
R. Cooper and J. Kennedy (Eds.): BNCOD 2007, LNCS 4587, pp. 101–113, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evaluating XPath Queries on XML Data Streams

Stefan Böttcher and Rita Steinmetz

University of Paderborn (Germany)
Computer Science

Fürstenallee 11 D-33102 Paderborn
stb@uni-paderborn.de, rst@uni-paderborn.de

Abstract. Whenever queries have to be evaluated on XML data streams - or
when the memory that is available to evaluate the XML data is relatively small
compared to the document - DOM based approaches that have to load and store
large parts of the document in main memory will fail. In comparison, we pre-
sent an approach to evaluate XPath queries on SAX streams that supports all
axes of core XPath, including the sibling axes. Starting from the XPath query,
our approach generates a stack of automata that uses the SAX stream as input
and generates the result of the query as an output SAX stream. An evaluation of
our implementation shows that in general our approach needs less main
memory, but at the same time is faster than both, Saxon and YFilter.

1 Introduction

1.1 Motivation and Paper Organization

XML is becoming the de facto standard for information exchange and, as the amount
of XML data is steadily growing, a key challenge is to process XML documents fast
within the available main memory.

Our contribution focuses on scenarios, in which a system has to evaluate queries
fast on documents that are multiple times larger than the main memory available to
the system. One typical scenario is an XML news stream provided by a news agency
using one of the typical XML formats NewsML [16] or NITF [17] to broadcast their
news, and users who want to receive only parts of the news based on queries that re-
present their interests. Another typical scenario is that devices with a small amount of
main memory (as e.g., mobile phones) shall work on large XML documents.

Whenever a scenario requires that the main memory available to evaluate queries
on XML data is relatively small compared to the XML data size, approaches that are
based on DOM will fail. These approaches have to load the complete XML document
as a DOM tree into main memory, and as they need at least 4 pointers for each XML
element (name, parent, first child, and next sibling) they yield a memory consumption
that covers multiple times the size of the XML data.

Therefore, we propose a SAX based approach to the evaluation of XPath queries.
Each input query is translated into an automaton that consists of only four different
types of transitions, the treatment of which is described in Section 2. The small size of

102 S. Böttcher and R. Steinmetz

the generated automata allows for a fast evaluation of the input XML data stream
within a small amount of memory.

This paper is organized as follows: The remainder of the first section outlines the
query language, summarizes the underlying assumptions, and outlines the problem
definition. Section 2 summarizes the fundamental concepts used to describe our ap-
proach to evaluate XPath queries. The third section outlines some of the experiments
that show the space efficiency and time efficiency of our prototype. Section 4 gives an
overview on related work and is followed by the Summary and Conclusions.

1.2 Query Language

The subset of XPath expressions supported by our approach conforms to the set of
core XPath as defined in [11]. This set is defined by the following EBNF grammar:

cxp ::= `/' locationpath
locationpath ::= locationstep ('/' locationstep)*
locationstep ::= x `::' t | x `::' t `[' pred `]'
pred ::= pred `and' pred | pred `or' pred

 | `not' `(' pred `)' | locationpath
 | locationpath ‘=’ const |`(' pred `)'

“cxp” is the start production, “x” represents an axis (attribute, self, child, parent,
descendant-or-self, descendant, ancestor-or-self, ancestor, following, preceding,
following-sibling, preceding-sibling), “const” represents a constant, and “t” represents
a “node test" (either an XML node name test or “*”, meaning “any node name”).

Note that our system supports the sibling axes, whereas other approaches like
XMLTK[1], χαοζ[4], AFilter[6], YFilter[9], XScan[14], SPEX[18], and XSQ[20] are
limited to the parent-child and ancestor-descendant axes.

