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Abstract. Whenever queries have to be evaluated on XML data streams - or 
when the memory that is available to evaluate the XML data is relatively small 
compared to the document - DOM based approaches that have to load and store 
large parts of the document in main memory will fail. In comparison, we pre-
sent an approach to evaluate XPath queries on SAX streams that supports all 
axes of core XPath, including the sibling axes. Starting from the XPath query, 
our approach generates a stack of automata that uses the SAX stream as input 
and generates the result of the query as an output SAX stream. An evaluation of 
our implementation shows that in general our approach needs less main 
memory, but at the same time is faster than both, Saxon and YFilter. 

1   Introduction 

1.1   Motivation and Paper Organization 

XML is becoming the de facto standard for information exchange and, as the amount 
of XML data is steadily growing, a key challenge is to process XML documents fast 
within the available main memory. 

Our contribution focuses on scenarios, in which a system has to evaluate queries 
fast on documents that are multiple times larger than the main memory available to 
the system. One typical scenario is an XML news stream provided by a news agency 
using one of the typical XML formats NewsML [16] or NITF [17] to broadcast their 
news, and users who want to receive only parts of the news based on queries that re-
present their interests. Another typical scenario is that devices with a small amount of 
main memory (as e.g., mobile phones) shall work on large XML documents. 

Whenever a scenario requires that the main memory available to evaluate queries 
on XML data is relatively small compared to the XML data size, approaches that are 
based on DOM will fail. These approaches have to load the complete XML document 
as a DOM tree into main memory, and as they need at least 4 pointers for each XML 
element (name, parent, first child, and next sibling) they yield a memory consumption 
that covers multiple times the size of the XML data. 

Therefore, we propose a SAX based approach to the evaluation of XPath queries. 
Each input query is translated into an automaton that consists of only four different 
types of transitions, the treatment of which is described in Section 2. The small size of 
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the generated automata allows for a fast evaluation of the input XML data stream 
within a small amount of memory.  

This paper is organized as follows: The remainder of the first section outlines the 
query language, summarizes the underlying assumptions, and outlines the problem 
definition. Section 2 summarizes the fundamental concepts used to describe our ap-
proach to evaluate XPath queries. The third section outlines some of the experiments 
that show the space efficiency and time efficiency of our prototype. Section 4 gives an 
overview on related work and is followed by the Summary and Conclusions. 

1.2   Query Language 

The subset of XPath expressions supported by our approach conforms to the set of 
core XPath as defined in [11]. This set is defined by the following EBNF grammar: 

 

cxp  ::= `/' locationpath 
locationpath ::= locationstep ('/' locationstep)* 
locationstep ::= x `::' t | x `::' t `[' pred `]' 
pred  ::= pred `and' pred | pred `or' pred 

    | `not' `(' pred `)' | locationpath  
    | locationpath ‘=’ const |`(' pred `)' 

 

“cxp” is the start production, “x” represents an axis (attribute, self, child, parent, 
descendant-or-self, descendant, ancestor-or-self, ancestor, following, preceding, 
following-sibling, preceding-sibling), “const” represents a constant, and “t” represents 
a “node test" (either an XML node name test or “*”, meaning “any node name”). 

Note that our system supports the sibling axes, whereas other approaches like 
XMLTK[1], χαοζ[4], AFilter[6], YFilter[9], XScan[14], SPEX[18], and XSQ[20] are 
limited to the parent-child and ancestor-descendant axes. 

1.3   General Assumptions and Problem Definition 

As our system is designed to efficiently evaluate XPath queries on a possibly infinite 
XML data stream, one requirement that our system has to meet is that each SAX 
event can be read only once, i.e., the stream has to be parsed in a single pass in docu-
ment order. As we cannot jump backwards within the data stream, we have to rewrite 
user queries that use backward axes (i.e., ancestor-or-self, ancestor, preceding-sibling, 
and preceding) into equivalent queries containing only forward axes as described in 
[19]. The rewriting might lead to equivalent rewritten queries that are exponentially 
longer than the original queries, but as usually queries are rather short compared to 
the XML data, the growth of query length will usually not extend the runtime too 
badly. 

