
T.-J. Tarn et al. (Eds.): Robot. Weld., Intellige. & Automation, LNCIS 362, pp. 71–82, 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007

An Efficient Method for Collision Detection and
Distance Queries in a Robotic Bridge
Maintenance System

J. Xu1, D.K. Liu1, and G. Fang2

1 ARC Centre of Excellence for Autonomous Systems (CAS), Faculty of Engineering, University
of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
{jiex, dkliu}@eng.uts.edu.au

2 School of Engineering, University of Western Sydney, Locked Bag 1797, Penrith South DC
1797, Australia
g.fang@uws.edu.au

Abstract. When applying autonomous industrial robotic systems in an unknown/partially known
or cluttered environment, mapping and representation of the environment as well as collision
detection becomes crucial. Existing techniques in these areas are generally complex and
computationally expensive to implement. In this paper an efficient sphere representation method
is introduced for environment representation, collision detection and distance queries. In
particular, this method is designed for the application in an autonomous bridge maintenance
system. Simulation results show that this method is effective in environment representation and
collision detection. Furthermore, the proposed method is also computationally efficient for
real-time implementation.

1 Introduction

Industrial robots have been widely used in manufacturing, painting, welding and
material handling. Most applications require industrial robots to perform repetitive
jobs. Once they are programmed, they will repeat the same movements by following
pre-planned paths. When there are uncertainties in either the robot work environment
or the robot locations, the robot needs to “know” or “resolve” these uncertainties
before it can take any actions.

Therefore, when industrial robots are to be used in the maintenance of large and
complex infrastructures, such as steel bridges, the traditional systems need to be
extended to deal with the major challenges that include:

1) Time critical: the robot has to be able to detect potential collisions and take
actions in real-time.

2) Varying environment and non repetitive tasks: since the robot will be facing
different structures or different aspects of the same structure, the robot is
required to move in different paths. Furthermore, due to the non repetitive
nature of the tasks, the planning and collision detection for the robot have to be
performed in real-time.

72 J. Xu, D.K. Liu, and G. Fang

3) Complex and tight environment: the structure, or the environment may be
complicated or cluttered, and the work environment is small and crowded
compared to the robotic work place in a workshop. Thus, efficient collision
detection and avoidance become critical and difficult problems that must be
solved in real-time.

4) Partially known environment: even though the CAD drawings of a structure or
bridge always exist, it is difficult to guarantee that all refurbishments and
upgrades are recorded in the drawings. Thus, the environment is most likely to
be partially known.

These challenges have led to the need of developing effective and efficient methods
to accurately map the environment, detect potential collisions and plan collision-free
paths.

In general, the path planning in such applications as infrastructure maintenance
uses the geometry information of the structure to generate an effective and efficient
trajectory to cover the structure surface that needs to be treated. Any potential
collision must be detected to verify if the entire trajectory is “valid”, i.e.,
collision-free.

When using the robot for infrastructure maintenance, such as steel bridge cleaning,
the accuracy of the robotic system is not as critical as in traditional applications such
as welding and material handling. This gives some flexibility in developing the
control algorithm.

In this research, an efficient sphere based approach is introduced for environment
representation, virtual surface generation, collision detection, and robot arm pose
calculation for applications in an autonomous robotic bridge maintenance system,
based on the environmental map obtained from mapping. In this approach, the
environment and the robotic arm are represented with a number of spheres, which
give a simple and quick way for collision detection and distance queries. This
approach will be presented in Section 3 after the review of related work in Section 2.
Section 4 presents the simulation results, which is followed by discussions and
conclusions in Section 5.

2 Related Works

Collision detection and distance measurement is a time-consuming but important task
when an industrial robot is applied in a crowded environment. The computational
time of intersection test and distance measurement highly depends on the types of
primitives, the number of primitives (or the number of objects) and the algorithms
used [1].

The general approach to solve this problem is to use hierarchy of bounding volume
which is suitable for performing 3D proximity queries between general polyhedra [2].
The volumes can be discrete orientation polytope (k-DOPs) [3], oriented bounding
boxes (OBB) [4], spheres [5]-[10], axis aligned bounding boxes (AABB) [4][11],
swept sphere volumes (SSV) [12][13], convex hull [4][14], ellipsoids [15] or spherical
shells [16], depending upon the requirements of computational time and accuracy.

