
Hash Functions in the Dedicated-Key Setting:
Design Choices and MPP Transforms

Mihir Bellare and Thomas Ristenpart

Dept. of Computer Science & Engineering 0404, University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404, USA

{mihir,tristenp}@cs.ucsd.edu
http://www-cse.ucsd.edu/users/{mihir,tristenp}

Abstract. In the dedicated-key setting, one uses a compression func-
tion f : {0, 1}k × {0, 1}n+d → {0, 1}n to build a family of hash functions
Hf : K × M → {0, 1}n indexed by a key space K. This is different from
the more traditional design approach used to build hash functions such
as MD5 or SHA-1, in which compression functions and hash functions do
not have dedicated key inputs. We explore the benefits and drawbacks of
building hash functions in the dedicated-key setting (as compared to the
more traditional approach), highlighting several unique features of the
former. Should one choose to build hash functions in the dedicated-key
setting, we suggest utilizing multi-property-preserving (MPP) domain
extension transforms. We analyze seven existing dedicated-key trans-
forms with regard to the MPP goal and propose two simple new MPP
transforms.

1 Introduction

Two settings. A popular method for designing hash functions proceeds as fol-
lows. First, one designs a compression function f : {0, 1}d+n → {0, 1}n, where d
is the length of a data block and n is the length of the chaining variable. Then
one specifies a domain extension transform H that utilizes f as a black box to
implement the hash function Hf : M → {0, 1}n associated to f , where M is
some large message space. Most in-use hash functions, for example the MD-x
family [21] and SHA-1 [19], were constructed using this approach.

There also exists a second setting for hash function design and analysis, in
which compression functions and hash functions both have a dedicated key input.
A dedicated-key compression function has signature f : {0, 1}k × {0, 1}d+n →
{0, 1}n. A transform H now uses f(·, ·) as a black-box to implement a family of
hash functions Hf : K × M → {0, 1}n indexed by a key space K. We call this
the dedicated-key setting. Note that although we use the term “key”, this does
not mean that a key K ∈ K is necessarily private. Indeed, hash functions often
need to be publicly computable (e.g., for verifying digital signatures) and so in
these settings every party must have access to the key.

This paper. Due to recent collision-finding attacks against in-use hash functions
such as MD5 and SHA-1 [26,27], new hash functions are going to be designed
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and standardized. A crucial choice for designers will be whether one should
build hash functions in the first setting (continuing in the current tradition of
in-use hash functions) or in the dedicated-key setting. Our first contribution is to
present relative merits of the two settings described above, pointing out several
important benefits of the dedicated-key setting, but also its most significant
drawbacks.

Should one choose to work in the dedicated-key setting, the natural next ques-
tion is how to best build hash functions in it. Because hash functions are currently
used in a wide variety of applications with disjoint security requirements, we sug-
gest building hash functions using multi-property-preserving (MPP) transforms,
introduced for the non-dedicated-key setting in [6]. An MPP transform H si-
multaneously preserves numerous properties of interest: if the compression func-
tion f has security property P, then Hf has P also. Our second contribution is an
MPP-orientated analysis of several dedicated-key transforms and the proposal
of two new transforms that better meet the MPP goal.

We now briefly summarize our results in more detail.

The dedicated-key setting. In Section 3, we discuss the dedicated-key set-
ting, pointing out several features which are distinct from the more traditional
setting. We describe two important benefits of the dedicated-key setting: hash
function heterogeneity (allowing users to specify independent instances of the
hash function) and improved security guarantees (particularly for message au-
thentication, a wide-spread application of hash functions). On the other hand,
a significant downside of dedicated keys is a decrease in efficiency.

Dedicated-key transforms. In Section 5, we provide an MPP-orientated
treatment of transforms in the dedicated-key setting, analyzing seven previously
proposed Merkle-Damg̊ard-like transforms: plain Merkle-Damg̊ard (MD) [16,12],
strengthened MD (sMD) [12], prefix-free MD (Pre) [15], Shoup’s transform
(Sh) [24], the strengthened Nested Iteration transform (sNI) [1], the Nested It-
eration transform (NI) [15], and the Chain-Shift transform (CS) [15]. Figure 1
summarizes our results for the existing seven transforms. For each transform
we determine if it is collision-resistance preserving (CR-Pr), message authenti-
cation code preserving (MAC-Pr), pseudorandom function preserving (PRF-Pr),
and pseudorandom oracle preserving (PRO-Pr). A “Yes” in the P-Pr column for
transform T means that, if a compression function f has property P, then Tf

provably has property P. A “No” means that there exists a compression func-
tion f with property P, but for which Tf does not have P. Only one of the seven
transforms preserves the first four properties (though requiring two keys to do
so), and so we suggest a new MPP transform, called Strengthened Chain-Shift,
which is efficient and requires just one key.