Problem description: After rewriting queries, the remaining problem examined in 
this paper is the following. The input consists of a core XPath query containing only 
the forward axes and of an XML data stream in form of a SAX input event stream. 
The desired output is a SAX event stream of query results in document order. The 
main requirements of our system are to use as little main memory as possible in order 
to reach data throughput rates comparable to those of data streams. 
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2   Our Solution 

In this section, we first explain how to transform the SAX input stream into a binary 
SAX event stream, containing firstchild::*, nextsibling::*, and parent::* events, and 
supporting self::a node tests. We then discuss how XPath queries are normalized, 
such that they contain only firstchild::*, nextsibling:*, and self::a location steps plus 
filters, and how normalized queries are transformed into XPath automata. Afterwards, 
we show how to evaluate the binary SAX event stream on an evaluation stack of an 
XPath automaton, which represents core XPath queries without any predicate filters. 
Finally, we extend the approach to queries with predicate filters. 

2.1   Binary SAX Event Streams 

We transform the SAX event stream of the input XML document into a stream of bi-
nary SAX events firstchild::*, nextsibling::*, parent::*, and self::a. Here, ‘a’ can be an 
element name, @ followed by an attribute name, or = followed by a constant. Trans-
forming the SAX stream is done in two phases.  

 

 

Fig. 1. Example XML document with the resulting SAX and binary SAX streams 

Phase 1: The SAX event character(T) generated for a text value T found in the XML 
document is transformed into a binary SAX event sequence start-element(=T), end-
element(=T). Similar, each attribute/value pair A=AV found in the XML document is 
transformed into a binary SAX event sequence  

start-element(@A), start-element(=AV), end-element(=AV), end-element(@A) . 

As the symbols ‘@’ and ‘=’ have to be chosen to uniquely identify attributes and 
text nodes respectively, they are not allowed as an initial character for element-names. 
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Finally, we replace the SAX event start-document with an event start-ele-
ment(“root”), and we replace the SAX event end-document with an event end-ele-
ment(“root”). At the end of Phase 1, the transformed SAX event stream contains only 
two kinds of events: start-element(…) and end-element(…).  

Phase 2: For the replacement of all the start-element and end-element events with 
first-child::*, next-sibling::* or parent::* events, we regard the four different kinds of 
consecutive pairs of start-element and end-element events: 

1. A start-element(x) followed by a second start-element(a) corresponds to the 
firstchild axis, i.e., ‘a’ is the first child of ‘x’. Therefore, the event sequence 
firstchild::* self::a is created. 

2. An end-element(x) followed by a start-element(a) corresponds to the nextsibling 
axis, i.e., ‘a’ is the next sibling of ‘x’. Therefore, the event sequence nextsib-
ling::* self::a is created. 

3. Furthermore, an end-element(x) followed by a second end-element(y) corre-
sponds to the parent axis. Therefore, the event parent::* is created. 

4. When a start-element(x) is followed by an end-element(x), no binary SAX event 
is created. 

Altogether, Phase 1 and Phase 2 together transform a SAX stream into a binary 
SAX stream of firstchild::*, nextsibling::*, parent::*, and self::a events. Figure 1 pre-
sents an example of an XML document and the generated binary SAX event stream.  

The binary SAX events are used as input ‘symbols’ for a stack of XPath automata 
that is constructed for an XPath query as described in the following sub-sections.  

2.2   Decomposition and Normalization of XPath Query Expressions 

We decompose each XPath query into a set of filter-free path queries, and, 
corresponding to the transformation of the SAX input stream, rewrite each path query 
into an equivalent XPath expression, called normalized XPath expression, that 
contains only the location steps firstchild::*, nextsibling::*, and self::a. Here, ‘a’ can 
be an element name, @ followed by an attribute name, or = followed by a constant as 
in binary SAX events, but ‘a’ can also be the wildcard ‘*’ for an arbitrary node name.  

Step 1 (Decomposition): We recursively decompose each XPath query Q into a set of 
filter-free sub-queries, called query paths, by decomposing Q into the main path M 
and predicate paths P1,…, Pn. A predicate path Pi of the form path = const is 
rewritten to path/text::const. 

For example, an XPath query  
Q=/descendant::a[child::b=xyz]/child::c[child::d/child::e]/f is 

decomposed into 3 query paths: the main path 
M=/descendant::a/child::c/child::f  
and the predicate paths P1=child::b/text::xyz and 

P2=child::d/child::e.  

Step 2 (Normalization): After decomposing Q, each of its query paths M,P1,…,Pn is 
normalized separately as follows. We replace the axes following, descendant-
or-self, attribute, and text according to the following rewrite rules: 
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(1) following::a    ancestor-or-self::*/following-sibling::* 
                /descendant-or-self::a  
(2) descendant-or-self::a     descendant::a | self::a 
(3) attribute::a          child::@a 
(4) text::v          child::=v 
 

Note, that the disjunction ( | ) in rule (2) does not lead to an exponential growth of 
the query size, but only to one additional edge in the XPath automaton (c.f. Figure 2).  