1.3 General Assumptions and Problem Definition

As our system is designed to efficiently evaluate XPath queries on a possibly infinite
XML data stream, one requirement that our system has to meet is that each SAX
event can be read only once, i.e., the stream has to be parsed in a single pass in docu-
ment order. As we cannot jump backwards within the data stream, we have to rewrite
user queries that use backward axes (i.e., ancestor-or-self, ancestor, preceding-sibling,
and preceding) into equivalent queries containing only forward axes as described in
[19]. The rewriting might lead to equivalent rewritten queries that are exponentially
longer than the original queries, but as usually queries are rather short compared to
the XML data, the growth of query length will usually not extend the runtime too
badly.

Problem description: After rewriting queries, the remaining problem examined in
this paper is the following. The input consists of a core XPath query containing only
the forward axes and of an XML data stream in form of a SAX input event stream.
The desired output is a SAX event stream of query results in document order. The
main requirements of our system are to use as little main memory as possible in order
to reach data throughput rates comparable to those of data streams.

 Evaluating XPath Queries on XML Data Streams 103

2 Our Solution

In this section, we first explain how to transform the SAX input stream into a binary
SAX event stream, containing firstchild::*, nextsibling::*, and parent::* events, and
supporting self::a node tests. We then discuss how XPath queries are normalized,
such that they contain only firstchild::*, nextsibling:*, and self::a location steps plus
filters, and how normalized queries are transformed into XPath automata. Afterwards,
we show how to evaluate the binary SAX event stream on an evaluation stack of an
XPath automaton, which represents core XPath queries without any predicate filters.
Finally, we extend the approach to queries with predicate filters.

2.1 Binary SAX Event Streams

We transform the SAX event stream of the input XML document into a stream of bi-
nary SAX events firstchild::*, nextsibling::*, parent::*, and self::a. Here, ‘a’ can be an
element name, @ followed by an attribute name, or = followed by a constant. Trans-
forming the SAX stream is done in two phases.

Fig. 1. Example XML document with the resulting SAX and binary SAX streams

Phase 1: The SAX event character(T) generated for a text value T found in the XML
document is transformed into a binary SAX event sequence start-element(=T), end-
element(=T). Similar, each attribute/value pair A=AV found in the XML document is
transformed into a binary SAX event sequence

start-element(@A), start-element(=AV), end-element(=AV), end-element(@A) .

As the symbols ‘@’ and ‘=’ have to be chosen to uniquely identify attributes and
text nodes respectively, they are not allowed as an initial character for element-names.

104 S. Böttcher and R. Steinmetz

Finally, we replace the SAX event start-document with an event start-ele-
ment(“root”), and we replace the SAX event end-document with an event end-ele-
ment(“root”). At the end of Phase 1, the transformed SAX event stream contains only
two kinds of events: start-element(…) and end-element(…).

Phase 2: For the replacement of all the start-element and end-element events with
first-child::*, next-sibling::* or parent::* events, we regard the four different kinds of
consecutive pairs of start-element and end-element events:

1. A start-element(x) followed by a second start-element(a) corresponds to the
firstchild axis, i.e., ‘a’ is the first child of ‘x’. Therefore, the event sequence
firstchild::* self::a is created.

2. An end-element(x) followed by a start-element(a) corresponds to the nextsibling
axis, i.e., ‘a’ is the next sibling of ‘x’. Therefore, the event sequence nextsib-
ling::* self::a is created.

3. Furthermore, an end-element(x) followed by a second end-element(y) corre-
sponds to the parent axis. Therefore, the event parent::* is created.

4. When a start-element(x) is followed by an end-element(x), no binary SAX event
is created.

Altogether, Phase 1 and Phase 2 together transform a SAX stream into a binary
SAX stream of firstchild::*, nextsibling::*, parent::*, and self::a events. Figure 1 pre-
sents an example of an XML document and the generated binary SAX event stream.

The binary SAX events are used as input ‘symbols’ for a stack of XPath automata
that is constructed for an XPath query as described in the following sub-sections.