We also investigate the property of being a universal one-way hash func-
tion [18], which we’ll call target-collision resistance (following [10]). The practical
value of TCR-Pr transforms is limited by the significant amount of key material
they require; see Section 5.5 for a discussion. That said, none of the transforms
thus far preserve it along with the other four properties, and so we suggest a
new transform, Enveloped Shoup, which preserves all five properties.
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CR-Pr MAC-Pr PRF-Pr PRO-Pr TCR-Pr Efficiency τ (L) Key bits
MD No [16,12] No Yes No [11] No [10] �(L + 1)/d� k

sMD Yes [16,12] No Yes No [11] No [10] �(L + 65)/d� k

Pre No Yes [15] Yes Yes [11] No �(L + 1)/(d − 1)� k

Sh Yes [24] No Yes No Yes [24] �(L + 65)/d� k + n�log2 τ (L)�
sNI Yes Yes [1] Yes Yes [6] No �(L + 65)/d� 2k

NI No Yes [15] Yes Yes [6] No �(L + 1)/d� 2k

CS No Yes [15] Yes Yes [6] No �(L + 1 + n)/d� k

sCS Yes Yes [15] Yes Yes [6] No �(L + 65 + n)/d� k

ESh Yes Yes Yes Yes Yes �(L + 65 + n)/d� k + n�log2 τ (L)�

Fig. 1. Summary of transforms in the dedicated-key setting when applied to a compres-
sion function f : {0, 1}k × {0, 1}n+d → {0, 1}n. Bold-faced claims are novel. Efficiency
is measured by τ (L), the number of compression function applications used to hash an
L-bit string.

2 Notation and Definitions

Notation. We denote pairwise concatenation by || , e.g. M || M ′, and write
M1 · · · Mk to mean M1 || M2 || . . . || Mk. For brevity, we define the following
semantics for the notation M1 · · · Mk

d← M where M is a string of bits: 1) define
k = �|M |/d� and 2) if |M | mod d = 0 then parse M into M1, M2, . . ., Mk where
|Mi| = d for 1 ≤ i ≤ k, otherwise parse M into M1, M2, . . ., Mk−1, Mk where
|Mi| = d for 1 ≤ i ≤ k − 1 and |Mk| = |M | mod d. For any finite set S we
write s

$← S to signify uniformly choosing a value s ∈ S. A random oracle is
an algorithm RFDom,Rng that, on input X ∈ Dom, returns a value Y

$← Rng.
Repeat queries are, however, answered consistently. We sometimes write RFd,r

when Dom = {0, 1}d and Rng = {0, 1}r.

Security notions. Let F : K × Dom → Rng be a function with non-empty
key space K and define FK(·) = F (K, ·). Then we define the following security
experiments:

• tcr: ε = Pr
[

(X, S) $← A1, K
$← K, X ′ $← A2(S, K) :

X �= X ′∧
FK(X) = FK(X ′)

]

• cr: ε = Pr
[
K

$← K, (X, X ′) $← A(K) : X �= X ′ ∧ FK(X) = FK(X ′)
]

• mac: ε = Pr
[
K

$← K, (X, T ) $← AF (K,·) : FK(X) = T ∧ X not queried
]

• prf: ε = Pr
[
K

$← K : AF (K,·) ⇒ 1
]
−Pr

[
ρ

$← Func(Dom ,Rng) : Aρ(·) ⇒ 1
]

where the probabilities are over the specified random choices and the coins used
by A. In the tcr game A is actually a pair of algorithms A1 and A2. Now
letting F be an algorithm given oracle access to an ideal compression function
f = RFk+n+d,n we define the last security experiment:

• pro: ε = Pr
[
K

$← K : AF f
K ,f (K) ⇒ 1

]
− Pr

[
K

$← K : AF ,SF
K (K) ⇒ 1

]
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where the probabilities are over the specified random choices, the coins used
by A and S, and the coins used by F = RFDom,Rng and f = RFn+d,n. The
simulator S maintains state across queries and has oracle access to F . For more
details on the pseudorandom oracle definition see [6,11,13].

