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Abstract. We present a closed form solution to the problem of segmenting
multiple 3D motion models from straight-line optical flow. We introduce the
multibody line optical flow constraint(MLOFC), a polynomial equation relat-
ing motion models and line parameters. We show that the motion models can
be obtained analytically as the derivative of the MLOFC at the corresponding
line measurement, without knowing the motion model associated with that line.
Experiments on real and synthetic sequences are also presented.

1 Introduction

Motion segmentation is a fundamental problem in many applications in computer vi-
sion, such as traffic surveillance, recognition of human gaits, etc.And recently, there
has been an increasing interest on the algebraic, geometrical and statistical models to
resolve this problem.

Existing approaches on 3-D motion segmentation from two views include different
variations of the Expectation Maximization (EM) algorithm [1,2,3]. But EM is very
sensitive to initialization [4].

Algebraic approaches, which are based on polynomial and tensor factorization, have
been proposed [5]. In [6],Vidal and Ma viewed the estimation of multiple motion mod-
els as the estimation of a single multibody motion model and proposed a unified alge-
braic approach to 2-D and 3-D motion segmentation from two-view correspondences or
optical flow, which applies to most of the two-view motion models adopted in computer
vision. In [7,8], they introduce the multibody brightness constancy constraint(MBCC)
and presented a closed form solution to direct motion segmentation.

Other related works include [9], which considers the problem of modeling a scene
containing multiple dynamic textures undergoing multiple rigid-body motions. And in
[10], X.Fan and R.Vidal study the rank and geometry of the multibody fundamental
matrix.

In addition, efforts for the robustness of multibody motion segmentation include
those works that uses RANSAC with priors to do articulated motion segmentation [11].
L. Hajder et.al. [12] consider robust 3D segmentation of multiple moving objects under
weak perspective.
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However, all the previous methods dealing with 3-D motion segmentation use point
correspondences. Generally, the choice of types of features depends on their availability
in the images and the reliability of their measurement. When points are not available
in large quantities, all the previous methods will have problems. Image line is also a
common feature used in computer vision and was successfully used for 3-D motion
estimation from 1980s to the latest. So, it is significant to consider the problem of 3-D
motion segmentation from line correspondences. In [13], Shi et.al proposed a method
to do motion segmentation using line correspondences. But they only dealt with trans-
lating objects. In [14],they proposed a general method for 3-D motion using line corre-
spondences, but this method requires too many features when the number of motion is
large.

1.1 Contributions of This Paper

In this paper, we proposed a novel method to segment multiple rigid-body 3D motions
from the optical flow of line correspondences in two views. The remainder of this paper
decomposes as follows. In Section 2, we introduce the concept of line optical flow. In
Section 3, we show now to segment the 3D motion using the line optical flow and the
method of GPCA [5]. Finally, Section 4 validates our algorithm by experiments with
simulated data and real scenes.

2 Line Optical Flow [15]

A line l in the image plane is represented by a vector m = (mx, my, mz)T giving its
equation:

mxx + myy + mzf = 0 (1)

where f is the focal length. The interpretation of m is that it is the normal to the plane
defined by the 2D line and the optical center of the camera(see Figure 1); note that this
plane contain also the corresponding 3D line, L. We use two relationships between the
representation of a 3D line and its image in the image plane. The first relation is that the
direction v of the 3D line is perpendicular to the normal m to the plane it defines with
the optical center.

mT v = 0 (2)

Then we take its time derivative and obtain

gT v + mT ∂v/∂t = 0 (3)

where g = (∂mx/∂t, ∂my/∂t, ∂mz/∂t)T . We define g as the line optical flow. We
assume that the 3D line under consideration is attached to a rigid body whose motion is
described by its instantaneous angular velocity W = (ω1, ω2, ω3)T and linear velocity
T = (t1, t2, t3)T , its kinematic screw is at the origin o.Then

∂v/∂t = W × v (4)
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Fig. 1. The vector m
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(7)

replacing ∂v/∂t by this value, (3)give us the second relationship between the represen-
tation of a 3D line and its image

gT v + mT (W × v) = 0 (5)

