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Abstract. We present a series of techniques for the design of subexpo-
nential parameterized algorithms for graph problems. The design of such
algorithms usually consists of two main steps: first find a branch- (or
tree-) decomposition of the input graph whose width is bounded by a
sublinear function of the parameter and, second, use this decomposition
to solve the problem in time that is single exponential to this bound.
The main tool for the first step is Bidimensionality Theory. Here we
present the potential, but also the boundaries, of this theory. For the
second step, we describe recent techniques, associating the analysis of
sub-exponential algorithms to combinatorial bounds related to Catalan
numbers. As a result, we have 2O(

√
k) · nO(1) time algorithms for a wide

variety of parameterized problems on graphs, where n is the size of the
graph and k is the parameter.

1 Introduction

The theory of fixed-parameter algorithms and parameterized complexity has
been thoroughly developed during the last two decades; see e.g. the books
[23,27,35]. Usually, parameterizing a problem on graphs is to consider its input
as a pair consisting of the graph G itself and a parameter k. Typical examples
of such parameters are the size of a vertex cover, the length of a path or the
size of a dominating set. Roughly speaking, a parameterized problem in graphs
with parameter k is fixed parameter tractable if there is an algorithm solving
the problem in f(k) · nO(1) steps for some function f that depends only on the
parameter.

While there is strong evidence that most of fixed-parameter algorithms cannot
have running times 2o(k) · nO(1) (see [33,7,27]), for planar graphs it is possible
to design subexponential parameterized algorithms with running times of the
type 2O(

√
k) · nO(1) (see [9,7] for further lower bounds on planar graphs). For

example, Planar k-Vertex Cover can be solved in O(23.57
√

k) + O(n) steps,
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Planar k-Dominating Set can be solved in O(211.98·√k) + O(n3) steps, and
Planar k-Longest Path can be solved in O(210.52·√k ·n)+O(n3) steps. Similar
algorithms are now known for a wide class of parameterized problems, not only
for planar graphs, but also for several other sparse graph classes.

Since the first paper in this area appeared [2], the study of fast subexponential
algorithms attracted a lot of attention. In fact, it not only offered a good ground
for the development of parameterized algorithms, but it also prompted combi-
natorial results, of independent interest, on the structure of several parameters
in sparse graph classes such as planar graphs [1,3,5,8,11,26,29,32,34] bounded
genus graphs [12,28], graphs excluding some single-crossing graph as a minor
[17], apex-minor-free graphs [10] and H-minor-free graphs [12,13,14].

We here present general approaches for obtaining subexponential parameter-
ized algorithms (Section 2) and we reveal their relation with combinatorial results
related to the Graph Minors project of Robertson and Seymour. All these algo-
rithms exploit the structure of graph classes that exclude some graph as a minor.
This was used to develop techniques such as Bidimensionality Theory (Section 3)
and the use of Catalan numbers for better bounding the steps of dynamic pro-
gramming when applied to minor closed graph classes (Sections 4 and 5).

2 Preliminaries

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y and
remove all loops and replace all multiple edges by simple edges. A graph H
obtained by a sequence of edge-contractions is said to be a contraction of G. H
is a minor of G if H is a subgraph of a contraction of G. We use the notation
H � G (resp. H �c G) when H is a minor (a contraction) of G. It is well known
that H � G or H �c G implies bw(H) ≤ bw(G). We say that a graph G is
H-minor-free when it does not contain H as a minor. We also say that a graph
class G is H-minor-free (or, excludes H as a minor) when all its members are
H-minor-free. E.g., the class of planar graphs is a K5-minor-free graph class.

Let G be a graph on n vertices. A branch decomposition (T, μ) of a graph G
consists of an unrooted ternary tree T (i.e. all internal vertices of degree three)
and a bijection μ : L → E(G) from the set L of leaves of T to the edge set of G.
We define for every edge e of T the middle set mid(e) ⊆ V (G) as follows: Let T1
and T2 be the two connected components of T \ {e}. Then let Gi be the graph
induced by the edge set {μ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle set is
the intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1)∩ V (G2).
The width bw of (T, μ) is the maximum order of the middle sets over all edges
of T , i.e., bw(T, μ) := max{|mid(e)| : e ∈ T }. An optimal branch decomposition
of G is defined by the tree T and the bijection μ which give the minimum width,
the branchwidth, denoted by bw(G).