We say that F is (t, L, ε)-xxx for xxx ∈ {tcr, cr} if any adversary A running
in time at most t and outputting messages of length less than or equal to L bits
has at most ε probability of success in the xxx game. Similarly we say that F
is a (t, q, L, ε)-xxx for xxx ∈ {mac, prf} if any adversary A running in time at
most t and making at most q queries each of which has length at most L has
at most ε probability of success in the xxx game. Lastly we say that F is a
(tA, tS , q1, q2, L, ε)-pro if there exists a simulator S running in time tS such that
the following is true. Any adversary A running in time at most tA and asking
at most q1 (q2) queries to its first (second) oracle, with maximal query length L
bits, has probability at most ε of success in the pro game.

3 Hash Functions in the Dedicated Key Setting

Hash function heterogeneity. The first major benefit of dedicated-key hash
functions is the enablement of hash function heterogeneity, which allows for the
utilization of numerous different hash function instances. To understand why
this is useful for security, we discuss (as an example) an important applica-
tion of publicly-computable, collision-resistant hash functions: digital signature
schemes. Recall that in such a scheme each party i picks a public key pki and
publishes it. To verify a message, one hashes it and then applies some verifi-
cation algorithm that utilizes pki. In current practice, all users utilize a single
hash function Hh, for example SHA-1. Now that Wang, Yin, and Yu discovered
a collision-outputting algorithm A against Hh = SHA-1 [26], simply running A
a single time compromises the security of every user’s digital signature scheme.

If we instead utilize a dedicated-key hash function Hh: K × M → {0, 1}n

within our scheme, then each user i can pick a key Ki ∈ K and publish it as
part of their public key. In this way each user has his or her own hash function
instance, exemplifying hash function heterogeneity. Now, attackers are faced
with a significantly more difficult task, from a practical perspective. If they can
construct a categorical attack algorithm A (i.e., one that works equally well
on any key), and if A executes in w operations, then to attack a single user i
requires (as before) w work. But attacking two users requires 2w work, and in
general attacking a group of p users requires pw work. If w ≈ 269, as is the case
for Wang, Yin, and Yu’s SHA-1 attack [26], then even doubling the amount of
work is a significant hurdle to mounting attacks in practice. The situation is even
worse for the attackers if their attack algorithm is key-specific (i.e., it only works
well on a particular key), because then they might have to adapt their attack
to each user’s key, which could require more cryptanalytic effort. In either case,
hash function heterogeneity is a significant benefit of the dedicated-key setting,
particularly when attacks are found that are just on the cusp of practicality.
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Improved security guarantees. An important and wide-spread application
of hash functions is for message authentication code (MAC) schemes, where we
require hash functions to be unforgeable. To utilize a traditional hash function
Hh: M → {0, 1}n as a MAC scheme, Hh must be keyed, which means some of
the input is set aside (a posteriori) for key bits. The canonical construct in this
domain is HMAC [3,2], which is widely standardized and used. (NIST FIPS 198,
ANSI X9.71, IETF RFC 2104, SSL, SSH, IPSEC, TLS, IEEE 802.11i, and IEEE
802.16e are only some instances.) Note that in these applications keys are secret
and never revealed publicly.

In the traditional setting, the unforgeability of MACs built from hash func-
tions requires the compression function to be a pseudorandom function (PRF),
when keyed appropriately, and the transform to be PRF-Pr. However, unforge-
ability is a weaker security goal than being a PRF: any PRF is a good MAC but
not vice versa. The reason we have to rely on PRFs for message authentication is
that building transforms that preserve the unforgeability of a compression func-
tion h: {0, 1}n+d → {0, 1}n is inherently difficult and, in fact, no unforgeability
preserving (which we’ll call MAC-Pr) transforms are known in this setting.

On the other hand, if we work in the dedicated-key setting, then there are
straightforward MAC-Pr transforms [1,15,14]. This allows us to utilize hash func-
tions as MACs under just the assumption that h: {0, 1}k × {0, 1}n+d → {0, 1}n

is a good MAC, which provides a better security guarantee. To see why, note
that an attack showing that h is not a PRF does not immediately imply that h
can be forged against and therefore we can still have a guarantee that Hh is a
secure MAC — but this is only true in the dedicated-key setting. In the prior
setting we would lose all security guarantees.

