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Summary. 3D range sensors, particularly 3D laser range scanners, enjoy a rising
popularity and are used nowadays for many different applications. The resolution 3D
range sensors provide in the image plane is typically much lower than the resolution
of a modern colour camera. In this chapter we focus on methods to derive a high-
resolution depth image from a low-resolution 3D range sensor and a colour image.
The main idea is to use colour similarity as an indication of depth similarity, based
on the observation that depth discontinuities in the scene often correspond to colour
or brightness changes in the camera image. We present five interpolation methods
and compare them with an independently proposed method based on Markov ran-
dom fields. The proposed algorithms are non-iterative and include a parameter-free
vision-based interpolation method. In contrast to previous work, we present ground
truth evaluation with real world data and analyse both indoor and outdoor data.

Keywords: 3D range sensor, laser range scanner, vision-based depth inter-
polation, 3D vision.

10.1 Introduction

3D range sensors are getting more and more common and are found in many
different areas. A large research area deals with acquiring accurate and very
dense 3D models, potential application domains include documenting cultural
heritage [1], excavation sites and mapping of underground mines [2]. A lot of
work has been done in which textural information obtained from a camera
is added to the 3D data. For example, Sequeira et al. [3] present a system
that creates textured 3D models of indoor environments using a 3D laser
range sensor and a camera. Früh and Zakhor [4] generate photo-realistic 3D
reconstructions from urban scenes by combining aerial images with textured
3D data acquired with a laser range scanner and a camera mounted on a
vehicle.
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Fig. 10.1. Left: Image intensities plotted with the resolution of the 3D scanner. The
laser range readings were projected onto the right image and the closest pixel regions
were set to the intensity of the projected pixel for better visualisation. Middle:
Calibration board used for finding the external parameters of the camera, with a
chess board texture and reflective tape (grey border) to locate the board in 3D using
the remission/intensity values from the laser scanner. Right: Natural neighbours
R1 . . . R5 of R∗

i . The interpolated weight of each natural neighbour Ri is proportional
to the size of the area which contains the points Voronoi cell and the cell generated
by R∗

j . For example the nearest neighbour R1 will have influence based upon the
area of A1

In most of the approaches that use a range scanner and a camera, the
vision sensor is not actively used during the creation of the model. Instead
vision data are only used in the last step to add texture to the extracted
model. An exception is the work by Haala and Alshawabkeh [5], in which the
camera is used to add line features detected in the images into the created
model.

To add a feature obtained with a camera to the point cloud obtained with
a laser range scanner, it is required to find the mapping of the 3D laser points
onto pixel co-ordinates in the image. If the focus instead lies on using the
camera as an active source of information which is considered in this chapter,
the fusing part in addition addresses the question of how to estimate a 3D
position for each (sub) pixel in the image. The resolution that the range
sensor can provide is much lower than those obtained with a modern colour
camera. This can be seen by comparing left of Fig. 10.1, created by assigning
the intensity value of the projected laser point to its closest neighbours, with
the corresponding colour image in middle of Fig. 10.1.

This chapter is a shortened version of [6].

10.2 Suggested Vision-Based Interpolation Approaches

The main idea is to interpolate low-resolution range data provided by a 3D
laser range scanner under the assumption that depth discontinuities in the
scene often correspond to colour or brightness changes in the camera image
of the scene.
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For the problem under consideration, a set of N laser range measurements
r1 . . . rN is given where each measurement ri = (θi, πi, ri) contains a tilt angle
θi, a pan angle πi and a range reading ri corresponding to 3D Euclidean
coordinates (xi, yi, zi).

The image data consists of a set of image pixels Pj = (Xj , Yj , Cj), where
Xj , Yj are the pixel co-ordinates and Cj = (C1

j , C2
j , C3

j ) is a three-channel
colour value. By projecting a laser range measurement ri onto the image plane,
a projected laser range reading Ri = (Xi, Yi, ri, (C1

i , C2
i , C3

i )) is obtained,
which associates a range reading ri with the coordinates and the colour of
an image pixel. An image showing the projected intensities can be seen in
Fig. 10.1, where the closest pixel regions are set to the intensity of the pro-
jected pixel for better visualisation. The interpolation problem can now be
stated for a given pixel Pj and a set of projected laser range readings R, as
to estimate the interpolated range reading r∗j as accurately as possible. Hence
we denote an interpolated point R∗

j = (Xj , Yj , r
∗
j , C1

j , C2
j , C3

j ).
Five different interpolation techniques are described in this section and

compared with the MRF approach described in Sect. 10.3.

