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Abstract. In robot applications requiring interaction with a partially/unknown environment, 
mapping is of paramount importance. This paper presents an effective surface growing 
algorithm for map building based on laser scan generated point clouds. The algorithm directly 
converts a point cloud into a surface and normals form which sees a significant reduction in 
data size and is in a desirable format for planning the interaction with surfaces. It can be used in 
applications such as robotic cleaning, painting and welding. 

1   Introduction 

Due to newly introduced OH&S regulations, it is no longer desirable for humans to 
perform the highly necessary task of sandblasting to remove paint from metal 
structures such as bridges. Issues arise because of lead contaminated paints being 
removed and the likelihood of working in close proximity with asbestos. With the 
long-term health damage done by lead and asbestos being common knowledge there 
is motivation to perform a significant portion of this manual work with an 
autonomous system. 

One of the major hurdles in building an autonomous system to work in an unknown 
or partially known environment is mapping. Data must be collected and subsequently 
processed into a format for use by the autonomous system and image rendering. Due to 
the abrasive and dusty nature of sandblasting it is not possible to build the environment 
map (i.e. surfaces of structural members) using traditional techniques of lasers, 
cameras, infrared or sonar while blasting. This means that mapping of the environment 
and planning of robot paths and motion must be performed prior to the commencement 
of sandblasting. Due to time constraints where a sandblasted area requires painting 
within a couple of hours to avoid corrosion of the newly exposed metal, the time needed 
for mapping and planning must be kept to a minimum. The whole mapping process, 
from scanning an area from various locations, fusing the data, to generating surfaces 
which can be directly used for planning, control and collision detection, must be very 
fast and efficient. Therefore, an efficient 3D mapping technique is required. 

This paper explores an efficient mapping algorithm for surface generation by using 
laser scanner data at a limited number of discrete positions in an environment 
(workspace) where a 6DOF robot arm is used for cleaning or painting. This algorithm 
allows for simplicity in gathering and fusing scanned data. Generated maps can be 
used for 3D path planning, collision detection and robot control. 
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2   Related Works 

There has been work done in the past on semi-automated sandblasting systems [1, 2]. 
However, the issue of mapping the environment/area to be sandblasted was excluded 
and direct tele-operation with a camera was opted for. These systems are reliant upon 
human control, based upon human decisions and hence require direct human 
supervision. 

Much research has been performed on the creation of 3D CAD objects for CAM 
and painting with some CAD packages allowing point clouds to be imported and 
rendered. The generation of virtual objects from scans data is time consuming and 
the aim is to create enclosed objects. Software packages exist (Qhull) with the ability 
to wrap and render points into a convex hull shape. However simply rendering the 
surface is not sufficient for the application in this paper. Besides graphically 
representing an environment, the usefulness of the environment map in robot path 
and motion planning, collision detection/avoidance and control is also vital. 

Current point cloud graphing methods such as marching cubes [3], tetrahedrons [4] 
and volumetric method [5] can produce complex detailed surfaces with millions of 
triangles. Rendered images are optimised for display purposes but are not directly 
usable for planning and control. In order to identify significant surfaces additional 
processing is required. In general these methods have focused on creating hulls out of 
point clouds. However, for a robot system in complex structural environments, it is not 
possible to scan structures completely. Generally it is only possible to create an 
unwrapped 3D mesh shell which has no thickness. Processing must be directly on the 
point cloud with no assumptions on the number of view points or completeness of 
shape. Other work has been done on surface matching from a point cloud to create 
surfaces out of a point cloud [6]. This method however, is time consuming and can not 
be directly used for this application. 

Research has also been performed on information-based visual multi-robot mapping 
[7]. Alternate techniques of 3D mapping are proposed with the focus upon collision 
avoidance, [8]. These algorithms are fast but they do not build a 3D map for navigation 
of an end effector over surfaces. There are 3D mapping techniques [9, 10] by 
integrating tilted 2D scan data. However these systems are expensive, meant for longer 
range and do not focus upon detailed surface interaction with the environment. Some 
theoretical algorithms which turn point clouds directly into a path [11] can not be 
directly utilised in this application. 

Methods of facial recognition using Principal Component Analysis (PCA) have been 
examined [12, 13] as well as 2D position estimation using PCA [14]. PCA 
mathematical methods have been utilised in this paper to assist in the processing and 
reduction of 3D range data and to determine surfaces and normals. The aim for this 
present application is to map and work within the robot arm’s workspace at known 
discrete base positions, hence methods of localisation while mapping are left for future 
work. 
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3   Sandblasting Environment and Scan Acquisition 

In this sandblasting application an autonomous system will work in the environment 
underneath bridges (Fig. 1a). Tracks will be placed on the scaffold in the channels 
between sets of two I-beams. A robot arm is mounted on a base platform which 
moves along the track. The developed 3D laser scanning tool maps the environment 
to be cleaned. 