A parameter P is any function mapping graphs to nonnegative integers. The
parameterized problem associated with P asks, for some fixed k, whether P (G) =
k for a given graph G. We say that a parameter P is closed under taking of
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minors/contractions (or, briefly, minor/contraction closed) if for every graph H ,
H � G / H �c G implies that P (H) ≤ P (G).

Many subexponential parameterized graph algorithms [1,17,28,29,32,34] are
associated with parameters P on graph classes G satisfying the following two
conditions for some constants α and β:

(A) For every graph G ∈ G, bw(G) ≤ α ·
√

P (G) + O(1)
(B) For every graph G ∈ G and given a branch decomposition (T, μ) of G, the

value of P (G) can be computed in 2β·bw(T,μ)nO(1) steps.
Conditions (A) and (B) are essential due to the following generic result.

Theorem 1. Let P be a parameter and let G be a class of graphs such that (A)
and (B) hold for some constants α and β respectively. Then, given a branch
decomposition (T, μ) where bw(T, μ) ≤ λ · bw(G) for a constant λ, the parame-
terized problem associated with P can be solved in 2O(

√
k)nO(1) steps.

Proof. Given a branch decomposition (T, μ) as above, one can solve the param-
eterized problem associated with P as follows. If bw(T, μ) > λ · α ·

√
k, then

the answer to the associated parameterized problem with parameter k is ”NO”
if it is a minimization and ”YES” if it is a maximization problem. Else, by (B),
P (G) can be computed in 2λ·α·β·√knO(1) steps.

To apply Theorem 1, we need an algorithm that computes, in time t(n), a branch
decomposition (T, μ) of any n-vertex graph G ∈ G such that bw(T, μ) ≤ λ ·
bw(G) + O(1). Because of [38], t(n) = nO(1) and λ = 1 for planar graphs. For
H-minor-free graphs (and thus, for all graph classes considered here), t(n) =
f(|H |) · nO(1) and λ ≤ f(|H |) for some function f depending only on the size of
H (see [16,21,24]).

In this survey we discuss how

– to obtain a general scheme of proving bounds required by (A) and to extend
parameterized algorithms to more general classes of graphs like graphs of
bounded genus and graphs excluding a minor (Section 3);

– to improve the running times of such algorithms (Section 4), and
– to prove that the running time of many dynamic programming algorithms

on planar graphs (and more general classes as well) satisfies (B) (Section 5).

The following three sample problems capture the most important properties
of the investigated parameterized problems.

k-Vertex Cover. A vertex cover C of a graph is a set of vertices such that
every edge of G has at least one endpoint in C. The k-Vertex Cover problem
is to decide, given a graph G and a positive integer k, whether G has a vertex
cover of size k. Let us note that vertex cover is closed under taking minors, i.e.
if a graph G has a vertex cover of size k, then each of its minors has a vertex
cover of size at most k.
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k-Dominating set. A dominating set D of a graph G is a set of vertices such
that every vertex outside D is adjacent to a vertex of D. The k-Dominating

Set problem is to decide, given a graph G and a positive integer k, whether G
has a dominating set of size k. Let us note that the dominating set is not closed
under taking minors. However, it is closed under contraction of edges.

Given a branch decomposition of G of width ≤ � both problems k-Vertex

Cover and k-Dominating Set can be solved in time 2O(�)nO(1). For the next
problem, no such an algorithm is known.
k-Longest path. The k-Longest Path problem is to decide, given a graph G
and a positive integer k, whether G contains a path of length k. This problem is
closed under the operation of taking minor but the best known algorithm solving
this problem on a graph of branchwidth ≤ � runs in time 2O(� log �)nO(1).