2.2 Decomposition and Normalization of XPath Query Expressions

We decompose each XPath query into a set of filter-free path queries, and,
corresponding to the transformation of the SAX input stream, rewrite each path query
into an equivalent XPath expression, called normalized XPath expression, that
contains only the location steps firstchild::*, nextsibling::*, and self::a. Here, ‘a’ can
be an element name, @ followed by an attribute name, or = followed by a constant as
in binary SAX events, but ‘a’ can also be the wildcard ‘*’ for an arbitrary node name.

Step 1 (Decomposition): We recursively decompose each XPath query Q into a set of
filter-free sub-queries, called query paths, by decomposing Q into the main path M
and predicate paths P1,…, Pn. A predicate path Pi of the form path = const is
rewritten to path/text::const.

For example, an XPath query
Q=/descendant::a[child::b=xyz]/child::c[child::d/child::e]/f is

decomposed into 3 query paths: the main path
M=/descendant::a/child::c/child::f
and the predicate paths P1=child::b/text::xyz and

P2=child::d/child::e.

Step 2 (Normalization): After decomposing Q, each of its query paths M,P1,…,Pn is
normalized separately as follows. We replace the axes following, descendant-
or-self, attribute, and text according to the following rewrite rules:

 Evaluating XPath Queries on XML Data Streams 105

(1) following::a ancestor-or-self::*/following-sibling::*
 /descendant-or-self::a
(2) descendant-or-self::a descendant::a | self::a
(3) attribute::a child::@a
(4) text::v child::=v

Note, that the disjunction (|) in rule (2) does not lead to an exponential growth of
the query size, but only to one additional edge in the XPath automaton (c.f. Figure 2).

As the rewrite rule (1) which replaces the following axis leads to an ancestor-or-
self axis, we eliminate the backward axis ancestor-or-self according to the rewrite
rules (13)-(22) provided in [19]. As the result of Step 2, we get an equivalent XPath
query that contains only the axes self, child, descendant, and following-sibling.

2.3 Transforming a Filter-Free XPath Query into an XPath Automaton

In order to evaluate a query path, we first build an XPath automaton and then start the
XPath evaluation stack using this automaton and the binary SAX stream as input.

Definition 1 (XPath automaton): An XPath automaton of a query path is a NFA
XP = (Q, ∑, q0, δ, f), where

• Q is the finite set of states
• ∑={firstchild::*, nextsibling::*} ∪ {self::a | a is an element name, @ fol-

lowed by an attribute name, = followed by a constant or ‘*’ } is the set of
input symbols

• q0∈Q is the start state
• δ : Q x ∑ x Q is a relation of transitions (q1,e,q2) where q2 is a successor

state of q1 if the event e is sent to the NFA,
• f∈Q is the final state

Fig. 2. Atomic XPath Automata

106 S. Böttcher and R. Steinmetz

In order to build the XPath automaton for a given query path, we normalize each
location step as described in Step 2 of Section 2.2. After normalization, we compute
the so-called atomic XPath automaton for each location step. The atomic XPath
automata for the location steps ‘/child::a’, ‘/descendant::a’, ‘/descendant-or-self::a’,
and ‘/following-sibling::a’ are shown in Figure 2.

An atomic XPath automaton of the child axis, the descendant axis or the following-
sibling axis location step (c.f. Figure 2) is an automaton that is equivalent to the
regular expression that forms the right-hand-side of the following rewrite rules (which
were inspired by [11]) for the corresponding location step.

(5) child::a firstchild::*/
(self::*/nextsibling::*)i/ self::a 0≤i<∞

(6) descendant::a firstchild::*/ (self::*/(firstchild::* |
 nextsibling::*)) i/self::a 0≤i<∞
(7) following-sibling::a nextsibling::*/
 (self::*/nextsibling::*)i/self::a 0≤i<∞

The right hand sides of the rules (5)-(7) correspond to regular expressions over the
alphabet ∑ of input symbols given in Definition 1, and the exponent ‘i’ corresponds to
the kleene star operator in regular expressions. We have used the exponent i to avoid
disambiguities between the kleene star operator for regular expressions and the
(wildcard) *-operator in XPath expressions.