Another benefit of the dedicated-key setting is that building transforms which
are provably PRF-Pr becomes much easier. As we show in Section 5.3, all the
transforms we consider are PRF-Pr, and the proofs of this are straightforward.

Keying and collision-resistance. Hash functions with dedicated key inputs
are an easy solution for the foundations-of-hashing dilemma [22], which is a prob-
lem of theoretical interest. The dilemma refers to the fact that h: {0, 1}n+d →
{0, 1}n, for d �= 0, can not be collision-resistant: by the pigeonhole principle
there are two distinct strings X, X ′ ∈ {0, 1}n+d such that h(X) = h(X ′). Thus
there always exists an efficient collision-outputting algorithm A, namely the one
that outputs (X, X ′). However, as Rogaway discusses at length in [22], rigor-
ous provable security for keyless hash functions is still meaningful, since we
can give explicit reductions (though at the cost of slightly more complex theo-
rem statements). So while the dedicated-key setting enables formally meaningful
collision-resistance and thus simpler theoretical treatments of CR hashing, the
practical impact of this benefit is small.

Efficiency. A significant downside of dedicated keys is efficiency loss. For every
message block hashed using a dedicated-key compression function h: {0, 1}k ×
{0, 1}n+d → {0, 1}n, a total of k + n + d bits must be processed. Compare this
to the situation of current popular hash functions, which only have to process
n + d bits per block. The efficiency of the hash function therefore goes down by
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about k
n+d , which could be an issue in settings where speed is paramount (e.g.,

message authentication of network traffic).

Backwards-compatibility. In many settings it will be desirable to utilize a
hash function that does not reveal a dedicated-key input. This will be partic-
ularly true for backwards-compatibility with existing applications that utilize
a standard hash function H : {0, 1}∗ → {0, 1}n. We point out that it is easy
to allow such compatibility when starting with a dedicated-key hash function
H ′: K×{0, 1}∗ → {0, 1}n. Simply fix an honestly generated and publicly-known
key K (chosen, for example, by some trusted entity), and define the unkeyed hash
function as H(M) = H ′(K, M).

Adversarially-chosen keys. Most current cryptographically-sanctified ap-
plications of hash functions (e.g., digital signature schemes, message authenti-
cation codes, key derivation, and standard uses of random oracles) only require
security for honestly generated dedicated keys. However, given the wide-spread
use of hash functions in non-standard settings, one should be aware of the po-
tential for abuse in applications that would require security even in the face of
adversarially-chosen keys. A simple solution for such settings could be to require
a fixed, honestly-generated key as mentioned above.

4 Dedicated Key Transforms

Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be a dedicated-key compression function
with d ≥ n ≥ 64. We now describe the various transforms treated in this paper.
A transform H describes how to utilize f (as a black box) in order to generate
a hash function Hf : K × M → {0, 1}n. A transform is defined in two separate
steps. We first specify an injective padding function that maps from {0, 1}∗ or
{0, 1}≤264

to either D+ = ∪i≥1{0, 1}id or D◦ = ∪i≥1{0, 1}id+d−n. Then we
specify an iteration function which describes how to hash strings in either D+

or D◦. We define the following padding functions:
• pad: {0, 1}∗ → D+ is defined by pad(M) = M || 10r

• pads: D → D+ is defined by pads(M) = M || 10r || 〈|M |〉64
• padPF: {0, 1}∗ → D+ is a prefix-free padding function: for any M, M ′ ∈

{0, 1}∗ where |M |< |M ′| we have that padPF(M) is not a prefix of padPF(M ′).
(For example: pad to make the length a multiple of d − 1, parse the result
into blocks of d − 1 bits, append a zero to each block except the final block,
and append one to the final block.)

