
Sampling Methods for Shortest Vectors, Closest
Vectors and Successive Minima

Johannes Blömer� and Stefanie Naewe��

Department of Computer Science, University of Paderborn
{bloemer,naestef}@uni-paderborn.de

Abstract. In this paper we introduce a new lattice problem, the sub-
space avoiding problem (Sap). We describe a probabilistic single expo-
nential time algorithm for Sap for arbitrary �p norms. We also describe
polynomial time reductions for four classical problems from the geom-
etry of numbers, the shortest vector problem (Svp), the closest vector
problem (Cvp), the successive minima problem (Smp), and the short-
est independent vectors problem (Sivp) to Sap, establishing probabilistic
single exponential time algorithms for them. The result generalize and
extend previous results of Ajtai, Kumar and Sivakumar. The results on
Smp and Sivp are new for all norms. The results on Svp and Cvp gen-
eralize previous results of Ajtai et al. for the �2 norm to arbitrary �p

norms.

1 Introduction

In this paper we study four problems from the geometry of numbers, the shortest
vector problem (Svp), the closest vector problem (Cvp), the successive minima
problem (Smp) and the shortest linearly independent vectors problem (Sivp).

In the shortest vector problem, we are given a lattice L and are asked to find a
(almost) shortest non-zero vector v in the lattice L. In the closest vector problem,
we are given a lattice L and some vector t in the�-vector space span(L) spanned
by the vectors in L. We are asked to find a vector u ∈ L, whose distance to t is
as small as possible. The problems Smp and Sivp extend Svp and deal with the
successive minima λk(L) of a lattice. Let k be an integer less than or equal to the
dimension of span(L) (called the rank of L). The k-th successive minimum λk(L)
of L is the smallest real number r such that L contains k linearly independent
vectors of length at most r. In the successive minima problem Smp we are given
a lattice L with rank n. We are asked to find n linearly independent vectors
v1, . . . , vn such that the length of vk, k = 1, . . . , n, is at most λk(L). In Sivp we
are asked to find n linearly independent vectors v1, . . . , vn such that the length
of vk is at most λn(L). Clearly, Sivp is polynomial time reducible to Smp. Since

� This research was supported by Deutsche Forschungsgemeinschaft, grant BL 314/5.
�� This research was partially supported by German Science Foundation (DFG), grant

BL 314/5, and Research Training Group GK-693 of the Paderborn Institute for
Scientific Computation (PaSCo).

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 65–77, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

66 J. Blömer and S. Naewe

they can be defined for any norm on �n, we stated these problems without
referring to a specific norm.

Algorithms for lattice problems. In the last 25 years the complexity of the lattice
problems Svp,Cvp,Smp, and Sivp has been studied intensively. For the history
of this problems we refer to [MG02]. It is known that all problems are NP-
hard and even hard to approximate (see for example [Ajt98], [Mic00], [Kho05],
[DKRS03], [BS99]). Let us briefly review the best algorithms for lattice prob-
lems that predate the results by Ajtai et al. The best algorithm to solve Svp

optimally was due to Kannan [Kan87b]. Kannan’s algorithm has a running time
of nn/2bO(1), where n is the rank of the lattice L and b is its representation size,
i.e., the number of bits used to describe the basis defining L. For Cvp the best
algorithm that optimally solves the problem was due to [Blö00]. It has a running
time of n!bO(1). Finally, the best deterministic algorithms for Smp and Sivp were
also due to [Blö00]. Their running time is 3bn!bO(1).

Of course, the best deterministic polynomial time algorithms for approxi-
mating all four lattice problems are based on the LLL-algorithm (see [LLL82])
and achieve single exponential approximation factors (see for example [Sch94],
[Bab86], [Sch87] and [Kan87a]).

The AKS results for Svp and Cvp. In a breakthrough paper [AKS01] Ajtai, Ku-
mar, and Sivakumar describe a probabilistic algorithm that solves Svp optimally
with probability exponentially close to 1. More precisely, the running time of
their algorithm is

(
2nb

)O(1), i.e., single exponential only in the rank of the lattice.
The AKS-algorithm is based on a novel sampling technique that generates short
vectors from the input lattice L. Later, Ajtai, Kumar, and Sivakumar [AKS02]
extended their sampling technique to solve Cvp with approximation factor (1+ε)
for any ε > 0. The running time of their algorithm is

(
2(1+1/ε)nb

)O(1).

Our contributions. In this paper, we consider a variant of the AKS-sampling
procedure (according to [AKS01] proposed by M. Sudan, described in lecture
notes by O. Regev [Reg04]).

– We describe a general sampling procedure to compute short lattice vectors
outside some given subspace. We call this the subspace avoiding problem
(Sap).

– We show polynomial time reductions from exact and approximate versions
of Sap to exact and approximate versions of Svp, Cvp, Smp and Sivp.