   

Fig. 1. a) Actual I-beam channel requiring mapped and sandblasted (b) The autonomous system 
(left); (c) Laser mounted on a digital servo for high precision 3D scanning (right) 

The 6DOF robot arm is able to move the end effector to various positions within its 
workspace (Fig. 1b). The 3D scanning operation is performed by a separate scanning 
tool developed from a 20 4000mm, -120° 120° URG Hokuyo 2D laser scanner 
(URG-04LX) mounted on a high accuracy, repeatable digital servo (Fig. 1c). The setup 
is inexpensive, easy to control and highly effective. 

The laser scan produces a complete 2D range data set D at 10Hz. To minimise the 
error and noise, n scans are taken at each increment. Basic filtering is performed on the 
n range values dj by first removing q outliers from either side of the data set and then 
averaging the remaining n-2q values.  
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After each scan is taken the servo is tilted by 1/3° through its -60° 60° range (Fig. 
2a). The tilt increment of 1/3° was chosen to parallel the 2D laser range scanner’s pan 
increments of 0.36° (Fig. 2b). It is desirable for the point cloud to be spaced relatively 
evenly between 2D scan sweep lines and next tilt angles (Fig. 2c). 

In a complete 2D scan the laser scanner determines the distance and angle to 
maximum of 768 points. The 120° range of the servo tilt system by increments of 1/3° 
produces 360 scanning positions ( 0.5sec). At each robot arm pose 240° pan x 120° tilt 
scan at ranges 20 4000mm can be conducted to produce a maximum of 276480 points 
in 3D space taking a maximum of 180sec. In each discrete platform position the several 
scans are taken to map the workspace. 

During successive scan iteration, the previous scan generated point cloud is 
processed to determining a valid 3D map for virtual interaction and graphical output.  
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Fig. 2. a) Tilt Scan (Side view): Increments of 1/3°; b) Pan Scan (Top view): Increments of 0.36°; 
c) 3D Scan Points on wall at 1m range (within workspace): distance between points (o=points 
within circle radius µ; x=points outside circle) 

The surfaces and identified important points, sections, features and corners can be used 
to plan an efficient collision free movement of the robot arm. 

4   The Surface Growing Algorithm 

Once the 3D point cloud has been attained the surface growing algorithm works 
towards creating a 3D occupancy grid, identifying important surface coverage points 
and generating bound planes. The algorithm is performed in several stages. First the 
workspace is divided into equally sized adjoining cubes; points are indexed to the 
cubes within which they exist. Points are then grouped around a randomly selected 
home point. The data is analysed to determine the plane of best fit for the points. This 
along with the normals is outputted. Then finally the planes and normals which make 
up the surfaces are displayed. 

4.1   Cubes Index 

Initially the workspace of the 6DOF robot arm is described by several hundred 
thousand raw data points in 3D space. This workspace is divided into adjoining cubes 
with dimensions µ. An index is developed of each cube and the points contained. 
Indexing is done very quickly taking less than a second for several hundred thousand 
points. This step reduced the time of the closest points search used in the next step, 
since searching is limited to the points in the current and surrounding indexed cubes. 
The cube index makes the calculation of the surfaces and the important points at least 
10 times quicker. 

4.2   Growing Surfaces 

The first step is to randomly select a point which is then called the home point. Then 
use the cube matrix to search the enclosing 1 and surrounding 26 cubes (Fig. 3a and 
3b) and find a set of points, P, within a certain distance, µ, from the initial home 
points (Fig. 3c). Searching the 3D cube matrix rather than the entire workspace 
reduces the calculation time to microseconds rather than seconds. 
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       (a)                    (b)              (c)                 (d) 

 
Fig. 3. a) Home point somewhere in center cube; b) Determine the distance to points with a 
cube index of the home point (red) or within surrounding 26 cubes; c) Do PCA on points within 
µ of home point to get plane; d) Register points within ±µ of the plane 

If there are enough points within the volume surrounding the home point 
(V=4/3 µ3mm), then PCA is performed on these points (Fig. 3c). This involves 
determining the covariance matrix cov(P) for this set of 3D points and then evaluating 
the 3 eigenvectors v  and corresponding eigenvalues . If there is a small enough 
correlation <  between an eigenvector and the remaining two then that eigenvector 
vmin( ) is determined to be the normal to the data set .If there are enough points within µ 
of the home point and µ of the plane (Fig. 3d), plane equations, boundaries, enclosed 
points and home points are registered. 
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An attempt is made to register all points. However, if there are insufficient points 
within µ, of a home point, then this home point will not be registered and is considered 
scanner noise. The output of this step is a number of planes (Fig. 3d).  