As the rewrite rule (1) which replaces the following axis leads to an ancestor-or-
self axis, we eliminate the backward axis ancestor-or-self according to the rewrite 
rules (13)-(22) provided in [19]. As the result of Step 2, we get an equivalent XPath 
query that contains only the axes self, child, descendant, and following-sibling.  

2.3   Transforming a Filter-Free XPath Query into an XPath Automaton  

In order to evaluate a query path, we first build an XPath automaton and then start the 
XPath evaluation stack using this automaton and the binary SAX stream as input.  

Definition 1 (XPath automaton): An XPath automaton of a query path is a NFA  
XP = (Q, ∑, q0, δ, f), where 

• Q is the finite set of states 
• ∑={firstchild::*, nextsibling::*} ∪ {self::a | a is an element name, @ fol-

lowed by an attribute name, = followed by a constant or ‘*’ } is the set of 
input symbols 

• q0∈Q is the start state 
• δ : Q x ∑ x Q  is a relation of transitions (q1,e,q2) where q2 is a successor 

state of q1 if the event e is sent to the NFA,   
• f∈Q is the final state 

 

Fig. 2. Atomic XPath Automata 
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In order to build the XPath automaton for a given query path, we normalize each 
location step as described in Step 2 of Section 2.2. After normalization, we compute 
the so-called atomic XPath automaton for each location step. The atomic XPath 
automata for the location steps ‘/child::a’, ‘/descendant::a’, ‘/descendant-or-self::a’, 
and ‘/following-sibling::a’ are shown in Figure 2. 

An atomic XPath automaton of the child axis, the descendant axis or the following-
sibling axis location step (c.f. Figure 2) is an automaton that is equivalent to the 
regular expression that forms the right-hand-side of the following rewrite rules (which 
were inspired by [11]) for the corresponding location step. 

 

(5) child::a   firstchild::*/ 
(self::*/nextsibling::*)i/ self::a           0≤i<∞ 

(6) descendant::a     firstchild::*/ (self::*/(firstchild::* |  
      nextsibling::*)) i/self::a   0≤i<∞ 
(7) following-sibling::a   nextsibling::*/  
   (self::*/nextsibling::*)i/self::a   0≤i<∞ 
 

 

The right hand sides of the rules (5)-(7) correspond to regular expressions over the 
alphabet ∑ of input symbols given in Definition 1, and the exponent ‘i’ corresponds to 
the kleene star operator in regular expressions. We have used the exponent  i to avoid 
disambiguities between the kleene star operator for regular expressions and the 
(wildcard) *-operator in XPath expressions.  

Note that the location step ‘self::*’ is inserted into the right hand sides of the rules 
(5)-(7), such that both the ‘firstchild::*’ and the ‘nextsibling::*’ location steps are 
followed by a self axis location step, which corresponds to the sequence of events of a 
binary SAX event stream as described in Section 2.1. 

The complete XPath automaton of a query path is built by concatenating the 
atomic XPath automata of all the query path’s locations steps in the order given by the 
location steps. To concatenate the atomic XPath automata ALS1 and ALS2 of two 
location steps LS1 and LS2 into a new XPath automaton XLS means to combine the 
final state of ALS1 with the start state of ALS2 to a single state. The start state of the 
XLS is the start state of ALS1 and the final state of XLS is the final state of ALS2. 

Whenever the final state of the XPath automaton representing the main path is 
reached, we have reached a part of the answer, and the current “sub-tree” of the bi-
nary SAX stream is written to the SAX output stream. 

2.4   Evaluating Filter-Free XPath Queries Using XPath Automata 

Definition 2 (XPath evaluation stack): An XPath evaluation stack of an XPath 
automaton XP is a triple  

XPE = ( XP, ∑, Δ) with 

• XP is used as the initial stack symbol 
• ∑ = {firstchild::*, nextsibling::*, parent::*} ∪ {self::a | a is an element 

      name, @ followed by an attribute name, = followed by a constant or ‘*’}  
 is the set of input symbols 
 

• Δ(∑) is an evaluation function that performs for a given input symbol a 
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sequence of operations 
Δ(firstchild::*) = {push(top()); top().event(firstchild::*);} 
Δ(nextsibling::*) = {top().event(nextsibling::*);} 
Δ(parent::*) = {pop();} 
Δ(self::a) = { closure( top().event(self::a) ); } 

