based on the
spatial relation between a robot and its neighbours, defined as the k-nearest
robots. Following Miller [8], we currently set the value of k as seven in the

122 T.-Y. Li and C.-C. Wang

current system. We describe the elementary fitness functions used in this work
as follows.

Inter-robot distance (Gm). The inter-robot distance for a robot is defined
as the average distance of its k-nearest neighbours. The relative distance to
robot i is denoted as ri, and their average distance between each other is
denoted as Ri as shown in (14.2). For a given frame, the difference between
the average and the user-specified value is the main performance index. This
value is normalized by the quantization factor Qd to make it fall in the interval
If = [0, 1], as shown in (14.3). The overall system performance is computed
as the average of all robots over the whole path as shown in (14.4).

Rj =
∑i=k

i=1 ri

k
(14.2)

Gj =
Qd

|Rj − Re|
, s.t. 0 < Gj ≤ 1 (14.3)

Rm =

∑j=N
j=1 Gj

N
, Gm =

∑m=L
m=1 Rm

L
(14.4)

Distance to the goal (Gg). The calculation is similar to that for inter-
robot distance described above except for that the distance is computed with
respect to the goal instead of each robot. In the interest of saving space, we
do not repeat the formula here. In addition, instead of being a physically
existing object, the goal could also be a designated position at a point behind
a possibly moving leader.

Number of collisions (Gc). Assume that Nc denotes the number of robots
that are in collision with other robots or obstacles, and that N denotes the
total number of robots in the simulation. Then, the collision ratio sj is defined
as the percentage of robots that are in collision, and the overall elementary
fitness function is then defined as the average of this ratio in movement over
the whole path as shown in (14.5).

sj =
N − Nc

N
, Gc =

∑j=L
j=1 sj

L
(14.5)

Consistency in orientation (Ga). In (14.6), we define the average difference
in the orientation of a robot with respect to other neighbouring robots and
the consistency in orientation for a single robot. The fitness function for the
whole crowd is then defined as the average of all robots over the whole path
as shown in (14.7).

Aj =
∑i=k

i=1 |θj − θi|
k

, i �= j Bj = (1 − Aj

π
) (14.6)

Bm =

∑j=N
j=1 Bj

N
,Ga =

∑m=L
m=1 Bm

L
(14.7)

Consistency in distance (Gd). The average distance and standard deviation
of a robot’s distances to its neighbours are first computed according to (14.8).

14 An Evolutionary Approach to Crowd Simulation 123

The consistency in distance for a robot is then defined as the inverse of the
standard deviation multiplied by the quantization factor Qσ in (14.9). The
overall performance index is computed as the average of the consistency in
differences between all robots over the whole path as shown in (14.10).

Rmean =
∑i=k

i=1 ri

k
, σj =

√∑i=k
i=1 (Ri − Rmean)2

k
(14.8)

Fj =
Qσ

σj
, s.t. 0 < Fj ≤ 1 (14.9)

Ft =

∑j=N
j=1 Fj

N
, Gd =

∑t=L
t=1 Ft

L
(14.10)

The overall fitness function (Fsum), as shown in (14.11), is computed based
on a linear combination of the elementary fitness functions defined above.

Gsum = Sm ∗ Gm + Sg ∗ Gg + Sc ∗ Gc + Sa ∗ Ga + Sd ∗ Gd (14.11)

A designer makes use of the weights, S = (Sm, Sg, Sc, Sa, Sd), according
to the nature of the desired behaviour, to compose the final fitness function
from the elementary ones. We assume that these weights are more intuitive to
set compared to the weights in (1) and that they should be the same for the
same desired behaviour of crowd movement. However, the optimal weights in
(1) may be scene specific, as shown in the next section.

14.4 Experimental Design and Results

We implemented the simulation system and the genetic algorithm in Java. The
evolution terminates when the maximal number of generations is reached or
the optimal solution converges and do not change for five generations. For each
environment and behaviour, we ran the same experiment with three different
initial settings to see if they all converge to the same optimal solution. Our
observation is that most of the experiments converged after 17–19 generations.

Generally speaking, it is difficult to classify environments or define typical
scenes. Nevertheless, we have defined and tested three types of scenes that we
regard as typical in our current experiments. These scenes include an open
space without obstacles (E1), a scene with a narrow passage (E2) and a scene
cluttered with small obstacles (E3).

Three types of behaviours were tested in our experiments: group moving
(B1), following (B2) and guarding (B3). The group moving behaviour refers to
keeping the crowd moving with a given inter-robot distance in a group. The
following behaviour refers to pursuing a possibly moving goal as closely as
possible, and the guarding behaviour refers to surrounding a possibly moving
goal. For each different type of behaviours, we used a different set of elemen-
tary fitness functions to compose the final fitness function in order to express
the designer’s intention.

