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Abstract. When applying autonomous industrial robotic systems in an unknown/partially known 
or cluttered environment, mapping and representation of the environment as well as collision 
detection becomes crucial. Existing techniques in these areas are generally complex and 
computationally expensive to implement. In this paper an efficient sphere representation method 
is introduced for environment representation, collision detection and distance queries. In 
particular, this method is designed for the application in an autonomous bridge maintenance 
system. Simulation results show that this method is effective in environment representation and 
collision detection. Furthermore, the proposed method is also computationally efficient for 
real-time implementation. 

1   Introduction 

Industrial robots have been widely used in manufacturing, painting, welding and 
material handling. Most applications require industrial robots to perform repetitive 
jobs. Once they are programmed, they will repeat the same movements by following 
pre-planned paths. When there are uncertainties in either the robot work environment 
or the robot locations, the robot needs to “know” or “resolve” these uncertainties 
before it can take any actions. 

Therefore, when industrial robots are to be used in the maintenance of large and 
complex infrastructures, such as steel bridges, the traditional systems need to be 
extended to deal with the major challenges that include: 

1) Time critical: the robot has to be able to detect potential collisions and take 
actions in real-time.  

2) Varying environment and non repetitive tasks: since the robot will be facing 
different structures or different aspects of the same structure, the robot is 
required to move in different paths.  Furthermore, due to the non repetitive 
nature of the tasks, the planning and collision detection for the robot have to be 
performed in real-time. 
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3) Complex and tight environment: the structure, or the environment may be 
complicated or cluttered, and the work environment is small and crowded 
compared to the robotic work place in a workshop. Thus, efficient collision 
detection and avoidance become critical and difficult problems that must be 
solved in real-time. 

4) Partially known environment: even though the CAD drawings of a structure or 
bridge always exist, it is difficult to guarantee that all refurbishments and 
upgrades are recorded in the drawings. Thus, the environment is most likely to 
be partially known.  

These challenges have led to the need of developing effective and efficient methods 
to accurately map the environment, detect potential collisions and plan collision-free 
paths. 

In general, the path planning in such applications as infrastructure maintenance 
uses the geometry information of the structure to generate an effective and efficient 
trajectory to cover the structure surface that needs to be treated. Any potential 
collision must be detected to verify if the entire trajectory is “valid”, i.e., 
collision-free. 

When using the robot for infrastructure maintenance, such as steel bridge cleaning, 
the accuracy of the robotic system is not as critical as in traditional applications such 
as welding and material handling. This gives some flexibility in developing the 
control algorithm.  

In this research, an efficient sphere based approach is introduced for environment 
representation, virtual surface generation, collision detection, and robot arm pose 
calculation for applications in an autonomous robotic bridge maintenance system, 
based on the environmental map obtained from mapping. In this approach, the 
environment and the robotic arm are represented with a number of spheres, which 
give a simple and quick way for collision detection and distance queries. This 
approach will be presented in Section 3 after the review of related work in Section 2. 
Section 4 presents the simulation results, which is followed by discussions and 
conclusions in Section 5. 

2   Related Works 

Collision detection and distance measurement is a time-consuming but important task 
when an industrial robot is applied in a crowded environment. The computational 
time of intersection test and distance measurement highly depends on the types of 
primitives, the number of primitives (or the number of objects) and the algorithms 
used [1].  

The general approach to solve this problem is to use hierarchy of bounding volume 
which is suitable for performing 3D proximity queries between general polyhedra [2]. 
The volumes can be discrete orientation polytope (k-DOPs) [3], oriented bounding 
boxes (OBB) [4], spheres [5]-[10], axis aligned bounding boxes (AABB) [4][11], 
swept sphere volumes (SSV) [12][13], convex hull [4][14], ellipsoids [15] or spherical 
shells [16], depending upon the requirements of computational time and accuracy. 
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Although OBBs, k-DOPs and ellipsoids can describe an object more precisely than 
spheres and AABBs in most cases, they are more time consuming [4]. Hubbard [5][6] 
used Octree and medial-axis surface to generate spheres and Bradshaw [7] improved 
it by using adaptive medial-axis approximation. Pobil et al. [8]-[10] used spherical 
approximation to represent a robot arm and heuristic methods to build the hierarchy 
and refine sub-region when it is necessary. 