– In consequence, we obtain single exponential time (1 + ε) approximation
algorithms for Svp, Cvp, Smp and Sivp for all �p norms. The running time
is ((2 + 1/ε)nb)O(1).

– By slightly modifying the sampling procedure and its analysis we are able to
solve Sap provided there do not exist too many short lattice vectors outside
the given subspace. As a consequence, we obtain single exponential time
algorithms for Svp and for restricted versions of Cvp and Sivp.

Sampling Methods for Shortest Vectors, Closest Vectors 67

Organization. The paper is organized as follows. In Section 2 we state the most
important facts used in this paper. In Section 3 we formally define the lattice
problem Sap and prove polynomial time reductions from Svp,Cvp,Smp, and
Sivp to Sap. In Section 4, we show that the problem Sap can be approximated
with factor 1+ ε, ε > 0 arbitrary, by a sampling procedure. Finally, the modified
sampling procedure solving restricted versions of Sap optimally is presented in
Section 5.

2 Basic Definitions and Facts

For m > 0 is �m a m-dimensional vector space over �. The �p norm of a
vector x ∈ �m is defined by ||x||p = (

∑m
i=1 xp

i)
1/p for 1 ≤ p < ∞ and ||x||∞ =

max{|xi|, i = 1, . . . , m} for p = ∞. In the sequel we consider the �p norm for an
arbitrary p with 1 ≤ p ≤ ∞. We set B(p)(x, r) := {y ∈ �m| ||y − x||p < r}. The
volume vol(B(p)(x, r)) satisfies:

For all c > 0 vol(B(p)(x, c · r)) = cm · vol(B(p)(x, r)). (1)

A lattice L is a discrete additive subgroup of �m. Each lattice L has a basis,
i. e. a sequence b1, . . . , bn of n elements of L that generate L as an abelian
group. We denote this by L = L(b1, . . . , bn). We call n the rank of L. If m = n,
the lattice is full dimensional. In the rest of the paper we only consider full
dimensional lattices. However, our results can easily be generalized to arbitrary
lattices. For a basis B = {b1, . . . , bn} we define the half open parallelepiped
P(B) := {

∑n
j=1 αjbj |0 ≤ αj < 1, j = 1, . . . , n}. For every vector v ∈ �n there is

a unique representation v = u + w with u ∈ L and w ∈ P(B). We write v ≡ w
mod L.

We always assume that L ⊆ �n. The representation size b of a lattice L ⊆ �n

with respect to the basis {b1, . . . , bn} is the maximum of n and the binary lengths
of the numerators and denominators of the coordinates of the basis vectors bj .
The representation size of a subspace M and the representation size of a vector
u =

∑n
i=1 uibi with ui ∈ � with respect to {b1, . . . , bn} are defined in the

same way. In the sequel, if we speak of the representation size of a lattice L, a
subspace M or of a vector u ∈ span(L) without referring to some specific basis,
we implicitly assume that some basis is given.

3 The Subspace Avoiding Problem Sap, Main Result,
and Reductions for Svp, Smp, Sivp and Cvp

Definition 1. Given a lattice L and some subspace M ⊂ span(L), we call the
problem to compute a vector v ∈ L\M , that is as short as possible, the subspace
avoiding problem (Sap). We set

λ
(p)
M (L) := min{r ∈ �|∃v ∈ L\M, ||v||p ≤ r}.

It is not hard to show that for an LLL-reduced basis {b1, . . . , bn} we have
||bk||2 ≤ 2n−1λ

(2)
M (L), where k = min{1 ≤ j ≤ n|bj ∈ L\M}. Therefore, we get

68 J. Blömer and S. Naewe

Theorem 1. The LLL-algorithm can be used to approximate in polynomial time
Sap for the �2 norm with factor 2n−1.

In Section 4 we will show that in single exponential time we can approximate
Sap with any factor 1 + ε, 0 < ε ≤ 2. More precisely

Theorem 2. For all �p norms, 1 ≤ p ≤ ∞, there exists a randomized algorithm,
that approximates Sap with probability exponentially close to 1. The approxima-
tion factor is 1 + ε for any 0 < ε ≤ 2 and the running time of the algorithm is
((2 + 1/ε)n · b)O(1), where b is the size of the lattice and the subspace.

In the remainder of this section we show that there are polynomial time reduc-
tions from Svp, Cvp, Smp and Sivp to Sap. Together with Theorem 2 this
implies single exponential time approximation algorithms for Svp, Cvp, Smp

and Sivp. The core of the reductions is a suitable definition of the subspace.
For the reduction of Svp to Sap we choose M := {0} ⊆ span(L). If we

compute a (almost) shortest non-zero lattice vector u ∈ L\M , we compute a
(almost) shortest non-zero lattice vector u ∈ L.