3 Property (A) and Bidimensionality

In this section we show how to obtain subexponential parameterized algorithms
in the case when condition (B) holds for general graphs. The main tool for
this is Bidimensionality Theory developed in [10,12,13,15,18]. For a survey on
Bidimensionality Theory see [14].

Planar graphs. While the results of this subsection can be extended to wider
graph classes, we start from planar graphs where the general ideas are easier to
explain. The following theorem is the main ingredient for proving condition (A).

Theorem 2 ([37]). Let � ≥ 1 be an integer. Every planar graph of branchwidth
≥ � contains an (�/4 × �/4)-grid as a minor.

We start with Planar k-Vertex Cover as an example. Let G be a planar
graph of branchwidth ≥ �. Observe that given a (r × r)-grid H , the size of a
vertex cover in H is at least 
r/2� · r (because of the existence of a matching of
size 
r/2� · r in H). By Theorem 2, we have that G contains an (�/4 × �/4)-grid
as a minor. The size of any vertex cover of this grid is at least �2/32. As such a
grid is a minor of G, property (A) holds for α = 4

√
2.

For the Planar k-Dominating Set problem, the arguments used above to
prove (A) for Planar k-Vertex Cover do not work. Since the problem is not
minor-closed, we cannot use Theorem 2 as above. However, since the parameter
is closed under edge contractions, we can use a partially triangulated (r× r)-grid
which is any planar graph obtained from the (r × r)-grid by adding some edges.
For every partially triangulated (r × r)-grid H , the size of a dominating set in
H is at least (r−2)2

9 (every “inner” vertex of H has a closed neighborhood of at
most 9 vertices). Theorem 2 implies that a planar graph G of branchwidth ≥ �
can be contracted to a partially triangulated (�/4 × �/4)-grid which yields that
Planar k-Dominating Set also satisfies (A) for α = 12.

These two examples induce the following idea: if the graph parameter is closed
under taking minors or contractions, the only thing needed for the proof of (A)
is to understand how this parameter behaves on a (partially triangulated) grid.
This brings us to the following definition.
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Definition 1 ([12]). A parameter P is minor bidimensional with density δ if

1. P is closed under taking of minors, and
2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).

A parameter P is called contraction bidimensional with density δ if

1. P is closed under contractions,
2. for any partially triangulated (r×r)-grid R, P (R) = (δRr)2 +o((δRr)2), and
3. δ is the smallest δR among all paritally triangulated (r × r)-grids.

In either case, P is called bidimensional. The density δ of P is the minimum of
the two possible densities (when both definitions are applicable), 0 < δ ≤ 1.

Intuitively, a parameter is bidimensional if its value depends on the area of a
grid and not on its width or height. By Theorem 2, we have the following.

Lemma 1. If P is a bidimensional parameter with density δ then P satisfies
property (A) for α = 4/δ, on planar graphs.

Many parameters are bidimensional. Some of them, like the number of vertices
or the number of edges, are not so much interesting from an algorithmic point
of view. Of course the already mentioned parameter vertex cover (dominating
set) is minor (contraction) bidimensional (with densities 1/

√
2 for vertex cover

and 1/9 for dominating set). Other examples of bidimensional parameters are
feedback vertex set with density δ ∈ [1/2, 1/

√
2], minimum maximal matching

with density δ ∈ [1/
√

8, 1/
√

2] and longest path with density 1.
By Lemma 1, Theorem 1 holds for every bidimensional parameter satisfying

(B). Also, Theorem 1 can be applied not only to bidimensional parameters but
to parameters that are bounded by bidimensional parameters. For example, the
clique-transversal number of a graph G is the minimum number of vertices in-
tersecting every maximal clique of G. This parameter is not contraction-closed
because an edge contraction may create a new maximal clique and cause the
clique-transversal number to increase. On the other hand, it is easy to see that
this graph parameter always exceeds the size of a minimum dominating set which
yields (A) for this parameter.