Distance query is more computationally expensive than collision detection because 
of additional geometric analysis and distance calculation [18]. Johnson et al. [19] used 
OBB and AABB to measure the distance under a lower-upper bound tree framework. 
One benefit of OBB is that the tree does not need to be recomputed when the 
orientation of an object changes [17]. However, the algorithm for building an OBB 
Tree is more expensive than AABB in terms of computational time. 

Okada et al. [11] and Caselli et al. [20] evaluated most of the proximity query 
packages (I-COLLIDE, RAPID, V-COLLIDE, SOLID, V-Clip, PQP, and SWIFT) 
using the C/C++ platform, and found the performance was highly dependent on the 
problem to be solved. 

Reichenbach et al. [21] used OBB to perform on-line trajectory re-planning.  Redon 
et al. [22][23] introduced a general method, continuous collision detection (CCD), to 
detect possible collisions between two collision-free way-points.  

In general, the sphere based approach is computationally more efficient than the 
rectangle based methods. As a result, in the applications where accuracy is less 
critical than efficiency, a sphere representation should be used. 

3   The Efficient Spherical Approach 

As discussed in Section 2, the spherical approximation approach has been investigated 
by many researchers for object and robotic arm representation. In this section, a 
simplified spherical approach is presented for environment representation, distance 
queries and robot joint pose calculation in an application to steel bridge maintenance. 

3.1   The Efficient Spherical Representation 

Conventionally, spheres have been used to approximate an object by minimising the 
difference between the real object and the virtual object represented by the spheres. In 
this research, however, the difference between the virtual and the real objects is used as 
a buffer to prevent the collision between the environment and the robotic system. A set 
of spheres can create a safety strip between the robot and the environment. Thus, 
instead of trying to minimise the difference, we determine the difference value based on 
the robot speed and required safety distance between the robot arm and the 
environment.  

Fig. 1 shows the spherical representation of a robot arm and a environment 
consisting of I-beams and bridge deck in a bridge structure. Five spheres with different 
radius are used to represent the robotic arm. A number of spheres with the same radius 
are used to represent I-beams and the bridge deck.  
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Fig. 1. Spherical representation of a robot arm (left) and I-beams and bridge deck (right) 

With this spherical representation of the environment, the buffer (the shaded area in 
Fig. 2a) is used for collision avoidance. The minimum difference in distance, Ds, is 
defined as the safety distance (Fig. 2a) which is greater than or equal to the preset 
requirement Dsmin, i.e. Ds  Dsmin. With this safety distance requirement, the distance 
between the two adjacent spheres, d, can be calculated as:    
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Where R1 is the radius of the sphere representing the environment and R2 is the smallest 
radius among the 5 spheres representing the robot arm (Fig. 2b). The centres of the 
environment spheres, e.g., O1 and O2, are located on the real surface.  

     

Fig. 2. (a) The buffer area used as the safety area (left) and (b) distance calculation (right) 

In real-time collision detection and distance queries between the robot arm and the 
environment presented by the spheres, the distance can be simply calculated according 
to the centres of the robot spheres and the environmental spheres: 
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where (Xri, Yri, Zri) is the centre of the robot arm spheres, Nr is the number of  spheres 
used to represent the robot arm. (Xej, Yej, Zej) is the centre of a sphere representing the 
environment and close to the robot arm. Ne is the number of spheres in the environment 
and close to the robot arm. Although this is an approximation, safety distance Dsmin is 
guaranteed. 

The number of spheres used to represent the environment has a significant effect on 
the computational efficiency of collision detection and distance queries. The number 
and the radius are determined based on the complexity of the environment, safety 
distance requirement, maximum moving speed of the robot arm, etc. On a flat surface 
and with slow robot moving speed, the number of spheres, Ns, for the surface 
representation can be approximately calculated as: 
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Where, L1 and L2 are the length and width of the surface, respectively.  

3.2   Virtual Surface 

With the spherical representation of an environment, surface of the buffer area forms 
what can be called a virtual surface (Fig. 3a) which prevents the robot arm from 
penetrating into the buffer area. Fig. 3b shows a part of a virtual surface in 3D. The 
virtual surface is a hard constraint to the robot arm movement in a 3D environment 
and is helpful for analysing any possible collisions and the motion of the robot arm. 