Note that the location step ‘self::*’ is inserted into the right hand sides of the rules
(5)-(7), such that both the ‘firstchild::*’ and the ‘nextsibling::*’ location steps are
followed by a self axis location step, which corresponds to the sequence of events of a
binary SAX event stream as described in Section 2.1.

The complete XPath automaton of a query path is built by concatenating the
atomic XPath automata of all the query path’s locations steps in the order given by the
location steps. To concatenate the atomic XPath automata ALS1 and ALS2 of two
location steps LS1 and LS2 into a new XPath automaton XLS means to combine the
final state of ALS1 with the start state of ALS2 to a single state. The start state of the
XLS is the start state of ALS1 and the final state of XLS is the final state of ALS2.

Whenever the final state of the XPath automaton representing the main path is
reached, we have reached a part of the answer, and the current “sub-tree” of the bi-
nary SAX stream is written to the SAX output stream.

2.4 Evaluating Filter-Free XPath Queries Using XPath Automata

Definition 2 (XPath evaluation stack): An XPath evaluation stack of an XPath
automaton XP is a triple

XPE = (XP, ∑, Δ) with

• XP is used as the initial stack symbol
• ∑ = {firstchild::*, nextsibling::*, parent::*} ∪ {self::a | a is an element

 name, @ followed by an attribute name, = followed by a constant or ‘*’}
 is the set of input symbols

• Δ(∑) is an evaluation function that performs for a given input symbol a

 Evaluating XPath Queries on XML Data Streams 107

sequence of operations
Δ(firstchild::*) = {push(top()); top().event(firstchild::*);}
Δ(nextsibling::*) = {top().event(nextsibling::*);}
Δ(parent::*) = {pop();}
Δ(self::a) = { closure(top().event(self::a)); }

The operation ‘XP Stack. top()’ returns the XPath automaton on top of the stack,
and the operation ‘void XP.event(InputSymbol)’ fires the event InputSymbol on the
XPath automaton XP. The operation ‘void Stack.push(XP)’ puts the XPath automaton
XP on top of the stack, such that Δ(firstchild::*) pushes a copy of the XP automaton
that is the top stack element on top of the stack and passes the event firstchild::* to
this copy. The operation ‘void Stack.pop()’ deletes the XPath automaton on top of the
stack. Finally, the closure-operator in Δ(self::a) sends an event self::a to the automa-
ton stored at top of stack as often as the state of this automaton changes.

Evaluation of filter-free XPath queries: Each filter-free XPath query X is evaluated
on a stream of binary SAX events S as follows. We compute the XPath automaton XP
of X and start the XPath evaluation stack with XP as initial stack symbol and with S
as input. Each binary SAX event is passed as input symbol to the stack, and the Δ(∑)
function is performed for this input symbol which eventually causes stack operations
and events on an automaton stored in the stack.

Whenever a final state of an XPath automaton that is stored on top of stack is
reached, the XML sub-tree with the root element that corresponds to the SAX event
last parsed is written to the SAX output stream.

Optimized implementation: As all XPath automata stored on the stack share the
same structure, i.e., Q, ∑, q0, δ, and f are identical for all automata of the stack, in our
implementation, we do not store and copy automata. Instead, there exists one global
XPath automaton, and the stack stores only the set of active states on each level.

2.5 Evaluation of Automata for XPath Expressions with Predicate Filters

Whenever a location step LS contains a predicate filter, after query decomposition, a
filter automaton F is created for the predicate path P corresponding to the filter, and F
is attached to the final state fls of the atomic automaton of LS. A filter automaton F is
an XPath automaton, but F’s final state does not cause any output.

Whenever the state fls is reached by firing a transition, a so-called reservation is
created and attached to fls and the start state of the attached filter automaton becomes
active too, i.e., all binary SAX events are regarded as input for both the main
automaton and the filter automaton. Each reservation is a Boolean variable, which
will evaluate to either true as soon as the filter automaton has reached its final state or
to false as soon as the automaton in which this filter automaton became active is
popped from the stack.