Non-planar extensions and limitations. One of the natural approaches of
extending Lemma 1 from planar graphs to more general classes of graphs is via
extending of Theorem 2. To do this we have to treat separately minor closed and
contraction closed parameters.

The following extension of Theorem 2 holds for bounded genus graphs:

Theorem 3 ([12]). If G is a graph of Euler genus at most γ with branchwidth
more than r, then G contains a (r/4(γ + 1) × r/4(γ + 1))-grid as a minor.

Working analogously to the planar case, Theorem 3 implies the following.

Lemma 2. Let P be a minor bidimensional parameter with density δ. Then for
any graph G of Euler genus at most γ, property (A) holds for α = 4(γ + 1)/δ.
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Next step is to consider graphs excluding a fixed graph H as a minor. The proof
extends Theorem 3 by making (nontrivial) use of the structural characterization
of H-minor-free graphs by Robertson and Seymour in [36].

Theorem 4 ([13]). If G is an H-minor-free graph with branchwidth more than
r, then G has the (Ω(r) × Ω(r))-grid as a minor (the hidden constants in the Ω
notation depend only on the size of H).

As before, Theorem 3 implies property (A) for all minor bidimensional parame-
ters for some α depending only on the excluded minor H .

For contraction-closed parameters, the landscape is different. In fact, each
possible extension of Lemma 2, requires a stronger version of bidimensionality.
For this, we can use the notion of a (r, q)-gridoid that is obtained from a partially
triangulated (r×r)-grid by adding at most q edges. (Note that every (r, q)-gridoid
has genus ≤ q.) The following extends Theorem 2 for graphs of bounded genus.

Theorem 5 ([12]). If a graph G of Euler genus at most γ excludes all (k −
12γ, γ)-gridoids as contractions, for some k ≥ 12γ, then G has branchwidth at
most 4k(γ + 1).

A parameter is genus-contraction bidimensional if a) it is contraction closed and
b) its value on every (r, O(1))-gridoid is Ω(r2) (here the hidden constants in the
big-O and the big-Ω notations depend only on the Euler genus). Then Theorem 5
implies property (A) for all genus-contraction bidimensional parameters for some
constant that depends only on the Euler genus.

An apex graph is a graph obtained from a planar graph G by adding a vertex
and making it adjacent to some vertices of G. A graph class is apex-minor-free
if it does not contain a graph with some fixed apex graph as a minor. An (r, s)-
augmented grid is an (r × r)-grid with some additional edges such that each
vertex is attached to at most s vertices that in the original grid had degree 4.
We say that a contraction closed parameter P is apex-contraction bidimensional
if a) it is closed under taking of contractions and b) its value on every (r, O(1))-
augmented grid is Ω(r2) (here the hidden constants in the big-O and the big-Ω
notations depend only on the excluded apex graph). According to [10] and [13],
every apex-contraction bidimensional parameter satisfies property (A) for some
constant that depends only on the excluded apex graph.

A natural question appears: until what point property (A) can be satisfied
for contraction-closed parameters (assuming a suitable concept of bidimension-
ality)? As it was observed in [10], for some contraction-closed parameters, like
dominating set, the branchwidth of an apex graph cannot be bounded by any
function of their values. Consequently, apex-free graph classes draw a natural
combinatorial limit on the the above framework of obtaining subexponential pa-
rameterized algorithms for contraction-closed parameters. (On the other side,
this is not the case for minor-closed parameters as indicated by Theorem 4.)
However, it is still possible to cross the frontier of apex-minor-free graphs for
the dominating set problem and some of its variants where subexponential pa-
rameterized algorithms exist, even for H-minor-free graphs, as shown in [12].
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These algorithms are based on a combination of dynamic programming and the
the structural characterization of H-minor-free graphs from [36].

4 Further Optimizations

In this section, we present several techniques for accelerating the algorithms
emerging by the framework of Theorem 1.