Theorem 3. For all �p norms, 1 ≤ p ≤ ∞, Svp with approximation factor
1+ ε, ε ≥ 0, is polynomial time reducible to Sap with approximation factor 1+ ε.

Theorem 4. For all �p norms, 1 ≤ p ≤ ∞, Smp and Sivp with approximation
factor 1 + ε, ε ≥ 0, are polynomial time reducible to Sap with approximation
factor 1 + ε.

Proof. We are given access to an oracle A, that solves Sap with an approxima-
tion factor 1 + ε for some arbitrary ε ≥ 0. Using this oracle we get a (1 + ε)-
approximation of the first successive minimum as in Theorem 3. For i > 1
define M := span(v1, . . . , vi−1) with v1, . . . , vi−1 ∈ L linearly independent. Since
dim(M) < i, there exists a vector w ∈ L with ||w||p ≤ λ

(p)
i (L) and w
∈ M .

Therefore, λ
(p)
M (L) ≤ λ

(p)
i (L) and using the oracle A with input L and M we get

a (1 + ε)-approximation for the i-th successive minimum.

The reduction of Cvp to Sap relies on a lifting technique introduced by Kannan
[Kan87b] and refined by Goldwasser and Micciancio [MG02] and Ajtai, Kumar
and Sivakumar [AKS02]. A proof for it will be contained in the full version of
this paper.

Theorem 5. For all �p norms, 1 ≤ p ≤ ∞, the exact version of Cvp is
polynomial time reducible to the exact version of Sap. Also, for all �p norms,
1 ≤ p ≤ ∞, Cvp with approximation factor (1 + ε)(1 + α) for 0 < ε ≤ 1/2 and
α ≥ 0 is reducible to Sap with approximation factor 1 + ε/6. The reduction is
polynomial time in the input size of the Cvp instance and in 1/α.

Combining this result with the inapproximability results for Cvp due to Dinur
et al. [DKRS03] we get the following inapproximability result for Sap.

Theorem 6. For all �p norms, 1 ≤ p < ∞, there is some constant c > 0, such
that Sap is NP-hard to approximate to within factor nc/ log log n, where n is the
dimension of the input lattice.

Sampling Methods for Shortest Vectors, Closest Vectors 69

4 The Sieving Procedure and the Sampling Procedure

In this section we present a sampling procedure, that solves the subspace avoiding
problem with approximation factor 1 + ε, 0 < ε ≤ 2. We closely follow Regev’s
lecture notes on the AKS single exponential algorithm for Svp [Reg04]. First,
we show that we can restrict ourselves to instances of Sap with 2 ≤ λ

(p)
M (L) < 3.

A proof for it will be contained in the full version of this paper.

Lemma 1. For all �p norms, if there is an algorithm A that for all lattices L

for which 2 ≤ λ
(p)
M (L) < 3 and all subspaces M solves Sap with approximation

factor 1 + ε and in time T = T (n, b, ε), then there is an algorithm A′ that solves
Sap for all lattices and subspaces M with approximation factor 1+ ε and in time
O(nT + n4b). Here n is the rank of L and b is the representation size of L, M .

4.1 The Sieving Procedure

The main part of the sampling procedure is a sieving procedure (see Algorithm
2). Its main properties are described in the following lemma. The parameter a
is rational and a > 1.

Algorithm 2 The sieving procedure
Input: x1, . . . , xN ∈ B(p)(0, R)

J ← ∅
For j = 1, . . . , N do

If there exists i ∈ J with ||xi − xj ||p ≤ R/a, then η(i) ← j.
Else J ← J ∪ {i} and η(i) ← i.

Lemma 2. Let R ∈ �, R > 0, a ∈ � with a > 1. For any set of points
x1, . . . , xN ∈ B(p)(0, R) the sieving procedure 2 finds a subset J ⊆ {1, 2, . . . , N}
of size at most (2a + 1)n and a mapping η : {1, 2, . . . , N} → J such that for
any i ∈ {1, . . . , N} , ||xi − xη(i)||p ≤ R/a. The running time of the procedure is
O(N2 · poly(m)), if x1, . . . , xN are rationals of representation size m.

Proof. Obviously, for all i ∈ {1, . . . , N}, ||xi − xη(i)||p ≤ R/a. The distance
between any two points in J is larger than R/a. If we take balls of radius R/(2a)
around each point xi, i ∈ J , then these balls are disjoint and their union is
contained in B(p)(0, (1 + 1/(2a))R). Therefore, the number of balls, and hence
|J |, is bounded by vol

(
B(p)

(
0, (1 + 1

2a)R
))

/ vol
(
B(p)

(
0, 1

2aR
))

= (2a + 1)n

(Equation (1)).