More precisely, reservations are computed as follows. Let R, R1, R2 be sets of
reservations, and let res: Q x ℘(R) be a mapping of XPath automaton states to sets of
reservations. Each XPath automaton XP used in the XPath evaluation stack is
initialized without any reservations, i.e., ∀ q∈XP.Q: res(q, {}). Whenever a state q is

108 S. Böttcher and R. Steinmetz

reached in XP, and a filter automaton F is attached to q, the mapping is changed from
res(q,R) to res(q,R∪{r}), where r is a new reservation generated for F. Furthermore,
when a transition of the form δ(q1,inputSymbol,q2) is fired, all reservations R1 for a
state q1 become also reservations of the state q2 of XP. To summarize, the set of
reservations R2 of q2 is R2=R1∪{r1,…,rf}, where r1,…,rf are the newly created
reservations for the filter automata attached to q2.

If the final state f of an XPath automaton of the main path of the given XPath
query is reached, and there exists a reservation r that is attached to f that is not yet
evaluated, the output of the current sub-tree is queued and delayed until the
reservation r is evaluated; the current sub-tree becomes an output candidate. Finally,
when r is evaluated to true, the sub-tree is written to the output and deleted from the
queue. If on the other hand r is evaluated to false, the sub-tree is deleted from the
queue without writing it to the output.

A reservation r evaluates to true, if the corresponding filter automaton F reaches a
final state. In this case, r is set to true, possibly queued sub-trees can be written to the
output. If the automaton in which F became active is popped from the stack and no
final state of F has been reached in the meantime, the reservation r for F evaluates to
false, and possibly queued sub-trees that carry the reservation r are deleted without
being written to the output and all active states s with res(s,R), r∈R, become inactive.

As a predicate filter can not only contain a single comparison path=value, but can
be a composition of comparisons involving nested negations, disjunctions or
conjunctions of comparisons, reservations can be logical compositions of sub-
reservations, too. For example, a predicate filter [(comp1 or comp2) and not comp3],
where comp1, comp2 and comp3 are comparisons or path expressions, results in a
composed reservation r = ((r1 or r2) and not r3) and a filter automaton being created
for each sub-reservation r1, r2, and r3.

Simple and composed reservations are administrated in a lemma table. Whenever a
reservation is evaluated, the result is reported to the lemma table. The lemma table is
used for checking whether a composed reservation can be evaluated completely, i.e.,
whether the lemma table knows enough results of sub-reservations to decide, whether
the value of the composed reservation is true or false. The lemma table reports the
value of the evaluated reservation back to the XPath automaton XP waiting for the
reservation, such that XP can continue processing, and finally the main automaton can
check the output queue, and output candidates might be written to the output.

3 Evaluation of Our Prototype Implementation

We have implemented a prototype of our solution (XPA) in Java 1.5 and have evalu-
ated and compared it with two other systems on a Pentium 4 with 2.4 GHz Windows
XP system with 1 GB of RAM running Java 1.5. On the one hand, we have compared
XPA with the static XPath evaluator Saxon[21] that is DOM based, and therefore is
not capable to evaluate data streams. On the other hand, we have compared XPA with
YFilter[9], a system for information dissemination that is designed to evaluate a set of
queries on large XML data streams.

 Evaluating XPath Queries on XML Data Streams 109

Our test data set was generated by the XML generator of the XML Benchmark
XMark[22]. The sizes of the documents of our data set can be seen in Table 1. A docu-
ment Dn was created by the XMark generator providing the factor n/1000, i.e., D32
was generated by the XMark generator with the factor 0.032. This leads to a dataset
with documents starting from the size of 116 kB to the size of more than 650 MB.

Table 1. Document sizes of the test collection (generated by XMark)

Document
name

D1 D2 D4 D8 D16 D32 D64 D128 D256 D512 D1024 D2048 D4096 D6000

Document
size (kB)

116 211 458 901 1,881 3,728 7,259 14,949 29,693 59,114 118,767 238,164 477,018 697,657

On our dataset, we have evaluated queries that were inspired by the queries
Q1,…,Q5 of the XPath benchmark XPathMark[10] (we have omitted all backward
axes in advance). The test queries can be seen in Table 2.

