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Abstract. We propose an algorithm to compute a counterexample of
minimal size to some property in a finite state program, using the same
space constraints than SPIN. This algorithm uses nested breadth-first
searches guided by a priority queue. It works in time O(n2 log n) and is
linear in memory.

1 Introduction

Model checking is used to prove correctness of properties of hardware and soft-
ware systems. When the program is incorrect, locating errors is important to
provide hints on how to correct either the system or the property to be checked.
Model checkers usually exhibit counterexamples, that is, faulty execution traces
of the system [CV03]. The simpler the counterexample is, the easier it will be to
locate, understand and fix the error. A counterexample may mean that the ab-
straction of the system (formalized as the model) is too coarse; several techniques
allow to refine it, guided by the counterexample found by the model-checker. The
refinement stage can be done manually or automatically, but since even the au-
tomatic computation of refinements can be very expensive, it is very important
to compute small counterexamples (ideally of minimal size) in case the property
is not satisfied.

It is well-known that verifying whether a finite state system M satisfies an
LTL property ϕ is equivalent to testing whether a Büchi automaton A = AM ∩
A¬ϕ has no accepting run, where AM is a Kripke structure describing the system
and A¬ϕ is a Büchi automaton describing executions that violate ϕ. It is easy,
in theory, to determine whether a Büchi automaton has at least one accepting
run. Since there is only a finite number of accepting states, this problem is
indeed equivalent to finding a reachable accepting state and a loop around it.
A counterexample to ϕ in M can then be given as a path ρ = ρ1ρ2 in the
Büchi automaton, where ρ1 is a simple (loop-free) path from the initial state
to an accepting state, and ρ2 is a simple loop around this accepting state (see
Figure 1). Our goal is to find short counterexamples. The first trivial remark is
that we can reduce the length of a counterexample if we do not insist on the fact
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Fig. 1. An accepting path in a Büchi automaton
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Fig. 2. An accepting path in a Büchi automaton

that the loop starts from an accepting state. Hence, we consider counterexamples
of the form ρ = ρ1ρ2ρ3 where ρ1ρ2 is a path from the initial state to an accepting
state, and ρ2ρ3 is a simple loop (see Figure 2).

A minimal counterexample can then be defined as a path of this form, such
that the length of ρ is minimal.

A minimal counterexample can of course be computed in polynomial time
using minimal paths algorithms based on breadth first searches (BFS). Since
the model of the system frequently comes from several components working
concurrently, the resulting Büchi automaton to be checked for emptiness may
be huge. Therefore, memory is a critical resource and, for instance, we cannot
afford to store the minimal distances between all pairs of states. Actually, even
linear space may be a problem if the constant is too high. In tools like SPIN,
only one integer and a few bits per state are stored for the computation of a
“small” counterexample (it is well-known that SPIN does not compute a minimal
counterexample). The aim of this paper is to give a polynomial time algorithm
for computing a minimal counterexample using no more memory than SPIN
does, i.e., one integer and a few flags per state.

There exists several algorithms [CVWY92, HPY96, GMZ04, SE05] to check
a Büchi automaton for emptiness and to construct a counterexample when the
language is nonempty. All these algorithms use nested depth first search (DFS)
and therefore they cannot be easily adapted to compute a minimal counterex-
ample. It is also possible to use Tarjan like algorithms to find a counterexample,
see e.g. [Cou99, VG04].

In [GMZ04], an algorithm computing a minimal counterexample is presented.
As far as the memory is concerned, this algorithm is as efficient as SPIN. How-
ever, it is still based on DFSs and its time complexity is exponential.

In [HK06], the authors propose an algorithm based on interleaved BFSs. They
use three integers and some bits per state, which is more than SPIN does. More-
over, they need to explore the edges badkwards which would be difficult in
practice with SPIN.