• padCS: {0, 1}∗ → D◦ is defined by padCS(M) = M || 10r

• padCSs: D → D◦ is defined by padCSs(M) = M || 10r || 〈|M |〉64 || 0p

where for pad, pads, and padCS the value r is the minimal number of zeros so
that the returned string is in the range of the padding function. For padCSs we
define p in two potential ways. If d ≥ n+64 (there is room for the strengthening
in the envelope), then p = 0. If d < n + 64 (there is not enough room for the
strengthening in the envelope), then p = d − n. Then r is the number of zeros
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Algorithm f+(K, M):

M1 · · · Mm
d← M ; Y0 ← IV

for i = 1 to m do
Yi ← fK(Yi−1 || Mi)

ret Ym

d

M1

f
IV

M2

f · · ·
n

f

K K K

Mm

Ym
n

Algorithm fSh((K, {Ki}t
1), M):

M1 · · · Mm
d← M ; Y0 ← IV

for i = 1 to m do
Yi ← fK((Yi−1 ⊕ Kν(i)) || Mi)

ret Ym

d

M1

f
IV

M2

f · · ·
n

f

K1K0 K0
K K K

Mm

Ym

Kν(m)

Algorithm fNI((K1, K2), M):

M1 · · · Mm
d← M

Ym−1 ← f+(K1, M1 · · · Mm−1)
ret Ym ← fK2(Ym−1 || Mm)

d

M1

n

f
IV

K1

M2

n

f

K1

· · ·
n

Yk

f

K2

Mm

Algorithm fCS(K, M):

M1 · · · Mm
d← M

Ym−1 ← f+(K, M1 · · · Mm−1)
ret fK(IV 2 || Ym−1 || Mm)

d

M1

f

n

K

IV 1 · · · f

Mk−1

n

f
Yk

Mk

K

K

n

d − n

IV 2

Algorithm fESh((K, {Ki}t
1), M):

M1 · · · Mm
d← M

Y ← fSh((K, {Ki}t
1), M1 · · · Mm−1)

I ← IV 2 ⊕ K0; Y ′ ← Y ⊕ Kν(m)
ret fK(I || Y ′ || Mm)

d

M1

f

K

· · · f

K

Mm−1
Mm

f

K0 K1 Kν(m−1) K

IV 2

Kν(m) K0

d − n

n
Ym

IV 1

Fig. 2. The algorithms and diagrams detailing the iteration functions we consider.
Transforms are the composition of an iteration function and a padding function.

needed to make the returned string in D◦. Note that we restrict our attention
to padding functions g such that for any messages M, M ′ for which |M | = |M ′|
we have that |g(M)| = |g(M ′)|.

The iteration functions we consider are specified in Figure 2, and we use them
to now define the seven previously proposed transforms. The basic Merkle-
Damg̊ard (MD) iteration f+: {0, 1}k × D+ → {0, 1}n repeatedly applies f .
The plain MD transform [16,12] is MD[f ] = f+(k, pad(m)). The strength-
ened MD transform [12] is sMD[f ] = f+(k, pads(m)). The prefix-free MD
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transform [15] is Pre[f ] = f+(k, padPF(m)). The placeholders k and m designate
how to handle the key and message inputs. The Shoup iteration fSh: ({0, 1}k ×
{0, 1}tn) × D+ → {0, 1}n utilizes t = �log2(σ)� key masks where σ the maximal
number of iterations of f allowed. Also we define ν(i) to be the largest value x
such that 2x divides i. The key masks {Ki}t

1 ∈ {0, 1}tn are t n-bit keys that
are used to ‘mask’ chaining variables with secret key material. Then the Shoup
transform [24] is Sh[f ] = fSh(k, pads(m)). The nested iteration fNI: ({0, 1}k ×
{0, 1}k) × D+ → {0, 1}n just envelopes an f+ iteration with an application
of f using a second key. The strengthened Nested Iteration transform [1]
is sNI[f ] = fNI(k, pads(m)). The Nested Iteration transform [15] is NI[f ] =
fNI(k, pad(m)). The chain shift iteration fCS: {0, 1}k ×D◦ → {0, 1}n, envelopes
an internal f+ iteration with an application of f(IV 2 || ·). We require that IV 2 �=
IV 1. The chain shift transform [15] is CS[f ] = fCS(k, padCS(m)).

Now we define two new transforms. The strengthened Chain Shift trans-
form sCS[f ] = fCS(k, padCSs(m)) adds strengthening to the CS transform. The
enveloped Shoup iteration fESh: ({0, 1}k × {0, 1}tn) × D◦ → {0, 1}n uses an in-
ternal fSh iteration and then an envelope like the one used in fCS. Note that the
output of fSh is xor’d with a key mask and IV 2 is xor’d with K0 (which serves
to preserve that IV 1 �= IV 2 across the masking). Then the Enveloped Shoup
transform is ESh[f ] = fESh(k, padCSs(m)).

