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Abstract. We develop a generic framework for deriving linear-size prob-
lem kernels for NP-hard problems on planar graphs. We demonstrate the
usefulness of our framework in several concrete case studies, giving new
kernelization results for Connected Vertex Cover, Minimum Edge

Dominating Set, Maximum Triangle Packing, and Efficient Dom-

inating Set on planar graphs. On the route to these results, we present
effective, problem-specific data reduction rules that are useful in any
approach attacking the computational intractability of these problems.

1 Introduction

Data reduction together with problem kernelization has been recognized as one
of the primary contributions of parameterized complexity to practical algorithm
design [9,15,21]. For instance, the NP-hard Vertex Cover problem, where one
asks for a set of at most k vertices such that all edges of a given graph have
at least one endpoint in this set, has a problem kernel of 2k vertices. That is,
given a graph G and the parameter k, one can construct in polynomial time a
graph G′ consisting of only 2k vertices and with a new parameter k′ ≤ k such
that (G, k) is a yes-instance iff (G′, k′) is a yes-instance [20,8]. In particular, this
means that Vertex Cover can be efficiently preprocessed with a guaranteed
quality of data reduction—the practical usefulness is confirmed by experimental
work [1]. Note that a 2k-vertex problem kernel is the best one may probably
hope for because a (2− ε)k-vertex kernel with ε > 0 would imply a factor-(2− ε)
polynomial-time approximation algorithm for Vertex Cover, solving a long
standing open problem. Clearly, a k-vertex problem kernel for Vertex Cover

would imply P=NP. That is why so-called linear-size problem kernels (a linear
function in the parameter k) usually are considered as the “holy grail” in the
field of kernelization and parameterized complexity analysis.

Unfortunately, so far there are not too many problems known with a problem
kernel size as small as we have for Vertex Cover. Moreover, strictly speaking,
the 2k-vertex problem kernel for Vertex Cover is not really a linear-size prob-
lem kernel because the number of graph edges still may be O(k2). Apparently, the
� Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research

group PIAF (fixed-parameter algorithms), NI 369/4.

L. Arge et al. (Eds.): ICALP 2007, LNCS 4596, pp. 375–386, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



376 J. Guo and R. Niedermeier

situation changes when focussing attention on planar graphs where the number
of vertices and the number of edges are linearly related. Although most NP-hard
graph problems remain NP-hard when restricted to planar graphs, it has been
observed that they behave much better in terms of approximability (see [5]) as
well as in terms of fixed-parameter tractability (see [4]). In her seminal work,
Baker [5] showed that a whole class of problems (including Vertex Cover, In-

dependent Set, Dominating Set) possesses polynomial-time approximation
schemes (PTAS), all derived from a general framework.

Concerning problem kernelization results on planar graphs where, in a sense,
linear-size problem kernels can be seen as the parameterized counterpart of ap-
proximation schemes, so far only few isolated results are known [4,7,17,19]. In
particular, it has been shown that the Dominating Set problem—which is
W[2]-complete on general graphs, meaning that there is no hope for a problem
kernel at all [9,21]—has a linear-size problem kernel when restricted to planar
graphs [4]. This result goes along with the development of simple but effec-
tive data reduction rules whose practical usefulness has been empirically con-
firmed [2].1 In this work, “in the spirit of Baker”, we develop a general framework
that allows for a systematic approach to derive linear-size problem kernels for
planar graph problems. In particular, our methodology offers concrete starting-
points for developing effective data reduction rules, the central part of any form
of problem kernelization. Inspired by the work of Alber et al. [4], which focuses on
the Dominating Set problem, we show what the common features are that lie
at the heart of linear-size problem kernels for planar graph problems. In partic-
ular, we provide a concrete route of attack which serves as a tool for developing
data reduction rules. Doing so, we provide a number of case studies together
with new results, including the problems Connected Vertex Cover, Edge

Dominating Set, Maximum Triangle Packing, and Efficient Dominat-

ing Set, all of which are shown to have linear-size problem kernels with concrete
upper bounds. Note that, although based on the general framework, all corre-
sponding data reduction rules that had to be newly developed are—of course—
problem-specific. The development of these rules still needs novel ideas in each
specific case and is far from being routine. Still, our framework offers a guiding
star to find them.

Most proofs are deferred to the full version of this paper.