 An Efficient Method for Collision Detection and Distance Queries 73

Although OBBs, k-DOPs and ellipsoids can describe an object more precisely than
spheres and AABBs in most cases, they are more time consuming [4]. Hubbard [5][6]
used Octree and medial-axis surface to generate spheres and Bradshaw [7] improved
it by using adaptive medial-axis approximation. Pobil et al. [8]-[10] used spherical
approximation to represent a robot arm and heuristic methods to build the hierarchy
and refine sub-region when it is necessary.

Distance query is more computationally expensive than collision detection because
of additional geometric analysis and distance calculation [18]. Johnson et al. [19] used
OBB and AABB to measure the distance under a lower-upper bound tree framework.
One benefit of OBB is that the tree does not need to be recomputed when the
orientation of an object changes [17]. However, the algorithm for building an OBB
Tree is more expensive than AABB in terms of computational time.

Okada et al. [11] and Caselli et al. [20] evaluated most of the proximity query
packages (I-COLLIDE, RAPID, V-COLLIDE, SOLID, V-Clip, PQP, and SWIFT)
using the C/C++ platform, and found the performance was highly dependent on the
problem to be solved.

Reichenbach et al. [21] used OBB to perform on-line trajectory re-planning. Redon
et al. [22][23] introduced a general method, continuous collision detection (CCD), to
detect possible collisions between two collision-free way-points.

In general, the sphere based approach is computationally more efficient than the
rectangle based methods. As a result, in the applications where accuracy is less
critical than efficiency, a sphere representation should be used.

3 The Efficient Spherical Approach

As discussed in Section 2, the spherical approximation approach has been investigated
by many researchers for object and robotic arm representation. In this section, a
simplified spherical approach is presented for environment representation, distance
queries and robot joint pose calculation in an application to steel bridge maintenance.

3.1 The Efficient Spherical Representation

Conventionally, spheres have been used to approximate an object by minimising the
difference between the real object and the virtual object represented by the spheres. In
this research, however, the difference between the virtual and the real objects is used as
a buffer to prevent the collision between the environment and the robotic system. A set
of spheres can create a safety strip between the robot and the environment. Thus,
instead of trying to minimise the difference, we determine the difference value based on
the robot speed and required safety distance between the robot arm and the
environment.

Fig. 1 shows the spherical representation of a robot arm and a environment
consisting of I-beams and bridge deck in a bridge structure. Five spheres with different
radius are used to represent the robotic arm. A number of spheres with the same radius
are used to represent I-beams and the bridge deck.

74 J. Xu, D.K. Liu, and G. Fang

Fig. 1. Spherical representation of a robot arm (left) and I-beams and bridge deck (right)

With this spherical representation of the environment, the buffer (the shaded area in
Fig. 2a) is used for collision avoidance. The minimum difference in distance, Ds, is
defined as the safety distance (Fig. 2a) which is greater than or equal to the preset
requirement Dsmin, i.e. Ds Dsmin. With this safety distance requirement, the distance
between the two adjacent spheres, d, can be calculated as:

2
2

2
21)()(2 sDRRRd +−+×= (1)

Where R1 is the radius of the sphere representing the environment and R2 is the smallest
radius among the 5 spheres representing the robot arm (Fig. 2b). The centres of the
environment spheres, e.g., O1 and O2, are located on the real surface.

Fig. 2. (a) The buffer area used as the safety area (left) and (b) distance calculation (right)

In real-time collision detection and distance queries between the robot arm and the
environment presented by the spheres, the distance can be simply calculated according
to the centres of the robot spheres and the environmental spheres:

{ }222)()()(min ejriejriejri ZZYYXXD −+−+−=

er NjNi ,...,2,1;...,,2,1 ==∀

(2)

 An Efficient Method for Collision Detection and Distance Queries 75

where (Xri, Yri, Zri) is the centre of the robot arm spheres, Nr is the number of spheres
used to represent the robot arm. (Xej, Yej, Zej) is the centre of a sphere representing the
environment and close to the robot arm. Ne is the number of spheres in the environment
and close to the robot arm. Although this is an approximation, safety distance Dsmin is
guaranteed.

The number of spheres used to represent the environment has a significant effect on
the computational efficiency of collision detection and distance queries. The number
and the radius are determined based on the complexity of the environment, safety
distance requirement, maximum moving speed of the robot arm, etc. On a flat surface
and with slow robot moving speed, the number of spheres, Ns, for the surface
representation can be approximately calculated as:

+×+= 11 21

d

L

d

L
N s

 (3)

Where, L1 and L2 are the length and width of the surface, respectively.