For a fixed compression function f each transform defines a hash function,
e.g. MDf = MD[f ] is the hash function with signature MDf : {0, 1}k ×{0, 1}∗ →
{0, 1}n defined by MDf (K, M) = f+(K, pad(M)).

For each padding function g (and therefore each transform) we define an
efficiency function τg: N → N defined as τg(L) = �|g(M)|/d� for any M ∈
{0, 1}L. For brevity we will often just write τ(L) where the padding function of
interest is clear from context. Note that efficiency functions are called application
functions in [15]. The efficiency functions are given in Figure 1, where for padPF
we utilize the concrete example outlined above.

5 Security Analysis of the Transforms

We now analyze the security of the nine transforms in terms of the five different
security goals. The summary of our analysis is given in Figure 1. Some of the
results are already established by prior work; we omit discussion of these and
refer the reader to the given citations. We discuss each security property in turn.
Due to a lack of space, we cannot include any proofs here. A complete treatment,
including proofs, is given in the full version of the paper [5].

5.1 Collision Resistance Preservation

Collision-resistance preservation is typically achieved via strengthening: append-
ing the length of a message to it before processing. Not surprisingly, transforms
that omit strengthening are not CR-Pr: we show this for Pre, NI, and CS. On
the other hand, those that include strengthening are CR-Pr, as we show for sNI,
sCS, and ESh.
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Theorem 1. [Negative results: Pre, NI, CS] Let f : {0, 1}k × {0, 1}n+d →
{0, 1}n−1 be a (t, n + d, ε)-cr function. Then there exists a function g: {0, 1}k ×
{0, 1}n+d → {0, 1}n that is (t− c1, n+ d, ε)-cr but Pre[g], NI[g], CS[g] are at most
(c2, 3d, 1)-cr where c1, c2 are small constants. �
Theorem 2. [Positive results: sNI, sCS, ESh] Let f : {0, 1}k × {0, 1}n+d →
{0, 1}n be a (t, n + d, ε)-cr function. Then T[f ] is (t′, L, ε′)-cr where for
(1) T = sNI we have t′ = t − c1τ(L) and ε′ = ε/2
(2) T ∈ {sCS, ESh} we have t′ = t − c2τ(L) and ε′ = ε
where c1, c2 are small constants. �

5.2 MAC (Unforgeability) Preservation

We show that MD, sMD, and Sh do not preserve unforgeability. Recall that in this
setting, the key material (including the key masks of Sh) is secret and therefore
unknown to the adversary. While it may not be surprising that MD and sMD are
not MAC-Pr, one might be tempted to think that the large amount of secret key
material used in Sh could assist in preserving unforgeability. Unfortunately this
is not the case, though the counter-example is involved [5]. On the positive side,
we have that ESh is MAC-Pr, which can be shown using the proof techniques
in [15].

Theorem 3. [Negative results: MD, sMD, Sh] If there exists a function
f : {0, 1}k × {0, 1}n+d → {0, 1}n−1 that is a (t, q, n + d, ε)-mac, then there exists
a function g: {0, 1}k ×{0, 1}n+d → {0, 1}n that is a (t−c1q, q, n+d, ε)-mac but
(1) MD[g], sMD[f ′] are at most (c2, n − 1, 3d, 1/2)-mac
(2) Sh[g] is at most a (c3, 2(n − 1), 3d, 1/4)-mac
where c1, c2, and c3 are small constants. �
Theorem 4. [Positive results: ESh] Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be
a (t, q, ε)-mac. Then ESh[f ] is a (t − c(q′ + 1)τ(L), q′, L, ε′)-mac where

q′ = (q − τ(L) + 1)/τ(L) and ε′ = (q2/2 + 3q/2 + 1)ε

for c a small constant and any {Ki}t
1 ∈ {0, 1}tn with t = log2(τ(L)). �

5.3 Pseudorandom Function Preservation

In the non-dedicated-key setting, building PRF preserving transforms is non-
trivial and the proofs of security are complex. In stark contrast to this, we show
that all of the dedicated-key transforms considered here are PRF-Pr, and the
proofs establishing this are relatively straightforward (see [5]).