2 Preliminaries

Parameterized algorithmics is a two-dimensional framework for studying the
computational complexity of problems [9,21]. A core tool in the development of
fixed-parameter algorithms is polynomial-time preprocessing by data reduction
rules, often yielding a reduction to a problem kernel (kernelization). Herein, the
goal is, given any problem instance x with parameter k, to transform it in poly-
nomial time into a new instance x′ with parameter k′ such that the size of x′ is
1 Indeed, the data reduction rules can be applied to all sorts of graphs and not only

to planar ones—the rules are particularly effective for sparse graphs.
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bounded from above by some function only depending on k, k′ ≤ k, and (x, k) is
a yes-instance iff (x′, k′) is a yes-instance. Then, the problem kernel is called to
be linear if |x′| = O(k). This transformation is accomplished by applying data
reduction rules. A data reduction rule is correct if the new instance after an ap-
plication of this rule is a yes-instance iff the original instance is a yes-instance.
Throughout this paper, we call a problem instance reduced if the corresponding
data reduction rules cannot be applied any more.

We only consider undirected graphs G = (V, E), where V is the set of vertices
and E is the set of edges. We use n to denote the number of vertices and m
to denote the number of edges of a given graph. The neighborhood N(v) of a
vertex v ∈ V is the set of vertices that are adjacent to v. The degree of a vertex v
is the size of N(v). We use N [v] to denote the closed neighborhood of v, that
is, N [v] := N(v) ∪ {v}. For a set of vertices V ′ ⊆ V , the induced subgraph G[V ′]
is the graph with the vertex set V ′ and the edge set {{v, w} ∈ E | v, w ∈ V ′}.
A subset I of vertices is called an independent set if G[I] has no edge. We
implicitly assume that all paths that we deal with here are simple, that is, every
vertex is contained at most once in a path. The length of a path is defined as the
number of edges used by the path. The distance d(u, v) between two vertices u, v
is the length of a shortest path between u, v. The distance d(e, w) between an
edge e = {u, v} and a vertex w is the minimum of d(u, w) and d(v, w). If a
graph can be drawn in the plane without edge crossings then it is called a planar
graph. A plane graph is a planar graph with a fixed embedding in the plane.
Throughout this paper, we assume that we are working with an arbitrary but
fixed embedding of G in the plane; whenever this embedding is of relevance, we
refer to G as being plane instead of planar.

3 General Framework

In this section, we describe a general framework for systematically deriving linear
problem kernels for NP-hard problems on planar graphs. Although in this (single)
case not improving on previous results, for reason of simplicity, we use Vertex

Cover as a running example. The problem is, given a graph G = (V, E) and k ≥
0, to find a subset C ⊆ V of at most k vertices such that every edge has at least
one endpoint in C. The remainder of this section is structured by exhibiting the
four basic components of our methodology.

Component 1: Problem-specific distance property. The problems amenable to
our framework have to admit a distance property defined as follows:

Definition 1. A graph problem on input G = (V, E) is said to admit a distance
property with constants cV and cE if, for every solution set S with the vertex
set V (S), it holds that, for every vertex u ∈ V , there exists a vertex v ∈ V (S)
with d(u, v) ≤ cV , and, for every edge e ∈ E, there exists a vertex v ∈ V (S)
with d(e, v) ≤ cE.

Note that cV − 1 ≤ cE ≤ cV . The distance property is the only prerequisite for
applying our framework to a specific graph problem.
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Example: The distance property is valid for Vertex Cover with cV = 1
and cE = 0, since every edge of E has to be incident to a covering vertex.

Component 2: Region decomposition. We divide the vertices not in V (S) into two
categories based on whether they lie in the vicinity of either at least two vertices
of V (S) or only one vertex of V (S). The former vertices will build so-called
regions leading to a decomposition of the planar graph.

Definition 2. A region R(u, v) between two distinct vertices u, v ∈ V (S) is a
closed subset of the plane with the following properties:

1. The boundary of R(u, v) is formed by two length-at-most-(cV +cE +1) paths
between u and v. (These two paths do not need to be disjoint or simple.)

2. All vertices which lie on the boundary or strictly inside of the region R(u, v)
have distance at most cV to at least one of the vertices u and v and all
edges whose both endpoints lie on the boundary or strictly inside of the re-
gion R(u, v) have distance at most cE to at least one of the vertices u and v.

3. With the exception of u and v, none of the vertices which lie inside of the
region R(u, v) are from V (S).

The vertices u and v are called the anchor vertices of R(u, v). A vertex is said to
lie inside of R(u, v) if it is either a boundary vertex of R(u, v) or if it lies strictly
inside of R(u, v). We use V (R(u, v)) to denote the set of vertices that lie inside
of a region R(u, v).