Our contribution is the following:

– We propose a polynomial time algorithm to compute a counterexample of
minimal size. This algorithm only uses forward edges and does not use more
memory than SPIN does when trying to reduce the size of counterexamples,
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i.e., one integer and some bits per state. It is based on a BFS which is driven
by a priority queue and can also be seen as several BFSs interleaved.

– We improve this algorithm with several optimizations.

Note that, we do not address the problem of finding the smallest counterex-
ample, given an LTL property and a finite system. We only focus in this paper
on the problem of finding a minimal accepting path in a Büchi automaton repre-
senting the product of the model and the negation of the property to be checked.

In the case of symbolic model checking, the problem is slightly different. In
particular, in [SB05], the authors show that classical techniques for checking
LTL properties (without past) give the smallest counterexample.

The paper is organized as follows. We first recall some notations and the
development context in the Section 2. Then we present in Section 3 an algorithm
that computes a minimal counterexample, and prove its correctness. We also
present an algorithm to recover the trace of a counterexample when only the
states s1 and s2 are known (see Figure 2). This is needed when using bit-state
hashing techniques. In Section 4, we propose several optimizations in order to
obtain a more efficient algorithm. We conclude in Section 5.

2 Context and Notations

Let A = (S, E, i, F ) be a Büchi automaton where S is a finite set of states,
E ⊆ S × S is the transition relation, i ∈ S is the initial state and F ⊆ S is
the set of accepting states. Usually transitions are labeled with actions but since
these labels are irrelevant for the emptiness problem, they are ignored in this
paper. In pictures, the initial state is marked with an ingoing edge and accepting
states are doubly circled.

Recall that a path in an automaton is a sequence of states s1s2 · · · sk such
that for all i = 1, . . . , k − 1 there is a transition from si to si+1. We denote by
d(r, s) the distance between r and s, that is the length of a minimal path from r
to s. Note that d(r, s) = 0 if r = s and d(r, s) = ∞ if s is not reachable from r.
A loop is a path s1s2 · · · sk with k > 1 and sk = s1. A path s1s2 · · · sk is simple
if si �= sj for all i �= j. A loop s1s2 · · · sk is a cycle if s1s2 · · · sk−1 is a simple
path. A loop (resp. a cycle) is accepting if it contains an accepting state. Finally,
an accepting path is of the form γ = i · · · sk · · · sk+� where i · · · sk+�−1 is a simple
path and sk · · · sk+� is an accepting cycle. We call i · · · sk the head of γ. Note
that an accepting path starts in the initial state. We also call counterexample an
accepting path.

2.1 Space Constraints

When checking for emptiness a Büchi automaton that arises from a model and
the negation of an LTL formula, we often run out of memory. Hence, it is crucial
to use as little memory as possible. This is why SPIN only uses one integer and
a few bits per state when reducing the size of a counterexample. Our aim is to
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use no more memory than SPIN does. Since we want to compute shortest paths
we will use BFS and store some distances. The memory constraint implies that
only one distance per state can be stored at any given time of the algorithm.

3 An Algorithm to Find the Smallest Counterexample

We will describe an algorithm to compute a minimal counterexample. We do not
include any optimization in this section. Section 4 will describe the improvements
yielding an efficient algorithm that can be implemented.

The main algorithm is presented in Section 3.5. It uses several algorithms that
are presented first.

Actually, instead of computing directly a counterexample ρ1ρ2ρ3 as described
in Figure 2, we will only compute the key-states s1 and s2 so that ρ2 is a
path from s1 to s2. The next section shows how the counterexample can be
reconstructed from s1 and s2.

3.1 Reconstructing the Counterexample

Let ρ1ρ2ρ3 be a minimal counterexample (see Figure 2). Assume that only the
states s1 and s2 that are at the beginning and the end of ρ2 are known. The
problem is to reconstruct the counterexample.