Theorem 5. [Positive results: MD, sMD, Pre, Sh, sNI, NI, CS, sCS, ESh]
Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be a (t, q, n + d, ε)-prf. Then T[f ] is a
(t′, q′, L, ε′)-prf where for
(1) T ∈ {MD, sMD, Pre, Sh, CS, sCS, ESh}, t′ = t − cqτ(L), q′ = q/τ(L), ε′ =

ε + q2τ(L)2/2n,
(2) T ∈ {sNI, NI}, t′ = t − cqτ(L), q′ = q/τ(L), ε′ = 2ε + q2(τ(L) − 1)2/2n

where c is a small constant and {Ki}t
1 ∈ {0, 1}tn for t = log2(τ(L)). �
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5.4 Pseudorandom Oracle Preservation

Establishing that a transform is PRO-Pr ensures that a hash function constructed
with it “behaves like a random oracle” under the assumption that the compres-
sion function is ideal. This is important for usage of hash functions to instantiate
random oracles, as discussed at length in [11]. To reason about dedicated-key
transforms, we model a compression function f : {0, 1}k × {0, 1}n+d → {0, 1}n

as a family of random oracles, one for each key in {0, 1}k. However, since we only
ever use one or two fixed keys from {0, 1}k, we will (without loss of generality)
simply utilize two separate random oracles f = RFn+d,n and g = RFn+d,n from
the family. This simplifies our analysis, and, in particular, means that many
results from the keyless setting carry over directly to the dedicated-key setting
(see Figure 1). For example, the negative results that MDf and sMDf are not
PROs follows from simple length-extension attacks (see [11]). The security of CS,
and sCS is implied by the security of EMD [6] and the security of sNI and NI is
implied by results in [11].

We point out that Shf is not a PRO. Since the key masks are public, simple
length extension attacks enable an adversary to differentiate between it and a
true variable-input-length random oracle. On the other hand EShf is a PRO.

Theorem 6. [Negative result: Sh] Let f = RFn+d,n be a random oracle.
Then there exists an (c, tS , 2, 1, 2d, 1−2−n)-pro adversary A against Shf for any
simulator S with arbitrary running time tS . The running time of A is a small
constant c. �

Theorem 7. [Positive result: ESh] Let f = RFn+d,n be a random oracle.
Then EShf is a (tA, tS , q1, (q2 + q3), L, ε)-pro where

ε ≤ (l2q2
1 + (lq1 + q2)(q2 + q3))/2n + lq1/2n

for l = τ(L). The running time tA is arbitrary while tS = O(q2
2 + q2q3). �

5.5 Target Collision Resistance Preservation

Universal one-way hash functions (UOWHF) were first introduced by Naor and
Reingold [18] and later went by the term target collision resistance (TCR) [10].
The best TCR-Pr transforms known require a logarithmic (in the size of the
messages allowed) amount of key material. Mironov has given strong evidence
that one cannot do better [17]. Due to this and because any CR function is
also TCR [23], it might be sufficient in most settings to utilize a dedicated-
key transform that preserves the four previous properties. Still, target-collision
resistant functions are useful in some settings [10] and establishing their security
based only on the compression function being TCR results in a stronger guarantee
of security (this is analogous to the discussion of MAC-Pr versus PRF-Pr in
Section 3). Thus, we extend our analysis to this property.

In light of Mironov’s result, it is not surprising that Pre, sNI, NI, CS, and sCS
are not TCR-Pr, though we establish these facts directly. On the other hand, a
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proof that ESh is TCR-Pr can be straightforwardly derived from the proof that
Sh is TCR (see [17] or [24]).

Theorem 8. [Negative results: Pre, sNI, NI, CS, sCS] If there exists a func-
tion f : {0, 1}k × {0, 1}n+d → {0, 1}n−1 that is (t, n + d, ε)-tcr, then there exists
a function g: {0, 1}k × {0, 1}(n+d → {0, 1}n that is (t − c1, n + d, ε + 2−k+1)-tcr
but Pre[g], sNI[g], NI[g], CS[g], sCS[g] are at most (c2, 3d, 1 − 2−k)-tcr where c1, c2
are small constants. �

Theorem 9. [Positive result: ESh] Let f : {0, 1}k × {0, 1}n+d → {0, 1}n be
(t, n+d, ε)-tcr. Then ESh[f ] is (t− ct2fτ(L)2, L, ετ(L))-tcr for a small constant c
and where Tf is the time to execute f . �
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