Using Definition 2, the graph can be partitioned by a so-called region decompo-
sition.

Definition 3. An S-region decomposition of a graph is a set R of regions such
that there is no vertex that lies strictly inside of more than one region from R
(the boundaries of regions may touch each other, however).

For an S-region decomposition R, let V (R) :=
⋃

R∈R V (R). An S-region
decomposition R is called maximal if there is no region R /∈ R such that R′ :=
R ∪ {R} is an S-region decomposition with V (R) � V (R′).

As a basis for linear kernelization results, our framework makes use of the fact
that the number of regions in a maximal region decomposition R for a given
solution S can be upper-bounded by cV · (3|V (S)| − 6). This generalizes a result
of Alber et al. [4].

Lemma 1. Let P be a graph problem admitting the distance property with cV

and cE and let S be a solution of P on a plane graph G = (V, E). Then, there
is a maximal S-region decomposition R for the input graph G that consists of at
most cV · (3|V (S)| − 6) regions.

Example: Since Vertex Cover admits the distance property with cV = 1
and cE = 0, the maximal region decomposition consists of regions with boundary
paths of length at most two. By Lemma 1, we know that for a Vertex Cover

solution C of size at most k we have at most 3k − 6 regions in a maximal region
decomposition.
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Component 3: Local neighborhoods for data reduction rule design. The core al-
gorithmic part of our methodology is based on the following two definitions that
serve for developing data reduction rules yielding linear-size problem kernels.

Definition 4. Given a problem admitting the distance property with constants
cV and cE, the private neighborhood Np(u) of a vertex u consists of the vertices
that have distance at most cV to u, that are not adjacent to the vertices with
distance at least cV +1 to u, and that are not incident to any edge with distance
more than cE to u.

Example: For Vertex Cover, the private neighborhood Np(u) of a vertex u
consists only of the degree-one vertices from N(u). Therefore, the corresponding
private neighborhood rule deals with degree-one vertices:

Private neighborhood rule for Vertex Cover: If Np(u) �= ∅, then add u
to C and remove Np(u) from the graph. Decrease the parameter k by one.

Definition 5. Given a problem admitting the distance property with constants
cV and cE , the joint private neighborhood Np(u, v) of two vertices u, v ∈ V
consists of the vertices that have distance at most cV to u or v, that are not
adjacent to the vertices which have distance at least cV + 1 to both u and v, and
that are not incident to any edge with distance more than cE to both u and v.

Example: In Vertex Cover, the joint private neighborhood of u and v consists
of their common neighbors and their degree-one neighbors. Since the private
neighborhood rule deals with the degree-one neighbors, for the corresponding
data reduction rule we only consider the common neighbors of u and v:

Joint private neighborhood rule for Vertex Cover: If two vertices u, v
have at least two common degree-two neighbors, then add u and v to C and
remove u, v and their common degree-two neighbors from the graph. Decrease
the parameter k by two.

Generally speaking, if Np(v) of a vertex v (or Np(u, v) of vertices u and v)
contains too many vertices, then any solution of a minimization problem has
to include v (or at least one of u and v). For maximization problems, we can
conclude that including only v from Np(v) (or only u and v from Np(u, v)) cannot
lead to a solution. This provides a useful argument for showing upper bounds
on the region sizes in the problem kernel size analysis.

Component 4: Mathematical analysis of problem kernel size. Having derived
problem-specific data reduction rules, the next step in our method is to prove
that there are only constantly many vertices inside of a region. Together with
Lemma 1, this implies the upper bound O(|V (S)|) for all vertices inside of all
regions of the reduced graph.

Example: For Vertex Cover, the constant size for every region follows almost
directly from the given two rules:
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Lemma 2. Given a vertex cover C of a reduced planar graph G = (V, E), every
region of a maximal region decomposition contains at most three vertices which
are not from C.

Proof. Consider a maximal region decomposition and let R denote an arbitrary
region with boundary paths of length at most two. Let u, v be the two vertices
in V (R) that are from C. Clearly, at most two vertices on the boundary paths
can be from V \ C. We claim that there is at most one vertex lying strictly
inside of R. To show this, suppose that there are two vertices x, y strictly inside
of R. Then, by the definition of regions, x, y ∈ N(u) ∪ N(v). Due to the private
neighborhood rule, each of x and y has at least two neighbors in V (R)∩C. Since u
and v are the only C-vertices in R, the vertices x, y are common neighbors of u
and v and have degree two. This implies that the joint private neighborhood
rule can be applied, a contradiction to the fact that G is reduced. Therefore, at
most one vertex lies strictly inside of R and the lemma follows. 
�

Note that, if, in addition to the above two rules, the “folding” rule introduced
by Chen et al. [8] is applied, one can show that every region contains at most
two vertices from V \ C.