The operation ‘XP Stack. top()’ returns the XPath automaton on top of the stack, 
and the operation ‘void XP.event(InputSymbol)’ fires the event InputSymbol on the 
XPath automaton XP. The operation ‘void Stack.push(XP)’ puts the XPath automaton 
XP on top of the stack, such that Δ(firstchild::*) pushes a copy of the XP automaton 
that is the top stack element on top of the stack and passes the event firstchild::* to 
this copy. The operation ‘void Stack.pop()’ deletes the XPath automaton on top of the 
stack. Finally, the closure-operator in Δ(self::a) sends an event self::a to the automa-
ton stored at top of stack as often as the state of this automaton changes.  

 

Evaluation of filter-free XPath queries: Each filter-free XPath query X is evaluated 
on a stream of binary SAX events S as follows. We compute the XPath automaton XP 
of X and start the XPath evaluation stack with XP as initial stack symbol and with S 
as input. Each binary SAX event is passed as input symbol to the stack, and the Δ(∑) 
function is performed for this input symbol which eventually causes stack operations 
and events on an automaton stored in the stack.   

Whenever a final state of an XPath automaton that is stored on top of stack is 
reached, the XML sub-tree with the root element that corresponds to the SAX event 
last parsed is written to the SAX output stream. 

 

Optimized implementation: As all XPath automata stored on the stack share the 
same structure, i.e., Q, ∑, q0, δ, and f are identical for all automata of the stack, in our 
implementation, we do not store and copy automata. Instead, there exists one global 
XPath automaton, and the stack stores only the set of active states on each level. 

2.5   Evaluation of Automata for XPath Expressions with Predicate Filters 

Whenever a location step LS contains a predicate filter, after query decomposition, a 
filter automaton F is created for the predicate path P corresponding to the filter, and F 
is attached to the final state fls of the atomic automaton of LS. A filter automaton F is 
an XPath automaton, but F’s final state does not cause any output. 

Whenever the state fls is reached by firing a transition, a so-called reservation is 
created and attached to fls and the start state of the attached filter automaton becomes 
active too, i.e., all binary SAX events are regarded as input for both the main 
automaton and the filter automaton. Each reservation is a Boolean variable, which 
will evaluate to either true as soon as the filter automaton has reached its final state or 
to false as soon as the automaton in which this filter automaton became active is 
popped from the stack.  

More precisely, reservations are computed as follows. Let R, R1, R2 be sets of 
reservations, and let res: Q x ℘(R) be a mapping of XPath automaton states to sets of 
reservations. Each XPath automaton XP used in the XPath evaluation stack is 
initialized without any reservations, i.e., ∀ q∈XP.Q: res(q, {}). Whenever a state q is 
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reached in XP, and a filter automaton F is attached to q, the mapping is changed from 
res(q,R) to res(q,R∪{r}), where r is a new reservation generated for F. Furthermore, 
when a transition of the form δ(q1,inputSymbol,q2) is fired, all reservations R1 for a 
state q1 become also reservations of the state q2 of XP. To summarize, the set of 
reservations R2 of q2 is R2=R1∪{r1,…,rf}, where r1,…,rf are the newly created 
reservations for the filter automata attached to q2. 

If the final state f of an XPath automaton of the main path of the given XPath 
query is reached, and there exists a reservation r that is attached to f that is not yet 
evaluated, the output of the current sub-tree is queued and delayed until the 
reservation r is evaluated; the current sub-tree becomes an output candidate. Finally, 
when r is evaluated to true, the sub-tree is written to the output and deleted from the 
queue. If on the other hand r is evaluated to false, the sub-tree is deleted from the 
queue without writing it to the output. 

A reservation r evaluates to true, if the corresponding filter automaton F reaches a 
final state. In this case, r is set to true, possibly queued sub-trees can be written to the 
output. If the automaton in which F became active is popped from the stack and no 
final state of F has been reached in the meantime, the reservation r for F evaluates to 
false, and possibly queued sub-trees that carry the reservation r are deleted without 
being written to the output and all active states s with res(s,R), r∈R, become inactive. 

As a predicate filter can not only contain a single comparison path=value, but can 
be a composition of comparisons involving nested negations, disjunctions or 
conjunctions of comparisons, reservations can be logical compositions of sub-
reservations, too. For example, a predicate filter [(comp1 or comp2) and not comp3], 
where comp1, comp2 and comp3 are comparisons or path expressions, results in a 
composed reservation r = ((r1 or r2) and not r3) and a filter automaton being created 
for each sub-reservation r1, r2, and r3. 