If states are stored in an hash table as usual, one can recover the trace of
the counterexample using a BFS algorithm [CSRL01] that stores, when a state
is visited for the first time, a pointer to its father. It then suffices to apply this
BFS from the initial state i to s1 to generate ρ1, then to apply it from s1 to s2
to generate ρ2 and finally to apply it once more from s2 to s1 to generate ρ3.

But if one wants to use bit-state hashing techniques [WL93, Hol98], one cannot
generate the trace using the backward pointer technique. Since all informations
about a state are not stored in the hash table, once a state is removed from the
queue, the only remaining informations for this state are the one stored in the
hash table, i.e., some flags and depth informations. A pointer to this memory
location does not give complete information about the state.

We propose a simple algorithm to reconstruct the counterexample, when
pointer to fathers cannot be used, e.g., when bit-state hashing techniques are
used. Since we know states i, s1 and s2 we only need to compute a shortest
path between a pair (r, r′) of states. We first use a BFS to store d(r, s) for each
state visited until r′ is reached. Then we use a DFS starting from r, that visits a
successor s′ of a state s iff its distance to r is d(r, s)+ 1. This condition enforces
the DFS to visit states in the order implied by their minimal distance from r.
Once r′ is reached, the shortest path is stored in the DFS stack. The description
is given in Algorithm 1.

Note that, once the distances are computed by a BFS, a backward search in
the graph starting from s and following edges for which the distance decreases
until r (hence distance 0) is reached, allows to construct efficiently the shortest
path from r to s. Unfortunately, backward searches cannot be used in practice
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Algorithm 1. An algorithm to generate a shortest path from r to r′

void BFS trace (State r, State r′)
1: Queue F;
2: F.enqueue(r,0); r.bfs flag = true;
3: while F �= ∅ do
4: (s,n) = F.dequeue();
5: for all s′ ∈ E(s) do
6: if ¬ s′.bfs flag then
7: F.enqueue(s′, n+1); s.bfs flag = true;
8: s.depth = n+1;
9: end if

10: if s′ == r′ then
11: goto 15;
12: end if
13: end for
14: end while
15: DFS trace(r,r′);

void DFS trace (State s, State r′)
1: cp.push(s,s.depth);; s.dfs flag = true;
2: if s == r′ then
3: exit all recursive calls of DFS trace
4: end if
5: for all s′ ∈ E(s) do
6: if ¬ s′.dfs flag and s′.depth == s.depth+1 then
7: DFS trace(s′,r′);
8: end if
9: end for

10: cp.pop();

with SPIN since it would be hard to compute the set of predecessors of a state.
Indeed, the number of potential predecessors may be use, e.g., if the state is
reached by an assignment to some integer variable.

3.2 Distances from the Initial State

The first step is to compute with a BFS the distances between the initial state
and each state. They correspond to the possible length of the path ρ1 of the
counterexample (see Figure 2). Moreover, we also store in a queue called Accept,
all the accepting states that are reachable from the initial state. All this is quite
standard and presented in Algorithm 2 for the sake of completeness.

3.3 Another Breadth First Search

Once Algorithm 2 has completed, we have stored in Accept, all reachable ac-
cepting states. We will now find the smallest counterexample going through one
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Algorithm 2. A BFS to store distances from the initial state
Queue BFS distance(State i)
1: Queue F, Accept;
2: F.enqueue(i,0);
3: i.depth = 0; i.bfs flag = true;
4: while (F �= ∅) do
5: (s,n) = F.dequeue();
6: if (s ∈ F) then
7: Accept.enqueue(s);
8: end if
9: for all s′ ∈ E(s) do

10: if ¬ s′.bfs flag then
11: s′.depth = n+1;
12: F.enqueue(s′,n+1);
13: s′.bfs flag = true;
14: end if
15: end for
16: end while
17: return Accept;

of these states, and we will repeat this operation for each accepting state. Note
that, since we used a queue to store accepting states, we will start with the
accepting state which is the closest to the initial state.