4.3   Graphical Output 

The planes generated can be directly used for robotic planning and collision detection. 
For the purposes of creating a graphical representation of the environment, the 
surfaces of structural members are built based upon these planes. As identified, 
rendering surfaces from point clouds has been extensively examined by other 
researchers. Conversely this Surface Growing algorithm’s aim is to identify surfaces 
to interact with from a point cloud. 

Initially a single set of points representing the surface of a sphere radius µ is 
determined (Fig. 4a). For each identified plane, shift the point-represented sphere to 
have the centre at the home point and determine the points of the sphere within a 
threshold of the plane (Fig. 4b). Finally draw a disk from the points within the threshold 
and the plane’s normal vector from the home point (Fig. 4c). The culmination of disks, 
the graphical output, is shown in section 5.3. 
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(a)  (b)  (c)  

Fig. 4. Graphing algorithm’s output planes to display surfaces: a) Point cloud represents the 
surface of a sphere with the center at home point; b) Determine pts lying  on the plane; c) Use 
points to display an approx. disk 

4.4   Important Characteristics of the Algorithm 

This algorithm combines different mathematical techniques such as 3D occupancy 
grids, principal component analysis on 3D data and point cloud analysis to create a 
novel solution to this surface growing problem. It achieves speed by a simple yet 
effective method, and is able to output results in a format optimised to meet the 
requirements of the specified application. 

5   Results and Discussion 

This section explains the application specific thresholds and the testing of the 
algorithm. The results are examined including plane/point registration, timing and 
memory reduction. Finally the usages of the algorithm outputs are discussed. 

5.1   Application Specific Thresholds 

There are several important thresholds that need to be calculated for this specific 
application. Firstly, based upon likely data produced by the laser scanning tool in the 
sandblasting environment the optimal value for µ was determined.  µ is used for: the 
dimensions of cubes that divide the workspace; the radius of the closet points sphere 
used to find the surface and the maximum distance from the points to the surface. Fig. 
5.1 describes how computational time, number of planes and percentage of point 
registered vary for µ=1 50mm. These functions are optimised so as to achieve: the 
minimum time, maximum number of planes and maximum percentage registered. It 
was found that µ=12mm produced the best results. Other considerations included the 
maximum possible cubes enclosed in a workspace, the specified laser scanner error 
(±10mm), the output of surfaces for planning and the sandblasting nozzle which 
outputs a blast stream covering a radius of 5 15mm. 

The other value that needs to be empirically evaluated was the minimum number of 
points, min(pts), that constitute a plane. Insufficient points result in planes created at 
incorrect angles since there are too few points to correctly perform Principle 
Component Analysis (PCA) upon. Requiring an excessive number of points results in 
difficulties in point registration, gaps in the surface and time inefficiency. Fig. 5.2 
shows how the time, number of planes and percentage of point registered changes with 
different values of min(pts). The graphically displayed functions were optimised to 
determine the maximum possible min(pts), which results in the maximum planes and 
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percentage of point registration, while minimizing time. The optimal result was 
determined to be min(pts) = 10 points. Additionally, by reexamining Fig. 2a and 2b and 
considering that the radius of the workspace is approximately 1000mm, the grid of 
points are about 5mm apart at this distance.  Fig. 2c shows the point grid with greater 
than 10 points around the centre home point for µ=12mm anywhere within the 
workspace range.  
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Fig. 5. (1) With respect to µ(mm) (a) • time;  time; (b) No. of planes; (c) Points registered (%) 
             (2) With respect to min(pts); (a) • time; (b) No. of planes ; (c) Points registered (%) time; (b) No. of planes ; (c) Points registered (%) 

5.2   Testing Overview 

This section shows results from tests on different working environments with 
different volumes of scan data. This allows for comparisons of the output, the time 
taken, the percentage of points registered and the quality of surfaces created. 
Quality is based upon comparisons between the generated surface and the actual 
surfaces from the environment. An in-depth test case is presented to highlight the 
methods. Following this are the results of 50 test cases as well as a breakdown of 
the timing of the entire process. This includes: initial scanning; fusion of data from 
several locations; division into 3D cubes, numerical analysis to minimise points, 
grow surfaces/normals; then finally rendering and graphing an output for the user. 