Simple and composed reservations are administrated in a lemma table. Whenever a 
reservation is evaluated, the result is reported to the lemma table. The lemma table is 
used for checking whether a composed reservation can be evaluated completely, i.e., 
whether the lemma table knows enough results of sub-reservations to decide, whether 
the value of the composed reservation is true or false. The lemma table reports the 
value of the evaluated reservation back to the XPath automaton XP waiting for the 
reservation, such that XP can continue processing, and finally the main automaton can 
check the output queue, and output candidates might be written to the output. 

3   Evaluation of Our Prototype Implementation 

We have implemented a prototype of our solution (XPA) in Java 1.5 and have evalu-
ated and compared it with two other systems on a Pentium 4 with 2.4 GHz Windows 
XP system with 1 GB of RAM running Java 1.5. On the one hand, we have compared 
XPA with the static XPath evaluator Saxon[21] that is DOM based, and therefore is 
not capable to evaluate data streams. On the other hand, we have compared XPA with 
YFilter[9], a system for information dissemination that is designed to evaluate a set of 
queries on large XML data streams.  
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Our test data set was generated by the XML generator of the XML Benchmark 
XMark[22]. The sizes of the documents of our data set can be seen in Table 1. A docu-
ment Dn was created by the XMark generator providing the factor n/1000, i.e., D32  
was generated by the XMark generator with the factor 0.032. This leads to a dataset 
with documents starting from the size of 116 kB to the size of more than 650 MB. 

Table 1. Document sizes of the test collection (generated by XMark) 

Document
name

D1 D2 D4 D8 D16 D32 D64 D128 D256 D512 D1024 D2048 D4096 D6000

Document
size (kB) 

116 211 458 901 1,881 3,728 7,259 14,949 29,693 59,114 118,767 238,164 477,018 697,657
 

On our dataset, we have evaluated queries that were inspired by the queries 
Q1,…,Q5 of the XPath benchmark XPathMark[10] (we have omitted all backward 
axes in advance). The test queries can be seen in Table 2. 

Table 2. XPathMark queries used for the evaluation of the XPath evaluation system XPA 

Name Query
Q1 /child::site/child::regions/child::*/child::item
Q2 /child::site/child::closed_auctions/child::closed_auction/child::annotation/

child::description/child::parlist/child::listitem/child::text/child::keyword
Q3 /descendant::keyword
Q4 /descendant-or-self::listitem/descendant-or-self::keyword
Q5 /child::site/child::regions/child::*[self::namerica]/child::item

 

 

Our tests have shown that our system outperforms the other two systems. Espe-
cially for large documents, our system is more than 2 times faster than Saxon and 20 
times faster than YFilter. Table 3 shows the concrete figures for the query Q5. A 
visualization of the figures for the query Q5 can be seen in Figure 3(a), whereas  
Figure 3(b) and 3(c) show the evaluation times for all queries for document D1 or 
D1024 respectively. 

Our tests have as well shown that our system consumes far less main memory than 
Saxon and than YFilter. Saxon consumes 4 times the document size on average, 
which is typical for DOM based systems, YFilter needs only 2 times the document 
size. In comparison, XPA consumes from 20% of the document size on average for 
simples XPath queries without predicate filters (Q1-Q4) up to 50 % of the document 
size on average for paths with predicate filters (Q5). In our experiments, an 
OutOfMemory-Exception for YFilter occured from D2048 on and for Saxon from 
D4096 on with 1 GB of heap space assigned to Java. 

On average, we have measured a data throughput rate of more than 40MBit/s for 
our system. In comparison, ADSL2+, the fastest ADSL standard currently available, 
reaches a data download throughput rate of at most 24 MBit/s. 
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Fig. 3. (a) Evaluation time for different document sizes (query: Q5). (b) Evaluation time for 
document D1 for all queries. (c) Evaluation time for D1024 for all queries. 

Table 3. Evaluation time for different document sizes (query Q5) (� = OutOfMemory) 

D1 D2 D4 D8 D16 D32 D64 D128 D256 D512 D1024 D2048 D4096 D6000

XPA 92 123 136 219 383 688 1,204 2,288 4,194 8,623 16,983 32,945 109,471 186,282 

Saxon 168 171 257 366 651 898 1,511 2,482 4,500 9,515 40,403 111,862

YFilter 99 159 256 422 778 1,387 2,640 5,102 10,115 30,914 367,790
 

4   Relation to Other Works 

There exist several different approaches to the evaluation of XPath queries on XML 
data streams. They can be divided into categories by the subset of XPath they support. 
Nearly all of them are based on automatons (X-scan[14], XMLTK[1], YFilter[9], [12], 
[13], AFilter[6], XSQ[20], SPEX[18]) or parse trees ([3], [4], [7], [8]). All of them 
support the axes child and descendant-or-self and most of them support predicate 
filters and wildcards, but none of them support the sibling-axes as our solution does. 