From equation (5) and (2), one can get the linear constraints about v

{
gT v + mT (W × v) = 0
mT v = 0 (6)

Let A is the coefficient matrix of the two equations(A is defined in equation(7)), then
R(A) = 1 [16]. So,

mx

ω3my − ω2mz + Δmx
=

my

ω1mz − ω3mx + Δmy
=

mz

ω2mx − ω1my + Δmz
(8)

Let k = −mx

my
is the slope of image line and b = −mzf

my
is the intercept. Then one

can get {
kbω3 − b2ω1/f − kω2 · f − ω1 · f = −Δb
(1 + k2)ω3 + bω2/f − kbω1/f = −Δk

(9)

Let ω1/f = ω1f , ω2/f = ω2f , ω1 · f = ω1F , ω2 · f = ω2F ,then
{

kbω3 − b2ω1f − kω2F − ω1F = −Δb
(1 + k2)ω3 + bω2f − kbω1f = −Δk

(10)

Let

y(k, b) =
[

kb −b2 0 −1 −k Δb
(1 + k2) −kb b 0 0 Δk

]T

(11)
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and
u = (ω3, ω1f , ω2f , ω1F , ω2F , 1)T (12)

Equation (10) can be expressed as

y(k, b)T u = 0 (13)

As each line-line correspondence gives 2 independent equations, one may estimate u
linearly from 3 correspondences for one motion.

3 Direct Motion Segmentation Using MLOFC

3.1 Multibody Line Optical Flow Constraint(MLOFC)

Now consider a scene with n rigid-body motions (n is known) with associated motion
component ui ∈ R

6, where ui is the motion component associated with the motion of
the ith object.

Therefore, we define the multibody line optical flow constraint(MLOFC)

MLOFC =
n∏

i=1

(y(k, b)T ui) = 0 (14)

MLOFC is a homogeneous polynomial of degree n in y, which can be written as a
linear combination of the monomials yn1

1 yn2
2 · · · yn6

6 with n1 + n2 + · · · + n6 = n. If
we stack these M6

n = (n+6−1
6−1 ) independent monomials into a vector νn(y) ∈ R

M6
n ,we

get

MLOFC = νn(y)T U =
∑

Un1,n2,··· ,n6y
n1
1 yn2

2 · · · yn6
6 (15)

The vector U ∈ R
M6

n is called multibody line optical flow, and νn : R
6 � R

M6
n is

called the Veronese map of degree n.
In the following subsections, we will demonstrate that in the case of 3-D rigid motion

models, the MLOFC can be expressed linearly in terms of a multibody motion model
W . By exploiting the algebraic properties of W , we will derive an algebraic closed form
solution to the following problem [8]:

Problem 1 (Direct multiple-motion segmentation from line optical flow). Given the
slopes and intercepts of line correspondences of a motion sequence generated from n
3-D rigid motion models, estimate the model parameters {Wi}n

i=1, without knowing
which image measurements correspond to which model.

3.2 Computing the Multibody Motion Model

Let l(k, b) ↔ l′(k′, b′) be an arbitrary line-line correspondence associated with any
of the n motions in two consecutive image frames. We may estimate U linearly from
M6

n/2 correspondences, using equations (15).
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But note that the entries (1,3),(2,4) and (2,5)of each yi are zero, yn1
1 yn2

2 · · · yn6
6 = 0

in both equations of (15) when (n3 �= 0 and n4 �= 0) or(n3 �= 0 and n5 �= 0).
After enforcing these equations we obtain

∑
YT

n Ũ = 0 (16)

where Y ∈ R
M6

n−Zn , Ũ ∈ R
M6

n−Zn is equal to νn(y), U without the both zero entries
in two equations of (15).When n = 2, then Zn = 2; when n > 2, then Zn = 3M3

n−2 +∑n−1
i=1 M3

n−2−i · M3
i +

∑n−1
i=1 M3

n−2−i · M2
i + M2

n−1.
As one line-line correspondence gives 2 independent equations(16), we may estimate

Ũ linearly from (M6
n − Zn)/2 correspondence.