124 T.-Y. Li and C.-C. Wang

We conducted experiments with the genetic algorithm described in the
previous section to acquire the set of parameters for the desired behaviour for
each given environment. The set of weighting parameters generated by the
system are given in Table 14.1. These optimal parameter sets vary greatly
for different scenes and for different types of environment. For example, for
the behaviour B1, the parameter s3 varies from 0.15 to 0.99 for different
environments. For the environment E1, the parameter s3 varies from 0.19
to 0.95. The generated weights for the following force (s4) and the collision
forces (s5) for the cluttered environment (E3) are relatively smaller than other
environments since these two forces tend to jam-pack the crowd in such an
environment.

In order to validate the parameters, we used the parameters obtained for
E1 to run simulations with E2 and E3. The overall scores Gsum returned by the
fitness function are 295, 150 and 262, respectively. When we used the optimal
parameters generated for E2 and E3, respectively, to run the experiments
again, the scores improved to 271 and 284, respectively. Although the scores
in the cluttered environments (E2 and E3) are not as good as might have
been anticipated from the result for E1, the scores were greatly improved
when the optimal parameters were used. This experiment reveals that the
optimal weighting parameters for the virtual force are scene dependent.

In Fig. 14.1, we show an example of the following behaviour (B2) for the
crowd with a small inter-robot distance in a space cluttered with obstacles
(E3). In Fig. 14.2, we show an example of group movement (B1) where the
desired inter-robot distance is set to a higher value, and the crowd needs to
pass the narrow passage (E2) in order to reach the goal.

Table 14.1. Optimal weights generated by the genetic algorithm for various envi-
ronments and behaviours (B: Behaviour, E: Environment)

s1 s2 s3 s4 s5

B1-E1 0.42 0.03 0.15 0.84 0.44

B1-E2 0.87 0.31 0.99 0.49 0.16

B1-E3 0.65 0.12 0.19 0.01 0.12

B2-E1 0.53 0.15 0.77 0.36 0.62

B2-E2 0.90 0.39 0.80 0.06 0.16

B2-E3 0.95 0.21 0.93 0.07 0.04

B3-E1 0.94 0.42 0.90 0.14 0.59

B3-E2 0.98 0.43 0.95 0.75 0.71

B3-E3 0.97 0.32 0.63 0.09 0.27

14 An Evolutionary Approach to Crowd Simulation 125

Fig. 14.1. Example of simulation results on the following behaviour (B2) with a
small inter-robot distance in a space cluttered with small obstacles (E3)

Fig. 14.2. Example of simulation results for the group moving behaviour (B1) with
a large inter-robot distance passing a narrow passage (E2)

14.5 Conclusions

In this chapter, we have proposed to formulate the problem of how to com-
pose virtual forces to drive the simulation as an optimization problem on the
weighing parameters for virtual forces by the use of a genetic algorithm.
The fitness functions used in the genetic algorithm are composed according
to the desired behaviours from the elementary ones designed for evaluating
a specific aspect of crowd motion. Our preliminary experiments reveal that
the genetic algorithm is a good way to automate the time-consuming process
of generating the optimal set of parameters for a given scene and a desired
behaviour of movement.

References

1. T. Balch and R.C. Arkin, “Behaviour-based formation control for multirobot
teams,” IEEE Trans. on Robotics and Automation, 14(6), pp 926–939 (1998).

2. E. Bouvier, E. Cohen and L. Najman, “From crowd simulation to airbag deploy-
ment: particle systems, a new paradigm of simulation,” J. of Electronic Imaging,
6(1), pp 94–107 (1997).

3. D.C. Brogan and J. Hodgins, “Group behaviors for systems with significant
dynamics,” Autonomous Robots, 4, pp 137–153 (1997).

4. J. Funge, X. Tu and D. Terzopoulos, “Cognitive model: knowledge, reasoning,
and planning for intelligent characters,” Proc. of ACM SIGGRAPH, pp 29–38,
Los Angels (1999).

126 T.-Y. Li and C.-C. Wang

5. T.Y. Li, Y.J. Jeng and S.I. Chang, “Simulating virtual human crowds with
a leader-follower model,” Proc. of 2001 Computer Animation Conf., Seoul,
Korea (2001).

6. C.C. Wang, T.Y. Li. “Evolving Crowd Motion Simulation with Genetic Algo-
rithm,” Proc. 3rd Intl. Conf. on Autonomous Robots and Agents - ICARA’2006,
Palmerston North, New Zealand, pp 443–448 (2006).

7. G. Mitsuo and C. Runwei, Genetic Algorithms & Engineering Design, John
Wiley & Sons. Inc., New York (1997).

8. G.A. Miller. “The magical number seven, plus or minus two: Some limits on our
capacity for processing information,” Psychological Review, 63, pp 81–97 (1956).

9. S.R. Musse and D. Thalmann, “Hierarchical model for real time simulation of
virtual human crowds,” IEEE Trans. on Visualization and Computer Graphics,
7(2), pp 152–164 (2001).

10. C.W. Reynolds, “Flocks, herds, and schools: A distributed behavioural model,”
Computer Graphics, pp 25–34 (1987).

11. C.W. Reynolds, “Steering behaviours for autonomous characters,” Proc. of
Game Developers Conf., San Jose (1999).