Table 2. XPathMark queries used for the evaluation of the XPath evaluation system XPA

Name Query
Q1 /child::site/child::regions/child::*/child::item
Q2 /child::site/child::closed_auctions/child::closed_auction/child::annotation/

child::description/child::parlist/child::listitem/child::text/child::keyword
Q3 /descendant::keyword
Q4 /descendant-or-self::listitem/descendant-or-self::keyword
Q5 /child::site/child::regions/child::*[self::namerica]/child::item

Our tests have shown that our system outperforms the other two systems. Espe-
cially for large documents, our system is more than 2 times faster than Saxon and 20
times faster than YFilter. Table 3 shows the concrete figures for the query Q5. A
visualization of the figures for the query Q5 can be seen in Figure 3(a), whereas
Figure 3(b) and 3(c) show the evaluation times for all queries for document D1 or
D1024 respectively.

Our tests have as well shown that our system consumes far less main memory than
Saxon and than YFilter. Saxon consumes 4 times the document size on average,
which is typical for DOM based systems, YFilter needs only 2 times the document
size. In comparison, XPA consumes from 20% of the document size on average for
simples XPath queries without predicate filters (Q1-Q4) up to 50 % of the document
size on average for paths with predicate filters (Q5). In our experiments, an
OutOfMemory-Exception for YFilter occured from D2048 on and for Saxon from
D4096 on with 1 GB of heap space assigned to Java.

On average, we have measured a data throughput rate of more than 40MBit/s for
our system. In comparison, ADSL2+, the fastest ADSL standard currently available,
reaches a data download throughput rate of at most 24 MBit/s.

110 S. Böttcher and R. Steinmetz

(a) Q5

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

0 50,000 100,000 150,000 200,000 250,000

document size (kB)

e
v

a
lu

a
ti

o
n

 t
im

e
 (

m
s

)

Saxon

XPA

Yfilter

(b) D1

0

50

100

150

Q1 Q2 Q3 Q4 Q5
query

ti
m

e
 (

m
s

)

Saxon

200

250 XPA
Yfilter

(c) D1024

0

100,000

Q1 Q2 Q3 Q4 Q5
query

ti
m

400,000

500,000

200,000

300,000
e

 (
m

s
)

Saxon
XPA
YFilter

Fig. 3. (a) Evaluation time for different document sizes (query: Q5). (b) Evaluation time for
document D1 for all queries. (c) Evaluation time for D1024 for all queries.

Table 3. Evaluation time for different document sizes (query Q5) (� = OutOfMemory)

D1 D2 D4 D8 D16 D32 D64 D128 D256 D512 D1024 D2048 D4096 D6000

XPA 92 123 136 219 383 688 1,204 2,288 4,194 8,623 16,983 32,945 109,471 186,282

Saxon 168 171 257 366 651 898 1,511 2,482 4,500 9,515 40,403 111,862

YFilter 99 159 256 422 778 1,387 2,640 5,102 10,115 30,914 367,790

4 Relation to Other Works

There exist several different approaches to the evaluation of XPath queries on XML
data streams. They can be divided into categories by the subset of XPath they support.
Nearly all of them are based on automatons (X-scan[14], XMLTK[1], YFilter[9], [12],
[13], AFilter[6], XSQ[20], SPEX[18]) or parse trees ([3], [4], [7], [8]). All of them
support the axes child and descendant-or-self and most of them support predicate
filters and wildcards, but none of them support the sibling-axes as our solution does.

X-scan[14], XMLTK[1], and YFilter[9] support XPath queries containing the child
and descendant-or-self axes and wildcards using finite state automata. [12] (for the
main path) and [13] (for the predicates) propose to construct deterministic finite auto-
mata (DFA) in a lazy way, i.e., the DFA is not generated completely at the beginning,
but additional states are added only when needed.