We denote by r the current accepting state we are working on. Algorithm 3
will fill a priority queue (see [CSRL01]1) with the set of states reachable from
r. The priority that will be associated with a state s will be d(i, s) + d(r, s), i.e.,
|ρ1|+ |ρ3| in the sense of the Figure 2. We already know d(i, s) from Algorithm 2.
This information is stored as the s.depth. To fill the priority queue, we perform
another BFS starting from r that visits all states reachable from r. We use a
global variable maxdepth that contains the size of the smallest counterexample
found so far (∞ if no counterexamples were found yet).

Once Algorithm 3 has been performed, we have in the priority queue PQ the
states reachable from r ordered according to d(i, s) + d(r, s). We will use this
information to find the smallest counterexample passing through r.

Lemma 1

1. For all (s, n) ∈ PQ, we have n = d(i, s) + d(r, s) < maxdepth.
2. For all state s, if d(i, s) + d(r, s) < maxdepth then (s, d(i, s) + d(r, s)) ∈ PQ.

Proof. (1) For each state, we have s.depth = d(i, s). The property is clear when
s = r. Now, when s′ is inserted in PQ at line 12, we have n + 1 = d(r, s′) by
classical properties of the BFS. Since this is guarded by the test in line 11, the
result follows.
1 There are different implementations for a priority queue (binary heap, binomial heap,

Fibonacci heap). They all give the same (theoretical) complexity for our purpose.
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Algorithm 3. A BFS to construct the priority queue
Priority Queue BFS PQ(State r)
1: Queue F; Priority Queue PQ;
2: F.enqueue(r,0); r.bfs flag = true;
3: if r.depth < maxdepth then
4: PQ.enqueue(r, r.depth);
5: end if
6: while F �= ∅ do
7: (s,n) = F.dequeue();
8: for all s′ ∈ E(s) do
9: if ¬ s′.bfs flag then

10: F.enqueue(s′, n+1)); s′.bfs flag = true;
11: if s′.depth + n + 1 < maxdepth then
12: PQ.enqueue(s′, s′.depth + n + 1);
13: end if
14: end if
15: end for
16: end while
17: return PQ;

(2) If s = r then line 4 is executed and we get the result. Let now s′ be such
that d(i, s′) + d(r, s′) < maxdepth. Since d(r, s′) < maxdepth we deduce that
d(r, s′) < ∞ and s′ is reachable from r. Hence s′ will be considered and lines
11-13 will be executed with s′. Since s′.depth = d(i, s′) and n + 1 = d(r, s′) we
deduce from the hypothesis that (s′, d(i, s′) + d(r, s′)) is inserted in PQ. ��

3.4 BFS Guided by a Priority Queue

Algorithm 4 finds the smallest counterexample whose loop goes through a spec-
ified repeated state r. Again, our search is limited by maxdepth but we omit
this optimization from our intuitive description. After Algorithm 3 we have in
the priority queue PQ all pairs (s, n) with n = d(i, s) + d(r, s) (Lemma 1). The
aim is to find a state s such that d(i, s) + d(r, s) + d+(s, r) is minimal (here
d+(s, r) denotes the length of a shortest nonempty path from s to r). Note that
the corresponding counterexample can then be reconstructed using Algorithm 1.

i

r

s t
ρ1

ρ3

ρ′2

ρ′′2

Fig. 3.
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Algorithm 4. Algorithm for finding the smallest counterexample
(State,State,int) Prio min(State r, Priority Queue PQ)
1: Queue G;
2: n = PQ.PrioMin();
3: while (PQ �= ∅ or G �= ∅) and (n + 1 < maxdepth) do
4: /* Put in G pairs (s,s) such that s is in PQ with priority n,

without being marked.*/
5: while (PQ.min() == n) do
6: (s,m) = PQ.extract min();
7: if ¬ s.marked then
8: G.enqueue(s,s);
9: s.marked = true;