4.2 The Sampling Procedure

Now we present a sampling procedure (see Algorithm 3) that for all �p norms
approximates Sap with the factor 1 + ε, 0 ≤ ε ≤ 2 arbitrary. The algorithm
chooses N points uniformly at random in a ball B(p)(0, r) with radius r. Using
the general algorithm of Dyer, Frieze and Kannan (see [DFK91]) we are able to

70 J. Blömer and S. Naewe

sample the N points in B(p)(0, r) with the required accuracy. For the sake of
simplicity, we will neglect this aspect in the following. The parameter N will be
defined later. For each point xi with i ∈ {1, . . . , N} we compute the point yi ∈
P(B) such that yi−xi is a lattice point. Using the mapping η : {1, . . . , N} −→ J ,
for each vector yi we get a representative yη(i) with ||yi − yη(i)||p < R/a. We
replace yi with yi − (yη(i) − xη(i)). This procedure is repeated until the distance
between the lattice vectors and their representatives is small enough. We use
parameters δ, r and a satisfying 0 < δ ≤ 1/2, r ≥ 1/2 and a = 1 + 2/δ.

Algorithm 3 The sampling procedure
Input: A lattice L = L(B), B = {b1, . . . , bn}, and a subspace M ⊆ span(B).
1. (a) R0 ← n · maxi ||bi||p

(b) Choose N points x1, . . . , xN uniformly in B(p)(0, r).
(c) Compute yi ∈ P(B) with yi ≡ xi mod L(B) for i = 1, . . . , N .
(d) Set Z ← {(x1, y1), . . . , (xN , yN)} and R ← R0.

2. While R > (1 + δ)r do
(a) Apply the sieving procedure to {yi|(xi, yi) ∈ Z} with the parameters a and

R. The result is a set J and a mapping η.
(b) Remove from Z all pairs (xi, yi) with i ∈ J.
(c) Replace each remaining pair (xi, yi) ∈ Z with (xi, yi − (yη(i) − xη(i))).
(d) R ← R/a + r

Output: A shortest vector v ∈ {yi − xi|(xi, yi) ∈ Z} with v 	∈ M , if such a vector
exists.

Lemma 3. Let δ and r be chosen as above. Given a lattice L = L(B), if the
sampling procedure 3 returns the vector v, then v ∈ L ∩ B(p)(0, (2 + δ)r).

The proof follows from the fact that during the sampling procedure the following
two properties are satisfied: 1) For all (xi, yi) ∈ Z we have yi − xi ∈ L(B) and
2) for all i ∈ {1, . . . , N} the length of yi is bounded by the parameter R. For
details see [Reg04].

The number of iterations of the while-loop dominates the running time of the
sampling procedure.

Lemma 4. If the sampling procedure 3 is executed with the parameters δ, a and
r chosen as above, then the number of iterations of the while-loop is at most
2 log2(1 + 2/δ) · (log2 R0 + log2(1 + 2/δ)).

Proof. After i iterations the parameter R is R0/ai + r
∑i−1

j=0 a−j. The loop
terminates if R < (1 + δ)r. Using the geometric series the loop terminates if
R0/ai + r · a/(a − 1) ≤ (1 + δ)r. Since a = 1 + 2/δ and r ≥ 1/2, the lemma
follows.

Using this bound for the number of iterations we can analyze the running time
of the sampling procedure.

Sampling Methods for Shortest Vectors, Closest Vectors 71

Lemma 5. Given a lattice basis B and a subspace M ⊂ span(L(B)), with the
parameters r, a and δ chosen as above, the running time of the sampling proce-
dure 3 is bounded by ((1 + 2/δ) · b · N)O(1). Here b is the size of L(B) and M .
Furthermore, N is the number of points chosen in the sampling procedure.

Proof. The number of iterations in the while-loop is at most 2 log2(1 + 2/δ) ·
(log2(1+2/δ)+ log2 R0) ≤ (1+2/δ)bO(1). In each iteration we apply the sieving
procedure. Since the input size is at most b the running time of the sampling
procedure is at most (1 + 2/δ)N2bO(1) = ((1 + 2/δ) · b · N)O(1).

Summarizing the previous results about the sampling procedure 3, we get

Theorem 7. For every 0 < ε ≤ 2 there exists a δ > 0 such that the follow-
ing holds: Given a lattice L = L(B), a subspace M , and r satisfying 1/2 ≤
r ≤ (1/2) · (1 + δ)2λ(p)

M (L), the sampling procedure 3 computes a set of vectors
from L ∩ B(p)(0, (1 + ε)λ(p)

M (L)). The running time of the sampling procedure is
((2 + 1/ε)n · b)O(1), where b is the size of L and M .

The proof is obviously if we choose δ = (1/4)ε and combine this with the results
of Lemma 3 and Lemma 5.