10.2.1 Nearest Range Reading (NR)

Given a pixel Pj , the interpolated range reading r∗j is assigned to the laser
range reading ri corresponding to the projected laser range reading Ri which
has the highest likelihood p given as

p(Pj ,Ri) ∝ e−
(Xj−Xi)

2+(Yj−Yi)
2

σ2 , (10.1)

where σ is the point distribution variance. Hence, the range reading of the
closest point (regarding pixel distance) will be selected.

10.2.2 Nearest Range Reading Considering Colour (NRC)

This method is an extension of the NR method using colour information in
addition. Given a pixel Pj , the interpolated range reading r∗j is assigned to the
range value ri of the projected laser range reading Ri which has the highest
likelihood p given as

p(Pj ,Ri) ∝ e
− (Xj−Xi)

2 + (Yj−Yi)
2

σ2
p

− ||Cj−Ci||2

σ2
c , (10.2)

where σp and σc is the variance for the pixel point and the colour, respectively.

10.2.3 Multi-Linear Interpolation (MLI)

Given a set of projected laser range readings R1 . . . RN , a Voronoi diagram V
is created by using their corresponding pixel co-ordinates [X,Y ]1...N . The nat-
ural neighbours NN to an interpolated point R∗

j are the points in V , which
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Fig. 10.2. From left to right: Depth image generated with the NR method. Depth
image generated with the NRC method, small details are now visible, note that a
depth image generated from a similar viewpoint as the laser range scanner makes it
very difficult to see flaws of the interpolation algorithm. MLI method. LIC method

Voronoi cell would be affected if R∗
j is added to the Voronoi diagram, see

Fig. 10.1. By inserting R∗
j we can obtain the areas A1...n of the intersection

between the Voronoi cell due to R∗
j and the Voronoi cell of Ri before inserting

R∗
j and the area AR∗

j
as a normalisation factor. The weight of the natural

neighbour Ri is calculated as

wi(R∗
j ) =

Ai

AR∗
j

. (10.3)

The interpolated range reading r∗j is then calculated as

r∗j =
∑

i∈NN(R∗
j
)

wiri. (10.4)

This interpolation approach is linear [7]. One disadvantage is that nearest
neighbourhood can only be calculated within the convex hull of the scan-
points projected to the image. However, this is not considered as a problem
since the convex hull encloses almost the whole image, see Fig. 10.2.

10.2.4 Multi-Linear Interpolation Considering Colour (LIC)

To fuse colour information with the MLI approach introduced in the previous
subsection, the areas ARi and AR∗

j
are combined with colour weights wc

1...n

for each natural neighbour based on spatial distance in colour space.
Similar as in Sect. 10.2.2, a colour variance σc is used:

wc
i (R

∗
j ) = e

− ||Ci−Cj ||2

σ2
c . (10.5)

The colour-based interpolated range reading estimation is then done with

r∗j =
∑

i∈NN(Rj)

wiw
c
i

W c
ri (10.6)

where W c =
∑n

i=1 wc
i is used as a normalisation factor.
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10.2.5 Parameter-Free Multi-Linear Interpolation Considering
Colour (PLIC)

One major drawback of the methods presented so far and the approach pre-
sented in the related work section is that they depend on parameters such as
σc, for example. To avoid the need to specify colour variances, the intersection
area ARi

defined in Sect. 10.2.3 is used to compute a colour variance estimate
for each nearest neighbour point Ri as

σci
=

1
ni − 1

∑

j∈Ai

||µi − Cj ||2, (10.7)

where µi = 1
ni

∑
j∈Ai

Cj and ni is the number of pixel points within the region
Ai. σci

is then used in (10.5).
This results in an adaptive adjustment of the weight of each point. In case

of a large variance of the local surface texture, colour similarity will have less
impact on the weight wi.

10.3 Related Work

To our knowledge, the only work using vision for interpolation of 3D laser
data is [8] where a Markov random field (MRF) framework is used.

The method works by iteratively minimising two constraints: ψ stating
that the raw laser data and the surrounding estimated depths should be sim-
ilar and φ stating that the depth estimates close to each other with a similar
colour should also have similar depths.

ψ =
∑

i∈N

k(r∗i − ri)2, (10.8)

where k is a constant and the sum runs over the set of N positions which
contain a laser range reading ri and r∗i is the interpolated range reading for
position i. The second constraint is given as

φ =
∑

i

∑

j∈NN(i)

e(−c||Ci−Cj ||2)(r∗i − r∗j )2, (10.9)

where c is a constant, C is the pixel colour and NN(i) are the neighbourhood
pixels around position i. The function to be minimised is the sum ψ + φ.