10: end if
11: end while
12: G.enqueue(#);
13: while G.head() �= # do
14: (s,t) = G.dequeue();
15: for all t′ ∈ E(t) do
16: if t’ == r then
17: return (s,n+1);
18: else if ¬ t’.marked then
19: G.enqueue(s,t’);
20: t’.marked = true;
21: end if
22: end for
23: end while
24: G.dequeue(); /* symbol # */
25: n++;
26: end while
27: return (r,∞);

The idea is to use simultaneous (interleaved) BFSs. We begin with a BFS
starting from some state s with d(i, s)+d(r, s) minimal. Assume we have reached
a state t (see Figure 3). If d(i, s) + d(r, s) + d(s, t) is smaller than the minimal
priority in PQ then we continue the BFS from state t. If, on the other hand, there
is some state s′ with d(i, s′) + d(r, s′) < d(i, s) + d(r, s) + d(s, t) then we start a
new BFS from state s′ instead. We use a single queue G for all the interleaved
BFSs. In this queue, we store pairs (s, t) since, when we eventually reach r, we
need to know from which state s we started with.

The algorithm proceeds in rounds (separated by # in the queue G). In the
initialization phase, we put in G all pairs (s, s) with n = d(i, s)+d(r, s) minimal.
Then we consider all successors t′ of states t such that (s, t) is in G for some s.
The “rank” of these states t′ is n + 1 and we add (s, t′) to G for the next round
if t′ has not yet been reached. We also add for the next round the pairs (s, s)
such that (s, n + 1) is in PQ. When we reach state r we have found our smallest
counterexample whose loop goes through r.
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Lemma 2. Invariant for Algorithm 4: there is exactly one # in G between lines
13-23 and there is no # in G outside lines 12-24.

Proof. At the beginning of the algorithm, G is empty. We insert a # in the queue
at line 12 and no # is inserted or deleted between lines 13-23. Hence, the #
inserted at line 12 is popped at line 24. The result follows. ��

The invariants for the loops of Algorithm 4 are given by the following table

Invariants for loop 3 : (1, 2, 3, 4)
Invariants for loop 5 : (1, 2, 3, 4)
Invariants for loop 13 : (2, 3, 5, 6, 7)

where

∀s d(i, s) + d(r, s) + d+(s, r) > n (1)
∀t t is marked ∨ (t, n) ∈ PQ ∨ ∀s, d(i, s) + d(r, s) + d(s, t) > n (2)

∀s, t (s, t) ∈ G =⇒ t is marked (3)
∀s, t (s, t) ∈ G =⇒ d(i, s) + d(r, s) + d(s, t) = n (4)
∀s, t (s, t) ∈ G before # =⇒ d(i, s) + d(r, s) + d(s, t) = n (5)
∀s, t (s, t) ∈ G after # =⇒ d(i, s) + d(r, s) + d(s, t) = n + 1 (6)

PQ.PrioMin() > n (7)

Loop 3. We first show that (1, 2, 3, 4) hold initially for loop 3, i.e., after line 2:

(1) Since PQ.PrioMin() = n, we deduce from Lemma 1 that d(i, s) + d(r, s) ≥ n
for all s. The result follows since d+(s, r) > 0.

(2) Assume that d(i, s)+d(r, s)+d(s, t) ≤ n for some s. Since PQ.PrioMin() = n,
we deduce using Lemma 1 that d(i, s) + d(r, s) = n and d(s, t) = 0. Using
Lemma 1 again we obtain (t, n) = (s, n) ∈ PQ.

(3, 4) Holds trivially since G is empty.

Loop 5. Assuming that (1, 2, 3, 4) are invariants for loop 3, we obtain immedi-
ately that (1, 2, 3, 4) hold initially for loop 5. We show that they are preserved
by the execution of lines (6-10):

(1) Clear since n is unchanged.
(2) If t is marked or (t, n) ∈ PQ before line 6 then the same holds after line

10. Moreover n is unchanged in this loop hence the third part of (2) is also
invariant.

(3) Clear since whenever a pair (s, s) is inserted in G at line 8 then s is marked
at line 9 .