Also, using Lemma 2 and Lemma 4 we get

Lemma 6. If we apply the sampling procedure 3 with the parameters δ, a and
r chosen as above, we remove at most

z(R0, δ) := (log2 R0 + log2(1 + 2/δ))(2(1 + 2/δ) + 1)n+1 (2)
pairs from the set Z.

4.3 Modification of the Sampling Procedure

We need to show that the sampling procedure 3 computes vectors in L\M . For
this we use the randomization in the algorithm. We change our point of view and
consider a modified sampling procedure that behaves exactly like the sampling
procedure 3. We are able to show that the modified sampling procedure computes
with probability exponentially close to 1 a vector v ∈ L\M . Hence, the same is
true for the sampling procedure 3.

Let u ∈ L\M a lattice vector with ||u||p = λ
(p)
M (L). Define

C1 := B(p)(0, r) ∩ B(p)(u, r) and C2 := B(p)(0, r) ∩ B(p)(−u, r).
If the parameter r satisfies

1
2
(1 + δ)λ(p)

M (L) ≤ r ≤ 1
2
(1 + δ)2λ(p)

M (L) (3)

for a δ > 0, the sets C1 and C2 are non-empty and disjoint. We define a bijective
mapping τu : B(p)(0, r) → B(p)(0, r) depending on the lattice vector u.

τu(x) =

⎧
⎨

⎩

x + u , x ∈ C2
x − u , x ∈ C1

x , otherwise

72 J. Blömer and S. Naewe

Using the mapping τu we define the modified sampling procedure (see Algorithm
4). Since the modified sampling procedure is only used for the analysis, we do
not worry about its running time and the fact that it uses the unknown u. The
sampling procedure 3 and the modified sampling procedure 4 return vectors
in L ∩ B(p)(0, (1 + ε)λ(p)

M (L)) distributed according to certain distributions. We
call these the output distributions generated by the sampling procedure and the
modified sampling procedure, respectively. Next, we show

Algorithm 4 The modified sampling procedure
Input: A lattice L = L(B), B = {b1, . . . , bn}, and a subspace M ⊆ span(B)
1. (a) R0 ← n · maxi ||bi||p.

(b) Choose N points x1, . . . , xN uniformly in B(p)(0, r).
(c) Compute yi ∈ P(B) with yi ≡ xi mod L(B) for i = 1, . . . , N .
(d) Set Z ← {(x1, y1), . . . , (xN , yN)} and R ← R0.

2. While R > (1 + δ)r do
(a) Apply the sieving procedure 2 to {yi|(xi, yi) ∈ Z} with the parameters a

and R. The result is a set J and a mapping η.
(b) Remove from Z all pairs (xi, yi) with i ∈ J.
(c) For each pair (xi, yi), i ∈ J, replace xi with τu(xi) with probability 1/2.
(d) Replace each remaining pair (xi, yi) ∈ Z with (xi, yi − (yη(i) − xη(i))).
(e) R ← R

a
+ r

3. For each pair (xi, yi) ∈ Z replace xi with τu(xi) with probability 1/2.

Output: A shortest vector v ∈ {yi − xi|(xi, yi) ∈ Z} with v 	∈ M , if such a vector
exists.

Theorem 8. The sampling procedure 3 and the modified sampling procedure 4
generate the same output distribution.

Proof. We consider a series of modifications to the sampling procedure 3 leading
to the modified sampling procedure 4. In the first modification, after choosing
in step 1b the points xi we decide for each xi uniformly at random whether to
keep xi or to replace it with τu(xi). Since τu is bijective, this does not change
the distribution on the points xi. Hence, this modification does not change the
output distribution of the sampling procedure. Next, observe that u ∈ L implies
yi ≡ xi ≡ τu(xi) mod L, i = 1, . . . , N. Hence, if we decide for each xi whether
to replace it with τu(xi) at the end of step 1 rather than in step 1b, then this
does not change the output distribution.

But if, without changing the output distribution, we can choose for each xi

whether to keep it or to replace it with τu(xi) at the end of step 1, then making
that decision for each xi prior to the first time it is used in step 2 will also not
change the output distribution. Furthermore, for each point xi not used at all in
step 2 we can choose whether to keep it or replace it with τu(xi) at the end of
step 2. But this is exactly the modification leading from the sampling procedure
3 to the modified sampling procedure 4.

Sampling Methods for Shortest Vectors, Closest Vectors 73

For the further analysis only pairs (xi, yi) with xi ∈ C1 ∪ C2 are of interest
because only for them the mapping τu is not the identity. In the following, three
lemmata we will show that with high probability at the end of the sampling
procedure 3 or the modified sampling procedure 4 the set Z contains at least
2n pairs with this property. All lemmata are stated without proof. First, we
need the probability, that a point x, which is chosen uniformly in B(p)(0, r), is
contained in C1 ∪ C2.