 Evaluating XPath Queries on XML Data Streams 111

AFilter[6] is an adaptable XPath query evaluation approach that needs a base
memory requirement that is linear in query and data size. If more memory is provided
to AFilter, AFilter uses the remaining main memory for a caching approach to
evaluate queries faster than with only the base memory. AFilter is mainly based on a
lazy DFA and it supports wildcard, but does not support predicate filters. Similar to
YFilter[9], AFilter is designed to evaluate a large set of queries.

XSQ[20] and SPEX[18] use a hierarchical arrangement or network of transducers,
i.e., automata extended by actions attached to the states, extended by a buffer to evalu-
ate XPath queries. The XPath queries supported by XSQ contain predicates with the
restriction that each query node can contain at most one predicate and each predicate
can contain path-to-value comparisons with paths of size 1 containing only the axes
child, text or attribute. The main idea is that a nondeterministic push-down transducer
(PDT) is generated for each location step in an XPath query, and these PDTs are
combined into a hierarchical pushdown transducer in the form of a binary tree.

The approach presented in [15] discusses how to handle the child and descendant-
or-self axes, predicates (including functions and arithmetics) and wildcards in XQuery
using TurboXPath. The input query is translated into a set of parse trees. Whenever a
matching of a parse tree is found within the data stream, the relevant data is stored in
form of a tuple that is afterwards evaluated to check whether predicate- and join
conditions are fulfilled. The output is constructed out of those tuples the conditions of
which have been evaluated to true.

χαοζ[4] and [3] build a parse tree as well (plus a parse-dag in [4], as they support
the parent and the ancestor axis in addition). These parse tree is used to ‘predict’ the
next matching nodes and the level in which they have to occur. For example, consider
the query //a/b and a matching of ‘a’ in level 3. Then the next interesting matching
would be a node ‘b’ in level 4.

The approach discussed in [7] is mainly based on parse trees, but it collapses the
parse tree into a prefix trie as follows. Common prefix sequences of child-axis loca-
tion steps of different queries are combined into a leaner single path of the prefix trie.

The approach presented in [8] uses a structure which resembles a parse tree with
stacks attached to each node. These stacks are used to store XML nodes that are solu-
tions to the parse tree nodes subquery (or to store XML nodes that are candidates for a
solution in case of predicate filters).

In comparison to all these approaches, we additionally support the ‘sibling’-axes
following and following-sibling. Furthermore, beyond [15] and [20], our approach is
capable to parse streams of recursive XML, i.e., data in which the same element
names do occur repeatedly along a root-to-leaf path.

5 Summary and Conclusions

Query processing on massive XML data streams and query processing of XML data
on small mobile devices require a query processor to meet two conditions at the same
time: the query processor shall consume a small amount of main memory and shall
reach data throughput rates that are not smaller than the arrival rate of the XML data
using today’s broadband communication technologies.

112 S. Böttcher and R. Steinmetz

In this paper, we have presented an XPath query processor that reaches data
throughput rates that are higher than the download rates of ADSL2+ while at the same
time consuming only 20%-50% of the document size in main memory. Furthermore,
in comparison to most of the other query processors, our query processor supports all
the axes of core XPath including the sibling axes.

Our query processor decomposes and normalizes each XPath query, such that the
resulting path queries contain only three different types of axes, and then converts
them into lean XPath automata for which a stack of active states is stored. The input
SAX event stream is converted into a binary SAX event stream that serves as input of
the XPath automata.

As XPath is used as data access standard in XSLT and XQuery, we are optimistic
that the technology proposed in this paper can be used within XSLT processors or
XQuery processors too.