3.3 Estimate f

After the estimation of Ũ , we compute focal length f

f2n =
∏n

i=1 wi
1F∏n

i=1 wi
1f

=
∏n

i=1 wi
2F∏n

i=1 wi
2f

(17)

f2 =
∑n

i=1 wi
1F∑n

i=1 wi
1f

=
∑n

i=1 wi
2F∑n

i=1 wi
2f

(18)

where wi is the parameter of the ith motion models. And

n∏
i=1

wi
1F = UM6

n−1+M5
n−1+M4

n−1+1,

n∏
i=1

wi
1f = UM6

n−1+1 (19)

n∏
i=1

wi
1F = UM6

n−1+M5
n−1+M4

n−1+M3
n−1+1,

n∏
i=1

wi
2f = UM6

n−1+M5
n−1+1 (20)

n∑
i=1

wi
1F = UM6

n−1+M5
n−1+M4

n−1+M3
n−1

,
n∑

i=1

wi
1f = UM6

n−1+M5
n−1

(21)

n∑
i=1

wi
2F = UM6

n−1+M5
n−1+M4

n−1+M3
n−1+M2

n−1
,

n∑
i=1

wi
2f = UM6

n−1+M5
n−1+M4

n−1

(22)
In our algorithm, we estimate f as the average value of (17)(18).

3.4 Refined MLOFC

After the estimation of f , we let

y′(k, b) =

[
−( b2

f + f) −kf kb �b

−kb
f

b
f (1 + k2) �k

]T

(23)

u′ = [w1, w2, w3, 1]T (24)
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MLOFC(15) can be refined as

MLOFC′ = νn(y′)T U ′ =
∑

U ′
n1,n2,n3,n4

y′
1
n1y′

2
n2y′

3
n3y′

4
n4 (25)

Then, we can solve for the multibody motion model W = U ′ uniquely from (25).

3.5 Segmenting the Multibody Model

Given U ′, we can use the algorithm in [6] to compute the parameters u′
i of each indi-

vidual motion model from the derivatives of MLOFC′, i.e.,

DMLOFC′ =
∂MLOFC′

∂y′ =
n∑

i=1

∏
l �=i

(y′T u′
l))u

′
i (26)

If we evaluate DMLOFC′ at a line y = zi that correspondence to the ith motion, i.e.if
zi is such that zT

i u′
i = 0, then we have DMLOFC′ ∼ u′

i. Therefore, given U ′ we can
obtain the motion parameters as

u′
i =

DMLOFC′

eT
KDMLOFC′

|y=zi (27)

where eK = [0, . . . , 0, 1]T ∈ C
K and zi ∈ C

K is a nonzero vector that zT
i u′

i = 0.
Once the right individual motion parameters have been computed, one may compute

the Sampson error by assigning each feature to {u′
i}n

i=1, and cluster the correspondence
to the one that minimize the error.

We summarize the whole procedure in Algorithm 1.

——————————————————
Algorithm 1. (3D Motion segmentation using Straight-line optical flow)
Given N > (M6

n − Zn)/2 line correspondence L = {li(k, b) ↔ l′i(k
′, b′)}N

i=1 in two
consecutive image frames:

1. Construct Multibody Line Optical Flow Constraint
MLOFC =

∏n
i=1(y(k, b)T ui) = 0;

2. Compute Ũ using equation (16);
3. Estimate f using equations (17)(18);
4. Construct refined Multibody Line Optical Flow Constraint

MLOFC′ = νn(y′)T U ′;
5. for i = n : 1

zi = argmin
z∈L

|MLOFC′|
‖ΠDMLOF C′‖ + δ

|zT u′
i+1|···|zT u′

n|
‖Πu′

i+1‖···‖Πu′
n‖ + δ

;

where δ > 0 is a small positive number,Π = [IK−1 0] ∈ R
(K−1)×K

u′
i =

DMLOFC′

eT
KDMLOFC′

,

end

——————————————————
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Fig. 2. Correctness of motion segmentation and motion estimation ({u′
i}2

i=1) as a function of
noise. The number of line correspondences of each object is set to be 20.