5.3   In Depth Case Study 

This test case is on an I-beam channel structure including features (corners, I-beam 
webs etc). Several scans are taken from the underneath side of the I-beam channel 
(Fig. 6a) to generate a point cloud (Fig. 6b). Table 1 shows the details of this case 
study. The Surface Growing algorithm was performed and the outputs displayed using 
the technique described. Fig. 6d shows the front view with a close-up showing the 
normals (Fig. 6e). Fig. 6c shows a side view of surfaces created with a close-up of the 
plotted planes (disks) in Fig. 6f. 
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Table 1. Details Of Scanning And Surface Growing Times (sec) 

No. Pts Scans Scan 
Time 

Fusion Time Process Time Graph Time Planes 

75K 5 112.1 3 21.2 2.8 1975 

 a)   b)   c) 

d)    e)   f) 

10mm

 

Fig. 6. a) Photo of structure; b) Fused raw data point cloud; c) bottom right view; d) Front 
viewof planes created; e) Expanded view of the corner; f) front - showing normals (red lines) 

5.4   Overall Results 

This section shows the results of 50 tests. Data was collected by scanning different 
structures with the identified workspace size several times, fusing the data, and using 
the Surface Growing algorithm to process this data. The results (Fig. 8a) show the 
overall algorithm time spent for the processing over the different number of points. 
Fig. 8b shows the resulting number of planes produced, the percentage of point 
registered stayed above 99% across the tests. The processing of the data also 
significantly reduces the amount of data needed to describe the surface sufficiently 
(turning 100000 scanned {x,y,z} points into 2000 surfaces is a data reduction > 1/20) 
Fig. 8c shows the reduction in data from the testing results. 

     _____  

Cube Dividing:0.3%

Plotting:1.5%

Surface Making:21.8%

Acquisition:76.4%

 

Fig. 7. Overall time breakdown averaged over all tests 

Fig. 7 shows the overall breakdown of the total time. It is obvious how the data 
acquisition time is significantly more time consuming than the other steps in the 
process. Once the scan data is acquired it can be processed while the next acquisition is 
being performed. 
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Fig. 8. Results for increasing No. of initial points; a) Overall time (grey) and the trend line 
(black); b) No. planes; c) Data reduction: original (red *) and post processing (blue o) 

5.5   Discussion - Scanning and Surface Growing Output 

This algorithm is particularly useful in autonomous structural maintenance system 
since there are various ways that the output of this algorithm can be applied, including 
in path planning and motion planning, collision avoidance and as part of the next best 
possible view by providing 3D occupancy grids. 

Initially a complete 3D environment map is not available but there are several 
Next Best View (NBV) algorithms [15] that could be used to determine the laser 
scanning tool’s position for the next scan. Inverse kinematics is used to determine 
the 6DOF robot arm pose such that the end effector has a desired position and 
bearing. The 3D occupancy grid can be used to check if the robot arm in that 
configuration collides with any points generated from initial scans [16]. If there is an 
impending collision then it is not a valid pose and if all poses to reach an identified 
NBV are exhausted then it is not a valid NBV. Hence, poses where the robot arm will 
collide with some identified, but as yet partially processed points, are discarded in 
exchange for another NBV pose. 

Another way which the output of this algorithm can be used is in path planning. 
Since the entire area needs to be covered during sandblasting or painting, this 
algorithm outputs a set of important discrete goal points on the surfaces that would 
cover the entire known surface. Those goal points can be directly used in path 
planning which determines the path of the robot arm to follow. The Surface Growing 
algorithm also outputs the normals to these points which the end effector must align 
to within a certain angle (5° to 40° to the normal) in order to optimise the blasted 
surface quality. 

The output can also be used in collision detection by applying spherical approach to 
represent the robot arm and surfaces with a set of spheres with center at the home point 
and radius of µ. This significantly simplifies closest surface calculations and ultimately 
collision detection calculations. 
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6   Conclusions 

The surface growing algorithm presented in this paper fulfils the requirement of 
providing useful maps of a partially known or unknown environment consisting of 
various structural members. It has the ability to transform unstructured 3D points, 
gathered and fused from multiple laser scans, into a useable format for interaction 
with surfaces in the environment. It creates 3D occupancy grids, identify important 
points, normals and bound planes. This can be directly outputted for robot arm path 
planning and motion control. 

Future work will involve integration with 3D path planning and collision detection 
between the robot arm and the environment, and the incorporation of a more advanced 
method of rendering the output for graphical display. 
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