References

[1] Avila-Campillo, I., Green, T.J., Gupta, A., Onizuka, M., Raven, D., Suciu, D., XMLTK,:
An XML Toolkit for Scalable XML Stream Processin. In: Proceedings of PLANX
(October 2002)

[2] Bar-Yossef, Z., Fontoura, M., Josifovski, V.: Buffering in query evaluation over XML
streams. PODS 2005, pp. 216–227 (2005)

[3] Bar-Yossef, Z., Fontoura, M., Josifovski, V.: On the Memory Requirements of XPath
Evaluation over XML Streams. PODS 2004, pp. 177–188 (2004)

[4] Barton, C., Charles, P., Goyal, D., Raghavachari, M., Fontoura, M., Josifovski, V.:
Streaming XPath Processing with Forward and Backward Axes. ICDE 2003, pp. 455–466
(2003)

[5] Bry, F., Coskun, F., Durmaz, S., Furche, T., Olteanu, D., Spannagel, M.: The XML
Stream Query Processor SPEX. ICDE 2005, pp. 1120–1121 (2005)

[6] Candan, K.S., Hsiung, W.-P., Chen, S., Tatemura, J., Agrawal, D.: AFilter: Adaptable
XML Filtering with Prefix-Caching and Suffix-Clustering. VLDB 2006, pp. 559–570
(2006)

[7] Chan, C.Y., Felber, P., Garofalakis, M.N., Rastogi, R.: Efficient Filtering of XML
Documents with XPath Expressions. ICDE 2002, pp. 235–244 (2002)

[8] Chen, Y., Davidson, S.B., Zheng, Y.: An Efficient XPath Query Processor for XML
Streams. In: Proceedings of 22nd International Conference on Data Engineering (ICDE)
(to appear, 2006)

[9] Diao, Y., Rizvi, S., Franklin, M.J.: Towards an Internet-Scale XML Dissemination
Service. In: Proceedings of VLDB 2004 (August 2004)

[10] Franceschet, M.: XPathMark: An XPath Benchmark for the XMark Generated Data. In:
Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M., Unland, R. (eds.)
XSym 2005. LNCS, vol. 3671, pp. 129–143. Springer, Heidelberg (2005)

[11] Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath Queries.
VLDB 2002 (2002)

[12] Green, T.J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML Streams
with Deterministic Automata and Stream Indexes Published in ACM TODS, vol. 29(4),
pp. 752–788 (December 2004)

[13] Gupta, A., Suciu, D.: Stream Processing of XPath Queries with Predicate. In: Proceeding
of ACM SIGMOD Conference on Management of Data (2003)

 Evaluating XPath Queries on XML Data Streams 113

[14] Ives, Z.G., Halevy, A.Y., Weld, D.S.: An XML query engine for network-bound data.
VLDB J. 11(4), 380–402 (2002)

[15] Josifovski, V., Fontoura, M., Barta, A.: Querying XML streams. VLDB J. 14(2), 197–210
(2005)

[16] NewsML 1.2: News Markup Language (October 2003) http://www.newsml.org/
[17] NITF 3.3: News Industry Text Format, http://www.nitf.org/
[18] Olteanu, D., Kiesling, T., Bry, F.: An Evaluation of Regular Path Expressions with

Qualifiers against XML Streams. ICDE 2003, pp. 702–704 (2003)
[19] Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. EDBT Workshops

2002, pp. 109–127 (2002)
[20] Peng, F., Chawathe, S.S.: XPath Queries on Streaming Data. In: Proceedings of the ACM

SIGMOD International Conference on Management of Data. June 9-12 2003, San Diego,
California (2003)

[21] SAXON - XSLT and XQUERY Prozessor Version 8.8.0.4. 2006
http://saxon.sourceforge.net/

[22] Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark: A
Benchmark for XML Data Management. VLDB 2002, pp. 974–985 (2002)

	Evaluating XPath Queries on XML Data Streams
	Introduction
	Motivation and Paper Organization
	Query Language
	General Assumptions and Problem Definition

	Our Solution
	Binary SAX Event Streams
	Decomposition and Normalization of XPath Query Expressions
	Transforming a Filter-Free XPath Query into an XPath Automaton
	Evaluating Filter-Free XPath Queries Using XPath Automata
	Evaluation of Automata for XPath Expressions with Predicate Filters

	Evaluation of Our Prototype Implementation
	Relation to Other Works
	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