To complete the proof for a linear-size problem kernel, our method requires
to upper-bound the number of vertices not contained in any region. To do so,
the private neighborhood rule is crucial.
Example: In the case of Vertex Cover, the private neighborhood rule guar-
antees that there is no vertex lying outside of the regions of a maximal region
decomposition:

Lemma 3. Let R be a maximal region decomposition of a reduced planar graph
for Vertex Cover. Then, there is no vertex lying outside of the regions in R.

Proof. Suppose that there is such a vertex x. It cannot be a degree-one vertex
and it cannot be adjacent to a vertex not from C. Thus, N(x) ⊆ C. Then, we
can arbitrarily pick two from x’s neighbors and have a region R that is a path
consisting of x and these two neighbors. By adding R to R we get a new region
decomposition R′ with V (R) � V (R′), a contradiction to the fact that R is
maximal. 
�

Finally, to give an overall kernel size bound, we only need to add up the number
of vertices inside of regions and the number of vertices outside of regions.

Example: With the two upper bounds given in Lemmas 2 and 3, we arrive at
our linear kernelization result for Vertex Cover on planar graphs:

Proposition 1. Vertex Cover on planar graphs admits a 10k-vertex problem
kernel.

Proof. By Lemma 1, there are at most 3k − 6 regions in a maximal region
decomposition. Together with Lemma 2, there can be at most 9k − 18 vertices
from V \ C lying inside of regions. By Lemma 3, no vertex can be outside of
regions. Thus, altogether, we have 10k − 18 vertices in the reduced graph. 
�
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4 Case Studies

Now, we exhibit the versatility of our general methodology.

Connected Vertex Cover. Given a graph G = (V, E) and a non-negative integer k,
the Connected Vertex Cover problem asks for a set C of at most k vertices
such that G[C] is connected and C is a vertex cover of G. This problem is NP-
complete on planar graphs [13]. Until now only an exponential-size kernel in
general graphs is known [16].

Since a connected vertex cover is also a vertex cover, the distance property
holds for this problem with cV = 1 and cE = 0. Thus, the regions in a maxi-
mal region decomposition for Connected Vertex Cover have also boundary
paths of length at most two and we have at most 3k − 6 regions in a maximal
region decomposition. Moreover, the private neighborhood and the joint private
neighborhood are defined in the same way as for Vertex Cover.

The data reduction rules are similar to the ones for Vertex Cover. However,
to guarantee the resulting vertex cover being connected, we use gadgets:

Private neighborhood rule: If a vertex has more than one degree-one neigh-
bor, then except for one remove all of these neighbors.

Joint private neighborhood rule: If two vertices have more than two common
degree-two neighbors, then remove all of these neighbors except for two.

Theorem 1. Connected Vertex Cover on planar graphs admits a 14k-
vertex problem kernel.

Proof. First, consider a region R in a maximal C-region decomposition R for
a connected vertex cover C with |C| ≤ k. Note that strictly inside of a region
there cannot be vertices of degree more than two because this would imply
uncovered edges. Due to the joint private neighborhood rule, there can be at
most two degree-two vertices lying strictly inside of R. Since there can be at
most two vertices from V \ C lying on the boundary of a region, each region
can contain at most four vertices from V \ C. Since the graph is reduced with
respect to the private neighborhood rule, each vertex in C can have at most one
degree-one neighbor not lying in a region of R. Therefore, we altogether have at
most 4 · (3k − 6) vertices from V \ C which lie inside of regions and at most k
vertices outside of regions. Together with |C| ≤ k, the size bound follows. 
�

Edge Domination Set. Given a graph G = (V, E) and a non-negative integer k,
the Edge Dominating Set problem asks for a set E′ of at most k edges such
that all edges in E share at least one endpoint with some edge in E′. This problem
is NP-complete on planar graphs [14]. Based on its equivalence to the Minimum

Maximal Matching problem, a problem kernel with O(k2) vertices for general
graphs has been derived [22]. It is easy to observe that Edge Dominating Set

has the same distance parameters as Vertex Cover. Therefore, the same two
data reduction rules for Connected Vertex Cover apply.
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Theorem 2. Edge Dominating Set on planar graphs admits a 14k-vertex
problem kernel.