    

Fig. 3.  (a) Virtual surface generation (left) and (b) a virtual surface in 3D (right) 

3.3   Optimal Pose Calculation Based on the Spherical Representation 

The distance between the robot arm and the environment, D, is used to determine the 
joint movement. Instead of using the traditional inverse kinematics method, an 
optimisation based pose calculation approach is applied. This optimisation method can 
effectively avoid singularity which occurs commonly in the inverse kinematic 
solutions. It can also obtain the optimal pose for joint movements by satisfying various 
constraints. The objective function of the pose selection is: 
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Where, θj are the joint angles of the robot (j = 1, 2, …, 6) and subjected to the 
constraints of the robot joint movements. f0, f1, …, f5 are the measurement vectors (or 
residual vectors).  

 

Fig. 4. x, y and z represent target orientation; x`, y` and z` represent current ����������� 

The difference between the end-effector/nozzle’s current position and the target 
position is defined as error vector (Fig.4). End-effector/nozzle’s position and 
orientation are expressed in a 4×4 matrix: 
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where the top left 3×3 elements define the orientation in x, y and z directions, p x, py and 
pz represent the position. 

f0 = (error vector)�(x` direction) (6) 

f1 = (error vector)�(y` direction) (7) 

f0 and f1 are used to make sure that the nozzle is pointing at the target. In addition, the 
angle between z' direction and z direction is constrained in the range of [-45°, +45°]. 
This constraint is expressed in the following equation: 

f2 = )45()45( oo kk ee −+− + αα  (8) 

where α is the angle between z` and z, k is a non-negative slope coefficient. f3 
represents the distance between the nozzle and its target position: 

f3 = ||distance vector|| (9) 

f4 represents the constraints of robot joint angles and is expressed in the following 
equation: 
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where θj is the jth joint angle while minj and maxj represent the minimum and the 
maximum allowed joint angles of the jth joint of the robot. f5 is a function of the 
distance between the robot arm and the environment represented by the spheres:  
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where, n is the number of distance queries; and Di is the distance between the robot arm 
and the environment and is calculated in Equation (2). 

By minimising the objective functions, the angular displacement of each joint, θj, of 
the robot arm at any instance can be obtained. A least square algorithm [24] is 
employed to solve the optimal pose selection problem. 

4   Simulation Results 

Simulations are conducted based on a Denso robot (model VM-6083D-W). It is 
assumed that the robot is used to clean a steel bridge that consists of I-beams and a 
deck (Fig.5a). The Denso robot has 6 joints and is placed between the two I-beams 
under the deck. The robot joint ranges of θ1 to θ6 are listed in Table 1. 

    

Fig. 5.  (a) The robot and the bridge structure (left); (b) a path from A, B, C, D, E to F along the 
I-beam, arrows point to the surface represent the orientation of the nozzle (right) 

At a position, the robot will clean one section of the bridge. The paths of the robot 
arm for cleaning the section are designed by a path planner. Fig.5b shows an example 
path along the surface of an I-beam from point A, B, C, D, E, to F. The arrows in the 
figure represent the orientation (perpendicular to the surface) of the cleaning nozzle. 

Table 1. Denso VM-6083D-W joint angle range (degree) 

 Minimum Maximum 

θ1 -170 170 
θ2 -90 135 
θ3 -10 165 
θ4 -185 185 
θ5 -120 120 
θ6 -360 360 
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Fig. 6. A path and nozzle orientation in a strictly constrained structural environment  

88 pre-defined waypoints are set along the path from A to F. The robot moves the 
cleaning nozzle installed on the robot end-effector along the path. In this movement, 
the nozzle orientation can vary between 45o to 90o in order to maintain the cleaning 
quality and productivity. The challenge of this operation is that the robot arm needs to 
move from the top side to the bottom side of the I-beam with a 180º orientation change 
in a tightly constrained environment. Fig.6 shows the robot arm represented by 5 
spheres and the spherical approximation of the environment. A path from the top is also 
shown with nozzle orientation displayed.  

The radii of the 5 spheres of the robot arm are 0.2m, 0.18m, 0.10m, 0.044m, and 
0.11m, respectively, based on the size of the robot arm. The spheres presenting the 
I-beams and the deck have the radius of 0.02m. When the minimum safety distance is 
Dsmin=0.006m and R2 is 0.044m (the 5th radius), d is 0.08m according to Equation (1). 
Thus, d should be less than or equal to 0.08m. 