(4) When a pair (s, s) is inserted in G at line 8 then we have d(i, s)+ d(r, s) = n
by Lemma 1.

Loop 13. First, note that (2) and (7) hold after line 11 and are invariants by
lines (12-24): PQ and n remain unchanged in the body of loop 13 and once a
state is marked, it remains so forever.
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Also, (3) holds after line 11 and when a pair (s, t′) is inserted in G at line 19
then t′ is marked at the next line. Hence, (3) is preserved by the execution of
lines (14-22).

Now, since (4) holds after line 11 then (5, 6) hold after line 12 (by Lemma 2
there are no # in G except from lines (13-23) where there is exactly one # in G).
Equation (5) is clearly preserved by lines (14-22) since new pairs are inserted in
G after #.

It remains to show that (6) is preserved by lines (14-22). Consider the pair
(s, t′) inserted in G at line 19. By (5) we have d(i, s)+ d(r, s) + d(s, t) = n. Since
t′ ∈ E(t), we get d(t, t′) ≤ 1 and we deduce that d(i, s)+d(r, s)+d(s, t′) ≤ n+1.
Now, t′ was not marked (line 18) and (t′, n) /∈ PQ by (7). We deduce from (2)
that d(i, s) + d(r, s) + d(s, t′) > n. Therefore, d(i, s) + d(r, s) + d(s, t′) = n + 1
and (6) still holds after the insertion of (s, t′) in G.

Loop 3 continued. Finally, we have to show that (1, 2, 3, 4) still hold after
line 25. We know that after line 23, the first element in G is # and that (2, 3, 6)
hold. We deduce immediately that (3, 4) hold after line 25.

We consider (1), so assume that d(i, s) + d(r, s) + d+(s, r) = n + 1 for some
s. Let t be such that r ∈ E(t) and d+(s, r) = d(s, t) + 1. Then, we deduce that
d(i, s) + d(r, s) + d(s, t) = n. Now, after line 11 we have (t, n) /∈ PQ by (7). We
deduce from (2) that t is marked. Let s′ be such that (s′, t) ∈ G. Since r ∈ E(t)
we deduce that line 17 will be executed before the end of loop 13. Therefore, if
line 24 is reached, this means that d(i, s) + d(r, s) + d+(s, r) > n + 1 for all s.
We deduce that (1) still holds after line 25 (if reached).

It remains to show that (2) still holds after line 25. This is a direct consequence
of the following:

Claim. Assume that after line 23 there are s, t′ such that t′ is not marked and
d(i, s) + d(r, s) + d(s, t′) ≤ n + 1. Then, (t′, n + 1) ∈ PQ.

Let s, t′ satisfy the hypotheses of the claim. By (7) we know that (t′, n) /∈ PQ
hence, by (2), we get d(i, s) + d(r, s) + d(s, t′) > n. Therefore, d(i, s) + d(r, s) +
d(s, t′) = n + 1. We prove that t′ = s by contradiction. So assume that t′ �= s.
Then d(s, t′) > 0 and there exists t such that d(s, t′) = d(s, t) + 1 and t′ ∈ E(t).
We obtain d(i, s) + d(r, s) + d(s, t) = n. We deduce that t was already marked
before line 12 by (7, 2). Therefore, there exists s′ such that (s′, t) has been
inserted in G before line 12 (maybe in some previous execution of the body of
loop 3). Therefore, after line 23, all successors of t have already been considered
and must be marked. This is a contradiction with t′ ∈ E(t) and t′ is not marked.
Therefore, t′ = s and we have d(i, s) + d(r, s) = n + 1. Since n + 1 < maxdepth
(test line 3), using Lemma 1 we obtain (t′, n+1) = (s, n+1) ∈ PQ, which proves
the claim.