X-scan[14], XMLTK[1], and YFilter[9] support XPath queries containing the child 
and descendant-or-self axes and wildcards using finite state automata. [12] (for the 
main path) and [13] (for the predicates) propose to construct deterministic finite auto-
mata (DFA) in a lazy way, i.e., the DFA is not generated completely at the beginning, 
but additional states are added only when needed. 
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AFilter[6] is an adaptable XPath query evaluation approach that needs a base 
memory requirement that is linear in query and data size. If more memory is provided 
to AFilter, AFilter uses the remaining main memory for a caching approach to 
evaluate queries faster than with only the base memory. AFilter is mainly based on a 
lazy DFA and it supports wildcard, but does not support predicate filters. Similar to 
YFilter[9], AFilter is designed to evaluate a large set of queries. 

XSQ[20] and SPEX[18] use a hierarchical arrangement or network of transducers, 
i.e., automata extended by actions attached to the states, extended by a buffer to evalu-
ate XPath queries. The XPath queries supported by XSQ contain predicates with the 
restriction that each query node can contain at most one predicate and each predicate 
can contain path-to-value comparisons with paths of size 1 containing only the axes 
child, text or attribute. The main idea is that a nondeterministic push-down transducer 
(PDT) is generated for each location step in an XPath query, and these PDTs are 
combined into a hierarchical pushdown transducer in the form of a binary tree. 

The approach presented in [15] discusses how to handle the child and descendant-
or-self axes, predicates (including functions and arithmetics) and wildcards in XQuery 
using TurboXPath. The input query is translated into a set of parse trees. Whenever a 
matching of a parse tree is found within the data stream, the relevant data is stored in 
form of a tuple that is afterwards evaluated to check whether predicate- and join 
conditions are fulfilled. The output is constructed out of those tuples the conditions of 
which have been evaluated to true. 

χαοζ[4] and [3] build a parse tree as well (plus a parse-dag in [4], as they support 
the parent and the ancestor axis in addition). These parse tree is used to ‘predict’ the 
next matching nodes and the level in which they have to occur. For example, consider 
the query //a/b and a matching of ‘a’ in level 3. Then the next interesting matching 
would be a node ‘b’ in level 4. 

The approach discussed in [7] is mainly based on parse trees, but it collapses the 
parse tree into a prefix trie as follows. Common prefix sequences of child-axis loca-
tion steps of different queries are combined into a leaner single path of the prefix trie.  

The approach presented in [8] uses a structure which resembles a parse tree with 
stacks attached to each node. These stacks are used to store XML nodes that are solu-
tions to the parse tree nodes subquery (or to store XML nodes that are candidates for a 
solution in case of predicate filters). 

In comparison to all these approaches, we additionally support the ‘sibling’-axes 
following and following-sibling. Furthermore, beyond [15] and [20], our approach is 
capable to parse streams of recursive XML, i.e., data in which the same element 
names do occur repeatedly along a root-to-leaf path. 

5   Summary and Conclusions 

Query processing on massive XML data streams and query processing of XML data 
on small mobile devices require a query processor to meet two conditions at the same 
time: the query processor shall consume a small amount of main memory and shall 
reach data throughput rates that are not smaller than the arrival rate of the XML data 
using today’s broadband communication technologies. 
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In this paper, we have presented an XPath query processor that reaches data 
throughput rates that are higher than the download rates of ADSL2+ while at the same 
time consuming only 20%-50% of the document size in main memory. Furthermore, 
in comparison to most of the other query processors, our query processor supports all 
the axes of core XPath including the sibling axes.  

Our query processor decomposes and normalizes each XPath query, such that the 
resulting path queries contain only three different types of axes, and then converts 
them into lean XPath automata for which a stack of active states is stored. The input 
SAX event stream is converted into a binary SAX event stream that serves as input of 
the XPath automata. 

As XPath is used as data access standard in XSLT and XQuery, we are optimistic 
that the technology proposed in this paper can be used within XSLT processors or 
XQuery processors too.  
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