When the robot moves along the path, the distances between the robot arm and the 
environment are calculated for collision detection at the waypoints. In addition, if any 
one of the 6 joint angles changes significantly (e.g., more than 10º) between the 
consecutive waypoints, collision should also be checked during the robot movement 
between these two waypoints although there is no collision at the two waypoints. This 
collision detection is simply done by adding more points between the two and then 
checking those added points. 

Fig.7 shows how the robot tracks a path and satisfies the nozzle orientation 
requirement without any collision. The four figures in Fig.7 show different robot arm 
positions and nozzle orientations. The robot joint movements at each time step are 
calculated by the optimal pose calculation method discussed in Section 3.3. 

The simulation results show that the movements of the 6 joints from waypoint to 
waypoint are continuous and smooth. The spherical approach based optimal pose 
selection method can find appropriate poses for joints to make the robot motion smooth 
and collision free. Even when the robot is dealing with the bottom surface of the I-beam  
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(a)                                                       (b) 

     
(c)                                                       (d) 

Fig. 7. The robot moves from the top to the bottom of the I-beam 

where the nozzle orientation changes sharply, the selected robot movement still does 
not cause any collisions. Fig. 8a shows how the joint angle changes along the path from 
waypoints 1 to 88. It can be seen that the 6th joint has significant angular changes in its 
movement from waypoints 14 to 20 and from waypoints 75 to 77. Collision detection in 
these two parts of the path confirms that it is collision free.  

The distance between the robot arm and the environment during the movement of 
the robot along the path is shown in Fig.8b. Seven distance queries are recorded during 
the process. They are d1 to d5 representing the distance between the five spheres of the 
robot arm and the environment, d6, the distance from the end-effector of the robot arm 
to the environment and d7 the distance from the nozzle (installed on the end-effector) to 
the environment. It can be seen that d6 and d7 increase sharply from waypoints 74 to 88 
while others decrease. This is because the nozzle and the end-effector of the robot arm 
move away from the deck when they approach the bottom surface of the I-beam. It can 
also be seen that all the distances are greater than 0 at any time along the path, which 
demonstrates that there is no collision. 

In order to investigate the efficiency of the spherical approach introduced in this 
research, PQP approach is also applied. Both approaches were used for distance queries 
and collision detections on different paths. Due to the space limitation of the paper, 
only the results of six (6) randomly selected paths are shown. The computational time 
required by the two approaches is presented in Table 2. It can be seen that, for the 
application discussed in this research, the represented spherical approach is more 
efficient than the PQP. It is clear from the table that the average reduction of 
computational time is about 80%. 
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Fig. 8. (a) The changes of angles (unit: degree) of joints q1 to q6 (upper), (b) distances between 
the spheres of the robot arm and the environment (bottom)  

Table 2. Efficiency comparison 

 
1 2 3 4 5 6 

PQP 89.2 83.8 82.4 81.0 83.3 75.4 
The approach in this paper 18.9 16.6 14.5 13.5 9.6 13.8 

Reduction (%) 78.7 80.2 82.5 83.3 88.4 81.7 

5   Conclusions 

In this paper, a simplified spherical approach is studied for application in a robotic 
bridge maintenance system. This approach is shown to be computationally efficient 
for distance queries and collision detection in complex and constrained environments.  
Although this efficiency gain is at the cost of a reduced accuracy in representing the 

Waypoint 

Waypoint 

Methods 

Path Computational time (sec) 
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robot and the environment, it is acceptable for applications where the computational 
time is more critical than accuracy. This simplified spherical approach can be used to 
represent the robot and the environment with much less number of spheres.  It can 
also generate a virtual surface that can be used to evaluate the safety distance 
requirement in collision avoidance. When combined with an optimization method, 
this sperical representation approach can be successfully used to calculate the joint 
movements of a robot arm without collision with the environment.  

We are working now to improve the method to: (1) achieve an automatic sphere 
generation strategy to minimize human intervention; (2) test in more complex 
environments; and (3) develop collision avoidance strategies using the distance 
information obtained from this approach. 
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