Maximum Triangle Packing. Given a graph G = (V, E) and a non-negative
integer k, the Maximum Triangle Packing problem asks for a set P of at
least k vertex-disjoint triangles in G. The set P is called a triangle packing of G.
This problem is NP-complete on planar graphs [14]. A problem kernel with O(k3)
vertices is known for general graphs [10].

At first glance, Maximum Triangle Packing does not admit the required
distance property. However, the following data reduction rule can be applied.

Cleaning rule: Remove all vertices and edges that are not in a triangle.
In an instance where the cleaning rule does not apply, every vertex and every

edge has a distance at most cV = 1 and cE = 1, respectively, to some vertex
occurring in a triangle packing that cannot be extended by a triangle. Then, the
regions in a maximal region decomposition for Maximum Triangle Packing

have boundary paths of length at most three.
Consider the private neighborhood Np(u) of a vertex u. According to Defini-

tion 4, all vertices v ∈ Np(u) have to satisfy N [v] ⊆ N [u]. We apply the following
data reduction rule dealing with private neighborhoods.

Private neighborhood rule: If a vertex u has two neighbors v, w that form a
triangle with u but are not involved in any other triangles that do not contain u,
then remove u, v, w and decrease the parameter k by one.

Next, we consider the joint private neighborhood Np(u, v) of two vertices u, v.
According to Definition 5, every vertex x ∈ Np(u, v) has to satisfy N [x] ⊆
N [u] ∪ N [v].

Joint private neighborhood rule: If two vertices u, v have more than two
common neighbors, then consider the following cases.

– Case 1: If u and v have two common neighbors w1 and w2 such that w1 has
degree two and w2 is only contained in triangles that also contain u or v,
then remove w1.

– Case 2: If u and v have three common neighbors w1, w2, w3 such that N(w1)=
{u, v, w2} and N(w2) = {u, v, w1, w3}, then remove edge {w2, w3}.

– Case 3: If there are four vertices w1, w2, w3, w4 such that u, w1, w2 form a
triangle, v, w3, w4 form another one, and there is no other triangle that con-
tains one of w1, w2, w3, w4 but none of u, v, then remove u, v, w1, w2, w3, w4
and decrease the parameter k by two.

Note that, after the application of the cleaning rule, every vertex has to be in
a triangle. Therefore, in Case 1, there has to be an edge between u and v. The
three cases of the joint private neighborhood rule are illustrated in Fig. 1.

In order to give a linear-size problem kernel, we need only the first and the
third case of the joint private neighborhood rule. However, including the second
case allows us to give a better bound on the maximum size of regions in a
maximal region decomposition of the reduced graphs as stated in the following,
allowing for a smaller upper bound on the problem kernel size.
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An example for Case 3
Case 2
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Fig. 1. Illustration of the three cases of the joint private neighborhood rule for Maxi-

mum Triangle Packing. A dashed line means a possibly existing edge.

To prove that there is only a constant number of vertices inside of each region,
graph structures that we call diamonds2 are of great importance.

Definition 6. Let u and v be two vertices in a plane graph G. A diamond D(u, v)
is a closed area of the plane that is bounded by two length-2 paths between u and v
such that every vertex that lies inside this area is a neighbor of both u and v. If i
vertices lie strictly inside a diamond, then it is said to have (i + 1) facets.

Lemma 4. In a reduced planar graph, a diamond can have at most five facets.

Now, we state upper bounds on the number of vertices in a region and on the
number of vertices outside of all regions.

Lemma 5. Consider a planar graph G = (V, E) for which any triangle pack-
ing contains at most k triangles. If G is reduced, then, in a maximal region
decomposition of G,

1. every region can contain at most 71 vertices, and
2. there are less than 108k vertices lying outside of regions.

Theorem 3. Maximum Triangle Packing on planar graphs admits a 732k-
vertex problem kernel.

Efficient Dominating Set. Given a graph G = (V, E) and a non-negative in-
teger k, the Efficient Dominating Set problem is to decide whether there
exists an independent set I such that every vertex in V \I has exactly one neigh-
bor in I. A solution set of this problem is called an efficient dominating set. This
2 Note that standard graph theory uses the term “diamond” to denote a 4-cycle with

exactly one chord. We abuse this term here for obvious reasons. We remark that
diamonds also played a decisive role in proving a linear-size problem kernel for Dom-

inating Set on planar graphs [4].
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problem is NP-complete on planar graphs of maximum degree three [11]. In the
literature, Efficient Dominating Set also appears under the names Perfect