Making algorithms faster. While proving properties (A) and (B), it is nat-
ural to ask for the best possible constants α and β, as this directly implies an
exponential speed-up of the corresponding algorithms. While, Bidimensionality
Theory provides some general estimation of α, in some cases, deep understand-
ing of the parameter behavior can lead to much better constants in (A). For
example, it holds that for Planar k-Vertex Cover, α ≤ 3 (see [30]) and for
Planar k-Dominating Set, α ≤ 6.364 (see [29]). (Both bounds are based on
the fact that planar graphs with n vertices have branchwidth at most

√
4.5

√
n,

see [30].) Similar results hold also for bounded genus graphs [28].
On the other hand, there are several ways to obtain faster dynamic program-

ming algorithms and to obtain better bounds for β in (B). A typical approach
to compute a solution of size k works as follows:

– Root the branch decomposition (T, μ) of graph G picking any of the vertices
of its tree and apply dynamic programming on the middle sets, bottom up, from
the leaves towards the root.
– Each middle set mid(e) of (T, μ) represents the subgraph Ge of G induced by
the leaves below. Recall that the vertices of mid(e) are separators of G.
– In each step of the dynamic programming, all optimal solutions for a subprob-
lem in Ge are computed, subject to all possibilities of how mid(e) contributes to
an overall solution for G. E.g., for Vertex Cover, there are up to 2bw(T,μ) sub-
sets of mid(e) that may constitute a vertex cover of G. Each subset is associated
with an optimal solution in Ge with respect to this subset.
– The partial solutions of a middle set are computed using those of the already
processed middle sets of the children and stored in an appropriate data structure.
– An optimal solution is computed at the root of T .

Encoding the middle sets in a refined way, may speed up the processing time
significantly. Though, the same time is needed to scan all solutions assigned to
a mid(e) after introducing vertex states, there are some methods to accelerate
the update of the solutions of two middle sets to a parent middle set:

Using the right data structure: storing the solutions in a sorted list compensates
the time consuming search for compatible solutions and allows a fast computing
of the new solution. E.g., for k-Vertex Cover, the time to process two middle
sets is reduced from O(23·bw(T,μ)) (for each subset of the parent middle set, all
pairs of solutions of the two children are computed) to O(21.5·bw(T,μ)). In [19]
matrices are used as a data structure for dynamic programming that allows an
updating even in time O(2

ω
2 bw(T,μ)) for k-Vertex Cover (where ω is the fast

matrix multiplication constant, actually ω < 2.376).
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A compact encoding: assign as few as possible vertex states to the vertices and
reduce the number of processed solutions. Alber et al. [1], using the so-called
“monotonicity technique”, show that 3 vertex states are sufficient in order to
encode a solution of k-Dominating Set. A similar approach was used in [29]
to obtain, for the same problem, a O(31.5·bw(T,μ))-step updating process, that
has been improved by [19] to O(22·bw(T,μ)).

Employing graph structures: as we will see in the Section 5, one can improve the
runtime further for dynamic programming on branch decompositions whose mid-
dle sets inherit some structure of the graph. Using such techniques, the update
process for Planar k-Dominating Set is done in time O(3

ω
2 bw(T,μ)) [19].

The above techniques can be used to prove the following result.

Theorem 6 ([19]). Planar k-Vertex Cover can be solved in O(23.56
√

k) ·
nO(1) runtime and Planar k-Dominating Set in O(211.98

√
k) ·nO(1) runtime.

Kernels. Many of the parameterized algorithms discussed in this section can be
further accelerated to time O(nθ) + 2O(

√
k) for θ being a small integer (usually

ranging from 1 to 3). This can be done using the technique of kernelization that
is a prolynomial step preprocessing of the initial input of the problem towards
creating an equivalent one, whose size depends exclusively on the parameter. Ex-
amples of such problems are Planar k-Dominating Set [4,8,28], k-Feedback

Vertex Set [6], k-Vertex Cover and others [25]. See the books of [23,27,35]
for a further reference.