3.2 Virtual Surface

With the spherical representation of an environment, surface of the buffer area forms
what can be called a virtual surface (Fig. 3a) which prevents the robot arm from
penetrating into the buffer area. Fig. 3b shows a part of a virtual surface in 3D. The
virtual surface is a hard constraint to the robot arm movement in a 3D environment
and is helpful for analysing any possible collisions and the motion of the robot arm.

Fig. 3. (a) Virtual surface generation (left) and (b) a virtual surface in 3D (right)

3.3 Optimal Pose Calculation Based on the Spherical Representation

The distance between the robot arm and the environment, D, is used to determine the
joint movement. Instead of using the traditional inverse kinematics method, an
optimisation based pose calculation approach is applied. This optimisation method can
effectively avoid singularity which occurs commonly in the inverse kinematic
solutions. It can also obtain the optimal pose for joint movements by satisfying various
constraints. The objective function of the pose selection is:

()543210min ffffff
j

+++++
θ

 (4)

76 J. Xu, D.K. Liu, and G. Fang

Where, θj are the joint angles of the robot (j = 1, 2, …, 6) and subjected to the
constraints of the robot joint movements. f0, f1, …, f5 are the measurement vectors (or
residual vectors).

Fig. 4. x, y and z represent target orientation; x`, y` and z` represent current �����������

The difference between the end-effector/nozzle’s current position and the target
position is defined as error vector (Fig.4). End-effector/nozzle’s position and
orientation are expressed in a 4×4 matrix:

=

1000
zzzz

yyyy

xxxx

pasn

pasn

pasn

T

(5)

where the top left 3×3 elements define the orientation in x, y and z directions, p x, py and
pz represent the position.

f0 = (error vector)�(x` direction) (6)

f1 = (error vector)�(y` direction) (7)

f0 and f1 are used to make sure that the nozzle is pointing at the target. In addition, the
angle between z' direction and z direction is constrained in the range of [-45°, +45°].
This constraint is expressed in the following equation:

f2 =)45()45(oo kk ee −+− + αα (8)

where α is the angle between z` and z, k is a non-negative slope coefficient. f3
represents the distance between the nozzle and its target position:

f3 = ||distance vector|| (9)

f4 represents the constraints of robot joint angles and is expressed in the following
equation:

f4 =
=

−−− +
6

1

)max()min(
)(

j

jjjkjjjk
ee

θθ
 (10)

 An Efficient Method for Collision Detection and Distance Queries 77

where θj is the jth joint angle while minj and maxj represent the minimum and the
maximum allowed joint angles of the jth joint of the robot. f5 is a function of the
distance between the robot arm and the environment represented by the spheres:

=

×−=
n

i

iDkef
1

5 (11)

where, n is the number of distance queries; and Di is the distance between the robot arm
and the environment and is calculated in Equation (2).

By minimising the objective functions, the angular displacement of each joint, θj, of
the robot arm at any instance can be obtained. A least square algorithm [24] is
employed to solve the optimal pose selection problem.

4 Simulation Results

Simulations are conducted based on a Denso robot (model VM-6083D-W). It is
assumed that the robot is used to clean a steel bridge that consists of I-beams and a
deck (Fig.5a). The Denso robot has 6 joints and is placed between the two I-beams
under the deck. The robot joint ranges of θ1 to θ6 are listed in Table 1.

Fig. 5. (a) The robot and the bridge structure (left); (b) a path from A, B, C, D, E to F along the
I-beam, arrows point to the surface represent the orientation of the nozzle (right)

At a position, the robot will clean one section of the bridge. The paths of the robot
arm for cleaning the section are designed by a path planner. Fig.5b shows an example
path along the surface of an I-beam from point A, B, C, D, E, to F. The arrows in the
figure represent the orientation (perpendicular to the surface) of the cleaning nozzle.

Table 1. Denso VM-6083D-W joint angle range (degree)

 Minimum Maximum

θ1 -170 170
θ2 -90 135
θ3 -10 165
θ4 -185 185
θ5 -120 120
θ6 -360 360

78 J. Xu, D.K. Liu, and G. Fang

Fig. 6. A path and nozzle orientation in a strictly constrained structural environment

88 pre-defined waypoints are set along the path from A to F. The robot moves the
cleaning nozzle installed on the robot end-effector along the path. In this movement,
the nozzle orientation can vary between 45o to 90o in order to maintain the cleaning
quality and productivity. The challenge of this operation is that the robot arm needs to
move from the top side to the bottom side of the I-beam with a 180º orientation change
in a tightly constrained environment. Fig.6 shows the robot arm represented by 5
spheres and the spherical approximation of the environment. A path from the top is also
shown with nozzle orientation displayed.