Lemma 7. Let u ∈ �n be a vector with ||u||p = ρ and ζ > 0. Define C =
B(p) (0, (1/2)(1 + ζ)ρ) ∩ B(p) (u, (1/2)(1 + ζ)ρ). Then

vol(C)
vol

(
B(p)

(
0, 1

2 (1 + ζ)ρ
)) ≥ 2−n

(
ζ

1 + ζ

)n

.

Next, we are interested in the number of points xi, which are contained in
C1 ∪ C2, if we choose N points uniformly at random in B(p)(0, r).

Lemma 8. Let N ∈ �. By q denote the probability that a random point in
B(p)(0, r) is contained in C1 ∪ C2. If N points x1, . . . , xN are chosen uniformly
at random in B(p)(0, r), then with probability larger than 1− 4/(N · q), there are
at least (q · N)/2 points xi ∈ {x1, . . . , xN} with the property xi ∈ C1 ∪ C2.

From the Lemmata 7 and 8 combined with Lemma 6 we obtain

Lemma 9. Let L be a lattice and M ⊂ span(L) be a subspace. Furthermore, as-
sume that in the first step of the sampling procedure 3 or of the modified sampling
procedure 4 the number of points chosen is N = ((1+δ)/δ)n2n+1 (2n + z(R0, δ)),
where z(R0, δ) is defined as in (2). Then at the end of step 2 of the sampling pro-
cedure 3 or the modified sampling procedure 4 the set Z contains with probability
exponentially close to 1 at least 2n pairs (x, y) with the property x ∈ C1 ∪ C2.

Theorem 9. For every 0 < ε ≤ 2 there exists a δ > 0 such that the following
holds: Given a lattice L = L(B), a subspace M of span(L), for which 2 ≤ λ

(p)
M (L)

and r satisfying (3), the modified sampling procedure 4 computes with probability
exponentially close to 1 a vector v ∈ L\M .

Proof. We apply the modified sampling procedure with the same parameter as in
Theorem 7, i. e. δ = (1/4)ε. Since 2 ≤ λ

(p)
M (L), we have r ≥ 1/2. By assumption

u ∈ L\M . If y−x ∈ M , then y−τu(x) = y−x±u ∈ L\M . The modified sampling
procedure returns a vector v ∈ L\M , if at the end of step 2 there exists a pair
(x, y) ∈ Z with x ∈ C1 ∪C2 and one of the following conditions holds: y−x ∈ M
and in step 3 we replace x with τu(x) or y − x ∈ L\M and in step 3 we do not
replace x with τu(x). In step 3 of the modified sampling procedure we decide for
each pair (x, y) ∈ Z uniformly if we replace it or not. Using Lemma 9 the set
Z contains with probability exponentially close to 1 at least 2n pairs (x, y) with
the property x ∈ C1 ∪C2. Therefore the probability, that the modified sampling
procedure does not return a vector v ∈ L\M , is bounded by 2−2n

.

74 J. Blömer and S. Naewe

By Theorem 8 the sampling procedure and the modified sampling procedure
generate the same output distribution. Also, we have shown that we can restrict
ourselves to instances of Sap with 2 ≤ λ

(p)
M (L) < 3 (Lemma 1). Hence, we get

Theorem 10. There exists a randomized algorithm that for all �p norms, 1 ≤
p ≤ ∞, solves Sap with approximation factor 1 + ε, 0 < ε ≤ 2 arbitrary,
with probability exponentially close to 1. The running time of the algorithm is
((2 + 1/ε)n · b)O(1), where b is the size of the input lattice and the subspace.

Proof. Let δ = (1/4)ε. Using Lemma 1 we can assume: 2/3 < 2/λ
(p)
M (L) ≤ 1. Let

κ0 = log1+δ(2/3) and κ1 = 0. Set l := �log1+δ 2/λ
(p)
M (L)�, then κ0 ≤ l ≤ κ1 and

r := (1+δ)2−l satisfies the Equation (3), i.e., (1/2)(1+δ)λ(p)
M (L) ≤ r ≤ (1/2)(1+

δ)2λ(p)
M (L). We apply the sampling procedure for each value r = (1+ δ)2−l′ with

κ0 ≤ l′ ≤ κ1. Let vl′ ∈ L\M be the lattice point discovered by the sampling
procedure started with r = (1 + δ)2−l′ , if any lattice point is discovered. The
output will be the smallest vl′ ∈ L\M . As we have seen, for the unique l′ = l
such that r = (1 + δ)2−l′ satisfies the Equation (3) the sampling procedure will
find a (1 + ε)-approximation for Sap with probability exponentially close to 1.

We apply the sampling procedure
∣
∣log1+δ(2/3)

∣
∣ times. By our choose of δ =

(1/4)ε the running time is
∣
∣log1+ε 2/3

∣
∣ ((2 + 1/ε) · b)O(1) = ((2 + 1/ε)n · b)O(1).