5 Property (B) and Catalan Structures

All results of the previous sections provide subexponential parameterized algo-
rithms when property (B) holds. However, there are many bidimensional param-
eters for which there is no known algorithm providing property (B) in general.
The typical running times of dynamic programming algorithms for these prob-
lems are O(bw(G)!) · nO(1), O(bw(G)bw(G)) · nO(1), or even O(2bw(G)2) · nO(1).
Examples of such problems are parameterized versions of k-Longest Path,
k-Feedback Vertex Set, k-Connected Dominating Set, and k-Graph

TSP. Usually, these are problems in NP whose certificate verifications involves
some connectivity question. In this section, we show that for such problems one
can prove that (B) actually holds for the graph class that we are interested in.
To do this, one has to make further use of the structural properties of the class
(again from the Graph Minors Theory) that can vary from planar graphs to
H-minor-free graphs. In other words, we use the structure of the graph class not
only for proving (A) but also for proving (B).

Planar graphs. The following type of decomposition for planar graphs follows
from a proof by Seymour and Thomas in [38] and is extremely useful for making
dynamic programming on graphs of bounded branchwidth faster (see [22,19]).

Let G be a planar graph embedded in a sphere S. An O-arc is a subset of
S homeomorphic to a circle. An O-arc in S is called a noose of the embedding
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of G if it meets G only in vertices. The length of a noose O is the number of
vertices of G it meets. Every noose O bounds two open discs Δ1, Δ2 in S, i.e.,
Δ1 ∩ Δ2 = ∅ and Δ1 ∪ Δ2 ∪ O = S.

We define a sphere cut decomposition or sc-decomposition (T, μ, π) as a branch
decomposition with the following property: for every edge e of T , there exists a
noose Oe meeting every face at most once and bounding the two open discs Δ1
and Δ2 such that Gi ⊆ Δi ∪ Oe, 1 ≤ i ≤ 2. Thus Oe meets G only in mid(e)
and its length is |mid(e)|. A clockwise traversal of Oe in the embedding of G
defines the cyclic ordering π of mid(e). We always assume that the vertices of
every middle set mid(e) = V (G1) ∩ V (G2) are enumerated according to π.

Theorem 7. Let G be a planar graph of branchwidth at most � without vertices
of degree one embedded on a sphere. Then there exists an sc-decomposition of G
of width at most � that can be constructed in time O(n3).

In what follows, we sketch the main idea of a 2O(bw(T,μ,π))nO(1) algorithm for
the k-Planar Longest Path. One may use k-Longest path as an exemplar
for other problems of the same nature.

Let G be a graph and let E ⊆ E(G) and S ⊆ V (G). To count the number of
states at each step of the dynamic programming, we should estimate the number
of collections of internally vertex disjoint paths using edges from E and having
their (different) endpoints in S. We use the notation P to denote such a path col-
lection and we define pathsG(E, S) as the set of all such path collections. Define
equivalence relation ∼ on pathsG(E, S): for P1,P2 ∈ pathsG(E, S), P1 ∼ P2
if there is a bijection between P1 and P2 such that bijected paths in P1 and P2
have the same endpoints. Denote by q-pathsG(E, S) = |pathsG(E, S)/ ∼ | the
cardinality of the quotient set of pathsG(E, S) by ∼.

Recall that we define q-pathsG(E, S) because, while applying dynamic pro-
gramming on some middle set mid(e) of the branch decomposition (T, μ), the
number of states for e ∈ E(T ) is bounded by O(q-pathsGi

(E(Gi),mid(e))).
Given a graph G and a branch decomposition (T, μ) of G, we say that (T, μ)

has Catalan structure if for every edge e ∈ E(T ) and any i ∈ {1, 2},

q-pathsGi
(E(Gi),mid(e)) = 2O(bw(T,μ)) (1)

Now, (B) holds for planar graphs because of the following combinatorial result.

Theorem 8 ([22]). Every planar graph has an optimal branch decomposition
with the Catalan structure that can be constructed in polynomial time.