The radii of the 5 spheres of the robot arm are 0.2m, 0.18m, 0.10m, 0.044m, and
0.11m, respectively, based on the size of the robot arm. The spheres presenting the
I-beams and the deck have the radius of 0.02m. When the minimum safety distance is
Dsmin=0.006m and R2 is 0.044m (the 5th radius), d is 0.08m according to Equation (1).
Thus, d should be less than or equal to 0.08m.

When the robot moves along the path, the distances between the robot arm and the
environment are calculated for collision detection at the waypoints. In addition, if any
one of the 6 joint angles changes significantly (e.g., more than 10º) between the
consecutive waypoints, collision should also be checked during the robot movement
between these two waypoints although there is no collision at the two waypoints. This
collision detection is simply done by adding more points between the two and then
checking those added points.

Fig.7 shows how the robot tracks a path and satisfies the nozzle orientation
requirement without any collision. The four figures in Fig.7 show different robot arm
positions and nozzle orientations. The robot joint movements at each time step are
calculated by the optimal pose calculation method discussed in Section 3.3.

The simulation results show that the movements of the 6 joints from waypoint to
waypoint are continuous and smooth. The spherical approach based optimal pose
selection method can find appropriate poses for joints to make the robot motion smooth
and collision free. Even when the robot is dealing with the bottom surface of the I-beam

 An Efficient Method for Collision Detection and Distance Queries 79

(a) (b)

(c) (d)

Fig. 7. The robot moves from the top to the bottom of the I-beam

where the nozzle orientation changes sharply, the selected robot movement still does
not cause any collisions. Fig. 8a shows how the joint angle changes along the path from
waypoints 1 to 88. It can be seen that the 6th joint has significant angular changes in its
movement from waypoints 14 to 20 and from waypoints 75 to 77. Collision detection in
these two parts of the path confirms that it is collision free.

The distance between the robot arm and the environment during the movement of
the robot along the path is shown in Fig.8b. Seven distance queries are recorded during
the process. They are d1 to d5 representing the distance between the five spheres of the
robot arm and the environment, d6, the distance from the end-effector of the robot arm
to the environment and d7 the distance from the nozzle (installed on the end-effector) to
the environment. It can be seen that d6 and d7 increase sharply from waypoints 74 to 88
while others decrease. This is because the nozzle and the end-effector of the robot arm
move away from the deck when they approach the bottom surface of the I-beam. It can
also be seen that all the distances are greater than 0 at any time along the path, which
demonstrates that there is no collision.

In order to investigate the efficiency of the spherical approach introduced in this
research, PQP approach is also applied. Both approaches were used for distance queries
and collision detections on different paths. Due to the space limitation of the paper,
only the results of six (6) randomly selected paths are shown. The computational time
required by the two approaches is presented in Table 2. It can be seen that, for the
application discussed in this research, the represented spherical approach is more
efficient than the PQP. It is clear from the table that the average reduction of
computational time is about 80%.

80 J. Xu, D.K. Liu, and G. Fang

Fig. 8. (a) The changes of angles (unit: degree) of joints q1 to q6 (upper), (b) distances between
the spheres of the robot arm and the environment (bottom)

Table 2. Efficiency comparison

1 2 3 4 5 6

PQP 89.2 83.8 82.4 81.0 83.3 75.4
The approach in this paper 18.9 16.6 14.5 13.5 9.6 13.8

Reduction (%) 78.7 80.2 82.5 83.3 88.4 81.7

5 Conclusions

In this paper, a simplified spherical approach is studied for application in a robotic
bridge maintenance system. This approach is shown to be computationally efficient
for distance queries and collision detection in complex and constrained environments.
Although this efficiency gain is at the cost of a reduced accuracy in representing the

Waypoint

Waypoint

Methods

Path Computational time (sec)

 An Efficient Method for Collision Detection and Distance Queries 81

robot and the environment, it is acceptable for applications where the computational
time is more critical than accuracy. This simplified spherical approach can be used to
represent the robot and the environment with much less number of spheres. It can
also generate a virtual surface that can be used to evaluate the safety distance
requirement in collision avoidance. When combined with an optimization method,
this sperical representation approach can be successfully used to calculate the joint
movements of a robot arm without collision with the environment.

We are working now to improve the method to: (1) achieve an automatic sphere
generation strategy to minimize human intervention; (2) test in more complex
environments; and (3) develop collision avoidance strategies using the distance
information obtained from this approach.