Combining this with the results from Section 3 we obtain:

Theorem 11. There exist randomized algorithms that for all �p norms, 1 ≤ p ≤
∞, approximate Svp, Smp, Sivp, and Cvp with probability exponentially close
to 1. In case of Svp, Smp, and Sivp the approximation factor is 1 + ε for any
0 < ε ≤ 2. For Cvp the approximation factor is 1 + ε for any 0 < ε < 1/2. The
running time of the algorithms is ((2 + 1/ε)n · b)O(1), where b is the size of the
input lattice and the subspace.

5 Using the Sampling Procedure for Optimal Solutions

Theorem 12. Let L = L(B) be a lattice and M be a subspace of span(L), both
of size b. Assume that there exist absolute constants c, ε such that the number of
v ∈ L\M satisfying ||v||p ≤ (1+ε)λ(p)

M (L) is bounded by 2cn. Then there exists an
algorithm that solves Sap with probability exponentially close to 1. The running
time is (2n · b)O(1).

Proof. To turn the (1 + ε)-sampling procedure into an exact algorithm, we use
the sampling procedure 3 with the parameters δ = (1/4)ε and N = ((1 +
δ)/δ)n2n+1

(
5 · 2(c+1)n + z(R0, δ)

)
, where z(R0, δ) is defined in (2). We only

modify the output: We consider the two sets

O1 := {(yi−xi)−(yj −xj)|(xi, yi), (xj , yj) ∈ Z} and O2 := {yi−xi|(xi, yi) ∈ Z}.

The output is a shortest lattice vector v ∈ O1∪O2 with v ∈ L\M . The analysis
and the running time of this sampling procedure are the same as in Section 4.

Sampling Methods for Shortest Vectors, Closest Vectors 75

Obviously, we can modify the sampling procedure in the same way as in Theorem
8 by using the mapping τu with respect to a shortest vector u ∈ L\M . We obtain
a modified sampling procedure similar to procedure 4 which generates the same
output distribution as the original sampling procedure. Hence, we only need to
analyze the success probability of the modified sampling procedure. We show
that the modified sampling procedure computes with probability exponentially
close to 1 the lattice vector u. In the following, consider the set Z after step 2 and
before step 3 of the modified sampling procedure. We define the multiset F :=
{(xi, yi) ∈ Z|xi ∈ C1} ⊆ Z and for v ∈ L we set Fv := {(xi, yi) ∈ F |yi−xi = v}.
As in Lemma 9, we can show, that F contains with probability exponentially
close to 1 at least 5 · 2(c+1)n pairs. Next, we consider two cases: 1) There exists
an v ∈ L with |Fv| ≥ 2n and 2) |Fv| < 2n for all v ∈ L.

In the first case, in step 3 we decide for each pair (x, y) ∈ Fv uniformly
whether we replace x with τu(x) or not. If there exist (xi, yi), (xj , yj) ∈ Fv such
that in step 3 the mapping τ is applied to xi but not to xj then u ∈ O1. This
event happens with probability 1 − 2 · 2−2n

.
In the second case, we show that with probability exponentially close to 1

the vector u is contained in the set O2. We do this by showing that after step
3 of the modified sampling procedure all vectors v ∈ L\M satisfying ||v||p ≤
(1 + ε)λ(p)

M (L) are contained in O2. In the following, we consider F := {v ∈
L|∃(x, y) ∈ F with v = y − x}. Since |F | > 5 · 2(c+1)n and |Fv| < 2n for all
v ∈ L, we obtain |F| ≥ 5 · 2cn. Let F1 := F ∩ M . By assumption |F\F1| ≤ 2cn

and therefore |F1| = |F| − |F\F1| ≥ 2cn+2. For all v = y − x ∈ F1 we have
y − τu(x) ∈ L\M . Analogously to Lemma 8, we can show that with probability
exponentially close to 1, for at least 2cn elements v = y − x in F1 we replace in
step 3 the element x by τu(x). Hence, with probability exponentially close to 1
we get 2cn elements y − x − u ∈ L\M . All these elements have length at most
(1 + ε)λ(p)

M (L). Combining this with |(L\M) ∩ B(p)(0, (1 + ε)λ(p)
M (L))| < 2cn we

see that in this case the set O2 contains all vectors v ∈ L\M of length at most
(1 + ε)λ(p)

M (L).

To use the exact sampling procedure to solve Svp,Cvp,Smp and Sivp we need
the following lemma, whose proof is almost identical to the proof of Lemma 2.

Lemma 10. Let L be a lattice and R > 0. Then

|B(p)(0, R) ∩ L| <
((

2R + λ
(p)
1 (L)

)
/λ

(p)
1 (L)

)n

.