The proof of Theorem 8 uses an sc-decomposition (T, μ, π) (constructed using
the polynomial algorithm in [38]). Let Oe be a noose meeting some middle set
mid(e) of (T, μ, π). Let us count in how many ways this noose can cut paths
of G. Observe that each path is cut into at most bw(T, μ, π) parts. Each such
part is itself a path whose endpoints are pairs of vertices in Oe. Notice also
that, because of planarity, no two such pairs can cross. Therefore, counting the
ways Oe can intersect paths of G is equivalent to counting non-crossing pairs of
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vertices in a cycle (the noose) of length bw(T, μ, π) which, in turn, is bounded
by the Catalan number of bw(T, μ, π) that is 2O(bw(T,μ,π)).

We just concluded that the application of dynamic programming on an sc-
decomposition (T, μ, π) is the 2O(bw(T,μ,π))nO(1) algorithm for proving prop-
erty (B) for planar graphs. By further improving the way the members of
q-pathsGi

(E(Gi),mid(e)) are encoded during this procedure, one can bound
the hidden constants in the big-O notation on the exponent of this algorithm
(see [22]). For example, for Planar k-Longest Path β ≤ 2.63. With anal-
ogous structures and arguments it follows that for Planar k-Graph TSP

β ≤ 3.84, for Planar k-Connected Dominating Set β ≤ 3.82, for Pla-

nar k-Feedback Vertex Set β ≤ 3.56 [19].
In [20], all above results were generalized for graphs with bounded genus

(now constants for each problem depend also on the genus). This generalization
requires a suitable “bounded genus”-extension of Theorem 8 and its analogues
for other problems.

Excluding a minor. The final step is to prove property (B) for H-minor-free
graphs. For the proof of this, we need the following analogue of Theorem 8.

Theorem 9 ([21]). Let G be a graph class excluding some fixed graph H as a
minor. Then every graph G ∈ G with bw(G) ≤ � has an branch decomposition
of width O(�) with the Catalan structure (here the hidden constants in the big-O
notations in O(�) and the upper bound certifying the Catalan structure in Equa-
tion (1) depend only on H). Moreover, such a decomposition can be constructed
in f(|H |) · nO(1) steps, where f is a function depending only on H.

The proof of Theorem 9 is based on an algorithm constructing the claimed branch
decomposition using a structural characterization of H-minor-free graphs, given
in [36]. Briefly, any H-minor-free graph can be seen as the result of gluing to-
gether (identifying constant size cliques and, possibly, removing some of their
edges) graphs that, after the removal of some constant number of vertices (called
apices) can be “almost” embedded in a surface of constant genus. Here, by “al-
most” we mean that we permit a constant number of non-embedded parts (called
vortices) that are “attached” around empty disks of the embedded part and have
a path-like structure of constant width. The algorithm of Theorem 9, as well as
the proof of its correctness, has several phases, each dealing with some level of
this characterisation, where an analogue of sc-decomposition for planar graphs
is used. The core of the proof is based on the fact that the structure of the
embeddible parts of this characterisation (along with vortices) is “close enough”
to be plane, so to roughly maintain the Catalan structure property.

Theorem 9 implies (B) for k-Longest Path on H-minor-free graphs. Similar
results can be obtained for all problems examined in this section on H-minor-free
graphs. Since property (A) holds for minor/apex-contraction bidimensional pa-
rameters on H-minor-free/apex-minor-free graphs, we have that one can design
2O(

√
k) · nO(1) step parameterized algorithms for all problems examined in this

section for H-minor-free/ apex-minor-free graphs (here the hidden constant in
the big-O notation in the exponent depend on the size on the excluded minor).
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6 Conclusion

In Section 3, we have seen that bidimensionality can serve as a general combina-
torial criterion implying property (A). Moreover, no such a characterization is
known, so far, for proving property (B). In Section 5, we have presented several
problems where an analogue of Theorem 9 can be proven, indicating the exis-
tence of Catalan structures in H-minor-free graphs. It would be challenging to
find a classification criterion (logical or combinatorial) for the problems that are
amenable to this approach.
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