Lemma 3. Either d(i, s) + d(r, s) + d+(s, r) ≥ maxdepth for all state s and
Algorithm 4 exits at line 27, or Algorithm 4 exits at line 17 with a pair (s, n+1)
such that d(i, s) + d(r, s) + d+(s, r) = n + 1 < maxdepth and for all state s′ we
have d(i, s′) + d(r, s′) + d+(s′, r) > n.

Proof. Follows easily from the invariants, in particular (1) and (5). ��
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Algorithm 5. The complete algorithm
Stack Minimal Counterexample (State i)
1: Queue Accept = BFS distance(i);
2: maxdepth = ∞;
3: while Accept �= ∅ do
4: State r = Accept.dequeue();
5: Priority Queue PQ = BFS PQ(r);
6: (s,n) = Prio min(r, PQ)
7: if n < maxdepth then
8: s1 = s; s2 = r;
9: maxdepth = n;

10: end if
11: end while
12: if maxdepth < ∞ then
13: Stack cp;
14: BFS trace(i,s1); BFS trace(s1,s2); BFS trace(s2,s1);
15: return cp;
16: end if
17: return ∅;

3.5 Synthesis

We give now the complete algorithm which computes the smallest counterexam-
ple. This algorithm works in time O(|E| · |F | · log(|S|)), the factor log(|S|) is due
to the operations on the priority queue. The algorithm works in linear space.
More precisely, for each state we store an integer (depth field) and a few bits
(bfs flag or marked). In fact, these flags should be erased after each call to an
algorithm, this is omitted for simplicity. The size of each queue is at most linear
in the number of states.

4 Improvements

The first improvement is to use, before calling Algorithm 5, a nested-DFS al-
gorithm such as [CVWY92, HPY96, SE05, GMZ04], or a Tarjan-like algorithm
[Cou99, VG04]2. This allows to perform a linear time search to detect whether
there exists some counterexample, and in this case it can also initialize maxdepth
to the size of the counterexample found in order to speed-up Algorithm 5.

We can further improve the computation time by applying the following
optimizations.

Improving the initial value of maxdepth
For Algorithm 2, suppose that a counterexample has already been found and
stored in a path called cp. Then, if an algorithm like a nested-DFS was used,

2 In fact, a nested-DFS algorithm can also prevent revisiting some states, see the end
of Algorithm 6.
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Algorithm 6. A BFS to store distances from the initial state
Queue BFS distance(State i)
1: Queue F, Accept;
2: F.enqueue(i,0);
3: i.depth = 0; i.bfs flag = true;
4: maxdepth = size(cp); n = 0; saved = 0
5: while (F �= ∅) ∧ (n < maxdepth) do
6: (s,n) = F.dequeue();
7: if (s ∈ F) then
8: Accept.enqueue(s);
9: end if

10: for all s′ ∈ E(s) do
11: if s′.color != black and ¬ s′.bfs flag then
12: s′.depth = n+1;
13: F.enqueue(s′,n+1);
14: s′.bfs flag = true;
15: end if
16: end for
17: if s.color == blue and s.is in cp and depth(s,cp) - n > saved then
18: saved = depth(s,cp) - n;
19: maxdepth = size(cp) - saved;
20: end if
21: end while
22: return Accept;

one knows if a state is on the head of the counterexample (it will be blue (see
[SE05, GMZ04] for more information on the blue flag3) and in the current stack).
Algorithm 2 computes the minimal distances between the initial state and all the
states. So for each state that belongs to the head of the counterexample cp, one
can compare its distance from the initial state in the path cp, and its minimal
distance. Then, if the latter is smaller, one can already update the maxdepth
field at this point. These modifications are described in Algorithm 6, lines 4, 11
and 17-20.

Looking for counterexample in Algorithm 3
If a successor of a state is also the current accepting state, then we have found a
counterexample (and it has the form of Figure 1). Since we know its length we
can update maxdepth (see lines 19-21 in Algorithm 7).