Code, Independent Perfect Dominating set, and Perfect Dominating

Set. Lu and Tang [18] provided an overview of complexity results for Efficient

Dominating Set.
Bange et al. [6] showed that if a graph G has an efficient dominating set,

then all efficient dominating sets of G have the same cardinality, and this is
the same as the domination number of G, where the domination number is the
cardinality of a minimum dominating set of G. Hence, the parameterized ver-
sion of Efficient Dominating Set additionally has a non-negative integer k
as input and asks for an efficient dominating set of size exactly k. Efficient

Dominating Set is W[1]-hard in general graphs [9]. To our knowledge, there
is no kernelization result known for this problem on planar graphs. Note that
the linear-size problem kernel for Dominating Set on planar graphs does not
imply a linear-size problem kernel for Efficient Dominating Set on planar
graphs since the data reduction rules applied by Alber et al. [4] for deriving the
problem kernel apparently do not work for Efficient Dominating Set.

Since every efficient dominating set also is a dominating set, the distance
property holds for Efficient Dominating Set with cV = 1 and cE = 1. The
boundary paths of the regions in a maximal region decomposition have length
at most three. Note that Efficient Dominating Set has the same distance
parameters cV and cE as Maximum Triangle Packing. Therefore, the private
neighborhood and the joint private neighborhood are the same in both cases.

In the following we describe two data reduction rules for Efficient Domi-

nating Set. Actually, the reduction rules apply to a more general setting where
we are additionally given a subset of vertices F ⊆ V which may not be added to
the efficient dominating set. In the following rules, whenever we would be forced
to add a vertex in F to a solution set I, we report that the given instance has
no efficient dominating set.

Private neighborhood rule: Consider the following two cases for a vertex v
with Np(u) �= ∅:

– Case 1. If there is no vertex v ∈ N(u) such that v dominates all vertices
in Np(u), then add u to the efficient dominating set I, remove all vertices
in N [u] from the graph, add to F all vertices which are not in N [u] but
adjacent to some vertex in N(u), and decrease the parameter k by one.

– Case 2. If there is exactly one vertex v ∈ N(u) dominating all vertices
in Np(u), then remove all vertices in Np(u) \ {v} and add two new non-
adjacent vertices x, y and connect them to both u and v.

Joint private neighborhood rule: Consider the following two cases for two
vertices u, v with Np(u, v) �= ∅:

– Case 1. If u, v have two common neighbors x, y such that {x, y} /∈ E, N(x) �

N(u) ∩ N(v), N(y) � N(u) ∩ N(v), and N(x) ∩ N(y) = {u, v}, then remove
(N(u)∩N(v))\{x, y} and add those vertices to F that are not in N(u)∩N(v)
but adjacent to some vertex in N(u) ∩ N(v).
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– Case 2. Enumerate all subsets of N [u, v] := N [u]∪N [v] that induce indepen-
dent sets of size at most two and whose vertices are adjacent to all vertices
in Np(u, v). If there is a vertex w occurring in all of these sets, then add w
to the efficient dominating set, remove N [w] from the graph, add to F all
vertices which are not in N [w] but adjacent to some vertex in N(w), and
decrease the parameter k by one.

Lemma 6. (1) In a reduced planar graph, a diamond can have at most four
facets.

(2) In a maximal region decomposition of a reduced planar graph, every region
contains at most 28 vertices.

(3) In a maximal region decomposition of a reduced planar graph, there are at
most 5k vertices lying outside of regions.

Theorem 4. Efficient Dominating Set on planar graphs admits a 84k-
vertex problem kernel.

5 Outlook

There are numerous avenues for future research. First, it is promising to look
into further improving the constant factors of our kernel bounds, similarly as
Chen et al. [7] did for Dominating Set [4]. Second, again referring to Chen
et al. [7] and the lower bounds on (linear) kernel sizes derived there for Ver-

tex Cover and Dominating Set on planar graphs, based on our framework,
similar lower bound investigations may now be undertaken for other problems.
Third, it appears natural to further extend the list of concrete problem kernel
bounds for problems we did not touch here—further domination problems be-
ing obvious candidates. Observe that we can extend the list of linear problem
kernel results using other further problems studied by Baker [5]. Fourth, as the
linear-size problem kernel results for Dominating Set on planar graphs have
been extended to graphs of bounded genus [12], it is tempting to generalize our
whole framework in the same style. Fifth, for Dominating Set, a generic set
of data reduction rules has been designed [3]—analogous studies now may be
fruitful for all problems fitting into our framework.
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