In case of Svp we use Lemma 10 with R = (1 + ε)λ(p)
1 (L) and get |B(p)(0, (1 +

ε)λ(p)
1 (L)) ∩ L| ≤ (3 + 2ε)n = 2cn for a c ∈ �. Therefore, the assumptions of

Theorem 12 are satisfied in case of Svp and we obtain the following.

Theorem 13. Let L ⊂ �n be a lattice of size b. A shortest non-zero vector in
L can be computed with probability exponentially close to 1. The running time is
(2n · b)O(1).

76 J. Blömer and S. Naewe

Using Lemma 10, for Smp and Cvp we can only show that the number of almost
optimal solutions to Smp or Cvp is single exponential in the rank of L if the
n-th successive minimum λ

(p)
n (L) or the distance Dt of target vector t to lattice

L are bounded by cλ
(p)
1 (L) for some constant c. Hence, we get

Theorem 14. Let L ⊂ �n be a lattice of size b. Assume that the n-th successive
minimum λ

(p)
n is bounded by cλ

(p)
1 for some constant c ∈ �. Then the successive

minima of L can be computed with probability exponentially close to 1. The
running time is (2n · b)O(1).

Theorem 15. Let c > 0 be some constant. Assume lattice L ∈ �n and target
vector t ∈ span(L) are of size b. Assume furthermore, that Dt ≤ cλ

(p)
1 (L).

Then a vector v ∈ L satisfying ||t − v||p = Dt can be computed with probability
exponentially close to 1. The running time is (2n · b)O(1).

Acknowledgment. We thank O. Regev for several stimulating discussions that
greatly benefited the paper. Moreover, his lecture notes on the Ajtai, Kumar,
Sivakumar algorithm for Svp [Reg04] were the starting point for our research.

References

[Ajt98] Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized
reductions. In: Proceedings of the 30th ACM Symposium on Theory of
Computing, pp. 10–19. ACM Press, New York (1998)

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: Proceedings of the 33th ACM Symposium on
Theory of Computing, pp. 601–610. ACM Press, New York (2001)

[AKS02] Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and
the closest lattice vector problem. In: Proceedings of the 17th IEEE An-
nual Conference on Computational Complexity - CCC, pp. 53–57. IEEE
Computer Society Press, Los Alamitos (2002)

[Bab86] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point prob-
lem. Combinatorica 6(1), 1–13 (1986)

[Blö00] Blömer, J.: Closest vectors, successive minima, and dual HKZ-bases of
lattices. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 248–259. Springer, Heidelberg (2000)

[BS99] Blömer, J., Seifert, J.-P.: The complexity of computing short linearly in-
dependent vectors and sort bases in a lattice. In: Proceedings of the 21th
Symposium on Theory of Computing, pp. 711–720 (1999)

[DFK91] Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm
for approximating the volume of convex bodies. Journal of the ACM 38(1),
1–17 (1991)

[DKRS03] Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to within
almost-polynomial factors in NP-hard. Combinatorica 23(2), 205–243
(2003)

[Kan87a] Kannan, R.: Algorithmic geometry of numbers. Annual Reviews in Com-
puter Science 2, 231–267 (1987)

Sampling Methods for Shortest Vectors, Closest Vectors 77

[Kan87b] Kannan, R.: Minkowski’s convex body theorem and integer programming.
Mathematics of Operations Research 12(3), 415–440 (1987)

[Kho05] Khot, S.: Hardness of approximating the shortest vector problem in lat-
tices. Journal of the ACM (JACM) 52(5), 789–808 (2005)

[LLL82] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with ra-
tional coefficients. Mathematische Annalen 261, 515–534 (1982)

[MG02] Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems - A Cryp-
tographic Perspective. Kluwer Academic Publishers, Dordrecht (2002)

[Mic00] Micciancio, D.: The shortest vector in a lattice is hard to approximate
to within some constant. SIAM Journal on Computing 30(6), 2008–2035
(2000)

[Reg04] Regev, O.: Lecture note on lattices in computer science, lecture 8: 2O(n)-
time algorithm for SVP (2004)

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction al-
gorithms. Theoretical Computer Science 53, 201–224 (1987)

[Sch94] Schnorr, C.-P.: Block reduced lattice bases and successive minima. Com-
binatorics, Probability & Computing 3, 507–522 (1994)

	Sampling Methods for Shortest Vectors, Closest Vectors and Successive Minima
	Introduction
	Basic Definitions and Facts
	The Subspace Avoiding Problem Sap, Main Result, and Reductions for Svp, Smp, $Sivp$ and Cvp
	The Sieving Procedure and the Sampling Procedure
	The Sieving Procedure
	The Sampling Procedure
	Modification of the Sampling Procedure

	Using the Sampling Procedure for Optimal Solutions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