4 Experiments on Synthetic and Real Images

In this section, we evaluate our motion segmentation algorithms on both real and syn-
thetic data. We compare our results with K-means methods and use our algorithms to
initialize iterative technique. We consider the following algorithms:

1. MLOFC: Using Algorithms 1 to cluster the line correspondences.
2. K-means [17]: this algorithm alternates between computing(linearly) the parame-

ters of different motion classes and clustering the line correspondences using the
Sampons-distance error to the different motions.

4.1 Synthetic Experiments

First, we conduct some simulated experiments to check the correctness of the proposed
algorithm with respect to the amount of noise in the image measurements for n = 2
and n = 3. We randomly generated n groups of N = n × m 3-D lines, each group
has m lines. Then the n groups of 3-D lines are projected in two views. In the presence
of noise, we added zero-mean Gaussian noise with standard deviation between 0 and 2
pixels in an image size of 1000 × 1000.

To show the general sensitivity to noise, the average percentage of misclassified cor-
respondences, i.e., the percent of wrong classified line number in whole set and the
average relative errors in the estimation of {u′

i}n
i=1 are recorded. We first run K-means

algorithm starting from random classification. The K-means algorithm converges to a
local minimum due to bad initialization. Running the K-means algorithm starting from
the clustering produced by the MLOFC algorithm result in a better result. The results
when n = 2 are showed in Fig.2 and the results when n = 3 are showed in Fig.5.

During the procedure of segmentation using MLOFC, we didn’t consider the influ-
ence of linear velocity T = (t1, t2, t3)T . We treat it as noise. In the second simulated
experiment, we evaluate the performance of the algorithms with respect to linear ve-
locity. The linear velocity of the two motion objects are t times as large as the angular
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Fig. 3. Correctness of motion segmentation and motion estimation ({u′
i}2

i=1) as a function of
linear velocity. The image noise is set to be 1.0 pixel. The number of line correspondences of
each object is set to be 20.
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Fig. 4. Correctness of motion segmentation and motion estimation ({u′
i}2

i=1) as a function of
linear velocity, when the second object take pure translating motion. The image noise is set to be
1.0 pixel. The number of line correspondences of each object is set to be 20.

velocity. The result is showed in Fig.3. One can see that with the increasing of linear
velocity, the correctness of motion segmentation is decrease. But the result is still good.

Then, we conduct another experiment to test the performance to pure translating
motion. In this experiment, we set the angular velocity of second object as zero, i.e.,
this object take a pure translating motion. The linear velocity of the two objects are
same. It is t times as large as the first object’s angular velocity. The result is showed
in Fig.4. One can see that the performance is good, although we did not compute the
linear velocity.

4.2 Real Experiment

Figure 6(a) shows one frame of a 640 × 560 sequence taken by a static camera observ-
ing two moving boxes using different 3D rigid motions. Figure 6(b) shows the lines
that detected by Edge linking and line segment fitting algorithm that developed by Peter
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Fig. 5. Correctness of motion segmentation and motion parameters ({wi}3
i=1) as a function of

noise. The number of line correspondences of each object is set to be 30.

(a) (b)

Fig. 6. Line segmentations

Kovesi. We manually select m = 10 line correspondences in two consecutive frames.
And the average misclassification error using MLOFC is 17.197% for 10 pairs of con-
secutive frames. This result is not very satisfied and may due to the camera distortion
and the insufficient of line correspondences. But may be improved by other optimiza-
tion method, such as EM [17].

5 Conclusion

We present a closed form solution to the problem of segmenting multiple 3D motion
models from straight-line optical flow. The algebraic method of motion classification
involves computation of MLOFC and individual angular velocity. Our approach has the
advantage that it provides a global, non-iterative solution, which was able to provide
an initial classification for other optimization segmentation method. Experiments with
simulated data and real scenes validate our algorithm. But we have to admit that this
method can not deal with motions that all take the same angular velocity. So our future
work is to develop a general algorithm to all kinds of 3D rigid motions.
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