10.4 Evaluation

All datasets D were divided into two equally sized parts D1 and D2. One
dataset, D1, is used for interpolation and D2 is used as the ground truth where
each laser range measurement is projected to image co-ordinates. Hence for
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Fig. 10.3. Left: The third indoor evaluation scan, Indoor3. Middle: Scans taken in
winter time with some snow containing Outdoor1 − Outdoor3. Right: Our outdoor
robot with the SICK LMS scanner and a colour CCD camera mounted on a pan tile
unit from Amtec, that were used in the experiments. The close-up part shows the
displacement between the camera and the laser which causes parallax errors

each ground truth point Ri we have the pixel positions [X,Y ]i and the range
ri. The pixel position [X,Y ]i is used as input to the interpolation algorithm
and the range ri is used as the ground truth. The performance of the interpo-
lation algorithms is analysed based on the difference between the interpolated
range r∗i and the range ri from the ground truth.

10.5 Experimental Setup

The scanner used is a 2D SICK LMS-200 mounted together with a 1 MegaPixel
(1280×960) colour CCD camera on a pan-tilt unit from Amtec where the
displacement between the optical axis is approx. 0.2 m. The scanner is located
on our outdoor robot, see Fig. 10.3, a P3-AT from ActivMedia. The angular
resolution of the laser scanner is 0.5◦. Half of the readings were used as ground
truth, so the resolution for the points used for interpolation is 1◦.

10.6 Results

In all experiments the colour variance σc = 0.05 and the pixel distance vari-
ance σd = 10 mm were used, which were found empirically. The parameters
used within the MRF approach described in Sect. 10.3, where obtained by
extensive empirical testing and were set to k = 2 and C = 10. The opti-
misation method used for this method was the conjugate gradient method
described in [9] and the initial depths were estimated with the NR method. In
all experiments the full resolution (1280×960) of the camera image was used.

All the interpolation algorithms described in this chapter were tested on
real data consisting of three indoor and outdoor scans. The outdoor scans
were taken in winter time with snow, which presents the additional challenge
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Table 10.1. Results from Indoor1, Indoor2 and Indoor3 datasets

NR NRC MLI LIC PLIC MRF

Indoor1 0.065 0.054 0.052 0.048 0.049 0.048
Indoor2 0.123 0.134 0.109 0.107 0.109 0.106
Indoor3 0.088 0.072 0.067 0.060 0.060 0.067

Table 10.2. Results from Outdoor1, Outdoor2 and Outdoor3 datasets

NR NRC MLI LIC PLIC MRF

Outdoor1 0.067 0.068 0.056 0.059 0.054 0.054
Outdoor2 0.219 0.294 0.235 0.322 0.275 0.218
Outdoor3 0.526 0.584 0.522 0.574 0.500 0.498

that most of the points in the scene have very similar colours. The results are
summarised in Tables 10.1 and 10.2, which show the mean error with respect
to the ground truth.

For the indoor datasets, which comprise many planar structures, the lowest
mean error was found with the multi-linear interpolation methods, particu-
larly LIC and PLIC, and MRF interpolation. LIC and PLIC produced less
(but larger) outliers.

With the outdoor data the results obtained were more diverse. For the
dataset Outdoor1, which contains some planar structures, a similar result as
in the case of the indoor data was observed. For datasets with a very small
portion of planar structures such as Outdoor2 and Outdoor3, the mean error
was generally much higher and the MRF method performed slightly better
compared to the multi-linear interpolation methods. This is likely due to the
absence of planar surfaces and the strong similarity of the colours in the
image recorded at winter time. It is noteworthy that in this case, the nearest
neighbour interpolation method without considering colour (NR) performed as
good as MRF. The interpolation accuracy of the parameter-free PLIC method
was always better or comparable to the parameterised method LIC.

10.7 Conclusions

This chapter is concerned with methods to derive a high-resolution depth
image from a low-resolution 3D range sensor and a colour image. We suggest
five interpolation methods and compare them with an alternative method
proposed by Diebel and Thrun [8]. In contrast to previous work, we present
ground truth evaluation with simulated and real world data and analyse both
indoor and outdoor data. The results of this evaluation do not allow to single
out one particular interpolation method that provides a distinctly superior in-
terpolation accuracy, indicating that the best interpolation method depends
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on the content of the scene. Altogether, the MRF method proposed in [8]
and the PLIC method proposed in this chapter provided the best interpola-
tion performance. While providing basically the same level of interpolation
accuracy as the MRF approach, the PLIC method has the advantage that
it is a parameter-free and non-iterative method, i.e. that a certain process-
ing time can be guaranteed. One advantage of the proposed methods is that
depth estimates can be obtained without calculating a full depth image. For
example if interpolation points are extracted in the image using a vision-based
method (i.e. feature extraction), we can directly obtain a depth estimate for
each feature.
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