References

1. Schwarzer, F., Saha, M., and Latombe, J. C., Adaptive Dynamic Collision Checking for
Single and Multiple Articulated Robots in Complex Environments, IEEE Transactions on
Robotics, Vol. 21, No. 3, June 2005.

2. Weghorst, H., Hopper, G., and Greenberg, D. P., Improved Computational Methods for Ray
Tracing, ACM Transaction on Graphics, Vol. 3, No. 1, January 1984.

3. Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., and Zikan K., Efficient Collison
Detection Using Bounding Volume Hierarchies of k-DOPs, IEEE Transactions on
Visualization and Computer Graphics, Vol. 4, No. 1, 1998.

4. Gottschalk, S., Lin, M.C., and Manocha, D., OBBTree: A Hierarchical Structure for Rapid
Interference Detection, Proc. of 23rd Annual Conference on Computer Graphics and
Interactive Techniques, ACM press, 1996.

5. Hubbard, P.M., Interactive Collision Detection, Proc. of IEEE Symposium on Research
Frontier in VR, 1993.

6. Hubbard, P.M., Approximating Polyhedra with Spheres for Time-Critical Collision
Detection, ACM Transaction on Graphics, Vol. 15, No. 3, 1996.

7. Bradshaw, G., O’Sullivan, C., Adaptive medial-axis approximation for sphere-tree
construction, ACM Transactions on Graphics, Vol. 23, 2004.

8. Del Pobil, A.P., Serna, M. A., Llovert, J., A new representation for Collision Avoidance and
Detection, Proceeding of the IEEE International Conference on Robotics and Automation,
1992.

9. Del Pobil, A.P., Pkrez, M., Martinez, B., A Practical Approach to Collision Detection
between General Objects, Proceeding of the IEEE International Conference on Robotics
and Automation, 1996.

10. Martinez-Salvador, B., Perez-Francisco, M., Del Pobil, A.P., Collision Detection between
Robot Arms and People, Journal of Intelligent and Robotic Systems, Kluwer, Vol. 38, 2003

11. Okada, K., Inaba, M., Inoue, H., Real-Time and Precise Self Collision Detection System for
Humanoid Robots, Proceeding of the IEEE International Conference on Robotics and
Automation, 2005.

12. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D., Fast Distance Queries with Rectangular
Swept Sphere Volumes, Proceeding of the IEEE International Conference on Robotics and
Automation, 2000.

13. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D., Fast Distance Queries with Swept
Sphere Volumes, Department of Computer Science, UNC, Rep. TR99-081, 1999.

82 J. Xu, D.K. Liu, and G. Fang

14. Ehmann, S., Lin, M.C., Accelerated Distance Computation between Convex Polyhedra by
Multi-Level Marching, Technical Report, Department of Computer Science, UNC at Chapel
Hill, 1999.

15. Kimoto, T., Yasuda, Y., Shape Description and Representation by Ellipsoids, Signal
Processing: Image Communication, Vol. 9, No. 3, Elsevier Science, March 1997.

16. Fünfzig, C., Ullrich, T., Fellner, D.W., Hierar chical Spherical Distance Fields for Collision
Detection, Computer Graphics and Applications, IEEE, 26(1), 2006.

17. Sanchez-Ante, G., Single-Query Bi-Directional Motion Planning with Lazy Collision
Checking, PhD thesis, Department of Computer Science, Instituto Tecnologico Y De
Estudios, Mexico.

18. Latombe, J.-C., Robot Motion Planning, Kluwer Academic, 1991.
19. Johnson, D.E., Cohen, E., A Framework for Efficient Minimum Distance Computations,

Proceeding of the IEEE International Conference on Robotics and Automation, 1998.
20. Caselli, S., Reggiani, M., Mazzoli, M., Exploiting Advanced Collision Detection Libraries

in a Probabilistic Motion Planner, Journal of WSCG, 10(1-3), 2002.
21. Reichenbach, T., Kovacic, Z., Collision-Free Path Planning in Robot Cells Using Virtual 3D

Collision Sensor, Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 683~704, ARS/plV,
2005.

22. Redon, S., Kim, Y.J., Lin, M.C., Manocha, D., Fast Continuous Collison Detection for
Articulation Models, ACM Symposium on Solid Modeling and Application, 2004.

23. Redon, S., Fast Continuous Collision Detection and Handling for Desktop Virtual
Prototyping, Virtual Reality, Springer, Vol. 8, No. 1, 2004.

24. Nocedal, J. and Wright, S. J., Numerical Optimization, Springer-Verlag, New York, 1999