Limiting the state space in Algorithm 3
We can also add a condition in the body of the loop saying that we are looking
for counterexamples for which the loop size is at most maxdepth (see lines 9-11
in Algorithm 7).

3 The blue color is described in these papers, but it is common to all the nested-DFS
approaches.
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Algorithm 7. A BFS to construct the priority queue
Priority Queue BFS PQ(State r)
1: Queue F; Priority Queue PQ;
2: F.enqueue(r,0); r.bfs flag = true;
3: if r.depth < maxdepth then
4: PQ.enqueue(r, r.depth);
5: end if
6: loop = false;
7: while F �= ∅ do
8: (s,n) = F.dequeue();
9: if n + 1 ≥ maxdepth then

10: break;
11: end if
12: for all s′ ∈ E(s) do
13: if ¬ s′.bfs flag then
14: F.enqueue(s′, n+1)); s′.bfs flag = true;
15: if (s′.depth + n + 1 < maxdepth) and (s′.depth < s.depth) then
16: PQ.enqueue(s′, s′.depth + n + 1);
17: end if
18: loop = loop ∨ (s′ == r);
19: if (s′ == r) and (s′.depth + n + 1 < maxdepth) then
20: maxdepth = s′.depth + n + 1;
21: end if
22: end if
23: end for
24: end while
25: if loop then
26: return PQ;
27: else
28: return ∅
29: end if

Call to Algorithm 4 iff a smaller counterexample may exist
There is also in Algorithm 7, a local boolean named loop, which records if there
exists an accepting path into the limited state space (limited by maxdepth). If
this boolean loop is false at the end of the execution, then there are no useful
loop passing through r and there is no need to continue the computation for this
state (see lines 6, 18 and 25-29 in Algorithm 7).

Including only useful states in PQ
Recall that we are looking for a state s for which d(i, s) + d(r, s) + d+(s, r) is
minimal. Algorithm 3 inserts in PQ pairs (s, d(i, s)+ d(r, s)) which are then used
by Algorithm 4 to find some state which minimizes the quantity above.

At line 10 of Algorithm 3, we have d(r, s) = n, d(r, s′) = n + 1 and s′ ∈
E(s). Then, d+(s, r) ≤ 1 + d(s′, r). We deduce that if d(i, s) ≤ d(i, s′) then
d(i, s)+d(r, s)+d+(s, r) ≤ d(i, s′)+d(r, s′)+d+(s′, r). Therefore, if s′ minimizes
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this quantity, so does s and there is no need to insert s′ in the priority queue
PQ. This is prevented by the additional constraint on line 15 of Algorithm 7.

Note that this only saves some memory in the priority queue PQ. Indeed, with
the notation above, we have d(i, s) + d(r, s) < d(i, s′) + d(r, s′) (still assuming
that d(i, s) ≤ d(i, s′)). Hence, even if we insert (s′, d(i, s′) + d(r, s′)) in PQ, when
this pair is extracted from PQ at line 6 of Algorithm 4, the state s′ is already
marked and therefore, (s′, s′) is not inserted in G.

5 Conclusion

We have proposed an algorithm to compute the smallest counterexample of a
property represented by a Büchi automaton. We have presented a set of improve-
ments that can immediately be used to get a more efficient algorithm.

Our algorithm has nice properties. First, it can find all smallest counterex-
amples for all accepting states, if the variable maxdepth is always set to ∞.

Second, the ordering of the transitions has no impact on the computation
time. For nested-DFS approaches, the result can strongly depends on the order
of the transitions.

Third, our algorithm can also be used for bounded explicit model checking,
setting the maxdepth variable to some value. The algorithm properties ensure
that it will found the smallest counterexample passing through the state space
bounded by the maxdepth value. This is not the case for classical nested-DFS al-
gorithms which fail to answer properly for some graph configurations (depending
on the ordering for the visit).
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